WorldWideScience

Sample records for reynolds number turbulence

  1. High Reynolds Number Turbulence

    National Research Council Canada - National Science Library

    Smits, Alexander J

    2007-01-01

    The objectives of the grant were to provide a systematic study to fill the gap between existing research on low Reynolds number turbulent flows to the kinds of turbulent flows encountered on full-scale vehicles...

  2. Reynold-Number Effects on Near-Wall Turbulence

    Science.gov (United States)

    Mansour, N. N.; Kim, J.; Moser, R. D.; Rai, Man Mohan (Technical Monitor)

    1995-01-01

    The Reynolds stress budget in a full developed turbulent channel flow for three Reynolds numbers (Re = 180,395,590) are used to investigate the near wall scaling of various turbulence quantities. We find that as the Reynolds number increases, the extent of the region where the production of the kinetic energy is equal to the dissipation increases. At the highest Reynolds number the region of equilibrium extends from y+ - 120 to y+ = 240. As the Reynolds number increases, we find that wall scaling collapses the budgets for the streamwise fluctuating component, but the budgets for the other two components show Reynolds number dependency.

  3. Experimental Investigation of Turbulence-Chemistry Interaction in High-Reynolds-Number Turbulent Partially Premixed Flames

    Science.gov (United States)

    2016-06-23

    AFRL-AFOSR-VA-TR-2016-0277 Experimental Investigation of Turbulence-Chemistry Interaction in High- Reynolds -Number Turbulent Partially Premixed...4. TITLE AND SUBTITLE [U] Experimental investigation of turbulence-chemistry interaction in high- Reynolds -number 5a. CONTRACT NUMBER turbulent...for public release Final Report: Experimental investigation of turbulence-chemistry interaction in high- Reynolds -number turbulent partially premixed

  4. Finite-Reynolds-number effects in turbulence using logarithmic expansions

    International Nuclear Information System (INIS)

    Sreenivasan, K.R.; Bershadskii, A.

    2006-12-01

    Experimental or numerical data in turbulence are invariably obtained at finite Reynolds numbers whereas theories of turbulence correspond to infinitely large Reynolds numbers. A proper merger of the two approaches is possible only if corrections for finite Reynolds numbers can be quantified. This paper heuristically considers examples in two classes of finite-Reynolds-number effects. Expansions in terms of logarithms of appropriate variables are shown to yield results in agreement with experimental and numerical data in the following instances: the third-order structure function in isotropic turbulence, the mixed-order structure function for the passive scalar and the Reynolds shear stress around its maximum point. Results suggestive of expansions in terms of the inverse logarithm of the Reynolds number, also motivated by experimental data, concern the tendency for turbulent structures to cluster along a line of observation and (more speculatively) for the longitudinal velocity derivative to become singular at some finite Reynolds number. We suggest an elementary hydrodynamical process that may provide a physical basis for the expansions considered here, but note that the formal justification remains tantalizingly unclear. (author)

  5. Reynolds number dependency in equilibrium two-dimensional turbulence

    Science.gov (United States)

    Bracco, A.; McWilliams, J.

    2009-04-01

    We use the Navier-Stokes equations for barotropic turbulence as a zero-order approximation of chaotic space-time patterns and equilibrium distributions that mimic turbulence in geophysical flows. In this overly-simplified set-up for which smooth-solutions exist, we investigate if is possible to bound the uncertainty associated with the numerical domain discretization, i.e. with the limitation imposed by the Reynolds number range we can explore. To do so we analyze a series of stationary barotropic turbulence simulations spanning a large range of Reynolds numbers and run over a three year period for over 300,000 CPU hours. We find a persistent Reynolds number dependency in the energy power spectra and second order vorticity structure function, while distributions of dynamical quantities such as velocity, vorticity, dissipation rates and others are invariant in shape and have variances scaling with the viscosity coefficient according to simple power-laws. The relevance to this work to the possibility of conceptually reducing uncertainties in climate models will be discussed.

  6. Reynolds-number dependence of turbulence enhancement on collision growth

    Directory of Open Access Journals (Sweden)

    R. Onishi

    2016-10-01

    Full Text Available This study investigates the Reynolds-number dependence of turbulence enhancement on the collision growth of cloud droplets. The Onishi turbulent coagulation kernel proposed in Onishi et al. (2015 is updated by using the direct numerical simulation (DNS results for the Taylor-microscale-based Reynolds number (Reλ up to 1140. The DNS results for particles with a small Stokes number (St show a consistent Reynolds-number dependence of the so-called clustering effect with the locality theory proposed by Onishi et al. (2015. It is confirmed that the present Onishi kernel is more robust for a wider St range and has better agreement with the Reynolds-number dependence shown by the DNS results. The present Onishi kernel is then compared with the Ayala–Wang kernel (Ayala et al., 2008a; Wang et al., 2008. At low and moderate Reynolds numbers, both kernels show similar values except for r2 ∼ r1, for which the Ayala–Wang kernel shows much larger values due to its large turbulence enhancement on collision efficiency. A large difference is observed for the Reynolds-number dependences between the two kernels. The Ayala–Wang kernel increases for the autoconversion region (r1, r2 < 40 µm and for the accretion region (r1 < 40 and r2 > 40 µm; r1 > 40 and r2 < 40 µm as Reλ increases. In contrast, the Onishi kernel decreases for the autoconversion region and increases for the rain–rain self-collection region (r1, r2 > 40 µm. Stochastic collision–coalescence equation (SCE simulations are also conducted to investigate the turbulence enhancement on particle size evolutions. The SCE with the Ayala–Wang kernel (SCE-Ayala and that with the present Onishi kernel (SCE-Onishi are compared with results from the Lagrangian Cloud Simulator (LCS; Onishi et al., 2015, which tracks individual particle motions and size evolutions in homogeneous isotropic turbulence. The SCE-Ayala and SCE-Onishi kernels show consistent

  7. Fully developed MHD turbulence near critical magnetic Reynolds number

    International Nuclear Information System (INIS)

    Leorat, J.; Pouquet, A.; Frisch, U.

    1981-01-01

    Liquid-sodium-cooled breeder reactors may soon be operating at magnetic Reynolds numbers Rsup(M) where magnetic fields can be self-excited by a dynamo mechanism. Such flows have kinetic Reynolds numbers Rsup(V) of the order of 10 7 and are therefore highly turbulent. The behaviour of MHD turbulence with high Rsup(V) and low magnetic Prandtl numbers is investigated, using the eddy-damped quasi-normal Markovian closure applied to the MHD equations. For simplicity the study is restricted to homogeneous and isotropic turbulence, but includes helicity. A critical magnetic Reynolds number Rsub(c)sup(M) of the order of a few tens (non-helical case) is obtained above which magnetic energy is present. Rsub(c)sup(M) is practically independent of Rsup(V) (in the range 40 to 10 6 ) and can be considerably decreased by the presence of helicity. No attempt is made to obtain quantitative estimates for a breeder reactor, but discuss some of the possible consequences of exceeding Rsub(c)sup(M) such as decreased turbulent heat transport. (author)

  8. Modelling high Reynolds number wall-turbulence interactions in laboratory experiments using large-scale free-stream turbulence.

    Science.gov (United States)

    Dogan, Eda; Hearst, R Jason; Ganapathisubramani, Bharathram

    2017-03-13

    A turbulent boundary layer subjected to free-stream turbulence is investigated in order to ascertain the scale interactions that dominate the near-wall region. The results are discussed in relation to a canonical high Reynolds number turbulent boundary layer because previous studies have reported considerable similarities between these two flows. Measurements were acquired simultaneously from four hot wires mounted to a rake which was traversed through the boundary layer. Particular focus is given to two main features of both canonical high Reynolds number boundary layers and boundary layers subjected to free-stream turbulence: (i) the footprint of the large scales in the logarithmic region on the near-wall small scales, specifically the modulating interaction between these scales, and (ii) the phase difference in amplitude modulation. The potential for a turbulent boundary layer subjected to free-stream turbulence to 'simulate' high Reynolds number wall-turbulence interactions is discussed. The results of this study have encouraging implications for future investigations of the fundamental scale interactions that take place in high Reynolds number flows as it demonstrates that these can be achieved at typical laboratory scales.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  9. Crossover from High to Low Reynolds Number Turbulence

    NARCIS (Netherlands)

    Lohse, Detlef

    1994-01-01

    The Taylor-Reynolds and Reynolds number (Re lambda and Re) dependence of the dimensionless energy dissipation rate c epsilon = epsilon L / u31,rms is derived for statistically stationary isotropic turbulence, employing the results of a variable range mean field theory. Here epsilon is the energy

  10. On two distinct Reynolds number regimes of a turbulent square jet

    Directory of Open Access Journals (Sweden)

    Minyi Xu

    2015-05-01

    Full Text Available The effects of Reynolds number on both large-scale and small-scale turbulence properties are investigated in a square jet issuing from a square pipe. The detailed velocity fields were measured at five different exit Reynolds numbers of 8×103≤Re≤5×104. It is found that both large-scale properties (e.g., rates of mean velocity decay and spread and small-scale properties (e.g., the dimensionless dissipation rate constant A=εL/〈u2〉3/2 are dependent on Re for Re≤3×104 or Reλ≤190, but virtually become Re-independent with increasing Re or Reλ. In addition, for Reλ>190, the value of A=εL/〈u2〉3/2 in the present square jet converges to 0.5, which is consistent with the observation in direct numerical simulations of box turbulence, but lower than that in circular jet, plate wake flows, and grid turbulence. The discrepancies in critical Reynolds number and A=εL/〈u2〉3/2 among different turbulent flows most likely result from the flow type and initial conditions.

  11. Reynolds number scaling of straining motions in turbulence

    Science.gov (United States)

    Elsinga, Gerrit; Ishihara, T.; Goudar, M. V.; da Silva, C. B.; Hunt, J. C. R.

    2017-11-01

    Strain is an important fluid motion in turbulence as it is associated with the kinetic energy dissipation rate, vorticity stretching, and the dispersion of passive scalars. The present study investigates the scaling of the turbulent straining motions by evaluating the flow in the eigenframe of the local strain-rate tensor. The analysis is based on DNS of homogeneous isotropic turbulence covering a Reynolds number range Reλ = 34.6 - 1131. The resulting flow pattern reveals a shear layer containing tube-like vortices and a dissipation sheet, which both scale on the Kolmogorov length scale, η. The vorticity stretching motions scale on the Taylor length scale, while the flow outside the shear layer scales on the integral length scale. These scaling results are consistent with those in wall-bounded flow, which suggests a quantitative universality between the different flows. The overall coherence length of the vorticity is 120 η in all directions, which is considerably larger than the typical size of individual vortices, and reflects the importance of spatial organization at the small scales. Transitions in flow structure are identified at Reλ 45 and 250. Below these respective Reynolds numbers, the small-scale motions and the vorticity stretching motions appear underdeveloped.

  12. Universal model of finite Reynolds number turbulent flow in channels and pipes

    NARCIS (Netherlands)

    L'vov, V.S.; Procaccia, I.; Rudenko, O.

    2008-01-01

    In this Letter, we suggest a simple and physically transparent analytical model of pressure driven turbulent wall-bounded flows at high but finite Reynolds numbers Re. The model provides an accurate quantitative description of the profiles of the mean-velocity and Reynolds stresses (second order

  13. Phase relations in a forced turbulent boundary layer: implications for modelling of high Reynolds number wall turbulence.

    Science.gov (United States)

    Duvvuri, Subrahmanyam; McKeon, Beverley

    2017-03-13

    Phase relations between specific scales in a turbulent boundary layer are studied here by highlighting the associated nonlinear scale interactions in the flow. This is achieved through an experimental technique that allows for targeted forcing of the flow through the use of a dynamic wall perturbation. Two distinct large-scale modes with well-defined spatial and temporal wavenumbers were simultaneously forced in the boundary layer, and the resulting nonlinear response from their direct interactions was isolated from the turbulence signal for the study. This approach advances the traditional studies of large- and small-scale interactions in wall turbulence by focusing on the direct interactions between scales with triadic wavenumber consistency. The results are discussed in the context of modelling high Reynolds number wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  14. The influence of the Reynolds number on the passive scalar field in a turbulent channel flow

    International Nuclear Information System (INIS)

    Bergant, R.; Tiselj, I.

    2006-01-01

    Many different turbulent heat transfer calculations based on a very accurate pseudo-spectral code have been performed in the last 5 years. The main effort was to investigate temperature fields at different Prandtl numbers, ranging from Pr=0.7 to Pr=200. For the treatment of the turbulent heat transfer at low Reynolds and high Prandtl numbers, a Direct Numerical Simulation (DNS) was used for structures of the turbulent motions. DNS describes all the length and time scales for velocity and temperature fields. When Prandtl number is higher than 1, the smallest temperature scales are approximately inversely proportional to the square root of Prandtl number. For the smallest temperature scales, not resolved in the high Prandtl number simulation, a spectral turbulent diffusivity model was used in the pseudo-spectral computer code for DNS. A comparison of our temperature profiles obtained at friction Reynolds number Reτ=150 and Pr=100 and Pr=200 to the mean profiles of Calmet and Magnaudet, Wang and Lu and Kader's correlation that was built as a best fit of various experimental data at higher Reynolds numbers, revealed the discrepancies up to 10%. The most important reason for the differences was in different Reynolds numbers, which were much lower in our simulations than in the above mentioned LES simulations and experiments. The similar phenomenon as in our case can be found when DNS of Kawamura and Kader's results at Reτ=180 and Pr=0.71 were compared. On the other hand, the comparisons to the Kader's correlation at higher Reynolds numbers (i.e. DNS of Kawamura at Reτ=640 and DNS of Tiselj at Reτ=424) show that the differences are within statistical uncertainties. It follows that the heat transfer depends much more on Reynolds number in the range of low Reynolds numbers than in the range of high Reynolds numbers. (author)

  15. Prospectus: towards the development of high-fidelity models of wall turbulence at large Reynolds number.

    Science.gov (United States)

    Klewicki, J C; Chini, G P; Gibson, J F

    2017-03-13

    Recent and on-going advances in mathematical methods and analysis techniques, coupled with the experimental and computational capacity to capture detailed flow structure at increasingly large Reynolds numbers, afford an unprecedented opportunity to develop realistic models of high Reynolds number turbulent wall-flow dynamics. A distinctive attribute of this new generation of models is their grounding in the Navier-Stokes equations. By adhering to this challenging constraint, high-fidelity models ultimately can be developed that not only predict flow properties at high Reynolds numbers, but that possess a mathematical structure that faithfully captures the underlying flow physics. These first-principles models are needed, for example, to reliably manipulate flow behaviours at extreme Reynolds numbers. This theme issue of Philosophical Transactions of the Royal Society A provides a selection of contributions from the community of researchers who are working towards the development of such models. Broadly speaking, the research topics represented herein report on dynamical structure, mechanisms and transport; scale interactions and self-similarity; model reductions that restrict nonlinear interactions; and modern asymptotic theories. In this prospectus, the challenges associated with modelling turbulent wall-flows at large Reynolds numbers are briefly outlined, and the connections between the contributing papers are highlighted.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  16. Large scale Direct Numerical Simulation of premixed turbulent jet flames at high Reynolds number

    Science.gov (United States)

    Attili, Antonio; Luca, Stefano; Lo Schiavo, Ermanno; Bisetti, Fabrizio; Creta, Francesco

    2016-11-01

    A set of direct numerical simulations of turbulent premixed jet flames at different Reynolds and Karlovitz numbers is presented. The simulations feature finite rate chemistry with 16 species and 73 reactions and up to 22 Billion grid points. The jet consists of a methane/air mixture with equivalence ratio ϕ = 0 . 7 and temperature varying between 500 and 800 K. The temperature and species concentrations in the coflow correspond to the equilibrium state of the burnt mixture. All the simulations are performed at 4 atm. The flame length, normalized by the jet width, decreases significantly as the Reynolds number increases. This is consistent with an increase of the turbulent flame speed due to the increased integral scale of turbulence. This behavior is typical of flames in the thin-reaction zone regime, which are affected by turbulent transport in the preheat layer. Fractal dimension and topology of the flame surface, statistics of temperature gradients, and flame structure are investigated and the dependence of these quantities on the Reynolds number is assessed.

  17. Prospectus: towards the development of high-fidelity models of wall turbulence at large Reynolds number

    Science.gov (United States)

    Klewicki, J. C.; Chini, G. P.; Gibson, J. F.

    2017-01-01

    Recent and on-going advances in mathematical methods and analysis techniques, coupled with the experimental and computational capacity to capture detailed flow structure at increasingly large Reynolds numbers, afford an unprecedented opportunity to develop realistic models of high Reynolds number turbulent wall-flow dynamics. A distinctive attribute of this new generation of models is their grounding in the Navier–Stokes equations. By adhering to this challenging constraint, high-fidelity models ultimately can be developed that not only predict flow properties at high Reynolds numbers, but that possess a mathematical structure that faithfully captures the underlying flow physics. These first-principles models are needed, for example, to reliably manipulate flow behaviours at extreme Reynolds numbers. This theme issue of Philosophical Transactions of the Royal Society A provides a selection of contributions from the community of researchers who are working towards the development of such models. Broadly speaking, the research topics represented herein report on dynamical structure, mechanisms and transport; scale interactions and self-similarity; model reductions that restrict nonlinear interactions; and modern asymptotic theories. In this prospectus, the challenges associated with modelling turbulent wall-flows at large Reynolds numbers are briefly outlined, and the connections between the contributing papers are highlighted. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167585

  18. Effects of Turbulent Reynolds Number on the Displacement Speed Statistics in the Thin Reaction Zones Regime of Turbulent Premixed Combustion

    Directory of Open Access Journals (Sweden)

    Nilanjan Chakraborty

    2011-01-01

    nature of the correlations remains unaffected. The dependence of displacement speed on strain rate and curvature is found to weaken with increasing turbulent Reynolds number when either Damköhler or Karlovitz number is held constant, but the qualitative nature of the correlation remains unaltered. The implications of turbulent Reynolds number effects in the context of Flame Surface Density (FSD modelling have also been addressed, with emphasis on the influence of displacement speed on the curvature and propagation terms in the FSD balance equation.

  19. Reynolds number invariance of the structure inclination angle in wall turbulence.

    Science.gov (United States)

    Marusic, Ivan; Heuer, Weston D C

    2007-09-14

    Cross correlations of the fluctuating wall-shear stress and the streamwise velocity in the logarithmic region of turbulent boundary layers are reported over 3 orders of magnitude change in Reynolds number. These results are obtained using hot-film and hot-wire anemometry in a wind tunnel facility, and sonic anemometers and a purpose-built wall-shear stress sensor in the near-neutral atmospheric surface layer on the salt flats of Utah's western desert. The direct measurement of fluctuating wall-shear stress in the atmospheric surface layer has not been available before. Structure inclination angles are inferred from the cross correlation results and are found to be invariant over the large range of Reynolds number. The findings justify the prior use of low Reynolds number experiments for obtaining structure angles for near-wall models in the large-eddy simulation of atmospheric surface layer flows.

  20. Reynolds number effects in a turbulent pipe flow for low to moderate Re

    NARCIS (Netherlands)

    Toonder, den J.M.J.; Nieuwstadt, F.T.M.

    1997-01-01

    We present in this paper high resolution, two-dimensional LDV measurements in a turbulent pipe flow of water over the Reynolds number range 500025000. Results for the turbulence statistics up to the fourth moment are presented, as well as power spectra in the near-wall region. These results clearly

  1. Room Airflows with Low Reynolds Number Effects

    DEFF Research Database (Denmark)

    Topp, Claus; Nielsen, Peter V.; Davidson, Lars

    The behaviour of room airflows under fully turbulent conditions is well known both in terms of experiments and, numerical calculations by computational fluid dynamics (CFD). For room airflows where turbulence is not fully developed though, i.e. flows at low Reynolds numbers, the existing knowledge...... is limited. It has been the objective to investigate the behaviour of a plane isothermal wall jet in a full-scale ventilated room at low Reynolds numbers, i.e. when the flow is not fully turbulent. The results are significantly different from known theory for fully turbulent flows. It was found that the jet...... constants are a strong function of the Reynolds number up to a level of Reh≈500....

  2. Experimental study on the Reynolds number dependence of turbulent mixing in a rod bundle

    International Nuclear Information System (INIS)

    Silin, Nicolas; Juanico, Luis

    2006-01-01

    An experimental study for Reynolds number dependence of the turbulent mixing between fuel-bundle subchannels, was performed. The measurements were done on a triangular array bundle with a 1.20 pitch to diameter relation and 10 mm rod diameter, in a low-pressure water loop, at Reynolds numbers between 1.4 x 10 3 and 1.3 x 10 5 . The high accuracy of the results was obtained by improving a thermal tracing technique recently developed. The Reynolds exponent on the mixing rate correlation was obtained with two-digit accuracy for Reynolds numbers greater than 3 x 10 3 . It was also found a marked increase in the mixing rate for lower Reynolds numbers. The weak theoretical base of the accepted Reynolds dependence was pointed out in light of the later findings, as well as its ambiguous supporting experimental data. The present results also provide indirect information about dominant large scale flow pulsations at different flow regimes

  3. The evolution of the flame surface in turbulent premixed jet flames at high Reynolds number

    Science.gov (United States)

    Luca, Stefano; Attili, Antonio; Bisetti, Fabrizio

    2017-11-01

    A set of direct numerical simulations of turbulent premixed flames in a spatially developing turbulent slot burner at four Reynolds number is presented. This configuration is of interest since it displays turbulent production by mean shear as in real combustion devices. The gas phase hydrodynamics are modeled with the reactive, unsteady Navier-Stokes equations in the low Mach number limit, with finite-rate chemistry consisting of 16 species and 73 reactions. For the highest jet Reynolds number of 22 ×103, 22 Billion grid points are employed. The jet consists of a lean methane/air mixture at 4 atm and preheated to 800 K. The analysis of stretch statistics shows that the mean total stretch is close to zero. Mean stretch decreases moving downstream from positive to negative values, suggesting a formation of surface area in the near field and destruction at the tip of the flame; the mean contribution of the tangential strain term is positive, while the mean contribution of the propagative term is always negative. Positive values of stretch are due to the tangential strain rate term, while large negative values are associated with the propagative term. Increasing Reynolds number is found to decrease the correlation between stretch and the single contributions.

  4. A comparative study of near-wall turbulence in high and low Reynolds number boundary layers

    International Nuclear Information System (INIS)

    Metzger, M.M.; Klewicki, J.C.

    2001-01-01

    The present study explores the effects of Reynolds number, over three orders of magnitude, in the viscous wall region of a turbulent boundary layer. Complementary experiments were conducted both in the boundary layer wind tunnel at the University of Utah and in the atmospheric surface layer which flows over the salt flats of the Great Salt Lake Desert in western Utah. The Reynolds numbers, based on momentum deficit thickness, of the two flows were R θ =2x10 3 and R θ ≅5x10 6 , respectively. High-resolution velocity measurements were obtained from a five-element vertical rake of hot-wires spanning the buffer region. In both the low and high R θ flows, the length of the hot-wires measured less than 6 viscous units. To facilitate reliable comparisons, both the laboratory and field experiments employed the same instrumentation and procedures. Data indicate that, even in the immediate vicinity of the surface, strong influences from low-frequency motions at high R θ produce noticeable Reynolds number differences in the streamwise velocity and velocity gradient statistics. In particular, the peak value in the root mean square streamwise velocity profile, when normalized by viscous scales, was found to exhibit a logarithmic dependence on Reynolds number. The mean streamwise velocity profile, on the other hand, appears to be essentially independent of Reynolds number. Spectra and spatial correlation data suggest that low-frequency motions at high Reynolds number engender intensified local convection velocities which affect the structure of both the velocity and velocity gradient fields. Implications for turbulent production mechanisms and coherent motions in the buffer layer are discussed

  5. Turbulent flows at very large Reynolds numbers: new lessons learned

    International Nuclear Information System (INIS)

    Barenblatt, G I; Prostokishin, V M; Chorin, A J

    2014-01-01

    The universal (Reynolds-number-independent) von Kármán–Prandtl logarithmic law for the velocity distribution in the basic intermediate region of a turbulent shear flow is generally considered to be one of the fundamental laws of engineering science and is taught universally in fluid mechanics and hydraulics courses. We show here that this law is based on an assumption that cannot be considered to be correct and which does not correspond to experiment. Nor is Landau's derivation of this law quite correct. In this paper, an alternative scaling law explicitly incorporating the influence of the Reynolds number is discussed, as is the corresponding drag law. The study uses the concept of intermediate asymptotics and that of incomplete similarity in the similarity parameter. Yakov Borisovich Zeldovich played an outstanding role in the development of these ideas. This work is a tribute to his glowing memory. (100th anniversary of the birth of ya b zeldovich)

  6. Simulation of Reynolds number influence on heat exchange in turbulent flow of medium slurry

    Science.gov (United States)

    Bartosik, A.

    2016-10-01

    The paper deals with the numerical simulation of mass and heat exchange in turbulent flow of solid-liquid mixture in the range of averaged solid particle diameter from 0.10mm to 0.80mm, named further as the medium slurry. Physical model assumes that dispersed phase is fully suspended and a turbulent flow is hydro-dynamically, and thermally developed in a straight horizontal pipeline. Taking into account the aforementioned assumptions the slurry is treated as a single-phase flow with increased density, while viscosity is equals to a carrier liquid viscosity. The mathematical model constitutes time averaged momentum equation in which the turbulent stress tensor was designated using a two-equation turbulence model, which makes use of the Boussinesq eddy-viscosity hypothesis. Turbulence damping function in the turbulence model was especially designed for the medium slurry. In addition, an energy equation has been used in which a convective term was determined from the energy balance acting on a unit pipe length, assuming linear changes of temperature in main flow direction. Finally, the mathematical model of non-isothermal medium slurry flow comprises four partial differential equations, namely momentum and energy equations, equations of kinetic energy of turbulence and its dissipation rate. Four partial differential equations were solved by a finite difference scheme using own computer code. The objective of the paper is to examine the influence of Reynolds number on temperature profiles and Nusselt number in turbulent flow of medium slurry in the range of solids concentration from 0% to 30% by volume. The effect of influential factors on heat transfer between the pipe and slurry is analysed. The paper demonstrates substantial impact of Reynolds number and solids volume fraction on the Nusselt number. The results of numerical simulation are reviewed.

  7. Aerodynamic Effects of High Turbulence Intensity on a Variable-Speed Power-Turbine Blade With Large Incidence and Reynolds Number Variations

    Science.gov (United States)

    Flegel, Ashlie B.; Giel, Paul W.; Welch, Gerard E.

    2014-01-01

    The effects of high inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. These results are compared to previous measurements made in a low turbulence environment. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The current study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Assessing the effects of turbulence at these large incidence and Reynolds number variations complements the existing database. Downstream total pressure and exit angle data were acquired for 10 incidence angles ranging from +15.8deg to -51.0deg. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12×10(exp 5) to 2.12×10(exp 6) and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 8 to 15 percent for the current study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitch/yaw probe located in a survey plane 7 percent axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At

  8. Aerodynamic Effects of Turbulence Intensity on a Variable-Speed Power-Turbine Blade with Large Incidence and Reynolds Number Variations

    Science.gov (United States)

    Flegel, Ashlie Brynn; Giel, Paul W.; Welch, Gerard E.

    2014-01-01

    The effects of inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The high turbulence study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Downstream total pressure and exit angle data were acquired for ten incidence angles ranging from +15.8 to 51.0. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12105 to 2.12106 and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 0.25 - 0.4 for the low Tu tests and 8- 15 for the high Tu study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitchyaw probe located in a survey plane 7 axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At the extreme positive and negative incidence angles, the data show substantial differences in the exit flow field. These differences are attributable to both the higher inlet Tu directly and to the thinner inlet endwall

  9. Application of low Reynolds number k-{epsilon} turbulence models to the study of turbulent wall jets

    Energy Technology Data Exchange (ETDEWEB)

    Kechiche, Jamel; Mhiri, Hatem [Laboratoire de Mecanique des Fluides et Thermique, Ecole Nationale d' Ingenieurs de Monastir, route de Ouardanine, 5000, Monastir (Tunisia); Le Palec, Georges; Bournot, Philippe [Institut de Mecanique de Marseille, 60, rue Joliot-Curie, Technopole de Chateau-Gombert, 13453 cedex 13, Marseille (France)

    2004-02-01

    In this work, we use closure models called ''low Reynolds number k-{epsilon} models'', which are self-adapting ones using different damping functions, in order to explore the computed behavior of a turbulent plane two-dimensional wall jets. In this study, the jet may be either isothermal or submitted to various wall boundary conditions (uniform temperature or a uniform heat flux) in forced convection regime. A finite difference method, using a staggered grid, is employed to solve the coupled governing equations with the inlet and the boundary conditions. The predictions of the various low Reynolds number k-{epsilon} models with standard or modified C{sub {mu}} adopted in this work were presented and compared with measurements and numerical results found in the literature. (authors)

  10. Wall modeled large eddy simulations of complex high Reynolds number flows with synthetic inlet turbulence

    International Nuclear Information System (INIS)

    Patil, Sunil; Tafti, Danesh

    2012-01-01

    Highlights: ► Large eddy simulation. ► Wall layer modeling. ► Synthetic inlet turbulence. ► Swirl flows. - Abstract: Large eddy simulations of complex high Reynolds number flows are carried out with the near wall region being modeled with a zonal two layer model. A novel formulation for solving the turbulent boundary layer equation for the effective tangential velocity in a generalized co-ordinate system is presented and applied in the near wall zonal treatment. This formulation reduces the computational time in the inner layer significantly compared to the conventional two layer formulations present in the literature and is most suitable for complex geometries involving body fitted structured and unstructured meshes. The cost effectiveness and accuracy of the proposed wall model, used with the synthetic eddy method (SEM) to generate inlet turbulence, is investigated in turbulent channel flow, flow over a backward facing step, and confined swirling flows at moderately high Reynolds numbers. Predictions are compared with available DNS, experimental LDV data, as well as wall resolved LES. In all cases, there is at least an order of magnitude reduction in computational cost with no significant loss in prediction accuracy.

  11. Prediction of local loss coefficient for turbulent flow in axisymmetric sudden expansions with a chamfer: Effect of Reynolds number

    International Nuclear Information System (INIS)

    Bae, Youngmin; Kim, Young In

    2014-01-01

    Highlights: • Turbulent flow in axisymmetric sudden expansion with a chamfer is studied numerically. • Reynolds number dependency of the local loss coefficient is investigated. • Extended correlation is proposed for estimation of the local loss coefficient. - Abstract: This paper reports the pressure losses in turbulent flows through axisymmetric sudden expansions having a slight chamfer on the edge. A parametric study is performed for dimensionless chamfer lengths of 0–0.5, expansion ratios of 2–6, and chamfer angles of 0–45° in a Reynolds number range of 1 × 10 5 –8 × 10 5 . The chamfer effect on the expansion losses and its dependence on the Reynolds number are analyzed in detail along with a discussion of the relevant flow features. On the basis of numerical results, an existing correlation of the local loss coefficient is also extended to take into account the effect of the Reynolds number additionally

  12. The time scale for the transition to turbulence in a high Reynolds number, accelerated flow

    International Nuclear Information System (INIS)

    Robey, H.F.; Zhou Ye; Buckingham, A.C.; Keiter, P.; Remington, B.A.; Drake, R.P.

    2003-01-01

    An experiment is described in which an interface between materials of different density is subjected to an acceleration history consisting of a strong shock followed by a period of deceleration. The resulting flow at this interface, initiated by the deposition of strong laser radiation into the initially well characterized solid materials, is unstable to both the Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities. These experiments are of importance in their ability to access a difficult experimental regime characterized by very high energy density (high temperature and pressure) as well as large Reynolds number and Mach number. Such conditions are of interest, for example, in the study of the RM/RT induced mixing that occurs during the explosion of a core-collapse supernova. Under these experimental conditions, the flow is in the plasma state and given enough time will transition to turbulence. By analysis of the experimental data and a corresponding one-dimensional numerical simulation of the experiment, it is shown that the Reynolds number is sufficiently large (Re>10 5 ) to support a turbulent flow. An estimate of three key turbulence length scales (the Taylor and Kolmogorov microscales and a viscous diffusion scale), however, shows that the temporal duration of the present flow is insufficient to allow for the development of a turbulent inertial subrange. A methodology is described for estimating the time required under these conditions for the development of a fully turbulent flow

  13. Modification of the large-scale features of high Reynolds number wall turbulence by passive surface obtrusions

    Energy Technology Data Exchange (ETDEWEB)

    Monty, J.P.; Lien, K.; Chong, M.S. [University of Melbourne, Department of Mechanical Engineering, Parkville, VIC (Australia); Allen, J.J. [New Mexico State University, Department of Mechanical Engineering, Las Cruces, NM (United States)

    2011-12-15

    A high Reynolds number boundary-layer wind-tunnel facility at New Mexico State University was fitted with a regularly distributed braille surface. The surface was such that braille dots were closely packed in the streamwise direction and sparsely spaced in the spanwise direction. This novel surface had an unexpected influence on the flow: the energy of the very large-scale features of wall turbulence (approximately six-times the boundary-layer thickness in length) became significantly attenuated, even into the logarithmic region. To the author's knowledge, this is the first experimental study to report a modification of 'superstructures' in a rough-wall turbulent boundary layer. The result gives rise to the possibility that flow control through very small, passive surface roughness may be possible at high Reynolds numbers, without the prohibitive drag penalty anticipated heretofore. Evidence was also found for the uninhibited existence of the near-wall cycle, well known to smooth-wall-turbulence researchers, in the spanwise space between roughness elements. (orig.)

  14. A Cryogenic High-Reynolds Turbulence Experiment at CERN

    CERN Document Server

    Bézaguet, Alain-Arthur; Knoops, S; Lebrun, P; Pezzetti, M; Pirotte, O; Bret, J L; Chabaud, B; Garde, G; Guttin, C; Hébral, B; Pietropinto, S; Roche, P; Barbier-Neyret, J P; Baudet, C; Gagne, Y; Poulain, C; Castaing, B; Ladam, Y; Vittoz, F

    2002-01-01

    The potential of cryogenic helium flows for studying high-Reynolds number turbulence in the laboratory has been recognised for a long time and implemented in several small-scale hydrodynamic experiments. With its large superconducting particle accelerators and detector magnets, CERN, the European Laboratory for Particle Physics, has become a major world center in helium cryogenics, with several large helium refrigerators having capacities up to 18 kW @ 4.5 K. Combining a small fraction of these resources with the expertise of three laboratories at the forefront of turbulence research, has led to the design, swift implementation, and successful operation of GReC (Grands Reynolds Cryogéniques) a large axisymmetric turbulent-jet experiment. With flow-rates up to 260 g/s of gaseous helium at ~ 5 K and atmospheric pressure, Reynolds numbers up to 107 have been achieved in a 4.6 m high, 1.4 m diameter cryostat. This paper presents the results of the first runs and describes the experimental set-up comprehensively ...

  15. Technique for forcing high Reynolds number isotropic turbulence in physical space

    Science.gov (United States)

    Palmore, John A.; Desjardins, Olivier

    2018-03-01

    Many common engineering problems involve the study of turbulence interaction with other physical processes. For many such physical processes, solutions are expressed most naturally in physical space, necessitating the use of physical space solutions. For simulating isotropic turbulence in physical space, linear forcing is a commonly used strategy because it produces realistic turbulence in an easy-to-implement formulation. However, the method resolves a smaller range of scales on the same mesh than spectral forcing. We propose an alternative approach for turbulence forcing in physical space that uses the low-pass filtered velocity field as the basis of the forcing term. This method is shown to double the range of scales captured by linear forcing while maintaining the flexibility and low computational cost of the original method. This translates to a 60% increase of the Taylor microscale Reynolds number on the same mesh. An extension is made to scalar mixing wherein a scalar field is forced to have an arbitrarily chosen, constant variance. Filtered linear forcing of the scalar field allows for control over the length scale of scalar injection, which could be important when simulating scalar mixing.

  16. Reducing high Reynolds number hydroacoustic noise using superhydrophobic coating

    International Nuclear Information System (INIS)

    Elboth, Thomas; Reif, Bjørn Anders Pettersson; Andreassen, Øyvind; Martell, Michael B

    2011-01-01

    The objective of this study is to assess and quantify the effect of a superhydrophobic surface coating on turbulence-generated flow noise. The study utilizes results obtained from high Reynolds-number full-scale flow noise measurements taken on a commercial seismic streamer and results from low Reynolds-number direct numerical simulations. It is shown that it is possible to significantly reduce both the frictional drag and the levels of the turbulence generated flow noise even at very high Reynolds-numbers. For instance, frequencies below 10 Hz a reduction in the flow noise level of nearly 50% was measured. These results can be attributed to a reduced level of shear stress and change in the kinematic structure of the turbulence, both of which occur in the immediate vicinity of the superhydrophobic surface.

  17. Influence of various aspects of low Reynolds number k-ε turbulence models on predicting in-tube buoyancy affected heat transfer to supercritical pressure fluids

    International Nuclear Information System (INIS)

    Zhao, Chen-Ru; Zhang, Zhen; Jiang, Pei-Xue; Bo, Han-Liang

    2017-01-01

    Highlights: • Understanding of the mechanism of buoyancy effect on supercritical heat transfer. • Turbulence related parameters in upward and downward flows were compared. • Turbulent Prandtl number affected the prediction insignificantly. • Buoyancy production was insignificant compared with shear production. • Damping function had the greatest effect and is a priority for further modification. - Abstract: Heat transfer to supercritical pressure fluids was modeled for normal and buoyancy affected conditions using several low Reynolds number k-ε models, including the Launder and Sharma, Myong and Kasagi, and Abe, Kondoh and Nagano, with the predictions compared with experimental data. All three turbulence models accurately predicted the cases without heat transfer deterioration, but failed to accurately predict the cases with heat transfer deterioration although the general trends were captured, indicating that further improvements and modifications are needed for the low Reynolds number k-ε turbulence models to better predict buoyancy deteriorated heat transfer. Further investigations studied the influence of various aspects of the low Reynolds number k-ε turbulence models, including the turbulent Prandtl number, the buoyancy production of turbulent kinetic energy, and the damping function to provide guidelines for model development to more precisely predict buoyancy affected heat transfer. The results show that the turbulent Prandtl number and the buoyancy production of turbulent kinetic energy have little influence on the predictions for cases in this study, while new damping functions with carefully selected control parameters are needed in the low Reynolds number k-ε turbulence models to correctly predict the buoyancy effect for heat transfer simulations in various applications such as supercritical pressure steam generators (SPSGs) in the high temperature gas cooled reactor (HTR) and the supercritical pressure water reactor (SCWR).

  18. Influence of various aspects of low Reynolds number k-ε turbulence models on predicting in-tube buoyancy affected heat transfer to supercritical pressure fluids

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chen-Ru; Zhang, Zhen [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Centre, Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Jiang, Pei-Xue, E-mail: jiangpx@tsinghua.edu.cn [Beijing Key Laboratory of CO_2 Utilization and Reduction Technology/Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Bo, Han-Liang [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Centre, Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China)

    2017-03-15

    Highlights: • Understanding of the mechanism of buoyancy effect on supercritical heat transfer. • Turbulence related parameters in upward and downward flows were compared. • Turbulent Prandtl number affected the prediction insignificantly. • Buoyancy production was insignificant compared with shear production. • Damping function had the greatest effect and is a priority for further modification. - Abstract: Heat transfer to supercritical pressure fluids was modeled for normal and buoyancy affected conditions using several low Reynolds number k-ε models, including the Launder and Sharma, Myong and Kasagi, and Abe, Kondoh and Nagano, with the predictions compared with experimental data. All three turbulence models accurately predicted the cases without heat transfer deterioration, but failed to accurately predict the cases with heat transfer deterioration although the general trends were captured, indicating that further improvements and modifications are needed for the low Reynolds number k-ε turbulence models to better predict buoyancy deteriorated heat transfer. Further investigations studied the influence of various aspects of the low Reynolds number k-ε turbulence models, including the turbulent Prandtl number, the buoyancy production of turbulent kinetic energy, and the damping function to provide guidelines for model development to more precisely predict buoyancy affected heat transfer. The results show that the turbulent Prandtl number and the buoyancy production of turbulent kinetic energy have little influence on the predictions for cases in this study, while new damping functions with carefully selected control parameters are needed in the low Reynolds number k-ε turbulence models to correctly predict the buoyancy effect for heat transfer simulations in various applications such as supercritical pressure steam generators (SPSGs) in the high temperature gas cooled reactor (HTR) and the supercritical pressure water reactor (SCWR).

  19. Development of a low Reynolds number turbulence stress and heat flux equation model. A new type wall boundary condition for dissipation rate of turbulent kinetic energy aided by DNS data base

    International Nuclear Information System (INIS)

    Nishimura, M.

    1998-04-01

    To predict thermal-hydraulic phenomena in actual plant under various conditions accurately, adequate simulation of laminar-turbulent flow transition is of importance. A low Reynolds number turbulence model is commonly used for a numerical simulation of the laminar-turbulent transition. The existing low Reynolds number turbulence models generally demands very thin mesh width between a wall and a first computational node from the wall, to keep accuracy and stability of numerical analyses. There is a criterion for the distance between the wall and the first computational node in which non-dimensional distance y + must be less than 0.5. Due to this criterion the suitable distance depends on Reynolds number. A liquid metal sodium is used for a coolant in first reactors therefore, Reynolds number is usually one or two order higher than that of the usual plants in which air and water are used for the work fluid. This makes the load of thermal-hydraulic numerical simulation of the liquid sodium relatively heavier. From above context, a new method is proposed for providing wall boundary condition of turbulent kinetic energy dissipation rate ε. The present method enables the wall-first node distance 10 times larger compared to the existing models. A function of the ε wall boundary condition has been constructed aided by a direct numerical simulation (DNS) data base. The method was validated through calculations of a turbulent Couette flow and a fully developed pipe flow and its laminar-turbulent transition. Thus the present method and modeling are capable of predicting the laminar-turbulent transition with less mesh numbers i.e. lighter computational loads. (J.P.N.)

  20. High-Reynolds-number turbulent-boundary-layer wall-pressure fluctuations with dilute polymer solutions

    Science.gov (United States)

    Elbing, Brian R.; Winkel, Eric S.; Ceccio, Steven L.; Perlin, Marc; Dowling, David R.

    2010-08-01

    Wall-pressure fluctuations were investigated within a high-Reynolds-number turbulent boundary layer (TBL) modified by the addition of dilute friction-drag-reducing polymer solutions. The experiment was conducted at the U.S. Navy's Large Cavitation Channel on a 12.9 m long flat-plate test model with the surface hydraulically smooth (k+<0.2) and achieving downstream-distance-based Reynolds numbers to 220×106. The polymer (polyethylene oxide) solution was injected into the TBL through a slot in the surface. The primary flow diagnostics were skin-friction drag balances and an array of flush-mounted dynamic pressure transducers 9.8 m from the model leading edge. Parameters varied included the free-stream speed (6.7, 13.4, and 20.2 m s-1) and the injection condition (polymer molecular weight, injection concentration, and volumetric injection flux). The behavior of the pressure spectra, convection velocity, and coherence, regardless of the injection condition, were determined primarily based on the level of drag reduction. Results were divided into two regimes dependent on the level of polymer drag reduction (PDR), nominally separated at a PDR of 40%. The low-PDR regime is characterized by decreasing mean-square pressure fluctuations and increasing convection velocity with increasing drag reduction. This shows that the decrease in the pressure spectra with increasing drag reduction is due in part to the moving of the turbulent structures from the wall. Conversely, with further increases in drag reduction, the high-PDR regime has negligible variation in the mean-squared pressure fluctuations and convection velocity. The convection velocity remains constant at approximately 10% above the baseline-flow convection velocity, which suggests that the turbulent structures no longer move farther from the wall with increasing drag reduction. In light of recent numerical work, the coherence results indicate that in the low-PDR regime, the turbulent structures are being elongated in

  1. Unit Reynolds number, Mach number and pressure gradient effects on laminar-turbulent transition in two-dimensional boundary layers

    Science.gov (United States)

    Risius, Steffen; Costantini, Marco; Koch, Stefan; Hein, Stefan; Klein, Christian

    2018-05-01

    The influence of unit Reynolds number (Re_1=17.5× 106-80× 106 {m}^{-1}), Mach number (M= 0.35-0.77) and incompressible shape factor (H_{12} = 2.50-2.66) on laminar-turbulent boundary layer transition was systematically investigated in the Cryogenic Ludwieg-Tube Göttingen (DNW-KRG). For this investigation the existing two-dimensional wind tunnel model, PaLASTra, which offers a quasi-uniform streamwise pressure gradient, was modified to reduce the size of the flow separation region at its trailing edge. The streamwise temperature distribution and the location of laminar-turbulent transition were measured by means of temperature-sensitive paint (TSP) with a higher accuracy than attained in earlier measurements. It was found that for the modified PaLASTra model the transition Reynolds number (Re_{ {tr}}) exhibits a linear dependence on the pressure gradient, characterized by H_{12}. Due to this linear relation it was possible to quantify the so-called `unit Reynolds number effect', which is an increase of Re_{ {tr}} with Re_1. By a systematic variation of M, Re_1 and H_{12} in combination with a spectral analysis of freestream disturbances, a stabilizing effect of compressibility on boundary layer transition, as predicted by linear stability theory, was detected (`Mach number effect'). Furthermore, two expressions were derived which can be used to calculate the transition Reynolds number as a function of the amplitude of total pressure fluctuations, Re_1 and H_{12}. To determine critical N-factors, the measured transition locations were correlated with amplification rates, calculated by incompressible and compressible linear stability theory. By taking into account the spectral level of total pressure fluctuations at the frequency of the most amplified Tollmien-Schlichting wave at transition location, the scatter in the determined critical N-factors was reduced. Furthermore, the receptivity coefficients dependence on incidence angle of acoustic waves was used to

  2. Particle image velocimetry measurements of Mach 3 turbulent boundary layers at low Reynolds numbers

    Science.gov (United States)

    Brooks, J. M.; Gupta, A. K.; Smith, M. S.; Marineau, E. C.

    2018-05-01

    Particle image velocimetry (PIV) measurements of Mach 3 turbulent boundary layers (TBL) have been performed under low Reynolds number conditions, Re_τ =200{-}1000, typical of direct numerical simulations (DNS). Three reservoir pressures and three measurement locations create an overlap in parameter space at one research facility. This allows us to assess the effects of Reynolds number, particle response and boundary layer thickness separate from facility specific experimental apparatus or methods. The Morkovin-scaled streamwise fluctuating velocity profiles agree well with published experimental and numerical data and show a small standard deviation among the nine test conditions. The wall-normal fluctuating velocity profiles show larger variations which appears to be due to particle lag. Prior to the current study, no detailed experimental study characterizing the effect of Stokes number on attenuating wall-normal fluctuating velocities has been performed. A linear variation is found between the Stokes number ( St) and the relative error in wall-normal fluctuating velocity magnitude (compared to hot wire anemometry data from Klebanoff, Characteristics of Turbulence in a Boundary Layer with Zero Pressure Gradient. Tech. Rep. NACA-TR-1247, National Advisory Committee for Aeronautics, Springfield, Virginia, 1955). The relative error ranges from about 10% for St=0.26 to over 50% for St=1.06. Particle lag and spatial resolution are shown to act as low-pass filters on the fluctuating velocity power spectral densities which limit the measurable energy content. The wall-normal component appears more susceptible to these effects due to the flatter spectrum profile which indicates that there is additional energy at higher wave numbers not measured by PIV. The upstream inclination and spatial correlation extent of coherent turbulent structures agree well with published data including those using krypton tagging velocimetry (KTV) performed at the same facility.

  3. Effect of Reynolds number, turbulence level and periodic wake flow on heat transfer on low pressure turbine blades.

    Science.gov (United States)

    Suslov, D; Schulz, A; Wittig, S

    2001-05-01

    The development of effective cooling methods is of major importance for the design of new gas turbines blades. The conception of optimal cooling schemes requires a detailed knowledge of the heat transfer processes on the blade's surfaces. The thermal load of turbine blades is predominantly determined by convective heat transfer which is described by the local heat transfer coefficient. Heat transfer is closely related to the boundary layer development along the blade surface and hence depends on various flow conditions and geometrical parameters. Particularly Reynolds number, pressures gradient and turbulence level have great impact on the boundary layer development and the according heat transfer. Therefore, in the present study, the influence of Reynolds number, turbulence intensity, and periodic unsteady inflow on the local heat transfer of a typical low pressure turbine airfoil is experimentally examined in a plane cascade.

  4. Revolutionary Performance For Ultra Low Reynolds Number Vehicles, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel technique for controlling transition from laminar to turbulent flow in very low Reynolds number conditions has been developed. Normally flows with Reynolds...

  5. Identifying a Superfluid Reynolds Number via Dynamical Similarity.

    Science.gov (United States)

    Reeves, M T; Billam, T P; Anderson, B P; Bradley, A S

    2015-04-17

    The Reynolds number provides a characterization of the transition to turbulent flow, with wide application in classical fluid dynamics. Identifying such a parameter in superfluid systems is challenging due to their fundamentally inviscid nature. Performing a systematic study of superfluid cylinder wakes in two dimensions, we observe dynamical similarity of the frequency of vortex shedding by a cylindrical obstacle. The universality of the turbulent wake dynamics is revealed by expressing shedding frequencies in terms of an appropriately defined superfluid Reynolds number, Re(s), that accounts for the breakdown of superfluid flow through quantum vortex shedding. For large obstacles, the dimensionless shedding frequency exhibits a universal form that is well-fitted by a classical empirical relation. In this regime the transition to turbulence occurs at Re(s)≈0.7, irrespective of obstacle width.

  6. Direct numerical simulation of MHD heat transfer in high Reynolds number turbulent channel flows for Prandtl number of 25

    International Nuclear Information System (INIS)

    Yamamoto, Yoshinobu; Kunugi, Tomoaki

    2015-01-01

    Graphical abstract: - Highlights: • For the first time, the MHD heat transfer DNS database corresponding to the typical nondimensional parameters of the fusion blanket design using molten salt, were established. • MHD heat transfer correlation was proposed and about 20% of the heat transfer degradation was evaluated under the design conditions. • The contribution of the turbulent diffusion to heat transfer is increased drastically with increasing Hartmann number. - Abstract: The high-Prandtl number passive scalar transport of the turbulent channel flow imposed a wall-normal magnetic field is investigated through the large-scale direct numerical simulation (DNS). All essential turbulence scales of velocities and temperature are resolved by using 2048 × 870 × 1024 computational grid points in stream, vertical, and spanwise directions. The heat transfer phenomena for a Prandtl number of 25 were observed under the following flow conditions: the bulk Reynolds number of 14,000 and Hartman number of up to 28. These values were equivalent to the typical nondimensional parameters of the fusion blanket design proposed by Wong et al. As a result, a high-accuracy DNS database for the verification of magnetohydrodynamic turbulent heat transfer models was established for the first time, and it was confirmed that the heat transfer correlation for a Prandtl number of 5.25 proposed by Yamamoto and Kunugi was applicable to the Prandtl number of 25 used in this study

  7. Direct numerical simulation of MHD heat transfer in high Reynolds number turbulent channel flows for Prandtl number of 25

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yoshinobu, E-mail: yamamotoy@yamanashi.ac.jp [Department of Mechanical Systems Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511 (Japan); Kunugi, Tomoaki [Department of Nuclear Engineering, Kyoto University Yoshida, Sakyo, Kyoto 606-8501 (Japan)

    2015-01-15

    Graphical abstract: - Highlights: • For the first time, the MHD heat transfer DNS database corresponding to the typical nondimensional parameters of the fusion blanket design using molten salt, were established. • MHD heat transfer correlation was proposed and about 20% of the heat transfer degradation was evaluated under the design conditions. • The contribution of the turbulent diffusion to heat transfer is increased drastically with increasing Hartmann number. - Abstract: The high-Prandtl number passive scalar transport of the turbulent channel flow imposed a wall-normal magnetic field is investigated through the large-scale direct numerical simulation (DNS). All essential turbulence scales of velocities and temperature are resolved by using 2048 × 870 × 1024 computational grid points in stream, vertical, and spanwise directions. The heat transfer phenomena for a Prandtl number of 25 were observed under the following flow conditions: the bulk Reynolds number of 14,000 and Hartman number of up to 28. These values were equivalent to the typical nondimensional parameters of the fusion blanket design proposed by Wong et al. As a result, a high-accuracy DNS database for the verification of magnetohydrodynamic turbulent heat transfer models was established for the first time, and it was confirmed that the heat transfer correlation for a Prandtl number of 5.25 proposed by Yamamoto and Kunugi was applicable to the Prandtl number of 25 used in this study.

  8. High Reynolds number rough wall turbulent boundary layer experiments using Braille surfaces

    Science.gov (United States)

    Harris, Michael; Monty, Jason; Nova, Todd; Allen, James; Chong, Min

    2007-11-01

    This paper details smooth, transitional and fully rough turbulent boundary layer experiments in the New Mexico State high Reynolds number rough wall wind tunnel. The initial surface tested was generated with a Braille printer and consisted of an uniform array of Braille points. The average point height being 0.5mm, the spacing between the points in the span was 0.5mm and the surface consisted of span wise rows separated by 4mm. The wavelength to peak ratio was 8:1. The boundary layer thickness at the measurement location was 190mm giving a large separation of roughness height to layer thickness. The maximum friction velocity was uτ=1.5m/s at Rex=3.8 x10^7. Results for the skin friction co-efficient show that this surface follows a Nikuradse type inflectional curve and that Townsends outer layer similarity hypothesis is valid for rough wall flows with a large separation of scales. Mean flow and turbulence statistics will be presented.

  9. Length and time scales of the near-surface axial velocity in a high Reynolds number turbulent boundary layer

    International Nuclear Information System (INIS)

    Metzger, M.

    2006-01-01

    Reynolds number effects on relevant length and time scales in the near-wall region of a canonical turbulent boundary layer are investigated. Well resolved measurements in the atmospheric surface layer are compared with existing laboratory data to give a composite Reynolds number range spanning over three orders of magnitude. In the field experiments, a vertical rake of twenty single element hot-wires was used to measure the axial velocity, u, characteristics in the lower log layer region of the atmospheric surface layer that flows over Utah's western desert. Only data acquired under conditions of near-neutral thermal stability are analyzed. The shape of the power spectra of u as a function of distance from the wall, y, and Reynolds number is investigated, with emphasis on the appropriate scaling parameters valid across different wavenumber, k, bands. In particular, distance from the wall is found to scale the region of the u spectra around ky = 1. The presence of a k -1 slope in the spectra is also found to correlate with the Reynolds number dependence in the peak of the root mean square u profile. In addition, Reynolds number trends in the profiles of the Taylor microscales, which represent intermediate length and time scales in the boundary layer, are shown to deviate from classical scaling

  10. DNS/LES Simulations of Separated Flows at High Reynolds Numbers

    Science.gov (United States)

    Balakumar, P.

    2015-01-01

    Direct numerical simulations (DNS) and large-eddy simulations (LES) simulations of flow through a periodic channel with a constriction are performed using the dynamic Smagorinsky model at two Reynolds numbers of 2800 and 10595. The LES equations are solved using higher order compact schemes. DNS are performed for the lower Reynolds number case using a fine grid and the data are used to validate the LES results obtained with a coarse and a medium size grid. LES simulations are also performed for the higher Reynolds number case using a coarse and a medium size grid. The results are compared with an existing reference data set. The DNS and LES results agreed well with the reference data. Reynolds stresses, sub-grid eddy viscosity, and the budgets for the turbulent kinetic energy are also presented. It is found that the turbulent fluctuations in the normal and spanwise directions have the same magnitude. The turbulent kinetic energy budget shows that the production peaks near the separation point region and the production to dissipation ratio is very high on the order of five in this region. It is also observed that the production is balanced by the advection, diffusion, and dissipation in the shear layer region. The dominant term is the turbulent diffusion that is about two times the molecular dissipation.

  11. Reynolds stress scaling in pipe flow turbulence-first results from CICLoPE.

    Science.gov (United States)

    Örlü, R; Fiorini, T; Segalini, A; Bellani, G; Talamelli, A; Alfredsson, P H

    2017-03-13

    This paper reports the first turbulence measurements performed in the Long Pipe Facility at the Center for International Cooperation in Long Pipe Experiments (CICLoPE). In particular, the Reynolds stress components obtained from a number of straight and boundary-layer-type single-wire and X-wire probes up to a friction Reynolds number of 3.8×10 4 are reported. In agreement with turbulent boundary-layer experiments as well as with results from the Superpipe, the present measurements show a clear logarithmic region in the streamwise variance profile, with a Townsend-Perry constant of A 2 ≈1.26. The wall-normal variance profile exhibits a Reynolds-number-independent plateau, while the spanwise component was found to obey a logarithmic scaling over a much wider wall-normal distance than the other two components, with a slope that is nearly half of that of the Townsend-Perry constant, i.e. A 2,w ≈A 2 /2. The present results therefore provide strong support for the scaling of the Reynolds stress tensor based on the attached-eddy hypothesis. Intriguingly, the wall-normal and spanwise components exhibit higher amplitudes than in previous studies, and therefore call for follow-up studies in CICLoPE, as well as other large-scale facilities.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  12. Introduction: Scaling and structure in high Reynolds number wall-bounded flows

    International Nuclear Information System (INIS)

    McKeon, B.J.; Sreenivasan, K.R.

