WorldWideScience

Sample records for rgd peptide initial

  1. Effect of RGD Peptide-Coated TiO2 Nanotubes on the Attachment, Proliferation, and Functionality of Bone-Related Cells

    Directory of Open Access Journals (Sweden)

    Seunghan Oh

    2013-01-01

    Full Text Available The purpose of this research was to characterize an Arg-Gly-Asp (RGD peptide immobilized on TiO2 nanotubes. In addition, we investigated the effects of the RGD peptide-coated TiO2 nanotubes on the cellular response, proliferation, and functionality of osteogenic-induced human mesenchymal stem cells (hMSCs, which are osteoclasts that have been induced by bone marrow macrophages. The RGD peptide was grafted covalently onto the surface of TiO2 nanotubes based on the results of SEM, FT-IR, and XPS. Furthermore, the RGD peptide promoted the initial attachment and proliferation of the hMSCs, regardless of the size of the TiO2 nanotubes. However, the RGD peptide did not prominently affect the osteogenic functionality of the hMSCs because the peptide suppressed hMSC motility associated with osteogenic differentiation. The result of an in vitro osteoclast test showed that the RGD peptide accelerated the initial attachment of preosteoclasts and the formation of mature osteoclasts, which could resorb the bone matrix. Therefore, we believe that an RGD coating on TiO2 nanotubes synthesized on Ti implants might not offer significant acceleration of bone formation in vivo because osteoblasts and osteoclasts reside in the same compartment.

  2. {sup 18}F-labeled RGD peptide: initial evaluation for imaging brain tumor angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xiaoyuan; Park, Ryan; Shahinian, Anthony H.; Tohme, Michel; Khankaldyyan, Vazgen; Bozorgzadeh, Mohammed H.; Bading, James R.; Moats, Rex; Laug, Walter E.; Conti, Peter S. E-mail: pconti@usc.edu

    2004-02-01

    Brain tumors are highly angiogenesis dependent. The cell adhesion receptor integrin {alpha}{sub v}{beta}{sub 3} is overexpressed in glioma and activated endothelial cells and plays an important role in brain tumor growth, spread and angiogenesis. Suitably labeled {alpha}{sub v}{beta}{sub 3}-integrin antagonists may therefore be useful for imaging brain tumor associated angiogenesis. Cyclic RGD peptide c(RGDyK) was labeled with {sup 18}F via N-succinimidyl-4-[{sup 18}F]fluorobenzoate through the side-chain {epsilon}-amino group of the lysine residue. The radiotracer was evaluated in vivo for its tumor targeting efficacy and pharmacokinetics in subcutaneously implanted U87MG and orthotopically implanted U251T glioblastoma nude mouse models by means of microPET, quantitative autoradiography and direct tissue sampling. The N-4-[{sup 18}F]fluorobenzoyl-RGD ([{sup 18}F]FB-RGD) was produced in less than 2 h with 20-25% decay-corrected yields and specific activity of 230 GBq/{mu}mol at end of synthesis. The tracer showed very rapid blood clearance and both hepatobiliary and renal excretion. Tumor-to-muscle uptake ratio at 30 min was approximately 5 in the subcutaneous U87MG tumor model. MicroPET imaging with the orthotopic U251T brain tumor model revealed very high tumor-to-brain ratio, with virtually no uptake in the normal brain. Successful blocking of tumor uptake of [{sup 18}F]FB-RGD in the presence of excess amount of c(RGDyK) revealed receptor specific activity accumulation. Hence, N-4-[{sup 18}F]fluorobenzoyl labeled cyclic RGD peptide [{sup 18}F]FB-RGD is a potential tracer for imaging {alpha}{sub v}{beta}{sub 3}-integrin positive tumors in brain and other anatomic locations.

  3. Iminodiacetic acid as bifunctional linker for dimerization of cyclic RGD peptides

    International Nuclear Information System (INIS)

    Xu, Dong; Zhao, Zuo-Quan; Chen, Shu-Ting; Yang, Yong; Fang, Wei; Liu, Shuang

    2017-01-01

    Introduction: In this study, I2P-RGD 2 was used as the example to illustrate a novel approach for dimerization of cyclic RGD peptides. The main objective of this study was to explore the impact of bifunctional linkers (glutamic acid vs. iminodiacetic acid) on tumor-targeting capability and excretion kinetics of the 99m Tc-labeled dimeric cyclic RGD peptides. Methods: HYNIC-I2P-RGD 2 was prepared by reacting I2P-RGD 2 with HYNIC-OSu in the presence of diisopropylethylamine, and was evaluated for its α v β 3 binding affinity against 125 I-echistatin bound to U87MG glioma cells. 99m Tc-I2P-RGD 2 was prepared with high specific activity (~185 GBq/μmol). The athymic nude mice bearing U87MG glioma xenografts were used to evaluate its biodistribution properties and image quality in comparison with those of 99m Tc-3P-RGD 2 . Results: The IC 50 value for HYNIC-I2P-RGD 2 was determined to be 39 ± 6 nM, which was very close to that (IC 50 = 33 ± 5 nM) of HYNIC-3P-RGD 2 . Replacing glutamic acid with iminodiacetic acid had little impact on α v β 3 binding affinity of cyclic RGD peptides. 99m Tc-I2P-RGD 2 and 99m Tc-3P-RGD 2 shared similar tumor uptake values over the 2 h period, and its α v β 3 -specificity was demonstrated by a blocking experiment. The uptake of 99m Tc-I2P-RGD 2 was significantly lower than 99m Tc-3P-RGD 2 in the liver and kidneys. The U87MG glioma tumors were visualized by SPECT with excellent contrast using both 99m Tc-I2P-RGD 2 and 99m Tc-3P-RGD 2 . Conclusion: Iminodiacetic acid is an excellent bifunctional linker for dimerization of cyclic RGD peptides. Bifunctional linkers have significant impact on the excretion kinetics of 99m Tc radiotracers. Because of its lower liver uptake and better tumor/liver ratios, 99m Tc-I2P-RGD 2 may have advantages over 99m Tc-3P-RGD 2 for diagnosis of tumors in chest region. -- Graphical abstract: This report presents novel approach for dimerization of cyclic RGD peptides using iminodiacetic acid as a

  4. Novel Approach to Prepare {sup 99m}Tc-Based Multivalent RGD Peptides

    Energy Technology Data Exchange (ETDEWEB)

    Shuang Liu

    2012-10-24

    This project presents a novel approach to prepare the {sup 99m}Tc-bridged multivalent RGD (arginine-glycine-aspartate) peptides. This project will focus on fundamentals of {sup 99m}Tc radiochemistry. The main objective of this project is to demonstrate the proof-of-principle for the proposed radiotracers. Once a kit formulation is developed for preparation of the {sup 99m}Tc-bridged multivalent RGD peptides, various tumor-bearing animal models will be used to evaluate their potential for SPECT (single photon-emission computed tomography) imaging of cancer. We have demonstrated that (1) multimerization of cyclic RGD peptides enhances the integrin {alpha}{sub v}{beta}{sub 3} bonding affinity and radiotracer tumor uptake; (2) addition of G{sub 3} or PEG{sub 4} linkers makes it possible for two RGD motifs in 3P-RGD{sub 2} and 3G-RGD{sub 2} to achieve simultaneous integrin {alpha}{sub v}{beta}{sub 3} binding; and (3) multimers are actually bivalent (not multivalent), the presence of extra RGD motifs can enhance the tumor retention time of the radiotracer.

  5. Radiolabelled RGD peptides for imaging and therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gaertner, F.C.; Schwaiger, M.; Beer, A.J. [Technische Universitaet Muenchen, Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany); Kessler, H. [Technische Universitaet Muenchen, Institute for Advanced Study and Center of Integrated Protein Science, Department of Chemistry, Garching (Germany); King Abdulaziz University, Chemistry Department, Faculty of Science, Jeddah (Saudi Arabia); Wester, H.-J. [Institute for Pharmaceutical Radiochemistry, Garching (Germany)

    2012-02-15

    Imaging of angiogenesis has become increasingly important with the rising use of targeted antiangiogenic therapies like bevacizumab (Avastin). Non-invasive assessment of angiogenic activity is in this respect interesting, e.g. for response assessment of such targeted antiangiogenic therapies. One promising approach of angiogenesis imaging is imaging of specific molecular markers of the angiogenic cascade like the integrin {alpha}{sub v}{beta}{sub 3}. For molecular imaging of integrin expression, the use of radiolabelled peptides is still the only approach that has been successfully translated into the clinic. In this review we will summarize the current data on imaging of {alpha}{sub v}{beta}{sub 3} expression using radiolabelled RGD peptides with a focus on tracers already in clinical use. A perspective will be presented on the future clinical use of radiolabelled RGD peptides including an outlook on potential applications for radionuclide therapy. (orig.)

  6. 68Ga-DOTA-RGD peptide: biodistribution and binding into atherosclerotic plaques in mice

    International Nuclear Information System (INIS)

    Haukkala, Johanna; Laitinen, Iina; Luoto, Pauliina; Knuuti, Juhani; Iveson, Peter; Wilson, Ian; Karlsen, Hege; Cuthbertson, Alan; Laine, Jukka; Leppaenen, Pia; Ylae-Herttula, Seppo; Roivainen, Anne

    2009-01-01

    Increased expression of αvβ3/αvβ5 integrin is involved in angiogenesis and the inflammatory process in atherosclerotic plaques. The novel 68 Ga-DOTA-RGD peptide binds with high affinity to αvβ3/αvβ5 integrin. The aim of this study was to investigate the uptake of the 68 Ga-DOTA-RGD peptide in atherosclerotic plaques. Uptake of intravenously administered 68 Ga-DOTA-RGD peptide was studied ex vivo in excised tissue samples and aortic sections of LDLR -/- ApoB 100/100 atherosclerotic mice. The uptake of the tracer in aortic cryosections was examined by using digital autoradiography. Subsequently, the autoradiographs were combined with histological and immunohistological analysis of the sections. DOTA-RGD peptide was successfully labelled with the generator-produced 68 Ga. The tracer had reasonably good specific radioactivity (8.7 ± 1.1 GBq/μmol) and was quite stable in vivo. According to ex vivo biodistribution results, 68 Ga-DOTA-RGD was cleared rapidly from the blood circulation and excreted through the kidneys to the urine with high radioactivity in the intestine, lungs, spleen and liver. Autoradiography results showed significantly higher uptake of 68 Ga-DOTA-RGD peptide in the atherosclerotic plaques compared to healthy vessel wall (mean ratio ± SD 1.4 ± 0.1, p = 0.0004). We observed that 68 Ga-DOTA-RGD is accumulated into the plaques of atherosclerotic mice. However, this data only shows the feasibility of the approach, while the clinical significance still remains to be proven. Further studies are warranted to assess the uptake of this tracer into human atherosclerotic plaques. (orig.)

  7. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide

    International Nuclear Information System (INIS)

    Park, Ji-Ae; Lee, Yong Jin; Ko, In Ok; Kim, Tae-Jeong; Chang, Yongmin; Lim, Sang Moo; Kim, Kyeong Min; Kim, Jung Young

    2014-01-01

    Highlights: • Development of improved tumor-targeting MRI contrast agents. • To increase the targeting ability of RGD, we developed cycloalkane-based RGD peptides. • Gd(DOTA) conjugates of cycloalkane-based RGD peptide show improved tumor signal enhancement in vivo MR images. - Abstract: Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyK peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images

  8. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji-Ae, E-mail: jpark@kirams.re.kr [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yong Jin; Ko, In Ok [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Tae-Jeong; Chang, Yongmin [Institute of Biomedical Engineering, Kyungpook National University, Daegu (Korea, Republic of); Lim, Sang Moo [Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Kyeong Min [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Jung Young, E-mail: jykim@kirams.re.kr [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2014-12-12

    Highlights: • Development of improved tumor-targeting MRI contrast agents. • To increase the targeting ability of RGD, we developed cycloalkane-based RGD peptides. • Gd(DOTA) conjugates of cycloalkane-based RGD peptide show improved tumor signal enhancement in vivo MR images. - Abstract: Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyK peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images.

  9. Comparison of biological properties of 111In-labeled dimeric cyclic RGD peptides

    International Nuclear Information System (INIS)

    Zheng, Yumin; Ji, Shundong; Tomaselli, Elena; Yang, Yong; Liu, Shuang

    2015-01-01

    Introduction: In this study two 111 In-labeled dimeric cyclic RGD peptides, 111 In(DOTA-Galacto-RGD 2 ) and 111 In(DOTA-3P-RGD 2 ), were evaluated as radiotracers for breast tumor imaging. The objective was to evaluate the impact of SAA, PEG 2 and 1,2,3-triazole linkers as compare to PEG 4 on the tumor uptake and excretion kinetics of 111 In radiotracers. Methods: DOTA-Galacto-RGD 2 was prepared by conjugation of Galacto-RGD 2 with DOTA-OSu in the presence of diisopropylethylamine. Its integrin α v β 3 binding affinity was determined using a whole-cell displacement assay against 125 I-echistatin bound to U87MG glioma cells, and was compared with those of c(RGDfK), DOTA-3P-RGD 2 and DOTA-3P-RGK 2 (a nonsense peptide conjugate with “scrambled” RGK sequences). 111 In(DOTA-Galacto-RGD 2 ) and 111 In(DOTA-3P-RGD 2 ) were prepared and evaluated for their tumor-targeting capability and biodistribution properties in athymic nude mice bearing MDA-MB-435 breast tumor xenografts. Planar imaging studies were performed to demonstrate the utility of 111 In(DOTA-Galacto-RGD 2 ) and 111 In(DOTA-3P-RGD 2 ) for breast tumor imaging. Results: IC 50 values of DOTA-Galacto-RGD 2 , DOTA-3P-RGD 2 , and DOTA-3P-RGK 2 were calculated to be 27 ± 2, 29 ± 4, 596 ± 48 nM, respectively. The tumor uptake values of 111 In(DOTA-Galacto-RGD 2 ) (6.79 ± 0.98, 6.56 ± 0.56, 4.17 ± 0.61 and 1.09 ± 0.13 %ID/g at 1, 4, 24 and 72 hours p.i., respectively) were almost identical to those of 111 In(DOTA-3P-RGD 2 ) (6.17 ± 1.65, 5.94 ± 0.84, 3.40 ± 0.50 and 0.99 ± 0.20 %ID/g, respectively). 111 In(DOTA-Galacto-RGD 2 ) had a faster clearance from blood and muscle than 111 In(DOTA-3P-RGD 2 ), leading to higher tumor/blood and tumor/muscle ratios. 111 In(DOTA-3P-RGD 2 ) had lower liver uptake and better tumor/liver ratios than 111 In(DOTA-Galacto-RGD 2 ). The tumor uptake of 111 In(DOTA-Galacto-RGD 2 ) and 111 In(DOTA-3P-RGD 2 ) was both integrin α v β 3 and RGD-specific. Imaging data suggest

  10. {sup 68}Ga-DOTA-RGD peptide: biodistribution and binding into atherosclerotic plaques in mice

    Energy Technology Data Exchange (ETDEWEB)

    Haukkala, Johanna; Laitinen, Iina; Luoto, Pauliina; Knuuti, Juhani [University of Turku, Turku PET Centre, Turku (Finland); Iveson, Peter; Wilson, Ian [Medical Diagnostics, GE Healthcare Biosciences, London (United Kingdom); Karlsen, Hege; Cuthbertson, Alan [GE Healthcare MDx Research, Oslo (Norway); Laine, Jukka [Turku University Hospital, Department of Pathology, Turku (Finland); Leppaenen, Pia; Ylae-Herttula, Seppo [University of Kuopio, A.I. Virtanen Institute, Kuopio (Finland); Roivainen, Anne [University of Turku, Turku PET Centre, Turku (Finland); University of Turku, Turku Centre for Disease Modelling, Turku (Finland)

    2009-12-15

    Increased expression of {alpha}v{beta}3/{alpha}v{beta}5 integrin is involved in angiogenesis and the inflammatory process in atherosclerotic plaques. The novel {sup 68}Ga-DOTA-RGD peptide binds with high affinity to {alpha}v{beta}3/{alpha}v{beta}5 integrin. The aim of this study was to investigate the uptake of the {sup 68}Ga-DOTA-RGD peptide in atherosclerotic plaques. Uptake of intravenously administered {sup 68}Ga-DOTA-RGD peptide was studied ex vivo in excised tissue samples and aortic sections of LDLR{sup -/-}ApoB{sup 100/100} atherosclerotic mice. The uptake of the tracer in aortic cryosections was examined by using digital autoradiography. Subsequently, the autoradiographs were combined with histological and immunohistological analysis of the sections. DOTA-RGD peptide was successfully labelled with the generator-produced {sup 68}Ga. The tracer had reasonably good specific radioactivity (8.7 {+-} 1.1 GBq/{mu}mol) and was quite stable in vivo. According to ex vivo biodistribution results, {sup 68}Ga-DOTA-RGD was cleared rapidly from the blood circulation and excreted through the kidneys to the urine with high radioactivity in the intestine, lungs, spleen and liver. Autoradiography results showed significantly higher uptake of {sup 68}Ga-DOTA-RGD peptide in the atherosclerotic plaques compared to healthy vessel wall (mean ratio {+-} SD 1.4 {+-} 0.1, p = 0.0004). We observed that {sup 68}Ga-DOTA-RGD is accumulated into the plaques of atherosclerotic mice. However, this data only shows the feasibility of the approach, while the clinical significance still remains to be proven. Further studies are warranted to assess the uptake of this tracer into human atherosclerotic plaques. (orig.)

  11. Characterization of bioactive RGD peptide immobilized onto poly(acrylic acid) thin films by plasma polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyun Suk; Ko, Yeong Mu; Shim, Jae Won [Department of Dental Materials, School of Dentistry, MRC Center, Chosun University, Gwangju (Korea, Republic of); Lim, Yun Kyong; Kook, Joong-Ki [Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Cho, Dong-Lyun [School of Applied Chemical Engineering and Center for Functional Nano Fine Chemicals, Chonnam National University, Gwangju (Korea, Republic of); Kim, Byung Hoon, E-mail: kim5055@chosun.ac.kr [Department of Dental Materials, School of Dentistry, MRC Center, Chosun University, Gwangju (Korea, Republic of)

    2010-11-01

    Plasma surface modification can be used to improve the surface properties of commercial pure Ti by creating functional groups to produce bioactive materials with different surface topography. In this study, a titanium surface was modified with acrylic acid (AA) using a plasma treatment and immobilized with bioactive arginine-glycine-aspartic acid (RGD) peptide, which may accelerate the tissue integration of bone implants. Both terminals containing the -NH{sub 2} of RGD peptide sequence and -COOH of poly(acrylic acid) (PAA) thin film were combined with a covalent bond in the presence of 1-ethyl-3-3-dimethylaminopropyl carbodiimide (EDC). The chemical structure and morphology of AA film and RGD immobilized surface were investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR), atomic force microscopy (AFM), and scanning electron microscopy (SEM). All chemical analysis showed full coverage of the Ti substrate with the PAA thin film containing COOH groups and the RGD peptide. The MC3T3-E1 cells were cultured on each specimen, and the cell alkaline phosphatase (ALP) activity were examined. The surface-immobilized RGD peptide has a significantly increased the ALP activity of MC3T3-E1 cells. These results suggest that the RGD peptide immobilization on the titanium surface has an effect on osteoblastic differentiation of MC3T3-E1 cells and potential use in osteo-conductive bone implants.

  12. Dual integrin and gastrin-releasing peptide receptor targeted tumor imaging using 18F-labeled PEGylated RGD-bombesin heterodimer 18F-FB-PEG3-Glu-RGD-BBN.

    Science.gov (United States)

    Liu, Zhaofei; Yan, Yongjun; Chin, Frederic T; Wang, Fan; Chen, Xiaoyuan

    2009-01-22

    Radiolabeled RGD and bombesin peptides have been extensively investigated for tumor integrin alpha(v)beta(3) and GRPR imaging, respectively. Due to the fact that many tumors are both integrin and GRPR positive, we designed and synthesized a heterodimeric peptide Glu-RGD-BBN, which is expected to be advantageous over the monomeric peptides for dual-receptor targeting. A PEG(3) spacer was attached to the glutamate alpha-amino group of Glu-RGD-BBN to enhance the (18)F labeling yield and to improve the in vivo kinetics. PEG(3)-Glu-RGD-BBN possesses the comparable GRPR and integrin alpha(v)beta(3) receptor-binding affinities as the corresponding monomers, respectively. The dual-receptor targeting properties of (18)F-FB-PEG(3)-Glu-RGD-BBN were observed in PC-3 tumor model. (18)F-FB-PEG(3)-Glu-RGD-BBN with high tumor contrast and favorable pharmacokinetics is a promising PET tracer for dual integrin and GRPR positive tumor imaging. This heterodimer strategy may also be an applicable method to develop other molecules with improved in vitro and in vivo characterizations for tumor diagnosis and therapy.

  13. RGD Peptide-Grafted Graphene Oxide as a New Biomimetic Nano interface for Impedance-Monitoring Cell Behaviors

    International Nuclear Information System (INIS)

    Li, J.; Zheng, L.; Zeng, L.; Zhang, Y.; Jiang, L.; Song, J.; Li, J.; Zheng, L.; Song, J.; Li, J.; Zheng, L.; Song, J.

    2016-01-01

    A new biomimetic nano interface was constructed by facile grafting the bioactive arginylglycylaspartic acid (RGD) peptide on the graphene oxide (GO) surface through carbodiimide and N-hydroxysuccinimide coupling amidation reaction. The formed RGD-GO nano composites own unique two-dimensional structure and desirable electrochemical performance. The linked RGD peptides could improve GO∼s biocompatibility and support the adhesion and proliferation of human periodontal ligament fibroblasts (HPLFs) on RGD-GO biofilm surface. Furthermore the biologically active RGD-GO nano composites were demonstrated as a potential biomimetic nano interface for monitoring cell bio behaviors by electrochemical impedance spectroscopy (EIS). By analysis of the data obtained from equivalent circuit-fitting impedance spectroscopy, the information related to cell membrane capacitance, cell-cell gap resistance, and cell-electrode interface gap resistance in the process of cell adhesion and proliferation could be obtained. Besides, this proposed impedance-based cell sensor could be used to assess the inhibition effect of the lipopolysaccharide (LPS) on the HPLFs proliferation. Findings from this work suggested that RGD peptide functionalized GO nano materials may be not only applied in dental tissue engineering but also used as a sensor interface for electrochemical detection and analysis of cell behaviors in vitro.

  14. Accelerated healing of cardiovascular textiles promoted by an RGD peptide.

    Science.gov (United States)

    Tweden, K S; Harasaki, H; Jones, M; Blevitt, J M; Craig, W S; Pierschbacher, M; Helmus, M N

    1995-07-01

    Polytetrafluoroethylene (PTFE) and polyethylene terephthalate (Dacron polyester) fabrics are used extensively in cardiovascular devices, e.g. heart valve sewing cuffs and vascular prostheses. While devices containing these fabrics are generally successful, it is recognized that fabrics cause complications prior to tissue ingrowth due to their thrombogenic nature. A surface active synthetic peptide, called PepTite Coating (PepTite), which was modeled after the cell attachment domain of human fibronectin has been marketed as a biocompatible coating. This peptide stimulates cell attachment through the arginine-glycine-aspartic acid (RGD) sequence. Modification of medical implants with PepTite has been shown to promote ingrowth of surrounding cells into the material leading to better tissue integration, reduced inflammation and reduced fibrotic encapsulation. In this study, polyester and PTFE textiles were modified with PepTite. The effectiveness of this coating in enhancing wound healing was investigated in a simple vascular and cardiac valve model. Our results indicate that the RGD-containing peptide, PepTite, promoted the formation of an endothelial-like cell layer on both polyester and PTFE vascular patches in the dog model. PepTite was also found to promote the formation of a significantly thinner neointima (pannus) on polyester as compared to that on its uncoated control. These results were corroborated in the cardiac valve model in which a greater amount of thin pannus and less thrombus were seen on coated polyester sewing cuffs than on control uncoated cuffs. This research shows the promising tissue response to RGD coated textiles and the potential role of this peptide in material passivation via accelerated healing.

  15. RGD peptide-displaying M13 bacteriophage/PLGA nanofibers as cell-adhesive matrices for smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yong Cheol; Lee, Jong Ho; Jin, Oh Seong; Lee, Eun Ji; Jin, Lin Hua; Kim, Chang Seok; Hong, Suck Won; Han, Dong Wook; Kim, Chun Tae; Oh, Jin Woo [Pusan National University, Busan (Korea, Republic of)

    2015-01-15

    Extracellular matrices (ECMs) are network structures that play an essential role in regulating cellular growth and differentiation. In this study, novel nanofibrous matrices were fabricated by electrospinning M13 bacteriophage and poly(lactic-co-glycolic acid) (PLGA) and were shown to be structurally and functionally similar to natural ECMs. A genetically-engineered M13 bacteriophage was constructed to display Arg-Gly-Asp (RGD) peptides on its surface. The physicochemical properties of RGD peptide-displaying M13 bacteriophage (RGD-M13 phage)/PLGA nanofibers were characterized by using scanning electron microscopy and Fourier-transform infrared spectroscopy. We used immunofluorescence staining to confirm that M13 bacteriophages were homogenously distributed in RGD-M13 phage/PLGA matrices. Furthermore, RGD-M13 phage/PLGA nanofibrous matrices, having excellent biocompatibility, can enhance the behaviors of vascular smooth muscle cells. This result suggests that RGD-M13 phage/PLGA nanofibrous matrices have potentials to serve as tissue engineering scaffolds.

  16. Dynamic PET and Optical Imaging and Compartment Modeling using a Dual-labeled Cyclic RGD Peptide Probe

    OpenAIRE

    Zhu, Lei; Guo, Ning; Li, Quanzheng; Ma, Ying; Jacboson, Orit; Lee, Seulki; Choi, Hak Soo; Mansfield, James R.; Niu, Gang; Chen, Xiaoyuan

    2012-01-01

    Purpose: The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/64Cu dual-labeled cyclic RGD peptide. Methods: The integrin αvβ3 binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA)...

  17. Immobilisation of linear and cyclic RGD-peptides on titanium surfaces and their impact on endothelial cell adhesion and proliferation

    Directory of Open Access Journals (Sweden)

    PW Kämmerer

    2011-04-01

    Full Text Available Functional coatings on titanium vascular stents and endosseous dental implants could probably enhance endothelial cell (EC adhesion and activity with a shortening of the wound healing time and an increase of peri-implant angiogenesis during early bone formation. Therefore, the role of the structure of linear and cyclic cell adhesive peptides Arg-Gly-Asp (l-RGD and c-RGD on differently pre-treated titanium (Ti surfaces (untreated, silanised vs. functionalised with l- and c-RGD peptides on EC cell coverage and proliferation was evaluated. After 24 h and after 3 d, surface coverage of adherent cells was quantified and an alamarBlue® proliferation assay was conducted. After 24 h, l-RGD modified surfaces showed a significantly better coverage of adhered cells than untreated titanium (p=0.01. Differences between l-RGD surfaces and silanised Ti (p=0.066 as well as between l-RGD and c-RGD surfaces (p=0.191 were not significant. After 3 d, c-RGD surfaces showed a significantly higher cell coverage than untreated Ti, silanised and l-RGD titanium surfaces (all p<0.0001. After 24 h, c-RGD modified surfaces showed significant higher cell proliferation compared to untreated Ti (p=0.003. However, there were no differences in proliferation between c-RGD and l-RGD (p=0.126 or c-RGD and silanised titanium (p=0.196. After 3 d, proliferation on c-RGD surfaces outranged significantly untreated titanium (p=0.004, silanised (p=0.001 and l-RGD surfaces (p=0.023, whereas no significant difference could be found between untreated Ti and l-RGD surfaces (p=0.54. According to these results, the biomimetic coating of c-RGD peptides on conventional titanium surfaces showed a positive effect on EC cell coverage and proliferation. We were able to show that modifications of titanium surfaces with c-RGD are a promising approach in promoting endothelial cell growth.

  18. Three-Dimensional Graphene–RGD Peptide Nanoisland Composites That Enhance the Osteogenesis of Human Adipose-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Ee-Seul Kang

    2018-02-01

    Full Text Available Graphene derivatives have immense potential in stem cell research. Here, we report a three-dimensional graphene/arginine-glycine-aspartic acid (RGD peptide nanoisland composite effective in guiding the osteogenesis of human adipose-derived mesenchymal stem cells (ADSCs. Amine-modified silica nanoparticles (SiNPs were uniformly coated onto an indium tin oxide electrode (ITO, followed by graphene oxide (GO encapsulation and electrochemical deposition of gold nanoparticles. A RGD–MAP–C peptide, with a triple-branched repeating RGD sequence and a terminal cysteine, was self-assembled onto the gold nanoparticles, generating the final three-dimensional graphene–RGD peptide nanoisland composite. We generated substrates with various gold nanoparticle–RGD peptide cluster densities, and found that the platform with the maximal number of clusters was most suitable for ADSC adhesion and spreading. Remarkably, the same platform was also highly efficient at guiding ADSC osteogenesis compared with other substrates, based on gene expression (alkaline phosphatase (ALP, runt-related transcription factor 2, enzyme activity (ALP, and calcium deposition. ADSCs induced to differentiate into osteoblasts showed higher calcium accumulations after 14–21 days than when grown on typical GO-SiNP complexes, suggesting that the platform can accelerate ADSC osteoblastic differentiation. The results demonstrate that a three-dimensional graphene–RGD peptide nanoisland composite can efficiently derive osteoblasts from mesenchymal stem cells.

  19. Dual targeting strategy of magnetic nanoparticle-loaded and RGD peptide-activated stimuli-sensitive polymeric micelles for delivery of paclitaxel

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Meng Meng [Tsinghua University, Department of Chemical Engineering (China); Kang, Yoon Joong [Jungwon University, Department of Biomedical Science (Korea, Republic of); Sohn, Youngjoo [Kyung Hee University, Department of Anatomy, College of Korean Medicine (Korea, Republic of); Kim, Do Kyung, E-mail: eurokorean@gmail.com, E-mail: dokyung@konyang.ac.kr [Konyang University, Industry Cooperation Foundation (Korea, Republic of)

    2015-06-15

    A double targeting strategy of anti-neoplastic agent paclitaxel (PTX) was developed by incorporating magnetic nanoparticles and RGD peptide for enhanced cell cytotoxicity effect at lower dosage. A dual targeting mechanism including magnetic targeting and RGD ligand-specific targeting enhanced the overall cytotoxicity and reduced the effective dosage of PTX to achieve enhanced and sustained release of PTX in vitro. We addressed the issues of water-insolubility of oleic acid (OA)-stabilized SPIONs and low incorporation efficiency of hydrophobic PTX with SPION nanocarriers by using an amphiphilic polymer poly[(N-isopropylacrylamide-r-acrylamide)-b-l-lactic acid] (PNAL) as micelle-forming materials. A targeting moiety, GGGGRGD peptide, a RGD sequence-containing peptide with a short linker, is attached to the surface of PNAL-SPIONs via a homo-crosslinker. Confocal microscopy image analysis revealed that the cellular uptake was increased from (1.5 ± 0.5 % (PNAL) to 11.7 ± 0.8 % (RGD-PNAL-SPIONs) at 6 h incubation, once both RGD peptide and magnetic force attraction were incorporated into the carriers. Such multi-targeting nanocarriers showed promising potential in cancer-oriented diagnosis and therapy.

  20. Micro-PET Imaging of αvβ3-Integrin Expression with 18F-Labeled Dimeric RGD Peptide

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Chen

    2004-04-01

    Full Text Available The αv integrins, which act as cell adhesion molecules, are closely involved with tumor invasion and angiogenesis. In particular, αvβ3 integrin, which is specifically expressed on proliferating endothelial cells and tumor cells, is a logical target for development of a radiotracer method to assess angiogenesis and anti-angiogenic therapy. In this study, a dimeric cyclic RGD peptide E[c(RGDyK]2 was labeled with 18F (t1/2 = 109.7 min by using a prosthetic 4-[18F]fluorobenzoyl moiety to the amino group of the glutamate. The resulting [18F]FB-E[c(RGDyK]2, with high specific activity (200–250 GBq/μmol at the end of synthesis, was administered to subcutaneous U87MG glioblastoma xenograft models for micro-PET and autoradiographic imaging as well as direct tissue sampling to assess tumor targeting efficacy and in vivo kinetics of this PET tracer. The dimeric RGD peptide demonstrated significantly higher tumor uptake and prolonged tumor retention in comparison with a monomeric RGD peptide analog [18F]FB-c(RGDyK. The dimeric RGD peptide had predominant renal excretion, whereas the monomeric analog was excreted primarily through the biliary route. Micro-PET imaging 1 hr after injection of the dimeric RGD peptide exhibited tumor to contralateral background ratio of 9.5 ± 0.8. The synergistic effect of polyvalency and improved pharmacokinetics may be responsible for the superior imaging characteristics of [18F]FB-E[c(RGDyK]2.

  1. Noninvasive imaging of tumor integrin expression using 18F-labeled RGD dimer peptide with PEG4 linkers

    International Nuclear Information System (INIS)

    Liu, Zhaofei; Liu, Shuanglong; Wang, Fan; Liu, Shuang; Chen, Xiaoyuan

    2009-01-01

    Various radiolabeled Arg-Gly-Asp (RGD) peptides have been previously investigated for tumor integrin α v β 3 imaging. To further develop RGD radiotracers with enhanced tumor-targeting efficacy and improved in vivo pharmacokinetics, we designed a new RGD homodimeric peptide with two PEG 4 spacers (PEG 4 = 15-amino-4,7,10,13-tetraoxapentadecanoic acid) between the two monomeric RGD motifs and one PEG 4 linker on the glutamate α-amino group ( 18 F-labeled PEG 4 -E[PEG 4 -c(RGDfK)] 2 , P-PRGD2), as a promising agent for noninvasive imaging of integrin expression in mouse models. P-PRGD2 was labeled with 18 F via 4-nitrophenyl 2- 18 F-fluoropropionate ( 18 F-FP) prosthetic group. In vitro and in vivo characteristics of the new dimeric RGD peptide tracer 18 F-FP-P-PRGD2 were investigated and compared with those of 18 F-FP-P-RGD2 ( 18 F-labeled RGD dimer without two PEG 4 spacers between the two RGD motifs). The ability of 18 F-FP-P-PRGD2 to image tumor vascular integrin expression was evaluated in a 4T1 murine breast tumor model. With the insertion of two PEG 4 spacers between the two RGD motifs, 18 F-FP-P-PRGD2 showed enhanced integrin α v β 3 -binding affinity, increased tumor uptake and tumor-to-nontumor background ratios compared with 18 F-FP-P-RGD2 in U87MG tumors. MicroPET imaging with 18 F-FP-P-PRGD2 revealed high tumor contrast and low background in tumor-bearing nude mice. Biodistribution studies confirmed the in vivo integrin α v β 3 -binding specificity of 18 F-FP-P-RGD2. 18 F-FP-P-PRGD2 can specifically image integrin α v β 3 on the activated endothelial cells of tumor neovasculature. 18 F-FP-P-PRGD2 can provide important information on integrin expression on the tumor vasculature. The high integrin binding affinity and specificity, excellent pharmacokinetic properties and metabolic stability make the new RGD dimeric tracer 18 F-FP-P-PRGD2 a promising agent for PET imaging of tumor angiogenesis and for monitoring the efficacy of antiangiogenic

  2. Radiolabeled antibodies and RGD-peptides for the treatment of ovarian cancer.

    NARCIS (Netherlands)

    Janssen, M.L.H.

    2004-01-01

    In this thesis, preclinical studies on new treatment modalities for ovarian cancer are descibed, applying radiolabeled antibodies and radiolabeled RGD-peptides. In chapter 2 a study is described comparing the therapeutic efficacy of the antibody HMFG1 radiolabeled with several beta-emitting

  3. RGD peptide-modified multifunctional dendrimer platform for drug encapsulation and targeted inhibition of cancer cells.

    Science.gov (United States)

    He, Xuedan; Alves, Carla S; Oliveira, Nilsa; Rodrigues, João; Zhu, Jingyi; Bányai, István; Tomás, Helena; Shi, Xiangyang

    2015-01-01

    Development of multifunctional nanoscale drug-delivery systems for targeted cancer therapy still remains a great challenge. Here, we report the synthesis of cyclic arginine-glycine-aspartic acid (RGD) peptide-conjugated generation 5 (G5) poly(amidoamine) dendrimers for anticancer drug encapsulation and targeted therapy of cancer cells overexpressing αvβ3 integrins. In this study, amine-terminated G5 dendrimers were used as a platform to be sequentially modified with fluorescein isothiocyanate (FI) via a thiourea linkage and RGD peptide via a polyethylene glycol (PEG) spacer, followed by acetylation of the remaining dendrimer terminal amines. The developed multifunctional dendrimer platform (G5.NHAc-FI-PEG-RGD) was then used to encapsulate an anticancer drug doxorubicin (DOX). We show that approximately six DOX molecules are able to be encapsulated within each dendrimer platform. The formed complexes are water-soluble, stable, and able to release DOX in a sustained manner. One- and two-dimensional NMR techniques were applied to investigate the interaction between dendrimers and DOX, and the impact of the environmental pH on the release rate of DOX from the dendrimer/DOX complexes was also explored. Furthermore, cell biological studies demonstrate that the encapsulation of DOX within the G5.NHAc-FI-PEG-RGD dendrimers does not compromise the anticancer activity of DOX and that the therapeutic efficacy of the dendrimer/DOX complexes is solely related to the encapsulated DOX drug. Importantly, thanks to the role played by RGD-mediated targeting, the developed dendrimer/drug complexes are able to specifically target αvβ3 integrin-overexpressing cancer cells and display specific therapeutic efficacy to the target cells. The developed RGD peptide-targeted multifunctional dendrimers may thus be used as a versatile platform for targeted therapy of different types of αvβ3 integrin-overexpressing cancer cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. In vitro cell studies of technetium-99m labeled RGD-HYNIC peptide, a comparison of tricine and EDDA as co-ligands

    International Nuclear Information System (INIS)

    Su Zifen; He, Jiang; Rusckowski, Mary; Hnatowich, Donald J.

    2003-01-01

    The level of α V β 3 integrins on endothelial cells is elevated in angiogenesis. The high binding specificity to α V β 3 integrins of peptides containing Arg-Gly-Asp (RGD) residues suggests that the radiolabeled RGD peptides may be useful as tumor specific imaging agents. In this research, cyclised peptides containing Arg-Gly-Asp (RGD) and Arg-Gly-Glu (RGE, as control) residues were conjugated with HYNIC and labeled with 99m Tc. Objective: The goal was to evaluate the influence of co-ligand, either tricine or ethylenediamine-N,N'-diacetic acid (EDDA) on protein and integrin binding and on cellular uptake in culture. Methods: The n-octanol/water partition coefficient, binding to bovine serum albumin (BSA) and human umbilical vein endothelial (HUVE) cells, and cell lysate distributions of the radiolabeled peptides were evaluated. Results: The co-ligands had a significant effect on the labeling efficiency of the HYNIC conjugates and on certain properties of the 99m Tc complexes. The labeling efficiency with tricine was 10 fold higher and BSA binding was over 8 fold greater compared to EDDA. Both RGD labels showed higher (6 to 28 fold) binding to HUVE cells than that of the RGE labels, indicating binding specificity. After cell-lysis, only a small percentage of the total RGD label that accumulated in the cells was found bound to cellular proteins (9% of RGD/tricine and 5% of RGD/EDDA), implying that over 90% of the radiolabeled peptides were internalized for both radiolabeled RGDs. The number of the RGD molecules bound to proteins was estimated to be approximately three per cell, suggesting that only a small number of α V β 3 integrin proteins are expressed on the cells. Conclusions: Apart from the differences in radiolabeling, the only important effect of substituting EDDA for tricine as co-ligand on the HYNIC-peptides was the lower degree of serum protein binding. In spite of the lower serum protein binding potential, in vivo tumor accumulation of the RGD

  5. In vitro cell studies of technetium-99m labeled RGD-HYNIC peptide, a comparison of tricine and EDDA as co-ligands.

    Science.gov (United States)

    Su, Zi-Fen; He, Jiang; Rusckowski, Mary; Hnatowich, Donald J

    2003-02-01

    The level of alpha(V)beta(3) integrins on endothelial cells is elevated in angiogenesis. The high binding specificity to alpha(V)beta(3) integrins of peptides containing Arg-Gly-Asp (RGD) residues suggests that the radiolabeled RGD peptides may be useful as tumor specific imaging agents. In this research, cyclised peptides containing Arg-Gly-Asp (RGD) and Arg-Gly-Glu (RGE, as control) residues were conjugated with HYNIC and labeled with (99m)Tc. The goal was to evaluate the influence of co-ligand, either tricine or ethylenediamine-N,N'-diacetic acid (EDDA) on protein and integrin binding and on cellular uptake in culture. The n-octanol/water partition coefficient, binding to bovine serum albumin (BSA) and human umbilical vein endothelial (HUVE) cells, and cell lysate distributions of the radiolabeled peptides were evaluated. The co-ligands had a significant effect on the labeling efficiency of the HYNIC conjugates and on certain properties of the (99m)Tc complexes. The labeling efficiency with tricine was 10 fold higher and BSA binding was over 8 fold greater compared to EDDA. Both RGD labels showed higher (6 to 28 fold) binding to HUVE cells than that of the RGE labels, indicating binding specificity. After cell-lysis, only a small percentage of the total RGD label that accumulated in the cells was found bound to cellular proteins (9% of RGD/tricine and 5% of RGD/EDDA), implying that over 90% of the radiolabeled peptides were internalized for both radiolabeled RGDs. The number of the RGD molecules bound to proteins was estimated to be approximately three per cell, suggesting that only a small number of alpha(V)beta(3) integrin proteins are expressed on the cells. Apart from the differences in radiolabeling, the only important effect of substituting EDDA for tricine as co-ligand on the HYNIC-peptides was the lower degree of serum protein binding. In spite of the lower serum protein binding potential, in vivo tumor accumulation of the RGD/EDDA may not be improved

  6. Synchrotron X-ray fluorescence studies of a bromine-labelled cyclic RGD peptide interacting with individual tumor cells

    International Nuclear Information System (INIS)

    Sheridan, Erin J.; Austin, Christopher J. D.; Aitken, Jade B.; Vogt, Stefan; Jolliffe, Katrina A.; Harris, Hugh H.; Rendina, Louis M.

    2013-01-01

    The first example of synchrotron X-ray fluorescence imaging of cultured mammalian cells in cyclic peptide research is reported. The study reports the first quantitative analysis of the incorporation of a bromine-labelled cyclic RGD peptide and its effects on the biodistribution of endogenous elements (for example, K and Cl) within individual tumor cells. The first example of synchrotron X-ray fluorescence imaging of cultured mammalian cells in cyclic peptide research is reported. The study reports the first quantitative analysis of the incorporation of a bromine-labelled cyclic RGD peptide and its effects on the biodistribution of endogenous elements (for example, K and Cl) within individual tumor cells

  7. Possible involvement of integrin-mediated signalling in oocyte activation: evidence that a cyclic RGD-containing peptide can stimulate protein kinase C and cortical granule exocytosis in mouse oocytes

    Directory of Open Access Journals (Sweden)

    Carbone Maria

    2006-09-01

    Full Text Available Abstract Background Mammalian sperm-oocyte interaction at fertilization involves several combined interactions between integrins on the oocyte and integrin ligands (disintegrins on the sperm. Recent research has indicated the ability of peptides containing the RGD sequence that characterized several sperm disintegrins, to induce intracellular Ca2+ transients and to initiate parthenogenetic development in amphibian and bovine oocytes. In the present study, we investigate the hypothesis that an integrin-associated signalling may participate in oocyte activation signalling by determining the ability of a cyclic RGD-containing peptide to stimulate the activation of protein kinase C (PKC and the exocytosis of cortical granules in mouse oocytes. Methods An In-Vitro-Fertilization assay (IVF was carried in order to test the condition under which a peptide containing the RGD sequence, cyclo(Arg-Gly-Asp-D-Phe-Val, was able to inhibit sperm fusion with zona-free mouse oocytes at metaphase II stage. PKC activity was determined by means of an assay based on the ability of cell lysates to phosphorylate MARKS peptide, a specific PKC substrate. Loss of cortical granules was evaluated by measuring density in the oocyte cortex of cortical granules stained with LCA-biotin/Texas red-streptavidin. In all the experiments, effects of a control peptide containing a non RGD sequence, cyclo(Arg-Ala-Asp-D-Phe-Val, were evaluated. Results The IVF assay revealed that the fusion rate declined significantly when insemination was carried out in the presence of cyclic RGD peptide at concentrations > or = 250 microM (P Conclusion The presents results provide evidence that a cyclic RGD peptide highly effective in inhibiting sperm-oocyte interaction stimulates in mouse oocytes the activation of PKC and the exocytosis of cortical granules. These data support the view that RGD-binding receptors may function as signalling receptors giving rise integrated signalling not sufficient for

  8. YY-39, a tick anti-thrombosis peptide containing RGD domain.

    Science.gov (United States)

    Tang, Jing; Fang, Yaqun; Han, Yajun; Bai, Xuewei; Yan, Xiuwen; Zhang, Yun; Lai, Ren; Zhang, Zhiye

    2015-06-01

    Ticks are obligatory blood feeding ectoparasites, which continuously attach to their hosts for 1-2 weeks. There are many biologically active compounds in tick salivary glands interfering host haemostatic system and to successfully obtain blood meal. Several platelet aggregation inhibitors have been identified from ticks. A family of conserved peptides, which were identified from transcriptome analysis of many tick salivary glands, were found to contain unique primary structure including predicted mature peptides of 39-47 amino acid residues in length and a Pro/Glu(P/E)-Pro/His(P/H)-Lys-Gly-Asp(RGD) domain. Given their unique structure and RGD domain, they are considered a novel family of disintegrins that inhibit platelet aggregation. One of them (YY-39) was tested for its effects on platelets and thrombosis in vivo. YY-39 was found effectively to inhibit platelet aggregation induced by adenosine diphosphate (ADP), thrombin and thromboxane A2 (TXA2). Furthermore, YY-39 blocked platelet adhesion to soluble collagen and bound to purified GPIIb/IIIa in a dose-dependent manner. In in vivo experiments, YY-39 reduced thrombus weight effectively in a rat arteriovenous shunt model and inhibited thrombosis in a carrageenan-induced mouse tail thrombosis model. Combined with their prevalence in ticks and platelet inhibitory functions, this family of peptides might be conserved tick anti-haemostatic molecules. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Evaluation of biodistribution and anti-tumor effect of a dimeric RGD peptide-paclitaxel conjugate in mice with breast cancer

    International Nuclear Information System (INIS)

    Cao, Qizhen; Li, Zi-Bo; Chen, Kai; Wu, Zhanhong; He, Lina; Chen, Xiaoyuan; Neamati, Nouri

    2008-01-01

    Targeting drugs to receptors involved in tumor angiogenesis has been demonstrated as a novel and promising approach to improve cancer treatment. In this study, we evaluated the anti-tumor efficacy of a dimeric RGD peptide-paclitaxel conjugate (RGD2-PTX) in an orthotopic MDA-MB-435 breast cancer model. To assess the effect of conjugation and the presence of drug moiety on the MDA-MB-435 tumor and normal tissue uptake, the biodistribution of 3 H-RGD2-PTX was compared with that of 3 H-PTX. The treatment effect of RGD2-PTX and RGD2+PTX was measured by tumor size, 18 F-FDG/PET, 18 F-FLT/PET, and postmortem histopathology. By comparing the biodistribution of 3 H-RGD2-PTX and 3 H-PTX, we found that 3 H-RGD2-PTX had higher initial tumor exposure dose and prolonged tumor retention than 3 H-PTX. Metronomic low-dose treatment of breast cancer indicated that RGD2-PTX is significantly more effective than PTX+RGD2 combination and solvent control. Although in vivo 18 F-FLT/PET imaging and ex vivo Ki67 staining indicated little effect of the PTX-based drug on cell proliferation, 18 F-FDG/PET imaging showed significantly reduced tumor metabolism in the RGD2-PTX-treated mice versus those treated with RGD2+PTX and solvent control. Terminal uridine deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining also showed that RGD2-PTX treatment also had significantly higher cell apoptosis ratio than the other two groups. Moreover, the microvessel density was significantly reduced after RGD2-PTX treatment as determined by CD31 staining. Our results demonstrate that integrin-targeted delivery of paclitaxel allows preferential cytotoxicity to integrin-expressing tumor cells and tumor vasculature. The targeted delivery strategies developed in this study may also be applied to other chemotherapeutics for selective tumor killing. (orig.)

  10. Comparison of biological properties of 99mTc-labeled cyclic RGD Peptide trimer and dimer useful as SPECT radiotracers for tumor imaging

    International Nuclear Information System (INIS)

    Zhao, Zuo-Quan; Yang, Yong; Fang, Wei; Liu, Shuang

    2016-01-01

    Introduction: This study sought to evaluate a 99m Tc-labeled trimeric cyclic RGD peptide ( 99m Tc-4P-RGD 3 ) as the new radiotracer for tumor imaging. The objective was to compare its biological properties with those of 99m Tc-3P-RGD 2 in the same animal model. Methods: HYNIC-4P-RGD 3 was prepared by reacting 4P-RGD 3 with excess HYNIC-OSu in the presence of diisopropylethylamine. 99m Tc-4P-RGD 3 was prepared using a kit formulation, and evaluated for its tumor-targeting capability and biodistribution properties in the BALB/c nude mice with U87MG human glioma xenografts. Planar and SPECT imaging studies were performed in athymic nude mice with U87MG glioma xenografts. For comparison purpose, 99m Tc-3P-RGD 2 (a α v β 3 -targeted radiotracer currently under clinical evaluation for tumor imaging in cancer patients) was also evaluated in the same animal models. Blocking experiments were used to demonstrate the α v β 3 specificity of 99m Tc-4P-RGD 3 . Results: 99m Tc-4P-RGD 3 was prepared with > 95% RCP and high specific activity (~ 200 GBq/μmol). 99m Tc-4P-RGD 3 and 99m Tc-3P-RGD 2 shared almost identical tumor uptake and similar biodistribution properties. 99m Tc-4P-RGD 3 had higher uptake than 99m Tc-3P-RGD 2 in the intestines and kidneys; but it showed better metabolic stability. The U87MG tumors were clearly visualized by SPECT with excellent contrast with 99m Tc-4P-RGD 3 and 99m Tc-3P-RGD 2 . Conclusion: Increasing peptide multiplicity from 3P-RGD 2 to 4P-RGD 3 offers no advantages with respect to the tumor-targeting capability. 99m Tc-4P-RGD 3 is as good a SPECT radiotracer as 99m Tc-3P-RGD 2 for imaging α v β 3 -positive tumors. -- Graphical abstract: This report presents evaluations of a 99m Tc-labeled cyclic RGD peptide trimer ( 99m Tc-4P-RGD 3 ) as the new SPECT radiotracer for tumor imaging. It was found that 99m Tc-4P-RGD 3 was able to accumulate in the xenografted U87MG tumors with high specificity. Display Omitted

  11. Covalent Grafting of the RGD-Peptide onto Polyetheretherketone Surfaces via Schiff Base Formation

    Directory of Open Access Journals (Sweden)

    Marc Becker

    2013-01-01

    Full Text Available In recent years, the synthetic polymer polyetheretherketone (PEEK has increasingly been used in a number of orthopedic implementations, due to its excellent mechanical properties, bioinertness, and chemical resistance. For in vivo applications, the surface of PEEK, which does not naturally support cell adhesion, has to be modified to improve tissue integration. In the present work we demonstrate a novel wet-chemical modification of PEEK to modify the surface, enabling the covalent grafting of the cell-adhesive RGD-peptide. Modification of the polymer surface was achieved via Schiff base formation using an aliphatic diamine and subsequent crosslinker-mediated immobilization of the peptide. In cell culture experiments with primary osteoblasts it was shown that the RGD-modified PEEK not only significantly promoted cellular adhesion but also strongly enhanced the proliferation of osteoblasts on the modified polymer surface.

  12. A direct radiolabeling of 99Tcm cyclic RGD peptide, an antagonist of αvβ3 receptor

    International Nuclear Information System (INIS)

    Li Qianwei; Liu Guangyuan; Liu Kaiyuan; Huang Dingde; Xie Ganfeng

    2007-01-01

    Objective: It has been reported that Cys-Asp-Cys-Arg-Gly-Asp-Cys-Lys-Cys (RGD) peptides, as integrin α v β 3 receptor antagonists, might inhibit angiogenesis of tumor. The aim of the present study was to investigate the feasibility of direct labeling of 99 Tc m to a cyclic nine peptide containing RGD sequence (RGD-4CK), to observe the effects of different conditions on labeling efficiency, and to evaluate the radiochemical property of 99 Tc m -RGD-4CK. Methods: The peptide RGD-4CK contained the sequence of Cys-Asp-Cys-Arg-Gly-Asp-Cys-Lys-Cys. It was labeled directly by 99 Tc m with 'pretinning' method. The Rf value of 99 Tc m -RGD-4CK and 99 Tc m O 4 were determined in 3 MM paper chromatography. The labeling efficiency and specific activity were calculated. The influences of various conditions to the labeling rate were studied. High performance liquid chromatography (HPLC) analysis and Sep-Pak C18 chromatography were used to assess the property of radiolabeled 99 Tc m -RGD-4CK. The stability in vitro, the cysteine replacement and the serum protein combination were also tested. Results: The Rf values of 99 Tc m -RGD-4CK were 0 and 0.8-0.9 respectively in mobile phase of acetone and V(NH 4 OH): V(ethanol): V(water) = 1: 2: 5. The radiochemical yield was (97.8±0.4)% and the specific activity (11.90±0.05) TBq/mmol in the basic condition of labeling. The labeling efficiency remained over 95% under the condition of 150-300 μg stannous tartrate, pH value 2.0-3.5, temperature 60 degree C and incubation time over 6 h in the process of pretinning reaction, the activity of 99 Tc m O 4 - was 37-185 MBq within volume of 200 μl. With the labeling temperature of 95 degree C in 30 min, the retention of 99 Tc m -RGD-4CK was in accordance with the major peak of time-activity curve from the analytical HPLC. The radiochemical purity of 99 Tc m -RGD-4CK remained above 95% after 6 h at room temperature. The amount of 99 Tc m O 4 - ; increased only by 0.5% as measured with Sep

  13. Topical ocular delivery to laser-induced choroidal neovascularization by dual internalizing RGD and TAT peptide-modified nanoparticles

    Directory of Open Access Journals (Sweden)

    Chu YC

    2017-02-01

    Full Text Available Yongchao Chu,1,* Ning Chen,2,* Huajun Yu,2,* Hongjie Mu,1 Bin He,1 Hongchen Hua,1 Aiping Wang,1 Kaoxiang Sun1 1School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, Shandong, People’s Republic of China; 2Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, People’s Republic of China *These authors contributed equally to this work Abstract: A nanoparticle (NP was developed to target choroidal neovascularization (CNV via topical ocular administration. The NPs were prepared through conjugation of internalizing arginine-glycine-aspartic acid RGD (iRGD; Ac-CCRGDKGPDC and transactivated transcription (TAT (RKKRRQRRRC peptide to polymerized ethylene glycol and lactic-co-glycolic acid. The iRGD sequence can specifically bind with integrin αvβ3, while TAT facilitates penetration through the ocular barrier. 1H nuclear magnetic resonance and high-performance liquid chromatography demonstrated that up to 80% of iRGD and TAT were conjugated to poly(ethylene glycol–poly(lactic-co-glycolic acid. The resulting particle size was 67.0±1.7 nm, and the zeta potential of the particles was −6.63±0.43 mV. The corneal permeation of iRGD and TAT NPs increased by 5.50- and 4.56-fold compared to that of bare and iRGD-modified NPs, respectively. Cellular uptake showed that the red fluorescence intensity of iRGD and TAT NPs was highest among primary NPs and iRGD- or TAT-modified NPs. CNV was fully formed 14 days after photocoagulation in Brown Norway (BN rats as shown by optical coherence tomography and fundus fluorescein angiography analyses. Choroidal flat mounts in BN rats showed that the red fluorescence intensity of NPs followed the order of iRGD and TAT NPs > TAT-modified NPs > iRGD-modified NPs

  14. Improving Tumor Uptake and Pharmacokinetics of 64Cu-Labeled Cyclic RGD Peptide Dimers with Gly3 and PEG4 Linkers

    OpenAIRE

    Shi, Jiyun; Kim, Young-Seung; Zhai, Shizhen; Liu, Zhaofei; Chen, Xiaoyuan; Liu, Shuang

    2009-01-01

    Radiolabeled cyclic RGD (Arg-Gly-Asp) peptides represent a new class of radiotracers with potential for the early tumor detection and non-invasive monitoring of tumor metastasis and therapeutic response in cancer patients. This report describes the synthesis of two cyclic RGD peptide dimer conjugates, DOTA-PEG4-E[PEG4-c(RGDfK)]2 (DOTA-3PEG4-dimer: DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid; PEG4 = 15-amino-4,7,10,13-tetraoxapentadecanoic acid) and DOTA-G3-E[G3-c(RGDfK)]2 ...

  15. Dynamic PET and Optical Imaging and Compartment Modeling using a Dual-labeled Cyclic RGD Peptide Probe

    Directory of Open Access Journals (Sweden)

    Lei Zhu, Ning Guo, Quanzheng Li, Ying Ma, Orit Jacboson, Seulki Lee, Hak Soo Choi, James R. Mansfield, Gang Niu, Xiaoyuan Chen

    2012-01-01

    Full Text Available Purpose: The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/64Cu dual-labeled cyclic RGD peptide.Methods: The integrin αvβ3 binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA-ZW-1 was characterized by cell staining and receptor binding assay. Sixty-min dynamic PET and optical imaging were acquired on a MDA-MB-435 tumor model. Singular value decomposition (SVD method was applied to compute the dynamic optical signal from the two-dimensional optical projection images. Compartment models were used to quantitatively analyze and compare the dynamic optical and PET data.Results: The dual-labeled probe 64Cu-RGD-C(DOTA-ZW-1 showed integrin specific binding in vitro and in vivo. The binding potential (Bp derived from dynamic optical imaging (1.762 ± 0.020 is comparable to that from dynamic PET (1.752 ± 0.026.Conclusion: The signal un-mixing process using SVD improved the accuracy of kinetic modeling of 2D dynamic optical data. Our results demonstrate that 2D dynamic optical imaging with SVD analysis could achieve comparable quantitative results as dynamic PET imaging in preclinical xenograft models.

  16. Dynamic PET and Optical Imaging and Compartment Modeling using a Dual-labeled Cyclic RGD Peptide Probe.

    Science.gov (United States)

    Zhu, Lei; Guo, Ning; Li, Quanzheng; Ma, Ying; Jacboson, Orit; Lee, Seulki; Choi, Hak Soo; Mansfield, James R; Niu, Gang; Chen, Xiaoyuan

    2012-01-01

    The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/(64)Cu dual-labeled cyclic RGD peptide. The integrin α(v)β(3) binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA)-ZW-1 was characterized by cell staining and receptor binding assay. Sixty-min dynamic PET and optical imaging were acquired on a MDA-MB-435 tumor model. Singular value decomposition (SVD) method was applied to compute the dynamic optical signal from the two-dimensional optical projection images. Compartment models were used to quantitatively analyze and compare the dynamic optical and PET data. The dual-labeled probe (64)Cu-RGD-C(DOTA)-ZW-1 showed integrin specific binding in vitro and in vivo. The binding potential (Bp) derived from dynamic optical imaging (1.762 ± 0.020) is comparable to that from dynamic PET (1.752 ± 0.026). The signal un-mixing process using SVD improved the accuracy of kinetic modeling of 2D dynamic optical data. Our results demonstrate that 2D dynamic optical imaging with SVD analysis could achieve comparable quantitative results as dynamic PET imaging in preclinical xenograft models.

  17. Effects of linker variation on the in vitro and in vivo characteristics of an 111In-labeled RGD peptide.

    NARCIS (Netherlands)

    Dijkgraaf, I.; Liu, S.; Kruijtzer, J.A.; Soede, A.C.; Oyen, W.J.G.; Liskamp, R.M.; Corstens, F.H.M.; Boerman, O.C.

    2007-01-01

    INTRODUCTION: Due to the selective expression of the alpha(v)beta3 integrin in tumors, radiolabeled arginine-glycine-aspartic acid (RGD) peptides are attractive candidates for tumor targeting. Minor modifications of these peptides could have a major impact on in vivo characteristics. In this study,

  18. Modulation of mitochondrial activity in HaCaT keratinocytes by the cell penetrating peptide Z-Gly-RGD(DPhe)-mitoparan.

    Science.gov (United States)

    Richardson, Adam; Muir, Lewis; Mousdell, Sasha; Sexton, Darren; Jones, Sarah; Howl, John; Ross, Kehinde

    2018-01-30

    Biologically active cell penetrating peptides (CPPs) are an emerging class of therapeutic agent. The wasp venom peptide mastoparan is an established CPP that modulates mitochondrial activity and triggers caspase-dependent apoptosis in cancer cells, as does the mastoparan analogue mitoparan (mitP). Mitochondrial depolarisation and activation of the caspase cascade also underpins the action of dithranol, a topical agent for treatment of psoriasis. The effects of a potent mitP analogue on mitochondrial activity were therefore examined to assess its potential as a novel approach for targeting mitochondria for the treatment of psoriasis. In HaCaT keratinocytes treated with the mitP analogue Z-Gly-RGD(DPhe)-mitP for 24 h, a dose-dependent loss of mitochondrial activity was observed using the methyl-thiazolyl-tetrazolium (MTT) assay. At 10 μmol L -1 , MTT activity was less than 30% that observed in untreated cells. Staining with the cationic dye JC-1 suggested that Z-Gly-RGD(DPhe)-mitP also dissipated the mitochondrial membrane potential, with a threefold increase in mitochondrial depolarisation levels. However, caspase activity appeared to be reduced by 24 h exposure to Z-Gly-RGD(DPhe)-mitP treatment. Furthermore, Z-Gly-RGD(DPhe)-mitP treatment had little effect on overall cell viability. Our findings suggest Z-Gly-RGD(DPhe)-mitP promotes the loss of mitochondrial activity but does not appear to evoke apoptosis in HaCaT keratinocytes.

  19. RGD peptide-targeted polyethylenimine-entrapped gold nanoparticles for targeted CT imaging of an orthotopic model of human hepatocellular carcinoma

    Science.gov (United States)

    Zhou, Benqing; Wang, Meng; Zhou, Feifan; Song, Jun; Qu, Junle; Chen, Wei R.

    2018-02-01

    We report the synthesis and characterization of arginine-glycine-aspartic acid (RGD) peptide-targeted polyethylenimine (PEI)-entrapped gold nanoparticles (RGD-Au PENPs) for targeted CT imaging of hepatic carcinomas in situ. In this work, PEI sequentially modified with polyethylene glycol (PEG), and RGD linked-PEG was used as a nanoplatform to prepare AuNPs, followed by complete acetylation of PEI surface amines. We showed that the designed RGD-Au PENPs were colloidally stable and biocompatible in the given concentration range, and could be specifically taken up by αvβ3 integrin-overexpressing liver cancer cells in vitro. Furthermore, in vivo CT imaging results revealed that the particles displayed a great contrast enhancement of hepatic carcinomas region, and could target to hepatic carcinomas region in situ. With the proven biodistribution and histological examinations in vivo, the synthesized RGD-Au PENPs show a great formulation to be used as a contrast agent for targeted CT imaging of different αvβ3 integrin receptoroverexpressing tumors.

  20. Regulating the migration of smooth muscle cells by a vertically distributed poly(2-hydroxyethyl methacrylate) gradient on polymer brushes covalently immobilized with RGD peptides.

    Science.gov (United States)

    Wu, Sai; Du, Wang; Duan, Yiyuan; Zhang, Deteng; Liu, Yixiao; Wu, Bingbing; Zou, Xiaohui; Ouyang, Hongwei; Gao, Changyou

    2018-05-30

    The gradient localization of biological cues is of paramount importance to guide directional migration of cells. In this study, poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate)-block- poly(2-hydroxyethyl methacrylate) (P(HEMA-co-GMA)-b-PHEMA) brushes with a uniform underneath P(HEMA-co-GMA) layer and a gradient thickness of PHEMA blocks were prepared by using surface-initiated atom-transfer radical polymerization and a dynamically controlled polymerization process. The polymer chains were subsequently functionalized with the cell-adhesive arginine-glycine-aspartic acid (RGD) peptides by reaction with the glycidyl groups, and their structures and properties were characterized by X-ray photoelectron spectrometry (XPS), quartz crystal microbalance with dissipation (QCM-D) and air contact angle. Adhesion and migration processes of smooth muscle cells (SMCs) were then studied. Compared with those on the sufficiently exposed RGD surface, the cell adhesion and mobility were well maintained when the RGD peptides were localized at 18.9 nm depth, whereas the adhesion, spreading and migration rate of SMCs were significantly impaired when the RGD peptides were localized at a depth of 38.4 nm. On the RGD depth gradient surface, the SMCs exhibited preferential orientation and enhanced directional migration toward the direction of reduced thickness of the second PHEMA brushes. Half of the cells were oriented within ± 30° to the x-axis direction, and 72% of the cells moved directionally at the optimal conditions. Cell adhesion strength, arrangement of cytoskeleton, and gene and protein expression levels of adhesion-related proteins were studied to corroborate the mechanisms, demonstrating that the cell mobility is regulated by the complex and synergetic intracellular signals resulted from the difference in surface properties. Cell migration is of paramount importance for the processes of tissue repair and regeneration. So far, the gradient localization of

  1. Low-Molecular Weight Polyethylenimine Modified with Pluronic 123 and RGD- or Chimeric RGD-NLS Peptide: Characteristics and Transfection Efficacy of Their Complexes with Plasmid DNA

    Directory of Open Access Journals (Sweden)

    Jing Hu

    2016-05-01

    Full Text Available To solve the problem of transfection efficiency vs. cytotoxicity and tumor-targeting ability when polyethylenimine (PEI was used as a nonviral gene delivery vector, new degradable PEI polymers were synthesized via cross-linking low-molecular-weight PEI with Pluronic P123 and then further coupled with a targeting peptide R4 (RGD and a bifunctional R11 (RGD-NLS, which were termed as P123-PEI-R4 and P123-PEI-R11, respectively. Agarose gel electrophoresis showed that both P123-PEI-R4 and P123-PEI-R11 efficaciously condense plasmid DNA at a polymer-to-pDNA w/w ratio of 3.0 and 0.4, respectively. The polyplexes were stable in the presence of serum and could protect plasmid DNA against DNaseI. They had uniform spherical nanoparticles with appropriate sizes around 100–280 nm and zeta-potentials about +40 mV. Furthermore, in vitro experiments showed that these polyplexes had lower cytotoxicity at any concentration compared with PEI 25 kDa, thus giving promise to high transfection efficiency as compared with another P123-PEI derivate conjugated with trifunctional peptide RGD-TAT-NLS (P123-PEI-R18. More importantly, compared with the other polymers, P123-PEI-R11 showed the highest transfection efficiency with relatively lower cytotoxicity at any concentration, indicating that the new synthetic polymer P123-PEI-R11 could be used as a safe and efficient gene deliver vector.

  2. An exploratory study on 99mTc-RGD-BBN peptide scintimammography in the assessment of breast malignant lesions compared to 99mTc-3P4-RGD2.

    Directory of Open Access Journals (Sweden)

    Qianqian Chen

    Full Text Available This study aimed to explore the diagnostic performance of single photon emission computed tomography / computerized tomography (SPECT/CT using a new radiotracer 99mTc-RGD-BBN for breast malignant tumor compared with 99mTc-3P4-RGD2.6 female patients with breast malignant tumors diagnosed by fine needle aspiration cytology biopsy (FNAB who were scheduled to undergo surgery were included in the study. 99mTc-3P4-RGD2 and 99mTc-RGD-BBN were performed with single photon emission computed tomography (SPECT at 1 hour after intravenous injection of 299 ± 30 MBq and 293 ± 32 MBq of radiotracers respectively at separate day. The results were evaluated by the Tumor to non-Tumor ratios (T/NT. 99mTc-RGD-BBN and 99mTc-3P4-RGD2 SPECT/CT images were interpreted independently by 3 experienced nuclear medicine physicians using a 3-point scale system. All of the samples were analyzed immunohistochemically to evaluate the integrin αvβ3 and gastrin-releasing peptide receptor (GRPR expression. The safety, biodistribution and radiation dosimetry of 99mTc-RGD-BBN were also evaluated in the healthy volunteers.No serious adverse events were reported in any of the patients during the study. The effective radiation dose entirely conformed to the relevant standards. A total of 6 palpable malignant lesions were detected using 99mTc-RGD-BBN SPECT/CT with clear uptake. All malignant lesions were also detected using 99mTc-3P4-RGD2 SPECT/CT. The results showed that five malignant lesions were with clear uptake and the other one with barely an uptake. 4 malignant cases were found with both αvβ3 and GRPR expression, 1 case with only GRPR positive expression (integrin αvβ3 negative and 1 case with only integrin αvβ3 positive expression (GRPR negative.99mTc-RGD-BBN is a safe agent for detecting breast cancer. 99mTc-RGD-BBN may have the potential to make up for the deficiency of 99mTc-3P4-RGD2 in the detection of breast cancer with only GRPR positive expression (integrin

  3. Galloyl-RGD as a new cosmetic ingredient

    Science.gov (United States)

    2014-01-01

    Background The cosmetics market has rapidly increased over the last years. For example, in 2011 it reached 242.8 billion US dollars, which was a 3.9% increase compared to 2010. There have been many recent trials aimed at finding the functional ingredients for new cosmetics. Gallic acid is a phytochemical derived from various herbs, and has anti-fungal, anti-viral, and antioxidant properties. Although phytochemicals are useful as cosmetic ingredients, they have a number of drawbacks, such as thermal stability, residence time in the skin, and permeability through the dermal layer. To overcome these problems, we considered conjugation of gallic acid with a peptide. Results We synthesized galloyl-RGD, which represents a conjugate of gallic acid and the peptide RGD, purified it by HPLC and characterized by MALDI-TOF with the aim of using it as a new cosmetic ingredient. Thermal stability of galloyl-RGD was tested at alternating temperatures (consecutive 4°C, 20°C, or 40°C for 8 h each) on days 2, 21, 41, and 61. Galloyl-RGD was relatively safe to HaCaT keratinocytes, as their viability after 48 h incubation with 500 ppm galloyl-RGD was 93.53%. In the group treated with 50 ppm galloyl-RGD, 85.0% of free radicals were removed, whereas 1000 ppm galloyl-RGD suppressed not only L-DOPA formation (43.8%) but also L-DOPA oxidation (54.4%). Conclusions Galloyl-RGD is a promising candidate for a cosmetic ingredient. PMID:25103826

  4. Rational Design of Cancer-Targeted Benzoselenadiazole by RGD Peptide Functionalization for Cancer Theranostics.

    Science.gov (United States)

    Yang, Liye; Li, Wenying; Huang, Yanyu; Zhou, Yangliang; Chen, Tianfeng

    2015-09-01

    A cancer-targeted conjugate of the selenadiazole derivative BSeC (benzo[1,2,5] selenadiazole-5-carboxylic acid) with RGD peptide as targeting molecule and PEI (polyethylenimine) as a linker is rationally designed and synthesized in the present study. The results show that RGD-PEI-BSeC forms nanoparticles in aqueous solution with a core-shell nanostructure and high stability under physiological conditions. This rational design effectively enhances the selective cellular uptake and cellular retention of BSeC in human glioma cells, and increases its selectivity between cancer and normal cells. The nanoparticles enter the cells through receptor-mediated endocytosis via clathrin-mediated and nystatin-dependent lipid raft-mediated pathways. Internalized nanoparticles trigger glioma cell apoptosis by activation of ROS-mediated p53 phosphorylation. Therefore, this study provides a strategy for the rational design of selenium-containing cancer-targeted theranostics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. PET imaging of alphavbeta integrin expression in tumours with Ga-labelled mono-, di- and tetrameric RGD peptides

    NARCIS (Netherlands)

    Dijkgraaf, I.; Yim, C.B.; Franssen, G.M.; Schuit, R.C.; Luurtsema, G.; Liu, S.; Oyen, W.J.G.; Boerman, O.C.

    2011-01-01

    PURPOSE: Due to the restricted expression of alpha(v)beta(3) in tumours, alpha(v)beta(3) is considered a suitable receptor for tumour targeting. In this study the alpha(v)beta(3)-binding characteristics of (68)Ga-labelled monomeric, dimeric and tetrameric RGD peptides were determined and compared

  6. Electronic structure, dielectric response, and surface charge distribution of RGD (1FUV) peptide.

    Science.gov (United States)

    Adhikari, Puja; Wen, Amy M; French, Roger H; Parsegian, V Adrian; Steinmetz, Nicole F; Podgornik, Rudolf; Ching, Wai-Yim

    2014-07-08

    Long and short range molecular interactions govern molecular recognition and self-assembly of biological macromolecules. Microscopic parameters in the theories of these molecular interactions are either phenomenological or need to be calculated within a microscopic theory. We report a unified methodology for the ab initio quantum mechanical (QM) calculation that yields all the microscopic parameters, namely the partial charges as well as the frequency-dependent dielectric response function, that can then be taken as input for macroscopic theories of electrostatic, polar, and van der Waals-London dispersion intermolecular forces. We apply this methodology to obtain the electronic structure of the cyclic tripeptide RGD-4C (1FUV). This ab initio unified methodology yields the relevant parameters entering the long range interactions of biological macromolecules, providing accurate data for the partial charge distribution and the frequency-dependent dielectric response function of this peptide. These microscopic parameters determine the range and strength of the intricate intermolecular interactions between potential docking sites of the RGD-4C ligand and its integrin receptor.

  7. PET imaging of {alpha}{sub v}{beta}{sub 3} integrin expression in tumours with {sup 68}Ga-labelled mono-, di- and tetrameric RGD peptides

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, Ingrid; Franssen, Gerben M.; Oyen, Wim J.G.; Boerman, Otto C. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, P.O. Box 9101, Nijmegen (Netherlands); Yim, Cheng-Bin [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, P.O. Box 9101, Nijmegen (Netherlands); Utrecht University, Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht (Netherlands); Schuit, Robert C. [VU University Medical Centre, Department of Nuclear Medicine and PET Research, P.O. Box 7057, Amsterdam (Netherlands); Luurtsema, Gert [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, P.O. Box 30.001, Groningen (Netherlands); Liu, Shuang [Purdue University, School of Health Sciences, West Lafayette, IN (United States)

    2011-01-15

    Due to the restricted expression of {alpha}{sub v}{beta}{sub 3} in tumours, {alpha}{sub v}{beta}{sub 3} is considered a suitable receptor for tumour targeting. In this study the {alpha}{sub v}{beta}{sub 3}-binding characteristics of {sup 68}Ga-labelled monomeric, dimeric and tetrameric RGD peptides were determined and compared with their {sup 111}In-labelled counterparts. A monomeric (E-c(RGDfK)), a dimeric (E-[c(RGDfK)]{sub 2}) and a tetrameric (E{l_brace}E[c(RGDfK)]{sub 2}{r_brace}{sub 2}) RGD peptide were synthesised, conjugated with DOTA and radiolabelled with {sup 68}Ga. In vitro {alpha}{sub v}{beta}{sub 3}-binding characteristics were determined in a competitive binding assay. In vivo {alpha}{sub v}{beta}{sub 3}-targeting characteristics of the compounds were assessed in mice with subcutaneously growing SK-RC-52 xenografts. In addition, microPET images were acquired using a microPET/CT scanner. The IC{sub 50} values for the Ga(III)-labelled DOTA-E-c(RGDfK), DOTA-E-[c(RGDfK)]{sub 2} and DOTA-E{l_brace}E[c(RGDfK)]{sub 2}{r_brace}{sub 2} were 23.9 {+-} 1.22, 8.99 {+-} 1.20 and 1.74 {+-} 1.18 nM, respectively, and were similar to those of the In(III)-labelled mono-, di- and tetrameric RGD peptides (26.6 {+-} 1.15, 3.34 {+-} 1.16 and 1.80 {+-} 1.37 nM, respectively). At 2 h post-injection, tumour uptake of the {sup 68}Ga-labelled mono-, di- and tetrameric RGD peptides (3.30 {+-} 0.30, 5.24 {+-} 0.27 and 7.11 {+-} 0.67%ID/g, respectively) was comparable to that of their {sup 111}In-labelled counterparts (2.70 {+-} 0.29, 5.61 {+-} 0.85 and 7.32 {+-} 2.45%ID/g, respectively). PET scans were in line with the biodistribution data. On all PET scans, the tumour could be clearly visualised. The integrin affinity and the tumour uptake followed the order of DOTA-tetramer > DOTA-dimer > DOTA-monomer. The {sup 68}Ga-labelled tetrameric RGD peptide has excellent characteristics for imaging of {alpha}{sub v} {beta}{sub 3} expression with PET. (orig.)

  8. Status and Advances of RGD Molecular Imaging in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Ning YUE

    2014-12-01

    Full Text Available Lung cancer has been one of the most common and the highest mortality rates malignant tumors at home and abroad. Sustained angiogenesis was not only the characteristic of malignant tumors, but also the foundation of tumor proliferation, invasion, recurrence and metastasis, it was also one of the hot spots of treatments in lung cancer biology currently. Integrins played an important part in tumor angiogenesis. Arg-Gly-Asp (RGD peptides could combine with integrins specifically, and the application of radionuclide-labeled RGD molecular probes enabled imaging of tumor blood vessels to reflect its changes. The lung cancer imaging of RGD peptides at home and abroad in recent years was reviewed in this article.

  9. Impact of RGD amount in dextran-based hydrogels for cell delivery.

    Science.gov (United States)

    Riahi, Nesrine; Liberelle, Benoît; Henry, Olivier; De Crescenzo, Gregory

    2017-04-01

    Dextran is one of the hydrophilic polymers that is used for hydrogel preparation. As any polysaccharide, it presents a high density of hydroxyl groups, which make possible several types of derivatization and crosslinking reactions. Furthermore, dextran is an excellent candidate for hydrogel fabrication with controlled cell/scaffold interactions as it is resistant to protein adsorption and cell adhesion. RGD peptide can be grafted to the dextran in order to promote selected cell adhesion and proliferation. Altogether, we have developed a novel strategy to graft the RGD peptide sequence to dextran-based hydrogel using divinyl sulfone as a linker. The resulting RGD functionalized dextran-based hydrogels were transparent, presented a smooth surface and were easy to handle. The impact of varying RGD peptide amounts, hydrogel porosity and topology upon human umbilical vein endothelial cell (HUVEC) adhesion, proliferation and infiltration was investigated. Our results demonstrated that 0.1% of RGD-modified dextran within the gel was sufficient to support HUVEC cells adhesion to the hydrogel surface. Sodium chloride was added (i) to the original hydrogel mix in order to form a macroporous structure presenting interconnected pores and (ii) to the hydrogel surface to create small orifices essential for cells migration inside the matrix. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Enhanced anticancer efficacy of paclitaxel through multistage tumor-targeting liposomes modified with RGD and KLA peptides

    Directory of Open Access Journals (Sweden)

    Sun J

    2017-02-01

    Full Text Available Jiawei Sun,1 Lei Jiang,2 Yi Lin,3 Ethan Michael Gerhard,4 Xuehua Jiang,1 Li Li,3 Jian Yang,4 Zhongwei Gu3 1West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 2Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu, 3National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, People’s Republic of China; 4Department of Biomedical Engineering Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA, USA Abstract: Mitochondria serve as both “energy factories” and “suicide weapon stores” of cells. Targeted delivery of cytotoxic drugs to the mitochondria of tumor cells and tumor vascular cells is a promising strategy to improve the efficacy of chemotherapy. Here, multistage tumor-targeting liposomes containing two targeted peptide-modified lipids, cRGD-PEG2000-DSPE and KLA-PEG2000-DSPE, were developed for encapsulation of the anticancer drug paclitaxel (PTX, RGD-KLA/PTX-Lips. Compared with Taxol (free PTX, RGD/PTX-Lips and KLA/PTX-Lips, the half-maximal inhibitory concentration (IC50 value of RGD-KLA/PTX-Lips in vitro was 1.9-, 36.7- and 22.7-fold lower with 4T1 cells, respectively, because of higher levels of cellular uptake. Similar results were also observed with human umbilical vascular endothelial cells (HUVECs. An apoptosis assay showed that the total apoptotic ratio of RGD-KLA/PTX-Lips was the highest because of the mitochondria-targeted drug delivery and the activation of mitochondrial apoptosis pathways, as evidenced by visible mitochondrial localization, decreased mitochondrial membrane potential, release of cytochrome c and increased activities of caspase-9 and caspase-3. The strongest tumor growth inhibition (TGI; 80.6% and antiangiogenesis effects without systemic toxicity were also observed in RGD-KLA/PTX-Lip-treated 4T1 tumor xenograft BALB/c mice. In conclusion, these multistage

  11. Effects of linker variation on the in vitro and in vivo characteristics of an 111In-labeled RGD peptide

    International Nuclear Information System (INIS)

    Dijkgraaf, Ingrid; Liu, Shuang; Kruijtzer, John A.W.; Soede, Annemieke C.; Oyen, Wim J.G.; Liskamp, Rob M.J.; Corstens, Frans H.M.; Boerman, Otto C.

    2007-01-01

    Introduction: Due to the selective expression of the α v β 3 integrin in tumors, radiolabeled arginine-glycine-aspartic acid (RGD) peptides are attractive candidates for tumor targeting. Minor modifications of these peptides could have a major impact on in vivo characteristics. In this study, we systematically investigated the effects of linker modification between two cyclic RGD sequences and DOTA (1,4,7,10-tetraazadodecane-N,N',N ' ,N'''-tetraacetic acid) on the in vitro and in vivo characteristics of the tracer. Methods: A dimeric RGD peptide was synthesized and conjugated either directly with DOTA or via different linkers: PEG 4 (polyethylene glycol), glutamic acid or lysine. The RGD peptides were radiolabeled with 111 In, and their in vitro and in vivo α v β 3 -binding characteristics were determined. Results: LogP values varied between -2.82±0.06 and -3.95±0.33. The IC 50 values for DOTA-E-[c(RGDfK)] 2 , DOTA-PEG 4 -E-[c(RGDfK)] 2 , DOTA-E-E-[c(RGDfK)] 2 and DOTA-K-E-[c(RGDfK)] 2 were comparable. Two hours after injection, the tumor uptakes of the 111 In-labeled compounds were not significantly different. The kidney accumulation of [ 111 In]-DOTA-K-E-[c(RGDfK)] 2 [4.05±0.20% of the injected dose per gram (ID/g)] was significantly higher as compared with that of [ 111 In]-DOTA-E-[c(RGDfK)] 2 (2.63±0.19% ID/g; P 111 In]-DOTA-E-E-[c(RGDfK)] 2 (2.16±0.21% ID/g; P 111 In]-DOTA-E-E-[c(RGDfK)] 2 (2.12±0.09% ID/g) was significantly higher as compared with that of [ 111 In]-DOTA-E-[c(RGDfK)] 2 (1.64±0.1% ID/g; P 111 In]-DOTA-K-E-[c(RGDfK)] 2 (1.52±0.04% ID/g; P v β 3 and tumor uptake. Insertion of lysine caused enhanced kidney retention; that of glutamic acid also resulted in enhanced retention in the kidneys. PEG 4 appeared to be the most suitable linker as compared with glutamic acid and lysine because it has the highest tumor-to-blood ratio and the lowest uptake in the kidney and liver

  12. RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature

    NARCIS (Netherlands)

    Temming, K; Molema, G; Kok, RJ

    2005-01-01

    During the past decade, RGD-peptides have become a popular tool for the targeting of drugs and imaging agents to a(v)beta(3)-integrin expressing tumour vasculature. RGD-peptides have been introduced by recombinant means into therapeutic proteins and viruses. Chemical means have been applied to

  13. One-step radiosynthesis of {sup 18}F-AlF-NOTA-RGD{sub 2} for tumor angiogenesis PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shuanglong; Liu, Hongguang; Xu, Yingding; Cheng, Zhen [Stanford University, Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Bio-X Program, Department of Radiology, Stanford, CA (United States); Jiang, Han [Stanford University, Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Bio-X Program, Department of Radiology, Stanford, CA (United States); Institute of Nuclear Medicine and Molecular Imaging, and the Second Affiliated Hospital of Zhejiang University School of Medicine, Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Department of Nuclear Medicine, Medical PET Center, Hangzhou, Zhejiang (China); Zhang, Hong [Institute of Nuclear Medicine and Molecular Imaging, and the Second Affiliated Hospital of Zhejiang University School of Medicine, Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Department of Nuclear Medicine, Medical PET Center, Hangzhou, Zhejiang (China)

    2011-09-15

    One of the major obstacles of the clinical translation of {sup 18}F-labeled arginine-glycine-aspartic acid (RGD) peptides has been the laborious multistep radiosynthesis. In order to facilitate the application of RGD-based positron emission tomography (PET) probes in the clinical setting we investigated in this study the feasibility of using the chelation reaction between Al{sup 18}F and a macrocyclic chelator-conjugated dimeric RGD peptide as a simple one-step {sup 18}F labeling strategy for development of a PET probe for tumor angiogenesis imaging. Dimeric cyclic peptide E[c(RGDyK)]{sub 2} (RGD{sub 2}) was first conjugated with a macrocyclic chelator, 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), and the resulting bioconjugate NOTA-RGD{sub 2} was then radiofluorinated via Al{sup 18}F intermediate to synthesize {sup 18}F-AlF-NOTA-RGD{sub 2}. Integrin binding affinities of the peptides were assessed by a U87MG cell-based receptor binding assay using {sup 125}I-echistatin as the radioligand. The tumor targeting efficacy and in vivo profile of {sup 18}F-AlF-NOTA-RGD{sub 2} were further evaluated in a subcutaneous U87MG glioblastoma xenograft model by microPET and biodistribution. NOTA-RGD{sub 2} was successfully {sup 18}F-fluorinated with good yield within 40 min using the Al{sup 18}F intermediate. The IC{sub 50} of {sup 19}F-AlF-NOTA-RGD{sub 2} was determined to be 46 {+-} 4.4 nM. Quantitative microPET studies demonstrated that {sup 18}F-AlF-NOTA-RGD{sub 2} showed high tumor uptake, fast clearance from the body, and good tumor to normal organ ratios. NOTA-RGD{sub 2} bioconjugate has been successfully prepared and labeled with Al{sup 18}F in one single step of radiosynthesis. The favorable in vivo performance and the short radiosynthetic route of {sup 18}F-AlF-NOTA-RGD{sub 2} warrant further optimization of the probe and the radiofluorination strategy to accelerate the clinical translation of {sup 18}F-labeled RGD peptides. (orig.)

  14. Enhanced tumor targeting of cRGD peptide-conjugated albumin nanoparticles in the BxPC-3 cell line.

    Science.gov (United States)

    Yu, Xinzhe; Song, Yunlong; Di, Yang; He, Hang; Fu, Deliang; Jin, Chen

    2016-08-12

    The emerging albumin nanoparticle brings new hope for the delivery of antitumor drugs. However, a lack of robust tumor targeting greatly limits its application. In this paper, cyclic arginine-glycine-aspartic-conjugated, gemcitabine-loaded human serum albumin nanoparticles (cRGD-Gem-HSA-NPs) were successfully prepared, characterized, and tested in vitro in the BxPC-3 cell line. Initially, 4-N-myristoyl-gemcitabine (Gem-C14) was formed by conjugating myristoyl to the 4-amino group of gemcitabine. Then, cRGD-HSA was synthesized using sulfosuccinimidyl-(4-N-maleimidomethyl)cyclohexane-1-carboxylate (Sulfo-SMCC) cross-linkers. Finally, cRGD-Gem-HSA-NPs were formulated based on the nanoparticle albumin-bound (nab) technology. The resulting NPs were characterized for particle size, zeta potential, morphology, encapsulation efficiency, and drug loading efficiency. In vitro cellular uptake and inhibition studies were conducted to compare Gem-HSA-NPs and cRGD-Gem-HSA-NPs in a human pancreatic cancer cell line (BxPC-3). The cRGD-Gem-HSA-NPs exhibited an average particle size of 160 ± 23 nm. The encapsulation rate and drug loading rate were approximately 83 ± 5.6% and 11 ± 4.2%, respectively. In vitro, the cRGD-anchored NPs exhibited a significantly greater affinity for the BxPC-3 cells compared to non-targeted NPs and free drug. The cRGD-Gem-HSA-NPs also showed the strongest inhibitory effect in the BxPC-3 cells among all the analyzed groups. The improved efficacy of cRGD-Gem-HSA-NPs in the BxPC-3 cell line warrants further in vivo investigations.

  15. Monomeric, dimeric and multimeric system of RGD peptides radiolabeled with 177Lu for tumors therapy that expressing αβ integrin s

    International Nuclear Information System (INIS)

    Luna G, M. A.

    2014-01-01

    The conjugation of peptides to gold nanoparticles (AuNPs) produces biocompatible and stable multimeric systems with target-specific molecular recognition. Peptides based on the cyclic Arg-Gly-Asp (RGD) sequence have been reported as high affinity agents for the α(v)β(3) and α(v)β(5) integrin. The aim of this research was to prepare a multimeric system of 177 Lu-labeled gold nanoparticles conjugated to c[RGDfK(C)] [cyclo(Arg-Gly-Asp-Phe-Lys(Cys)] peptides and to compare the radiation absorbed dose with that of 177 Lu-labeled monomeric and dimeric RGD peptides to α(v)β(3) integrin-positive U87MG tumors in mice, as well as, evaluate the in vitro potential 177 Lu-AuNP-c[RGDfK(C)] as a plasmonic photothermal therapy and targeted radiotherapy system in MCF7 breast cancer cells. DOTA-GGC (1,4,7,10-tetraaza cyclododecane-N,N,N-tetraacetic-Gly-Gly-Cys) and c[RGDfK(C)] peptides were synthesized and conjugated to AuNPs by the spontaneous reaction of the thiol groups. Tem, UV-Vis, XP S, Raman and Far-IR spectroscopy techniques demonstrated that AuNPs were functionalized with the peptides. To obtain 177 Lu-AuNP-c[RGDfK(C)], the 177 Lu-DOTA-GGC radio peptide was first prepared and added to a solution of AuNPs followed by c[RGDfK(C)] (25 μL, 5 μM) at 18 grades C for 15 min. 177 Lu-DOTA-GGC, 177 Lu- DOTA-cRGDfK and 177 Lu-DOTA-E-c(RGDfK) 2 were prepared by adding 177 LuCl 3 (370 MBq) to 5 μL (1 mg/ml) of the DOTA derivative diluted with 50 μL of 1 M acetate buffer at ph 5. The mixture was incubated at 90 grades C in a block heater for 30 min. Radiochemical purity was determined by ultrafiltration and HPLC analyses. After laser irradiation, the presence of c[RGDfK(C)]-AuNP in cells caused a significant increase in the temperature of the medium (50.5 grades C, compared to 40.3 grades C without AuNPs) resulting in a significant decrease in MCF7 cell viability down to 9 %. After treatment with 177 Lu-AuNP-c[RGDfK(C)], the MCF7 cell proliferation was significantly inhibited

  16. Tumor penetrating peptides

    Directory of Open Access Journals (Sweden)

    Tambet eTeesalu

    2013-08-01

    Full Text Available Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC, contains the integrin-binding RGD motif. RGD mediates tumor homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular zip code of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is

  17. PET imaging of alpha(v)beta(3) integrin expression in tumours with Ga-68-labelled mono-, di- and tetrameric RGD peptides

    NARCIS (Netherlands)

    Dijkgraaf, Ingrid; Yim, Cheng-Bin; Franssen, Gerben M.; Schuit, Robert C.; Luurtsema, Gert; Liu, Shuang; Oyen, Wim J. G.; Boerman, Otto C.