    2007-05-01

    The papers discussed in this report are dealing with the following aspects: Fundamental scaling relations for canonical flows and asymptotic approach to infinite Reynolds numbers; large and very large scales in near-wall turbulences; the influence of roughness and finite Reynolds number effects; comparison between internal and external flows and the universality of the near-wall region; qualitative and quantitative models of the turbulent boundary layer; the neutrally stable atmospheric surface layer as a model for a canonical zero-pressure-gradient boundary layer (author)

  13. Scaling and interaction of self-similar modes in models of high Reynolds number wall turbulence.

    Science.gov (United States)

    Sharma, A S; Moarref, R; McKeon, B J

    2017-03-13

    Previous work has established the usefulness of the resolvent operator that maps the terms nonlinear in the turbulent fluctuations to the fluctuations themselves. Further work has described the self-similarity of the resolvent arising from that of the mean velocity profile. The orthogonal modes provided by the resolvent analysis describe the wall-normal coherence of the motions and inherit that self-similarity. In this contribution, we present the implications of this similarity for the nonlinear interaction between modes with different scales and wall-normal locations. By considering the nonlinear interactions between modes, it is shown that much of the turbulence scaling behaviour in the logarithmic region can be determined from a single arbitrarily chosen reference plane. Thus, the geometric scaling of the modes is impressed upon the nonlinear interaction between modes. Implications of these observations on the self-sustaining mechanisms of wall turbulence, modelling and simulation are outlined.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  14. Calculation of skin-friction coefficients for low Reynolds number turbulent boundary layer flows. M.S. Thesis - California Univ. at Davis

    Science.gov (United States)

    Barr, P. K.

    1980-01-01

    An analysis is presented of the reliability of various generally accepted empirical expressions for the prediction of the skin-friction coefficient C/sub f/ of turbulent boundary layers at low Reynolds numbers in zero-pressure-gradient flows on a smooth flat plate. The skin-friction coefficients predicted from these expressions were compared to the skin-friction coefficients of experimental profiles that were determined from a graphical method formulated from the law of the wall. These expressions are found to predict values that are consistently different than those obtained from the graphical method over the range 600 Re/sub theta 2000. A curve-fitted empirical relationship was developed from the present data and yields a better estimated value of C/sub f/ in this range. The data, covering the range 200 Re/sub theta 7000, provide insight into the nature of transitional flows. They show that fully developed turbulent boundary layers occur at Reynolds numbers Re/sub theta/ down to 425. Below this level there appears to be a well-ordered evolutionary process from the laminar to the turbulent profiles. These profiles clearly display the development of the turbulent core region and the shrinking of the laminar sublayer with increasing values of Re/sub theta/.

  15. Numerical simulation of turbulent Taylor-Couette flow between conducting cylinders in an axial magnetic field at low magnetic Reynolds number

    Science.gov (United States)

    Leng, Xueyuan; Kolesnikov, Yurii B.; Krasnov, Dmitry; Li, Benwen

    2018-01-01

    The effect of an axial homogeneous magnetic field on the turbulence in the Taylor-Couette flow confined between two infinitely long conducting cylinders is studied by the direct numerical simulation using a periodic boundary condition in the axial direction. The inner cylinder is rotating, and the outer one is fixed. We consider the case when the magnetic Reynolds number Rem ≪ 1, i.e., the influence of the induced magnetic field on the flow is negligible that is typical for industry and laboratory study of liquid metals. Relevance of the present study is based on the similarity of flow characteristics at moderate and high magnetic field for the cases with periodic and end-wall conditions at the large flow aspect ratio, as proven in the earlier studies. Two sets of Reynolds numbers 4000 and 8000 with several Hartmann numbers varying from 0 to 120 are employed. The results show that the mean radial induced electrical current, resulting from the interaction of axial magnetic field with the mean flow, leads to the transformation of the mean flow and the modification of the turbulent structure. The effect of turbulence suppression is dominating at a strong magnetic field, but before reaching the complete laminarization, we capture the appearance of the hairpin-like structures in the flow.

  16. Numerical predictions and measurements of Reynolds normal stresses in turbulent pipe flow of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Resende, P.R. [Centro de Estudos de Fenomenos de Transporte, DEMEGI, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal)]. E-mail: resende@fe.up.pt; Escudier, M.P. [Department of Engineering, University of Liverpool, Brownlow Street, Liverpool L69 3GH (United Kingdom)]. E-mail: escudier@liv.ac.uk; Presti, F [Department of Engineering, University of Liverpool, Brownlow Street, Liverpool L69 3GH (United Kingdom); Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, DEM, Universidade do Minho Campus de Azurem, 4800-058 Guimaraes (Portugal)]. E-mail: fpinho@dem.uminho.pt; Cruz, D.O.A. [Departamento de Engenharia Mecanica, Universidade Federal do Para-UFPa Campus Universitario do Guama, 66075-900 Belem, Para (Brazil)]. E-mail: doac@ufpa.br

    2006-04-15

    An anisotropic low Reynolds number k-{epsilon} turbulence model has been developed and its performance compared with experimental data for fully-developed turbulent pipe flow of four different polymer solutions. Although the predictions of friction factor, mean velocity and turbulent kinetic energy show only slight improvements over those of a previous isotropic model [Cruz, D.O.A., Pinho, F.T., Resende, P.R., 2004. Modeling the new stress for improved drag reduction predictions of viscoelastic pipe flow. J. Non-Newt. Fluid Mech. 121, 127-141], the new turbulence model is capable of predicting the enhanced anisotropy of the Reynolds normal stresses that accompanies polymer drag reduction in turbulent flow.

  17. Numerical predictions and measurements of Reynolds normal stresses in turbulent pipe flow of polymers

    International Nuclear Information System (INIS)

    Resende, P.R.; Escudier, M.P.; Presti, F; Pinho, F.T.; Cruz, D.O.A.

    2006-01-01

    An anisotropic low Reynolds number k-ε turbulence model has been developed and its performance compared with experimental data for fully-developed turbulent pipe flow of four different polymer solutions. Although the predictions of friction factor, mean velocity and turbulent kinetic energy show only slight improvements over those of a previous isotropic model [Cruz, D.O.A., Pinho, F.T., Resende, P.R., 2004. Modeling the new stress for improved drag reduction predictions of viscoelastic pipe flow. J. Non-Newt. Fluid Mech. 121, 127-141], the new turbulence model is capable of predicting the enhanced anisotropy of the Reynolds normal stresses that accompanies polymer drag reduction in turbulent flow

  18. Trajectory of a synthetic jet issuing into a high Reynolds number turbulent boundary layer

    Science.gov (United States)

    Berk, Tim; Baidya, Rio; de Silva, Charitha; Marusic, Ivan; Hutchins, Nicholas; Ganapathisubramani, Bharathram

    2017-11-01

    Synthetic jets are zero-net-mass-flux actuators that can be used in a range of flow control applications. For several pulsed/synthetic jet in cross-flow applications the variation of the jet trajectory in the mean flow with jet and boundary layer parameters is important. This trajectory will provide an indication of the penetration depth of the pulsed/synthetic jet into a boundary layer. Trajectories of a synthetic jet in a turbulent boundary layer are measured for a range of actuation parameters in both low- and high Reynolds numbers (up to Reτ = 13000). The important parameters influencing the trajectory are determined from these measurements. The Reynolds number of the boundary layer is shown to only have a small effect on the trajectory. In fact, the critical parameters are found to be the Strouhal number of the jet based on jet dimensions as well as the velocity ratio of the jet (defined as a ratio between peak jet velocity and the freestream velocity). An expression for the trajectory of the synthetic (or pulsed) jet is derived from the data, which (in the limit) is consistent with known expressions for the trajectory of a steady jet in a cross-flow. T.B. and B.G. are grateful to the support from the ERC (Grant Agreement No. 277472) and the EPSRC (Grant ref. no. EP/L006383/1).

  19. Hybrid RANS/LES method for high Reynolds numbers, applied to atmospheric flow over complex terrain

    DEFF Research Database (Denmark)

    Bechmann, Andreas; Sørensen, Niels N.; Johansen, Jeppe

    2007-01-01

      The use of Large-Eddy Simulation (LES) to predict wall-bounded flows has presently been limited to low Reynolds number flows. Since the number of computational grid points required to resolve the near-wall turbulent structures increase rapidly with Reynolds number, LES has been unattainable...... for flows at high Reynolds numbers. To reduce the computational cost of traditional LES a hybrid method is proposed in which the near-wall eddies are modelled in a Reynolds-averaged sense. Close to walls the flow is treated with the RANS-equations and this layer act as wall model for the outer flow handled...... by LES. The wellknown high Reynolds number two-equation k - ǫ turbulence model is used in the RANS layer and the model automatically switches to a two-equation k - ǫ subgrid-scale stress model in the LES region. The approach can be used for flow over rough walls. To demonstrate the ability...

  20. Numerical analysis of jet impingement heat transfer at high jet Reynolds number and large temperature difference

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2013-01-01

    was investigated at a jet Reynolds number of 1.66 × 105 and a temperature difference between jet inlet and wall of 1600 K. The focus was on the convective heat transfer contribution as thermal radiation was not included in the investigation. A considerable influence of the turbulence intensity at the jet inlet...... to about 100% were observed. Furthermore, the variation in stagnation point heat transfer was examined for jet Reynolds numbers in the range from 1.10 × 105 to 6.64 × 105. Based on the investigations, a correlation is suggested between the stagnation point Nusselt number, the jet Reynolds number......, and the turbulence intensity at the jet inlet for impinging jet flows at high jet Reynolds numbers. Copyright © 2013 Taylor and Francis Group, LLC....

  1. High Reynolds number flows using liquid and gaseous helium

    International Nuclear Information System (INIS)

    Donnelly, R.J.

    1991-01-01

    Consideration is given to liquid and gaseous helium as test fluids, high Reynolds number test requirements in low speed aerodynamics, the measurement of subsonic flow around an appended body of revolution at cryogenic conditions in the NTF, water tunnels, flow visualization, the six component magnetic suspension system for wind tunnel testing, and recent aerodynamic measurements with magnetic suspension systems. Attention is also given to application of a flow visualization technique to a superflow experiment, experimental investigations of He II flows at high Reynolds numbers, a study of homogeneous turbulence in superfluid helium, and thermal convection in liquid helium

  2. An analysis of supersonic flows with low-Reynolds number compressible two-equation turbulence models using LU finite volume implicit numerical techniques

    Science.gov (United States)

    Lee, J.

    1994-01-01

    A generalized flow solver using an implicit Lower-upper (LU) diagonal decomposition based numerical technique has been coupled with three low-Reynolds number kappa-epsilon models for analysis of problems with engineering applications. The feasibility of using the LU technique to obtain efficient solutions to supersonic problems using the kappa-epsilon model has been demonstrated. The flow solver is then used to explore limitations and convergence characteristics of several popular two equation turbulence models. Several changes to the LU solver have been made to improve the efficiency of turbulent flow predictions. In general, the low-Reynolds number kappa-epsilon models are easier to implement than the models with wall-functions, but require much finer near-wall grid to accurately resolve the physics. The three kappa-epsilon models use different approaches to characterize the near wall regions of the flow. Therefore, the limitations imposed by the near wall characteristics have been carefully resolved. The convergence characteristics of a particular model using a given numerical technique are also an important, but most often overlooked, aspect of turbulence model predictions. It is found that some convergence characteristics could be sacrificed for more accurate near-wall prediction. However, even this gain in accuracy is not sufficient to model the effects of an external pressure gradient imposed by a shock-wave/ boundary-layer interaction. Additional work on turbulence models, especially for compressibility, is required since the solutions obtained with base line turbulence are in only reasonable agreement with the experimental data for the viscous interaction problems.

  3. Reynolds number dependence of drag reduction by rodlike polymers

    NARCIS (Netherlands)

    Amarouchene, Y.; Bonn, D.; Kellay, H.; Lo, T.-S.; L'vov, V.S.; Procaccia, I.

    2008-01-01

    We present experimental and theoretical results addressing the Reynolds number (Re) dependence of drag reduction by sufficiently large concentrations of rodlike polymers in turbulent wall-bounded flows. It is shown that when Re is small the drag is enhanced. On the other hand, when Re increases, the

  4. Biogenic mixing induced by intermediate Reynolds number swimming in stratified fluids

    Science.gov (United States)

    Wang, Shiyan; Ardekani, Arezoo M.

    2015-01-01

    We study fully resolved motion of interacting swimmers in density stratified fluids using an archetypal swimming model called “squirmer”. The intermediate Reynolds number regime is particularly important, because the vast majority of organisms in the aphotic ocean (i.e. regions that are 200 m beneath the sea surface) are small (mm-cm) and their motion is governed by the balance of inertial and viscous forces. Our study shows that the mixing efficiency and the diapycnal eddy diffusivity, a measure of vertical mass flux, within a suspension of squirmers increases with Reynolds number. The mixing efficiency is in the range of O(0.0001–0.04) when the swimming Reynolds number is in the range of O(0.1–100). The values of diapycnal eddy diffusivity and Cox number are two orders of magnitude larger for vertically swimming cells compared to horizontally swimming cells. For a suspension of squirmers in a decaying isotropic turbulence, we find that the diapycnal eddy diffusivity enhances due to the strong viscous dissipation generated by squirmers as well as the interaction of squirmers with the background turbulence. PMID:26628288

  5. Effect of Surface Roughness on Polymer Drag Reduction with a High-Reynolds-Number Turbulent Boundary Layer

    Science.gov (United States)

    Elbing, Brian; Dowling, David; Solomon, Michael; Bian, Sherry; Ceccio, Steven

    2007-11-01

    A recent experiment at the U.S. Navy's Large Cavitation Channel (LCC) investigated the effect of wall roughness on wall-injection polymer drag reduction (PDR) within a high-Reynolds-number (10^7 to 2x10^8 based on downstream distance) turbulent boundary layer (TBL). Testing was performed in two parts: 1) PDR experiment on a 12.9 m long, 3.05 m wide hydro-dynamically smooth flat plate and 2) PDR experiment on the same model with the entire surface roughened. The roughness was produced by blowing glass beads into epoxy paint that was applied to the entire model. The roughened model had an average roughness height ranging between 307 and 1154 μm. Drag reduction was determined using six, stream-wise located integrated skin-friction balances. In addition to skin-friction measurements, sampling was performed at three stream-wise located ports. The sampling ports were used to determine the amount of degradation, if any, caused by the turbulent flow on the polymer. Both the skin-friction measurements and sampling analysis indicates that wall roughness in a turbulent boundary layer significantly increases degradation of the polymer solution.

  6. Influence of the Reynolds number on the instant flow evolution of a turbulent rectangular free jet of air

    International Nuclear Information System (INIS)

    Gori, Fabio; Petracci, Ivano; Angelino, Matteo

    2014-01-01

    Highlights: • Flow with Negligible Disturbances, or first type, with length L ND = L 1 . • Flow with Small Disturbances, or second type, with length L SD . • Total length, L ND + L SD = L 2 , is in agreement with average Undisturbed flow, L U . • Flow with Coherent Vortices, or third type, with length L CV . • Total length, L ND + L SD + L CV = L 3 , is in agreement with average Potential core, L P . - Abstract: The paper is aimed at investigating the influence of the Reynolds number on the instant flow evolution of a rectangular free jet of air in the range of Reynolds numbers from Re = 35,300 to Re = 2,200, where the Reynolds number, Re, is defined according to the hydraulic diameter, D, of a rectangular slot of height H, equal to about D = 2H. The Particle Image Velocimetry (PIV) technique allows obtaining the instant PIV visualizations on the central symmetry section of the rectangular jet. The visual inspection of the instant frames with one and two vortices, except for Re = 35,300 where only one vortex images are detected, shows that after the jet exit is present the Flow with Constant Instant Height, with a length L CIH which increases with the decrease of the Reynolds number, from a ratio L CIH /H equal to L CIH /H = 0.9 at Re = 35,300 to L CIH /H = 4.0 at Re = 2,200. The instant PIV measurements, carried out at several distances from the jet exit, show that the variations of the ratio U/U ‾ 0 of the centerline instant velocity, U, to the exit average velocity, U ‾ 0 , remain below ±4% for a length L CIV , defining the Flow with Constant Instant Velocity on the centerline. The ratio L CIV /H increases from L CIV /H = 1.1 at Re = 35,300 to L CIV /H = 4.1 at Re = 2,200 and is quite similar to L CIH /H. The instant PIV measurements of the centerline turbulence intensity, Tu, show that its variations remain below ±4% for a length L CIT , defining the Flow with Constant Instant Turbulence on the centerline. The ratio L CIT /H is equal to L CIV /H

  7. Direct Numerical Simulation of Flows over an NACA-0012 Airfoil at Low and Moderate Reynolds Numbers

    Science.gov (United States)

    Balakumar, P.

    2017-01-01

    Direct numerical simulations (DNS) of flow over an NACA-0012 airfoil are performed at a low and a moderate Reynolds numbers of Re(sub c)=50 times10(exp 3) and 1times 10(exp 6). The angles of attack are 5 and 15 degrees at the low and the moderate Reynolds number cases respectively. The three-dimensional unsteady compressible Navier-Stokes equations are solved using higher order compact schemes. The flow field in the low Reynolds number case consists of a long separation bubble near the leading-edge region and an attached boundary layer on the aft part of the airfoil. The shear layer that formed in the separated region persisted up to the end of the airfoil. The roles of the turbulent diffusion, advection, and dissipation terms in the turbulent kinetic-energy balance equation change as the boundary layer evolves over the airfoil. In the higher Reynolds number case, the leading-edge separation bubble is very small in length and in height. A fully developed turbulent boundary layer is observed in a short distance downstream of the reattachment point. The boundary layer velocity near the wall gradually decreases along the airfoil. Eventually, the boundary layer separates near the trailing edge. The Reynolds stresses peak in the outer part of the boundary layer and the maximum amplitude also gradually increases along the chord.

  8. Investigation of the influence of turbulence models on the prediction of heat transfer to low Prandtl number fluids

    International Nuclear Information System (INIS)

    Thiele, R.; Ma, W.; Anglart, H.

    2011-01-01

    Despite many advances in computational fluid dynamics (CFD), heat transfer modeling and validation of code for liquid metal flows needs to be improved. This contribution aims to provide validation of several turbulence models implemented in OpenFOAM. 6 different low Reynolds number and 3 high Reynolds number turbulence models have been validated against experimental data for 3 different Reynolds numbers. The results show that most models are able to predict the temperature profile tendencies and that especially the k-ω-SST by Menter has good predictive capabilities. However, all turbulence models show deteriorating capabilities with decreasing Reynolds numbers. (author)

  9. Reynolds Number Scaling and Parameterization of Stratified Turbulent Wakes

    Science.gov (United States)

    2017-04-17

    be solved numerically. These issues are the focal point of our current investigations. The most recent update on our work on high Re effects in...Reynolds numbers, internal waves, nonlinear effects , mean flows, Lagrangian dispersion. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT... location where nonlinear dynamics and, therefore, Lagrangian mean drift are most potent. An extensive existing database of 19 2-D simulations of

  10. Features of round air jet flowing at low Reynolds numbers

    Science.gov (United States)

    Lemanov, V. V.; Sharov, K. A.; Gorinovich, N. V.

    2018-03-01

    The laminar-turbulent transition in a round jet flowing from a cylindrical channel with the diameter of 3.2 mm was studied experimentally. In experiments, the range of Reynolds numbers determined by the mean-flow velocity was Re = Ud/ν = 700-12000. The measurements were carried out using a PIV system and one-component hot-wire anemometer. The profiles of average velocities and their pulsations in the zone of laminar-turbulent transition were obtained along with axial distributions of longitudinal velocity and pulsations of longitudinal velocity.

  11. Inspection of the dynamic properties of laminar separation bubbles: free-stream turbulence intensity effects for different Reynolds numbers

    Science.gov (United States)

    Simoni, Daniele; Lengani, Davide; Ubaldi, Marina; Zunino, Pietro; Dellacasagrande, Matteo

    2017-06-01

    The effects of free-stream turbulence intensity (FSTI) on the transition process of a pressure-induced laminar separation bubble have been studied for different Reynolds numbers (Re) by means of time-resolved (TR) PIV. Measurements have been performed along a flat plate installed within a double-contoured test section, designed to produce an adverse pressure gradient typical of ultra-high-lift turbine blade profiles. A test matrix spanning 3 FSTI levels and 3 Reynolds numbers has been considered allowing estimation of cross effects of these parameters on the instability mechanisms driving the separated flow transition process. Boundary layer integral parameters, spatial growth rate and saturation level of velocity fluctuations are discussed for the different cases in order to characterize the base flow response as well as the time-mean properties of the Kelvin-Helmholtz instability. The inspection of the instantaneous velocity vector maps highlights the dynamics of the large-scale structures shed near the bubble maximum displacement, as well as the low-frequency motion of the fore part of the separated shear layer. Proper Orthogonal Decomposition (POD) has been implemented to reduce the large amount of data for each condition allowing a rapid evaluation of the group velocity, spatial wavelength and dominant frequency of the vortex shedding process. The dimensionless shedding wave number parameter makes evident that the modification of the shear layer thickness at separation due to Reynolds number variation mainly drives the length scale of the rollup vortices, while higher FSTI levels force the onset of the shedding phenomenon to occur upstream due to the higher velocity fluctuations penetrating into the separating boundary layer.

  12. Negative Magnus Effect on a Rotating Sphere at around the Critical Reynolds Number

    International Nuclear Information System (INIS)

    Muto, Masaya; Watanabe, Hiroaki; Tsubokura, Makoto; Oshima, Nobuyuki

    2011-01-01

    Negative Magnus lift acting on a sphere rotating about the axis perpendicular to an incoming flow is investigated using large-eddy simulation at three Reynolds numbers of 1.0× 10 4 , 2.0 × 10 5 , and 1.14 × 10 6 . The numerical methods adopted are first validated on a non-rotating sphere and the spatial resolution around the sphere is determined so as to reproduce the laminar separation, reattachment, and turbulent transition of the boundary layer observed at around the critical Reynolds number. In the rotating sphere, positive or negative Magnus effect is observed depending on the Reynolds number and the rotating speed imposed. At the Reynolds number in the subcritical or supercritical region, the direction of the lift force follows the Magnus effect to be independent of the rotational speed tested here. In contrast, negative lift is observed at the Reynolds number at the critical region when particular rotating speeds are imposed. The negative Magnus effect is discussed in the context of the suppression or promotion of boundary layer transition around the separation point.

  13. Scaling of Polymer Degradation Rate within a High-Reynolds-Number Turbulent Boundary Layer

    Science.gov (United States)

    Elbing, Brian; Solomon, Michael; Perlin, Marc; Dowling, David; Ceccio, Steven

    2009-11-01

    An experiment conducted at the U.S. Navy's Large Cavitation Channel on a 12.9 m long flat-plate test model produced the first quantitative measurements of polymer molecular weight within a turbulent boundary layer. Testing was conducted at speeds to 20 m/s and downstream distance based Reynolds numbers to 220 million. These results showed that the rate of polymer degradation by scission of the polymer chains increases with increased speed, downstream distance and surface roughness. With the surface fully rough at 20 m/s there was no measureable level of drag reduction at the first measurement location (0.56 m downstream of injection). These results are scaled with the assumption that the rate of degradation is dependent on the polymer residence time in the flow and the local shear rate. A successful collapse of the data within the measurement uncertainty was achieved over a range of flow speed (6.6 to 20 m/s), surface roughness (smooth and fully rough) and downstream distance from injection (0.56 to 9.28 m).

  14. Investigating the round air jet dynamics at low Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Lemanov Vadim

    2017-01-01

    Full Text Available The laminar-turbulent transition in a round jet flowing from a cylindrical channel with the diameter of 3.2 mm was studied experimentally. In experiments, the range of Reynolds numbers determined by the mean-flow velocity was Re = Ud/v = 700-12000. The measurements were carried out using a PIV system and one-component hot-wire anemometer. The profiles of average velocities and their pulsations in the zone of laminar-turbulent transition were obtained, as well as axial distributions of longitudinal velocity and pulsations of longitudinal velocity.

  15. Scalar transport across the turbulent/non-turbulent interface in jets: Schmidt number effects

    Science.gov (United States)

    Silva, Tiago S.; B. da Silva, Carlos; Idmec Team

    2016-11-01

    The dynamics of a passive scalar field near a turbulent/non-turbulent interface (TNTI) is analysed through direct numerical simulations (DNS) of turbulent planar jets, with Reynolds numbers ranging from 142 <= Reλ <= 246 , and Schmidt numbers from 0 . 07 <= Sc <= 7 . The steepness of the scalar gradient, as observed from conditional profiles near the TNTI, increases with the Schmidt number. Conditional scalar gradient budgets show that for low and moderate Schmidt numbers a diffusive superlayer emerges at the TNTI, where the scalar gradient diffusion dominates, while the production is negligible. For low Schmidt numbers the growth of the turbulent front is commanded by the molecular diffusion, whereas the scalar gradient convection is negligible. The authors acknowledge the Laboratory for Advanced Computing at University of Coimbra for providing HPC, computing, consulting resources that have contributed to the research results reported within this paper. URL http://www.lca.uc.pt.

  16. Negative Magnus lift on a rotating sphere at around the critical Reynolds number

    Science.gov (United States)

    Muto, Masaya; Tsubokura, Makoto; Oshima, Nobuyuki

    2012-01-01

    Negative Magnus lift acting on a sphere rotating about the axis perpendicular to an incoming flow was investigated using large-eddy simulation at three Reynolds numbers of 1.0 × 104, 2.0 × 105, and 1.14 × 106. The numerical methods used were first validated on a non-rotating sphere, and the spatial resolution around the sphere was determined so as to reproduce the laminar separation, reattachment, and turbulent transition of the boundary layer observed in the vicinity of the critical Reynolds number. The rotating sphere exhibited a positive or negative Magnus effect depending on the Reynolds number and the imposed rotating speed. At Reynolds numbers in the subcritical or supercritical regimes, the direction of the Magnus lift force was independent of the rotational speed. In contrast, the lift force was negative in the critical regime when particular rotating speeds were imposed. This negative Magnus effect was investigated in the context of suppression or promotion of boundary layer transition around the separation point.

  17. Reynolds-averaged Navier-Stokes investigation of high-lift low-pressure turbine blade aerodynamics at low Reynolds number

    Science.gov (United States)

    Arko, Bryan M.

    Design trends for the low-pressure turbine (LPT) section of modern gas turbine engines include increasing the loading per airfoil, which promises a decreased airfoil count resulting in reduced manufacturing and operating costs. Accurate Reynolds-Averaged Navier-Stokes predictions of separated boundary layers and transition to turbulence are needed, as the lack of an economical and reliable computational model has contributed to this high-lift concept not reaching its full potential. Presented here for what is believed to be the first time applied to low-Re computations of high-lift linear cascade simulations is the Abe-Kondoh-Nagano (AKN) linear low-Re two-equation turbulence model which utilizes the Kolmogorov velocity scale for improved predictions of separated boundary layers. A second turbulence model investigated is the Kato-Launder modified version of the AKN, denoted MPAKN, which damps turbulent production in highly strained regions of flow. Fully Laminar solutions have also been calculated in an effort to elucidate the transitional quality of the turbulence model solutions. Time accurate simulations of three modern high-lift blades at a Reynolds number of 25,000 are compared to experimental data and higher-order computations in order to judge the accuracy of the results, where it is shown that the RANS simulations with highly refined grids can produce both quantitatively and qualitatively similar separation behavior as found in experiments. In particular, the MPAKN model is shown to predict the correct boundary layer behavior for all three blades, and evidence of transition is found through inspection of the components of the Reynolds Stress Tensor, spectral analysis, and the turbulence production parameter. Unfortunately, definitively stating that transition is occurring becomes an uncertain task, as similar evidence of the transition process is found in the Laminar predictions. This reveals that boundary layer reattachment may be a result of laminar

  18. Effect of Reynolds number and inflow parameters on mean and turbulent flow over complex topography

    DEFF Research Database (Denmark)

    Kilpatrick, Ryan; Hangan, Horia; Siddiqui, Kamran

    2016-01-01

    inflow conditions were tested in order to isolate the impact of key parameters such as Reynolds number, inflow shear profile, and effective roughness, on flow behaviour over the escarpment. The results show that the mean flow behaviour was generally not affected by the Reynolds number; however, a slight...... (TKE) over the escarpment was found be a strong function of inflow roughness and a weak function of the Reynolds number. The local change in the inflow wind shear was found to have the most significant influence on the TKE magnitude, which more closely approximated the full-scale TKE data, a result...

  19. Numerical Investigation of Transitional Flow over a Backward Facing Step Using a Low Reynolds Number k-ε Model

    DEFF Research Database (Denmark)

    Skovgaard, M.; Nielsen, Peter V.

    In this paper it is investigated if it is possible to simulate and capture some of the low Reynolds number effects numerically using time averaged momentum equations and a low Reynolds number k-f model. The test case is the larninar to turbulent transitional flow over a backward facing step...

  20. RANS / LES coupling applied to high Reynolds number turbulent flows of the nuclear industry; Application du couplage RANS / LES aux ecoulements turbulents a haut nombre de Reynolds de l'industrie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Benarafa, Y

    2005-12-15

    The main issue to perform a computational study of high Reynolds numbered turbulent flows consists on predicting their unsteadiness without implying a tremendous computational cost. First, the main drawbacks of large-eddy simulation with standard wall model on a coarse mesh for a plane channel flow are highlighted. To correct these drawbacks two coupling RANS/LES methods have been proposed. The first one relies on a sophisticated wall model (TBLE) which consists on solving Thin Boundary Layer Equations with a RANS type turbulent closure in the near wall region. The second one consists on a RANS/LES methods have been proposed. The second one consists on a RANS/LES coupling method using a forcing term approach. These various approaches have been implemented in the TRIO-U code developed at CEA (French Atomic Center) at Grenoble, France. The studied flow configurations are the fully developed plane channel flow and a flow around a surface-mounted cubical obstacle. Both approaches provide encouraging results and allow a surface-mounted cubical obstacle. Both approaches provide encouraging results and allow unsteady simulations for a low computational cost. (author)

  1. A nested-LES wall-modeling approach for computation of high Reynolds number equilibrium and non-equilibrium wall-bounded turbulent flows

    Science.gov (United States)

    Tang, Yifeng; Akhavan, Rayhaneh

    2014-11-01

    A nested-LES wall-modeling approach for high Reynolds number, wall-bounded turbulence is presented. In this approach, a coarse-grained LES is performed in the full-domain, along with a nested, fine-resolution LES in a minimal flow unit. The coupling between the two domains is achieved by renormalizing the instantaneous LES velocity fields to match the profiles of kinetic energies of components of the mean velocity and velocity fluctuations in both domains to those of the minimal flow unit in the near-wall region, and to those of the full-domain in the outer region. The method is of fixed computational cost, independent of Reτ , in homogenous flows, and is O (Reτ) in strongly non-homogenous flows. The method has been applied to equilibrium turbulent channel flows at 1000 shear-driven, 3D turbulent channel flow at Reτ ~ 2000 . In equilibrium channel flow, the friction coefficient and the one-point turbulence statistics are predicted in agreement with Dean's correlation and available DNS and experimental data. In shear-driven, 3D channel flow, the evolution of turbulence statistics is predicted in agreement with experimental data of Driver & Hebbar (1991) in shear-driven, 3D boundary layer flow.

  2. Assessment of Reynolds stresses tensor reconstruction methods for synthetic turbulent inflow conditions. Application to hybrid RANS/LES methods

    International Nuclear Information System (INIS)

    Laraufie, Romain; Deck, Sébastien

    2013-01-01

    Highlights: • Present various Reynolds stresses reconstruction methods from a RANS-SA flow field. • Quantify the accuracy of the reconstruction methods for a wide range of Reynolds. • Evaluate the capabilities of the overall process (Reconstruction + SEM). • Provide practical guidelines to realize a streamwise RANS/LES (or WMLES) transition. -- Abstract: Hybrid or zonal RANS/LES approaches are recognized as the most promising way to accurately simulate complex unsteady flows under current computational limitations. One still open issue concerns the transition from a RANS to a LES or WMLES resolution in the stream-wise direction, when near wall turbulence is involved. Turbulence content has then to be prescribed at the transition to prevent from turbulence decay leading to possible flow relaminarization. The present paper aims to propose an efficient way to generate this switch, within the flow, based on a synthetic turbulence inflow condition, named Synthetic Eddy Method (SEM). As the knowledge of the whole Reynolds stresses is often missing, the scope of this paper is focused on generating the quantities required at the SEM inlet from a RANS calculation, namely the first and second order statistics of the aerodynamic field. Three different methods based on two different approaches are presented and their capability to accurately generate the needed aerodynamic values is investigated. Then, the ability of the combination SEM + Reconstruction method to manufacture well-behaved turbulence is demonstrated through spatially developing flat plate turbulent boundary layers. In the mean time, important intrinsic features of the Synthetic Eddy method are pointed out. The necessity of introducing, within the SEM, accurate data, with regards to the outer part of the boundary layer, is illustrated. Finally, user’s guidelines are given depending on the Reynolds number based on the momentum thickness, since one method is suitable for low Reynolds number while the

  3. β-distribution for Reynolds stress and turbulent heat flux in relaxation turbulent boundary layer of compression ramp

    Science.gov (United States)

    Hu, YanChao; Bi, WeiTao; Li, ShiYao; She, ZhenSu

    2017-12-01

    A challenge in the study of turbulent boundary layers (TBLs) is to understand the non-equilibrium relaxation process after sep-aration and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a turbulence model.

  4. Effect of Reynolds number and saturation level on gas diffusion in and out of a superhydrophobic surface

    Science.gov (United States)

    Ling, Hangjian; Katz, Joseph; Fu, Matthew; Hultmark, Marcus

    2017-12-01

    This experimental study investigates the effects of ambient pressure and Reynolds number on the volume of a plastron in a superhydrophobic surface (SHS) due to compression and gas diffusion. The hierarchical SHS consists of nanotextured, ˜100 μm wide spanwise grooves. Microscopic observations measure the time evolution of interface height and contact angle. The water tunnel tests are performed both without flow as well as in transitional and turbulent boundary layers at several Reynolds numbers. Particle image velocimetry is used for estimating the wall shear stress and calculating the momentum thickness for the SHSs under Cassie-Baxter (CB) and Wenzel states as well as a smooth wall at the same conditions. Holographic microscopy is used for determining the wall shear stress directly for one of the CB cases. The mass diffusion rate is calculated from changes to the plastron volume when the liquid is under- or supersaturated. For stationary water, the mass diffusion is slow. With increasing pressure, the interface is initially pinned and then migrates into the groove with high advancing contact angle. Upon subsequent decrease in pressure, the interface migrates upward at a shallow angle and, after being pinned to the tip corner, becomes convex. With flow and exposure to undersaturated liquid, the diffusion-induced wetting also involves pinned and downward migration states, followed by shrinkage of the plastron until it decreases below the resolution limit. The corresponding changes to the velocity profile indicate a transition from slight drag reduction to significant drag increase. In supersaturated water starting at a Wenzel state, a bubble grows from one of the bottom corners until it reaches the other side of the groove. Subsequently, dewetting involves upward migration of the interface, pinning to the tip corners, and formation of a convex interface. The diffusion rate increases with the level of under- or supersaturation and with the Reynolds number. A power

  5. DRE-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers

    Science.gov (United States)

    Malik, Mujeeb; Liao, Wei; Li, Fe; Choudhari, Meelan

    2013-01-01

    Nonlinear parabolized stability equations and secondary instability analyses are used to provide a computational assessment of the potential use of the discrete roughness elements (DRE) technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural laminar flow airfoil with a leading-edge sweep angle of 34.6deg, free-stream Mach number of 0.75 and chord Reynolds numbers of 17 x 10(exp 6), 24 x 10(exp 6) and 30 x 10(exp 6) suggest that DRE could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small wavelength stationary crossflow disturbances (i.e., DRE) also suppresses the growth of most amplified traveling crossflow disturbances.

  6. Influence of initial turbulence level on the flow and sound fields of a subsonic jet at a diameter-based Reynolds number of 10(5)

    OpenAIRE

    Bogey , Christophe; Marsden , Olivier; Bailly , Christophe

    2012-01-01

    International audience; Five isothermal round jets at Mach number M = 0.9 and Reynolds number ReD=10(5) originating from a pipe nozzle are computed by large-eddy simulations to investigate the effects of initial turbulence on flow development and noise generation. In the pipe, the boundary layers are untripped in the first case and tripped numerically in the four others in order to obtain, at the exit, mean velocity profiles similar to a Blasius laminar profile of momentum thickness equal to ...

  7. Osborne Reynolds pipe flow: direct numerical simulation from laminar to fully-developed turbulence

    Science.gov (United States)

    Adrian, R. J.; Wu, X.; Moin, P.; Baltzer, J. R.

    2014-11-01

    Osborne Reynolds' pipe experiment marked the onset of modern viscous flow research, yet the detailed mechanism carrying the laminar state to fully-developed turbulence has been quite elusive, despite notable progress related to dynamic edge-state theory. Here, we continue our direct numerical simulation study on this problem using a 250R long, spatially-developing pipe configuration with various Reynolds numbers, inflow disturbances, and inlet base flow states. For the inlet base flow, both fully-developed laminar profile and the uniform plug profile are considered. Inlet disturbances consist of rings of turbulence of different width and radial location. In all the six cases examined so far, energy norms show exponential growth with axial distance until transition after an initial decay near the inlet. Skin-friction overshoots the Moody's correlation in most, but not all, the cases. Another common theme is that lambda vortices amplified out of susceptible elements in the inlet disturbances trigger rapidly growing hairpin packets at random locations and times, after which infant turbulent spots appear. Mature turbulent spots in the pipe transition are actually tight concentrations of hairpin packets looking like a hairpin forest. The plug flow inlet profile requires much stronger disturbances to transition than the parabolic profile.

  8. Vortex-induced vibrations of circular cylinder in cross flow at supercritical Reynolds numbers; Chorinkai Reynolds su ryoiki ni okeru enchu no uzu reiki shindo

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, T.; Nakao, T.; Takahashi, M.; Hayashi, M.; Goto, N. [Hitachi, Ltd., Tokyo (Japan)

    1999-07-25

    Vortex-induced vibrations were measured for a circular cylinder subjected to a water cross flow at supercritical Reynolds numbers for a wide range of reduced velocities. Turbulence intensities were changed from 1% to 13% in order to investigate the effect of the Strouhal number on the region of synchronization by symmetrical and Karman vortex shedding. The reduced damping of the test cylinder was about 0.1 in water. The surface roughness of the cylinder was a mirror-polished surface. Strouhal number decreased from about 0.48 to 0.29 with increasing turbulence intensity. Synchronized vibrations were observed even at supercritical Reynolds numbers where fluctuating fluid force was small. Reduced velocities at which drag and lift direction lock-in by Karman vortex shedding were initiated decreased with increasing Strouhal number. When Strouhal number was about 0.29, the self-excited vibration in drag direction by symmetrical vortex shedding began at which the frequency ratio of Karman vortex shedding frequency to the natural frequency of cylinder was 0.32. (author)

  9. Dissipative Effects on Inertial-Range Statistics at High Reynolds Numbers.

    Science.gov (United States)

    Sinhuber, Michael; Bewley, Gregory P; Bodenschatz, Eberhard

    2017-09-29

    Using the unique capabilities of the Variable Density Turbulence Tunnel at the Max Planck Institute for Dynamics and Self-Organization, Göttingen, we report experimental measurements in classical grid turbulence that uncover oscillations of the velocity structure functions in the inertial range. This was made possible by measuring extremely long time series of up to 10^{10} samples of the turbulent fluctuating velocity, which corresponds to O(10^{7}) integral length scales. The measurements were conducted in a well-controlled environment at a wide range of high Reynolds numbers from R_{λ}=110 up to R_{λ}=1600, using both traditional hot-wire probes as well as the nanoscale thermal anemometry probe developed at Princeton University. An implication of the observed oscillations is that dissipation influences the inertial-range statistics of turbulent flows at scales significantly larger than predicted by current models and theories.

  10. Theory of viscous transonic flow over airfoils at high Reynolds number

    Science.gov (United States)

    Melnik, R. E.; Chow, R.; Mead, H. R.

    1977-01-01

    This paper considers viscous flows with unseparated turbulent boundary layers over two-dimensional airfoils at transonic speeds. Conventional theoretical methods are based on boundary layer formulations which do not account for the effect of the curved wake and static pressure variations across the boundary layer in the trailing edge region. In this investigation an extended viscous theory is developed that accounts for both effects. The theory is based on a rational analysis of the strong turbulent interaction at airfoil trailing edges. The method of matched asymptotic expansions is employed to develop formal series solutions of the full Reynolds equations in the limit of Reynolds numbers tending to infinity. Procedures are developed for combining the local trailing edge solution with numerical methods for solving the full potential flow and boundary layer equations. Theoretical results indicate that conventional boundary layer methods account for only about 50% of the viscous effect on lift, the remaining contribution arising from wake curvature and normal pressure gradient effects.

  11. A turbulence model for large interfaces in high Reynolds two-phase CFD

    International Nuclear Information System (INIS)

    Coste, P.; Laviéville, J.

    2015-01-01

    Highlights: • Two-phase CFD commonly involves interfaces much larger than the computational cells. • A two-phase turbulence model is developed to better take them into account. • It solves k–epsilon transport equations in each phase. • The special treatments and transfer terms at large interfaces are described. • Validation cases are presented. - Abstract: A model for two-phase (six-equation) CFD modelling of turbulence is presented, for the regions of the flow where the liquid–gas interface takes place on length scales which are much larger than the typical computational cell size. In the other regions of the flow, the liquid or gas volume fractions range from 0 to 1. Heat and mass transfer, compressibility of the fluids, are included in the system, which is used at high Reynolds numbers in large scale industrial calculations. In this context, a model based on k and ε transport equations in each phase was chosen. The paper describes the model, with a focus on the large interfaces, which require special treatments and transfer terms between the phases, including some approaches inspired from wall functions. The validation of the model is based on high Reynolds number experiments with turbulent quantities measurements of a liquid jet impinging a free surface and an air water stratified flow. A steam–water stratified condensing flow experiment is also used for an indirect validation in the case of heat and mass transfer

  12. Experiments on a low aspect ratio wing at low Reynolds numbers

    Science.gov (United States)

    Morse, Daniel R.

    At the start of the 21st century much of the focus of aircraft design has been turned to unmanned aerial vehicles (UAVs) which generally operate at much lower speeds in higher risk areas than manned aircraft. One subset of UAVs are Micro Air Vehicles (MAVs) which usually are no larger than 20cm and rely on non-traditional shapes to generate lift at very low velocities. This purpose of this work is to describe, in detail with experimental methods, the flow field around a low aspect ratio wing operating at low Reynolds numbers and at high angles of attack. Quantitative measurements are obtained by Three Component Time Resolved Particle Image Velocimetry (3C TR PIV) which describe the mean and turbulent flow field. This research focuses on the leading edge separation zone and the vortex shedding process which occurs at the leading edge. Streamwise wing tip vortices which dominate the lift characteristics are described with flow visualization and 3C TR PIV measurements. Turbulent Kinetic Energy (TKE) is described at the leading edge over several angles of attack. Turbulent Reynolds stresses in all three directions are described over the wing span and several Reynolds numbers. Two primary cyclic processes are observed within the flow field; one low frequency oscillation in the separated region and one high frequency event associated with leading edge vortex formation and convection. Two length scales are proposed and are shown to match well with each other, one based on leading edge vortex shedding frequency and convective velocity and the other based on mean vortex separation distance. A new method of rendering velocity frequency content over large data sets is proposed and used to illustrate the different frequencies observed at the leading edge.

  13. First measurement of the magnetic turbulence induced Reynolds stress in a tokamak

    International Nuclear Information System (INIS)

    Xu Guosheng; Wan Baonian; Song Mei

    2003-01-01

    Reynolds stress component due to magnetic turbulence was first measured in the plasma edge region of the HT-7 superconducting tokamak using an insertable magnetic probe. A radial gradient of magnetic Reynolds stress was observed to be close to the velocity shear layer location; however, in this experiment its contribution to driving the poloidal flows is small compared to the electrostatic component. The electron heat transport driven by magnetic turbulence is quite small and cannot account for the total energy transport at the plasma edge

  14. The Role of Separation Bubbles on the Aerodynamic Characteristics of Airfoils, Including Stall and Post-Stall, at Low Reynolds Numbers

    Science.gov (United States)

    Chen, Hsun H.; Cebeci, Tuncer

    2007-01-01

    Airfoils at high Reynolds numbers, in general, have small separation bubbles that are usually confined to the leading edge. Since the Reynolds number is large, the turbulence model for the transition region between the laminar and turbulent flow is not important. Furthermore, the onset of transition occurs either at separation or prior to separation and can be predicted satisfactorily by empirical correlations when the incident angle is small and can be assumed to correspond to laminar separation when the correlations do not apply, i.e., at high incidence angles.

  15. DNS of turbulent channel flow with conjugate heat transfer at Prandtl number 0.01

    Energy Technology Data Exchange (ETDEWEB)

    Tiselj, Iztok, E-mail: iztok.tiselj@ijs.si [' Jozef Stefan' Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Cizelj, Leon, E-mail: leon.cizelj@ijs.si [' Jozef Stefan' Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer DNS database for turbulent channel flow at Prandtl number 0.01 and various Re{sub {tau}}. Black-Right-Pointing-Pointer Two ideal boundary condition analyzed: non-fluctuating and fluctuating temperature. Black-Right-Pointing-Pointer DNS database with conjugate heat transfer for liquid sodium-steel contact. Black-Right-Pointing-Pointer Penetration of the turbulent temperature fluctuations into the solid wall analyzed. - Abstract: Direct Numerical Simulation (DNS) of the fully developed velocity and temperature fields in a turbulent channel flow coupled with the unsteady conduction in the heated walls was carried out. Simulations were performed with passive scalar approximation at Prandtl number 0.01, which roughly corresponds to the Prandtl number of liquid sodium. DNSs were performed at friction Reynolds numbers 180, 395 and 590. The obtained statistical quantities like mean temperatures, profiles of the root-mean-square (RMS) temperature fluctuations for various thermal properties of wall and fluid, and various wall thicknesses were obtained from a pseudo-spectral channel-flow code. Even for the highest implemented Reynolds number the temperature profile in the fluid does not exhibit log-law region and the near-wall RMS temperature fluctuations show Reynolds number dependence. Conjugate heat transfer simulations of liquid sodium-steel system point to a relatively intensive penetration of turbulent temperature fluctuations into the heated wall. Database containing the results is available in a digital form.

  16. DNS of turbulent channel flow with conjugate heat transfer at Prandtl number 0.01

    International Nuclear Information System (INIS)

    Tiselj, Iztok; Cizelj, Leon

    2012-01-01

    Highlights: ► DNS database for turbulent channel flow at Prandtl number 0.01 and various Re τ . ► Two ideal boundary condition analyzed: non-fluctuating and fluctuating temperature. ► DNS database with conjugate heat transfer for liquid sodium–steel contact. ► Penetration of the turbulent temperature fluctuations into the solid wall analyzed. - Abstract: Direct Numerical Simulation (DNS) of the fully developed velocity and temperature fields in a turbulent channel flow coupled with the unsteady conduction in the heated walls was carried out. Simulations were performed with passive scalar approximation at Prandtl number 0.01, which roughly corresponds to the Prandtl number of liquid sodium. DNSs were performed at friction Reynolds numbers 180, 395 and 590. The obtained statistical quantities like mean temperatures, profiles of the root-mean-square (RMS) temperature fluctuations for various thermal properties of wall and fluid, and various wall thicknesses were obtained from a pseudo-spectral channel-flow code. Even for the highest implemented Reynolds number the temperature profile in the fluid does not exhibit log-law region and the near-wall RMS temperature fluctuations show Reynolds number dependence. Conjugate heat transfer simulations of liquid sodium–steel system point to a relatively intensive penetration of turbulent temperature fluctuations into the heated wall. Database containing the results is available in a digital form.

  17. Aerodynamic characteristics and thermal structure of nonpremixed reacting swirling wakes at low Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Rong F. [Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei (China); Yen, Shun C. [Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung (China)

    2008-12-15

    The aerodynamic characteristics and thermal structure of uncontrolled and controlled swirling double-concentric jet flames at low Reynolds numbers are experimentally studied. The swirl and Reynolds numbers are lower than 0.6 and 2000, respectively. The flow characteristics are diagnosed by the laser-light-sheet-assisted Mie scattering flow visualization method and particle image velocimetry (PIV). The thermal structure is measured by a fine-wire thermocouple. The flame shapes, combined images of flame and flow, velocity vector maps, streamline patterns, velocity and turbulence distributions, flame lengths, and temperature distributions are discussed. The flow patterns of the no-control case exhibit an open-top, single-ring vortex sitting on the blockage disc with a jetlike swirling flow evolving from the central disc face toward the downstream area. The rotation direction and size of the near-disc vortex, as well as the flow properties, change in different ranges of annulus swirl number and therefore induce three characteristic flame modes: weak swirling flame, lifted flame, and turbulent reattached flame. Because the near-disc vortex is open-top, the radial dispersion of the fuel-jet fluids is not significantly enhanced by the annulus swirling flow. The flows of the reacting swirling double-concentric jets at such low swirl and Reynolds numbers therefore present characteristics of diffusion jet flames. In the controlled case, the axial momentum of the central fuel jet is deflected radially by a control disc placed above the blockage disc. This arrangement can induce a large near-disc recirculation bubble and high turbulence intensities. The enhanced mixing hence tremendously shortens the flame length and enlarges the flame width. (author)

  18. A comparison of three approaches to compute the effective Reynolds number of the implicit large-eddy simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ye [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thornber, Ben [The Univ. of Sydney, Sydney, NSW (Australia)

    2016-04-12

    Here, the implicit large-eddy simulation (ILES) has been utilized as an effective approach for calculating many complex flows at high Reynolds number flows. Richtmyer–Meshkov instability (RMI) induced flow can be viewed as a homogeneous decaying turbulence (HDT) after the passage of the shock. In this article, a critical evaluation of three methods for estimating the effective Reynolds number and the effective kinematic viscosity is undertaken utilizing high-resolution ILES data. Effective Reynolds numbers based on the vorticity and dissipation rate, or the integral and inner-viscous length scales, are found to be the most self-consistent when compared to the expected phenomenology and wind tunnel experiments.

  19. The Variation of Slat Noise with Mach and Reynolds Numbers

    Science.gov (United States)

    Lockard, David P.; Choudhari, Meelan M.

    2011-01-01

    The slat noise from the 30P30N high-lift system has been computed using a computational fluid dynamics code in conjunction with a Ffowcs Williams-Hawkings solver. By varying the Mach number from 0.13 to 0.25, the noise was found to vary roughly with the 5th power of the speed. Slight changes in the behavior with directivity angle could easily account for the different speed dependencies reported in the literature. Varying the Reynolds number from 1.4 to 2.4 million resulted in almost no differences, and primarily served to demonstrate the repeatability of the results. However, changing the underlying hybrid Reynolds-averaged-Navier-Stokes/Large-Eddy-Simulation turbulence model significantly altered the mean flow because of changes in the flap separation. However, the general trends observed in both the acoustics and near-field fluctuations were similar for both models.

  20. Computation of high Reynolds number internal/external flows

    International Nuclear Information System (INIS)

    Cline, M.C.; Wilmoth, R.G.

    1981-01-01

    A general, user oriented computer program, called VNAP2, has been developed to calculate high Reynolds number, internal/external flows. VNAP2 solves the two-dimensional, time-dependent Navier-Stokes equations. The turbulence is modeled with either a mixing-length, a one transport equation, or a two transport equation model. Interior grid points are computed using the explicit MacCormack scheme with special procedures to speed up the calculation in the fine grid. All boundary conditions are calculated using a reference plane characteristic scheme with the viscous terms treated as source terms. Several internal, external, and internal/external flow calculations are presented

  1. Computation of high Reynolds number internal/external flows

    Science.gov (United States)

    Cline, M. C.; Wilmoth, R. G.

    1981-01-01

    A general, user oriented computer program, called VNAP2, was developed to calculate high Reynolds number, internal/ external flows. The VNAP2 program solves the two dimensional, time dependent Navier-Stokes equations. The turbulence is modeled with either a mixing-length, a one transport equation, or a two transport equation model. Interior grid points are computed using the explicit MacCormack Scheme with special procedures to speed up the calculation in the fine grid. All boundary conditions are calculated using a reference plane characteristic scheme with the viscous terms treated as source terms. Several internal, external, and internal/external flow calculations are presented.

  2. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance

    International Nuclear Information System (INIS)

    Ling, Julia; Kurzawski, Andrew; Templeton, Jeremy

    2016-01-01

    There exists significant demand for improved Reynolds-averaged Navier–Stokes (RANS) turbulence models that are informed by and can represent a richer set of turbulence physics. This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from high-fidelity simulation data. A novel neural network architecture is proposed which uses a multiplicative layer with an invariant tensor basis to embed Galilean invariance into the predicted anisotropy tensor. It is demonstrated that this neural network architecture provides improved prediction accuracy compared with a generic neural network architecture that does not embed this invariance property. Furthermore, the Reynolds stress anisotropy predictions of this invariant neural network are propagated through to the velocity field for two test cases. For both test cases, significant improvement versus baseline RANS linear eddy viscosity and nonlinear eddy viscosity models is demonstrated.

  3. Reynolds stress turbulence model applied to two-phase pressurized thermal shocks in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mérigoux, Nicolas, E-mail: nicolas.merigoux@edf.fr; Laviéville, Jérôme; Mimouni, Stéphane; Guingo, Mathieu; Baudry, Cyril

    2016-04-01

    Highlights: • NEPTUNE-CFD is used to model two-phase PTS. • k-ε model did produce some satisfactory results but also highlights some weaknesses. • A more advanced turbulence model has been developed, validated and applied for PTS. • Coupled with LIM, the first results confirmed the increased accuracy of the approach. - Abstract: Nuclear power plants are subjected to a variety of ageing mechanisms and, at the same time, exposed to potential pressurized thermal shock (PTS) – characterized by a rapid cooling of the internal Reactor Pressure Vessel (RPV) surface. In this context, NEPTUNE-CFD is used to model two-phase PTS and give an assessment on the structural integrity of the RPV. The first available choice was to use standard first order turbulence model (k-ε) to model high-Reynolds number flows encountered in Pressurized Water Reactor (PWR) primary circuits. In a first attempt, the use of k-ε model did produce some satisfactory results in terms of condensation rate and temperature field distribution on integral experiments, but also highlights some weaknesses in the way to model highly anisotropic turbulence. One way to improve the turbulence prediction – and consequently the temperature field distribution – is to opt for more advanced Reynolds Stress turbulence Model. After various verification and validation steps on separated effects cases – co-current air/steam-water stratified flows in rectangular channels, water jet impingements on water pool free surfaces – this Reynolds Stress turbulence Model (R{sub ij}-ε SSG) has been applied for the first time to thermal free surface flows under industrial conditions on COSI and TOPFLOW-PTS experiments. Coupled with the Large Interface Model, the first results confirmed the adequacy and increased accuracy of the approach in an industrial context.

  4. Low-Rynolds number k-ε turbulence model for calculation of fast-reactor-channel flows

    International Nuclear Information System (INIS)

    Mikhin, V.I.

    2000-01-01

    For calculating the turbulent flows in the complex geometry channels typical for the nuclear reactor installation elements the low-Reynolds-number k-ε turbulence model with the model functions not containing the spatial coordinate like y + is proposed. Such spatial coordinate is usually used for modeling the turbulence near the wall correctly. The model completed on the developed flow of the non-viscous incompressible liquid in the plane channel correctly describes the transition from the laminar regime to the turbulent one. The calculated skin friction coefficients obey the well-known Dean and Zarbi - Reynolds laws. The mean velocity distributions are close to that obtained from the empirical three-layer Karman model. (author)

  5. Applications of Analytical Self-Similar Solutions of Reynolds-Averaged Models for Instability-Induced Turbulent Mixing

    Science.gov (United States)

    Hartland, Tucker; Schilling, Oleg

    2017-11-01

    Analytical self-similar solutions to several families of single- and two-scale, eddy viscosity and Reynolds stress turbulence models are presented for Rayleigh-Taylor, Richtmyer-Meshkov, and Kelvin-Helmholtz instability-induced turbulent mixing. The use of algebraic relationships between model coefficients and physical observables (e.g., experimental growth rates) following from the self-similar solutions to calibrate a member of a given family of turbulence models is shown. It is demonstrated numerically that the algebraic relations accurately predict the value and variation of physical outputs of a Reynolds-averaged simulation in flow regimes that are consistent with the simplifying assumptions used to derive the solutions. The use of experimental and numerical simulation data on Reynolds stress anisotropy ratios to calibrate a Reynolds stress model is briefly illustrated. The implications of the analytical solutions for future Reynolds-averaged modeling of hydrodynamic instability-induced mixing are briefly discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Computational domain length and Reynolds number effects on large-scale coherent motions in turbulent pipe flow

    Science.gov (United States)

    Feldmann, Daniel; Bauer, Christian; Wagner, Claus

    2018-03-01

    We present results from direct numerical simulations (DNS) of turbulent pipe flow at shear Reynolds numbers up to Reτ = 1500 using different computational domains with lengths up to ?. The objectives are to analyse the effect of the finite size of the periodic pipe domain on large flow structures in dependency of Reτ and to assess a minimum ? required for relevant turbulent scales to be captured and a minimum Reτ for very large-scale motions (VLSM) to be analysed. Analysing one-point statistics revealed that the mean velocity profile is invariant for ?. The wall-normal location at which deviations occur in shorter domains changes strongly with increasing Reτ from the near-wall region to the outer layer, where VLSM are believed to live. The root mean square velocity profiles exhibit domain length dependencies for pipes shorter than 14R and 7R depending on Reτ. For all Reτ, the higher-order statistical moments show only weak dependencies and only for the shortest domain considered here. However, the analysis of one- and two-dimensional pre-multiplied energy spectra revealed that even for larger ?, not all physically relevant scales are fully captured, even though the aforementioned statistics are in good agreement with the literature. We found ? to be sufficiently large to capture VLSM-relevant turbulent scales in the considered range of Reτ based on our definition of an integral energy threshold of 10%. The requirement to capture at least 1/10 of the global maximum energy level is justified by a 14% increase of the streamwise turbulence intensity in the outer region between Reτ = 720 and 1500, which can be related to VLSM-relevant length scales. Based on this scaling anomaly, we found Reτ⪆1500 to be a necessary minimum requirement to investigate VLSM-related effects in pipe flow, even though the streamwise energy spectra does not yet indicate sufficient scale separation between the most energetic and the very long motions.

  7. Reynolds stress structures in a self-similar adverse pressure gradient turbulent boundary layer at the verge of separation.

    Science.gov (United States)

    Atkinson, C.; Sekimoto, A.; Jiménez, J.; Soria, J.

    2018-04-01

    Mean Reynolds stress profiles and instantaneous Reynolds stress structures are investigated in a self-similar adverse pressure gradient turbulent boundary layer (APG-TBL) at the verge of separation using data from direct numerical simulations. The use of a self-similar APG-TBL provides a flow domain in which the flow gradually approaches a constant non-dimensional pressure gradient, resulting in a flow in which the relative contribution of each term in the governing equations is independent of streamwise position over a domain larger than two boundary layer thickness. This allows the flow structures to undergo a development that is less dependent on the upstream flow history when compared to more rapidly decelerated boundary layers. This APG-TBL maintains an almost constant shape factor of H = 2.3 to 2.35 over a momentum thickness based Reynolds number range of Re δ 2 = 8420 to 12400. In the APG-TBL the production of turbulent kinetic energy is still mostly due to the correlation of streamwise and wall-normal fluctuations, 〈uv〉, however the contribution form the other components of the Reynolds stress tensor are no longer negligible. Statistical properties associated with the scale and location of sweeps and ejections in this APG-TBL are compared with those of a zero pressure gradient turbulent boundary layer developing from the same inlet profile, resulting in momentum thickness based range of Re δ 2 = 3400 to 3770. In the APG-TBL the peak in both the mean Reynolds stress and the production of turbulent kinetic energy move from the near wall region out to a point consistent with the displacement thickness height. This is associated with a narrower distribution of the Reynolds stress and a 1.6 times higher relative number of wall-detached negative uv structures. These structures occupy 5 times less of the boundary layer volume and show a similar reduction in their streamwise extent with respect to the boundary layer thickness. A significantly lower percentage

  8. Numerical simulation of 3D backward facing step flows at various Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Louda Petr

    2015-01-01

    Full Text Available The work deals with the numerical simulation of 3D turbulent flow over backward facing step in a narrow channel. The mathematical model is based on the RANS equations with an explicit algebraic Reynolds stress model (EARSM. The numerical method uses implicit finite volume upwind discretization. While the eddy viscosity models fail in predicting complex 3D flows, the EARSM model is shown to provide results which agree well with experimental PIV data. The reference experimental data provide the 3D flow field. The simulations are compared with experiment for 3 values of Reynolds number.

  9. Turbulence characteristics in cylindrical liquid jets

    International Nuclear Information System (INIS)

    Mansour, A.; Chigier, N.

    1994-01-01

    A study has been made of the flow patterns and turbulence characteristics in free liquid jets in order to determine the rate of decay of turbulence properties along the jet. Mean streamwise velocities and streamwise velocities and streamwise and cross-streamwise turbulence intensities were measured using laser Doppler velocimetry. The jet Reynolds number was varied between 1000 and 30 000, with the diameter of the liquid jet D=3.051 mm. Using a power law model for the time decay of turbulence kinetic energy, it was found that turbulence decays, on average with an exponent N=1, independent of the Reynolds number. A constant power for the decay implies Reynolds number similarity throughout this range. Substantial reductions in the degree of anisotropy occur downstream from the injector exit as the jet relaxes from a fully developed turbulent pipe flow profile to a flat profile. For the intermediate range of Reynolds numbers (10 000--20 000), the relaxation distance was 20D, almost independent of the Reynolds number. At high values of Reynolds number (20 000--30 000), the relaxation process was very fast, generally within three diameters from the injector exit

  10. Spatio-temporal structure of turbulent Reynolds stress zonal flow drive in 3D magnetic configuration

    International Nuclear Information System (INIS)

    Schmid, B; Ramisch, M; Manz, P; Stroth, U

    2017-01-01

    The poloidal dependence of the zonal flow drive and the underlying Reynolds stress structure are studied at the stellarator experiment TJ-K by means of a poloidal Langmuir-probe array. This gives the unique possibility to study the locality of the Reynolds stress in a complex toroidal magnetic geometry. It is found that the Reynolds stress is not homogeneously distributed along the flux surface but has a strong poloidal asymmetry where it is concentrated on the outboard side with a maximum above the midplane. The average tilt of the turbulent structures is thereby reflected in the anisotropy of the bivariant velocity distribution. Using a conditional averaging technique the temporal dynamics reveal that the zonal flow drive is also maximal in this particular region. The results suggest an influence of the magnetic field line curvature, which controls the underlying plasma turbulence. The findings are a basis for further comparison with turbulence simulations in 3D geometry and demonstrate the need for a global characterisation of plasma turbulence. (paper)

  11. An experimental investigation of the low Reynolds number performance of the Lissaman 7769 airfoil

    Science.gov (United States)

    Conigliaro, P. E.

    1983-01-01

    A Lissaman 7769 airfoil, used on the Gossamer Condor and Gossamer Albatross human-powered aircraft, was tested in a low turbulence subsonic wind tunnel. Lift and drag data were collected at chord Reynolds numbers of 100,000, 150,000, 200,000, 250,000, and 300,000; at angles of attack from -10 to +20 deg by using an external strain gage force balance. Lift curves, drag curves, and drag polars were generated from both uncorrected data and data corrected for wind tunnel blockage effects. A flow visualization study was performed to correlate with the force data. The results of the investigation have shown that the airfoil exhibits a significant degradation in performance for chord Reynolds numbers below 150,000.

  12. Turbulent boundary layer in high Rayleigh number convection in air.

    Science.gov (United States)

    du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian

    2014-03-28

    Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra=1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.

  13. Discrete-Roughness-Element-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers

    Science.gov (United States)

    Malik, Mujeeb; Liao, Wei; Li, Fei; Choudhari, Meelan

    2015-01-01

    Nonlinear parabolized stability equations and secondary-instability analyses are used to provide a computational assessment of the potential use of the discrete-roughness-element technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural-laminar-flow airfoil with a leading-edge sweep angle of 34.6 deg, freestream Mach number of 0.75, and chord Reynolds numbers of 17 × 10(exp 6), 24 × 10(exp 6), and 30 × 10(exp 6) suggest that discrete roughness elements could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small-wavelength stationary crossflow disturbances (i.e., discrete roughness element) also suppresses the growth of most amplified traveling crossflow disturbances.

  14. Modification of the mean near-wall velocity profile of a high-Reynolds number turbulent boundary layer with the injection of drag-reducing polymer solutions

    Science.gov (United States)

    Elbing, Brian R.; Perlin, Marc; Dowling, David R.; Ceccio, Steven L.

    2013-08-01

    The current study explores the influence of polymer drag reduction on the near-wall velocity distribution in a turbulent boundary layer (TBL) and its dependence on Reynolds number. Recent moderate Reynolds number direct numerical simulation and experimental studies presented in White et al. [Phys. Fluids 24, 021701 (2012)], 10.1063/1.3681862 have challenged the classical representation of the logarithmic dependence of the velocity profile for drag-reduced flows, especially at drag reduction levels above 40%. In the present study, high Reynolds number data from a drag reduced TBL is presented and compared to the observations of White et al. [Phys. Fluids 24, 021701 (2012)], 10.1063/1.3681862. Data presented here were acquired in the TBL flow on a 12.9-m-long flat plate at speeds to 20.3 m s-1, achieving momentum thickness based Reynolds number to 1.5 × 105, which is an order of magnitude greater than that available in the literature. Polyethylene oxide solutions with an average molecular weight of 3.9 × 106 g mol-1 were injected into the flow at various concentrations and volumetric fluxes to achieve a particular level of drag reduction. The resulting mean near-wall velocity profiles show distinctly different behavior depending on whether they fall in the low drag reduction (LDR) or the high drag reduction (HDR) regimes, which are nominally divided at 40% drag reduction. In the LDR regime, the classical view that the logarithmic slope remains constant at the Newtonian value and the intercept constant increases with increasing drag reduction appears to be valid. However, in the HDR regime the behavior is no longer universal. The intercept constant continues to increase linearly in proportion to the drag reduction level until a Reynolds-number-dependent threshold is achieved, at which point the intercept constant rapidly decreases to that predicted by the ultimate profile. The rapid decrease in the intercept constant is due to the corresponding increase in the

  15. Evaluation of Full Reynolds Stress Turbulence Models in FUN3D

    Science.gov (United States)

    Dudek, Julianne C.; Carlson, Jan-Renee

    2017-01-01

    Full seven-equation Reynolds stress turbulence models are a relatively new and promising tool for todays aerospace technology challenges. This paper uses two stress-omega full Reynolds stress models to evaluate challenging flows including shock-wave boundary layer interactions, separation and mixing layers. The Wilcox and the SSGLRR full second-moment Reynolds stress models are evaluated for four problems: a transonic two-dimensional diffuser, a supersonic axisymmetric compression corner, a compressible planar shear layer, and a subsonic axisymmetric jet. Simulation results are compared with experimental data and results using the more commonly used Spalart-Allmaras (SA) one-equation and the Menter Shear Stress Transport (SST) two-equation models.

  16. Statistical analysis of the turbulent Reynolds stress and its link to the shear flow generation in a cylindrical laboratory plasma device

    International Nuclear Information System (INIS)

    Yan, Z.; Yu, J. H.; Holland, C.; Xu, M.; Mueller, S. H.; Tynan, G. R.

    2008-01-01

    The statistical properties of the turbulent Reynolds stress arising from collisional drift turbulence in a magnetized plasma column are studied and a physical picture of turbulent driven shear flow generation is discussed. The Reynolds stress peaks near the maximal density gradient region, and is governed by the turbulence amplitude and cross-phase between the turbulent radial and azimuthal velocity fields. The amplitude probability distribution function (PDF) of the turbulent Reynolds stress is non-Gaussian and positively skewed at the density gradient maximum. The turbulent ion-saturation (Isat) current PDF shows that the region where the bursty Isat events are born coincides with the positively skewed non-Gaussian Reynolds stress PDF, which suggests that the bursts of particle transport appear to be associated with bursts of momentum transport as well. At the shear layer the density fluctuation radial correlation length has a strong minimum (∼4-6 mm∼0.5C s /Ω ci , where C s is the ion acoustic speed and Ω ci is the ion gyrofrequency), while the azimuthal turbulence correlation length is nearly constant across the shear layer. The results link the behavior of the Reynolds stress, its statistical properties, generation of bursty radially going azimuthal momentum transport events, and the formation of the large-scale shear layer.

  17. Diffusion of Drag-Reducing Polymers within a High-Reynolds-Number, Rough-Wall Turbulent Boundary Layer

    Science.gov (United States)

    Elbing, Brian; Perlin, Marc; Dowling, David; Solomon, Michael; Ceccio, Steven

    2008-11-01

    Two experiments were conducted to investigate polymer drag reduction (PDR) within high Reynolds number (to 200 million based on downstream distance), rough-wall turbulent boundary layers. The first experiment was conducted at the U.S. Navy's Large Cavitation Channel on a 12.9 m long flat-plate at speeds to 20 m/s with the surface hydraulically smooth and fully rough. Local skin-friction measurements on the smooth and rough surfaces had maximum PDR levels of 65 and 75 percent, respectively. However, PDR decreased with increasing downstream distance and flow speed more rapidly on the rough surface, and at the top speed no measureable level of PDR was observed. The roughness-induced increased diffusion was quantified with near-wall concentration measurements and the second experiment, which measured concentration profiles on a 0.94 m long flat-plate with three surface conditions: smooth, 240-grit, and 60-grit sandpaper. The increased diffusion does not fully explain the smooth-rough PDR differences observed in the first experiment. Rheological analysis of drawn samples from the first experiment indicates that polymer degradation (chain scission) could be responsible for the remaining loss of rough-wall PDR. These results have implications for the cost effectiveness of PDR for surface ships.

  18. Direct and large eddy simulation of turbulent heat transfer at very low Prandtl number: Application to lead–bismuth flows

    International Nuclear Information System (INIS)

    Bricteux, L.; Duponcheel, M.; Winckelmans, G.; Tiselj, I.; Bartosiewicz, Y.

    2012-01-01

    Highlights: ► We perform direct and hybrid-large eddy simulations of high Reynolds and low Prandtl turbulent wall-bounded flows with heat transfer. ► We use a state-of-the-art numerical methods with low energy dissipation and low dispersion. ► We use recent multiscalesubgrid scale models. ► Important results concerning the establishment of near wall modeling strategy in RANS are provided. ► The turbulent Prandtl number that is predicted by our simulation is different than that proposed by some correlations of the literature. - Abstract: This paper deals with the issue of modeling convective turbulent heat transfer of a liquid metal with a Prandtl number down to 0.01, which is the order of magnitude of lead–bismuth eutectic in a liquid metal reactor. This work presents a DNS (direct numerical simulation) and a LES (large eddy simulation) of a channel flow at two different Reynolds numbers, and the results are analyzed in the frame of best practice guidelines for RANS (Reynolds averaged Navier–Stokes) computations used in industrial applications. They primarily show that the turbulent Prandtl number concept should be used with care and that even recent proposed correlations may not be sufficient.

  19. Status and future prospects of using numerical methods to study complex flows at High Reynolds numbers

    Science.gov (United States)

    Maccormack, R. W.

    1978-01-01

    The calculation of flow fields past aircraft configuration at flight Reynolds numbers is considered. Progress in devising accurate and efficient numerical methods, in understanding and modeling the physics of turbulence, and in developing reliable and powerful computer hardware is discussed. Emphasis is placed on efficient solutions to the Navier-Stokes equations.

  20. Formation of free round jets with long laminar regions at large Reynolds numbers

    Science.gov (United States)

    Zayko, Julia; Teplovodskii, Sergey; Chicherina, Anastasia; Vedeneev, Vasily; Reshmin, Alexander

    2018-04-01

    The paper describes a new, simple method for the formation of free round jets with long laminar regions by a jet-forming device of ˜1.5 jet diameters in size. Submerged jets of 0.12 m diameter at Reynolds numbers of 2000-12 560 are experimentally studied. It is shown that for the optimal regime, the laminar region length reaches 5.5 diameters for Reynolds number ˜10 000 which is not achievable for other methods of laminar jet formation. To explain the existence of the optimal regime, a steady flow calculation in the forming unit and a stability analysis of outcoming jet velocity profiles are conducted. The shortening of the laminar regions, compared with the optimal regime, is explained by the higher incoming turbulence level for lower velocities and by the increase of perturbation growth rates for larger velocities. The initial laminar regions of free jets can be used for organising air curtains for the protection of objects in medicine and technologies by creating the air field with desired properties not mixed with ambient air. Free jets with long laminar regions can also be used for detailed studies of perturbation growth and transition to turbulence in round jets.

  1. Design of a High-Reynolds Number Recirculating Water Tunnel

    Science.gov (United States)

    Daniel, Libin; Elbing, Brian

    2014-11-01

    An experimental fluid mechanics laboratory focused on turbulent boundary layers, drag reduction techniques, multiphase flows and fluid-structure interactions has recently been established at Oklahoma State University. This laboratory has three primary components; (1) a recirculating water tunnel, (2) a multiphase pipe flow loop, and (3) a multi-scale flow visualization system. The design of the water tunnel is the focus of this talk. The criteria used for the water tunnel design was that it had to produce a momentum-thickness based Reynolds number in excess of 104, negligible flow acceleration due to boundary layer growth, maximize optical access for use of the flow visualization system, and minimize inlet flow non-uniformity. This Reynolds number was targeted to bridge the gap between typical university/commercial water tunnels (103) and the world's largest water tunnel facilities (105) . These objectives were achieved with a 152 mm (6-inch) square test section that is 1 m long and has a maximum flow speed of 10 m/s. The flow non-uniformity was mitigated with the use of a tandem honeycomb configuration, a settling chamber and an 8.5:1 contraction. The design process that produced this final design will be presented along with its current status.

  2. Elliptic blending model : A new near-wall Reynolds-stress turbulence closure

    NARCIS (Netherlands)

    Manceau, R.; Hanjali?, K.

    2001-01-01

    A new approach to modeling the effects of a solid wall in one-point second-moment (Reynolds-stress) turbulence closures is presented. The model is based on the relaxation of an inhomogeneous (near-wall) formulation of the pressure–strain tensor towards the chosen conventional homogeneous

  3. Active Control of Flow Separation on a High-Lift System with Slotted Flap at High Reynolds Number

    Science.gov (United States)

    Khodadoust, Abdollah; Washburn, Anthony

    2007-01-01

    The NASA Energy Efficient Transport (EET) airfoil was tested at NASA Langley's Low- Turbulence Pressure Tunnel (LTPT) to assess the effectiveness of distributed Active Flow Control (AFC) concepts on a high-lift system at flight scale Reynolds numbers for a medium-sized transport. The test results indicate presence of strong Reynolds number effects on the high-lift system with the AFC operational, implying the importance of flight-scale testing for implementation of such systems during design of future flight vehicles with AFC. This paper describes the wind tunnel test results obtained at the LTPT for the EET high-lift system for various AFC concepts examined on this airfoil.

  4. Conditional analysis near strong shear layers in DNS of isotropic turbulence at high Reynolds number

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Takashi; Kaneda, Yukio [Graduate School of Engineering, Nagoya University (Japan); Hunt, Julian C R, E-mail: ishihara@cse.nagoya-u.ac.jp [University College of London (United Kingdom)

    2011-12-22

    Data analysis of high resolution DNS of isotropic turbulence with the Taylor scale Reynolds number R{sub {lambda}} = 1131 shows that there are thin shear layers consisting of a cluster of strong vortex tubes with typical diameter of order 10{eta}, where {eta} is the Kolmogorov length scale. The widths of the layers are of the order of the Taylor micro length scale. According to the analysis of one of the layers, coarse grained vorticity in the layer are aligned approximately in the plane of the layer so that there is a net mean shear across the layer with a mean velocity jump of the order of the root-mean-square of the fluctuating velocity, and energy dissipation averaged over the layer is larger than ten times the average over the whole flow. The mean and the standard deviation of the energy transfer T(x, {kappa}) from scales larger than 1/{kappa} to scales smaller than 1/{kappa} at position x are largest within the layers (where the most intense vortices and dissipation occur), but are also large just outside the layers (where viscous stresses are weak), by comparison with the average values of T over the whole region. The DNS data are consistent with exterior fluctuation being damped/filtered at the interface of the layer and then selectively amplified within the layer.

  5. Effects of viscoelasticity in the high Reynolds number cylinder wake

    KAUST Repository

    Richter, David

    2012-01-16

    At Re = 3900, Newtonian flow past a circular cylinder exhibits a wake and detached shear layers which have transitioned to turbulence. It is the goal of the present study to investigate the effects which viscoelasticity has on this state and to identify the mechanisms responsible for wake stabilization. It is found through numerical simulations (employing the FENE-P rheological model) that viscoelasticity greatly reduces the amount of turbulence in the wake, reverting it back to a state which qualitatively appears similar to the Newtonian mode B instability which occurs at lower Re. By focusing on the separated shear layers, it is found that viscoelasticity suppresses the formation of the Kelvin-Helmholtz instability which dominates for Newtonian flows, consistent with previous studies of viscoelastic free shear layers. Through this shear layer stabilization, the viscoelastic far wake is then subject to the same instability mechanisms which dominate for Newtonian flows, but at far lower Reynolds numbers. © Copyright Cambridge University Press 2012.

  6. Effects of viscoelasticity in the high Reynolds number cylinder wake

    KAUST Repository

    Richter, David; Iaccarino, Gianluca; Shaqfeh, Eric S. G.

    2012-01-01

    At Re = 3900, Newtonian flow past a circular cylinder exhibits a wake and detached shear layers which have transitioned to turbulence. It is the goal of the present study to investigate the effects which viscoelasticity has on this state and to identify the mechanisms responsible for wake stabilization. It is found through numerical simulations (employing the FENE-P rheological model) that viscoelasticity greatly reduces the amount of turbulence in the wake, reverting it back to a state which qualitatively appears similar to the Newtonian mode B instability which occurs at lower Re. By focusing on the separated shear layers, it is found that viscoelasticity suppresses the formation of the Kelvin-Helmholtz instability which dominates for Newtonian flows, consistent with previous studies of viscoelastic free shear layers. Through this shear layer stabilization, the viscoelastic far wake is then subject to the same instability mechanisms which dominate for Newtonian flows, but at far lower Reynolds numbers. © Copyright Cambridge University Press 2012.

  7. Turbulent Flame Speed Scaling for Positive Markstein Number Expanding Flames in Near Isotropic Turbulence

    Science.gov (United States)

    Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung

    2012-11-01

    In this work we clarify the role of Markstein diffusivity on turbulent flame speed and it's scaling, from analysis and experimental measurements on constant-pressure expanding flames propagating in near isotropic turbulence. For all C0-C4 hydrocarbon-air mixtures presented in this work and recently published C8 data from Leeds, the normalized turbulent flame speed data of individual mixtures approximately follows the recent theoretical and experimental ReT, f 0 . 5 scaling, where the average radius is the length scale and thermal diffusivity is the transport property. We observe that for a constant ReT, f 0 . 5 , the normalized turbulent flame speed decreases with increasing Mk. This could be explained by considering Markstein diffusivity as the large wavenumber, flame surface fluctuation dissipation mechanism. As originally suggested by the theory, replacing thermal diffusivity with Markstein diffusivity in the turbulence Reynolds number definition above, the present and Leeds dataset could be scaled by the new ReT, f 0 . 5 irrespective of the fuel considered, equivalence ratio, pressure and turbulence intensity for positive Mk flames. This work was supported by the Combustion Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences under Award Number DE-SC0001198 and by the Air Force Office of Scientific Research.

  8. Reynolds stress analysis of EMHD-controlled wall turbulence. Part I. Streamwise forcing

    International Nuclear Information System (INIS)

    Crawford, C.H.; Karniadakis, G.E.

    1997-01-01

    In this work we investigate numerically turbulent flow of low electrical conductivity fluid subject to electro-magnetic (EMHD) forcing. The configuration is similar to the one considered in the experimental work of Henoch and Stace [Phys. Fluids 7, 1371 (1995)] but in a channel geometry. The lower wall of the channel is covered with alternating streamwise electrodes and magnets to create a Lorentz force in the positive streamwise direction. Two cases are considered in detail corresponding to interaction parameter values of 0.4 (case 1) and 0.1 (case 2). The effect of switching off and on the electrodes is also studied for the two cases. At the Reynolds number considered (Re τ ∼200), a drag increase was obtained for all cases, in agreement with the experiments of Henoch and Stace. A Reynolds stress analysis was performed based on a new decomposition of the gradients normal to the wall of the Reynolds stress -u'v'. It was found that the vortex stretching term w'w 2 ' and the spanwise variation of the stress component u'w' are responsible for the drag increase. More specifically, the term ∂(u'w')/∂x 3 is associated with secondary vortical motions in the near-wall and becomes large and positive for large shear stress in regions where fluid is moving toward the wall. In contrast, negative values are associated with regions of lower shear where fluid is being lifted away from the wall. Unlike the unperturbed flow, in the controlled flow high speed near-wall streamwise jets are present (case 1) even in the time-averaged fields. Other changes in turbulence structure are quantified using streak spacing, vortex lines, vorticity quadrant analysis, and plots of the rms value of the vorticity angle. copyright 1997 American Institute of Physics

  9. Experimental Investigation of Reynolds Number Effects on Test Quality in a Hypersonic Expansion Tube

    Science.gov (United States)

    Rossmann, Tobias; Devin, Alyssa; Shi, Wen; Verhoog, Charles

    2017-11-01

    Reynolds number effects on test time and the temporal and spatial flow quality in a hypersonic expansion tube are explored using high-speed pressure, infrared optical, and Schlieren imaging measurements. Boundary layer models for shock tube flows are fairly well established to assist in the determination of test time and flow dimensions at typical high enthalpy test conditions. However, the application of these models needs to be more fully explored due to the unsteady expansion of turbulent boundary layers and contact regions separating dissimilar gasses present in expansion tube flows. Additionally, expansion tubes rely on the development of a steady jet with a large enough core-flow region at the exit of the acceleration tube to create a constant velocity region inside of the test section. High-speed measurements of pressure and Mach number at several locations within the expansion tube allow for the determination of an experimental x-t diagram. The comparison of the experimentally determined x-t diagram to theoretical highlights the Reynolds number dependent effects on expansion tube. Additionally, spatially resolved measurements of the Reynolds number dependent, steady core-flow in the expansion tube viewing section are shown. NSF MRI CBET #1531475, Lafayette College, McCutcheon Foundation.

  10. Effects of non-unity Lewis number of gas-phase species in turbulent nonpremixed sooting flames

    KAUST Repository

    Attili, Antonio

    2016-02-13

    Turbulence statistics from two three-dimensional direct numerical simulations of planar n-heptane/air turbulent jets are compared to assess the effect of the gas-phase species diffusion model on flame dynamics and soot formation. The Reynolds number based on the initial jet width and velocity is around 15, 000, corresponding to a Taylor scale Reynolds number in the range 100 ≤ Reλ ≤ 150. In one simulation, multicomponent transport based on a mixture-averaged approach is employed, while in the other the gas-phase species Lewis numbers are set equal to unity. The statistics of temperature and major species obtained with the mixture-averaged formulation are very similar to those in the unity Lewis number case. In both cases, the statistics of temperature are captured with remarkable accuracy by a laminar flamelet model with unity Lewis numbers. On the contrary, a flamelet with a mixture-averaged diffusion model, which corresponds to the model used in the multi-component diffusion three-dimensional DNS, produces significant differences with respect to the DNS results. The total mass of soot precursors decreases by 20-30% with the unity Lewis number approximation, and their distribution is more homogeneous in space and time. Due to the non-linearity of the soot growth rate with respect to the precursors\\' concentration, the soot mass yield decreases by a factor of two. Being strongly affected by coagulation, soot number density is not altered significantly if the unity Lewis number model is used rather than the mixture-averaged diffusion. The dominant role of turbulent transport over differential diffusion effects is expected to become more pronounced for higher Reynolds numbers. © 2016 The Combustion Institute.

  11. Effects of non-unity Lewis number of gas-phase species in turbulent nonpremixed sooting flames

    KAUST Repository

    Attili, Antonio; Bisetti, Fabrizio; Mueller, Michael E.; Pitsch, Heinz

    2016-01-01

    Turbulence statistics from two three-dimensional direct numerical simulations of planar n-heptane/air turbulent jets are compared to assess the effect of the gas-phase species diffusion model on flame dynamics and soot formation. The Reynolds number based on the initial jet width and velocity is around 15, 000, corresponding to a Taylor scale Reynolds number in the range 100 ≤ Reλ ≤ 150. In one simulation, multicomponent transport based on a mixture-averaged approach is employed, while in the other the gas-phase species Lewis numbers are set equal to unity. The statistics of temperature and major species obtained with the mixture-averaged formulation are very similar to those in the unity Lewis number case. In both cases, the statistics of temperature are captured with remarkable accuracy by a laminar flamelet model with unity Lewis numbers. On the contrary, a flamelet with a mixture-averaged diffusion model, which corresponds to the model used in the multi-component diffusion three-dimensional DNS, produces significant differences with respect to the DNS results. The total mass of soot precursors decreases by 20-30% with the unity Lewis number approximation, and their distribution is more homogeneous in space and time. Due to the non-linearity of the soot growth rate with respect to the precursors' concentration, the soot mass yield decreases by a factor of two. Being strongly affected by coagulation, soot number density is not altered significantly if the unity Lewis number model is used rather than the mixture-averaged diffusion. The dominant role of turbulent transport over differential diffusion effects is expected to become more pronounced for higher Reynolds numbers. © 2016 The Combustion Institute.

  12. Low-Reynolds Number Effects in Ventilated Rooms

    DEFF Research Database (Denmark)

    Davidson, Lars; Nielsen, Peter V.; Topp, Claus

    In the present study, we use Large Eddy Simulations (LES) which is a suitable method for simulating the flow in ventilated rooms at low Reynolds number.......In the present study, we use Large Eddy Simulations (LES) which is a suitable method for simulating the flow in ventilated rooms at low Reynolds number....

  13. Flow boiling heat transfer at low liquid Reynolds number

    International Nuclear Information System (INIS)

    Weizhong Zhang; Takashi Hibiki; Kaichiro Mishima

    2005-01-01

    Full text of publication follows: In view of the significance of a heat transfer correlation of flow boiling at conditions of low liquid Reynolds number or liquid laminar flow, and very few existing correlations in principle suitable for such flow conditions, this study is aiming at developing a heat transfer correlation of flow boiling at low liquid Reynolds number conditions. The obtained results are as follows: 1. A new heat transfer correlation has been developed for saturated flow boiling at low liquid Reynolds number conditions based on superimposition of two boiling mechanisms, namely convective boiling and nucleate boiling. In the new correlation, two terms corresponding to the mechanisms of nucleate boiling and convective boiling are obtained from the pool boiling correlation by Forster and Zuber and the analytical annular flow model by Hewitt and Hall-Taylor, respectively. 2. An extensive database was collected for saturated flow boiling heat transfer at low liquid Reynolds number conditions, including data for different channels geometries (circular and rectangular), flow orientations (vertical and horizontal), and working fluids (water, R11, R12, R113). 3. An extensive comparison of the new correlation with the collected database shows that the new correlation works satisfactorily with the mean deviation of 16.6% for saturated flow boiling at low liquid Reynolds number conditions. 4. The detailed discussion reveals the similarity of the newly developed correlation for flow boiling at low liquid Reynolds number to the Chen correlation for flow boiling at high liquid Reynolds number. The Reynolds number factor F can be analytically deduced in this study. (authors)

  14. Strongly coupled fluid-particle flows in vertical channels. I. Reynolds-averaged two-phase turbulence statistics

    International Nuclear Information System (INIS)

    Capecelatro, Jesse; Desjardins, Olivier; Fox, Rodney O.

    2016-01-01

    Simulations of strongly coupled (i.e., high-mass-loading) fluid-particle flows in vertical channels are performed with the purpose of understanding the fundamental physics of wall-bounded multiphase turbulence. The exact Reynolds-averaged (RA) equations for high-mass-loading suspensions are presented, and the unclosed terms that are retained in the context of fully developed channel flow are evaluated in an Eulerian–Lagrangian (EL) framework for the first time. A key distinction between the RA formulation presented in the current work and previous derivations of multiphase turbulence models is the partitioning of the particle velocity fluctuations into spatially correlated and uncorrelated components, used to define the components of the particle-phase turbulent kinetic energy (TKE) and granular temperature, respectively. The adaptive spatial filtering technique developed in our previous work for homogeneous flows [J. Capecelatro, O. Desjardins, and R. O. Fox, “Numerical study of collisional particle dynamics in cluster-induced turbulence,” J. Fluid Mech. 747, R2 (2014)] is shown to accurately partition the particle velocity fluctuations at all distances from the wall. Strong segregation in the components of granular energy is observed, with the largest values of particle-phase TKE associated with clusters falling near the channel wall, while maximum granular temperature is observed at the center of the channel. The anisotropy of the Reynolds stresses both near the wall and far away is found to be a crucial component for understanding the distribution of the particle-phase volume fraction. In Part II of this paper, results from the EL simulations are used to validate a multiphase Reynolds-stress turbulence model that correctly predicts the wall-normal distribution of the two-phase turbulence statistics.

  15. Strongly coupled fluid-particle flows in vertical channels. I. Reynolds-averaged two-phase turbulence statistics

    Science.gov (United States)

    Capecelatro, Jesse; Desjardins, Olivier; Fox, Rodney O.

    2016-03-01

    Simulations of strongly coupled (i.e., high-mass-loading) fluid-particle flows in vertical channels are performed with the purpose of understanding the fundamental physics of wall-bounded multiphase turbulence. The exact Reynolds-averaged (RA) equations for high-mass-loading suspensions are presented, and the unclosed terms that are retained in the context of fully developed channel flow are evaluated in an Eulerian-Lagrangian (EL) framework for the first time. A key distinction between the RA formulation presented in the current work and previous derivations of multiphase turbulence models is the partitioning of the particle velocity fluctuations into spatially correlated and uncorrelated components, used to define the components of the particle-phase turbulent kinetic energy (TKE) and granular temperature, respectively. The adaptive spatial filtering technique developed in our previous work for homogeneous flows [J. Capecelatro, O. Desjardins, and R. O. Fox, "Numerical study of collisional particle dynamics in cluster-induced turbulence," J. Fluid Mech. 747, R2 (2014)] is shown to accurately partition the particle velocity fluctuations at all distances from the wall. Strong segregation in the components of granular energy is observed, with the largest values of particle-phase TKE associated with clusters falling near the channel wall, while maximum granular temperature is observed at the center of the channel. The anisotropy of the Reynolds stresses both near the wall and far away is found to be a crucial component for understanding the distribution of the particle-phase volume fraction. In Part II of this paper, results from the EL simulations are used to validate a multiphase Reynolds-stress turbulence model that correctly predicts the wall-normal distribution of the two-phase turbulence statistics.

  16. Interaction of a Boundary Layer with a Turbulent Wake

    Science.gov (United States)

    Piomelli, Ugo

    2004-01-01

    The objective of this grant was to study the transition mechanisms on a flat-plate boundary layer interacting with the wake of a bluff body. This is a simplified configuration presented and designed to exemplify the phenomena that occur in multi-element airfoils, in which the wake of an upstream element impinges on a downstream one. Some experimental data is available for this configuration at various Reynolds numbers. The first task carried out was the implementation and validation of the immersed-boundary method. This was achieved by performing calculations of the flow over a cylinder at low and moderate Reynolds numbers. The low-Reynolds number results are discussed, which is enclosed as Appendix A. The high-Reynolds number results are presented in a paper in preparation for the Journal of Fluid Mechanics. We performed calculations of the wake-boundary-layer interaction at two Reynolds numbers, Re approximately equal to 385 and 1155. The first case is discussed and a comparison of the two calculations is reported. The simulations indicate that at the lower Reynolds number the boundary layer is buffeted by the unsteady Karman vortex street shed by the cylinder. This is shown: long streaky structures appear in the boundary layer in correspondence of the three-dimensionalities in the rollers. The fluctuations, however, cannot be self-sustained due to the low Reynolds-number, and the flow does not reach a turbulent state within the computational domain. In contrast, in the higher Reynolds-number case, boundary-layer fluctuations persist after the wake has decayed (due, in part, to the higher values of the local Reynolds number Re achieved in this case); some evidence could be observed that a self-sustaining turbulence generation cycle was beginning to be established. A third simulation was subsequently carried out at a higher Reynolds number, Re=3900. This calculation gave results similar to those of the Re=l155 case. Turbulence was established at fairly low

  17. The large Reynolds number - Asymptotic theory of turbulent boundary layers.

    Science.gov (United States)

    Mellor, G. L.

    1972-01-01

    A self-consistent, asymptotic expansion of the one-point, mean turbulent equations of motion is obtained. Results such as the velocity defect law and the law of the wall evolve in a relatively rigorous manner, and a systematic ordering of the mean velocity boundary layer equations and their interaction with the main stream flow are obtained. The analysis is extended to the turbulent energy equation and to a treatment of the small scale equilibrium range of Kolmogoroff; in velocity correlation space the two-thirds power law is obtained. Thus, the two well-known 'laws' of turbulent flow are imbedded in an analysis which provides a great deal of other information.

  18. A geometry-adaptive IB-LBM for FSI problems at moderate and high Reynolds numbers

    Science.gov (United States)

    Tian, Fangbao; Xu, Lincheng; Young, John; Lai, Joseph C. S.

    2017-11-01

    An FSI framework combining the LBM and an improved IBM is introduced for FSI problems at moderate and high Reynolds numbers. In this framework, the fluid dynamics is obtained by the LBM. The FSI boundary conditions are handled by an improved IBM based on the feedback scheme where the feedback coefficient is mathematically derived and explicitly approximated. The Lagrangian force is divided into two parts: one is caused by the mismatching of the flow velocity and the boundary velocity at previous time step, and the other is caused by the boundary acceleration. Such treatment significantly enhances the numerical stability. A geometry-adaptive refinement is applied to provide fine resolution around the immersed geometries. The overlapping grids between two adjacent refinements consist of two layers. The movement of fluid-structure interfaces only causes adding or removing grids at the boundaries of refinements. Finally, the classic Smagorinsky large eddy simulation model is incorporated into the framework to model turbulent flows at relatively high Reynolds numbers. Several validation cases are conducted to verify the accuracy and fidelity of the present solver over a range of Reynolds numbers. Mr L. Xu acknowledges the support of the University International Postgraduate Award by University of New South Wales. Dr. F.-B. Tian is the recipient of an Australian Research Council Discovery Early Career Researcher Award (Project Number DE160101098).

  19. High-fidelity simulations of moving and flexible airfoils at low Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Visbal, Miguel R.; Gordnier, Raymond E.; Galbraith, Marshall C. [Air Force Research Laboratory, Computational Sciences Branch, Air Vehicles Directorate, Wright-Patterson AFB, OH (United States)

    2009-05-15

    The present paper highlights results derived from the application of a high-fidelity simulation technique to the analysis of low-Reynolds-number transitional flows over moving and flexible canonical configurations motivated by small natural and man-made flyers. This effort addresses three separate fluid dynamic phenomena relevant to small fliers, including: laminar separation and transition over a stationary airfoil, transition effects on the dynamic stall vortex generated by a plunging airfoil, and the effect of flexibility on the flow structure above a membrane airfoil. The specific cases were also selected to permit comparison with available experimental measurements. First, the process of transition on a stationary SD7003 airfoil section over a range of Reynolds numbers and angles of attack is considered. Prior to stall, the flow exhibits a separated shear layer which rolls up into spanwise vortices. These vortices subsequently undergo spanwise instabilities, and ultimately breakdown into fine-scale turbulent structures as the boundary layer reattaches to the airfoil surface. In a time-averaged sense, the flow displays a closed laminar separation bubble which moves upstream and contracts in size with increasing angle of attack for a fixed Reynolds number. For a fixed angle of attack, as the Reynolds number decreases, the laminar separation bubble grows in vertical extent producing a significant increase in drag. For the lowest Reynolds number considered (Re{sub c} = 10 {sup 4}), transition does not occur over the airfoil at moderate angles of attack prior to stall. Next, the impact of a prescribed high-frequency small-amplitude plunging motion on the transitional flow over the SD7003 airfoil is investigated. The motion-induced high angle of attack results in unsteady separation in the leading edge and in the formation of dynamic-stall-like vortices which convect downstream close to the airfoil. At the lowest value of Reynolds number (Re{sub c}=10 {sup 4

  20. Low-to-High Confinement Transition Mediated by Turbulence Radial Wave Number Spectral Shift in a Fusion Plasma.

    Science.gov (United States)

    Xu, G S; Wan, B N; Wang, H Q; Guo, H Y; Naulin, V; Rasmussen, J Juul; Nielsen, A H; Wu, X Q; Yan, N; Chen, L; Shao, L M; Chen, R; Wang, L; Zhang, W

    2016-03-04

    A new model for the low-to-high (L-H) confinement transition has been developed based on a new paradigm for turbulence suppression by velocity shear [G. M. Staebler et al., Phys. Rev. Lett. 110, 055003 (2013)]. The model indicates that the L-H transition can be mediated by a shift in the radial wave number spectrum of turbulence, as evidenced here, for the first time, by the direct observation of a turbulence radial wave number spectral shift and turbulence structure tilting prior to the L-H transition at tokamak edge by direct probing. This new mechanism does not require a pretransition overshoot in the turbulent Reynolds stress, shunting turbulence energy to zonal flows for turbulence suppression as demonstrated in the experiment.

  1. Laboratory Study of Magnetorotational Instability and Hydrodynamic Stability at Large Reynolds Numbers

    Science.gov (United States)

    Ji, H.; Burin, M.; Schartman, E.; Goodman, J.; Liu, W.

    2006-01-01

    Two plausible mechanisms have been proposed to explain rapid angular momentum transport during accretion processes in astrophysical disks: nonlinear hydrodynamic instabilities and magnetorotational instability (MRI). A laboratory experiment in a short Taylor-Couette flow geometry has been constructed in Princeton to study both mechanisms, with novel features for better controls of the boundary-driven secondary flows (Ekman circulation). Initial results on hydrodynamic stability have shown negligible angular momentum transport in Keplerian-like flows with Reynolds numbers approaching one million, casting strong doubt on the viability of nonlinear hydrodynamic instability as a source for accretion disk turbulence.

  2. First steps in modelling turbulence and its origins: a commentary on Reynolds (1895) 'On the dynamical theory of incompressible viscous fluids and the determination of the criterion'.

    Science.gov (United States)

    Launder, Brian E

    2015-04-13

    Reynolds' paper sought to explain the change in character of flow through a pipe from laminar to turbulent that his earlier experiments had shown to occur when the dimensionless group that today bears his name exceeded approximately 2000. This he did by decomposing the velocity into mean and fluctuating components and noting how the average kinetic energy generation and dissipation rates changed with Reynolds number. The paper was only grudgingly accepted by two very distinguished referees and initially raised little external interest. As years went by, however, the averaged form of the equations of motion, known as the Reynolds equations (which were an intermediate stage in Reynolds' analysis) became the acknowledged starting point for computing turbulent flows. Moreover, some 50 years after his paper, a refinement of his strategy for predicting transition was also successfully taken up. For some engineering problems, the continual rapid growth of computing resources has meant that more detailed approaches for computing turbulent flow phenomena can nowadays be employed. However, this growth of computing power likewise makes possible a Reynolds-averaging strategy for complex flow systems in industry or the environment which formerly had to adopt less comprehensive analyses. Thus, Reynolds' approach may well remain in use throughout the present century. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.

  3. Experimental validation of the design method to prevent flow-induced vibration in high Reynolds-number

    International Nuclear Information System (INIS)

    Sakai, Takaaki; Yamaguchi, Akira; Morisita, Masaki; Iwata, Koji

    1998-08-01

    The incident of sodium leakage from a main pipe of the secondary heat transport system of Monju fast breeder reactor was caused by the failure of a thermometer well. 'Flow-induced vibration design guide for thermometer wells' (express as 'design guide') was proposed by PNC Working Group to prevent the same cause of the sodium leak incident in future. On this report, applicability of the 'design guide' was estimated to plant conditions in high Reynolds-number(approximately 3x10 5 ∼ 3x10 6 ) involving the supercritical region, by measured data on a vortex synchronized vibration and a turbulence induced vibration. Experiments were performed for cylindrical and taper shaped types of test pieces. As results, reduced velocity (Vr) at onsets of the inline synchronized vibration were evaluated to be grater than 1.0 in the range of experimental conditions. Fluctuating drag and lift coefficients, which were evaluated from power spectrum of turbulence for Vr < 1.0 condition, were 0.01 ∼ 0.05 for drag direction and 0.04 ∼ 0.13 for lift direction. The fluctuating drag and lift coefficients used in the 'design guide' were estimated to be conservative by comparison with these data. Correlation lengths for a cylinder and a taper shaped one in the high Reynolds-number region were estimated to be 1.6 times of the diameter(D) in the maximum case. The measured value of correlation length is enough smaller than the 'design guide' value of 3.0D. Displacement amplitudes of test pieces for Vr < 1.0 conditions were enough smaller (fives times) than calculated values based on the 'design guide'. Consequently, the applicability of the design guide' was confirmed in the range of experiments involving the super critical Reynolds-number region. (author)

  4. Analysis of turbulent conical diffuser flow using second moment closures

    International Nuclear Information System (INIS)

    Adane, K.K.; Tachie, M.F.; Ormiston, S.J.

    2004-01-01

    A commercial CFD code, CFX-TASCflow, is used to predict a turbulent conical diffuser flow. The computation was performed using a low-Reynolds number k-ω model, a low-Reynolds number k-ω based non-linear algebraic Reynolds stress model, and a second moment closure with a wall-function. The experimental data of Kassab are used to validate the numerical results. The results show that all the turbulence models reproduce the static pressure coefficient distribution reasonably well. The low Reynolds number k-ω models give better prediction of the friction velocity than the second moment closure. The models also predict the Reynolds shear stress reasonably well but fail to reproduce the correct level of the turbulent kinetic energy. (author)

  5. Hybrid Reynolds-Averaged/Large-Eddy Simulations of a Coaxial Supersonic Free-Jet Experiment

    Science.gov (United States)

    Baurle, Robert A.; Edwards, Jack R.

    2010-01-01

    Reynolds-averaged and hybrid Reynolds-averaged/large-eddy simulations have been applied to a supersonic coaxial jet flow experiment. The experiment was designed to study compressible mixing flow phenomenon under conditions that are representative of those encountered in scramjet combustors. The experiment utilized either helium or argon as the inner jet nozzle fluid, and the outer jet nozzle fluid consisted of laboratory air. The inner and outer nozzles were designed and operated to produce nearly pressure-matched Mach 1.8 flow conditions at the jet exit. The purpose of the computational effort was to assess the state-of-the-art for each modeling approach, and to use the hybrid Reynolds-averaged/large-eddy simulations to gather insight into the deficiencies of the Reynolds-averaged closure models. The Reynolds-averaged simulations displayed a strong sensitivity to choice of turbulent Schmidt number. The initial value chosen for this parameter resulted in an over-prediction of the mixing layer spreading rate for the helium case, but the opposite trend was observed when argon was used as the injectant. A larger turbulent Schmidt number greatly improved the comparison of the results with measurements for the helium simulations, but variations in the Schmidt number did not improve the argon comparisons. The hybrid Reynolds-averaged/large-eddy simulations also over-predicted the mixing layer spreading rate for the helium case, while under-predicting the rate of mixing when argon was used as the injectant. The primary reason conjectured for the discrepancy between the hybrid simulation results and the measurements centered around issues related to the transition from a Reynolds-averaged state to one with resolved turbulent content. Improvements to the inflow conditions were suggested as a remedy to this dilemma. Second-order turbulence statistics were also compared to their modeled Reynolds-averaged counterparts to evaluate the effectiveness of common turbulence closure

  6. Jet Impingement Heat Transfer at High Reynolds Numbers and Large Density Variations

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2010-01-01

    Jet impingement heat transfer from a round gas jet to a flat wall has been investigated numerically in a configuration with H/D=2, where H is the distance from the jet inlet to the wall and D is the jet diameter. The jet Reynolds number was 361000 and the density ratio across the wall boundary...... layer was 3.3 due to a substantial temperature difference of 1600K between jet and wall. Results are presented which indicate very high heat flux levels and it is demonstrated that the jet inlet turbulence intensity significantly influences the heat transfer results, especially in the stagnation region....... The results also show a noticeable difference in the heat transfer predictions when applying different turbulence models. Furthermore calculations were performed to study the effect of applying temperature dependent thermophysical properties versus constant properties and the effect of calculating the gas...

  7. Reynolds-Averaged Turbulence Model Assessment for a Highly Back-Pressured Isolator Flowfield

    Science.gov (United States)

    Baurle, Robert A.; Middleton, Troy F.; Wilson, L. G.

    2012-01-01

    The use of computational fluid dynamics in scramjet engine component development is widespread in the existing literature. Unfortunately, the quantification of model-form uncertainties is rarely addressed with anything other than sensitivity studies, requiring that the computational results be intimately tied to and calibrated against existing test data. This practice must be replaced with a formal uncertainty quantification process for computational fluid dynamics to play an expanded role in the system design, development, and flight certification process. Due to ground test facility limitations, this expanded role is believed to be a requirement by some in the test and evaluation community if scramjet engines are to be given serious consideration as a viable propulsion device. An effort has been initiated at the NASA Langley Research Center to validate several turbulence closure models used for Reynolds-averaged simulations of scramjet isolator flows. The turbulence models considered were the Menter BSL, Menter SST, Wilcox 1998, Wilcox 2006, and the Gatski-Speziale explicit algebraic Reynolds stress models. The simulations were carried out using the VULCAN computational fluid dynamics package developed at the NASA Langley Research Center. A procedure to quantify the numerical errors was developed to account for discretization errors in the validation process. This procedure utilized the grid convergence index defined by Roache as a bounding estimate for the numerical error. The validation data was collected from a mechanically back-pressured constant area (1 2 inch) isolator model with an isolator entrance Mach number of 2.5. As expected, the model-form uncertainty was substantial for the shock-dominated, massively separated flowfield within the isolator as evidenced by a 6 duct height variation in shock train length depending on the turbulence model employed. Generally speaking, the turbulence models that did not include an explicit stress limiter more closely

  8. Letter: The link between the Reynolds shear stress and the large structures of turbulent Couette-Poiseuille flow

    Science.gov (United States)

    Gandía-Barberá, Sergio; Hoyas, Sergio; Oberlack, Martin; Kraheberger, Stefanie

    2018-04-01

    The length and width of the long and wide structures appearing in turbulent Couette flows are studied by means of a new dataset of direct numerical simulation covering a stepped transition from pure Couette flow to pure Poiseuille one, at Reτ ≈ 130, based on the stationary wall. The existence of these structures is linked to the averaged Reynolds stress, u v ¯ : as soon as in any part of the channel u v ¯ changes its sign, the structures disappear. The length and width of the rolls are found to be, approximately, 50h and 2.5h, respectively. For this Reynolds number, simulations with a domain shorter than 100h cannot properly describe the behaviour of the longest structures of the flow.

  9. Investigation on the applicability of turbulent-Prandtl-number models for liquid lead-bismuth eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei, E-mail: chenfei@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); North China University of Water Resources and Electric Power, Zhengzhou, Henan 450011 (China); Huai, Xiulan, E-mail: hxl@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Cai, Jun, E-mail: caijun@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Xunfeng, E-mail: lixunfeng@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Meng, Ruixue, E-mail: mengruixue@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-04-15

    Highlights: ► We examine the applicability of various Pr{sub t} models into the simulation of LBE flow. ► Reynolds analogy suitable for conventional fluids cannot accurately simulate the heat transfer characteristics of LBE flow. ► The different Pr{sub t} model should be selected for the different thermal boundary condition of LBE flow. -- Abstract: With the proposal of Accelerator Driven Sub-critical System (ADS) together with liquid lead-bismuth eutectic (LBE) as coolant for both reactor and spallation target, the use of accurate heat transfer correlation and reliable turbulent-Prandtl-number model of LBE in turbulent flows is essential when designing ADS components of primary loop and heat exchanger of secondary loop. Unlike conventional fluids, there is not an acknowledged turbulent-Prandtl-number model for LBE flows. This paper reviews and assesses the existing turbulent-Pandtl-number models and various heat transfer correlations in circular tubes. Computational fluid dynamics (CFD) analysis is employed to evaluate the applicability of various turbulent-Prandtl-number models for LBE in the circular tube under boundary conditions of constant heat flux and constant wall temperature. Based on the assessment of turbulent-Prandtl-number models, the reliable turbulent-Prandtl-number models are recommended for CFD applications to LBE flows under boundary conditions of constant heat flux and constant wall temperature. The present study indicates that turbulent Prandtl number has a significant difference in turbulent LBE flow between constant-heat-flux and constant-wall-temperature boundary conditions.

  10. Reynolds-Averaged Navier-Stokes Modeling of Turbulent Free Shear Layers

    Science.gov (United States)

    Schilling, Oleg

    2017-11-01

    Turbulent mixing of gases in free shear layers is simulated using a weighted essentially nonoscillatory implementation of ɛ- and L-based Reynolds-averaged Navier-Stokes models. Specifically, the air/air shear layer with velocity ratio 0.6 studied experimentally by Bell and Mehta (1990) is modeled. The detailed predictions of turbulent kinetic energy dissipation rate and lengthscale models are compared to one another, and to the experimental data. The role of analytical, self-similar solutions for model calibration and physical insights is also discussed. It is shown that turbulent lengthscale-based models are unable to predict both the growth parameter (spreading rate) and turbulent kinetic energy normalized by the square of the velocity difference of the streams. The terms in the K, ɛ, and L equation budgets are compared between the models, and it is shown that the production and destruction mechanisms are substantially different in the ɛ and L equations. Application of the turbulence models to the Brown and Roshko (1974) experiments with streams having various velocity and density ratios is also briefly discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Direct numerical simulation of turbulent channel flow with deformed bubbles

    International Nuclear Information System (INIS)

    Yamamoto, Yoshinobu; Kunugi, Tomoaki

    2010-01-01

    In this study, the direct numerical simulation of a fully-developed turbulent channel flow with deformed bubbles were conducted by means of the refined MARS method, turbulent Reynolds number 150, and Bubble Reynolds number 120. As the results, large-scale wake motions were observed round the bubbles. At the bubble located region, mean velocity was degreased and turbulent intensities and Reynolds shear stress were increased by the effects of the large-scale wake motions round bubbles. On the other hands, near wall region, bubbles might effect on the flow laminarlize and drag reduction. Two types of drag coefficient of bubble were estimated from the accelerated velocity of bubble and correlation equation as a function of Particle Reynolds number. Empirical correlation equation might be overestimated the drag effects in this Particle Reynolds number range. (author)

  12. Vegetation-Induced Roughness in Low-Reynold's Number Flows

    Science.gov (United States)

    Piercy, C. D.; Wynn, T. M.

    2008-12-01

    Wetlands are important ecosystems, providing habitat for wildlife and fish and shellfish production, water storage, erosion control, and water quality improvement and preservation. Models to estimate hydraulic resistance due to vegetation in emergent wetlands are crucial to good wetland design and analysis. The goal of this project is to improve modeling of emergent wetlands by linking properties of the vegetation to flow. Existing resistance equations such as Hoffmann (2004), Kadlec (1990), Moghadam and Kouwen (1997), Nepf (1999), and Stone and Shen (2002) were evaluated. A large outdoor vegetated flume was constructed at the Price's Fork Research Center near Blacksburg, Virginia to measure flow and water surface slope through woolgrass (Scirpus cyperinus), a common native emergent wetland plant. Measurements of clump and stem density, diameter, and volume, blockage factor, and stiffness were made after each set of flume runs. Flow rates through the flume were low (3-4 L/s) resulting in very low stem-Reynold's numbers (15-102). Since experimental flow conditions were in the laminar to transitional range, most of the models considered did not predict velocity or stage accurately except for conditions in which the stem-Reynold's number approached 100. At low stem-Reynold's numbers (drag coefficient is inversely proportional to the Reynold's number and can vary greatly with flow conditions. Most of the models considered assumed a stem-Reynold's number in the 100-105 range in which the drag coefficient is relatively constant and as a result did not predict velocity or stage accurately except for conditions in which the stem-Reynold's number approached 100. The only model that accurately predicted stem layer velocity was the Kadlec (1990) model since it does not make assumptions about flow regime; instead, the parameters are adjusted according to the site conditions. Future work includes relating the parameters used to fit the Kadlec (1990) model to measured vegetation

  13. Experimental study of pitching and plunging airfoils at low Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Yeon Sik; Bernal, Luis P. [University of Michigan, Department of Aerospace Engineering, Ann Arbor, MI (United States)

    2012-12-15

    Measurements of the unsteady flow structure and force time history of pitching and plunging SD7003 and flat plate airfoils at low Reynolds numbers are presented. The airfoils were pitched and plunged in the effective angle of attack range of 2.4 -13.6 (shallow-stall kinematics) and -6 to 22 (deep-stall kinematics). The shallow-stall kinematics results for the SD7003 airfoil show attached flow and laminar-to-turbulent transition at low effective angle of attack during the down stroke motion, while the flat plate model exhibits leading edge separation. Strong Re-number effects were found for the SD7003 airfoil which produced approximately 25 % increase in the peak lift coefficient at Re = 10,000 compared to higher Re flows. The flat plate airfoil showed reduced Re effects due to leading edge separation at the sharper leading edge, and the measured peak lift coefficient was higher than that predicted by unsteady potential flow theory. The deep-stall kinematics resulted in leading edge separation that led to formation of a large leading edge vortex (LEV) and a small trailing edge vortex (TEV) for both airfoils. The measured peak lift coefficient was significantly higher ({proportional_to}50 %) than that for the shallow-stall kinematics. The effect of airfoil shape on lift force was greater than the Re effect. Turbulence statistics were measured as a function of phase using ensemble averages. The results show anisotropic turbulence for the LEV and isotropic turbulence for the TEV. Comparison of unsteady potential flow theory with the experimental data showed better agreement by using the quasi-steady approximation, or setting C(k) = 1 in Theodorsen theory, for leading edge-separated flows. (orig.)

  14. Hybrid Reynolds-Averaged/Large-Eddy Simulations of a Co-Axial Supersonic Free-Jet Experiment

    Science.gov (United States)

    Baurle, R. A.; Edwards, J. R.

    2009-01-01

    Reynolds-averaged and hybrid Reynolds-averaged/large-eddy simulations have been applied to a supersonic coaxial jet flow experiment. The experiment utilized either helium or argon as the inner jet nozzle fluid, and the outer jet nozzle fluid consisted of laboratory air. The inner and outer nozzles were designed and operated to produce nearly pressure-matched Mach 1.8 flow conditions at the jet exit. The purpose of the computational effort was to assess the state-of-the-art for each modeling approach, and to use the hybrid Reynolds-averaged/large-eddy simulations to gather insight into the deficiencies of the Reynolds-averaged closure models. The Reynolds-averaged simulations displayed a strong sensitivity to choice of turbulent Schmidt number. The baseline value chosen for this parameter resulted in an over-prediction of the mixing layer spreading rate for the helium case, but the opposite trend was noted when argon was used as the injectant. A larger turbulent Schmidt number greatly improved the comparison of the results with measurements for the helium simulations, but variations in the Schmidt number did not improve the argon comparisons. The hybrid simulation results showed the same trends as the baseline Reynolds-averaged predictions. The primary reason conjectured for the discrepancy between the hybrid simulation results and the measurements centered around issues related to the transition from a Reynolds-averaged state to one with resolved turbulent content. Improvements to the inflow conditions are suggested as a remedy to this dilemma. Comparisons between resolved second-order turbulence statistics and their modeled Reynolds-averaged counterparts were also performed.