    Due to the restricted expression of alpha(v)beta(3) in tumours, alpha(v)beta(3) is considered a suitable receptor for tumour targeting. In this study the alpha(v)beta(3)-binding characteristics of Ga-68-labelled monomeric, dimeric and tetrameric RGD peptides were determined and compared with their

  18. Toward realization of 'mix-and-use' approach in ⁶⁸Ga radiopharmacy: preparation, evaluation and preliminary clinical utilization of ⁶⁸Ga-labeled NODAGA-coupled RGD peptide derivative.

    Science.gov (United States)

    Chakraborty, Sudipta; Chakravarty, Rubel; Vatsa, Rakhee; Bhusari, Priya; Sarma, H D; Shukla, Jaya; Mittal, B R; Dash, Ashutosh

    2016-01-01

    The present article demonstrates a 'mix-and-use' approach for radiolabeling RGD peptide derivative with (68)Ga, which is easily adaptable in hospital radiopharmacy practice. The radiotracer thus formulated was successfully used for positron emission tomography (PET) imaging of breast cancer in human patients. The conditions for radiolabeling NODAGA-coupled dimeric cyclic RGD peptide derivative [NODAGA-(RGD)2] with (68)Ga were optimized using (68)Ga obtained from a (68)Ge/(68)Ga generator developed in-house with CeO2-PAN composite sorbent as well as from a commercial (68)Ge/(68)Ga generator obtained from ITG, Germany. Preclinical studies were carried out in C57BL/6 mice bearing melanoma tumors. The radiotracer was prepared in a hospital radiopharmacy using (68)Ga obtained from ITG generator and used for monitoring breast cancer patients by positron emission tomography (PET) imaging. (68)Ga-NODAGA-(RGD)2 could be prepared with high radiolabeling yield (>98%) and specific activity (~50 GBq/μmol) within 10 min at room temperature by mixing (68)Ga with the solution of the peptide conjugate. In vivo biodistribution studies showed significant uptake (5.24±0.39% ID/g) in melanoma tumor at 30 min post-injection, with high tumor-to-background contrast. The integrin αvβ3 specificity of the tracer was corroborated by blocking study. Preliminary clinical studies in locally advanced breast cancer (LABC) patients indicated specifically high tumor uptake (SUVmax 10-15) with good contrast. This is one of the very few reports which presents preliminary clinical data on use of (68)Ga-NODAGA-(RGD)2 and the developed 'mix-and-use' holds tremendous prospect in clinical PET imaging using (68)Ga. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Development of a new anti-cancer agent for targeted radionuclide therapy: β- radiolabeled RAFT-RGD

    International Nuclear Information System (INIS)

    Petitprin, A.

    2013-01-01

    β-emitters radiolabeled RAFT-RGD as new agents for internal targeted radiotherapy. The αvβ3 integrin is known to play an important role in tumor-induced angiogenesis, tumor proliferation, survival and metastasis. Because of its overexpression on neo-endothelial cells such as those present in growing tumors, as well as on tumor cells of various origins, αvβ3 integrin is an attractive molecular target for diagnosis and therapy of the rapidly growing and metastatic tumors. A tetrameric RGD-based peptide, regioselectively addressable functionalized template-(cyclo-[RGDfK])4 (RAFT-RGD), specifically targets integrin αvβ3 in vitro and in vivo. RAFT-RGD has been used for tumor imaging and drug targeting. This study is the first to evaluate the therapeutic potential of the β-emitters radiolabeled tetrameric RGD peptide RAFT-RGD in a Nude mouse model of αvβ3 -expressing tumors. An injection of 37 MBq of 90 Y-RAFT-RGD or 177 Lu-RAFT-RGD in mice with αvβ3 -positive tumors caused a significant growth delay as compared with mice treated with 37 MBq of 90 Y-RAFT-RAD or 177 Lu-RAFT-RAD or untreated mice. In comparison, an injection of 30 MBq of 90 Y-RAFT-RGD had no efficacy for the treatment of αvβ3 -negative tumors. 90 Y-RAFT-RGD and 177 Lu-RAFT-RGD are potent αvβ3 -expressing tumor targeting agents for internal targeted radiotherapy. (author)

  20. Enhancing osteogenic differentiation of MC3T3-E1 cells by immobilizing RGD onto liquid crystal substrate

    International Nuclear Information System (INIS)

    Wu, Shaopeng; Yang, Xiaohui; Li, Wenqiang; Du, Lin; Zeng, Rong; Tu, Mei

    2017-01-01

    To understand the effects of GRGDF modification on MC3T3-E1 cell behavior, we cultured these cells onto a biomimetic liquid crystalline matrix modified with GRGDF peptide (OPC-GA-RGD). Successful immobilization of GRGDF on the liquid crystalline surface was verified by fluorescent labeling, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). OPC-GA-RGDs retained its liquid crystalline feature after surface modification. The RGD-immobilized OPC substrate was hardly beneficial to initial cell adhesion but could support long-term cell survival. The enhancement in cell proliferation did not correlate with RGD density. The lower GRGDF density immobilized on the liquid crystalline OPC matrix (OPC-GA-RGD3) promoted cell adhesion, proliferation, ALP expression level and mineralization, suggesting that both the viscoelasticity-based mechanical stimuli and receptor/ligand-based biochemical cue synergistically modulate MC3T3-E1 cell behavior. - Highlight: • A novel type of GRGDF-immobilized liquid crystalline matrices was fabricated and served as a substrate for the in vitro culture of MC3T3-E1 cells. • The lower RGD density might provide a better condition for initial cell adhesion and proliferation, up-regulation of ALP expression levels, and mineralization. • The intrinsic liquid crystalline feature of OPC matrix, instead of RGD efficiency, promoted initial cell adhesion. • Properties of the liquid crystalline OPC matrix together with the stable receptor-ligand binging synergistically modulated MC3T3-E1 cell behavior.

  1. Enhancing osteogenic differentiation of MC3T3-E1 cells by immobilizing RGD onto liquid crystal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shaopeng; Yang, Xiaohui; Li, Wenqiang; Du, Lin; Zeng, Rong; Tu, Mei, E-mail: tumei@jnu.edu.cn

    2017-02-01

    To understand the effects of GRGDF modification on MC3T3-E1 cell behavior, we cultured these cells onto a biomimetic liquid crystalline matrix modified with GRGDF peptide (OPC-GA-RGD). Successful immobilization of GRGDF on the liquid crystalline surface was verified by fluorescent labeling, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). OPC-GA-RGDs retained its liquid crystalline feature after surface modification. The RGD-immobilized OPC substrate was hardly beneficial to initial cell adhesion but could support long-term cell survival. The enhancement in cell proliferation did not correlate with RGD density. The lower GRGDF density immobilized on the liquid crystalline OPC matrix (OPC-GA-RGD3) promoted cell adhesion, proliferation, ALP expression level and mineralization, suggesting that both the viscoelasticity-based mechanical stimuli and receptor/ligand-based biochemical cue synergistically modulate MC3T3-E1 cell behavior. - Highlight: • A novel type of GRGDF-immobilized liquid crystalline matrices was fabricated and served as a substrate for the in vitro culture of MC3T3-E1 cells. • The lower RGD density might provide a better condition for initial cell adhesion and proliferation, up-regulation of ALP expression levels, and mineralization. • The intrinsic liquid crystalline feature of OPC matrix, instead of RGD efficiency, promoted initial cell adhesion. • Properties of the liquid crystalline OPC matrix together with the stable receptor-ligand binging synergistically modulated MC3T3-E1 cell behavior.

  2. Synthesis, analysis and biological evaluation of new RGD mimetics

    Czech Academy of Sciences Publication Activity Database

    Balacheva, A. A.; Lambev, M. K.; Pashov, I.; Detcheva, R. L.; Sázelová, Petra; Momekov, G. Ts.; Kašička, Václav; Pajpanova, T. I.; Golovinsky, E. V.

    2017-01-01

    Roč. 49, SI E (2017), s. 7-10 ISSN 0324-1130. [Bulgarian Peptide Symposium /7./. Blagoevgrad, 10.06.2016-12.06.2016] Institutional support: RVO:61388963 Keywords : RGD * biological ly active peptides * cytotoxicity Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 0.238, year: 2016

  3. Effect of linkers on the αvβ3 integrin targeting efficiency of cyclic RGD-conjugates

    Science.gov (United States)

    Karmakar, Partha; Grabowska, Dorota; Sudlow, Gail; Ziabrev, Kostiantyn; Sanyal, Nibedita; Achilefu, Samuel

    2018-02-01

    Cyclic arginine-glycine-aspartic acid (cRGD) peptides are well known to target ανβ3 integrin expressed on cancer cells and neovasculature. Conjugation of these peptides with dyes, drugs, antibodies and other biomolecules through covalent linkers provides a facile way to deliver these products to tumor cells for targeted cancer therapy and diagnosis. Click chemistry and acid-amine couplings are widely used conjugation strategies. However, the effects of different linkers and the distance between the cRGD and the conjugates on the binding of cRGD ligand with ανβ3 has been underexplored. In this present study, we prepared cRGD-conjugates using different linkers and determined how they altered the tumor targeting efficiency in vitro and in vivo. The results demonstrate that different linkers significantly altered the pharmacokinetics of the cRGD conjugates and the tumor uptake kinetics. Unlike large antibodies, this preliminary finding shows that linkers used to attach drugs and fluorescent molecular probes to small peptides play a major role in the accuracy of tumor targeting and treatment outcomes. As a result, considerable attention should be paid to the nature of linkers used in the design of molecular probes and targeted therapeutics.

  4. The relative importance of topography and RGD ligand density for endothelial cell adhesion.

    Directory of Open Access Journals (Sweden)

    Guillaume Le Saux

    Full Text Available The morphology and function of endothelial cells depends on the physical and chemical characteristics of the extracellular environment. Here, we designed silicon surfaces on which topographical features and surface densities of the integrin binding peptide arginine-glycine-aspartic acid (RGD could be independently controlled. We used these surfaces to investigate the relative importance of the surface chemistry of ligand presentation versus surface topography in endothelial cell adhesion. We compared cell adhesion, spreading and migration on surfaces with nano- to micro-scaled pyramids and average densities of 6×10(2-6×10(11 RGD/mm(2. We found that fewer cells adhered onto rough than flat surfaces and that the optimal average RGD density for cell adhesion was 6×10(5 RGD/mm(2 on flat surfaces and substrata with nano-scaled roughness. Only on surfaces with micro-scaled pyramids did the topography hinder cell migration and a lower average RGD density was optimal for adhesion. In contrast, cell spreading was greatest on surfaces with 6×10(8 RGD/mm(2 irrespectively of presence of feature and their size. In summary, our data suggest that the size of pyramids predominately control the number of endothelial cells that adhere to the substratum but the average RGD density governs the degree of cell spreading and length of focal adhesion within adherent cells. The data points towards a two-step model of cell adhesion: the initial contact of cells with a substratum may be guided by the topography while the engagement of cell surface receptors is predominately controlled by the surface chemistry.

  5. Utilization of a novel electrochemical {sup 90}Sr/{sup 90}Y generator for the preparation of {sup 90}Y-labeled RGD peptide dimer in clinically relevant dose

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Sudipta; Chakravarty, Rubel; Pillai, Maroor Raghavan Ambikalmajan; Dash, Ashutosh [Bhabha Atomic Research Centre, Mumbai (India). Radiopharmaceuticals Div.; Sarma, Haladhar Dev [Bhabha Atomic Research Centre, Mumbai (India). Radiation Biology and Health Sciences Div.

    2014-09-01

    The work reported in this paper provides a systematic study towards the development of an optimized strategy for preparation of a clinically relevant dose of {sup 90}Y-labeled dimeric RGD peptide derivative, DOTA-E[c(RGDfK)]{sub 2} [DOTA-(RGD){sub 2}] for in vivo targeted therapy utilizing {sup 90}Y obtained from a novel electrochemical {sup 90}Sr/{sup 90}Y generator. The performance of the generator was evaluated to ensure its suitability for providing {sup 90}Y in adequate quantity and purity required for formulation of clinically relevant dose for PRRT. {sup 90}Y-DOTA-(RGD){sub 2} was synthesized in high yield (86.2 ± 2.5%) and radiochemical purity (98.4 ± 0.5%) using clinically relevant dose (∝ 3.8 GBq) of {sup 90}Y. In vitro stability studies revealed that the radiolabeled conjugate retained its radiochemical purity in normal saline and human serum. Preliminary biodistribution studies carried out in C57/BL6 mice bearing melanoma tumors showed that the preparation exhibited significant tumor uptake (5.30 ± 0.78% of injected activity at 30 min post-injection) with good tumor to background ratio. The optimized radiolabeling protocol seems to be an attractive strategy which is largely viewed as a springboard to realize scope of developing {sup 90}Y labeled cyclic RGD peptides for targeted therapy of tumors over-expressing integrin-α{sub ν}β{sub 3} receptors. (orig.)

  6. Synthesis and biological evaluation of a 99mTc-labelled cyclic RGD peptide for imaging the αvβ3 expression

    International Nuclear Information System (INIS)

    Haubner, F.; Bock, M.; Schwaiger, M.; Wester, H.J.; Bruchertseifer, F.; Kessler, H.

    2004-01-01

    Aim: The αvβ3 integrin is involved in tumour induced angiogenesis and tumour metastasis. We describe the synthesis and evaluation of a 99m Tc-labelled RGD analogue for the visualisation of αvβ3 integrin expression. Methods: The linear peptides were assembled on a solid support. Cyclisation was performed under high dilution conditions. For conjugation with the chelator peptide, a water soluble carbodiimide was used. Radiolabelling was carried out due to standard procedures with high radiochemical yield and radiochemical purity. For in vivo evaluation, nude mice bearing αvβ3-positive human melanoma M21 and αv-negative human melanoma M21-L or Balb / c mice bearing αv-positive murine osteosarcoma were used. Results: Activity accumulation of 99m Tc-DKCK-RGD 240 min p.i. was 1.1% ID/g in the αvβ3-positive melanoma and 0.3% ID/g in the negative control tumour. In the osteosarcoma model 2.2% ID/g was found 240 min p.i. Planar gamma camera images allowed contrasting visualisation of αvβ3-positive tumours 240 min p.i. Blocking of the tumour using the αvβ3-selective pentapeptide cyclo(-Arg-Gly-Asp-D-Phe-Val-) reduces activity accumulation in the tumour to background level. However, 240 min p.i. highest activity concentration was found in kidneys resulting in low tumour / kidney ratios. Metabolite analysis 240 min p.i. showed approximately 60% intact tracer in kidneys and 80% in the tumour. Only 24% intact tracer was found in blood 30 min p.i. Conclusion: 99m Tc-DKCK-RGD allows imaging of αvβ3-positive tumours in mice. However, pharmacokinetics as well as metabolic stability of the tracer have to be improved for potential clinical application. (orig.)

  7. Amino acids and peptides. XXXII: A bifunctional poly(ethylene glycol) hybrid of fibronectin-related peptides.

    Science.gov (United States)

    Maeda, M; Izuno, Y; Kawasaki, K; Kaneda, Y; Mu, Y; Tsutsumi, Y; Lem, K W; Mayumi, T

    1997-12-18

    An amino acid type poly(ethylene glycol) (aaPPEG) was prepared and its application to a drug carrier was examined. The peptides, Arg-Gly-Asp (RGD) and Glu-Ile-Leu-Asp-Val (EILDV) which were reported as active fragments of Fibronectin (a cell adhesion protein), were conjugated with aaPEG (molecular weight, 10,000). The hybrid, RGD-aaPEG-EILDV, was prepared by a combination of the solid-phase method and the solution method. Antiadhesive activity of the peptides was not lost by its hybrid formation with the large aaPEG molecule. A mixture of RGD (0.43 mmol) and EILDV (0.43 mmol) did not demonstrate an antiadhesive effect, but the hybrid containing 0.43 mmol of each peptide did exhibit this effect.

  8. 68Ga- and 111In-labelled DOTA-RGD peptides for imaging of αvβ3 integrin expression

    International Nuclear Information System (INIS)

    Decristoforo, Clemens; Hernandez Gonzalez, Ignacio; Rupprich, Marco; Virgolini, Irene; Carlsen, Janette; Huisman, Marc; Wester, Hans-Juergen; Haubner, Roland

    2008-01-01

    αvβ3 integrins are important cell adhesion receptors involved in angiogenic processes. Recently, we demonstrated using [ 18 F]Galacto-RGD that monitoring of αvβ3 expression is feasible. Here, we introduce 68 Ga- and 111 In-labelled derivatives and compare them with [ 18 F]Galacto-RGD. For radiolabelling, cyclo(RGDfK(DOTA)) was synthesised using SPPS. For in vitro characterisation determination of partition coefficients, protein binding, metabolic stability, αvβ3 affinity and cell uptake and for in vivo characterization, biodistribution studies and micro positron emission tomography (PET) imaging were carried out. For in vivo and in vitro studies, human melanoma M21 (αvβ3 positive) and M21-L (αvβ3 negative) cells were used. Both tracers can be synthesised straightforward. The compounds showed hydrophilic properties and high metabolic stability. Up to 23% protein-bound activity for [ 68 Ga]DOTA-RGD and only up to 1.4% for [ 111 In]DOTA-RGD was found. Cell uptake studies indicate receptor-specific accumulation. This is confirmed by the biodistribution data. One hour p.i. accumulation in αvβ3-positive tumours was 2.9 ± 0.3%ID/g and in αvβ3-negative tumours 0.8 ± 0.1%ID/g for [ 68 Ga]DOTA-RGD ([ 111 In]DOTA-RGD: 1.9 ± 0.3%ID/g and 0.5 ± 0.2%ID/g; [ 18 F]Galacto-RGD: 1.6 ± 0.2%ID/g and 0.4 ± 0.1%ID/g). Thus, tumour uptake ratios were comparable. Due to approx. 3-fold higher blood pool activities for [ 68 Ga]DOTA-RGD, tumour/blood ratios were higher for [ 111 In]DOTA-RGD and [ 18 F]Galacto-RGD. However, microPET studies demonstrated that visualisation of αvβ3-positive tumours using [ 68 Ga]DOTA-RGD is possible. Our data indicate that [ 68 Ga]DOTA-RGD allows monitoring of αvβ3 expression. Especially, the much easier radiosynthesis compared to [ 18 F]Galacto-RGD would make it an attractive alternative. However, due to higher blood pool activity, [ 18 F]Galacto-RGD remains superior for imaging αvβ3 expression. Introduction of alternative chelator

  9. An iRGD Based Strategy to Study Electrochemically the Species Inside a Cell

    Directory of Open Access Journals (Sweden)

    Genxi Li

    2012-08-01

    Full Text Available This paper reports a method for electrical communication between the inner part of cells and an electrode with the help of iRGD peptide. Due to the enhancement of the cell penetration caused by iRGD peptide, DNA molecules, previously modified on a gold electrode surface, can be easily transfected into the cells. At the same time, doxorubicin, an anticancer drug, can also be transfected into cells with high penetration. Consequently, doxorubicin binds to DNA chains through electrostatic interaction, and the redox reaction is transferred out of the cell across the cell membrane. As a result, this work may provide a novel way to get information from inside of cells.

  10. Multivalent cyclic RGD ligands: influence of linker lengths on receptor binding

    Energy Technology Data Exchange (ETDEWEB)

    Kubas, Holger; Schaefer, Martin; Bauder-Wuest, Ulrike; Eder, Matthias; Oltmanns, Doerte [Department of Radiopharmaceutical Chemistry, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Haberkorn, Uwe; Mier, Walter [Department of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Eisenhut, Michael, E-mail: m.eisenhut@dkfz.d [Department of Radiopharmaceutical Chemistry, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2010-11-15

    Peptides involving the RGD motive (arginine-glycine-aspartic acid) recognize members of the integrin receptor family. Since the receptors are located mainly on the surface of endothelial cells, structural modifications including multimers of c(RGDfE) were recently found to improve the binding avidity for {alpha}{sub v{beta}3} integrin significantly. The multivalent RGD peptides exhibited rather loose linkages partly including oligo(ethylene glycol) spacers (EG{sub n}) with different chain lengths. Therefore, the dependence of multivalent RGD systems with and without EG{sub n} linkers were investigated on their binding properties to cultured {alpha}{sub v{beta}3} integrin-expressing U87MG cells. Methods: We synthesized a series of di-, tri- and tetravalent rigid scaffolds (terephthalic acid, trimesic acid and adamantane-1,3,5,7-tetracarboxylic acid) conjugated to c(RGDyK) ligands, which were linked contiguously or separated by the oligo(ethylene glycol) spacers. The inhibition constants of these c(RGDyK) derivatives were determined by competition assays with {sup 125}I-labeled echistatin. Results: While c(RGDyK) function is a relative weak competitor against [{sup 125}I]echistatin (K{sub i}, 329{+-}18 nM) for {alpha}{sub v{beta}3} integrin-expressing U87MG cells, RGD dimers improved the competition potency considerably (K{sub i}, 64{+-}23 nM). This effect was even more pronounced with the RGD trimers (K{sub i}, 40{+-}7 nM) and tetramers (K{sub i}, 26{+-}9 nM). The introduction of EG{sub n} spacers and the increase of linker lengths proved to be detrimental since more competitors were needed to compete with [{sup 125}I]echistatin. The EG{sub 6} group, for example, reduced the inhibition constants by 29% (dimer), 57% (trimer) and 97% (tetramer). Conclusion: The binding experiments performed with the three forms of multivalent RGD ligands indicate the weakening of competitive potency against [{sup 125}I]echistatin with the introduction of EG{sub n} spacers. This effect

  11. iRGD-modified lipid–polymer hybrid nanoparticles loaded with isoliquiritigenin to enhance anti-breast cancer effect and tumor-targeting ability

    Directory of Open Access Journals (Sweden)

    Gao F

    2017-06-01

    Full Text Available Fei Gao,1–3 Jinming Zhang,3 Chaomei Fu,3 Xiaoming Xie,4 Fu Peng,1–3 Jieshu You,1,2 Hailin Tang,1,2,4 Zhiyu Wang,5 Peng Li,6 Jianping Chen1–3 1School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, 2Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, 3College of Pharmacy, Chengdu University of Chinese Medicine, Chengdu, 4Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 5Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 6State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China Abstract: Isoliquiritigenin (ISL, a natural anti-breast cancer dietary compound, has poor delivery characteristics and low bioavailability. In order to promote the therapeutic outcome of ISL, a tumor-targeting lipid–polymer hybrid nanoparticle (NP system modified by tumor-homing iRGD peptides has been developed. The hybrid NPs were prepared by a modified single-step nanoprecipitation method to encapsulate ISL. iRGD peptides were anchored on the surface by a postinsertion method (ISL-iRGD NPs. The stable lipid–polymer structure of ISL-iRGD NPs, with high encapsulation and loading efficiency, was confirmed. Compared to free ISL and non-iRGD-modified counterparts, ISL-iRGD NPs showed higher cytotoxicity and cell apoptosis against the different type of breast cancer cells. This was attributable to higher cellular accumulation mediated by the iRGD-integrin recognition and the nanoscale effect. More importantly, based on the active tumor-tissue accumulation by iRGD peptides and the prolonged in vivo circulation by the stealth nanostructure, ISL-iRGD NPs displayed higher tumor-growth inhibition efficiency in 4T1-bearing breast-tumor mouse

  12. Monomeric, dimeric and multimeric system of RGD peptides radiolabeled with {sup 177}Lu for tumors therapy that expressing αβ integrin s; Sistema monomerico, dimerico y multimerico de peptidos de RGD radiomarcados con {sup 177}Lu para terapia de tumores que expresan integrinas αβ

    Energy Technology Data Exchange (ETDEWEB)

    Luna G, M. A.

    2014-07-01

    The conjugation of peptides to gold nanoparticles (AuNPs) produces biocompatible and stable multimeric systems with target-specific molecular recognition. Peptides based on the cyclic Arg-Gly-Asp (RGD) sequence have been reported as high affinity agents for the α(v)β(3) and α(v)β(5) integrin. The aim of this research was to prepare a multimeric system of {sup 177}Lu-labeled gold nanoparticles conjugated to c[RGDfK(C)] [cyclo(Arg-Gly-Asp-Phe-Lys(Cys)] peptides and to compare the radiation absorbed dose with that of {sup 177}Lu-labeled monomeric and dimeric RGD peptides to α(v)β(3) integrin-positive U87MG tumors in mice, as well as, evaluate the in vitro potential {sup 177}Lu-AuNP-c[RGDfK(C)] as a plasmonic photothermal therapy and targeted radiotherapy system in MCF7 breast cancer cells. DOTA-GGC (1,4,7,10-tetraaza cyclododecane-N,N,N-tetraacetic-Gly-Gly-Cys) and c[RGDfK(C)] peptides were synthesized and conjugated to AuNPs by the spontaneous reaction of the thiol groups. Tem, UV-Vis, XP S, Raman and Far-IR spectroscopy techniques demonstrated that AuNPs were functionalized with the peptides. To obtain {sup 177}Lu-AuNP-c[RGDfK(C)], the {sup 177}Lu-DOTA-GGC radio peptide was first prepared and added to a solution of AuNPs followed by c[RGDfK(C)] (25 μL, 5 μM) at 18 grades C for 15 min. {sup 177}Lu-DOTA-GGC, {sup 177}Lu- DOTA-cRGDfK and {sup 177}Lu-DOTA-E-c(RGDfK){sub 2} were prepared by adding {sup 177}LuCl{sub 3} (370 MBq) to 5 μL (1 mg/ml) of the DOTA derivative diluted with 50 μL of 1 M acetate buffer at ph 5. The mixture was incubated at 90 grades C in a block heater for 30 min. Radiochemical purity was determined by ultrafiltration and HPLC analyses. After laser irradiation, the presence of c[RGDfK(C)]-AuNP in cells caused a significant increase in the temperature of the medium (50.5 grades C, compared to 40.3 grades C without AuNPs) resulting in a significant decrease in MCF7 cell viability down to 9 %. After treatment with {sup 177}Lu

  13. Enhanced {sup 18}F-FDG uptake in activated neutrophils is unaffected by respiratory burst inhibition with RGD

    Energy Technology Data Exchange (ETDEWEB)

    Paik, J. Y.; Lee, K. H.; Go, B. H.; Jeong, K. H.; Kim, H. K.; Choi, J. S.; Choi, Y.; Kim, P. T [Samsung Medical Center, Seoul (Korea, Republic of)

    2004-07-01

    Respiratory burst generation is an important response of activated neutrophils and is associated with enhanced glucose metabolism. Since such activation in dependent on adhesion through integrins, we investigated how integrin occupation with RGD influences respiratory burst response and {sup 18}F-FDG uptake in neutrophils. Human neutrophils separated from healthy volunteers were incubated in RPMI media. For RGD peptide inhibitory experiments, neutrophils were preincubated with 200 {mu} g/ml of cRGD peptides ad 37.deg. for 2 hr prior. Respiratory burst generation and uptake of {sup 18}F-FDG was then measured with or without PMA stimulation. Cellular total hexokinase levels were assayed with a colorimetric method. Treatment with RGD in the basal state resulted in a significant but relatively small increase in neutrophil superoxide release to 1.5{+-}0.25 fold o control levels (p<0.005). Whereas PMA stimulation caused a marked increase in superoxide generation, pretreatment with RGD caused a significant attenuation of this response to 35.6{+-}0.2% (p<0.005). PMA stimulation resulted in a significant increase in {sup 18}F-FDG uptake. However, unlike the attenution of superoxide generation, neutrophils pretreated with RGD before PMA stimulation showed an identical magnitude of enhanced {sup 18}F-FDG uptake (201.8{+-}20.5 of controls, p=0.0001). In addition, hexokinase levels were increased to comparable levels of approximately 1.5 fold for PMA stimulated neutrophils irrespective of RGD pretreatment. In conclusion, soluble RGD blocks stimulation of respiratory burst activation in neutrophils but does not inhibit stimulation of cellular glucose metabolism. This dissociation may contribute to maximally enhanced neutrophil FDG uptake in inflammatory lesions regardless of the occupancy of their integrin receptors.

  14. Targeting nanoparticles to M cells with non-peptidic ligands for oral vaccination

    OpenAIRE

    Fievez, Virginie; Plapied, Laurence; des Rieux, Anne; Pourcelle, Vincent; Freichels, Hélène; Wascotte, Valentine; Vanderhaegen, Marie-Lyse; Jérôme, Christine; Vanderplasschen, Alain; Marchand-Brynaert, Jacqueline; Préat, Véronique

    2009-01-01

    The presence of RGD on nanoparticles allows the targeting of β1 integrins at the apical surface of human M cells and the enhancement of an immune response after oral immunization. To check the hypothesis that non-peptidic ligands targeting intestinal M cells or APCs would be more efficient for oral immunization than RGD, novel non-peptidic and peptidic analogs (RGD peptidomimitic (RGDp), LDV derivative (LDVd) and LDV peptidomimetic (LDVp)) as well as mannose were grafted on the PEG chain of P...

  15. Evaluation of RGD-targeted albumin carriers for specific delivery of auristatin E to tumor blood vessels.

    Science.gov (United States)

    Temming, Kai; Meyer, Damon L; Zabinski, Roger; Dijkers, Eli C F; Poelstra, Klaas; Molema, Grietje; Kok, Robbert J

    2006-01-01

    Induction of apoptosis in endothelial cells is considered an attractive strategy to therapeutically interfere with a solid tumor's blood supply. In the present paper, we constructed cytotoxic conjugates that specifically target angiogenic endothelial cells, thus preventing typical side effects of apoptosis-inducing drugs. For this purpose, we conjugated the potent antimitotic agent monomethyl-auristatin-E (MMAE) via a lysosomal cleavable linker to human serum albumin (HSA) and further equipped this drug-albumin conjugate with cyclic c(RGDfK) peptides for multivalent interaction with alphavbeta3-integrin. The RGD-peptides were conjugated via either an extended poly(ethylene glycol) linker or a short alkyl linker. The resulting drug-targeting conjugates RGDPEG-MMAE-HSA and RGD-MMAE-HSA demonstrated high binding affinity and specificity for alphavbeta3-integrin expressing human umbilical vein endothelial cells (HUVEC). Both types of conjugates were internalized by endothelial cells and killed the target cells at low nM concentrations. Furthermore, we observed RGD-dependent binding of the conjugates to C26 carcinoma. Upon i.v. administration to C26-tumor bearing mice, both drug-targeting conjugates displayed excellent tumor homing properties. Our results demonstrate that RGD-modified albumins are suitable carriers for cell selective intracellular delivery of cytotoxic compounds, and further studies will be conducted to assess the antivascular and tumor inhibitory potential of RGDPEG-MMAE-HSA and RGD-MMAE-HSA.

  16. Preparation and evaluation of a 68Ga-labeled RGD-containing octapeptide for noninvasive imaging of angiogenesis: biodistribution in non-human primate

    Science.gov (United States)

    Velikyan, Irina; Lindhe, Örjan

    2018-01-01

    Monitoring general disease marker such as angiogenesis may contribute to the development of personalized medicine and improve therapy outcome. Readily availability of positron emitter based imaging agents providing quantification would expand clinical positron emission tomography (PET) applications. Generator produced 68Ga provides PET images of high resolution and the half-life time frame is compatible with the pharmacokinetics of small peptides comprising arginine-glycine-aspartic acid (RGD) sequence specific to αvβ3 integrin receptors. The main objective of this study was to develop a method for 68Ga-labeling of RGD containing bicyclic octapeptide ([68Ga]Ga-DOTA-RGD) with high specific radioactivity and preclinically assess its imaging potential. DOTA-RGD was labeled using generator eluate preconcentration technique and microwave heating. The binding and organ distribution properties of [68Ga]Ga-DOTA-RGD were tested in vitro by autoradiography of frozen tumor sections, and in vivo in mice carrying a Lewis Lung carcinoma graft (LL2), and in non-human primate (NHP). Another peptide with aspartic acid-glycine-phenylalanine sequence was used as a negative control. The full 68Ga radioactivity eluted from two generators was quantitatively incorporated into 3-8 nanomoles of the peptide conjugates. The target binding specificity was confirmed by blocking experiments. The specific uptake in the LL2 mice model was observed in vivo and confirmed in the corresponding ex vivo biodistribution experiments. Increased accumulation of the radioactivity was detected in the wall of the uterus of the female NHP probably indicating neovascularization. [68Ga]Ga-DOTA-RGD demonstrated potential for the imaging of angiogenesis. PMID:29531858

  17. Discovery and in vivo evaluation of novel RGD-modified lipid-polymer hybrid nanoparticles for targeted drug delivery.

    Science.gov (United States)

    Zhao, Yinbo; Lin, Dayong; Wu, Fengbo; Guo, Li; He, Gu; Ouyang, Liang; Song, Xiangrong; Huang, Wei; Li, Xiang

    2014-09-29

    In the current study, the lipid-shell and polymer-core hybrid nanoparticles (lpNPs) modified by Arg-Gly-Asp(RGD) peptide, loaded with curcumin (Cur), were developed by emulsification-solvent volatilization method. The RGD-modified hybrid nanoparticles (RGD-lpNPs) could overcome the poor water solubility of Cur to meet the requirement of intravenous administration and tumor active targeting. The obtained optimal RGD-lpNPs, composed of PLGA (poly(lactic-co-glycolic acid))-mPEG (methoxyl poly(ethylene- glycol)), RGD-polyethylene glycol (PEG)-cholesterol (Chol) copolymers and lipids, had good entrapment efficiency, submicron size and negatively neutral surface charge. The core-shell structure of RGD-lpNPs was verified by TEM. Cytotoxicity analysis demonstrated that the RGD-lpNPs encapsulated Cur retained potent anti-tumor effects. Flow cytometry analysis revealed the cellular uptake of Cur encapsulated in the RGD-lpNPs was increased for human umbilical vein endothelial cells (HUVEC). Furthermore, Cur loaded RGD-lpNPs were more effective in inhibiting tumor growth in a subcutaneous B16 melanoma tumor model. The results of immunofluorescent and immunohistochemical studies by Cur loaded RGD-lpNPs therapies indicated that more apoptotic cells, fewer microvessels, and fewer proliferation-positive cells were observed. In conclusion, RGD-lpNPs encapsulating Cur were developed with enhanced anti-tumor activity in melanoma, and Cur loaded RGD-lpNPs represent an excellent tumor targeted formulation of Cur which might be an attractive candidate for cancer therapy.

  18. Radiolabelled of c-DOTA-RGD and c-DOTA-RGDf with {sup 177}Lu and evaluation in vitro and in vivo stability; Radiomarcado del peptido c-DOTA-RGD y c-DOTA-RGDf con {sup 177}Lu y evaluacion de su estabilidad in vitro e in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Vilchis J, A.

    2010-07-01

    Integrin {alpha}v{beta}3 has a critical role in tumor angio genesis and metastasis. Radiolabelled peptides based on the Arg-Gly-Asp (RGD) sequence have been reported as radiopharmaceuticals with high affinity and selectivity for the {alpha}v{beta}3 integrin. The aim of this study was to label c-DOTA-RGD and c-DOTA-RGDf peptides with {sup 177}Lu and to evaluate their in vitro and in vivo stability as potential specific therapeutic radiopharmaceuticals. Labelled was carried out by direct reaction of {sup 177}LuCl{sub 3} with c-DOTA-RGD peptides in 1 M acetate buffer ph 5.5 at 90{sup o} C for 30 min. Radiochemical purity and stability studies were realized by reversed phase HPLC and I TLC-Sg analyses in human serum and saline solution. Biological recognition was performed using MCF7 tumor cells (positive {alpha}v{beta}3) and in athymic mice with induced MCF7 tumors. Molecular mechanics and quantum mechanics calculations were performed to explain experimental results associated with the molecular recognition. {sup 177}Lu-DOTA-RGD and {sup 177}Lu-DOTA-RGDf were obtained with radiochemical purities > 95%, showing adequate in vitro and in vivo stability and specific binding to {open_square}{sub v}{open_square}{sub 3} receptors. (Author)

  19. Radiolabelled of c-DOTA-RGD and c-DOTA-RGDf with 177Lu and evaluation in vitro and in vivo stability

    International Nuclear Information System (INIS)

    Vilchis J, A.

    2010-01-01

    Integrin αvβ3 has a critical role in tumor angio genesis and metastasis. Radiolabelled peptides based on the Arg-Gly-Asp (RGD) sequence have been reported as radiopharmaceuticals with high affinity and selectivity for the αvβ3 integrin. The aim of this study was to label c-DOTA-RGD and c-DOTA-RGDf peptides with 177 Lu and to evaluate their in vitro and in vivo stability as potential specific therapeutic radiopharmaceuticals. Labelled was carried out by direct reaction of 177 LuCl 3 with c-DOTA-RGD peptides in 1 M acetate buffer ph 5.5 at 90 o C for 30 min. Radiochemical purity and stability studies were realized by reversed phase HPLC and I TLC-Sg analyses in human serum and saline solution. Biological recognition was performed using MCF7 tumor cells (positive αvβ3) and in athymic mice with induced MCF7 tumors. Molecular mechanics and quantum mechanics calculations were performed to explain experimental results associated with the molecular recognition. 177 Lu-DOTA-RGD and 177 Lu-DOTA-RGDf were obtained with radiochemical purities > 95%, showing adequate in vitro and in vivo stability and specific binding to □ v □ 3 receptors. (Author)

  20. 99mTc-Labeled Cyclic RGD Peptides for Noninvasive Monitoring of Tumor Integrin αvβ3 Expression

    Directory of Open Access Journals (Sweden)

    Yang Zhou

    2011-09-01

    Full Text Available This report describes the biologic evaluations of [99mTc(HYNIC-3P-RGD2(tricine(TPPTS] (99mTc-3P-RGD2: 6-hydrazinonicotinyl; 3P-RGD2 = PEG4-E[PEG4-c(RGDfK]2; PEG4 = 15-amino-4,7,10,13-tetraoxapentadecanoic acid; and TPPTS = trisodium triphenylpho-sphine-3,3′,3“-trisulfonate, [99mTc(HYNIC-3G-RGD2(tricine(TPPTS] (99mTc-3G-RGD2: 3G-RGD2 = G3-E[G3-c(RGDfK]2 and G3 = Gly-Gly-Gly, and 99mTcO(MAG2−3G-RGD2 (MAG2 = mercaptoacetylglycylglycyl as radiotracers for noninvasive imaging of tumor integrin αvβ3 expression in five xenografted tumor-bearing models. Biodistribution and imaging studies were performed in athymic nude mice bearing U87MG, MDA-MB-435, A549, HT29, or PC-3 tumor xenografts. Immunochemistry was performed using the cultured primary tumor cells and xenografted tumor tissues. It was found that the radiotracer tumor uptake followed the trend U87MG > MDA-MB-435 ≈ HT29 ≈ A549 > PC-3. The total integrin β3 expression levels followed the general trend: U87MG > MDA-MB-435 ≈ A549~HT29 > PC-3. There is a linear relationship between the radiotracer injected dose per gram tumor uptake and the total integrin β3 expression levels. On the basis of these, it was concluded that radiotracer tumor uptake is contributed by integrin αVβ3 expressed on tumor cells and activated endothelial cells of the tumor neovasculature. 99mTc-3P-RGD2 has the capability to monitor integrin αvβ3 expression in a noninvasive fashion.

  1. Intestinal anti-inflammatory effects of RGD-functionalized silk fibroin nanoparticles in trinitrobenzenesulfonic acid-induced experimental colitis in rats

    Directory of Open Access Journals (Sweden)

    Rodriguez-Nogales A

    2016-11-01

    Full Text Available Alba Rodriguez-Nogales,1 Francesca Algieri,1 Laura De Matteis,2 A. Abel Lozano-Perez,3 Jose Garrido-Mesa,1 Teresa Vezza,1 J M. de la Fuente,2 Jose Luis Cenis,3 Julio Gálvez,1,* Maria Elena Rodriguez-Cabezas1,* 1CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research, University of Granada, Granada, 2Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Zaragoza, 3Department of Biotechnology, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, Murcia, Spain *These authors contributed equally to this work Background: Current treatment of inflammatory bowel disease is based on the use of immunosuppressants or anti-inflammatory drugs, which are characterized by important side effects that can limit their use. Previous research has been performed by administering these drugs as nanoparticles that target the ulcerated intestinal regions and increase their bioavailability. It has been reported that silk fibroin can act as a drug carrier and shows anti-inflammatory properties. Purpose: This study was designed to enhance the interaction of the silk fibroin nanoparticles (SFNs with the injured intestinal tissue by functionalizing them with the peptide motif RGD (arginine–glycine–aspartic acid and to evaluate the intestinal anti-inflammatory properties of these RGD-functionalized silk fibroin nanoparticles (RGD-SFNs in the trinitrobenzenesulfonic acid (TNBS model of rat colitis. Materials and methods: SFNs were prepared by nanoprecipitation in methanol, and the linear RGD peptide was linked to SFNs using glutaraldehyde as the crosslinker. The SFNs (1 mg/rat and RGD-SFNs (1 mg/rat were administered intrarectally to TNBS-induced colitic rats for 7 days. Results: The SFN treatments ameliorated the colonic damage, reduced neutrophil infiltration, and improved the compromised oxidative status of the colon. However, only the rats treated with RGD-SFNs showed a significant reduction in the

  2. Development of a strategy to functionalize a dextrin-based hydrogel for animal cell cultures using a starch-binding module fused to RGD sequence

    Directory of Open Access Journals (Sweden)

    Gama Miguel

    2008-10-01

    Full Text Available Abstract Background Several approaches can be used to functionalize biomaterials, such as hydrogels, for biomedical applications. One of the molecules often used to improve cells adhesion is the peptide Arg-Gly-Asp (RGD. The RGD sequence, present in several proteins from the extra-cellular matrix (ECM, is a ligand for integrin-mediated cell adhesion; this sequence was recognized as a major functional group responsible for cellular adhesion. In this work a bi-functional recombinant protein, containing a starch binding module (SBM and RGD sequence was used to functionalize a dextrin-based hydrogel. The SBM, which belongs to an α-amylase from Bacillus sp. TS-23, has starch (and dextrin, depolymerized starch affinity, acting as a binding molecule to adsorb the RGD sequence to the hydrogel surface. Results The recombinant proteins SBM and RGD-SBM were cloned, expressed, purified and tested in in vitro assays. The evaluation of cell attachment, spreading and proliferation on the dextrin-based hydrogel surface activated with recombinant proteins were performed using mouse embryo fibroblasts 3T3. A polystyrene cell culture plate was used as control. The results showed that the RGD-SBM recombinant protein improved, by more than 30%, the adhesion of fibroblasts to dextrin-based hydrogel. In fact, cell spreading on the hydrogel surface was observed only in the presence of the RGD-SBM. Conclusion The fusion protein RGD-SBM provides an efficient way to functionalize the dextrin-based hydrogel. Many proteins in nature that hold a RGD sequence are not cell adhesive, probably due to the conformation/accessibility of the peptide. We therefore emphasise the successful expression of a bi-functional protein with potential for different applications.

  3. 18F-Fluoroglucosylation of peptides, exemplified on cyclo(RGDfK)

    International Nuclear Information System (INIS)

    Hultsch, Christina; Schottelius, Margret; Auernheimer, Joerg; Alke, Andrea; Wester, Hans-Juergen

    2009-01-01

    Oxime formation between an aminooxy-functionalized peptide and an 18 F-labelled aldehyde has recently been introduced as a powerful method for the rapid one-step chemoselective synthesis of radiofluorinated peptides. Here, the potential of using routinely produced and thus readily available [ 18 F]fluorodeoxyglucose ([ 18 F](FDG)) as the aldehydic prosthetic group was investigated using an aminooxyacetyl-conjugated cyclic RGD peptide (cyclo(RGDfK)(Aoa-Boc)) as a model peptide. The use of [ 18 F]FDG from routine production ([ 18 F]FDGTUM) containing an excess of d-glucose did not allow the radiosynthesis of [ 18 F]FDG-RGD in activities >37 MBq in reasonable yield, rendering the direct use of clinical grade [ 18 F]FDG for the routine clinical synthesis of 18 F-labelled peptides impossible. Using no-carrier-added (n.c.a.) [ 18 F]FDG obtained via HPLC separation of [ 18 F]FDGTUM from excess glucose, however, afforded [ 18 F]FDG-RGD in yields of 56-93% (decay corrected) and activities up to 37 MBq. Suitable reaction conditions were 20 min at 120 C and pH 2.5, and a peptide concentration of 5 mM. In a preliminary in vivo biodistribution study in M21 melanoma-bearing nude mice, [ 18 F]FDG-RGD showed increased tumour accumulation compared to the ''gold standard'' [ 18 F]galacto-RGD (2.18 vs 1.49 %iD/g, respectively, at 120 min after injection), but also slightly increased uptake in non-target organs, leading to comparable tumour/organ ratios for both compounds.??These data demonstrate that chemoselective 18 F-labelling of aminooxy-functionalized peptides using n.c.a. [ 18 F]FDG represents a radiofluorination/glycosylation strategy that allows preparation of 18 F-labelled peptides in high yield with suitable pharmacokinetics. As soon as the necessary n.c.a. preparation of [ 18 F]FDG prior to reaction with the Aoa-peptide can be implemented in a fully automated [ 18 F]FDG-synthesis, [ 18 F]fluoroglucosylation of peptides may represent a promising alternative to currently

  4. (18)F-Fluoroglucosylation of peptides, exemplified on cyclo(RGDfK).

    Science.gov (United States)

    Hultsch, Christina; Schottelius, Margret; Auernheimer, Jörg; Alke, Andrea; Wester, Hans-Jürgen

    2009-09-01

    Oxime formation between an aminooxy-functionalized peptide and an (18)F-labelled aldehyde has recently been introduced as a powerful method for the rapid one-step chemoselective synthesis of radiofluorinated peptides. Here, the potential of using routinely produced and thus readily available [(18)F]fluorodeoxyglucose ([(18)F]FDG) as the aldehydic prosthetic group was investigated using an aminooxyacetyl-conjugated cyclic RGD peptide (cyclo(RGDfK(Aoa-(Boc)) as a model peptide. The use of [(18)F]FDG from routine production ([(18)F]FDGTUM) containing an excess of D: -glucose did not allow the radiosynthesis of [(18)F]FDG-RGD in activities >37 MBq in reasonable yield, rendering the direct use of clinical grade [(18)F]FDG for the routine clinical synthesis of (18)F-labelled peptides impossible. Using no-carrier-added (n.c.a.) [(18)F]FDG obtained via HPLC separation of [(18)F]FDGTUM from excess glucose, however, afforded [(18)F]FDG-RGD in yields of 56-93% (decay corrected) and activities up to 37 MBq. Suitable reaction conditions were 20 min at 120 degrees C and pH 2.5, and a peptide concentration of 5 mM. In a preliminary in vivo biodistribution study in M21 melanoma-bearing nude mice, [(18)F]FDG-RGD showed increased tumour accumulation compared to the "gold standard" [(18)F]galacto-RGD (2.18 vs 1.49 %iD/g, respectively, at 120 min after injection), but also slightly increased uptake in non-target organs, leading to comparable tumour/organ ratios for both compounds. These data demonstrate that chemoselective (18)F-labelling of aminooxy-functionalized peptides using n.c.a. [(18)F]FDG represents a radiofluorination/glycosylation strategy that allows preparation of (18)F-labelled peptides in high yield with suitable pharmacokinetics. As soon as the necessary n.c.a. preparation of [(18)F]FDG prior to reaction with the Aoa-peptide can be implemented in a fully automated [(18)F]FDG-synthesis, [(18)F]fluoroglucosylation of peptides may represent a promising alternative to

  5. Pokemon siRNA Delivery Mediated by RGD-Modified HBV Core Protein Suppressed the Growth of Hepatocellular Carcinoma.

    Science.gov (United States)

    Kong, Jing; Liu, Xiaoping; Jia, Jianbo; Wu, Jinsheng; Wu, Ning; Chen, Jun; Fang, Fang

    2015-10-01

    Hepatocellular carcinoma (HCC) is a deadly human malignant tumor that is among the most common cancers in the world, especially in Asia. Hepatitis B virus (HBV) infection has been well established as a high risk factor for hepatic malignance. Studies have shown that Pokemon is a master oncogene for HCC growth, suggesting it as an ideal therapeutic target. However, efficient delivery system is still lacking for Pokemon targeting treatment. In this study, we used core proteins of HBV, which is modified with RGD peptides, to construct a biomimetic vector for the delivery of Pokemon siRNAs (namely, RGD-HBc-Pokemon siRNA). Quantitative PCR and Western blot assays revealed that RGD-HBc-Pokemon siRNA possessed the highest efficiency of Pokemon suppression in HCC cells. In vitro experiments further indicated that RGD-HBc-Pokemon-siRNA exerted a higher tumor suppressor activity on HCC cell lines, evidenced by reduced proliferation and attenuated invasiveness, than Pokemon-siRNA or RGD-HBc alone. Finally, animal studies demonstrated that RGD-HBc-Pokemon siRNA suppressed the growth of HCC xenografts in mice by a greater extent than Pokemon-siRNA or RGD-HBc alone. Based on the above results, Pokemon siRNA delivery mediated by RGD-modified HBV core protein was shown to be an effective strategy of HCC gene therapy.

  6. Novel tumor-targeting, self-assembling peptide nanofiber as a carrier for effective curcumin delivery

    Directory of Open Access Journals (Sweden)

    Liu J

    2013-12-01

    Full Text Available Jianfeng Liu, Jinjian Liu, Hongyan Xu, Yumin Zhang, Liping Chu, Qingfen Liu, Naling Song, Cuihong YangTianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, People's Republic of ChinaAbstract: The poor aqueous solubility and low bioavailability of curcumin restrict its clinical application for cancer treatment. In this study, a novel tumor-targeting nanofiber carrier was developed to improve the solubility and tumor-targeting ability of curcumin using a self-assembled Nap-GFFYG-RGD peptide. The morphologies of the peptide nanofiber and the curcumin-encapsulated nanofiber were visualized by transmission electron microscopy. The tumor-targeting activity of the curcumin-encapsulated Nap-GFFYG-RGD peptide nanofiber (f-RGD-Cur was studied in vitro and in vivo, using Nap-GFFYG-RGE peptide nanofiber (f-RGE-Cur as the control. Curcumin was encapsulated into the peptide nanofiber, which had a diameter of approximately 10–20 nm. Curcumin showed sustained-release behavior from the nanofibers in vitro. f-RGD-Cur showed much higher cellular uptake in αvβ3 integrin-positive HepG2 liver carcinoma cells than did non-targeted f-RGE-Cur, thereby leading to significantly higher cytotoxicity. Ex vivo studies further demonstrated that curcumin could accumulate markedly in mouse tumors after administration of f-RGD-Cur via the tail vein. These results indicate that Nap-GFFYG-RGD peptide self-assembled nanofibers are a promising hydrophobic drug delivery system for targeted treatment of cancer.Keywords: nanofiber, tumor-targeting, self-assembling, curcumin, drug delivery

  7. Molecular nuclear imaging of tumoral angio genesis using a rgd-containing tracer, Raft-RGD, targeted at the neo vessel-specific integrin αvβ3

    International Nuclear Information System (INIS)

    Sancey, L.

    2006-06-01

    Tumoral neo-angio genesis targeting is currently a major field of research for the diagnostic and treatment of solid tumors. Endothelial cells from neo vessels over express several specific markers such as the α v β 3 integrin, which binds RGD (-Arg-Gly-Asp-)- containing peptides. We evaluated the potential of a novel radiotracer - RAFT-RGD - for the molecular nuclear imaging of neo vessels. In vitro, the coupling of 4 c(RGDfK) to the RAFT platform resulted in an increased cellular uptake of the tracer by α v β 3 positive cells when compared to c(RGDfK). Furthermore, RAFTRGD has a higher affinity than c(RGDfK) and similar properties for angio genesis inhibition. In vivo, both α v β 3 positive and negative tumors were visible by non invasive whole body planar and tomographic imaging from 30 min to 24 h post-injection, using a gamma camera dedicated to small animal imaging. Despite a lack of significant contrast improvement compare with c(RGDfK), RAFT-RGD could represent a promising tracer for tumoral angio genesis since it could provide invaluable information about tumor development and treatment efficacy in Nuclear Medicine departments. Furthermore, thanks to its chemical structure, RAFT-RGD can be labelled with a variety of radioisotopes including γ and β - emitters, allowing interesting therapeutical applications such as internal targeted radiotherapy. (author)

  8. Preparation and biological study of 99Tcm(N) (PNP6) (Cyc-RGD) for integrin αvβ3-positive tumor imaging

    International Nuclear Information System (INIS)

    Chen Baojun; Hu Ji; Liang Jixin; Li Hongyu; Luo Lianzhe; Shen Langtao; Luo Zhifu; Chen Yang

    2007-01-01

    The Cys-RGD peptide is labelled with 99 Tc m -nitrido core combined with PNP6 lig- and (PNP6=bis (diethoxypropylphosphino ethyl) ethoxy ethylamine) to investigate the possibility of radiolabelled RGD peptides for tumor α v β 3 integrin receptor scintigraphy. The radiochemical purity is measured with HPLC, the in vitro stability is investigated at room temperature and at 37 degree C incubated in the cystein and serum solution. Biodistribution studies and gamma camera imaging are performed in normal mice and nude mice bearing FWK-1 pancreatic tumor xenografts. More than 92% radiolabelling yield is achieved under optimized condition. The high in vitro stability is found for 99 Tc m (N) (PNP6) (Cys-RGD). In vivo biodistribution studies indicate the radiolabelled peptide is cleared rapidly from blood and mainly excreted via urinary system. Tumor uptake is 2.92 ± 0.71%/g at 1 h after injection. The uptake ratios of tumor to blood and tumor to muscle (T/NT) are 11.0 and 3. 1 at 4 h after injection, respectively. Scintigraphic imaging allows contrasting visualisation of α v β 3 -expressed tumors at 1 h after injection. The results suggest 99 Tc m (N) (PNP6) (Cys- RGD) may be the potential agent for α v β 3 -positive tumor imaging. (authors)

  9. RGD-conjugated gold nanorods induce radiosensitization in melanoma cancer cells by downregulating αvβ3 expression

    Directory of Open Access Journals (Sweden)

    Pang B

    2012-02-01

    Full Text Available Wencai Xu1, Teng Luo2, Ping Li1, Chuanqing Zhou2, Daxiang Cui3, Bo Pang4, Qiushi Ren4, Shen Fu11Department of Radiation Oncology, Shanghai Sixth People's Hospital, 2School of Biomedical Engineering, and 3National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, 4Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, People's Republic of ChinaBackground: Melanoma is known to be radioresistant and traditional treatments have been intractable. Therefore, novel approaches are required to improve the therapeutic efficacy of melanoma treatment. In our study, gold nanorods conjugated with Arg-Gly-Asp peptides (RGD-GNRs were used as a sensitizer to enhance the response of melanoma cells to 6 mV radiation.Methods and materials: A375 melanoma cells were treated by gold nanorods or RGD-GNRs with or without irradiation. The antiproliferative impact of the treatments was measured by MTT assay. Radiosensitizing effects were determined by colony formation assay. Apoptosis and cell cycle data were measured by flow cytometry. Integrin αvβ3expression was also investigated by flow cytometry.Results: Addition of RGD-GNRs enhanced the radiosensitivity of A375 cells with a dose-modifying factor of 1.35, and enhanced radiation-induced apoptosis. DNA flow cytometric analysis indicated that RGD-GNRs plus irradiation induced significant G2/M phase arrest in A375 cells. Both spontaneous and radiation-induced expressions of integrin αvβ3 were downregulated by RGD-GNRs.Conclusion: Our study indicated that RGD-GNRs could sensitize melanoma A375 cells to irradiation. It was hypothesized that this was mainly through downregulation of radiation-induced αvβ3, in addition to induction of a higher proportion of cells within the G2/M phase. The combination of RGD-GNRs and

  10. Targeting nanoparticles to M cells with non-peptidic ligands for oral vaccination.

    Science.gov (United States)

    Fievez, Virginie; Plapied, Laurence; des Rieux, Anne; Pourcelle, Vincent; Freichels, Hélène; Wascotte, Valentine; Vanderhaeghen, Marie-Lyse; Jerôme, Christine; Vanderplasschen, Alain; Marchand-Brynaert, Jacqueline; Schneider, Yves-Jacques; Préat, Véronique

    2009-09-01

    The presence of RGD on nanoparticles allows the targeting of beta1 integrins at the apical surface of human M cells and the enhancement of an immune response after oral immunization. To check the hypothesis that non-peptidic ligands targeting intestinal M cells or APCs would be more efficient for oral immunization than RGD, novel non-peptidic and peptidic analogs (RGD peptidomimitic (RGDp), LDV derivative (LDVd) and LDV peptidomimetic (LDVp)) as well as mannose were grafted on the PEG chain of PCL-PEG and incorporated in PLGA-based nanoparticles. RGD and RGDp significantly increased the transport of nanoparticles across an in vitro model of human M cells as compared to enterocytes. RGD, LDVp, LDVd and mannose enhanced nanoparticle uptake by macrophages in vitro. The intraduodenal immunization with RGDp-, LDVd- or mannose-labeled nanoparticles elicited a higher production of IgG antibodies than the intramuscular injection of free ovalbumin or intraduodenal administration of either non-targeted or RGD-nanoparticles. Targeted formulations were also able to induce a cellular immune response. In conclusion, the in vitro transport of nanoparticles, uptake by macrophages and the immune response were positively influenced by the presence of ligands at the surface of nanoparticles. These targeted-nanoparticles could thus represent a promising delivery system for oral immunization.

  11. Density-tunable conjugation of cyclic RGD ligands with polyion complex vesicles for the neovascular imaging of orthotopic glioblastomas

    International Nuclear Information System (INIS)

    Kawamura, Wataru; Nomoto, Takahiro; Sueyoshi, Daiki; Kataoka, Kazunori; Miura, Yutaka; Toh, Kazuko; Yamada, Naoki; Matsumoto, Yu; Liu, Xueying; Kokuryo, Daisuke; Aoki, Ichio; Saga, Tsuneo; Kano, Mitsunobu R; Nishiyama, Nobuhiro; Kishimura, Akihiro

    2015-01-01

    Introduction of ligands into 100 nm scaled hollow capsules has great potential for diagnostic and therapeutic applications in drug delivery systems. Polyethylene glycol-conjugated (PEGylated) polyion complex vesicles (PICsomes) are promising hollow nano-capsules that can survive for long periods in the blood circulation and can be used to deliver water-soluble macromolecules to target tissues. In this study, cyclic RGD (cRGD) peptide, which is specifically recognized by α V β 3 and α v β 5 integrins that are expressed at high levels in the neovascular system, was conjugated onto the distal end of PEG strands on PICsomes for active neovascular targeting. Density-tunable cRGD-conjugation was achieved using PICsomes with definite fraction of end-functionalized PEG, to substitute 20, 40, and 100% of PEG distal end of the PICsomes to cRGD moieties. Compared with control-PICsomes without cRGD, cRGD-PICsomes exhibited increased uptake into human umbilical vein endothelial cells. Intravital confocal laser scanning microscopy revealed that the 40%-cRGD-PICsomes accumulated mainly in the tumor neovasculature and remained in the perivascular region even after 24 h. Furthermore, we prepared superparamagnetic iron oxide (SPIO)-loaded cRGD-PICsomes for magnetic resonance imaging (MRI) and successfully visualized the neovasculature in an orthotopic glioblastoma model, which suggests that SPIO-loaded cRGD-PICsomes might be useful as a MRI contrast reagent for imaging of the tumor microenvironment, including neovascular regions that overexpress α V β 3 integrins. (paper)

  12. RGD-modified poly(D,L-lactic acid nanoparticles enhance tumor targeting of oridonin

    Directory of Open Access Journals (Sweden)

    Xu J

    2012-01-01

    Full Text Available Jie Xu, Ji-Hui Zhao, Ying Liu, Nian-Ping Feng, Yong-Tai ZhangSchool of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of ChinaObjective: The purpose of this study was to develop an active targeting strategy to improve the therapeutic antitumor efficacy of oridonin (ORI, the main active ingredient in the medicinal herb Rabdosia rubescens.Methods: A modified spontaneous emulsification solvent diffusion method was used to prepare the ORI-loaded atactic poly(D,L-lactic acid nanoparticles (ORI-PLA-NPs. Surface cross-linking with the peptide Arg-Gly-Asp (RGD further modified the ORI-PLA-NPs, generating ORI-PLA-RGD-NPs. The NPs were characterized and release experiments were performed in vitro. The pharmacokinetics, tissue distribution, and antitumor activity of the NPs were studied in mice bearing hepatocarcinoma 22 (H22-derived tumors.Results: The ORI-PLA-NPs and ORI-PLA-RGD-NPs were smooth, sphere-like, and relatively uniform in size. The RGD surface modification slightly increased the mean particle size (95.8 nm for ORI-PLA-NPs versus 105.2 nm for ORI-PLA-RGD-NPs and considerably altered the surface electrical property (-10.19 mV for ORI-PLA-NPs versus -21.95 mV for ORI-PLA-RGD-NPs, but it had no obvious influence on ORI loading (8.23% ± 0.35% for ORI-PLA-NPs versus 8.02% ± 0.38% for ORI-PLA-RGD-NPs, entrapment efficiency (28.86% ± 0.93% for ORI-PLA-NPs versus 28.24% ± 0.81% for ORI-PLA-RGD-NPs, or the release of ORI. The pharmacokinetic properties of free ORI were improved by encapsulation in NPs, as shown by increased area under the concentration-time curve (11.89 ± 0.35 µg·mL-1 · h for ORI solution versus 22.03 ± 0.01 µg · mL-1 · h for ORI-PLA-RGD-NPs and prolonged mean retention time (2.03 ± 0.09 hours for ORI solution versus 8.68 ± 0.66 hours for ORI-PLA-RGD-NPs. In the tissue distribution study, more ORI targeted tumor tissue in the mice treated with ORI-PLA-RGD-NPs than with ORI

  13. Reductive nanocomplex encapsulation of cRGD-siRNA conjugates for enhanced targeting to cancer cells

    Directory of Open Access Journals (Sweden)

    Zhou Z

    2017-10-01

    Full Text Available Zhaoxiu Zhou,* Shuang Liu,* Yanfen Zhang, Xiantao Yang, Yuan Ma, Zhu Guan, Yun Wu, Lihe Zhang, Zhenjun Yang State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China *These authors contributed equally to this work Abstract: In this study, through covalent conjugation and lipid material entrapment, a combined modification strategy was established for effective delivery of small interfering RNA (siRNA. Single strands of siRNA targeting to BRAFV600E gene (siMB3 conjugated with cRGD peptide at 3'-terminus or 5'-terminus via cleavable disulfide bond was synthesized and then annealed with corresponding strands to obtain single and bis-cRGD-siRNA conjugates. A cationic lipid material (CLD developed by our laboratory was mixed with the conjugates to generate nanocomplexes; their uniformity and electrical property were revealed by particle size and zeta potential measurement. Compared with CLD/siBraf, CLD/cRGD-siBraf achieved higher cell uptake and more excellent tumor-targeting ability, especially 21 (sense-5′/antisense-3″-cRGD-congjugate nanocomplex. Moreover, they can regulate multiple pathways to varying degree and reduce acidification of endosome. Compared with the gene silencing of different conjugates, single or bis-cRGD-conjugated siRNA showed little differences except 22 (5/5 which cRGD was conjugated at 5'-terminus of antisense strand and sense strand. However bis-cRGD conjugate 21 nanocomplex exhibited better specific target gene silencing at multiple time points. Furthermore, the serum stabilities of the bis-cRGD conjugates were higher than those of the single-cRGD conjugates. In conclusion, all these data suggested that CLD/bis-conjugates, especially CLD/21, can be an effective system for delivery of siRNA to target BRAFV600E gene for therapy of melanoma. Keywords: cRGD-siRNA conjugates, cationic lipids, targeting, silencing, intracellular pathways

  14. Technetium-99m-labeled Arg-Gly-Asp-conjugated alpha-melanocyte stimulating hormone hybrid peptides for human melanoma imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jianquan; Guo Haixun [College of Pharmacy, University of New Mexico, Albuquerque, NM 87131 (United States); Miao Yubin, E-mail: ymiao@salud.unm.ed [College of Pharmacy, University of New Mexico, Albuquerque, NM 87131 (United States); Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131 (United States); Department of Dermatology, University of New Mexico, Albuquerque, NM 87131 (United States)

    2010-11-15

    Introduction: The purpose of this study was to examine whether {sup 99m}Tc-labeled Arg-Gly-Asp (RGD)-conjugated alpha-melanocyte stimulating hormone ({alpha}-MSH) hybrid peptide targeting both melanocortin-1 (MC1) and {alpha}{sub v{beta}3} integrin receptors was superior in melanoma targeting to {sup 99m}Tc-labeled {alpha}-MSH or RGD peptide targeting only the MC1 or {alpha}{sub v{beta}3} integrin receptor. Methods: RGD-Lys-(Arg{sup 11})CCMSH, RAD-Lys-(Arg{sup 11})CCMSH and RGD-Lys-(Arg{sup 11})CCMSHscramble were designed to target both MC1 and {alpha}{sub v{beta}3} integrin receptors, MC1 receptor only and {alpha}{sub v{beta}3} integrin receptor only, respectively. The MC1 or {alpha}{sub v{beta}3} integrin receptor binding affinities of three peptides were determined in M21 human melanoma cells. The melanoma targeting properties of {sup 99m}Tc-labeled RGD-Lys-(Arg{sup 11})CCMSH, RAD-Lys-(Arg{sup 11})CCMSH and RGD-Lys-(Arg{sup 11})CCMSHscramble were determined in M21 human melanoma-xenografted nude mice. Meanwhile, the melanoma uptake of {sup 99m}Tc-RGD-Lys-(Arg{sup 11})CCMSH was blocked with various non-radiolabeled peptides in M21 melanoma xenografts. Results: RGD-Lys-(Arg{sup 11})CCMSH displayed 2.0 and 403 nM binding affinities to both MC1 and {alpha}{sub v{beta}3} integrin receptors, whereas RAD-Lys-(Arg{sup 11})CCMSH or RGD-Lys-(Arg{sup 11})CCMSHscramble lost their {alpha}{sub v{beta}3} integrin receptor binding affinity by greater than 248-fold or MC1 receptor binding affinity by more than 100-fold, respectively. The melanoma uptake of {sup 99m}Tc-RGD-Lys-(Arg{sup 11})CCMSH was 2.49 and 2.24 times (P < .05) the melanoma uptakes of {sup 99m}Tc-RAD-Lys-(Arg{sup 11})CCMSH and {sup 99m}Tc-RGD-Lys-(Arg{sup 11})CCMSHscramble at 2 h post-injection, respectively. Either RGD or (Arg{sup 11})CCMSH peptide co-injection could block 42% and 57% of the tumor uptake of {sup 99m}Tc-RGD-Lys-(Arg{sup 11})CCMSH, whereas the coinjection of RGD+(Arg{sup 11})CCMSH peptide mixture

  15. Evaluation of a novel Arg-Gly-Asp-conjugated α-melanocyte stimulating hormone hybrid peptide for potential melanoma therapy.

    Science.gov (United States)

    Yang, Jianquan; Guo, Haixun; Gallazzi, Fabio; Berwick, Marianne; Padilla, R Steven; Miao, Yubin

    2009-08-19

    The purpose of this study was to determine whether Arg-Gly-Asp (RGD)-conjugated α-melanocyte stimulating hormone (α-MSH) hybrid peptide could be employed to target melanocortin-1 (MC1) receptor for potential melanoma therapy. The RGD motif {cyclic(Arg-Gly-Asp-DTyr-Asp)} was coupled to [Cys(3,4,10), DPhe(7), Arg(11)]α-MSH(3-13) {(Arg(11))CCMSH} to generate RGD-Lys-(Arg(11))CCMSH hybrid peptide. The MC1 receptor binding affinity of RGD-Lys-(Arg(11))CCMSH was determined in B16/F1 melanoma cells. The internalization and efflux, melanoma targeting and pharmacokinetic properties and single photon emission computed tomography/CT (SPECT/CT) imaging of (99m)Tc-RGD-Lys-(Arg(11))CCMSH were determined in B16/F1 melanoma cells and melanoma-bearing C57 mice. Clonogenic cytotoxic effect of RGD-Lys-(Arg(11))CCMSH was examined in B16/F1 melanoma cells. RGD-Lys-(Arg(11))CCMSH displayed 2.1 nM MC1 receptor binding affinity. (99m)Tc-RGD-Lys-(Arg(11))CCMSH showed rapid internalization and extended retention in B16/F1 cells. The cellular uptake of (99m)Tc-RGD-Lys-(Arg(11))CCMSH was MC1 receptor-mediated. (99m)Tc-RGD-Lys-(Arg(11))CCMSH exhibited high tumor uptake (14.83 ± 2.94% ID/g 2 h postinjection) and prolonged tumor retention (7.59 ± 2.04% ID/g 24 h postinjection) in B16/F1 melanoma-bearing mice. Nontarget organ uptakes were generally low except for the kidneys. Whole-body clearance of (99m)Tc-RGD-Lys-(Arg(11))CCMSH was rapid, with approximately 62% of the injected radioactivity cleared through the urinary system by 2 h postinjection. Flank melanoma tumors were clearly imaged by small animal SPECT/CT using (99m)Tc-RGD-Lys-(Arg(11))CCMSH as an imaging probe 2 h postinjection. Single treatment (3 h incubation) with 100 nM of RGD-Lys-(Arg(11))CCMSH significantly (p < 0.05) decreased the clonogenic survival of B16/F1 cells by 65% compared to the untreated control cells. Favorable melanoma targeting property of (99m)Tc-RGD-Lys-(Arg(11))CCMSH and remarkable cytotoxic effect of RGD

  16. rLj-RGD3, a Novel Recombinant Toxin Protein from Lampetra japonica, Protects against Cerebral Reperfusion Injury Following Middle Cerebral Artery Occlusion Involving the Integrin-PI3K/Akt Pathway in Rats.

    Directory of Open Access Journals (Sweden)

    Qian Lu

    Full Text Available The RGD-toxin protein Lj-RGD3 is a naturally occurring 118 amino acid peptide that can be obtained from the salivary gland of the Lampetra japonica fish. This unique peptide contains 3 RGD (Arg-Gly-Asp motifs in its primary structure. Lj-RGD3 is available in recombinant form (rLj-RGD3 and can be produced in large quantities using DNA recombination techniques. The pharmacology of the three RGD motif-containing peptides has not been studied. This study investigated the protective effects of rLj-RGD3, a novel polypeptide, against ischemia/reperfusion-induced damage to the brain caused by middle cerebral artery occlusion (MCAO in a rat stroke model. We also explored the mechanism by which rLj-RGD3 acts by measuring protein and mRNA expression levels, with an emphasis on the FAK and integrin-PI3K/Akt anti-apoptosis pathways.rLj-RGD3 was obtained from the buccal secretions of Lampetra japonica using gene recombination technology. Sprague Dawley (SD rats were randomly divided into the following seven groups: a sham group; a vehicle-treated (VT group; 100.0 μg·kg-1, 50.0 μg·kg-1 and 25.0 μg·kg-1 dose rLj-RGD3 groups; and two positive controls, including 1.5 mg·kg-1 Edaravone (ED and 100.0 μg·kg-1 Eptifibatide (EP. MCAO was induced using a model consisting of 2 h of ischemia and 24 h of reperfusion. Behavioral changes were observed in the normal and operation groups after focal cerebral ischemia/reperfusion was applied. In addition, behavioral scores were evaluated at 4 and 24 h after reperfusion. Brain infarct volumes were determined based on 2,3,5-triphenyltetrazolium chloride (TTC staining. Pathological changes in brain tissues were observed using hematoxylin and eosin (H&E staining. Moreover, neuronal apoptosis was detected using terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL assays. We determined the expression levels of focal adhesion kinase (FAK, phosphatidyl inositol 3-kinase (PI3K, protein kinase B

  17. {sup 18}F-Fluoroglucosylation of peptides, exemplified on cyclo(RGDfK)

    Energy Technology Data Exchange (ETDEWEB)

    Hultsch, Christina; Schottelius, Margret; Auernheimer, Joerg; Alke, Andrea; Wester, Hans-Juergen [Technische Universitaet Muenchen, Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Muenchen (Germany)

    2009-09-15

    Oxime formation between an aminooxy-functionalized peptide and an {sup 18}F-labelled aldehyde has recently been introduced as a powerful method for the rapid one-step chemoselective synthesis of radiofluorinated peptides. Here, the potential of using routinely produced and thus readily available [{sup 18}F]fluorodeoxyglucose ([{sup 18}F](FDG)) as the aldehydic prosthetic group was investigated using an aminooxyacetyl-conjugated cyclic RGD peptide (cyclo(RGDfK)(Aoa-Boc)) as a model peptide. The use of [{sup 18}F]FDG from routine production ([{sup 18}F]FDGTUM) containing an excess of d-glucose did not allow the radiosynthesis of [{sup 18}F]FDG-RGD in activities >37 MBq in reasonable yield, rendering the direct use of clinical grade [{sup 18}F]FDG for the routine clinical synthesis of {sup 18}F-labelled peptides impossible. Using no-carrier-added (n.c.a.) [{sup 18}F]FDG obtained via HPLC separation of [{sup 18}F]FDGTUM from excess glucose, however, afforded [{sup 18}F]FDG-RGD in yields of 56-93% (decay corrected) and activities up to 37 MBq. Suitable reaction conditions were 20 min at 120 C and pH 2.5, and a peptide concentration of 5 mM. In a preliminary in vivo biodistribution study in M21 melanoma-bearing nude mice, [{sup 18}F]FDG-RGD showed increased tumour accumulation compared to the ''gold standard'' [{sup 18}F]galacto-RGD (2.18 vs 1.49 %iD/g, respectively, at 120 min after injection), but also slightly increased uptake in non-target organs, leading to comparable tumour/organ ratios for both compounds.??These data demonstrate that chemoselective {sup 18}F-labelling of aminooxy-functionalized peptides using n.c.a. [{sup 18}F]FDG represents a radiofluorination/glycosylation strategy that allows preparation of {sup 18}F-labelled peptides in high yield with suitable pharmacokinetics. As soon as the necessary n.c.a. preparation of [{sup 18}F]FDG prior to reaction with the Aoa-peptide can be implemented in a fully automated [{sup 18}F]FDG-synthesis, [{sup 18}F

  18. Peptide Based Radiopharmaceuticals: Specific Construct Approach

    Energy Technology Data Exchange (ETDEWEB)

    Som, P; Rhodes, B A; Sharma, S S

    1997-10-21

    The objective of this project was to develop receptor based peptides for diagnostic imaging and therapy. A series of peptides related to cell adhesion molecules (CAM) and immune regulation were designed for radiolabeling with 99mTc and evaluated in animal models as potential diagnostic imaging agents for various disease conditions such as thrombus (clot), acute kidney failure, and inflection/inflammation imaging. The peptides for this project were designed by the industrial partner, Palatin Technologies, (formerly Rhomed, Inc.) using various peptide design approaches including a newly developed rational computer assisted drug design (CADD) approach termed MIDAS (Metal ion Induced Distinctive Array of Structures). In this approach, the biological function domain and the 99mTc complexing domain are fused together so that structurally these domains are indistinguishable. This approach allows construction of conformationally rigid metallo-peptide molecules (similar to cyclic peptides) that are metabolically stable in-vivo. All the newly designed peptides were screened in various in vitro receptor binding and functional assays to identify a lead compound. The lead compounds were formulated in a one-step 99mTc labeling kit form which were studied by BNL for detailed in-vivo imaging using various animals models of human disease. Two main peptides usingMIDAS approach evolved and were investigated: RGD peptide for acute renal failure and an immunomodulatory peptide derived from tuftsin (RMT-1) for infection/inflammation imaging. Various RGD based metallopeptides were designed, synthesized and assayed for their efficacy in inhibiting ADP-induced human platelet aggregation. Most of these peptides displayed biological activity in the 1-100 µM range. Based on previous work by others, RGD-I and RGD-II were evaluated in animal models of acute renal failure. These earlier studies showed that after acute ischemic injury the renal cortex displays

  19. Molecular imaging of alpha v beta3 integrin expression in atherosclerotic plaques with a mimetic of RGD peptide grafted to Gd-DTPA.

    Science.gov (United States)

    Burtea, Carmen; Laurent, Sophie; Murariu, Oltea; Rattat, Dirk; Toubeau, Gérard; Verbruggen, Alfons; Vansthertem, David; Vander Elst, Luce; Muller, Robert N

    2008-04-01

    The integrin alpha v beta3 is highly expressed in atherosclerotic plaques by medial and intimal smooth muscle cells and by endothelial cells of angiogenic microvessels. In this study, we have assessed non-invasive molecular magnetic resonance imaging (MRI) of plaque-associated alpha v beta3 integrin expression on transgenic ApoE-/- mice with a low molecular weight peptidomimetic of Arg-Gly-Asp (mimRGD) grafted to gadolinium diethylenetriaminepentaacetate (Gd-DTPA-g-mimRGD). The analogous compound Eu-DTPA-g-mimRGD was employed for an in vivo competition experiment and to confirm the molecular targeting. The specific interaction of mimRGD conjugated to Gd-DTPA or to 99mTc-DTPA with alpha v beta3 integrin was furthermore confirmed on Jurkat T lymphocytes. The mimRGD was synthesized and conjugated to DTPA. DTPA-g-mimRGD was complexed with GdCl3.6H2O, EuCl3.6H2O, or with [99mTc(CO)3(H2O)3]+. MRI evaluation was performed on a 4.7 T Bruker imaging system. Blood pharmacokinetics of Gd-DTPA-g-mimRGD were assessed in Wistar rats and in c57bl/6j mice. The presence of angiogenic blood vessels and the expression of alpha v beta3 integrin were confirmed in aorta specimens by immunohistochemistry. Gd-DTPA-g-mimRGD produced a strong enhancement of the external structures of the aortic wall and of the more profound layers (possibly tunica media and intima). The aortic lumen seemed to be restrained and distorted. Pre-injection of Eu-DTPA-g-mimRGD diminished the Gd-DTPA-g-mimRGD binding to atherosclerotic plaque and confirmed the specific molecular targeting. A slower blood clearance was observed for Gd-DTPA-g-mimRGD, as indicated by a prolonged elimination half-life and a diminished total clearance. The new compound is potentially useful for the diagnosis of vulnerable atherosclerotic plaques and of other pathologies characterized by alpha v beta3 integrin expression, such as cancer and inflammation. The delayed blood clearance, the significant enhancement of the signal

  20. Fabrication and in vitro evaluation of the collagen/hyaluronic acid PEM coating crosslinked with functionalized RGD peptide on titanium.

    Science.gov (United States)

    Huang, Ying; Luo, Qiaojie; Li, Xiaodong; Zhang, Feng; Zhao, Shifang

    2012-02-01

    Surface modification of titanium (Ti) using biomolecules has attracted much attention recently. In this study, a new strategy has been employed to construct a stable and bioactive coating on Ti. To this end, a derivative of hyaluronic acid (HA), i.e. HA-GRGDSPC-(SH), was synthesized. The disulfide-crosslinked Arg-Gly-Asp (RGD)-containing collagen/hyaluronic acid polyelectrolyte membrane (PEM) coating was then fabricated on Ti through the alternate deposition of collagen and HA-GRGDSPC-(SH) with five assembly cycles and subsequent crosslinking via converting free sulphydryl groups into disulfide linkages (RGD-CHC-Ti group). The assembly processes for PEM coating and the physicochemical properties of the coating were carefully characterized. The stability of PEM coating in phosphate-buffered saline solution could be adjusted by the crosslinking degree, while its degradation behaviors in the presence of glutathione were glutathione concentration dependent. The adhesion and proliferation of MC3T3-E1 cells were significantly enhanced in the RGD-CHC-Ti group. Up-regulated bone specific genes, enhanced alkaline phosphatase activity and osteocalcin production, the increased areas of mineralization were also observed in the RGD-CHC-Ti group. These results indicate that the strategy employed herein may function as an effective way to construct stable, RGD-containing bioactive coatings on Ti. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Fetal muscle gene transfer is not enhanced by an RGD capsid modification to high-capacity adenoviral vectors.

    Science.gov (United States)

    Bilbao, R; Reay, D P; Hughes, T; Biermann, V; Volpers, C; Goldberg, L; Bergelson, J; Kochanek, S; Clemens, P R

    2003-10-01

    High levels of alpha(v) integrin expression by fetal muscle suggested that vector re-targeting to integrins could enhance adenoviral vector-mediated transduction, thereby increasing safety and efficacy of muscle gene transfer in utero. High-capacity adenoviral (HC-Ad) vectors modified by an Arg-Gly-Asp (RGD) peptide motif in the HI loop of the adenoviral fiber (RGD-HC-Ad) have demonstrated efficient gene transfer through binding to alpha(v) integrins. To test integrin targeting of HC-Ad vectors for fetal muscle gene transfer, we compared unmodified and RGD-modified HC-Ad vectors. In vivo, unmodified HC-Ad vector transduced fetal mouse muscle with four-fold higher efficiency compared to RGD-HC-Ad vector. Confirming that the difference was due to muscle cell autonomous factors and not mechanical barriers, transduction of primary myogenic cells isolated from murine fetal muscle in vitro demonstrated a three-fold better transduction by HC-Ad vector than by RGD-HC-Ad vector. We hypothesized that the high expression level of coxsackievirus and adenovirus receptor (CAR), demonstrated in fetal muscle cells both in vitro and in vivo, was the crucial variable influencing the relative transduction efficiencies of HC-Ad and RGD-HC-Ad vectors. To explore this further, we studied transduction by HC-Ad and RGD-HC-Ad vectors in paired cell lines that expressed alpha(v) integrins and differed only by the presence or absence of CAR expression. The results increase our understanding of factors that will be important for retargeting HC-Ad vectors to enhance gene transfer to fetal muscle.

  2. The antitumor activity of a doxorubicin loaded, iRGD-modified sterically-stabilized liposome on B16-F10 melanoma cells: in vitro and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Yu KF

    2013-07-01

    Full Text Available Ke-Fu Yu,1 Wei-Qiang Zhang,1 Li-Min Luo,1 Ping Song,1 Dan Li,1 Ruo Du,1 Wei Ren,1 Dan Huang,1 Wan-Liang Lu,1,2 Xuan Zhang,1 Qiang Zhang1,2 1Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China; 2State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China Abstract: Considering the fact that iRGD (tumor-homing peptide demonstrates tumor-targeting and tumor-penetrating activity, and that B16-F10 (murine melanoma cells overexpress both αv integrin receptor and neuropilin-1 (NRP-1, the purpose of this study was to prepare a novel doxorubicin (DOX-loaded, iRGD-modified, sterically-stabilized liposome (SSL (iRGD-SSL-DOX in order to evaluate its antitumor activity on B16-F10 melanoma cells in vitro and in vivo. The iRGD-SSL-DOX was prepared using a thin-film hydration method. The characteristics of iRGD-SSL-DOX were evaluated. The in vitro leakage of DOX from iRGD-SSL-DOX was tested. The in vitro tumor-targeting and tumor-penetrating characteristics of iRGD-modified liposomes on B16-F10 cells were investigated. The in vivo tumor-targeting and tumor-penetrating activities of iRGD-modified liposomes were performed in B16-F10 tumor-bearing nude mice. The antitumor effect of iRGD-SSL-DOX was evaluated in B16-F10 tumor-bearing C57BL/6 mice in vivo. The average particle size of the iRGD-SSL-DOX was found to be 91 nm with a polydispersity index (PDI of 0.16. The entrapment efficiency of iRGD-SSL-DOX was 98.36%. The leakage of DOX from iRGD-SSL-DOX at the 24-hour time point was only 7.5%. The results obtained from the in vitro flow cytometry and confocal microscopy, as well as in vivo biodistribution and confocal immunofluorescence microscopy experiments, indicate that the tumor-targeting and tumor-penetrating activity of the iRGD-modified SSL was higher than that of unmodified SSL. In vivo antitumor activity

  3. The anti-tumor effects of the recombinant toxin protein rLj-RGD3 from Lampetra japonica on pancreatic carcinoma Panc-1 cells in nude mice.

    Science.gov (United States)

    Wang, Yue; Zheng, Yuanyuan; Tu, Zuoyu; Dai, Yongguo; Xu, Hong; Lv, Li; Wang, Jihong

    2017-02-01

    Recombinant Lampetra japonica RGD peptide (rLj-RGD3) is a soluble toxin protein with three RGD (Arg-Gly-Asp) motifs and a molecular weight of 13.5kDa. The aim of this study was to investigate the effects and mechanisms of rLj-RGD3 on tumor growth and survival in pancreatic carcinoma Panc-1 cell-bearing mice. A Panc-1 human pancreatic carcinoma-bearing nude mouse model was successfully generated, and the animals were treated with different doses of rLj-RGD3 for 3 weeks. The volume and weight of the subcutaneous tumors, the survival of the nude mice, histopathological changes, the intratumoral MVD, the number of apoptotic Panc-1 cells, and apoptosis-related proteins and gene expressions were determined. rLj-RGD3 significantly decreased the tumor volumes and weights, and the maximum tumor volume and weight IR values were 53.2% (pPanc-1-bearing nude mice treated with rLj-RGD3 was increased by 56.3% (pPanc-1 cells in a nude mouse model, implying that rLj-RGD3 may serve as a potent clinical therapeutic agent for human pancreatic carcinoma. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Optimization of the production process of hybrid and multivalent formulation Bombesin/RGD for the opportune detection of breast cancer

    International Nuclear Information System (INIS)

    Robles M, M.

    2013-01-01

    The radiopharmaceuticals of third generation are used in nuclear medicine to obtain images of specific molecular targets, and they are unique in their capacity to detect in vivo specific biochemical sites as receptors that are over-expressed in diverse illness. In cancer cells several types of receptors are over-expressed, as the integrin s α(v)β(3) and α(v)β(5) that specifically recognize the sequence RGD (Arginine-Glycin-Ac. Aspartic) and gastrin-releasing peptide that recognizes specifically to the peptide Lys 3 -Bombesin. The integrin s α(v)β(3) and α(v)β(5) are involved in the tumor angio genesis processes and the gastrin-releasing peptide is over-expressed in breast and prostate cancer. The molecular recognition of the specific receptors is the basis to be utilized as targets of the radiopharmaceuticals 99m Tc-HYNIC-Bombesin and 99m Tc-HYNIC-RGD. In this work was developed a lyophilized pharmaceutical formulation effective, stable and safe for the simultaneous obtaining of the radiopharmaceuticals 99m Tc-HYNIC-Bombesin ( 99m Tc-EDDA/HYNIC-Lys 3 -Bombesin) and 99m Tc-HYNIC-RGD ( 99m Tc EDDA/HYNIC-E-[c(RGDfK)] 2 ). Later on the production process of the product HYNIC-Bombesin/RGD-Sn was optimized using a factorial design and the formulation was transferred to the production plant of radiopharmaceuticals of the Instituto Nacional de Investigaciones Nucleares (ININ). The optimized formulation is described in the following chart: HYNIC-[Lys 3 ]-Bombesin - 12.5 μg; HYNIC-E-c[RGDfK] 2 - 12.5 μg; Stannous chloride (SnCl 2 ) - 20 μg; Ethylenediamine diacetic acid (EDDA) - 10 mg; N-tris(hydroxymethyl)methyl glycin (Tricine) - 20 mg; Mannitol - 50 mg. The production process was validated and were carried out the stability studies under refrigeration conditions. (Author)

  5. Integrin specificity and enhanced cellular activities associated with surfaces presenting a recombinant fibronectin fragment compared to RGD supports.

    Science.gov (United States)

    Petrie, Timothy A; Capadona, Jeffrey R; Reyes, Catherine D; García, Andrés J

    2006-11-01

    Biomimetic strategies focusing on presenting short bioadhesive oligopeptides, including the arginine-glycine-aspartic acid (RGD) motif present in numerous adhesive proteins, on a non-fouling support have emerged as promising approaches to improve cellular activities and healing responses. Nevertheless, these bio-inspired strategies are limited by low activity of the oligopeptides compared to the native ligand due to the absence of complementary or modulatory domains. In the present analysis, we generated well-defined biointerfaces presenting RGD-based ligands of increasing complexity to directly compare their biological activities in terms of cell adhesion strength, integrin binding and signaling. Mixed self-assembled monolayers of alkanethiols on gold were optimized to engineer robust supports that present anchoring groups for ligand tethering within a non-fouling, protein adsorption-resistant background. Controlled bioadhesive interfaces were generated by tethering adhesive ligands via standard peptide chemistry. On a molar basis, biointerfaces functionalized with the FNIII7-10 recombinant fragment presenting the RGD and PHSRN adhesive motifs in the correct structural context exhibited significantly higher adhesion strength, FAK activation, and cell proliferation rate than supports presenting RGD ligand or RGD-PHSRN, an oligopeptide presenting these two sites separated by a polyglycine linker. Moreover, FNIII7-10-functionalized surfaces displayed specificity for alpha5beta1 integrin, while cell adhesion to supports presenting RGD or RGD-PHSRN was primarily mediated by alphavbeta3 integrin. These results are significant to the rational engineering of bioactive materials that convey integrin binding specificity for directed cellular and tissue responses in biomedical and biotechnological applications.

  6. RGD-conjugated silica-coated gold nanorods on the surface of carbon nanotubes for targeted photoacoustic imaging of gastric cancer

    Science.gov (United States)

    Wang, Can; Bao, Chenchen; Liang, Shujing; Fu, Hualin; Wang, Kan; Deng, Min; Liao, Qiande; Cui, Daxiang

    2014-05-01

    Herein, we reported for the first time that RGD-conjugated silica-coated gold nanorods on the surface of multiwalled carbon nanotubes were successfully used for targeted photoacoustic imaging of in vivo gastric cancer cells. A simple strategy was used to attach covalently silica-coated gold nanorods (sGNRs) onto the surface of multiwalled carbon nanotubes (MWNTs) to fabricate a hybrid nanostructure. The cross-linked reaction occurred through the combination of carboxyl groups on the MWNTs and the amino group on the surface of sGNRs modified with a silane coupling agent. RGD peptides were conjugated with the sGNR/MWNT nanostructure; resultant RGD-conjugated sGNR/MWNT probes were investigated for their influences on viability of MGC803 and GES-1 cells. The nude mice models loaded with gastric cancer cells were prepared, the RGD-conjugated sGNR/MWNT probes were injected into gastric cancer-bearing nude mice models via the tail vein, and the nude mice were observed by an optoacoustic imaging system. Results showed that RGD-conjugated sGNR/MWNT probes showed good water solubility and low cellular toxicity, could target in vivo gastric cancer cells, and obtained strong photoacoustic imaging in the nude model. RGD-conjugated sGNR/MWNT probes will own great potential in applications such as targeted photoacoustic imaging and photothermal therapy in the near future.

  7. Computational study of the RGD-peptide interactions with perovskite-type BFO-(1 1 1) membranes under aqueous conditions

    Science.gov (United States)

    Li, Hai-long; Bian, Liang; Hou, Wen-ping; Dong, Fa-Qin; Song, Mian-Xin; Zhang, Xiao-yan; Wang, Li-sheng

    2016-07-01

    We elucidated a number of facets regarding arginine-glycine-aspartate (RGD)-bismuth ferrite (BFO)-(1 1 1) membrane interactions and reactivity that have previously remained unexplored on a molecular level. Results demonstrate the intra-molecular interaction facilitates a ;horseshoe; structure of RGD adsorbed onto the BFO-(1 1 1) membrane, through the electrostatic (Asp-cation-Fe) and water-bridge (Osbnd H2O and H2Osbnd NH2) interactions. The effect of structural and electron-transfer interactions is attributed to the cation-valences, indicating that the divalent cations are electron-acceptors and the monovalent cations as electron-donors. Notably, the strongly bound Ca2+ ion exerts a ;gluing; effect on the Asp-side-chain, indicating a tightly packed RGD-BFO configuration. Thus, modulating the biological response of BFO-(1 1 1) membrane will allow us to design more appropriate interfaces for implantable diagnostic and therapeutic perovskite-type micro-devices.

  8. Optimization of the production process of hybrid and multivalent formulation Bombesin/RGD for the opportune detection of breast cancer; Optimizacion del proceso de fabricacion de la formulacion hibrida y multivalente Bombesina/RGD para la deteccion oportuna de cancer de mama

    Energy Technology Data Exchange (ETDEWEB)

    Robles M, M.

    2013-07-01

    The radiopharmaceuticals of third generation are used in nuclear medicine to obtain images of specific molecular targets, and they are unique in their capacity to detect in vivo specific biochemical sites as receptors that are over-expressed in diverse illness. In cancer cells several types of receptors are over-expressed, as the integrin s α(v)β(3) and α(v)β(5) that specifically recognize the sequence RGD (Arginine-Glycin-Ac. Aspartic) and gastrin-releasing peptide that recognizes specifically to the peptide Lys{sup 3}-Bombesin. The integrin s α(v)β(3) and α(v)β(5) are involved in the tumor angio genesis processes and the gastrin-releasing peptide is over-expressed in breast and prostate cancer. The molecular recognition of the specific receptors is the basis to be utilized as targets of the radiopharmaceuticals {sup 99m}Tc-HYNIC-Bombesin and {sup 99m}Tc-HYNIC-RGD. In this work was developed a lyophilized pharmaceutical formulation effective, stable and safe for the simultaneous obtaining of the radiopharmaceuticals {sup 99m}Tc-HYNIC-Bombesin ({sup 99m}Tc-EDDA/HYNIC-Lys{sup 3}-Bombesin) and {sup 99m}Tc-HYNIC-RGD ({sup 99m}Tc EDDA/HYNIC-E-[c(RGDfK)]{sub 2}). Later on the production process of the product HYNIC-Bombesin/RGD-Sn was optimized using a factorial design and the formulation was transferred to the production plant of radiopharmaceuticals of the Instituto Nacional de Investigaciones Nucleares (ININ). The optimized formulation is described in the following chart: HYNIC-[Lys{sup 3}]-Bombesin - 12.5 μg; HYNIC-E-c[RGDfK]{sub 2} - 12.5 μg; Stannous chloride (SnCl{sub 2}) - 20 μg; Ethylenediamine diacetic acid (EDDA) - 10 mg; N-tris(hydroxymethyl)methyl glycin (Tricine) - 20 mg; Mannitol - 50 mg. The production process was validated and were carried out the stability studies under refrigeration conditions. (Author)

  9. Functionalized D-form self-assembling peptide hydrogels for bone regeneration

    Directory of Open Access Journals (Sweden)

    He B

    2016-04-01

    Full Text Available Bin He,1 Yunsheng Ou,1 Ao Zhou,1 Shuo Chen,1 Weikang Zhao,1 Jinqiu Zhao,2 Hong Li,3 Yong Zhu,1 Zenghui Zhao,1 Dianming Jiang1 1Department of Orthopedics, 2Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China; 3School of Physical Science and Technology, Sichuan University, Chengdu, People’s Republic of China Abstract: Bone defects are very common in orthopedics, and there is great need to develop suitable bone grafts for transplantation in vivo. However, current bone grafts still encounter some limitations, including limited availability, immune rejection, poor osteoinduction and osteoconduction, poor biocompatibility and degradation properties, etc. Self-assembling peptide nanofiber scaffolds have emerged as an important substrate for cell culture and bone regeneration. We report on the structural features (eg, Congo red staining, circular dichroism spectroscopy, transmission electron microscopy, and rheometry assays and osteogenic ability of D-RADA16-RGD peptide hydrogels (with or without basic fibroblast growth factor due to the better stability of peptide bonds formed by these peptides compared with those formed by L-form peptides, and use them to fill the femoral condyle defect of Sprague Dawley rat model. The bone morphology change, two-dimensional reconstructions using microcomputed tomography, quantification of the microcomputed tomography analyses as well as histological analyses have demonstrated that RGD-modified D-form peptide scaffolds are able to enhance extensive bone regeneration. Keywords: bone defect, functionalized D-form self-assembling peptide, D-RADA16-RGD, peptide hydrogel, bone regeneration

  10. Peptide functionalized gold nanoparticles: the influence of pH on binding efficiency

    Science.gov (United States)

    Harrison, Emma; Hamilton, Jeremy W. J.; Macias-Montero, Manuel; Dixon, Dorian

    2017-07-01

    We report herein on the synthesis of mixed monolayer gold nanoparticles (AuNPs) capped with both polyethylene glycol (PEG) and one of three peptides. Either a receptor-mediated endocytosis peptide, an endosomal escape pathway (H5WYG) peptide or the Nrp-1 targeting RGD peptide (CRGDK) labeled with FITC. All three peptides have a thiol containing cysteine residue which can be used to bind the peptides to the AuNPs. In order to investigate the influence of pH on peptide attachment, PEGylated AuNPs were centrifuged, the supernatant removed, and the nanoparticles were then re-suspended in a range of pH buffer solutions above, below and at the respective isoelectric points of the peptides before co-functionalization. Peptide attachment was investigated using dynamic light scattering, Ultra-violet visible spectroscopy (UV/Vis), FTIR and photo luminescence spectroscopy. UV/Vis analysis coupled with protein assay results and photoluminescence of the FITC tagged RGD peptide concluded that a pH of ∼8 optimized the cysteine binding and stability, irrespective of the peptide used.

  11. [The Influence of New Medium with RGD on Cell Growth,Cell Fusion and Expression of Exogenous Gene].

    Science.gov (United States)

    Wang, Pei-Pei; Wei, Da-Peng; Zhu, Tong-Bo

    2018-03-01

    To investigate the influence of a new culture medium added with RGD on cell growth,cell fusion and expression of exogenous gene. A new medium was prepared by adding different concentrations of RGD to ordinary culture medium. The optimum concentration of RGD was determined by observation of the growth of human pancreatic epithelial cell line HPDE6-C7. After determining the optimum concentration of RGD,different concentrations of cells HPDE6-C7 (5×10 4 ,10 5 ,5×10 5 mL -1 ) were inoculated in the two mediums. The morphology,adherence,growth and density of the cells were observed by inverted microscope; The ratio of clone formation and the positive rate of cloning were compared between the two cultures after fusion; The fluorescence intensity after the transfection of plasmid with green fluorescent protein ( GFP ) and the protein expression after transfection of plasmid with KRAS were observed to campare the expression of exogenous genes between the new medium with ordinary medium. Firstly,the optimal concentration of RGD was 10 ng/mL. Compared with the normal medium,the cultured cells with RGD had better morphology,adhesion and faster proliferation. In addition,both of the number and positive rate of clones formed in the new medium were significantly higher than that in the ordinary medium ( P exogenous gene GFP in the new medium was significantly higher than that in normal medium ( P exogenous gene KRAS of the new medium was also significantly higher than that in normal medium. The new culture medium has highlighted advantages in cell growth,cell fusion and expression of exogenous genes. RGD peptide has widely prospect and potential value in the cell culture. Copyright© by Editorial Board of Journal of Sichuan University (Medical Science Edition).

  12. Evaluation of two novel {sup 64}Cu-labeled RGD peptide radiotracers for enhanced PET imaging of tumor integrin α{sub v}β{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Reinier; Graves, Stephen A.; Nickles, Robert J. [University of Wisconsin, Department of Medical Physics, Madison, WI (United States); Czerwinski, Andrzej; Valenzuela, Francisco [Peptides International, Inc., Louisville, KY (United States); Chakravarty, Rubel; Yang, Yunan; England, Christopher G. [University of Wisconsin, Department of Radiology, Madison, WI (United States); Cai, Weibo [University of Wisconsin, Department of Medical Physics, Madison, WI (United States); University of Wisconsin, Department of Radiology, Madison, WI (United States); University of Wisconsin Carbone Cancer Center, Madison, WI (United States)

    2015-11-15

    Our goal was to demonstrate that suitably derivatized monomeric RGD peptide-based PET tracers, targeting integrin α{sub v}β{sub 3}, may offer advantages in image contrast, time for imaging, and low uptake in nontarget tissues. Two cyclic RGDfK derivatives, (PEG){sub 2}-c(RGDfK) and PEG{sub 4}-SAA{sub 4}-c(RGDfK), were constructed and conjugated to NOTA for {sup 64}Cu labeling. Their integrin α{sub v}β{sub 3}-binding properties were determined via a competitive cell binding assay. Mice bearing U87MG tumors were intravenously injected with each of the {sup 64}Cu-labeled peptides, and PET scans were acquired during the first 30 min, and 2 and 4 h after injection. Blocking and ex vivo biodistribution studies were carried out to validate the PET data and confirm the specificity of the tracers. The IC{sub 50} values of NOTA-(PEG){sub 2}-c(RGDfK) and NOTA-PEG{sub 4}-SAA{sub 4}-c(RGDfK) were 444 ± 41 nM and 288 ± 66 nM, respectively. Dynamic PET data of {sup 64}Cu-NOTA-(PEG){sub 2}-c(RGDfK) and {sup 64}Cu-NOTA-PEG{sub 4}-SAA{sub 4}-c(RGDfK) showed similar circulation t{sub 1/2} and peak tumor uptake of about 4 %ID/g for both tracers. Due to its marked hydrophilicity, {sup 64}Cu-NOTA-PEG{sub 4}-SAA{sub 4}-c(RGDfK) provided faster clearance from tumor and normal tissues yet maintained excellent tumor-to-background ratios. Static PET scans at later time-points corroborated the enhanced excretion of the tracer, especially from abdominal organs. Ex vivo biodistribution and receptor blocking studies confirmed the accuracy of the PET data and the integrin α{sub v}β{sub 3}-specificity of the peptides. Our two novel RGD-based radiotracers with optimized pharmacokinetic properties allowed fast, high-contrast PET imaging of tumor-associated integrin α{sub v}β{sub 3}. These tracers may facilitate the imaging of abdominal malignancies, normally precluded by high background uptake. (orig.)

  13. Functional Self-Assembling Peptide Nanofiber Hydrogels Designed for Nerve Degeneration.

    Science.gov (United States)

    Sun, Yuqiao; Li, Wen; Wu, Xiaoli; Zhang, Na; Zhang, Yongnu; Ouyang, Songying; Song, Xiyong; Fang, Xinyu; Seeram, Ramakrishna; Xue, Wei; He, Liumin; Wu, Wutian

    2016-01-27

    Self-assembling peptide (SAP) RADA16-I (Ac-(RADA)4-CONH2) has been suffering from a main drawback associated with low pH, which damages cells and host tissues upon direct exposure. In this study, we presented a strategy to prepare nanofiber hydrogels from two designer SAPs at neutral pH. RADA16-I was appended with functional motifs containing cell adhesion peptide RGD and neurite outgrowth peptide IKVAV. The two SAPs were specially designed to have opposite net charges at neutral pH, the combination of which created a nanofiber hydrogel (-IKVAV/-RGD) characterized by significantly higher G' than G″ in a viscoelasticity examination. Circular dichroism, Fourier transform infrared spectroscopy, and Raman measurements were performed to investigate the secondary structure of the designer SAPs, indicating that both the hydrophobic/hydrophilic properties and electrostatic interactions of the functional motifs play an important role in the self-assembling behavior of the designer SAPs. The neural progenitor cells (NPCs)/stem cells (NSCs) fully embedded in the 3D-IKVAV/-RGD nanofiber hydrogel survived, whereas those embedded within the RADA 16-I hydrogel hardly survived. Moreover, the -IKVAV/-RGD nanofiber hydrogel supported NPC/NSC neuron and astrocyte differentiation in a 3D environment without adding extra growth factors. Studies of three nerve injury models, including sciatic nerve defect, intracerebral hemorrhage, and spinal cord transection, indicated that the designer -IKVAV/-RGD nanofiber hydrogel provided a more permissive environment for nerve regeneration than the RADA 16-I hydrogel. Therefore, we reported a new mechanism that might be beneficial for the synthesis of SAPs for in vitro 3D cell culture and nerve regeneration.

  14. cRGD-installed docetaxel-loaded mertansine prodrug micelles: redox-triggered ratiometric dual drug release and targeted synergistic treatment of B16F10 melanoma

    Science.gov (United States)

    Zhong, Ping; Qiu, Min; Zhang, Jian; Sun, Huanli; Cheng, Ru; Deng, Chao; Meng, Fenghua; Zhong, Zhiyuan

    2017-07-01

    Combinatorial chemotherapy, which has emerged as a promising treatment modality for intractable cancers, is challenged by a lack of tumor-targeting, robust and ratiometric dual drug release systems. Here, docetaxel-loaded cRGD peptide-decorated redox-activable micellar mertansine prodrug (DTX-cRGD-MMP) was developed for targeted and synergistic treatment of B16F10 melanoma-bearing C57BL/6 mice. DTX-cRGD-MMP exhibited a small size of ca. 49 nm, high DTX and DM1 loading, low drug leakage under physiological conditions, with rapid release of both DTX and DM1 under a cytoplasmic reductive environment. Notably, MTT and flow cytometry assays showed that DTX-cRGD-MMP brought about a synergistic antitumor effect to B16F10 cancer cells, with a combination index of 0.37 and an IC50 over 3- and 13-fold lower than cRGD-MMP (w/o DTX) and DTX-cRGD-Ms (w/o DM1) controls, respectively. In vivo studies revealed that DTX-cRGD-MMP had a long circulation time and a markedly improved accumulation in the B16F10 tumor compared with the non-targeting DTX-MMP control (9.15 versus 3.13% ID/g at 12 h post-injection). Interestingly, mice treated with DTX-cRGD-MMP showed almost complete growth inhibition of B16F10 melanoma, with tumor inhibition efficacy following an order of DTX-cRGD-MMP > DTX-MMP (w/o cRGD) > cRGD-MMP (w/o DTX) > DTX-cRGD-Ms (w/o DM1) > free DTX. Consequently, DTX-cRGD-MMP significantly improved the survival rates of B16F10 melanoma-bearing mice. Importantly, DTX-cRGD-MMP caused little adverse effects as revealed by mice body weights and histological analyses. The combination of two mitotic inhibitors, DTX and DM1, appears to be an interesting approach for effective cancer therapy.

  15. Peptide array-based interaction assay of solid-bound peptides and anchorage-dependant cells and its effectiveness in cell-adhesive peptide design.

    Science.gov (United States)

    Kato, Ryuji; Kaga, Chiaki; Kunimatsu, Mitoshi; Kobayashi, Takeshi; Honda, Hiroyuki

    2006-06-01

    Peptide array, the designable peptide library covalently synthesized on cellulose support, was applied to assay peptide-cell interaction, between solid-bound peptides and anchorage-dependant cells, to study objective peptide design. As a model case, cell-adhesive peptides that could enhance cell growth as tissue engineering scaffold material, was studied. On the peptide array, the relative cell-adhesion ratio of NIH/3T3 cells was 2.5-fold higher on the RGDS (Arg-Gly-Asp-Ser) peptide spot as compared to the spot with no peptide, thus indicating integrin-mediated peptide-cell interaction. Such strong cell adhesion mediated by the RGDS peptide was easily disrupted by single residue substitution on the peptide array, thus indicating that the sequence recognition accuracy of cells was strictly conserved in our optimized scheme. The observed cellular morphological extension with active actin stress-fiber on the RGD motif-containing peptide supported our strategy that peptide array-based interaction assay of solid-bound peptide and anchorage-dependant cells (PIASPAC) could provide quantitative data on biological peptide-cell interaction. The analysis of 180 peptides obtained from fibronectin type III domain (no. 1447-1629) yielded 18 novel cell-adhesive peptides without the RGD motif. Taken together with the novel candidates, representative rules of ineffective amino acid usage were obtained from non-effective candidate sequences for the effective designing of cell-adhesive peptides. On comparing the amino acid usage of the top 20 and last 20 peptides from the 180 peptides, the following four brief design rules were indicated: (i) Arg or Lys of positively charged amino acids (except His) could enhance cell adhesion, (ii) small hydrophilic amino acids are favored in cell-adhesion peptides, (iii) negatively charged amino acids and small amino acids (except Gly) could reduce cell adhesion, and (iv) Cys and Met could be excluded from the sequence combination since they have

  16. Comparison of radiolabeling efficiency of peptides containing the RGD domain using the Tc-99M and I-131 radioisotopes

    International Nuclear Information System (INIS)

    Sobral, Danielle V.; Cabral, Francisco Romero; Malavolta, Luciana

    2017-01-01

    Full text: Introduction: Radiolabeled peptides have become very important in nuclear medicine and oncology in recent years mainly because they represent the molecular basis for in vivo imaging and radiopharmaceutical therapy with high specificity and affinity for over expressed receptors in tumors (Thno 2(5):481-501, 2012 / Drug Discov. Today. 7:1224-1232, 2012). In this context, peptides containing the RGD domain which possess high affinity for the αvβ3 integrin receptor have become an important tool in a wide variety tumor, including glioblastoma (Exp. Opin. Drug Deliv. 8:1041- 1056, 2011). Objective: The goal of this work was to compare the radiolabeling efficiency of the GRGDYV and GRGDHV peptides when radiolabeled with the 131 I and 99m Tc radioisotopes, respectively, as well as, to evaluate the features of synthesized complexes. Methods: The GRGDYV and GRGDHV fragments were manually synthesized by peptide synthesis in solid phase accordingly to the Fmoc protocol and purified by preparative HPLC. The GRGDYV and GRGDHV peptides were radiolabeled with the I-131 and Tc-99m radioisotopes respectively, through of the direct method of radiolabeling. The radioiodination was evaluated and optimized using the methodology of Chloramine-T and for the peptide containing the histidine aminoacid the tricarbonyl method was used. Radiochemical yield analyses of [ 131 I]-GRGDYV and [ 99m Tc]-GRGDHV peptides were performed by thin layer chromatography on silica gel TLC-SG (Al) in ACN 95%. The radiolabeled peptides were purified by using solid phase extraction (Sep-Pak C18 filter). The stability studies were realized at 2, 24, 48 and 72 hours in room temperature and refrigerate (4 deg C) for [ 131 I]-GRGDYV and up to 6 hours for the fragment [ 99m Tc]-GRGDHV. Partition coefficient was determinate for both radiopeptides. Results: The peptides [ 131 I]-GRGDYV and [ 99m Tc]-GRGDHV were efficiently synthesized, radiolabeled and showed radiochemical yield of 91.02% ± 1.68 (n=5

  17. NGR-peptide-drug conjugates with dual targeting properties.

    Directory of Open Access Journals (Sweden)

    Kata Nóra Enyedi

    Full Text Available Peptides containing the asparagine-glycine-arginine (NGR motif are recognized by CD13/aminopeptidase N (APN receptor isoforms that are selectively overexpressed in tumor neovasculature. Spontaneous decomposition of NGR peptides can result in isoAsp derivatives, which are recognized by RGD-binding integrins that are essential for tumor metastasis. Peptides binding to CD13 and RGD-binding integrins provide tumor-homing, which can be exploited for dual targeted delivery of anticancer drugs. We synthesized small cyclic NGR peptide-daunomycin conjugates using NGR peptides of varying stability (c[KNGRE]-NH2, Ac-c[CNGRC]-NH2 and the thioether bond containing c[CH2-CO-NGRC]-NH2, c[CH2-CO-KNGRC]-NH2. The cytotoxic effect of the novel cyclic NGR peptide-Dau conjugates were examined in vitro on CD13 positive HT-1080 (human fibrosarcoma and CD13 negative HT-29 (human colon adenocarcinoma cell lines. Our results confirm the influence of structure on the antitumor activity and dual acting properties of the conjugates. Attachment of the drug through an enzyme-labile spacer to the C-terminus of cyclic NGR peptide resulted in higher antitumor activity on both CD13 positive and negative cells as compared to the branching versions.

  18. In situ immobilization of proteins and RGD peptide on polyurethane surfaces via poly(ethylene oxide) coupling polymers for human endothelial cell growth.

    Science.gov (United States)

    Wang, Dong-an; Ji, Jian; Sun, Yong-hong; Shen, Jia-cong; Feng, Lin-xian; Elisseeff, Jennifer H

    2002-01-01

    A "CBABC"-type pentablock coupling polymer, mesylMPEO, was designed and synthesized to promote human endothelial cell growth on the surfaces of polyurethane biomaterials. The polymer was composed of a central 4,4'-methylenediphenyl diisocyanate (MDI) coupling unit and poly(ethylene oxide) (PEO) spacer arms with methanesulfonyl (mesyl) end groups pendent on both ends. As the presurface modifying additive (pre-SMA), the mesylMPEO was noncovalently introduced onto the poly(ether urethane) (PEU) surfaces by dip coating, upon which the protein/peptide factors (gelatin, albumin, and arginine-glycine-aspartic acid tripeptide [RGD]) were covalently immobilized in situ by cleavage of the original mesyl end groups. The pre-SMA synthesis and PEU surface modification were characterized using nuclear magnetic resonance spectroscopy ((1)H NMR), attenuated total reflection infrared spectroscopy (ATR-FTIR), and X-ray photoelectron spectroscopy (XPS). Human umbilical vein endothelial cells (HUVEC) were harvested manually by collagenase digestion and seeded on the modified PEU surfaces. Cell adhesion ratios (CAR) and cell proliferation ratios (CPR) were measured using flow cytometry, and the individual cell viability (ICV) was determined by MTT assay. The cell morphologies were investigated by optical inverted microscopy (OIM) and scanning electrical microscopy (SEM). The gelatin- and RGD-modified surfaces were HUVEC-compatible and promoted HUVEC growth. The albumin-modified surfaces were compatible but inhibited cell adhesion. The results also indicated that, for HUVEC in vitro cultivation, the cell adhesion stage was of particular importance and had a significant impact on the cell responses to the modified surfaces.

  19. Reduction of renal uptake of 111In-DOTA-labeled and A700-labeled RAFT-RGD during integrin αvβ3 targeting using single photon emission computed tomography and optical imaging.

    Science.gov (United States)

    Briat, Arnaud; Wenk, Christiane H F; Ahmadi, Mitra; Claron, Michael; Boturyn, Didier; Josserand, Véronique; Dumy, Pascal; Fagret, Daniel; Coll, Jean-Luc; Ghezzi, Catherine; Sancey, Lucie; Vuillez, Jean-Philippe

    2012-06-01

    Integrin α(v)β(3) expression is upregulated during tumor growth and invasion in newly formed endothelial cells in tumor neovasculature and in some tumor cells. A tetrameric RGD-based peptide, regioselectively addressable functionalized template-(cyclo-[RGDfK])4 (RAFT-RGD), specifically targets integrin α(v)β(3) in vitro and in vivo. When labeled with indium-111, the RAFT-RGD is partially reabsorbed and trapped in the kidneys, limiting its use for further internal targeted radiotherapy and imaging investigations. We studied the effect of Gelofusine on RAFT-RGD renal retention in tumor-bearing mice. Mice were imaged using single photon emission computed tomography and optical imaging 1 and 24 h following tracer injection. Distribution of RAFT-RGD was further investigated by tissue removal and direct counting of the tracer. Kidney sections were analyzed by confocal microscopy. Gelofusine significantly induced a >50% reduction of the renal reabsorption of (111)In-DOTA-RAFT-RGD and A700-RAFT-RGD, without affecting tumor uptake. Injection of Gelofusine significantly reduced the renal retention of labeled RAFT-RGD, while increasing the tumor over healthy tissue ratio. These results will lead to the development of future therapeutic approaches. © 2012 Japanese Cancer Association.

  20. Molecular nuclear imaging of tumoral angio genesis using a rgd-containing tracer, Raft-RGD, targeted at the neo vessel-specific integrin {alpha}{sub v}{beta}{sub 3}; Evaluation d'un radioligand de l'integrine {alpha}{sub v}{beta}{sub 3} (RAFT-RGD) pour l'imagerie moleculaire de l'angiogenese tumorale

    Energy Technology Data Exchange (ETDEWEB)

    Sancey, L

    2006-06-15

    Tumoral neo-angio genesis targeting is currently a major field of research for the diagnostic and treatment of solid tumors. Endothelial cells from neo vessels over express several specific markers such as the {alpha}{sub v}{beta}{sub 3} integrin, which binds RGD (-Arg-Gly-Asp-)- containing peptides. We evaluated the potential of a novel radiotracer - RAFT-RGD - for the molecular nuclear imaging of neo vessels. In vitro, the coupling of 4 c(RGDfK) to the RAFT platform resulted in an increased cellular uptake of the tracer by {alpha}{sub v}{beta}{sub 3} positive cells when compared to c(RGDfK). Furthermore, RAFTRGD has a higher affinity than c(RGDfK) and similar properties for angio genesis inhibition. In vivo, both {alpha}{sub v}{beta}{sub 3} positive and negative tumors were visible by non invasive whole body planar and tomographic imaging from 30 min to 24 h post-injection, using a gamma camera dedicated to small animal imaging. Despite a lack of significant contrast improvement compare with c(RGDfK), RAFT-RGD could represent a promising tracer for tumoral angio genesis since it could provide invaluable information about tumor development and treatment efficacy in Nuclear Medicine departments. Furthermore, thanks to its chemical structure, RAFT-RGD can be labelled with a variety of radioisotopes including {gamma} and {beta}{sup -} emitters, allowing interesting therapeutical applications such as internal targeted radiotherapy. (author)

  1. Targeted radionuclide therapy with RAFT-RGD radiolabelled with (90)Y or (177)Lu in a mouse model of αvβ3-expressing tumours.

    Science.gov (United States)

    Bozon-Petitprin, A; Bacot, S; Gauchez, A S; Ahmadi, M; Bourre, J C; Marti-Batlle, D; Perret, P; Broisat, A; Riou, L M; Claron, M; Boturyn, D; Fagret, D; Ghezzi, Catherine; Vuillez, J P

    2015-02-01

    The αvβ3 integrin plays an important role in tumour-induced angiogenesis, tumour proliferation, survival and metastasis. The tetrameric RGD-based peptide, regioselectively addressable functionalized template-(cyclo-[RGDfK])4 (RAFT-RGD), specifically targets the αvβ3 integrin in vitro and in vivo. The aim of this study was to evaluate the therapeutic potential of RAFT-RGD radiolabelled with β(-) emitters in a nude mouse model of αvβ3 integrin-expressing tumours. Biodistribution and SPECT/CT imaging studies were performed after injection of (90)Y-RAFT-RGD or (177)Lu-RAFT-RGD in nude mice subcutaneously xenografted with αvβ3 integrin-expressing U-87 MG cells. Experimental targeted radionuclide therapy with (90)Y-RAFT-RGD or (177)Lu-RAFT-RGD and (90)Y-RAFT-RAD or (177)Lu-RAFT-RAD (nonspecific controls) was evaluated by intravenous injection of the radionuclides into mice bearing αvβ3 integrin-expressing U-87 MG tumours of different sizes (small or large) or bearing TS/A-pc tumours that do not express αvβ3. Tumour volume doubling time was used to evaluate the efficacy of each treatment. Injection of 37 MBq of (90)Y-RAFT-RGD into mice with large αvβ3-positive tumours or 37 MBq of (177)Lu-RAFT-RGD into mice with small αvβ3-positive tumours caused significant growth delays compared to mice treated with 37 MBq of (90)Y-RAFT-RAD or 37 MBq of (177)Lu-RAFT-RAD or untreated mice. In contrast, injection of 30 MBq of (90)Y-RAFT-RGD had no effect on the growth of αvβ3-negative tumours. (90)Y-RAFT-RGD and (177)Lu-RAFT-RGD are potent agents targeting αvβ3-expressing tumours for internal targeted radiotherapy.

  2. Peptide-Conjugated Quantum Dots Act as the Target Marker for Human Pancreatic Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Shuang-ling Li

    2016-03-01

    Full Text Available Background/Aims: In the present study, we describe a novel and straightforward approach to produce a cyclic- arginine-glycine-aspartic (RGD-peptide-conjugated quantum dot (QD probe as an ideal target tumor biomarker. Due to its specific structure, the probe can be used for targeted imaging of pancreatic carcinoma cells. Methods: Pancreatic carcinoma cells were routinely cultured and marked with QD-RGD probe. The QD-RGD probe on the fluorescence-labeled cancer cell was observed by fluorescence microscopy and laser confocal microscopy. Cancer cell viability was detected by MTT assay after culturing with QD-RGD probe. Results: Fluorescence microscopy and laser confocal microscopy displayed that 10nmol/L QD-RGD probe was able to effectively mark pancreatic carcinoma cells. In comparison with organic dyes and fluorescent proteins, the quantum dot-RGD probe had unique optical and electronic properties. Conclusion: QD-RGD probe has a low cytotoxicity with an excellent optical property and biocompatibility. These findings support further evaluation of QD-RGD probes for the early detection of pancreatic cancer.

  3. Comparison of radiolabeling efficiency of peptides containing the RGD domain using the Tc-99M and I-131 radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Sobral, Danielle V.; Cabral, Francisco Romero; Malavolta, Luciana [Santa Casa de São Paulo, SP (Brazil). Faculdade de Ciências Médicas; Durante, Ana C. Ranucci; Miranda, Ana C. Camargo; Barbosa, Marycel R. F.Figols de [Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, SP (Brazil)

    2017-07-01

    Full text: Introduction: Radiolabeled peptides have become very important in nuclear medicine and oncology in recent years mainly because they represent the molecular basis for in vivo imaging and radiopharmaceutical therapy with high specificity and affinity for over expressed receptors in tumors (Thno 2(5):481-501, 2012 / Drug Discov. Today. 7:1224-1232, 2012). In this context, peptides containing the RGD domain which possess high affinity for the αvβ3 integrin receptor have become an important tool in a wide variety tumor, including glioblastoma (Exp. Opin. Drug Deliv. 8:1041- 1056, 2011). Objective: The goal of this work was to compare the radiolabeling efficiency of the GRGDYV and GRGDHV peptides when radiolabeled with the {sup 131}I and {sup 99m}Tc radioisotopes, respectively, as well as, to evaluate the features of synthesized complexes. Methods: The GRGDYV and GRGDHV fragments were manually synthesized by peptide synthesis in solid phase accordingly to the Fmoc protocol and purified by preparative HPLC. The GRGDYV and GRGDHV peptides were radiolabeled with the I-131 and Tc-99m radioisotopes respectively, through of the direct method of radiolabeling. The radioiodination was evaluated and optimized using the methodology of Chloramine-T and for the peptide containing the histidine aminoacid the tricarbonyl method was used. Radiochemical yield analyses of [{sup 131}I]-GRGDYV and [{sup 99m}Tc]-GRGDHV peptides were performed by thin layer chromatography on silica gel TLC-SG (Al) in ACN 95%. The radiolabeled peptides were purified by using solid phase extraction (Sep-Pak C18 filter). The stability studies were realized at 2, 24, 48 and 72 hours in room temperature and refrigerate (4 deg C) for [{sup 131}I]-GRGDYV and up to 6 hours for the fragment [{sup 99m}Tc]-GRGDHV. Partition coefficient was determinate for both radiopeptides. Results: The peptides [{sup 131}I]-GRGDYV and [{sup 99m}Tc]-GRGDHV were efficiently synthesized, radiolabeled and showed

  4. Towards a biocompatible artificial lung: Covalent functionalization of poly(4-methylpent-1-ene (TPX with cRGD pentapeptide

    Directory of Open Access Journals (Sweden)

    Lena Möller

    2013-02-01

    Full Text Available Covalent multistep coating of poly(methylpentene, the membrane material in lung ventilators, by using a copper-free “click” approach with a modified cyclic RGD peptide, leads to a highly biocompatible poly(methylpentene surface. The resulting modified membrane preserves the required excellent gas-flow properties while being densely seeded with lung endothelial cells.

  5. Pharmacokinetics of 99m Tc-EDDA/HYNIC-Lys-D-Phe-RGD in athymic mice with induced malignant tumors for integrin imaging

    International Nuclear Information System (INIS)

    Lopez D, F.A.; Pedraza L, M.; Murphy, C.A. de; Ferro F, G.; Hernandez H, E.

    2007-01-01

    Full text: Nuclear medicine imaging techniques are non-invasive and monitor the spatiotemporal distribution of molecular events. Radiolabeled RGD-peptides are currently investigated to target integrin receptors for in vivo tumor imaging. The α v β 3 integrin is a target structure involved in the angio genesis process which mediates the binding to extracellular matrix via different proteins such as vitronectin, fibronectin and von Willebrand factor. The aim of this research was to prepare [ 99m Tc]-Lys-D-Phe-RGD and to evaluate its pharmacokinetics in athymic mice with three different induced malignant tumors. Tumor uptake values of 99m Tc-Lys-D-Phe-RGD labeled via HYNIC and EDDA showed good ability to target α v β 3 integrin receptors in the three different kinds of tumors (breast, prostate and neuroendocrine). A high in vivo stability and favorable pharmacokinetic properties such as fast blood clearance, rapid renal excretion, low liver and muscle uptake and low intestinal excretion were observed. This study demonstrated that 99m Tc-EDDA/HYNIC-Lys-D-Phe-RGD is a specific and potential radiopharmaceutical to image α v β 3 integrin receptors in a variety of tumors. (Author)

  6. Radiopharmaceutical development of radiolabelled peptides

    Energy Technology Data Exchange (ETDEWEB)

    Fani, Melpomeni; Maecke, Helmut R. [University Hospital Freiburg, Department of Nuclear Medicine, Freiburg (Germany)

    2012-02-15

    Receptor targeting with radiolabelled peptides has become very important in nuclear medicine and oncology in the past few years. The overexpression of many peptide receptors in numerous cancers, compared to their relatively low density in physiological organs, represents the molecular basis for in vivo imaging and targeted radionuclide therapy with radiolabelled peptide-based probes. The prototypes are analogs of somatostatin which are routinely used in the clinic. More recent developments include somatostatin analogs with a broader receptor subtype profile or with antagonistic properties. Many other peptide families such as bombesin, cholecystokinin/gastrin, glucagon-like peptide-1 (GLP-1)/exendin, arginine-glycine-aspartic acid (RGD) etc. have been explored during the last few years and quite a number of potential radiolabelled probes have been derived from them. On the other hand, a variety of strategies and optimized protocols for efficient labelling of peptides with clinically relevant radionuclides such as {sup 99m}Tc, M{sup 3+} radiometals ({sup 111}In, {sup 86/90}Y, {sup 177}Lu, {sup 67/68}Ga), {sup 64/67}Cu, {sup 18}F or radioisotopes of iodine have been developed. The labelling approaches include direct labelling, the use of bifunctional chelators or prosthetic groups. The choice of the labelling approach is driven by the nature and the chemical properties of the radionuclide. Additionally, chemical strategies, including modification of the amino acid sequence and introduction of linkers/spacers with different characteristics, have been explored for the improvement of the overall performance of the radiopeptides, e.g. metabolic stability and pharmacokinetics. Herein, we discuss the development of peptides as radiopharmaceuticals starting from the choice of the labelling method and the conditions to the design and optimization of the peptide probe, as well as some recent developments, focusing on a selected list of peptide families, including somatostatin

  7. Targeted radionuclide therapy with RAFT-RGD radiolabelled with {sup 90}Y or {sup 177}Lu in a mouse model of αvβ3-expressing tumours

    Energy Technology Data Exchange (ETDEWEB)

    Bozon-Petitprin, A.; Bacot, S.; Ahmadi, M.; Marti-Batlle, D.; Perret, P.; Broisat, A.; Riou, L.M. [INSERM, U1039, Grenoble (France); Universite de Grenoble, UMR-S1039, Grenoble (France); Gauchez, A.S.; Bourre, J.C.; Fagret, D.; Vuillez, J.P. [INSERM, U1039, Grenoble (France); Universite de Grenoble, UMR-S1039, Grenoble (France); CHRU Grenoble, Hopital Michallon, Service de Medecine Nucleaire, Grenoble (France); Claron, M.; Boturyn, D. [CNRS, UMR 5250, Departement de Chimie Moleculaire, Grenoble (France); Ghezzi, Catherine [INSERM, U1039, Grenoble (France); Universite de Grenoble, UMR-S1039, Grenoble (France); INSERM U1039, Radiopharmaceutiques biocliniques, Batiment Jean Roget, Domaine de la Merci, Faculte de Medecine, La Tronche (France)

    2014-08-28

    The αvβ3 integrin plays an important role in tumour-induced angiogenesis, tumour proliferation, survival and metastasis. The tetrameric RGD-based peptide, regioselectively addressable functionalized template-(cyclo-[RGDfK]){sub 4} (RAFT-RGD), specifically targets the αvβ3 integrin in vitro and in vivo. The aim of this study was to evaluate the therapeutic potential of RAFT-RGD radiolabelled with β{sup -} emitters in a nude mouse model of αvβ3 integrin-expressing tumours. Biodistribution and SPECT/CT imaging studies were performed after injection of {sup 90}Y-RAFT-RGD or {sup 177}Lu-RAFT-RGD in nude mice subcutaneously xenografted with αvβ3 integrin-expressing U-87 MG cells. Experimental targeted radionuclide therapy with {sup 90}Y-RAFT-RGD or {sup 177}Lu-RAFT-RGD and {sup 90}Y-RAFT-RAD or {sup 177}Lu-RAFT-RAD (nonspecific controls) was evaluated by intravenous injection of the radionuclides into mice bearing αvβ3 integrin-expressing U-87 MG tumours of different sizes (small or large) or bearing TS/A-pc tumours that do not express αvβ3. Tumour volume doubling time was used to evaluate the efficacy of each treatment. Injection of 37 MBq of {sup 90}Y-RAFT-RGD into mice with large αvβ3-positive tumours or 37 MBq of {sup 177}Lu-RAFT-RGD into mice with small αvβ3-positive tumours caused significant growth delays compared to mice treated with 37 MBq of {sup 90}Y-RAFT-RAD or 37 MBq of {sup 177}Lu-RAFT-RAD or untreated mice. In contrast, injection of 30 MBq of {sup 90}Y-RAFT-RGD had no effect on the growth of αvβ3-negative tumours. {sup 90}Y-RAFT-RGD and {sup 177}Lu-RAFT-RGD are potent agents targeting αvβ3-expressing tumours for internal targeted radiotherapy. (orig.)

  8. Independent control of matrix adhesiveness and stiffness within a 3D self-assembling peptide hydrogel.

    Science.gov (United States)

    Hogrebe, Nathaniel J; Reinhardt, James W; Tram, Nguyen K; Debski, Anna C; Agarwal, Gunjan; Reilly, Matthew A; Gooch, Keith J

    2018-04-01

    A cell's insoluble microenvironment has increasingly been shown to exert influence on its function. In particular, matrix stiffness and adhesiveness strongly impact behaviors such as cell spreading and differentiation, but materials that allow for independent control of these parameters within a fibrous, stromal-like microenvironment are very limited. In the current work, we devise a self-assembling peptide (SAP) system that facilitates user-friendly control of matrix stiffness and RGD (Arg-Gly-Asp) concentration within a hydrogel possessing a microarchitecture similar to stromal extracellular matrix. In this system, the RGD-modified SAP sequence KFE-RGD and the scrambled sequence KFE-RDG can be directly swapped for one another to change RGD concentration at a given matrix stiffness and total peptide concentration. Stiffness is controlled by altering total peptide concentration, and the unmodified base peptide KFE-8 can be included to further increase this stiffness range due to its higher modulus. With this tunable system, we demonstrate that human mesenchymal stem cell morphology and differentiation are influenced by both gel stiffness and the presence of functional cell binding sites in 3D culture. Specifically, cells 24 hours after encapsulation were only able to spread out in stiffer matrices containing KFE-RGD. Upon addition of soluble adipogenic factors, soft gels facilitated the greatest adipogenesis as determined by the presence of lipid vacuoles and PPARγ-2 expression, while increasing KFE-RGD concentration at a given stiffness had a negative effect on adipogenesis. This three-component hydrogel system thus allows for systematic investigation of matrix stiffness and RGD concentration on cell behavior within a fibrous, three-dimensional matrix. Physical cues from a cell's surrounding environment-such as the density of cell binding sites and the stiffness of the surrounding material-are increasingly being recognized as key regulators of cell function

  9. Radiolabelled peptides for oncological diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Laverman, Peter; Boerman, Otto C.; Oyen, Wim J.G. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Sosabowski, Jane K. [Queen Mary University of London, Centre for Molecular Oncology, Barts Cancer Institute, London (United Kingdom)

    2012-02-15

    Radiolabelled receptor-binding peptides targeting receptors (over)expressed on tumour cells are widely under investigation for tumour diagnosis and therapy. The concept of using radiolabelled receptor-binding peptides to target receptor-expressing tissues in vivo has stimulated a large body of research in nuclear medicine. The {sup 111}In-labelled somatostatin analogue octreotide (OctreoScan trademark) is the most successful radiopeptide for tumour imaging, and was the first to be approved for diagnostic use. Based on the success of these studies, other receptor-targeting peptides such as cholecystokinin/gastrin analogues, glucagon-like peptide-1, bombesin (BN), chemokine receptor CXCR4 targeting peptides, and RGD peptides are currently under development or undergoing clinical trials. In this review, we discuss some of these peptides and their analogues, with regard to their potential for radionuclide imaging of tumours. (orig.)

  10. Can single molecule localization microscopy be used to map closely spaced RGD nanodomains?

    Directory of Open Access Journals (Sweden)

    Mahdie Mollazade

    Full Text Available Cells sense and respond to nanoscale variations in the distribution of ligands to adhesion receptors. This makes single molecule localization microscopy (SMLM an attractive tool to map the distribution of ligands on nanopatterned surfaces. We explore the use of SMLM spatial cluster analysis to detect nanodomains of the cell adhesion-stimulating tripeptide arginine-glycine-aspartic acid (RGD. These domains were formed by the phase separation of block copolymers with controllable spacing on the scale of tens of nanometers. We first determined the topology of the block copolymer with atomic force microscopy (AFM and then imaged the localization of individual RGD peptides with direct stochastic optical reconstruction microscopy (dSTORM. To compare the data, we analyzed the dSTORM data with DBSCAN (density-based spatial clustering application with noise. The ligand distribution and polymer topology are not necessary identical since peptides may attach to the polymer outside the nanodomains and/or coupling and detection of peptides within the nanodomains is incomplete. We therefore performed simulations to explore the extent to which nanodomains could be mapped with dSTORM. We found that successful detection of nanodomains by dSTORM was influenced by the inter-domain spacing and the localization precision of individual fluorophores, and less by non-specific absorption of ligands to the substratum. For example, under our imaging conditions, DBSCAN identification of nanodomains spaced further than 50 nm apart was largely independent of background localisations, while nanodomains spaced closer than 50 nm required a localization precision of ~11 nm to correctly estimate the modal nearest neighbor distance (NDD between nanodomains. We therefore conclude that SMLM is a promising technique to directly map the distribution and nanoscale organization of ligands and would benefit from an improved localization precision.

  11. Antitumor effect of iRGD-modified liposomes containing conjugated linoleic acid–paclitaxel (CLA-PTX on B16-F10 melanoma

    Directory of Open Access Journals (Sweden)

    Du R

    2014-06-01

    .28 µg/g was 2.3- and 2.0-fold higher than that of CLA-PTX solution at 1 hour (0.79±0.06 µg/g and 4 hours (0.58±0.04 µg/g. The value of the area under the curve for the first 24 hours in the tumors of iRGD-SSL-CLA-PTX-treated mice was significantly higher than that in the SSL-CLA-PTX and CLA-PTX solution-treated groups (P<0.01. The in vivo antitumor results indicated that iRGD-SSL-CLA-PTX significantly inhibited the growth of B16-F10 tumors compared with the SSL-CLA-PTX or CLA-PTX solution-treatment groups (P<0.01. The results of tumor-cell apoptosis showed that tumors from the iRGD-SSL-CLA-PTX-treated group exhibited more advanced cell apoptosis compared with the control, CLA-PTX solution-, and SSL-CLA-PTX-treated groups. In conclusion, the antitumor effect of iRGD-SSL-CLA-PTX was confirmed on B16-F10 melanoma in vitro and in vivo. Keywords: peptide-modified liposome, iRGD, CLA-PTX, antitumor effect, in vitro, in vivo

  12. Rat Genome Database (RGD)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Rat Genome Database (RGD) is a collaborative effort between leading research institutions involved in rat genetic and genomic research to collect, consolidate,...

  13. Biomimetic modification of synthetic hydrogels by incorporation of adhesive peptides and calcium phosphate nanoparticles: in vitro evaluation of cell behavior

    Directory of Open Access Journals (Sweden)

    M Bongio

    2011-12-01

    Full Text Available The ultimate goal of this work was to develop a biocompatible and biomimetic in situ crosslinkable hydrogel scaffold with an instructive capacity for bone regenerative treatment. To this end, synthetic hydrogels were functionalized with two key components of the extracellular matrix of native bone tissue, i.e. the three-amino acid peptide sequence RGD (which is the principal integrin-binding domain responsible for cell adhesion and survival of anchorage-dependent cells and calcium phosphate (CaP nanoparticles in the form of hydroxyapatite (which are similar to the inorganic phase of bone tissue. Rat bone marrow osteoblast-like cells (OBLCs were encapsulated in four different biomaterials (plain oligo(poly(ethylene glycol fumarate (OPF, RGD-modified OPF, OPF enriched with CaP nanoparticles and RGD-modified OPF enriched with CaP nanoparticles and cell survival, cell spreading, proliferation and mineralized matrix formation were determined via cell viability assay, histology and biochemical analysis for alkaline phosphatase activity and calcium. This study showed that RGD peptide sequences promoted cell spreading in OPF hydrogels and hence play a crucial role in cell survival during the early stage of culture, whereas CaP nanoparticles significantly enhanced cell-mediated hydrogel mineralization. Although cell spreading and proliferation activity were inhibited, the combined effect of RGD peptide sequences and CaP nanoparticles within OPF hydrogel systems elicited a better biological response than that of the individual components. Specifically, both a sustained cell viability and mineralized matrix production mediated by encapsulated OBLCs were observed within these novel biomimetic composite systems.

  14. Evolving the use of peptides as biomaterials components

    Science.gov (United States)

    Collier, Joel H.; Segura, Tatiana

    2012-01-01

    This manuscript is part of a debate on the statement that “the use of short synthetic adhesion peptides, like RGD, is the best approach in the design of biomaterials that guide cell behavior for regenerative medicine and tissue engineering”. We take the position that although there are some acknowledged disadvantages of using short peptide ligands within biomaterials, it is not necessary to discard the notion of using peptides within biomaterials entirely, but rather to reinvent and evolve their use. Peptides possess advantageous chemical definition, access to non-native chemistries, amenability to de novo design, and applicability within parallel approaches. Biomaterials development programs that require such aspects may benefit from a peptide-based strategy. PMID:21515167

  15. Single step 18F-labeling of dimeric cycloRGD for functional PET imaging of tumors in mice

    International Nuclear Information System (INIS)

    Li, Ying; Liu, Zhibo; Lozada, Jerome; Wong, May Q.; Lin, Kuo-Shyan; Yapp, Donald; Perrin, David M.

    2013-01-01

    Introduction: Arylboronates afford rapid aqueous 18 F-labeling via the creation of a highly polar 18 F-aryltrifluoroborate anion ( 18 F-ArBF 3 − ). Hypothesis: Radiosynthesis of an 18 F-ArBF 3 − can be successfully applied to a clinically relevant peptide. To test this hypothesis, we labeled dimeric-cylcoRGD, [c(RGDfK)] 2 E because a) it is molecularly complex and provides a challenging substrate to test the application of this technique, and b) [c(RGDfK)] 2 E has already been labeled via several 18 F-labeling methods which provide for a preliminary comparison. Goal: To validate this labeling method in the context of a complex and clinically relevant tracer to show tumor-specific uptake ex vivo with representative PET images in vivo. Methods: An arylborimidine was conjugated to [c(RGDfK)] 2 E to give the precursor [c(RGDfK)] 2 E-ArB(dan), which was aliquoted and stored at − 20 °C. Aliquots of 10 or 25 nmol, containing only micrograms of precursor, were labeled using relatively low levels of 18 F-activity. Following purification eight mice (pre-blocked/unblocked) with U87M xenograft tumors were injected with [c(RGDfK)] 2 E- 18 F-ArBF 3 − (n = 4) for ex vivo tissue dissection. Two sets of mice (pre-blocked/unblocked) were also imaged with PET–CT (n = 2). Results: The [c(RGDfK)] 2 E-ArB(dan) is converted within 15 min to [c(RGDfK)] 2 E- 18 F-ArBF 3 − in isolated radiochemical yields of ∼ 10% (n = 3) at a minimum effective specific activity of 0.3 Ci/μmol. Biodistribution shows rapid clearance to the bladder via the kidney resulting in high tumor-to-blood and tumor-to-muscle ratios of > 9 and > 6 respectively while pre-blocking with [c(RGDfK)] 2 E showed high tumor specificity. PET imaging showed good contrast between tumor and non-target tissues confirming the biodistribution data. Conclusion: An arylborimidine-RGD peptide is rapidly 18 F-labeled in one step, in good yield, at useful specific activity. Biodistribution studies with blocking controls

  16. RGD-modified liposomes enhance efficiency of aclacinomycin A delivery: evaluation of their effect in lung cancer

    Directory of Open Access Journals (Sweden)

    Feng C

    2015-08-01

    Full Text Available Chan Feng,1,* Xiaoyan Li,2,* Chunyan Dong,1 Xuemei Zhang,1 Xie Zhang,1 Yong Gao11Department of Oncology, Shanghai East Hospital, Tongji University, Shanghai, 2Shanghai Tenth People’s Hospital, Tongji University, Shanghai, People’s Republic of China*These authors contributed equally to this workAbstract: In this study, long-circulating Arg-Gly-Asp (RGD-modified aclacinomycin A (ACM liposomes were prepared by thin film hydration method. Their morphology, particle size, encapsulation efficiency, and in vitro release were investigated. The RGD-ACM liposomes was about 160 nm in size and had the visual appearance of a yellowish suspension. The zeta potential was -22.2 mV and the encapsulation efficiency was more than 93%. The drug-release behavior of the RGD-ACM liposomes showed a biphasic pattern, with an initial burst release and followed by sustained release at a constant rate. After being dissolved in phosphate-buffered saline (pH 7.4 and kept at 4°C for one month, the liposomes did not aggregate and still had the appearance of a milky white colloidal solution. In a pharmacokinetic study, rats treated with RGD-ACM liposomes showed slightly higher plasma concentrations than those treated with ACM liposomes. Maximum plasma concentrations of RGD-ACM liposomes and ACM liposomes were 4,532 and 3,425 ng/mL, respectively. RGD-ACM liposomes had a higher AUC0–∞ (1.54-fold, mean residence time (2.09-fold, and elimination half-life (1.2-fold when compared with ACM liposomes. In an in vivo study in mice, both types of liposomes inhibited growth of human lung adenocarcinoma (A549 cells and markedly decreased tumor size when compared with the control group. There were no obvious pathological tissue changes in any of the treatment groups. Our results indicate that RGD-modified ACM liposomes have a better antitumor effect in vivo than their unmodified counterparts.Keywords: RGD, aclacinomycin A, long-circulating liposomes, pharmacokinetic, tumor

  17. Combination of NRP1-mediated iRGD with 5-fluorouracil suppresses proliferation, migration and invasion of gastric cancer cells.

    Science.gov (United States)

    Zhang, Li; Xing, Yanfeng; Gao, Qi; Sun, Xuejun; Zhang, Di; Cao, Gang

    2017-09-01

    Gastric cancer is one of the most of common cancers in the world. 5-Fluorouracil (5-FU) has been identified as one of the standard first-line chemotherapy drugs for locally advanced or metastatic gastric cancer. However, poor tumor penetration, bad selectivity and toxic side effects are the major limitations for the application of chemotherapy drugs in anticancer therapy. Recently, plenty of studies demonstrate that the novel tumor-homing peptide iRGD could promote the tumor-penetrating capability of chemotherapy drugs in multiple cancers, and neuropilin-1 (NRP1) protein is the critical mediator for iRGD. Here,we found that NRP1 protein expression was significantly up-regulated in gastric cancer tissues and cell lines by Immunohistochemistry and Western blot. And elevated NRP1 was notably associated with tumor differentiation (P=0.021), tumor size (P=0.004), tumor stage(P=0.028), lymph node metastasis(P=0.032), TNM tumor stage (P=0.006) and poorer prognosis. Functionally, the data of Methyl thiazolyl tetrazolium (MTT) assay, Colony formation assay and Transwell assay revealed that NRP1 could facilitate gastric cancer cells proliferation, migration and invasion. Furthermore, iRGD could strengthen the chemotherapy effect of 5-FU on gastric cancer cells through NRP1. Taken together, NPR1 might be a promising tumor target for gastric cancer, and combination of iRGD with 5-FU may be a novel and valuable approach to improving the prognosis of gastric cancer patients. Copyright © 2017. Published by Elsevier Masson SAS.

  18. Enhanced transduction and replication of RGD-fiber modified adenovirus in primary T cells.

    Directory of Open Access Journals (Sweden)

    Sadhak Sengupta

    2011-03-01

    Full Text Available Adenoviruses are often used as vehicles to mediate gene delivery for therapeutic purposes, but their research scope in hematological cells remains limited due to a narrow choice of host cells that express the adenoviral receptor (CAR. T cells, which are attractive targets for gene therapy of numerous diseases, remain resistant to adenoviral infection because of the absence of CAR expression. Here, we demonstrate that this resistance can be overcome when murine or human T cells are transduced with an adenovirus incorporating the RGD-fiber modification (Ad-RGD.A luciferase-expressing replication-deficient Ad-RGD infected 3-fold higher number of activated primary T cells than an adenovirus lacking the RGD-fiber modification in vitro. Infection with replication-competent Ad-RGD virus also caused increased cell cycling, higher E1A copy number and enriched hexon antigen expression in both human and murine T cells. Transduction with oncolytic Ad-RGD also resulted in higher titers of progeny virus and enhanced the killing of T cells. In vivo, 35-45% of splenic T cells were transduced by Ad-RGD.Collectively, our results prove that a fiber modified Ad-RGD successfully transduces and replicates in primary T cells of both murine and human origin.

  19. Body distributioin of RGD-mediated liposome in brain-targeting drug delivery.

    Science.gov (United States)

    Qin, Jing; Chen, DaWei; Hu, Haiyang; Qiao, MingXi; Zhao, XiuLi; Chen, Baoyu

    2007-09-01

    RGD conjugation liposomes (RGD-liposomes) were evaluated for brain-targeting drug delivery. The flow cytometric in vitro study demonstrated that RGD-liposomes could bind to monocytes and neutrophils effectively. Ferulic acid (4-hydroxy-3-methoxycinnamic, FA) was loaded into liposomes. Rats were subjected to intrastriatal microinjections of 100 units of human recombinant IL-1beta to produce brain inflammation and caudal vein injection of three formulations (FA solution, FA liposome and RGD-coated FA liposome). Animals were sacrificed 15, 30, 60 and 120 min after administration to study the body distribution of the FA in the three formulations. HPLC was used to determine the concentration of FA in vivo with salicylic acid as internal standard. The results of body distribution indicated that RGD-coated liposomes could be mediated into the brain with a 6-fold FA concentration compared to FA solution and 3-fold in comparison to uncoated liposome. Brain targeted delivery was achieved and a reduction in dosage might be allowed.

  20. Targeting In-Stent-Stenosis with RGD- and CXCL1-Coated Mini-Stents in Mice.

    Science.gov (United States)

    Simsekyilmaz, Sakine; Liehn, Elisa A; Weinandy, Stefan; Schreiber, Fabian; Megens, Remco T A; Theelen, Wendy; Smeets, Ralf; Jockenhövel, Stefan; Gries, Thomas; Möller, Martin; Klee, Doris; Weber, Christian; Zernecke, Alma

    2016-01-01

    Atherosclerotic lesions that critically narrow the artery can necessitate an angioplasty and stent implantation. Long-term therapeutic effects, however, are limited by excessive arterial remodeling. We here employed a miniaturized nitinol-stent coated with star-shaped polyethylenglycole (star-PEG), and evaluated its bio-functionalization with RGD and CXCL1 for improving in-stent stenosis after implantation into carotid arteries of mice. Nitinol foils or stents (bare metal) were coated with star-PEG, and bio-functionalized with RGD, or RGD/CXCL1. Cell adhesion to star-PEG-coated nitinol foils was unaltered or reduced, whereas bio-functionalization with RGD but foremost RGD/CXCL1 increased adhesion of early angiogenic outgrowth cells (EOCs) and endothelial cells but not smooth muscle cells when compared with bare metal foils. Stimulation of cells with RGD/CXCL1 furthermore increased the proliferation of EOCs. In vivo, bio-functionalization with RGD/CXCL1 significantly reduced neointima formation and thrombus formation, and increased re-endothelialization in apoE-/- carotid arteries compared with bare-metal nitinol stents, star-PEG-coated stents, and stents bio-functionalized with RGD only. Bio-functionalization of star-PEG-coated nitinol-stents with RGD/CXCL1 reduced in-stent neointima formation. By supporting the adhesion and proliferation of endothelial progenitor cells, RGD/CXCL1 coating of stents may help to accelerate endothelial repair after stent implantation, and thus may harbor the potential to limit the complication of in-stent restenosis in clinical approaches.

  1. Peptide-targeted, stimuli-responsive polymersomes for delivering a cancer stemness inhibitor to cancer stem cell microtumors.

    Science.gov (United States)

    Karandish, Fataneh; Froberg, James; Borowicz, Pawel; Wilkinson, John C; Choi, Yongki; Mallik, Sanku

    2018-03-01

    Often cancer relapses after an initial response to chemotherapy because of the tumor's heterogeneity and the presence of progenitor stem cells, which can renew. To overcome drug resistance, metastasis, and relapse in cancer, a promising approach is the inhibition of cancer stemness. In this study, the expression of the neuropilin-1 receptor in both pancreatic and prostate cancer stem cells was identified and targeted with a stimuli-responsive, polymeric nanocarrier to deliver a stemness inhibitor (napabucasin) to cancer stem cells. Reduction-sensitive amphiphilic block copolymers PEG 1900 -S-S-PLA 6000 and the N 3 -PEG 1900 -PLA 6000 were synthesized. The tumor penetrating iRGD peptide-hexynoic acid conjugate was linked to the N 3 -PEG 1900 -PLA 6000 polymer via a Cu 2+ catalyzed "Click" reaction. Subsequently, this peptide-polymer conjugate was incorporated into polymersomes for tumor targeting and tissue penetration. We prepared polymersomes containing 85% PEG 1900 -S-S-PLA 6000 , 10% iRGD-polymer conjugate, and 5% DPPE-lissamine rhodamine dye. The iRGD targeted polymersomes encapsulating the cancer stemness inhibitor napabucasin were internalized in both prostate and pancreatic cancer stem cells. The napabucasin encapsulated polymersomes significantly (p < .05) reduced the viability of both prostate and pancreatic cancer stem cells and decreased the stemness protein expression notch-1 and nanog compared to the control and vesicles without any drug. The napabucasin encapsulated polymersome formulations have the potential to lead to a new direction in prostate and pancreatic cancer therapy by penetrating deeply into the tumors, releasing the encapsulated stemness inhibitor, and killing cancer stem cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Molecular Magnetic Resonance Imaging of Angiogenesis In Vivo using Polyvalent Cyclic RGD-Iron Oxide Microparticle Conjugates

    Science.gov (United States)

    Melemenidis, Stavros; Jefferson, Andrew; Ruparelia, Neil; Akhtar, Asim M; Xie, Jin; Allen, Danny; Hamilton, Alastair; Larkin, James R; Perez-Balderas, Francisco; Smart, Sean C; Muschel, Ruth J; Chen, Xiaoyuan; Sibson, Nicola R; Choudhury, Robin P

    2015-01-01

    Angiogenesis is an essential component of tumour growth and, consequently, an important target both therapeutically and diagnostically. The cell adhesion molecule αvβ3 integrin is a specific marker of angiogenic vessels and the most prevalent vascular integrin that binds the amino acid sequence arginine-glycine-aspartic acid (RGD). Previous studies using RGD-targeted nanoparticles (20-50 nm diameter) of iron oxide (NPIO) for magnetic resonance imaging (MRI) of tumour angiogenesis, have identified a number of limitations, including non-specific extravasation, long blood half-life (reducing specific contrast) and low targeting valency. The aim of this study, therefore, was to determine whether conjugation of a cyclic RGD variant [c(RGDyK)], with enhanced affinity for αvβ3, to microparticles of iron oxide (MPIO) would provide a more sensitive contrast agent for imaging of angiogenic tumour vessels. Cyclic RGD [c(RGDyK)] and RAD [c(RADyK)] based peptides were coupled to 2.8 μm MPIO, and binding efficacy tested both in vitro and in vivo. Significantly greater specific binding of c(RGDyK)-MPIO to S-nitroso-n-acetylpenicillamine (SNAP)-stimulated human umbilical vein endothelial cells in vitro than PBS-treated cells was demonstrated under both static (14-fold increase; P agent in both tumour models (melanoma P < 0.001; colorectal P < 0.0001). Correspondingly, MPIO density per tumour volume assessed immunohistochemically was significantly greater for c(RGDyK)-MPIO than c(RADyK)-MPIO injected animals, in both melanoma (P < 0.05) and colorectal (P < 0.0005) tumours. In both cases, binding of c(RGDyK)-MPIO co-localised with αvβ3 expression. Comparison of RGD-targeted and dynamic contrast enhanced (DCE) MRI assessment of tumour perfusion indicated sensitivity to different vascular features. This study demonstrates specific binding of c(RGDyK)-MPIO to αvβ3 expressing neo-vessels, with marked and quantifiable contrast and rapid clearance of unbound particles from the

  3. Self-assembly of fibronectin mimetic peptide-amphiphile nanofibers

    Science.gov (United States)

    Rexeisen, Emilie Lynn

    Many therapeutic strategies incorporate peptides into their designs to mimic the natural protein ligands found in vivo. A few examples are the short peptide sequences RGD and PHSRN that mimic the primary and synergy-binding domains of the extracellular matrix protein, fibronectin, which is recognized by the cell surface receptor, alpha5beta 1 integrin. Even though scaffold modification with biomimetic peptides remains one of the most promising approaches for tissue engineering, the use of these peptides in therapeutic tissue-engineered products and drug delivery systems available on the commercial market is limited because the peptides are not easily able to mimic the natural protein. The design of a peptide that can effectively target the alpha5beta1 integrin would greatly increase biomimetic scaffold therapeutic potential. A novel peptide containing both the RGD primary binding domain and PHSRN synergy-binding domain for fibronectin joined with the appropriate linker should bind alpha 5beta1 integrin more efficiently and lead to greater cell adhesion over RGD alone. Several fibronectin mimetic peptides were designed and coupled to dialkyl hydrocarbon tails to make peptide-amphiphiles. The peptides contained different linkers connecting the two binding domains and different spacers separating the hydrophobic tails from the hydrophilic headgroups. The peptide-amphiphiles were deposited on mica substrates using the Langmuir-Blodgett technique. Langmuir isotherms indicated that the peptide-amphiphiles that contained higher numbers of serine residues formed a more tightly packed monolayer, but the increased number of serines also made transferring the amphiphiles to the mica substrate more difficult. Atomic force microscopy (AFM) images of the bilayers showed that the headgroups might be bent, forming small divots in the surface. These divots may help expose the PHSRN synergy-binding domain. Parallel studies undertaken by fellow group members showed that human

  4. In vivo endothelization of tubular vascular grafts through in situ recruitment of endothelial and endothelial progenitor cells by RGD-fused mussel adhesive proteins

    International Nuclear Information System (INIS)

    Kang, Tae-Yun; Lee, Jung Ho; Kang, Jo-A; Rhie, Jong-Won; Kim, Bum Jin; Cha, Hyung Joon; Hong, Jung Min; Kim, Byoung Soo; Cho, Dong-Woo

    2015-01-01

    The use of tissue mimics in vivo, including patterned vascular networks, is expected to facilitate the regeneration of functional tissues and organs with large volumes. Maintaining patency of channels in contact with blood is an important issue in the development of a functional vascular network. Endothelium is the only known completely non-thrombogenic material; however, results from treatments to induce endothelialization are inconclusive. The present study was designed to evaluate the clinical applicability of in situ recruitment of endothelial cells/endothelial progenitor cells (EC/EPC) and pre-endothelization using a recombinant mussel adhesive protein fused with arginine–glycine–aspartic acid peptide (MAP-RGD) coating in a model of vascular graft implantation. Microporous polycaprolactone (PCL) scaffolds were fabricated with salt leaching methods and their surfaces were modified with collagen and MAP-RGD. We then evaluated their anti-thrombogenicity with an in vitro hemocompatibility assessment and a 4-week implantation in the rabbit carotid artery. We observed that MAP-RGD coating reduced the possibility of early in vivo graft failure and enhanced re-endothelization by in situ recruitment of EC/EPC (patency rate: 2/3), while endothelization prior to implantation aggravated the formation of thrombosis and/or IH (patency rate: 0/3). The results demonstrated that in situ recruitment of EC/EPC by MAP-RGD could be a promising strategy for vascular applications. In addition, it rules out several issues associated with pre-endothelization, such as cell source, purity, functional modulation and contamination. Further evaluation of long term performance and angiogenesis from the luminal surface may lead to the clinical use of MAP-RGD for tubular vascular grafts and regeneration of large-volume tissues with functional vascular networks. (paper)

  5. Preparation of 177Lu-DOTA/DTPA-Bz-Cys-RGD dimer and biodistribution evaluation in normal mice

    International Nuclear Information System (INIS)

    Sheng Feng; Jia Bing; Wang Fan; He Weiwei; Liu Zhaofei; Zhao Huiyun

    2008-01-01

    177 Lu-DOTA-Bz-Cys-RGD dimer and 177 Lu-DTPA-Bz-Cys-RGD dimer were prepared, and the in vitro and in vivo properties were compared. TLC and HPLC show that the labeling yields of two radiolabeled compounds are more than 95% under optimal conditions (pH=5.0, reacting at 100 degree C for 15-20 min), and the two radiolabeled compounds show pretty good in vitro stability. HPLC analyses and lg P values reveal that lipophilicity of 177 Lu-DOTA-Bz-Cys- RGD dimer is higher than 177 Lu-DTPA-Bz-Cys-RGD dimer. The uptake of 177 Lu-DTPA-Bz-Cys- RGD dimer in other tissues is significantly higher than that of 177 Lu-DOTA-Bz-Cys-RGD dimer at 4 h postinjection, except for blood and spleen. The in vivo stability of 177 Lu-DOTA-Bz-Cys-RGD dimer is much better than 177 Lu-DTPA-Bz-Cys-RGD dimer. Bz-DOTA is an ideal bifunctional chelator for 177 Lu labeling of RGD dimer. (authors)

  6. Discovery and in Vivo Evaluation of Novel RGD-Modified Lipid-Polymer Hybrid Nanoparticles for Targeted Drug Delivery

    Directory of Open Access Journals (Sweden)

    Yinbo Zhao

    2014-09-01

    Full Text Available In the current study, the lipid-shell and polymer-core hybrid nanoparticles (lpNPs modified by Arg–Gly–Asp(RGD peptide, loaded with curcumin (Cur, were developed by emulsification-solvent volatilization method. The RGD-modified hybrid nanoparticles (RGD–lpNPs could overcome the poor water solubility of Cur to meet the requirement of intravenous administration and tumor active targeting. The obtained optimal RGD-lpNPs, composed of PLGA (poly(lactic-co-glycolic acid–mPEG (methoxyl poly(ethylene- glycol, RGD–polyethylene glycol (PEG–cholesterol (Chol copolymers and lipids, had good entrapment efficiency, submicron size and negatively neutral surface charge. The core-shell structure of RGD–lpNPs was verified by TEM. Cytotoxicity analysis demonstrated that the RGD–lpNPs encapsulated Cur retained potent anti-tumor effects. Flow cytometry analysis revealed the cellular uptake of Cur encapsulated in the RGD–lpNPs was increased for human umbilical vein endothelial cells (HUVEC. Furthermore, Cur loaded RGD–lpNPs were more effective in inhibiting tumor growth in a subcutaneous B16 melanoma tumor model. The results of immunofluorescent and immunohistochemical studies by Cur loaded RGD–lpNPs therapies indicated that more apoptotic cells, fewer microvessels, and fewer proliferation-positive cells were observed. In conclusion, RGD–lpNPs encapsulating Cur were developed with enhanced anti-tumor activity in melanoma, and Cur loaded RGD–lpNPs represent an excellent tumor targeted formulation of Cur which might be an attractive candidate for cancer therapy.

  7. Effects of RGD immobilization on light-induced cell sheet detachment from TiO{sub 2} nanodots films

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kui; Wang, Tiantian [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China); Yu, Mengliu [The Affiliated Stomatologic Hospital, Zhejiang University, Hangzhou 310003 (China); The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310003 (China); Wan, Hongping [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China); Lin, Jun [The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310003 (China); Weng, Wenjian, E-mail: wengwj@zju.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China); The Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Wang, Huiming, E-mail: hmwang1960@hotmail.com [The Affiliated Stomatologic Hospital, Zhejiang University, Hangzhou 310003 (China); The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310003 (China)

    2016-06-01

    Light-induced cell detachment is reported to be a safe and effective cell sheet harvest method. In the present study, the effects of arginine–glycine–aspartic acid (RGD) immobilization on cell growth, cell sheet construction and cell harvest through light illumination are investigated. RGD was first immobilized on TiO{sub 2} nanodots films through simple physical adsorption, and then mouse pre-osteoblastic MC3T3-E1 cells were seeded on the films. It was found that RGD immobilization promoted cell adhesion and proliferation. It was also observed that cells cultured on RGD immobilized films showed relatively high level of pan-cadherin. Cells harvested with ultraviolet illumination (365 nm) showed good viability on both RGD immobilized and unmodified TiO{sub 2} nanodot films. Single cell detachment assay showed that cells detached more quickly on RGD immobilized TiO{sub 2} nanodot films. That could be ascribed to the RGD release after UV365 illumination. The current study demonstrated that RGD immobilization could effectively improve both the cellular responses and light-induced cell harvest. - Highlights: • RGD immobilization on TiO{sub 2} nanodots film favors light-induced cell sheet detachment. • Physically adsorbed RGD detaches from the film through ultraviolet illumination. • RGD detachment promotes cells and cell sheets detachment.

  8. Efficient preparation of {sup 99m}Tc(III) '4+1' mixed-ligand complexes for peptide labeling with high specific activity

    Energy Technology Data Exchange (ETDEWEB)

    Kunstler, Jens-Uwe [Biotectid GmbH, Deutscher Platz 5c, 04103 Leipzig (Germany); Seidel, Gesine [Institute of Radiopharmacy, Forschungszentrum Dresden-Rossendorf, P.O. Box 510 119, 01314 Dresden (Germany); Pietzsch, Hans-Jurgen, E-mail: h.j.pietzsch@fzd.d [Institute of Radiopharmacy, Forschungszentrum Dresden-Rossendorf, P.O. Box 510 119, 01314 Dresden (Germany)

    2010-09-15

    An improved labeling procedure for peptides attached to organometallic {sup 99m}Tc(III) '4+1' mixed-ligand complexes in which the radiometal is coordinated by a tripodal tetradentate chelator 2,2',2''-nitrilotriethanethiol (NS{sub 3}) and a monodentate isocyanide ligand is presented. The labeling procedure was evaluated by the synthesis of [{sup 99m}Tc(NS{sub 3})(L2-RGD)]. The containing radiopharmaceutically interesting RGD-peptide cyclo[Arg-Gly-Asp-D-Tyr-Lys] was modified with 4-isocyanobutanoic acid (L2) as linker conjugated to N{sup 6}-Lys to get the monodentate ligand L2-RGD. The structural identity of the {sup 99m}Tc-conjugate was confirmed by comparison to a Re reference compound. The Tc- and Re-conjugates had matching retention times under identical HPLC conditions. The {sup 99m}Tc-labeling was performed in a novel one-step procedure using the eluate of a {sup 99}Mo/{sup 99m}Tc generator, NS{sub 3}, the isocyanide modified peptide, SnCl{sub 2}, Na{sub 2}EDTA, mannitol and ascorbic acid in the reaction mixture. Using optimized reagents it is possible to label 50 nmol peptide with {sup 99m}Tc within 60 min at room temperature with a radiochemical yield higher than 95% and a specific activity of {approx}20 GBq/{mu}mol.

  9. Synthesis and characterization of a new class of glycosylated porphyrins bearing the RGD moiety and their application in photodynamic therapy

    International Nuclear Information System (INIS)

    Chaleix, Vincent

    2003-01-01

    The use of porphyrins and analogues as photosensitisers together with visible light is a new treatment of tumors (photodynamic therapy, PDT). Carbohydrate-substituted porphyrins are in this domain very promising compounds. In addition, it is known that endothelial cells of the neo-vascularisation in tumors express αVβ3 integrin. Extracellular domains of this transmembrane glycoprotein are able to bind components of the extracellular matrix (ECM) and more precisely the sequence Arg-Gly-Asp. With the aim of their utilization in photodynamic therapy of cancers, we describe the synthesis and characterization (UV-Visible, mass, NMR) of new glucosylated porphyrins bearing the RGD moiety. The first synthesised compounds were derived from tritolyl and tri-glucosyl-aryl-porphyrins where the peptidic moiety is linked to the phenyl group by a spacer arm by means of a solid phase reaction.. The second series consists of glucosylated porphyrin derivatives bearing a cyclical unsaturated pentapeptide including RGD sequence, obtained by ring closing metathesis in solid phase. We have also synthesized a dimer in which the two glucosylated porphyrins are linked by the RGD sequence. These compounds produced 1 O 2 and photo-cyto-toxicities against K562 leukemia cell line were favourably compared to Photofrin II R . Due to their sensitising abilities, these compounds are of considerable interest for photodynamic therapy. (author) [fr

  10. Effects on in vitro and in vivo angiogenesis induced by small peptides carrying adhesion sequences.

    Science.gov (United States)

    Conconi, Maria Teresa; Ghezzo, Francesca; Dettin, Monica; Urbani, Luca; Grandi, Claudio; Guidolin, Diego; Nico, Beatrice; Di Bello, Carlo; Ribatti, Domenico; Parnigotto, Pier Paolo

    2010-07-01

    It is well known that tumor growth is strictly dependent on neo-vessel formation inside the tumor mass and that cell adhesion is required to allow EC proliferation and migration inside the tumor. In this work, we have evaluated the in vitro and in vivo effects on angiogenesis of some peptides, originally designed to promote cell adhesion on biomaterials, containing RGD motif mediating cell adhesion via integrin receptors [RGD, GRGDSPK, and (GRGDSP)(4)K] or the heparin-binding sequence of human vitronectin that interacts with HSPGs [HVP(351-359)]. Cell adhesion, proliferation, migration, and capillary-like tube formation in Matrigel were determined on HUVECs, whereas the effects on in vivo angiogenesis were evaluated using the CAM assay. (GRGDSP)(4)K linear sequence inhibited cell adhesion, decreased cell proliferation, migration and morphogenesis in Matrigel, and induced anti-angiogenic responses on CAM at higher degree than that determined after incubation with RGD or GRGDSPK. Moreover, it counteracted both in vitro and in vivo the pro-angiogenic effects induced by the Fibroblast growth factor (FGF-2). On the other hand, HVP was not able to affect cell adhesion and appeared less effective than (GRGDSP)(4)K. Our data indicate that the activity of RGD-containing peptides is related to their adhesive properties, and their effects are modulated by the number of cell adhesion motifs and the aminoacidic residues next to these sequences. The anti-angiogenic properties of (GRGDSP)(4)K seem to depend on its interaction with integrins, whereas the effects of HVP may be partially due to an impairment of HSPGs/FGF-2.

  11. Micropattern printing of adhesion, spreading, and migration peptides on poly(tetrafluoroethylene) films to promote endothelialization.

    Science.gov (United States)

    Gauvreau, Virginie; Laroche, Gaétan

    2005-01-01

    We report here the development of an original multistep micropatterning technique for printing peptides on surfaces, based on the ink-jet printer technology. Contrary to most micropatterning methods used nowadays, this technique is advantageous because it allows displaying 2D-arrays of multiple biomolecules. Moreover, this low cost procedure allies the advantages of computer-aided design with high flexibility and reproducibility. A Hewlett-Packard printer was modified to print peptide solutions, and Adobe Illustrator was used as the graphic-editing software to design high-resolution checkerboard-like micropatterns. In a first step, PTFE films were treated with ammonia plasma to introduce amino groups on the surface. These chemical functionalities were reacted with heterobifunctional cross-linker sulfo-succinimidyl 4-(N-maleimidomethyl)cycloexane-1-carboxylate (S-SMCC) to allow the subsequent surface covalent conjugation of various cysteine-modified peptides to the polymer substrate. These peptidic molecules containing RGD and WQPPRARI sequences were selected for their adhesive, spreading, and migrational properties toward endothelial cells. On one hand, our data demonstrated that the initial cell adhesion does not depend on the chemical structure and combination of the peptides covalently bonded either through conventional conjugation or micropatterning. On the other hand, spreading and migration of endothelial cells is clearly enhanced while coconjugating the GRGDS peptide in conjunction with WQPPRARI. This behavior is further improved by micropatterning these peptides on specific areas of the polymer surface.

  12. Imaging Tumor Vasculature Noninvasively with Positron Emission Tomography and RGD Peptides Labeled with Copper 64 Using the Bifunctonal Chelates DOTA, Oxo-DO3A. and PCTA

    Directory of Open Access Journals (Sweden)

    Donald T.T. Yapp

    2013-06-01

    Full Text Available Two novel bifunctional chelates, 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15,11,13-triene-3,6,9-triacetic acid (PCTA and 1-oxa-4,7,10-triazacyclododecane-4,7,10-triacetic acid (Oxo-DO3A, were found to radiolabel antibodies with copper 64 (64Cu well for positron emission tomography (PET. In this study, the same chelators were used to radiolabel peptides with 64Cu for PET imaging of angiogenesis. PCTA, Oxo-DO3A, and 1,4,7,10-tetraazacyclododecane-N,N‘,N“,N”’-tetraacetic acid (DOTA were conjugated to cyclic-(RGDyK, and their binding affinities were confirmed. Conditions for 64Cu radiolabeling were optimized for maximum yield and specific activity. The in vitro stability of the radiolabeled compounds was challenged with serum incubation. PET studies were carried out in a non-αvβ3-expressing tumor model to evaluate the compounds' specificity for proliferating tumor vasculature and their in vivo pharmacokinetics. The PCTA and Oxo-DO3A bioconjugates were labeled with 64Cu at higher effective specific activity and radiochemical yield than the DOTA bioconjugate. In the imaging studies, all the 64Cu bioconjugates could be used to visualize the tumor and the radiotracer uptake was blocked with cyclic-(RGDyK. Target uptake of each bioconjugate was similar, but differences in other tissues were observed. 64Cu-PCTA-RGD showed the best clearance from nontarget tissue and the highest tumor to nontarget ratios. PCTA was the most promising bifunctional chelate for 64Cu peptide imaging and warrants further investigation.

  13. Synovitis in mice with inflammatory arthritis monitored with quantitative analysis of dynamic contrast-enhanced NIR fluorescence imaging using iRGD-targeted liposomes as fluorescence probes

    Directory of Open Access Journals (Sweden)

    Wu H

    2018-03-01

    Full Text Available Hao Wu,1,2,* Haohan Wu,1,2,* Yanni He,1 Zhen Gan,2 Zhili Xu,1,2 Meijun Zhou,1,2 Sai Liu,1,2 Hongmei Liu1 1Department of Ultrasonography, Guangdong Second Provincial General Hospital Affiliated to Southern Medical University, Guangzhou, China; 2Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China *These authors contributed equally to this work Background: Rheumatoid arthritis (RA is a common inflammatory disorder characterized primarily by synovitis and pannus formation in multiple joints, causing joints destruction and irreversible disability in most cases. Early diagnosis and effective therapy monitoring of RA are of importance for achieving the favorable prognosis. Methods: We first prepared the targeted fluorescence probes, and then explored the feasibility of near-infrared (NIR fluorescence molecular imaging to detect and evaluate the RA via the targeted fluorescence probes by quantitative analysis in this study. Results: The targeted fluorescence probes (indocyanine green-liposomes decorated with iRGD peptide [iLPs] was successfully prepared. The quantitative analysis found that strong fluorescence signal was detected in inflamed paws and the fluorescence signal in iLPs group was 3.03-fold higher than that in non-targeted (indocyanine green-liposomes decorated without iRGD peptide [LPs] group (P<0.01 at 15 min after injection, whereas the fluorescence signal from iLPs signal can almost not be observed in the non-inflamed paws, showing the high sensitivity and accuracy for arthritis by the NIR fluorescence imaging based on iLPs. Conclusion: The NIR fluorescence imaging by iLPs may facilitate improved arthritis diagnosis and early assessment of the disease progression by providing an in vivo characterization of angiogenesis in inflammatory joint diseases. Keywords: rheumatoid arthritis, synovitis, diagnosis, near-infrared fluorescence imaging, iRGD-targeted probes

  14. Evaluation of technetium-99M labeled RGD-containing peptide as potential tumor imaging agents in tumor-bearing mice

    International Nuclear Information System (INIS)

    Hu Silong; Zeng Jun; Zhang Lihua

    2004-01-01

    Integrins (especially α v β 3 ) play a important role in angiogenesis, growth and metastasis of a solid tumor. Targeting tumor with radiolabeled ligands of the α V β 3 integrin may provide information about the receptor status and enable specific therapeutic strategy. A tripeptidic sequence Arg-Gly-Asp (RGD) is often the primary site of recognition by integrins. The aim of this study examine 99m Tc-labeled elevenfold peptide (GRGDSRGDSCY, GY11) that target the α V β 3 integrin to determine if this agent target tumors for diagnostic imaging and/or targeted radiotherapy of cancer. Methods: GY11 was radiolabelled with 99 Tc m via cystine residue by means of stannous chloride. 99 Tc m -GY11 was injected through tail vein into nude mice bearing A375 human melanoma. Biodistribution was investigated at 1,2,4 and 6 hours after injection. Percentage injected dose/gram of tissue (%ID/g) and tumor/non-tumor ratios were calculated. Planar images were acquired with SPECT at 1,2,4,6hrs, respectively. Results: 99 Tc m -GY11 was rapidly cleared from blood and excreted predominantly from the kidney. Tumor uptake at 2h postinjection was 3.1%ID/g. The ratios of tumor/blood and tumor/muscle increased from 0.9-6.2, 4.3-13.5 from 1-6hrs postinjection, respectively. Planar images confirmed that tumor could be visualized at 4h after administration of 99 Tc m -GY11. Conclusion: The results suggest that 99 Tc m -GY11 is a promising compound for noninvasive determining the α V β 3 integrin status. 99 Tc m -GY11 SPECT may be useful to imaging α V β 3 -positive tumor and also guide proper utility of α V β 3 antagonist therapy and radionuclide therapy for cancer. (authors)

  15. New derivative of staphylokinase SAK-RGD-K2-Hirul exerts thrombolytic effects in the arterial thrombosis model in rats.

    Science.gov (United States)

    Szemraj, Janusz; Zakrzeska, Agnieszka; Brown, George; Stankiewicz, Adrian; Gromotowicz, Anna; Grędziński, Tomasz; Chabielska, Ewa

    2011-01-01

    SAK-RGD-K2-Hir and SAK-RGD-K2-Hirul are recombinant proteins that are derivatives of r-SAK (recombinant staphylokinase). They are characterized by their fibrin-specific plasminogen activation properties and their antithrombin and antiplatelet activities. The difference between these proteins is the presence of the antithrombotic fragment (hirudin or hirulog) in the C-terminal portion of the r-SAK. The aim of the present study was to examine the thrombolytic potentials of SAK-RGD-K2-Hir and SAK-RGD-K2-Hirul in an electrically induced carotid artery thrombosis model in rats and to compare the potentials to that of r-SAK. We determined that a bolus injection of SAK-RGD-K2-Hirul was more effective than one of r-SAK in the improvement and maintenance of carotid patency and in arterial thrombus weight reduction; however, it had the same potency as SAK-RGD-K2-Hir. The bleeding time, prothrombin time and activated partial thromboplastin time were significantly prolonged in the animals that were treated with either dose (1.5 or 3.0 mg/kg) of SAK-RGD-K2-Hir or SAK-RGD-K2-Hirul, whereas no changes were observed in the plasma fibrinogen concentration or the α2 plasmin inhibitor level. r-SAK alone did not change the bleeding time or coagulation parameters. In conclusion, our findings demonstrate the thrombolytic activity of intravenous bolus injection of the novel thrombolytic agent SAK-RGD-K2-Hirul in rats. Although this protein compares favorably with r-SAK, we were unable to show the presence of any beneficial effects of SAK-RGD-K2-Hirul over those of SAK-RGD-K2-Hir. Furthermore, our results suggest that high doses of SAK-RGD-K2-Hirul bear the risk of bleeding.

  16. High affinity recognition of a Phytophthora protein by Arabidopsis via an RGD motif

    NARCIS (Netherlands)

    Senchou, V.; Weide, R.L.; Carrasco, A.; Bouyssou, H.; Pont-Lezica, R.; Govers, F.; Canut, H.

    2004-01-01

    The RGD tripeptide sequence, a cell adhesion motif present in several extracellular matrix proteins of mammalians, is involved in numerous plant processes. In plant-pathogen interactions, the RGD motif is believed to reduce plant defence responses by disrupting adhesions between the cell wall and

  17. 44Sc for labeling of DOTA- and NODAGA-functionalized peptides: preclinical in vitro and in vivo investigations.

    Science.gov (United States)

    Domnanich, Katharina A; Müller, Cristina; Farkas, Renata; Schmid, Raffaella M; Ponsard, Bernard; Schibli, Roger; Türler, Andreas; van der Meulen, Nicholas P

    2017-01-01

    Recently, 44 Sc (T 1/2  = 3.97 h, Eβ + av  = 632 keV, I = 94.3 %) has emerged as an attractive radiometal candidate for PET imaging using DOTA-functionalized biomolecules. The aim of this study was to investigate the potential of using NODAGA for the coordination of 44 Sc. Two pairs of DOTA/NODAGA-derivatized peptides were investigated in vitro and in vivo and the results obtained with 44 Sc compared with its 68 Ga-labeled counterparts.DOTA-RGD and NODAGA-RGD, as well as DOTA-NOC and NODAGA-NOC, were labeled with 44 Sc and 68 Ga, respectively. The radiopeptides were investigated with regard to their stability in buffer solution and under metal challenge conditions using Fe 3+ and Cu 2+ . Time-dependent biodistribution studies and PET/CT imaging were performed in U87MG and AR42J tumor-bearing mice. Both RGD- and NOC-based peptides with a DOTA chelator were readily labeled with 44 Sc and 68 Ga, respectively, and remained stable over at least 4 half-lives of the corresponding radionuclide. In contrast, the labeling of NODAGA-functionalized peptides with 44 Sc was more challenging and the resulting radiopeptides were clearly less stable than the DOTA-derivatized matches. 44 Sc-NODAGA peptides were clearly more susceptible to metal challenge than 44 Sc-DOTA peptides under the same conditions. Instability of 68 Ga-labeled peptides was only observed if they were coordinated with a DOTA in the presence of excess Cu 2+ . Biodistribution data of the 44 Sc-labeled peptides were largely comparable with the data obtained with the 68 Ga-labeled counterparts. It was only in the liver tissue that the uptake of 68 Ga-labeled DOTA compounds was markedly higher than for the 44 Sc-labeled version and this was also visible on PET/CT images. The 44 Sc-labeled NODAGA-peptides showed a similar tissue distribution to those of the DOTA peptides without any obvious signs of in vivo instability. Although DOTA revealed to be the preferred chelator for stable coordination of 44

  18. RGD(F/S/V-Dex: towards the development of novel, effective, and safe glucocorticoids

    Directory of Open Access Journals (Sweden)

    Jiang X

    2016-03-01

    Full Text Available Xueyun Jiang,1 Ming Zhao,1,2 Yuji Wang,1 Haimei Zhu,1 Shurui Zhao,1 Jianhui Wu,1 Yuanbo Song,3 Shiqi Peng1 1Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China; 2Faculty of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan; 3Guangxi Pusen Biotechnology Co. Ltd., Nanning, Guangxi, People’s Republic of China Abstract: Dexamethasone (Dex is an effective glucocorticoid in treating inflammation and preventing rejection reaction. However, the side effects limit its clinical application. To improve its druggable profile, the conjugates of RGD-peptide-modified Dex were presented and their enhanced anti-inflammation activity, minimized osteoporotic action, and nanoscaled assembly were explored. (RGD stands for Arg-Gly-Asp. Standard single letter biochemical abbreviations for amino acids have been used throughout this paper. In respect of the rejection reaction, the survival time of the implanted myocardium of the mice treated with 1.43 µmol/kg/d of the conjugates for 15 consecutive days was significantly longer than that of the mice treated with 2.5 µmol/kg/d of Dex, and the conjugates, but not Dex, exhibited no toxic action. At a single dose of 14.3 µmol/kg (100 times minimal effective dose, 0.143 µmol/kg, the conjugates induced no liver, kidney, or systemic toxicity. At the dose of 1.43 µmol/kg, the conjugates, but not Dex, prolonged the bleeding time of the mice, and inhibited the thrombosis of the rats. In water and rat plasma, the conjugates formed nanoparticles of 14–250 and 101–166 nm in diameter, respectively. Since the nanoparticles of ~100 nm in size cannot be entrapped by macrophages in the circulation, RGDF-Dex would particularly be worthy

  19. Bromine isotopic signature facilitates de novo sequencing of peptides in free-radical-initiated peptide sequencing (FRIPS) mass spectrometry.