  15. A methodology for including wall roughness effects in k-ε low-Reynolds turbulence models

    International Nuclear Information System (INIS)

    Ambrosini, W.; Pucciarelli, A.; Borroni, I.

    2015-01-01

    for wall roughness effects in low-Reynolds number turbulence models

  16. On the mechanism of elasto-inertial turbulence.

    Science.gov (United States)

    Dubief, Yves; Terrapon, Vincent E; Soria, Julio

    2013-11-01

    Elasto-inertial turbulence (EIT) is a new state of turbulence found in inertial flows with polymer additives. The dynamics of turbulence generated and controlled by such additives is investigated from the perspective of the coupling between polymer dynamics and flow structures. Direct numerical simulations of channel flow with Reynolds numbers ranging from 1000 to 6000 (based on the bulk and the channel height) are used to study the formation and dynamics of elastic instabilities and their effects on the flow. The flow topology of EIT is found to differ significantly from Newtonian wall-turbulence. Structures identified by positive (rotational flow topology) and negative (extensional/compressional flow topology) second invariant Q a isosurfaces of the velocity gradient are cylindrical and aligned in the spanwise direction. Polymers are significantly stretched in sheet-like regions that extend in the streamwise direction with a small upward tilt. The Q a cylindrical structures emerge from the sheets of high polymer extension, in a mechanism of energy transfer from the fluctuations of the polymer stress work to the turbulent kinetic energy. At subcritical Reynolds numbers, EIT is observed at modest Weissenberg number ( Wi , ratio polymer relaxation time to viscous time scale). For supercritical Reynolds numbers, flows approach EIT at large Wi . EIT provides new insights on the nature of the asymptotic state of polymer drag reduction (maximum drag reduction), and explains the phenomenon of early turbulence, or onset of turbulence at lower Reynolds numbers than for Newtonian flows observed in some polymeric flows.

  17. Turbulent Reynolds stress and quadrant event activity in wind flow over a coastal foredune

    Science.gov (United States)

    Chapman, Connie A.; Walker, Ian J.; Hesp, Patrick A.; Bauer, Bernard O.; Davidson-Arnott, Robin G. D.

    2012-05-01

    Recent research on quasi-instantaneous turbulent kinematic Reynolds stresses (RS, - u'w') and decomposed quadrant event activity (e.g., ejections and sweeps) over dunes in fluvial settings and in wind tunnels has shown that turbulent stresses at the toe of a dune often exceed time-averaged, streamwise shear stress (ρ u * 2) estimates. It is believed that semi-coherent turbulent structures are conveyed toward the bed along concave streamlines in this region and that impact of these structures cause fluctuations in local surface stresses that assist in grain entrainment. This has been hypothesized to explain how sand is supplied to the windward slope through a region of flow stagnation. Toward the crest, surface stress increases and becomes dominated by streamwise accelerations resulting from streamline compression and convexity that suppress vertical motions. High-frequency (32 Hz) measurements of turbulent wind flow from 3-D ultrasonic anemometers are analyzed for oblique onshore flow over a vegetated coastal foredune in Prince Edward Island, Canada. Reynolds stress and quadrant activity distributions varied with height (0.60 m and 1.66 m) and location over the dune. In general, quadrant 2 ejection (u' 0) and quadrant 4 sweep activity (u' > 0, w' 0, w' > 0) and quadrant 3 inward interaction (u' dune and may help to explain sand transport potential and dune maintenance. For example, areas with a high frequency of ejection and sweep activity may have higher rates of sediment entrainment and transport, whereas areas with lower ejection and sweep activity and an increase in outward and inward interactions, which contribute negatively to Reynolds stress generation, may experience a greater potential for deposition. Further research on associations between quadrant event activity and coincident sand transport is required to confirm this hypothesis and the resultant significance of the flow exuberance effect in aeolian dune morphodynamics.

  18. On Reynolds number dependence of micro-ramp-induced transition

    NARCIS (Netherlands)

    Ye, Q.; Schrijer, F.F.J.; Scarano, F.

    2018-01-01

    The variation of transitional flow features past a micro-ramp is investigated when the Reynolds number is decreased approaching the critical regime. Experiments are conducted in the incompressible flow spanning from supercritical to subcritical roughness-height-based Reynolds number ( , 730, 460

  19. On the correlation of heat transfer in turbulent boundary layers subjected to free-stream turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, M.J.; Hollingsworth, D.K.

    1999-07-01

    The turbulent flow of a fluid bounded by a heated surface is a wonderfully complex yet derisively mundane phenomenon. Despite its commonness in natural and man-made environments, the authors struggle to accurately predict its behavior in many simple situations. A complexity encountered in a number of flows is the presence of free-stream turbulence. A turbulent free-stream typically yields increased surface friction and heat transfer. Turbulent boundary layers with turbulent free-streams are encountered in gas-turbine engines, rocket nozzles, electronic-cooling passages, geophysical flows, and numerous other dynamic systems. Here, turbulent boundary layers were subjected to grid-generated free-stream turbulence to study the effects of length scale and intensity on heat transfer. The research focused on correlating heat transfer without the use of conventional boundary-layer Reynolds numbers. The boundary-layers studied ranged from 400 to 2,700 in momentum-thickness Reynolds number and from 450 to 1,900 in enthalpy-thickness Reynolds number. Free-stream turbulence intensities varied from 0.1 to 8.0%. The turbulent-to-viscous length-scale ratios presented are the smallest found in the heat-transfer literature; the ratios spanned from 100 to 1000. The turbulent-to-thermal ratios (using enthalpy thickness as the thermal scale) are also the smallest reported; the ratios ranged from 3.2 to 12.3. A length-scale dependence was identified in a Stanton number based on a near-wall streamwise velocity fluctuation. A new near-wall Stanton number was introduced; this parameter was regarded as a constant in a two-region boundary-layer model. The new model correlated heat-transfer to within 7%.

  20. Heat transfer measurements on an incidence-tolerant low pressure turbine blade in a high speed linear cascade at low to moderate Reynolds numbers

    Science.gov (United States)

    Moualeu, Leolein Patrick Gouemeni

    Runway-independent aircraft are expected to be the future for short-haul flights by improving air transportation and reducing area congestion encountered in airports. The Vehicle Systems Program of NASA identified a Large Civil Tilt-Rotor, equipped with variable-speed power-turbine engines, as the best concept. At cruise altitude, the engine rotor-speed will be reduced by as much as the 50% of take-off speed. The large incidence variation in the low pressure turbine associated with the change in speed can be detrimental to the engine performance. Low pressure turbine blades in cruise altitude are more predisposed to develop regions of boundary layer separation. Typical phenomenon such as impinging wakes on downstream blades and mainstream turbulences enhance the complexity of the flow in low pressure turbines. It is therefore important to be able to understand the flow behavior to accurately predict the losses. Research facilities are seldom able to experimentally reproduce low Reynolds numbers at relevant engine Mach number. Having large incidence swing as an additional parameter in the investigation of the boundary layer development, on a low pressure turbine blade, makes this topic unique and as a consequence requires a unique facility to conduct the experimental research. The compressible flow wind tunnel facility at the University of North Dakota had been updated to perform steady state experiments on a modular-cascade, designed to replicate a large variation of the incidence angles. The high speed and low Reynolds number facility maintained a sealed and closed loop configuration for each incidence angle. The updated facility is capable to produce experimental Reynolds numbers as low as 45,000 and as high as 570,000 at an exit Mach number of 0.72. Pressure and surface temperature measurements were performed at these low pressure turbine conditions. The present thesis investigates the boundary layer development on the surface of an Incidence-tolerant blade. The

  1. On the Values for the Turbulent Schmidt Number in Environmental Flows

    Directory of Open Access Journals (Sweden)

    Carlo Gualtieri

    2017-04-01

    Full Text Available Computational Fluid Dynamics (CFD has consolidated as a tool to provide understanding and quantitative information regarding many complex environmental flows. The accuracy and reliability of CFD modelling results oftentimes come under scrutiny because of issues in the implementation of and input data for those simulations. Regarding the input data, if an approach based on the Reynolds-Averaged Navier-Stokes (RANS equations is applied, the turbulent scalar fluxes are generally estimated by assuming the standard gradient diffusion hypothesis (SGDH, which requires the definition of the turbulent Schmidt number, Sct (the ratio of momentum diffusivity to mass diffusivity in the turbulent flow. However, no universally-accepted values of this parameter have been established or, more importantly, methodologies for its computation have been provided. This paper firstly presents a review of previous studies about Sct in environmental flows, involving both water and air systems. Secondly, three case studies are presented where the key role of a correct parameterization of the turbulent Schmidt number is pointed out. These include: (1 transverse mixing in a shallow water flow; (2 tracer transport in a contact tank; and (3 sediment transport in suspension. An overall picture on the use of the Schmidt number in CFD emerges from the paper.

  2. Model Experiments with Low Reynolds Number Effects in a Ventilated Room

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Filholm, Claus; Topp, Claus

    the isothermal low Reynolds number flow from a slot inlet in the end wall of the room. The experiments are made on the scale of 1 to 5. Measurements indicate a low Reynolds number effect in the wall jet flow. The virtual origin of the wall jet moves forward in front of the opening at a small Reynolds number......, an effect that is also known from measurements on free jets. The growth rate of the jet, or the length scale, increases and the velocity decay factor decreases at small Reynolds numbers....

  3. Effect of surface roughness and Reynolds number on compressor cascade performance

    International Nuclear Information System (INIS)

    Back, Seung Chul; Song, Seung Jin

    2009-01-01

    An experimental work has been conducted in a linear compressor cascade to find out the effect of surface roughness and Reynolds number. Surveys were conducted with different roughness size and Reynolds number. The k s /c value of each roughness is 0.0006, 0.0090, 0.00150, 0.00213, and 0.00425. The range of Reynolds number is 300,000∼600,000 and conducted with roughened blade, which roughness Ra is 2.89 microns. Flow pressure, velocity, and angle have been found out via 5 hole probe. Pressure loss and deviation increased with increasing roughness. In the low Reynolds number under 500,000, tested roughness does not affect to the performance of compressor cascade. However, roughness is very sensitive to pressure loss in high Reynolds number over 550,000.

  4. Effects of forcing time scale on the simulated turbulent flows and turbulent collision statistics of inertial particles

    International Nuclear Information System (INIS)

    Rosa, B.; Parishani, H.; Ayala, O.; Wang, L.-P.

    2015-01-01

    In this paper, we study systematically the effects of forcing time scale in the large-scale stochastic forcing scheme of Eswaran and Pope [“An examination of forcing in direct numerical simulations of turbulence,” Comput. Fluids 16, 257 (1988)] on the simulated flow structures and statistics of forced turbulence. Using direct numerical simulations, we find that the forcing time scale affects the flow dissipation rate and flow Reynolds number. Other flow statistics can be predicted using the altered flow dissipation rate and flow Reynolds number, except when the forcing time scale is made unrealistically large to yield a Taylor microscale flow Reynolds number of 30 and less. We then study the effects of forcing time scale on the kinematic collision statistics of inertial particles. We show that the radial distribution function and the radial relative velocity may depend on the forcing time scale when it becomes comparable to the eddy turnover time. This dependence, however, can be largely explained in terms of altered flow Reynolds number and the changing range of flow length scales present in the turbulent flow. We argue that removing this dependence is important when studying the Reynolds number dependence of the turbulent collision statistics. The results are also compared to those based on a deterministic forcing scheme to better understand the role of large-scale forcing, relative to that of the small-scale turbulence, on turbulent collision of inertial particles. To further elucidate the correlation between the altered flow structures and dynamics of inertial particles, a conditional analysis has been performed, showing that the regions of higher collision rate of inertial particles are well correlated with the regions of lower vorticity. Regions of higher concentration of pairs at contact are found to be highly correlated with the region of high energy dissipation rate

  5. Sudden Relaminarization and Lifetimes in Forced Isotropic Turbulence.

    Science.gov (United States)

    Linkmann, Moritz F; Morozov, Alexander

    2015-09-25

    We demonstrate an unexpected connection between isotropic turbulence and wall-bounded shear flows. We perform direct numerical simulations of isotropic turbulence forced at large scales at moderate Reynolds numbers and observe sudden transitions from a chaotic dynamics to a spatially simple flow, analogous to the laminar state in wall bounded shear flows. We find that the survival probabilities of turbulence are exponential and the typical lifetimes increase superexponentially with the Reynolds number. Our results suggest that both isotropic turbulence and wall-bounded shear flows qualitatively share the same phase-space dynamics.

  6. The Reynolds number dependence of the velocity field in the BNL Jet-in-Pool water experiments

    International Nuclear Information System (INIS)

    Szczepura, R.T.

    1981-02-01

    The water Jet-in-Pool experiment at Berkeley Nuclear Laboratories consists of an axisymmetric sudden expansion. A series of measurements was performed in this rig, using a single-channel Laser/Doppler Anemometer system, over a Reynolds number range of 1.4 x 10 4 - 6.1 x 10 4 to determine any dependence in the flow. The mean axial velocity data showed a slight variation, but the root-mean-square fluctuations of the axial velocity had a far more pronounced dependence. This was attributed to upstream conditions in the rig, specifically the nozzle used for injecting the central portion of the flow. The variations in the mean velocity data are sufficiently small for one set of data to act as a basis for calculations at any Reynolds number when a simple closure scheme such as a prescribed effective viscosity is used. However the variation in turbulence parameters will complicate the use of second-order closure schemes and this will be examined further. (author)

  7. Low Reynolds Number Vehicles

    Science.gov (United States)

    1985-02-01

    of the blade. The Darrieus VAWT has more complex aerodynamics. This type of wind turbine produces power as a result of the tangential thrust as...Horizontal Axis Propeller-Type b) Verticle Axis Darrieus -Type Figure 78. Wind Turbine Configurations 0 6 Q K [_ 2 -, C 4 UJ UJ...Sailplanes 23 5.2 Wind Turbines 23 6. CONCLUDING REMARKS 24 7. RECOMMENDATIONS FOR FUTURE RESEARCH 24 REFERENCES 25 FIGURES 32 yv/ LOW REYNOLDS NUMBER

  8. Effects of Schmidt number on near-wall turbulent mass transfer in pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chang Woo; Yang, Kyung Soo [Inha University, Incheon (Korea, Republic of)

    2014-12-15

    Large Eddy simulation (LES) of turbulent mass transfer in circular-pipe flow has been performed to investigate the characteristics of turbulent mass transfer in the near-wall region. We consider a fully-developed turbulent pipe flow with a constant wall concentration. The Reynolds number under consideration is Re{sub r} = 500 based on the friction velocity and the pipe radius, and the selected Schmidt numbers (Sc) are 0.71, 5, 10, 20 and 100. Dynamic subgrid-scale (SGS) models for the turbulent SGS stresses and turbulent mass fluxes were employed to close the governing equations. The current paper reports a comprehensive characterization of turbulent mass transfer in circular-pipe flow, focusing on its near-wall characteristics and Sc dependency. We start with mean fields by presenting mean velocity and concentration profiles, mean Sherwood numbers and mean mass transfer coefficients for the selected values of the parameters. After that, we present the characteristics of fluctuations including root-mean-square (rms) profiles of velocity, concentration, and mass transfer coefficient fluctuations. Turbulent mass fluxes and correlations between velocity and concentration fluctuations are also discussed. The near-wall behaviour of turbulent diffusivity and turbulent Schmidt number is shown, and other authors' correlations on their limiting behaviour towards the pipe wall are evaluated based on our LES results. The intermittent characteristics of turbulent mass transfer in pipe flow are depicted by probability density functions (pdf) of velocity and concentration fluctuations; joint pdfs between them are also presented. Instantaneous snapshots of velocity and concentration fluctuations are shown to supplement our discussion on the turbulence statistics. Finally, we report the results of octant analysis and budget calculation of concentration variance to clarify Sc-dependency of the correlation between near-wall turbulence structures and concentration fluctuation in

  9. Effects of Schmidt number on near-wall turbulent mass transfer in pipe flow

    International Nuclear Information System (INIS)

    Kang, Chang Woo; Yang, Kyung Soo

    2014-01-01

    Large Eddy simulation (LES) of turbulent mass transfer in circular-pipe flow has been performed to investigate the characteristics of turbulent mass transfer in the near-wall region. We consider a fully-developed turbulent pipe flow with a constant wall concentration. The Reynolds number under consideration is Re r = 500 based on the friction velocity and the pipe radius, and the selected Schmidt numbers (Sc) are 0.71, 5, 10, 20 and 100. Dynamic subgrid-scale (SGS) models for the turbulent SGS stresses and turbulent mass fluxes were employed to close the governing equations. The current paper reports a comprehensive characterization of turbulent mass transfer in circular-pipe flow, focusing on its near-wall characteristics and Sc dependency. We start with mean fields by presenting mean velocity and concentration profiles, mean Sherwood numbers and mean mass transfer coefficients for the selected values of the parameters. After that, we present the characteristics of fluctuations including root-mean-square (rms) profiles of velocity, concentration, and mass transfer coefficient fluctuations. Turbulent mass fluxes and correlations between velocity and concentration fluctuations are also discussed. The near-wall behaviour of turbulent diffusivity and turbulent Schmidt number is shown, and other authors' correlations on their limiting behaviour towards the pipe wall are evaluated based on our LES results. The intermittent characteristics of turbulent mass transfer in pipe flow are depicted by probability density functions (pdf) of velocity and concentration fluctuations; joint pdfs between them are also presented. Instantaneous snapshots of velocity and concentration fluctuations are shown to supplement our discussion on the turbulence statistics. Finally, we report the results of octant analysis and budget calculation of concentration variance to clarify Sc-dependency of the correlation between near-wall turbulence structures and concentration fluctuation in the

  10. Anomalous dissipation and kinetic-energy distribution in pipes at very high Reynolds numbers.

    Science.gov (United States)

    Chen, Xi; Wei, Bo-Bo; Hussain, Fazle; She, Zhen-Su

    2016-01-01

    A symmetry-based theory is developed for the description of (streamwise) kinetic energy K in turbulent pipes at extremely high Reynolds numbers (Re's). The theory assumes a mesolayer with continual deformation of wall-attached eddies which introduce an anomalous dissipation, breaking the exact balance between production and dissipation. An outer peak of K is predicted above a critical Re of 10^{4}, in good agreement with experimental data. The theory offers an alternative explanation for the recently discovered logarithmic distribution of K. The concept of anomalous dissipation is further supported by a significant modification of the k-ω equation, yielding an accurate prediction of the entire K profile.

  11. Reynolds number calculation and applications for curved wall jets

    Directory of Open Access Journals (Sweden)

    Valeriu DRAGAN

    2014-09-01

    Full Text Available The current paper refers to the preliminary estimation of the Reynolds number for curved wall jets. This, in turn, can be a useful tool for controlling the boundary layer mesh size near a generic curved wall which is wetted by a thin, attached jet. The method relies on analytical calculations that link the local curvature of the wall with the pressure gradient and further, the local Reynolds number. Knowing the local Reynolds number distribution, a CFD user can tailor their mesh size to more exact specifications (e.g. y+=1 for k-omega RANS models and lower the risk that the mesh is too coarse or finer than necessary.

  12. High-Reynolds Number Viscous Flow Simulations on Embedded-Boundary Cartesian Grids

    Science.gov (United States)

    2016-05-05

    AFRL-AFOSR-VA-TR-2016-0192 High- Reynolds Number Viscous Flow Simulations on Embedded-Boundary Cartesian Grids Marsha Berger NEW YORK UNIVERSITY Final...TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY) 30/04/2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) High- Reynolds 4. TITLE AND...SUBTITLE High- Reynolds Number Viscous Flow Simulations on Embedded-Boundary Cartesian Grids 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1

  13. Lift Production on Flapping and Rotary Wings at Low Reynolds Numbers

    Science.gov (United States)

    2016-02-26

    AFRL-AFOSR-VA-TR-2016-0098 Flapping and Rotary Wing Lift at Low Reynolds Number Anya Jones MARYLAND UNIV COLLEGE PARK Final Report 02/26/2016...Lift Production on Flapping and Rotary Wings at Low Reynolds Numbers (YIP) 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0251 5c. PROGRAM...necessary if the abstract is to be limited. Standard Form 298 Back (Rev. 8/98) Lift Production on Flapping and Rotary Wings at Low Reynolds Numbers

  14. Direct numerical simulation of moderate-Reynolds-number flow past arrays of rotating spheres

    Science.gov (United States)

    Zhou, Qiang; Fan, Liang-Shih

    2015-07-01

    Direct numerical simulations with an immersed boundary-lattice Boltzmann method are used to investigate the effects of particle rotation on flows past random arrays of mono-disperse spheres at moderate particle Reynolds numbers. This study is an extension of a previous study of the authors [Q. Zhou and L.-S. Fan, "Direct numerical simulation of low-Reynolds-number flow past arrays of rotating spheres," J. Fluid Mech. 765, 396-423 (2015)] that explored the effects of particle rotation at low particle Reynolds numbers. The results of this study indicate that as the particle Reynolds number increases, the normalized Magnus lift force decreases rapidly when the particle Reynolds number is in the range lower than 50. For the particle Reynolds number greater than 50, the normalized Magnus lift force approaches a constant value that is invariant with solid volume fractions. The proportional dependence of the Magnus lift force on the rotational Reynolds number (based on the angular velocity and the diameter of the spheres) observed at low particle Reynolds numbers does not change in the present study, making the Magnus lift force another possible factor that can significantly affect the overall dynamics of fluid-particle flows other than the drag force. Moreover, it is found that both the normalized drag force and the normalized torque increase with the increase of the particle Reynolds number and the solid volume fraction. Finally, correlations for the drag force, the Magnus lift force, and the torque in random arrays of rotating spheres at arbitrary solids volume fractions, rotational Reynolds numbers, and particle Reynolds numbers are formulated.

  15. Multi-scale viscosity model of turbulence for fully-developed channel flows

    International Nuclear Information System (INIS)

    Kriventsev, V.; Yamaguchi, A.; Ninokata, H.

    2001-01-01

    The full text follows. Multi-Scale Viscosity (MSV) model is proposed for estimation of the Reynolds stresses in turbulent fully-developed flow in a straight channel of an arbitrary shape. We assume that flow in an ''ideal'' channel is always stable, i.e. laminar, but turbulence is developing process of external perturbations cased by wall roughness and other factors. We also assume that real flows are always affected by perturbations of every scale lower than the size of the channel. And the turbulence is generated in form of internal, or ''turbulent'' viscosity increase to preserve stability of ''disturbed'' flow. The main idea of MSV can be expressed in the following phenomenological rule: A local deformation of axial velocity can generate the turbulence with the intensity that keeps the value of local turbulent Reynolds number below some critical value. Here, the local turbulent Reynolds number is defined as a product of value of axial velocity deformation for a given scale and generic length of this scale divided by accumulated value of laminar and turbulent viscosity of lower scales. In MSV, the only empirical parameter is the critical Reynolds number that is estimated to be around 100. It corresponds for the largest scale which is hydraulic diameter of the channel and, therefore represents the regular Reynolds number. Thus, the value Re=100 corresponds to conditions when turbulent flow can appear in case of ''significant'' (comparable with size of channel) velocity disturbance in boundary and/or initial conditions for velocity. Of course, most of real flows in channels with relatively smooth walls remain laminar for this small Reynolds number because of absence of such ''significant'' perturbations. MSV model has been applied to the fully-developed turbulent flows in straight channels such as a circular tube and annular channel. Friction factor and velocity profiles predicted with MSV are in a very good agreement with numerous experimental data. Position of

  16. Numerical analysis of three-dimensional turbulent flow in a 90deg bent tube by algebraic Reynolds stress model

    International Nuclear Information System (INIS)

    Sugiyama, Hitoshi; Akiyama, Mitsunobu; Shinohara, Yasunori; Hitomi, Daisuke

    1997-01-01

    A numerical analysis has been performed for three dimensional developing turbulent flow in a 90deg bent tube with straight inlet and outlet sections by an algebraic Reynolds stress model. To our knowledge, very little has been reported about detailed comparison between calculated results and experimental data containing Reynolds stresses. In calculation, an algebraic Reynolds stress model together with a boundary-fitted coordinate system is applied to a 90deg bent tube in order to solve anisotropic turbulent flow precisely. The calculated results display comparatively good agreement with the experimental data of time averaged velocity and secondary vectors. In addition, the present method predicts as a characteristic feature that the intensity of secondary flow near the inner wall is increased immediately downstream from the bend outlet by the pressure gradient. With regard to comparison of Reynolds stresses, the present method is able to reproduce well the distributions of streamwise normal stress and shear stress defined streamwise and radial velocity fluctuation except for the shear stress defined streamwise and circumferential velocity fluctuation. The present calculation has been found to simulate many features of the developing flow in bent tube satisfactorily, but it has a tendency to underpredict the Reynolds stresses. (author)

  17. Application of a Novel Laser-Doppler Velocimeter for Turbulence: Structural Measurements in Turbulent Boundary Layers

    National Research Council Canada - National Science Library

    Lowe, Kevin T; Simpson, Roger L

    2006-01-01

    An advanced laser-Doppler velocimeter (LDV), deemed the 'comprehensive LDV', is designed to acquire fully-resolved turbulence structural measurements in high Reynolds number two- and three-dimensional turbulent boundary layers...

  18. Turbulent Fluid Motion 6: Turbulence, Nonlinear Dynamics, and Deterministic Chaos

    Science.gov (United States)

    Deissler, Robert G.

    1996-01-01

    Several turbulent and nonturbulent solutions of the Navier-Stokes equations are obtained. The unaveraged equations are used numerically in conjunction with tools and concepts from nonlinear dynamics, including time series, phase portraits, Poincare sections, Liapunov exponents, power spectra, and strange attractors. Initially neighboring solutions for a low-Reynolds-number fully developed turbulence are compared. The turbulence is sustained by a nonrandom time-independent external force. The solutions, on the average, separate exponentially with time, having a positive Liapunov exponent. Thus, the turbulence is characterized as chaotic. In a search for solutions which contrast with the turbulent ones, the Reynolds number (or strength of the forcing) is reduced. Several qualitatively different flows are noted. These are, respectively, fully chaotic, complex periodic, weakly chaotic, simple periodic, and fixed-point. Of these, we classify only the fully chaotic flows as turbulent. Those flows have both a positive Liapunov exponent and Poincare sections without pattern. By contrast, the weakly chaotic flows, although having positive Liapunov exponents, have some pattern in their Poincare sections. The fixed-point and periodic flows are nonturbulent, since turbulence, as generally understood, is both time-dependent and aperiodic.

  19. Effect of Reynolds Number on Aerodynamics of Airfoil with Gurney Flap

    Directory of Open Access Journals (Sweden)

    Shubham Jain

    2015-01-01

    Full Text Available Steady state, two-dimensional computational investigations performed on NACA 0012 airfoil to analyze the effect of variation in Reynolds number on the aerodynamics of the airfoil without and with a Gurney flap of height of 3% chord are presented in this paper. RANS based one-equation Spalart-Allmaras model is used for the computations. Both lift and drag coefficients increase with Gurney flap compared to those without Gurney flap at all Reynolds numbers at all angles of attack. The zero lift angle of attack seems to become more negative as Reynolds number increases due to effective increase of the airfoil camber. However the stall angle of attack decreased by 2° for the airfoil with Gurney flap. Lift coefficient decreases rapidly and drag coefficient increases rapidly when Reynolds number is decreased below critical range. This occurs due to change in flow pattern near Gurney flap at low Reynolds numbers.

  20. Effects of Reynolds Number on the Energy Conversion and Near-Wake Dynamics of a High Solidity Vertical-Axis Cross-Flow Turbine

    Directory of Open Access Journals (Sweden)

    Peter Bachant

    2016-01-01

    Full Text Available Experiments were performed with a large laboratory-scale high solidity cross-flow turbine to investigate Reynolds number effects on performance and wake characteristics and to establish scale thresholds for physical and numerical modeling of individual devices and arrays. It was demonstrated that the performance of the cross-flow turbine becomes essentially R e -independent at a Reynolds number based on the rotor diameter R e D ≈ 10 6 or an approximate average Reynolds number based on the blade chord length R e c ≈ 2 × 10 5 . A simple model that calculates the peak torque coefficient from static foil data and cross-flow turbine kinematics was shown to be a reasonable predictor for Reynolds number dependence of an actual cross-flow turbine operating under dynamic conditions. Mean velocity and turbulence measurements in the near-wake showed subtle differences over the range of R e investigated. However, when transport terms for the streamwise momentum and mean kinetic energy were calculated, a similar R e threshold was revealed. These results imply that physical model studies of cross-flow turbines should achieve R e D ∼ 10 6 to properly approximate both the performance and wake dynamics of full-scale devices and arrays.

  1. Turbulent characteristics of shear-thinning fluids in recirculating flows

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.S. [Inst. Superior de Engenharia do Porto (Portugal). Dept. de Engenharia Quimica; Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Mecanica e Gestao Industrial, Faculdade de Engenharia da Universidade do Porto, Rua dos Bragas, 4050-123 Porto (Portugal)

    2000-03-01

    A miniaturised fibre optic laser-Doppler anemometer was used to carry out a detailed hydrodynamic investigation of the flow downstream of a sudden expansion with 0.1-0.2% by weight shear-thinning aqueous solutions of xanthan gum. Upstream of the sudden expansion the pipe flow was fully-developed and the xanthan gum solutions exhibited drag reduction with corresponding lower radial and tangential normal Reynolds stresses, but higher axial Reynolds stress near the wall and a flatter axial mean velocity profile in comparison with Newtonian flow. The recirculation bubble length was reduced by more than 20% relative to the high Reynolds number Newtonian flow, and this was attributed to the occurrence further upstream of high turbulence for the non-Newtonian solutions, because of advection of turbulence and earlier high turbulence production in the shear layer. Comparisons with the measurements of Escudier and Smith (1999) with similar fluids emphasized the dominating role of inlet turbulence. The present was less anisotropic, and had lower maximum axial Reynolds stresses (by 16%) but higher radial turbulence (20%) than theirs. They reported considerably longer recirculating bubble lengths than we do for similar non-Newtonian fluids and Reynolds numbers. (orig.)

  2. On temperature spectra in grid turbulence

    International Nuclear Information System (INIS)

    Jayesh; Tong, C.; Warhaft, Z.

    1994-01-01

    This paper reports wind tunnel measurements of passive temperature spectra in decaying grid generated turbulence both with and without a mean transverse temperature gradient. The measurements cover a turbulence Reynolds number range 60 l 3/4 l . The remarkably low Reynolds number onset (Re l ∼70) of Kolmogorov--Obukhov--Corrsin scaling in isotropic grid turbulence is contrasted to the case of scalars in (anisotropic) shear flows where KOC scaling only appears at very high-Reynolds numbers (Re l ∼10 5 ). It is also shown that when the temperature fluctuations are inserted very close to the grid in the absence of a gradient (by means of a mandoline), the temperature spectrum behaves in a similar way to the linear gradient case, i.e., a spectrum with a scaling exponent close to -5/3 is observed, a result noted earlier in heated grid experiments. However, when the scalar is inserted farther downstream of the grid (in the fully developed turbulence), the spectrum has a scaling region of -1.3 and its dilation with Re is less well defined than for the other cases. The velocity spectrum is also shown to have a scaling region, of slope -1.3, and its onset occurs at higher Reynolds number than for the case of the scalar experiments that exhibit the KOC scaling

  3. On the calculation of length scales for turbulent heat transfer correlation

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, M.J.; Hollingsworth, D.K.

    1999-07-01

    Turbulence length scale calculation methods were critically reviewed for their usefulness in boundary layer heat transfer correlations. Merits and deficiencies in each calculation method were presented. A rigorous method for calculating an energy-based integral scale was introduced. The method uses the variance of the streamwise velocity and a measured dissipation spectrum to calculate the length scale. Advantages and disadvantages of the new method were discussed. A principal advantage is the capability to decisively calculate length scales in a low-Reynolds-number turbulent boundary layer. The calculation method was tested with data from grid-generated, free-shear-layer, and wall-bounded turbulence. In each case, the method proved successful. The length scale is well behaved in turbulent boundary layers with momentum thickness Reynolds numbers from 400 to 2,100 and in flows with turbulent Reynolds numbers as low as 90.

  4. The Influence of Realistic Reynolds Numbers on Slat Noise Simulations

    Science.gov (United States)

    Lockard, David P.; Choudhari, Meelan M.

    2012-01-01

    The slat noise from the 30P/30N high-lift system has been computed using a computational fluid dynamics code in conjunction with a Ffowcs Williams-Hawkings solver. Varying the Reynolds number from 1.71 to 12.0 million based on the stowed chord resulted in slight changes in the radiated noise. Tonal features in the spectra were robust and evident for all Reynolds numbers and even when a spanwise flow was imposed. The general trends observed in near-field fluctuations were also similar for all the different Reynolds numbers. Experiments on simplified, subscale high-lift systems have exhibited noticeable dependencies on the Reynolds number and tripping, although primarily for tonal features rather than the broadband portion of the spectra. Either the 30P/30N model behaves differently, or the computational model is unable to capture these effects. Hence, the results underscore the need for more detailed measurements of the slat cove flow.

  5. The influence of Reynolds numbers on resistance properties of jet pumps

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Q. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Zhou, G. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Li, Q. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); State Key laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry (China)

    2014-01-29

    Jet pumps are widely used in thermoacoustic Stirling heat engines and pulse tube cryocoolers to eliminate the effect of Gedeon streaming. The resistance properties of jet pumps are principally influenced by their structures and flow regimes which are always characterized by Reynolds numbers. In this paper, the jet pump of which cross section contracts abruptly is selected as our research subject. Based on linear thermoacoustic theory, a CFD model is built and the oscillating flow of the working gas is simulated and analyzed with different Reynolds numbers in the jet pump. According to the calculations, the influence of different structures and Reynolds numbers on the resistance properties of the jet pump are analyzed and presented. The results show that Reynolds numbers have a great influence on the resistance properties of jet pumps and some empirical formulas which are widely used are unsuitable for oscillating flow with small Reynolds numbers. This paper provides a more comprehensive understanding on resistance properties of jet pumps with oscillating flow and is significant for the design of jet pumps in practical thermoacoustic engines and refrigerators.

  6. A turbulent mixing Reynolds stress model fitted to match linear interaction analysis predictions

    International Nuclear Information System (INIS)

    Griffond, J; Soulard, O; Souffland, D

    2010-01-01

    To predict the evolution of turbulent mixing zones developing in shock tube experiments with different gases, a turbulence model must be able to reliably evaluate the production due to the shock-turbulence interaction. In the limit of homogeneous weak turbulence, 'linear interaction analysis' (LIA) can be applied. This theory relies on Kovasznay's decomposition and allows the computation of waves transmitted or produced at the shock front. With assumptions about the composition of the upstream turbulent mixture, one can connect the second-order moments downstream from the shock front to those upstream through a transfer matrix, depending on shock strength. The purpose of this work is to provide a turbulence model that matches LIA results for the shock-turbulent mixture interaction. Reynolds stress models (RSMs) with additional equations for the density-velocity correlation and the density variance are considered here. The turbulent states upstream and downstream from the shock front calculated with these models can also be related through a transfer matrix, provided that the numerical implementation is based on a pseudo-pressure formulation. Then, the RSM should be modified in such a way that its transfer matrix matches the LIA one. Using the pseudo-pressure to introduce ad hoc production terms, we are able to obtain a close agreement between LIA and RSM matrices for any shock strength and thus improve the capabilities of the RSM.

  7. Flow through collapsible tubes at low Reynolds numbers. Applicability of the waterfall model.

    Science.gov (United States)

    Lyon, C K; Scott, J B; Wang, C Y

    1980-07-01

    The applicability of the waterfall model was tested using the Starling resistor and different viscosities of fluids to vary the Reynolds number. The waterfall model proved adequate to describe flow in the Starling resistor model only at very low Reynolds numbers (Reynolds number less than 1). Blood flow characterized by such low Reynolds numbers occurs only in the microvasculature. Thus, it is inappropriate to apply the waterfall model indiscriminately to flow through large collapsible veins.

  8. On Parametric Sensitivity of Reynolds-Averaged Navier-Stokes SST Turbulence Model: 2D Hypersonic Shock-Wave Boundary Layer Interactions

    Science.gov (United States)

    Brown, James L.

    2014-01-01

    Examined is sensitivity of separation extent, wall pressure and heating to variation of primary input flow parameters, such as Mach and Reynolds numbers and shock strength, for 2D and Axisymmetric Hypersonic Shock Wave Turbulent Boundary Layer interactions obtained by Navier-Stokes methods using the SST turbulence model. Baseline parametric sensitivity response is provided in part by comparison with vetted experiments, and in part through updated correlations based on free interaction theory concepts. A recent database compilation of hypersonic 2D shock-wave/turbulent boundary layer experiments extensively used in a prior related uncertainty analysis provides the foundation for this updated correlation approach, as well as for more conventional validation. The primary CFD method for this work is DPLR, one of NASA's real-gas aerothermodynamic production RANS codes. Comparisons are also made with CFL3D, one of NASA's mature perfect-gas RANS codes. Deficiencies in predicted separation response of RANS/SST solutions to parametric variations of test conditions are summarized, along with recommendations as to future turbulence approach.

  9. Turbulent viscosity and scale laws in turbulent jets with variable density; Viscosite turbulente et lois d`echelles dans les jets turbulents a masse volumique variable

    Energy Technology Data Exchange (ETDEWEB)

    Pietri, L.; Amielh, M.; Anselmet, F.; Fulachier, L. [Institut de Recherche sur les Phinomenes Hors Equilibre Equipe Turbulence, 13 - Marseille (France)

    1997-12-31

    Turbulent flows with strong density variations, like helium jets in the ambient air, have specific properties linked with the difference of gas densities. This paper presents some experimental results of turbulence properties inside such flows: the Reynolds tensions and the associated turbulent viscosity, and some characteristics linked with the statistical properties of the different turbulence scales. These last results allows to show the complexity of such flows characterized by the influence of external parameters (Reynolds number, initial density ratio, initial momentum flux) that govern the evolution of these parameters inside the jet from the nozzle up to regions where similarity properties are reached. (J.S.) 12 refs.

  10. Emergence of multi-scaling in fluid turbulence

    Science.gov (United States)

    Donzis, Diego; Yakhot, Victor

    2017-11-01

    We present new theoretical and numerical results on the transition to strong turbulence in an infinite fluid stirred by a Gaussian random force. The transition is defined as a first appearance of anomalous scaling of normalized moments of velocity derivatives (or dissipation rates) emerging from the low-Reynolds-number Gaussian background. It is shown that due to multi-scaling, strongly intermittent rare events can be quantitatively described in terms of an infinite number of different ``Reynolds numbers'' reflecting a multitude of anomalous scaling exponents. We found that anomalous scaling for high order moments emerges at very low Reynolds numbers implying that intense dissipative-range fluctuations are established at even lower Reynolds number than that required for an inertial range. Thus, our results suggest that information about inertial range dynamics can be obtained from dissipative scales even when the former does not exit. We discuss our further prediction that transition to fully anomalous turbulence disappears at Rλ < 3 . Support from NSF is acknowledged.

  11. Homogeneous purely buoyancy driven turbulent flow

    Science.gov (United States)

    Arakeri, Jaywant; Cholemari, Murali; Pawar, Shashikant

    2010-11-01

    An unstable density difference across a long vertical tube open at both ends leads to convection that is axially homogeneous with a linear density gradient. We report results from such tube convection experiments, with driving density caused by salt concentration difference or temperature difference. At high enough Rayleigh numbers (Ra) the convection is turbulent with zero mean flow and zero mean Reynolds shear stresses; thus turbulent production is purely by buoyancy. We observe different regimes of turbulent convection. At very high Ra the Nusselt number scales as the square root of the Rayleigh number, giving the so-called "ultimate regime" of convection predicted for Rayleigh-Benard convection in limit of infinite Ra. Turbulent convection at intermediate Ra, the Nusselt number scales as Ra^0.3. In both regimes, the flux and the Taylor scale Reynolds number are more than order of magnitude larger than those obtained in Rayleigh-Benard convection. Absence of a mean flow makes this an ideal flow to study shear free turbulence near a wall.

  12. On the motion of non-spherical particles at high Reynolds number

    DEFF Research Database (Denmark)

    Mandø, Matthias; Rosendahl, Lasse

    2010-01-01

    This paper contains a critical review of available methodology for dealing with the motion of non-spherical particles at higher Reynolds numbers in the Eulerian- Lagrangian methodology for dispersed flow. First, an account of the various attempts to classify the various shapes and the efforts...... motion it is necessary to account for the non-coincidence between the center of pressure and center of gravity which is a direct consequence of the inertial pressure forces associated with particles at high Reynolds number flow. Extensions for non-spherical particles at higher Reynolds numbers are far...

  13. Modeling Compressed Turbulence with BHR

    Science.gov (United States)

    Israel, Daniel

    2011-11-01

    Turbulence undergoing compression or expansion occurs in systems ranging from internal combustion engines to supernovae. One common feature in many of these systems is the presence of multiple reacting species. Direct numerical simulation data is available for the single-fluid, low turbulent Mach number case. Wu, et al. (1985) compared their DNS results to several Reynolds-averaged Navier-Stokes models. They also proposed a three-equation k - ɛ - τ model, in conjunction with a Reynolds-stress model. Subsequent researchers have proposed alternative corrections to the standard k - ɛ formulation. Here we investigate three variants of the BHR model (Besnard, 1992). BHR is a model for multi-species variable-density turbulence. The three variants are the linear eddy-viscosity, algebraic-stress, and full Reynolds-stress formulations. We then examine the predictions of the model for the fluctuating density field for the case of variable-density turbulence.

  14. Direct Numerical Simulation of heat transfer in a turbulent flume

    International Nuclear Information System (INIS)

    Bergant, R.; Tiselj, I.

    2001-01-01

    Direct Numerical Simulation (DNS) can be used for the description of turbulent heat transfer in the fluid at low Reynolds numbers. DNS means precise solving of Navier-Stoke's equations without any extra turbulent models. DNS should be able to describe all relevant length scales and time scales in observed turbulent flow. The largest length scale is actually dimension of system and the smallest length and time scale is equal to Kolmogorov scale. In the present work simulations of fully developed turbulent velocity and temperature fields were performed in a turbulent flume (open channel) with pseudo-spectral approach at Reynolds number 2670 (friction Reynolds number 171) and constant Prandtl number 5.4, considering the fluid temperature as a passive scalar. Two ideal thermal boundary conditions were taken into account on the heated wall. The first one was an ideal isothermal boundary condition and the second one an ideal isoflux boundary condition. We observed different parameters like mean temperature and velocity, fluctuations of temperature and velocity, and auto-correlation functions.(author)

  15. Vortex Shedding from Tapered Cylinders at high Reynolds Numbers

    DEFF Research Database (Denmark)

    Johansson, Jens; Andersen, Michael Styrk; Christensen, Silas Sverre

    2015-01-01

    percent for strakes of circular cross section. The present paper argues that this height can be reduced for structures where the critical wind velocity for vortex shedding is in the Supercritical Reynolds number regime. The present investigations are aimed for suppressing VIV on offshore wind turbine......^5 (Supercritical). Results indicate that circular strakes with a diameter corresponding to 3 percent of the structures mean diameter can be used to efficiently reduce VIV in the Supercritical Reynolds number regime....

  16. Regeneration of near-wall turbulence structures

    Science.gov (United States)

    Hamilton, James M.; Kim, John J.; Waleffe, Fabian A.

    1993-01-01

    An examination of the regeneration mechanisms of near-wall turbulence and an attempt to investigate the critical Reynolds number conjecture of Waleffe & Kim is presented. The basis is an extension of the 'minimal channel' approach of Jimenez and Moin which emphasizes the near-wall region and further reduces the complexity of the turbulent flow. Reduction of the flow Reynolds number to the minimum value which will allow turbulence to be sustained has the effect of reducing the ratio of the largest scales to the smallest scales or, equivalently, of causing the near-wall region to fill more of the area between the channel walls. In addition, since each wall may have an active near-wall region, half of the channel is always somewhat redundant. If a plane Couette flow is instead chosen as the base flow, this redundancy is eliminated: the mean shear of a plane Couette flow has a single sign, and at low Reynolds numbers, the two wall regions share a single set of structures. A minimal flow with these modifications possesses, by construction, the strongest constraints which allow sustained turbulence, producing a greatly simplified flow in which the regeneration process can be examined.

  17. 2-D and 3-D CFD Investigation of NREL S826 Airfoil at Low Reynolds Numbers

    International Nuclear Information System (INIS)

    Cakmakcioglu, S C; Sert, I O; Tugluk, O; Sezer-Uzol, N

    2014-01-01

    In this study CFD investigation of flow over the NREL S826 airfoil is performed. NREL S826 airfoil was designed for HAWTs of 10-15 meter diameters. However, it is used in the NTNU wind turbine rotor model and low Reynolds number flow characteristics become important in the validations with the test cases of this rotor model. The airfoil CFD simulations are carried out in 2-D and 3-D computational domains. The k-rn SST turbulence model with Langtry-Menter (γ-Re θ ) transition prediction model for turbulence closure is used in the calculations. The Delayed DES is also performed in the stall region for comparisons. The results are compared with the available METUWIND experimental data, and are shown to be in fair agreement. It is observed that 3-D CFD analysis provides increased accuracy at increased computational cost

  18. Theoretical skin-friction law in a turbulent boundary layer

    International Nuclear Information System (INIS)

    Cheskidov, A.

    2005-01-01

    We study transitional and turbulent boundary layers using a turbulent velocity profile equation recently derived from the Navier-Stokes-alpha and Leray-alpha models. From this equation we obtain a theoretical prediction of the skin-friction coefficient in a wide range of Reynolds numbers based on momentum thickness, and deduce the maximal value of c f max =0.0063 for turbulent velocity profiles. A two-parameter family of solutions to the equation matches experimental data in the transitional boundary layers with different free-stream turbulence intensity, while one-parameter family of solutions, obtained using our skin-friction coefficient law, matches experimental data in the turbulent boundary layer for moderately large Reynolds numbers

  19. Role of Elasto-Inertial Turbulence in Polymer Drag Reduction

    Science.gov (United States)

    Dubief, Yves; Sid, Samir; Terrapon, Vincent

    2017-11-01

    Elasto-Inertial Turbulence (EIT) is a peculiar state of turbulence found in dilute polymer solutions flowing in parallel wall flows over a wide range of Reynolds numbers. At subcritical Reynolds numbers, appropriate boundary conditions trigger EIT, a self-sustaining cycle of energy transfers between thin sheets of stretched polymers and velocity perturbations, which translates into an increase of friction drag. For critical and supercritical Reynolds numbers, polymer additives may lead to significant drag reduction, bounded by the asymptotic state known as Maximum Drag Reduction (MDR). The present research investigates the role of EIT in the dynamics of critical and supercritical Reynolds number wall flows. Using high-fidelity direct numerical simulations of channel flows and the FENE-P model, we establish that (i) EIT is two-dimensional, (ii) the scales essential to the existence of EIT are sub-Kolmogorov, and (iii) EIT drives MDR at low and possibly moderate Reynolds number turbulent flows. These findings were validated in two different codes and using unprecedented resolutions for polymer flows. YD is grateful for the support of Binational Science Foundation. SS and VT acknowledges Fonds de la Recherche Scientifique (FNRS), MarieCurie Career Integration Grant and computing allocation from University of Liege and PRACE.

  20. LES of High-Reynolds-Number Coanda Flow Separating from a Rounded Trailing Edge of a Circulation Control Airfoil

    Science.gov (United States)

    Nichino, Takafumi; Hahn, Seonghyeon; Shariff, Karim

    2010-01-01

    This slide presentation reviews the Large Eddy Simulation of a high reynolds number Coanda flow that is separated from a round trailing edge of a ciruclation control airfoil. The objectives of the study are: (1) To investigate detailed physics (flow structures and statistics) of the fully turbulent Coanda jet applied to a CC airfoil, by using LES (2) To compare LES and RANS results to figure out how to improve the performance of existing RANS models for this type of flow.

  1. Assessment of Reynolds stress components and turbulent pressure loss using 4D flow MRI with extended motion encoding.

    Science.gov (United States)

    Haraldsson, Henrik; Kefayati, Sarah; Ahn, Sinyeob; Dyverfeldt, Petter; Lantz, Jonas; Karlsson, Matts; Laub, Gerhard; Ebbers, Tino; Saloner, David

    2018-04-01

    To measure the Reynolds stress tensor using 4D flow MRI, and to evaluate its contribution to computed pressure maps. A method to assess both velocity and Reynolds stress using 4D flow MRI is presented and evaluated. The Reynolds stress is compared by cross-sectional integrals of the Reynolds stress invariants. Pressure maps are computed using the pressure Poisson equation-both including and neglecting the Reynolds stress. Good agreement is seen for Reynolds stress between computational fluid dynamics, simulated MRI, and MRI experiment. The Reynolds stress can significantly influence the computed pressure loss for simulated (eg, -0.52% vs -15.34% error; P Reynolds stress (P Reynolds stress tensor. The additional information provided by this method improves the assessment of pressure gradients across a stenosis in the presence of turbulence. Unlike conventional methods, which are only valid if the flow is laminar, the proposed method is valid for both laminar and disturbed flow, a common presentation in diseased vessels. Magn Reson Med 79:1962-1971, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Turbulent diffusion of chemically reacting flows: Theory and numerical simulations.

    Science.gov (United States)

    Elperin, T; Kleeorin, N; Liberman, M; Lipatnikov, A N; Rogachevskii, I; Yu, R

    2017-11-01

    The theory of turbulent diffusion of chemically reacting gaseous admixtures developed previously [T. Elperin et al., Phys. Rev. E 90, 053001 (2014)PLEEE81539-375510.1103/PhysRevE.90.053001] is generalized for large yet finite Reynolds numbers and the dependence of turbulent diffusion coefficient on two parameters, the Reynolds number and Damköhler number (which characterizes a ratio of turbulent and reaction time scales), is obtained. Three-dimensional direct numerical simulations (DNSs) of a finite-thickness reaction wave for the first-order chemical reactions propagating in forced, homogeneous, isotropic, and incompressible turbulence are performed to validate the theoretically predicted effect of chemical reactions on turbulent diffusion. It is shown that the obtained DNS results are in good agreement with the developed theory.

  3. Flame Speed and Self-Similar Propagation of Expanding Turbulent Premixed Flames

    Science.gov (United States)

    Chaudhuri, Swetaprovo; Wu, Fujia; Zhu, Delin; Law, Chung K.

    2012-01-01

    In this Letter we present turbulent flame speeds and their scaling from experimental measurements on constant-pressure, unity Lewis number expanding turbulent flames, propagating in nearly homogeneous isotropic turbulence in a dual-chamber, fan-stirred vessel. It is found that the normalized turbulent flame speed as a function of the average radius scales as a turbulent Reynolds number to the one-half power, where the average radius is the length scale and the thermal diffusivity is the transport property, thus showing self-similar propagation. Utilizing this dependence it is found that the turbulent flame speeds from the present expanding flames and those from the Bunsen geometry in the literature can be unified by a turbulent Reynolds number based on flame length scales using recent theoretical results obtained by spectral closure of the transformed G equation.

  4. Turbulence Modeling and Computation of Turbine Aerodynamics and Heat Transfer

    Science.gov (United States)

    Lakshminarayana, B.; Luo, J.

    1996-01-01

    The objective of the present research is to develop improved turbulence models for the computation of complex flows through turbomachinery passages, including the effects of streamline curvature, heat transfer and secondary flows. Advanced turbulence models are crucial for accurate prediction of rocket engine flows, due to existance of very large extra strain rates, such as strong streamline curvature. Numerical simulation of the turbulent flows in strongly curved ducts, including two 180-deg ducts, one 90-deg duct and a strongly concave curved turbulent boundary layer have been carried out with Reynolds stress models (RSM) and algebraic Reynolds stress models (ARSM). An improved near-wall pressure-strain correlation has been developed for capturing the anisotropy of turbulence in the concave region. A comparative study of two modes of transition in gas turbine, the by-pass transition and the separation-induced transition, has been carried out with several representative low-Reynolds number (LRN) k-epsilon models. Effects of blade surface pressure gradient, freestream turbulence and Reynolds number on the blade boundary layer development, and particularly the inception of transition are examined in detail. The present study indicates that the turbine blade transition, in the presence of high freestream turbulence, is predicted well with LRN k-epsilon models employed. The three-dimensional Navier-Stokes procedure developed by the present authors has been used to compute the three-dimensional viscous flow through the turbine nozzle passage of a single stage turbine. A low Reynolds number k-epsilon model and a zonal k-epsilon/ARSM (algebraic Reynolds stress model) are utilized for turbulence closure. An assessment of the performance of the turbulence models has been carried out. The two models are found to provide similar predictions for the mean flow parameters, although slight improvement in the prediction of some secondary flow quantities has been obtained by the

  5. Flow around turbulence promoters in parallel channel, 1

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Takizuka, Takakazu; Okamoto, Yoshizo

    1982-01-01

    Flow characteristics in relation to heat transfer characteristics in parallel channel with turbulence promoters were studied experimentally. Flow visualization experiments were made in paralle channel with one or two turbulence promoters for Reynolds number region of 100 lt = Resub(w) lt = 3,600. The vortex patterns behind one promoter were that a steady vortex was formed for low Reynolds number and vortex was shed for high Reynolds number,. For higher Reynolds number, it was observed that shedding vortex caused other vortices or disappeared itself randomly. The results indicate that the shedding vortices will augment heat transfer, whereas the steady vortex will give rise to deterioration in heat transfer. This inference agrees with the experimental results of Hishida et al. The results of two promoters experiment showed that the maximum performance of promoter would be attained at p/d -- 7. This agrees with the results formerly studied by other investigators. (author)

  6. Transitional and turbulent flat-plate boundary layers with heat transfer

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz

    2010-11-01

    We report on our direct numerical simulation of two incompressible, nominally zero-pressure-gradient flat-plate boundary layers from momentum thickness Reynolds number 80 to 1950. Heat transfer between the constant-temperature solid surface and the free-stream is also simulated with molecular Prandtl number=1. Throughout the entire flat-plate, the ratio of Stanton number and skin-friction St/Cfdeviates from the exact Reynolds analogy value of 0.5 by less than 1.5%. Turbulent Prandtl number t peaks at the wall. Preponderance of hairpin vortices is observed in both the transitional and turbulent regions of the boundary layers. In particular, the internal structure of merged turbulent spots is hairpin forest; the internal structure of infant turbulent spots is hairpin packet. Numerous hairpin vortices are readily detected in both the near-wall and outer regions of the boundary layers up to momentum thickness Reynolds number 1950. This suggests that the hairpin vortices in the turbulent region are not simply the aged hairpin forests convected from the upstream transitional region. Temperature iso-surfaces in the companion thermal boundary layers are found to be a useful tracer in identifying hairpin vortex structures.

  7. Effects of droplet interactions on droplet transport at intermediate Reynolds numbers

    Science.gov (United States)

    Shuen, Jian-Shun

    1987-01-01

    Effects of droplet interactions on drag, evaporation, and combustion of a planar droplet array, oriented perpendicular to the approaching flow, are studied numerically. The three-dimensional Navier-Stokes equations, with variable thermophysical properties, are solved using finite-difference techniques. Parameters investigated include the droplet spacing, droplet Reynolds number, approaching stream oxygen concentration, and fuel type. Results are obtained for the Reynolds number range of 5 to 100, droplet spacings from 2 to 24 diameters, oxygen concentrations of 0.1 and 0.2, and methanol and n-butanol fuels. The calculations show that the gasification rates of interacting droplets decrease as the droplet spacings decrease. The reduction in gasification rates is significant only at small spacings and low Reynolds numbers. For the present array orientation, the effects of interactions on the gasification rates diminish rapidly for Reynolds numbers greater than 10 and spacings greater than 6 droplet diameters. The effects of adjacent droplets on drag are shown to be small.

  8. Rarefaction Effects in Low Reynolds Number Subsonic and Transonic Aerodynamics

    Science.gov (United States)

    Pekardan, Cem

    The quantification of rarefaction effects for low Reynolds number (Reefficient. It was also shown that when the Reynolds number of the flow decreased from 10,000 to 1,000, slip effects become dominant. The flow becomes fully rarefied at Re=10. Furthermore, rarefaction effects were quantified for the NACA 0007 and the NACA 2407 at 0 and 10 degrees of angle of attack to investigate the effects of thickness, camber, and the angle of attack. It was observed that flow separation due to increase in thickness resulted in higher rarefaction effects. It was concluded that thin airfoils with very smooth shape changes minimize continuum breakdown / rarefaction effects. Rarefied gas phenomena that only appear in low pressures (such as thermal effects) can be exploited for performance enhancement of applications in slightly rarefied aerodynamics. In this study, feasibility and advantages of using thermal control to reduce drag and mitigate vortex shedding for airfoils are studied. NACA 0012 airfoil with a temperature difference applied between the upper and the lower surface is simulated in the continuum regime with a Navier-Stokes solver and compared to experimental data for verification of parameters and turbulence modelling. At lower pressures, an elevated temperature on the bottom surface of the airfoil is investigated to create lift and understand the rarefaction effects. Continuum NS results were compared to the rarefied ES-BGK solver for the rarefaction effects. It was shown that an elevated temperature enhances the lift by 25 % and reduces the drag at high angles of attack. In the second part, a temperature gradient on the upper surface is applied and it was seen that drag is reduced by 4 % and vortex shedding frequency is reduced due to gradients introduced in the flow by thermal transpiration.

  9. Unsteady behavior of a confined jet in a cavity at moderate Reynolds numbers

    International Nuclear Information System (INIS)

    Bouchet, G; Climent, E

    2012-01-01

    Self-sustained oscillations in the sinuous mode are observed when a jet impinges on a rigid surface. Confined jet instability is experimentally and numerically investigated here at moderate Reynolds numbers. When the Reynolds number is varied, the dynamic response of the jet is unusual in comparison with that of similar configurations (hole-tone, jet edge, etc). Modal transitions are clearly detected when the Reynolds number is varied. However, these transitions result in a reduction of the frequency, which means that the wavelength grows with Reynolds number. Moreover, the instability that sets in at low Reynolds number, as a subcritical Hopf bifurcation, disappears only 25% above the threshold. Then, the flow becomes steady again and symmetric. This atypical behavior is compared with our previous study on a submerged fountain (Bouchet et al 2002 Europhys. Lett. 59 826). (paper)

  10. Turbulence generation through intense kinetic energy sources

    Science.gov (United States)

    Maqui, Agustin F.; Donzis, Diego A.

    2016-06-01

    Direct numerical simulations (DNS) are used to systematically study the development and establishment of turbulence when the flow is initialized with concentrated regions of intense kinetic energy. This resembles both active and passive grids which have been extensively used to generate and study turbulence in laboratories at different Reynolds numbers and with different characteristics, such as the degree of isotropy and homogeneity. A large DNS database was generated covering a wide range of initial conditions with a focus on perturbations with some directional preference, a condition found in active jet grids and passive grids passed through a contraction as well as a new type of active grid inspired by the experimental use of lasers to photo-excite the molecules that comprise the fluid. The DNS database is used to assert under what conditions the flow becomes turbulent and if so, the time required for this to occur. We identify a natural time scale of the problem which indicates the onset of turbulence and a single Reynolds number based exclusively on initial conditions which controls the evolution of the flow. It is found that a minimum Reynolds number is needed for the flow to evolve towards fully developed turbulence. An extensive analysis of single and two point statistics, velocity as well as spectral dynamics and anisotropy measures is presented to characterize the evolution of the flow towards realistic turbulence.

  11. A Discussion of Low Reynolds Number Flow for the Two-Dimensional Benchmark Test Case

    DEFF Research Database (Denmark)

    Weng, Miaocheng; Nielsen, Peter V.; Liu, Li

    The use of CFD in ventilation research has arrived to a high level, but there are some conditions in the general CFD procedure which do not apply to all situations in the ventilation research. An example of this isthe turbulence models in Reynolds-averaged Navier-Stokes equations, i.e. (RANS...

  12. Irrecoverable pressure loss coefficients for two out-of-plane piping elbows at high Reynolds number

    Energy Technology Data Exchange (ETDEWEB)

    Coffield, R.D.; Hammond, R.B.; McKeown, P.T.

    1999-02-08

    Pressure drops of multiple piping elbows were experimentally determined for high Reynolds number flows. The testing described has been performed in order to reduce uncertainties in the currently used methods for predicting irrecoverable pressure losses and also to provide a qualification database for computational fluid dynamics (CFD) computer codes. The earlier high Reynolds number correlations had been based on extrapolations over several orders of magnitude in Reynolds number from where the original database existed. Recent single elbow test data shows about a factor of two lower elbow pressure loss coefficient (at 40x 106 Reynolds number) than those from current correlations. This single piping elbow data has been extended in this study to a multiple elbow configuration of two elbows that are 90o out-of-plane relative to each other. The effects of separation distance and Reynolds number have been correlated and presented in a form that can be used for design application. Contrary to earlier extrapolations from low Reynolds numbers (Re c 1.0x 106), a strong Reynolds number dependence was found to exist. The combination of the high Reynolds number single elbow data with the multiple elbow interaction effects measured in this study shows that earlier design correlations are conservative by significant margins at high Reynolds numbers. Qualification of CFD predictions with this new high Reynolds number database will help guide the need for additional high Reynolds number testing of other piping configurations. The study also included velocity measurements at several positions downstream of the first and second test elbows using an ultrasonic flowmeter. Reasonable agreement after the first test elbow was found relative to flow fields that are known to exist from low Reynolds number visual tests and also from CFD predictions. This data should help to qualify CFD predictions of the three-dimensional flow stream downstream of the second test elbow.

  13. Quantify the complexity of turbulence

    Science.gov (United States)

    Tao, Xingtian; Wu, Huixuan

    2017-11-01

    Many researchers have used Reynolds stress, power spectrum and Shannon entropy to characterize a turbulent flow, but few of them have measured the complexity of turbulence. Yet as this study shows, conventional turbulence statistics and Shannon entropy have limits when quantifying the flow complexity. Thus, it is necessary to introduce new complexity measures- such as topology complexity and excess information-to describe turbulence. Our test flow is a classic turbulent cylinder wake at Reynolds number 8100. Along the stream-wise direction, the flow becomes more isotropic and the magnitudes of normal Reynolds stresses decrease monotonically. These seem to indicate the flow dynamics becomes simpler downstream. However, the Shannon entropy keeps increasing along the flow direction and the dynamics seems to be more complex, because the large-scale vortices cascade to small eddies, the flow is less correlated and more unpredictable. In fact, these two contradictory observations partially describe the complexity of a turbulent wake. Our measurements (up to 40 diameters downstream the cylinder) show that the flow's degree-of-complexity actually increases firstly and then becomes a constant (or drops slightly) along the stream-wise direction. University of Kansas General Research Fund.

  14. Turbulence Intensity and the Friction Factor for Smooth- and Rough-Wall Pipe Flow

    OpenAIRE

    Nils T. Basse

    2017-01-01

    Turbulence intensity profiles are compared for smooth- and rough-wall pipe flow measurements made in the Princeton Superpipe. The profile development in the transition from hydraulically smooth to fully rough flow displays a propagating sequence from the pipe wall towards the pipe axis. The scaling of turbulence intensity with Reynolds number shows that the smooth- and rough wall level deviates with increasing Reynolds number. We quantify the correspondence between turbulence intensity and th...

  15. Advanced lattice Boltzmann scheme for high-Reynolds-number magneto-hydrodynamic flows

    Science.gov (United States)

    De Rosis, Alessandro; Lévêque, Emmanuel; Chahine, Robert

    2018-06-01

    Is the lattice Boltzmann method suitable to investigate numerically high-Reynolds-number magneto-hydrodynamic (MHD) flows? It is shown that a standard approach based on the Bhatnagar-Gross-Krook (BGK) collision operator rapidly yields unstable simulations as the Reynolds number increases. In order to circumvent this limitation, it is here suggested to address the collision procedure in the space of central moments for the fluid dynamics. Therefore, an hybrid lattice Boltzmann scheme is introduced, which couples a central-moment scheme for the velocity with a BGK scheme for the space-and-time evolution of the magnetic field. This method outperforms the standard approach in terms of stability, allowing us to simulate high-Reynolds-number MHD flows with non-unitary Prandtl number while maintaining accuracy and physical consistency.

  16. Three-dimensional study of flow past a square cylinder at low Reynolds numbers

    International Nuclear Information System (INIS)

    Saha, A.K.; Biswas, G.; Muralidhar, K.

    2003-01-01

    The spatial evolution of vortices and transition to three-dimensionality in the wake of a square cylinder have been numerically studied. A Reynolds number range between 150 and 500 has been considered. Starting from the two-dimensional Karman vortex street, the transition to three-dimensionality is found to take place at a Reynolds number between 150 and 175. The three-dimensional wake of the square cylinder has been characterized using indicators appropriate for the wake of a bluff body as described by the earlier workers. In these terms, the secondary vortices of Mode-A are seen to persist over the Reynolds number range of 175-240. At about a Reynolds number of 250, Mode-B secondary vortices are present, these having predominantly small-scale structures. The transitional flow around a square cylinder exhibits an intermittent low frequency modulation due to the formation of a large-scale irregularity in the near-wake, called vortex dislocation. The superposition of vortex dislocation and the Mode-A vortices leads to a new pattern, labelled as Mode-A with dislocations. The results for the square cylinder are in good accordance with the three-dimensional modes of transition that are well-known in the circular cylinder wake. In the case of a circular cylinder, the transition from periodic vortex shedding to Mode-A is characterized by a discontinuity in the Strouhal number-Reynolds number relationship at about a Reynolds of 190. The transition from Mode-A to Mode-B is characterized by a second discontinuity in the frequency law at a Reynolds number of ∼250. The numerical computations of the present study with a square cylinder show that the values of the Strouhal number and the time-averaged drag-coefficient are closely associated with each other over the range of Reynolds numbers of interest and reflect the spatial structure of the wake

  17. The Penguin: a Low Reynolds Number Powered Glider for Station Keeping Missions

    Science.gov (United States)

    Costello, J. K.; Greene, D. W.; Lee, T. T.; Matier, P. T.; Mccarthy, T. R.; Mcguire, R. J.; Schuette, M. J.

    1990-01-01

    The Penguin is a low Reynolds number (approx. 100,000) remotely piloted vehicle (RPV). It was designed to fly three laps indoors around two pylons in a figure-eight course while maximizing loiter time. The Penguin's low Reynolds number mission is an important one currently being studied for possible future flights in the atmospheres of other planets and for specialized military missions. Although the Penguin's mission seemed quite simple at first, the challenges of such low Reynolds number flight have proven to be quite unique. In addition to the constraint of low Reynolds number flight, the aircraft had to be robust in its control, highly durable, and it had to carry a small instrument package. The Penguin's flight plan, concept, performance, aerodynamic design, weight estimation, structural design, propulsion, stability and control, and cost estimate is detailed.

  18. Mass transfer in wetted-wall columns: correlations at high Reynolds numbers

    DEFF Research Database (Denmark)

    Nielsen, Christian H.E.; Kiil, Søren; Thomsen, Henrik W.

    1998-01-01

    (G)) were determined. In dimensionless form, the correlations are given by Sh(L) = 0.01613 Re-G(0.664) Re-L(0.426) Sc-L(0.5) Sh(G) = 0.00031 Re-G(1.05) Re-L(0.207) Sc-G(0.5) and are valid at gas-phase Reynolds numbers from 7500 to 18,300 and liquid-phase Reynolds numbers from 4000 to 12,000, conditions...... of industrial relevance. To our knowledge, no correlations for Sh(G) have been reported in the literature which are valid at such high Reynolds numbers. The wetted-wall column was equipped with six intermediate measuring positions for gas and two for liquid samples, giving rise to a high accuracy...... of the obtained correlations. Our data showed that Sh(L) and Sh(G) both depend on Re-G and Re-L due to changes in the interfacial area at the high Reynolds numbers employed. The presence of inert particles in the liquid-phase may influence the rate of mass transport, and experimental work was initiated to study...

  19. Study of parameters and entrainment of a jet in cross-flow arrangement with transition at two low Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Camilo [Karlsruhe Institute of Technology, Institute for Chemical Technology and Polymer Chemistry, Karlsruhe (Germany); Convenio Andres Bello, Instituto Internacional de Investigaciones Educativas para la Integracion, La Paz (Bolivia); Denev, Jordan A.; Bockhorn, Henning [Karlsruhe Institute of Technology, Engler-Bunte-Institute, Combustion Division, Karlsruhe (Germany); Suntz, Rainer [Karlsruhe Institute of Technology, Institute for Chemical Technology and Polymer Chemistry, Karlsruhe (Germany)

    2012-10-15

    Investigation of the mixing process is one of the main issues in chemical engineering and combustion and the configuration of a jet into a cross-flow (JCF) is often employed for this purpose. Experimental data are gained for the symmetry plane in a JCF-arrangement of an air flow using a combination of particle image velocimetry (PIV) with laser-induced fluorescence (LIF). The experimental data with thoroughly measured boundary conditions are complemented with direct numerical simulations, which are based on idealized boundary conditions. Two similar cases are studied with a fixed jet-to-cross-flow velocity ratio of 3.5 and variable cross-flow Reynolds numbers equal to 4,120 and 8,240; in both cases the jet issues from the pipe at laminar conditions. This leads to a laminar-to-turbulent transition, which depends on the Reynolds number and occurs quicker for the case with higher Reynolds number in both experiments and simulations as well. It was found that the Reynolds number only slightly affects the jet trajectory, which in the case with the higher Reynolds number is slightly deeper. It is attributed to the changed boundary layer shape of the cross-flow. Leeward streamlines bend toward the jet and are responsible for the strong entrainment of cross-flow fluid into the jet. Velocity components are compared for the two Reynolds numbers at the leeward side at positions where strongest entrainment is present and a pressure minimum near the jet trajectory is found. The numerical simulations showed that entrainment is higher for the case with the higher Reynolds number. The latter is attributed to the earlier transition in this case. Fluid entrainment of the jet in cross-flow is more than twice stronger than for a similar flow of a jet issuing into a co-flowing stream. This comparison is made along the trajectory of the two jets at a distance of 5.5 jet diameters downstream and is based on the results from the direct numerical simulations and recently published

  20. Improvement of Reynolds-Stress and Triple-Product Lag Models

    Science.gov (United States)

    Olsen, Michael E.; Lillard, Randolph P.

    2017-01-01

    The Reynolds-stress and triple product Lag models were created with a normal stress distribution which was denied by a 4:3:2 distribution of streamwise, spanwise and wall normal stresses, and a ratio of r(sub w) = 0.3k in the log layer region of high Reynolds number flat plate flow, which implies R11(+)= [4/(9/2)*.3] approximately 2.96. More recent measurements show a more complex picture of the log layer region at high Reynolds numbers. The first cut at improving these models along with the direction for future refinements is described. Comparison with recent high Reynolds number data shows areas where further work is needed, but also shows inclusion of the modeled turbulent transport terms improve the prediction where they influence the solution. Additional work is needed to make the model better match experiment, but there is significant improvement in many of the details of the log layer behavior.

  1. Reynolds stress and shear flow generation

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Naulin, V.

    2001-01-01

    The so-called Reynolds stress may give a measure of the self-consistent flow generation in turbulent fluids and plasmas by the small-scale turbulent fluctuations. A measurement of the Reynolds stress can thus help to predict flows, e.g. shear flows in plasmas. This may assist the understanding...... of improved confinement scenarios such as H-mode confinement regimes. However, the determination of the Reynolds stress requires measurements of the plasma potential, a task that is difficult in general and nearly impossible in hot plasmas in large devices. In this work we investigate an alternative method......, based on density measurements, to estimate the Reynolds stress, and demonstrate the validity range of this quantity, which we term the pseudo-Reynolds stress. The advantage of such a quantity is that accurate measurements of density fluctuations are much easier to obtain experimentally. Prior...

  2. Charts Adapted from Van Driest's Turbulent Flat-plate Theory for Determining Values of Turbulent Aerodynamic Friction and Heat-transfer Coefficients

    Science.gov (United States)

    Lee, Dorothy B; Faget, Maxime A

    1956-01-01

    A modified method of Van Driest's flat-plate theory for turbulent boundary layer has been found to simplify the calculation of local skin-friction coefficients which, in turn, have made it possible to obtain through Reynolds analogy theoretical turbulent heat-transfer coefficients in the form of Stanton number. A general formula is given and charts are presented from which the modified method can be solved for Mach numbers 1.0 to 12.0, temperature ratios 0.2 to 6.0, and Reynolds numbers 0.2 times 10 to the 6th power to 200 times 10 to the 6th power.

  3. Flow control at low Reynolds numbers using periodic airfoil morphing

    Science.gov (United States)

    Jones, Gareth; Santer, Matthew; Papadakis, George; Bouremel, Yann; Debiasi, Marco; Imperial-NUS Joint PhD Collaboration

    2014-11-01

    The performance of airfoils operating at low Reynolds numbers is known to suffer from flow separation even at low angles of attack as a result of their boundary layers remaining laminar. The lack of mixing---a characteristic of turbulent boundary layers---leaves laminar boundary layers with insufficient energy to overcome the adverse pressure gradient that occurs in the pressure recovery region. This study looks at periodic surface morphing as an active flow control technique for airfoils in such a flight regime. It was discovered that at sufficiently high frequencies an oscillating surface is capable of not only reducing the size of the separated region---and consequently significantly reducing drag whilst simultaneously increasing lift---but it is also capable of delaying stall and as a result increasing CLmax. Furthermore, by bonding Macro Fiber Composite actuators (MFCs) to the underside of an airfoil skin and driving them with a sinusoidal frequency, it is shown that this control technique can be practically implemented in a lightweight, energy efficient way. Imperial-NUS Joint Ph.D. Programme.

  4. Magnetohydrodynamic duct and channel flows at finite magnetic Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Bandaru, Vinodh Kumar

    2015-11-27

    Magnetohydrodynamic duct flows have so far been studied only in the limit of negligible magnetic Reynolds numbers (R{sub m}). When R{sub m} is finite, the secondary magnetic field becomes significant, leading to a fully coupled evolution of the magnetic field and the conducting flow. Characterization of such flows is essential in understanding wall-bounded magnetohydrodynamic turbulence at finite R{sub m} as well as in industrial applications like the design of electromagnetic pumps and measurement of transient flows using techniques such as Lorentz force velocimetry. This thesis presents the development of a numerical framework for direct numerical simulations (DNS) of magnetohydrodynamic flows in straight rectangular ducts at finite R{sub m}, which is subsequently used to study three specific problems. The thesis opens with a brief overview of MHD and a review of the existing state of art in duct and channel MHD flows. This is followed by a description of the physical model governing the problem of MHD duct flow with insulating walls and streamwise periodicity. In the main part of the thesis, a hybrid finite difference-boundary element computational procedure is developed that is used to solve the magnetic induction equation with boundary conditions that satisfy interior-exterior matching of the magnetic field at the domain wall boundaries. The numerical procedure is implemented into a code and a detailed verification of the same is performed in the limit of low R{sub m} by comparing with the results obtained using a quasistatic approach that has no coupling with the exterior. Following this, the effect of R{sub m} on the transient response of Lorentz force is studied using the problem of a strongly accelerated solid conducting bar in the presence of an imposed localized magnetic field. The response time of Lorentz force depends linearly on R{sub m} and shows a good agreement with the existing experiments. For sufficiently large values of R{sub m}, the peak

  5. The spanwise spectra in wall-bounded turbulence

    Science.gov (United States)

    Wang, Hong-Ping; Wang, Shi-Zhao; He, Guo-Wei

    2018-06-01

    The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the near-wall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Re_τ can be as low as 1000. The properties of the inner and outer peaks in the spanwise spectra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.

  6. Transitional and turbulent boundary layer with heat transfer

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz

    2010-08-01

    We report on our direct numerical simulation of an incompressible, nominally zero-pressure-gradient flat-plate boundary layer from momentum thickness Reynolds number 80-1950. Heat transfer between the constant-temperature solid surface and the free-stream is also simulated with molecular Prandtl number Pr=1. Skin-friction coefficient and other boundary layer parameters follow the Blasius solutions prior to the onset of turbulent spots. Throughout the entire flat-plate, the ratio of Stanton number and skin-friction St/Cf deviates from the exact Reynolds analogy value of 0.5 by less than 1.5%. Mean velocity and Reynolds stresses agree with experimental data over an extended turbulent region downstream of transition. Normalized rms wall-pressure fluctuation increases gradually with the streamwise growth of the turbulent boundary layer. Wall shear stress fluctuation, τw,rms'+, on the other hand, remains constant at approximately 0.44 over the range, 800spots are tightly packed with numerous hairpin vortices. With the advection and merging of turbulent spots, these young isolated hairpin forests develop into the downstream turbulent region. Isosurfaces of temperature up to Reθ=1900 are found to display well-resolved signatures of hairpin vortices, which indicates the persistence of the hairpin forests.

  7. Mean-field theory of differential rotation in density stratified turbulent convection

    Science.gov (United States)

    Rogachevskii, I.

    2018-04-01

    A mean-field theory of differential rotation in a density stratified turbulent convection has been developed. This theory is based on the combined effects of the turbulent heat flux and anisotropy of turbulent convection on the Reynolds stress. A coupled system of dynamical budget equations consisting in the equations for the Reynolds stress, the entropy fluctuations and the turbulent heat flux has been solved. To close the system of these equations, the spectral approach, which is valid for large Reynolds and Péclet numbers, has been applied. The adopted model of the background turbulent convection takes into account an increase of the turbulence anisotropy and a decrease of the turbulent correlation time with the rotation rate. This theory yields the radial profile of the differential rotation which is in agreement with that for the solar differential rotation.

  8. Boundary induced nonlinearities at small Reynolds numbers

    NARCIS (Netherlands)

    Sbragaglia, M.; Sugiyama, K.

    2007-01-01

    We investigate the importance of boundary slip at finite Reynolds numbers for mixed boundary conditions. Nonlinear effects are induced by the non-homogeneity of the boundary condition and change the symmetry properties of the flow with an overall mean flow reduction. To explain the observed drag

  9. submitter Superconducting instrumentation for high Reynolds turbulence experiments with low temperature gaseous helium

    CERN Document Server

    Pietropinto, S; Baudet, C; Castaing, B; Chabaud, B; Gagne, Y; Hébral, B; Ladam, Y; Lebrun, P; Pirotte, O; Roche, P

    2003-01-01

    Turbulence is of common experience and of high interest for industrial applications, despite its physical grounds is still not understood. Cryogenic gaseous helium gives access to extremely high Reynolds numbers (Re). We describe an instrumentation hosted in CERN, which provides a 6 kW @ 4.5 K helium refrigerator directly connected to the experiment. The flow is a round jet; the flow rates range from 20 g/s up to 260 g/s at 4.8 K and about 1.2 bar, giving access to the highest controlled Re flow ever developed. The experimental challenge lies in the range of scales which have to be investigated: from the smallest viscous scale η, typically 1 μm at Re=107 to the largest L∼10 cm. The corresponding frequencies: f=v/η can be as large as 1 MHz. The development of an original micrometric superconducting anemometer using a hot spot and its characteristics will be discussed together with its operation and the perspectives associated with superconducting anemometry.

  10. Saturation of the turbulent dynamo.

    Science.gov (United States)

    Schober, J; Schleicher, D R G; Federrath, C; Bovino, S; Klessen, R S

    2015-08-01

    The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k☆ which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm≫1 and between 2.43% and 0.135% for Pm≪1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence.

  11. A New View of the Dynamics of Reynolds Stress Generation in Turbulent Boundary Layers

    Science.gov (United States)

    Cantwell, Brian J.; Chacin, Juan M.

    1998-01-01

    The structure of a numerically simulated turbulent boundary layer over a flat plate at Re(theta) = 670 was studied using the invariants of the velocity gradient tensor (Q and R) and a related scalar quantity, the cubic discriminant (D = 27R(exp 2)/4 + Q(exp 3)). These invariants have previously been used to study the properties of the small-scale motions responsible for the dissipation of turbulent kinetic energy. In addition, these scalar quantities allow the local flow patterns to be unambiguously classified according to the terminology proposed by Chong et al. The use of the discriminant as a marker of coherent motions reveals complex, large-scale flow structures that are shown to be associated with the generation of Reynolds shear stress -u'v'(bar). These motions are characterized by high spatial gradients of the discriminant and are believed to be an important part of the mechanism that sustains turbulence in the near-wall region.

  12. Eulerian short-time statistics of turbulent flow at large Reynolds number

    NARCIS (Netherlands)

    Brouwers, J.J.H.

    2004-01-01

    An asymptotic analysis is presented of the short-time behavior of second-order temporal velocity structure functions and Eulerian acceleration correlations in a frame that moves with the local mean velocity of the turbulent flow field. Expressions in closed-form are derived which cover the viscous

  13. Turbulence Intensity Scaling: A Fugue

    OpenAIRE

    Basse, Nils T.

    2018-01-01

    We study streamwise turbulence intensity definitions using smooth- and rough-wall pipe flow measurements made in the Princeton Superpipe. Scaling of turbulence intensity with the bulk (and friction) Reynolds number is provided for the definitions. The turbulence intensity is proportional to the square root of the friction factor with the same proportionality constant for smooth- and rough-wall pipe flow. Turbulence intensity definitions providing the best description of the measurements are i...

  14. Measurements of turbulence in a microscale multi-inlet vortex nanoprecipitation reactor

    International Nuclear Information System (INIS)

    Shi, Yanxiang; Cheng, Janine Chungyin; Fox, Rodney O; Olsen, Michael G

    2013-01-01

    The microscale multi-inlet vortex reactor (MIVR) is designed for use in Flash NanoPrecipitation (FNP), a promising technique for producing nanoparticles within small particle size distribution. Fluid mixing is crucial in the FNP process, and due to mixing’s strong dependence upon fluid kinematics, investigating velocity and turbulence within the reactor is crucial to optimizing reactor design. To this end, microscopic particle image velocimetry has been used to investigate flow within the MIVR. Three Reynolds numbers are studied, namely, Re j = 53, 93 and 240. At Re j = 53, the flow is laminar and steady. Due to the strong viscous effects at this Reynolds number, distinct flow patterns are observed at different distances from the reactor top and bottom walls. The viscous effects also retard the tangential motions within the reactor, resulting in a weaker vortex than appears at the higher Reynolds numbers. As the Reynolds number is increased to 93, the flow becomes more homogeneous over the depth of the reactor due to weaker viscous effects, yet the flow is still steady. The diminishing effects of viscosity also result in a stronger vortex. At the highest Reynolds number investigated, the flow is turbulent. Turbulent statistics including tangential and radial velocity fluctuations and Reynolds shear stresses are analyzed for this case in addition to the mean velocity field. The tangential motions of the flow are strongest at Re j = 240. Both the tangential and radial velocity fluctuations increase as the flow spirals toward the center of the reactor. The magnitudes of the tangential and radial velocity fluctuations are similar, suggesting that the turbulence is locally isotropic. (paper)

  15. Towards CFD modeling of turbulent pipeline material transportation

    Science.gov (United States)

    Shahirpour, Amir; Herzog, Nicoleta; Egbers, Cristoph

    2013-04-01

    Safe and financially efficient pipeline transportation of carbon dioxide is a critical issue in the developing field of the CCS Technology. In this part of the process, carbon dioxide is transported via pipes with diameter of 1.5 m and entry pressure of 150 bar, with Reynolds number of 107 and viscosity of 8×10(-5) Pa.s as dense fluid [1]. Presence of large and small scale structures in the pipeline, high Reynolds numbers at which CO2 should be transferred, and 3 dimensional turbulence caused by local geometrical modifications, increase the importance of simulation of turbulent material transport through the individual components of the CO2 chain process. In this study, incompressible turbulent channel flow and pipe flow have been modeled using OpenFoam, an open source CFD software. In the first step, simulation of a turbulent channel flow has been considered using LES for shear Reynolds number of 395. A simple geometry has been chosen with cyclic fluid inlet and outlet boundary conditions to simulate a fully developed flow. The mesh is gradually refined towards the wall to provide values close enough to the wall for the wall coordinate (y+). Grid resolution study has been conducted for One-Equation model. The accuracy of the results is analyzed with respect to the grid smoothness in order to reach an optimized resolution for carrying out the next simulations. Furthermore, three LES models, One-Equation, Smagorinsky and Dynamic Smagorinsky are applied for the grid resolution of (60 × 100 × 80) in (x, y, z) directions. The results are then validated with reference to the DNS carried out by Moser et al.[2] for the similar geometry using logarithmic velocity profile (U+) and Reynolds stress tensor components. In the second step the similar flow is modeled using Reynolds averaged method. Several RANS models, like K-epsilon and Launder-Reece-Rodi are applied and validated against DNS and LES results in a similar fashion. In the most recent step, it has been intended

  16. Propulsion at low Reynolds number

    International Nuclear Information System (INIS)

    Najafi, Ali; Golestanian, Ramin

    2005-01-01

    We study the propulsion of two model swimmers at low Reynolds number. Inspired by Purcell's model, we propose a very simple one-dimensional swimmer consisting of three spheres that are connected by two arms whose lengths can change between two values. The proposed swimmer can swim with a special type of motion, which breaks the time-reversal symmetry. We also show that an ellipsoidal membrane with tangential travelling wave on it can also propel itself in the direction preferred by the travelling wave. This system resembles the realistic biological animals like Paramecium

  17. Propulsion at low Reynolds number

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, Ali [Institute for Advanced Studies in Basic Sciences, Zanjan 45195-159 (Iran, Islamic Republic of); Faculty of Science, Zanjan University, Zanjan 313 (Iran, Islamic Republic of); Golestanian, Ramin [Institute for Advanced Studies in Basic Sciences, Zanjan 45195-159 (Iran, Islamic Republic of)

    2005-04-13

    We study the propulsion of two model swimmers at low Reynolds number. Inspired by Purcell's model, we propose a very simple one-dimensional swimmer consisting of three spheres that are connected by two arms whose lengths can change between two values. The proposed swimmer can swim with a special type of motion, which breaks the time-reversal symmetry. We also show that an ellipsoidal membrane with tangential travelling wave on it can also propel itself in the direction preferred by the travelling wave. This system resembles the realistic biological animals like Paramecium.

  18. Suppression of turbulent resistivity in turbulent Couette flow

    Science.gov (United States)

    Si, Jiahe; Colgate, Stirling A.; Sonnenfeld, Richard G.; Nornberg, Mark D.; Li, Hui; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe

    2015-07-01

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.

  19. Suppression of turbulent resistivity in turbulent Couette flow

    Energy Technology Data Exchange (ETDEWEB)

    Si, Jiahe, E-mail: jsi@nmt.edu; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe [New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States); Colgate, Stirling A.; Li, Hui [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Nornberg, Mark D. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2015-07-15

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.

  20. Suppression of turbulent resistivity in turbulent Couette flow

    International Nuclear Information System (INIS)

    Si, Jiahe; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe; Colgate, Stirling A.; Li, Hui; Nornberg, Mark D.

    2015-01-01

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations

  1. Direct numerical simulation of particle-laden turbulent channel flows with two- and four-way coupling effects: budgets of Reynolds stress and streamwise enstrophy

    International Nuclear Information System (INIS)

    Dritselis, Chris D

    2016-01-01

    The budgets of the Reynolds stress and streamwise enstrophy are evaluated through direct numerical simulations for the turbulent particle-laden flow in a vertical channel with momentum exchange between the two phases. The influence of the dispersed particles on the budgets is examined through a comparison of the particle-free and the particle-laden cases at the same Reynolds number of Re b = 5600 based on the bulk fluid velocity and the distance between the channel walls. Results are obtained for particle ensembles with four response times in simulations with and without streamwise gravity and inter-particle collisions at average mass (volume) fractions of 0.2 (2.7 × 10 −5 ) and 0.5 (6.8 × 10 −5 ). The particle feedback force on the flow of the carrier phase is modeled by a point-force approximation (PSIC-method). It is shown that all the terms in the budgets of the Reynolds stress components are decreased in the presence of particles. The level of reduction depends on the particle response time and it is higher under the effects of gravity and inter-particle collisions. A considerable reduction in all the terms of the streamwise enstrophy budget is also observed. In particular, all production mechanisms, and mainly vortex stretching, are inhibited in the particulate flows and thus the production of streamwise vorticity is significantly damped. A further insight into the direct particle effects on the fluid turbulence is provided by analyzing in detail the fluid–fluid, fluid–particle and particle–particle correlations, and the spectra of the fluid–particle energy exchange rate. The present results indicate that the turbulence production, dissipation and pressure–strain term are generally large quantities, but their summation is relatively small and comparable to the fluid–particle direct energy exchange rate. Consequently, the particle contribution can potentially increase or decrease the fluctuating fluid velocities and eventually control the

  2. Onset of chaos in helical vortex breakdown at low Reynolds number

    Science.gov (United States)

    Pasche, S.; Avellan, F.; Gallaire, F.

    2018-06-01

    The nonlinear dynamics of a swirling wake flow stemming from a Graboswksi-Berger vortex [Grabowski and Berger, J. Fluid Mech. 75, 525 (1976), 10.1017/S0022112076000360] in a semi-infinite domain is addressed at low Reynolds numbers for a fixed swirl number S =1.095 , defined as the ratio between the characteristic tangential velocity and the centerline axial velocity. In this system, only pure hydrodynamic instabilities develop and interact through the quadratic nonlinearities of the Navier-Stokes equations. Such interactions lead to the onset of chaos at a Reynolds value of Re=220 . This chaotic state is reached by following a Ruelle-Takens-Newhouse scenario, which is initiated by a Hopf bifurcation (the spiral vortex breakdown) as the Reynolds number increases. At larger Reynolds value, a frequency synchronization regime appears followed by a chaotic state again. This scenario is corroborated by nonlinear time series analyses. Stability analysis around the time-average flow and temporal-azimuthal Fourier decomposition of the nonlinear flow distributions both identify successfully the developing vortices and provide deeper insight into the development of the flow patterns leading to this route to chaos. Three single-helical vortices are involved: the primary spiral associated with the spiral vortex breakdown, a downstream spiral, and a near-wake spiral. As the Reynolds number increases, the frequencies of these vortices become closer, increasing their interactions by nonlinearity to eventually generate a strong chaotic axisymmetric oscillation.

  3. Does the flatness of the velocity derivative blow up at a finite Reynolds number?

    International Nuclear Information System (INIS)

    Sreenivasan, K.R.; Bershadskii, A.

    2006-12-01

    A tentative suggestion is made that the flatness of the velocity derivative could reach an infinite value at finite (though very large) Reynolds number, with possible implications for the singularities of the Navier-Stokes equations. A direct test of this suggestion requires measurements at Reynolds numbers presently outside the experimental capacity, so an alternative suggestion that can be tested at accessible Reynolds numbers is also made. (author)

  4. Comparative study of turbulence model performance for axisymmetric sudden expansion flow

    International Nuclear Information System (INIS)

    Bae, Youngmin; Kim, Young In; Kim, Keung Koo; Yoon, Juhyeon

    2013-01-01

    In this study, the performance of turbulence models in predicting the turbulent flow in an axisymmetric sudden expansion with an expansion ratio of 4 is assessed for a Reynolds number of 5.6 Χ 10 4 . The comparisons show that the standard k-ε and RSM models provide the best agreement with the experimental data, whereas the standard k-ω model gives poor predictions. Owing to its computational efficiency, the Reynolds Averaged Navier-Stokes (RANS) approach has been widely used for the prediction of turbulent flows and associated pressure losses in a variety of internal flow systems such as a diffuser, orifice, converging nozzle, and pipes with sudden expansion. However, the lack of a general turbulence model often leads to limited applications of a RANS approach, i. e., the accuracy and validity of solutions obtained from RANS equations vary with the turbulence model, flow regime, near-wall treatment, and configuration of the problem. In light of the foregoing, a large amount of turbulence research has been conducted to assess the performance of existing turbulence models for different flow fields. In this paper, the turbulent flow in an axisymmetric sudden expansion is numerically investigated for a Reynolds number of 5.6 Χ 10 4 , with the aim of examining the performance of several turbulence models

  5. SIMULATION OF TURBULENT FLOW AND HEAT TRANSFER OVER A BACKWARD -FACING STEP WITH RIBS TURBULATORS

    Directory of Open Access Journals (Sweden)

    Khudheyer S Mushatet

    2011-01-01

    Full Text Available Simulation is presented for a backward facing step flow and heat transfer inside a channel with ribs turbulators. The problem was investigated for Reynolds numbers up to 32000. The effect of a step height, the number of ribs and the rib thickness on the flow and thermal field were investigated. The computed results are presented as streamlines counters, velocity vectors and graphs of Nusselt number and turbulent kinetic energy variation. A control volume method employing a staggered grid techniques was imposed to discretize the governing continuity, full Navier Stockes and energy equations. A computer program using a SIMPLE algorithm was developed to handle the considered problem. The effect of turbulence was modeled by using a k-є model with its wall function formulas. The obtained results show that the strength and size of the re-circulation zones behind the step are increased with the increase of contraction ratio(i.e. with the increase of a step height. The size of recirculation regions and the reattachment length after the ribs are decreased with increasing of the contraction ratio. Also the results show that the Reynolds number and contraction ratio have a significant effect on the variation of turbulent kinetic energy and Nusselt number

  6. A Doppler Sensor Array for High-Resolution Measurements of the Wavenumber-Frequency Spectrum of the Turbulent Wall Pressure at High Reynold Numbers

    National Research Council Canada - National Science Library

    Naguib, Ahmed

    2003-01-01

    .... Moreover, analysis of typical wall-pressure spectra beneath high- and low-Reynolds-number, boundary layers in light of these limits underlines the potential advantage of the new sensor in resolving...

  7. The FX/90: A proposal in response to a low Reynolds Number station keeping mission

    Science.gov (United States)

    Wirthman, David; Palmer, Julie; Gleixner, Aaron; Russell, Scott; Nevala, Tom; Nosek, Mark

    1990-01-01

    The FX/90 is a remotely piloted vehicle designed to fly at Reynolds numbers below 2 x 10 to the 5th power. Several applications exist for this type of flight, such as low altitude flight of very small aircraft. The design presented here allows investigation into the unique problems involved in low Reynolds number flight, which will, in turn, further understanding of this flight regime. The aircraft will operate in a steady flight environment, free from significant atmospheric turbulence and weather effects. The F-90 has a 39 in. fuselage which is constructed of balsa and plywood. The landing gear for the aircraft is a detachable carriage on which the aircraft rests. The aerodynamic planform is a rectangular wing (no taper or sweep) with a chord of 9 in., a wingspan of 72 in., and is constructed entirely out of styrofoam. The propulsion system is a puller configuration mounted on the front of the fuselage. It consists of an Astro 05 engine and a 10-6 two bladed propeller. Control of the aircraft is accomplished through the use of two movable control surfaces: elevators for pitch control, and a rudder for yaw control. The aircraft is soundly constructed, highly maneuverable, and adequately powered. Furthermore, the investigation into alternative technologies, most notably the styrofoam wing and the detachable landing gear, holds promise to improve the performance of the aircraft.

  8. Inclined gravity currents filling basins: The influence of Reynolds number on entrainment into gravity currents

    Science.gov (United States)

    Hogg, Charlie A. R.; Dalziel, Stuart B.; Huppert, Herbert E.; Imberger, Jörg

    2015-09-01

    In many important natural and industrial systems, gravity currents of dense fluid feed basins. Examples include lakes fed by dense rivers and auditoria supplied with cooled air by ventilation systems. As we will show, the entrainment into such buoyancy driven currents can be influenced by viscous forces. Little work, however, has examined this viscous influence and how entrainment varies with the Reynolds number, Re. Using the idea of an entrainment coefficient, E, we derive a mathematical expression for the rise of the front at the top of the dense fluid ponding in a basin, where the horizontal cross-sectional area of the basin varies linearly with depth. We compare this expression to experiments on gravity currents with source Reynolds numbers, Res, covering the broad range 100 < Res < 1500. The form of the observed frontal rises was well approximated by our theory. By fitting the observed frontal rises to the theoretical form with E as the free parameter, we find a linear trend for E(Res) over the range 350 < Res < 1100, which is in the transition to turbulent flow. In the experiments, the entrainment coefficient, E, varied from 4 × 10-5 to 7 × 10-2. These observations show that viscous damping can be a dominant influence on gravity current entrainment in the laboratory and in geophysical flows in this transitional regime.

  9. Intermittent heating of the solar corona by MHD turbulence

    Directory of Open Access Journals (Sweden)

    É. Buchlin

    2007-10-01

    Full Text Available As the dissipation mechanisms considered for the heating of the solar corona would be sufficiently efficient only in the presence of small scales, turbulence is thought to be a key player in the coronal heating processes: it allows indeed to transfer energy from the large scales to these small scales. While Direct numerical simulations which have been performed to investigate the properties of magnetohydrodynamic turbulence in the corona have provided interesting results, they are limited to small Reynolds numbers. We present here a model of coronal loop turbulence involving shell-models and Alfvén waves propagation, allowing the much faster computation of spectra and turbulence statistics at higher Reynolds numbers. We also present first results of the forward-modelling of spectroscopic observables in the UV.

  10. A Study of Low-Reynolds Number Effects in Backward-Facing Step Flow Using Large Eddy Simulations

    DEFF Research Database (Denmark)

    Davidson, Lars; Nielsen, Peter V.

    The flow in ventilated rooms is often not fully turbulent, but in some regions the flow can be laminar. Problems have been encountered when simulating this type of flow using RANS (Reynolds Averaged Navier-Stokes) methods. Restivo carried out experiment on the flow after a backward-facing step...

  11. Reynolds number effects on mixing due to topological chaos.

    Science.gov (United States)

    Smith, Spencer A; Warrier, Sangeeta

    2016-03-01

    Topological chaos has emerged as a powerful tool to investigate fluid mixing. While this theory can guarantee a lower bound on the stretching rate of certain material lines, it does not indicate what fraction of the fluid actually participates in this minimally mandated mixing. Indeed, the area in which effective mixing takes place depends on physical parameters such as the Reynolds number. To help clarify this dependency, we numerically simulate the effects of a batch stirring device on a 2D incompressible Newtonian fluid in the laminar regime. In particular, we calculate the finite time Lyapunov exponent (FTLE) field for three different stirring protocols, one topologically complex (pseudo-Anosov) and two simple (finite-order), over a range of viscosities. After extracting appropriate measures indicative of both the amount of mixing and the area of effective mixing from the FTLE field, we see a clearly defined Reynolds number range in which the relative efficacy of the pseudo-Anosov protocol over the finite-order protocols justifies the application of topological chaos. More unexpectedly, we see that while the measures of effective mixing area increase with increasing Reynolds number for the finite-order protocols, they actually exhibit non-monotonic behavior for the pseudo-Anosov protocol.

  12. Effects of relative thickness on aerodynamic characteristics of airfoil at a low Reynolds number

    Directory of Open Access Journals (Sweden)

    Ma Dongli

    2015-08-01

    Full Text Available This study focuses on the characteristics of low Reynolds number flow around airfoil of high-altitude unmanned aerial vehicles (HAUAVs cruising at low speed. Numerical simulation on the flows around several representative airfoils is carried out to investigate the low Reynolds number flow. The water tunnel model tests further validate the accuracy and effectiveness of the numerical method. Then the effects of the relative thickness of airfoil on aerodynamic performance are explored, using the above numerical method, by simulating flows around airfoils of different relative thicknesses (12%, 14%, 16%, 18%, as well as different locations of the maximum relative thickness (x/c = 22%, 26%, 30%, 34%, at a low Reynolds number of 5 × 105. Results show that performance of airfoils at low Reynolds number is mainly affected by the laminar separation bubble. On the premise of good stall characteristics, the value of maximum relative thickness should be as small as possible, and the location of the maximum relative thickness ought to be closer to the trailing edge to obtain fine airfoil performance. The numerical method is feasible for the simulation of low Reynolds number flow. The study can help to provide a basis for the design of low Reynolds number airfoil.

  13. Numerical study of circular synthetic jets at low Reynolds numbers

    International Nuclear Information System (INIS)

    Xia, Qingfeng; Lei, Shenghui; Ma, Jieyan; Zhong, Shan

    2014-01-01

    Highlights: • Parameter maps depicting different flow regimes of synthetic jets are produced. • Boundaries separating these regimes are defined using quantitative criteria. • The Reynolds number is most appropriate for classifying different flow regimes. • A use of high suction cycle factors enhances the effectiveness of synthetic jets. - Abstract: In this paper, the flow patterns of circular synthetic jets issuing into a quiescent flow at low Reynolds numbers are studied numerically. The results confirm the presence of the three jet flow regimes, i.e. no jet formation, jet flow without rollup and jet flow with rollup reported in the literature. The boundaries of the different jet flow regimes are determined by tracking the structures produced by the synthetic jets in the near field of the jet orifice over several actuation cycles and examining the cycle-averaged streamwise velocity profiles along the jet central axis. When the Stokes number is above a certain threshold value appropriate for the corresponding flow regime, a good correlation between the flow patterns and the jet Reynolds number defined using the jet orifice diameter, Re Do , is also found. Furthermore, the flow structures of synthetic jets with different suction duty cycle factors are compared. The use of a high suction duty cycle factor strengthens the synthetic jet resulting in a greater penetration depth into the surrounding fluid. Overall, the finding from this study enables the flow regimes, in which a synthetic jet actuator with a circular orifice operates, to be determined. It also provides a way of designing more effective synthetic jet actuators for enhancing mass and momentum transfer at very low Reynolds numbers

  14. The Turbulent-Laminar Transition on the Rocket Surface During the Injection

    Directory of Open Access Journals (Sweden)

    I. I. Yurchenko

    2014-01-01

    Full Text Available The variety of turbulent-laminar transition criteria in such environments as the launch vehicle injection points to the essential influence of spherical nose roughness, which is included in one form or another in the critical Reynolds numbers for a lot of explorers of blunt bodies. Some of researchers of the reentry bodies have founded the correlation functions between the momentum thickness Reynolds number and Max number as the transition criteria.In this article we have considered results of flight tests carried out using launch vehicles to define boundary layer regime on the payload fairing surface. The measurements were carried out using specially designed complex of gages consisted of calorimeters, surface temperature gages, and pressure gages. The turbulent-laminar transition was defined in accordance with the sharp change of calorimeter readings and flow separation pressure gages indication.The universal criterion of turbulent-laminar transition has been identified for blunted payload fairings i.e. Reynolds number Reek based on the boundary layer edge parameters in the sonic point of the payload fairing spherical nose and surface roughness height k, which gives the best correlation of all data of flight experiment conducted to define turbulent-laminar transition in boundary layer. The criterion allows defining time margins when boundary layer regime is turbulent at Reek=20±14 existing on space head surfaces and at Reek=6±5 the boundary layer regime is totally laminar.It was defined that under conditions when there are jointly high background disturbances of free stream flux at operation of main launch vehicle engines and influence of the surface roughness the critical value of Reynolds number is an order-diminished value as compared to the values obtained in wind tunnels and in free flight.It was found that with decreasing of roughness influence in growing boundary layer the flow disturbances evolution wide apart the payload fairing

  15. Onset of meso-scale turbulence in active nematics

    NARCIS (Netherlands)

    Doostmohammadi, A.; Shendruk, T.N.; Thijssen, K.; Yeomans, J.M.

    2017-01-01

    Meso-scale turbulence is an innate phenomenon, distinct from inertial turbulence, that spontaneously occurs at low Reynolds number in fluidized biological systems. This spatiotemporal disordered flow radically changes nutrient and molecular transport in living fluids and can strongly affect the

  16. Numerical simulation of flow around the NREL S826 airfoil at moderate Reynolds number using delayed detached Eddy simulation (DDES)

    Science.gov (United States)

    Prytz, Erik R.; Huuse, Øyvind; Müller, Bernhard; Bartl, Jan; Sætran, Lars Roar

    2017-07-01

    Turbulent flow at Reynolds numbers 5 . 104 to 106 around the NREL S826 airfoil used for wind turbine blades is simulated using delayed detached eddy simulation (DDES). The 3D domain is built as a replica of the low speed wind tunnel at the Norwegian University of Science and Technology (NTNU) with the wind tunnel walls considered as slip walls. The subgrid turbulent kinetic energy is used to model the sub-grid scale in the large eddy simulation (LES) part of DDES. Different Reynoldsaveraged Navier-Stokes (RANS) models are tested in ANSYS Fluent. The realizable k - ∈ model as the RANS model in DDES is found to yield the best agreement of simulated pressure distributions with the experimental data both from NTNU and the Technical University of Denmark (DTU), the latter for a shorter spanwise domain. The present DDES results are in excellent agreement with LES results from DTU. Since DDES requires much fewer cells in the RANS region near the wing surface than LES, DDES is computationally much more efficient than LES. Whereas DDES is able to predict lift and drag in close agreement with experiment up to stall, pure 2D RANS simulations fail near stall. After testing different numerical settings, time step sizes and grids for DDES, a Reynolds number study is conducted. Near stall, separated flow structures, so-called stall cells, are observed in the DDES results.

  17. Damköhler number effects on soot formation and growth in turbulent nonpremixed flames

    KAUST Repository

    Attili, Antonio

    2015-01-01

    The effect of Damköhler number on turbulent nonpremixed sooting flames is investigated via large scale direct numerical simulation in three-dimensional n-heptane/air jet flames at a jet Reynolds number of 15,000 and at three different Damköhler numbers. A reduced chemical mechanism, which includes the soot precursor naphthalene, and a high-order method of moments are employed. At the highest Damköhler number, local extinction is negligible, while flames holes are observed in the two lowest Damköhler number cases. Compared to temperature and other species controlled by fuel oxidation chemistry, naphthalene is found to be affected more significantly by the Damköhler number. Consequently, the overall soot mass fraction decreases by more than one order of magnitude for a fourfold decrease of the Damköhler number. On the contrary, the overall number density of soot particles is approximately the same, but its distribution in mixture fraction space is different in the three cases. The total soot mass growth rate is found to be proportional to the Damköhler number. In the two lowest Da number cases, soot leakage across the flame is observed. Leveraging Lagrangian statistics, it is concluded that soot leakage is due to patches of soot that cross the stoichiometric surface through flame holes. These results show the leading order effects of turbulent mixing in controlling the dynamics of soot in turbulent flames. © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  18. Comparative study of turbulence model performance for axisymmetric sudden expansion flow

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Youngmin; Kim, Young In; Kim, Keung Koo; Yoon, Juhyeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In this study, the performance of turbulence models in predicting the turbulent flow in an axisymmetric sudden expansion with an expansion ratio of 4 is assessed for a Reynolds number of 5.6 Χ 10{sup 4}. The comparisons show that the standard k-ε and RSM models provide the best agreement with the experimental data, whereas the standard k-ω model gives poor predictions. Owing to its computational efficiency, the Reynolds Averaged Navier-Stokes (RANS) approach has been widely used for the prediction of turbulent flows and associated pressure losses in a variety of internal flow systems such as a diffuser, orifice, converging nozzle, and pipes with sudden expansion. However, the lack of a general turbulence model often leads to limited applications of a RANS approach, i. e., the accuracy and validity of solutions obtained from RANS equations vary with the turbulence model, flow regime, near-wall treatment, and configuration of the problem. In light of the foregoing, a large amount of turbulence research has been conducted to assess the performance of existing turbulence models for different flow fields. In this paper, the turbulent flow in an axisymmetric sudden expansion is numerically investigated for a Reynolds number of 5.6 Χ 10{sup 4}, with the aim of examining the performance of several turbulence models.

  19. Effects of Mach number on pitot-probe displacement in a turbulent boundary layer

    Science.gov (United States)

    Allen, J. M.

    1974-01-01

    Experimental pitot-probe-displacement data have been obtained in a turbulent boundary layer at a local free-stream Mach number of 4.63 and unit Reynolds number of 6.46 million meter. The results of this study were compared with lower Mach number results of previous studies. It was found that small probes showed displacement only, whereas the larger probes showed not only displacement but also distortion of the shape of the boundary-layer profile. The distortion pattern occurred lower in the boundary layer at the higher Mach number than at the the lower Mach number. The maximum distortion occurred when the center of the probe was about one probe diameter off the test surface. For probes in the wall contact position, the indicated Mach numbers were, for all probes tested, close to the true profile. Pitot-probe displacement was found to increase significantly with increasing Mach number.

  20. High-Reynolds Number Circulation Control Testing in the National Transonic Facility

    Science.gov (United States)

    Milholen, William E., II; Jones, Gregory S.; Chan, David T.; Goodliff, Scott L.

    2012-01-01

    A new capability to test active flow control concepts and propulsion simulations at high Reynolds numbers in the National Transonic Facility at the NASA Langley Research Center is being developed. The first active flow control experiment was completed using the new FAST-MAC semi-span model to study Reynolds number scaling effects for several circulation control concepts. Testing was conducted over a wide range of Mach numbers, up to chord Reynolds numbers of 30 million. The model was equipped with four onboard flow control valves allowing independent control of the circulation control plenums, which were directed over a 15% chord simple-hinged flap. Preliminary analysis of the uncorrected lift data showed that the circulation control increased the low-speed maximum lift coefficient by 33%. At transonic speeds, the circulation control was capable of positively altering the shockwave pattern on the upper wing surface and reducing flow separation. Furthermore, application of the technique to only the outboard portion of the wing demonstrated the feasibility of a pneumatic based roll control capability.

  1. Turbulence

    CERN Document Server

    Bailly, Christophe

    2015-01-01

    This book covers the major problems of turbulence and turbulent processes, including  physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...

  2. Direct simulation of flat-plate boundary layer with mild free-stream turbulence

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz

    2014-11-01

    Spatially evolving direct numerical simulation of the flat-plate boundary layer has been performed. The momentum thickness Reynolds number develops from 80 to 3000 with a free-stream turbulence intensity decaying from 3 percent to 0.8 percent. Predicted skin-friction is in agreement with the Blasius solution prior to breakdown, follows the well-known T3A bypass transition data during transition, and agrees with the Erm and Joubert Melbourne wind-tunnel data after the completion of transition. We introduce the concept of bypass transition in the narrow sense. Streaks, although present, do not appear to be dynamically important during the present bypass transition as they occur downstream of infant turbulent spots. For the turbulent boundary layer, viscous scaling collapses the rate of dissipation profiles in the logarithmic region at different Reynolds numbers. The ratio of Taylor microscale and the Kolmogorov length scale is nearly constant over a large portion of the outer layer. The ratio of large-eddy characteristic length and the boundary layer thickness scales very well with Reynolds number. The turbulent boundary layer is also statistically analyzed using frequency spectra, conditional-sampling, and two-point correlations. Near momentum thickness Reynolds number of 2900, three layers of coherent vortices are observed: the upper and lower layers are distinct hairpin forests of large and small sizes respectively; the middle layer consists of mostly fragmented hairpin elements.

  3. Research on magnetohydrodynamic turbulent behavior. Development of the turbulence model using large eddy simulation. FY15 report of the JNC cooperative research scheme on the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Tanahashi, Takahiko; Miyoshi, Ichiro; Ara, Kuniaki; Ohira, Hiroaki

    2004-08-01

    Investigation of magnetohydrodynamic (MHD) turbulent model with Large Eddy Simulation (LES) method was started in FY15 to evaluate MHD turbulent behavior on the conditions of high Reynolds numbers and high magnetic Reynolds numbers. In FY15, the proposed Subgrid Scale (SGS) model for magnetic fields generated by direct current was formulated with GSMAC-FEM (Generalized Simplified Marker and Cell method for Finite Element Method) and the characteristic behavior of MHD turbulence studied theoretically. A Direct Numerical Simulation (DNS) method was also developed to verify the theoretical study and construct and advanced SGS model. The last purpose of this study is to analyze the realistic Electromagnetic Pump. In order to understand basic concept, analyses of small-scale Electromagnetic Pump was started with A-φ method. The following results were obtained from these studies: (1) Homogeneous turbulent flows in a conducting fluid which were exposed to uniform magnetic fields were examined through the Direct Numerical Simulation and the characteristics of energy distribution were shown in the MHD turbulence at low magnetic Reynolds numbers. (2) For the analysis of the realistic Electromagnetic Pump, the parallel scheme based on GSMAC-FEM was constructed. Effectiveness of the scheme for large-scale calculation was shown through the benchmark problem, three dimensional cavity flow. (3) A new Balancing Tensor Diffusivity (BTD) formulation for the magnetic fields was proposed in this study and the proposed SGS model in previous study was formulated with GSMAC-FEM. The FEM scheme for MHD turbulence at high magnetic Reynolds number was verified through homogeneous MHD turbulence. (4) An A-φ method formulated with GSMAC-FEM was applied to the analysis of small-scale Electromagnetic pump. The basic concepts for the analysis with B method were obtained through the results. (author)

  4. Reynolds number and geometry effects in laminar axisymmetric isothermal counterflows

    KAUST Repository

    Scribano, Gianfranco

    2016-12-29

    The counterflow configuration is a canonical stagnation flow, featuring two opposed impinging round jets and a mixing layer across the stagnation plane. Although counterflows are used extensively in the study of reactive mixtures and other applications where mixing of two streams is required, quantitative data on the scaling properties of the flow field are lacking. The aim of this work is to characterize the velocity and mixing fields in isothermal counterflows over a wide range of conditions. The study features both experimental data from particle image velocimetry and results from detailed axisymmetric simulations. The scaling laws for the nondimensional velocity and mixture fraction are obtained as a function of an appropriate Reynolds number and the ratio of the separation distance of the nozzles to their diameter. In the range of flow configurations investigated, the nondimensional fields are found to depend primarily on the separation ratio and, to a lesser extent, the Reynolds number. The marked dependence of the velocity field with respect to the separation ratio is linked to a high pressure region at the stagnation point. On the other hand, Reynolds number effects highlight the role played by the wall boundary layer on the interior of the nozzles, which becomes less important as the separation ratio decreases. The normalized strain rate and scalar dissipation rate at the stagnation plane are found to attain limiting values only for high values of the Reynolds number. These asymptotic values depend markedly on the separation ratio and differ significantly from the values produced by analytical models. The scaling of the mixing field does not show a limiting behavior as the separation ratio decreases to the smallest practical value considered.

  5. Turbulent spots and scalar flashes in pipe transition

    Science.gov (United States)

    Adrian, Ronald; Wu, Xiaohua; Moin, Parviz

    2017-11-01

    Recent study (Wu et al., PNAS, 1509451112, 2015) demonstrated the feasibility and accuracy of direct computation of the Osborne Reynolds' pipe transition experiment without the unphysical axially periodic boundary condition. Here we use this approach to address three questions: (1) What are the dynamics of turbulent spot generation in pipe transition? (2) How is the succession of scalar flashes, as observed and sketched by Osborne Reynolds, created? (3) What happens to the succession of flashes further downstream? In this study, the inlet disturbance is of radial-mode type imposed through a narrow, three-degree numerical wedge; and the simulation Reynolds number is 6500. Numerical dye is introduced at the inlet plane locally very close to the pipe axis, similar to the needle injection by O. Reynolds. Inception of infant turbulent spots occurs when normal, forward inclined hairpin packets form near the walls from the debris of the inlet perturbations. However, the young and mature turbulent spots consist almost exclusively of reverse, backward leaning hairpin vortices. Scalar flashes appear successively downstream and persist well into the fully-developed turbulent region. Their creation mechanism is addressed. RJA gratefully acknowledges support of the National Science Foundation with NSF Award CBET-0933848.