    Science.gov (United States)

    Nam, Jungjoo; Kwon, Hyuksu; Jang, Inae; Jeon, Aeran; Moon, Jingyu; Lee, Sun Young; Kang, Dukjin; Han, Sang Yun; Moon, Bongjin; Oh, Han Bin

    2015-02-01

    We recently showed that free-radical-initiated peptide sequencing mass spectrometry (FRIPS MS) assisted by the remarkable thermochemical stability of (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) is another attractive radical-driven peptide fragmentation MS tool. Facile homolytic cleavage of the bond between the benzylic carbon and the oxygen of the TEMPO moiety in o-TEMPO-Bz-C(O)-peptide and the high reactivity of the benzylic radical species generated in •Bz-C(O)-peptide are key elements leading to extensive radical-driven peptide backbone fragmentation. In the present study, we demonstrate that the incorporation of bromine into the benzene ring, i.e. o-TEMPO-Bz(Br)-C(O)-peptide, allows unambiguous distinction of the N-terminal peptide fragments from the C-terminal fragments through the unique bromine doublet isotopic signature. Furthermore, bromine substitution does not alter the overall radical-driven peptide backbone dissociation pathways of o-TEMPO-Bz-C(O)-peptide. From a practical perspective, the presence of the bromine isotopic signature in the N-terminal peptide fragments in TEMPO-assisted FRIPS MS represents a useful and cost-effective opportunity for de novo peptide sequencing. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Scanning electron microscopy and swelling test of shrimp shell chitosan and chitosan-RGD scaffolds

    Science.gov (United States)

    Mandacan, M. C.; Yuniastuti, M.; Amir, L. R.; Idrus, E.; Suniarti, D. F.

    2017-08-01

    Shrimp shell chitosan and chitosan-RGD scaffold membranes are produced to be biocompatible with tissue engineering. Nonetheless, their architectural properties have not yet been studied. Analyze the architectural properties of chitosan and chitosan-RGD scaffolds. Analyze pore count and size, interpore distance, and porosity (using SEM testing and ImageJ analysis) and water absorption (using a swelling test). The properties of the chitosan and chitosan-RGD scaffolds were as follows, respectively. The pore counts were 225 and 153; pore size, 171.4 μam and 180.2 μam interpore distance, 105.7 μam and 101.4 μam porosity, 22% and 10.2%; and water absorption, 9.1 mgH2O/mgScaffold and 19.3 mgH2O/mgScaffold. The shrimp shell chitosan-RGD membrane scaffold was found to have architectural properties that make it more conducive to use in tissue engineering.

  1. Remineralization of initial enamel caries in vitro using a novel peptide based on amelogenin

    Science.gov (United States)

    Li, Danxue; Lv, Xueping; Tu, Huanxin; Zhou, Xuedong; Yu, Haiyang; Zhang, Linglin

    2015-09-01

    Dental caries is the most common oral disease with high incidence, widely spread and can seriously affect the health of oral cavity and the whole body. Current caries prevention measures such as fluoride treatment, antimicrobial agents, and traditional Chinese herbal, have limitations to some extent. Here we design and synthesize a novel peptide based on the amelogenin, and assess its ability to promote the remineralization of initial enamel caries lesions. We used enamel blocks to form initial lesions, and then subjected to 12-day pH cycling in the presence of peptide, NaF and HEPES buffer. Enamel treated with peptide or NaF had shallower, narrower lesions, thicker remineralized surfaces and less mineral loss than enamel treated with HEPES. This peptide can promote the remineralization of initial enamel caries and inhibit the progress of caries. It is a promising anti-caries agent with various research prospects and practical application value.

  2. Biomolecular modification of zirconia surfaces for enhanced biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Shih-Kuang; Hsu, Hsueh-Chuan [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan, ROC (China); Ho, Wen-Fu [Department of Chemical and Materials Engineering, National University of Kaohsiung, Taiwan, ROC (China); Yao, Chun-Hsu [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40402, Taiwan, ROC (China); Chang, Pai-Ling [Taoyuan General Hospital, Taoyuan 33004, Taiwan, ROC (China); Wu, Shih-Ching, E-mail: scwu@ctust.edu.tw [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan, ROC (China)

    2014-12-01

    Yttria-tetragonal zirconia polycrystal (Y-TZP) is a preferred biomaterial due to its good mechanical properties. In order to improve the biocompatibility of zirconia, RGD-peptide derived from extracellular matrix proteins was employed to modify the surface of Y-TZP to promote cell adhesion in this study. The surface of Y-TZP specimens was first modified using a hydrothermal method for different lengths of time. The topographies of modified Y-TZP specimens were analyzed by contact angle, XRD, FTIR, AFM, and FE-SEM. The mechanical properties were evaluated using Vickers hardness and three point bending strength. Then, the RGD-peptide was immobilized on the surface of the Y-TZP by chemical treatment. These RGD-peptide immobilized Y-TZP specimens were characterized by FTIR and AFM, and then were cocultured with MG-63 osteoblast cells for biocompatibility assay. The cell morphology and proliferation were evaluated by SEM, WST-1, and ALP activity assay. The XRD results indicated that the phase transition, from tetragonal phase to monoclinic phase, was increased with a longer incubation time of hydrothermal treatment. However, there were no significant differences in mechanical strengths after RGD-peptide was successfully grafted onto the Y-TZP surface. The SEM images showed that the MG-63 cells appeared polygonal, spindle-shaped, and attached on the RGD-peptide immobilized Y-TZP. The proliferation and cellular activities of MG-63 cells on the RGD-peptide immobilized Y-TZP were better than that on the unmodified Y-TZP. From the above results, the RGD-peptide can be successfully grafted onto the hydrothermal modified Y-TZP surface. The RGD-peptide immobilized Y-TZP can increase cell adhesion, and thus, improve the biocompatibility of Y-TZP. - Highlights: • Covalent bonding between peptide and Y-TZP was proposed. • Stable biomimetic structures produced on the surface of zirconia. • The biocompatibility was improved.

  3. Triazole RGD antagonist reverts TGFβ1-induced endothelial-to-mesenchymal transition in endothelial precursor cells.

    Science.gov (United States)

    Bianchini, Francesca; Peppicelli, Silvia; Fabbrizzi, Pierangelo; Biagioni, Alessio; Mazzanti, Benedetta; Menchi, Gloria; Calorini, Lido; Pupi, Alberto; Trabocchi, Andrea

    2017-01-01

    Fibrosis is the dramatic consequence of a dysregulated reparative process in which activated fibroblasts (myofibroblasts) and Transforming Growth Factor β1 (TGFβ1) play a central role. When exposed to TGFβ1, fibroblast and epithelial cells differentiate in myofibroblasts; in addition, endothelial cells may undergo endothelial-to-mesenchymal transition (EndoMT) and actively participate to the progression of fibrosis. Recently, the role of αv integrins, which recognize the Arg-Gly-Asp (RGD) tripeptide, in the release and signal transduction activation of TGFβ1 became evident. In this study, we present a class of triazole-derived RGD antagonists that interact with αvβ3 integrin. Above different compounds, the RGD-2 specifically interferes with integrin-dependent TGFβ1 EndoMT in Endothelial Colony-Forming Cells (ECPCs) derived from circulating Endothelial Precursor Cells (ECPCs). The RGD-2 decreases the amount of membrane-associated TGFβ1, and reduces both ALK5/TGFβ1 type I receptor expression and Smad2 phosphorylation in ECPCs. We found that RGD-2 antagonist reverts EndoMT, reducing α-smooth muscle actin (α-SMA) and vimentin expression in differentiated ECPCs. Our results outline the critical role of integrin in fibrosis progression and account for the opportunity of using integrins as target for anti-fibrotic therapeutic treatment.

  4. Functional characterization of six aspartate (D) recombinant mojastin mutants (r-Moj): A second aspartate amino acid carboxyl to the RGD in r-Moj-D_ peptides is not sufficient to induce apoptosis of SK-Mel-28 cells.

    Science.gov (United States)

    Ramos, Carla J; Gutierrez, Daniel A; Aranda, Ana S; Koshlaychuk, Melissa A; Carrillo, David A; Medrano, Rafael; McBride, Terri D; U, Andrew; Medina, Stephanie M; Lombardo, Melissa C; Lucena, Sara E; Sanchez, Elda E; Soto, Julio G

    2016-08-01

    Disintegrins are small peptides produced in viper venom that act as integrin antagonists. When bound to integrins, disintegrins induce altered cellular behaviors, such as apoptotic induction. Disintegrins with RGDDL or RGDDM motifs induce apoptosis of normal and cancer cells. We hypothesized that a second aspartate (D) carboxyl to the RGD is sufficient to induce apoptosis. Five recombinant mojastin D mutants were produced by site-directed mutagenesis (r-Moj-DA, r-Moj-DG, r-Moj-DL, r-Moj-DN, and r-Moj-DV). Stable αv integrin knockdown and shRNA scrambled control SK-Mel-28 cell lines were produced to test a second hypothesis: r-Moj-D_ peptides bind to αv integrin. Only r-Moj-DL, r-Moj-DM, and r-Moj-DN induced apoptosis of SK-Mel-28 cells (at 29.4%, 25.6%, and 36.2%, respectively). Apoptotic induction was significantly reduced in SK-Mel-28 cells with a stable αv integrin knockdown (to 2%, 17%, and 2%, respectively), but not in SK-Mel-28 cells with a stable scrambled shRNA. All six r-Moj-D_ peptides inhibited cell proliferation; ranging from 49.56% (r-Moj-DN) to 75.6% (r-Moj-DA). Cell proliferation inhibition by r-Moj-D_ peptides was significantly reduced in SK-Mel-28 cells with a stable αv integrin knockdown. All six r-Moj-D_ peptides inhibited SK-Mel-28 cell migration at high levels (69%-100%). As a consequence, rac-1 mRNA expression levels were significantly reduced as early as 1 h after treatment, suggesting that rac-1 is involved in the cell migration activity of SK-Mel-28. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Improvements of RGD3 TLD reader

    International Nuclear Information System (INIS)

    Zhao Jianxing; Wang Jiaqi; Li Yuanfang; Wu Furong; Xiao Wuyun

    1999-01-01

    The author summarized the main features of the improved RGD3 TLD reader. Through a large number of experiments some persuasive data are obtained, which show that an remarkable improvement has been achieved, especially in its stability to the standard illuminates, data dispersivity, and effectiveness to glow curves analysis. Working with the newly developed data processing software, the comprehensive performance of the whole system will be enhanced greatly

  6. Synthesis and Bioevaluation of Iodine-131 Directly Labeled Cyclic RGD-PEGylated Gold Nanorods for Tumor-Targeted Imaging

    Directory of Open Access Journals (Sweden)

    Yingying Zhang

    2017-01-01

    Full Text Available Introduction. Radiolabeled gold nanoparticles play an important role in biomedical application. The aim of this study was to prepare iodine-131 (131I-labeled gold nanorods (GNRs conjugated with cyclic RGD and evaluate its biological characteristics for targeted imaging of integrin αvβ3-expressing tumors. Methods. HS-PEG(5000-COOH molecules were applied to replace CTAB covering the surface of bare GNRs for better biocompatibility, and c(RGDfK peptides were conjugated onto the carboxyl terminal of GNR-PEG-COOH via EDC/NHS coupling reactions. The nanoconjugate was characterized, and 131I was directly tagged on the surface of GNRs via AuI bonds for SPECT/CT imaging. We preliminarily studied the characteristics of the probe and its feasibility for tumor-targeting SPECT/CT imaging. Results. The [131I]GNR-PEG-cRGD probe was prepared in a simple and rapid manner and was stable in both PBS and fetal bovine serum. It targeted selectively and could be taken up by tumor cells mainly via integrin αvβ3-receptor-mediated endocytosis. In vivo imaging, biodistribution, and autoradiography results showed evident tumor uptake in integrin αvβ3-expressing tumors. Conclusions. These promising results showed that this smart nanoprobe can be used for angiogenesis-targeted SPECT/CT imaging. Furthermore, the nanoprobe possesses a remarkable capacity for highly efficient photothermal conversion in the near-infrared region, suggesting its potential as a multifunctional theranostic agent.

  7. Rat Strain Ontology: structured controlled vocabulary designed to facilitate access to strain data at RGD.

    Science.gov (United States)

    Nigam, Rajni; Munzenmaier, Diane H; Worthey, Elizabeth A; Dwinell, Melinda R; Shimoyama, Mary; Jacob, Howard J

    2013-11-22

    The Rat Genome Database (RGD) ( http://rgd.mcw.edu/) is the premier site for comprehensive data on the different strains of the laboratory rat (Rattus norvegicus). The strain data are collected from various publications, direct submissions from individual researchers, and rat providers worldwide. Rat strain, substrain designation and nomenclature follow the Guidelines for Nomenclature of Mouse and Rat Strains, instituted by the International Committee on Standardized Genetic Nomenclature for Mice. While symbols and names aid in identifying strains correctly, the flat nature of this information prohibits easy search and retrieval, as well as other data mining functions. In order to improve these functionalities, particularly in ontology-based tools, the Rat Strain Ontology (RS) was developed. The Rat Strain Ontology (RS) reflects the breeding history, parental background, and genetic manipulation of rat strains. This controlled vocabulary organizes strains by type: inbred, outbred, chromosome altered, congenic, mutant and so on. In addition, under the chromosome altered category, strains are organized by chromosome, and further by type of manipulations, such as mutant or congenic. This allows users to easily retrieve strains of interest with modifications in specific genomic regions. The ontology was developed using the Open Biological and Biomedical Ontology (OBO) file format, and is organized on the Directed Acyclic Graph (DAG) structure. Rat Strain Ontology IDs are included as part of the strain report (RS: ######). As rat researchers are often unaware of the number of substrains or altered strains within a breeding line, this vocabulary now provides an easy way to retrieve all substrains and accompanying information. Its usefulness is particularly evident in tools such as the PhenoMiner at RGD, where users can now easily retrieve phenotype measurement data for related strains, strains with similar backgrounds or those with similar introgressed regions. This

  8. The in vivo therapeutic efficacy of the oncolytic adenovirus Delta24-RGD is mediated by tumor-specific immunity.

    Directory of Open Access Journals (Sweden)

    Anne Kleijn

    Full Text Available The oncolytic adenovirus Delta24-RGD represents a new promising therapeutic agent for patients with a malignant glioma and is currently under investigation in clinical phase I/II trials. Earlier preclinical studies showed that Delta24-RGD is able to effectively lyse tumor cells, yielding promising results in various immune-deficient glioma models. However, the role of the immune response in oncolytic adenovirus therapy for glioma has never been explored. To this end, we assessed Delta24-RGD treatment in an immune-competent orthotopic mouse model for glioma and evaluated immune responses against tumor and virus. Delta24-RGD treatment led to long-term survival in 50% of mice and this effect was completely lost upon administration of the immunosuppressive agent dexamethasone. Delta24-RGD enhanced intra-tumoral infiltration of F4/80+ macrophages, CD4+ and CD8+ T-cells, and increased the local production of pro-inflammatory cytokines and chemokines. In treated mice, T cell responses were directed to the virus as well as to the tumor cells, which was reflected in the presence of protective immunological memory in mice that underwent tumor rechallenge. Together, these data provide evidence that the immune system plays a vital role in the therapeutic efficacy of oncolytic adenovirus therapy of glioma, and may provide angles to future improvements on Delta24-RGD therapy.

  9. Novel peptide-based platform for the dual presentation of biologically active peptide motifs on biomaterials.

    Science.gov (United States)

    Mas-Moruno, Carlos; Fraioli, Roberta; Albericio, Fernando; Manero, José María; Gil, F Javier

    2014-05-14

    Biofunctionalization of metallic materials with cell adhesive molecules derived from the extracellular matrix is a feasible approach to improve cell-material interactions and enhance the biointegration of implant materials (e.g., osseointegration of bone implants). However, classical biomimetic strategies may prove insufficient to elicit complex and multiple biological signals required in the processes of tissue regeneration. Thus, newer strategies are focusing on installing multifunctionality on biomaterials. In this work, we introduce a novel peptide-based divalent platform with the capacity to simultaneously present distinct bioactive peptide motifs in a chemically controlled fashion. As a proof of concept, the integrin-binding sequences RGD and PHSRN were selected and introduced in the platform. The biofunctionalization of titanium with this platform showed a positive trend towards increased numbers of cell attachment, and statistically higher values of spreading and proliferation of osteoblast-like cells compared to control noncoated samples. Moreover, it displayed statistically comparable or improved cell responses compared to samples coated with the single peptides or with an equimolar mixture of the two motifs. Osteoblast-like cells produced higher levels of alkaline phosphatase on surfaces functionalized with the platform than on control titanium; however, these values were not statistically significant. This study demonstrates that these peptidic structures are versatile tools to convey multiple biofunctionality to biomaterials in a chemically defined manner.

  10. Fast and versatile microwave-assisted intramolecular Heck reaction in peptide macrocyclization using microwave energy.

    Science.gov (United States)

    Byk, Gerardo; Cohen-Ohana, Mirit; Raichman, Daniel

    2006-01-01

    We have revisited the intramolecular Heck reaction and investigated the microwave-assisted macrocyclization on preformed peptides using a model series of ring-varying peptides acryloyl-Gly-[Gly](n)-Phe(4-I)NHR; n = 0-4. The method was applied to both solution and solid supported cyclizations. We demonstrate that the intramolecular Heck reaction can be performed in peptides both in solution and solid support using a modified domestic microwave within 1 to 30 minutes in DMF under reflux with moderate yields ranging from 15 to 25% for a scale between 2-45 mg of linear precursors. The approach was applied to the synthesis of a constrained biologically relevant peptidomimetic bearing an Arg-Gly-Asp (RGD) sequence. These results make the microwave-assisted Heck reaction an attractive renovated approach for peptidomimetics. Copyright 2006 Wiley Periodicals, Inc.

  11. Green tea polyphenol tailors cell adhesivity of RGD displaying surfaces: multicomponent models monitored optically.

    Science.gov (United States)

    Peter, Beatrix; Farkas, Eniko; Forgacs, Eniko; Saftics, Andras; Kovacs, Boglarka; Kurunczi, Sandor; Szekacs, Inna; Csampai, Antal; Bosze, Szilvia; Horvath, Robert

    2017-02-10

    The interaction of the anti-adhesive coating, poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) and its Arg-Gly-Asp (RGD) functionalized form, PLL-g-PEG-RGD, with the green tea polyphenol, epigallocatechin-gallate (EGCg) was in situ monitored. After, the kinetics of cellular adhesion on the EGCg exposed coatings were recorded in real-time. The employed plate-based waveguide biosensor is applicable to monitor small molecule binding and sensitive to sub-nanometer scale changes in cell membrane position and cell mass distribution; while detecting the signals of thousands of adhering cells. The combination of this remarkable sensitivity and throughput opens up new avenues in testing complicated models of cell-surface interactions. The systematic studies revealed that, despite the reported excellent antifouling properties of the coatings, EGCg strongly interacted with them, and affected their cell adhesivity in a concentration dependent manner. Moreover, the differences between the effects of the fresh and oxidized EGCg solutions were first demonstrated. Using a semiempirical quantumchemical method we showed that EGCg binds to the PEG chains of PLL-g-PEG-RGD and effectively blocks the RGD sites by hydrogen bonds. The calculations supported the experimental finding that the binding is stronger for the oxidative products. Our work lead to a new model of polyphenol action on cell adhesion ligand accessibility and matrix rigidity.

  12. Osteogenesis ability of biomimetic modified 3Y-TZP ceramic using chemical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Shih-Kuang [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan, ROC (China); Chang, Pai-Ling [Taoyuan General Hospital, Taoyuan 33004, Taiwan, ROC (China); Ho, Wen-Fu [Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan, ROC (China); Hsu, Hsueh-Chuan; Liao, Huei-Jyuan [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan, ROC (China); Wu, Shih-Ching, E-mail: scwu@ctust.edu.tw [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan, ROC (China)

    2015-12-01

    In this study, RGD peptide derived from extracellular matrix proteins was employed to modify the surface of yttria-tetragonal zirconia polycrystal (3Y-TZP) to promote cell adhesion. The surface of 3Y-TZP ceramic specimens was first modified using chemical treatment with aqueous solutions of H{sub 3}PO{sub 4}, CH{sub 3}COOH, and NaOH, for the formation of Zr–OH surface functional groups. Then, the RGD peptide was immobilized on the surface of the 3Y-TZP through silanization method, with covalent bonding via the Zr–OH surface functional groups. From this study, the RGD peptide can successfully be grafted onto the chemical modified 3Y-TZP surface. The –OH functional groups formed on the surface of 3Y-TZP after acid/alkaline chemical treatment contribute to the grafting reaction of RGD peptides. The use of phosphoric acid solution in 3Y-TZP surface treatment before RGD peptide grafting for biomimetic modification can significantly enhance cell adhesion, proliferation, and differentiation. - Highlights: • This study successfully immobilized the peptides onto the surface of zirconia. • Acid/alkaline chemical treatment promotes the formation of − OH functional groups. • The use of phosphoric acid solution produced the formation of most − OH. • Peptides can significantly enhance cell adhesion, proliferation, and differentiation.

  13. Construction of Hierarchical Polymer Brushes on Upconversion Nanoparticles via NIR-Light-Initiated RAFT Polymerization.

    Science.gov (United States)

    Xie, Zhongxi; Deng, Xiaoran; Liu, Bei; Huang, Shanshan; Ma, Pingan; Hou, Zhiyao; Cheng, Ziyong; Lin, Jun; Luan, Shifang

    2017-09-13

    Photoinduced reversible addition-fragmentation chain transfer (RAFT) polymerization generally adopts high-energy ultraviolet (UV) or blue light. In combination with photoredox catalyst, the excitation light wavelength was extended to the visible and even near-infrared (NIR) region for photoinduced electron transfer RAFT polymerization. In this report, we introduce for the first time a surface NIR-light-initiated RAFT polymerization on upconversion nanoparticles (UCNPs) without adding any photocatalyst and construct a functional inorganic core/polymer shell nanohybrid for application in cancer theranostics. The multilayer core-shell UCNPs (NaYF 4 :Yb/Tm@NaYbF 4 :Gd@NaNdF 4 :Yb@NaYF 4 ), with surface anchorings of chain transfer agents, can serve as efficient NIR-to-UV light transducers for initiating the RAFT polymerization. A hierarchical double block copolymer brush, consisting of poly(acrylic acid) (PAA) and poly(oligo(ethylene oxide)methacrylate-co-2-(2-methoxy-ethoxy)ethyl methacrylate) (PEG for short), was grafted from the surface in sequence. The targeting arginine-glycine-aspartic (RGD) peptide was modified at the end of the copolymer through the trithiolcarbonate end group. After loading of doxorubicin, the UCNPs@PAA-b-PEG-RGD exhibited an enhanced U87MG cancer cell uptake efficiency and cytotoxicity. Besides, the unique upconversion luminescence of the nanohybrids was used for the autofluoresence-free cell imaging and labeling. Therefore, our strategy verified that UCNPs could efficiently activate RAFT polymerization by NIR photoirradiation and construct the complex nanohybrids, exhibiting prospective biomedical applications due to the low phototoxicity and deep penetration of NIR light.

  14. Evaluation of the therapeutic efficacy and radiotoxicity of the conjugates 177Lu-DOTA-E-c(RGDfK)2 and 177Lu-DOTA-GGC-AuNP-c[RGDfk(C)] in a murine model and their relationship with the inhibition of the angiogenic factors VEGF and HIF-1α

    International Nuclear Information System (INIS)

    Vilchis J, A.

    2013-01-01

    Molecular targeting therapy has become a relevant therapeutic strategy for cancer. The principle that peptide receptors can be used successfully for in vivo targeting of human cancers has been proven, and radiolabeled peptides have been demonstrated to be effective in patients with malignant tumors. Peptides based on the cyclic Arg-Gly-Asp (RGD) sequence have been designed to antagonize the function of α(v)β(3) integrin, thereby inhibiting angio genesis. The conjugation of RGD peptides to radiolabeled gold nanoparticles (AuNP) produces biocompatible and stable m ultimeric systems with target-specific molecular recognition. The aim of this research was to evaluate the therapeutic response of 177 Lu-AuNP-RGD in athymic mice bearing α(v)β(3)-integrin-positive C6 gliomas and compare with that of 177 Lu-AuNP or 177 Lu-RGD. The radiation absorbed dose, metabolic activity (SUV, [18F]fluor-deoxy-glucose-micro PET/CT), renal radiotoxicity, renal and tumoral histological characteristics as well as tumoral VEGF and HIF-1? gene expression (by realtime polymerase chain reaction) following treatment with 177 Lu-AuNP-RGD, 177 Lu-AuNP or 177 Lu-RGD were assessed. Of the radiopharmaceuticals evaluated, 177 Lu-AuNP-RGD delivered the highest tumor radiation absorbed dose (63.8 ± 7.9 Gy) vs other treatments. These results correlated with the observed therapeutic response, in which 177 Lu-AuNP-RGD significantly (p 177 Lu). There was a low uptake in non-target organs and no induction of renal toxicity. 177 Lu-AuNP-RGD demonstrates properties suitable for use as an agent for molecular targeting radiotherapy. (Author)

  15. Gas-phase structure and fragmentation pathways of singly protonated peptides with N-terminal arginine.

    Science.gov (United States)

    Bythell, Benjamin J; Csonka, István P; Suhai, Sándor; Barofsky, Douglas F; Paizs, Béla

    2010-11-25

    The gas-phase structures and fragmentation pathways of the singly protonated peptide arginylglycylaspartic acid (RGD) are investigated by means of collision-induced-dissociation (CID) and detailed molecular mechanics and density functional theory (DFT) calculations. It is demonstrated that despite the ionizing proton being strongly sequestered at the guanidine group, protonated RGD can easily be fragmented on charge directed fragmentation pathways. This is due to facile mobilization of the C-terminal or aspartic acid COOH protons thereby generating salt-bridge (SB) stabilized structures. These SB intermediates can directly fragment to generate b(2) ions or facilely rearrange to form anhydrides from which both b(2) and b(2)+H(2)O fragments can be formed. The salt-bridge stabilized and anhydride transition structures (TSs) necessary to form b(2) and b(2)+H(2)O are much lower in energy than their traditional charge solvated counterparts. These mechanisms provide compelling evidence of the role of SB and anhydride structures in protonated peptide fragmentation which complements and supports our recent findings for tryptic systems (Bythell, B. J.; Suhai, S.; Somogyi, A.; Paizs, B. J. Am. Chem. Soc. 2009, 131, 14057-14065.). In addition to these findings we also report on the mechanisms for the formation of the b(1) ion, neutral loss (H(2)O, NH(3), guanidine) fragment ions, and the d(3) ion.

  16. Co-immobilization of adhesive peptides and VEGF within a dextran-based coating for vascular applications.

    Science.gov (United States)

    Noel, Samantha; Fortier, Charles; Murschel, Frederic; Belzil, Antoine; Gaudet, Guillaume; Jolicoeur, Mario; De Crescenzo, Gregory

    2016-06-01

    Multifunctional constructs providing a proper environment for adhesion and growth of selected cell types are needed for most tissue engineering and regenerative medicine applications. In this context, vinylsulfone (VS)-modified dextran was proposed as a matrix featuring low-fouling properties as well as multiple versatile moieties. The displayed VS groups could indeed react with thiol, amine or hydroxyl groups, be it for surface grafting, crosslinking or subsequent tethering of biomolecules. In the present study, a library of dextran-VS was produced, grafted to aminated substrates and characterized in terms of degree of VS modification (%VS), cell-repelling properties and potential for the oriented grafting of cysteine-tagged peptides. As a bioactive coating of vascular implants, ECM peptides (e.g. RGD) as well as vascular endothelial growth factor (VEGF) were co-immobilized on one of the most suitable dextran-VS coating (%VS=ca. 50% of saccharides units). Both RGD and VEGF were efficiently tethered at high densities (ca. 1nmol/cm(2) and 50fmol/cm(2), respectively), and were able to promote endothelial cell adhesion as well as proliferation. The latter was enhanced to the same extent as with soluble VEGF and proved selective to endothelial cells over smooth muscle cells. Altogether, multiple biomolecules could be efficiently incorporated into a dextran-VS construct, while maintaining their respective biological activity. This work addresses the need for multifunctional coatings and selective cell response inherent to many tissue engineering and regenerative medicine applications, for instance, vascular graft. More specifically, a library of dextrans was first generated through vinylsulfone (VS) modification. Thoroughly selected dextran-VS provided an ideal platform for unbiased study of cell response to covalently grafted biomolecules. Considering that processes such as healing and angiogenesis require multiple factors acting synergistically, vascular endothelial

  17. Noninvasive monitoring of early antiangiogenic therapy response in human nasopharyngeal carcinoma xenograft model using MRI with RGD-conjugated ultrasmall superparamagnetic iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Cui Y

    2016-11-01

    Full Text Available Yanfen Cui,1,* Caiyuan Zhang,1,* Ran Luo,1 Huanhuan Liu,1 Zhongyang Zhang,1 Tianyong Xu,2 Yong Zhang,2 Dengbin Wang11Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 2MR Advanced Application and Research Center, GE Healthcare China, Shanghai, People’s Republic of China *These authors contributed equally to this workPurpose: Arginine-glycine-aspartic acid (RGD-based nanoprobes allow specific imaging of integrin αvβ3, a protein overexpressed during angiogenesis. Therefore, this study applied a novel RGD-coupled, polyacrylic acid (PAA-coated ultrasmall superparamagnetic iron oxide (USPIO (referred to as RGD-PAA-USPIO in order to detect tumor angiogenesis and assess the early response to antiangiogenic treatment in human nasopharyngeal carcinoma (NPC xenograft model by magnetic resonance imaging (MRI.Materials and methods: The binding specificity of RGD-PAA-USPIO with human umbilical vein endothelial cells (HUVECs was confirmed by Prussian blue staining and transmission electron microscopy in vitro. The tumor targeting of RGD-PAA-USPIO was evaluated in the NPC xenograft model. Later, mice bearing NPC underwent MRI at baseline and after 4 and 14 days of consecutive treatment with Endostar or phosphate-buffered saline (n=10 per group.Results: The specific uptake of the RGD-PAA-USPIO nanoparticles was mainly dependent on the interaction between RGD and integrin αvβ3 of HUVECs. The tumor targeting of RGD-PAA-USPIO was observed in the NPC xenograft model. Moreover, the T2 relaxation time of mice in the Endostar-treated group decreased significantly compared with those in the control group both on days 4 and 14, consistent with the immunofluorescence results of CD31 and CD61 (P<0.05.Conclusion: This study demonstrated that the magnetic resonance molecular nanoprobes, RGD-PAA-USPIOs, allow noninvasive in vivo imaging of tumor angiogenesis and assessment of the early response to antiangiogenic treatment in

  18. Peptide-Mediated Platelet Capture at Gold Micropore Arrays.

    Science.gov (United States)

    Adamson, Kellie; Spain, Elaine; Prendergast, Una; Moran, Niamh; Forster, Robert J; Keyes, Tia E

    2016-11-30

    Ordered spherical cap gold cavity arrays with 5.4, 1.6, and 0.98 μm diameter apertures were explored as capture surfaces for human blood platelets to investigate the impact of surface geometry and chemical modification on platelet capture efficiency and their potential as platforms for surface enhanced Raman spectroscopy of single platelets. The substrates were chemically modified with single-constituent self-assembled monolayers (SAM) or mixed SAMs comprised of thiol-functionalized arginine-glycine-aspartic acid (RGD, a platelet integrin target) with or without 1-octanethiol (adhesion inhibitor). As expected, platelet adhesion was promoted and inhibited at RGD and alkanethiol modified surfaces, respectively. Platelet adhesion was reversible, and binding efficiency at the peptide modified substrates correlated inversely with pore diameter. Captured platelets underwent morphological change on capture, the extent of which depended on the topology of the underlying substrate. Regioselective capture of the platelets enabled study for the first time of the surface enhanced Raman spectroscopy of single blood platelets, yielding high quality Raman spectroscopy of individual platelets at 1.6 μm diameter pore arrays. Given the medical importance of blood platelets across a range of diseases from cancer to psychiatric illness, such approaches to platelet capture may provide a useful route to Raman spectroscopy for platelet related diagnostics.

  19. Development and preclinical evaluation of radiolabelled somatostatin receptor agonists and αvβ3-integrin antagonists

    International Nuclear Information System (INIS)

    Stoecklin, G.; Wester, H.J.; Haubner, R.; Schottelius, M.

    2002-01-01

    Tumours express specific receptors for peptide ligands. This can be exploited for tumour targeting. New bioactive peptides are available, in particular new somatostatin analogs and RGD-Peptides for targeting the α V β 3 -integrin. The design and optimization of radiolabelled peptides with respect to their receptor affinity, tumour uptake, biodistribution, pharmacokinetics and stability may provide better tracers for tumour imaging and therapy. Based on two basic structures, new radioiodinated and carbohydrated somatostatin analogs and cyclic RGD-peptides were developed and evaluated. (author)

  20. In-vivo study of adhesion and bone growth around implanted laser groove/RGD-functionalized Ti-6Al-4V pins in rabbit femurs

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J., E-mail: jianboc@gmail.com [Princeton Institute of Science and Technology of Materials and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Bly, R.A. [Princeton Institute of Science and Technology of Materials and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Saad, M.M.; AlKhodary, M.A.; El-Backly, R.M. [Tissue Engineering laboratories, Faculty of Dentistry, Alexandria University, Alexandria (Egypt); Cohen, D.J.; Kattamis, N. [Princeton Institute of Science and Technology of Materials and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Fatta, M.M.; Moore, W.A. [Tissue Engineering laboratories, Faculty of Dentistry, Alexandria University, Alexandria (Egypt); Arnold, C.B. [Princeton Institute of Science and Technology of Materials and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Marei, M.K. [Tissue Engineering laboratories, Faculty of Dentistry, Alexandria University, Alexandria (Egypt); Soboyejo, W.O. [Princeton Institute of Science and Technology of Materials and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2011-07-20

    Titanium surfaces were designed, produced, and evaluated for levels of osseointegration into the femurs of rabbits. A total of 36 Ti-6Al-4V pins (15 mm length, 1.64 mm diameter) were prepared into three experimental groups. These were designed to test the effects of osseointegration on laser grooved, RGD coated, and polished control surfaces, as well as combined effects. Circumferential laser grooves were introduced onto pin surfaces (40 {mu}m spacing) using a UV laser ({lambda} = 355 nm). The tripeptide sequence, Arginine-Glycine-Aspartic acid (RGD), was functionalized onto laser grooved surfaces. Of the prepared samples, surface morphology and chemistry were analyzed using scanning electron microscopy (SEM) and Immunoflourescence (IF) spectroscopy, respectively. The experimental pin surfaces were surgically implanted into rabbit femurs. The samples were then harvested and evaluated histologically. Sections of the sample were preserved in a methylmethacralate mold, sliced via a hard microtome, and polished systematically. In the case of the RGD coated and laser grooved surfaces, histological results showed accelerated bone growth into the implant, pull-out tests were also used to compare the adhesion between bone and the titanium pins with/without laser textures and/or RGD coatings. - Research highlights: {yields} Circumferential laser grooves were introduced onto pin surfaces using a UV laser. {yields} The tripeptide sequence, RGD, was functionalized onto laser grooved surfaces. {yields} The experimental pin surfaces were surgically implanted into rabbit femurs. {yields} RGD coated laser groove surfaces accelerated bone growth into the implant. {yields} RGD coated laser grooved surfaces enhanced the adhesion between the bone and implant.

  1. In-vivo study of adhesion and bone growth around implanted laser groove/RGD-functionalized Ti-6Al-4V pins in rabbit femurs

    International Nuclear Information System (INIS)

    Chen, J.; Bly, R.A.; Saad, M.M.; AlKhodary, M.A.; El-Backly, R.M.; Cohen, D.J.; Kattamis, N.; Fatta, M.M.; Moore, W.A.; Arnold, C.B.; Marei, M.K.; Soboyejo, W.O.

    2011-01-01

    Titanium surfaces were designed, produced, and evaluated for levels of osseointegration into the femurs of rabbits. A total of 36 Ti-6Al-4V pins (15 mm length, 1.64 mm diameter) were prepared into three experimental groups. These were designed to test the effects of osseointegration on laser grooved, RGD coated, and polished control surfaces, as well as combined effects. Circumferential laser grooves were introduced onto pin surfaces (40 μm spacing) using a UV laser (λ = 355 nm). The tripeptide sequence, Arginine-Glycine-Aspartic acid (RGD), was functionalized onto laser grooved surfaces. Of the prepared samples, surface morphology and chemistry were analyzed using scanning electron microscopy (SEM) and Immunoflourescence (IF) spectroscopy, respectively. The experimental pin surfaces were surgically implanted into rabbit femurs. The samples were then harvested and evaluated histologically. Sections of the sample were preserved in a methylmethacralate mold, sliced via a hard microtome, and polished systematically. In the case of the RGD coated and laser grooved surfaces, histological results showed accelerated bone growth into the implant, pull-out tests were also used to compare the adhesion between bone and the titanium pins with/without laser textures and/or RGD coatings. - Research highlights: → Circumferential laser grooves were introduced onto pin surfaces using a UV laser. → The tripeptide sequence, RGD, was functionalized onto laser grooved surfaces. → The experimental pin surfaces were surgically implanted into rabbit femurs. → RGD coated laser groove surfaces accelerated bone growth into the implant. → RGD coated laser grooved surfaces enhanced the adhesion between the bone and implant.

  2. Functionalization of the PEG Corona of Nanoparticles by Clip Photochemistry in Water: Application to the Grafting of RGD Ligands on PEGylated USPIO Imaging Agent.

    Science.gov (United States)

    Pourcelle, Vincent; Laurent, Sophie; Welle, Alexandre; Vriamont, Nicolas; Stanicki, Dimitri; Vander Elst, Luce; Muller, Robert N; Marchand-Brynaert, Jacqueline

    2015-05-20

    The fast development of nanomedicines requires more and more reliable chemical tools in order to accurately design materials and control the surface properties of the nano-objects used in biomedical applications. In this study we describe a smooth and simple photografting technique, i.e., the clip photochemistry, that allows the introduction of molecules of interest in inert polymers or on stealth nanoparticles directly in aqueous solution. First we developed the methodology on polyethylene glycol (PEG) and looked for critical parameters of the process (irradiation times, concentrations, washings) by using several molecular probes and adapted analytical techniques ((19)F qNMR, EA, LSC). We found that the clip photochemistry in water is a robust and efficient method to functionalize PEG. Second we applied it on PEGylated USPIO (USPIO-PEG) magnetic resonance imaging agent and succeeded in introducing RGD peptide and homemade peptidomimetics on their PEG segments. The magnetic abilities of the conjugated nanoparticles were unchanged by the derivatization process as evidenced by their relaxometric properties and their NMRD profile. When tested on Jurkat lymphocyte T Cells, which express αvβ3 integrins, the USPIO conjugated with RGD ligands leads to an increase of the transverse relaxation rate (R2) by a factor 10 to 14 as compared to USPIO-PEG. Consequently, it makes them good candidates for targeted imaging technology in cancer therapy.

  3. Bio-compatibility of ion beam-modified and RGD-grafted polyethylene

    Czech Academy of Sciences Publication Activity Database

    Ročková-Hlaváčková, K.; Švorčík, V.; Bačáková, L.; Dvořánková, B.; Heitz, J.; Hnatowicz, Vladimír

    2004-01-01

    Roč. 225, č. 3 (2004), s. 275-282 ISSN 0168-583X R&D Projects: GA AV ČR IAA5011301 Institutional research plan: CEZ:AV0Z1048901 Keywords : modified polyethylene * ion beam * RGD grafting Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.997, year: 2004

  4. Evaluation of the therapeutic efficacy and radiotoxicity of the conjugates {sup 177}Lu-DOTA-E-c(RGDfK){sub 2} and {sup 177}Lu-DOTA-GGC-AuNP-c[RGDfk(C)] in a murine model and their relationship with the inhibition of the angiogenic factors VEGF and HIF-1α; Evaluacion de la eficacia terapeutica y radiotoxicidad de los conjugados {sup 177}Lu-DOTA-E-c(RGDfK){sub 2} y {sup 177}Lu-DOTA-GGC-AuNP-c[RGDfK(C)] en un modelo murino y su relacion con la inhibicion de los factores angiogenicos VEGF y HIF-1α

    Energy Technology Data Exchange (ETDEWEB)

    Vilchis J, A.

    2013-07-01

    Molecular targeting therapy has become a relevant therapeutic strategy for cancer. The principle that peptide receptors can be used successfully for in vivo targeting of human cancers has been proven, and radiolabeled peptides have been demonstrated to be effective in patients with malignant tumors. Peptides based on the cyclic Arg-Gly-Asp (RGD) sequence have been designed to antagonize the function of α(v)β(3) integrin, thereby inhibiting angio genesis. The conjugation of RGD peptides to radiolabeled gold nanoparticles (AuNP) produces biocompatible and stable m ultimeric systems with target-specific molecular recognition. The aim of this research was to evaluate the therapeutic response of {sup 177}Lu-AuNP-RGD in athymic mice bearing α(v)β(3)-integrin-positive C6 gliomas and compare with that of {sup 177}Lu-AuNP or {sup 177}Lu-RGD. The radiation absorbed dose, metabolic activity (SUV, [18F]fluor-deoxy-glucose-micro PET/CT), renal radiotoxicity, renal and tumoral histological characteristics as well as tumoral VEGF and HIF-1? gene expression (by realtime polymerase chain reaction) following treatment with {sup 177}Lu-AuNP-RGD, {sup 177}Lu-AuNP or {sup 177}Lu-RGD were assessed. Of the radiopharmaceuticals evaluated, {sup 177}Lu-AuNP-RGD delivered the highest tumor radiation absorbed dose (63.8 ± 7.9 Gy) vs other treatments. These results correlated with the observed therapeutic response, in which {sup 177}Lu-AuNP-RGD significantly (p<0.05) reduced tumor progression, tumor metabolic activity, intratumoral vessels and VEGF gene expression compared to the other radiopharmaceuticals. This was consequence of high tumor retention and a combination of molecular targeting therapy (m ultimeric RGD system) and radiotherapy ({sup 177}Lu). There was a low uptake in non-target organs and no induction of renal toxicity. {sup 177}Lu-AuNP-RGD demonstrates properties suitable for use as an agent for molecular targeting radiotherapy. (Author)

  5. Genome-wide DNA polymorphism in the indica rice varieties RGD-7S and Taifeng B as revealed by whole genome re-sequencing.

    Science.gov (United States)

    Fu, Chong-Yun; Liu, Wu-Ge; Liu, Di-Lin; Li, Ji-Hua; Zhu, Man-Shan; Liao, Yi-Long; Liu, Zhen-Rong; Zeng, Xue-Qin; Wang, Feng

    2016-03-01

    Next-generation sequencing technologies provide opportunities to further understand genetic variation, even within closely related cultivars. We performed whole genome resequencing of two elite indica rice varieties, RGD-7S and Taifeng B, whose F1 progeny showed hybrid weakness and hybrid vigor when grown in the early- and late-cropping seasons, respectively. Approximately 150 million 100-bp pair-end reads were generated, which covered ∼86% of the rice (Oryza sativa L. japonica 'Nipponbare') reference genome. A total of 2,758,740 polymorphic sites including 2,408,845 SNPs and 349,895 InDels were detected in RGD-7S and Taifeng B, respectively. Applying stringent parameters, we identified 961,791 SNPs and 46,640 InDels between RGD-7S and Taifeng B (RGD-7S/Taifeng B). The density of DNA polymorphisms was 256.8 SNPs and 12.5 InDels per 100 kb for RGD-7S/Taifeng B. Copy number variations (CNVs) were also investigated. In RGD-7S, 1989 of 2727 CNVs were overlapped in 218 genes, and 1231 of 2010 CNVs were annotated in 175 genes in Taifeng B. In addition, we verified a subset of InDels in the interval of hybrid weakness genes, Hw3 and Hw4, and obtained some polymorphic InDel markers, which will provide a sound foundation for cloning hybrid weakness genes. Analysis of genomic variations will also contribute to understanding the genetic basis of hybrid weakness and heterosis.

  6. Dissociation Behavior of a TEMPO-Active Ester Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS) in Negative ESI-MS.

    Science.gov (United States)

    Hage, Christoph; Ihling, Christian H; Götze, Michael; Schäfer, Mathias; Sinz, Andrea

    2017-01-01

    We have synthesized a homobifunctional amine-reactive cross-linking reagent, containing a TEMPO (2,2,6,6-tetramethylpiperidine-1-oxy) and a benzyl group (Bz), termed TEMPO-Bz-linker, to derive three-dimensional structural information of proteins. The aim for designing this novel cross-linker was to facilitate the mass spectrometric analysis of cross-linked products by free radical initiated peptide sequencing (FRIPS). In an initial study, we had investigated the fragmentation behavior of TEMPO-Bz-derivatized peptides upon collision activation in (+)-electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS/MS) experiments. In addition to the homolytic NO-C bond cleavage FRIPS pathway delivering the desired odd-electron product ions, an alternative heterolytic NO-C bond cleavage, resulting in even-electron product ions mechanism was found to be relevant. The latter fragmentation route clearly depends on the protonation of the TEMPO-Bz-moiety itself, which motivated us to conduct (-)-ESI-MS, CID-MS/MS, and MS 3 experiments of TEMPO-Bz-cross-linked peptides to further clarify the fragmentation behavior of TEMPO-Bz-peptide molecular ions. We show that the TEMPO-Bz-linker is highly beneficial for conducting FRIPS in negative ionization mode as the desired homolytic cleavage of the NO-C bond is the major fragmentation pathway. Based on characteristic fragments, the isomeric amino acids leucine and isoleucine could be discriminated. Interestingly, we observed pronounced amino acid side chain losses in cross-linked peptides if the cross-linked peptides contain a high number of acidic amino acids. Graphical Abstract ᅟ.

  7. Comparison of new bone formation, implant integration, and biocompatibility between RGD-hydroxyapatite and pure hydroxyapatite coating for cementless joint prostheses--an experimental study in rabbits.

    Science.gov (United States)

    Bitschnau, Achim; Alt, Volker; Böhner, Felicitas; Heerich, Katharina Elisabeth; Margesin, Erika; Hartmann, Sonja; Sewing, Andreas; Meyer, Christof; Wenisch, Sabine; Schnettler, Reinhard

    2009-01-01

    This is the first work to report on additional Arginin-Glycin-Aspartat (RGD) coating on precoated hydroxyapatite (HA) surfaces regarding new bone formation, implant bone contact, and biocompatibility compared to pure HA coating and uncoated stainless K-wires. There were 39 rabbits in total with 6 animals for the RGD-HA and HA group for the 4 week time period and 9 animals for each of the 3 implant groups for the 12 week observation. A 2.0 K-wire either with RGD-HA or with pure HA coating or uncoated was placed into the intramedullary canal of the tibia. After 4 and 12 weeks, the tibiae were harvested and three different areas of the tibia were assessed for quantitative and qualitative histology for new bone formation, direct implant bone contact, and formation of multinucleated giant cells. Both RGD-HA and pure HA coating showed statistically higher new bone formation and implant bone contact after 12 weeks than the uncoated K-wire. There were no significant differences between the RGD-HA and the pure HA coating in new bone formation and direct implant bone contact after 4 and 12 weeks. The number of multinucleated giant did not differ significantly between the RGD-HA and HA group after both time points. Overall, no significant effects of an additional RGD coating on HA surfaces were detected in this model after 12 weeks. (c) 2008 Wiley Periodicals, Inc.

  8. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials

    Science.gov (United States)

    Lee, Ted T.; García, José R.; Paez, Julieta I.; Singh, Ankur; Phelps, Edward A.; Weis, Simone; Shafiq, Zahid; Shekaran, Asha; Del Campo, Aránzazu; García, Andrés J.

    2015-03-01

    Materials engineered to elicit targeted cellular responses in regenerative medicine must display bioligands with precise spatial and temporal control. Although materials with temporally regulated presentation of bioadhesive ligands using external triggers, such as light and electric fields, have recently been realized for cells in culture, the impact of in vivo temporal ligand presentation on cell-material responses is unknown. Here, we present a general strategy to temporally and spatially control the in vivo presentation of bioligands using cell-adhesive peptides with a protecting group that can be easily removed via transdermal light exposure to render the peptide fully active. We demonstrate that non-invasive, transdermal time-regulated activation of cell-adhesive RGD peptide on implanted biomaterials regulates in vivo cell adhesion, inflammation, fibrous encapsulation, and vascularization of the material. This work shows that triggered in vivo presentation of bioligands can be harnessed to direct tissue reparative responses associated with implanted biomaterials.

  9. Mixed Fibronectin-Derived Peptides Conjugated to a Chitosan Matrix Effectively Promotes Biological Activities through Integrins, α4β1, α5β1, αvβ3, and Syndecan

    Directory of Open Access Journals (Sweden)

    Hozumi Kentaro

    2016-11-01

    Full Text Available Mimicking the biological function of the extracellular matrix is an approach to developing cell adhesive biomaterials. The RGD peptide, derived from fibronectin (Fn, mainly binds to integrin αvβ3 and has been widely used as a cell adhesive peptide on various biomaterials. However, cell adhesion to Fn is thought to be mediated by several integrin subtypes and syndecans. In this study, we synthesized an RGD-containing peptide (FIB1 and four integrin α4β1-binding-related motif-containing peptides (LDV, IDAPS, KLDAPT, and PRARI and constructed peptide-chitosan matrices. The FIB1-chitosan matrix promoted human dermal fibroblast (HDF attachment, and the C-terminal elongated PRARI (ePRARI-C-conjugated chitosan matrix significantly promoted HDF attachment through integrin α4β1 and syndecan binding. Next, we constructed a mixed ePRARI-C- and FIB1-chitosan matrix to develop a Fn mimetic biomaterial. The mixed ePRARI-C/FIB1-chitosan matrix promoted significantly better cell attachment and neurite outgrowth compared to those of either ePRARI-C- or FIB1-chitosan matrices. HDF adhesion to the ePRARI-C/FIB1-chitosan matrix was mediated by integrin, α4β1, α5β1, and αvβ3, similar to HDF adhesion to Fn. These data suggest that an ePRARI-C/FIB1-chitosan matrix can be used as a tool to analyze the multiple functions of Fn and can serve as a Fn-mimetic biomaterial.

  10. [{sup 68}Ga]NODAGA-RGD - Metabolic stability, biodistribution, and dosimetry data from patients with hepatocellular carcinoma and liver cirrhosis

    Energy Technology Data Exchange (ETDEWEB)

    Haubner, Roland; Rangger, Christine; Decristoforo, Clemens; Virgolini, Irene J. [Medical University of Innsbruck, Department of Nuclear Medicine, Innsbruck (Austria); Finkenstedt, Armin; Zoller, Heinz [Medical University of Innsbruck, Department of Internal Medicine II, Innsbruck (Austria); Stegmayr, Armin [Medical University of Innsbruck, Department of Nuclear Medicine, Innsbruck (Austria); FH Gesundheit/University of Applied Sciences Tyrol, Innsbruck (Austria)

    2016-10-15

    This study was designed to determine safety, tolerability, and radiation burden of a [{sup 68}Ga]NODAGA-RGD-PET for imaging integrin α{sub v}β{sub 3} expression in patients with hepatocellular carcinoma (HCC) and liver cirrhosis. Moreover, metabolic stability and biokinetic data were compiled. After injection of 154-184 MBq [{sup 68}Ga]NODAGA-RGD three consecutive PET/CT scans were acquired starting 8.3 ± 2.1, 36.9 ± 2.8, and 75.1 ± 3.4 min after tracer injection. For metabolite analysis, blood and urine samples were analyzed by HPLC. For dosimetry studies, residence time VOIs were placed in the corresponding organs. The OLINDA/EXM program was used to estimate the absorbed radiation dose. The radiopharmaceutical was well tolerated and no drug-related adverse effects were observed. No metabolites could be detected in blood (30 and 60 min p.i.) and urine (60 min p.i.). [{sup 68}Ga]NODAGA-RGD showed rapid and predominantly renal elimination. Background radioactivity in blood, intestine, lung, and muscle tissue was low (%ID/l 60 min p.i. was 0.56 ± 0.43, 0.54 ± 0.39, 0.22 ± 0.05, and 0.16 ± 0.8, respectively). The calculated effective dose was 21.5 ± 5.4 μSv/MBq, and the highest absorbed radiation dose was found for the urinary bladder wall (0.26 ± 0.09 mSv/MBq). No increased uptake of the tracer was found in HCC compared with the background liver tissue. [{sup 68}Ga]NODAGA-RGD uptake in the HCCs lesions was not sufficient to use this tracer for imaging these tumors. [{sup 68}Ga]NODAGA-RGD was well tolerated and metabolically stable. Due to rapid renal excretion, background radioactivity was low in most of the body, resulting in low radiation burden and indicating the potential of [{sup 68}Ga]NODAGA-RGD PET for non-invasive determination of integrin α{sub v}β{sub 3} expression. (orig.)

  11. Mechanisms underlying the attachment and spreading of human osteoblasts: from transient interactions to focal adhesions on vitronectin-grafted bioactive surfaces.

    Science.gov (United States)

    Brun, Paola; Scorzeto, Michele; Vassanelli, Stefano; Castagliuolo, Ignazio; Palù, Giorgio; Ghezzo, Francesca; Messina, Grazia M L; Iucci, Giovanna; Battaglia, Valentina; Sivolella, Stefano; Bagno, Andrea; Polzonetti, Giovanni; Marletta, Giovanni; Dettin, Monica

    2013-04-01

    The features of implant devices and the reactions of bone-derived cells to foreign surfaces determine implant success during osseointegration. In an attempt to better understand the mechanisms underlying osteoblasts attachment and spreading, in this study adhesive peptides containing the fibronectin sequence motif for integrin binding (Arg-Gly-Asp, RGD) or mapping the human vitronectin protein (HVP) were grafted on glass and titanium surfaces with or without chemically induced controlled immobilization. As shown by total internal reflection fluorescence microscopy, human osteoblasts develop adhesion patches only on specifically immobilized peptides. Indeed, cells quickly develop focal adhesions on RGD-grafted surfaces, while HVP peptide promotes filopodia, structures involved in cellular spreading. As indicated by immunocytochemistry and quantitative polymerase chain reaction, focal adhesions kinase activation is delayed on HVP peptides with respect to RGD while an osteogenic phenotypic response appears within 24h on osteoblasts cultured on both peptides. Cellular pathways underlying osteoblasts attachment are, however, different. As demonstrated by adhesion blocking assays, integrins are mainly involved in osteoblast adhesion to RGD peptide, while HVP selects osteoblasts for attachment through proteoglycan-mediated interactions. Thus an interfacial layer of an endosseous device grafted with specifically immobilized HVP peptide not only selects the attachment and supports differentiation of osteoblasts but also promotes cellular migration. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Structure-activity relationship study of Aib-containing amphipathic helical peptide-cyclic RGD conjugates as carriers for siRNA delivery.

    Science.gov (United States)

    Wada, Shun-Ichi; Takesada, Anna; Nagamura, Yurie; Sogabe, Eri; Ohki, Rieko; Hayashi, Junsuke; Urata, Hidehito

    2017-12-15

    The conjugation of Aib-containing amphipathic helical peptide with cyclo(-Arg-Gly-Asp-d-Phe-Cys-) (cRGDfC) at the C-terminus of the helix peptide (PI) has been reported to be useful for constructing a carrier for targeted siRNA delivery into cells. In order to explore structure-activity relationships for the development of potential carriers for siRNA delivery, we synthesized conjugates of Aib-containing amphipathic helical peptide with cRGDfC at the N-terminus (PII) and both the N- and C-termini (PIII) of the helical peptide. Furthermore, to examine the influence of PI helical chain length on siRNA delivery, truncated peptides containing 16 (PIV), 12 (PV), and 8 (PVI) amino acid residues at the N-terminus of the helical chain were synthesized. PII and PIII, as well as PI, could deliver anti-luciferase siRNA into cells to induce the knockdown of luciferase stably expressed in cells. In contrast, all of the truncated peptides were unlikely to transport siRNA into cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Bio-compatibility of ion beam-modified and RGD-grafted polyethylene

    Czech Academy of Sciences Publication Activity Database

    Ročková-Hlaváčková, K.; Švorčík, V.; Bačáková, Lucie; Dvořánková, B.; Heitz, J.; Hnatowicz, Vladimír

    2004-01-01

    Roč. 225, č. 3 (2004), s. 275-282 ISSN 0168-583X R&D Projects: GA AV ČR IAA5011301; GA ČR GA106/03/0514 Grant - others:CZ-AT(CZ) Aktion 2002-7 Institutional research plan: CEZ:AV0Z5011922 Keywords : modified polyethylene * ion beam * RGD grafting Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.997, year: 2004

  14. Gd-EDDA/HYNIC-RGD as an MR molecular probe imaging integrin alphanubeta3 receptor-expressed tumor-MR molecular imaging of angiogenesis.

    Science.gov (United States)

    Huo, Tianlong; Du, Xiangke; Zhang, Sen; Liu, Xia; Li, Xubing

    2010-02-01

    The aim of this study is to develop a novel MR probe containing arginine-glycine-aspartic acid (RGD) motif for imaging integrin alphanubeta3 receptor-expressed tumor. Commercially available HYNIC-RGD conjugated with co-ligand EDDA was labeled with Gd(3+), and the mixture was isolated and purified by solid phase extract (SPE) to get the entire probe Gd-EDDA/HYNIC-RGD. Human hepatocellular carcinoma (HHCC) cell line BEL-7402 was cultured and the cells harvested and suspended in serum-free Dulbecco's modified Eagle medium (DMEM) were subcutaneously inoculated into athymic nude mice for tumor growth. In vitro cell binding assay to integrin alphanubeta3 receptor and cell viability experiments were conducted. The in vivo imaging of the three arms of xenografts were performed by MR scan with a dedicated animal coil at time points of 0, 30, 60, 90min and 24-h post-intravenous injection (p.i.). Three arms of nude mice then were sacrificed for histological examination to confirm the imaging results. Gd-EDDA/HYNIC-RGD was successfully isolated by SPE and validity was verified on signal enhancement through in vitro and in vivo experiments. The nude mice model bearing HHCC was well established. There was approx. 30% signal enhancement on T1WI FSE images at 90min post-intravenous injection of the Gd-EDDA/HYNIC-RGD compared with baseline, and the signal to time curve is straightforward over time in the span of 0-90min p.i., while the control arms do not show this tendency. Gd-EDDA/HYNIC-RGD has the potential to serve as an MR probe detecting integrin alphanubeta3 receptor-expressed tumor. Copyright (c) 2008 Elsevier Ireland Ltd. All rights reserved.

  15. Angiopoietin-related growth factor (AGF) supports adhesion, spreading, and migration of keratinocytes, fibroblasts, and endothelial cells through interaction with RGD-binding integrins

    International Nuclear Information System (INIS)

    Zhang Yueqing; Hu Xiaobo; Tian Ruiyang; Wei Wangui; Hu Wei; Chen Xia; Han Wei; Chen Huayou; Gong Yi

    2006-01-01

    Angiopoietin-related growth factor (AGF) is a newly identified member of angiopoietin-related proteins (ARPs)/angiopoietin-like proteins (Angptls). AGF has been considered as a novel growth factor in accelerating cutaneous wound healing, as it is capable of stimulating keratinocytes proliferation as well as angiogenesis. But in our paper, we demonstrate that AGF stimulates keratinocytes proliferation only at high protein concentration, however, it can potently promote adhesion, spreading, and migration of keratinocytes, fibroblasts, and endothelial cells. Furthermore, we confirm that the adhesion and migration cellular events are mediated by RGD-binding integrins, most possibly the α v -containing integrins, by in vitro inhibition assays using synthetic competitive peptides. Our results strongly suggest that AGF is an integrin ligand as well as a mitogenic growth factor and theoretically participates in cutaneous wound healing in a more complex mechanism

  16. Preparation and in vitro evaluation of 177Lu-iPSMA-RGD as a new heterobivalent radiopharmaceutical

    International Nuclear Information System (INIS)

    Escudero-Castellanos, Alondra; Universidad Autonoma del Estado de Mexico, Toluca, Estado de Mexico; Ocampo-Garcia, B.E.; Ferro-Flores, Guillermina; Santos-Cuevas, C.L.; Isaac-Olive, Keila; Olmos-Ortiz, Andrea; Garcia-Quiroz, Janice; Garcia-Becerra, Rocio; Diaz, Lorenza

    2017-01-01

    This study aimed to synthesize a new 177 Lu-iPSMA-RGD heterobivalent radiopharmaceutical, as well as to assess the in vitro radiopharmaceutical potential to target cancer cells overexpressing PSMA and α(v) β(3) integrins. The radiotracer prepared with a radiochemical purity of 98.8 ± 1.0% showed stability in human serum, specific recognition with suitable affinity to PSMA and α(v)β(3) integrins, and capability to inhibit cancer cell proliferation and VEGF signaling (antiangiogenic effect). Results warrant further preclinical studies to establish the 177 Lu-iPSMA-RGD potential as a dual therapeutic radiopharmaceutical. (author)

  17. Passive versus active tumor targeting using RGD- and NGR-modified polymeric nanomedicines

    NARCIS (Netherlands)

    Kunjachan, Sijumon; Pola, Robert; Gremse, Felix; Theek, Benjamin; Ehling, Josef; Moeckel, Diana; Hermanns-Sachweh, Benita; Pechar, Michal; Ulbrich, Karel; Hennink, Wim E.; Storm, Gert; Lederle, Wiltrud; Kiessling, Fabian; Lammers, Twan

    2014-01-01

    Enhanced permeability and retention (EPR) and the (over-) expression of angiogenesis-related surface receptors are key features of tumor blood vessels. As a consequence, EPR-mediated passive and Arg-Gly-Asp (RGD) and Asn-Gly-Arg (NGR) based active tumor targeting have received considerable attention

  18. RGD-tagged helical rosette nanotubes aggravate acute lipopolysaccharide-induced lung inflammation

    Directory of Open Access Journals (Sweden)

    Suri SS

    2011-12-01

    Full Text Available Sarabjeet Singh Suri1, Steven Mills1, Gurpreet Kaur Aulakh1, Felaniaina Rakotondradany2, Hicham Fenniri2, Baljit Singh11Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon; 2National Institute for Nanotechnology and Department of Chemistry, Edmonton, CanadaAbstract: Rosette nanotubes (RNT are a novel class of self-assembled biocompatible nanotubes that offer a built-in strategy for engineering structure and function through covalent tagging of synthetic self-assembling modules (G∧C motif. In this report, the G∧C motif was tagged with peptide Arg-Gly-Asp-Ser-Lys (RGDSK-G∧C and amino acid Lys (K-G∧C which, upon co-assembly, generate RNTs featuring RGDSK and K on their surface in predefined molar ratios. These hybrid RNTs, referred to as Kx/RGDSKy-RNT, where x and y refer to the molar ratios of K-G∧C and RGDSK–G∧C, were designed to target neutrophil integrins. A mouse model was used to investigate the effects of intravenous Kx/RGDSKy-RNT on acute lipopolysaccharide (LPS-induced lung inflammation. Healthy male C57BL/6 mice were treated intranasally with Escherichia coli LPS 80 µg and/or intravenously with K90/RGDSK10-RNT. Here we provide the first evidence that intravenous administration of K90/RGDSK10-RNT aggravates the proinflammatory effect of LPS in the mouse. LPS and K90/RGDSK10-RNT treatment groups showed significantly increased infiltration of polymorphonuclear cells in bronchoalveolar lavage fluid at all time points compared with the saline control. The combined effect of LPS and K90/RGDSK10-RNT was more pronounced than LPS alone, as shown by a significant increase in the expression of interleukin-1ß, MCP-1, MIP-1, and KC-1 in the bronchoalveolar lavage fluid and myeloperoxidase activity in the lung tissues. We conclude that K90/RGDSK10-RNT promotes acute lung inflammation, and when used along with LPS, leads to exaggerated immune response in the lung.Keywords: RGD peptide, helical rosette

  19. In-vitro and in-vivo phenotype of type Asia 1 foot-and-mouth disease viruses utilizing two non-RGD receptor recognition sites

    Science.gov (United States)

    2011-01-01

    Background Foot-and-mouth disease virus (FMDV) uses a highly conserved Arg-Gly-Asp (RGD) triplet for attachment to host cells and this motif is believed to be essential for virus viability. Previous sequence analyses of the 1D-encoding region of an FMDV field isolate (Asia1/JS/CHA/05) and its two derivatives indicated that two viruses, which contained an Arg-Asp-Asp (RDD) or an Arg-Ser-Asp (RSD) triplet instead of the RGD integrin recognition motif, were generated serendipitously upon short-term evolution of field isolate in different biological environments. To examine the influence of single amino acid substitutions in the receptor binding site of the RDD-containing FMD viral genome on virus viability and the ability of non-RGD FMDVs to cause disease in susceptible animals, we constructed an RDD-containing FMDV full-length cDNA clone and derived mutant molecules with RGD or RSD receptor recognition motifs. Following transfection of BSR cells with the full-length genome plasmids, the genetically engineered viruses were examined for their infectious potential in cell culture and susceptible animals. Results Amino acid sequence analysis of the 1D-coding region of different derivatives derived from the Asia1/JS/CHA/05 field isolate revealed that the RDD mutants became dominant or achieved population equilibrium with coexistence of the RGD and RSD subpopulations at an early phase of type Asia1 FMDV quasispecies evolution. Furthermore, the RDD and RSD sequences remained genetically stable for at least 20 passages. Using reverse genetics, the RDD-, RSD-, and RGD-containing FMD viruses were rescued from full-length cDNA clones, and single amino acid substitution in RDD-containing FMD viral genome did not affect virus viability. The genetically engineered viruses replicated stably in BHK-21 cells and had similar growth properties to the parental virus. The RDD parental virus and two non-RGD recombinant viruses were virulent to pigs and bovines that developed typical

  20. In-vitro and in-vivo phenotype of type Asia 1 foot-and-mouth disease viruses utilizing two non-RGD receptor recognition sites

    Directory of Open Access Journals (Sweden)

    Yin Hong

    2011-06-01

    Full Text Available Abstract Background Foot-and-mouth disease virus (FMDV uses a highly conserved Arg-Gly-Asp (RGD triplet for attachment to host cells and this motif is believed to be essential for virus viability. Previous sequence analyses of the 1D-encoding region of an FMDV field isolate (Asia1/JS/CHA/05 and its two derivatives indicated that two viruses, which contained an Arg-Asp-Asp (RDD or an Arg-Ser-Asp (RSD triplet instead of the RGD integrin recognition motif, were generated serendipitously upon short-term evolution of field isolate in different biological environments. To examine the influence of single amino acid substitutions in the receptor binding site of the RDD-containing FMD viral genome on virus viability and the ability of non-RGD FMDVs to cause disease in susceptible animals, we constructed an RDD-containing FMDV full-length cDNA clone and derived mutant molecules with RGD or RSD receptor recognition motifs. Following transfection of BSR cells with the full-length genome plasmids, the genetically engineered viruses were examined for their infectious potential in cell culture and susceptible animals. Results Amino acid sequence analysis of the 1D-coding region of different derivatives derived from the Asia1/JS/CHA/05 field isolate revealed that the RDD mutants became dominant or achieved population equilibrium with coexistence of the RGD and RSD subpopulations at an early phase of type Asia1 FMDV quasispecies evolution. Furthermore, the RDD and RSD sequences remained genetically stable for at least 20 passages. Using reverse genetics, the RDD-, RSD-, and RGD-containing FMD viruses were rescued from full-length cDNA clones, and single amino acid substitution in RDD-containing FMD viral genome did not affect virus viability. The genetically engineered viruses replicated stably in BHK-21 cells and had similar growth properties to the parental virus. The RDD parental virus and two non-RGD recombinant viruses were virulent to pigs and bovines that

  1. Bone regeneration potential of stem cells derived from periodontal ligament or gingival tissue sources encapsulated in RGD-modified alginate scaffold.

    Science.gov (United States)

    Moshaverinia, Alireza; Chen, Chider; Xu, Xingtian; Akiyama, Kentaro; Ansari, Sahar; Zadeh, Homayoun H; Shi, Songtao

    2014-02-01

    Mesenchymal stem cells (MSCs) provide an advantageous alternative therapeutic option for bone regeneration in comparison to current treatment modalities. However, delivering MSCs to the defect site while maintaining a high MSC survival rate is still a critical challenge in MSC-mediated bone regeneration. Here, we tested the bone regeneration capacity of periodontal ligament stem cells (PDLSCs) and gingival mesenchymal stem cells (GMSCs) encapsulated in a novel RGD- (arginine-glycine-aspartic acid tripeptide) coupled alginate microencapsulation system in vitro and in vivo. Five-millimeter-diameter critical-size calvarial defects were created in immunocompromised mice and PDLSCs and GMSCs encapsulated in RGD-modified alginate microspheres were transplanted into the defect sites. New bone formation was assessed using microcomputed tomography and histological analyses 8 weeks after transplantation. Results confirmed that our microencapsulation system significantly enhanced MSC viability and osteogenic differentiation in vitro compared with non-RGD-containing alginate hydrogel microspheres with larger diameters. Results confirmed that PDLSCs were able to repair the calvarial defects by promoting the formation of mineralized tissue, while GMSCs showed significantly lower osteogenic differentiation capability. Further, results revealed that RGD-coupled alginate scaffold facilitated the differentiation of oral MSCs toward an osteoblast lineage in vitro and in vivo, as assessed by expression of osteogenic markers Runx2, ALP, and osteocalcin. In conclusion, these results for the first time demonstrated that MSCs derived from orofacial tissue encapsulated in RGD-modified alginate scaffold show promise for craniofacial bone regeneration. This treatment modality has many potential dental and orthopedic applications.

  2. An improved method of 18F peptide labeling: hydrazone formation with HYNIC-conjugated c(RGDyK)

    International Nuclear Information System (INIS)

    Lee, Yun-Sang; Jeong, Jae Min; Kim, Hyung Woo; Chang, Young Soo; Kim, Young Joo; Hong, Mee Kyung; Rai, Ganesha B.; Chi, Dae Yoon; Kang, Won Jun; Kang, Joo Hyun; Lee, Dong Soo; Chung, June-Key; Lee, Myung Chul; Suh, Young-Ger

    2006-01-01

    Radiolabeled α v β 3 -integrin antagonists are increasingly investigated as a means of imaging angiogenesis. Several methods of labeling α v β 3 -integrin binding peptide with 18 F have been reported recently. In the present study, we devised a straightforward means for labeling Arg-Gly-Asp (RGD) peptide with 18 F via hydrazone formation between c(RGDyK)-hydrazinonicotinic acid (HYNIC) (3) and 4-[ 18 F]-fluorobenzaldehyde ([ 18 F]4). The resulting reaction mixture was purified by HPLC to give 4'-[ 18 F]-fluorobenzylidenehydrazone-6-nicotinamide-c(RGDyK) ([ 18 F]5). The conjugation efficiency of 3 and 4 to form [ 18 F]5 was 95.2%, and the radiochemical purity of [ 18 F]5 after purification was >99%. The specific activity of [ 18 F]5 estimated by radio-HPLC was 20.5 GBq/μmol (end of synthesis). Competitive binding assay of c(RGDyK) (1) and 5 was performed using [ 125 I]iodo-c(RGDyK) as a radioligand, and K i values were found to be 2.8 and 21.7 nM, respectively. For the biodistribution study, the angiogenic mouse model was established by inducing unilateral ischemia on the left hindlimbs of ICR mice after femoral artery ablation. Seven days after inducing ischemia, [ 18 F]5 was administered to the mice through the tail vein. Ischemic muscle uptake of [ 18 F]5 was significantly higher than that of normal muscle (P 18 F]5. Here, we successfully labeled RGD peptide with 18 F via hydrazone formation between 3 and 4, resulting to [ 18 F]5. [ 18 F]5 was found to have high affinity for α v β 3 -integrin and to accumulate specifically in ischemic hindlimb muscle of mice. We suggest that 18 F labeling via formation of hydrazone between HYNIC peptide and [ 18 F]4 is a useful method for labeling c(RGDyK), which can be applied for imaging angiogenesis

  3. Prevention of filtering surgery failure by subconjunctival injection of a novel peptide hydrogel into rabbit eyes

    Energy Technology Data Exchange (ETDEWEB)

    Liang Liang [Department of Ophthalmology, The Central Hospital of Wuhan, Wuhan 430014 (China); Xu Xiaoding; Zhang Xianzheng [Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072 (China); Feng Mei; Peng Chong; Jiang Fagang [Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China)

    2010-08-01

    A novel biocompatible hydrogel was prepared based on the supramolecular self-assembly of a peptide containing a bioactive RGD (arginine-glycine-aspartic acid) sequence and a hydrophobic N-fluorenyl-9-methoxycarbonyl (FMOC) tail. When the self-assembled peptide hydrogel was administered after the filtering surgery of rabbit eyes, the level of connective tissue growth factor (CTGF) mRNA as well as the mean intraocular pressure (IOP) was significantly lower than that of the control eyes during the 21 postoperative days. The filtration bleb and ultrasound biomicroscopy (UBM) images showed that a patent bleb and a filtration fistula could be found in the surgical site of a rabbit eye during the whole experimental period. Histological analysis further evidenced that the filtering surgical wound healing was a normal healing process without scar formation. This new approach, making use of a self-assembled peptide hydrogel to normalize filtering surgical wound healing, may have potential for glaucoma filtering surgery.

  4. Preparation and in vitro evaluation of polymer conjugates actively targeted using RGD-based peptides

    Czech Academy of Sciences Publication Activity Database

    Böhmová, Eliška; Pola, Robert; Pechar, Michal; Janoušková, Olga; Zuska, K.; Etrych, Tomáš

    2017-01-01

    Roč. 6, 4 (Suppl) (2017), s. 91 ISSN 2325-9604. [International Conference and Exhibition on Nanomedicine and Drug Delivery. 29.05.2017-31.05.2017, Osaka] R&D Projects: GA ČR(CZ) GA16-17207S Institutional support: RVO:61389013 Keywords : polymer drug carriers * HPMA * peptide tumor targeting Subject RIV: CD - Macromolecular Chemistry

  5. Surface of allogra on bone-cow of Eprgdnyr by radioactive tracing

    International Nuclear Information System (INIS)

    Tong Jian; Zhang Hongwei; Li Huaifen; Niu Huisheng

    2008-01-01

    Growth bone tissue engineering is one of the creative medical fields in reconstruction of bone defect. It can provide the surface of the material with condition of rich osteoblast multiplication through bioactive materials such as Eprgdnyr (RGD peptide) and cell factor introduced in frame material. A quantity measure of the degree that the pieces of calf bone activated by the radiation of the ultra-violet couple RGD peptide onto the pieces of calf bone under the function of the EDC was given by tracer technique 125 I-Eprgdnyr. The result shows that the amount that RGD peptide couples onto the bone pieces has positive correlation to that of Eprgdnyr and EDC, aimed at providing scientific basis for facial modification of bone reconstruct and support material. (authors)

  6. Induction of Chondrogenic Differentiation of Human Mesenchymal Stem Cells by Biomimetic Gold Nanoparticles with Tunable RGD Density.

    Science.gov (United States)

    Li, Jingchao; Li, Xiaomeng; Zhang, Jing; Kawazoe, Naoki; Chen, Guoping

    2017-07-01

    Nanostructured materials have drawn a broad attention for their applications in biomedical fields. Ligand-modified nanomaterials can well mimic the dynamic extracellular matrix (ECM) microenvironments to regulate cell functions and fates. Herein, ECM mimetic gold nanoparticles (Au NPs) with tunable surface arginine-glycine-aspartate (RGD) density are designed and synthesized to induce the chondrogenic differentiation of human mesenchymal stem cells (hMSCs). The biomimetic Au NPs with an average size of 40 nm shows good biocompatibility without affecting the cell proliferation in the studied concentration range. The RGD motifs on Au NPs surface facilitate cellular uptake of NPs into monolayer hMSCs through integrin-mediated endocytosis. The biomimetic NPs have a promotive effect on cartilaginous matrix production and marker gene expression in cell pellet culture, especially for the biomimetic Au NPs with high surface RGD density. This study provides a novel strategy for fabricating biomimetic NPs to regulate cell differentiation, which holds great potentials in tissue engineering and biomedical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Construction and Biological Evaluation of a Novel Integrin ανβ3-Specific Carrier for Targeted siRNA Delivery In Vitro

    Directory of Open Access Journals (Sweden)

    Xueqi Chen

    2017-02-01

    Full Text Available (1 Background: The great potential of RNA interference (RNAi-based gene therapy is premised on the effective delivery of small interfering RNAs (siRNAs to target tissues and cells. Hence, we aimed at developing and examining a novel integrin αvβ3-specific delivery carrier for targeted transfection of siRNA to malignant tumor cells; (2 Methods: Arginine-glycine-aspartate motif (RGD was adopted as a tissue target for specific recognition of integrin αvβ3. To enable siRNA binding, a chimeric peptide was synthesized by adding nonamer arginine residues (9R at the carboxy terminus of cyclic-RGD dimer, designated as c(RGD2-9R. The efficiency of 9R peptide transferring siRNA was biologically evaluated in vitro by flow cytometry, confocal microscopy, and Western blot; (3 Results: An optimal 10:1 molar ratio of c(RGD2-9R to siRNA was confirmed by the electrophoresis on agarose gels. Both the flow cytometry and confocal microscopy results testified that transfection of c(RGD2-9R as an siRNA delivery carrier was obviously higher than the naked-siRNA group. The results of Western blot demonstrated that these 9R peptides were able to transduce siRNA to HepG2 cells in vitro, resulting in efficient gene silencing; and (4 Conclusion: The chimeric peptide of c(RGD2-9R can be developed as an effective siRNA delivery carrier and shows potential as a new strategy for RNAi-based gene therapy.

  8. Dual-functioning peptides discovered by phage display increase the magnitude and specificity of BMSC attachment to mineralized biomaterials.

    Science.gov (United States)

    Ramaraju, Harsha; Miller, Sharon J; Kohn, David H

    2017-07-01

    Design of biomaterials for cell-based therapies requires presentation of specific physical and chemical cues to cells, analogous to cues provided by native extracellular matrices (ECM). We previously identified a peptide sequence with high affinity towards apatite (VTKHLNQISQSY, VTK) using phage display. The aims of this study were to identify a human MSC-specific peptide sequence through phage display, combine it with the apatite-specific sequence, and verify the specificity of the combined dual-functioning peptide to both apatite and human bone marrow stromal cells. In this study, a combinatorial phage display identified the cell binding sequence (DPIYALSWSGMA, DPI) which was combined with the mineral binding sequence to generate the dual peptide DPI-VTK. DPI-VTK demonstrated significantly greater binding affinity (1/K D ) to apatite surfaces compared to VTK, phosphorylated VTK (VTK phos ), DPI-VTK phos , RGD-VTK, and peptide-free apatite surfaces (p biomaterial surfaces and subsequently increase cell proliferation and differentiation. These new peptides expand biomaterial design methodology for cell-based regeneration of bone defects. This strategy of combining cell and material binding phage display derived peptides is broadly applicable to a variety of systems requiring targeted adhesion of specific cell populations, and may be generalized to the engineering of any adhesion surface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Biodistribution and Radiation Dosimetry of the Integrin Marker 64Cu-BaBaSar-RGD2 Determined from Whole-Body PET/CT in a Non-Human Primate

    Science.gov (United States)

    Liu, Shuanglong; Vorobyova, Ivetta; Park, Ryan; Conti, Peter S.

    2017-10-01

    Introduction: 64Cu-BaBaSar-RGD2 is a positron emission radiotracer taken up by integrin αvβ3, which is overexpressed in many malignancies. The aim of this study was to evaluate the biodistribution of 64Cu-BaBaSar-RGD2 in a non-human primate with positron emission tomography and to estimate the absorbed doses in major organs for human. Materials and methods: Whole-body PET imaging was done in a Siemens Biograph scanner in a male macaque monkey. After an i.v. injection of 13.1–19.7 MBq/kg of 64Cu-BaBaSar-RGD2, whole body scan was collected for a total duration of 180 min. Attenuation and scatter corrections were applied to reconstruction of the whole-body emission scan. After image reconstruction, three-dimensional volumes of interest (VOI) were hand-drawn on the PET transaxial or coronal slices of the frame where the organ was most conspicuous. Time-activity curves for each VOI were obtained, and residence time of each organ was calculated by integration of the time-activity curves. Human absorbed doses were estimated using the standard human model in OLINDA/EXM software. Results: Injection of 64Cu-BaBaSar-RGD2 was well tolerated in the macaque monkey, with no serious tracer-related adverse events observed. 64Cu-BaBaSar-RGD2 was cleared rapidly from the blood pool, with a 12.1-min biological half-time. Increased 64Cu-BaBaSar-RGD2 uptake was observed in the kidneys, and bladder, with mean percentage injected dose (ID%) values at 1 h after injection approximately 35.50 ± 6.47 and 36.89 ± 5.48, respectively. The calculated effective dose was 15.30 ± 2.21 µSv/MBq, and the kidneys had the highest absorbed dose at 108.43 ± 16.41 µGy/MBq using the non-voiding model. For an injected activity of 925 MBq 64Cu for human, the effective dose would be 14.2 ± 2.1 mSv. Discussion: Due to the limitation of the monkey number, we evaluated 64Cu-BaBaSar-RGD2 in the same monkey of three imaging sessions. Measured absorbed doses and effective doses of 64Cu-BaBaSar-RGD2 are

  10. The HDAC Inhibitors Scriptaid and LBH589 Combined with the Oncolytic Virus Delta24-RGD Exert Enhanced Anti-Tumor Efficacy in Patient-Derived Glioblastoma Cells.

    Directory of Open Access Journals (Sweden)

    Lotte M E Berghauser Pont

    Full Text Available A phase I/II trial for glioblastoma with the oncolytic adenovirus Delta24-RGD was recently completed. Delta24-RGD conditionally replicates in cells with a disrupted retinoblastoma-pathway and enters cells via αvβ3/5 integrins. Glioblastomas are differentially sensitive to Delta24-RGD. HDAC inhibitors (HDACi affect integrins and share common cell death pathways with Delta24-RGD. We studied the combination treatment effects of HDACi and Delta24-RGD in patient-derived glioblastoma stem-like cells (GSC, and we determined the most effective HDACi.SAHA, Valproic Acid, Scriptaid, MS275 and LBH589 were combined with Delta24-RGD in fourteen distinct GSCs. Synergy was determined by Chou Talalay method. Viral infection and replication were assessed using luciferase and GFP encoding vectors and hexon-titration assays. Coxsackie adenovirus receptor and αvβ3 integrin levels were determined by flow cytometry. Oncolysis and mechanisms of cell death were studied by viability, caspase-3/7, LDH and LC3B/p62, phospho-p70S6K. Toxicity was studied on normal human astrocytes. MGMT promotor methylation status, TCGA classification, Rb-pathway and integrin gene expression levels were assessed as markers of responsiveness.Scriptaid and LBH589 acted synergistically with Delta24-RGD in approximately 50% of the GSCs. Both drugs moderately increased αvβ3 integrin levels and viral infection in responding but not in non-responding GSCs. LBH589 moderately increased late viral gene expression, however, virus titration revealed diminished viral progeny production by both HDACi, Scriptaid augmented caspase-3/7 activity, LC3B conversion, p62 and phospho-p70S6K consumption, as well as LDH levels. LBH589 increased LDH and phospho-p70S6K consumption. Responsiveness correlated with expression of various Rb-pathway genes and integrins. Combination treatments induced limited toxicity to human astrocytes.LBH589 and Scriptaid combined with Delta24-RGD revealed synergistic anti

  11. Design and biological evaluation of 99mTc-N2S2-Tat(49–57)-c(RGDyK): A hybrid radiopharmaceutical for tumors expressing α(v)β(3) integrins

    International Nuclear Information System (INIS)

    Ocampo-García, Blanca E.; Santos-Cuevas, Clara L.; De León-Rodríguez, Luis M.; García-Becerra, Rocío; Ordaz-Rosado, David; Luna-Guitiérrez, Myrna A.; Jiménez-Mancilla, Nallely P.; Romero-Piña, Mario E.; Ferro-Flores, Guillermina

    2013-01-01

    The α(ν)β(3) integrin is over-expressed in the tumor neovasculature and the tumor cells of glioblastomas. The HIV Tat-derived peptide has been used to deliver various cargos into cells. The aim of this research was to synthesize and assess the in vitro and in vivo uptake of 99m Tc-N 2 S 2 -Tat(49–57)-c(RGDyK) ( 99m Tc-Tat-RGD) in α(ν)β(3) integrin positive cancer cells and compare it to that of a conventional 99m Tc-RGD peptide ( 99m Tc-EDDA/HYNIC-E-[c(RGDfK)] 2 ). Methods: The c(RGDyK) peptide was conjugated to a maleimidopropionyl (MP) moiety through Lys, and the MP group was used as the branch position to form a thioether with the Cys 12 side chain of the Tat(49–57)-spacer-N 2 S 2 peptide. 99m Tc-Tat-RGD was prepared, and stability studies were carried out by size exclusion HPLC analyses in human serum. The in vitro affinity for α(v)β(3) integrin was determined by a competitive binding assay. In vitro internalization was determined using glioblastoma C6 cells. Biodistribution studies were accomplished in athymic mice with C6 induced tumors that had blocked and unblocked receptors. Images were obtained using a micro-SPECT/CT. Results: 99m Tc-Tat-RGD was obtained with a radiochemical purity higher than 95%, as determined by radio-HPLC and ITLC-SG analyses. Protein binding was 15.7% for 99m Tc-Tat-RGD and 5.6% for 99m Tc-RGD. The IC 50 values were 6.7 nM ( 99m Tc-Tat-RGD) and 4.6 nM ( 99m Tc-RGD). Internalization in C6 cells was higher in 99m Tc-Tat-RGD (37.5%) than in 99m Tc-RGD (10%). Biodistribution studies and in vivo micro-SPECT/CT images in mice showed higher tumor uptake for 99m Tc-Tat-RGD (6.98% ± 1.34% ID/g at 3 h) than that of 99m Tc-RGD (3.72% ± 0.52% ID/g at 3 h) with specific recognition for α(v)β(3) integrins. Conclusions: Because of the significant cell internalization (Auger and internal conversion electrons) and specific recognition for α(v)β(3) integrins, the hybrid 99m Tc-N 2 S 2 -Tat(49–57)-c(RGDyK) radiopharmaceutical is

  12. Gd-EDDA/HYNIC-RGD as an MR molecular probe imaging integrin ανβ3 receptor-expressed tumor-MR molecular imaging of angiogenesis

    International Nuclear Information System (INIS)

    Huo Tianlong; Du Xiangke; Zhang Sen; Liu Xia; Li Xubing

    2010-01-01

    Rationale and objective: The aim of this study is to develop a novel MR probe containing arginine-glycine-aspartic acid (RGD) motif for imaging integrin ανβ3 receptor-expressed tumor. Materials and methods: Commercially available HYNIC-RGD conjugated with co-ligand EDDA was labeled with Gd 3+ , and the mixture was isolated and purified by solid phase extract (SPE) to get the entire probe Gd-EDDA/HYNIC-RGD. Human hepatocellular carcinoma (HHCC) cell line BEL-7402 was cultured and the cells harvested and suspended in serum-free Dulbecco's modified Eagle medium (DMEM) were subcutaneously inoculated into athymic nude mice for tumor growth. In vitro cell binding assay to integrin ανβ3 receptor and cell viability experiments were conducted. The in vivo imaging of the three arms of xenografts were performed by MR scan with a dedicated animal coil at time points of 0, 30, 60, 90 min and 24-h post-intravenous injection (p.i.). Three arms of nude mice then were sacrificed for histological examination to confirm the imaging results. Results: Gd-EDDA/HYNIC-RGD was successfully isolated by SPE and validity was verified on signal enhancement through in vitro and in vivo experiments. The nude mice model bearing HHCC was well established. There was approx. 30% signal enhancement on T1WI FSE images at 90 min post-intravenous injection of the Gd-EDDA/HYNIC-RGD compared with baseline, and the signal to time curve is straightforward over time in the span of 0-90 min p.i., while the control arms do not show this tendency. Conclusion: Gd-EDDA/HYNIC-RGD has the potential to serve as an MR probe detecting integrin ανβ3 receptor-expressed tumor.