  6. Dynamical eigenfunction decomposition of turbulent channel flow

    Science.gov (United States)

    Ball, K. S.; Sirovich, L.; Keefe, L. R.

    1991-01-01

    The results of an analysis of low-Reynolds-number turbulent channel flow based on the Karhunen-Loeve (K-L) expansion are presented. The turbulent flow field is generated by a direct numerical simulation of the Navier-Stokes equations at a Reynolds number Re(tau) = 80 (based on the wall shear velocity and channel half-width). The K-L procedure is then applied to determine the eigenvalues and eigenfunctions for this flow. The random coefficients of the K-L expansion are subsequently found by projecting the numerical flow field onto these eigenfunctions. The resulting expansion captures 90 percent of the turbulent energy with significantly fewer modes than the original trigonometric expansion. The eigenfunctions, which appear either as rolls or shearing motions, possess viscous boundary layers at the walls and are much richer in harmonics than the original basis functions.

  7. Separation and reattachment in flows over asymmetric cavities at small Reynolds numbers

    International Nuclear Information System (INIS)

    Tavoularis, S.; Goldman, A.; Floryan, J.M.

    1985-01-01

    Recent experimental and analytical studies of flows at extremely small Reynolds numbers have revealed rather complicated flow patterns, often beyond intuitive explanation. Such flows are common in biological systems as well as in industrial applications involving small particle suspensions. The present study was motivated by Nachtigall's observation that scales on certain butterfly and moth upper wing surfaces appear aerodynamically advantageous, since their removal results in decrease of the lift without an appreciable change of the drag. Since low Reynolds number flows are nearly reversible, it seems that geometrical asymmetry and not random roughness is responsible for this effect. Stokes flows (i.e. at 'zero' Reynolds number) are known to separate behind steps and obstacles, contrary to the expectation that the fluid motion would follow the boundary shape, if its inertia became negligible. (author)

  8. Experimental investigation of turbulence modulation in particle-laden coaxial jets by Phase Doppler Anemometry

    Energy Technology Data Exchange (ETDEWEB)

    Mergheni, M.A. [CORIA UMR 6614 CNRS, Universite et INSA de ROUEN, Avenue de l' Universite, BP 12, 76801 Saint Etienne du Rouvray, Cedex (France)]|[LESTE Ecole Nationale d' Ingenieurs de Monastir, 5019 Monastir (Tunisia); Sautet, J.C.; Godard, G. [CORIA UMR 6614 CNRS, Universite et INSA de ROUEN, Avenue de l' Universite, BP 12, 76801 Saint Etienne du Rouvray, Cedex (France); Ben Ticha, H.; Ben Nasrallah, S. [LESTE Ecole Nationale d' Ingenieurs de Monastir, 5019 Monastir (Tunisia)

    2009-03-15

    The effect of solid particles on the flow characteristics of axisymmetric turbulent coaxial jets for two flow conditions was studied. Simultaneous measurements of size and velocity distributions of continuous and dispersed phases in a two-phase flow are presented using a Phase Doppler Anemometry (PDA) technique. Spherical glass particles with a particle diameter range from 102 to 212 {mu}m were used in this two-phase flow, the experimental results indicate a significant influence of the solid particles and the Re on the flow characteristics. The data show that the gas phase has lower mean velocity in the near-injector region and a higher mean velocity at the developed region. Near the injector at low Reynolds number (Re = 2839) the presence of the particles dampens the gas-phase turbulence, while at higher Reynolds number (Re = 11 893) the gas-phase turbulence and the velocity fluctuation of particle-laden jets are increased. The particle velocity at higher Reynolds number (Re = 11 893) and is lower at lower Reynolds number (Re = 2839). The slip velocity between particles and gas phase existed over the flow domain was examined. More importantly, the present experiment results suggest that, consideration of the gas characteristic length scales is insufficient to predict gas-phase turbulence modulation in gas-particle flows. (author)

  9. Mechanism of transition to turbulence in a circular cylinder wake in a channel

    Directory of Open Access Journals (Sweden)

    Molochnikov Valery

    2017-01-01

    Full Text Available Transition to turbulence in the circular cylinder wake has been studied experimentally and numerically at growing Reynolds number. Good agreement of calculation results with the flow visualization and measurements of instantaneous vector fields of velocity and vorticity has been demonstrated. The growing Reynolds number is shown to make large-scale vortex generation onset move upstream. It also triggers the transition to 3D flow pattern in the cylinder wake. This process is accompanied by non-monotonous behavior of the profiles of velocity and its turbulent fluctuations at equal distances from the cylinder. Non-monotonous behavior of the cylinder drag has been revealed for the Reynolds numbers ranging from 120 to 300.

  10. Comparison of turbulence in a transitional boundary layer to turbulence in a developed boundary layer*

    Science.gov (United States)

    Park, G. I.; Wallace, J.; Wu, X.; Moin, P.

    2010-11-01

    Using a recent DNS of a flat-plate boundary layer, statistics of turbulence in transition at Reθ= 500 where spots merge (distributions of the mean velocity, rms velocity and vorticity fluctuations, Reynolds shear stress, kinetic energy production and dissipation rates and enstrophy) have been compared to these statistics for the developed boundary layer turbulence at Reθ= 1850. When the distributions in the transitional region, determined in narrow planes 0.03 Reθ wide, exclude regions and times when the flow is not turbulent, they closely resemble those in the developed turbulent state at the higher Reynolds number, especially in the buffer and sublayers. The skin friction coefficient, determined in this conditional manner in the transitional flow is, of course, much larger than that obtained by including both turbulent and non-turbulent information there, and is consistent with a value obtained by extrapolating from the developed turbulent region. We are attempting to perform this data analysis even further upstream in the transitioning flow at Reθ= 300 where the turbulent spots are individuated. These results add further evidence to support the view that the structure of a developed turbulent boundary layer is little different from its structure in its embryonic form in turbulent spots. *CTR 2010 Summer Program research.

  11. NUMERICAL INVESTIGATION OF TWO ELEMENT CAMBER MORPHING AIRFOIL IN LOW REYNOLDS NUMBER FLOWS

    Directory of Open Access Journals (Sweden)

    RAJESH SENTHIL KUMAR T.

    2017-07-01

    Full Text Available Aerodynamic performance of a two-element camber morphing airfoil was investigated at low Reynolds number using the transient SST model in ANSYS FLUENT 14.0 and eN method in XFLR5. The two-element camber morphing concept was employed to morph the baseline airfoil into another airfoil by altering the orientation of mean-line at 35% of the chord to achieve better aerodynamic efficiency. NACA 0012 was selected as baseline airfoil. NACA 23012 was chosen as the test case as it has the camber-line similar to that of the morphed airfoil and as it has the same thickness as that of the baseline airfoil. The simulations were carried out at chord based Reynolds numbers of 2.5×105 and 3.9×105. The aerodynamic force coefficients, aerodynamic efficiency and the location of the transition point of laminar separation bubble over these airfoils were studied for various angles of attack. It was found that the aerodynamic efficiency of the morphed airfoil was 12% higher than that of the target airfoil at 4° angle of attack for Reynolds number of 3.9×105 and 54% rise in aerodynamic performance was noted as Reynolds number was varied from 2.5×105 to 3.9×105. The morphed airfoil exhibited the nature of low Reynolds number airfoil.

  12. Influence of Reynolds Number on Multi-Objective Aerodynamic Design of a Wind Turbine Blade.

    Science.gov (United States)

    Ge, Mingwei; Fang, Le; Tian, De

    2015-01-01

    At present, the radius of wind turbine rotors ranges from several meters to one hundred meters, or even more, which extends Reynolds number of the airfoil profile from the order of 105 to 107. Taking the blade for 3MW wind turbines as an example, the influence of Reynolds number on the aerodynamic design of a wind turbine blade is studied. To make the study more general, two kinds of multi-objective optimization are involved: one is based on the maximum power coefficient (CPopt) and the ultimate load, and the other is based on the ultimate load and the annual energy production (AEP). It is found that under the same configuration, the optimal design has a larger CPopt or AEP (CPopt//AEP) for the same ultimate load, or a smaller load for the same CPopt//AEP at higher Reynolds number. At a certain tip-speed ratio or ultimate load, the blade operating at higher Reynolds number should have a larger chord length and twist angle for the maximum Cpopt//AEP. If a wind turbine blade is designed by using an airfoil database with a mismatched Reynolds number from the actual one, both the load and Cpopt//AEP will be incorrectly estimated to some extent. In some cases, the assessment error attributed to Reynolds number is quite significant, which may bring unexpected risks to the earnings and safety of a wind power project.

  13. Optimized chord and twist angle distributions of wind turbine blade considering Reynolds number effects

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.; Tang, X. [Univ. of Central Lancashire. Engineering and Physical Sciences, Preston (United Kingdom); Liu, X. [Univ. of Cumbria. Sustainable Engineering, Workington (United Kingdom)

    2012-07-01

    The aerodynamic performance of a wind turbine depends very much on its blade geometric design, typically based on the blade element momentum (BEM) theory, which divides the blade into several blade elements. In current blade design practices based on Schmitz rotor design theory, the blade geometric parameters including chord and twist angle distributions are determined based on airfoil aerodynamic data at a specific Reynolds number. However, rotating wind turbine blade elements operate at different Reynolds numbers due to variable wind speed and different blade span locations. Therefore, the blade design through Schmitz rotor theory at a specific Reynolds number does not necessarily provide the best power performance under operational conditions. This paper aims to provide an optimal blade design strategy for horizontal-axis wind turbines operating at different Reynolds numbers. A fixed-pitch variable-speed (FPVS) wind turbine with S809 airfoil is chosen as a case study and a Matlab program which considers Reynolds number effects is developed to determine the optimized chord and twist angle distributions of the blade. The performance of the optimized blade is compared with that of the preliminary blade which is designed based on Schmitz rotor design theory at a specific Reynolds number. The results demonstrate that the proposed blade design optimization strategy can improve the power performance of the wind turbine. This approach can be further developed for any practice of horizontal axis wind turbine blade design. (Author)

  14. Influence of Reynolds Number on Multi-Objective Aerodynamic Design of a Wind Turbine Blade

    Science.gov (United States)

    Ge, Mingwei; Fang, Le; Tian, De

    2015-01-01

    At present, the radius of wind turbine rotors ranges from several meters to one hundred meters, or even more, which extends Reynolds number of the airfoil profile from the order of 105 to 107. Taking the blade for 3MW wind turbines as an example, the influence of Reynolds number on the aerodynamic design of a wind turbine blade is studied. To make the study more general, two kinds of multi-objective optimization are involved: one is based on the maximum power coefficient (C Popt) and the ultimate load, and the other is based on the ultimate load and the annual energy production (AEP). It is found that under the same configuration, the optimal design has a larger C Popt or AEP (C Popt//AEP) for the same ultimate load, or a smaller load for the same C Popt//AEP at higher Reynolds number. At a certain tip-speed ratio or ultimate load, the blade operating at higher Reynolds number should have a larger chord length and twist angle for the maximum C popt//AEP. If a wind turbine blade is designed by using an airfoil database with a mismatched Reynolds number from the actual one, both the load and C popt//AEP will be incorrectly estimated to some extent. In some cases, the assessment error attributed to Reynolds number is quite significant, which may bring unexpected risks to the earnings and safety of a wind power project. PMID:26528815

  15. Aerodynamics of wings at low Reynolds numbers: Boundary layer separation and reattachment

    Science.gov (United States)

    McArthur, John

    Due to advances in electronics technology, it is now possible to build small scale flying and swimming vehicles. These vehicles will have size and velocity scales similar to small birds and fish, and their characteristic Reynolds number will be between 104 and 105. Currently, these flying and swimming vehicles do not perform well, and very little research has been done to characterize them, or to explain why they perform so poorly. This dissertation documents three basic investigations into the performance of small scale lifting surfaces, with Reynolds numbers near 104. Part I. Low Reynolds number aerodynamics. Three airfoil shapes were studied at Reynolds numbers of 1 and 2x104: a flat plate airfoil, a circular arc cambered airfoil, and the Eppler 387 airfoil. Lift and drag force measurements were made on both 2D and 3D conditions, with the 3D wings having an aspect ratio of 6, and the 2D condition being approximated by placing end plates at the wing tips. Comparisons to the limited number of previous measurements show adequate agreement. Previous studies have been inconclusive on whether lifting line theory can be applied to this range of Re, but this study shows that lifting line theory can be applied when there are no sudden changes in the slope of the force curves. This is highly dependent on the airfoil shape of the wing, and explains why previous studies have been inconclusive. Part II. The laminar separation bubble. The Eppler 387 airfoil was studied at two higher Reynolds numbers: 3 and 6x10 4. Previous studies at a Reynolds number of 6x104 had shown this airfoil experiences a drag increase at moderate lift, and a subsequent drag decrease at high lift. Previous studies suggested that the drag increase is caused by a laminar separation bubble, but the experiments used to show this were conducted at higher Reynolds numbers and extrapolated down. Force measurements were combined with flow field measurements at Reynolds numbers 3 and 6x104 to determine whether

  16. The structure of the solution obtained with Reynolds-stress-transport models at the free-stream edges of turbulent flows

    Science.gov (United States)

    Cazalbou, J.-B.; Chassaing, P.

    2002-02-01

    The behavior of Reynolds-stress-transport models at the free-stream edges of turbulent flows is investigated. Current turbulent-diffusion models are found to produce propagative (possibly weak) solutions of the same type as those reported earlier by Cazalbou, Spalart, and Bradshaw [Phys. Fluids 6, 1797 (1994)] for two-equation models. As in the latter study, an analysis is presented that provides qualitative information on the flow structure predicted near the edge if a condition on the values of the diffusion constants is satisfied. In this case, the solution appears to be fairly insensitive to the residual free-stream turbulence levels needed with conventional numerical methods. The main specific result is that, depending on the diffusion model, the propagative solution can force turbulence toward definite and rather extreme anisotropy states at the edge (one- or two-component limit). This is not the case with the model of Daly and Harlow [Phys. Fluids 13, 2634 (1970)]; it may be one of the reasons why this "old" scheme is still the most widely used, even in recent Reynolds-stress-transport models. In addition, the analysis helps us to interpret some difficulties encountered in computing even very simple flows with Lumley's pressure-diffusion model [Adv. Appl. Mech. 18, 123 (1978)]. A new realizability condition, according to which the diffusion model should not globally become "anti-diffusive," is introduced, and a recalibration of Lumley's model satisfying this condition is performed using information drawn from the analysis.

  17. Analysis of compressible light dynamic stall flow at transitional Reynolds numbers

    DEFF Research Database (Denmark)

    Dyken, R.D. Van; Ekaterinaris, John A.; Chandrasekhara, M.S.

    1996-01-01

    Numerical and experimental results of steady and light dynamic stall flow over an oscillating NACA 0012 airfoil at a freestream Mach number of 0.3 and Reynolds number of 0.54 x 10(6) are compared, The experimental observation that dynamic stall is induced from the bursting of a laminar separation...... point is specified suitably and a simple transition length model is incorporated to determine the extent of the laminar separation bubble. The thin-layer approximations of compressible, Reynolds-averaged, Navier-Stokes equations are used for the numerical solution, with an implicit, upwind-biased, third...

  18. Magnus effects at high angles of attack and critical Reynolds numbers

    Science.gov (United States)

    Seginer, A.; Ringel, M.

    1983-01-01

    The Magnus force and moment experienced by a yawed, spinning cylinder were studied experimentally in low speed and subsonic flows at high angles of attack and critical Reynolds numbers. Flow-field visualization aided in describing a flow model that divides the Magnus phenomenon into a subcritical region, where reverse Magnus loads are experienced, and a supercritical region where these loads are not encountered. The roles of the spin rate, angle of attack, and crossflow Reynolds number in determining the boundaries of the subcritical region and the variations of the Magnus loads were studied.

  19. Correlation of theory to wind-tunnel data at Reynolds numbers below 500,000

    Science.gov (United States)

    Evangelista, Raquel; Mcghee, Robert J.; Walker, Betty S.

    1989-01-01

    This paper presents results obtained from two airfoil analysis methods compared with previously published wind tunnel test data at chord Reynolds numbers below 500,000. The analysis methods are from the Eppler-Somers airfoil design/analysis code and from ISES, the Drela-Giles Airfoil design/analysis code. The experimental data are from recent tests of the Eppler 387 airfoil in the NASA Langley Low Turbulence Pressure Tunnel. For R not less than 200,000, lift and pitching moment predictions from both theories compare well with experiment. Drag predictions from both theories also agree with experiment, although to different degrees. However, most of the drag predictions from the Eppler-Somers code are accompanied with separation bubble warnings which indicate that the drag predictions are too low. With the Drela-Giles code, there is a large discrepancy between the computed and experimental pressure distributions in cases with laminar separation bubbles, although the drag polar predictions are similar in trend to experiment.

  20. MHD from a Microscopic Concept and Onset of Turbulence in Hartmann Flow

    International Nuclear Information System (INIS)

    Jirkovsky, L.; Bo-ot, L. Ma.; Chiang, C. M.

    2010-01-01

    We derive higher order magneto-hydrodynamic (MHD) equations from a microscopic picture using projection and perturbation formalism. In an application to Hartmann flow we find velocity profiles flattening towards the center at the onset of turbulence in hydrodynamic limit. Comparison with the system under the effect of a uniform magnetic field yields difference in the onset of turbulence consistent with observations, showing that the presence of magnetic field inhibits onset of instability or turbulence. The laminar-turbulent transition is demonstrated in a phase transition plot of the development in time of the relative average velocities vs. Reynolds number showing a sharp increase of the relative average velocity at the transition point as determined by the critical Reynolds number. (physics of gases, plasmas, and electric discharges)

  1. Particle Settling in Low Energy Turbulence

    Science.gov (United States)

    Allen, Rachel; MacVean, Lissa; Tse, Ian; Mazzaro, Laura; Stacey, Mark; Variano, Evan

    2014-11-01

    Particle settling velocities can be altered by turbulence. In turbulence, dense particles may get trapped in convergent flow regions, and falling particles may be swept towards the downward side of turbulent eddies, resulting in enhanced settling velocities. The degree of velocity enhancement may depend on the Stokes number, the Rouse number, and the turbulent Reynolds number. In a homogeneous, isotropic turbulence tank, we tested the effects of particle size and type, suspended sediment concentration, and level of turbulence on the settling velocities of particles typically found in muddy estuaries. Two Acoustic Doppler Velocimeters (ADVs), separated vertically, measured turbulent velocities and suspended sediment concentrations, which yield condition dependent settling velocities, via ∂/á C ñ ∂ t = -∂/∂ z (ws á C ñ + á w ' C ' ñ) . These results are pertinent to fine sediment transport in estuaries, where high concentrations of suspended material are transported and impacted by low energy turbulence.

  2. Recent progress in the development of the Elliptic Blending Reynolds-stress model

    International Nuclear Information System (INIS)

    Manceau, Rémi

    2015-01-01

    Highlights: • Various modifications of the Elliptic Blending Reynolds stress model, proposed during the last decade, are revisited. • Using theoretical arguments and detailed comparison with DNS data, a reference model is formulated. • The model satisfactorily reproduces the effects of spanwise rotation on turbulence, for cases without and with separation. - Abstract: The Elliptic Blending Reynolds Stress Model (EB-RSM), originally proposed by Manceau and Hanjalić (2002) to extend standard, weakly inhomogeneous Reynolds stress models to the near-wall region, has been subject to various modifications by several authors during the last decade, mainly for numerical robustness reasons. The present work revisits all these modifications from the theoretical standpoint and investigates in detail their influence on the reproduction of the physical mechanisms at the origin of the influence of the wall on turbulence. The analysis exploits recent DNS databases for high-Reynolds number channel flows, spanwise rotating channel flows with strong rotation rates, up to complete laminarization, and the separated flow after a sudden expansion without and with system rotation. Theoretical arguments and comparison with DNS results lead to the selection of a recommended formulation for the EB-RSM model. This formulation shows satisfactory predictions for the configurations described above, in particular as regards the modification of the mean flow and turbulent anisotropy on the anticyclonic or pressure side

  3. Large Eddy Simulation of an SD7003 Airfoil: Effects of Reynolds number and Subgrid-scale modeling

    DEFF Research Database (Denmark)

    Sarlak Chivaee, Hamid

    2017-01-01

    This paper presents results of a series of numerical simulations in order to study aerodynamic characteristics of the low Reynolds number Selig-Donovan airfoil, SD7003. Large Eddy Simulation (LES) technique is used for all computations at chord-based Reynolds numbers 10,000, 24,000 and 60...... the Reynolds number, and the effect is visible even at a relatively low chord-Reynolds number of 60,000. Among the tested models, the dynamic Smagorinsky gives the poorest predictions of the flow, with overprediction of lift and a larger separation on airfoils suction side. Among various models, the implicit...

  4. The effects of external conditions in turbulent boundary layers

    Science.gov (United States)

    Brzek, Brian G.

    The effects of multiple external conditions on turbulent boundary layers were studied in detail. These external conditions include: surface roughness, upstream turbulence intensity, and pressure gradient. Furthermore, the combined effects of these conditions show the complicated nature of many realistic flow conditions. It was found that the effects of surface roughness are difficult to generalize, given the importance of so many parameters. These parameters include: roughness geometry, roughness regime, roughness height to boundary layer thickness, (k/delta), roughness parameter, ( k+), Reynolds number, and roughness function (Delta B+). A further complication, is the difficulty in computing the wall shear stress, tauw/rho. For the sand grain type roughness, the mean velocity and Reynolds stresses were studied in inner and outer variables, as well as, boundary layer parameters, anisotropy tensor, production term, and viscous stress and form drag contributions. To explore the effects of roughness and Reynolds number dependence in the boundary layer, a new experiment was carefully designed to properly capture the x-dependence of the single-point statistics. It was found that roughness destroys the viscous layer near the wall, thus, reducing the contribution of the viscous stress in the wall region. As a result, the contribution in the skin friction due to form drag increases, while the viscous stress decreases. This yields Reynolds number invariance in the skin friction, near-wall roughness parameters, and inner velocity profiles as k + increases into the fully rough regime. However, in the transitionally rough regime, (i.e., 5 component shows the largest influence of roughness, where the high peak near the wall was decreased and became nearly flat for the fully rough regime profiles. In addition, the Reynolds stresses in outer variables show self-similarity for fixed experimental conditions. However, as the roughness parameter, k +, increases, all Reynolds stress

  5. Mathematical model for the calculation of internal turbulent flow

    International Nuclear Information System (INIS)

    Nicolau, V. de P.; Valle Pereira Filho, H. do

    1981-01-01

    The Navier-Stokes and the turbulent kinetic energy equations for the incompressible, turbulent and fully developed pipe flow, were solved by a finite difference procedure. The distributions of the mean velocity, turbulent shear stress and turbulent kinetic energy were obtained at different Reynolds numbers. Those numerical results were compared with experimental data and the agreement was good in whole cross section of the flow. (Author) [pt

  6. EXTENDED SCALING LAWS IN NUMERICAL SIMULATIONS OF MAGNETOHYDRODYNAMIC TURBULENCE

    International Nuclear Information System (INIS)

    Mason, Joanne; Cattaneo, Fausto; Perez, Jean Carlos; Boldyrev, Stanislav

    2011-01-01

    Magnetized turbulence is ubiquitous in astrophysical systems, where it notoriously spans a broad range of spatial scales. Phenomenological theories of MHD turbulence describe the self-similar dynamics of turbulent fluctuations in the inertial range of scales. Numerical simulations serve to guide and test these theories. However, the computational power that is currently available restricts the simulations to Reynolds numbers that are significantly smaller than those in astrophysical settings. In order to increase computational efficiency and, therefore, probe a larger range of scales, one often takes into account the fundamental anisotropy of field-guided MHD turbulence, with gradients being much slower in the field-parallel direction. The simulations are then optimized by employing the reduced MHD equations and relaxing the field-parallel numerical resolution. In this work we explore a different possibility. We propose that there exist certain quantities that are remarkably stable with respect to the Reynolds number. As an illustration, we study the alignment angle between the magnetic and velocity fluctuations in MHD turbulence, measured as the ratio of two specially constructed structure functions. We find that the scaling of this ratio can be extended surprisingly well into the regime of relatively low Reynolds number. However, the extended scaling easily becomes spoiled when the dissipation range in the simulations is underresolved. Thus, taking the numerical optimization methods too far can lead to spurious numerical effects and erroneous representation of the physics of MHD turbulence, which in turn can affect our ability to identify correctly the physical mechanisms that are operating in astrophysical systems.

  7. LES of the adverse-pressure gradient turbulent boundary layer

    International Nuclear Information System (INIS)

    Inoue, M.; Pullin, D.I.; Harun, Z.; Marusic, I.

    2013-01-01

    Highlights: • The adverse-pressure gradient turbulent boundary layer at high Re is studied. • Wall-model LES works well for nonequilibrium turbulent boundary layer. • Relationship of skin-friction to Re and Clauser pressure parameter is explored. • Self-similarity is observed in the velocity statistics over a wide range of Re. -- Abstract: We describe large-eddy simulations (LES) of the flat-plate turbulent boundary layer in the presence of an adverse pressure gradient. The stretched-vortex subgrid-scale model is used in the domain of the flow coupled to a wall model that explicitly accounts for the presence of a finite pressure gradient. The LES are designed to match recent experiments conducted at the University of Melbourne wind tunnel where a plate section with zero pressure gradient is followed by section with constant adverse pressure gradient. First, LES are described at Reynolds numbers based on the local free-stream velocity and the local momentum thickness in the range 6560–13,900 chosen to match the experimental conditions. This is followed by a discussion of further LES at Reynolds numbers at approximately 10 times and 100 times these values, which are well out of range of present day direct numerical simulation and wall-resolved LES. For the lower Reynolds number runs, mean velocity profiles, one-point turbulent statistics of the velocity fluctuations, skin friction and the Clauser and acceleration parameters along the streamwise, adverse pressure-gradient domain are compared to the experimental measurements. For the full range of LES, the relationship of the skin-friction coefficient, in the form of the ratio of the local free-stream velocity to the local friction velocity, to both Reynolds number and the Clauser parameter is explored. At large Reynolds numbers, a region of collapse is found that is well described by a simple log-like empirical relationship over two orders of magnitude. This is expected to be useful for constant adverse

  8. Mechanics of dense suspensions in turbulent channel flows

    NARCIS (Netherlands)

    Picano, F.; Costa, P.; Breugem, W.P.; Brandt, L.

    2015-01-01

    Dense suspensions are usually investigated in the laminar limit where inertial effects are insignificant. When the flow rate is high enough, i.e. at high Reynolds number, the flow may become turbulent and the interaction between solid and liquid phases modifies the turbulence we know in single-phase

  9. Vorticity, backscatter and counter-gradient transport predictions using two-level simulation of turbulent flows

    Science.gov (United States)

    Ranjan, R.; Menon, S.

    2018-04-01

    The two-level simulation (TLS) method evolves both the large-and the small-scale fields in a two-scale approach and has shown good predictive capabilities in both isotropic and wall-bounded high Reynolds number (Re) turbulent flows in the past. Sensitivity and ability of this modelling approach to predict fundamental features (such as backscatter, counter-gradient turbulent transport, small-scale vorticity, etc.) seen in high Re turbulent flows is assessed here by using two direct numerical simulation (DNS) datasets corresponding to a forced isotropic turbulence at Taylor's microscale-based Reynolds number Reλ ≈ 433 and a fully developed turbulent flow in a periodic channel at friction Reynolds number Reτ ≈ 1000. It is shown that TLS captures the dynamics of local co-/counter-gradient transport and backscatter at the requisite scales of interest. These observations are further confirmed through a posteriori investigation of the flow in a periodic channel at Reτ = 2000. The results reveal that the TLS method can capture both the large- and the small-scale flow physics in a consistent manner, and at a reduced overall cost when compared to the estimated DNS or wall-resolved LES cost.

  10. Hybrid Large-Eddy/Reynolds-Averaged Simulation of a Supersonic Cavity Using VULCAN

    Science.gov (United States)

    Quinlan, Jesse; McDaniel, James; Baurle, Robert A.

    2013-01-01

    Simulations of a supersonic recessed-cavity flow are performed using a hybrid large-eddy/Reynolds-averaged simulation approach utilizing an inflow turbulence recycling procedure and hybridized inviscid flux scheme. Calorically perfect air enters a three-dimensional domain at a free stream Mach number of 2.92. Simulations are performed to assess grid sensitivity of the solution, efficacy of the turbulence recycling, and the effect of the shock sensor used with the hybridized inviscid flux scheme. Analysis of the turbulent boundary layer upstream of the rearward-facing step for each case indicates excellent agreement with theoretical predictions. Mean velocity and pressure results are compared to Reynolds-averaged simulations and experimental data for each case and indicate good agreement on the finest grid. Simulations are repeated on a coarsened grid, and results indicate strong grid density sensitivity. Simulations are performed with and without inflow turbulence recycling on the coarse grid to isolate the effect of the recycling procedure, which is demonstrably critical to capturing the relevant shear layer dynamics. Shock sensor formulations of Ducros and Larsson are found to predict mean flow statistics equally well.

  11. Numerical study about the effect of the low Reynolds number on the performance in an axial compressor

    International Nuclear Information System (INIS)

    Choi, Min Suk; Baek, Je Hyun; Chung, Hee Taeg; Oh, Seong Hwan; Ko, Han Young

    2008-01-01

    A three-dimensional computation was conducted to understand effects of the low Reynolds number on the performance in a low-speed axial compressor at the design condition. The low Reynolds number can originates from the change of the air density because it decreases along the altitude in the troposphere. The performance of the axial compressor such as the static pressure rise was diminished by the separation on the suction surface with full span and the boundary layer on the hub, which were caused by the low Reynolds number. The total pressure loss at the low Reynolds number was found to be greater than that at the reference Reynolds number at the region from the hub to 85% span. Total pressure loss was scrutinized through three major loss categories in a subsonic axial compressor such as the profile loss, the tip leakage loss and the endwall loss using Denton's loss model, and the effects of the low Reynolds number on the performance were analyzed in detail

  12. Numerical study about the effect of the low Reynolds number on the performance in an axial compressor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Min Suk; Baek, Je Hyun [Pohang University of Science and Technology, Pohang (Korea, Republic of); Chung, Hee Taeg [Gyeongsang National University, Jinju (Korea, Republic of); Oh, Seong Hwan; Ko, Han Young [Agency for Defense Development, Daejeon (Korea, Republic of)

    2008-02-15

    A three-dimensional computation was conducted to understand effects of the low Reynolds number on the performance in a low-speed axial compressor at the design condition. The low Reynolds number can originates from the change of the air density because it decreases along the altitude in the troposphere. The performance of the axial compressor such as the static pressure rise was diminished by the separation on the suction surface with full span and the boundary layer on the hub, which were caused by the low Reynolds number. The total pressure loss at the low Reynolds number was found to be greater than that at the reference Reynolds number at the region from the hub to 85% span. Total pressure loss was scrutinized through three major loss categories in a subsonic axial compressor such as the profile loss, the tip leakage loss and the endwall loss using Denton's loss model, and the effects of the low Reynolds number on the performance were analyzed in detail.

  13. Investigation of turbulent boundary layer over forward-facing step via direct numerical simulation

    International Nuclear Information System (INIS)

    Hattori, Hirofumi; Nagano, Yasutaka

    2010-01-01

    This paper presents observations and investigations of the detailed turbulent structure of a boundary layer over a forward-facing step. The present DNSs are conducted under conditions with three Reynolds numbers based on step height, or three Reynolds numbers based on momentum thickness so as to investigate the effects of step height and inlet boundary layer thickness. DNS results show the quantitative turbulent statistics and structures of boundary layers over a forward-facing step, where pronounced counter-gradient diffusion phenomena (CDP) are especially observed on the step near the wall. Also, a quadrant analysis is conducted in which the results indicate in detail the turbulence motion around the step.

  14. A systematic comparison of two-equation Reynolds-averaged Navier-Stokes turbulence models applied to shock-cloud interactions

    Science.gov (United States)

    Goodson, Matthew D.; Heitsch, Fabian; Eklund, Karl; Williams, Virginia A.

    2017-07-01

    Turbulence models attempt to account for unresolved dynamics and diffusion in hydrodynamical simulations. We develop a common framework for two-equation Reynolds-averaged Navier-Stokes turbulence models, and we implement six models in the athena code. We verify each implementation with the standard subsonic mixing layer, although the level of agreement depends on the definition of the mixing layer width. We then test the validity of each model into the supersonic regime, showing that compressibility corrections can improve agreement with experiment. For models with buoyancy effects, we also verify our implementation via the growth of the Rayleigh-Taylor instability in a stratified medium. The models are then applied to the ubiquitous astrophysical shock-cloud interaction in three dimensions. We focus on the mixing of shock and cloud material, comparing results from turbulence models to high-resolution simulations (up to 200 cells per cloud radius) and ensemble-averaged simulations. We find that the turbulence models lead to increased spreading and mixing of the cloud, although no two models predict the same result. Increased mixing is also observed in inviscid simulations at resolutions greater than 100 cells per radius, which suggests that the turbulent mixing begins to be resolved.

  15. Reynolds number effects on the non-nulling calibration of a cone-type five-hole probe for turbomachinery applications

    International Nuclear Information System (INIS)

    Lee, Sang Woo; Jun, Sang Bae

    2005-01-01

    The effects of Reynolds number on the non-nulling calibration of a typical cone-type five-hole probe have been investigated for the representative Reynolds numbers in turbomachinery. The pitch and yaw angles are changed from -35 degrees to 35 degrees with an angle interval of 5 degrees at six probe Reynolds numbers in range between 6.60x10 3 and 3.17x10 4 . The result shows that not only each calibration coefficient itself but also its Reynolds number dependency is affected significantly by the pitch and yaw angles. The Reynolds-number effects on the pitch-and yaw-angle coefficients are noticeable when the absolute values of the pitch and yaw angles are smaller than 20 degrees. The static-pressure coefficient is sensitive to the Reynolds number nearly all over the pitch-and yaw-angle range. The Reynolds-number effect on the total-pressure coefficient is found remarkable when the absolute values of the pitch and yaw angles are larger than 20 degrees. Through a typical non-nulling reduction procedure, actual reduced values of the pitch and yaw angles, static and total pressures, and velocity magnitude at each Reynolds number are obtained by employing the calibration coefficients at the highest Reynolds number (Re=3.17x10 4 ) as input reference calibration data. As a result, it is found that each reduced value has its own unique trend depending on the pitch and yaw angles. Its general tendency is related closely to the variation of the corresponding calibration coefficient with the Reynolds number. Among the reduced values, the reduced total pressure suffers the most considerable deviation from the measured one and its dependency upon the pitch and yaw angles is most noticeable. In this study, the root-mean-square data as well as the upper and lower bounds of the reduced values are reported as a function of the Reynolds number. These data would be very useful in the estimation of the Reynolds-number effects on the non-nulling calibration

  16. Conference on Low Reynolds Number Airfoil Aerodynamics, Notre Dame, IN, June 16-18, 1985, Proceedings

    Science.gov (United States)

    Mueller, T. J. (Editor)

    1985-01-01

    Topics of interest in the design, flow modeling and visualization, and turbulence and flow separation effects for low Reynolds number (Re) airfoils are discussed. Design methods are presented for Re from 50,000-500,000, including a viscous-inviscid coupling method and by using a constrained pitching moment. The effects of pressure gradients, unsteady viscous aerodynamics and separation bubbles are investigated, with particular note made of factors which most influence the size and location of separation bubbles and control their effects. Attention is also given to experimentation with low Re airfoils and to numerical models of symmetry breaking and lift hysteresis from separation. Both steady and unsteady flow experiments are reviewed, with the trials having been held in wind tunnels and the free atmosphere. The topics discussed are of interest to designers of RPVs, high altitude aircraft, sailplanes, ultralights and wind turbines.

  17. Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Volume 2; Small-Radius Leading Edge

    Science.gov (United States)

    Chu, Julio; Luckring, James M.

    1996-01-01

    An experimental wind tunnel test of a 65 deg. delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 84 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6) and 60 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.

  18. Turbulent conductivity in parallel with iso-velocities in a planar established flow

    International Nuclear Information System (INIS)

    Jullien, F.

    1968-02-01

    In this thesis are presented the experimental results obtained during the study of the turbulent diffusion of heat using a wire source in a flat air flow. The Taylor statistical theory laws are well respected in the domain studied. The experiments have made it possible to evaluate the influence of the Reynolds number and of the distance from the wall on the quadratic values of velocity fluctuations and on the Lagrange turbulence scales. In particular, the author has found a correlation between the Lagrange scales and the friction coefficient when the Reynolds number varies. A diffusion law is derived from the Taylor theory; it makes it possible to explain more clearly the idea of turbulent conductivity. (author) [fr

  19. Turbulent Heat Transfer in Curved Pipe Flow

    Science.gov (United States)

    Kang, Changwoo; Yang, Kyung-Soo

    2013-11-01

    In the present investigation, turbulent heat transfer in fully-developed curved pipe flow with axially uniform wall heat flux has been numerically studied. The Reynolds numbers under consideration are Reτ = 210 (DNS) and 1,000 (LES) based on the mean friction velocity and the pipe radius, and the Prandtl number (Pr) is 0.71. For Reτ = 210 , the pipe curvature (κ) was fixed as 1/18.2, whereas three cases of κ (0.01, 0.05, 0.1) were computed in the case of Reτ = 1,000. The mean velocity, turbulent intensities and heat transfer rates obtained from the present calculations are in good agreement with the previous numerical and experimental results. To elucidate the secondary flow structures due to the pipe curvature, the mean quantities and rms fluctuations of the flow and temperature fields are presented on the pipe cross-sections, and compared with those of the straight pipe flow. To study turbulence structures and their influence on turbulent heat transfer, turbulence statistics including but not limited to skewness and flatness of velocity fluctuations, cross-correlation coefficients, an Octant analysis, and turbulence budgets are presented and discussed. Based on our results, we attempt to clarify the effects of Reynolds number and the pipe curvature on turbulent heat transfer. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0008457).

  20. Kolmogorov's refined similarity hypotheses for turbulence and general stochastic processes

    International Nuclear Information System (INIS)

    Stolovitzky, G.; Sreenivasan, K.R.

    1994-01-01

    Kolmogorov's refined similarity hypotheses are shown to hold true for a variety of stochastic processes besides high-Reynolds-number turbulent flows, for which they were originally proposed. In particular, just as hypothesized for turbulence, there exists a variable V whose probability density function attains a universal form. Analytical expressions for the probability density function of V are obtained for Brownian motion as well as for the general case of fractional Brownian motion---the latter under some mild assumptions justified a posteriori. The properties of V for the case of antipersistent fractional Brownian motion with the Hurst exponent of 1/3 are similar in many details to those of high-Reynolds-number turbulence in atmospheric boundary layers a few meters above the ground. The one conspicuous difference between turbulence and the antipersistent fractional Brownian motion is that the latter does not possess the required skewness. Broad implications of these results are discussed

  1. Time change and universality in turbulence

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Schmiegel, Jürgen

    of the probability densities of turbulent velocity increments. Furthermore, the application of a time change in terms of the scale parameter δ of the normal inverse Gaussian distribution results in a collapse of the densities of velocity increments onto Reynolds number independent distributions. We discuss this kind...... experiment. Taylor Reynolds numbers range from Rλ = 80 for the wind tunnel experiment up to Rλ = 17000 for the atmospheric boundary layer experiment. Empirical findings strongly support the appropriateness of normal inverse Gaussian distributions for a parsimonious and universal description...

  2. Small-scale dynamo at low magnetic Prandtl numbers

    Science.gov (United States)

    Schober, Jennifer; Schleicher, Dominik; Bovino, Stefano; Klessen, Ralf S.

    2012-12-01

    The present-day Universe is highly magnetized, even though the first magnetic seed fields were most probably extremely weak. To explain the growth of the magnetic field strength over many orders of magnitude, fast amplification processes need to operate. The most efficient mechanism known today is the small-scale dynamo, which converts turbulent kinetic energy into magnetic energy leading to an exponential growth of the magnetic field. The efficiency of the dynamo depends on the type of turbulence indicated by the slope of the turbulence spectrum v(ℓ)∝ℓϑ, where v(ℓ) is the eddy velocity at a scale ℓ. We explore turbulent spectra ranging from incompressible Kolmogorov turbulence with ϑ=1/3 to highly compressible Burgers turbulence with ϑ=1/2. In this work, we analyze the properties of the small-scale dynamo for low magnetic Prandtl numbers Pm, which denotes the ratio of the magnetic Reynolds number, Rm, to the hydrodynamical one, Re. We solve the Kazantsev equation, which describes the evolution of the small-scale magnetic field, using the WKB approximation. In the limit of low magnetic Prandtl numbers, the growth rate is proportional to Rm(1-ϑ)/(1+ϑ). We furthermore discuss the critical magnetic Reynolds number Rmcrit, which is required for small-scale dynamo action. The value of Rmcrit is roughly 100 for Kolmogorov turbulence and 2700 for Burgers. Furthermore, we discuss that Rmcrit provides a stronger constraint in the limit of low Pm than it does for large Pm. We conclude that the small-scale dynamo can operate in the regime of low magnetic Prandtl numbers if the magnetic Reynolds number is large enough. Thus, the magnetic field amplification on small scales can take place in a broad range of physical environments and amplify week magnetic seed fields on short time scales.

  3. Small-scale dynamo at low magnetic Prandtl numbers.

    Science.gov (United States)

    Schober, Jennifer; Schleicher, Dominik; Bovino, Stefano; Klessen, Ralf S

    2012-12-01

    The present-day Universe is highly magnetized, even though the first magnetic seed fields were most probably extremely weak. To explain the growth of the magnetic field strength over many orders of magnitude, fast amplification processes need to operate. The most efficient mechanism known today is the small-scale dynamo, which converts turbulent kinetic energy into magnetic energy leading to an exponential growth of the magnetic field. The efficiency of the dynamo depends on the type of turbulence indicated by the slope of the turbulence spectrum v(ℓ)∝ℓ^{ϑ}, where v(ℓ) is the eddy velocity at a scale ℓ. We explore turbulent spectra ranging from incompressible Kolmogorov turbulence with ϑ=1/3 to highly compressible Burgers turbulence with ϑ=1/2. In this work, we analyze the properties of the small-scale dynamo for low magnetic Prandtl numbers Pm, which denotes the ratio of the magnetic Reynolds number, Rm, to the hydrodynamical one, Re. We solve the Kazantsev equation, which describes the evolution of the small-scale magnetic field, using the WKB approximation. In the limit of low magnetic Prandtl numbers, the growth rate is proportional to Rm^{(1-ϑ)/(1+ϑ)}. We furthermore discuss the critical magnetic Reynolds number Rm_{crit}, which is required for small-scale dynamo action. The value of Rm_{crit} is roughly 100 for Kolmogorov turbulence and 2700 for Burgers. Furthermore, we discuss that Rm_{crit} provides a stronger constraint in the limit of low Pm than it does for large Pm. We conclude that the small-scale dynamo can operate in the regime of low magnetic Prandtl numbers if the magnetic Reynolds number is large enough. Thus, the magnetic field amplification on small scales can take place in a broad range of physical environments and amplify week magnetic seed fields on short time scales.

  4. Velocity-Resolved LES (VR-LES) technique for simulating turbulent transport of high Schmidt number passive scalars

    Science.gov (United States)

    Verma, Siddhartha; Blanquart, Guillaume; P. K. Yeung Collaboration

    2011-11-01

    Accurate simulation of high Schmidt number scalar transport in turbulent flows is essential to studying pollutant dispersion, weather, and several oceanic phenomena. Batchelor's theory governs scalar transport in such flows, but requires further validation at high Schmidt and high Reynolds numbers. To this end, we use a new approach with the velocity field fully resolved, but the scalar field only partially resolved. The grid used is fine enough to resolve scales up to the viscous-convective subrange where the decaying slope of the scalar spectrum becomes constant. This places the cutoff wavenumber between the Kolmogorov scale and the Batchelor scale. The subgrid scale terms, which affect transport at the supergrid scales, are modeled under the assumption that velocity fluctuations are negligible beyond this cutoff wavenumber. To ascertain the validity of this technique, we performed a-priori testing on existing DNS data. This Velocity-Resolved LES (VR-LES) technique significantly reduces the computational cost of turbulent simulations of high Schmidt number scalars, and yet provides valuable information of the scalar spectrum in the viscous-convective subrange.

  5. Augmentation of Effective Thermal Gain of Solar Air Heater using a Novel Turbulator Design- A CFD Study

    Directory of Open Access Journals (Sweden)

    Dhagat Animesh

    2018-01-01

    Full Text Available Augmentation of thermal performance of solar air heater has been the focus of many researchers over the last decades and the use of turbulator or artificial roughness to provide increased fluid mixing in order to achieve augmented heat transfer has been a widely accepted technique. This work aims to evaluate the effect of a novel turbulator design on the effective thermal performance of solar air heater using the methodology of computational fluid dynamics (CFD. A two dimensional CFD analysis is carried out to evaluate the thermal characteristics of solar air heater at various flow Reynolds number conditions for different geometric parameters of the proposed turbulator design. The pitch of the turbulator is varied as 10mm, 20mm, 30mm, 40mm and 50mm for a fixed turbulator height of 2 mm. The Reynolds number is varied from 6,000 to 27,000. The analysis shows that the lower values of pitch produces higher improvement in heat transfer. The maximum increase in Nusselt number is found to be about 2.98 times as compared to the base model for the flow Reynolds number of about 6000. The highest increase in the friction factor is found to be about 3.05 times relative to the base model. The maximum thermal enhancement factor is found to be about 1.99 for the pitch value of 10 mm at a flow Reynolds number of about 6000.

  6. New time scale based k-epsilon model for near-wall turbulence

    Science.gov (United States)

    Yang, Z.; Shih, T. H.

    1993-01-01

    A k-epsilon model is proposed for wall bonded turbulent flows. In this model, the eddy viscosity is characterized by a turbulent velocity scale and a turbulent time scale. The time scale is bounded from below by the Kolmogorov time scale. The dissipation equation is reformulated using this time scale and no singularity exists at the wall. The damping function used in the eddy viscosity is chosen to be a function of R(sub y) = (k(sup 1/2)y)/v instead of y(+). Hence, the model could be used for flows with separation. The model constants used are the same as in the high Reynolds number standard k-epsilon model. Thus, the proposed model will be also suitable for flows far from the wall. Turbulent channel flows at different Reynolds numbers and turbulent boundary layer flows with and without pressure gradient are calculated. Results show that the model predictions are in good agreement with direct numerical simulation and experimental data.

  7. Aeroheating Testing and Predictions for Project Orion CEV at Turbulent Conditions

    Science.gov (United States)

    Hollis, Brian R.; Berger, Karen T.; Horvath, Thomas J.; Coblish, Joseph J.; Norris, Joseph D.; Lillard, Randolph P.; Kirk, Benjamin S.

    2009-01-01

    An investigation of the aeroheating environment of the Project Orion Crew Exploration Vehicle was performed in the Arnold Engineering Development Center Hypervelocity Wind Tunnel No. 9 Mach 8 and Mach 10 nozzles and in the NASA Langley Research Center 20 - Inch Mach 6 Air Tunnel. Heating data were obtained using a thermocouple-instrumented approx.0.035-scale model (0.1778-m/7-inch diameter) of the flight vehicle. Runs were performed in the Tunnel 9 Mach 10 nozzle at free stream unit Reynolds numbers of 1x10(exp 6)/ft to 20x10(exp 6)/ft, in the Tunnel 9 Mach 8 nozzle at free stream unit Reynolds numbers of 8 x 10(exp 6)/ft to 48x10(exp 6)/ft, and in the 20-Inch Mach 6 Air Tunnel at free stream unit Reynolds numbers of 1x10(exp 6)/ft to 7x10(exp 6)/ft. In both facilities, enthalpy levels were low and the test gas (N2 in Tunnel 9 and air in the 20-Inch Mach 6) behaved as a perfect-gas. These test conditions produced laminar, transitional and turbulent data in the Tunnel 9 Mach 10 nozzle, transitional and turbulent data in the Tunnel 9 Mach 8 nozzle, and laminar and transitional data in the 20- Inch Mach 6 Air Tunnel. Laminar and turbulent predictions were generated for all wind tunnel test conditions and comparisons were performed with the experimental data to help define the accuracy of computational method. In general, it was found that both laminar data and predictions, and turbulent data and predictions, agreed to within less than the estimated 12% experimental uncertainty estimate. Laminar heating distributions from all three data sets were shown to correlate well and demonstrated Reynolds numbers independence when expressed in terms of the Stanton number based on adiabatic wall-recovery enthalpy. Transition onset locations on the leeside centerline were determined from the data and correlated in terms of boundary-layer parameters. Finally turbulent heating augmentation ratios were determined for several body-point locations and correlated in terms of the

  8. An implicit turbulence model for low-Mach Roe scheme using truncated Navier-Stokes equations

    Science.gov (United States)

    Li, Chung-Gang; Tsubokura, Makoto

    2017-09-01

    The original Roe scheme is well-known to be unsuitable in simulations of turbulence because the dissipation that develops is unsatisfactory. Simulations of turbulent channel flow for Reτ = 180 show that, with the 'low-Mach-fix for Roe' (LMRoe) proposed by Rieper [J. Comput. Phys. 230 (2011) 5263-5287], the Roe dissipation term potentially equates the simulation to an implicit large eddy simulation (ILES) at low Mach number. Thus inspired, a new implicit turbulence model for low Mach numbers is proposed that controls the Roe dissipation term appropriately. Referred to as the automatic dissipation adjustment (ADA) model, the method of solution follows procedures developed previously for the truncated Navier-Stokes (TNS) equations and, without tuning of parameters, uses the energy ratio as a criterion to automatically adjust the upwind dissipation. Turbulent channel flow at two different Reynold numbers and the Taylor-Green vortex were performed to validate the ADA model. In simulations of turbulent channel flow for Reτ = 180 at Mach number of 0.05 using the ADA model, the mean velocity and turbulence intensities are in excellent agreement with DNS results. With Reτ = 950 at Mach number of 0.1, the result is also consistent with DNS results, indicating that the ADA model is also reliable at higher Reynolds numbers. In simulations of the Taylor-Green vortex at Re = 3000, the kinetic energy is consistent with the power law of decaying turbulence with -1.2 exponents for both LMRoe with and without the ADA model. However, with the ADA model, the dissipation rate can be significantly improved near the dissipation peak region and the peak duration can be also more accurately captured. With a firm basis in TNS theory, applicability at higher Reynolds number, and ease in implementation as no extra terms are needed, the ADA model offers to become a promising tool for turbulence modeling.

  9. Efficient Turbulence Modeling for CFD Wake Simulations

    DEFF Research Database (Denmark)

    van der Laan, Paul

    Wind turbine wakes can cause 10-20% annual energy losses in wind farms, and wake turbulence can decrease the lifetime of wind turbine blades. One way of estimating these effects is the use of computational fluid dynamics (CFD) to simulate wind turbines wakes in the atmospheric boundary layer. Since...... this flow is in the high Reynolds number regime, it is mainly dictated by turbulence. As a result, the turbulence modeling in CFD dominates the wake characteristics, especially in Reynolds-averaged Navier-Stokes (RANS). The present work is dedicated to study and develop RANS-based turbulence models...... verified with a grid dependency study. With respect to the standard k-ε EVM, the k-ε- fp EVM compares better with measurements of the velocity deficit, especially in the near wake, which translates to improved power deficits of the first wind turbines in a row. When the CFD metholody is applied to a large...

  10. Application of Arbitrary-Order Hilbert Spectral Analysis to Passive Scalar Turbulence

    International Nuclear Information System (INIS)

    Huang, Y X; Lu, Z M; Liu, Y L; Schmitt, F G; Gagne, Y

    2011-01-01

    In previous work [Huang et al., PRE 82, 26319, 2010], we found that the passive scalar turbulence field maybe less intermittent than what we believed before. Here we apply the same method, namely arbitrary-order Hilbert spectral analysis, to a passive scalar (temperature) time series with a Taylor's microscale Reynolds number Re λ ≅ 3000. We find that with increasing Reynolds number, the discrepancy of scaling exponents between Hilbert ξ θ (q) and Kolmogorov-Obukhov-Corrsin (KOC) theory is increasing, and consequently the discrepancy between Hilbert and structure function could disappear at infinite Reynolds number.

  11. Numerical Simulation of Turbulent Half-corrugated Channel Flow by Hydrophilic and Hydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    M. R. Rastan

    2018-03-01

    Full Text Available In the first part of the present study, a two dimensional half-corrugated channel flow is simulated at Reynolds number of 104, in no-slip condition (hydrophilic surfaces( using various low Reynolds turbulence models as well as standard k-ε model; and an appropriate turbulence model (k-ω 1998 model( is proposed. Then, in order to evaluate the proposed solution method in simulation of flow adjacent to hydrophobic surfaces, turbulent flow is simulated in simple channel and the results are compared with the literature. Finally, two dimensional half-corrugated channel flow at Reynolds number of 104 is simulated again in vicinity of hydrophobic surfaces for varoius slip lengths. The results show that this method is capable of drag reduction in such a way that an increase of 200 μm in slip length leads to a massive drag reduction up to 38%. In addition, to access a significant drag reduction in turbulent flows, the non-dimensionalized slip length should be larger than the minimum.

  12. Why turbulence sustains in supercritically stratified free atmosphere?

    Science.gov (United States)

    Zilitinkevich, Sergej

    2016-04-01

    It is widely believed that in very stable stratifications, at Richardson numbers (Ri) exceeding critical value Ric ˜ 0.25 turbulence decays and flow becomes laminar. This is so at low Reynolds numbers (Re), e.g., in lab experiments; but this is not true in very-high-Re geophysical flows. Free atmosphere and deep ocean are turbulent in spite of strongly supercritical stratifications: 1 role of negative buoyancy flux, Fb > 0, in turbulence energetics was treated in terms of the turbulent kinetic energy (TKE) budget equation and understood as just consumption of TKE by the buoyancy forces. This has led to the conclusion that sufficiently strong static stability causes the negative buoyancy flux sufficiently strong to exceed the TKE generation rate and thus to kill turbulence. However, considering TKE equation together with budget equation for turbulent potential energy (TPE proportional to the squared buoyancy fluctuations) shows that the role of Fb in turbulence energetics is nothing but conversion of TKE into TPE (Fb just quantifies the rate of this conversion); so that Fb does not affect total turbulent energy (TTE = TKE + TPE). Moreover, as follows from the buoyancy-flux budget equation, TPE generates positive (directed upward) buoyancy flux irrespective of the sign of the buoyancy gradient. Indeed, the warmer fluid particles (with positive buoyancy fluctuation) rise up, whereas the cooler particles sink down, so that both contribute to the positive buoyancy flux opposing to the usual, negative flux generated by mean buoyancy gradient. In this context, strengthening the negative buoyancy flux leads to decreasing TKE and increasing TPE. The latter enhances the counter-gradient share of the total flux, thus reduces |Fb| and, eventually, increases TKE. The above negative feedback was disregarded in the conventional concept of down-gradient turbulent transport. This mechanism imposes a limit on the maximal (independent of the buoyancy gradient) value of |Fb| and thus

  13. On the Space-Time Structure of Sheared Turbulence

    DEFF Research Database (Denmark)

    de Mare, Martin Tobias; Mann, Jakob

    2016-01-01

    We develop a model that predicts all two-point correlations in high Reynolds number turbulent flow, in both space and time. This is accomplished by combining the design philosophies behind two existing models, the Mann spectral velocity tensor, in which isotropic turbulence is distorted according......-assisted feed forward control and wind-turbine wake modelling....

  14. Flow and Heat Transfer Characteristics of Turbulent Gas Flow in Microtube with Constant Heat Flux

    International Nuclear Information System (INIS)

    Hong, Chungpyo; Matsushita, Shinichi; Ueno, Ichiro; Asako, Yutaka

    2012-01-01

    Local friction factors for turbulent gas flows in circular microtubes with constant wall heat flux were obtained numerically. The numerical methodology is based on arbitrary-Lagrangian-Eulerian method to solve two-dimensional compressible momentum and energy equations. The Lam-Bremhorst's Low-Reynolds number turbulence model was employed to calculate eddy viscosity coefficient and turbulence energy. The simulations were performed for a wide flow range of Reynolds numbers and Mach numbers with different constant wall heat fluxes. The stagnation pressure was chosen in such a way that the outlet Mach number ranged from 0.07 to 1.0. Both Darcy friction factor and Fanning friction factor were locally obtained. The result shows that the obtained both friction factors were evaluated as a function of Reynolds number on the Moody chart. The values of Darcy friction factor differ from Blasius correlation due to the compressibility effects but the values of Fanning friction factor almost coincide with Blasius correlation. The wall heat flux varied from 100 to 10000 W/m 2 . The wall and bulk temperatures with positive heat flux are compared with those of incompressible flow. The result shows that the Nusselt number of turbulent gas flow is different from that of incompressible flow.

  15. Parametric Study of Flow Control Over a Hump Model Using an Unsteady Reynolds- Averaged Navier-Stokes Code

    Science.gov (United States)

    Rumsey, Christopher L.; Greenblatt, David

    2007-01-01

    This is an expanded version of a limited-length paper that appeared at the 5th International Symposium on Turbulence and Shear Flow Phenomena by the same authors. A computational study was performed for steady and oscillatory flow control over a hump model with flow separation to assess how well the steady and unsteady Reynolds-averaged Navier-Stokes equations predict trends due to Reynolds number, control magnitude, and control frequency. As demonstrated in earlier studies, the hump model case is useful because it clearly demonstrates a failing in all known turbulence models: they under-predict the turbulent shear stress in the separated region and consequently reattachment occurs too far downstream. In spite of this known failing, three different turbulence models were employed to determine if trends can be captured even though absolute levels are not. Overall the three turbulence models showed very similar trends as experiment for steady suction, but only agreed qualitatively with some of the trends for oscillatory control.

  16. Effect of turbulence on the disintegration rate of flushable consumer products.

    Science.gov (United States)

    Karadagli, Fatih; Rittmann, Bruce E; McAvoy, Drew C; Richardson, John E

    2012-05-01

    A previously developed model for the physical disintegration of flushable consumer products is expanded by investigating the effects of turbulence on the rate of physical disintegration. Disintegration experiments were conducted with cardboard tampon applicators at 100, 150, and 200 rotations per minute, corresponding to Reynold's numbers of 25,900, 39,400, and 52,900, respectively, which were estimated by using computational fluid dynamics modeling. The experiments were simulated with the disintegration model to obtain best-fit values of the kinetic and distribution parameters. Computed rate coefficients (ki) for all solid sizes (i.e., greater than 8, 4 to 8, 2 to 4, and 1 to 2 mm) increased strongly with Reynold's number or rotational speed. Thus, turbulence strongly affected the disintegration rate of flushable products, and the relationship of the ki values to Reynold's number can be included in mathematical representations of physical disintegration.

  17. Boundary layer turbulence in transitional and developed states

    Science.gov (United States)

    Park, George Ilhwan; Wallace, James M.; Wu, Xiaohua; Moin, Parviz

    2012-03-01

    Using the recent direct numerical simulations by Wu and Moin ["Transitional and turbulent boundary layer with heat transfer," Phys. Fluids 22, 85 (2010)] of a flat-plate boundary layer with a passively heated wall, statistical properties of the turbulence in transition at Reθ ≈ 300, from individual turbulent spots, and at Reθ ≈ 500, where the spots merge (distributions of the mean velocity, Reynolds stresses, kinetic energy production, and dissipation rates, enstrophy and its components) have been compared to these statistical properties for the developed boundary layer turbulence at Reθ = 1840. When the distributions in the transitional regions are conditionally averaged so as to exclude locations and times when the flow is not turbulent, they closely resemble the distributions in the developed turbulent state at the higher Reynolds number, especially in the buffer layer. Skin friction coefficients, determined in this conditional manner at the two Reynolds numbers in the transitional flow are, of course, much larger than when their values are obtained by including both turbulent and non-turbulent information there, and the conditional averaged values are consistent with the 1/7th power law approximation. An octant analysis based on the combinations of signs of the velocity and temperature fluctuations, u, v, and θ shows that the momentum and heat fluxes are predominantly of the mean gradient type in both the transitional and developed regions. The fluxes appear to be closely associated with vortices that transport momentum and heat toward and away from the wall in both regions of the flow. The results suggest that there may be little fundamental difference between the nonlinear processes involved in the formation of turbulent spots that appear in transition and those that sustain the turbulence when it is developed. They also support the view that the transport processes and the vortical structures that drive them in developed and transitional boundary

  18. Modeling the flow in a 90 deg. rectangular duct using one Reynolds-stress and two eddy-viscosity models

    International Nuclear Information System (INIS)

    Yakinthos, K.; Vlahostergios, Z.; Goulas, A.

    2008-01-01

    A new effort to model the flow in a 90 deg. rectangular duct by adopting three low-Reynolds-number turbulence models, two eddy-viscosity models (a linear and a non-linear) and a Reynolds-stress model, is presented. The complex flow development is a challenge for the application of turbulence models in order to assess their capability to capture the secondary flow and the developing vortices due to curvature and strong pressure gradient effects. The numerical results show that both the non-linear eddy-viscosity and the Reynolds-stress models can provide good results, especially for the velocity distributions. The superiority of the Reynolds-stress model is shown primarily in the Reynolds-stress distributions, which have the best quality among the predictions from the other models. On the other hand, the main advantage of the non-linear model is its simplicity and the smaller needed CPU cost, compared to the Reynolds-stress model. Additionally, in some stations of the flow development, the non-linear model provides good velocity distributions. The linear model gives lower quality predictions for the Reynolds-stress distributions, although it is capable in providing quite satisfactory results for the velocity distributions

  19. Effect of Reynolds Number and Periodic Unsteady Wake Flow Condition on Boundary Layer Development, Separation, and Intermittency Behavior Along the Suction Surface of a Low Pressure Turbine Blade

    Science.gov (United States)

    Schobeiri, M. T.; Ozturk, B.; Ashpis, David E.

    2007-01-01

    The paper experimentally studies the effects of periodic unsteady wake flow and different Reynolds numbers on boundary layer development, separation and re-attachment along the suction surface of a low pressure turbine blade. The experimental investigations were performed on a large scale, subsonic unsteady turbine cascade research facility at Turbomachinery Performance and Flow Research Laboratory (TPFL) of Texas A&M University. The experiments were carried out at Reynolds numbers of 110,000 and 150,000 (based on suction surface length and exit velocity). One steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, wake velocities, and turbulence intensities were investigated. The reduced frequencies chosen cover the operating range of LP turbines. In addition to the unsteady boundary layer measurements, surface pressure measurements were performed. The inception, onset, and the extent of the separation bubble information collected from the pressure measurements were compared with the hot wire measurements. The results presented in ensemble-averaged, and the contour plot forms help to understand the physics of the separation phenomenon under periodic unsteady wake flow and different Reynolds number. It was found that the suction surface displayed a strong separation bubble for these three different reduced frequencies. For each condition, the locations defining the separation bubble were determined carefully analyzing and examining the pressure and mean velocity profile data. The location of the boundary layer separation was dependent of the Reynolds number. It is observed that starting point of the separation bubble and the re-attachment point move further downstream by increasing Reynolds number from 110,000 to 150,000. Also, the size of the separation bubble is smaller when compared to that for Re=110,000.

  20. THE DECAY OF A WEAK LARGE-SCALE MAGNETIC FIELD IN TWO-DIMENSIONAL TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Kondić, Todor; Hughes, David W.; Tobias, Steven M., E-mail: t.kondic@leeds.ac.uk [Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2016-06-01

    We investigate the decay of a large-scale magnetic field in the context of incompressible, two-dimensional magnetohydrodynamic turbulence. It is well established that a very weak mean field, of strength significantly below equipartition value, induces a small-scale field strong enough to inhibit the process of turbulent magnetic diffusion. In light of ever-increasing computer power, we revisit this problem to investigate fluids and magnetic Reynolds numbers that were previously inaccessible. Furthermore, by exploiting the relation between the turbulent diffusion of the magnetic potential and that of the magnetic field, we are able to calculate the turbulent magnetic diffusivity extremely accurately through the imposition of a uniform mean magnetic field. We confirm the strong dependence of the turbulent diffusivity on the product of the magnetic Reynolds number and the energy of the large-scale magnetic field. We compare our findings with various theoretical descriptions of this process.

  1. On the Energy Spectrum of Strong Magnetohydrodynamic Turbulence

    Directory of Open Access Journals (Sweden)

    Jean Carlos Perez

    2012-10-01

    Full Text Available The energy spectrum of magnetohydrodynamic turbulence attracts interest due to its fundamental importance and its relevance for interpreting astrophysical data. Here we present measurements of the energy spectra from a series of high-resolution direct numerical simulations of magnetohydrodynamics turbulence with a strong guide field and for increasing Reynolds number. The presented simulations, with numerical resolutions up to 2048^{3} mesh points and statistics accumulated over 30 to 150 eddy turnover times, constitute, to the best of our knowledge, the largest statistical sample of steady state magnetohydrodynamics turbulence to date. We study both the balanced case, where the energies associated with Alfvén modes propagating in opposite directions along the guide field, E^{+}(k_{⊥} and E^{-}(k_{⊥}, are equal, and the imbalanced case where the energies are different. In the balanced case, we find that the energy spectrum converges to a power law with exponent -3/2 as the Reynolds number is increased, which is consistent with phenomenological models that include scale-dependent dynamic alignment. For the imbalanced case, with E^{+}>E^{-}, the simulations show that E^{-}∝k_{⊥}^{-3/2} for all Reynolds numbers considered, while E^{+} has a slightly steeper spectrum at small Re. As the Reynolds number increases, E^{+} flattens. Since E^{±} are pinned at the dissipation scale and anchored at the driving scales, we postulate that at sufficiently high Re the spectra will become parallel in the inertial range and scale as E^{+}∝E^{-}∝k_{⊥}^{-3/2}. Questions regarding the universality of the spectrum and the value of the “Kolmogorov constant” are discussed.

  2. DNS of passive scalar transport in turbulent channel flow at high Schmidt numbers

    International Nuclear Information System (INIS)

    Schwertfirm, Florian; Manhart, Michael

    2007-01-01

    We perform DNS of passive scalar transport in low Reynolds number turbulent channel flow at Schmidt numbers up to Sc = 49. The high resolutions required to resolve the scalar concentration fields at such Schmidt numbers are achieved by a hierarchical algorithm in which only the scalar fields are solved on the grid dictated by the Batchelor scale. The velocity fields are solved on coarser grids and prolonged by a conservative interpolation to the fine-grid. The trends observed so far at lower Schmidt numbers Sc ≤ 10 are confirmed, i.e. the mean scalar gradient steepens at the wall with increasing Schmidt number, the peaks of turbulent quantities increase and move towards the wall. The instantaneous scalar fields show a dramatic change. Observable structures get longer and thinner which is connected with the occurrence of steeper gradients, but the wall concentrations penetrate less deeply into the plateau in the core of the channel. Our data shows that the thickness of the conductive sublayer, as defined by the intersection point of the linear with the logarithmic asymptote scales with Sc -0.29 . With this information it is possible to derive an expression for the dimensionless transfer coefficient K + which is only dependent on Sc and Re τ . This expression is in full accordance to previous results which demonstrates that the thickness of the conductive sublayer is the dominating quantity for the mean scalar profile

  3. DNS of passive scalar transport in turbulent channel flow at high Schmidt numbers

    Energy Technology Data Exchange (ETDEWEB)

    Schwertfirm, Florian [Fachgebiet Hydromechanik, Technische Universitaet Muenchen, Arcisstr. 21, 80337 Muenchen (Germany); Manhart, Michael [Fachgebiet Hydromechanik, Technische Universitaet Muenchen, Arcisstr. 21, 80337 Muenchen (Germany)], E-mail: m.manhart@bv.tum.de

    2007-12-15

    We perform DNS of passive scalar transport in low Reynolds number turbulent channel flow at Schmidt numbers up to Sc = 49. The high resolutions required to resolve the scalar concentration fields at such Schmidt numbers are achieved by a hierarchical algorithm in which only the scalar fields are solved on the grid dictated by the Batchelor scale. The velocity fields are solved on coarser grids and prolonged by a conservative interpolation to the fine-grid. The trends observed so far at lower Schmidt numbers Sc {<=} 10 are confirmed, i.e. the mean scalar gradient steepens at the wall with increasing Schmidt number, the peaks of turbulent quantities increase and move towards the wall. The instantaneous scalar fields show a dramatic change. Observable structures get longer and thinner which is connected with the occurrence of steeper gradients, but the wall concentrations penetrate less deeply into the plateau in the core of the channel. Our data shows that the thickness of the conductive sublayer, as defined by the intersection point of the linear with the logarithmic asymptote scales with Sc{sup -0.29}. With this information it is possible to derive an expression for the dimensionless transfer coefficient K{sup +} which is only dependent on Sc and Re{sub {tau}}. This expression is in full accordance to previous results which demonstrates that the thickness of the conductive sublayer is the dominating quantity for the mean scalar profile.

  4. Reynolds number and end-wall effects on a lid-driven cavity flow

    International Nuclear Information System (INIS)

    Prasad, A.K.; Koseff, J.R.

    1989-01-01

    A series of experiments has been conducted in a lid-driven cavity of square cross section (depth = width = 150 mm) for Reynolds numbers (Re, based on lid speed and cavity width) between 3200 and 10 000, and spanwise aspect ratios (SAR) between 0.25:1 and 1:1. Flow visualization using polystyrene beads and two-dimensional laser-Doppler anemometer (LDA) measurements have shed new light on the momentum transfer processes within the cavity. This paper focuses on the variation, with Re and SAR, of the mean and the rms velocities profiles, as well as the /similar to/(U'V') profile, along the horizontal and vertical centerlines in the symmetry plane. In addition, the contribution of the large-scale ''organized structures,'' and the high-frequency ''turbulent'' velocity fluctuations to the total rms is examined. At low Re, the organized structures account for most of the energy contained in the flow irrespective of SAR. As the Re increases, however, so does the energy content of the higher frequency fluctuations. This trend is not independent of SAR; a reduction in the SAR causes the ''organized structures'' to again become more evident

  5. Aerodynamics of S809 Airfoil at Low and Transitional Reynolds Numbers

    Science.gov (United States)

    Carreras, Jaime J.; Laal-Dehghani, Nader; Gorumlu, Serdar; Mehdi, Faraz; Castillo, Luciano; Aksak, Burak; Sheng, Jian

    2013-11-01

    The S809 is a thick airfoil extensively used in wind turbine design applications and model studies in wind tunnel. With increased interests in reducing energy production cost and understanding turbulence and turbine interactions, scaled down models (Re ~103) are often used as an alternative to full scale field experimentation (Re >106). This Reynolds number discrepancy raises the issue of scaling for the airfoil performance from laboratory studies to field scale applications. To the best of our knowledge, there are no studies existing in literature to characterize the lift- and drag-coefficients of S809 airfoil at Re less than 3 ×105 . This study is to fill the deficit in the current state of knowledge by performing high resolution force measurements. The lift and drag measurements are carried out in Texas Tech Wind Tunnel Facility using an in-house developed dual-cell force balance. The configuration eliminates the large torque and torsion often accompanied by conventional mounts. This unique design allows us to reach a measurement accuracy of 0.02N (0.1%). Comparative studies are performed on a two-dimensional airfoil with a smooth- as well as a well-engineered surface covered by micro-pillar array to simulate the surface conditions of a real life airfoil.

  6. Numerical simulation of stratified flows with different k-ε turbulence models

    International Nuclear Information System (INIS)

    Dagestad, S.

    1991-01-01

    The thesis comprises the numerical simulation of stratified flows with different k-ε models. When using the k-ε model, two equations are solved to describe the turbulence. The k-equation represents the turbulent kinetic energy of the turbulence and the ε-equation is the turbulent dissipation. Different k-ε models predict stratified flows differently. The standard k-ε model leads to higher turbulent mixing than the low-Reynolds model does. For lower Froude numbers, F 0 , this effect becomes enhanced. Buoyancy extension of the k-ε model also leads to less vertical mixing in cases with strong stratification. When the stratification increases, buoyancy-extension becomes larger influence. The turbulent Prandtl number effects have large impact on the transport of heat and the development of the flow. Two different formulae which express the turbulent Prandtl effects have been tested. For unstably stratified flows, the rapid mixing and three-dimensionality of the flow can in fact be computed using a k-ε model when buoyancy-extended is employed. The turbulent heat transfer and thus turbulent production in unstable stratified flows depends strongly upon the turbulent Prandtl number effect. The main conclusions are: Stable stratified flows should be computed with a buoyancy-extended low-Reynolds k-ε model; Unstable stratified flows should be computed with a buoyancy-extended standard k-ε model; The turbulent Prandtl number effects should be included in the computations; Buoyancy-extension has lead to more correct description of the physics for all of the investigated flows. 78 refs., 128 figs., 17 tabs

  7. On passive scalar derivative statistics in grid turbulence

    International Nuclear Information System (INIS)

    Tong, C.; Warhaft, Z.

    1994-01-01

    The probability density function, and related statistics, of scalar (temperature) derivative fluctuations in decaying grid turbulence with an imposed cross-stream, passive linear temperature profile, is studied for a turbulence Reynolds number range, Re l , varying from 50 to 1200, (corresponding to a Taylor Reynolds number range 30 λ θy has a value of 1.8±0.2 (twice the value observed in shear flows), and has no significant variation with Reynolds number. The ratio of the temperature derivative standard deviation along the gradient to that normal to it is approximately 1.2±0.1 also, with no variation with Re. The kurtosis of the derivatives increases approximately as Re 0.2 l . The results show that the rare, intense temperature deviations that produce the skewed scalar derivative, increase in frequency, but their area fraction (of the total field) becomes smaller as the Reynolds number increases. Thus, since S θy remains constant, they become sharper and more intense, occurring deeper in the tails of the probability density function. Measurements in a thermal mixing layer, which has a nonlinear mean temperature profile, are also presented, and these show a similar value of S θy to the linear profile case. The experiments broadly confirm the two-dimensional numerical simulations of Holzer and Siggia [Phys. Fluids (in press)], as well as other recent simulations, although there are some differences

  8. Structure and modeling of turbulence

    International Nuclear Information System (INIS)

    Novikov, E.A.

    1995-01-01

    The open-quotes vortex stringsclose quotes scale l s ∼ LRe -3/10 (L-external scale, Re - Reynolds number) is suggested as a grid scale for the large-eddy simulation. Various aspects of the structure of turbulence and subgrid modeling are described in terms of conditional averaging, Markov processes with dependent increments and infinitely divisible distributions. The major request from the energy, naval, aerospace and environmental engineering communities to the theory of turbulence is to reduce the enormous number of degrees of freedom in turbulent flows to a level manageable by computer simulations. The vast majority of these degrees of freedom is in the small-scale motion. The study of the structure of turbulence provides a basis for subgrid-scale (SGS) models, which are necessary for the large-eddy simulations (LES)

  9. Extremely rare collapse and build-up of turbulence in stochastic models of transitional wall flows.

    Science.gov (United States)

    Rolland, Joran

    2018-02-01

    This paper presents a numerical and theoretical study of multistability in two stochastic models of transitional wall flows. An algorithm dedicated to the computation of rare events is adapted on these two stochastic models. The main focus is placed on a stochastic partial differential equation model proposed by Barkley. Three types of events are computed in a systematic and reproducible manner: (i) the collapse of isolated puffs and domains initially containing their steady turbulent fraction; (ii) the puff splitting; (iii) the build-up of turbulence from the laminar base flow under a noise perturbation of vanishing variance. For build-up events, an extreme realization of the vanishing variance noise pushes the state from the laminar base flow to the most probable germ of turbulence which in turn develops into a full blown puff. For collapse events, the Reynolds number and length ranges of the two regimes of collapse of laminar-turbulent pipes, independent collapse or global collapse of puffs, is determined. The mean first passage time before each event is then systematically computed as a function of the Reynolds number r and pipe length L in the laminar-turbulent coexistence range of Reynolds number. In the case of isolated puffs, the faster-than-linear growth with Reynolds number of the logarithm of mean first passage time T before collapse is separated in two. One finds that ln(T)=A_{p}r-B_{p}, with A_{p} and B_{p} positive. Moreover, A_{p} and B_{p} are affine in the spatial integral of turbulence intensity of the puff, with the same slope. In the case of pipes initially containing the steady turbulent fraction, the length L and Reynolds number r dependence of the mean first passage time T before collapse is also separated. The author finds that T≍exp[L(Ar-B)] with A and B positive. The length and Reynolds number dependence of T are then discussed in view of the large deviations theoretical approaches of the study of mean first passage times and

  10. Extremely rare collapse and build-up of turbulence in stochastic models of transitional wall flows

    Science.gov (United States)

    Rolland, Joran

    2018-02-01

    This paper presents a numerical and theoretical study of multistability in two stochastic models of transitional wall flows. An algorithm dedicated to the computation of rare events is adapted on these two stochastic models. The main focus is placed on a stochastic partial differential equation model proposed by Barkley. Three types of events are computed in a systematic and reproducible manner: (i) the collapse of isolated puffs and domains initially containing their steady turbulent fraction; (ii) the puff splitting; (iii) the build-up of turbulence from the laminar base flow under a noise perturbation of vanishing variance. For build-up events, an extreme realization of the vanishing variance noise pushes the state from the laminar base flow to the most probable germ of turbulence which in turn develops into a full blown puff. For collapse events, the Reynolds number and length ranges of the two regimes of collapse of laminar-turbulent pipes, independent collapse or global collapse of puffs, is determined. The mean first passage time before each event is then systematically computed as a function of the Reynolds number r and pipe length L in the laminar-turbulent coexistence range of Reynolds number. In the case of isolated puffs, the faster-than-linear growth with Reynolds number of the logarithm of mean first passage time T before collapse is separated in two. One finds that ln(T ) =Apr -Bp , with Ap and Bp positive. Moreover, Ap and Bp are affine in the spatial integral of turbulence intensity of the puff, with the same slope. In the case of pipes initially containing the steady turbulent fraction, the length L and Reynolds number r dependence of the mean first passage time T before collapse is also separated. The author finds that T ≍exp[L (A r -B )] with A and B positive. The length and Reynolds number dependence of T are then discussed in view of the large deviations theoretical approaches of the study of mean first passage times and multistability

  11. Qualification of a Method to Calculate the Irrecoverable Pressure Loss in High Reynolds Number Piping Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sigg, K. C.; Coffield, R. D.

    2002-09-01

    High Reynolds number test data has recently been reported for both single and multiple piping elbow design configurations at earlier ASME Fluid Engineering Division conferences. The data of these studies ranged up to a Reynolds number of 42 x 10[sup]6 which is significantly greater than that used to establish design correlations before the data was available. Many of the accepted design correlations, based on the lower Reynolds number data, date back as much as fifty years. The new data shows that these earlier correlations are extremely conservative for high Reynolds number applications. Based on the recent high Reynolds number information a new recommended method has been developed for calculating irrecoverable pressure loses in piping systems for design considerations such as establishing pump sizing requirements. This paper describes the recommended design approach and additional testing that has been performed as part of the qualification of the method. This qualification testing determined the irrecoverable pressure loss of a piping configuration that would typify a limiting piping section in a complicated piping network, i.e., multiple, tightly coupled, out-of-plane elbows in series under high Reynolds number flow conditions. The overall pressure loss measurements were then compared to predictions, which used the new methodology to assure that conservative estimates for the pressure loss (of the type used for pump sizing) were obtained. The recommended design methodology, the qualification testing and the comparison between the predictions and the test data are presented. A major conclusion of this study is that the recommended method for calculating irrecoverable pressure loss in piping systems is conservative yet significantly lower than predicted by early design correlations that were based on the extrapolation of low Reynolds number test data.

  12. Parametric study of separation and transition characteristics over an airfoil at low Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Boutilier, Michael S.H.; Yarusevych, Serhiy [University of Waterloo, Waterloo, ON (Canada)

    2012-06-15

    Time-resolved surface pressure measurements are used to experimentally investigate characteristics of separation and transition over a NACA 0018 airfoil for the relatively wide range of chord Reynolds numbers from 50,000 to 250,000 and angles of attack from 0 to 21 . The results provide a comprehensive data set of characteristic parameters for separated shear layer development and reveal important dependencies of these quantities on flow conditions. Mean surface pressure measurements are used to explore the variation in separation bubble position, edge velocity in the separated shear layer, and lift coefficients with angle of attack and Reynolds number. Consistent with previous studies, the separation bubble is found to move upstream and decrease in length as the Reynolds number and angle of attack increase. Above a certain angle of attack, the proximity of the separation bubble to the location of the suction peak results in a reduced lift slope compared to that observed at lower angles. Simultaneous measurements of the time-varying component of surface pressure at various spatial locations on the model are used to estimate the frequency of shear layer instability, maximum root-mean-square (RMS) surface pressure, spatial amplification rates of RMS surface pressure, and convection speeds of the pressure fluctuations in the separation bubble. A power-law correlation between the shear layer instability frequency and Reynolds number is shown to provide an order of magnitude estimate of the central frequency of disturbance amplification for various airfoil geometries at low Reynolds numbers. Maximum RMS surface pressures are found to agree with values measured in separation bubbles over geometries other than airfoils, when normalized by the dynamic pressure based on edge velocity. Spatial amplification rates in the separation bubble increase with both Reynolds number and angle of attack, causing the accompanying decrease in separation bubble length. Values of the

  13. Further experiments for mean velocity profile of pipe flow at high Reynolds number

    Science.gov (United States)

    Furuichi, N.; Terao, Y.; Wada, Y.; Tsuji, Y.

    2018-05-01

    This paper reports further experimental results obtained in high Reynolds number actual flow facility in Japan. The experiments were performed in a pipe flow with water, and the friction Reynolds number was varied up to Reτ = 5.3 × 104. This high Reynolds number was achieved by using water as the working fluid and adopting a large-diameter pipe (387 mm) while controlling the flow rate and temperature with high accuracy and precision. The streamwise velocity was measured by laser Doppler velocimetry close to the wall, and the mean velocity profile, called log-law profile U+ = (1/κ) ln(y+) + B, is especially focused. After careful verification of the mean velocity profiles in terms of the flow rate accuracy and an evaluation of the consistency of the present results with those from previously measurements in a smaller pipe (100 mm), it was found that the value of κ asymptotically approaches a constant value of κ = 0.384.

  14. Development of two phase turbulent mixing model for subchannel analysis relevant to BWR

    International Nuclear Information System (INIS)

    Sharma, M.P.; Nayak, A.K.; Kannan, Umasankari

    2014-01-01

    A two phase flow model is presented, which predicts both liquid and gas phase turbulent mixing rate between adjacent subchannels of reactor rod bundles. The model presented here is for slug churn flow regime, which is dominant as compared to the other regimes like bubbly flow and annular flow regimes, since turbulent mixing rate is the highest in slug churn flow regime. In this paper, we have defined new dimensionless parameters i.e. liquid mixing number and gas mixing number for two phase turbulent mixing. The liquid mixing number is a function of mixture Reynolds number whereas the gas phase mixing number is a function of both mixture Reynolds number and volumetric fraction of gas. The effect of pressure, geometrical influence of subchannel is also included in this model. The present model has been tested against low pressure and temperature air-water and high pressure and temperature steam-water experimental data found that it shows good agreement with available experimental data. (author)

  15. Statistical Mechanics of Turbulent Dynamos

    Science.gov (United States)

    Shebalin, John V.

    2014-01-01

    Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much

  16. Effects of Dimple Depth and Reynolds Number on the Flow and Heat Transfer in a Dimpled Channel

    International Nuclear Information System (INIS)

    Ahn, Joon; Lee, Young Ok; Lee, Joon Sik

    2007-01-01

    A Large Eddy Simulation (LES) has been conducted for the flow and heat transfer in a dimpled channel. Two dimple depths of 0.2 and 0.3 times of the dimple print diameter (= D) have been compared at the bulk Reynolds number of 20,000. Three Reynolds numbers of 5,000, 10,000 and 20,000 have been studied, while the dimple depth is kept as 0.2 D. With the deeper dimple, the flow reattachment occurs father downstream inside the dimple, so that the heat transfer is not as effectively enhanced as the case with shallow ones. At the low Reynolds number of 5,000, the Nusselt number ratio is as high as those for the higher Reynolds number, although the value of heat transfer coefficient decreases because of the weak shear layer vortices

  17. Effect of aspect ratio on the laminar-to-turbulent transition in rectangular channel

    International Nuclear Information System (INIS)

    Wang Chang; Gao Puzhen; Tan Sichao; Xu Chao

    2012-01-01

    Highlights: ► Effect of aspect ratio on the transition Reynolds number in rectangular channel is studied. ► Prediction correlation for transition Reynolds number is proposed. ► The initiation location of flow transition is studied. - Abstract: The critical Reynolds number of the laminar-to-turbulent transition in the rectangular channel is investigated based on the energy gradient method. The results show that the critical Reynolds number decreases with the increasing aspect ratio. However, the relative location of laminar breakdown does not migrate significantly with the variation of the aspect ratio. In addition, a theoretical correlation as a function of the aspect ratio is proposed to calculate the transition Reynolds number, and the predicted values are in good agreement with the experimental data obtained in the published literatures.

  18. Role of Turbulent Prandtl Number on Heat Flux at Hypersonic Mach Numbers

    Science.gov (United States)

    Xiao, X.; Edwards, J. R.; Hassan, H. A.; Gaffney, R. L., Jr.

    2007-01-01

    A new turbulence model suited for calculating the turbulent Prandtl number as part of the solution is presented. The model is based on a set of two equations: one governing the variance of the enthalpy and the other governing its dissipation rate. These equations were derived from the exact energy equation and thus take into consideration compressibility and dissipation terms. The model is used to study two cases involving shock wave/boundary layer interaction at Mach 9.22 and Mach 5.0. In general, heat transfer prediction showed great improvement over traditional turbulence models where the turbulent Prandtl number is assumed constant. It is concluded that using a model that calculates the turbulent Prandtl number as part of the solution is the key to bridging the gap between theory and experiment for flows dominated by shock wave/boundary layer interactions.

  19. Contribution to the study of turbulence spectra

    Science.gov (United States)

    Dumas, R.

    1979-01-01

    An apparatus suitable for turbulence measurement between ranges of 1 to 5000 cps and from 6 to 16,000 cps was developed and is described. Turbulence spectra downstream of the grills were examined with reference to their general characteristics, their LF qualities, and the effects of periodic turbulence. Medium and HF are discussed. Turbulence spectra in the boundary layers are similarly examined, with reference to their fluctuations at right angles to the wall, and to lateral fluctuations. Turbulence spectra in a boundary layer with suction to the wall is discussed. Induced turbulence, and turbulence spectra at high Reynolds numbers. Calculations are presented relating to the effect of filtering on the value of the correlations in time and space.

  20. Numerical investigation of turbulent fluid flow and heat transfer in complex ducts

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, M.

    1998-01-01

    The need for a reliable and reasonable accurate turbulence model without specific convergence problem for calculating duct flows in industrial applications has become more evident. In this study a general computational method has been developed for calculating turbulent quantities in any arbitrary three dimensional duct. Four different turbulence models for predicting the turbulent Reynolds stresses namely; standard k-{epsilon} model, the non-linear-k-{epsilon} model of Speziale, an Explicit Algebraic Stress Model (EASM) and a full Reynolds Stress Model (RSM) are compared with each other. The advantages, disadvantages and accuracy of these models are discussed. The turbulent heat fluxes are modeled by the SED concept, the GGDH and the WET methods. The advantages of GGDH and WET compared to SED are discussed and the limitations of these models are clarified. The two-equation model of temperature invariance and its dissipation rate for calculating turbulent heat fluxes are also discussed. The low Reynolds number version of all the models are considered except for the RSM. At high Reynolds numbers the wall functions for both the temperature field and the flow field are applied. It has been shown that the standard k-{epsilon} model with the curvilinear transformation provides false secondary motions in general non-orthogonal ducts and can not be used for predicting the turbulent secondary motions in ducts. The numerical method is based on the finite volume technique with non-staggered grid arrangement. The SIMPLEC algorithm is used for pressure-velocity coupling. A modified SIP and TDMA solving methods are implemented for solving the equations. The van Leer, QUICK and hybrid schemes are applied for treating the convective terms. However, in order to achieve stability in the k and {epsilon} equations, the hybrid scheme is used for the convective terms in these equations. Periodic boundary conditions are imposed in the main flow direction for decreasing the number of

  1. Behaviour of turbulence models near a turbulent/non-turbulent interface revisited

    International Nuclear Information System (INIS)

    Ferrey, P.; Aupoix, B.

    2006-01-01

    The behaviour of turbulence models near a turbulent/non-turbulent interface is investigated. The analysis holds as well for two-equation as for Reynolds stress turbulence models using Daly and Harlow diffusion model. The behaviour near the interface is shown not to be a power law, as usually considered, but a more complex parametric solution. Why previous works seemed to numerically confirm the power law solution is explained. Constraints for turbulence modelling, i.e., for ensuring that models have a good behaviour near a turbulent/non-turbulent interface so that the solution is not sensitive to small turbulence levels imposed in the irrotational flow, are drawn

  2. Use of Resolving Equation to Define the Lower Critical Reynolds Number

    Directory of Open Access Journals (Sweden)

    Alexander A. Solovyev

    2014-09-01

    Full Text Available Although the issue of streams with non-crossing trajectories of particle motions ranging from chaotic, random with irregular current lines, has been given a lot of attention, it still remains unresolved. The study features a relevant issue for hydromechanics, which is precise values determination of the Lower Critical Reynolds Number. It is suggested to put forward an updated approach to the use of energetic analysis for analytical calculation of the Reynolds Resolving Equation. The assessment of transition to mean motion from pulsation to the direction of laminar flows was fulfilled.

  3. Measurements of the turbulent transport of heat and momentum in convexly curved boundary layers - Effects of curvature, recovery and free-stream turbulence

    Science.gov (United States)

    Kim, J.; Simon, T. W.

    1987-01-01

    The effects of streamwise convex curvature, recovery, and freestream turbulence intensity on the turbulent transport of heat and momentum in a mature boundary layer are studied using a specially designed three-wire hot-wire probe. Increased freestream turbulence is found to increase the profiles throughout the boundary layer on the flat developing wall. Curvature effects were found to dominate turbulence intensity effects for the present cases considered. For the higher TI (turbulence intensity) case, negative values of the turbulent Prandtl number are found in the outer half of the boundary layer, indicating a breakdown in Reynolds analogy.

  4. Reynolds number and geometry effects in laminar axisymmetric isothermal counterflows

    KAUST Repository

    Scribano, Gianfranco; Bisetti, Fabrizio

    2016-01-01

    dependence of the velocity field with respect to the separation ratio is linked to a high pressure region at the stagnation point. On the other hand, Reynolds number effects highlight the role played by the wall boundary layer on the interior of the nozzles

  5. Detached Eddy Simulations of an Airfoil in Turbulent Inflow

    DEFF Research Database (Denmark)

    Gilling, Lasse; Sørensen, Niels; Davidson, Lars

    2009-01-01

    The effect of resolving inflow turbulence in detached eddy simulations of airfoil flows is studied. Synthetic turbulence is used for inflow boundary condition. The generated turbulence fields are shown to decay according to experimental data as they are convected through the domain with the free...... stream velocity. The subsonic flow around a NACA 0015 airfoil is studied at Reynolds number 1.6 × 106 and at various angles of attack before and after stall. Simulations with turbulent inflow are compared to experiments and to simulations without turbulent inflow. The results show that the flow...

  6. A mathematical model of turbulence for turbulent boundary layers

    International Nuclear Information System (INIS)

    Pereira Filho, H.D.V.

    1977-01-01

    Equations to the so called Reynolds stress-tensor (kinetic turbulent energy) and dissipation rate are developed and a turbulence flux approximation used. Our ideia here is to use those equations in order to develop an economical and fast numeircal procedure for computation of turbulent boundary layer. (author) [pt

  7. CHARACTERIZATION OF CATALYTIC COMBUSTOR TURBULENCE AND ITS INFLUENCE ON VANE AND ENDWALL HEAT TRANSFER AND ENDWALL FILM COOLING

    Energy Technology Data Exchange (ETDEWEB)

    Forrest E. Ames

    2002-10-01

    Endwall heat transfer distributions taken in a large-scale low speed linear cascade facility are documented for mock catalytic and dry low NOx (DLN) combustion systems. Inlet turbulence levels range from about 1.0 percent for the mock Catalytic combustor condition to 14 percent for the mock dry low NOx combustor system. Stanton number contours are presented at both turbulence conditions for Reynolds numbers based on true chord length and exit conditions ranging from 500,000 to 2,000,000. Catalytic combustor endwall heat transfer shows the influence of the complex three-dimensional flow field, while the effects of individual vortex systems are less evident for the mock dry low NOx cases. Turbulence scales have been documented for both cases. Inlet boundary layers are relatively thin for the mock catalytic combustor case while inlet flow approximates a channel flow with high turbulence for the mock DLN combustor case. Inlet boundary layer parameters are presented across the inlet passage for the three Reynolds numbers and both the mock catalytic and DLN combustor inlet cases. Both midspan and 95 percent span pressure contours are included. This research provides a well-documented database taken across a range of Reynolds numbers and turbulence conditions for assessment of endwall heat transfer predictive capabilities.

  8. Understanding the sub-critical transition to turbulence in wall flows

    Indian Academy of Sciences (India)

    In contrast with free shear flows presenting velocity profiles with injection points which cascade to turbulence in a relatively mild way, wall bounded flows are deprived of (inertial) instability modes at low Reynolds numbers and become turbulent in a much wilder way, most often marked by the coexistence of laminar and ...

  9. Aerodynamic forces and galloping instability for a skewed elliptical cylinder in a flow at the critical Reynolds number

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wenyong [Wind Engineering Research Center, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043 (China); Liu, Qingkuan; Liu, Xiaobing [The Key Laboratory for Health Monitoring and Control of Large Structures, Hebei province, 050043 (China); Du, Xiaoqing, E-mail: ma@stdu.edu.cn, E-mail: dxq@shu.edu.cn [Department of Civil Engineering, Shanghai University, Shanghai, 200072 (China)

    2017-08-15

    The mechanism of large-amplitude aeroelastic vibrations of cylindrical bodies in the critical Reynolds number range are still unclear. This study concerns the aerodynamic forces acting on elliptical cylinders and the induced galloping instability resulting from skew flows (i.e., the direction of the flow is angled 0°–45° with respect to the central axis of the cylinder) for Reynolds numbers in the range of 37–235 k. The effects of the critical Reynolds number and the skew angle on the aerodynamic forces and the galloping instability are investigated with pressure wind tunnel tests. In all of the cases investigated in the present study, a sharp decrease in the lift coefficient with increasing angle of attack and a reduction in the drag coefficient at the critical Reynolds number could be responsible for the galloping instability. Variations in the torque coefficient leads to a torsional aerodynamic instability at the critical Reynolds number. Furthermore, the skew flow cause a critical flow state at lower Reynolds numbers. One possible reason for this behavior is that the longer effective cross section allows the flow to reattach. (paper)

  10. Lagrangian velocity correlations in homogeneous isotropic turbulence

    International Nuclear Information System (INIS)

    Gotoh, T.; Rogallo, R.S.; Herring, J.R.; Kraichnan, R.H.

    1993-01-01

    The Lagrangian velocity autocorrelation and the time correlations for individual wave-number bands are computed by direct numerical simulation (DNS) using the passive vector method (PVM), and the accuracy of the method is studied. It is found that the PVM is accurate when K max /k d ≥2 where K max is the maximum wave number carried in the simulation and k d is the Kolmogorov wave number. The Eulerian and Lagrangian time correlations for various wave-number bands are compared. At moderate to high wave number the Eulerian time correlation decays faster than the Lagrangian, and the effect of sweep on the former is observed. The time scale of the Eulerian correlation is found to be (kU 0 ) -1 while that of the Lagrangian is [∫ 0 k p 2 E(p)dp] -1/2 . The Lagrangian velocity autocorrelation in a frozen turbulent field is computed using the DIA, ALHDIA, and LRA theories and is compared with DNS measurements. The Markovianized Lagrangian renormalized approximation (MLRA) is compared with the DNS, and good agreement is found for one-time quantities in decaying turbulence at low Reynolds numbers and for the Lagrangian velocity autocorrelation in stationary turbulence at moderate Reynolds number. The effect of non-Gaussianity on the Lagrangian correlation predicted by the theories is also discussed

  11. Numerical simulations of turbulent heat transfer in a channel at Prandtl numbers higher than 100

    International Nuclear Information System (INIS)

    Bergant, R.; Tiselj, I.

    2005-01-01

    During the last years, many attempts have been made to extend turbulent heat transfer at low Prandtl numbers to high Prandtl numbers in the channel based on a very accurate pseudo-spectral code of direct numerical simulation (DNS). DNS describes all the length and time scales for velocity and temperature fields, which are different when Prandtl number is not equal to 1. DNS can be used at low Reynolds (Re τ =150. Very similar approach as for Pr=5.4 was done for numerical simulations at Pr=100 and Pr=200. Comparison was made with results of temperature fields performed on 9-times finer numerical grid, however without damping of the highest Fourier coefficients. The results of mean temperature profiles show no differences larger than statistical uncertainties (∼1%), while slightly larger differences are seen for temperature fluctuations. (author)

  12. A Second-Order Turbulence Model Based on a Reynolds Stress Approach for Two-Phase Flow—Part I: Adiabatic Cases

    Directory of Open Access Journals (Sweden)

    S. Mimouni

    2009-01-01

    Full Text Available In our work in 2008, we evaluated the aptitude of the code Neptune_CFD to reproduce the incidence of a structure topped by vanes on a boiling layer, within the framework of the Neptune project. The objective was to reproduce the main effects of the spacer grids. The turbulence of the liquid phase was modeled by a first-order K-ε model. We show in this paper that this model is unable to describe the turbulence of rotating flows, in accordance with the theory. The objective of this paper is to improve the turbulence modeling of the liquid phase by a second turbulence model based on a Rij-ε approach. Results obtained on typical single-phase cases highlight the improvement of the prediction for all computed values. We tested the turbulence model Rij-ε implemented in the code versus typical adiabatic two-phase flow experiments. We check that the simulations with the Reynolds stress transport model (RSTM give satisfactory results in a simple geometry as compared to a K-ε model: this point is crucial before calculating rod bundle geometries where the K-ε model may fail.

  13. Flow and heat transfer in laminar–turbulent transitional flow regime under rolling motion

    International Nuclear Information System (INIS)

    Yuan, Hongsheng; Tan, Sichao; Zhuang, Nailiang; Lan, Shu

    2016-01-01

    Highlights: • Flow and heat transfer experiment in transitional flow regime under rolling motion. • Increases of average friction factor and Nu were found. • Periodic breakdown of laminar flow contributes to the increase. • Nonlinear variation of pressure drop or Nu with Re also contributes to the increase. • Effect of critical Reynolds number shift was discussed. - Abstract: Flow and heat transfer characteristics under rolling motion are extremely important to thermohydraulic analysis of offshore nuclear reactors. An experimental study was conducted in a heated rectangular channel to investigate flow and heat transfer in laminar–turbulent transitional flow regime under rolling motion. The results showed that the average friction factor and Nusselt number are higher than that of the corresponding steady flow as the flow rate fluctuates in transitional flow regime. Larger relative flow rate fluctuation was observed under larger rolling amplitude or higher rolling frequency. In the same manner, larger increases of average friction factor and Nusselt number were achieved under larger rolling amplitude or higher rolling frequency. The increases were mainly caused by the flow rate fluctuation through periodic breakdown of laminar flow and development of turbulence in laminar–turbulent transitional flow regime. First, turbulence, which enhances the rate of momentum and energy exchange, occurs near the crest of flow rate wave even the flow is still in laminar flow regime according to the average Reynolds number. Second, as a result of rapid increases of the friction and heat transfer with Reynolds number in transitional flow regime, the increases of the friction and the heat transfer near the crest of flow rate wave are larger than the decreases of them near the trough of flow rate wave, which also contributes to increases of average friction and heat transfer. Additionally, the effect of critical Reynolds number shift under unsteady flow and heating

  14. Near-wall extension of a non-equilibrium, omega-based Reynolds stress model

    International Nuclear Information System (INIS)

    Nguyen, Tue; Behr, Marek; Reinartz, Birgit

    2011-01-01

    In this paper, the development of a new ω-based Reynolds stress model that is consistent with asymptotic analysis in the near wall region and with rapid distortion theory in homogeneous turbulence is reported. The model is based on the SSG/LRR-ω model developed by Eisfeld (2006) with three main modifications. Firstly, the near wall behaviors of the redistribution, dissipation and diffusion terms are modified according to the asymptotic analysis and a new blending function based on low Reynolds number is proposed. Secondly, an anisotropic dissipation tensor based on the Reynolds stress inhomogeneity (Jakirlic et al., 2007) is used instead of the original isotropic model. Lastly, the SSG redistribution term, which is activated far from the wall, is replaced by Speziale's non-equilibrium model (Speziale, 1998).

  15. Effects of Reynold's number on flight performance of turbofan engine

    Energy Technology Data Exchange (ETDEWEB)

    Kozu, Masao; Yajima, Satoshi [Defense Agency Tokyo (Japan); Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan))

    1988-12-10

    Concerning the performance of the F3-30 turbofan engine which is carried on the intermediate trainer XT-4 of the Air Self Defense Force, tests simulating its flight conditions were conducted at the Altitude Test Facility (ATF) of the Arnold Engineering Development Center (AEDC), U.S. Air Force in order to adjust the effect of Reynold's number corresponding to the flight condition. This report summarizes the results of the above tests. As the results of the tests, it was revealed that in order to calculate with precision the flight performance of the F3-30 turbofan engine, it was required to adjust Reynold's number against the following figures, namely the fan air flow, compressor air flow, compressor adiabatic efficiency, low pressure turbine gas flow and low pressure turbine adiabatic efficiency. The engine performance calculated by using the above adjustments agreed well with the measured values of the ATF tests. 7 refs., 17 figs., 1 tab.

  16. Vorticity dynamics after the shock-turbulence interaction

    Science.gov (United States)

    Livescu, D.; Ryu, J.

    2016-05-01

    The interaction of a shock wave with quasi-vortical isotropic turbulence (IT) represents a basic problem for studying some of the phenomena associated with high speed flows, such as hypersonic flight, supersonic combustion and Inertial Confinement Fusion (ICF). In general, in practical applications, the shock width is much smaller than the turbulence scales and the upstream turbulent Mach number is modest. In this case, recent high resolution shock-resolved Direct Numerical Simulations (DNS) (Ryu and Livescu, J Fluid Mech 756:R1, 2014) show that the interaction can be described by the Linear Interaction Approximation (LIA). Using LIA to alleviate the need to resolve the shock, DNS post-shock data can be generated at much higher Reynolds numbers than previously possible. Here, such results with Taylor Reynolds number approximately 180 are used to investigate the changes in the vortical structure as a function of the shock Mach number, Ms, up to Ms=10. It is shown that, as Ms increases, the shock interaction induces a tendency towards a local axisymmetric state perpendicular to the shock front, which has a profound influence on the vortex-stretching mechanism and divergence of the Lamb vector and, ultimately, on the flow evolution away from the shock.

  17. Entropy Generation Analysis and Performance Evaluation of Turbulent Forced Convective Heat Transfer to Nanofluids

    Directory of Open Access Journals (Sweden)

    Yu Ji

    2017-03-01

    Full Text Available The entropy generation analysis of fully turbulent convective heat transfer to nanofluids in a circular tube is investigated numerically using the Reynolds Averaged Navier–Stokes (RANS model. The nanofluids with particle concentration of 0%, 1%, 2%, 4% and 6% are treated as single phases of effective properties. The uniform heat flux is enforced at the tube wall. To confirm the validity of the numerical approach, the results have been compared with empirical correlations and analytical formula. The self-similarity profiles of local entropy generation are also studied, in which the peak values of entropy generation by direct dissipation, turbulent dissipation, mean temperature gradients and fluctuating temperature gradients for different Reynolds number as well as different particle concentration are observed. In addition, the effects of Reynolds number, volume fraction of nanoparticles and heat flux on total entropy generation and Bejan number are discussed. In the results, the intersection points of total entropy generation for water and four nanofluids are observed, when the entropy generation decrease before the intersection and increase after the intersection as the particle concentration increases. Finally, by definition of Ep, which combines the first law and second law of thermodynamics and attributed to evaluate the real performance of heat transfer processes, the optimal Reynolds number Reop corresponding to the best performance and the advisable Reynolds number Read providing the appropriate Reynolds number range for nanofluids in convective heat transfer can be determined.

  18. DIRECT OBSERVATION OF THE TURBULENT emf AND TRANSPORT OF MAGNETIC FIELD IN A LIQUID SODIUM EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Rahbarnia, Kian; Brown, Benjamin P.; Clark, Mike M.; Kaplan, Elliot J.; Nornberg, Mark D.; Rasmus, Alex M.; Taylor, Nicholas Zane; Forest, Cary B. [Department of Physics, University of Wisconsin-Madison, 1150 University Ave, Madison, WI 53706 (United States); Jenko, Frank; Limone, Angelo [Max-Planck-Institut fuer Plasmaphysik (IPP), EURATOM Association, D-85748 Garching (Germany); Pinton, Jean-Francois; Plihon, Nicolas; Verhille, Gautier, E-mail: kian.rahbarnia@ipp.mpg.de [Laboratoire de Physique de l' Ecole Normale Superieure de Lyon, CNRS and Universite de Lyon, F-69364 Lyon (France)

    2012-11-10

    For the first time, we have directly measured the transport of a vector magnetic field by isotropic turbulence in a high Reynolds number liquid metal flow. In analogy with direct measurements of the turbulent Reynolds stress (turbulent viscosity) that governs momentum transport, we have measured the turbulent electromotive force (emf) by simultaneously measuring three components of velocity and magnetic fields, and computed the correlations that lead to mean-field current generation. Furthermore, we show that this turbulent emf tends to oppose and cancel out the local current, acting to increase the effective resistivity of the medium, i.e., it acts as an enhanced magnetic diffusivity. This has important implications for turbulent transport in astrophysical objects, particularly in dynamos and accretion disks.

  19. DIRECT OBSERVATION OF THE TURBULENT emf AND TRANSPORT OF MAGNETIC FIELD IN A LIQUID SODIUM EXPERIMENT

    International Nuclear Information System (INIS)

    Rahbarnia, Kian; Brown, Benjamin P.; Clark, Mike M.; Kaplan, Elliot J.; Nornberg, Mark D.; Rasmus, Alex M.; Taylor, Nicholas Zane; Forest, Cary B.; Jenko, Frank; Limone, Angelo; Pinton, Jean-François; Plihon, Nicolas; Verhille, Gautier

    2012-01-01

    For the first time, we have directly measured the transport of a vector magnetic field by isotropic turbulence in a high Reynolds number liquid metal flow. In analogy with direct measurements of the turbulent Reynolds stress (turbulent viscosity) that governs momentum transport, we have measured the turbulent electromotive force (emf) by simultaneously measuring three components of velocity and magnetic fields, and computed the correlations that lead to mean-field current generation. Furthermore, we show that this turbulent emf tends to oppose and cancel out the local current, acting to increase the effective resistivity of the medium, i.e., it acts as an enhanced magnetic diffusivity. This has important implications for turbulent transport in astrophysical objects, particularly in dynamos and accretion disks.

  20. Turbulence modelling; Modelisation de la turbulence isotherme

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, D. [Electricite de France (EDF), Direction des Etudes et Recherches, 92 - Clamart (France)

    1997-12-31

    This paper is an introduction course in modelling turbulent thermohydraulics, aimed at computational fluid dynamics users. No specific knowledge other than the Navier Stokes equations is required beforehand. Chapter I (which those who are not beginners can skip) provides basic ideas on turbulence physics and is taken up in a textbook prepared by the teaching team of the ENPC (Benque, Viollet). Chapter II describes turbulent viscosity type modelling and the 2k-{epsilon} two equations model. It provides details of the channel flow case and the boundary conditions. Chapter III describes the `standard` (R{sub ij}-{epsilon}) Reynolds tensions transport model and introduces more recent models called `feasible`. A second paper deals with heat transfer and the effects of gravity, and returns to the Reynolds stress transport model. (author). 37 refs.

  1. A Novel Wake Oscillator Model for Vortex-Induced Vibrations Prediction of A Cylinder Considering the Influence of Reynolds Number

    Science.gov (United States)

    Gao, Xi-feng; Xie, Wu-de; Xu, Wan-hai; Bai, Yu-chuan; Zhu, Hai-tao

    2018-04-01

    It is well known that the Reynolds number has a significant effect on the vortex-induced vibrations (VIV) of cylinders. In this paper, a novel in-line (IL) and cross-flow (CF) coupling VIV prediction model for circular cylinders has been proposed, in which the influence of the Reynolds number was comprehensively considered. The Strouhal number linked with the vortex shedding frequency was calculated through a function of the Reynolds number. The coefficient of the mean drag force was fitted as a new piecewise function of the Reynolds number, and its amplification resulted from the CF VIV was also taken into account. The oscillating drag and lift forces were modelled with classical van der Pol wake oscillators and their empirical parameters were determined based on the lock-in boundaries and the peak-amplitude formulas. A new peak-amplitude formula for the IL VIV was developed under the resonance condition with respect to the mass-damping ratio and the Reynolds number. When compared with the results from the experiments and some other prediction models, the present model could give good estimations on the vibration amplitudes and frequencies of the VIV both for elastically-mounted rigid and long flexible cylinders. The present model considering the influence of the Reynolds number could generally provide better results than that neglecting the effect of the Reynolds number.

  2. Reynolds number scaling in cryogenic turbulent Rayleigh-Benard convection in a cylindrical aspect ratio one cell

    Czech Academy of Sciences Publication Activity Database

    Musilová, Věra; Králík, Tomáš; La Mantia, M.; Macek, Michal; Urban, Pavel; Skrbek, L.

    2017-01-01

    Roč. 832, OCT 26 (2017), s. 721-744 ISSN 0022-1120 R&D Projects: GA ČR(CZ) GA17-03572S; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : Benard convection * turbulent convection * turbulent flows Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.821, year: 2016

  3. Turbulence modulation induced by interaction between a bubble swarm and decaying turbulence in oscillating-grid turbulence

    International Nuclear Information System (INIS)

    Imaizumi, Ryota; Morikawa, Koichi; Higuchi, Masamori; Saito, Takayuki

    2009-01-01

    In this study, the interaction between a bubble swarm and homogeneous isotropic turbulence was experimentally investigated. The objective is to clarify the turbulence modulation induced by interaction between the bubble swarm and the homogeneous isotropic turbulence without mean flow. In order to generate simultaneously ideally homogeneous isotropic turbulence and a sufficiently controlled bubble swarm, we employed both oscillating grid and bubble generators equipped with audio speakers. First, the homogeneous isotropic turbulence was formed by operating the oscillating grid cylindrical acrylic pipe (height: 600 mm, inner diameter: 149 mm) filled with ion-exchanged and degassed water. Second, we stopped the oscillating-grid in arbitrary time after the homogeneous isotropic turbulence was achieved. A few moments later, the controlled bubble swarm (number of bubbles: 3, average equivalent diameter of bubble: 3 mm, bubble Reynolds number: 859, Weber number: 3.48) was launched into the decaying turbulence described above, using the bubble generators. The bubble formation, bubble size and bubble-launch timing are controlled arbitrarily and precisely by this device. In this study, we conducted the following experiments: 1) measurement of the motion of bubbles in rest water and oscillating grid turbulence via high-speed visualization, 2) measurement of the liquid phase motion around the bubbles in rest water via PIV system with LIF method, 3) measurement of the liquid phase motion around the bubbles in oscillating-grid turbulence via PIV system with LIF method. In the vitalization of the liquid-phase motion of both experiments, two high speed video cameras were employed in order to simultaneously film large- and small-scale interrogation areas. The liquid-phase ambient turbulence hastened the change of the bubble motion from zigzag mode to spiral mode. The interaction between the bubble swarm and liquid-phase turbulence increased decay-rate of the turbulence. (author)

  4. Noise radiated by low-Reynolds number flows past a hemisphere at Ma = 0.3

    Science.gov (United States)

    Yao, Hua-Dong; Davidson, Lars; Eriksson, Lars-Erik

    2017-07-01

    Flows past a hemisphere and their noise generation are investigated at the Reynolds numbers (Re) of 1000 and 5000. The Mach number is 0.3. The computational method of the flows is large eddy simulation. The noise is computed using the Ffowcs Williams and Hawkings Formulation 1C (F1C). An integral surface with an open end is defined for the F1C. The end surface is removed to reduce the numerical contamination that is introduced by vortices passing this surface. However, the contamination cannot be completely reduced since a discontinuity of the flow quantities still exists at the open surface boundary. This problem is solved using a surface correction method, in which a buffer zone is set up at the end of the integral surface. The transformation of flow structures due to Re is explored. Large coherent structures are observable at low Re, whereas they diminish at high Re. A large amount of small-scale turbulent vortices occur in the latter case. It is found that these characteristics of the flows have an important influence on the noise generation in regard to the noise spectra. In the flows studied in this work, the fluctuating pressure on the walls is a negligible noise contributor as compared with the wake.

  5. Chemical Reactions in Turbulent Mixing Flows

    Science.gov (United States)

    1992-07-01

    Chemically-Reacting, Gas-Phase Turbulent Jets (Gilbrech 1991), that explored Reynolds number effects on turbulent flame length and the influence of...and asymptotes to a constant value beyond the flame tip. The main result of the work is that the flame length , as estimated from the temperature...8217. Specifically, the normalized flame length Lf/d* displays a linear dependence on the stoichiometric mixture ratio 0, with a slope that decreases from Re "• 1.0

  6. Assessment of the aerodynamic characteristics of thick airfoils in high Reynolds and moderate Ma numbers using CFD modeling

    International Nuclear Information System (INIS)

    Prospathopoulos, John M; Papadakis, Giorgos; Voutsinas, Spyros G; Diakakis, Kostas; Sieros, Giorgos; Chaviaropoulos, Takis K

    2014-01-01

    The aerodynamic characteristics of thick airfoils in high Reynolds number is assessed using two different CFD RANS solvers: the compressible MaPFlow and the incompressible CRES-flowNS-2D both equipped with the k-ω SST turbulence model. Validation is carried out by comparing simulations against existing high Reynolds experimental data for the NACA 63-018 airfoil in the range of -10° to 20°. The use of two different solvers aims on one hand at increasing the credibility in the results and on the other at quantifying the compressibility effects. Convergence of steady simulations is achieved within a mean range of -10° to 14° which refers to attached or light stall conditions. Over this range the simulations from the two codes are in good agreement. As stall gets deeper, steady convergence ceases and the simulations must switch to unsteady. Lift and drag oscillations are produced which increase in amplitude as the angle of attack increases. Finally in post stall, the average C L is found to decrease up to ∼24° or 32° for the FFA or the NACA 63-018 airfoils respectively, and then recover to higher values indicating a change in the unsteady features of the flow

  7. Sustained turbulence and magnetic energy in non-rotating shear flows

    DEFF Research Database (Denmark)

    Nauman, Farrukh; Blackman, Eric G.