  13. Gd-EDDA/HYNIC-RGD as an MR molecular probe imaging integrin {alpha}{nu}{beta}3 receptor-expressed tumor-MR molecular imaging of angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Huo Tianlong [Peking University People' s Hospital, Radiology Department, 11 Xizhimen South Street, Xicheng District, Beijing 100044 (China)], E-mail: huotianlong@bjmu.edu.cn; Du Xiangke [Peking University People' s Hospital, Radiology Department, 11 Xizhimen South Street, Xicheng District, Beijing 100044 (China)], E-mail: duxk@263.net; Zhang Sen [Peking University People' s Hospital, Radiology Department, 11 Xizhimen South Street, Xicheng District, Beijing 100044 (China)], E-mail: skagerrak_s@yahoo.com.cn; Liu Xia [Peking University People' s Hospital, Radiology Department, 11 Xizhimen South Street, Xicheng District, Beijing 100044 (China)], E-mail: iamliuxia@126.com; Li Xubing [Peking University People' s Hospital, Radiology Department, 11 Xizhimen South Street, Xicheng District, Beijing 100044 (China)], E-mail: lixb@bjmu.edu.cn

    2010-02-15

    Rationale and objective: The aim of this study is to develop a novel MR probe containing arginine-glycine-aspartic acid (RGD) motif for imaging integrin {alpha}{nu}{beta}3 receptor-expressed tumor. Materials and methods: Commercially available HYNIC-RGD conjugated with co-ligand EDDA was labeled with Gd{sup 3+}, and the mixture was isolated and purified by solid phase extract (SPE) to get the entire probe Gd-EDDA/HYNIC-RGD. Human hepatocellular carcinoma (HHCC) cell line BEL-7402 was cultured and the cells harvested and suspended in serum-free Dulbecco's modified Eagle medium (DMEM) were subcutaneously inoculated into athymic nude mice for tumor growth. In vitro cell binding assay to integrin {alpha}{nu}{beta}3 receptor and cell viability experiments were conducted. The in vivo imaging of the three arms of xenografts were performed by MR scan with a dedicated animal coil at time points of 0, 30, 60, 90 min and 24-h post-intravenous injection (p.i.). Three arms of nude mice then were sacrificed for histological examination to confirm the imaging results. Results: Gd-EDDA/HYNIC-RGD was successfully isolated by SPE and validity was verified on signal enhancement through in vitro and in vivo experiments. The nude mice model bearing HHCC was well established. There was approx. 30% signal enhancement on T1WI FSE images at 90 min post-intravenous injection of the Gd-EDDA/HYNIC-RGD compared with baseline, and the signal to time curve is straightforward over time in the span of 0-90 min p.i., while the control arms do not show this tendency. Conclusion: Gd-EDDA/HYNIC-RGD has the potential to serve as an MR probe detecting integrin {alpha}{nu}{beta}3 receptor-expressed tumor.

  14. Initial in vitro and in vivo assessment of Au@DTDTPA-RGD nanoparticles for Gd-MRI and 68Ga-PET dual modality imaging

    International Nuclear Information System (INIS)

    Tsoukalas, Charalmpos; Laurent, Gautier; Jiménez Sánchez, Gloria; Tsotakos, Theodoros; Bazzi, Rana; Stellas, Dimitris; Anagnostopoulos, Constantinos; Moulopoulos, Lia; Koutoulidis, Vasilis; Paravatou-Petsotas, Maria; Xanthopoulos, Stavros; Roux, Stephane; Bouziotis, Penelope

    2015-01-01

    Gadolinium chelate coated gold nanoparticles (Au@DTDTPA) can be applied as contrast agents for both in vivo X-ray and magnetic resonance imaging. In this work, our aim was to radiolabel and evaluate this gold nanoparticle with Ga-68, in order to produce a dual modality PET/MRI imaging probe. For a typical preparation of 68Ga-labeled nanoparticles, the Au@DTDTPA nanoparticles (Au@DTDTPA/Au@DTDTPA-RGD) were mixed with ammonium acetate buffer, pH 5 and 40 MBq of 68Ga eluate. The mixture was then incubated for 45 min at 65 ÅãC. Radiochemical purity was determined by ITLC. In vitro stability of both radiolabeled species was assessed in saline and serum. In vitro cell binding experiments were performed on integrin ανβ3 receptor-positive U87MG cancer cells. Non-specific Au@DTDTPA was used for comparison. Ex vivo biodistribution studies and in vivo PET and MRI imaging studies in U87MG tumor-bearing SCID mice followed. The Au@DTDTPA nanoparticles were labeled with Gallium-68 at high radiochemical yield (>95%) and were stable at RT, and in the presence of serum, for up to 3 h. The cell binding assay on U87MG glioma cells proved that 68Ga-cRGD-Au@DTDTPA had specific recognition for these cells. Biodistribution studies in U87MG tumor-bearing SCID mice showed that the tumor to muscle ratio increased from 1 to 2 h p.i. (3,71 ± 0.22 and 4,69 ± 0.09 respectively), showing a clear differentiation between the affected and the non-affected tissue. The acquired PET and MRI images were in accordance to the ex vivo biodistribution results. The preliminary results of this study warrant the need for further development of Au@DTDTPA nanoparticles radiolabeled with Ga-68, as possible dual-modality PET/MRI imaging agents.

  15. Initial in vitro and in vivo assessment of Au@DTDTPA-RGD nanoparticles for Gd-MRI and 68Ga-PET dual modality imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tsoukalas, Charalmpos [National Center for Scientific Research ' Demokritos' (Greece); Laurent, Gautier; Jiménez Sánchez, Gloria [Université de Franche-Comté, Institut UTINAM (France); Tsotakos, Theodoros [National Center for Scientific Research ' Demokritos' (Greece); Bazzi, Rana [Université de Franche-Comté, Institut UTINAM (France); Stellas, Dimitris; Anagnostopoulos, Constantinos [Biomedical Research Foundation, Academy of Athens (Greece); Moulopoulos, Lia; Koutoulidis, Vasilis [Department of Radiology, Areteion Hospital, University of Athens Medical School (Greece); Paravatou-Petsotas, Maria; Xanthopoulos, Stavros [National Center for Scientific Research ' Demokritos' (Greece); Roux, Stephane [Université de Franche-Comté, Institut UTINAM (France); Bouziotis, Penelope [National Center for Scientific Research ' Demokritos' (Greece)

    2015-05-18

    Gadolinium chelate coated gold nanoparticles (Au@DTDTPA) can be applied as contrast agents for both in vivo X-ray and magnetic resonance imaging. In this work, our aim was to radiolabel and evaluate this gold nanoparticle with Ga-68, in order to produce a dual modality PET/MRI imaging probe. For a typical preparation of 68Ga-labeled nanoparticles, the Au@DTDTPA nanoparticles (Au@DTDTPA/Au@DTDTPA-RGD) were mixed with ammonium acetate buffer, pH 5 and 40 MBq of 68Ga eluate. The mixture was then incubated for 45 min at 65 ÅãC. Radiochemical purity was determined by ITLC. In vitro stability of both radiolabeled species was assessed in saline and serum. In vitro cell binding experiments were performed on integrin ανβ3 receptor-positive U87MG cancer cells. Non-specific Au@DTDTPA was used for comparison. Ex vivo biodistribution studies and in vivo PET and MRI imaging studies in U87MG tumor-bearing SCID mice followed. The Au@DTDTPA nanoparticles were labeled with Gallium-68 at high radiochemical yield (>95%) and were stable at RT, and in the presence of serum, for up to 3 h. The cell binding assay on U87MG glioma cells proved that 68Ga-cRGD-Au@DTDTPA had specific recognition for these cells. Biodistribution studies in U87MG tumor-bearing SCID mice showed that the tumor to muscle ratio increased from 1 to 2 h p.i. (3,71 ± 0.22 and 4,69 ± 0.09 respectively), showing a clear differentiation between the affected and the non-affected tissue. The acquired PET and MRI images were in accordance to the ex vivo biodistribution results. The preliminary results of this study warrant the need for further development of Au@DTDTPA nanoparticles radiolabeled with Ga-68, as possible dual-modality PET/MRI imaging agents.

  16. A novel chimeric peptide binds MC3T3‑E1 cells to titanium and enhances their proliferation and differentiation.

    Science.gov (United States)

    Wang, Dan; Liao, Xiaofu; Qin, Xu; Shi, Wei; Zhou, Bin

    2013-05-01

    Previous studies have demonstrated that the modification of the titanium (Ti) surface of an implant with RGD (Arg‑Gly‑Asp) promotes the activity of osteoblasts. A novel Ti‑binding peptide, minTBP‑1, and a chimeric peptide, minTBP‑1‑PRGDN, have been synthesized to assist the fixing of RGD to Ti. In our previous study, minTBP‑1‑PRGDN demonstrated favorable affinity for Ti surfaces and facilitated the adhesion of MC3T3‑E1 cells. The aim of the present study was to evaluate the effect of this chimeric peptide on the proliferation and differentiation of MC3T3‑E1 cells. For this purpose, MC3T3‑E1 cells were cultured and differentiation was induced on Ti discs precoated with minTBP‑1‑PRGDN, minTBP‑1 or PRGDN. The MC3T3‑E1 cells on the minTBP‑1‑PRGDN‑precoated Ti disc were observed to exhibit the highest cell number after 24 h and alkaline phosphatase levels in all groups increased in a time‑dependent manner. In addition, marked expression of osteogenic marker genes [osteopontin (OPN) and osteocalcin (OC)] was detected on minTBP‑1‑PRGDN/Ti at day 14. Mineralized deposits on minTBP‑1‑PRGDN/Ti presented the maximal average area and the highest number of deposits was observed on PRGDN/Ti. The present study indicates that minTBP‑1‑PRGDN may enhance and accelerate the activities of MC3T3‑E1 cells on Ti, however, its role in vivo must be determined by further studies.

  17. Progresses in optimization strategy for radiolabeled molecular probes targeting integrin αvβ3

    International Nuclear Information System (INIS)

    Chen Haojun; Wu Hua

    2012-01-01

    Tumor angiogenesis is critical in the growth, invasion and metastasis of malignant tumors. The integrins, which express on many types of tumor cells and activated vascular endothelial cells, play an important role in regulation of the tumor angiogenesis. RGD peptide, which contains Arg-Gly-Asp sequence, binds specifically to integrin α v β 3 . Therefore, the radiolabeled RGD peptides may have broad application prospects in radionuclide imaging and therapy. Major research interests include the selection of radionuclides, modification and improvement of RGD structures. In this article, we give a review on research progresses in optimization strategy for radiolabeled molecular probes targeting integrin α v β 3 . (authors)

  18. Conjugates of Cell Adhesion Peptides for Therapeutics and Diagnostics Against Cancer and Autoimmune Diseases.

    Science.gov (United States)

    Moral, Mario E G; Siahaan, Teruna J

    2017-01-01

    Overexpressed cell-surface receptors are hallmarks of many disease states and are often used as markers for targeting diseased cells over healthy counterparts. Cell adhesion peptides, which are often derived from interacting regions of these receptor-ligand proteins, mimic surfaces of intact proteins and, thus, have been studied as targeting agents for various payloads to certain cell targets for cancers and autoimmune diseases. Because many cytotoxic agents in the free form are often harmful to healthy cells, the use of cell adhesion peptides in targeting their delivery to diseased cells has been studied to potentially reduce required effective doses and associated harmful side-effects. In this review, multiple cell adhesion peptides from extracellular matrix and ICAM proteins were used to selectively direct drug payloads, signal-inhibitor peptides, and diagnostic molecules, to diseased cells over normal counterparts. RGD constructs have been used to improve the selectivity and efficacy of diagnostic and drug-peptide conjugates against cancer cells. From this precedent, novel conjugates of antigenic and cell adhesion peptides, called Bifunctional Peptide Inhibitors (BPIs), have been designed to selectively regulate immune cells and suppress harmful inflammatory responses in autoimmune diseases. Similar peptide conjugations with imaging agents have delivered promising diagnostic methods in animal models of rheumatoid arthritis. BPIs have also been shown to generate immune tolerance and suppress autoimmune diseases in animal models of type-1 diabetes, rheumatoid arthritis, and multiple sclerosis. Collectively, these studies show the potential of cell adhesion peptides in improving the delivery of drugs and diagnostic agents to diseased cells in clinical settings. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. C-Peptide Decline in Type 1 Diabetes Has Two Phases: An Initial Exponential Fall and a Subsequent Stable Phase.

    Science.gov (United States)

    Shields, Beverley M; McDonald, Timothy J; Oram, Richard; Hill, Anita; Hudson, Michelle; Leete, Pia; Pearson, Ewan R; Richardson, Sarah J; Morgan, Noel G; Hattersley, Andrew T

    2018-06-07

    The decline in C-peptide in the 5 years after diagnosis of type 1 diabetes has been well studied, but little is known about the longer-term trajectory. We aimed to examine the association between log-transformed C-peptide levels and the duration of diabetes up to 40 years after diagnosis. We assessed the pattern of association between urinary C-peptide/creatinine ratio (UCPCR) and duration of diabetes in cross-sectional data from 1,549 individuals with type 1 diabetes using nonlinear regression approaches. Findings were replicated in longitudinal follow-up data for both UCPCR ( n = 161 individuals, 326 observations) and plasma C-peptide ( n = 93 individuals, 473 observations). We identified two clear phases of C-peptide decline: an initial exponential fall over 7 years (47% decrease/year [95% CI -51%, -43%]) followed by a stable period thereafter (+0.07%/year [-1.3, +1.5]). The two phases had similar durations and slopes in patients above and below the median age at diagnosis (10.8 years), although levels were lower in the younger patients irrespective of duration. Patterns were consistent in both longitudinal UCPCR ( n = 162; ≤7 years duration: -48%/year [-55%, -38%]; >7 years duration -0.1% [-4.1%, +3.9%]) and plasma C-peptide ( n = 93; >7 years duration only: -2.6% [-6.7%, +1.5%]). These data support two clear phases of C-peptide decline: an initial exponential fall over a 7-year period, followed by a prolonged stabilization where C-peptide levels no longer decline. Understanding the pathophysiological and immunological differences between these two phases will give crucial insights into understanding β-cell survival. © 2018 by the American Diabetes Association.

  20. Reproducibility study of [{sup 18}F]FPP(RGD){sub 2} uptake in murine models of human tumor xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Edwin; Liu, Shuangdong; Chin, Frederick; Cheng, Zhen [Stanford University, Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford, CA (United States); Gowrishankar, Gayatri; Yaghoubi, Shahriar [Stanford University, Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford, CA (United States); Stanford University, Molecular Imaging Program at Stanford, Department of Bioengineering, School of Medicine, Stanford, CA (United States); Wedgeworth, James Patrick [Stanford University, Molecular Imaging Program at Stanford, Department of Bioengineering, School of Medicine, Stanford, CA (United States); Berndorff, Dietmar; Gekeler, Volker [Bayer Schering Pharma AG, Global Drug Discovery, Berlin (Germany); Gambhir, Sanjiv S. [Stanford University, Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford, CA (United States); Stanford University, Molecular Imaging Program at Stanford, Department of Bioengineering, School of Medicine, Stanford, CA (United States); Canary Center at Stanford for Cancer Early Detection, Nuclear Medicine, Departments of Radiology and Bioengineering, Molecular Imaging Program at Stanford, Stanford, CA (United States)

    2011-04-15

    An {sup 18}F-labeled PEGylated arginine-glycine-aspartic acid (RGD) dimer [{sup 18}F]FPP(RGD){sub 2} has been used to image tumor {alpha}{sub v}{beta}{sub 3} integrin levels in preclinical and clinical studies. Serial positron emission tomography (PET) studies may be useful for monitoring antiangiogenic therapy response or for drug screening; however, the reproducibility of serial scans has not been determined for this PET probe. The purpose of this study was to determine the reproducibility of the integrin {alpha}{sub v}{beta}{sub 3}-targeted PET probe, [{sup 18}F ]FPP(RGD){sub 2} using small animal PET. Human HCT116 colon cancer xenografts were implanted into nude mice (n = 12) in the breast and scapular region and grown to mean diameters of 5-15 mm for approximately 2.5 weeks. A 3-min acquisition was performed on a small animal PET scanner approximately 1 h after administration of [{sup 18}F]FPP(RGD){sub 2} (1.9-3.8 MBq, 50-100 {mu}Ci) via the tail vein. A second small animal PET scan was performed approximately 6 h later after reinjection of the probe to assess for reproducibility. Images were analyzed by drawing an ellipsoidal region of interest (ROI) around the tumor xenograft activity. Percentage injected dose per gram (%ID/g) values were calculated from the mean or maximum activity in the ROIs. Coefficients of variation and differences in %ID/g values between studies from the same day were calculated to determine the reproducibility. The coefficient of variation (mean {+-}SD) for %ID{sub mean}/g and %ID{sub max}/g values between [{sup 18}F]FPP(RGD){sub 2} small animal PET scans performed 6 h apart on the same day were 11.1 {+-} 7.6% and 10.4 {+-} 9.3%, respectively. The corresponding differences in %ID{sub mean}/g and %ID{sub max}/g values between scans were -0.025 {+-} 0.067 and -0.039 {+-} 0.426. Immunofluorescence studies revealed a direct relationship between extent of {alpha}{sub {nu}}{beta}{sub 3} integrin expression in tumors and tumor vasculature

  1. A pilot study imaging integrin αvβ3 with RGD PET/CT in suspected lung cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Song [Shandong Cancer Hospital and Institute, Department of Radiation Oncology, Jinan, Shandong (China); University of Jinan-Shandong Academy of Medical Sciences, School of Medicine and Life Sciences, Jinan, Shandong (China); Wu, Honghu [Wuyi County People' s Hospital of Hengshui City, Hengshui, Hebei Province (China); Li, Wenwu; Zhao, Shuqiang; Teng, Xuepeng; Lu, Hong [Shandong Cancer Hospital and Institute, Department of Radiology, Jinan, Shandong (China); Hu, Xudong; Wang, Suzhen; Yu, Jinming; Yuan, Shuanghu [Shandong Cancer Hospital and Institute, Department of Radiation Oncology, Jinan, Shandong (China)

    2015-12-15

    Angiogenesis is an essential step in tumour development and metastasis. Integrin αvβ3 plays a major role in angiogenesis, tumour growth and progression. A new tracer, {sup 18}F-AL-NOTA-PRGD2, denoted as {sup 18}F-alfatide, has been developed for positron emission tomography (PET) imaging of integrin αvβ3. This is a pilot study to test the safety and diagnostic value of {sup 18}F- arginine-glycine-aspartic acid (RGD) PET/computed tomography (CT) in suspected lung cancer patients. Twenty-six patients with suspected lung cancer on enhanced CT underwent {sup 18}F-alfatide RGD PET/CT examination before surgery and puncture biopsy. Standard uptake values (SUVs) and the tumour-to-blood ratios were measured, and diagnoses were pathologically confirmed. RGD PET/CT with {sup 18}F-alfatide was performed successfully in all patients and no clinically significant adverse events were observed. The {sup 18}F-alfatide RGD PET/CT analysis correctly recognized 17 patients with lung cancer, 4 patients (hamartoma) as true negative, and 5 patients (4 chronic inflammation and 1 inflammatory pseudotumour) as false positive. The sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) of {sup 18}F-alfatide RGD PET/CT for the diagnosis of suspected lung cancer patients was 100, 44.44, 80.77, 77.27, and 100 %, respectively. The area under a receiver operating characteristic (ROC) curve was 0.75 (P = 0.038), and ROC analysis suggested an SUVmax cut-off value of 2.65 to differentiate between malignant lesions and benign lesions. The SUV for malignant lesions was 5.37 ± 2.17, significantly higher than that for hamartomas (1.60 ± 0.11; P < 0.001). The difference between the tumour-to-blood ratio for malignant lesions (4.13 ± 0.91) and tissue of interest-to-blood ratio for hamartomas (1.56 ± 0.24) was also statistically significant (P < 0.001). Neither the SUVmax nor the tumour-to-blood ratio was significantly different between malignant

  2. In vivo modulation of foreign body response on polyurethane by surface entrapment technique.

    Science.gov (United States)

    Khandwekar, Anand P; Patil, Deepak P; Hardikar, Anand A; Shouche, Yogesh S; Doble, Mukesh

    2010-11-01

    Implanted polymeric materials, such as medical devices, provoke the body to initiate an inflammatory reaction, known as the foreign body response (FBR), which causes several complications. In this study, polyurethane (Tecoflex®, PU) surface modified with the nonionic surfactant Tween80® (PU/T80) and the cell adhesive PLL-RGD peptide (PU/PLL-RGD) by a previously described entrapment technique were implanted in the peritoneal cavity of Wistar rats for 30 days. Implants were retrieved and examined for tissue reactivity and cellular adherence by various microscopic and analytical techniques. Surface-induced inflammatory response was assessed by real-time PCR based quantification of proinflammatory cytokine transcripts, namely, TNF-α and IL-1β, normalized to housekeeping gene GAPDH. Cellular adherence and their distribution profile were assessed by microscopic examination of H&E stained implant sections. It was observed that PU/PLL-RGD followed by the bare PU surface exhibited severe inflammatory and fibrotic response with an average mean thickness of 19 and 12 μm, respectively, in 30 days. In contrast, PU/T80 surface showed only a cellular monolayer of 2-3 μm in thickness, with a mild inflammatory response and no fibrotic encapsulation. The PU/PLL-RGD peptide-modified substrate promoted an enhanced rate of macrophage cell fusion to form foreign body giant cell (FBGCs), whereas FBGCs were rarely observed on Tween80®-modified substrate. The expression levels of proinflammatory cytokines (TNF-α and IL-1β) were upregulated on PU/PLL-RGD surface followed by bare PU, whereas the cytokine expressions were significantly suppressed on PU/T80 surface. Thus, our study highlights modulation of foreign body response on polyurethane surfaces through surface entrapment technique in the form of differential responses observed on PLL-RGD and Tween80® modified surfaces with the former effective in triggering tissue cell adhesion thereby fibrous encapsulation, while the later

  3. Tumor-targeted inhibition by a novel strategy - mimoretrovirus expressing siRNA targeting the Pokemon gene.

    Science.gov (United States)

    Tian, Zhiqiang; Wang, Huaizhi; Jia, Zhengcai; Shi, Jinglei; Tang, Jun; Mao, Liwei; Liu, Hongli; Deng, Yijing; He, Yangdong; Ruan, Zhihua; Li, Jintao; Wu, Yuzhang; Ni, Bing

    2010-12-01

    Pokemon gene has crucial but versatile functions in cell differentiation, proliferation and tumorigenesis. It is a master regulator of the ARF-HDM2-p53 and Rb-E2F pathways. The facts that the expression of Pokemon is essential for tumor formation and many kinds of tumors over-express the Pokemon gene make it an attractive target for therapeutic intervention for cancer treatment. In this study, we used an RNAi strategy to silence the Pokemon gene in a cervical cancer model. To address the issues involving tumor specific delivery and durable expression of siRNA, we applied the Arg-Gly-Asp (RGD) peptide ligand and polylysine (K(18)) fusion peptide to encapsulate a recombinant retrovirus plasmid expressing a siRNA targeting the Pokemon gene and produced the 'mimoretrovirus'. At charge ratio 2.0 of fusion peptide/plasmid, the mimoretrovirus formed stable and homogenous nanoparticles, and provided complete DNase I protection and complete gel retardation. This nanoparticle inhibited SiHa cell proliferation and invasion, while it promoted SiHa cell apoptosis. The binding of the nanoparticle to SiHa cells was mediated via the RGD-integrin α(v)β(3) interaction, as evidenced by the finding that unconjugated RGD peptide inhibited this binding significantly. This tumor-targeting mimoretrovirus exhibited excellent anti-tumor capacity in vivo in a nude mouse model. Moreover, the mimoretrovirus inhibited tumor growth with a much higher efficiency than recombinant retrovirus expressing siRNA or the K(18)/P4 nanoparticle lacking the RGD peptide. Results suggest that the RNAi/RGD-based mimoretrovirus developed in this study represents a novel anti-tumor strategy that may be applicable to most research involving cancer therapy and, thus, has promising potential as a cervical cancer treatment.

  4. Fasting serum C-peptide is useful for initial classification of diabetes mellitus in children and adolescents

    Directory of Open Access Journals (Sweden)

    Min Jung Cho

    2014-06-01

    Full Text Available PurposeWith rising obesity rates in children, it is increasingly difficult to differentiate between type 1 and type 2 diabetes mellitus (T1DM, T2DM on clinical grounds alone. Using C-peptide as a method of classifying diabetes mellitus (DM has been suggested. This study aimed to find a correlation between fasting C-peptide level and DM types in children and adolescents.MethodsA total of 223 diabetic children, newly diagnosed at 5 hospitals between January 2001 and December 2012, were enrolled in this study. Initial DM classification was based on clinical and laboratory data including fasting C-peptide at diagnosis; final classification was based on additional data (pancreatic autoantibodies, human leukocyte antigen type, and clinical course.ResultsOf 223 diabetic children, 140 were diagnosed with T1DM (62.8% and the remaining 83 with T2DM (37.2%. The mean serum C-peptide level was significantly lower in children with T1DM (0.80 ng/mL than in children with T2DM (3.91 ng/mL. Among 223 children, 54 had a serum C-peptide level 3.0 ng/mL; 48 of them (97.9% were diagnosed with T2DM.ConclusionIn this study, we found that if the C-peptide level was 3.0 ng/mL, a T1DM diagnosis is unlikely. This finding suggests that serum fasting C-peptide level is useful for classifying DM type at the time of diagnosis in youth.

  5. The Adenovirus Type 3 Dodecahedron's RGD Loop Comprises an HSPG Binding Site That Influences Integrin Binding

    Directory of Open Access Journals (Sweden)

    E. Gout

    2010-01-01

    Full Text Available Human type 3 adenovirus dodecahedron (a virus like particle made of twelve penton bases features the ability to enter cells through Heparan Sulphate Proteoglycans (HSPGs and integrins interaction and is used as a versatile vector to deliver DNA or proteins. Cryo-EM reconstruction of the pseudoviral particle with Heparan Sulphate (HS oligosaccharide shows an extradensity on the RGD loop. A set of mutants was designed to study the respective roles of the RGD sequence (RGE mutant and of a basic sequence located just downstream. Results showed that the RGE mutant binding to the HS deficient CHO-2241 cells was abolished and unexpectedly, mutation of the basic sequence (KQKR to AQAS dramatically decreased integrin recognition by the viral pseudoparticle. This basic sequence is thus involved in integrin docking, showing a close interplay between HSPGs and integrin receptors.

  6. MicroPET/CT imaging of {alpha}{sub v}{beta}{sub 3} integrin via a novel {sup 68}Ga-NOTA-RGD peptidomimetic conjugate in rat myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Menichetti, Luca; Kusmic, Claudia; Panetta, Daniele; Petroni, Debora; Salvadori, Piero A. [CNR-Institute of Clinical Physiology (IFC), Pisa (Italy); Arosio, Daniela; Manzoni, Leonardo [CNR-Institute of Molecular Science and Technologies (ISTM), Milan (Italy); Matteucci, Marco [Scuola Superiore Sant' Anna, Pisa (Italy); Casagrande, Cesare [University of Milan, Department of Chemistry, Milan (Italy); L' Abbate, Antonio [CNR-Institute of Clinical Physiology (IFC), Pisa (Italy); Scuola Superiore Sant' Anna, Pisa (Italy)

    2013-08-15

    The {alpha}{sub v}{beta}{sub 3} integrin is expressed in angiogenic vessels and is a potential target for molecular imaging of evolving pathological processes. Its expression is upregulated in cancer lesions and metastases as well as in acute myocardial infarction (MI) as part of the infarct healing process. The purpose of our study was to determine the feasibility of a new imaging approach with a novel {sup 68}Ga-2,2',2''-(1,4,7-triazonane-1,4,7-triyl)triacetic acid (NOTA)-arginine-glycine-aspartic acid (RGD) construct to assess integrin expression in the evolving MI. A straightforward labelling chemistry to attach the radionuclide {sup 68}Ga to a NOTA-based chelating agent conjugated with a cyclic RGD peptidomimetic is described. Affinity for {alpha}{sub v}{beta}{sub 3} integrin was assessed by in vitro receptor binding assay. The proof-of-concept in vivo studies combined the {sup 68}Ga-NOTA-RGD with the flow tracer {sup 13}N-NH{sub 3} imaging in order to obtain positron emission tomography (PET)/CT imaging of both integrin expression and perfusion defect at 4 weeks after infarction. Hearts were then processed for immunostaining of integrin {beta}{sub 3}. NOTA-RGD conjugate displayed a binding affinity for {alpha}{sub v}{beta}{sub 3} integrin of 27.9 {+-} 6.8 nM. {sup 68}Ga-NOTA-RGD showed stability without detectable degradation or formation of by-products in urine up to 2 h following injection in the rat. MI hearts exhibited {sup 68}Ga-NOTA-RGD uptake in correspondence to infarcted and border zone regions. The tracer signal drew a parallel with vascular remodelling due to ischaemia-induced angiogenesis as assessed by immunohistochemistry. As compared to similar imaging approaches using the {sup 18}F-galacto-derivative, we documented for the first time with microPET/CT imaging the {sup 68}Ga-NOTA-RGD derivative that appears eligible for PET imaging in animal models of vascular remodelling during evolving MI. The simple chemistry employed to

  7. Platelet-camouflaged nanococktail: Simultaneous inhibition of drug-resistant tumor growth and metastasis via a cancer cells and tumor vasculature dual-targeting strategy.

    Science.gov (United States)

    Jing, Lijia; Qu, Haijing; Wu, Dongqi; Zhu, Chaojian; Yang, Yongbo; Jin, Xing; Zheng, Jian; Shi, Xiangsheng; Yan, Xiufeng; Wang, Yang

    2018-01-01

    Multidrug resistance (MDR) poses a great challenge to cancer therapy. It is difficult to inhibit the growth of MDR cancer due to its chemoresistance. Furthermore, MDR cancers are more likely to metastasize, causing a high mortality among cancer patients. In this study, a nanomedicine RGD-NPVs@MNPs/DOX was developed by encapsulating melanin nanoparticles (MNPs) and doxorubicin (DOX) inside RGD peptide (c(RGDyC))-modified nanoscale platelet vesicles (RGD-NPVs) to efficiently inhibit the growth and metastasis of drug-resistant tumors via a cancer cells and tumor vasculature dual-targeting strategy. Methods: The in vitro immune evasion potential and the targeting performance of RGD-NPVs@MNPs/DOX were examined using RAW264.7, HUVECs, MDA-MB-231 and MDA-MB-231/ADR cells lines. We also evaluated the pharmacokinetic behavior and the in vivo therapeutic performance of RGD-NPVs@MNPs/DOX using a MDA-MB-231/ADR tumor-bearing nude mouse model. Results: By taking advantage of the self-recognizing property of the platelet membrane and the conjugated RGD peptides, RGD-NPVs@MNPs/DOX was found to evade immune clearance and target the αvβ3 integrin on tumor vasculature and resistant breast tumor cells. Under irradiation with a NIR laser, RGD-NPVs@MNPs/DOX produced a multipronged effect, including reversal of cancer MDR, efficient killing of resistant cells by chemo-photothermal therapy, elimination of tumor vasculature for blocking metastasis, and long-lasting inhibition of the expressions of VEGF, MMP2 and MMP9 within the tumor. Conclusion: This versatile nanomedicine of RGD-NPVs@MNPs/DOX integrating unique biomimetic properties, excellent targeting performance, and comprehensive therapeutic strategies in one formulation might bring opportunities to MDR cancer therapy.

  8. Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation

    International Nuclear Information System (INIS)

    Mobasseri, Rezvan; Tian, Lingling; Soleimani, Masoud; Ramakrishna, Seeram; Naderi-Manesh, Hossein

    2017-01-01

    Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on different substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation. - Highlights: • Bioactive molecules modified surface is a strategy to design biomimicry scaffold. • Bi-functional Tat-derived peptide (R-pept) enhanced MSCs adhesion and proliferation. • R-pept showed similar influences to fibronectin on FA formation and attachment.

  9. Imaging of alpha(v)beta(3) expression by a bifunctional chimeric RGD peptide not cross-reacting with alpha(v)beta(5).

    Science.gov (United States)

    Zannetti, Antonella; Del Vecchio, Silvana; Iommelli, Francesca; Del Gatto, Annarita; De Luca, Stefania; Zaccaro, Laura; Papaccioli, Angela; Sommella, Jvana; Panico, Mariarosaria; Speranza, Antonio; Grieco, Paolo; Novellino, Ettore; Saviano, Michele; Pedone, Carlo; Salvatore, Marco

    2009-08-15

    To test whether a novel bifunctional chimeric peptide comprising a cyclic Arg-Gly-Asp pentapeptide covalently bound to an echistatin domain can discriminate alpha(v)beta(3) from alpha(v)beta(5) integrin, thus allowing the in vivo selective visualization of alpha(v)beta(3) expression by single-photon and positron emission tomography (PET) imaging. The chimeric peptide was preliminarily tested for inhibition of alpha(v)beta(3)-dependent cell adhesion and competition of 125I-echistatin binding to membrane of stably transfected K562 cells expressing alpha(v)beta(3) (Kalpha(v)beta(3)) or alpha(v)beta(5) (Kalpha(v)beta(5)) integrin. The chimeric peptide was then conjugated with diethylenetriaminepentaacetic acid and labeled with 111In for single-photon imaging, whereas a one-step procedure was used for labeling the full-length peptide and a truncated derivative, lacking the last five C-terminal amino acids, with 18F for PET imaging. Nude mice bearing tumors from Kalpha(v)beta(3), Kalpha(v)beta(5), U87MG human glioblastoma, and A431 human epidermoid cells were subjected to single-photon and PET imaging. Adhesion and competitive binding assays showed that the novel chimeric peptide selectively binds to alpha(v)beta(3) integrin and does not cross-react with alpha(v)beta(5). In agreement with in vitro findings, single-photon and PET imaging studies showed that the radiolabeled chimeric peptide selectively localizes in tumor xenografts expressing alphavbeta3 and fails to accumulate in those expressing alpha(v)beta(5) integrin. When 18F-labeled truncated derivative was used for PET imaging, alphavbeta3- and alpha(v)beta(5)-expressing tumors were visualized, indicating that the five C-terminal amino acids are required to differentially bind the two integrins. Our findings indicate that the novel chimeric Arg-Gly-Asp peptide, having no cross-reaction with alphavbeta5 integrin, allows highly selective alphavbeta3 expression imaging and monitoring.

  10. Core-shell nanocarriers with high paclitaxel loading for passive and active targeting

    Science.gov (United States)

    Jin, Zhu; Lv, Yaqi; Cao, Hui; Yao, Jing; Zhou, Jianping; He, Wei; Yin, Lifang

    2016-06-01

    Rapid blood clearance and premature burst release are inherent drawbacks of conventional nanoparticles, resulting in poor tumor selectivity. iRGD peptide is widely recognized as an efficient cell membrane penetration peptide homing to αVβ3 integrins. Herein, core-shell nanocapsules (NCs) and iRGD-modified NCs (iRGD-NCs) with high drug payload for paclitaxel (PTX) were prepared to enhance the antitumor activities of chemotherapy agents with poor water solubility. Improved in vitro and in vivo tumor targeting and penetration were observed with NCs and iRGD-NCs; the latter exhibited better antitumor activity because iRGD enhanced the accumulation and penetration of NCs in tumors. The NCs were cytocompatible, histocompatible, and non-toxic to other healthy tissues. The endocytosis of NCs was mediated by lipid rafts in an energy-dependent manner, leading to better cytotoxicity of PTX against cancer cells. In contrast with commercial product, PTX-loaded NCs (PTX-NCs) increased area under concentration-time curve (AUC) by about 4-fold, prolonged mean resident time (MRT) by more than 8-fold and reduced the elimination rate constant by greater than 68-fold. In conclusion, the present nanocarriers with high drug-loading capacity represent an efficient tumor-targeting drug delivery system with promising potential for cancer therapy.

  11. Integrin-targeting thermally cross-linked superparamagnetic iron oxide nanoparticles for combined cancer imaging and drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mi Kyung; Park, Jinho; Jon, Sangyong [School of Life Sciences, Gwangju Institute of Science and Technology, 261 Chemdangwagi-ro, Gwangju 500-712 (Korea, Republic of); Jeong, Yong Yeon [Department of Diagnostic Radiology, Jeonnam National University Hwasun Hospital, 160 Ilsim-ri, Hwasun-eup, Jeonnam 519-809 (Korea, Republic of); Moon, Woo Kyung, E-mail: syjon@gist.ac.kr [Diagnostic Radiology, Seoul National University Hospital and the Institute of Radiation Medicine, Medical Research Center Seoul National University, Seoul 110-744 (Korea, Republic of)

    2010-10-15

    We report multifunctional nanoparticles that are capable of cancer targeting and simultaneous cancer imaging and therapy. The nanoparticles are composed of cyclic arginine-glycine-aspartic acid (cRGD) peptide ligand bioconjugated thermally cross-linked superparamagnetic iron oxide nanoparticles (TCL-SPION) that enable loading of the anticancer drug doxorubicin (Dox). The cyclic RGD-conjugated TCL-SPION (cRGD{sub T}CL-SPION) had a mean hydrodynamic size of 34 {+-} 8 nm with approximately 0.39 wt% of cyclic RGD attached to the surface of the nanoparticles. The cRGD{sub T}CL-SPION exhibited preferential binding towards target cancer cells (U87MG, integrin {alpha}{sub v{beta}3} +) when analyzed by T{sub 2}-weighted magnetic resonance (MR) imaging. When Dox was loaded onto the polymeric coating layers of cRGD{sub T}CL-SPION via ionic interaction, the resulting Dox-loaded cRGD{sub T}CL-SPION (Dox-cRGD{sub T}CL-SPION) showed much higher cytotoxicity in U87MG cells than Dox-TCL-SPION lacking cRGD (IC{sub 50} value of 0.02 {mu}M versus 0.12 {mu}M). These results suggest that Dox-cRGD{sub T}CL-SPION has potential for use as an integrin-targeted, combined imaging and therapeutic agent.

  12. Integrin αβ3-Targeted Imaging of Lung Cancer

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Chen

    2005-03-01

    Full Text Available A series of radiolabeled cyclic arginine-glycineaspartic acid (RGD peptide ligands for cell adhesion molecule integrin αβ3-targeted tumor angiogenesis targeting are being developed in our laboratory. In this study, this effort continues by applying a positron emitter 64Cu-labeled PEGylated dimeric RGD peptide radiotracer 64Cu-DOTA-PEG-E[c(RGDyK]2 for lung cancer imaging. The PEGylated RGD peptide indicated integrin αβ3 avidity, but the PEGylation reduced the receptor binding affinity of this ligand compared to the unmodified RGD dimer. The radiotracer revealed rapid blood clearance and predominant renal clearance route. The minimum nonspecific activity accumulation in normal lung tissue and heart rendered high-quality orthotopic lung cancer tumor images, enabling clear demarcation of both the primary tumor at the upper lobe of the left lung, as well as metastases in the mediastinum, contralateral lung, diaphragm. As a comparison, fluorodeoxyglucose (FDG scans on the same mice were only able to identify the primary tumor, with the metastatic lesions masked by intense cardiac uptake and high lung background. 64Cu-DOTA-PEGE[c(RGDyK]2 is an excellent positron emission tomography (PET tracer for integrin-positive tumor imaging. Further studies to improve the receptor binding affinity of the tracer and subsequently to increase the magnitude of tumor uptake without comprising the favorable in vivo kinetics are currently in progress.

  13. A bio-inspired, microchanneled hydrogel with controlled spacing of cell adhesion ligands regulates 3D spatial organization of cells and tissue.

    Science.gov (United States)

    Lee, Min Kyung; Rich, Max H; Lee, Jonghwi; Kong, Hyunjoon

    2015-07-01

    Bioactive hydrogels have been extensively studied as a platform for 3D cell culture and tissue regeneration. One of the key desired design parameters is the ability to control spatial organization of biomolecules and cells and subsequent tissue in a 3D matrix. To this end, this study presents a simple but advanced method to spatially organize microchanneled, cell adherent gel blocks and non-adherent ones in a single construct. This hydrogel system was prepared by first fabricating a bimodal hydrogel in which the microscale, alginate gel blocks modified with cell adhesion peptides containing Arg-Gly-Asp sequence (RGD peptides), and those free of RGD peptides, were alternatingly presented. Then, anisotropically aligned microchannels were introduced by uniaxial freeze-drying of the bimodal hydrogel. The resulting gel system could drive bone marrow stromal cells to adhere to and differentiate into neuron and glial cells exclusively in microchannels of the alginate gel blocks modified with RGD peptides. Separately, the bimodal gel loaded with microparticles releasing vascular endothelial growth factor stimulated vascular growth solely into microchannels of the RGD-alginate gel blocks in vivo. These results were not attained by the bimodal hydrogel fabricated to present randomly oriented micropores. Overall, the bimodal gel system could regulate spatial organization of nerve-like tissue or blood vessels at sub-micrometer length scale. We believe that the hydrogel assembly demonstrated in this study will be highly useful in developing a better understanding of diverse cellular behaviors in 3D tissue and further improve quality of a wide array of engineered tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Synthesis and biological evaluation of potent αvβ3-integrin receptor antagonists

    International Nuclear Information System (INIS)

    Dijkgraaf, Ingrid; Kruijtzer, John A.W.; Frielink, Cathelijne; Soede, Annemieke C.; Hilbers, Hans W.; Oyen, Wim J.G.; Corstens, Frans H.M.; Liskamp, Rob M.J.; Boerman, Otto C.

    2006-01-01

    Introduction: α v β 3 Integrin is expressed in sprouting endothelial cells in growing tumors, whereas it is absent in quiescent blood vessels. In addition, various tumor cell types express α v β 3 integrin. α v β 3 Integrin, a transmembrane heterodimeric protein, binds to the arginine-glycine-aspartic acid (RGD) amino acid sequence of extracellular matrix proteins such as vitronectin and plays a pivotal role in invasion, proliferation and metastasis. Due to the selective expression of α v β 3 integrin in tumors, radiolabeled RGD peptides and peptidomimetics are attractive candidates for tumor targeting. Methods: A cyclic RGD peptide, a peptoid-peptide hybrid, an all-peptoid and a peptidomimetic compound were synthesized, conjugated with 1,4,7,10-tetraazadodecane-N,N',N'',N'''-tetraacetic acid (DOTA) and radiolabeled with 111 In. Their in vitro and in vivo α v β 3 -binding characteristics were determined. Results: IC 5 values were 236 nM for DOTA-E-c(RGDfK), 219 nM for DOTA-peptidomimetic, >10 mM for DOTA-all-peptoid and 9.25 mM for the peptoid-peptide hybrid DOTA-E-c(nRGDfK). 111 In-labeled compounds, except for [ 111 In]DOTA-all-peptoid, showed specific uptake in human α v β 3 -expressing tumors xenografted in athymic mice. Tumor uptake for [ 111 In]DOTA-E-c(RGDfK) was 1.73±0.4% ID/g (2 h postinjection) and that of [ 111 In]DOTA-peptidomimetic was 2.04±0.3% ID/g. Tumor uptake for the peptoid-peptide hybrid [ 111 In]DOTA-E-c(nRGDfK) was markedly lower (0.45±0.07% ID/g). The all-peptoid [ 111 In]DOTA-E-c(nRGnDnFnK) did not show specific uptake in tumors (0.11±0.04% ID/g). Conclusions: The peptidomimetic compound and the cyclic RGD peptide have a high affinity for α v β 3 integrin, and these compounds have better tumor-targeting characteristics than the peptoid-peptide hybrid and the all-peptoid

  15. Surface control of blastospore attachment and ligand-mediated hyphae adhesion of Candida albicans.

    Science.gov (United States)

    Varghese, Nisha; Yang, Sijie; Sejwal, Preeti; Luk, Yan-Yeung

    2013-11-14

    Adhesion on a surface via nonspecific attachment or multiple ligand-receptor interactions is a critical event for fungal infection by Candida albicans. Here, we find that the tri(ethylene glycol)- and d-mannitol-terminated monolayers do not resist the blastospore attachment, but prevent the hyphae adhesion of C. albicans. The hyphae adhesion can be facilitated by tripeptide sequences of arginine-glycine-aspartic acid (RGD) covalently decorated on a background of tri(ethylene glycol)-terminated monolayers. This adhesion mediated by selected ligands is sensitive to the scrambling of peptide sequences, and is inhibited by the presence of cyclic RGD peptides in the solution.

  16. Construction of expressing vectors including melanoma differentiation-associated gene-7 (mda-7 fused with the RGD sequences for better tumor targeting

    Directory of Open Access Journals (Sweden)

    Mahboobeh Khodadad

    2015-08-01

    Conclusion: Theoretically RGD tagged mda-7 would be able to induce apoptosis with more specificity and stronger than the standard one, therefore, these new constructs may have the potential for further researches.

  17. The Rho ADP-ribosylating C3 exoenzyme binds cells via an Arg-Gly-Asp motif.

    Science.gov (United States)

    Rohrbeck, Astrid; Höltje, Markus; Adolf, Andrej; Oms, Elisabeth; Hagemann, Sandra; Ahnert-Hilger, Gudrun; Just, Ingo

    2017-10-27

    The Rho ADP-ribosylating C3 exoenzyme (C3bot) is a bacterial protein toxin devoid of a cell-binding or -translocation domain. Nevertheless, C3 can efficiently enter intact cells, including neurons, but the mechanism of C3 binding and uptake is not yet understood. Previously, we identified the intermediate filament vimentin as an extracellular membranous interaction partner of C3. However, uptake of C3 into cells still occurs (although reduced) in the absence of vimentin, indicating involvement of an additional host cell receptor. C3 harbors an Arg-Gly-Asp (RGD) motif, which is the major integrin-binding site, present in a variety of integrin ligands. To check whether the RGD motif of C3 is involved in binding to cells, we performed a competition assay with C3 and RGD peptide or with a monoclonal antibody binding to β1-integrin subunit and binding assays in different cell lines, primary neurons, and synaptosomes with C3-RGD mutants. Here, we report that preincubation of cells with the GRGDNP peptide strongly reduced C3 binding to cells. Moreover, mutation of the RGD motif reduced C3 binding to intact cells and also to recombinant vimentin. Anti-integrin antibodies also lowered the C3 binding to cells. Our results indicate that the RGD motif of C3 is at least one essential C3 motif for binding to host cells and that integrin is an additional receptor for C3 besides vimentin. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. A Novel MS-Cleavable Azo Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS)

    Science.gov (United States)

    Iacobucci, Claudio; Hage, Christoph; Schäfer, Mathias; Sinz, Andrea

    2017-10-01

    The chemical cross-linking/mass spectrometry (MS) approach is a growing research field in structural proteomics that allows gaining insights into protein conformations. It relies on creating distance constraints between cross-linked amino acid side chains that can further be used to derive protein structures. Currently, the most urgent task for designing novel cross-linking principles is an unambiguous and automated assignment of the created cross-linked products. Here, we introduce the homobifunctional, amine-reactive, and water soluble cross-linker azobisimidoester (ABI) as a prototype of a novel class of cross-linkers. The ABI-linker possesses an innovative modular scaffold combining the benefits of collisional activation lability with open shell chemistry. This MS-cleavable cross-linker can be efficiently operated via free radical initiated peptide sequencing (FRIPS) in positive ionization mode. Our proof-of-principle study challenges the gas phase behavior of the ABI-linker for the three amino acids, lysine, leucine, and isoleucine, as well as the model peptide thymopentin. The isomeric amino acids leucine and isoleucine could be discriminated by their characteristic side chain fragments. Collisional activation experiments were conducted via positive electrospray ionization (ESI) on two Orbitrap mass spectrometers. The ABI-mediated formation of odd electron product ions in MS/MS and MS3 experiments was evaluated and compared with a previously described azo-based cross-linker. All cross-linked products were amenable to automated analysis by the MeroX software, underlining the future potential of the ABI-linker for structural proteomics studies. [Figure not available: see fulltext.

  19. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac...... peptides has only been elucidated during the last decade. The cellular synthesis including amino acid modifications and proteolytic cleavages has proven considerably more complex than initially perceived. Consequently, the elimination phase of the peptide products in circulation is not yet well....... An inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...

  20. Analysis of peptide uptake and location of root hair-promoting peptide accumulation in plant roots.

    Science.gov (United States)

    Matsumiya, Yoshiki; Taniguchi, Rikiya; Kubo, Motoki

    2012-03-01

    Peptide uptake by plant roots from degraded soybean-meal products was analyzed in Brassica rapa and Solanum lycopersicum. B. rapa absorbed about 40% of the initial water volume, whereas peptide concentration was decreased by 75% after 24 h. Analysis by reversed-phase HPLC showed that number of peptides was absorbed by the roots during soaking in degraded soybean-meal products for 24 h. Carboxyfluorescein-labeled root hair-promoting peptide was synthesized, and its localization, movement, and accumulation in roots were investigated. The peptide appeared to be absorbed by root hairs and then moved to trichoblasts. Furthermore, the peptide was moved from trichoblasts to atrichoblasts after 24 h. The peptide was accumulated in epidermal cells, suggesting that the peptide may have a function in both trichoblasts and atrichoblasts. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.

  1. Reduction of Burn Progression with Topical Delivery of (Antitumor Necrosis Factor-alpha )-Hyaluronic Acid Conjugates

    Science.gov (United States)

    2012-01-01

    antibody conjugation to HA The conjugation chemistry followed a method previously developed in our laboratory. Briefly, HA (12 mg) was modi - fied...Webster MW, McGill JB, Schwartz SL. Promotion and acceleration of diabetic ulcer healing by arginine-glycine-aspartic acid (RGD) peptide matrix. RGD...Study Group. Diabetes Care 1995; 18: 39–46. 32. Ho-Asjoe M, Chronnell CM, Frame JD, Leigh IM, Carver N. Immunohistochemical analysis of burn depth. J

  2. Epitopes in α8β1 and other RGD-binding integrins delineate classes of integrin-blocking antibodies and major binding loops in α subunits.

    Science.gov (United States)

    Nishimichi, Norihisa; Kawashima, Nagako; Yokosaki, Yasuyuki

    2015-09-09

    Identification of epitopes for integrin-blocking monoclonal antibodies (mAbs) has aided our understanding of structure-function relationship of integrins. We mapped epitopes of chicken anti-integrin-α8-subunit-blocking mAbs by mutational analyses, examining regions that harboured all mapped epitopes recognized by mAbs against other α-subunits in the RGD-binding-integrin subfamily. Six mAbs exhibited blocking function, and these mAbs recognized residues on the same W2:41-loop on the top-face of the β-propeller. Loop-tips sufficiently close to W2:41 (face was identified as an additional component of the epitope of one antibody, clone YZ5. Binding sequences on the two loops were conserved in virtually all mammals, and that on W3:34 was also conserved in chickens. These indicate 1) YZ5 binds both top and bottom loops, and the binding to W3:34 is by interactions to conserved residues between immunogen and host species, 2) five other blocking mAbs solely bind to W2:41 and 3) the α8 mAbs would cross-react with most mammals. Comparing with the mAbs against the other α-subunits of RGD-integrins, two classes were delineated; those binding to "W3:34 and an top-loop", and "solely W2:41", accounting for 82% of published RGD-integrin-mAbs.

  3. Natriuretic peptides in cardiometabolic regulation and disease

    DEFF Research Database (Denmark)

    Zois, Nora E; Bartels, Emil D; Hunter, Ingrid

    2014-01-01

    decade. Dysregulation of the natriuretic peptide system has been associated with obesity, glucose intolerance, type 2 diabetes mellitus, and essential hypertension. Moreover, the natriuretic peptides have been implicated in the protection against atherosclerosis, thrombosis, and myocardial ischaemia. All...... these conditions can coexist and potentially lead to heart failure, a syndrome associated with a functional natriuretic peptide deficiency despite high circulating concentrations of immunoreactive peptides. Therefore, dysregulation of the natriuretic peptide system, a 'natriuretic handicap', might be an important...... factor in the initiation and progression of metabolic dysfunction and its accompanying cardiovascular complications. This Review provides a summary of the natriuretic peptide system and its involvement in these cardiometabolic conditions. We propose that these peptides might have an integrating role...

  4. A sensitive mass spectrometric method for hypothesis-driven detection of peptide post-translational modifications: multiple reaction monitoring-initiated detection and sequencing (MIDAS).

    Science.gov (United States)

    Unwin, Richard D; Griffiths, John R; Whetton, Anthony D

    2009-01-01

    The application of a targeted mass spectrometric workflow to the sensitive identification of post-translational modifications is described. This protocol employs multiple reaction monitoring (MRM) to search for all putative peptides specifically modified in a target protein. Positive MRMs trigger an MS/MS experiment to confirm the nature and site of the modification. This approach, termed MIDAS (MRM-initiated detection and sequencing), is more sensitive than approaches using neutral loss scanning or precursor ion scanning methodologies, due to a more efficient use of duty cycle along with a decreased background signal associated with MRM. We describe the use of MIDAS for the identification of phosphorylation, with a typical experiment taking just a couple of hours from obtaining a peptide sample. With minor modifications, the MIDAS method can be applied to other protein modifications or unmodified peptides can be used as a MIDAS target.

  5. Synthesis, Characterization, and Initial Biological Evaluation of [99m Tc]Tc-Tricarbonyl-labeled DPA-α-MSH Peptide Derivatives for Potential Melanoma Imaging.

    Science.gov (United States)

    Gao, Feng; Sihver, Wiebke; Bergmann, Ralf; Belter, Birgit; Bolzati, Cristina; Salvarese, Nicola; Steinbach, Jörg; Pietzsch, Jens; Pietzsch, Hans-Jürgen

    2018-06-06

    α-Melanocyte stimulating hormone (α-MSH) derivatives target the melanocortin-1 receptor (MC1R) specifically and selectively. In this study, the α-MSH-derived peptide NAP-NS1 (Nle-Asp-His-d-Phe-Arg-Trp-Gly-NH 2 ) with and without linkers was conjugated with 5-(bis(pyridin-2-ylmethyl)amino)pentanoic acid (DPA-COOH) and labeled with [ 99m Tc]Tc-tricarbonyl by two methods. With the one-pot method the labeling was faster than with the two-pot method, while obtaining similarly high yields. Negligible trans-chelation and high stability in physiological solutions was determined for the [ 99m Tc]Tc-tricarbonyl-peptide conjugates. Coupling an ethylene glycol (EG)-based linker increased the hydrophilicity. The peptide derivatives displayed high binding affinity in murine B16F10 melanoma cells as well as in human MeWo and TXM13 melanoma cell homogenates. Preliminary in vivo studies with one of the [ 99m Tc]Tc-tricarbonyl-peptide conjugates showed good stability in blood and both renal and hepatobiliary excretion. Biodistribution was performed on healthy rats to gain initial insight into the potential relevance of the 99m Tc-labeled peptides for in vivo imaging. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Correlation of breast cancer subtypes, based on estrogen receptor, progesterone receptor, and HER2, with functional imaging parameters from {sup 68}Ga-RGD PET/CT and {sup 18}F-FDG PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hai-Jeon [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, The Institute of Radiation Medicine, Seoul (Korea, Republic of); Ewha Womans University School of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Kang, Keon Wook; Jeong, Jae Min; Chung, June-Key [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Biomedical Sciences, Seoul (Korea, Republic of); Seoul National University College of Medicine, The Institute of Radiation Medicine, Seoul (Korea, Republic of); Seoul National University, Cancer Research Institute, Seoul (Korea, Republic of); Chun, In Kook [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Kangwon National University Hospital, Department of Nuclear Medicine, Chuncheon, Kangwon-Do (Korea, Republic of); Cho, Nariya [Seoul National University College of Medicine, Department of Radiology, Jongno-gu, Seoul (Korea, Republic of); Im, Seock-Ah [Seoul National University College of Medicine, Department of Internal Medicine, Seoul (Korea, Republic of); Jeong, Sunjoo [Dankook University, Department of Molecular Biology, Yongin (Korea, Republic of); Lee, Song [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, The Institute of Radiation Medicine, Seoul (Korea, Republic of); Jung, Kyeong Cheon [Seoul National University College of Medicine, Department of Pathology, Seoul (Korea, Republic of); Lee, Yun-Sang [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of); Lee, Dong Soo [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, The Institute of Radiation Medicine, Seoul (Korea, Republic of); Seoul National University, Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul (Korea, Republic of); Moon, Woo Kyung [Seoul National University College of Medicine, Department of Radiology, Jongno-gu, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Biomedical Sciences, Seoul (Korea, Republic of); Seoul National University College of Medicine, The Institute of Radiation Medicine, Seoul (Korea, Republic of)

    2014-08-15

    Imaging biomarkers from functional imaging modalities were assessed as potential surrogate markers of disease status. Specifically, in this prospective study, we investigated the relationships between functional imaging parameters and histological prognostic factors and breast cancer subtypes. In total, 43 patients with large or locally advanced invasive ductal carcinoma (IDC) were analyzed (47.6 ± 7.5 years old). {sup 68}Ga-Labeled arginine-glycine-aspartic acid (RGD) and {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) were performed. The maximum and average standardized uptake values (SUV{sub max} and SUV{sub avg}) from RGD PET/CT and SUV{sub max} and SUV{sub avg} from FDG PET/CT were the imaging parameters used. For histological prognostic factors, estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression was identified using immunohistochemistry (IHC) or fluorescent in situ hybridization (FISH). Four breast cancer subtypes, based on ER/PR and HER2 expression (ER/PR+,Her2-, ER/PR+,Her2+, ER/PR-,Her2+, and ER/PR-,Her2-), were considered. Quantitative FDG PET parameters were significantly higher in the ER-negative group (15.88 ± 8.73 vs 10.48 ± 6.01, p = 0.02 for SUV{sub max}; 9.40 ± 5.19 vs 5.92 ± 4.09, p = 0.02 for SUV{sub avg}) and the PR-negative group (8.37 ± 4.94 vs 4.79 ± 3.93, p = 0.03 for SUV{sub avg}). Quantitative RGD PET parameters were significantly higher in the HER2-positive group (2.42 ± 0.59 vs 2.90 ± 0.75, p = 0.04 for SUV{sub max}; 1.60 ± 0.38 vs 1.95 ± 0.53, p = 0.04 for SUV{sub avg}) and showed a significant positive correlation with the HER2/CEP17 ratio (r = 0.38, p = 0.03 for SUV{sub max} and r = 0.46, p < 0.01 for SUV{sub avg}). FDG PET parameters showed significantly higher values in the ER/PR-,Her2- subgroup versus the ER/PR+,Her2- or ER/PR+,Her2+ subgroups, while RGD PET parameters showed significantly lower values in the ER

  7. miR-451 deficiency is associated with altered endometrial fibrinogen alpha chain expression and reduced endometriotic implant establishment in an experimental mouse model.

    Directory of Open Access Journals (Sweden)

    Warren B Nothnick

    Full Text Available Endometriosis is defined as the growth of endometrial glandular and stromal components in ectopic locations and affects as many as 10% of all women of reproductive age. Despite its high prevalence, the pathogenesis of endometriosis remains poorly understood. MicroRNAs, small non-coding RNAs that post-transcriptionally regulate gene expression, are mis-expressed in endometriosis but a functional role in the disease pathogenesis remains uncertain. To examine the role of microRNA-451 (miR-451 in the initial development of endometriosis, we utilized a novel mouse model in which eutopic endometrial fragments used to induce endometriosis were deficient for miR-451. After induction of the disease, we evaluated the impact of this deficiency on implant development and survival. Loss of miR-451 expression resulted in a lower number of ectopic lesions established in vivo. Analysis of differential protein profiles between miR-451 deficient and wild-type endometrial fragments revealed that fibrinogen alpha polypeptide isoform 2 precursor was approximately 2-fold higher in the miR-451 null donor endometrial tissue and this elevated expression of the protein was associated with altered expression of the parent fibrinogen alpha chain mRNA and protein. As this polypeptide contains RGD amino acid "cell adhesion" motifs which could impact early establishment of lesion development, we examined and confirmed using a cyclic RGD peptide antagonist, that endometrial cell adhesion and endometriosis establishment could be respectively inhibited both in vitro and in vivo. Collectively, these results suggest that the reduced miR-451 eutopic endometrial expression does not enhance initial establishment of these fragments when displaced into the peritoneal cavity, that loss of eutopic endometrial miR-451 expression is associated with altered expression of fibrinogen alpha chain mRNA and protein, and that RGD cyclic peptide antagonists inhibit establishment of endometriosis

  8. Cleaving Double-Stranded DNA with Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1997-01-01

    Peptide nucleic acids and analogues of peptide nucleic acids are used to form duplex, triplex, and other structures with nucleic acids and to modify nucleic acids. The peptide nucleic acids and analogues thereof also are used to modulate protein activity through, for example, transcription arrest......, transcription initiation, and site specific cleavage of nucleic acids....

  9. Bovine adenovirus type 3 containing heterologous protein in the C-terminus of minor capsid protein IX

    International Nuclear Information System (INIS)

    Zakhartchouk, Alexander; Connors, Wayne; Van Kessel, Andrew; Tikoo, Suresh Kumar

    2004-01-01

    Earlier, we detected pIX of BAdV-3 as a 14-kDa protein in purified virions. Analysis of BAdV-3 pIX using different region antibodies revealed that the N-terminus and central domain of the pIX contain immunogenic sites and are not exposed on the surface of BAdV-3 virion. This suggested that the C-terminus of BAdV-3 pIX (125 amino acid) may be exposed on the virion and may be used as a site for incorporation of heterologous peptides or proteins. We constructed recombinant BAV950 containing a small peptide (21 amino acid), including the RGD motif or recombinant BAV951 containing enhanced yellow-green fluorescent protein (EYFP) fused to the C-terminus of pIX. Western blot analysis demonstrated that the chimeric pIX-RGD was incorporated into virion capsids. Incorporation of the RGD motif into the pIX resulted in significant augmentation of BAdV-3 fiber knob-independent infection of the integrin-positive cells, suggesting that RGD motifs are displayed on the surface of virion capsids and are accessible for binding to integrins. Analysis of BAV951 revealed that the chimeric pIX is incorporated into virion capsids and EYFP containing the C-terminus of pIX is exposed on the surface of the virion. Moreover, insertion of chimeric pIXs was maintained without change through successive rounds of viral replication. These results suggested that in contrast to major capsid proteins (hexon, penton, fiber), the minor capsid protein IX can be use for the incorporation of targeting ligands based on either small peptides or longer polypeptides

  10. Inter-heterogeneity and intra-heterogeneity of α{sub v}β{sub 3} in non-small cell lung cancer and small cell lung cancer patients as revealed by {sup 68}Ga-RGD{sub 2} PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Fei; Li, Guoquan; Wang, Shengjun; Liu, Daliang; Zhang, Mingru; Zhao, Mingxuan; Yang, Weidong; Wang, Jing [Fourth Military Medical University, Department of Nuclear Medicine, Xijing Hospital, Xi' an (China); Wang, Zhe [Fourth Military Medical University, Department of Nuclear Medicine, Xijing Hospital, Xi' an (China); Fourth Military Medical University, Department of Pathology, Xijing Hospital, Xi' an (China)

    2017-08-15

    Integrin α{sub v}β{sub 3} is the therapeutic target of the anti-angiogenic drug cilengitide. The objective of this study was to compare α{sub v}β{sub 3} levels in non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) patients, by using the positron emission tomography (PET) tracer {sup 68}Ga-labeled dimerized-RGD ({sup 68}Ga-RGD{sub 2}). Thirty-one patients with pathologically confirmed lung cancer were enrolled (21 were NSCLC and 10 were SCLC). PET/CT images were acquired using {sup 68}Ga-RGD{sub 2}.{sup 18}F-FDG PET/CT images were also acquired on the consecutive day as reference. The standard uptake values (SUV) and the tumor/nontarget (T/NT) values were quantitatively compared. Expression of the angiogenesis marker α{sub v}β{sub 3} in NSCLC and SCLC lesions was analyzed by immunohistochemistry. The {sup 18}F-FDG SUVmax and the SUVmean were not significantly different between NSCLC and SCLC patients. The {sup 68}Ga-RGD{sub 2} uptake of SCLC patients was at background levels in both SUV and T/NT measurements and was significantly lower than that of NSCLC patients. The range value of {sup 68}Ga-RGD{sub 2} SUVmean was 4.5 in the NSCLC group and 2.2 in the SCLC group, while the variation coefficient was 36.2% and 39.3% in NSCLC and SCLC primary lesions, respectively. Heterogeneity between primary lesions and putative distant metastases was also observed in some NSCLC cases. Immunostaining showed that α{sub v}β{sub 3} integrin was expressed in the cells and neovasculature of NSCLC lesions, while SCLC samples had negative expression. The uptake of {sup 68}Ga-RGD{sub 2} in SCLC patients is significantly lower than that in NSCLC patients, indicating a lower α{sub v}β{sub 3} target level for cilengitide in SCLC. Apparent intra-tumor heterogeneities of α{sub v}β{sub 3} also exist in both NSCLC and SCLC. Such inter- and intra-heterogeneity of α{sub v}β{sub 3} may potentially improve current applications of α{sub v}β{sub 3}-targeted therapy

  11. Intracellular Signalling by C-Peptide

    Directory of Open Access Journals (Sweden)

    Claire E. Hills

    2008-01-01

    Full Text Available C-peptide, a cleavage product of the proinsulin molecule, has long been regarded as biologically inert, serving merely as a surrogate marker for insulin release. Recent findings demonstrate both a physiological and protective role of C-peptide when administered to individuals with type I diabetes. Data indicate that C-peptide appears to bind in nanomolar concentrations to a cell surface receptor which is most likely to be G-protein coupled. Binding of C-peptide initiates multiple cellular effects, evoking a rise in intracellular calcium, increased PI-3-kinase activity, stimulation of the Na+/K+ ATPase, increased eNOS transcription, and activation of the MAPK signalling pathway. These cell signalling effects have been studied in multiple cell types from multiple tissues. Overall these observations raise the possibility that C-peptide may serve as a potential therapeutic agent for the treatment or prevention of long-term complications associated with diabetes.

  12. B-type natriuretic peptide (BNP) affects the initial response to intravenous glucose: a randomised placebo-controlled cross-over study in healthy men.

    Science.gov (United States)

    Heinisch, B B; Vila, G; Resl, M; Riedl, M; Dieplinger, B; Mueller, T; Luger, A; Pacini, G; Clodi, M

    2012-05-01

    B-type natriuretic peptide (BNP) is a hormone released from cardiomyocytes in response to cell stretching and elevated in heart failure. Recent observations indicate a distinct connection between chronic heart failure and diabetes mellitus. This study investigated the role of BNP on glucose metabolism. Ten healthy volunteers (25 ± 1 years; BMI 23 ± 1 kg/m(2); fasting glucose 4.6 ± 0.1 mmol/l) were recruited to a participant-blinded investigator-open placebo-controlled cross-over study, performed at a university medical centre. They were randomly assigned (sequentially numbered opaque sealed envelopes) to receive either placebo or 3 pmol kg(-1) min(-1) BNP-32 intravenously during 4 h on study day 1 or 2. One hour after beginning the BNP/placebo infusion, a 3 h intravenous glucose tolerance test (0.33 g/kg glucose + 0.03 U/kg insulin at 20 min) was performed. Plasma glucose, insulin and C-peptide were frequently measured. Ten volunteers per group were analysed. BNP increased the initial glucose distribution volume (13 ± 1% body weight vs 11 ± 1%, p < 0.002), leading to an overall reduction in glucose concentration (p < 0.001), particularly during the initial 20 min of the test (p = 0.001), accompanied by a reduction in the initial C-peptide levels (1.42 ± 0.13 vs 1.62 ± 0.10 nmol/l, p = 0.015). BNP had no impact on beta cell function, insulin clearance or insulin sensitivity and induced no adverse effects. Intravenous administration of BNP increases glucose initial distribution volume and lowers plasma glucose concentrations following a glucose load, without affecting beta cell function or insulin sensitivity. These data support the theory that BNP has no diabetogenic properties, but improves metabolic status in men, and suggest new questions regarding BNP-induced differences in glucose availability and signalling in various organs/tissues. ClinicalTrials.gov: NCT01324739 The study was funded by Jubilée Fonds of the Austrian National Bank (OeNB-Fonds).

  13. Peptide chemistry toolbox - Transforming natural peptides into peptide therapeutics.

    Science.gov (United States)

    Erak, Miloš; Bellmann-Sickert, Kathrin; Els-Heindl, Sylvia; Beck-Sickinger, Annette G

    2018-06-01

    The development of solid phase peptide synthesis has released tremendous opportunities for using synthetic peptides in medicinal applications. In the last decades, peptide therapeutics became an emerging market in pharmaceutical industry. The need for synthetic strategies in order to improve peptidic properties, such as longer half-life, higher bioavailability, increased potency and efficiency is accordingly rising. In this mini-review, we present a toolbox of modifications in peptide chemistry for overcoming the main drawbacks during the transition from natural peptides to peptide therapeutics. Modifications at the level of the peptide backbone, amino acid side chains and higher orders of structures are described. Furthermore, we are discussing the future of peptide therapeutics development and their impact on the pharmaceutical market. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Evidence that a functional fertilin-like ADAM plays a role in human sperm-oolemmal interactions.

    Science.gov (United States)

    Bronson, R A; Fusi, F M; Calzi, F; Doldi, N; Ferrari, A

    1999-05-01

    Fertilin is a protein initially identified in guinea pig spermatozoa; it is the prototype of a larger family of conserved, proteins designated as a disintegrin and a metalloproteinase (ADAM). These heterodimers which consist of alpha and beta subunits, containing metalloproteinase-like and disintegrin-like domains, appear to play a role in mammalian fertilization. Peptides derived from the disintegrin domains of two ADAMs, fertilin and cyritestin, interfere with gamete adhesion and sperm-egg membrane fusion in non-human species. It has been suggested that fertilin-beta binds to an oolemmal integrin, and it is proposed that the tripeptide FEE (Phe-Glu-Glu) is the integrin recognition sequence in human fertilin-beta. We evaluated whether fertilin beta plays a role in human fertilization by studying the effects of a linear octapeptide containing the FEE sequence, SFEECDLP, and a scrambled octapeptide with the same amino acids, SFPCEDEL, on the incorporation of human spermatozoa by human zona-free eggs. The effects of G4120, a potent RGD-containing (Arg-Gly-Asp) thioether-bridged cyclic peptide which blocks both fibronectin and vitronectin receptors, and the relationship between FEE- and RGD-receptor interactions on sperm-egg interactions were also studied. The FEE-containing peptide, but not the scrampled peptide, inhibited sperm adhesion to oocytes and their penetration, over the range 1-5 microM. The inhibition induced by SFEECDLP was reversible and occurred only in the presence of peptide itself. The G4120 peptide exhibited 10-fold less inhibitory effects on sperm adhesion and penetration than did SFEECDLP. When combined, SFEECDLP and G4120 exhibited strong inhibition of both adhesion and penetration at concentrations that individually had been ineffective, suggesting co-operation between the two receptor-ligand interactions during fertilization. We propose that a fertilin-like molecule is functionally active on human spermatozoa and that its interaction with an

  15. Integrin αvβ3–Targeted Dynamic Contrast–Enhanced Magnetic Resonance Imaging Using a Gadolinium-Loaded Polyethylene Gycol–Dendrimer–Cyclic RGD Conjugate to Evaluate Tumor Angiogenesis and to Assess Early Antiangiogenic Treatment Response in a Mouse Xenograft Tumor Model

    Directory of Open Access Journals (Sweden)

    Wei-Tsung Chen

    2012-07-01

    Full Text Available The purpose of this study was to validate an integrin αvβ3–targeted magnetic resonance contrast agent, PEG-G3-(Gd-DTPA6-(cRGD-DTPA2, for its ability to detect tumor angiogenesis and assess early response to antiangiogenic therapy using dynamic contrast–enhanced (DCE magnetic resonance imaging (MRI. Integrin αvβ3–positive U87 cells and control groups were incubated with fluorescein-labeled cRGD-conjugated dendrimer, and the cellular attachment of the dendrimer was observed. DCE MRI was performed on mice bearing KB xenograft tumors using either PEG-G3-(Gd-DTPA6-(cRGD-DTPA2 or PEG-G3-(Gd-DTPA6-(cRAD-DTPA2. DCE MRI was also performed 2 hours after anti–integrin αvβ3 monoclonal antibody treatment and after bevacizumab treatment on days 3 and 6t. Using DCE MRI, the 30-minute contrast washout percentage was significantly lower in the cRGD-conjugate injection groups. The enhancement patterns were different between the two contrast injection groups. In the antiangiogenic therapy groups, a rapid increase in 30-minute contrast washout percentage was observed in both the LM609 and bevacizumab treatment groups, and this occurred before there was an observable decrease in tumor size. The integrin αvβ3 targeting ability of PEG-G3-(Gd-DTPA6-(cRGD-DTPA2 in vitro and in vivo was demonstrated. The 30-minute contrast washout percentage is a useful parameter for examining tumor angiogenesis and for the early assessment of antiangiogenic treatment response.

  16. Cell Adhesion on RGD-Displaying Knottins with Varying Numbers of Tryptophan Amino Acids to Tune the Affinity for Assembly on Cucurbit[8]uril Surfaces

    NARCIS (Netherlands)

    Sankaran, Shrikrishnan; Cavatorta, Emanuela; Huskens, Jurriaan; Jonkheijm, Pascal

    2017-01-01

    Cell adhesion is studied on multivalent knottins, displaying RGD ligands with a high affinity for integrin receptors, that are assembled on CB[8]-methylviologen-modified surfaces. The multivalency in the knottins stems from the number of tryptophan amino acid moieties, between 0 and 4, that can form

  17. Anti-EGFR-iRGD recombinant protein conjugated silk fibroin nanoparticles for enhanced tumor targeting and antitumor efficiency

    Directory of Open Access Journals (Sweden)

    Bian X

    2016-05-01

    Full Text Available Xinyu Bian,* Puyuan Wu,* Huizi Sha, Hanqing Qian, Qing Wang, Lei Cheng, Yang Yang, Mi Yang, Baorui LiuComprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China*These authors contributed equally to this workAbstract: In this study, we report a novel kind of targeting with paclitaxel (PTX-loaded silk fibroin nanoparticles conjugated with iRGD–EGFR nanobody recombinant protein (anti-EGFR-iRGD. The new nanoparticles (called A-PTX-SF-NPs were prepared using the carbodiimide-mediated coupling procedure and their characteristics were evaluated. The cellular cytotoxicity and cellular uptake of A-PTX-SF-NPs were also investigated. The results in vivo suggested that NPs conjugated with the recombinant protein exhibited more targeting and anti-neoplastic property in cells with high EGFR expression. In the in vivo antitumor efficacy assay, the A-PTX-SF-NPs group showed slower tumor growth and smaller tumor volumes than PTX-SF-NPs in a HeLa xenograft mouse model. A real-time near-infrared fluorescence imaging study showed that A-PTX-SF-NPs could target the tumor more effectively. These results suggest that the anticancer activity and tumor targeting of A-PTX-SF-NPs were superior to those of PTX-SF-NPs and may have the potential to be used for targeted delivery for tumor therapies. Keywords: EGFR, nanobody, iRGD, recombinant protein, targeting drug carriers, antitumor efficiency

  18. Mechanism of papain-catalyzed synthesis of oligo-tyrosine peptides.

    Science.gov (United States)

    Mitsuhashi, Jun; Nakayama, Tsutomu; Narai-Kanayama, Asako

    2015-01-01

    Di-, tri-, and tetra-tyrosine peptides with angiotensin I-converting enzyme inhibitory activity were synthesized by papain-catalyzed polymerization of L-tyrosine ethyl ester in aqueous media at 30 °C. Varying the reaction pH from 6.0 to 7.5 and the initial concentration of the ester substrate from 25 to 100 mM, the highest yield of oligo-tyrosine peptides (79% on a substrate basis) was produced at pH 6.5 and 75 mM, respectively. In the reaction initiated with 100 mM of the substrate, approx. 50% yield of insoluble, highly polymerized peptides accumulated. At less than 15 mM, the reaction proceeded poorly; however, from 30 mM to 120 mM a dose-dependent increase in the consumption rate of the substrate was observed with a sigmoidal curve. Meanwhile, each of the tri- and tetra-tyrosine peptides, even at approx. 5mM, was consumed effectively by papain but was not elongated to insoluble polymers. For deacylation of the acyl-papain intermediate through which a new peptide bond is made, L-tyrosine ethyl ester, even at 5mM, showed higher nucleophilic activity than di- and tri-tyrosine. These results indicate that the mechanism through which papain polymerizes L-tyrosine ethyl ester is as follows: the first interaction between papain and the ester substrate is a rate-limiting step; oligo-tyrosine peptides produced early in the reaction period are preferentially used as acyl donors, while the initial ester substrate strongly contributes as a nucleophile to the elongation of the peptide product; and the balance between hydrolytic fragmentation and further elongation of oligo-tyrosine peptides is dependent on the surrounding concentration of the ester substrate. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. RAM, an RGDS analog, exerts potent anti-melanoma effects in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Maria Simona Aguzzi

    Full Text Available Peptides containing the RGD sequence are under continuous investigation given their ability to control cell adhesion and apoptosis. Since small peptides are quickly metabolized and degraded in vivo, developing analogs resistant to serum-induced degradation is a challenging task. RGD analogs developed so far are known as molecules mostly inhibiting cell adhesion; this feature may reduce cell proliferation and tumor development but may not induce regression of tumors or metastases already formed. In the current study, carried out in melanoma in vitro and in vivo models, we show that RAM, an RGD-non-peptide Analog-Molecule, strongly inhibits cells adhesion onto plastic, vitronectin, fibronectin, laminin and von Willebrand Factor while it does not inhibit cell adhesion onto collagen IV, similarly to the RGDS template peptide. It also strongly inhibits in vitro cell proliferation, migration and DNA-synthesis, increases melanoma cells apoptosis and reduces survivin expression. All such effects were observed in collagen IV seeded cells, therefore are most likely independent from the anti adhesive properties. Further, RAM is more stable than the template RGDS; in fact it maintains its anti-proliferation and anti-adhesion effects after long serum exposure while RGDS almost completely loses its effects upon serum exposure. In a mouse metastatic melanoma in vivo model, increasing doses of RAM significantly reduce up to about 80% lung metastases development, while comparable doses of RGDS are less potent. In conclusion these data show that RAM is a potent inhibitor of melanoma growth in vitro, strongly reduces melanoma metastases development in vivo and represents a novel candidate for further in vivo investigations in the cancer treatment field.

  20. Biokinetics and dosimetry of a hybrid formulation of 9mTc-BN and 99mTc-RGD2 starting from optic images in a murine model

    International Nuclear Information System (INIS)

    Cornejo A, L. G.

    2015-01-01

    This work has the purpose of evaluate the biokinetics and absorbed dose of radiation of hybrid formulation 99m Tc-BN / 99m Tc-RGD 2 in a murine model by optical imaging techniques using the multimodal preclinical in vivo image system Xtreme. The used method were the 99m Tc-BN, 99m Tc-RGD 2 and 99m Tc-BN/ 99m Tc-RGD 2 formulas, with specific recognition for GRPr and the integrin s α(v)β(3) and α(v)β(5) respectively, was injected in the vein tail of three nude mousses with induce breast cancer tumors (cell line T-47-D), by the preclinical multimodal imaging system Xtreme (Bruker), optical images in different times was acquired (5, 10, 20 min, 2 and 24 h), using Images Processing Toolbox of MATLAB these images was transform from RGB format to gray scales and sectioned in five independent images corresponding to heart, kidneys, bladder and tumor areas. The intensity of each images was computed in counts per pixel, then those intensities was corrected for background, attenuation and scattering, using different factors for each phenomena previously calculated. Finally the activity values quantified vs time was fitted into a biokinetic model to obtain the disintegrations number and cumulate activities in each organ. With these data the radiation absorbed dose were calculated using MIRD methodology. Results: The number of disintegration and absorbed dose calculated in MBq h/MBq and mGy/MBq, of injected mouse with the 99m Tc-BN/ 99m Tc-RGD 2 formulation, was: 0.035 ± 0.65 E-02, 0.25 x 10 -5 ± 0.46 E-07; 0.393 ± 0.51 E-1, 2.85 E-05 ± 3.7 E-06; 0.306 ± 0.21 E-01, 2.11 E-05 ± 1.45 E-06 and 0.151 ± 0.19 E-01, 1.09 E-05 ± 1.42 E-06 , in heart, kidneys, bladder and tumor, respectively. The number of disintegration obtained in kidneys is comparable to those reported for Trinidad B. 2014 Conclusions: Our results demonstrated that using optical images and a code for image analyses development in MATLAB, could achieve comparable quantitative results as the conventional

  1. Evaluation of MAP-specific peptides following vaccination of goats

    DEFF Research Database (Denmark)

    Lybeck, Kari; Sjurseth, Siri K.; Melvang, Heidi Mikkelsen

    species or 2) selected based on “experience”. Peptides predicted to bind bovine MHC II by in silico analysis were included in further studies, resulting in two panels 1) genome-based and 2) selected. Initially, two groups of 15 healthy goats were vaccinated with one of the two panels (50 µg/peptide in CAF......01 adjuvant/CAF04 for boosting). Four MAP-infected goats were also vaccinated. In a second vaccination trail, groups of 8 healthy goat kids were vaccinated with genome-based peptides, selected peptides or selected peptides linked together in a recombinant protein (20 µg/peptide or 50 µg protein...... peptides. IFN-γ responses in healthy goats after the first vaccination were low, but testing of T cell lines from MAP-infected goats identified peptides inducing strong proliferative responses. Peptides for a second vaccination were selected by combining results from this study with a parallel cattle study...

  2. Dendrimer-Stabilized Gold Nanostars as a Multifunctional Theranostic Nanoplatform for CT Imaging, Photothermal Therapy, and Gene Silencing of Tumors.

    Science.gov (United States)

    Wei, Ping; Chen, Jingwen; Hu, Yong; Li, Xin; Wang, Han; Shen, Mingwu; Shi, Xiangyang

    2016-12-01

    Development of versatile nanomaterials combining diagnostic and therapeutic functionalities within one single nanoplatform is extremely important for tumor theranostics. In this work, the authors report the synthesis of a gold nanostar (Au NS)-based theranostic platform stabilized with cyclic arginine-glycine-aspartic (Arg-Gly-Asp, RGD) peptide-modified amine-terminated generation 3 poly(amidoamine) dendrimers. The formed RGD-modified dendrimer-stabilized Au NSs (RGD-Au DSNSs) are used as a gene delivery vector to complex small interfering RNA (siRNA) for computed tomography (CT) imaging, thermal imaging, photothermal therapy (PTT), and gene therapy of tumors. The results show that the RGD-Au DSNSs are able to compact vascular endothelial growth factor siRNA and specifically deliver siRNA to cancer cells overexpressing α v β 3 integrin. Under near-infrared laser irradiation, the viability of cancer cells is only 20.2% after incubation with the RGD-Au DSNS/siRNA polyplexes, which is much lower than that of cells after single PTT or gene therapy treatment. Furthermore, in vivo results show that the RGD-Au DSNS/siRNA polyplexes enable tumor CT imaging, thermal imaging, PTT, and gene therapy after intratumoral injection. These results indicate that the developed multifunctional nanoconstruct is a promising platform for tumor imaging and combinational PTT and gene therapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Acylation of Therapeutic Peptides

    DEFF Research Database (Denmark)

    Trier, Sofie; Henriksen, Jonas Rosager; Jensen, Simon Bjerregaard

    ) , which promotes intestinal growth and is used to treat bowel disorders such as inflammatory bowel diseases and short bowel syndrome, and the 32 amino acid salmon calcitonin (sCT), which lowers blood calcium and is employed in the treatment of post-menopausal osteoporosis and hypercalcemia. The two...... peptides are similar in size and structure, but oppositely charged at physiological pH. Both peptides were acylated with linear acyl chains of systematically increasing length, where sCT was furthermore acylated at two different positions on the peptide backbone. For GLP-2, we found that increasing acyl...... remained optimal overall. The results indicate that rational acylation of GLP-2 can increase its in vitro intestinal absorption, alone or in combination with permeation enhancers, and are consistent with the initial project hypothesis. For sCT, an unpredicted effect of acylation largely superseded...

  4. Cysteine-containing peptides having antioxidant properties

    Science.gov (United States)

    Bielicki, John K [Castro Valley, CA

    2008-10-21

    Cysteine containing amphipathic alpha helices of the exchangeable apolipoproteins, as exemplified by apolipoprotein (apo) A-I.sub.Milano (R173C) and apoA-I.sub.Paris, (R151C) were found to exhibit potent antioxidant activity on phospholipid surfaces. The addition of a free thiol, at the hydrophobic/hydrophilic interface of an amphipathic alpha helix of synthetic peptides that mimic HDL-related proteins, imparts a unique antioxidant activity to these peptides which inhibits lipid peroxidation and protects phospholipids from water-soluble free radical initiators. These peptides can be used as therapeutic agents to combat cardiovascular disease, ischemia, bone disease and other inflammatory related diseases.

  5. Catalyst-Free Conjugation and In Situ Quantification of Nanoparticle Ligand Surface Density Using Fluorogenic Cu-Free Click Chemistry

    DEFF Research Database (Denmark)

    Jølck, Rasmus Irming; Sun, Honghao; Berg, Rolf Henrik

    2011-01-01

    A highly efficient method for functionalizing nanoparticles and directly quantifying conjugation efficiency and ligand surface density has been developed. Attachment of 3-azido-modifed RGD-peptides to PEGylated liposomes was achieved by using Cu-free click conditions. Upon coupling a fluorophore ...

  6. Biologically Active and Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    Carlos E. Salas

    2015-01-01

    Full Text Available Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application.

  7. Biologically Active and Antimicrobial Peptides from Plants

    Science.gov (United States)

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307

  8. Biodegradable copolymers carrying cell-adhesion peptide sequences.

    Science.gov (United States)

    Proks, Vladimír; Machová, Lud'ka; Popelka, Stepán; Rypácek, Frantisek

    2003-01-01

    Amphiphilic block copolymers are used to create bioactive surfaces on biodegradable polymer scaffolds for tissue engineering. Cell-selective biomaterials can be prepared using copolymers containing peptide sequences derived from extracellular-matrix proteins (ECM). Here we discuss alternative ways for preparation of amphiphilic block copolymers composed of hydrophobic polylactide (PLA) and hydrophilic poly(ethylene oxide) (PEO) blocks with cell-adhesion peptide sequences. Copolymers PLA-b-PEO were prepared by a living polymerisation of lactide in dioxane with tin(II)2-ethylhexanoate as a catalyst. The following approaches for incorporation of peptides into copolymers were elaborated. (a) First, a side-chain protected Gly-Arg-Gly-Asp-Ser-Gly (GRGDSG) peptide was prepared by solid-phase peptide synthesis (SPPS) and then coupled with delta-hydroxy-Z-amino-PEO in solution. In the second step, the PLA block was grafted to it via a controlled polymerisation of lactide initiated by the hydroxy end-groups of PEO in the side-chain-protected GRGDSG-PEO. Deprotection of the peptide yielded a GRGDSG-b-PEO-b-PLA copolymer, with the peptide attached through its C-end. (b) A protected GRGDSG peptide was built up on a polymer resin and coupled with Z-carboxy-PEO using a solid-phase approach. After cleavage of the delta-hydroxy-PEO-GRGDSG copolymer from the resin, polymerisation of lactide followed by deprotection of the peptide yielded a PLA-b-PEO-b-GRGDSG block copolymer, in which the peptide is linked through its N-terminus.

  9. Maturation processes and structures of small secreted peptides in plants

    Directory of Open Access Journals (Sweden)

    Ryo eTabata

    2014-07-01

    Full Text Available In the past decade, small secreted peptides have proven to be essential for various aspects of plant growth and development, including the maintenance of certain stem cell populations. Most small secreted peptides identified in plants to date are recognised by membrane-localized receptor kinases, the largest family of receptor proteins in the plant genome. This peptide-receptor interaction is essential for initiating intracellular signalling cascades. Small secreted peptides often undergo post-translational modifications and proteolytic processing to generate the mature peptides. Recent studies suggest that, in contrast to the situation in mammals, the proteolytic processing of plant peptides involves a number of complex steps. Furthermore, NMR-based structural analysis demonstrated that post-translational modifications induce the conformational changes needed for full activity. In this mini review, we summarise recent advances in our understanding of how small secreted peptides are modified and processed into biologically active peptides and describe the mature structures of small secreted peptides in plants.

  10. Conformations and orientations of a signal peptide interacting with phospholipid monolayers

    International Nuclear Information System (INIS)

    Cornell, D.G.; Dluhy, R.A.; Briggs, M.S.; McKnight, C.J.; Gierasch, L.M.

    1989-01-01

    The interaction of a chemically synthesized 25-residue signal peptide of LamB protein from Escherichia coli with phospholipids has been studied with a film balance technique. The conformation, orientation, and concentration of the peptides in lipid monolayers have been determined from polarized infrared spectroscopy, ultraviolet spectroscopy, and assay of 14 C-labeled peptide in transferred films. When the LamB signal peptide in injected into the subphase under a phosphatidylethanolamine-phosphatidylglycerol monolayer at low initial pressure, insertion of a portion of the peptide into the lipid film is evidenced by a rapid rise in film pressure. Spectroscopic results obtained on films transferred to quartz plates and Ge crystals show that the peptide is a mixture of α-helix and β-conformation where the long axis of the α-helix penetrates the monolayer plane and the β-structure which is coplanar with the film. By contrast, when peptide is injected under lipid at high initial pressure, no pressure rise is observed, and the spectroscopic results show the presence of only β-structure which is coplanar with the monolayer. The spectroscopic and radioassay results are all consistent with the picture of a peptide anchored to the monolayer through electrostatic binding with a helical portion inserted into the lipid region of the monolayer and a β-structure portion resident in the aqueous phase. The negative charges on the lipid molecules are roughly neutralized by the positive charges of the peptide

  11. Developing a Dissociative Nanocontainer for Peptide Drug Delivery

    Directory of Open Access Journals (Sweden)

    Patrick Kelly

    2015-10-01

    Full Text Available The potency, selectivity, and decreased side effects of bioactive peptides have propelled these agents to the forefront of pharmacological research. Peptides are especially promising for the treatment of neurological disorders and pain. However, delivery of peptide therapeutics often requires invasive techniques, which is a major obstacle to their widespread application. We have developed a tailored peptide drug delivery system in which the viral capsid of P22 bacteriophage is modified to serve as a tunable nanocontainer for the packaging and controlled release of bioactive peptides. Recent efforts have demonstrated that P22 nanocontainers can effectively encapsulate analgesic peptides and translocate them across blood-brain-barrier (BBB models. However, release of encapsulated peptides at their target site remains a challenge. Here a Ring Opening Metathesis Polymerization (ROMP reaction is applied to trigger P22 nanocontainer disassembly under physiological conditions. Specifically, the ROMP substrate norbornene (5-Norbornene-2-carboxylic acid is conjugated to the exterior of a loaded P22 nanocontainer and Grubbs II Catalyst is used to trigger the polymerization reaction leading to nanocontainer disassembly. Our results demonstrate initial attempts to characterize the ROMP-triggered release of cargo peptides from P22 nanocontainers. This work provides proof-of-concept for the construction of a triggerable peptide drug delivery system using viral nanocontainers.

  12. Bioactive Mimetics of Conotoxins and other Venom Peptides

    Directory of Open Access Journals (Sweden)

    Peter J. Duggan

    2015-10-01

    Full Text Available Ziconotide (Prialt®, a synthetic version of the peptide ω-conotoxin MVIIA found in the venom of a fish-hunting marine cone snail Conus magnus, is one of very few drugs effective in the treatment of intractable chronic pain. However, its intrathecal mode of delivery and narrow therapeutic window cause complications for patients. This review will summarize progress in the development of small molecule, non-peptidic mimics of Conotoxins and a small number of other venom peptides. This will include a description of how some of the initially designed mimics have been modified to improve their drug-like properties.

  13. Fabrication of gold nanodot arrays on a transparent substrate as a nanobioplatform for label-free visualization of living cells

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Mi; El-Said, Waleed Ahmed; Choi, Jeong-Woo, E-mail: jwchoi@sogang.ac.kr [Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul 121-742 (Korea, Republic of)

    2011-06-10

    Two-dimensional gold (Au) nanodot arrays on a transparent substrate were fabricated for imaging of living cells. A nanoporous alumina mask with large-area coverage capability was prepared by a two-step chemical wet etching process after a second anodization. Highly ordered Au nanodot arrays were formed on indium-tin-oxide (ITO) glass using very thin nanoporous alumina of approximately 200 nm thickness as an evaporation mask. The large-area Au nanodot arrays on ITO glass were modified with RGD peptide (arginine; glycine; aspartic acid) containing a cysteine (Cys) residue and then used to immobilize human cancer HeLa cells, the morphology of which was observed by confocal microscopy. The confocal micrographs of living HeLa cells on Au nanodot arrays revealed enhanced contrast and resolution, which enabled discernment of cytoplasmic organelles more clearly. These results suggest that two-dimensional Au nanodot arrays modified with RGD peptide on ITO glass have potential as a biocompatible nanobioplatform for the label-free visualization and adhesion of living cells.

  14. Hierarchical assembly of branched supramolecular polymers from (cyclic Peptide)-polymer conjugates.

    Science.gov (United States)

    Koh, Ming Liang; Jolliffe, Katrina A; Perrier, Sébastien

    2014-11-10

    We report the synthesis and assembly of (N-methylated cyclic peptide)-polymer conjugates for which the cyclic peptide is attached to either the α- or both α- and ω- end groups of a polymer. A combination of chromatographic, spectroscopic, and scattering techniques reveals that the assembly of the conjugates follows a two-level hierarchy, initially driven by H-bond formation between two N-methylated cyclic peptides, followed by unspecific, noncovalent aggregation of this peptide into small domains that behave as branching points and lead to the formation of branched supramolecular polymers.

  15. Antimicrobial Peptide-PNA Conjugates Selectively Targeting Bacterial Genes

    Science.gov (United States)

    2013-07-22

    antibacterial therapy. Initial publications suggest that conjugates of cell penetrating peptides and PNA’s can overcome the barrier in transporting ...Zhou, Y., Hou, Z., Meng, J., and Luo, X. Targeting RNA polymerase primary σ70 as a therapeutic strategy against methicillin - resistant ... Staphylococcus aureus by antisense peptide nucleic acid. PLoS One. 2012; 7(1):e29886. 2. Good, L., Sandberg, R., Larsson, O., Nielsen, P.E., and Wahlestedt, C

  16. Biokinetics and dosimetry of a hybrid formulation of {sup 9{sup m}}Tc-BN and {sup 99m}Tc-RGD{sub 2} starting from optic images in a murine model; Biocinetica y dosimetria de una formulacion hibrida de {sup 99m}Tc-BN y {sup 99m}Tc-RGD{sub 2} a partir de imagenes opticas en un modelo murino

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo A, L. G.

    2015-07-01

    This work has the purpose of evaluate the biokinetics and absorbed dose of radiation of hybrid formulation {sup 99m}Tc-BN /{sup 99m}Tc-RGD{sub 2} in a murine model by optical imaging techniques using the multimodal preclinical in vivo image system Xtreme. The used method were the {sup 99m}Tc-BN, {sup 99m}Tc-RGD{sub 2} and {sup 99m}Tc-BN/{sup 99m}Tc-RGD{sub 2} formulas, with specific recognition for GRPr and the integrin s α(v)β(3) and α(v)β(5) respectively, was injected in the vein tail of three nude mousses with induce breast cancer tumors (cell line T-47-D), by the preclinical multimodal imaging system Xtreme (Bruker), optical images in different times was acquired (5, 10, 20 min, 2 and 24 h), using Images Processing Toolbox of MATLAB these images was transform from RGB format to gray scales and sectioned in five independent images corresponding to heart, kidneys, bladder and tumor areas. The intensity of each images was computed in counts per pixel, then those intensities was corrected for background, attenuation and scattering, using different factors for each phenomena previously calculated. Finally the activity values quantified vs time was fitted into a biokinetic model to obtain the disintegrations number and cumulate activities in each organ. With these data the radiation absorbed dose were calculated using MIRD methodology. Results: The number of disintegration and absorbed dose calculated in MBq h/MBq and mGy/MBq, of injected mouse with the {sup 99m}Tc-BN/{sup 99m}Tc-RGD{sub 2} formulation, was: 0.035 ± 0.65 E-02, 0.25 x 10{sub -5} ± 0.46 E-07; 0.393 ± 0.51 E-1, 2.85 E-05 ± 3.7 E-06; 0.306 ± 0.21 E-01, 2.11 E-05 ± 1.45 E-06 and 0.151 ± 0.19 E-01, 1.09 E-05 ± 1.42 E-06 , in heart, kidneys, bladder and tumor, respectively. The number of disintegration obtained in kidneys is comparable to those reported for Trinidad B. 2014 Conclusions: Our results demonstrated that using optical images and a code for image analyses development in MATLAB, could

  17. Construction of hydroxypropyl-{beta}-cyclodextrin copolymer nanoparticles and targeting delivery of paclitaxel

    Energy Technology Data Exchange (ETDEWEB)

    Miao Qinghua; Li Suping; Han Siyuan [National Center for Nanoscience and Technology of China, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (China); Wang Zhi, E-mail: wangzhi@jlu.edu.cn [Jilin University, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education (China); Wu Yan, E-mail: wuy@nanoctr.cn; Nie Guangjun, E-mail: niegj@nanoctr.cn [National Center for Nanoscience and Technology of China, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (China)

    2012-08-15

    A novel amphiphilic copolymer with p-maleimidophenyl isocyanate-hydroxypropyl-{beta}-cyclodextrin-polylactide-1, 2-dipalmitoyl-sn-glycero-3-phosphoethanolamine to generate copolymer nanoparticles (NPs) has been designed. In order to develop an active targeting system, integrin {alpha}{sub v}{beta}{sub 3}-specific targeting peptide cyclo(Arg-Gly-Asp-D-Phe-Cys), cRGD, was conjugated to the surface of NPs (NPs-RGD). These NPs were used to encapsulate anti-tumor drug, paclitaxel. The resulting NPs exhibited high drug-loading capacity and controlled drug release in vitro at acidic pH. In vitro cytotoxicity assay demonstrates that paclitaxel-loaded NPs-RGD significantly inhibited B16 tumor cell (high {alpha}{sub v}{beta}{sub 3}) proliferation relative to free paclitaxel and paclitaxel-loaded NPs at high concentrations. Paclitaxel-loaded NPs-RGD localized mainly in lysosomes in B16 cells as revealed by confocal microscopy. These results suggest a novel strategy for fabrication-functionalizing hydroxypropyl-{beta}-cyclodextrin copolymer nanoparticles for targeting delivery of paclitaxel to integrin {alpha}{sub v}{beta}{sub 3}-rich tumor cells. These nanocarriers can be readily extended to couple other bioactive molecules for active targeting and delivery of various chemotherapeutic drugs.

  18. Micro–Positron Emission Tomography/Contrast-Enhanced Computed Tomography Imaging of Orthotopic Pancreatic Tumor–Bearing Mice Using the αvβ3 Integrin Tracer 64Cu-Labeled Cyclam-RAFT-c(-RGDfK-4

    Directory of Open Access Journals (Sweden)

    Winn Aung

    2013-09-01

    Full Text Available The purpose of this study was to develop a clinically relevant orthotopic xenotransplantation model of pancreatic cancer and to perform a preclinical evaluation of a new positron emission tomography (PET imaging probe, 64Cu-labeled cyclam-RAFT-c(-RGDfK-4 peptide (64Cu-RAFT-RGD, using this model. Varying degrees of αvβ3 integrin expression in several human pancreatic cancer cell lines were examined by flow cytometry and Western blotting. The cell line BxPC-3, which is stably transfected with a red fluorescence protein (RFP, was used for surgical orthotopic implantation. Orthotopic xenograft was established in the pancreas of recipient nude mice. An in vivo probe biodistribution and receptor blocking study, preclinical PET imaging coregistered with contrast-enhanced computed tomography (CECT comparing 64Cu-RAFT-RGD and 18F-fluoro-2-deoxy-D-glucose (18F-FDG accumulation in tumor, postimaging autoradiography, and histologic and immunohistochemical examinations were done. Biodistribution evaluation with a blocking study confirmed that efficient binding of probe to tumor is highly αvβ3 integrin specific. 64Cu-RAFT-RGD PET combined with CECT provided for precise and easy detection of cancer lesions. Autoradiography, histologic, and immunohistochemical examinations confirmed the accumulation of 64Cu-RAFT-RGD in tumor versus nontumor tissues. In comparative PET studies, 64Cu-RAFT-RGD accumulation provided better tumor contrast to background than 18F-FDG. Our results suggest that 64Cu-RAFT-RGD PET imaging is potentially applicable for the diagnosis of αvβ3 integrin–expressing pancreatic tumors.

  19. Bioactive Properties of Maillard Reaction Products Generated From Food Protein-derived Peptides.

    Science.gov (United States)

    Arihara, K; Zhou, L; Ohata, M

    Food protein-derived peptides are promising food ingredients for developing functional foods, since various bioactive peptides are released from food proteins. The Maillard reaction, which plays an important role in most processed foods, generates various chemical components during processing. Although changes of amino acids or proteins and reduced sugars by the Maillard reaction have been studied extensively, such changes of peptides by the Maillard reaction are still not resolved enough. Since food protein-derived peptides are widely utilized in many processed foods, it deserves concern and research on the changes of peptides by the Maillard reaction in foods during processing or storage. This chapter initially overviewed food protein-derived bioactive peptides. Then, Maillard reaction products generated from peptides are discussed. We focused particularly on their bioactivities. © 2017 Elsevier Inc. All rights reserved.

  20. High-throughput sequencing enhanced phage display identifies peptides that bind mycobacteria

    CSIR Research Space (South Africa)

    Ngubane, NAC

    2013-11-01

    Full Text Available . The displayed peptides are flanked by two cysteine residues, which are oxidized during phage assembly to a disulfide bond, resulting in a loop constrained peptide. We initially used the traditional clone picking method to identify the enriched clones... of the library, 1.236109 heptapeptides, it represented sufficient depth to measure the quantitative enrich- ment of relevant peptides. To confirm successful enrichment during selection, we characterized the reduction in diversity of the pool in the consecutive...

  1. Recent developments in protein and peptide parenteral delivery approaches

    Science.gov (United States)

    Patel, Ashaben; Cholkar, Kishore; Mitra, Ashim K

    2014-01-01

    Discovery of insulin in the early 1900s initiated the research and development to improve the means of therapeutic protein delivery in patients. In the past decade, great emphasis has been placed on bringing protein and peptide therapeutics to market. Despite tremendous efforts, parenteral delivery still remains the major mode of administration for protein and peptide therapeutics. Other routes such as oral, nasal, pulmonary and buccal are considered more opportunistic rather than routine application. Improving biological half-life, stability and therapeutic efficacy is central to protein and peptide delivery. Several approaches have been tried in the past to improve protein and peptide in vitro/in vivo stability and performance. Approaches may be broadly categorized as chemical modification and colloidal delivery systems. In this review we have discussed various chemical approaches such as PEGylation, hyperglycosylation, mannosylation, and colloidal carriers including microparticles, nanoparticles, liposomes, carbon nanotubes and micelles for improving protein and peptide delivery. Recent developments on in situ thermosensitive gel-based protein and peptide delivery have also been described. This review summarizes recent developments on some currently existing approaches to improve stability, bioavailability and bioactivity of peptide and protein therapeutics following parenteral administration. PMID:24592957

  2. [Ala12]MCD peptide: a lead peptide to inhibitors of immunoglobulin E binding to mast cell receptors.

    Science.gov (United States)

    Buku, A; Condie, B A; Price, J A; Mezei, M

    2005-09-01

    An effort was made to discover mast cell degranulating (MCD) peptide analogs that bind with high affinity to mast cell receptors without triggering secretion of histamine or other mediators of the allergic reaction initiated by immunoglobulin E (IgE) after mast cell activation. Such compounds could serve as inhibitors of IgE binding to mast cell receptors. An alanine scan of MCD peptide reported previously showed that the analog [Ala12]MCD was 120-fold less potent in histamine-releasing activity and fivefold more potent in binding affinity to mast cell receptors than the parent MCD peptide. Because this analog showed marginal intrinsic activity and good binding affinity it was subsequently tested in the present study as an IgE inhibitor. In contrast to MCD peptide, [Ala12]MCD showed a 50% inhibition of IgE binding to the Fc epsilon RI alpha mast cell receptor by using rat basophilic leukemia (RBL-2H3) mast cells and fluorescence polarization. Furthermore, in a beta-hexosaminidase secretory assay, the peptide also showed a 50% inhibition of the secretion of this enzyme caused by IgE. An attempt was made to relate structural changes and biologic differences between the [Ala12]MCD analog and the parent MCD peptide. The present results show that [Ala12]MCD may provide a base for designing agents to prevent IgE/Fc epsilon RI alpha interactions and, consequently, allergic conditions.

  3. Exploitation of the Ornithine Effect Enhances Characterization of Stapled and Cyclic Peptides

    Science.gov (United States)

    Crittenden, Christopher M.; Parker, W. Ryan; Jenner, Zachary B.; Bruns, Kerry A.; Akin, Lucas D.; McGee, William M.; Ciccimaro, Eugene; Brodbelt, Jennifer S.

    2016-05-01

    A method to facilitate the characterization of stapled or cyclic peptides is reported via an arginine-selective derivatization strategy coupled with MS/MS analysis. Arginine residues are converted to ornithine residues through a deguanidination reaction that installs a highly selectively cleavable site in peptides. Upon activation by CID or UVPD, the ornithine residue cyclizes to promote cleavage of the adjacent amide bond. This Arg-specific process offers a unique strategy for site-selective ring opening of stapled and cyclic peptides. Upon activation of each derivatized peptide, site-specific backbone cleavage at the ornithine residue results in two complementary products: the lactam ring-containing portion of the peptide and the amine-containing portion. The deguanidination process not only provides a specific marker site that initiates fragmentation of the peptide but also offers a means to unlock the staple and differentiate isobaric stapled peptides.

  4. Peptides and Anti-peptide Antibodies for Small and Medium Scale Peptide and Anti-peptide Affinity Microarrays: Antigenic Peptide Selection, Immobilization, and Processing.

    Science.gov (United States)

    Zhang, Fan; Briones, Andrea; Soloviev, Mikhail

    2016-01-01

    This chapter describes the principles of selection of antigenic peptides for the development of anti-peptide antibodies for use in microarray-based multiplex affinity assays and also with mass-spectrometry detection. The methods described here are mostly applicable to small to medium scale arrays. Although the same principles of peptide selection would be suitable for larger scale arrays (with 100+ features) the actual informatics software and printing methods may well be different. Because of the sheer number of proteins/peptides to be processed and analyzed dedicated software capable of processing all the proteins and an enterprise level array robotics may be necessary for larger scale efforts. This report aims to provide practical advice to those who develop or use arrays with up to ~100 different peptide or protein features.

  5. Therapeutic peptides for cancer therapy. Part II - cell cycle inhibitory peptides and apoptosis-inducing peptides.

    Science.gov (United States)

    Raucher, Drazen; Moktan, Shama; Massodi, Iqbal; Bidwell, Gene L

    2009-10-01

    Therapeutic peptides have great potential as anticancer agents owing to their ease of rational design and target specificity. However, their utility in vivo is limited by low stability and poor tumor penetration. The authors review the development of peptide inhibitors with potential for cancer therapy. Peptides that arrest the cell cycle by mimicking CDK inhibitors or induce apoptosis directly are discussed. The authors searched Medline for articles concerning the development of therapeutic peptides and their delivery. Inhibition of cancer cell proliferation directly using peptides that arrest the cell cycle or induce apoptosis is a promising strategy. Peptides can be designed that interact very specifically with cyclins and/or cyclin-dependent kinases and with members of apoptotic cascades. Use of these peptides is not limited by their design, as a rational approach to peptide design is much less challenging than the design of small molecule inhibitors of specific protein-protein interactions. However, the limitations of peptide therapy lie in the poor pharmacokinetic properties of these large, often charged molecules. Therefore, overcoming the drug delivery hurdles could open the door for effective peptide therapy, thus making an entirely new class of molecules useful as anticancer drugs.

  6. High efficiency diffusion molecular retention tumor targeting.

    Directory of Open Access Journals (Sweden)

    Yanyan Guo

    Full Text Available Here we introduce diffusion molecular retention (DMR tumor targeting, a technique that employs PEG-fluorochrome shielded probes that, after a peritumoral (PT injection, undergo slow vascular uptake and extensive interstitial diffusion, with tumor retention only through integrin molecular recognition. To demonstrate DMR, RGD (integrin binding and RAD (control probes were synthesized bearing DOTA (for (111 In(3+, a NIR fluorochrome, and 5 kDa PEG that endows probes with a protein-like volume of 25 kDa and decreases non-specific interactions. With a GFP-BT-20 breast carcinoma model, tumor targeting by the DMR or i.v. methods was assessed by surface fluorescence, biodistribution of [(111In] RGD and [(111In] RAD probes, and whole animal SPECT. After a PT injection, both probes rapidly diffused through the normal and tumor interstitium, with retention of the RGD probe due to integrin interactions. With PT injection and the [(111In] RGD probe, SPECT indicated a highly tumor specific uptake at 24 h post injection, with 352%ID/g tumor obtained by DMR (vs 4.14%ID/g by i.v.. The high efficiency molecular targeting of DMR employed low probe doses (e.g. 25 ng as RGD peptide, which minimizes toxicity risks and facilitates clinical translation. DMR applications include the delivery of fluorochromes for intraoperative tumor margin delineation, the delivery of radioisotopes (e.g. toxic, short range alpha emitters for radiotherapy, or the delivery of photosensitizers to tumors accessible to light.

  7. Peptides, polypeptides and peptide-polymer hybrids as nucleic acid carriers.

    Science.gov (United States)

    Ahmed, Marya

    2017-10-24

    Cell penetrating peptides (CPPs), and protein transduction domains (PTDs) of viruses and other natural proteins serve as a template for the development of efficient peptide based gene delivery vectors. PTDs are sequences of acidic or basic amphipathic amino acids, with superior membrane trespassing efficacies. Gene delivery vectors derived from these natural, cationic and cationic amphipathic peptides, however, offer little flexibility in tailoring the physicochemical properties of single chain peptide based systems. Owing to significant advances in the field of peptide chemistry, synthetic mimics of natural peptides are often prepared and have been evaluated for their gene expression, as a function of amino acid functionalities, architecture and net cationic content of peptide chains. Moreover, chimeric single polypeptide chains are prepared by a combination of multiple small natural or synthetic peptides, which imparts distinct physiological properties to peptide based gene delivery therapeutics. In order to obtain multivalency and improve the gene delivery efficacies of low molecular weight cationic peptides, bioactive peptides are often incorporated into a polymeric architecture to obtain novel 'polymer-peptide hybrids' with improved gene delivery efficacies. Peptide modified polymers prepared by physical or chemical modifications exhibit enhanced endosomal escape, stimuli responsive degradation and targeting efficacies, as a function of physicochemical and biological activities of peptides attached onto a polymeric scaffold. The focus of this review is to provide comprehensive and step-wise progress in major natural and synthetic peptides, chimeric polypeptides, and peptide-polymer hybrids for nucleic acid delivery applications.

  8. Micro-positron emission tomography/contrast-enhanced computed tomography imaging of orthotopic pancreatic tumor-bearing mice using the αvβ₃ integrin tracer ⁶⁴Cu-labeled cyclam-RAFT-c(-RGDfK-)₄.

    Science.gov (United States)

    Aung, Winn; Jin, Zhao-Hui; Furukawa, Takako; Claron, Michael; Boturyn, Didier; Sogawa, Chizuru; Tsuji, Atsushi B; Wakizaka, Hidekatsu; Fukumura, Toshimitsu; Fujibayashi, Yasuhisa; Dumy, Pascal; Saga, Tsuneo

    2013-09-01

    The purpose of this study was to develop a clinically relevant orthotopic xenotransplantation model of pancreatic cancer and to perform a preclinical evaluation of a new positron emission tomography (PET) imaging probe, ⁶⁴Cu-labeled cyclam-RAFT-c(-RGDfK-)₄ peptide (⁶⁴Cu-RAFT-RGD), using this model. Varying degrees of αvβ₃ integrin expression in several human pancreatic cancer cell lines were examined by flow cytometry and Western blotting. The cell line BxPC-3, which is stably transfected with a red fluorescence protein (RFP), was used for surgical orthotopic implantation. Orthotopic xenograft was established in the pancreas of recipient nude mice. An in vivo probe biodistribution and receptor blocking study, preclinical PET imaging coregistered with contrast-enhanced computed tomography (CECT) comparing ⁶⁴Cu-RAFT-RGD and ¹⁸F-fluoro-2-deoxy-d-glucose (¹⁸F-FDG) accumulation in tumor, postimaging autoradiography, and histologic and immunohistochemical examinations were done. Biodistribution evaluation with a blocking study confirmed that efficient binding of probe to tumor is highly αvβ₃ integrin specific. ⁶⁴Cu-RAFT-RGD PET combined with CECT provided for precise and easy detection of cancer lesions. Autoradiography, histologic, and immunohistochemical examinations confirmed the accumulation of ⁶⁴Cu-RAFT-RGD in tumor versus nontumor tissues. In comparative PET studies, ⁶⁴Cu-RAFT-RGD accumulation provided better tumor contrast to background than ¹⁸F-FDG. Our results suggest that ⁶⁴Cu-RAFT-RGD PET imaging is potentially applicable for the diagnosis of αvβ₃ integrin-expressing pancreatic tumors.

  9. Functional inhibition of NF-kappa B signal transduction in alpha v alpha beta 3 integrin expressing endothelial cells by using RGD-PEG-modified adenovirus with a mutant I kappa B gene

    NARCIS (Netherlands)

    Ogawara, K; Kuldo, JM; Oosterhuis, K; Kroesen, BJ; Rots, MG; Trautwein, C; Kimura, T; Haisma, HJ; Molema, G

    2006-01-01

    In order to selectively block nuclear factor kappa B (NF-kappa B)-dependent signal transduction in angiogenic endothelial cells, we constructed an alpha v beta 3 integrin specific adenovirus encoding dominant negative I kappa B (dnI kappa B) as a therapeutic gene. By virtue of RGD modification of

  10. Cathepsin-Mediated Cleavage of Peptides from Peptide Amphiphiles Leads to Enhanced Intracellular Peptide Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Acar, Handan [Institute; Department; Samaeekia, Ravand [Institute; Department; Schnorenberg, Mathew R. [Institute; Department; Medical; Sasmal, Dibyendu K. [Institute; Huang, Jun [Institute; Tirrell, Matthew V. [Institute; Institute; LaBelle, James L. [Department

    2017-08-24

    Peptides synthesized in the likeness of their native interaction domain(s) are natural choices to target protein protein interactions (PPIs) due to their fidelity of orthostatic contact points between binding partners. Despite therapeutic promise, intracellular delivery of biofunctional peptides at concentrations necessary for efficacy remains a formidable challenge. Peptide amphiphiles (PAs) provide a facile method of intracellular delivery and stabilization of bioactive peptides. PAs consisting of biofunctional peptide headgroups linked to hydrophobic alkyl lipid-like tails prevent peptide hydrolysis and proteolysis in circulation, and PA monomers are internalized via endocytosis. However, endocytotic sequestration and steric hindrance from the lipid tail are two major mechanisms that limit PA efficacy to target intracellular PPIs. To address these problems, we have constructed a PA platform consisting of cathepsin-B cleavable PAs in which a selective p53-based inhibitory peptide is cleaved from its lipid tail within endosomes, allowing for intracellular peptide accumulation and extracellular recycling of the lipid moiety. We monitor for cleavage and follow individual PA components in real time using a resonance energy transfer (FRET)-based tracking system. Using this platform, components in real time using a Forster we provide a better understanding and quantification of cellular internalization, trafficking, and endosomal cleavage of PAs and of the ultimate fates of each component.

  11. Preparation of the radiopharmaceutical {sup 99m} Tc-HYNIC-cyclo-Lys-D-Phe-RGD for In vivo image of integrines; Preparacion del radiofarmaco {sup 99m} Tc-HYNIC-ciclo-Lys-D-Phe-RGD para imagen In vivo de integrinas

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez H, E [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2007-07-01

    The diagnostic of some pathological processes by means of images constitutes one of the used methods in the determination of the origin, condition and/or evolution of one illness. The use of contrast agents in conjunction with other techniques help to the obtaining and visualization of complex systems, among these we can find to those radiopharmaceuticals used in nuclear medicine to visualize diverse organs and corporal systems. At the moment it is sought to develop a radiopharmaceutical of third generation that can be used for image In vivo of integrines with the purpose of detecting angio genesis processes, that which would allow to diagnose in way it specifies a wide range of primary tumors and their metastasis. Presently work it developed the radiopharmaceutical {sup 99m}Tc-HYNIC-cycle-Lys-D-Phe-RGD, likewise the good conditions were determined for the formation of this complex. The HYNIC was employee as chelating agent, using as co ligands EDDA and Tricine for to complete the sphere of coordination of the {sup 99m}Tc. The conjugated HYNIC-RGD was synthesized, purified, characterized and radiolabelled In situ with {sup 99m}Tc using High pressure liquid chromatography as analysis method in Reverse Phase (RP-HPLC). By this way it was developed the lyophilized formulation for its instantaneous labelled to which were carried out quality control tests. The one conjugated was obtained free of impurities, showing stability at same as their complex formed with {sup 99m}Tc. The analysis method was validated turning out to be necessary, exact, lineal and specific for the quantification of the analyte of interest. The lyophilized formulation showed a radiochemical purity bigger than 95%, besides being sterile and free of pyrogens. The biodistribution tests in athymic mice with induced tumors showed that the radiopharmaceutical was united mainly to the tumor and that this it was excreted mainly for renal via. (Author)

  12. Preparation of the radiopharmaceutical 99m Tc-HYNIC-cyclo-Lys-D-Phe-RGD for In vivo image of integrines

    International Nuclear Information System (INIS)

    Hernandez H, E.

    2007-01-01

    The diagnostic of some pathological processes by means of images constitutes one of the used methods in the determination of the origin, condition and/or evolution of one illness. The use of contrast agents in conjunction with other techniques help to the obtaining and visualization of complex systems, among these we can find to those radiopharmaceuticals used in nuclear medicine to visualize diverse organs and corporal systems. At the moment it is sought to develop a radiopharmaceutical of third generation that can be used for image In vivo of integrines with the purpose of detecting angio genesis processes, that which would allow to diagnose in way it specifies a wide range of primary tumors and their metastasis. Presently work it developed the radiopharmaceutical 99m Tc-HYNIC-cycle-Lys-D-Phe-RGD, likewise the good conditions were determined for the formation of this complex. The HYNIC was employee as chelating agent, using as co ligands EDDA and Tricine for to complete the sphere of coordination of the 99m Tc. The conjugated HYNIC-RGD was synthesized, purified, characterized and radiolabelled In situ with 99m Tc using High pressure liquid chromatography as analysis method in Reverse Phase (RP-HPLC). By this way it was developed the lyophilized formulation for its instantaneous labelled to which were carried out quality control tests. The one conjugated was obtained free of impurities, showing stability at same as their complex formed with 99m Tc. The analysis method was validated turning out to be necessary, exact, lineal and specific for the quantification of the analyte of interest. The lyophilized formulation showed a radiochemical purity bigger than 95%, besides being sterile and free of pyrogens. The biodistribution tests in athymic mice with induced tumors showed that the radiopharmaceutical was united mainly to the tumor and that this it was excreted mainly for renal via. (Author)

  13. Predictive value of natriuretic peptides in dogs with mitral valve disease

    DEFF Research Database (Denmark)

    Tarnow, Inge; Olsen, Lisbeth Høier; Kvart, Clarence

    2009-01-01

    Natriuretic peptides are useful in diagnosing heart failure in dogs. However, their usefulness in detecting early stages of myxomatous mitral valve disease (MMVD) has been debated. This study evaluated N-terminal (NT) fragment pro-atrial natriuretic peptide (NT-proANP) and NT-pro-brain natriuretic...... peptide (NT-proBNP) in 39 Cavalier King Charles Spaniels (CKCS) with pre-clinical mitral valve regurgitation (MR), sixteen dogs with clinical signs of heart failure (HF) and thirteen healthy control dogs. Twenty seven CKCS and ten control dogs were re-examined 4 years after the initial examination...... and the status of the dogs 5 years after the initial examination was determined by telephone calls to the owner. All dogs were evaluated by clinical examination and echocardiography. CKCS with severe MR had higher NT-proANP and NT-proBNP compared to controls and CKCS with less severe MR. Dogs with clinical signs...

  14. C- and N-truncated antimicrobial peptides from LFampin 265 - 284: Biophysical versus microbiology results

    NARCIS (Netherlands)

    Adão, R.; Nazmi, K.; Bolscher, J.G.M.; Bastos, M.

    2011-01-01

    Lactoferrin is a glycoprotein with two globular lobes, each having two domains. Since the discovery of its antimicrobial properties, efforts have been made to find peptides derived from this protein showing antimicrobial properties. Most peptides initially studied were derived from Lactoferricin B,

  15. Epitopes in α8β1 and other RGD-binding integrins delineate classes of integrin-blocking antibodies and major binding loops in α subunits

    OpenAIRE

    Norihisa Nishimichi; Nagako Kawashima; Yasuyuki Yokosaki

    2015-01-01

    Identification of epitopes for integrin-blocking monoclonal antibodies (mAbs) has aided our understanding of structure-function relationship of integrins. We mapped epitopes of chicken anti-integrin-α8-subunit-blocking mAbs by mutational analyses, examining regions that harboured all mapped epitopes recognized by mAbs against other α-subunits in the RGD-binding-integrin subfamily. Six mAbs exhibited blocking function, and these mAbs recognized residues on the same W2:41-loop on the top-face o...

  16. [Diagnostic values of type III Procollagen N-terminal peptide and combination assay of type III procollagen N-terminal peptide with CEA and CA 19-9 in gastric cancer].

    Science.gov (United States)

    Akazawa, S; Harada, A; Futatsuki, K

    1984-07-01

    It is known that interstitial collagens are initially synthesized as precursors (procollagen), which possess extra peptide segments at both ends of the molecules. The authors attempted to detect the aminoterminal peptide of type III procollagen (type III-N-peptide) and also to measure the carcinoembryonic antigen (CEA) and carbohydrate antigen (CA 19-9) together in sera of patients with gastric cancer. The results showed that: (1) mean serum levels and positive ratios of the type III-N-peptide increased as the clinical stage of the patients with gastric cancer advanced; (2) serum levels of the type III-N-peptide were not correlated either with those of CEA or CA 19-9; (3) positive ratios of type III-N-peptide, CEA and CA 19-9 were 51.7%, 44.8% and 48.3%, respectively: (4) positive ratio in combination of the type III-N-peptide with CEA was 69.3% and that in combination of the type III-N-peptide with CEA and CA 19-9 was 72.4%. These results suggest that type III-N-peptide is available for diagnosis of gastric cancer and, that the combination assay of type III-N-peptide with CEA and CA 19-9 is more effective than a single assay for diagnosis.

  17. Preparation of arginine–glycine–aspartic acid-modified biopolymeric nanoparticles containing epigalloccatechin-3-gallate for targeting vascular endothelial cells to inhibit corneal neovascularization

    Directory of Open Access Journals (Sweden)

    Chang CY

    2016-12-01

    spherical shape and shell structure of about 200 nm. A slow-release pattern was observed in the nanoformulation at about 30% after 30 hours. Surface plasmon resonance confirmed that GEH-RGD NPs specifically bound to the integrin αvβ3. In vitro cell-viability assay showed that GEH-RGD efficiently inhibited HUVEC proliferation at low EGCG concentrations (20 µg/mL when compared with EGCG or non-RGD-modified NPs. Furthermore, GEH-RGD NPs significantly inhibited HUVEC migration down to 58%, lasting for 24 hours. In the corneal NV mouse model, fewer and thinner vessels were observed in the alkali-burned cornea after treatment with GEH-RGD NP eyedrops. Overall, this study indicates that GEH-RGD NPs were successfully developed and synthesized as an inhibitor of vascular endothelial cells with specific targeting capacity. Moreover, they can be used in eyedrops to inhibit angiogenesis in corneal NV mice. Keywords: RGD peptide, epigallocatechin gallate (EGCG, hyaluronic acid (HA, vascular endothelial cells, antiangiogenesis, corneal neovascularization

  18. Biopharmaceuticals: From peptide to drug

    Science.gov (United States)

    Hannappel, Margarete

    2017-08-01

    Biologics are therapeutic proteins or peptides that are produced by means of biological processes within living organisms and cells. They are highly specific molecules and play a crucial role as therapeutics for the treatment of severe and chronic diseases (e.g. cancer, rheumatoid arthritis, diabetes, autoimmune disorders). The development of new biologics and biologics-based drugs gains more and more importance in the fight against various diseases. A short overview on biotherapeutical drug development is given. Cone snails are a large group of poisonous, predatory sea snails with more than 700 species. They use a very powerful venom which rapidly inactivates and paralyzes their prey. Most bioactive venom components are small peptides (conotoxins, conopeptides) which are precisely directed towards a specific target (e.g. ion channel, receptors). Due to their small size, their precision and speed of action, naturally occurring cone snail venom peptides represent an attractive source for the identification and design of novel biological drug entities. The Jagna cone snail project is an encouraging initiative to map the ecological variety of cone snails around the island of Bohol (Philippines) and to conserve the biological information for potential future application.

  19. Toxicity of Biologically Active Peptides and Future Safety Aspects: An Update.

    Science.gov (United States)

    Khan, Fazlullah; Niaz, Kamal; Abdollahi, Mohammad

    2018-02-18

    Peptides are fragments of proteins with significant biological activities. These peptides are encoded in the protein sequence. Initially, such peptides are inactive in their parental form, unless proteolytic enzymes are released. These peptides then exhibit various functions and play a therapeutic role in the body. Besides the therapeutic and physiological activities of peptides, the main purpose of this study was to highlight the safety aspects of peptides. We performed an organized search of available literature using PubMed, Google Scholar, Medline, EMBASE, Reaxys and Scopus databases. All the relevant citations including research and review articles about the toxicity of biologically active peptides were evaluated and gathered in this study. Biological peptides are widely used in the daily routine ranging from food production to the cosmetics industry and also they have a beneficial role in the treatment and prevention of different diseases. These peptides are manufactured by both chemical and biotechnological techniques, which show negligible toxicity, however, some naturally occurring peptides and enzymes may induce high toxicity. Depending upon the demand and expected use in the food or pharmaceutical industry, we need different approaches to acertain the safety of these peptides preferentially through in silico methods. Intestinal wall disruption, erythrocytes and lymphocytes toxicity, free radical production, enzymopathic and immunopathic tissue damage and cytotoxicity due to the consumption of peptides are the main problems in the biological system that lead to various complicated disorders. Therefore, before considering biologically active peptides for food production and for therapeutic purpose, it is first necessary to evaluate the immunogenicity and toxicities of peptides. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Neural Cell Chip Based Electrochemical Detection of Nanotoxicity.

    Science.gov (United States)

    Kafi, Md Abdul; Cho, Hyeon-Yeol; Choi, Jeong Woo

    2015-07-02

    Development of a rapid, sensitive and cost-effective method for toxicity assessment of commonly used nanoparticles is urgently needed for the sustainable development of nanotechnology. A neural cell with high sensitivity and conductivity has become a potential candidate for a cell chip to investigate toxicity of environmental influences. A neural cell immobilized on a conductive surface has become a potential tool for the assessment of nanotoxicity based on electrochemical methods. The effective electrochemical monitoring largely depends on the adequate attachment of a neural cell on the chip surfaces. Recently, establishment of integrin receptor specific ligand molecules arginine-glycine-aspartic acid (RGD) or its several modifications RGD-Multi Armed Peptide terminated with cysteine (RGD-MAP-C), C(RGD)₄ ensure farm attachment of neural cell on the electrode surfaces either in their two dimensional (dot) or three dimensional (rod or pillar) like nano-scale arrangement. A three dimensional RGD modified electrode surface has been proven to be more suitable for cell adhesion, proliferation, differentiation as well as electrochemical measurement. This review discusses fabrication as well as electrochemical measurements of neural cell chip with particular emphasis on their use for nanotoxicity assessments sequentially since inception to date. Successful monitoring of quantum dot (QD), graphene oxide (GO) and cosmetic compound toxicity using the newly developed neural cell chip were discussed here as a case study. This review recommended that a neural cell chip established on a nanostructured ligand modified conductive surface can be a potential tool for the toxicity assessments of newly developed nanomaterials prior to their use on biology or biomedical technologies.

  1. Neural Cell Chip Based Electrochemical Detection of Nanotoxicity

    Directory of Open Access Journals (Sweden)

    Md. Abdul Kafi

    2015-07-01

    Full Text Available Development of a rapid, sensitive and cost-effective method for toxicity assessment of commonly used nanoparticles is urgently needed for the sustainable development of nanotechnology. A neural cell with high sensitivity and conductivity has become a potential candidate for a cell chip to investigate toxicity of environmental influences. A neural cell immobilized on a conductive surface has become a potential tool for the assessment of nanotoxicity based on electrochemical methods. The effective electrochemical monitoring largely depends on the adequate attachment of a neural cell on the chip surfaces. Recently, establishment of integrin receptor specific ligand molecules arginine-glycine-aspartic acid (RGD or its several modifications RGD-Multi Armed Peptide terminated with cysteine (RGD-MAP-C, C(RGD4 ensure farm attachment of neural cell on the electrode surfaces either in their two dimensional (dot or three dimensional (rod or pillar like nano-scale arrangement. A three dimensional RGD modified electrode surface has been proven to be more suitable for cell adhesion, proliferation, differentiation as well as electrochemical measurement. This review discusses fabrication as well as electrochemical measurements of neural cell chip with particular emphasis on their use for nanotoxicity assessments sequentially since inception to date. Successful monitoring of quantum dot (QD, graphene oxide (GO and cosmetic compound toxicity using the newly developed neural cell chip were discussed here as a case study. This review recommended that a neural cell chip established on a nanostructured ligand modified conductive surface can be a potential tool for the toxicity assessments of newly developed nanomaterials prior to their use on biology or biomedical technologies.

  2. Integrin-directed modulation of macrophage responses to biomaterials.

    Science.gov (United States)

    Zaveri, Toral D; Lewis, Jamal S; Dolgova, Natalia V; Clare-Salzler, Michael J; Keselowsky, Benjamin G

    2014-04-01

    Macrophages are the primary mediator of chronic inflammatory responses to implanted biomaterials, in cases when the material is either in particulate or bulk form. Chronic inflammation limits the performance and functional life of numerous implanted medical devices, and modulating macrophage interactions with biomaterials to mitigate this response would be beneficial. The integrin family of cell surface receptors mediates cell adhesion through binding to adhesive proteins nonspecifically adsorbed onto biomaterial surfaces. In this work, the roles of integrin Mac-1 (αMβ2) and RGD-binding integrins were investigated using model systems for both particulate and bulk biomaterials. Specifically, the macrophage functions of phagocytosis and inflammatory cytokine secretion in response to a model particulate material, polystyrene microparticles were investigated. Opsonizing proteins modulated microparticle uptake, and integrin Mac-1 and RGD-binding integrins were found to control microparticle uptake in an opsonin-dependent manner. The presence of adsorbed endotoxin did not affect microparticle uptake levels, but was required for the production of inflammatory cytokines in response to microparticles. Furthermore, it was demonstrated that integrin Mac-1 and RGD-binding integrins influence the in vivo foreign body response to a bulk biomaterial, subcutaneously implanted polyethylene terephthalate. A thinner foreign body capsule was formed when integrin Mac-1 was absent (~30% thinner) or when RGD-binding integrins were blocked by controlled release of a blocking peptide (~45% thinner). These findings indicate integrin Mac-1 and RGD-binding integrins are involved and may serve as therapeutic targets to mitigate macrophage inflammatory responses to both particulate and bulk biomaterials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Albumin-derived peptides efficiently reduce renal uptake of radiolabelled peptides

    International Nuclear Information System (INIS)

    Vegt, Erik; Eek, Annemarie; Oyen, Wim J.G.; Gotthardt, Martin; Boerman, Otto C.; Jong, Marion de

    2010-01-01

    In peptide-receptor radionuclide therapy (PRRT), the maximum activity dose that can safely be administered is limited by high renal uptake and retention of radiolabelled peptides. The kidney radiation dose can be reduced by coinfusion of agents that competitively inhibit the reabsorption of radiolabelled peptides, such as positively charged amino acids, Gelofusine, or trypsinised albumin. The aim of this study was to identify more specific and potent inhibitors of the kidney reabsorption of radiolabelled peptides, based on albumin. Albumin was fragmented using cyanogen bromide and six albumin-derived peptides with different numbers of electric charges were selected and synthesised. The effect of albumin fragments (FRALB-C) and selected albumin-derived peptides on the internalisation of 111 In-albumin, 111 In-minigastrin, 111 In-exendin and 111 In-octreotide by megalin-expressing cells was assessed. In rats, the effect of Gelofusine and albumin-derived peptides on the renal uptake and biodistribution of 111 In-minigastrin, 111 In-exendin and 111 In-octreotide was determined. FRALB-C significantly reduced the uptake of all radiolabelled peptides in vitro. The albumin-derived peptides showed different potencies in reducing the uptake of 111 In-albumin, 111 In-exendin and 111 In-minigastrin in vitro. The most efficient albumin-derived peptide (peptide 6), was selected for in vivo testing. In rats, 5 mg of peptide 6 very efficiently inhibited the renal uptake of 111 In-minigastrin, by 88%. Uptake of 111 In-exendin and 111 In-octreotide was reduced by 26 and 33%, respectively. The albumin-derived peptide 6 efficiently inhibited the renal reabsorption of 111 In-minigastrin, 111 In-exendin and 111 In-octreotide and is a promising candidate for kidney protection in PRRT. (orig.)

  4. Interactions of Bio-Inspired Membranes with Peptides and Peptide-Mimetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Michael Sebastiano

    2015-08-01

    Full Text Available Via Dissipative Particle Dynamics (DPD and implicit solvent coarse-grained (CG Molecular Dynamics (MD we examine the interaction of an amphiphilic cell-penetrating peptide PMLKE and its synthetic counterpart with a bio-inspired membrane. We use the DPD technique to investigate the interaction of peptide-mimetic nanoparticles, or nanopins, with a three-component membrane. The CG MD approach is used to investigate the interaction of a cell-penetrating peptide PMLKE with single-component membrane. We observe the spontaneous binding and subsequent insertion of peptide and nanopin in the membrane by using CG MD and DPD approaches, respectively. In addition, we find that the insertion of peptide and nanopins is mainly driven by the favorable enthalpic interactions between the hydrophobic components of the peptide, or nanopin, and the membrane. Our study provides insights into the mechanism underlying the interactions of amphiphilic peptide and peptide-mimetic nanoparticles with a membrane. The result of this study can be used to guide the functional integration of peptide and peptide-mimetic nanoparticles with a cell membrane.

  5. Cell Adhesion on RGD-Displaying Knottins with Varying Numbers of Tryptophan Amino Acids to Tune the Affinity for Assembly on Cucurbit[8]uril Surfaces.

    Science.gov (United States)

    Sankaran, Shrikrishnan; Cavatorta, Emanuela; Huskens, Jurriaan; Jonkheijm, Pascal

    2017-09-05

    Cell adhesion is studied on multivalent knottins, displaying RGD ligands with a high affinity for integrin receptors, that are assembled on CB[8]-methylviologen-modified surfaces. The multivalency in the knottins stems from the number of tryptophan amino acid moieties, between 0 and 4, that can form a heteroternary complex with cucurbit[8]uril (CB[8]) and surface-tethered methylviologen (MV 2+ ). The binding affinity of the knottins with CB[8] and MV 2+ surfaces was evaluated using surface plasmon resonance spectroscopy. Specific binding occurred, and the affinity increased with the valency of tryptophans on the knottin. Additionally, increased multilayer formation was observed, attributed to homoternary complex formation between tryptophan residues of different knottins and CB[8]. Thus, we were able to control the surface coverage of the knottins by valency and concentration. Cell experiments with mouse myoblast (C2C12) cells on the self-assembled knottin surfaces showed specific integrin recognition by the RGD-displaying knottins. Moreover, cells were observed to elongate more on the supramolecular knottin surfaces with a higher valency, and in addition, more pronounced focal adhesion formation was observed on the higher-valency knottin surfaces. We attribute this effect to the enhanced coverage and the enhanced affinity of the knottins in their interaction with the CB[8] surface. Collectively, these results are promising for the development of biomaterials including knottins via CB[8] ternary complexes for tunable interactions with cells.

  6. beta-Scission of C-3 (beta-carbon) alkoxyl radicals on peptides and proteins

    DEFF Research Database (Denmark)

    Headlam, H A; Mortimer, A; Easton, C J

    2000-01-01

    Exposure of proteins to radicals in the presence of O(2) brings about multiple changes in the target molecules. These alterations include oxidation of side chains, fragmentation, cross-linking, changes in hydrophobicity and conformation, altered susceptibility to proteolytic enzymes, and formation...... of methanal (formaldehyde). This product has been quantified with a number of oxidized peptides and proteins, and can account for up to 64% of the initial attacking radicals with some Ala peptides. When quantified together with the hydroperoxide precursors, these species account for up to 80% of the initial...... radicals, confirming that this is a major process. Methanal causes cell toxicity and DNA damage and is an animal carcinogen and a genotoxic agent in human cells. Thus, the formation and subsequent reaction of alkoxyl radicals formed at the C-3 position on aliphatic amino acid side chains on peptides...

  7. [Plant signaling peptides. Cysteine-rich peptides].

    Science.gov (United States)

    Ostrowski, Maciej; Kowalczyk, Stanisław

    2015-01-01

    Recent bioinformatic and genetic analyses of several model plant genomes have revealed the existence of a highly abundant group of signaling peptides that are defined as cysteine-rich peptides (CRPs). CRPs are usually in size between 50 and 90 amino acid residues, they are positively charged, and they contain 4-16 cysteine residues that are important for the correct conformational folding. Despite the structural differences among CRP classes, members from each class have striking similarities in their molecular properties and function. The present review presents the recent progress in research on signaling peptides from several families including: EPF/EPFL, SP11/SCR, PrsS, RALF, LURE, and some other peptides belonging to CRP group. There is convincing evidence indicating multiple roles for these CRPs as signaling molecules during the plant life cycle, ranging from stomata development and patterning, self-incompatibility, pollen tube growth and guidance, reproductive processes, and nodule formation.

  8. Arginine–glycine–aspartic acid–polyethylene glycol–polyamidoamine dendrimer conjugate improves liver-cell aggregation and function in 3-D spheroid culture

    Directory of Open Access Journals (Sweden)

    Chen Z

    2016-08-01

    Full Text Available Zhanfei Chen,1,* Fen Lian,1,* Xiaoqian Wang,1 Yanling Chen,1,2 Nanhong Tang1,2 1Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, 2Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center for Molecular Medicine, Fujian Medical University, Fuzhou, People’s Republic of China *These authors contributed equally to this work Abstract: The polyamidoamine (PAMAM dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine–glycine–aspartic acid (RGD peptide. Our studies demonstrate that RGD–polyethylene glycol (PEG–PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT–MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system. Keywords: dendrimer, arginine–glycine–aspartic acid (RGD, liver cell, spheroid culture, ammonia metabolism

  9. Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells.

    Science.gov (United States)

    Slegerova, Jitka; Hajek, Miroslav; Rehor, Ivan; Sedlak, Frantisek; Stursa, Jan; Hruby, Martin; Cigler, Petr

    2015-01-14

    Core-shell nanoparticles based on fluorescent nanodiamonds coated with a biocompatible N-(2-hydroxypropyl)methacrylamide copolymer shell were developed for background-free near-infrared imaging of cancer cells. The particles showed excellent colloidal stability in buffers and culture media. After conjugation with a cyclic RGD peptide they selectively targeted integrin αvβ3 receptors on glioblastoma cells with high internalization efficacy.

  10. Dimer of the peptide cycle (Ar-Gly-Asp-D-Phe-Lys) radiolabeled with 99mTc for the integrin s over-expression image: formulation, biokinetics and dosimetry

    International Nuclear Information System (INIS)

    Ortiz A, Z.

    2013-01-01

    In breast cancer, α(v)β(3) and/or α(v)β(5) integrin s are over-expressed in both endothelial and tumour cells. Radiolabeled peptides based on the RGD (Arg-Gly-Asp) sequence are radiopharmaceuticals with high affinity and selectivity for those integrin s. The RGD-dimer peptide (E-[c(RGDfK)] 2 ) radiolabeled with 99m Tc has been reported as a radiopharmaceutical with 10-fold higher affinity for the α(v)β(3) integrin as compared to the RGD-monomer. EDDA (Ethylenediamine-N,N-diacetic acid) is a hydrophilic molecule that may favours renal excretion when used as coligand in the 99m Tc labelling of HYNIC-peptides and can easily be formulated in a lyophilized kit. Aim: Establish a biokinetic model for 99m Tc-EDDA/HYNIC-E-[c(RGDfK)] 2 prepared from lyophilized kits and evaluate the dosimetry as breast cancer imaging agent. Methods: 99m Tc labelling was performed by addition of sodium pertechnetate solution and 0.2 M phosphate buffer ph 7.0 to a lyophilized formulation containing E-[c(RGDfK)] 2 , EDDA, tricine, mannitol and stannous chloride. Radiochemical purity was evaluated by reversed phase HPLC and ITLC-SG analyses. Stability studies in human serum were carried out by size-exclusion HPLC. In-vitro cell uptake was tested using breast cancer cells (MCF7, T47D and MDA-MB-231) with blocked and non-blocked receptors. Biodistribution and tumour uptake were determined in MCF7 tumour-bearing nude mice with blocked and non-blocked receptors, and images were obtained using a micro-SPECT/CT. Whole-body images from seven healthy women were acquired at 1, 3, 6 and 24 h after 99m Tc-EDDA/HYNIC-E-[c(RGDfK)] 2 administration obtained with radiochemical purities of >94 %. Regions of interest (ROIs) were drawn around source organs on each time frame. Each ROI was converted to activity using the conjugate view counting method. The image sequence was used to extrapolate 99m Tc-EDDA/HYNIC-E-[c(RGDfK)] 2 time-activity curves in each organ in order to adjust the biokinetic model and to

  11. Endosomolytic Nano-Polyplex Platform Technology for Cytosolic Peptide Delivery To Inhibit Pathological Vasoconstriction.

    Science.gov (United States)

    Evans, Brian C; Hocking, Kyle M; Kilchrist, Kameron V; Wise, Eric S; Brophy, Colleen M; Duvall, Craig L

    2015-06-23

    A platform technology has been developed and tested for delivery of intracellular-acting peptides through electrostatically complexed nanoparticles, or nano-polyplexes, formulated from an anionic endosomolytic polymer and cationic therapeutic peptides. This delivery platform has been initially tested and optimized for delivery of two unique vasoactive peptides, a phosphomimetic of heat shock protein 20 and an inhibitor of MAPKAP kinase II, to prevent pathological vasoconstriction (i.e., vasospasm) in human vascular tissue. These peptides inhibit vasoconstriction and promote vasorelaxation by modulating actin dynamics in vascular smooth muscle cells. Formulating these peptides into nano-polyplexes significantly enhances peptide uptake and retention, facilitates cytosolic delivery through a pH-dependent endosomal escape mechanism, and enhances peptide bioactivity in vitro as measured by inhibition of F-actin stress fiber formation. In comparison to treatment with the free peptides, which were endowed with cell-penetrating sequences, the nano-polyplexes significantly increased vasorelaxation, inhibited vasoconstriction, and decreased F-actin formation in the human saphenous vein ex vivo. These results suggest that these formulations have significant potential for treatment of conditions such as cerebral vasospasm following subarachnoid hemorrhage. Furthermore, because many therapeutic peptides include cationic cell-penetrating segments, this simple and modular platform technology may have broad applicability as a cost-effective approach for enhancing the efficacy of cytosolically active peptides.

  12. Gingival Mesenchymal Stem Cell (GMSC) Delivery System Based on RGD-Coupled Alginate Hydrogel with Antimicrobial Properties: A Novel Treatment Modality for Peri-Implantitis.

    Science.gov (United States)

    Diniz, Ivana M A; Chen, Chider; Ansari, Sahar; Zadeh, Homayoun H; Moshaverinia, Maryam; Chee, Daniel; Marques, Márcia M; Shi, Songtao; Moshaverinia, Alireza

    2016-02-01

    Peri-implantitis is one of the most common inflammatory complications in dental implantology. Similar to periodontitis, in peri-implantitis, destructive inflammatory changes take place in the tissues surrounding a dental implant. Bacterial flora at the failing implant sites resemble the pathogens in periodontal disease and consist of Gram-negative anaerobic bacteria including Aggregatibacter actinomycetemcomitans (Aa). Here we demonstrate the effectiveness of a silver lactate (SL)-containing RGD-coupled alginate hydrogel scaffold as a promising stem cell delivery vehicle with antimicrobial properties. Gingival mesenchymal stem cells (GMSCs) or human bone marrow mesenchymal stem cells (hBMMSCs) were encapsulated in SL-loaded alginate hydrogel microspheres. Stem cell viability, proliferation, and osteo-differentiation capacity were analyzed. Our results showed that SL exhibited antimicrobial properties against Aa in a dose-dependent manner, with 0.50 mg/ml showing the greatest antimicrobial properties while still maintaining cell viability. At this concentration, SL-containing alginate hydrogel was able to inhibit Aa growth on the surface of Ti discs and significantly reduce the bacterial load in Aa suspensions. Silver ions were effectively released from the SL-loaded alginate microspheres for up to 2 weeks. Osteogenic differentiation of GMSCs and hBMMSCs encapsulated in the SL-loaded alginate microspheres were confirmed by the intense mineral matrix deposition and high expression of osteogenesis-related genes. Taken together, our findings confirm that GMSCs encapsulated in RGD-modified alginate hydrogel containing SL show promise for bone tissue engineering with antimicrobial properties against Aa bacteria in vitro. © 2015 by the American College of Prosthodontists.

  13. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2, wh...

  14. Development of peptide and protein based radiopharmaceuticals.

    Science.gov (United States)

    Wynendaele, Evelien; Bracke, Nathalie; Stalmans, Sofie; De Spiegeleer, Bart

    2014-01-01

    Radiolabelled peptides and proteins have recently gained great interest as theranostics, due to their numerous and considerable advantages over small (organic) molecules. Developmental procedures of these radiolabelled biomolecules start with the radiolabelling process, greatly defined by the amino acid composition of the molecule and the radionuclide used. Depending on the radionuclide selection, radiolabelling starting materials are whether or not essential for efficient radiolabelling, resulting in direct or indirect radioiodination, radiometal-chelate coupling, indirect radiofluorination or (3)H/(14)C-labelling. Before preclinical investigations are performed, quality control analyses of the synthesized radiopharmaceutical are recommended to eliminate false positive or negative functionality results, e.g. changed receptor binding properties due to (radiolabelled) impurities. Therefore, radionuclidic, radiochemical and chemical purity are investigated, next to the general peptide attributes as described in the European and the United States Pharmacopeia. Moreover, in vitro and in vivo stability characteristics of the peptides and proteins also need to be explored, seen their strong sensitivity to proteinases and peptidases, together with radiolysis and trans-chelation phenomena of the radiopharmaceuticals. In vitro biomedical characterization of the radiolabelled peptides and proteins is performed by saturation, kinetic and competition binding assays, analyzing KD, Bmax, kon, koff and internalization properties, taking into account the chemical and metabolic stability and adsorption events inherent to peptides and proteins. In vivo biodistribution can be adapted by linker, chelate or radionuclide modifications, minimizing normal tissue (e.g. kidney and liver) radiation, and resulting in favorable dosimetry analyses. Finally, clinical trials are initiated, eventually leading to the marketing of radiolabelled peptides and proteins for PET/SPECT-imaging and therapy

  15. Peptide dendrimers

    Czech Academy of Sciences Publication Activity Database

    Niederhafner, Petr; Šebestík, Jaroslav; Ježek, Jan

    2005-01-01

    Roč. 11, - (2005), 757-788 ISSN 1075-2617 R&D Projects: GA ČR(CZ) GA203/03/1362 Institutional research plan: CEZ:AV0Z40550506 Keywords : multiple antigen peptides * peptide dendrimers * synthetic vaccine * multipleantigenic peptides Subject RIV: CC - Organic Chemistry Impact factor: 1.803, year: 2005

  16. Development and use of engineered peptide deformylase in chemoenzymatic peptide synthesis

    NARCIS (Netherlands)

    Di Toma, Claudia

    2012-01-01

    Deze thesis beschrijft het onderzoek naar potentieel van het gebruik van het peptide deformylase (PDF) in chemo enzymatische peptide synthese. PDF is geschikt voor selective N terminale deformylatie van bepaalde N-formyl-peptides zonder gelijktijdige hydrolyse van de peptide binding. Door de

  17. Molecular Docking Characterization of a Four-Domain Segment of Human Fibronectin Encompassing the RGD Loop with Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Tailin Guo

    2013-12-01

    Full Text Available Fibronectin adsorption on biomaterial surfaces plays a key role in the biocompatibility of biomedical implants. In the current study, the adsorption behavior of the 7–10th type III modules of fibronectin (FN-III7–10 in the presence of hydroxyapatite (HAP was systematically investigated by using molecular docking approach. It was revealed that the FN-III10 is the most important module among FN-III7–10 in promoting fibronectin binding to HAP by optimizing the interaction energy; the arginine residues were observed to directly interact with the hydroxyl group of HAP through electrostatic forces and hydrogen bonding. Moreover, it was found that the HAP-binding sites on FN-III10 are mainly located at the RGD loop region, which does not affect the interaction between the fibronectin protein and its cognate receptors on the cell surface.

  18. A synthetic peptide from the COOH-terminal heparin-binding domain of fibronectin promotes focal adhesion formation

    DEFF Research Database (Denmark)

    Woods, A; McCarthy, J B; Furcht, L T

    1993-01-01

    Cell adhesion to extracellular matrix molecules such as fibronectin involves complex transmembrane signaling processes. Attachment and spreading of primary fibroblasts can be promoted by interactions of cell surface integrins with RGD-containing fragments of fibronectin, but the further process o...

  19. New dendrimer - Peptide host - Guest complexes: Towards dendrimers as peptide carriers

    DEFF Research Database (Denmark)

    Boas, Ulrik; Sontjens, S.H.M.; Jensen, Knud Jørgen

    2002-01-01

    Adamantyl urea and adamantyl thiourea modified poly(propylene imine) dendrimers act as hosts for N-terminal tert-butoxycarbonyl (Boc)-protected peptides and form chloroform-soluble complexes. investigations with NMR spectroscopy show that the peptide is bound to the dendrimer by ionic interactions...... between the dendrimer outer shell tertiary amines and the C-terminal carboxylic acid of the peptide, and also through host-urea to peptide-amide hydrogen bonding. The hydrogen-bonding nature of the peptide dendrimer interactions was further confirmed by using Fourier transform IR spectroscopy, for which...... the NH- and CO-stretch signals of the peptide amide moieties shift towards lower wave-numbers upon complexation with the dendrimer. Spatial analysis of the complexes with NOESY spectroscopy generally shows close proximity of the N-terminal Boc group of the peptide to the peripheral adamantyl groups...

  20. Fibronectin- and collagen-mimetic ligands regulate bone marrow stromal cell chondrogenesis in three-dimensional hydrogels

    Directory of Open Access Journals (Sweden)

    JT Connelly

    2011-09-01

    Full Text Available Modification of tissue engineering scaffolds with bioactive molecules is a potential strategy for modulating cell behavior and guiding tissue regeneration. While adhesion to RGD peptides has been shown to inhibit in vitro chondrogenesis, the effects of extracellular matrix (ECM-mimetic ligands with complex secondary and tertiary structures are unknown. This study aimed to determine whether collagen- and fibronectin-mimetic ligands would retain biologic functionality in three-dimensional (3D hydrogels, whether different ECM-mimetic ligands differentially influence in vitro chondrogenesis, and if effects of ligands on differentiation depend on soluble biochemical stimuli. A linear RGD peptide, a recombinant fibronectin fragment containing the seven to ten Type III repeats (FnIII7-10 and a triple helical, collagen mimetic peptide with the GFOGER motif were covalently coupled to agarose gels using the sulfo-SANPAH crosslinker, and bone marrow stromal cells (BMSCs were cultured within the 3D hydrogels. The ligands retained biologic functionality within the agarose gels and promoted density-dependent BMSC spreading. Interactions with all adhesive ligands inhibited stimulation by chondrogenic factors of collagen Type II and aggrecan mRNA levels and deposition of sulfated glycosaminoglycans. In medium containing fetal bovine serum, interactions with the GFOGER peptide enhanced mRNA expression of the osteogenic gene osteocalcin whereas FnIII7-10 inhibited osteocalcin expression. In conclusion, modification of agarose hydrogels with ECM-mimetic ligands can influence the differentiation of BMSCs in a manner that depends strongly on the presence and nature of soluble biochemical stimuli.

  1. Correlation of the secretion of insulin and C-peptide in cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Modnikov, O P; Lomtev, N G [Kirgizskij Nauchno-Issledovatel' skij Inst. Onkologii i Radiologii, Frunze (USSR)

    1983-08-01

    Insulin and C-peptide levels were studied with a radioimmunoassay in the peripheral blood serum of 44 patients with gastric and cervical cancer and 22 healthy persons. Hyperfunction of the pancreatic insular apparatus was shown in cancer patients which was expressed in a statistically significant increase in the C-peptide level. In gastric cancer patients hyperfunction of the insular apparatus was accompanied by hypoinsulinemia, and in cervical cancer patients by hormoinsulinemia. An analysis has shown that the ratio insulin/C-peptide in gastric and cervical cancer patients was about the same and significantly lower than the control. A conclusion has been made that in spite of difference in the initial insulin concentration, the same phenomenon - acceleration of the metabolic clearance of insulin - occurs in patients with cancer of the above sites. The C-peptide level decreased, the ratio insulin/C-peptide increased, i.e. hyperfunction of the insular apparatus disappeared and the metabolic clearance of insulin slowed down.

  2. Correlation of the sectetion of insulin and C-peptide in cancer patients

    International Nuclear Information System (INIS)

    Modnikov, O.P.; Lomtev, N.G.

    1983-01-01

    Insulin and C-peptide levels were studied with a radioimmunoassay in the peripheral blood serum of 44 patients with gastric and cervical cancer and 22 healthy persons. Hyperfunction of the pancreatic insular apparatus was shown in cancer patients which was expressed in a statistically significant increase in the C-peptide level. In gastric cancer patients hyperfunction of the insular apparatus was accompanied by hypoinsulinemia, and in cervical cancer patients by hormoinsulinemia. An analysis has shown that the ratio insulin/C-peptide in gastric and cervical cancer patients was about the same and significantly lower than the control. A conclusion has been made that in spite of difference in the initial insulin concentration, the same phenomenon - acceleration of the metabolic clearance of insulin - occurs in patients with cancer of the above sites. The C-peptide level decreased, the ratio insulin/C-peptide increased, i.e. hyperfunction of the insular apparatus disappeared and the metabolic clearance of insulin slowed down

  3. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications.

    Science.gov (United States)

    Ren, Xiangkui; Feng, Yakai; Guo, Jintang; Wang, Haixia; Li, Qian; Yang, Jing; Hao, Xuefang; Lv, Juan; Ma, Nan; Li, Wenzhong

    2015-08-07

    Surface modification and endothelialization of vascular biomaterials are common approaches that are used to both resist the nonspecific adhesion of proteins and improve the hemocompatibility and long-term patency of artificial vascular grafts. Surface modification of vascular grafts using hydrophilic poly(ethylene glycol), zwitterionic polymers, heparin or other bioactive molecules can efficiently enhance hemocompatibility, and consequently prevent thrombosis on artificial vascular grafts. However, these modified surfaces may be excessively hydrophilic, which limits initial vascular endothelial cell adhesion and formation of a confluent endothelial lining. Therefore, the improvement of endothelialization on these grafts by chemical modification with specific peptides and genes is now arousing more and more interest. Several active peptides, such as RGD, CAG, REDV and YIGSR, can be specifically recognized by endothelial cells. Consequently, graft surfaces that are modified by these peptides can exhibit targeting selectivity for the adhesion of endothelial cells, and genes can be delivered by targeting carriers to specific tissues to enhance the promotion and regeneration of blood vessels. These methods could effectively accelerate selective endothelial cell recruitment and functional endothelialization. In this review, recent developments in the surface modification and endothelialization of biomaterials in vascular tissue engineering are summarized. Both gene engineering and targeting ligand immobilization are promising methods to improve the clinical outcome of artificial vascular grafts.

  4. Correlative Light-Electron Microscopy Shows RGD-Targeted ZnO Nanoparticles Dissolve in the Intracellular Environment of Triple Negative Breast Cancer Cells and Cause Apoptosis with Intratumor Heterogeneity

    KAUST Repository

    Othman, Basmah A.; Greenwood, Christina; AbuElela, Ayman; Bharath, Anil A.; Chen, Shu; Theodorou, Ioannis; Douglas, Trevor; Uchida, Maskai; Ryan, Mary; Merzaban, Jasmeen; Porter, Alexandra E.

    2016-01-01

    ZnO nanoparticles (NPs) are reported to show a high degree of cancer cell selectivity with potential use in cancer imaging and therapy. Questions remain about the mode by which the ZnO NPs cause cell death, whether they exert an intra- or extracellular effect, and the resistance among different cancer cell types to ZnO NP exposure. The present study quantifies the variability between the cellular toxicity, dynamics of cellular uptake, and dissolution of bare and RGD (Arg-Gly-Asp)-targeted ZnO NPs by MDA-MB-231 cells. Compared to bare ZnO NPs, RGD-targeting of the ZnO NPs to integrin αvβ3 receptors expressed on MDA-MB-231 cells appears to increase the toxicity of the ZnO NPs to breast cancer cells at lower doses. Confocal microscopy of live MDA-MB-231 cells confirms uptake of both classes of ZnO NPs with a commensurate rise in intracellular Zn2+ concentration prior to cell death. The response of the cells within the population to intracellular Zn2+ is highly heterogeneous. In addition, the results emphasize the utility of dynamic and quantitative imaging in understanding cell uptake and processing of targeted therapeutic ZnO NPs at the cellular level by heterogeneous cancer cell populations, which can be crucial for the development of optimized treatment strategies.

  5. Correlative Light-Electron Microscopy Shows RGD-Targeted ZnO Nanoparticles Dissolve in the Intracellular Environment of Triple Negative Breast Cancer Cells and Cause Apoptosis with Intratumor Heterogeneity

    KAUST Repository

    Othman, Basmah A.

    2016-04-01

    ZnO nanoparticles (NPs) are reported to show a high degree of cancer cell selectivity with potential use in cancer imaging and therapy. Questions remain about the mode by which the ZnO NPs cause cell death, whether they exert an intra- or extracellular effect, and the resistance among different cancer cell types to ZnO NP exposure. The present study quantifies the variability between the cellular toxicity, dynamics of cellular uptake, and dissolution of bare and RGD (Arg-Gly-Asp)-targeted ZnO NPs by MDA-MB-231 cells. Compared to bare ZnO NPs, RGD-targeting of the ZnO NPs to integrin αvβ3 receptors expressed on MDA-MB-231 cells appears to increase the toxicity of the ZnO NPs to breast cancer cells at lower doses. Confocal microscopy of live MDA-MB-231 cells confirms uptake of both classes of ZnO NPs with a commensurate rise in intracellular Zn2+ concentration prior to cell death. The response of the cells within the population to intracellular Zn2+ is highly heterogeneous. In addition, the results emphasize the utility of dynamic and quantitative imaging in understanding cell uptake and processing of targeted therapeutic ZnO NPs at the cellular level by heterogeneous cancer cell populations, which can be crucial for the development of optimized treatment strategies.

  6. Amide I SFG Spectral Line Width Probes the Lipid-Peptide and Peptide-Peptide Interactions at Cell Membrane In Situ and in Real Time.

    Science.gov (United States)

    Zhang, Baixiong; Tan, Junjun; Li, Chuanzhao; Zhang, Jiahui; Ye, Shuji

    2018-06-13

    The balance of lipid-peptide and peptide-peptide interactions at cell membrane is essential to a large variety of cellular processes. In this study, we have experimentally demonstrated for the first time that sum frequency generation vibrational spectroscopy can be used to probe the peptide-peptide and lipid-peptide interactions in cell membrane in situ and in real time by determination of the line width of amide I band of protein backbone. Using a "benchmark" model of α-helical WALP23, it is found that the dominated lipid-peptide interaction causes a narrow line width of the amide I band, whereas the peptide-peptide interaction can markedly broaden the line width. When WALP23 molecules insert into the lipid bilayer, a quite narrow line width of the amide I band is observed because of the lipid-peptide interaction. In contrast, when the peptide lies down on the bilayer surface, the line width of amide I band becomes very broad owing to the peptide-peptide interaction. In terms of the real-time change in the line width, the transition from peptide-peptide interaction to lipid-peptide interaction is monitored during the insertion of WALP23 into 1,2-dipalmitoyl- sn-glycero-3-phospho-(1'- rac-glycerol) (DPPG) lipid bilayer. The dephasing time of a pure α-helical WALP23 in 1-palmitoyl-2-oleoyl- sn-glycero-3-phospho-(1'- rac-glycerol) and DPPG bilayer is determined to be 2.2 and 0.64 ps, respectively. The peptide-peptide interaction can largely accelerate the dephasing time.

  7. Biomimetic oligosaccharide and peptide surfactant polymers designed for cardiovascular biomaterials

    Science.gov (United States)

    Ruegsegger, Mark Andrew

    A common problem associated with cardiovascular devices is surface induced thrombosis initiated by the rapid, non-specific adsorption of plasma proteins onto the biomaterial surface. Control of the initial protein adsorption is crucial to achieve the desired longevity of the implanted biomaterial. The cell membrane glycocalyx acts as a non-thrombogenic interface through passive (dense oligosaccharide structures) and active (ligand/receptor interactions) mechanisms. This thesis is designed to investigate biomimicry of the cell glycocalyx to minimize non-specific protein adsorption and promote specific ligand/receptor interactions. Biomimetic macromolecules were designed through the molecular-scale engineering of polymer surfactants, utilizing a poly(vinyl amine) (PVAm) backbone to which hydrophilic (dextran, maltose, peptide) and hydrophobic alkyl (hexanoyl or hexanal) chains are simultaneously attached. The structure was controlled through the molar feed ratio of hydrophobic-to-hydrophilic groups, which also provided control of the solution and surface-active properties. To mimic passive properties, a series of oligomaltose surfactants were synthesized with increasing saccharide length (n = 2, 7, 15 where n is number of glucose units) to investigate the effect of coating height on protein adsorption. The surfactants were characterized by infra red (IR) and nuclear magnetic resonance (NMR) spectroscopies for structural properties and atomic force microscopy (AFM) and contact angle goniometry for surface activity. Protein adsorption under dynamic flow (5 dyn/cm2) was reduced by 85%--95% over the bare hydrophobic substrate; platelet adhesion dropped by ˜80% compared to glass. Peptide ligands were incorporated into the oligosaccharide surfactant to promote functional activity of the passive coating. The surfactants were synthesized to contain 0%, 25%, 50%, 75%, and 100% peptide ligand density and were stable on hydrophobic surfaces. The peptide surface density was

  8. Taylor Dispersion Analysis as a promising tool for assessment of peptide-peptide interactions.

    Science.gov (United States)

    Høgstedt, Ulrich B; Schwach, Grégoire; van de Weert, Marco; Østergaard, Jesper

    2016-10-10

    Protein-protein and peptide-peptide (self-)interactions are of key importance in understanding the physiochemical behavior of proteins and peptides in solution. However, due to the small size of peptide molecules, characterization of these interactions is more challenging than for proteins. In this work, we show that protein-protein and peptide-peptide interactions can advantageously be investigated by measurement of the diffusion coefficient using Taylor Dispersion Analysis. Through comparison to Dynamic Light Scattering it was shown that Taylor Dispersion Analysis is well suited for the characterization of protein-protein interactions of solutions of α-lactalbumin and human serum albumin. The peptide-peptide interactions of three selected peptides were then investigated in a concentration range spanning from 0.5mg/ml up to 80mg/ml using Taylor Dispersion Analysis. The peptide-peptide interactions determination indicated that multibody interactions significantly affect the PPIs at concentration levels above 25mg/ml for the two charged peptides. Relative viscosity measurements, performed using the capillary based setup applied for Taylor Dispersion Analysis, showed that the viscosity of the peptide solutions increased with concentration. Our results indicate that a viscosity difference between run buffer and sample in Taylor Dispersion Analysis may result in overestimation of the measured diffusion coefficient. Thus, Taylor Dispersion Analysis provides a practical, but as yet primarily qualitative, approach to assessment of the colloidal stability of both peptide and protein formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Structure of the antimicrobial beta-hairpin peptide protegrin-1 in a DLPC lipid bilayer investigated by molecular dynamics simulation

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Kaznessis, Yiannis N

    2007-01-01

    -550]), and to delineate specific peptide-membrane interactions which are responsible for the peptide's membrane binding properties. A novel, previously unknown, "kick" shaped conformation of the peptide was detected, where a bend at the C-terminal beta-strand of the peptide caused the peptide backbone at residues 16...... different initial orientations of the peptide converged to the same final equilibrium orientation of the peptide relative to the bilayer. The kick-shaped conformation was observed only in one of the two simulations....... of the peptide in a membrane environment (previously solved only in solution [R.L. Fahrner, T. Dieckmann, S.S.L. Harwig, R.I. Lehrer, D. Eisenberg, J. Feigon, Solution structure of protegrin-1, a broad-spectrum antimicrobial peptide from porcine leukocytes. Chemistry and Biology, 3 (1996) 543...

  10. Balancing Cell Migration with Matrix Degradation Enhances Gene Delivery to Cells Cultured Three-Dimensionally Within Hydrogels

    Science.gov (United States)

    Shepard, Jaclyn A.; Huang, Alyssa; Shikanova, Ariella; Shea, Lonnie D.

    2010-01-01

    In regenerative medicine, hydrogels are employed to fill defects and support the infiltration of cells that can ultimately regenerate tissue. Gene delivery within hydrogels targeting infiltrating cells has the potential to promote tissue formation, but the delivery efficiency of nonviral vectors within hydrogels is low hindering their applicability in tissue regeneration. To improve their functionality, we have conducted a mechanistic study to investigate the contribution of cell migration and matrix degradation on gene delivery. In this report, lipoplexes were entrapped within hydrogels based on poly(ethylene glycol) (PEG) crosslinked with peptides containing matrix metalloproteinase degradable sequences. The mesh size of these hydrogels is substantially less than the size of the entrapped lipoplexes, which can function to retain vectors. Cell migration and transfection were simultaneously measured within hydrogels with varying density of cell adhesion sites (Arg-Gly-Asp peptides) and solids content. Increasing RGD density increased expression levels up to 100-fold, while greater solids content sustained expression levels for 16 days. Increasing RGD density and decreasing solids content increased cell migration, which indicates expression levels increase with increased cell migration. Initially exposing cells to vector resulted in transient expression that declined after 2 days, verifying the requirement of migration to sustain expression. Transfected cells were predominantly located within the population of migrating cells for hydrogels that supported cell migration. Although the small mesh size retained at least 70% of the lipoplexes in the absence of cells after 32 days, the presence of cells decreased retention to 10% after 16 days. These results indicate that vectors retained within hydrogels contact migrating cells, and that persistent cell migration can maintain elevated expression levels. Thus matrix degradation and cell migration are fundamental design

  11. Introduction to the conformational investigation of peptides and proteins by using two-dimensional proton NMR experiments

    International Nuclear Information System (INIS)

    Neumann, J.M.; Macquaire, F.

    1991-01-01

    This report presents the elementary bases for an initiation to the conformational study of peptides and proteins by using two-dimensional proton NMR experiments. First, some general features of protein structures are summarized. A second chapter is devoted to the basic NMR experiments and to the spectral parameters which provide a structural information. This description is illustrated by NMR spectra of peptides. The third chapter concerns the most standard two-dimensional proton NMR experiments and their use for a conformational study of peptides and proteins. Lastly, an example of NMR structural investigation of a peptide is reported [fr

  12. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  13. Uptake of silica covered Quantum Dots into living cells: Long term vitality and morphology study on hyaluronic acid biomaterials

    International Nuclear Information System (INIS)

    D'Amico, Michele; Fiorica, Calogero; Palumbo, Fabio Salvatore; Militello, Valeria; Leone, Maurizio; Dubertret, Benoit; Pitarresi, Giovanna; Giammona, Gaetano

    2016-01-01

    Quantum Dots (QDs) are promising very bright and stable fluorescent probes for optical studies in the biological field but water solubility and possible metal bio-contamination need to be addressed. In this work, a simple silica-QD hybrid system is prepared and the uptake in bovine chondrocytes living cells without any functionalization of the external protective silica shield is demonstrated. Moreover, long term treated cells vitality (up to 14 days) and the transfer of silica-QDs to the next cell generations are here reported. Confocal fluorescence microscopy was also used to determine the morphology of the so labelled cells and the relative silica-QDs distribution. Finally, we employ silica-QD stained chondrocytes to characterize, as proof of concept, hydrogels obtained from an amphiphilic derivative of hyaluronic acid (HA-EDA-C _1_8) functionalized with different amounts of the RGD peptide. - Highlights: • Non functionalized silica-quantum dots fluorescent nanoparticles uptake is observed. • Morphology studies of such cells could be done by confocal fluorescence microscopy. • Labelled chondrocytes are viable until at least 14 days. • RGD functionalized Hyaluronic Acid hydrogels are studied as cell scaffolds. • Chondrocyte are promptly attached on RGD-functionalized hydrogels.

  14. Uptake of silica covered Quantum Dots into living cells: Long term vitality and morphology study on hyaluronic acid biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    D' Amico, Michele [Dip. Biomedico di Medicina Interna e Specialistica, Universitá degli Studi di Palermo, Piazza delle Cliniche, 2, 90127 Palermo (Italy); Dip. di Fisica e Chimica, Universitá degli Studi di Palermo, Viale delle Scienze, Ed. 18, 90128 Palermo (Italy); Fiorica, Calogero, E-mail: calogero.fiorica@unipa.it [Dip. di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Chimica e Tecnologie Farmaceutiche, Universitá degli Studi di Palermo, Via Archirafi, 28, 90136 Palermo (Italy); Palumbo, Fabio Salvatore [Dip. di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Chimica e Tecnologie Farmaceutiche, Universitá degli Studi di Palermo, Via Archirafi, 28, 90136 Palermo (Italy); Militello, Valeria; Leone, Maurizio [Dip. di Fisica e Chimica, Universitá degli Studi di Palermo, Viale delle Scienze, Ed. 18, 90128 Palermo (Italy); Dubertret, Benoit [Laboratoire de Physique et d’Etude des Matèriaux, ESPCI-ParisTech, PSL Research University, Sorbonne Universitè UPMC Univ. Paris 06, CNRS, 10 rue Vauquelin, 75005 Paris (France); Pitarresi, Giovanna; Giammona, Gaetano [Dip. di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Chimica e Tecnologie Farmaceutiche, Universitá degli Studi di Palermo, Via Archirafi, 28, 90136 Palermo (Italy)

    2016-10-01

    Quantum Dots (QDs) are promising very bright and stable fluorescent probes for optical studies in the biological field but water solubility and possible metal bio-contamination need to be addressed. In this work, a simple silica-QD hybrid system is prepared and the uptake in bovine chondrocytes living cells without any functionalization of the external protective silica shield is demonstrated. Moreover, long term treated cells vitality (up to 14 days) and the transfer of silica-QDs to the next cell generations are here reported. Confocal fluorescence microscopy was also used to determine the morphology of the so labelled cells and the relative silica-QDs distribution. Finally, we employ silica-QD stained chondrocytes to characterize, as proof of concept, hydrogels obtained from an amphiphilic derivative of hyaluronic acid (HA-EDA-C {sub 18}) functionalized with different amounts of the RGD peptide. - Highlights: • Non functionalized silica-quantum dots fluorescent nanoparticles uptake is observed. • Morphology studies of such cells could be done by confocal fluorescence microscopy. • Labelled chondrocytes are viable until at least 14 days. • RGD functionalized Hyaluronic Acid hydrogels are studied as cell scaffolds. • Chondrocyte are promptly attached on RGD-functionalized hydrogels.

  15. Novel thrombopoietin mimetic peptides bind c-Mpl receptor: Synthesis, biological evaluation and molecular modeling.

    Science.gov (United States)

    Liu, Yaquan; Tian, Fang; Zhi, Dejuan; Wang, Haiqing; Zhao, Chunyan; Li, Hongyu

    2017-02-01

    Thrombopoietin (TPO) acts in promoting the proliferation of hematopoietic stem cells and by initiating specific maturation events in megakaryocytes. Now, TPO-mimetic peptides with amino acid sequences unrelated to TPO are of considerable pharmaceutical interest. In the present paper, four new TPO mimetic peptides that bind and activate c-Mpl receptor have been identified, synthesized and tested by Dual-Luciferase reporter gene assay for biological activities. The molecular modeling research was also approached to understand key molecular mechanisms and structural features responsible for peptide binding with c-Mpl receptor. The results presented that three of four mimetic peptides showed significant activities. In addition, the molecular modeling approaches proved hydrophobic interactions were the driven positive forces for binding behavior between peptides and c-Mpl receptor. TPO peptide residues in P7, P13 and P7' positions were identified by the analysis of hydrogen bonds and energy decompositions as the key ones for benefiting better biological activities. Our data suggested the synthesized peptides have considerable potential for the future development of stable and highly active TPO mimetic peptides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Reflections on a systematic nomenclature for antimicrobial peptides from the skins of frogs of the family Ranidae.

    Science.gov (United States)

    Conlon, J Michael

    2008-10-01

    Frogs belonging to the extensive family Ranidae represent a valuable source of antimicrobial peptides with therapeutic potential but there is currently no consistent system of nomenclature to describe these peptides. Terminology based solely on species name does not reflect the evolutionary relationships existing between peptides encoded by orthologous and paralogous genes. On the basis of limited structural similarity, at least 14 well-established peptide families have been identified (brevinin-1, brevinin-2, esculentin-1, esculentin-2, japonicin-1, japonicin-2, nigrocin-2, palustrin-1, palustrin-2, ranacyclin, ranalexin, ranatuerin-1, ranatuerin-2, temporin). It is proposed that terms that are synonymous with these names should no longer be used. Orthologous peptides from different species may be characterized by the initial letter of that species, set in upper case, with paralogs belonging to the same peptide family being assigned letters set in lower case, e.g. brevinin-1Pa, brevinin-1Pb, etc. When two species begin with the same initial letter, two letters may be used, e.g. P for pipiens and PL for palustris. Species names and assignments to genera may be obtained from Amphibian Species of the World Electronic Database, accessible at http://research.amnh.org/herpetology/amphibia/index.php. American Museum of Natural History, New York, USA.

  17. Novel Antimicrobial Peptides That Inhibit Gram Positive Bacterial Exotoxin Synthesis

    Science.gov (United States)

    Merriman, Joseph A.; Nemeth, Kimberly A.; Schlievert, Patrick M.

    2014-01-01

    Gram-positive bacteria, such as Staphylococcus aureus, cause serious human illnesses through combinations of surface virulence factors and secretion of exotoxins. Our prior studies using the protein synthesis inhibitor clindamycin and signal transduction inhibitors glycerol monolaurate and α-globin and β-globin chains of hemoglobin indicate that their abilities to inhibit exotoxin production by S. aureus are separable from abilities to inhibit growth of the organism. Additionally, our previous studies suggest that inhibition of exotoxin production, in absence of ability to kill S. aureus and normal flora lactobacilli, will prevent colonization by pathogenic S. aureus, while not interfering with lactobacilli colonization. These disparate activities may be important in development of novel anti-infective agents that do not alter normal flora. We initiated studies to explore the exotoxin-synthesis-inhibition activity of hemoglobin peptides further to develop potential agents to prevent S. aureus infections. We tested synthesized α-globin chain peptides, synthetic variants of α-globin chain peptides, and two human defensins for ability to inhibit exotoxin production without significantly inhibiting S. aureus growth. All of these peptides were weakly or not inhibitory to bacterial growth. However, the peptides were inhibitory to exotoxin production with increasing activity dependent on increasing numbers of positively-charged amino acids. Additionally, the peptides could be immobilized on agarose beads or have amino acid sequences scrambled and still retain exotoxin-synthesis-inhibition. The peptides are not toxic to human vaginal epithelial cells and do not inhibit growth of normal flora L. crispatus. These peptides may interfere with plasma membrane signal transduction in S. aureus due to their positive charges. PMID:24748386

  18. Connecting peptide (c-peptide) and the duration of diabetes mellitus ...

    African Journals Online (AJOL)

    Objective: C-peptide is derived from proinsulin and it is secreted in equimolar concentration with insulin. Plasma C-peptide is more stable than insulin and it provides an indirect measure of insulin secretory reserve and beta cell function. To determine relationship between C-peptide and duration of diabetes mellitus, age, ...

  19. Water-Floating Giant Nanosheets from Helical Peptide Pentamers

    Science.gov (United States)

    Lee, Jaehun; Nam, Ki Tae

    One of the important challenges in the development of protein-mimetic materials is to understand the sequence specific assembly behavior and the dynamic folding change. Conventional strategies to construct two dimensional nanostructures from the peptides have been limited to beta-sheet forming sequences in use of basic building blocks because of their natural tendency to form sheet like aggregations. Here we identified a new peptide sequence, YFCFY that can form dimers by the disulfide bridge, fold into helix and assemble into macroscopic flat sheet at the air/water interface. Because of large driving force for two dimensional assembly and high elastic modulus of the resulting sheet, the peptide assembly induces the flattening of initially round water droplet. Additionally, we found that stabilization of helix by the dimerization is a key determinant for maintaining macroscopic flatness over a few tens centimeter even with a uniform thickness below 10 nm. Furthermore, the capability to transfer 2D film from water droplet to other substrates allows for the multiple stacking of 2D peptide nanostructure, suggesting possible applications in the biomimetic catalysts, biosensor and 2D related electronic devices. This work was supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-MA1401-01.

  20. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  1. Electroactive oligoaniline-containing self-assembled monolayers for tissue engineering applications.

    Science.gov (United States)

    Guo, Yi; Li, Mengyan; Mylonakis, Andreas; Han, Jingjia; MacDiarmid, Alan G; Chen, Xuesi; Lelkes, Peter I; Wei, Yen

    2007-10-01

    A novel electroactive silsesquioxane precursor, N-(4-aminophenyl)-N'-(4'-(3-triethoxysilyl-propyl-ureido) phenyl-1,4-quinonenediimine) (ATQD), was successfully synthesized from the emeraldine form of amino-capped aniline trimers via a one-step coupling reaction and subsequent purification by column chromatography. The physicochemical properties of ATQD were characterized using mass spectrometry as well as by nuclear magnetic resonance and UV-vis spectroscopy. Analysis by cyclic voltammetry confirmed that the intrinsic electroactivity of ATQD was maintained upon protonic acid doping, exhibiting two distinct reversible oxidative states, similar to polyaniline. The aromatic amine terminals of self-assembled monolayers (SAMs) of ATQD on glass substrates were covalently modified with an adhesive oligopeptide, cyclic Arg-Gly-Asp (RGD) (ATQD-RGD). The mean height of the monolayer coating on the surfaces was approximately 3 nm, as measured by atomic force microscopy. The biocompatibility of the novel electroactive substrates was evaluated using PC12 pheochromocytoma cells, an established cell line of neural origin. The bioactive, derivatized electroactive scaffold material, ATQD-RGD, supported PC12 cell adhesion and proliferation, similar to control tissue-culture-treated polystyrene surfaces. Importantly, electroactive surfaces stimulated spontaneous neuritogenesis in PC12 cells, in the absence of neurotrophic growth factors, such as nerve growth factor (NGF). As expected, NGF significantly enhanced neurite extension on both control and electroactive surfaces. Taken together, our results suggest that the newly electroactive SAMs grafted with bioactive peptides, such as RGD, could be promising biomaterials for tissue engineering.

  2. Artificial Chemical Reporter Targeting Strategy Using Bioorthogonal Click Reaction for Improving Active-Targeting Efficiency of Tumor.

    Science.gov (United States)

    Yoon, Hong Yeol; Shin, Min Lee; Shim, Man Kyu; Lee, Sangmin; Na, Jin Hee; Koo, Heebeom; Lee, Hyukjin; Kim, Jong-Ho; Lee, Kuen Yong; Kim, Kwangmeyung; Kwon, Ick Chan

    2017-05-01

    Biological ligands such as aptamer, antibody, glucose, and peptide have been widely used to bind specific surface molecules or receptors in tumor cells or subcellular structures to improve tumor-targeting efficiency of nanoparticles. However, this active-targeting strategy has limitations for tumor targeting due to inter- and intraheterogeneity of tumors. In this study, we demonstrated an alternative active-targeting strategy using metabolic engineering and bioorthogonal click reaction to improve tumor-targeting efficiency of nanoparticles. We observed that azide-containing chemical reporters were successfully generated onto surface glycans of various tumor cells such as lung cancer (A549), brain cancer (U87), and breast cancer (BT-474, MDA-MB231, MCF-7) via metabolic engineering in vitro. In addition, we compared tumor targeting of artificial azide reporter with bicyclononyne (BCN)-conjugated glycol chitosan nanoparticles (BCN-CNPs) and integrin α v β 3 with cyclic RGD-conjugated CNPs (cRGD-CNPs) in vitro and in vivo. Fluorescence intensity of azide-reporter-targeted BCN-CNPs in tumor tissues was 1.6-fold higher and with a more uniform distribution compared to that of cRGD-CNPs. Moreover, even in the isolated heterogeneous U87 cells, BCN-CNPs could bind artificial azide reporters on tumor cells more uniformly (∼92.9%) compared to cRGD-CNPs. Therefore, the artificial azide-reporter-targeting strategy can be utilized for targeting heterogeneous tumor cells via bioorthogonal click reaction and may provide an alternative method of tumor targeting for further investigation in cancer therapy.

  3. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns

    DEFF Research Database (Denmark)

    Larsen, Martin Røssel; Thingholm, Tine E; Jensen, Ole N

    2005-01-01

    based on TiO2microcolumns and peptide loading in 2,5-dihydroxybenzoic acid (DHB). The effect of DHB was a very efficient reduction in the binding of nonphosphorylated peptides to TiO2 while retaining its high binding affinity for phosphorylated peptides. Thus, inclusion of DHB dramatically increased...... the selectivity of the enrichment of phosphorylated peptides by TiO2. We demonstrated that this new procedure was more selective for binding phosphorylated peptides than IMAC using MALDI mass spectrometry. In addition, we showed that LC-ESI-MSMS was biased toward monophosphorylated peptides, whereas MALDI MS...... was not. Other substituted aromatic carboxylic acids were also capable of specifically reducing binding of nonphosphorylated peptides, whereas phosphoric acid reduced binding of both phosphorylated and nonphosphorylated peptides. A putative mechanism for this intriguing effect is presented....

  4. A microbially derived tyrosine-sulfated peptide mimics a plant peptide hormone.

    Science.gov (United States)

    Pruitt, Rory N; Joe, Anna; Zhang, Weiguo; Feng, Wei; Stewart, Valley; Schwessinger, Benjamin; Dinneny, José R; Ronald, Pamela C

    2017-07-01

    The biotrophic pathogen Xanthomonas oryzae pv. oryzae (Xoo) produces a sulfated peptide named RaxX, which shares similarity to peptides in the PSY (plant peptide containing sulfated tyrosine) family. We hypothesize that RaxX mimics the growth-stimulating activity of PSY peptides. Root length was measured in Arabidopsis and rice treated with synthetic RaxX peptides. We also used comparative genomic analyses and reactive oxygen species burst assays to evaluate the activity of RaxX and PSY peptides. Here we found that a synthetic sulfated RaxX derivative comprising 13 residues (RaxX13-sY), highly conserved between RaxX and PSY, induces root growth in Arabidopsis and rice in a manner similar to that triggered by PSY. We identified residues that are required for activation of immunity mediated by the rice XA21 receptor but that are not essential for root growth induced by PSY. Finally, we showed that a Xanthomonas strain lacking raxX is impaired in virulence. These findings suggest that RaxX serves as a molecular mimic of PSY peptides to facilitate Xoo infection and that XA21 has evolved the ability to recognize and respond specifically to the microbial form of the peptide. © 2017 UT-Battelle LLC. New Phytologist © 2017 New Phytologist Trust.

  5. Peptide Peak Detection for Low Resolution MALDI-TOF Mass Spectrometry.

    Science.gov (United States)

    Yao, Jingwen; Utsunomiya, Shin-Ichi; Kajihara, Shigeki; Tabata, Tsuyoshi; Aoshima, Ken; Oda, Yoshiya; Tanaka, Koichi

    2014-01-01

    A new peak detection method has been developed for rapid selection of peptide and its fragment ion peaks for protein identification using tandem mass spectrometry. The algorithm applies classification of peak intensities present in the defined mass range to determine the noise level. A threshold is then given to select ion peaks according to the determined noise level in each mass range. This algorithm was initially designed for the peak detection of low resolution peptide mass spectra, such as matrix-assisted laser desorption/ionization Time-of-Flight (MALDI-TOF) mass spectra. But it can also be applied to other type of mass spectra. This method has demonstrated obtaining a good rate of number of real ions to noises for even poorly fragmented peptide spectra. The effect of using peak lists generated from this method produces improved protein scores in database search results. The reliability of the protein identifications is increased by finding more peptide identifications. This software tool is freely available at the Mass++ home page (http://www.first-ms3d.jp/english/achievement/software/).

  6. Towards Discovery and Targeted Peptide Biomarker Detection Using nanoESI-TIMS-TOF MS

    Science.gov (United States)

    Garabedian, Alyssa; Benigni, Paolo; Ramirez, Cesar E.; Baker, Erin S.; Liu, Tao; Smith, Richard D.; Fernandez-Lima, Francisco

    2017-09-01

    In the present work, the potential of trapped ion mobility spectrometry coupled to TOF mass spectrometry (TIMS-TOF MS) for discovery and targeted monitoring of peptide biomarkers from human-in-mouse xenograft tumor tissue was evaluated. In particular, a TIMS-MS workflow was developed for the detection and quantification of peptide biomarkers using internal heavy analogs, taking advantage of the high mobility resolution (R = 150-250) prior to mass analysis. Five peptide biomarkers were separated, identified, and quantified using offline nanoESI-TIMS-CID-TOF MS; the results were in good agreement with measurements using a traditional LC-ESI-MS/MS proteomics workflow. The TIMS-TOF MS analysis permitted peptide biomarker detection based on accurate mobility, mass measurements, and high sequence coverage for concentrations in the 10-200 nM range, while simultaneously achieving discovery measurements of not initially targeted peptides as markers from the same proteins and, eventually, other proteins. [Figure not available: see fulltext.

  7. Formation and electrochemical investigation of ordered cobalt coordinated peptide monolayers on gold substrates

    International Nuclear Information System (INIS)

    Wang Xinxin; Nagata, Kenji; Higuchi, Masahiro

    2012-01-01

    The monolayers composed of cobalt coordinated peptides were prepared on gold substrates by two different approaches. One was the self-assembly method, which was used to prepare a peptide monolayer on the gold substrate via the spontaneous attachment of peptides owing to the interaction between gold and sulfur at the N-terminal of the peptide. The other one was the stepwise polymerization method that was utilized to fabricate the unidirectionally arranged peptide monolayer by the stepwise condensation of amino acids from the initiator fixed on the gold substrate. Leu 2 Ala(4-Pyri)Leu 6 Ala(4-Pyri)Leu 6 sequence was chosen as the cobalt coordinated peptide. The 4-pyridyl alanines, Ala(4-Pyri)s, were introduced as ligands for cobalt to the leucine-rich sequential peptide. The complexation between cobalt and pyridyl groups of the peptide induced the formation of a stable α-helical bundle, which oriented perpendicularly to the substrate surface. In the case of the monolayer fabricated by the stepwise polymerization method, the direction of the peptide macro-dipole moment aligned unidirectionally, and the cobalt complexes were fixed in the monolayer to form the ordered arrangement. On the other hand, the peptides prepared by the self-assembly method formed the mixture of parallel and antiparallel packing owing to the dipole-dipole interaction. The spatial location of the cobalt complexes in the monolayer prepared by the self-assembly method was distorted, compared with that in the monolayer fabricated by the stepwise polymerization method. The vectorial electron flow through the peptide monolayer was achieved by the regular alignment of the peptide macro-dipole moment and the cobalt complexes in the monolayer fabricated by the stepwise polymerization method. - Highlights: ► We fabricated ordered Co coordinated peptide monolayers on the gold substrates. ► The Co complexes in peptide monolayer formed an ordered arrangement of the peptide. ► The peptide macro

  8. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  9. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  10. PeptideAtlas

    Data.gov (United States)

    U.S. Department of Health & Human Services — PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass...

  11. Synthetic peptide vaccines: palmitoylation of peptide antigens by a thioester bond increases immunogenicity

    DEFF Research Database (Denmark)

    Beekman, N.J.C.M.; Schaaper, W.M.M.; Tesser, G.I.

    1997-01-01

    Synthetic peptides have frequently been used to immunize animals. However, peptides less than about 20 to 30 amino acids long are poor immunogens. In general, to increase its immunogenicity, the presentation of the peptide should be improved, and molecular weight needs to be increased. Many...... or an amide bond. It was found that these S-palmitoylated peptides were much more immunogenic than N-palmitoylated peptides and at least similar to KLH-conjugated peptides with respect to appearance and magnitude of induced antibodies (canine parvovirus) or immunocastration effect (gonadotropin...

  12. Bufalin-loaded mPEG-PLGA-PLL-cRGD nanoparticles: preparation, cellular uptake, tissue distribution, and anticancer activity

    Directory of Open Access Journals (Sweden)

    Duan YR

    2012-07-01

    Full Text Available Peihao Yin,1,* Yan Wang,1,* YanYan Qiu,1 LiLi Hou,1 Xuan Liu,1 Jianmin Qin,1 Yourong Duan,2 Peifeng Liu,2 Ming Qiu,3 Qi Li11Department of Clinical Oncology, Putuo Hospital and Interventional Cancer Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; 2Shanghai Cancer Institute, Jiaotong University, Shanghai, China; 3Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China *These authors contributed equally to this workBackground: Recent studies have shown that bufalin has a good antitumor effect but has high toxicity, poor water solubility, a short half-life, a narrow therapeutic window, and a toxic dose that is close to the therapeutic dose, which all limit its clinical application. This study aimed to determine the targeting efficacy of nanoparticles (NPs made of methoxy polyethylene glycol (mPEG, polylactic-co-glycolic acid (PLGA, poly-L-lysine (PLL, and cyclic arginine-glycine-aspartic acid (cRGD loaded with bufalin, ie, bufalin-loaded mPEG-PLGA-PLL-cRGD nanoparticles (BNPs, in SW620 colon cancer-bearing mice.Methods: BNPs showed uniform size. The size, shape, zeta potential, drug loading, encapsulation efficiency, and release of these nanoparticles were studied in vitro. The tumor targeting, cellular uptake, and growth-inhibitory effect of BNPs in vivo were tested.Results: BNPs were of uniform size with an average particle size of 164 ± 84 nm and zeta potential of 2.77 mV. The encapsulation efficiency was 81.7% ± 0.89%, and the drug load was 3.92% ± 0.16%. The results of in vitro cytotoxicity studies showed that although the blank NPs were nontoxic, they enhanced the cytotoxicity of bufalin in BNPs. Drug release experiments showed that the release of the drug was prolonged and sustained. The results of confocal laser scanning microscopy indicated that BNPs could effectively bind to human umbilical vein endothelial cells. In the SW620

  13. Diversity-oriented peptide stapling

    DEFF Research Database (Denmark)

    Tran, Thu Phuong; Larsen, Christian Ørnbøl; Røndbjerg, Tobias

    2017-01-01

    as a powerful method for peptide stapling. However, to date CuAAC stapling has not provided a simple method for obtaining peptides that are easily diversified further. In the present study, we report a new diversity-oriented peptide stapling (DOPS) methodology based on CuAAC chemistry. Stapling of peptides...

  14. Rational Design of Multifunctional Gold Nanoparticles via Host-Guest Interaction for Cancer-Targeted Therapy.

    Science.gov (United States)

    Chen, Wei-Hai; Lei, Qi; Luo, Guo-Feng; Jia, Hui-Zhen; Hong, Sheng; Liu, Yu-Xin; Cheng, Yin-Jia; Zhang, Xian-Zheng

    2015-08-12

    A versatile gold nanoparticle-based multifunctional nanocomposite AuNP@CD-AD-DOX/RGD was constructed flexibly via host-guest interaction for targeted cancer chemotherapy. The pH-sensitive anticancer prodrug AD-Hyd-DOX and the cancer-targeted peptide AD-PEG8-GRGDS were modified on the surface of AuNP@CD simultaneously, which endowed the resultant nanocomposite with the capability to selectively eliminate cancer cells. In vitro studies indicated that the AuNP@CD-AD-DOX/RGD nanocomposite was preferentially uptaken by cancer cells via receptor-mediated endocytosis. Subsequently, anticancer drug DOX was released rapidly upon the intracellular trigger of the acid microenvirenment of endo/lysosomes, inducing apoptosis in cancer cells. As the ideal drug nanocarrier, the multifunctional gold nanoparticles with the active targeting and controllable intracellular release ability hold the great potential in cancer therapy.

  15. Effect of a Fusion Peptide by Covalent Conjugation of a Mitochondrial Cell-Penetrating Peptide and a Glutathione Analog Peptide

    Directory of Open Access Journals (Sweden)

    Carmine Pasquale Cerrato

    2017-06-01

    Full Text Available Previously, we designed and synthesized a library of mitochondrial antioxidative cell-penetrating peptides (mtCPPs superior to the parent peptide, SS31, to protect mitochondria from oxidative damage. A library of antioxidative glutathione analogs called glutathione peptides (UPFs, exceptional in hydroxyl radical elimination compared with glutathione, were also designed and synthesized. Here, a follow-up study is described, investigating the effects of the most promising members from both libraries on reactive oxidative species scavenging ability. None of the peptides influenced cell viability at the concentrations used. Fluorescence microscopy studies showed that the fluorescein-mtCPP1-UPF25 (mtgCPP internalized into cells, and spectrofluorometric analysis determined the presence and extent of peptide into different cell compartments. mtgCPP has superior antioxidative activity compared with mtCPP1 and UPF25 against H2O2 insult, preventing ROS formation by 2- and 3-fold, respectively. Moreover, we neither observed effects on mitochondrial membrane potential nor production of ATP. These data indicate that mtgCPP is targeting mitochondria, protecting them from oxidative damage, while also being present in the cytosol. Our hypothesis is based on a synergistic effect resulting from the fused peptide. The mitochondrial peptide segment is targeting mitochondria, whereas the glutathione analog peptide segment is active in the cytosol, resulting in increased scavenging ability.

  16. Peptide-membrane interactions of arginine-tryptophan peptides probed using quartz crystal microbalance with dissipation monitoring.

    KAUST Repository

    Rydberg, Hanna A

    2014-04-18

    Membrane-active peptides include peptides that can cross cellular membranes and deliver macromolecular cargo as well as peptides that inhibit bacterial growth. Some of these peptides can act as both transporters and antibacterial agents. It is desirable to combine the knowledge from these two different fields of membrane-active peptides into design of new peptides with tailored actions, as transporters of cargo or as antibacterial substances, targeting specific membranes. We have previously shown that the position of the amino acid tryptophan in the peptide sequence of three arginine-tryptophan peptides affects their uptake and intracellular localization in live mammalian cells, as well as their ability to inhibit bacterial growth. Here, we use quartz crystal microbalance with dissipation monitoring to assess the induced changes caused by binding of the three peptides to supported model membranes composed of POPC, POPC/POPG, POPC/POPG/cholesterol or POPC/lactosyl PE. Our results indicate that the tryptophan position in the peptide sequence affects the way these peptides interact with the different model membranes and that the presence of cholesterol in particular seems to affect the membrane interaction of the peptide with an even distribution of tryptophans in the peptide sequence. These results give mechanistic insight into the function of these peptides and may aid in the design of membrane-active peptides with specified cellular targets and actions.

  17. Peptide-membrane interactions of arginine-tryptophan peptides probed using quartz crystal microbalance with dissipation monitoring.

    KAUST Repository

    Rydberg, Hanna A; Kunze, Angelika; Carlsson, Nils; Altgä rde, Noomi; Svedhem, Sofia; Nordé n, Bengt

    2014-01-01

    Membrane-active peptides include peptides that can cross cellular membranes and deliver macromolecular cargo as well as peptides that inhibit bacterial growth. Some of these peptides can act as both transporters and antibacterial agents. It is desirable to combine the knowledge from these two different fields of membrane-active peptides into design of new peptides with tailored actions, as transporters of cargo or as antibacterial substances, targeting specific membranes. We have previously shown that the position of the amino acid tryptophan in the peptide sequence of three arginine-tryptophan peptides affects their uptake and intracellular localization in live mammalian cells, as well as their ability to inhibit bacterial growth. Here, we use quartz crystal microbalance with dissipation monitoring to assess the induced changes caused by binding of the three peptides to supported model membranes composed of POPC, POPC/POPG, POPC/POPG/cholesterol or POPC/lactosyl PE. Our results indicate that the tryptophan position in the peptide sequence affects the way these peptides interact with the different model membranes and that the presence of cholesterol in particular seems to affect the membrane interaction of the peptide with an even distribution of tryptophans in the peptide sequence. These results give mechanistic insight into the function of these peptides and may aid in the design of membrane-active peptides with specified cellular targets and actions.

  18. Automated solid-phase peptide synthesis to obtain therapeutic peptides

    Directory of Open Access Journals (Sweden)

    Veronika Mäde

    2014-05-01

    Full Text Available The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies.

  19. Non-Invasive Nanodiagnostics of Cancer (NINOC)

    Science.gov (United States)

    2010-04-01

    tested. CONCLUSIONS Well-defined diblock copolymers of poly(ethylene glycol) and polymethacrylic acid (PEG-b-PMA) with aldehyde functionality were...treatment of cancer, tumor-specific targeting has been proposed using a variety of targeting moieties such as folic acid , transferrin, RGD-peptides...tert-butyl and PEG groups (Table 1). In order to obtain the final block copolymer 6, the hydrolysis of copolymer 5 was carried out in the acidic

  20. Production of peptide antisera specific for mouse and rat proinsulin C-peptide 2

    DEFF Research Database (Denmark)

    Blume, N; Madsen, O D; Kofod, Hans

    1990-01-01

    for antibody binding to the immunizing antigen. Antisera to C-peptide 2, stained islet beta-cells on mouse and rat, but not monkey pancreas sections in immunocytochemical analysis. Preabsorption to the synthetic C-peptide 2, but not the synthetic mouse and rat C-peptide 1 abolished staining. In conclusion we......Mice and rats have two functional non-allelic insulin genes. By using a synthetic peptide representing a common sequence in mouse and rat C-peptide 2 as antigen, we have produced rabbit antisera specific for an epitope which is not present in mouse or rat C-peptide 1. Long-term immunization did...... not seem to increase the end point titre as tested in direct ELISA. The specificity of the antiserum was determined by competitive ELISA and histochemistry on pancreas sections. Only the synthetic C-peptide 2, but not the homologous synthetic C-peptide 1 from mouse and rat competed efficiently in ELISA...

  1. Therapeutic peptides for cancer therapy. Part I - peptide inhibitors of signal transduction cascades.

    Science.gov (United States)

    Bidwell, Gene L; Raucher, Drazen

    2009-10-01

    Therapeutic peptides have great potential as anticancer agents owing to their ease of rational design and target specificity. However, their utility in vivo is limited by low stability and poor tumor penetration. The authors review the development of peptide inhibitors with potential for cancer therapy. Peptides that inhibit signal transduction cascades are discussed. The authors searched Medline for articles concerning the development of therapeutic peptides and their delivery. Given our current knowledge of protein sequences, structures and interaction interfaces, therapeutic peptides that inhibit interactions of interest are easily designed. These peptides are advantageous because they are highly specific for the interaction of interest, and they are much more easily developed than small molecule inhibitors of the same interactions. The main hurdle to application of peptides for cancer therapy is their poor pharmacokinetic and biodistribution parameters. Therefore, successful development of peptide delivery vectors could potentially make possible the use of this new and very promising class of anticancer agents.

  2. Fibrinogen Motif Discriminates Platelet and Cell Capture in Peptide-Modified Gold Micropore Arrays.

    Science.gov (United States)

    Adamson, Kellie; Spain, Elaine; Prendergast, Una; Moran, Niamh; Forster, Robert J; Keyes, Tia E

    2018-01-16

    Human blood platelets and SK-N-AS neuroblastoma cancer-cell capture at spontaneously adsorbed monolayers of fibrinogen-binding motifs, GRGDS (generic integrin adhesion), HHLGGAKQAGDV (exclusive to platelet integrin α IIb β 3 ), or octanethiol (adhesion inhibitor) at planar gold and ordered 1.6 μm diameter spherical cap gold cavity arrays were compared. In all cases, arginine/glycine/aspartic acid (RGD) promoted capture, whereas alkanethiol monolayers inhibited adhesion. Conversely only platelets adhered to alanine/glycine/aspartic acid (AGD)-modified surfaces, indicating that the AGD motif is recognized preferentially by the platelet-specific integrin, α IIb β 3 . Microstructuring of the surface effectively eliminated nonspecific platelet/cell adsorption and dramatically enhanced capture compared to RGD/AGD-modified planar surfaces. In all cases, adhesion was reversible. Platelets and cells underwent morphological change on capture, the extent of which depended on the topography of the underlying substrate. This work demonstrates that both the nature of the modified interface and its underlying topography influence the capture of cancer cells and platelets. These insights may be useful in developing cell-based cancer diagnostics as well as in identifying strategies for the disruption of platelet cloaks around circulating tumor cells.

  3. Purification and use of E. coli peptide deformylase for peptide deprotection in chemoenzymatic peptide synthesis

    NARCIS (Netherlands)

    Di Toma, Claudia; Sonke, Theo; Quaedflieg, Peter J.; Janssen, Dick B.

    Peptide deformylases (PDFs) catalyze the removal of the formyl group from the N-terminal methionine residue in nascent polypeptide chains in prokaryotes. Its deformylation activity makes PDF an attractive candidate for the biocatalytic deprotection of formylated peptides that are used in

  4. Antioxidant activity of yoghurt peptides: Part 2 – Characterisationof peptide fractions

    DEFF Research Database (Denmark)

    Farvin, Sabeena; Baron, Caroline; Nielsen, Nina Skall

    2010-01-01

    the peptides identified contained at least one proline residue. Some of the identified peptides included the hydrophobic amino acid residues Val or Leu at the N-terminus and Pro, His or Tyr in the amino acid sequence, which is characteristic of antioxidant peptides. In addition, the yoghurt contained...

  5. Ligand-regulated peptide aptamers.

    Science.gov (United States)

    Miller, Russell A

    2009-01-01

    The peptide aptamer approach employs high-throughput selection to identify members of a randomized peptide library displayed from a scaffold protein by virtue of their interaction with a target molecule. Extending this approach, we have developed a peptide aptamer scaffold protein that can impart small-molecule control over the aptamer-target interaction. This ligand-regulated peptide (LiRP) scaffold, consisting of the protein domains FKBP12, FRB, and GST, binds to the cell-permeable small-molecule rapamycin and the binding of this molecule can prevent the interaction of the randomizable linker region connecting FKBP12 with FRB. Here we present a detailed protocol for the creation of a peptide aptamer plasmid library, selection of peptide aptamers using the LiRP scaffold in a yeast two-hybrid system, and the screening of those peptide aptamers for a ligand-regulated interaction.

  6. A distributive peptide cyclase processes multiple microviridin core peptides within a single polypeptide substrate.

    Science.gov (United States)

    Zhang, Yi; Li, Kunhua; Yang, Guang; McBride, Joshua L; Bruner, Steven D; Ding, Yousong

    2018-05-03

    Ribosomally synthesized and post-translationally modified peptides (RiPPs) are an important family of natural products. Their biosynthesis follows a common scheme in which the leader peptide of a precursor peptide guides the modifications of a single core peptide. Here we describe biochemical studies of the processing of multiple core peptides within a precursor peptide, rare in RiPP biosynthesis. In a cyanobacterial microviridin pathway, an ATP-grasp ligase, AMdnC, installs up to two macrolactones on each of the three core peptides within AMdnA. The enzyme catalysis occurs in a distributive fashion and follows an unstrict N-to-C overall directionality, but a strict order in macrolactonizing each core peptide. Furthermore, AMdnC is catalytically versatile to process unnatural substrates carrying one to four core peptides, and kinetic studies provide insights into its catalytic properties. Collectively, our results reveal a distinct biosynthetic logic of RiPPs, opening up the possibility of modular production via synthetic biology approaches.

  7. Superior Antifouling Performance of a Zwitterionic Peptide Compared to an Amphiphilic, Non-Ionic Peptide.

    Science.gov (United States)

    Ye, Huijun; Wang, Libing; Huang, Renliang; Su, Rongxin; Liu, Boshi; Qi, Wei; He, Zhimin

    2015-10-14

    The aim of this study was to explore the influence of amphiphilic and zwitterionic structures on the resistance of protein adsorption to peptide self-assembled monolayers (SAMs) and gain insight into the associated antifouling mechanism. Two kinds of cysteine-terminated heptapeptides were studied. One peptide had alternating hydrophobic and hydrophilic residues with an amphiphilic sequence of CYSYSYS. The other peptide (CRERERE) was zwitterionic. Both peptides were covalently attached onto gold substrates via gold-thiol bond formation. Surface plasmon resonance analysis results showed that both peptide SAMs had ultralow or low protein adsorption amounts of 1.97-11.78 ng/cm2 in the presence of single proteins. The zwitterionic peptide showed relatively higher antifouling ability with single proteins and natural complex protein media. We performed molecular dynamics simulations to understand their respective antifouling behaviors. The results indicated that strong surface hydration of peptide SAMs contributes to fouling resistance by impeding interactions with proteins. Compared to the CYSYSYS peptide, more water molecules were predicted to form hydrogen-bonding interactions with the zwitterionic CRERERE peptide, which is in agreement with the antifouling test results. These findings reveal a clear relation between peptide structures and resistance to protein adsorption, facilitating the development of novel peptide-containing antifouling materials.

  8. Antimicrobial Peptides in Reptiles

    Science.gov (United States)

    van Hoek, Monique L.

    2014-01-01

    Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. PMID:24918867

  9. Structure of the superantigen staphylococcal enterotoxin B in complex with TCR and peptide-MHC demonstrates absence of TCR-peptide contacts.

    Science.gov (United States)

    Rödström, Karin E J; Elbing, Karin; Lindkvist-Petersson, Karin

    2014-08-15

    Superantigens are immune-stimulatory toxins produced by Staphylococcus aureus, which are able to interact with host immune receptors to induce a massive release of cytokines, causing toxic shock syndrome and possibly death. In this article, we present the x-ray structure of staphylococcal enterotoxin B (SEB) in complex with its receptors, the TCR and MHC class II, forming a ternary complex. The structure, in combination with functional analyses, clearly shows how SEB adopts a wedge-like position when binding to the β-chain of TCR, allowing for an interaction between the α-chain of TCR and MHC. Furthermore, the binding mode also circumvents contact between TCR and the peptide presented by MHC, which enables SEB to initiate a peptide-independent activation of T cells. Copyright © 2014 by The American Association of Immunologists, Inc.

  10. Driving engineering of novel antimicrobial peptides from simulations of peptide-micelle interactions

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Langham, Allison A; Kaznessis, Yiannis N

    2006-01-01

    Simulations of antimicrobial peptides in membrane mimics can provide the high resolution, atomistic picture that is necessary to decipher which sequence and structure components are responsible for activity and toxicity. With such detailed insight, engineering new sequences that are active but non...... peptides and their interaction with membrane mimics. In this article, we discuss the promise and the challenges of widely used models and detail our recent work on peptide-micelle simulations as an attractive alternative to peptide-bilayer simulations. We detail our results with two large structural...... classes of peptides, helical and beta-sheet and demonstrate how simulations can assist in engineering of novel antimicrobials with therapeutic potential....

  11. Hydrodynamic effects on β-amyloid (16-22) peptide aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Chiricotto, Mara; Sterpone, Fabio, E-mail: fabio.sterpone@ibpc.fr [Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, University Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris (France); Melchionna, Simone [CNR-ISC, Institute for Complex System, Consiglio Nazionale delle Ricerche, Rome (Italy); Derreumaux, Philippe [Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, University Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris (France); IUF, Institut Universitaire de France, Boulevard Saint Michel, 75005 Paris (France)

    2016-07-21

    Computer simulations based on simplified representations are routinely used to explore the early steps of amyloid aggregation. However, when protein models with implicit solvent are employed, these simulations miss the effect of solvent induced correlations on the aggregation kinetics and lifetimes of metastable states. In this work, we apply the multi-scale Lattice Boltzmann Molecular Dynamics technique (LBMD) to investigate the initial aggregation phases of the amyloid Aβ{sub 16−22} peptide. LBMD includes naturally hydrodynamic interactions (HIs) via a kinetic on-lattice representation of the fluid kinetics. The peptides are represented by the flexible OPEP coarse-grained force field. First, we have tuned the essential parameters that control the coupling between the molecular and fluid evolutions in order to reproduce the experimental diffusivity of elementary species. The method is then deployed to investigate the effect of HIs on the aggregation of 100 and 1000 Aβ{sub 16−22} peptides. We show that HIs clearly impact the aggregation process and the fluctuations of the oligomer sizes by favouring the fusion and exchange dynamics of oligomers between aggregates. HIs also guide the growth of the leading largest cluster. For the 100 Aβ{sub 16−22} peptide system, the simulation of ∼300 ns allowed us to observe the transition from ellipsoidal assemblies to an elongated and slightly twisted aggregate involving almost the totality of the peptides. For the 1000 Aβ{sub 16−22} peptides, a system of unprecedented size at quasi-atomistic resolution, we were able to explore a branched disordered fibril-like structure that has never been described by other computer simulations, but has been observed experimentally.

  12. Human Antimicrobial Peptides and Proteins

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2014-05-01

    Full Text Available As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32 can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized

  13. Phage display peptide libraries: deviations from randomness and correctives

    Science.gov (United States)

    Ryvkin, Arie; Ashkenazy, Haim; Weiss-Ottolenghi, Yael; Piller, Chen; Pupko, Tal; Gershoni, Jonathan M

    2018-01-01

    Abstract Peptide-expressing phage display libraries are widely used for the interrogation of antibodies. Affinity selected peptides are then analyzed to discover epitope mimetics, or are subjected to computational algorithms for epitope prediction. A critical assumption for these applications is the random representation of amino acids in the initial naïve peptide library. In a previous study, we implemented next generation sequencing to evaluate a naïve library and discovered severe deviations from randomness in UAG codon over-representation as well as in high G phosphoramidite abundance causing amino acid distribution biases. In this study, we demonstrate that the UAG over-representation can be attributed to the burden imposed on the phage upon the assembly of the recombinant Protein 8 subunits. This was corrected by constructing the libraries using supE44-containing bacteria which suppress the UAG driven abortive termination. We also demonstrate that the overabundance of G stems from variant synthesis-efficiency and can be corrected using compensating oligonucleotide-mixtures calibrated by mass spectroscopy. Construction of libraries implementing these correctives results in markedly improved libraries that display random distribution of amino acids, thus ensuring that enriched peptides obtained in biopanning represent a genuine selection event, a fundamental assumption for phage display applications. PMID:29420788

  14. The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7.

    Directory of Open Access Journals (Sweden)

    Shuguo Hou

    2014-09-01

    Full Text Available In plants, innate immune responses are initiated by plasma membrane-located pattern recognition receptors (PRRs upon recognition of elicitors, including exogenous pathogen-associated molecular patterns (PAMPs and endogenous damage-associated molecular patterns (DAMPs. Arabidopsis thaliana produces more than 1000 secreted peptide candidates, but it has yet to be established whether any of these act as elicitors. Here we identified an A. thaliana gene family encoding precursors of PAMP-induced secreted peptides (prePIPs through an in-silico approach. The expression of some members of the family, including prePIP1 and prePIP2, is induced by a variety of pathogens and elicitors. Subcellular localization and proteolytic processing analyses demonstrated that the prePIP1 product is secreted into extracellular spaces where it is cleaved at the C-terminus. Overexpression of prePIP1 and prePIP2, or exogenous application of PIP1 and PIP2 synthetic peptides corresponding to the C-terminal conserved regions in prePIP1 and prePIP2, enhanced immune responses and pathogen resistance in A. thaliana. Genetic and biochemical analyses suggested that the receptor-like kinase 7 (RLK7 functions as a receptor of PIP1. Once perceived by RLK7, PIP1 initiates overlapping and distinct immune signaling responses together with the DAMP PEP1. PIP1 and PEP1 cooperate in amplifying the immune responses triggered by the PAMP flagellin. Collectively, these studies provide significant insights into immune modulation by Arabidopsis endogenous secreted peptides.

  15. Equilibrium and non-equilibrium conformations of peptides in lipid bilayers.

    Science.gov (United States)

    Boden, N; Cheng, Y; Knowles, P F

    1997-04-22

    A synthetic, hydrophobic, 27-amino-acid-residue peptide 'K27', modelled on the trans-membrane domain of the slow voltage-gated potassium channel, IsK, has been incorporated into a lipid bilayer and its conformational properties studied using FT-IR spectroscopy. The conformation following reconstitution is found to be dependent on the nature of the solvent employed. When the reconstitution is conducted by solvent evaporation from a methanol solution, aggregates comprised of beta-strands are stabilised and their concentration is essentially invariant with time. By contrast, when trifluoroethanol is used, the initial conformation of the peptide is alpha-helical. This then relaxes to an equilibrium state between alpha-helices and beta-strands. The alpha-helix-to beta-strand conversion rate is relatively slow, and this allows the kinetics to be studied by FT-IR spectroscopy. The reverse process is much slower but again can be demonstrated by FT-IR. Thus, it appears that a true equilibrium structure can only be achieved by starting with peptide in the alpha-helical conformation. We believe this result should be of general validity for hydrophobic peptide reconstitution. The implications for conformational changes in membrane proteins are discussed.

  16. Flanking signal and mature peptide residues influence signal peptide cleavage

    Directory of Open Access Journals (Sweden)

    Ranganathan Shoba

    2008-12-01

    Full Text Available Abstract Background Signal peptides (SPs mediate the targeting of secretory precursor proteins to the correct subcellular compartments in prokaryotes and eukaryotes. Identifying these transient peptides is crucial to the medical, food and beverage and biotechnology industries yet our understanding of these peptides remains limited. This paper examines the most common type of signal peptides cleavable by the endoprotease signal peptidase I (SPase I, and the residues flanking the cleavage sites of three groups of signal peptide sequences, namely (i eukaryotes (Euk (ii Gram-positive (Gram+ bacteria, and (iii Gram-negative (Gram- bacteria. Results In this study, 2352 secretory peptide sequences from a variety of organisms with amino-terminal SPs are extracted from the manually curated SPdb database for analysis based on physicochemical properties such as pI, aliphatic index, GRAVY score, hydrophobicity, net charge and position-specific residue preferences. Our findings show that the three groups share several similarities in general, but they display distinctive features upon examination in terms of their amino acid compositions and frequencies, and various physico-chemical properties. Thus, analysis or prediction of their sequences should be separated and treated as distinct groups. Conclusion We conclude that the peptide segment recognized by SPase I extends to the start of the mature protein to a limited extent, upon our survey of the amino acid residues surrounding the cleavage processing site. These flanking residues possibly influence the cleavage processing and contribute to non-canonical cleavage sites. Our findings are applicable in defining more accurate prediction tools for recognition and identification of cleavage site of SPs.

  17. Peptide receptor radionuclide therapy for neuroendocrine tumors in Germany: first results of a multi-institutional cancer registry.

    Science.gov (United States)

    Hörsch, Dieter; Ezziddin, Samer; Haug, Alexander; Gratz, Klaus Friedrich; Dunkelmann, Simone; Krause, Bernd Joachim; Schümichen, Carl; Bengel, Frank M; Knapp, Wolfram H; Bartenstein, Peter; Biersack, Hans-Jürgen; Plöckinger, Ursula; Schwartz-Fuchs, Sabine; Baum, R P

    2013-01-01

    Peptide receptor radionuclide therapy is an effective treatment option for patients with well-differentiated somatostatin receptor-expressing neuroendocrine tumors. However, published data result mainly from retrospective monocentric studies. We initiated a multi-institutional, prospective, board-reviewed registry for patients treated with peptide receptor radionuclide therapy in Germany in 2009. In five centers, 297 patients were registered. Primary tumors were mainly derived from pancreas (117/297) and small intestine (80/297), whereas 56 were of unknown primary. Most tumors were well differentiated with median Ki67 proliferation rate of 5% (range 0.9-70%). Peptide receptor radionuclide therapy was performed using mainly yttrium-90 and/or lutetium-177 as radionuclides in 1-8 cycles. Mean overall survival was estimated at 213 months with follow-up between 1 and 230 months after initial diagnosis, and 87 months with follow-up between 1 and 92 months after start of peptide receptor radionuclide therapy. Median overall survival was not yet reached. Subgroup analysis demonstrated that best results were obtained in neuroendocrine tumors with proliferation rate below 20%. Our results indicate that peptide receptor radionuclide therapy is an effective treatment for well- and moderately differentiated neuroendocrine tumors irrespective of previous therapies and should be regarded as one of the primary treatment options for patients with somatostatin receptor-expressing neuroendocrine tumors.

  18. Vaccination with map specific peptides reduces map burden in tissues of infected goats

    DEFF Research Database (Denmark)

    Melvang, Heidi Mikkelsen; Hassan, Sufia Butt; Thakur, Aneesh

    As an alternative to protein-based vaccines, we investigated the effect of post-exposure vaccination with Map specific peptides in a goat model aiming at developing a Map vaccine that will neither interfere with diagnosis of paratuberculosis nor bovine tuberculosis. Peptides were initially select...... in the unvaccinated control group seroconverted in ID Screen® ELISA at last sampling prior to euthanasia. These results indicate that a subunit vaccine against Map can induce a protective immune response against paratuberculosis in goats....

  19. Deciphering complex patterns of class-I HLA-peptide cross-reactivity via hierarchical grouping.

    Science.gov (United States)

    Mukherjee, Sumanta; Warwicker, Jim; Chandra, Nagasuma

    2015-07-01

    T-cell responses in humans are initiated by the binding of a peptide antigen to a human leukocyte antigen (HLA) molecule. The peptide-HLA complex then recruits an appropriate T cell, leading to cell-mediated immunity. More than 2000 HLA class-I alleles are known in humans, and they vary only in their peptide-binding grooves. The polymorphism they exhibit enables them to bind a wide range of peptide antigens from diverse sources. HLA molecules and peptides present a complex molecular recognition pattern, as many peptides bind to a given allele and a given peptide can be recognized by many alleles. A powerful grouping scheme that not only provides an insightful classification, but is also capable of dissecting the physicochemical basis of recognition specificity is necessary to address this complexity. We present a hierarchical classification of 2010 class-I alleles by using a systematic divisive clustering method. All-pair distances of alleles were obtained by comparing binding pockets in the structural models. By varying the similarity thresholds, a multilevel classification was obtained, with 7 supergroups, each further subclassifying to yield 72 groups. An independent clustering performed based only on similarities in their epitope pools correlated highly with pocket-based clustering. Physicochemical feature combinations that best explain the basis of clustering are identified. Mutual information calculated for the set of peptide ligands enables identification of binding site residues contributing to peptide specificity. The grouping of HLA molecules achieved here will be useful for rational vaccine design, understanding disease susceptibilities and predicting risk of organ transplants.

  20. Insulin C-peptide test

    Science.gov (United States)

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin the body produces and insulin someone injects ...

  1. Double-Stranded Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2001-01-01

    A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker.......A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  2. Peptide based hydrogels for bone tissue engineering

    International Nuclear Information System (INIS)

    Ranny, H.R.; Schneider, J.P.

    2007-01-01

    Peptide hydrogels are potentially ideal scaffolds for tissue repair and regeneration due to their ability to mimic natural extra cellular matrix. The 20 amino acid peptide HPL8 (H2N- VKVKVKVKVDPP TKVKVKVKV-CONH2), has been shown to fold and self-assemble into a rigid hydrogel based on Environmental cues such as pH, salt, and temperature. Due to its environmental responsiveness, hydrogel assembly can be induced by cell culture media, allowing for 3D encapsulation of osteogenic cells. Initially, 20 cultures of MC3T3 cells proved that the hydrogel is nontoxic and sustains cellular attachment in the absence of serum proteins without altering the physical properties of the hydrogel. The cell-material structure relationship in normal and pathological conditions was further investigated by 3D encapsulation. Cell were viable for 3 weeks and grew in clonogenic spheroids. Characterization of the proliferation, differentiation and constitutive expression of various osteoblastic markers was performed using spectrophotometric methods. The well-defined, fibrillar nanostructure of the hydrogel directs the attachment and attachment and growth of osteoblast cells and dictates the mineralization of hydroxyapatite in a manner similar to bone. This study will enable control over the interaction of cellular systems with the peptide hydrogel with designs for biomedical applications of bone repair. (author)

  3. Application of synthetic peptides for detection of anti-citrullinated peptide antibodies

    DEFF Research Database (Denmark)

    Trier, Nicole Hartwig; Holm, Bettina Eide; Slot, Ole

    2016-01-01

    Anti-citrullinated protein antibodies (ACPAs) are a hallmark of rheumatoid arthritis (RA) and represent an important tool for the serological diagnosis of RA. In this study, we describe ACPA reactivity to overlapping citrullinated Epstein-Barr virus nuclear antigen-1 (EBNA-1)-derived peptides...... (n=40), systemic lupus erythematosus (n=20), Sjögren's syndrome (n=40)) were screened for antibody reactivity. Antibodies to a panel of five citrullinated EBNA-1 peptides were found in 67% of RA sera, exclusively of the IgG isotype, while 53% of the patient sera reacted with a single peptide......, ARGGSRERARGRGRG-Cit-GEKR, accounting for more than half of the ACPA reactivity alone. Moreover, these antibodies were detected in 10% of CCP2-negative RA sera. In addition, 47% of the RA sera reacted with two or three citrullinated EBNA-1 peptides from the selected peptide panel. Furthermore, a negative...

  4. Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds.

    Science.gov (United States)

    Wang, Jianglin; Yang, Mingying; Zhu, Ye; Wang, Lin; Tomsia, Antoni P; Mao, Chuanbin

    2014-08-06

    A virus-activated matrix is developed to overcome the challenge of forming vascularized bone tissue. It is generated by filling a 3D printed bioceramic scaffold with phage nanofibers displaying high-density RGD peptide. After it is seeded with mesenchymal stem cells (MSCs) and implanted into a bone defect, the phage nanofibers induce osteogenesis and angiogenesis by activating endothelialization and osteogenic differentiation of MSCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Recombinant rubistatin (r-Rub), an MVD disintegrin, inhibits cell migration and proliferation, and is a strong apoptotic inducer of the human melanoma cell line SK-Mel-28.

    Science.gov (United States)

    Carey, Clayton M; Bueno, Raymund; Gutierrez, Daniel A; Petro, Christopher; Lucena, Sara E; Sanchez, Elda E; Soto, Julio G

    2012-02-01

    Disintegrins are low molecular weight peptides isolated from viper venom. These peptides bind to integrin receptors using a conserved binding motif sequence containing an RGD or similar motif. As a consequence, disintegrins can inhibit platelet aggregation and inhibit cell migration, proliferation, and initiate apoptosis in cancer cell lines. Rubistatin is a MVD disintegrin cloned from a Crotalus ruber ruber venom gland. The biological activity of MVD disintegrins is poorly understood. Recombinant rubistatin (r-Rub) was cloned into a pET32b plasmid and expressed in reductase-deficient Escherichia coli. Expression was induced with IPTG and the resulting fusion peptide was affinity purified, followed by thrombin cleavage, and removal of vector coded sequences. r-Rub peptide inhibited ADP-induced platelet aggregation by 54% ± 6.38 in whole blood. We assessed the ability of r-Rub to initiate apoptosis in three human cancer cell lines. Cultures of SK-Mel-28, HeLA, and T24 cells were grown for 24 h with 2.5 μM r-Rub followed by Hoechst staining. Chromatin fragmentation was observed in treated SK-Mel-28, but not in T24 or HeLA cells. A TUNEL assay revealed that 51.55% ± 5.28 of SK-Mel-28 cells were apoptotic after 18 h of treatment with 3.5 μM of r-Rub. Cell migration and proliferation assays were performed in order to further characterize the biological effects of r-Rub on SK-Mel-28 cells. At 3 μM, r-Rub inhibited cell migration by 44.4% ± 0.5, while at 3.5 μM it was able to inhibit cell proliferation by 83% ± 6.0. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Primary structure and conformational analysis of peptide methionine-tyrosine, a peptide related to neuropeptide Y and peptide YY isolated from lamprey intestine

    DEFF Research Database (Denmark)

    Conlon, J M; Bjørnholm, B; Jørgensen, Flemming Steen

    1991-01-01

    A peptide belonging to the pancreatic-polypeptide-fold family of regulatory peptides has been isolated from the intestine of an Agnathan, the sea lamprey (Petromyzon marinus). The primary structure of the peptide (termed peptide methionine-tyrosine) was established as Met-Pro-Pro-Lys-Pro-Asp-Asn-...... in a preferred structure in which the conformation of the beta-turn between the two helical domains (residues 9-14) is appreciably different....

  7. Improving Peptide Applications Using Nanotechnology.

    Science.gov (United States)

    Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P

    2016-01-01

    Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology.

  8. Effects of pressure and magnetic field on transport properties of Y1-xRxCo2 alloys (R=Gd, Tb, Dy, Ho and Er)

    International Nuclear Information System (INIS)

    Takaesu, Y; Nakama, T; Kinjyo, A; Yonamine, S; Hedo, M; Yagasaki, K; Uchima, K; Uwatoko, Y; Burkov, A T

    2010-01-01

    Electrical resistivity ρ and thermopower S of Y 1-x R x Co 2 (R=Gd, Tb, Dy, Ho and Er) Laves phase alloy systems were measured at temperatures from 1.5 K to 300 K in magnetic fields up to 15 T and under hydrostatic pressure up to 2 GPa. We show that there is a universal linear relation between the pressure and magnetic field derivatives of the resistivity, dρ/dP and dρ/dB, with gradient, determined by pressure derivative of the critical metamagnetic field of the cobalt 3d electron system. A similar scaling behavior was found for the thermopower dependencies on pressure and alloy composition.

  9. Peptide and Peptide-Dependent Motions in MHC Proteins: Immunological Implications and Biophysical Underpinnings

    Directory of Open Access Journals (Sweden)

    Cory M. Ayres

    2017-08-01

    Full Text Available Structural biology of peptides presented by class I and class II MHC proteins has transformed immunology, impacting our understanding of fundamental immune mechanisms and allowing researchers to rationalize immunogenicity and design novel vaccines. However, proteins are not static structures as often inferred from crystallographic structures. Their components move and breathe individually and collectively over a range of timescales. Peptides bound within MHC peptide-binding grooves are no exception and their motions have been shown to impact recognition by T cell and other receptors in ways that influence function. Furthermore, peptides tune the motions of MHC proteins themselves, which impacts recognition of peptide/MHC complexes by other proteins. Here, we review the motional properties of peptides in MHC binding grooves and discuss how peptide properties can influence MHC motions. We briefly review theoretical concepts about protein motion and highlight key data that illustrate immunological consequences. We focus primarily on class I systems due to greater availability of data, but segue into class II systems as the concepts and consequences overlap. We suggest that characterization of the dynamic “energy landscapes” of peptide/MHC complexes and the resulting functional consequences is one of the next frontiers in structural immunology.

  10. Urokinase links plasminogen activation and cell adhesion by cleavage of the RGD motif in vitronectin.

    Science.gov (United States)

    De Lorenzi, Valentina; Sarra Ferraris, Gian Maria; Madsen, Jeppe B; Lupia, Michela; Andreasen, Peter A; Sidenius, Nicolai

    2016-07-01

    Components of the plasminogen activation system including urokinase (uPA), its inhibitor (PAI-1) and its cell surface receptor (uPAR) have been implicated in a wide variety of biological processes related to tissue homoeostasis. Firstly, the binding of uPA to uPAR favours extracellular proteolysis by enhancing cell surface plasminogen activation. Secondly, it promotes cell adhesion and signalling through binding of the provisional matrix protein vitronectin. We now report that uPA and plasmin induces a potent negative feedback on cell adhesion through specific cleavage of the RGD motif in vitronectin. Cleavage of vitronectin by uPA displays a remarkable receptor dependence and requires concomitant binding of both uPA and vitronectin to uPAR Moreover, we show that PAI-1 counteracts the negative feedback and behaves as a proteolysis-triggered stabilizer of uPAR-mediated cell adhesion to vitronectin. These findings identify a novel and highly specific function for the plasminogen activation system in the regulation of cell adhesion to vitronectin. The cleavage of vitronectin by uPA and plasmin results in the release of N-terminal vitronectin fragments that can be detected in vivo, underscoring the potential physiological relevance of the process. © 2016 The Authors.

  11. Acetone-Linked Peptides: A Convergent Approach for Peptide Macrocyclization and Labeling.

    Science.gov (United States)

    Assem, Naila; Ferreira, David J; Wolan, Dennis W; Dawson, Philip E

    2015-07-20

    Macrocyclization is a broadly applied approach for overcoming the intrinsically disordered nature of linear peptides. Herein, it is shown that dichloroacetone (DCA) enhances helical secondary structures when introduced between peptide nucleophiles, such as thiols, to yield an acetone-linked bridge (ACE). Aside from stabilizing helical structures, the ketone moiety embedded in the linker can be modified with diverse molecular tags by oxime ligation. Insights into the structure of the tether were obtained through co-crystallization of a constrained S-peptide in complex with RNAse S. The scope of the acetone-linked peptides was further explored through the generation of N-terminus to side chain macrocycles and a new approach for generating fused macrocycles (bicycles). Together, these studies suggest that acetone linking is generally applicable to peptide macrocycles with a specific utility in the synthesis of stabilized helices that incorporate functional tags. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Preparation of peptide thioesters through fmoc-based solid-phase peptide synthesis by using amino thioesters

    DEFF Research Database (Denmark)

    Stuhr-Hansen, N.; Wilbek, T.S.; Strømgaard, K.

    2013-01-01

    protected peptide thioester, which was globally deprotected to afford the desired unprotected peptide thioester. The method is compatible with labile groups such as phosphoryl and glycosyl moieties. The synthesis of peptide alkyl thioesters by 9-fluorenylmethoxycarbonyl (Fmoc) solid-phase peptide synthesis...

  13. Production and characterization of peptide antibodies

    DEFF Research Database (Denmark)

    Trier, Nicole Hartwig; Hansen, Paul Robert; Houen, Gunnar

    2012-01-01

    Proteins are effective immunogens for generation of antibodies. However, occasionally the native protein is known but not available for antibody production. In such cases synthetic peptides derived from the native protein are good alternatives for antibody production. These peptide antibodies...... are powerful tools in experimental biology and are easily produced to any peptide of choice. A widely used approach for production of peptide antibodies is to immunize animals with a synthetic peptide coupled to a carrier protein. Very important is the selection of the synthetic peptide, where factors......, including solid-phase peptide-carrier conjugation and peptide-carrier conjugation in solution. Upon immunization, adjuvants such as Al(OH)(3) are added together with the immunogenic peptide-carrier conjugate, which usually leads to high-titred antisera. Following immunization and peptide antibody...

  14. Peptide ligands for targeting the extracellular domain of EGFR: Comparison between linear and cyclic peptides.

    Science.gov (United States)

    Williams, Tyrslai M; Sable, Rushikesh; Singh, Sitanshu; Vicente, Maria Graca H; Jois, Seetharama D

    2018-02-01

    Colorectal cancer (CRC) is the third most common solid internal malignancy among cancers. Early detection of cancer is key to increasing the survival rate of colorectal cancer patients. Overexpression of the EGFR protein is associated with CRC. We have designed a series of peptides that are highly specific for the extracellular domain of EGFR, based on our earlier studies on linear peptides. The previously reported linear peptide LARLLT, known to bind to EGFR, was modified with the goals of increasing its stability and its specificity toward EGFR. Peptide modifications, including D-amino acid substitution, cyclization, and chain reversal, were investigated. In addition, to facilitate labeling of the peptide with a fluorescent dye, an additional lysine residue was introduced onto the linear (KLARLLT) and cyclic peptides cyclo(KLARLLT) (Cyclo.L1). The lysine residue was also converted into an azide group in both a linear and reversed cyclic peptide sequences cyclo(K(N3)larllt) (Cyclo.L1.1) to allow for subsequent "click" conjugation. The cyclic peptides showed enhanced binding to EGFR by SPR. NMR and molecular modeling studies suggest that the peptides acquire a β-turn structure in solution. In vitro stability studies in human serum show that the cyclic peptide is more stable than the linear peptide. © 2017 John Wiley & Sons A/S.

  15. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  16. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  17. Semi-automated microwave assisted solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Pedersen, Søren Ljungberg

    with microwaves for SPPS has gained in popularity as it for many syntheses has provided significant improvement in terms of speed, purity, and yields, maybe especially in the synthesis of long and "difficult" peptides. Thus, precise microwave heating has emerged as one new parameter for SPPS, in addition...... to coupling reagents, resins, solvents etc. We have previously reported on microwave heating to promote a range of solid-phase reactions in SPPS. Here we present a new, flexible semi-automated instrument for the application of precise microwave heating in solid-phase synthesis. It combines a slightly modified...... Biotage Initiator microwave instrument, which is available in many laboratories, with a modified semi-automated peptide synthesizer from MultiSynTech. A custom-made reaction vessel is placed permanently in the microwave oven, thus the reactor does not have to be moved between steps. Mixing is achieved...

  18. Engineering signal peptides for enhanced protein secretion from Lactococcus lactis.

    Science.gov (United States)

    Ng, Daphne T W; Sarkar, Casim A

    2013-01-01

    Lactococcus lactis is an attractive vehicle for biotechnological production of proteins and clinical delivery of therapeutics. In many such applications using this host, it is desirable to maximize secretion of recombinant proteins into the extracellular space, which is typically achieved by using the native signal peptide from a major secreted lactococcal protein, Usp45. In order to further increase protein secretion from L. lactis, inherent limitations of the Usp45 signal peptide (Usp45sp) must be elucidated. Here, we performed extensive mutagenesis on Usp45sp to probe the effects of both the mRNA sequence (silent mutations) and the peptide sequence (amino acid substitutions) on secretion. We screened signal peptides based on their resulting secretion levels of Staphylococcus aureus nuclease and further evaluated them for secretion of Bacillus subtilis α-amylase. Silent mutations alone gave an increase of up to 16% in the secretion of α-amylase through a mechanism consistent with relaxed mRNA folding around the ribosome binding site and enhanced translation. Targeted amino acid mutagenesis in Usp45sp, combined with additional silent mutations from the best clone in the initial screen, yielded an increase of up to 51% in maximum secretion of α-amylase while maintaining secretion at lower induction levels. The best sequence from our screen preserves the tripartite structure of the native signal peptide but increases the positive charge of the n-region. Our study presents the first example of an engineered L. lactis signal peptide with a higher secretion yield than Usp45sp and, more generally, provides strategies for further enhancing protein secretion in bacterial hosts.

  19. Solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Jensen, Knud Jørgen

    2013-01-01

    This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective.......This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective....

  20. Taylor Dispersion Analysis as a promising tool for assessment of peptide-peptide interactions

    DEFF Research Database (Denmark)

    Høgstedt, Ulrich B; Schwach, Grégoire; van de Weert, Marco

    2016-01-01

    solutions increased with concentration. Our results indicate that a viscosity difference between run buffer and sample in Taylor Dispersion Analysis may result in overestimation of the measured diffusion coefficient. Thus, Taylor Dispersion Analysis provides a practical, but as yet primarily qualitative......Protein-protein and peptide-peptide (self-)interactions are of key importance in understanding the physiochemical behavior of proteins and peptides in solution. However, due to the small size of peptide molecules, characterization of these interactions is more challenging than for proteins...

  1. Aggregation and toxicity of amyloid-beta peptide in relation to peptide sequence variation

    OpenAIRE

    Vandersteen, A.

    2012-01-01

    Generally, aggregation of the amyloid-ß peptide is considered the cause of neuronal death in Alzheimer disease. The heterogenous Aß peptide occurs in various lengths in vivo: Aß40 and Aß42 are the predominant forms while both shorter and longer peptides exist. Aß40 and shorter isoforms are less aggregation-prone and hence considered less dangerous than Aß42 and longer isoforms, which are more aggregation-prone. Up to now research mainly focussed on the predominant Aß peptides and their indivi...

  2. Engineered chimeric peptides with antimicrobial and titanium-binding functions to inhibit biofilm formation on Ti implants.

    Science.gov (United States)

    Geng, Hongjuan; Yuan, Yang; Adayi, Aidina; Zhang, Xu; Song, Xin; Gong, Lei; Zhang, Xi; Gao, Ping

    2018-01-01

    Titanium (Ti) implants have been commonly used in oral medicine. However, despite their widespread clinical application, these implants are susceptible to failure induced by microbial infection due to bacterial biofilm formation. Immobilization of chimeric peptides with antibacterial properties on the Ti surface may be a promising antimicrobial approach to inhibit biofilm formation. Here, chimeric peptides were designed by connecting three sequences (hBD-3-1/2/3) derived from human β-defensin-3 (hBD-3) with Ti-binding peptide-l (TBP-l: RKLPDAGPMHTW) via a triple glycine (G) linker to modify Ti surfaces. Using X-ray photoelectron spectroscopy (XPS), the properties of individual domains of the chimeric peptides were evaluated for their binding activity toward the Ti surface. The antimicrobial and anti-biofilm efficacy of the peptides against initial settlers, Streptococcus oralis (S. oralis), Streptococcus gordonii (S. gordonii) and Streptococcus sanguinis (S. sanguinis), was evaluated with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Transmission electron microscopy (TEM) and real-time quantitative PCR (qRT-PCR) were used to study cell membrane changes and the underlying antimicrobial mechanism. Compared with the other two peptides, TBP-1-GGG-hBD3-3 presented stronger antibacterial activity and remained stable in saliva and serum. Therefore, it was chosen as the best candidate to modify Ti surfaces in this study. This peptide inhibited the growth of initial streptococci and biofilm formation on Ti surfaces with no cytotoxicity to MC3T3-E1 cells. Disruption of the integrity of bacterial membranes and decreased expression of adhesion protein genes from S. gordonii revealed aspects of the antibacterial mechanism of TBP-1-GGG-hBD3-3. We conclude that engineered chimeric peptides with antimicrobial activity provide a potential solution for inhibiting biofilm formation on Ti surfaces to reduce or prevent the occurrence of peri

  3. A cocoa peptide protects Caenorhabditis elegans from oxidative stress and β-amyloid peptide toxicity.

    Directory of Open Access Journals (Sweden)

    Patricia Martorell

    Full Text Available BACKGROUND: Cocoa and cocoa-based products contain different compounds with beneficial properties for human health. Polyphenols are the most frequently studied, and display antioxidant properties. Moreover, protein content is a very interesting source of antioxidant bioactive peptides, which can be used therapeutically for the prevention of age-related diseases. METHODOLOGY/PRINCIPAL FINDINGS: A bioactive peptide, 13L (DNYDNSAGKWWVT, was obtained from a hydrolyzed cocoa by-product by chromatography. The in vitro inhibition of prolyl endopeptidase (PEP was used as screening method to select the suitable fraction for peptide identification. Functional analysis of 13L peptide was achieved using the transgenic Caenorhabditis elegans strain CL4176 expressing the human Aβ₁₋₄₂ peptide as a pre-clinical in vivo model for Alzheimer's disease. Among the peptides isolated, peptide 13L (1 µg/mL showed the highest antioxidant activity (P≤0.001 in the wild-type strain (N2. Furthermore, 13L produced a significant delay in body paralysis in strain CL4176, especially in the 24-47 h period after Aβ₁₋₄₂ peptide induction (P≤0.0001. This observation is in accordance with the reduction of Aβ deposits in CL4176 by western blot. Finally, transcriptomic analysis in wild-type nematodes treated with 13L revealed modulation of the proteosomal and synaptic functions as the main metabolic targets of the peptide. CONCLUSIONS/SIGNIFICANCE: These findings suggest that the cocoa 13L peptide has antioxidant activity and may reduce Aβ deposition in a C. elegans model of Alzheimer's disease; and therefore has a putative therapeutic potential for prevention of age-related diseases. Further studies in murine models and humans will be essential to analyze the effectiveness of the 13L peptide in higher animals.

  4. Peptide Vaccines for Leishmaniasis

    Directory of Open Access Journals (Sweden)

    Rory C. F. De Brito

    2018-05-01

    Full Text Available Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development.

  5. Peptide Vaccines for Leishmaniasis.

    Science.gov (United States)

    De Brito, Rory C F; Cardoso, Jamille M De O; Reis, Levi E S; Vieira, Joao F; Mathias, Fernando A S; Roatt, Bruno M; Aguiar-Soares, Rodrigo Dian D O; Ruiz, Jeronimo C; Resende, Daniela de M; Reis, Alexandre B

    2018-01-01

    Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development.

  6. Fasting plasma C-peptide, glucagon stimulated plasma C-peptide, and urinary C-peptide in relation to clinical type of diabetes

    DEFF Research Database (Denmark)

    Gjessing, H J; Matzen, L E; Faber, O K

    1989-01-01

    with a fasting plasma C-peptide value less than 0.20 nmol/l, a glucagon stimulated plasma C-peptide value less than 0.32 nmol/l, and a urinary C-peptide value less than 3.1 nmol/l, or less than 0.54 nmol/mmol creatinine/24 h, or less than 5.4 nmol/24 h mainly were Type 1 diabetic patients; while patients with C...

  7. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  8. Virtual screening using combinatorial cyclic peptide libraries reveals protein interfaces readily targetable by cyclic peptides.

    Science.gov (United States)

    Duffy, Fergal J; O'Donovan, Darragh; Devocelle, Marc; Moran, Niamh; O'Connell, David J; Shields, Denis C

    2015-03-23

    Protein-protein and protein-peptide interactions are responsible for the vast majority of biological functions in vivo, but targeting these interactions with small molecules has historically been difficult. What is required are efficient combined computational and experimental screening methods to choose among a number of potential protein interfaces worthy of targeting lead macrocyclic compounds for further investigation. To achieve this, we have generated combinatorial 3D virtual libraries of short disulfide-bonded peptides and compared them to pharmacophore models of important protein-protein and protein-peptide structures, including short linear motifs (SLiMs), protein-binding peptides, and turn structures at protein-protein interfaces, built from 3D models available in the Protein Data Bank. We prepared a total of 372 reference pharmacophores, which were matched against 108,659 multiconformer cyclic peptides. After normalization to exclude nonspecific cyclic peptides, the top hits notably are enriched for mimetics of turn structures, including a turn at the interaction surface of human α thrombin, and also feature several protein-binding peptides. The top cyclic peptide hits also cover the critical "hot spot" interaction sites predicted from the interaction crystal structure. We have validated our method by testing cyclic peptides predicted to inhibit thrombin, a key protein in the blood coagulation pathway of important therapeutic interest, identifying a cyclic peptide inhibitor with lead-like activity. We conclude that protein interfaces most readily targetable by cyclic peptides and related macrocyclic drugs may be identified computationally among a set of candidate interfaces, accelerating the choice of interfaces against which lead compounds may be screened.

  9. A graph kernel approach for alignment-free domain-peptide interaction prediction with an application to human SH3 domains.

    Science.gov (United States)

    Kundu, Kousik; Costa, Fabrizio; Backofen, Rolf

    2013-07-01

    State-of-the-art experimental data for determining binding specificities of peptide recognition modules (PRMs) is obtained by high-throughput approaches like peptide arrays. Most prediction tools applicable to this kind of data are based on an initial multiple alignment of the peptide ligands. Building an initial alignment can be error-prone, especially in the case of the proline-rich peptides bound by the SH3 domains. Here, we present a machine-learning approach based on an efficient graph-kernel technique to predict the specificity of a large set of 70 human SH3 domains, which are an important class of PRMs. The graph-kernel strategy allows us to (i) integrate several types of physico-chemical information for each amino acid, (ii) consider high-order correlations between these features and (iii) eliminate the need for an initial peptide alignment. We build specialized models for each human SH3 domain and achieve competitive predictive performance of 0.73 area under precision-recall curve, compared with 0.27 area under precision-recall curve for state-of-the-art methods based on position weight matrices. We show that better models can be obtained when we use information on the noninteracting peptides (negative examples), which is currently not used by the state-of-the art approaches based on position weight matrices. To this end, we analyze two strategies to identify subsets of high confidence negative data. The techniques introduced here are more general and hence can also be used for any other protein domains, which interact with short peptides (i.e. other PRMs). The program with the predictive models can be found at http://www.bioinf.uni-freiburg.de/Software/SH3PepInt/SH3PepInt.tar.gz. We also provide a genome-wide prediction for all 70 human SH3 domains, which can be found under http://www.bioinf.uni-freiburg.de/Software/SH3PepInt/Genome-Wide-Predictions.tar.gz. Supplementary data are available at Bioinformatics online.

  10. A graph kernel approach for alignment-free domain–peptide interaction prediction with an application to human SH3 domains

    Science.gov (United States)

    Kundu, Kousik; Costa, Fabrizio; Backofen, Rolf

    2013-01-01

    Motivation: State-of-the-art experimental data for determining binding specificities of peptide recognition modules (PRMs) is obtained by high-throughput approaches like peptide arrays. Most prediction tools applicable to this kind of data are based on an initial multiple alignment of the peptide ligands. Building an initial alignment can be error-prone, especially in the case of the proline-rich peptides bound by the SH3 domains. Results: Here, we present a machine-learning approach based on an efficient graph-kernel technique to predict the specificity of a large set of 70 human SH3 domains, which are an important class of PRMs. The graph-kernel strategy allows us to (i) integrate several types of physico-chemical information for each amino acid, (ii) consider high-order correlations between these features and (iii) eliminate the need for an initial peptide alignment. We build specialized models for each human SH3 domain and achieve competitive predictive performance of 0.73 area under precision-recall curve, compared with 0.27 area under precision-recall curve for state-of-the-art methods based on position weight matrices. We show that better models can be obtained when we use information on the noninteracting peptides (negative examples), which is currently not used by the state-of-the art approaches based on position weight matrices. To this end, we analyze two strategies to identify subsets of high confidence negative data. The techniques introduced here are more general and hence can also be used for any other protein domains, which interact with short peptides (i.e. other PRMs). Availability: The program with the predictive models can be found at http://www.bioinf.uni-freiburg.de/Software/SH3PepInt/SH3PepInt.tar.gz. We also provide a genome-wide prediction for all 70 human SH3 domains, which can be found under http://www.bioinf.uni-freiburg.de/Software/SH3PepInt/Genome-Wide-Predictions.tar.gz. Contact: backofen@informatik.uni-freiburg.de Supplementary

  11. Amyloid–β peptides time-dependent structural modifications: AFM and voltammetric characterization

    Energy Technology Data Exchange (ETDEWEB)

    Enache, Teodor Adrian; Chiorcea-Paquim, Ana-Maria; Oliveira-Brett, Ana Maria, E-mail: brett@ci.uc.pt

    2016-07-05

    The human amyloid beta (Aβ) peptides, Aβ{sub 1-40} and Aβ{sub 1-42}, structural modifications, from soluble monomers to fully formed fibrils through intermediate structures, were investigated, and the results were compared with those obtained for the inverse Aβ{sub 40-1} and Aβ{sub 42-1}, mutant Aβ{sub 1-40}Phe{sup 10} and Aβ{sub 1-40}Nle{sup 35}, and rat Aβ{sub 1-40}Rat peptide sequences. The aggregation was followed at a slow rate, in chloride free media and room temperature, and revealed to be a sequence-structure process, dependent on the physicochemical properties of each Aβ peptide isoforms, and occurring at different rates and by different pathways. The fibrilization process was investigated by atomic force microscopy (AFM), via changes in the adsorption morphology from: (i) initially random coiled structures of ∼0.6 nm height, corresponding to the Aβ peptide monomers in random coil or in α-helix conformations, to (ii) aggregates and protofibrils of 1.5–6.0 nm height and (iii) two types of fibrils, corresponding to the Aβ peptide in a β-sheet configuration. The reactivity of the carbon electrode surface was considered. The hydrophobic surface induced rapid changes of the Aβ peptide conformations, and differences between the adsorbed fibrils, formed at the carbon surface (beaded, thin, <2.0 nm height) or in solution (long, smooth, thick, >2.0 nm height), were detected. Differential pulse voltammetry showed that, according to their primary structure, the Aβ peptides undergo oxidation in one or two steps, the first step corresponding to the tyrosine amino acids oxidation, and the second one to the histidine and methionine amino acids oxidation. The fibrilization process was electrochemically detected via the decrease of the Aβ peptide oxidation peak currents that occurred in a time dependent manner. - Highlights: • The Aβ peptide fibrilization process was followed by AFM and DP voltammetry. • The human Aβ{sub 1-40} and Aβ{sub 1

  12. The non-peptidic part determines the internalization mechanism and intracellular trafficking of peptide amphiphiles.

    Directory of Open Access Journals (Sweden)

    Dimitris Missirlis

    Full Text Available BACKGROUND: Peptide amphiphiles (PAs are a class of amphiphilic molecules able to self-assemble into nanomaterials that have shown efficient in vivo targeted delivery. Understanding the interactions of PAs with cells and the mechanisms of their internalization and intracellular trafficking is critical in their further development for therapeutic delivery applications. METHODOLOGY/PRINCIPAL FINDINGS: PAs of a novel, cell- and tissue-penetrating peptide were synthesized possessing two different lipophilic tail architectures and their interactions with prostate cancer cells were studied in vitro. Cell uptake of peptides was greatly enhanced post-modification. Internalization occurred via lipid-raft mediated endocytosis and was common for the two analogs studied. On the contrary, we identified the non-peptidic part as the determining factor of differences between intracellular trafficking and retention of PAs. PAs composed of di-stearyl lipid tails linked through poly(ethylene glycol to the peptide exhibited higher exocytosis rates and employed different recycling pathways compared to ones consisting of di-palmitic-coupled peptides. As a result, cell association of the former PAs decreased with time. CONCLUSIONS/SIGNIFICANCE: Control over peptide intracellular localization and retention is possible by appropriate modification with synthetic hydrophobic tails. We propose this as a strategy to design improved peptide-based delivery systems.

  13. Ultra-thin Polyethylene glycol Coatings for Stem Cell Culture

    Science.gov (United States)

    Schmitt, Samantha K.

    Human mesenchymal stem cells (hMSCs) are a widely accessible and a clinically relevant cell type that are having a transformative impact on regenerative medicine. However, current clinical expansion methods can lead to selective changes in hMSC phenotype resulting from relatively undefined cell culture surfaces. Chemically defined synthetic surfaces can aid in understanding stem cell behavior. In particular we have developed chemically defined ultra-thin coatings that are stable over timeframes relevant to differentiation of hMSCs (several weeks). The approach employs synthesis of a copolymer with distinct chemistry in solution before application to a substrate. This provides wide compositional flexibility and allows for characterization of the orthogonal crosslinking and peptide binding groups. Characterization is done in solution by proton NMR and after crosslinking by X-ray photoelectron spectroscopy (XPS). The solubility of the copolymer in ethanol and low temperature crosslinking, expands its applicability to plastic substrates, in addition to silicon, glass, and gold. Cell adhesive peptides, namely Arg-Gly-Asp (RGD) fragments, are coupled to coating via different chemistries resulting in the urethane, amide or the thioester polymer-peptide bonds. Development of azlactone-based chemistry allowed for coupling in water at low peptide concentrations and resulted in either an amide or thioester bonds, depending on reactants. Characterization of the peptide functionalized coating by XPS, infrared spectroscopy and cell culture assays, showed that the amide linkages can present peptides for multiple weeks, while shorter-term presentation of a few days is possible using the more labile thioester bond. Regardless, coatings promoted initial adhesion and spreading of hMSCs in a peptide density dependent manner. These coatings address the following challenges in chemically defined cell culture simultaneously: (i) substrate adaptability, (ii) scalability over large areas

  14. Expression of the cationic antimicrobial peptide lactoferricin fused with the anionic peptide in Escherichia coli.

    Science.gov (United States)

    Kim, Ha-Kun; Chun, Dae-Sik; Kim, Joon-Sik; Yun, Cheol-Ho; Lee, Ju-Hoon; Hong, Soon-Kwang; Kang, Dae-Kyung

    2006-09-01

    Direct expression of lactoferricin, an antimicrobial peptide, is lethal to Escherichia coli. For the efficient production of lactoferricin in E. coli, we developed an expression system in which the gene for the lysine- and arginine-rich cationic lactoferricin was fused to an anionic peptide gene to neutralize the basic property of lactoferricin, and successfully overexpressed the concatemeric fusion gene in E. coli. The lactoferricin gene was linked to a modified magainin intervening sequence gene by a recombinational polymerase chain reaction, thus producing an acidic peptide-lactoferricin fusion gene. The monomeric acidic peptide-lactoferricin fusion gene was multimerized and expressed in E. coli BL21(DE3) upon induction with isopropyl-beta-D-thiogalactopyranoside. The expression levels of the fusion peptide reached the maximum at the tetramer, while further increases in the copy number of the fusion gene substantially reduced the peptide expression level. The fusion peptides were isolated and cleaved to generate the separate lactoferricin and acidic peptide. About 60 mg of pure recombinant lactoferricin was obtained from 1 L of E. coli culture. The purified recombinant lactoferricin was found to have a molecular weight similar to that of chemically synthesized lactoferricin. The recombinant lactoferricin showed antimicrobial activity and disrupted bacterial membrane permeability, as the native lactoferricin peptide does.

  15. Alzheimer's disease against peptides products of enzymatic cleavage APP protein: Biological, pathobiological and physico-chemical properties of fibrillating peptides.

    Science.gov (United States)

    Marszałek, Małgorzata

    2017-05-17

    Various peptides products of enzymatic cleavage of key for Alzheimer's disease Amyloid Precursor Protein (APP) are well known, but still are matter of scientific debate. The Aβ type products are especially challenging for experimental and medical research. This paper outlines several, still poorly known, biological and medical processes such as peptides biology, i.e., formation, biodistribution, translocation, transport and finally removal from brain compartments and body fluids like Intracellular Fluid (ICF), Cerebrospinal Fluid (CSF), Interstitial Fluid (ISF), blood serum or urine. In addition, the following studies concerning AD patients might prove challenging and simultaneously promising: peptides translocation through Blood-Brain - Barrier (BBB) and Blood-Cerebrospinal Fluid Barrier (BCSFB) and their removal from the brain according to a new concept of glymphatic system; - diagnostic difficulties that stem from physico-chemical properties and the nature of proteins or fibrillating peptides itself like low concentration, short half-live and from experimental-technical problems as well like high adsorption or low solubility of Aβ, tau or amylin. The study of diagnostic parameters is very important, as it may better reflect early changes before the disease develops; one such parameter is the Aβ42/Aβ40 ratio, or the ratio with the total tau concentration combination and other new biomarkers like Aβ1-38; other factors include oxidative stress and inflammation process proteins, complement factor H, alpha-2-macroglobulin, or clusterin. The study of various forms of pathological amyloid deposits that emerge in different but specific brain regions AD patients seems to be crucial as well. The composition of the first initial pathological, pre-fibrillating monomers of fibrillating peptides and their role in AD development and disease progression have been described as well. They are even more challenging for science and simultaneously might be more promising in

  16. Synthesis of peptide .alpha.-thioesters

    Science.gov (United States)

    Camarero, Julio A [Livermore, CA; Mitchell, Alexander R [Livermore, CA; De Yoreo, James J [Clayton, CA

    2008-08-19

    Disclosed herein is a new method for the solid phase peptide synthesis (SPPS) of C-terminal peptide .alpha. thioesters using Fmoc/t-Bu chemistry. This method is based on the use of an aryl hydrazine linker, which is totally stable to conditions required for Fmoc-SPPS. When the peptide synthesis has been completed, activation of the linker is achieved by mild oxidation. The oxidation step converts the acyl-hydrazine group into a highly reactive acyl-diazene intermediate which reacts with an .alpha.-amino acid alkylthioester (H-AA-SR) to yield the corresponding peptide .alpha.-thioester in good yield. A variety of peptide thioesters, cyclic peptides and a fully functional Src homology 3 (SH3) protein domain have been successfully prepared.

  17. Peptides in melanoma therapy.

    Science.gov (United States)

    Mocellin, Simone

    2012-01-01

    Peptides derived from tumor associated antigens can be utilized to elicit a therapeutically effective immune response against melanoma in experimental models. However, patient vaccination with peptides - although it is often followed by the induction of melanoma- specific T lymphocytes - is rarely associated with tumor response of clinical relevance. In this review I summarize the principles of peptide design as well as the results so far obtained in the clinical setting while treating cutaneous melanoma by means of this active immunotherapy strategy. I also discuss some immunological and methodological issues that might be helpful for the successful development of peptide-based vaccines.

  18. In silico and in vitro studies of cytotoxic activity of different peptides derived from vesicular stomatitis virus G protein

    Directory of Open Access Journals (Sweden)

    Fereshte Ghandehari

    2015-01-01

    Conclusion: The results confirmed that P26 and P7 peptides might induce membrane damage and initiate apoptosis. The present study suggested that P26 and P7 peptides could be appropriate candidates for further studies as cytotoxic agents and modifications in the residue at positions 70-280 might potentially produce a more efficient VSVG protein in gene therapy.

  19. Preparation and characterization of a hetero functional system of gold nanoparticles labeled with 99mTc and conjugated to the sequence Arg-Gly-Asp for detection in vivo of angio genesis and evaluation of their toxicity in Hyalella aztec

    International Nuclear Information System (INIS)

    Morales A, E.

    2012-01-01

    Integrin s play critical roles in many physiological processes including angio genesis and also contribute to pathological events such as tumor invasion and metastasis. The α v β 3 integrin is expressed in normal endothelial cells but it is over-expressed in the tumor neo vasculature. Peptides based on the Arginine-Glycine-Aspartic acid (RGD) sequence have been reported as molecules with high affinity and selectivity for the α v β 3 integrin. Recent studies have demonstrated that conjugating peptides to gold nanoparticles (AuNP) produces biocompatible and stable multifunctional systems with target-specific molecular recognition due to multivalent effects produced by multiple simultaneous interactions between peptides and their receptors. The first aim of this research was to prepare a m ultimeric system of 99m Tc labeled gold particles conjugated to c[RGDfK(C)] and to evaluate its biological behavior as a potential radiopharmaceutical for molecular imaging of α v β 3 tumor expression. Hidrazinonicotinamide-G GC (HYNIC-G GC) and C[RGDfK(C)] peptides were synthesized and conjugated to AuNP (20 nm) by means of spontaneous reaction of the thiol groups of cysteine. The nano conjugate was characterized by transmission electron microscopy, Fourier transform-infrared, Ultraviolet-vis, X-ray photoelectron spectroscopy and Raman spectroscopy. To obtain 99m Tc-HYNIC-G GC-AuNP-c[RGDfK(C)], the 99m Tc-HYNIC-G GC radio peptide was first prepared and added to the AuNP solution followed by c[RGDfK(C)]. Radiochemical purity (Rp) was determined by size-exclusion HPLC and I TLC-Sg analyses. In vitro binding studies were carried out in α v β 3 receptor-positive C6 glioma cancer cells. Biodistribution studies were accomplished in athymic mice with C6-induced tumors with blocked and non blocked receptors, and images were obtained using a micro-SPECT/CT. Transmission electron microscopy and spectroscopy techniques demonstrated that AuNP were functionalized with peptides. Rp was

  20. Preparation and characterization of a hetero functional system of gold nanoparticles labeled with {sup 99m}Tc and conjugated to the sequence Arg-Gly-Asp for detection in vivo of angio genesis and evaluation of their toxicity in Hyalella aztec; Preparacion y caracterizacion de un sistema heterofuncional de nanoparticulas de oro marcadas con Tecnecio-99m y conjugadas a la secuencia Arg-Gly-Asp para la deteccion in vivo de angiogenesis y la evaluacion de su toxicidad en Hyalella azteca

    Energy Technology Data Exchange (ETDEWEB)

    Morales A, E.

    2012-07-01

    Integrin s play critical roles in many physiological processes including angio genesis and also contribute to pathological events such as tumor invasion and metastasis. The {alpha}{sub v}{beta}{sub 3} integrin is expressed in normal endothelial cells but it is over-expressed in the tumor neo vasculature. Peptides based on the Arginine-Glycine-Aspartic acid (RGD) sequence have been reported as molecules with high affinity and selectivity for the {alpha}{sub v}{beta}{sub 3} integrin. Recent studies have demonstrated that conjugating peptides to gold nanoparticles (AuNP) produces biocompatible and stable multifunctional systems with target-specific molecular recognition due to multivalent effects produced by multiple simultaneous interactions between peptides and their receptors. The first aim of this research was to prepare a m ultimeric system of {sup 99m}Tc labeled gold particles conjugated to c[RGDfK(C)] and to evaluate its biological behavior as a potential radiopharmaceutical for molecular imaging of {alpha}{sub v}{beta}{sub 3} tumor expression. Hidrazinonicotinamide-G GC (HYNIC-G GC) and C[RGDfK(C)] peptides were synthesized and conjugated to AuNP (20 nm) by means of spontaneous reaction of the thiol groups of cysteine. The nano conjugate was characterized by transmission electron microscopy, Fourier transform-infrared, Ultraviolet-vis, X-ray photoelectron spectroscopy and Raman spectroscopy. To obtain {sup 99m}Tc-HYNIC-G GC-AuNP-c[RGDfK(C)], the {sup 99m}Tc-HYNIC-G GC radio peptide was first prepared and added to the AuNP solution followed by c[RGDfK(C)]. Radiochemical purity (Rp) was determined by size-exclusion HPLC and I TLC-Sg analyses. In vitro binding studies were carried out in {alpha}{sub v}{beta}{sub 3} receptor-positive C6 glioma cancer cells. Biodistribution studies were accomplished in athymic mice with C6-induced tumors with blocked and non blocked receptors, and images were obtained using a micro-SPECT/CT. Transmission electron microscopy and

  1. Cosmeceutical product consisting of biomimetic peptides: antiaging effects in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Gazitaeva ZI

    2017-01-01

    Full Text Available Zarema I Gazitaeva,1 Anna O Drobintseva,2 Yongji Chung,3 Victoria O Polyakova,2 Igor M Kvetnoy2 1Institute of Beauty Fijie, Moscow, 2Department of Pathomorphology, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint-Petersburg, Russian Federation; 3Caregen Co., Ltd. Research Center, Seoul, South Korea Background: Biomimetic peptides are synthetic compounds that are identical to amino acid sequence synthesized by an organism and can interact with growth factor receptors and provide antiaging clinical effects.Purpose: The purpose of this study was to investigate the effects of biomimetic peptides on the repair processes in the dermis using a model of cell cultures and in vivo.Patients and methods: Five female volunteers were subjected to the injection of biomimetic peptides 1 month prior to the abdominoplasty procedure. Cell culture, immunocytochemistry, and confocal microscopy methods were used in this study.Results: Biomimetic peptides regulate the synthesis of proteins Ki-67, type I procollagen, AP-1, and SIRT6 in cell cultures of human fibroblasts. They contribute to the activation of regeneration processes and initiation of mechanisms that prevent aging. Intradermal administration of complex of biomimetic peptides produces a more dense arrangement of collagen fibers in the dermis and increased size of the fibers after 2 weeks. The complex of biomimetic peptides was effective in the in vivo experiments, where an increase in the proliferative and synthetic activities of fibroblasts was observed.Conclusion: This investigation showed that the studied peptides have biological effects, testifying the stimulation of reparative processes in the skin under their control. Keywords: biomimetic peptides, skin aging, collagen, reparation processes, mesotherapy

  2. Computer-Aided Design of Antimicrobial Peptides

    DEFF Research Database (Denmark)

    Fjell, Christopher D.; Hancock, Robert E.W.; Jenssen, Håvard

    2010-01-01

    in antimicrobial activity. Consequently, the majority of peptides put into clinical trials have failed at some point, underlining the importance of a thorough peptide optimization. An important tool in peptide design and optimization is quantitative structure-activity relationship (QSAR) analysis, correlating...... chemical parameters with biological activities of the peptide, using statistical methods. In this review we will discuss two different in silico strategies of computer-aided antibacterial peptide design, a linear correlation model build as an extension of traditional principal component analysis (PCA......) and a non-linear artificial neural network model. Studies on structurally diverse peptides, have concluded that the PCA derived model are able to guide the antibacterial peptide design in a meaningful way, however requiring rather a high homology between the peptides in the test-set and the in silico...

  3. Ligand-regulated peptides: a general approach for modulating protein-peptide interactions with small molecules.

    Science.gov (United States)

    Binkowski, Brock F; Miller, Russell A; Belshaw, Peter J

    2005-07-01

    We engineered a novel ligand-regulated peptide (LiRP) system where the binding activity of intracellular peptides is controlled by a cell-permeable small molecule. In the absence of ligand, peptides expressed as fusions in an FKBP-peptide-FRB-GST LiRP scaffold protein are free to interact with target proteins. In the presence of the ligand rapamycin, or the nonimmunosuppressive rapamycin derivative AP23102, the scaffold protein undergoes a conformational change that prevents the interaction of the peptide with the target protein. The modular design of the scaffold enables the creation of LiRPs through rational design or selection from combinatorial peptide libraries. Using these methods, we identified LiRPs that interact with three independent targets: retinoblastoma protein, c-Src, and the AMP-activated protein kinase. The LiRP system should provide a general method to temporally and spatially regulate protein function in cells and organisms.

  4. Mycobacteria attenuate nociceptive responses by formyl peptide receptor triggered opioid peptide release from neutrophils.

    Directory of Open Access Journals (Sweden)

    Heike L Rittner

    2009-04-01

    Full Text Available In inflammation, pain is regulated by a balance of pro- and analgesic mediators. Analgesic mediators include opioid peptides which are secreted by neutrophils at the site of inflammation, leading to activation of opioid receptors on peripheral sensory neurons. In humans, local opioids and opioid peptides significantly downregulate postoperative as well as arthritic pain. In rats, inflammatory pain is induced by intraplantar injection of heat inactivated Mycobacterium butyricum, a component of complete Freund's adjuvant. We hypothesized that mycobacterially derived formyl peptide receptor (FPR and/or toll like receptor (TLR agonists could activate neutrophils, leading to opioid peptide release and inhibition of inflammatory pain. In complete Freund's adjuvant-induced inflammation, thermal and mechanical nociceptive thresholds of the paw were quantified (Hargreaves and Randall-Selitto methods, respectively. Withdrawal time to heat was decreased following systemic neutrophil depletion as well as local injection of opioid receptor antagonists or anti-opioid peptide (i.e. Met-enkephalin, beta-endorphin antibodies indicating an increase in pain. In vitro, opioid peptide release from human and rat neutrophils was measured by radioimmunoassay. Met-enkephalin release was triggered by Mycobacterium butyricum and formyl peptides but not by TLR-2 or TLR-4 agonists. Mycobacterium butyricum induced a rise in intracellular calcium as determined by FURA loading and calcium imaging. Opioid peptide release was blocked by intracellular calcium chelation as well as phosphoinositol-3-kinase inhibition. The FPR antagonists Boc-FLFLF and cyclosporine H reduced opioid peptide release in vitro and increased inflammatory pain in vivo while TLR 2/4 did not appear to be involved. In summary, mycobacteria activate FPR on neutrophils, resulting in tonic secretion of opioid peptides from neutrophils and in a decrease in inflammatory pain. Future therapeutic strategies may aim

  5. Inhibition of peptide aggregation by means of enzymatic phosphorylation

    Directory of Open Access Journals (Sweden)

    Kristin Folmert

    2016-11-01

    Full Text Available As is the case in numerous natural processes, enzymatic phosphorylation can be used in the laboratory to influence the conformational populations of proteins. In nature, this information is used for signal transduction or energy transfer, but has also been shown to play an important role in many diseases like tauopathies or diabetes. With the goal of determining the effect of phosphorylation on amyloid fibril formation, we designed a model peptide which combines structural characteristics of α-helical coiled-coils and β-sheets in one sequence. This peptide undergoes a conformational transition from soluble structures into insoluble amyloid fibrils over time and under physiological conditions and contains a recognition motif for PKA (cAMP-dependent protein kinase that enables enzymatic phosphorylation. We have analyzed the pathway of amyloid formation and the influence of enzymatic phosphorylation on the different states along the conformational transition from random-coil to β-sheet-rich oligomers to protofilaments and on to insoluble amyloid fibrils, and we found a remarkable directing effect from β-sheet-rich structures to unfolded structures in the initial growth phase, in which small oligomers and protofilaments prevail if the peptide is phosphorylated.

  6. Focused Screening of ECM-Selective Adhesion Peptides on Cellulose-Bound Peptide Microarrays.

    Science.gov (United States)

    Kanie, Kei; Kondo, Yuto; Owaki, Junki; Ikeda, Yurika; Narita, Yuji; Kato, Ryuji; Honda, Hiroyuki

    2016-11-19

    The coating of surfaces with bio-functional proteins is a promising strategy for the creation of highly biocompatible medical implants. Bio-functional proteins from the extracellular matrix (ECM) provide effective surface functions for controlling cellular behavior. We have previously screened bio-functional tripeptides for feasibility of mass production with the aim of identifying those that are medically useful, such as cell-selective peptides. In this work, we focused on the screening of tripeptides that selectively accumulate collagen type IV (Col IV), an ECM protein that accelerates the re-endothelialization of medical implants. A SPOT peptide microarray was selected for screening owing to its unique cellulose membrane platform, which can mimic fibrous scaffolds used in regenerative medicine. However, since the library size on the SPOT microarray was limited, physicochemical clustering was used to provide broader variation than that of random peptide selection. Using the custom focused microarray of 500 selected peptides, we assayed the relative binding rates of tripeptides to Col IV, collagen type I (Col I), and albumin. We discovered a cluster of Col IV-selective adhesion peptides that exhibit bio-safety with endothelial cells. The results from this study can be used to improve the screening of regeneration-enhancing peptides.

  7. Focused Screening of ECM-Selective Adhesion Peptides on Cellulose-Bound Peptide Microarrays

    Directory of Open Access Journals (Sweden)

    Kei Kanie

    2016-11-01

    Full Text Available The coating of surfaces with bio-functional proteins is a promising strategy for the creation of highly biocompatible medical implants. Bio-functional proteins from the extracellular matrix (ECM provide effective surface functions for controlling cellular behavior. We have previously screened bio-functional tripeptides for feasibility of mass production with the aim of identifying those that are medically useful, such as cell-selective peptides. In this work, we focused on the screening of tripeptides that selectively accumulate collagen type IV (Col IV, an ECM protein that accelerates the re-endothelialization of medical implants. A SPOT peptide microarray was selected for screening owing to its unique cellulose membrane platform, which can mimic fibrous scaffolds used in regenerative medicine. However, since the library size on the SPOT microarray was limited, physicochemical clustering was used to provide broader variation than that of random peptide selection. Using the custom focused microarray of 500 selected peptides, we assayed the relative binding rates of tripeptides to Col IV, collagen type I (Col I, and albumin. We discovered a cluster of Col IV-selective adhesion peptides that exhibit bio-safety with endothelial cells. The results from this study can be used to improve the screening of regeneration-enhancing peptides.

  8. Development of a lyophilized formulation for the preparation of radiopharmaceutical 68Ga-DOTA-E-[c(RGDfK)]2 for the diagnosis of breast cancer tumors

    International Nuclear Information System (INIS)

    Terron A, E. J.

    2015-01-01

    Radiopharmaceuticals of third generation by its design that includes peptides capable of selectively directing the radiation to a specific molecular target are useful in molecular medicine for obtaining molecular images that allow recording in vivo phenomena temporal-space of molecular or cellular processes, with diagnostic or therapeutic applications. Generally, peptides that recognize cellular receptors that are over-expressed in cancer cells of interest are used; such is the case of RGD (arginine-glycine-aspartic acid) a tri-peptide sequence which recognizes to the membrane receptors α(v)β(3) and α(v)β(5) that are involved in metastasis and angiogenic processes as well as in tumor cells of breast glioma. The high affinity and selectivity of RGD peptide with integrin s α(v)β(3) and α(v)β(5) is the basis for designing radiopharmaceuticals for diagnostic of breast cancer and the metastasis and angiogenic processes. In this paper a useful lyophilized formulation was development for obtaining 68 Ga-DOTA-E-[c(RGDfK)] 2 radiopharmaceutical that for its effectiveness, stability and security can be used in humans. The production process of core-equipment DOTA-E-[c(RGDfK] 2 /Buffer sodium acetate 1.0 M was optimized, and the formulation was transferred to the radiopharmaceuticals production plant of the Instituto Nacional de Investigaciones Nucleares (ININ). The optimized formulation of the core-equipment for the 68 Ga-DOTA-E-[c(RGDfK)] 2 radiopharmaceutical preparation is: DOTA-E-[c(RGDfK)] 2 peptide - 75 μg; Mannitol - 50 mg; Sodium acetate - 14 mg; Sodium acetate buffer 1.0 M ph 4.3 - 0.5 m L. The production process was validated and stability studies were carried out to the validation batches in compliance with the validation master plan of the ININ and in adherence to compliance of the applicable national and international regulations. Also the legal dossier was drawn up in order to make the application of sanitary registration before Comision Federal para

  9. Development of a lyophilized formulation for the preparation of radiopharmaceutical {sup 68}Ga-DOTA-E-[c(RGDfK)]{sub 2} for the diagnosis of breast cancer tumors; Desarrollo de una formulacion liofilizada para la preparacion del radiofarmaco {sup 68}Ga-DOTA-E-[c(RGDfK)]{sub 2} para el diagnostico de tumores de cancer de mama

    Energy Technology Data Exchange (ETDEWEB)

    Terron A, E. J.

    2015-07-01

    Radiopharmaceuticals of third generation by its design that includes peptides capable of selectively directing the radiation to a specific molecular target are useful in molecular medicine for obtaining molecular images that allow recording in vivo phenomena temporal-space of molecular or cellular processes, with diagnostic or therapeutic applications. Generally, peptides that recognize cellular receptors that are over-expressed in cancer cells of interest are used; such is the case of RGD (arginine-glycine-aspartic acid) a tri-peptide sequence which recognizes to the membrane receptors α(v)β(3) and α(v)β(5) that are involved in metastasis and angiogenic processes as well as in tumor cells of breast glioma. The high affinity and selectivity of RGD peptide with integrin s α(v)β(3) and α(v)β(5) is the basis for designing radiopharmaceuticals for diagnostic of breast cancer and the metastasis and angiogenic processes. In this paper a useful lyophilized formulation was development for obtaining {sup 68}Ga-DOTA-E-[c(RGDfK)]{sub 2} radiopharmaceutical that for its effectiveness, stability and security can be used in humans. The production process of core-equipment DOTA-E-[c(RGDfK]{sub 2}/Buffer sodium acetate 1.0 M was optimized, and the formulation was transferred to the radiopharmaceuticals production plant of the Instituto Nacional de Investigaciones Nucleares (ININ). The optimized formulation of the core-equipment for the {sup 68}Ga-DOTA-E-[c(RGDfK)]{sub 2} radiopharmaceutical preparation is: DOTA-E-[c(RGDfK)]{sub 2} peptide - 75 μg; Mannitol - 50 mg; Sodium acetate - 14 mg; Sodium acetate buffer 1.0 M ph 4.3 - 0.5 m L. The production process was validated and stability studies were carried out to the validation batches in compliance with the validation master plan of the ININ and in adherence to compliance of the applicable national and international regulations. Also the legal dossier was drawn up in order to make the application of sanitary registration

  10. [Distiller Yeasts Producing Antibacterial Peptides].

    Science.gov (United States)

    Klyachko, E V; Morozkina, E V; Zaitchik, B Ts; Benevolensky, S V

    2015-01-01

    A new method of controlling lactic acid bacteria contamination was developed with the use of recombinant Saccharomyces cerevisiae strains producing antibacterial peptides. Genes encoding the antibacterial peptides pediocin and plantaricin with codons preferable for S. cerevisiae were synthesized, and a system was constructed for their secretory expression. Recombinant S. cerevisiae strains producing antibacterial peptides effectively inhibit the growth of Lactobacillus sakei, Pediacoccus pentasaceus, Pediacoccus acidilactici, etc. The application of distiller yeasts producing antibacterial peptides enhances the ethanol yield in cases of bacterial contamination. Recombinant yeasts producing the antibacterial peptides pediocin and plantaricin can successfully substitute the available industrial yeast strains upon ethanol production.

  11. Bioavailability and transport of peptides and peptide drugs into the brain.

    Science.gov (United States)

    Egleton, R D; Davis, T P

    1997-01-01

    Rational drug design and the targeting of specific organs has become a reality in modern drug development, with the emergence of molecular biology and receptor chemistry as powerful tools for the pharmacologist. A greater understanding of peptide function as one of the major extracellular message systems has made neuropeptides an important target in neuropharmaceutical drug design. The major obstacle to targeting the brain with therapeutics is the presence of the blood-brain barrier (BBB), which controls the concentration and entry of solutes into the central nervous system. Peptides are generally polar in nature, do not easily cross the blood-brain barrier by diffusion, and except for a small number do not have specific transport systems. Peptides can also undergo metabolic deactivation by peptidases of the blood, brain and the endothelial cells that comprise the BBB. In this review, we discuss a number of the recent strategies which have been used to promote peptide stability and peptide entry into the brain. In addition, we approach the subject of targeting specific transport systems that can be found on the brain endothelial cells, and describe the limitations of the methodologies that are currently used to study brain entry of neuropharmaceuticals.

  12. Peptide array-based screening of human mesenchymal stem cell-adhesive peptides derived from fibronectin type III domain

    International Nuclear Information System (INIS)

    Okochi, Mina; Nomura, Shigeyuki; Kaga, Chiaki; Honda, Hiroyuki

    2008-01-01

    Human mesenchymal stem cell-adhesive peptides were screened based on the amino acid sequence of fibronectin type III domain 8-11 (FN-III 8-11 ) using a peptide array synthesized by the Fmoc-chemistry. Using hexameric peptide library of FN-III 8-11 scan, we identified the ALNGR (Ala-Leu-Asn-Gly-Arg) peptide that induced cell adhesion as well as RGDS (Arg-Gly-Asp-Ser) peptide. After incubation for 2 h, approximately 68% of inoculated cells adhere to the ALNGR peptide disk. Adhesion inhibition assay with integrin antibodies showed that the ALNGR peptide interacts with integrin β1 but not with αvβ3, indicating that the receptors for ALNGR are different from RGDS. Additionally, the ALNGR peptide expressed cell specificities for adhesion: cell adhesion was promoted for fibroblasts but not for keratinocytes or endotherial cells. The ALNGR peptide induced cell adhesion and promoted cell proliferation without changing its property. It is therefore useful for the construction of functional biomaterials

  13. Ligand-Modified Human Serum Albumin Nanoparticles for Enhanced Gene Delivery.

    Science.gov (United States)

    Look, Jennifer; Wilhelm, Nadine; von Briesen, Hagen; Noske, Nadja; Günther, Christine; Langer, Klaus; Gorjup, Erwin

    2015-09-08

    The development of nonviral gene delivery systems is a great challenge to enable safe gene therapy. In this study, ligand-modified nanoparticles based on human serum albumin (HSA) were developed and optimized for an efficient gene therapy. Different glutaraldehyde cross-linking degrees were investigated to optimize the HSA nanoparticles for gene delivery. The peptide sequence arginine-glycine-aspartate (RGD) and the HIV-1 transactivator of transduction sequence (Tat) are well-known as promising targeting ligands. Plasmid DNA loaded HSA nanoparticles were covalently modified on their surface with these different ligands. The transfection potential of the obtained plasmid DNA loaded RGD- and Tat-modified nanoparticles was investigated in vitro, and optimal incubation conditions for these preparations were studied. It turned out that Tat-modified HSA nanoparticles with the lowest cross-linking degree of 20% showed the highest transfection potential. Taken together, ligand-functionalized HSA nanoparticles represent promising tools for efficient and safe gene therapy.

  14. The Equine PeptideAtlas

    DEFF Research Database (Denmark)

    Bundgaard, Louise; Jacobsen, Stine; Sørensen, Mette Aamand

    2014-01-01

    Progress in MS-based methods for veterinary research and diagnostics is lagging behind compared to the human research, and proteome data of domestic animals is still not well represented in open source data repositories. This is particularly true for the equine species. Here we present a first...... Equine PeptideAtlas encompassing high-resolution tandem MS analyses of 51 samples representing a selection of equine tissues and body fluids from healthy and diseased animals. The raw data were processed through the Trans-Proteomic Pipeline to yield high quality identification of proteins and peptides....... The current release comprises 24 131 distinct peptides representing 2636 canonical proteins observed at false discovery rates of 0.2% at the peptide level and 1.4% at the protein level. Data from the Equine PeptideAtlas are available for experimental planning, validation of new datasets, and as a proteomic...

  15. Folding and membrane insertion of the pore-forming peptide gramicidin occur as a concerted process.

    Science.gov (United States)

    Hicks, Matthew R; Damianoglou, Angeliki; Rodger, Alison; Dafforn, Timothy R

    2008-11-07

    Many antibiotic peptides function by binding and inserting into membranes. Understanding this process provides an insight into the fundamentals of both membrane protein folding and antibiotic peptide function. For the first time, in this work, flow-aligned linear dichroism (LD) is used to study the folding of the antibiotic peptide gramicidin. LD provides insight into the combined processes of peptide folding and insertion and has the advantage over other similar techniques of being insensitive to off-membrane aggregation events. By combining LD data with conventional measurements of protein fluorescence and circular dichroism, the mechanism of gramicidin insertion is elucidated. The mechanism consists of five separately assignable steps that include formation of a water-insoluble gramicidin aggregate, dissociation from the aggregate, partitioning of peptide to the membrane surface, oligomerisation on the surface and concerted insertion and folding of the peptide to the double-helical form of gramicidin. Measurement of the rates of each step shows that although changes in the fluorescence signal cease 10 s after the initiation of the process, the insertion of the peptide into the membrane is actually not complete for a further 60 min. This last membrane insertion phase is only apparent by measurement of LD and circular dichroism signal changes. In summary, this study demonstrates the importance of multi-technique approaches, including LD, in studies of membrane protein folding.

  16. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds known as peptide nucleic acids, bind complementary DNA and RNA strands, and generally do so more strongly than the corresponding DNA or RNA strands while exhibiting increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from...

  17. Bacterial biofilm formation versus mammalian cell growth on titanium-based mono- and bi-functional coating

    Directory of Open Access Journals (Sweden)

    G Subbiahdoss

    2010-05-01

    Full Text Available Biomaterials-associated-infections (BAI are serious complications in modern medicine. Although non-adhesive coatings, like polymer-brush coatings, have been shown to prevent bacterial adhesion, they do not support cell growth. Bi-functional coatings are supposed to prevent biofilm formation while supporting tissue integration. Here, bacterial and cellular responses to poly(ethylene glycol (PEG brush-coatings on titanium oxide presenting the integrin-active peptide RGD (arginine-glycine-aspartic acid (bioactive “PEG-RGD” were compared to mono-functional PEG brush-coatings (biopassive “PEG” and bare titanium oxide (TiO2 surfaces under flow. Staphylococcus epidermidis ATCC 35983 was deposited on the surfaces under a shear rate of 11 s-1 for 2 h followed by seeding of U2OS osteoblasts. Subsequently, both S. epidermidis and U2OS cells were grown simultaneously on the surfaces for 48 h under low shear (0.14 s-1. After 2 h, staphylococcal adhesion was reduced to 3.6±1.8 × 103 and 6.0±3.9 × 103 cm-2 on PEG and PEG-RGD coatings respectively, compared to 1.3±0.4 × 105 cm-2 for the TiO2 surface. When allowed to grow for 48 h, biofilms formed on all surfaces. However, biofilms detached from the PEG and PEG-RGD coatings when exposed to an elevated shear (5.6 s-1 U2OS cells neither adhered nor spread on PEG brush-coatings, regardless of the presence of biofilm. In contrast, in the presence of biofilm, U2OS cells adhered and spread on PEG-RGD coatings with a significantly higher surface coverage than on bare TiO2. The detachment of biofilm and the high cell surface coverage revealed the potential significance of PEG-RGD coatings in the context of the “race for the surface” between bacteria and mammalian cells.

  18. Peptide Integrated Optics.

    Science.gov (United States)

    Handelman, Amir; Lapshina, Nadezda; Apter, Boris; Rosenman, Gil

    2018-02-01

    Bio-nanophotonics is a wide field in which advanced optical materials, biomedicine, fundamental optics, and nanotechnology are combined and result in the development of biomedical optical chips. Silk fibers or synthetic bioabsorbable polymers are the main light-guiding components. In this work, an advanced concept of integrated bio-optics is proposed, which is based on bioinspired peptide optical materials exhibiting wide optical transparency, nonlinear and electrooptical properties, and effective passive and active waveguiding. Developed new technology combining bottom-up controlled deposition of peptide planar wafers of a large area and top-down focus ion beam lithography provides direct fabrication of peptide optical integrated circuits. Finding a deep modification of peptide optical properties by reconformation of biological secondary structure from native phase to β-sheet architecture is followed by the appearance of visible fluorescence and unexpected transition from a native passive optical waveguiding to an active one. Original biocompatibility, switchable regimes of waveguiding, and multifunctional nonlinear optical properties make these new peptide planar optical materials attractive for application in emerging technology of lab-on-biochips, combining biomedical photonic and electronic circuits toward medical diagnosis, light-activated therapy, and health monitoring. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Dual Cross-Linked Biofunctional and Self-Healing Networks to Generate User-Defined Modular Gradient Hydrogel Constructs.

    Science.gov (United States)

    Wei, Zhao; Lewis, Daniel M; Xu, Yu; Gerecht, Sharon

    2017-08-01

    Gradient hydrogels have been developed to mimic the spatiotemporal differences of multiple gradient cues in tissues. Current approaches used to generate such hydrogels are restricted to a single gradient shape and distribution. Here, a hydrogel is designed that includes two chemical cross-linking networks, biofunctional, and self-healing networks, enabling the customizable formation of modular gradient hydrogel construct with various gradient distributions and flexible shapes. The biofunctional networks are formed via Michael addition between the acrylates of oxidized acrylated hyaluronic acid (OAHA) and the dithiol of matrix metalloproteinase (MMP)-sensitive cross-linker and RGD peptides. The self-healing networks are formed via dynamic Schiff base reaction between N-carboxyethyl chitosan (CEC) and OAHA, which drives the modular gradient units to self-heal into an integral modular gradient hydrogel. The CEC-OAHA-MMP hydrogel exhibits excellent flowability at 37 °C under shear stress, enabling its injection to generate gradient distributions and shapes. Furthermore, encapsulated sarcoma cells respond to the gradient cues of RGD peptides and MMP-sensitive cross-linkers in the hydrogel. With these superior properties, the dual cross-linked CEC-OAHA-MMP hydrogel holds significant potential for generating customizable gradient hydrogel constructs, to study and guide cellular responses to their microenvironment such as in tumor mimicking, tissue engineering, and stem cell differentiation and morphogenesis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Continuum modeling investigation of gigahertz oscillators based on a C60 fullerene inside cyclic peptide nanotubes

    Science.gov (United States)

    Sadeghi, F.; Ansari, R.; Darvizeh, M.

    2016-02-01

    Research concerning the fabrication of nano-oscillators with operating frequency in the gigahertz (GHz) range has become a focal point in recent years. In this paper, a new type of GHz oscillators is introduced based on a C60 fullerene inside a cyclic peptide nanotube (CPN). To study the dynamic behavior of such nano-oscillators, using the continuum approximation in conjunction with the 6-12 Lennard-Jones (LJ) potential function, analytical expressions are derived to determine the van der Waals (vdW) potential energy and interaction force between the two interacting molecules. Employing Newton's second law, the equation of motion is solved numerically to arrive at the telescopic oscillatory motion of a C60 fullerene inside CPNs. It is shown that the fullerene molecule exhibits different kinds of oscillation inside peptide nanotubes which are sensitive to the system parameters. Furthermore, for the precise evaluation of the oscillation frequency, a novel semi-analytical expression is proposed based on the conservation of the mechanical energy principle. Numerical results are presented to comprehensively study the effects of the number of peptide units and initial conditions (initial separation distance and velocity) on the oscillatory behavior of C60 -CPN oscillators. It is found out that for peptide nanotubes comprised of one unit, the maximum achievable frequency is obtained when the inner core oscillates with respect to its preferred positions located outside the tube, while for other numbers of peptide units, such frequency is obtained when the inner core oscillates with respect to the preferred positions situated in the space between the two first or the two last units. It is further found out that four peptide units are sufficient to obtain the optimal frequency.

  1. New dendrimer - peptide host - guest complexes : towards dendrimers as peptide carriers

    NARCIS (Netherlands)

    Boas, U.; Sontjens, S.H.M.; Jensen, K.J.; Christensen, J.B.; Meijer, E.W.

    2002-01-01

    Adamantyl urea and adamantyl thiourea modified poly(propylene imine) dendrimers act as hosts for N-terminal tert-butoxycarbonyl (Boc)-protected peptides and form chloroform-soluble complexes. investigations with NMR spectroscopy show that the peptide is bound to the dendrimer by ionic interactions

  2. Effective modification of cell death-inducing intracellular peptides by means of a photo-cleavable peptide array-based screening system.

    Science.gov (United States)

    Kozaki, Ikko; Shimizu, Kazunori; Honda, Hiroyuki

    2017-08-01

    Intracellular functional peptides that play a significant role inside cells have been receiving a lot of attention as regulators of cellular activity. Previously, we proposed a novel screening system for intracellular functional peptides; it combined a photo-cleavable peptide array system with cell-penetrating peptides (CPPs). Various peptides can be delivered into cells and intracellular functions of the peptides can be assayed by means of our system. The aim of the present study was to demonstrate that the proposed screening system can be used for assessing the intracellular activity of peptides. The cell death-inducing peptide (LNLISKLF) identified in a mitochondria-targeting domain (MTD) of the Noxa protein served as an original peptide sequence for screening of peptides with higher activity via modification of the peptide sequence. We obtained 4 peptides with higher activity, in which we substituted serine (S) at the fifth position with phenylalanine (F), valine (V), tryptophan (W), or tyrosine (Y). During analysis of the mechanism of action, the modified peptides induced an increase in intracellular calcium concentration, which was caused by the treatment with the original peptide. Higher capacity for cell death induction by the modified peptides may be caused by increased hydrophobicity or an increased number of aromatic residues. Thus, the present work suggests that the intracellular activity of peptides can be assessed using the proposed screening system. It could be used for identifying intracellular functional peptides with higher activity through comprehensive screening. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. PeptideNavigator: An interactive tool for exploring large and complex data sets generated during peptide-based drug design projects.

    Science.gov (United States)

    Diller, Kyle I; Bayden, Alexander S; Audie, Joseph; Diller, David J

    2018-01-01

    There is growing interest in peptide-based drug design and discovery. Due to their relatively large size, polymeric nature, and chemical complexity, the design of peptide-based drugs presents an interesting "big data" challenge. Here, we describe an interactive computational environment, PeptideNavigator, for naturally exploring the tremendous amount of information generated during a peptide drug design project. The purpose of PeptideNavigator is the presentation of large and complex experimental and computational data sets, particularly 3D data, so as to enable multidisciplinary scientists to make optimal decisions during a peptide drug discovery project. PeptideNavigator provides users with numerous viewing options, such as scatter plots, sequence views, and sequence frequency diagrams. These views allow for the collective visualization and exploration of many peptides and their properties, ultimately enabling the user to focus on a small number of peptides of interest. To drill down into the details of individual peptides, PeptideNavigator provides users with a Ramachandran plot viewer and a fully featured 3D visualization tool. Each view is linked, allowing the user to seamlessly navigate from collective views of large peptide data sets to the details of individual peptides with promising property profiles. Two case studies, based on MHC-1A activating peptides and MDM2 scaffold design, are presented to demonstrate the utility of PeptideNavigator in the context of disparate peptide-design projects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Dendroaspis natriuretic peptide binds to the natriuretic peptide clearance receptor

    International Nuclear Information System (INIS)

    Johns, Douglas G.; Ao, Zhaohui; Heidrich, Bradley J.; Hunsberger, Gerald E.; Graham, Taylor; Payne, Lisa; Elshourbagy, Nabil; Lu, Quinn; Aiyar, Nambi; Douglas, Stephen A.

    2007-01-01

    Dendroaspis natriuretic peptide (DNP) is a newly-described natriuretic peptide which lowers blood pressure via vasodilation. The natriuretic peptide clearance receptor (NPR-C) removes natriuretic peptides from the circulation, but whether DNP interacts with human NPR-C directly is unknown. The purpose of this study was to test the hypothesis that DNP binds to NPR-C. ANP, BNP, CNP, and the NPR-C ligands AP-811 and cANP(4-23) displaced [ 125 I]-ANP from NPR-C with pM-to-nM K i values. DNP displaced [ 125 I]-ANP from NPR-C with nM potency, which represents the first direct demonstration of binding of DNP to human NPR-C. DNP showed high pM affinity for the GC-A receptor and no affinity for GC-B (K i > 1000 nM). DNP was nearly 10-fold more potent than ANP at stimulating cGMP production in GC-A expressing cells. Blockade of NPR-C might represent a novel therapeutic approach in augmenting the known beneficial actions of DNP in cardiovascular diseases such as hypertension and heart failure

  5. Synthetic mimics of antimicrobial peptides.

    Science.gov (United States)

    Som, Abhigyan; Vemparala, Satyavani; Ivanov, Ivaylo; Tew, Gregory N

    2008-01-01

    Infectious diseases and antibiotic resistance are now considered the most imperative global healthcare problem. In the search for new treatments, host defense, or antimicrobial, peptides have attracted considerable attention due to their various unique properties; however, attempts to develop in vivo therapies have been severely limited. Efforts to develop synthetic mimics of antimicrobial peptides (SMAMPs) have increased significantly in the last decade, and this review will focus primarily on the structural evolution of SMAMPs and their membrane activity. This review will attempt to make a bridge between the design of SMAMPs and the fundamentals of SMAMP-membrane interactions. In discussions regarding the membrane interaction of SMAMPs, close attention will be paid to the lipid composition of the bilayer. Despite many years of study, the exact conformational aspects responsible for the high selectivity of these AMPs and SMAMPs toward bacterial cells over mammalian cells are still not fully understood. The ability to design SMAMPs that are potently antimicrobial, yet nontoxic to mammalian cells has been demonstrated with a variety of molecular scaffolds. Initial animal studies show very good tissue distribution along with more than a 4-log reduction in bacterial counts. The results on SMAMPs are not only extremely promising for novel antibiotics, but also provide an optimistic picture for the greater challenge of general proteomimetics.

  6. Matrix-assisted peptide synthesis on nanoparticles.

    Science.gov (United States)

    Khandadash, Raz; Machtey, Victoria; Weiss, Aryeh; Byk, Gerardo

    2014-09-01

    We report a new method for multistep peptide synthesis on polymeric nanoparticles of differing sizes. Polymeric nanoparticles were functionalized via their temporary embedment into a magnetic inorganic matrix that allows multistep peptide synthesis. The matrix is removed at the end of the process for obtaining nanoparticles functionalized with peptides. The matrix-assisted synthesis on nanoparticles was proved by generating various biologically relevant peptides. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  7. Improvement of autism spectrum disorder symptoms in three children by using gastrin-releasing peptide,

    Directory of Open Access Journals (Sweden)

    Michele Michelin Becker

    2016-06-01

    Full Text Available Abstract Objective: To evaluate the safety, tolerability and potential therapeutic effects of gastrin-releasing peptide in three children with autistic spectrum disorder. Methods: Case series study with the intravenous administration of gastrin-releasing peptide in the dose of 160 pmol/kg for four consecutive days. To evaluate the results, parental impressions the Childhood Autism Rating Scale (CARS and the Clinical Global Impression (CGI Scale. Each child underwent a new peptide cycle after two weeks. The children were followed for four weeks after the end of the infusions. Results: The gastrin-releasing peptide was well tolerated and no child had adverse effects. Two children had improved social interaction, with a slight improvement in joint attention and the interaction initiatives. Two showed reduction of stereotypes and improvement in verbal language. One child lost his compulsion to bathe, an effect that lasted two weeks after each infusion cycle. Average reduction in CARS score was 2.8 points. CGI was "minimally better" in two children and "much better" in one. Conclusions: This study suggests that the gastrin-releasing peptide is safe and may be effective in improving key symptoms of autism spectrum disorder, but its results should be interpreted with caution. Controlled clinical trials-randomized, double-blinded, and with more children-are needed to better evaluate the possible therapeutic effects of gastrin-releasing peptide in autism.

  8. Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms

    Directory of Open Access Journals (Sweden)

    Feng Lin

    2007-11-01

    Full Text Available Abstract Background Peptides binding to Major Histocompatibility Complex (MHC class II molecules are crucial for initiation and regulation of immune responses. Predicting peptides that bind to a specific MHC molecule plays an important role in determining potential candidates for vaccines. The binding groove in class II MHC is open at both ends, allowing peptides longer than 9-mer to bind. Finding the consensus motif facilitating the binding of peptides to a MHC class II molecule is difficult because of different lengths of binding peptides and varying location of 9-mer binding core. The level of difficulty increases when the molecule is promiscuous and binds to a large number of low affinity peptides. In this paper, we propose two approaches using multi-objective evolutionary algorithms (MOEA for predicting peptides binding to MHC class II molecules. One uses the information from both binders and non-binders for self-discovery of motifs. The other, in addition, uses information from experimentally determined motifs for guided-discovery of motifs. Results The proposed methods are intended for finding peptides binding to MHC class II I-Ag7 molecule – a promiscuous binder to a large number of low affinity peptides. Cross-validation results across experiments on two motifs derived for I-Ag7 datasets demonstrate better generalization abilities and accuracies of the present method over earlier approaches. Further, the proposed method was validated and compared on two publicly available benchmark datasets: (1 an ensemble of qualitative HLA-DRB1*0401 peptide data obtained from five different sources, and (2 quantitative peptide data obtained for sixteen different alleles comprising of three mouse alleles and thirteen HLA alleles. The proposed method outperformed earlier methods on most datasets, indicating that it is well suited for finding peptides binding to MHC class II molecules. Conclusion We present two MOEA-based algorithms for finding motifs

  9. Doxorubicin delivery to 3D multicellular spheroids and tumors based on boronic acid-rich chitosan nanoparticles.

    Science.gov (United States)

    Wang, Xin; Zhen, Xu; Wang, Jing; Zhang, Jialiang; Wu, Wei; Jiang, Xiqun

    2013-06-01

    Boronic acid-rich chitosan-poly(N-3-acrylamidophenylboronic acid) nanoparticles (CS-PAPBA NPs) with the tunable size were successfully prepared by polymerizing N-3-acrylamidophenylboronic acid in the presence of chitosan in an aqueous solution. The CS-PAPBA NPs were then functionalized by a tumor-penetrating peptide iRGD and loading doxorubicin (DOX). The interaction between boronic acid groups of hydrophobic PAPBA and the amino groups of hydrophilic chitosan inside the nanoparticles was examined by solid-state NMR measurement. The size and morphology of nanoparticles were characterized by dynamic light scattering and electron microscopy. The cellular uptake, tumor penetration, biodistribution and antitumor activity of the nanoparticles were evaluated by using three-dimensional (3-D) multicellular spheroids (MCs) as the in vitro model and H22 tumor-bearing mice as the in vivo model. It was found that the iRGD-conjugated nanoparticles significantly improved the efficiency of DOX penetration in MCs, compared with free DOX and non-conjugated nanoparticles, resulting in the efficient cell killing in the MCs. In vivo antitumor activity examination indicated that iRGD-conjugated CS-PAPBA nanoparticles promoted the accumulation of nanoparticles in tumor tissue and enhanced their penetration in tumor areas, both of which improved the efficiency of DOX-loaded nanoparticles in restraining tumor growth and prolonging the life time of H22 tumor-bearing mice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Synthesis of peptide thioacids at neutral pH using bis(2-sulfanylethyl)amido peptide precursors.

    Science.gov (United States)

    Pira, Silvain L; Boll, Emmanuelle; Melnyk, Oleg

    2013-10-18

    Reaction of bis(2-sulfanylethyl)amido (SEA) peptides with triisopropylsilylthiol in water at neutral pH yields peptide thiocarboxylates. An alkylthioester derived from β-alanine was used to trap the released bis(2-sulfanylethyl)amine and displace the equilibrium toward the peptide thiocarboxylate.

  11. Libraries of RGD analogs, labeled through ReO3+ or TcO3+ coordination, targeting αVβ3 integrin: development of tracers for the early detection of tumor neo-angiogenesis

    International Nuclear Information System (INIS)

    Aufort, M.

    2008-11-01

    Integrins form a family of hetero-dimeric integral glycoproteins which play a central role in cell-cell adhesion and cell-matrix interactions. In particular, they are over expressed during tumor neo-angiogenesis. About 10 of them recognize a structured RGD (Arg-Gly-Asp) sequence. Analogs of this sequence can be used for the early detection of tumors and metastases. We developed new tracers, labeled with 99m Tc, for the molecular imaging of α V β 3 integrin. Until recently, there was no reliable ab initio structure prediction of complex molecules containing Re and Tc chelates. Therefore, we preferred a combinatorial approach to develop potential ligands of α V β 3 integrin and we attempted to identify efficient tracers by in vivo screening. This method would account for biodistribution and pharmacokinetics properties in the early steps of the study. Tracers were obtained according two strategies: i) cyclization of linear RGD analogs; ii) combinatorial assembling of independent modules through metal core coordination by the well-known NS 2 +S motif. After synthesis and labeling, the stability of the tracers was investigated in presence of glutathione and in murine plasma. In vitro screening on purified integrin showed that a cyclic rhenium coordinate binds specifically α V β 3 . A tumor model (U87-MG tumor on nude mice) was validated in the laboratory and a method was developed to analyze in vivo experiments. Biodistribution data and percentage of activity found in tumors are encouraging for cyclic compounds though identification of efficient tracers is difficult due to their instability in the conditions of analyses. (author)

  12. Photodissociative Cross-Linking of Non-covalent Peptide-Peptide Ion Complexes in the Gas Phase

    Science.gov (United States)

    Nguyen, Huong T. H.; Andrikopoulos, Prokopis C.; Rulíšek, Lubomír; Shaffer, Christopher J.; Tureček, František

    2018-05-01

    We report a gas-phase UV photodissociation study investigating non-covalent interactions between neutral hydrophobic pentapeptides and peptide ions incorporating a diazirine-tagged photoleucine residue. Phenylalanine (Phe) and proline (Pro) were chosen as the conformation-affecting residues that were incorporated into a small library of neutral pentapeptides. Gas-phase ion-molecule complexes of these peptides with photo-labeled pentapeptides were subjected to photodissociation. Selective photocleavage of the diazirine ring at 355 nm formed short-lived carbene intermediates that underwent cross-linking by insertion into H-X bonds of the target peptide. The cross-link positions were established from collision-induced dissociation tandem mass spectra (CID-MS3) providing sequence information on the covalent adducts. Effects of the amino acid residue (Pro or Phe) and its position in the target peptide sequence were evaluated. For proline-containing peptides, interactions resulting in covalent cross-links in these complexes became more prominent as proline was moved towards the C-terminus of the target peptide sequence. The photocross-linking yields of phenylalanine-containing peptides depended on the position of both phenylalanine and photoleucine. Density functional theory calculations were used to assign structures of low-energy conformers of the (GLPMG + GLL*LK + H)+ complex. Born-Oppenheimer molecular dynamics trajectory calculations were used to capture the thermal motion in the complexes within 100 ps and determine close contacts between the incipient carbene and the H-X bonds in the target peptide. This provided atomic-level resolution of potential cross-links that aided spectra interpretation and was in agreement with experimental data. [Figure not available: see fulltext.

  13. Using Gas-Phase Guest-Host Chemistry to Probe the Structures of b Ions of Peptides

    Science.gov (United States)

    Somogyi, Árpád; Harrison, Alex G.; Paizs, Béla

    2012-12-01

    Middle-sized b n ( n ≥ 5) fragments of protonated peptides undergo selective complex formation with ammonia under experimental conditions typically used to probe hydrogen-deuterium exchange in Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Other usual peptide fragments like y, a, a*, etc., and small b n ( n ≤ 4) fragments do not form stable ammonia adducts. We propose that complex formation of b n ions with ammonia is characteristic to macrocyclic isomers of these fragments. Experiments on a protonated cyclic peptide and N-terminal acetylated peptides fully support this hypothesis; the protonated cyclic peptide does form ammonia adducts while linear b n ions of acetylated peptides do not undergo complexation. Density functional theory (DFT) calculations on the proton-bound dimers of all-Ala b 4 , b 5 , and b 7 ions and ammonia indicate that the ionizing proton initially located on the peptide fragment transfers to ammonia upon adduct formation. The ammonium ion is then solvated by N+-H…O H-bonds; this stabilization is much stronger for macrocyclic b n isomers due to the stable cage-like structure formed and entropy effects. The present study demonstrates that gas-phase guest-host chemistry can be used to selectively probe structural features (i.e., macrocyclic or linear) of fragments of protonated peptides. Stable ammonia adducts of b 9 , b 9 -A, and b 9 -2A of A8YA, and b 13 of A20YVFL are observed indicating that even these large b-type ions form macrocyclic structures.

  14. Metabolic changes precede proteostatic dysfunction in a Drosophila model of Abeta peptide toxicity

    DEFF Research Database (Denmark)

    Ott, Stanislav; Vishnivetskaya, Anastasia; Malmendal, Anders

    2016-01-01

    Amyloid beta (Aβ) peptide aggregation is linked to the initiation of Alzheimer's disease; accordingly, aggregation-prone isoforms of Aβ, expressed in the brain, shorten the lifespan of Drosophila melanogaster. However, the lethal effects of Aβ are not apparent until after day 15. We used shibireT...

  15. Maize Bioactive Peptides against Cancer

    Science.gov (United States)

    Díaz-Gómez, Jorge L.; Castorena-Torres, Fabiola; Preciado-Ortiz, Ricardo E.; García-Lara, Silverio

    2017-06-01

    Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derived food products has been associated with reduction risks of various types of cancer. Cereals main biomolecules includes proteins, peptides, and amino acids present in different quantities within the grain. The nutraceutical properties associated with peptides exerts biological functions that promote health and prevent this disease. In this review, we report the current status and advances on maize peptides regarding bioactive properties that have been reported such as antioxidant, antihypertensive, hepatoprotective, and anti-tumour activities. We also highlighted its biological potential through which maize bioactive peptides exert anti-cancer activity. Finally, we analyse and emphasize the possible areas of application for maize peptides.

  16. N-terminal peptides from unprocessed prion proteins enter cells by macropinocytosis

    International Nuclear Information System (INIS)

    Magzoub, Mazin; Sandgren, Staffan; Lundberg, Pontus; Oglecka, Kamila; Lilja, Johanna; Wittrup, Anders; Goeran Eriksson, L.E.; Langel, Ulo; Belting, Mattias; Graeslund, Astrid

    2006-01-01

    A peptide derived from the N-terminus of the unprocessed bovine prion protein (bPrPp), incorporating the hydrophobic signal sequence (residues 1-24) and a basic domain (KKRPKP, residues 25-30), internalizes into mammalian cells, even when coupled to a sizeable cargo, and therefore functions as a cell-penetrating peptide (CPP). Confocal microscopy and co-localization studies indicate that the internalization of bPrPp is mainly through macropinocytosis, a fluid-phase endocytosis process, initiated by binding to cell-surface proteoglycans. Electron microscopy studies show internalized bPrPp-DNA-gold complexes residing in endosomal vesicles. bPrPp induces expression of a complexed luciferase-encoding DNA plasmid, demonstrating the peptide's ability to transport the cargo across the endosomal membrane and into the cytosol and nucleus. The novel CPP activity of the unprocessed N-terminal domain of PrP could be important for the retrotranslocation of partly processed PrP and for PrP trafficking inside or between cells, with implications for the infectivity associated with prion diseases

  17. Insect Peptides - Perspectives in Human Diseases Treatment.

    Science.gov (United States)

    Chowanski, Szymon; Adamski, Zbigniew; Lubawy, Jan; Marciniak, Pawel; Pacholska-Bogalska, Joanna; Slocinska, Malgorzata; Spochacz, Marta; Szymczak, Monika; Urbanski, Arkadiusz; Walkowiak-Nowicka, Karolina; Rosinski, Grzegorz

    2017-01-01

    Insects are the largest and the most widely distributed group of animals in the world. Their diversity is a source of incredible variety of different mechanisms of life processes regulation. There are many agents that regulate immunology, reproduction, growth and development or metabolism. Hence, it seems that insects may be a source of numerous substances useful in human diseases treatment. Especially important in the regulation of insect physiology are peptides, like neuropeptides, peptide hormones or antimicrobial peptides. There are two main aspects where they can be helpful, 1) Peptides isolated from insects may become potential drugs in therapy of different diseases, 2) A lot of insect peptide hormones show structural or functional homology to mammalian peptide hormones and the comparative studies may give a new look on human disorders. In our review we focused on three group of insect derived peptides: 1) immune-active peptides, 2) peptide hormones and 3) peptides present in venoms. In our review we try to show the considerable potential of insect peptides in searching for new solutions for mammalian diseases treatment. We summarise the knowledge about properties of insect peptides against different virulent agents, anti-inflammatory or anti-nociceptive properties as well as compare insect and mammalian/vertebrate peptide endocrine system to indicate usefulness of knowledge about insect peptide hormones in drug design. The field of possible using of insect delivered peptide to therapy of various human diseases is still not sufficiently explored. Undoubtedly, more attention should be paid to insects due to searching new drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Dynamic stability of nano-fibers self-assembled from short amphiphilic A6D peptides.

    Science.gov (United States)

    Nikoofard, Narges; Maghsoodi, Fahimeh

    2018-04-07

    Self-assembly of A 6 D amphiphilic peptides in explicit water is studied by using coarse-grained molecular dynamics simulations. It is observed that the self-assembly of randomly distributed A 6 D peptides leads to the formation of a network of nano-fibers. Two other simulations with cylindrical nano-fibers as the initial configuration show the dynamic stability of the self-assembled nano-fibers. As a striking feature, notable fluctuations occur along the axes of the nano-fibers. Depending on the number of peptides per unit length of the nano-fiber, flat-shaped bulges or spiral shapes along the nano-fiber axis are observed at the fluctuations. Analysis of the particle distribution around the nano-fiber indicates that the hydrophobic core and the hydrophilic shell of the nano-structure are preserved in both simulations. The size of the deformations and their correlation times are different in the two simulations. This study gives new insights into the dynamics of the self-assembled nano-structures of short amphiphilic peptides.

  19. Dynamic stability of nano-fibers self-assembled from short amphiphilic A6D peptides

    Science.gov (United States)

    Nikoofard, Narges; Maghsoodi, Fahimeh

    2018-04-01

    Self-assembly of A6D amphiphilic peptides in explicit water is studied by using coarse-grained molecular dynamics simulations. It is observed that the self-assembly of randomly distributed A6D peptides leads to the formation of a network of nano-fibers. Two other simulations with cylindrical nano-fibers as the initial configuration show the dynamic stability of the self-assembled nano-fibers. As a striking feature, notable fluctuations occur along the axes of the nano-fibers. Depending on the number of peptides per unit length of the nano-fiber, flat-shaped bulges or spiral shapes along the nano-fiber axis are observed at the fluctuations. Analysis of the particle distribution around the nano-fiber indicates that the hydrophobic core and the hydrophilic shell of the nano-structure are preserved in both simulations. The size of the deformations and their correlation times are different in the two simulations. This study gives new insights into the dynamics of the self-assembled nano-structures of short amphiphilic peptides.

  20. Peptide imprinted receptors for the determination of the small cell lung cancer associated biomarker progastrin releasing peptide

    DEFF Research Database (Denmark)

    Qader, A. A.; Urraca, J.; Torsetnes, S. B.

    2014-01-01

    Peptide imprinted polymers were developed for detection of progastrin releasing peptide (ProGRP); a low abundant blood based biomarker for small cell lung cancer. The polymers targeted the proteotypic nona-peptide sequence NLLGLIEAK and were used for selective enrichment of the proteotypic peptide...... prior to LCMS based quantification. Peptide imprinted polymers with the best affinity characteristics were first identified from a 96-polymer combinatorial library. The effects of functional monomers, crosslinker, porogen, and template on adsorption capacity and selectivity for NLLGLIEAK were...

  1. Study on the C-peptide radioimmunoassay with synthetized connecting peptide

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, S; Sasaki, T; Nakayama, H; Watanabe, T; Aoki, S [Hokkaido Univ., Sapporo (Japan). School of Medicine

    1976-01-01

    A method of C-peptide radioimmunoassay with the synthetized connecting peptide by Yanaihara was tested for the determination of serum C-peptide immunoreactivity (CPR) in normal people and in diabetics with or without insulin treatment. The CPR value obtained by this method was not interfered with by the presence of serum proteins or by the insulin of people with or without insulin treatment judged by the dilution test and the recovery test. The normal fasting CPR was 2.80 +- 0.78 ng/ml with the synthetized C-peptide as a standard. The CPR value increased and reached a maximum 90 minutes after the ingestion of 50 g of glucose. The increase after the glucose loading reduced corresponding to the severity of diabetes, and some juvenile-onset diabetes showed no response. Adult-type diabetics under insulin treatment, however, showed weak but significant CPR response. The increment of CPR and immunoreactive insulin after glucose loading in normal people and non-treated diabetics was well correlated (..gamma..=0.8262). Judged from the above mentioned results, CPR determination in insulin-treated diabetics was thought to be a useful method for the assessment of the insulin-secreting ability of beta-cells of the pancreas.

  2. Synergistic retention strategy of RGD active targeting and radiofrequency-enhanced permeability for intensified RF & chemotherapy synergistic tumor treatment.

    Science.gov (United States)

    Zhang, Kun; Li, Pei; He, Yaping; Bo, Xiaowan; Li, Xiaolong; Li, Dandan; Chen, Hangrong; Xu, Huixiong

    2016-08-01

    Despite gaining increasing attention, chelation of multiple active targeting ligands greatly increase the formation probability of protein corona, disabling active targeting. To overcome it, a synergistic retention strategy of RGD-mediated active targeting and radiofrequency (RF) electromagnetic field-enhanced permeability has been proposed here. It is validated that such a special synergistic retention strategy can promote more poly lactic-co-glycolic acid (PLGA)-based capsules encapsulating camptothecin (CPT) and solid DL-menthol (DLM) to enter and retain in tumor in vitro and in vivo upon exposure to RF irradiation, receiving an above 8 fold enhancement in HeLa retention. Moreover, the PLGA-based capsules can respond RF field to trigger the entrapped DLM to generate solid-liquid-gas (SLG) tri-phase transformation for enhancing RF ablation and CPT release. Therefore, depending on the enhanced RF ablation and released CPT and the validated synergistic retention effect, the inhibitory outcome for tumor growth has gained an over 10-fold improvement, realizing RF ablation & chemotherapy synergistic treatment against HeLa solid tumor, which indicates a significant promise in clinical RF ablation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Flow cytometric analysis of cell killing by the jumper ant venom peptide pilosulin 1.

    Science.gov (United States)

    King, M A; Wu, Q X; Donovan, G R; Baldo, B A

    1998-08-01

    Pilosulin 1 is a synthetic 56-amino acid residue polypeptide that corresponds to the largest allergenic polypeptide found in the venom of the jumper ant Myrmecia pilosula. Initial experiments showed that pilosulin 1 lysed erythrocytes and killed proliferating B cells. Herein, we describe how flow cytometry was used to investigate the cytotoxicity of the peptide for human white blood cells. Cells were labeled with fluorochrome-conjugated antibodies, incubated with the peptide and 7-aminoactinomycin D (7-AAD), and then analyzed. The effects of varying the peptide concentration, serum concentration, incubation time, and incubation temperature were measured, and the cytotoxicity of pilosulin 1 was compared with that of the bee venom peptide melittin. The antibodies and the 7-AAD enabled the identification of cell subpopulations and dead cells, respectively. It was possible, using the appropriate mix of antibodies and four-color analysis, to monitor the killing of three or more cell subpopulations simultaneously. We found that 1) pilosulin 1 killed cells within minutes, with kinetics similar to those of melittin; 2) pilosulin 1 was a slightly more potent cytotoxic agent than melittin; 3) both pilosulin 1 and melittin were more potent against mononuclear leukocytes than against granulocytes; and 4) serum inhibited killing by either peptide.

  4. Tidbits for the synthesis of bis(2-sulfanylethyl)amido (SEA) polystyrene resin, SEA peptides and peptide thioesters.

    Science.gov (United States)

    Ollivier, Nathalie; Raibaut, Laurent; Blanpain, Annick; Desmet, Rémi; Dheur, Julien; Mhidia, Reda; Boll, Emmanuelle; Drobecq, Hervé; Pira, Silvain L; Melnyk, Oleg

    2014-02-01

    Protein total chemical synthesis enables the atom-by-atom control of the protein structure and therefore has a great potential for studying protein function. Native chemical ligation of C-terminal peptide thioesters with N-terminal cysteinyl peptides and related methodologies are central to the field of protein total synthesis. Consequently, methods enabling the facile synthesis of peptide thioesters using Fmoc-SPPS are of great value. Herein, we provide a detailed protocol for the preparation of bis(2-sulfanylethyl)amino polystyrene resin as a starting point for the synthesis of C-terminal bis(2-sulfanylethyl)amido peptides and of peptide thioesters derived from 3-mercaptopropionic acid. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.

  5. ProSAAS-derived peptides are differentially processed and sorted in mouse brain and AtT-20 cells.

    Directory of Open Access Journals (Sweden)

    Jonathan H Wardman

    Full Text Available ProSAAS is the precursor for some of the most abundant peptides found in mouse brain and other tissues, including peptides named SAAS, PEN, and LEN. Both SAAS and LEN are found in big and little forms due to differential processing. Initial processing of proSAAS is mediated by furin (and/or furin-like enzymes and carboxypeptidase D, while the smaller forms are generated by secretory granule prohormone convertases and carboxypeptidase E. In mouse hypothalamus, PEN and big LEN colocalize with neuropeptide Y. In the present study, little LEN and SAAS were detected in mouse hypothalamus but not in cell bodies of neuropeptide Y-expressing neurons. PEN and big LEN show substantial colocalization in hypothalamus, but big LEN and little LEN do not. An antiserum to SAAS that detects both big and little forms of this peptide did not show substantial colocalization with PEN or big LEN. To further study this, the AtT-20 cells mouse pituitary corticotrophic cell line was transfected with rat proSAAS and the distribution of peptides examined. As found in mouse hypothalamus, only some of the proSAAS-derived peptides colocalized with each other in AtT-20 cells. The two sites within proSAAS that are known to be efficiently cleaved by furin were altered by site-directed mutagenesis to convert the P4 Arg into Lys; this change converts the sequences from furin consensus sites into prohormone convertase consensus sites. Upon expression of the mutated form of proSAAS in AtT-20 cells, there was significantly more colocalization of proSAAS-derived peptides PEN and SAAS. Taken together, these results indicate that proSAAS is initially cleaved in the Golgi or trans-Golgi network by furin and/or furin-like enzymes and the resulting fragments are sorted into distinct vesicles and further processed by additional enzymes into the mature peptides.

  6. Different target surfaces for the analysis of peptides, peptide mixtures and peptide mass fingerprints by AP-MALDI ion trap-mass spectrometry.

    Science.gov (United States)

    Pittenauer, Ernst; Kassler, Alexander; Haubner, Roland; Allmaier, Günter

    2011-06-10

    The desorption/ionization behavior of individual peptides, an equimolare peptide mixture and a tryptic digest was investigated by AP-MALDI-IT-MS using four different target materials (gold-covered stainless steel (SS), titanium nitride-covered SS, hand-polished SS, and microdiamond-covered hardmetal) under identical conditions. Gold-covered as well as polished SS targets yielded comparable mass spectra for peptides and peptide mixture in the low pMol-range. The first target exhibited superior data down to the 10fMol-range. In contrast, titanium nitride-covered SS and microdiamond-covered hardmetal AP-MALDI-targets yielded poor sensitivity. These observations could be correlated with the surface roughness of the targets determined by 3D-confocal-white-light-microscopy. The roughest surfaces were found for titanium nitride-covered SS and microdiamond-covered hardmetal material showing both poor MS sensitivity. A less rough surface could be determined for the hand-polished SS target and the smoothest surface was found for the gold-covered target yielding the best sensitivity of all surfaces. These differences in the roughness having a strong impact on the ultimate sensitivity obtainable for peptide samples could be corroborated by electron microscopy. A peptide mixture covering a wide range of molecular weights and a tryptic protein digest (from 2-DE) exhibit the same behavior. This clearly indicates that the smooth gold-covered SS target is the surface of choice in AP-MALDI MS proteomics. Copyright © 2010. Published by Elsevier B.V.

  7. Radio peptide imaging and therapy

    International Nuclear Information System (INIS)

    Buscombe, Jonh

    1997-01-01

    Full text. The concept of the magic bullet retains its attraction to us. If only we could take a drug or radioisotope and inject this intravenously and then will attach to the target cancer. This may allow imaging if labelled with a radio pharmaceutical or possibly even effective therapy. Initially work was started using antibodies of mouse origin. These have shown some utility in targeting tumors but there are problems in that these are essentially non-human proteins, often derived from mice. This leads to the formation of antibodies against that antibody so that repeat administrations lead to reduced efficacy and possibly may carry a risk anaphylaxis for the patient. Two different methods have evolved to deal with this situation. Either make antibodies more human or use smaller fragments, so that they are less likely to cause allergic reactions. The second method is to try and use a synthetic peptide. This will contain a series of amino acids which recognize a certain cell receptor. For example the somatostatin analogue Octreotide is an 8 amino acid peptide which has the same biological actions as natural somatostatin but an increased plasma half life. To this is added a linker a good example being DTPA and then radioisotope for example In-111. There we can have the complex In-111-DTPA-Octreotide which can be used to image somatostatin receptors in vivo. The main advantage over antibodies is that the cost production is less and many different variation of peptides for a particular receptor can be manufactured and assessed to find which is the optimal agent tumour imaging at a fraction of the cost of antibody production. There are two main approaches. Firstly to take a natural peptide hormone such as insulin or VIP and label by a simple method such as iodination with I-123. A group in Vienna have done it and shown good uptake of I-123 Insulin in primary hepatomas and of I-123 VIP in pancreatic cancers. Many natural peptide hormones however have a short plasma half

  8. Human C-peptide. Pt. 1

    International Nuclear Information System (INIS)

    Beischer, W.; Keller, L.; Maas, M.; Schiefer, E.; Pfeiffer, E.F.

    1976-01-01

    Synthetic human C-peptide bearing a tyrosine group at its amino end is labelled with 125 iodine using chloramin T or hydrogen peroxide and lactoperoxidase. The results of the two methods are compared. Antiserum to synthetic human C-peptide (without tyrosine), which was partially coupled to rabbit albumin, is raised in guinea pigs and goats. Goats show to be superior to guinea pips concerning antibody production. The so-called 'hook effect' phenomenon is observed when setting up the standard curves for the radioimmunoassay. Monotonically decreasing standard curves are obtained on dilution of antiserum with a high antibody titer which was produced by repeated immunization in goats. Free C-peptide and C-peptide bound to antiserum are separated using the anion exchange resin amberlite. Using this separation technique we excluded unspecific binding of labelled C-peptide to protein fractions in serum of diabetics. The sensitivity of our radioimmunoassay is approx. 0.3 ng C-peptide/ml serum. Intra- and interassay variability are below 10%. Human proinsulin is the only substance found to crossreact with the antiserum. (orig.) [de

  9. Material Binding Peptides for Nanotechnology

    Directory of Open Access Journals (Sweden)

    Urartu Ozgur Safak Seker

    2011-02-01

    Full Text Available Remarkable progress has been made to date in the discovery of material binding peptides and their utilization in nanotechnology, which has brought new challenges and opportunities. Nowadays phage display is a versatile tool, important for the selection of ligands for proteins and peptides. This combinatorial approach has also been adapted over the past decade to select material-specific peptides. Screening and selection of such phage displayed material binding peptides has attracted great interest, in particular because of their use in nanotechnology. Phage display selected peptides are either synthesized independently or expressed on phage coat protein. Selected phage particles are subsequently utilized in the synthesis of nanoparticles, in the assembly of nanostructures on inorganic surfaces, and oriented protein immobilization as fusion partners of proteins. In this paper, we present an overview on the research conducted on this area. In this review we not only focus on the selection process, but also on molecular binding characterization and utilization of peptides as molecular linkers, molecular assemblers and material synthesizers.

  10. Formation and fragmentation of radical peptide anions: insights from vacuum ultra violet spectroscopy.

    Science.gov (United States)

    Brunet, Claire; Antoine, Rodolphe; Dugourd, Philippe; Canon, Francis; Giuliani, Alexandre; Nahon, Laurent

    2012-02-01

    We have studied the photodissociation of gas-phase deprotonated caerulein anions by vacuum ultraviolet (VUV) photons in the 4.5 to 20 eV range, as provided by the DESIRS beamline at the synchrotron radiation facility SOLEIL (France). Caerulein is a sulphated peptide with three aromatic residues and nine amide bonds. Electron loss is found to be the major relaxation channel at every photon energy. However, an increase in the fragmentation efficiency (neutral losses and peptide backbone cleavages) as a function of the energy is also observed. The oxidized ions, generated by electron photodetachment were further isolated and activated by collision (CID) in a MS(3) scheme. The branching ratios of the different fragments observed by CID as a function of the initial VUV photon energy are found to be independent of the initial photon energy. Thus, there is no memory effect of the initial excitation energy on the fragmentation channels of the oxidized species on the time scale of our tandem MS experiment. We also report photofragment yields as a function of photon energy for doubly deprotonated caerulein ions, for both closed-shell ([M-2H](2-)) non-radical ions and open-shell ([M-3H](2-•)) radical ions. These latter ions are generated by electron photodetachment from [M-3H](3-) precursor ions. The detachment yield increases monotonically with the energy with the appearance of several absorption bands. Spectra for radical and non-radical ions are quite similar in terms of observed bands; however, the VUV fragmentation yield is enhanced by the presence of a radical in caerulein peptides. © American Society for Mass Spectrometry, 2011

  11. Cyclic peptide therapeutics: past, present and future.

    Science.gov (United States)

    Zorzi, Alessandro; Deyle, Kaycie; Heinis, Christian

    2017-06-01

    Cyclic peptides combine several favorable properties such as good binding affinity, target selectivity and low toxicity that make them an attractive modality for the development of therapeutics. Over 40 cyclic peptide drugs are currently in clinical use and around one new cyclic peptide drug enters the market every year on average. The vast majority of clinically approved cyclic peptides are derived from natural products, such as antimicrobials or human peptide hormones. New powerful techniques based on rational design and in vitro evolution have enabled the de novo development of cyclic peptide ligands to targets for which nature does not offer solutions. A look at the cyclic peptides currently under clinical evaluation shows that several have been developed using such techniques. This new source for cyclic peptide ligands introduces a freshness to the field, and it is likely that de novo developed cyclic peptides will be in clinical use in the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Sequencing Cyclic Peptides by Multistage Mass Spectrometry

    Science.gov (United States)

    Mohimani, Hosein; Yang, Yu-Liang; Liu, Wei-Ting; Hsieh, Pei-Wen; Dorrestein, Pieter C.; Pevzner, Pavel A.

    2012-01-01

    Some of the most effective antibiotics (e.g., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. While hundreds of biomedically important cyclic peptides have been sequenced, the computational techniques for sequencing cyclic peptides are still in their infancy. Previous methods for sequencing peptide antibiotics and other cyclic peptides are based on Nuclear Magnetic Resonance spectroscopy, and require large amount (miligrams) of purified materials that, for most compounds, are not possible to obtain. Recently, development of mass spectrometry based methods has provided some hope for accurate sequencing of cyclic peptides using picograms of materials. In this paper we develop a method for sequencing of cyclic peptides by multistage mass spectrometry, and show its advantages over single stage mass spectrometry. The method is tested on known and new cyclic peptides from Bacillus brevis, Dianthus superbus and Streptomyces griseus, as well as a new family of cyclic peptides produced by marine bacteria. PMID:21751357

  13. Development of a dedicated peptide tandem mass spectral library for conservation science.

    Science.gov (United States)

    Fremout, Wim; Dhaenens, Maarten; Saverwyns, Steven; Sanyova, Jana; Vandenabeele, Peter; Deforce, Dieter; Moens, Luc

    2012-05-30

    In recent years, the use of liquid chromatography tandem mass spectrometry (LC-MS/MS) on tryptic digests of cultural heritage objects has attracted much attention. It allows for unambiguous identification of peptides and proteins, and even in complex mixtures species-specific identification becomes feasible with minimal sample consumption. Determination of the peptides is commonly based on theoretical cleavage of known protein sequences and on comparison of the expected peptide fragments with those found in the MS/MS spectra. In this approach, complex computer programs, such as Mascot, perform well identifying known proteins, but fail when protein sequences are unknown or incomplete. Often, when trying to distinguish evolutionarily well preserved collagens of different species, Mascot lacks the required specificity. Complementary and often more accurate information on the proteins can be obtained using a reference library of MS/MS spectra of species-specific peptides. Therefore, a library dedicated to various sources of proteins in works of art was set up, with an initial focus on collagen rich materials. This paper discusses the construction and the advantages of this spectral library for conservation science, and its application on a number of samples from historical works of art. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Competition between bound and free peptides in an ELISA-based procedure that assays peptides derived from protein digests

    Directory of Open Access Journals (Sweden)

    Pace Umberto

    2006-05-01

    Full Text Available Abstract Background We describe an ELISA-based method that can be used to identify and quantitate proteins in biological samples. In this method, peptides in solution, derived from proteolytic digests of the sample, compete with substrate-attached synthetic peptides for antibodies, also in solution, generated against the chosen peptides. The peptides used for the ELISA are chosen on the basis of their being (i products of the proteolytic (e.g. tryptic digestion of the protein to be identified and (ii unique to the target protein, as far as one can know from the published sequences. Results In this paper we describe the competition assay and we define the optimal conditions for the most effective assay. We have performed an analysis of the kinetics of interaction between the four components of the assay: the plastic substratum to which the peptide is bound, the bound peptide itself, the competing added peptide, and the antibody that is specific for the peptide and we compare the results of theoretical simulations to the actual data in some model systems. Conclusion The data suggest that the peptides bind to the plastic substratum in more than one conformation and that, once bound, the peptide displays different affinities for the antibody, depending on how it has bound to the plate

  15. Acidity-Triggered Tumor Retention/Internalization of Chimeric Peptide for Enhanced Photodynamic Therapy and Real-Time Monitoring of Therapeutic Effects.

    Science.gov (United States)

    Han, Kai; Zhang, Wei-Yun; Ma, Zhao-Yu; Wang, Shi-Bo; Xu, Lu-Ming; Liu, Jia; Zhang, Xian-Zheng; Han, He-You

    2017-05-17

    Photodynamic therapy (PDT) holds great promise in tumor treatment. Nevertheless, it remains highly desirable to develop easy-to-fabricated PDT systems with improved tumor accumulation/internalization and timely therapeutic feedback. Here, we report a tumor-acidity-responsive chimeric peptide for enhanced PDT and noninvasive real-time apoptosis imaging. Both in vitro and in vivo studies revealed that a tumor mildly acidic microenvironment could trigger rapid protonation of carboxylate anions in chimeric peptide, which led to increased ζ potential, improved hydrophobicity, controlled size enlargement, and precise morphology switching from sphere to spherocylinder shape of the chimeric peptide. All of these factors realized superfast accumulation and prolonged retention in the tumor region, selective cellular internalization, and enhanced PDT against the tumor. Meanwhile, this chimeric peptide could further generate reactive oxygen species and initiate cell apoptosis during PDT. The subsequent formation of caspase-3 enzyme hydrolyzed the chimeric peptide, achieving a high signal/noise ratio and timely fluorescence feedback. Importantly, direct utilization of the acidity responsiveness of a biofunctional Asp-Glu-Val-Asp-Gly (DEVDG, caspase-3 enzyme substrate) peptide sequence dramatically simplified the preparation and increased the performance of the chimeric peptide furthest.

  16. Design and evaluation of antimalarial peptides derived from prediction of short linear motifs in proteins related to erythrocyte invasion.

    Directory of Open Access Journals (Sweden)

    Alessandra Bianchin

    Full Text Available The purpose of this study was to investigate the blood stage of the malaria causing parasite, Plasmodium falciparum, to predict potential protein interactions between the parasite merozoite and the host erythrocyte and design peptides that could interrupt these predicted interactions. We screened the P. falciparum and human proteomes for computationally predicted short linear motifs (SLiMs in cytoplasmic portions of transmembrane proteins that could play roles in the invasion of the erythrocyte by the merozoite, an essential step in malarial pathogenesis. We tested thirteen peptides predicted to contain SLiMs, twelve of them palmitoylated to enhance membrane targeting, and found three that blocked parasite growth in culture by inhibiting the initiation of new infections in erythrocytes. Scrambled peptides for two of the most promising peptides suggested that their activity may be reflective of amino acid properties, in particular, positive charge. However, one peptide showed effects which were stronger than those of scrambled peptides. This was derived from human red blood cell glycophorin-B. We concluded that proteome-wide computational screening of the intracellular regions of both host and pathogen adhesion proteins provides potential lead peptides for the development of anti-malarial compounds.

  17. Microbial expression of proteins containing long repetitive Arg-Gly-Asp cell adhesive motifs created by overlap elongation PCR

    International Nuclear Information System (INIS)

    Kurihara, Hiroyuki; Shinkai, Masashige; Nagamune, Teruyuki

    2004-01-01

    We developed a novel method for creating repetitive DNA libraries using overlap elongation PCR, and prepared a DNA library encoding repetitive Arg-Gly-Asp (RGD) cell adhesive motifs. We obtained various length DNAs encoding repetitive RGD from a short monomer DNA (18 bp) after a thermal cyclic reaction without a DNA template for amplification, and isolated DNAs encoding 2, 21, and 43 repeats of the RGD motif. We cloned these DNAs into a protein expression vector and overexpressed them as thioredoxin fusion proteins: RGD2, RGD21, and RGD43, respectively. The solubility of RGD43 in water was low and it formed a fibrous precipitate in water. Scanning electron microscopy revealed that RGD43 formed a branched 3D-network structure in the solid state. To evaluate the function of the cell adhesive motifs in RGD43, mouse fibroblast cells were cultivated on the RGD43 scaffold. The fibroblast cells adhered to the RGD43 scaffold and extended long filopodia

  18. Polyglutamate directed coupling of bioactive peptides for the delivery of osteoinductive signals on allograft bone

    Science.gov (United States)

    Culpepper, Bonnie K.; Bonvallet, Paul P.; Reddy, Michael S.; Ponnazhagan, Selvarangan; Bellis, Susan L.

    2012-01-01

    Allograft bone is commonly used as an alternative to autograft, however allograft lacks many osteoinductive factors present in autologous bone due to processing. In this study, we investigated a method to reconstitute allograft with osteoregenerative factors. Specifically, an osteoinductive peptide from collagen I, DGEA, was engineered to express a heptaglutamate (E7) domain, which binds the hydroxyapatite within bone mineral. Addition of E7 to DGEA resulted in 9× greater peptide loading on allograft, and significantly greater retention after a 5-day interval with extensive washing. When factoring together greater initial loading and retention, the E7 domain directed a 45-fold enhancement of peptide density on the allograft surface. Peptide-coated allograft was also implanted subcutaneously into rats and it was found that E7DGEA was retained in vivo for at least 3 months. Interestingly, E7DGEA peptides injected intravenously accumulated within bone tissue, implicating a potential role for E7 domains in drug delivery to bone. Finally, we determined that, as with DGEA, the E7 modification enhanced coupling of a bioactive BMP2-derived peptide on allograft. These results suggest that E7 domains are useful for coupling many types of bone-regenerative molecules to the surface of allograft to reintroduce osteoinductive signals and potentially advance allograft treatments. PMID:23182349

  19. Improvement of autism spectrum disorder symptoms in three children by using gastrin-releasing peptide.

    Science.gov (United States)

    Becker, Michele Michelin; Bosa, Cleonice; Oliveira-Freitas, Vera Lorentz; Goldim, José Roberto; Ohlweiler, Lygia; Roesler, Rafael; Schwartsmann, Gilberto; Riesgo, Rudimar Dos Santos

    2016-01-01

    To evaluate the safety, tolerability and potential therapeutic effects of gastrin-releasing peptide in three children with autistic spectrum disorder. Case series study with the intravenous administration of gastrin-releasing peptide in the dose of 160pmol/kg for four consecutive days. To evaluate the results, parental impressions the Childhood Autism Rating Scale (CARS) and the Clinical Global Impression (CGI) Scale. Each child underwent a new peptide cycle after two weeks. The children were followed for four weeks after the end of the infusions. The gastrin-releasing peptide was well tolerated and no child had adverse effects. Two children had improved social interaction, with a slight improvement in joint attention and the interaction initiatives. Two showed reduction of stereotypes and improvement in verbal language. One child lost his compulsion to bathe, an effect that lasted two weeks after each infusion cycle. Average reduction in CARS score was 2.8 points. CGI was "minimally better" in two children and "much better" in one. This study suggests that the gastrin-releasing peptide is safe and may be effective in improving key symptoms of autism spectrum disorder, but its results should be interpreted with caution. Controlled clinical trials-randomized, double-blinded, and with more children-are needed to better evaluate the possible therapeutic effects of gastrin-releasing peptide in autism. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  20. Spontaneous adsorption of coiled-coil model peptides K and E to a mixed lipid bilayer.

    Science.gov (United States)

    Pluhackova, Kristyna; Wassenaar, Tsjerk A; Kirsch, Sonja; Böckmann, Rainer A

    2015-03-26

    A molecular description of the lipid-protein interactions underlying the adsorption of proteins to membranes is crucial for understanding, for example, the specificity of adsorption or the binding strength of a protein to a bilayer, or for characterizing protein-induced changes of membrane properties. In this paper, we extend an automated in silico assay (DAFT) for binding studies and apply it to characterize the adsorption of the model fusion peptides E and K to a mixed phospholipid/cholesterol membrane using coarse-grained molecular dynamics simulations. In addition, we couple the coarse-grained protocol to reverse transformation to atomistic resolution, thereby allowing to study molecular interactions with high detail. The experimentally observed differential binding of the peptides E and K to membranes, as well as the increased binding affinity of helical over unstructered peptides, could be well reproduced using the polarizable Martini coarse-grained (CG) force field. Binding to neutral membranes is shown to be dominated by initial binding of the positively charged N-terminus to the phospholipid headgroup region, followed by membrane surface-aligned insertion of the peptide at the interface between the hydrophobic core of the membrane and its polar headgroup region. Both coarse-grained and atomistic simulations confirm a before hypothesized snorkeling of lysine side chains for the membrane-bound state of the peptide K. Cholesterol was found to be enriched in peptide vicinity, which is probably of importance for the mechanism of membrane fusion. The applied sequential multiscale method, using coarse-grained simulations for the slow adsorption process of peptides to membranes followed by backward transformation to atomistic detail and subsequent atomistic simulations of the preformed peptide-lipid complexes, is shown to be a versatile approach to study the interactions of peptides or proteins with biomembranes.

  1. Vascular targeting with peptide libraries

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, R. [La Jolla Cancer Research Center The Burnham Inst., La Jolla CA (United States)

    1999-06-01

    The authors have developed an 'in vivo' selection system in which phage capable of selective homing to different tissues are recovered from a phage display peptide library following intravenous administration. Using this strategy, they have isolate several organ and tumor-homing peptides. They have shown that each of those peptides binds of different receptors that are selectively expressed on the vasculature of the target tissue. The tumor-homing peptides bind to receptors that are up regulated in tumor angiogenic vasculature. Targeted delivery of doxorubicin to angiogenic vasculature using these peptides in animals models decrease toxicity and increased the therapeutic efficacy of the drug. Vascular targeting may facilitate the development of other treatment strategies that rely on inhibition of angio genesis and lead to advances to extend the potential for targeting of drugs, genes and radionuclides in the context of many diseases.

  2. Natriuretic peptides and cerebral hemodynamics

    DEFF Research Database (Denmark)

    Guo, Song; Barringer, Filippa; Zois, Nora Elisabeth

    2014-01-01

    Natriuretic peptides have emerged as important diagnostic and prognostic tools for cardiovascular disease. Plasma measurement of the bioactive peptides as well as precursor-derived fragments is a sensitive tool in assessing heart failure. In heart failure, the peptides are used as treatment...... in decompensated disease. In contrast, their biological effects on the cerebral hemodynamics are poorly understood. In this mini-review, we summarize the hemodynamic effects of the natriuretic peptides with a focus on the cerebral hemodynamics. In addition, we will discuss its potential implications in diseases...... where alteration of the cerebral hemodynamics plays a role such as migraine and acute brain injury including stroke. We conclude that a possible role of the peptides is feasible as evaluated from animal and in vitro studies, but more research is needed in humans to determine the precise response...

  3. Selective peptide bond hydrolysis of cysteine peptides in the presence of Ni(II) ions.

    Science.gov (United States)

    Protas, Anna Maria; Bonna, Arkadiusz; Kopera, Edyta; Bal, Wojciech

    2011-01-01

    Recently, we described a sequence-specific R1-(Ser/Thr) peptide bond hydrolysis reaction in peptides of a general sequence R1-(Ser/Thr)-Xaa-His-Zaa-R, which occurs in the presence of Ni(II) ions [A. Krężel, E. Kopera, A. M. Protas, A. Wysłouch-Cieszyńska, J. Poznański, W. Bal, J. Am. Chem. Soc. 132 (2010) 3355-3366]. In this study we explored the possibility of substituting the Ser/Thr and the His residues, necessary for the reaction to occur according to the Ni(II)-assisted acyl shift reaction mechanism, with Cys residues. We tested this concept by synthesizing three homologous peptides: R1-Ser-Arg-Cys-Trp-R2, R1-Cys-Arg-His-Trp-R2, and R1-Cys-Arg-Cys-Trp-R2, and the R1-Ser-Arg-His-Trp-R2 peptide as comparator (R1 and R2 were CH3CO-Gly-Ala and Lys-Phe-Leu-NH2, respectively). We studied their hydrolysis in the presence of Ni(II) ions, under anaerobic conditions and in the presence of TCEP as a thiol group antioxidant. We measured hydrolysis rates using HPLC and identified products of reaction using electrospray mass spectrometry. Potentiometry and UV-vis spectroscopy were used to assess Ni(II) complexation. We demonstrated that Ni(II) is not compatible with the Cys substitution of the Ser/Thr acyl acceptor residue, but the substitution of the Ni(II) binding His residue with a Cys yields a peptide susceptible to Ni(II)-related hydrolysis. The relatively high activity of the R1-Ser-Arg-Cys-Trp-R2 peptide at pH 7.0 suggests that this peptide and its Cys-containing analogs might be useful in practical applications of Ni(II)-dependent peptide bond hydrolysis. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Chemical methods for peptide and protein production.

    Science.gov (United States)

    Chandrudu, Saranya; Simerska, Pavla; Toth, Istvan

    2013-04-12

    Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported α-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.

  5. Toxins and antimicrobial peptides: interactions with membranes

    Science.gov (United States)

    Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2009-08-01

    The innate immunity to pathogenic invasion of organisms in the plant and animal kingdoms relies upon cationic antimicrobial peptides (AMPs) as the first line of defense. In addition to these natural peptide antibiotics, similar cationic peptides, such as the bee venom toxin melittin, act as nonspecific toxins. Molecular details of AMP and peptide toxin action are not known, but the universal function of these peptides to disrupt cell membranes of pathogenic bacteria (AMPs) or a diverse set of eukaryotes and prokaryotes (melittin) is widely accepted. Here, we have utilized spectroscopic techniques to elucidate peptide-membrane interactions of alpha-helical human and mouse AMPs of the cathelicidin family as well as the peptide toxin melittin. The activity of these natural peptides and their engineered analogs was studied on eukaryotic and prokaryotic membrane mimics consisting of resistant pathogens.

  6. Peptide aldehyde inhibitors of bacterial peptide deformylases.

    Science.gov (United States)

    Durand, D J; Gordon Green, B; O'Connell, J F; Grant, S K

    1999-07-15

    Bacterial peptide deformylases (PDF, EC 3.5.1.27) are metalloenzymes that cleave the N-formyl groups from N-blocked methionine polypeptides. Peptide aldehydes containing a methional or norleucinal inhibited recombinant peptide deformylase from gram-negative Escherichia coli and gram-positive Bacillus subtilis. The most potent inhibitor was calpeptin, N-CBZ-Leu-norleucinal, which was a competitive inhibitor of the zinc-containing metalloenzymes, E. coli and B. subtilis PDF with Ki values of 26.0 and 55.6 microM, respectively. Cobalt-substituted E. coli and B. subtilis deformylases were also inhibited by these aldehydes with Ki values for calpeptin of 9.5 and 12.4 microM, respectively. Distinct spectral changes were observed upon binding of calpeptin to the Co(II)-deformylases, consistent with the noncovalent binding of the inhibitor rather than the formation of a covalent complex. In contrast, the chelator 1,10-phenanthroline caused the time-dependent inhibition of B. subtilis Co(II)-PDF activity with the loss of the active site metal. The fact that calpeptin was nearly equipotent against deformylases from both gram-negative and gram-positive bacterial sources lends further support to the idea that a single deformylase inhibitor might have broad-spectrum antibacterial activity. Copyright 1999 Academic Press.

  7. Peptide-LNA oligonucleotide conjugates

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Hansen, Lykke Haastrup; Vester, Birte

    2013-01-01

    properties, peptides were introduced into oligonucleotides via a 2'-alkyne-2'-amino-LNA scaffold. Derivatives of methionine- and leucine-enkephalins were chosen as model peptides of mixed amino acid content, which were singly and doubly incorporated into LNA/DNA strands using highly efficient copper......(i)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry. DNA/RNA target binding affinity and selectivity of the resulting POCs were improved in comparison to LNA/DNA mixmers and unmodified DNA controls. This clearly demonstrates that internal attachment of peptides to oligonucleotides can significantly...

  8. Screening and Identification of Peptides Specifically Targeted to Gastric Cancer Cells from a Phage Display Peptide Library

    Science.gov (United States)

    Sahin, Deniz; Taflan, Sevket Onur; Yartas, Gizem; Ashktorab, Hassan; Smoot, Duane T

    2018-04-25

    Background: Gastric cancer is the second most common cancer among the malign cancer types. Inefficiency of traditional techniques both in diagnosis and therapy of the disease makes the development of alternative and novel techniques indispensable. As an alternative to traditional methods, tumor specific targeting small peptides can be used to increase the efficiency of the treatment and reduce the side effects related to traditional techniques. The aim of this study is screening and identification of individual peptides specifically targeted to human gastric cancer cells using a phage-displayed peptide library and designing specific peptide sequences by using experimentally-eluted peptide sequences. Methods: Here, MKN-45 human gastric cancer cells and HFE-145 human normal gastric epithelial cells were used as the target and control cells, respectively. 5 rounds of biopannning with a phage display 12-peptide library were applied following subtraction biopanning with HFE-145 control cells. The selected phage clones were established by enzyme-linked immunosorbent assay and immunofluorescence detection. We first obtain random phage clones after five biopanning rounds, determine the binding levels of each individual clone. Then, we analyze the frequencies of each amino acid in best binding clones to determine positively overexpressed amino acids for designing novel peptide sequences. Results: DE532 (VETSQYFRGTLS) phage clone was screened positive, showing specific binding on MKN-45 gastric cancer cells. DE-Obs (HNDLFPSWYHNY) peptide, which was designed by using amino acid frequencies of experimentally selected peptides in the 5th round of biopanning, showed specific binding in MKN-45 cells. Conclusion: Selection and characterization of individual clones may give us specifically binding peptides, but more importantly, data extracted from eluted phage clones may be used to design theoretical peptides with better binding properties than even experimentally selected ones

  9. Suppressing IL-36-driven inflammation using peptide pseudosubstrates for neutrophil proteases.

    Science.gov (United States)

    Sullivan, Graeme P; Henry, Conor M; Clancy, Danielle M; Mametnabiev, Tazhir; Belotcerkovskaya, Ekaterina; Davidovich, Pavel; Sura-Trueba, Sylvia; Garabadzhiu, Alexander V; Martin, Seamus J

    2018-03-07

    Sterile inflammation is initiated by molecules released from necrotic cells, called damage-associated molecular patterns (DAMPs). Members of the extended IL-1 cytokine family are important DAMPs, are typically only released through necrosis, and require limited proteolytic processing for activation. The IL-1 family cytokines, IL-36α, IL-36β, and IL-36γ, are expressed as inactive precursors and have been implicated as key initiators of psoriatic-type skin inflammation. We have recently found that IL-36 family cytokines are proteolytically processed and activated by the neutrophil granule-derived proteases, elastase, and cathepsin G. Inhibitors of IL-36 processing may therefore have utility as anti-inflammatory agents through suppressing activation of the latter cytokines. We have identified peptide-based pseudosubstrates for cathepsin G and elastase, based on optimal substrate cleavage motifs, which can antagonize activation of all three IL-36 family cytokines by the latter proteases. Human psoriatic skin plaques displayed elevated IL-36β processing activity that could be antagonized by peptide pseudosubstrates specific for cathepsin G. Thus, antagonists of neutrophil-derived proteases may have therapeutic potential for blocking activation of IL-36 family cytokines in inflammatory conditions such as psoriasis.

  10. LC-QTOF-MS identification of porcine-specific peptide in heat treated pork identifies candidate markers for meat species determination.

    Science.gov (United States)

    Sarah, S A; Faradalila, W N; Salwani, M S; Amin, I; Karsani, S A; Sazili, A Q

    2016-05-15

    The purpose of this study was to identify porcine-specific peptide markers from thermally processed meat that could differentiate pork from beef, chevon and chicken meat. In the initial stage, markers from tryptic digested protein of chilled, boiled and autoclaved pork were identified using LC-QTOF-MS. An MRM method was then established for verification. A thorough investigation of LC-QTOF-MS data showed that only seven porcine-specific peptides were consistently detected. Among these peptides, two were derived from lactate dehydrogenase, one from creatine kinase, and four from serum albumin protein. However, MRM could only detect four peptides (EVTEFAK, LVVITAGAR, FVIER and TVLGNFAAFVQK) that were consistently present in pork samples. In conclusion, meat species determination through a tandem mass spectrometry platform shows high potential in providing scientifically valid and reliable results even at peptide level. Besides, the specificity and selectivity offered by the proteomics approach also provide a robust platform for Halal authentication. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Flagellin based biomimetic coatings: From cell-repellent surfaces to highly adhesive coatings.

    Science.gov (United States)

    Kovacs, Boglarka; Patko, Daniel; Szekacs, Inna; Orgovan, Norbert; Kurunczi, Sandor; Sulyok, Attila; Khanh, Nguyen Quoc; Toth, Balazs; Vonderviszt, Ferenc; Horvath, Robert

    2016-09-15

    Biomimetic coatings with cell-adhesion-regulating functionalities are intensively researched today. For example, cell-based biosensing for drug development, biomedical implants, and tissue engineering require that the surface adhesion of living cells is well controlled. Recently, we have shown that the bacterial flagellar protein, flagellin, adsorbs through its terminal segments to hydrophobic surfaces, forming an oriented monolayer and exposing its variable D3 domain to the solution. Here, we hypothesized that this nanostructured layer is highly cell-repellent since it mimics the surface of the flagellar filaments. Moreover, we proposed flagellin as a carrier molecule to display the cell-adhesive RGD (Arg-Gly-Asp) peptide sequence and induce cell adhesion on the coated surface. The D3 domain of flagellin was replaced with one or more RGD motifs linked by various oligopeptides modulating flexibility and accessibility of the inserted segment. The obtained flagellin variants were applied to create surface coatings inducing cell adhesion and spreading to different levels, while wild-type flagellin was shown to form a surface layer with strong anti-adhesive properties. As reference surfaces synthetic polymers were applied which have anti-adhesive (PLL-g-PEG poly(l-lysine)-graft-poly(ethylene glycol)) or adhesion inducing properties (RGD-functionalized PLL-g-PEG). Quantitative adhesion data was obtained by employing optical biochips and microscopy. Cell-adhesion-regulating coatings can be simply formed on hydrophobic surfaces by using the developed flagellin-based constructs. The developed novel RGD-displaying flagellin variants can be easily obtained by bacterial production and can serve as alternatives to create cell-adhesion-regulating biomimetic coatings. In the present work, we show for the first time that. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. cis-Apa: a practical linker for the microwave-assisted preparation of cyclic pseudopeptides via RCM cyclative cleavage.

    Science.gov (United States)

    Baron, Alice; Verdié, Pascal; Martinez, Jean; Lamaty, Frédéric

    2011-02-04

    A new linker cis-5-aminopent-3-enoic acid (cis-Apa) was prepared for the synthesis of cyclic pseudopeptides by cyclization-cleavage by using ring-closing methatesis (RCM). We developed a new synthetic pathway for the preparation of the cis-Apa linker that was tested in the cyclization-cleavage process of different RGD peptide sequences. Different macrocyclic peptidomimetics were prepared by using this integrated microwave-assisted method, showing that the readily available cis-Apa amino acid is well adapted as a linker in the cyclization-cleavage process.

  13. Peptide YY receptors in the brain

    International Nuclear Information System (INIS)

    Inui, A.; Oya, M.; Okita, M.

    1988-01-01

    Radiolabelled ligand binding studies demonstrated that specific receptors for peptide YY are present in the porcine as well as the canine brains. Peptide YY was bound to brain tissue membranes via high-affinity (dissociation constant, 1.39 X 10(-10)M) and low-affinity (dissociation constant, 3.72 X 10(-8)M) components. The binding sites showed a high specificity for peptide YY and neuropeptide Y, but not for pancreatic polypeptide or structurally unrelated peptides. The specific activity of peptide YY binding was highest in the hippocampus, followed by the pituitary gland, the hypothalamus, and the amygdala of the porcine brain, this pattern being similarly observed in the canine brain. The results suggest that peptide YY and neuropeptide Y may regulate the function of these regions of the brain through interaction with a common receptor site

  14. A novel chimeric peptide with antimicrobial activity.

    Science.gov (United States)

    Alaybeyoglu, Begum; Akbulut, Berna Sariyar; Ozkirimli, Elif

    2015-04-01

    Beta-lactamase-mediated bacterial drug resistance exacerbates the prognosis of infectious diseases, which are sometimes treated with co-administration of beta-lactam type antibiotics and beta-lactamase inhibitors. Antimicrobial peptides are promising broad-spectrum alternatives to conventional antibiotics in this era of evolving bacterial resistance. Peptides based on the Ala46-Tyr51 beta-hairpin loop of beta-lactamase inhibitory protein (BLIP) have been previously shown to inhibit beta-lactamase. Here, our goal was to modify this peptide for improved beta-lactamase inhibition and cellular uptake. Motivated by the cell-penetrating pVEC sequence, which includes a hydrophobic stretch at its N-terminus, our approach involved the addition of LLIIL residues to the inhibitory peptide N-terminus to facilitate uptake. Activity measurements of the peptide based on the 45-53 loop of BLIP for enhanced inhibition verified that the peptide was a competitive beta-lactamase inhibitor with a K(i) value of 58 μM. Incubation of beta-lactam-resistant cells with peptide decreased the number of viable cells, while it had no effect on beta-lactamase-free cells, indicating that this peptide had antimicrobial activity via beta-lactamase inhibition. To elucidate the molecular mechanism by which this peptide moves across the membrane, steered molecular dynamics simulations were carried out. We propose that addition of hydrophobic residues to the N-terminus of the peptide affords a promising strategy in the design of novel antimicrobial peptides not only against beta-lactamase but also for other intracellular targets. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  15. Peptides: Production, bioactivity, functionality, and applications

    DEFF Research Database (Denmark)

    Hajfathalian, Mona; Ghelichi, Sakhi; García Moreno, Pedro Jesús

    2017-01-01

    Production of peptides with various effects from proteins of different sources continues to receive academic attention. Researchers of different disciplines are putting increasing efforts to produce bioactive and functional peptides from different sources such as plants, animals, and food industry...... by-products. The aim of this review is to introduce production methods of hydrolysates and peptides and provide a comprehensive overview of their bioactivity in terms of their effects on immune, cardiovascular, nervous, and gastrointestinal systems. Moreover, functional and antioxidant properties...... of hydrolysates and isolated peptides are reviewed. Finally, industrial and commercial applications of bioactive peptides including their use in nutrition and production of pharmaceuticals and nutraceuticals are discussed....

  16. Alzheimer’s disease against peptides products of enzymatic cleavage APP protein: Biological, pathobiological and physico-chemical properties of fibrillating peptides

    Directory of Open Access Journals (Sweden)

    Małgorzata Marszałek

    2017-05-01

    Full Text Available Various peptides products of enzymatic cleavage of key for Alzheimer’s disease Amyloid Precursor Protein (APP are well known, but still are matter of scientific debate. The Aβ type products are especially challenging for experimental and medical research. This paper outlines several, still poorly known, biological and medical processes such as peptides biology, i.e., formation, biodistribution, translocation, transport and finally removal from brain compartments and body fluids like Intracellular Fluid (ICF, Cerebrospinal Fluid (CSF, Interstitial Fluid (ISF, blood serum or urine. In addition, the following studies concerning AD patients might prove challenging and simultaneously promising: peptides translocation through Blood-Brain – Barrier (BBB and Blood–Cerebrospinal Fluid Barrier (BCSFB and their removal from the brain according to a new concept of glymphatic system; – diagnostic difficulties that stem from physico-chemical properties and the nature of proteins or fibrillating peptides itself like low concentration, short half-live and from experimental-technical problems as well like high adsorption or low solubility of Aβ, tau or amylin. The study of diagnostic parameters is very important, as it may better reflect early changes before the disease develops; one such parameter is the Aβ42/Aβ40 ratio, or the ratio with the total tau concentration combination and other new biomarkers like Aβ1-38; other factors include oxidative stress and inflammation process proteins, complement factor H, alpha-2-macroglobulin, or clusterin. The study of various forms of pathological amyloid deposits that emerge in different but specific brain regions AD patients seems to be crucial as well. The composition of the first initial pathological, pre-fibrillating monomers of fibrillating peptides and their role in AD development and disease progression have been described as well. They are even more challenging for science and simultaneously might be

  17. Chemical Methods for Peptide and Protein Production

    Directory of Open Access Journals (Sweden)

    Istvan Toth

    2013-04-01

    Full Text Available Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported a-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.

  18. C- and N-truncated antimicrobial peptides from LFampin 265 - 284: Biophysical versus microbiology results

    Directory of Open Access Journals (Sweden)

    Regina Adão

    2011-01-01

    Full Text Available Lactoferrin is a glycoprotein with two globular lobes, each having two domains. Since the discovery of its antimicrobial properties, efforts have been made to find peptides derived from this protein showing antimicrobial properties. Most peptides initially studied were derived from Lactoferricin B, obtained from the protein by digestion with pepsin. More recently, a new family of antimicrobial peptides (AMPs derived from Lactoferrin was discovered by Bolcher et al, and named Lactoferrampin (LFampin. The original sequence of LFampin contained residues 268 - 284 from the N1 domain of Lactoferrin. From this peptide, the Bolscher′s group synthesized a collection of peptides obtained by extension and / or truncation at the C or N-terminal sides, in order to unravel the main structural features responsible for antimicrobial action. Here, we present results for three of these peptides, namely LFampin 265 - 284, LFampin 265 - 280, and LFampin 270 - 284. The peptides were tested against bacteria (E. coli and S. sanguinis, fungi (C. albicans, and model membranes of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC, 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol] (DMPG, and their mixtures at a ratio of 3 : 1 (DMPC : DMPG (3 : 1. The ability to adopt a helical conformation was followed by a circular dichroism (CD, and the perturbation of the gel to the liquid-crystalline phase transition of the membrane was characterized by differential scanning calorimetry (DSC. Distinct behavior was observed in the three peptides, both from the microbiology and model membrane studies, with the biophysical results showing excellent correlation with the microbiology activity studies. LFampin 265 - 284 was the most active peptide toward the tested microorganisms, and in the biophysical studies it showed the highest ability to form an a-helix and the strongest interaction with model membranes, followed by LFampin 265 - 280. LFampin 270 - 284 was inactive, showing

  19. Insulin and C-peptide in human brain neurons (insulin/C-peptide/brain peptides/immunohistochemistry/radioimmunoassay)

    International Nuclear Information System (INIS)

    Dorn, A.; Bernstein, H.G.; Rinne, A.; Hahn, H.J.; Ziegler, M.

    1983-01-01

    The regional distribution and cellular localization of insulin and C-peptide immunoreactivities were studied in human cadaver brains using the indirect immunofluorescence method, the peroxidase-antiperoxidase technique, and radioimmunoassay. Products of the immune reactions to both polypeptides were observed in most nerve cells in all areas of the brain examined. Immunostaining was mainly restricted to the cell soma and proximal dendrites. Radioimmunoassay revealed that human brain contains insulin and C-peptide in concentrations much higher than the blood, the highest being in the hypothalamus. These findings support the hypothesis that the 'brain insulin' is - at least in part - produced in the CNS. (author)

  20. Molecular dynamics simulations of helical antimicrobial peptides in SDS micelles: what do point mutations achieve?

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Kaznessis, Yiannis N

    2005-01-01

    We report long time scale simulations of the 18-residue helical antimicrobial peptide ovispirin-1 and its analogs novispirin-G10 and novispirin-T7 in SDS micelles. The SDS micelle serves as an economical and effective model for a cellular membrane. Ovispirin, which is initially placed along...... a micelle diameter, diffuses out to the water-SDS interface and stabilizes to an interface-bound steady state in 16.35 ns of simulation. The final conformation, orientation, and the structure of ovispirin are in good agreement with the experimentally observed properties of the peptide in presence of lipid...... bilayers. The simulation succeeds in capturing subtle differences of the membrane-bound peptide structure as predicted by solid state NMR. The novispirins also undergo identical diffusion patterns and similar final conformations. Although the final interface-bound states are similar, the simulations...