    2017-01-01

    From numerical simulations, we show that non-rotating magnetohydrodynamic shear flows are unstable to finite amplitude velocity perturbations and become turbulent, leading to the growth and sustenance of magnetic energy, including large scale fields. This supports the concept that sustained...... magnetic energy from turbulence is independent of the driving mechanism for large enough magnetic Reynolds numbers....

  8. Reconciling the Reynolds number dependence of scalar roughness length and laminar resistance

    Science.gov (United States)

    Li, D.; Rigden, A. J.; Salvucci, G.; Liu, H.

    2017-12-01

    The scalar roughness length and laminar resistance are necessary for computing scalar fluxes in numerical simulations and experimental studies. Their dependence on flow properties such as the Reynolds number remains controversial. In particular, two important power laws (1/4 and 1/2), proposed by Brutsaert and Zilitinkevich, respectively, are commonly seen in various parameterizations and models. Building on a previously proposed phenomenological model for interactions between the viscous sublayer and the turbulent flow, it is shown here that the two scaling laws can be reconciled. The "1/4" power law corresponds to the situation where the vertical diffusion is balanced by the temporal change or advection due to a constant velocity in the viscous sublayer, while the "1/2" power law scaling corresponds to the situation where the vertical diffusion is balanced by the advection due to a linear velocity profile in the viscous sublayer. In addition, the recently proposed "1" power law scaling is also recovered, which corresponds to the situation where molecular diffusion dominates the scalar budget in the viscous sublayer. The formulation proposed here provides a unified framework for understanding the onset of these different scaling laws and offers a new perspective on how to evaluate them experimentally.

  9. Aeroheating Test of CEV Entry Vehicle at Turbulent Conditions

    Science.gov (United States)

    Hollis, Brian R.; Berger, Karen T.; Horvath, Thomas J.; Coblish, Joseph J.; Norris, Joseph D.; Lillard, Randolph P.; Kirk, Ben

    2008-01-01

    An investigation of the aeroheating environment of the Project Orion Crew Entry Vehicle has been performed in the Arnold Engineering Development Center Tunnel 9. Data were measured on a approx. 3.5% scale model (0.1778m/7-inch diam.) of the vehicle using coaxial thermocouples in the Mach 8 and Mach 10 nozzles of Tunnel 9. Runs were performed at free stream Reynolds numbers of 1 106/ft to 20 10(exp 6)/ft in the Mach 10 nozzle and 8 10(exp 6)/ft to 48 10(exp 6)/ft in the Mach 8 nozzle. The test gas in Tunnel 9 is pure N2, which at these operating conditions remains un-dissociated and may be treated as a perfect gas. At these conditions, laminar, transitional, and turbulent flow was produced on the model at Mach 10, and transitional and turbulent conditions were produced on the model at Mach 8. The majority of runs were made on a clean, smooth-surface model configuration and a limited number of runs were made in which inserts with varying boundary-layer trips configurations were used to force the occurrence of transition. Laminar and turbulent predictions were generated for all wind tunnel test conditions and comparisons were performed with the data for the purpose of helping to define uncertainty margins for the computational method. Data from both the wind tunnel test and the computations are presented herein. Figure 1 shows a schematic of the thermocouple locations on the model and figures 2 and 3 show a photo and schematic of the AEDC Hypervelocity Tunnel 9. Figure 4 shows a typical grid used in the computations. From the comparisons shown in figures 5 through 8 it was concluded that for perfect-gas conditions, the computations could predict either fully-laminar or full-turbulent flow to within +/-10% of the experimental data. The experimental data showed that transition began on the leeside of the heatshield at a free stream Reynolds number of 9 10(exp 6)/ft in the Mach 10 nozzle and fully-developed turbulent flow was produced at 20 10(exp 6)/ft. In the Mach 8

  10. Drag of evaporating or condensing droplets in low Reynolds number flow

    International Nuclear Information System (INIS)

    Dukowicz, J.K.

    1984-01-01

    The steady-state drag of evaporating or condensing droplets in low Reynolds number flow is computed. Droplet drag in air is obtained for five representative liquids (water, methanol, benzene, heptane, octane) for a range of ambient temperatures, pressures, and vapor concentrations. The drag is in general increased for a condensing droplet, and decreased for an evaporating droplet. The changes in drag can be quite large and depend in detail on the degree of evaporation or condensation, and on the individual liquid and vapor properties. The present results are used to test the existing experimentally derived correlations of Eisenklam and Yuen and Chen in the low Reynolds number regime. The Yuen and Chen correlation is found to be quite successful, but only in the case of condensation or mild evaporation. An improved correlation is suggested for evaporating droplets

  11. Effect of Reynolds number on flow and mass transfer characteristics of a 90 degree elbow

    Science.gov (United States)

    Fujisawa, Nobuyuki; Ikarashi, Yuya; Yamagata, Takayuki; Taguchi, Syoichi

    2016-11-01

    The flow and mass transfer characteristics of a 90 degree elbow was studied experimentally by using the mass transfer measurement by plaster dissolution method, the surface flow visualization by oil film method and stereo PIV measurement. The experiments are carried out in a water tunnel of a circular pipe of 56mm in diameter with a working fluid of water. The Reynolds number was varied from 30000 to 200000. The experimental result indicated the change of the mass transfer coefficient distribution in the elbow with increasing the Reynolds number. This phenomenon is further examined by the surface flow visualization and measurement of secondary flow pattern in the elbow, and the results showed the suggested change of the secondary flow pattern in the elbow with increasing the Reynolds numbers.

  12. Reynolds Stress Closure for Inertial Frames and Rotating Frames

    Science.gov (United States)

    Petty, Charles; Benard, Andre

    2017-11-01

    In a rotating frame-of-reference, the Coriolis acceleration and the mean vorticity field have a profound impact on the redistribution of kinetic energy among the three components of the fluctuating velocity. Consequently, the normalized Reynolds (NR) stress is not objective. Furthermore, because the Reynolds stress is defined as an ensemble average of a product of fluctuating velocity vector fields, its eigenvalues must be non-negative for all turbulent flows. These fundamental properties (realizability and non-objectivity) of the NR-stress cannot be compromised in computational fluid dynamic (CFD) simulations of turbulent flows in either inertial frames or in rotating frames. The recently developed universal realizable anisotropic prestress (URAPS) closure for the NR-stress depends explicitly on the local mean velocity gradient and the Coriolis operator. The URAPS-closure is a significant paradigm shift from turbulent closure models that assume that dyadic-valued operators associated with turbulent fluctuations are objective.

  13. Instability of water-ice interface under turbulent flow

    Science.gov (United States)

    Izumi, Norihiro; Naito, Kensuke; Yokokawa, Miwa

    2015-04-01

    It is known that plane water-ice interface becomes unstable to evolve into a train of waves. The underside of ice formed on the water surface of rivers are often observed to be covered with ice ripples. Relatively steep channels which discharge melting water from glaciers are characterized by beds covered with a series of steps. Though the flowing agent inducing instability is not water but gas including water vapor, a similar train of steps have been recently observed on the Polar Ice Caps on Mars (Spiral Troughs). They are expected to be caused by the instability of water-ice interface induced by flowing fluid on ice. There have been some studies on this instability in terms of linear stability analysis. Recently, Caporeale and Ridolfi (2012) have proposed a complete linear stability analysis in the case of laminar flow, and found that plane water-ice interface is unstable in the range of sufficiently large Reynolds numbers, and that the important parameters are the Reynolds number, the slope angle, and the water surface temperature. However, the flow inducing instability on water-ice interface in the field should be in the turbulent regime. Extension of the analysis to the case of fully developed turbulent flow with larger Reynolds numbers is needed. We have performed a linear stability analysis on the instability of water-ice interface under turbulent flow conditions with the use of the Reynolds-averaged Navier-Stokes equations with the mixing length turbulent model, the continuity equation of flow, the diffusion/dispersion equation of heat, and the Stefan equation. In order to reproduce the accurate velocity distribution and the heat transfer in the vicinity of smooth walls with the use of the mixing length model, it is important to take into account of the rapid decrease in the mixing length in the viscous sublayer. We employ the Driest model (1956) to the formulation. In addition, as the thermal boundary condition at the water surface, we describe the

  14. Experimental investigation of Lagrangian structure functions in turbulence

    DEFF Research Database (Denmark)

    Berg, Jacob; Ott, Søren; Mann, Jakob

    2009-01-01

    Lagrangian properties obtained from a particle tracking velocimetry experiment in a turbulent flow at intermediate Reynolds number are presented. Accurate sampling of particle trajectories is essential in order to obtain the Lagrangian structure functions and to measure intermittency at small...

  15. Turbulent forced convection of nanofluids downstream an abrupt expansion

    Science.gov (United States)

    Kimouche, Abdelali; Mataoui, Amina

    2018-03-01

    Turbulent forced convection of Nanofluids through an axisymmetric abrupt expansion is investigated numerically in the present study. The governing equations are solved by ANYS 14.0 CFD code based on the finite volume method by implementing the thermo-physical properties of each nanofluid. All results are analyzed through the evolutions of skin friction coefficient and Nusselt number. For each nanofluid, the effect of both volume fraction and Reynolds number on this type of flow configuration, are examined. An increase on average Nusselt number with the volume fraction and Reynolds number, are highlighted and correlated. Two relationships are proposed. The first one, determines the average Nusselt number versus Reynolds number, volume fraction and the ratio of densities of the solid particles to that of the base fluid ( \\overline{Nu}=f(\\operatorname{Re},φ, ρ_s/ρ_f) ). The second one varies according Reynolds number, volume fraction and the conductivities ratio of solid particle to that of the base fluid ( \\overline{Nu}=f(\\operatorname{Re},φ, k_s/k_f) ).

  16. Flow instability and turbulence - ONERA water tunnel visualizations

    Science.gov (United States)

    Werle, H.

    The experimental technique used for visualizing laminar-turbulent transition phenomena, developed in previous tests in ONERA's small TH1 water tunnel, has been successfully applied in the new TH2 tunnel. With its very extensive Reynold's number domain (10 to the 4th - 10 to the 6th), this tunnel has shown itself to be well adapted to the study of turbulence and of the flow instabilities related to its appearance.

  17. On the Conditioning of Machine-Learning-Assisted Turbulence Modeling

    Science.gov (United States)

    Wu, Jinlong; Sun, Rui; Wang, Qiqi; Xiao, Heng

    2017-11-01

    Recently, several researchers have demonstrated that machine learning techniques can be used to improve the RANS modeled Reynolds stress by training on available database of high fidelity simulations. However, obtaining improved mean velocity field remains an unsolved challenge, restricting the predictive capability of current machine-learning-assisted turbulence modeling approaches. In this work we define a condition number to evaluate the model conditioning of data-driven turbulence modeling approaches, and propose a stability-oriented machine learning framework to model Reynolds stress. Two canonical flows, the flow in a square duct and the flow over periodic hills, are investigated to demonstrate the predictive capability of the proposed framework. The satisfactory prediction performance of mean velocity field for both flows demonstrates the predictive capability of the proposed framework for machine-learning-assisted turbulence modeling. With showing the capability of improving the prediction of mean flow field, the proposed stability-oriented machine learning framework bridges the gap between the existing machine-learning-assisted turbulence modeling approaches and the demand of predictive capability of turbulence models in real applications.

  18. DNS of turbulent channel flow at ReΤ=395, 590 AND Pr=0.01

    Energy Technology Data Exchange (ETDEWEB)

    Tiselj, I. [Jozef Stefan Inst., Ljubljana (Slovenia)

    2011-07-01

    The paper presents results of the Direct Numerical Simulation of turbulent channel flow at friction Reynolds numbers 395 and 590 with passive scalar at Prandtl number 0.01, which corresponds to the Prandtl number of liquid sodium. Fluctuating and non-fluctuating temperature boundary conditions are analyzed and compared. Results clearly describe the minor role of the turbulent Prandtl number in the integral wall-to-fluid heat transfer. (author)

  19. An Experimental Investigation of Premixed Combustion in Extreme Turbulence

    Science.gov (United States)

    Wabel, Timothy Michael

    This work has explored various aspects of high Reynolds number combustion that have received much previous speculation. A new high-Reynolds number premixed Bunsen burner, called Hi-Pilot, was designed to produce turbulence intensities in the extreme range of turbulence. The burner was modified several times in order to prevent boundary layer separation in the nozzle, and a large co-flow was designed that was capable of maintaining reactions over the entire flame surface. Velocity and turbulence characteristics were measured using a combination of Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV). Flame structure was studied using a combination of formaldehyde (CH2O), hydroxyl (OH), and the CH radical. Planar Laser Induced Fluorescence (PLIF). The spatial Overlap of formaldehyde and OH PLIF qualitatively measures the reaction rate between formaldehyde molecules and OH radicals, and is a measure of the reaction layers of the flame. CH PLIF provides an alternative measure of the reaction zone, and was measured to compare with the Overlap PLIF results. Reaction layers are the full-width at half-maximum of the Overlap or CH PLIF signal, and extinction events were defined as regions where the PLIF signal drops below this threshold. Preheat structures were measured using formaldehyde PLIF, and are defined as beginning at 35% of the local maximum PLIF signal, and continue up to the leading edge of the reaction layer. Previous predictions of regime diagram boundaries were tested at the largest values of turbulent Reynolds number to date. The Overlap and CH PLIF diagnostics allowed extensive testing of the predicted broken reaction zones boundary of Peters. Measurements indicated that all run conditions are in the Broadened Preheat - Thin Reaction layers regime, but several conditions are expected to display a broken reaction zone structure. Therefore the work shows that Peters's predicted boundary is not correct, and therefore a Karlovitz number of 100 is

  20. Geometrical properties of turbulent premixed flames and other corrugated interfaces

    Science.gov (United States)

    Thiesset, F.; Maurice, G.; Halter, F.; Mazellier, N.; Chauveau, C.; Gökalp, I.

    2016-01-01

    This study focuses on the geometrical properties of turbulent flame fronts and other interfaces. Toward that end, we use an original tool based on proper orthogonal decomposition (POD), which is applied to the interface spatial coordinates. The focus is mainly on the degree of roughness of the flame front, which is quantified through the scale dependence of its coverage arclength. POD is first validated by comparing with the caliper technique. Fractal characteristics are extracted in an unambiguous fashion using a parametric expression which appears to be impressively well suited for representing Richardson plots. Then it is shown that, for the range of Reynolds numbers investigated here, the scale-by-scale contribution to the arclength does not comply with scale similarity, irrespectively of the type of similarity which is invoked. The finite ratios between large and small scales, referred to as finite Reynolds number effects, are likely to explain this observation. In this context, the Reynolds number that ought to be achieved for a proper inertial range to be discernible, and for scale similarity to be likely to apply, is calculated. Fractal characteristics of flame folding are compared to available predictions. It is confirmed that the inner cutoff satisfactorily correlates with the Kolmogorov scale while the outer cutoff appears to be proportional to the integral length scale. However, the scaling for the fractal dimension is much less obvious. It is argued that much higher Reynolds numbers have to be reached for drawing firm statements about the evolution (or constancy) of the fractal dimension with respect to flame and flow parameters. Finally, a heuristic phenomenology of corrugated interfaces is highlighted. The degree of generality of the latter phenomenology is confirmed by comparing the folding of different interfaces including a turbulent-nonturbulent interface, a liquid jet destabilized by a surrounding air jet, a cavitating flow, and an isoscalar

  1. Reynolds number and friction coefficient for axial-parallel flow through complex cross-sections

    International Nuclear Information System (INIS)

    Markfort, D.

    1975-01-01

    Thermal and hydraulic lay-out of reactor fuel elements and other heat transfer equipment makes use of established functional relationship between dimensionless characters, the former being transferred from circular tube to more complex geometries. The stringent requirement (from theory) for 'geometrical similarity' is bypassed by defining 'equivalent diameters'. But dimensionless numbers may be derived from 'flow-integral-conditions' while the geometrical components contained therein reduce if not completely abolish the requirement for geometrical similarity. The derivation is demonstrated by using the Reynolds number. A friction coefficient valid for any kind of flow regime can be defined using integral-conditions. Correlations of friction coefficient and Reynolds number using universal-velocity profiles confirm the analysis when compared to well known experimental data. (orig.) [de

  2. Hydrodynamics of Low Reynolds Respiratory-type Flows

    Science.gov (United States)

    Connor, Erin; True, Aaron; Crimaldi, John

    2017-11-01

    Both aquatic and terrestrial animals inhale surrounding fluid for metabolic and sensory purposes. As organisms inhale and exhale, complex fluid interactions occur both internal and external to the physiological orifice. Using both numerical and experimental approaches, we model an idealized respiratory flow consisting of cyclic inhalation and exhalation through a single cylindrical tube. We investigate the effect of varying Reynolds number (Re) as well as the ratio of the inhalation time to the exhalation time (I:E ratio) for a fixed inhalation volume. The numerical model is used for laminar cases at lower Re, whereas the experimental model permits the study to be extended into higher Reynolds numbers that include transitions to turbulence. We map the spatial distribution of both inhaled and exhaled fluid volumes. By comparing these two maps, we can compute the volume of exhaled fluid that is reingested during the subsequent inhalation. The models of interacting inhalation and exhalation exhibit a rich range of flow behaviors across Re number and I:E ratio. This study builds a foundation for more complex studies of animal respiration that will include more realistic morphologies.

  3. Reynolds number effects on gill pumping mechanics in mayfly nymphs

    Science.gov (United States)

    Sensenig, Andrew; Shultz, Jeffrey; Kiger, Ken

    2006-11-01

    Mayfly nymphs have an entirely aquatic life stage in which they frequently inhabit stagnant water. Nymphs have the capability to generate a ventilation current to compensate for the low oxygen level of the water by beating two linear arrays of plate-like gills that typically line the lateral edge of the abdomen. The characteristic Reynolds number associated with the gill motion changes with animal size, varying over a span of Re = 5 to 100 depending on age and species. The assumption that the system maintains optimal energetic efficiency leads to the prediction that animals transition from rowing to flapping mechanisms with increasing Re, while possibly utilizing a squeeze mechanism to a greater extent at lower Re. To investigate this hypothesis, we capture the motion of the gills through 3D imaging to investigate the effect of Reynolds number on the stroke patterns. PIV is utilized to assess flow rates and viscous dissipation. The effectiveness of the ventilation mechanism at each size has important consequences for the range of oxygen levels, and hence the habitat range, that can be tolerated by that size.

  4. Turbulent flow computation in a circular U-Bend

    Science.gov (United States)

    Miloud, Abdelkrim; Aounallah, Mohammed; Belkadi, Mustapha; Adjlout, Lahouari; Imine, Omar; Imine, Bachir

    2014-03-01

    Turbulent flows through a circular 180° curved bend with a curvature ratio of 3.375, defined as the the bend mean radius to pipe diameter is investigated numerically for a Reynolds number of 4.45×104. The computation is performed for a U-Bend with full long pipes at the entrance and at the exit. The commercial ANSYS FLUENT is used to solve the steady Reynolds-Averaged Navier-Stokes (RANS) equations. The performances of standard k-ɛ and the second moment closure RSM models are evaluated by comparing their numerical results against experimental data and testing their capabilities to capture the formation and extend this turbulence driven vortex. It is found that the secondary flows occur in the cross-stream half-plane of such configurations and primarily induced by high anisotropy of the cross-stream turbulent normal stresses near the outer bend.

  5. PIV measurement of turbulent mixing layer flow with polymer additives

    International Nuclear Information System (INIS)

    Ning, T; Guo, F; Chen, B; Zhang, X

    2009-01-01

    Turbulent mixing layer flow with polymer additives was experimentally investigated by PIV in present paper. The velocity ratio between high and low speed is 4:1 and the Reynolds number for pure water case based on the velocity differences of two steams and hydraulic diameter of the channel ranges from 14667∼73333. Flow field and turbulent quantities of turbulent mixing layer with 200ppm polymer additives were measured and compared with pure water mixing layer flow. It is shown that the dynamic development of mixing layer is greatly influenced by polymer addictives. The smaller vortices are eliminated and the coherent structure is much clearer. Similar with pure water case, Reynolds stress and vorticity still concentrate in a coniform area of central part of mixing layer and the width will increase with the Reynolds number increasing. However, compared with pure water case, the coniform width of polymer additives case is larger, which means the polymer additives will lead to the diffusion of coherent structure. The peak value of vorticity in different cross section will decrease with the development of mixing layer. Compared with pure water case, the vorticity is larger at the beginning of the mixing layer but decreases faster in the case with polymer additives.

  6. Unsteady heat transfer from a circular cylinder for Reynolds numbers from 3000 to 15,000

    International Nuclear Information System (INIS)

    Nakamura, Hajime; Igarashi, Tamotsu

    2004-01-01

    Unsteady heat transfer from a circular cylinder to the cross-flow of air was investigated experimentally for Reynolds numbers from 3000 to 15,000. Fluctuating heat transfer on the cylinder surface was measured using a heat flux sensor, and time-spatial characteristics of the heat transfer were measured using an infrared thermograph. The present measurements showed that the alternating rolling-up of the shear layers that separated from the cylinder forms an alternating reattached flow at the rear of the cylinder in the range of Re>5000-8000, due to the forward movement of the vortex formation region with increasing Reynolds number. This leads to a sharp increase in the time-averaged Nusselt number around the rear stagnation point of the cylinder. The heat transfer in the separated flow region has spanwise nonuniformity throughout the examined Reynolds number range. The wavelength of this nonuniformity corresponds to that of the streamwise vortices formed in the near-wake

  7. Models for turbulent flows with variable density and combustion

    International Nuclear Information System (INIS)

    Jones, W.P.

    1980-01-01

    Models for transport processes and combustion in turbulent flows are outlined with emphasis on the situation where the fuel and air are injected separately. Attention is restricted to relatively simple flames. The flows investigated are high Reynolds number, single-phase, turbulent high-temperature flames in which radiative heat transfer can be considered negligible. Attention is given to the lower order closure models, algebraic stress and flux models, the k-epsilon turbulence model, the diffusion flame approximation, and finite rate reaction mechanisms

  8. Numerical Coupling and Simulation of Point-Mass System with the Turbulent Fluid Flow

    Science.gov (United States)

    Gao, Zheng

    A computational framework that combines the Eulerian description of the turbulence field with a Lagrangian point-mass ensemble is proposed in this dissertation. Depending on the Reynolds number, the turbulence field is simulated using Direct Numerical Simulation (DNS) or eddy viscosity model. In the meanwhile, the particle system, such as spring-mass system and cloud droplets, are modeled using the ordinary differential system, which is stiff and hence poses a challenge to the stability of the entire system. This computational framework is applied to the numerical study of parachute deceleration and cloud microphysics. These two distinct problems can be uniformly modeled with Partial Differential Equations (PDEs) and Ordinary Differential Equations (ODEs), and numerically solved in the same framework. For the parachute simulation, a novel porosity model is proposed to simulate the porous effects of the parachute canopy. This model is easy to implement with the projection method and is able to reproduce Darcy's law observed in the experiment. Moreover, the impacts of using different versions of k-epsilon turbulence model in the parachute simulation have been investigated and conclude that the standard and Re-Normalisation Group (RNG) model may overestimate the turbulence effects when Reynolds number is small while the Realizable model has a consistent performance with both large and small Reynolds number. For another application, cloud microphysics, the cloud entrainment-mixing problem is studied in the same numerical framework. Three sets of DNS are carried out with both decaying and forced turbulence. The numerical result suggests a new way parameterize the cloud mixing degree using the dynamical measures. The numerical experiments also verify the negative relationship between the droplets number concentration and the vorticity field. The results imply that the gravity has fewer impacts on the forced turbulence than the decaying turbulence. In summary, the

  9. A parametric study of quasi-2D LES on Low-Reynolds-number transitional flows past an airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, W.; Xu, H.; Khalid, M. [National Research Council (NRC), Inst. for Aerospace Research (IAR), Ottawa, Ontario (Canada)]. E-mail: Weixing.Yuan@nrc-cnrc.gc.ca

    2004-07-01

    Low-Reynolds-number aerodynamic performance of small sized air vehicles is an area of increasing interest. In this study, we investigate low-Reynolds-number flows past an SD7003 airfoil to understand substantial viscous features of laminar separation and transitional flow followed by the intractable behavior of reattachment. In order to satisfy the three-dimensional (3D) requirement of the code, a simple '3D wing' is constructed from a two-dimensional (2D) airfoil and only four grid points are used in the spanwise direction. A parametric study of quasi-2D LES on the low-Reynolds-number airfoil flows at Re=60000 is performed. Effects of grid resolution and sub-grid scale (SGS) models are investigated. Although three-dimensional effects cannot be accurately captured, the quasi-2D LES calculations do reveal some important flow characteristics such as leading edge laminar separation and vortex shedding from the primary laminar separation bubble on the low-Reynolds-number airfoil. (author)

  10. Turbulence, dynamic similarity and scale effects in high-velocity free-surface flows above a stepped chute

    Science.gov (United States)

    Felder, Stefan; Chanson, Hubert

    2009-07-01

    In high-velocity free-surface flows, air entrainment is common through the interface, and intense interactions take place between turbulent structures and entrained bubbles. Two-phase flow properties were measured herein in high-velocity open channel flows above a stepped chute. Detailed turbulence measurements were conducted in a large-size facility, and a comparative analysis was applied to test the validity of the Froude and Reynolds similarities. The results showed consistently that the Froude similitude was not satisfied using a 2:1 geometric scaling ratio. Lesser number of entrained bubbles and comparatively greater bubble sizes were observed at the smaller Reynolds numbers, as well as lower turbulence levels and larger turbulent length and time scales. The results implied that small-size models did underestimate the rate of energy dissipation and the aeration efficiency of prototype stepped spillways for similar flow conditions. Similarly a Reynolds similitude was tested. The results showed also some significant scale effects. However a number of self-similar relationships remained invariant under changes of scale and confirmed the analysis of Chanson and Carosi (Exp Fluids 42:385-401, 2007). The finding is significant because self-similarity may provide a picture general enough to be used to characterise the air-water flow field in large prototype channels.

  11. Analysis of turbulent heat and momentum transfer in a transitionally rough turbulent boundary layer

    Science.gov (United States)

    Doosttalab, Ali; Dharmarathne, Suranga; Tutkun, Murat; Adrian, Ronald; Castillo, Luciano

    2016-11-01

    A zero-pressure-gradient (ZPG) turbulent boundary layer over a transitionally rough surface is studied using direct numerical simulation (DNS). The rough surface is modeled as 24-grit sandpaper which corresponds to k+ 11 , where k+ is roughness height. Reynolds number based on momentum thickness is approximately 2400. The walls are isothermal and turbulent flow Prandtl number is 0.71. We simulate temperature as passive scalar. We compute the inner product of net turbulent force (d (u1ui) / dxi) and net turbulent heat flux (d (ui θ / dxi)) in order to investigate (i) the correlation between these vectorial quantities, (II) size of the projection of these fields on each other and (IIi) alignment of momentum and hear flux. The inner product in rough case results in larger projection and better alignment. In addition, our study on the vortices shows that surface roughness promotes production of vortical structures which affects the thermal transport near the wall.

  12. Molecular mixing in turbulent flow

    International Nuclear Information System (INIS)

    Kerstein, A.R.

    1993-01-01

    The evolution of a diffusive scalar field subject to turbulent stirring is investigated by comparing two new modeling approaches, the linear-eddy model and the clipped-laminar-profile representation, to results previously obtained by direct numerical simulation (DNS) and by mapping-closure analysis. The comparisons indicate that scalar field evolution is sensitive to the bandwidth of the stirring process, and they suggest that the good agreement between DNS and mapping closure reflects the narrowband character of both. The new models predict qualitatively new behaviors in the wideband stirring regime corresponding to high-Reynolds-number turbulence

  13. Magnetic fluctuations in turbulent flow

    International Nuclear Information System (INIS)

    Ruzmaikin, A.A.

    1990-01-01

    For dynamo excitation of the magnetic fluctuations in infinite fluid only a sufficient large magnetic Reynolds number is needed. In a infinite region an additional condition appears. Due to the diffusion of the magnetic field through the boundaries a size of the region must be large enough compare with a correlation length of the turbulence. Author)

  14. PIV measurements in two hypersonic shock wave / turbulent boundary layer interactions

    Science.gov (United States)

    Schreyer, Anne-Marie; Williams, Owen; Smits, Alexander J.

    2017-11-01

    Particle Image Velocimetry measurements were performed to study two compression corner interactions in hypersonic flow. The experiments, carried out at Mach 7.2 and at a Reynolds number based on momentum thickness of 3500, included mean flow surveys as well as turbulence measurements in the near-field of the interaction. For the 8° compression corner, the flow remained attached, and for the 33° compression corner a large separation bubble formed. For the attached case, the influence of the shock wave on the streamwise turbulence intensities is weak, but the wall-normal component and the Reynolds shear stress show considerable amplification. In the fully separated case, both the streamwise and wall normal velocity fluctuations, as well as the Reynolds shear stresses, show strong amplification across the interaction. In contrast with the behavior in the attached case, equilibrium flow is approached much more rapidly in the separated case. Turbulence measurements in such complex hypersonic flows are far from trivial, with particle frequency response limitations often significantly reducing the measured wall-normal turbulence. We will therefore discuss these influences on overall data quality as well as the interpretation of flow physics based on these results.

  15. Non-Oberbeck-Boussinesq effects in strongly turbulent Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Ahlers, Günter; Brown, Eric; Fontenele Araujo Junior, F.; Funfschilling, Denis; Grossmann, Siegfried; Lohse, Detlef

    2006-01-01

    Non-Oberbeck–Boussinesq (NOB) effects on the Nusselt number $Nu$ and Reynolds number $\\hbox{\\it Re}$ in strongly turbulent Rayleigh–Bénard (RB) convection in liquids were investigated both experimentally and theoretically. In the experiments the heat current, the temperature difference, and the

  16. Spectral Cascade-Transport Turbulence Model Development for Two-Phase Flows

    Science.gov (United States)

    Brown, Cameron Scott

    Turbulence modeling remains a challenging problem in nuclear reactor applications, particularly for the turbulent multiphase flow conditions in nuclear reactor subchannels. Understanding the fundamental physics of turbulent multiphase flows is crucial for the improvement and further development of multiphase flow models used in reactor operation and safety calculations. Reactor calculations with Reynolds-averaged Navier-Stokes (RANS) approach continue to become viable tools for reactor analysis. The on-going increase in available computational resources allows for turbulence models that are more complex than the traditional two-equation models to become practical choices for nuclear reactor computational fluid dynamic (CFD) and multiphase computational fluid dynamic (M-CFD) simulations. Similarly, increased computational capabilities continue to allow for higher Reynolds numbers and more complex geometries to be evaluated using direct numerical simulation (DNS), thus providing more validation and verification data for turbulence model development. Spectral turbulence models are a promising approach to M-CFD simulations. These models resolve mean flow parameters as well as the turbulent kinetic energy spectrum, reproducing more physical details of the turbulence than traditional two-equation type models. Previously, work performed by other researchers on a spectral cascade-transport model has shown that the model behaves well for single and bubbly twophase decay of isotropic turbulence, single and two-phase uniform shear flow, and single-phase flow in a channel without resolving the near-wall boundary layer for relatively low Reynolds number. Spectral models are great candidates for multiphase RANS modeling since bubble source terms can be modeled as contributions to specific turbulence scales. This work focuses on the improvement and further development of the spectral cascadetransport model (SCTM) to become a three-dimensional (3D) turbulence model for use in M

  17. MASS TRANSFER CONTROL OF A BACKWARD-FACING STEP FLOW BY LOCAL FORCING- EFFECT OF REYNOLDS NUMBER

    Directory of Open Access Journals (Sweden)

    Zouhaier MEHREZ

    2011-01-01

    Full Text Available The control of fluid mechanics and mass transfer in separated and reattaching flow over a backward-facing step by a local forcing, is studied using Large Eddy Simulation (LES.To control the flow, the local forcing is realized by a sinusoidal oscillating jet at the step edge. The Reynolds number is varied in the range 10000 ≤ Re≤ 50000 and the Schmidt number is fixed at 1.The found results show that the flow structure is modified and the local mass transfer is enhanced by the applied forcing. The observed changes depend on the Reynolds number and vary with the frequency and amplitude of the local forcing. For the all Reynolds numbers, the largest recirculation zone size reduction is obtained at the optimum forcing frequency St = 0.25. At this frequency the local mass transfer enhancement attains the maximum.

  18. Destabilizing turbulence in pipe flow

    Science.gov (United States)

    Kühnen, Jakob; Song, Baofang; Scarselli, Davide; Budanur, Nazmi Burak; Riedl, Michael; Willis, Ashley P.; Avila, Marc; Hof, Björn

    2018-04-01

    Turbulence is the major cause of friction losses in transport processes and it is responsible for a drastic drag increase in flows over bounding surfaces. While much effort is invested into developing ways to control and reduce turbulence intensities1-3, so far no methods exist to altogether eliminate turbulence if velocities are sufficiently large. We demonstrate for pipe flow that appropriate distortions to the velocity profile lead to a complete collapse of turbulence and subsequently friction losses are reduced by as much as 90%. Counterintuitively, the return to laminar motion is accomplished by initially increasing turbulence intensities or by transiently amplifying wall shear. Since neither the Reynolds number nor the shear stresses decrease (the latter often increase), these measures are not indicative of turbulence collapse. Instead, an amplification mechanism4,5 measuring the interaction between eddies and the mean shear is found to set a threshold below which turbulence is suppressed beyond recovery.

  19. Extreme value statistics and finite-size scaling at the ecological extinction/laminar-turbulence transition

    Science.gov (United States)

    Shih, Hong-Yan; Goldenfeld, Nigel

    Experiments on transitional turbulence in pipe flow seem to show that turbulence is a transient metastable state since the measured mean lifetime of turbulence puffs does not diverge asymptotically at a critical Reynolds number. Yet measurements reveal that the lifetime scales with Reynolds number in a super-exponential way reminiscent of extreme value statistics, and simulations and experiments in Couette and channel flow exhibit directed percolation type scaling phenomena near a well-defined transition. This universality class arises from the interplay between small-scale turbulence and a large-scale collective zonal flow, which exhibit predator-prey behavior. Why is asymptotically divergent behavior not observed? Using directed percolation and a stochastic individual level model of predator-prey dynamics related to transitional turbulence, we investigate the relation between extreme value statistics and power law critical behavior, and show that the paradox is resolved by carefully defining what is measured in the experiments. We theoretically derive the super-exponential scaling law, and using finite-size scaling, show how the same data can give both super-exponential behavior and power-law critical scaling.

  20. Large Eddy Simulation of Turbulent Flows in Wind Energy

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak

    This research is devoted to the Large Eddy Simulation (LES), and to lesser extent, wind tunnel measurements of turbulent flows in wind energy. It starts with an introduction to the LES technique associated with the solution of the incompressible Navier-Stokes equations, discretized using a finite......, should the mesh resolution, numerical discretization scheme, time averaging period, and domain size be chosen wisely. A thorough investigation of the wind turbine wake interactions is also conducted and the simulations are validated against available experimental data from external sources. The effect...... Reynolds numbers, and thereafter, the fully-developed infinite wind farm boundary later simulations are performed. Sources of inaccuracy in the simulations are investigated and it is found that high Reynolds number flows are more sensitive to the choice of the SGS model than their low Reynolds number...

  1. Application of some turbulence models

    International Nuclear Information System (INIS)

    Ushijima, Sho; Kato, Masanobu; Fujimoto, Ken; Moriya, Shoichi

    1985-01-01

    In order to predict numerically the thermal stratification and the thermal striping phenomena in pool-type FBRs, it is necessary to simulate adequately various turbulence properties of flows with good turbulence models. This report presents numerical simulations of two dimensional isothermal steady flows in a rectangular plenum using three types of turbulence models. Three models are general k-ε model and two Reynolds stress models. The agreements of these results are examined and the properties of these models are compared. The main results are summarized as follows. (1) Concerning the mean velocity distributions, although a little differences exist, all results of three models agree with experimental values. (2) It can be found that non-isotropy of normal Reynolds stresses (u' 2 , v' 2 ) distributions is qwite well simulated by two Reynolds stress models, but not adequately by k-ε model, shear Reynolds stress (-u', v') distribations of three models have little differences and agree good with experiments. (3) Balances of the various terms of Reynolds stress equations are examined. Comparing the results obtained by analyses and those of previous experiments, both distributions show qualitative agreements. (author)

  2. Turbulent Boundary Layer Over Geophysical-like Topographies

    Science.gov (United States)

    Chamorro, L. P.; Hamed, A. M.; Castillo, L.

    2016-12-01

    An experimental investigation of the flow and the turbulence structure over 2D and 3D large-scale wavy walls was performed using high-resolution planar particle image velocimetry in a refractive-index-matching (RIM) channel. Extensive measurements were performed to characterize the developing and developed flows. The 2D wall is described by a sinusoidal wave in the streamwise direction with amplitude to wavelength ratio a/λx = 0.05, while the 3D wall has an additional wave superimposed in the spanwise direction with a/λy = 0.1. The flow over these walls was characterized at Reynolds numbers of 4000 and 40000, based on the bulk velocity and the channel half height. The walls have an amplitude to boundary layer thickness ratio a/δ99 ≈ 0.1 and resemble large-scale and geophysical-like roughnesses found in rivers beds and natural terrain. Instantaneous velocity fields and time-averaged turbulence quantities reveal strong coupling between large-scale topography and the turbulence dynamics near the wall. Turbulence statistics for both walls show the presence of a well-structured shear layer past the roughness crests. Analysis of the turbulent kinetic energy production rate suggests that the shear layer is responsible for the majority of turbulence production across both walls. However, the 3D wall exhibits preferential spanwise flows that are thought to result in the multiple distinctive flow features for the 3D wall including comparatively reduced spanwise vorticity and decreased turbulence levels. Further insight on the effect of roughness three-dimensionality and Reynolds number is drawn in both the developed and developing regions through proper orthogonal decomposition (POD) and quadrant analysis.

  3. Numerical solution of the Navier--Stokes equations at high Reynolds numbers

    International Nuclear Information System (INIS)

    Shestakov, A.I.

    1974-01-01

    A numerical method is presented which is designed to solve the Navier-Stokes equations for two-dimensional, incompressible flow. The method is intended for use on problems with high Reynolds numbers for which calculations via finite difference methods have been unattainable or unreliable. The proposed scheme is a hybrid utilizing a time-splitting finite difference method in areas away from the boundaries. In areas neighboring the boundaries, the equations of motion are solved by the newly proposed vortex method by Chorin. The major accomplishment of the new scheme is that it contains a simple way for merging the two methods at the interface of the two subdomains. The proposed algorithm is designed for use on the time-dependent equations but can be used on steady state problems as well. The method is tested on the popular, time-independent, square cavity problem, an example of a separated flow with closed streamlines. Numerical results are presented for a Reynolds number of 10 3 . (auth)

  4. Experiments in turbulent pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Torbergsen, Lars Even

    1998-12-31

    This thesis reports experimental results for the mean velocity and turbulence statistics in two straight pipe sections for bulk Reynolds numbers in the range 22000 to 75000. The flow was found consistent with a fully developed state. Detailed turbulence spectra were obtained for low and moderate turbulent Reynolds number. For the pipe centre line location at R{sub {lambda}} = 112, a narrow range in the streamwise power spectrum applied to the -5/3 inertial subrange. However this range was influenced both by turbulence production and viscous dissipation, and therefore did not reflect a true inertial range. The result indicates how the intermediate range between the production and dissipative scales can be misinterpreted as an inertial range for low and moderate R{sub {lambda}}. To examine the universal behaviour of the inertial range, the inertial scaling of the streamwise power spectrum is compared to the inertial scaling of the second order longitudinal velocity structure function, which relate directly by a Fourier transform. Increasing agreement between the Kolmogorov constant C{sub K} and the second order structure function scaling constant C{sub 2} was observed with increasing R{sub {lambda}}. The result indicates that a true inertial range requires several decades of separation between the energy containing and dissipative scales. A method for examining spectral anisotropy is reported and applied to turbulence spectra in fully developed pipe flow. It is found that the spectral redistribution from the streamwise to the two lateral spectra goes primarily to the circumferential component. Experimental results are reported for an axisymmetric contraction of a fully developed pipe flow. 67 refs., 75 figs., 9 tabs.

  5. Richardson effects in turbulent buoyant flows

    Science.gov (United States)

    Biggi, Renaud; Blanquart, Guillaume

    2010-11-01

    Rayleigh Taylor instabilities are found in a wide range of scientific fields from supernova explosions to underwater hot plumes. The turbulent flow is affected by the presence of buoyancy forces and may not follow the Kolmogorov theory anymore. The objective of the present work is to analyze the complex interactions between turbulence and buoyancy. Towards that goal, simulations have been performed with a high order, conservative, low Mach number code [Desjardins et. al. JCP 2010]. The configuration corresponds to a cubic box initially filled with homogeneous isotropic turbulence with heavy fluid on top and light gas at the bottom. The initial turbulent field was forced using linear forcing up to a Reynolds number of Reλ=55 [Meneveau & Rosales, POF 2005]. The Richardson number based on the rms velocity and the integral length scale was varied from 0.1 to 10 to investigate cases with weak and strong buoyancy. Cases with gravity as a stabilizer of turbulence (gravity pointing up) were also considered. The evolution of the turbulent kinetic energy and the total kinetic energy was analyzed and a simple phenomenological model was proposed. Finally, the energy spectra and the isotropy of the flow were also investigated.

  6. Shear flow generation by Reynolds stress and suppression of resistive g-modes

    International Nuclear Information System (INIS)

    Sugama, H.; Horton, W.

    1993-08-01

    Suppression of resistive g-mode turbulence by background shear flow generated from a small external flow source and amplified by the fluctuation-induced Reynolds stress is demonstrated and analyzed. The model leads to a paradigm for the low-to-high (L-H) confinement mode transition. To demonstrate the L-H transition model, single-helicity nonlinear fluid simulations using the vorticity equation for the electrostatic potential, the pressure fluctuation equation and the background poloidal flow equation are used in the sheared slab configuration. The relative efficiency of the external flow and the Reynolds stress for producing shear flow depends on the poloidal flow damping parameter ν which is given by neoclassical theory. For large ν, the external flow is a dominant contribution to the total background poloidal shear flow and its strength predicted by the neoclassical theory is not enough to suppress the turbulence significantly. In contrast, for small ν, we show that the fluctuations drive a Reynolds stress that becomes large and suddenly, at some critical point in time, shear flow much larger than the external flow is generated and leads to an abrupt, order unity reduction of the turbulent transport just like that of the L-H transition in tokamak experiments. It is also found that, even in the case of no external flow, the shear flow generation due to the Reynolds stress occurs through the nonlinear interaction of the resistive g-modes and reduces the transport. To supplement the numerical solutions we derive the Landau equation for the mode amplitude of the resistive g-mode taking into account the fluctuation-induced shear flow and analyze the opposite action of the Reynolds stress in the resistive g turbulence compared with the classical shear flow Kelvin-Helmholtz (K-H) driven turbulence

  7. Tendency to occupy a statistically dominant spatial state of the flow as a driving force for turbulent transition.

    Science.gov (United States)

    Chekmarev, Sergei F

    2013-03-01

    The transition from laminar to turbulent fluid motion occurring at large Reynolds numbers is generally associated with the instability of the laminar flow. On the other hand, since the turbulent flow characteristically appears in the form of spatially localized structures (e.g., eddies) filling the flow field, a tendency to occupy such a structured state of the flow cannot be ruled out as a driving force for turbulent transition. To examine this possibility, we propose a simple analytical model that treats the flow as a collection of localized spatial structures, each of which consists of elementary cells in which the behavior of the particles (atoms or molecules) is uncorrelated. This allows us to introduce the Reynolds number, associating it with the ratio between the total phase volume for the system and that for the elementary cell. Using the principle of maximum entropy to calculate the most probable size distribution of the localized structures, we show that as the Reynolds number increases, the elementary cells group into the localized structures, which successfully explains turbulent transition and some other general properties of turbulent flows. An important feature of the present model is that a bridge between the spatial-statistical description of the flow and hydrodynamic equations is established. We show that the basic assumptions underlying the model, i.e., that the particles are indistinguishable and elementary volumes of phase space exist in which the state of the particles is uncertain, are involved in the derivation of the Navier-Stokes equation. Taking into account that the model captures essential features of turbulent flows, this suggests that the driving force for the turbulent transition is basically the same as in the present model, i.e., the tendency of the system to occupy a statistically dominant state plays a key role. The instability of the flow at high Reynolds numbers can then be a mechanism to initiate structural rearrangement of

  8. Fluid Mechanics of Aquatic Locomotion at Large Reynolds Numbers

    OpenAIRE

    Govardhan, RN; Arakeri, JH

    2011-01-01

    Abstract | There exist a huge range of fish species besides other aquatic organisms like squids and salps that locomote in water at large Reynolds numbers, a regime of flow where inertial forces dominate viscous forces. In the present review, we discuss the fluid mechanics governing the locomotion of such organisms. Most fishes propel themselves by periodic undulatory motions of the body and tail, and the typical classification of their swimming modes is based on the fraction of their body...

  9. On the turbulent flow in piston engines: Coupling of statistical theory quantities and instantaneous turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Zentgraf, Florian; Baum, Elias; Dreizler, Andreas [Fachgebiet Reaktive Strömungen und Messtechnik (RSM), Center of Smart Interfaces (CSI), Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Böhm, Benjamin [Fachgebiet Energie und Kraftwerkstechnik (EKT), Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Peterson, Brian, E-mail: brian.peterson@ed.ac.uk [Department of Mechanical Engineering, School of Engineering, Institute for Energy Systems, University of Edinburgh, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JL, Scotland (United Kingdom)

    2016-04-15

    Planar particle image velocimetry (PIV) and tomographic PIV (TPIV) measurements are utilized to analyze turbulent statistical theory quantities and the instantaneous turbulence within a single-cylinder optical engine. Measurements are performed during the intake and mid-compression stroke at 800 and 1500 RPM. TPIV facilitates the evaluation of spatially resolved Reynolds stress tensor (RST) distributions, anisotropic Reynolds stress invariants, and instantaneous turbulent vortical structures. The RST analysis describes distributions of individual velocity fluctuation components that arise from unsteady turbulent flow behavior as well as cycle-to-cycle variability (CCV). A conditional analysis, for which instantaneous PIV images are sampled by their tumble center location, reveals that CCV and turbulence have similar contributions to RST distributions at the mean tumble center, but turbulence is dominant in regions peripheral to the tumble center. Analysis of the anisotropic Reynolds stress invariants reveals the spatial distribution of axisymmetric expansion, axisymmetric contraction, and 3D isotropy within the cylinder. Findings indicate that the mid-compression flow exhibits a higher tendency toward 3D isotropy than the intake flow. A novel post-processing algorithm is utilized to classify the geometry of instantaneous turbulent vortical structures and evaluate their frequency of occurrence within the cylinder. Findings are coupled with statistical theory quantities to provide a comprehensive understanding of the distribution of turbulent velocity components, the distribution of anisotropic states of turbulence, and compare the turbulent vortical flow distribution that is theoretically expected to what is experimentally observed. The analyses reveal requisites of important turbulent flow quantities and discern their sensitivity to the local flow topography and engine operation.

  10. Local topology via the invariants of the velocity gradient tensor within vortex clusters and intense Reynolds stress structures in turbulent channel flow

    International Nuclear Information System (INIS)

    Buchner, Abel-John; Kitsios, Vassili; Atkinson, Callum; Soria, Julio; Lozano-Durán, Adrián

    2016-01-01

    Previous works have shown that momentum transfer in the wall–normal direction within turbulent wall–bounded flows occurs primarily within coherent structures defined by regions of intense Reynolds stress [1]. Such structures may be classified into wall–attached and wall–detached structures with the latter being typically weak, small–scale, and isotropically oriented, while the former are larger and carry most of the Reynolds stresses. The mean velocity fluctuation within each structure may also be used to separate structures by their dynamic properties. This study aims to extract information regarding the scales, kinematics and dynamics of these structures within the topological framework of the invariants of the velocity gradient tensor (VGT). The local topological characteristics of these intense Reynolds stress structures are compared to the topological characteristics of vortex clusters defined by the discriminant of the velocity gradient tensor. The alignment of vorticity with the principal strain directions within these structures is also determined, and the implications of these findings are discussed. (paper)

  11. Heat transfer in an axisymmetric stagnation flow at high Reynolds numbers on a cylinder using perturbation techniques

    International Nuclear Information System (INIS)

    Rahimi, A. B.

    2003-01-01

    Although there are many papers on the subject of heat transfer in an axisymmetric stagnation flow on a cylinder, the available knowledge is mainly for low Reynolds numbers and not much information exists for the same problem at large Reynolds numbers. In this work, the problem of heat transfer in an axisymmetric stagnation flow on a cylinder is solved at large Reynolds numbers using perturbation techniques. Starting from Navier-Stokes equations within a boundary layer approximation and using similarity transformations, the governing equations are obtained in the form of differential equations. The inverse of the Reynolds number is introduced as the perturbation parameter. This parameter appears in front of the highest-order terms and, as it tends to zero, reduces the order of the governing equations and produces singularities. In this paper, the flow field is divided into two regions; rapid changes in the region near wall and slow changes away from the wall. Thus, the flow is found to have dual-layer characteristics. Using inner and outer expansion produces uniform values of the relevant quantities

  12. Introduction to turbulence modelling: Applications of Reynolds Averaged Navier Stokes Equations (RANSE) to engineering problems

    International Nuclear Information System (INIS)

    Laurence, D.

    1997-01-01

    The k-ε model and Reynolds stress transport model are set out in a few words. Limitations of models are shown, particularly for turbulence generation in the turbulent viscosity context, and, more generally, the uncertainties and miscellaneous changes made to the dissipation equation. The performances of models are then compared, using results of the three latest ERCOFTA/IAHR workshops. It is shown that algebraic constraints which can be derived exactly by assuming asymptotic limits (rapid distortion, homogeneous shear at infinite time, 2D turbulence) have inhibited a better tuning of the models for real life flow where these limits are not encountered. A more pragmatic approach could be taken by allowing the constants to be functions of invariant parameters. But these functions, making the models non-linear, can lead to bifurcations or instability. One essential parameter is the distance to the wall, which recent models have tried to eliminate, although this parameter appears indirectly through the Poisson equation for the fluctuating pressure. A possible indirect model is the elliptic relaxation. Progress was recently achieved in near-wall low Re modelling, but these advances do not always result in benefits to industry since only the 'wall function' approaches can be used in the high Re, 3D flows that we need to study. With the knowledge gained from near-wall modelling, it might be profitable to revisit the 'wall functions' devised 20 years ago. (author)

  13. Heat transfer experiments and correlations for natural and forced circulations of water in rod bundles at low Reynolds numbers

    International Nuclear Information System (INIS)

    Kim, Sung-Ho; El-Genk, Mohamed S.; Rubio, Reuben A.; Bryson, James W.; Foushee, Fabian C.

    1988-01-01

    Experimental heat transfer studies were conducted for fully developed forced and natural flows of water through seven uniformly heated rod bundles, triangularly arrayed with P/D = 1.25, 1.38, and 1.5. In forced circulation experiments, Re ranged from 80 to 50,000 and Pr from 3 to 8.5, while in natural circulation, Re varied from 260 to 2,000, and Ra q from 8 x 10 8 to 2.5 x 10 8 . The forced flow data fell into the two basic flow regimes: turbulent and laminar flow. At the transition between these regimes, Re, which varied from 2,200 for P/D = 1.25 to 5,500 for P/D = 1.5, increased linearly with P/D. The heat transfer data for turbulent flow was within ±15 percent of Weisman's correlation, which was developed for fully developed turbulent flow in rod bundles at Re > 25,000. The laminar flow data showed the dependence of Nu on Re to be weaker than that for turbulent flow, but the exponent of Re increased with P/D: Nu = A Re B Pr 1/3 , where A is equal to 1.061, 0.511, and 0.346 for P/D = 1.25, 1.38 and 1.5, respectively, and B is a linear function of P/D (B = 0.797 P/D - 0.656). Natural circulation data indicated that rod spacing only slightly affected heat transfer, and Nu increased proportionally to Ra 0.25 ; Nu = 0.272 Ra q 0.25 . The application of the results to SNL's ACRR indicated that although the core is cooled by natural convection, either the natural circulation correlation or the forced turbulent flow correlation can be used to accurately predict the single phase heat transfer coefficient in the ACRR. These results were concluded because of the high Rayleigh and Reynolds numbers in the ACRR. The ACRR operates near the boundary between mixed and forced turbulent flow regimes: consequently, achieving the high heat transfer coefficient was possible with natural circulation. (author)

  14. PIV measurement of turbulent bubbly mixing layer flow with polymer additives

    International Nuclear Information System (INIS)

    Ning, T; Guo, F; Chen, B; Zhang, X

    2009-01-01

    Based on experimental investigation of single-phase turbulent mixing layer flow with polymer additives, bubbly mixing layer was experimentally investigated by PIV. The velocity ratio between high and low speed is 4:1 and the Reynolds number based on the velocity difference of two steams and hydraulic diameter of the channel ranges is 73333. Gas bubbles with about 0.5% gas fraction were injected into pure water mixing layer with/without polymer additives from three different parts at the end of the splitter plate. The comparison between single phase and bubbly mixing layer shows clearly that the dynamic development of mixing layer is great influenced by the bubble injection. Similar with single phase, the Reynolds stress and vorticity still concentrate in a coniform area of central mixing flow field part and the width will increase with increasing the Reynolds number. Mean Reynolds stress will decrease with bubble injection in high Reynolds numbers and the decreasing of Reynolds stress with polymer additives is much more than pure water case.

  15. Low-Reynolds Number Aerodynamics of an 8.9 Percent Scale Semispan Swept Wing for Assessment of Icing Effects

    Science.gov (United States)

    Broeren, Andy P.; Woodard, Brian S.; Diebold, Jeffrey M.; Moens, Frederic

    2017-01-01

    Aerodynamic assessment of icing effects on swept wings is an important component of a larger effort to improve three-dimensional icing simulation capabilities. An understanding of ice-shape geometric fidelity and Reynolds and Mach number effects on the iced-wing aerodynamics is needed to guide the development and validation of ice-accretion simulation tools. To this end, wind-tunnel testing and computational flow simulations were carried out for an 8.9 percent-scale semispan wing based upon the Common Research Model airplane configuration. The wind-tunnel testing was conducted at the Wichita State University 7 by 10 ft Beech wind tunnel from Reynolds numbers of 0.8×10(exp 6) to 2.4×10(exp 6) and corresponding Mach numbers of 0.09 to 0.27. This paper presents the results of initial studies investigating the model mounting configuration, clean-wing aerodynamics and effects of artificial ice roughness. Four different model mounting configurations were considered and a circular splitter plate combined with a streamlined shroud was selected as the baseline geometry for the remainder of the experiments and computational simulations. A detailed study of the clean-wing aerodynamics and stall characteristics was made. In all cases, the flow over the outboard sections of the wing separated as the wing stalled with the inboard sections near the root maintaining attached flow. Computational flow simulations were carried out with the ONERA elsA software that solves the compressible, threedimensional RANS equations. The computations were carried out in either fully turbulent mode or with natural transition. Better agreement between the experimental and computational results was obtained when considering computations with free transition compared to turbulent solutions. These results indicate that experimental evolution of the clean wing performance coefficients were due to the effect of three-dimensional transition location and that this must be taken into account for future

  16. Application of turbulence modeling to predict surface heat transfer in stagnation flow region of circular cylinder

    Science.gov (United States)

    Wang, Chi R.; Yeh, Frederick C.

    1987-01-01

    A theoretical analysis and numerical calculations for the turbulent flow field and for the effect of free-stream turbulence on the surface heat transfer rate of a stagnation flow are presented. The emphasis is on the modeling of turbulence and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow. The free stream is steady and incompressible with a Reynolds number of the order of 10 to the 5th power and turbulence intensity of less than 5 percent. For this analysis, the flow field is divided into three regions: (1) a uniform free-stream region where the turbulence is homogeneous and isotropic; (2) an external viscid flow region where the turbulence is distorted by the variation of the mean flow velocity; and, (3) an anisotropic turbulent boundary layer region over the cylinder surface. The turbulence modeling techniques used are the kappa-epsilon two-equation model in the external flow region and the time-averaged turbulence transport equation in the boundary layer region. The turbulence double correlations, the mean velocity, and the mean temperature within the boundary layer are solved numerically from the transport equations. The surface heat transfer rate is calculated as functions of the free-stream turbulence longitudinal microlength scale, the turbulence intensity, and the Reynolds number.

  17. Effect of turbulence intensity on cross-injection film cooling at a stepped or smooth endwall of a gas turbine vane passage.

    Science.gov (United States)

    Wu, Pey-Shey; Tsai, Shen-Ta; Jhuo, Yue-Hua

    2014-01-01

    This study is concerned with a film cooling technique applicable to the protection of the endwalls of a gas turbine vane. In the experiments, cross-injection coolant flow from two-row, paired, inclined holes with nonintersecting centerlines was utilized. The test model is a scaled two-half vane. The levels of turbulence intensity used in the experiments are T.I. = 1.8%, 7%, and 12%. Other parameters considered in the film cooling experiments include three inlet Reynolds numbers (9.20 × 10(4), 1.24 × 10(5), and 1.50 × 10(5)), three blowing ratios (0.5, 1.0, and 2.0), and three endwall conditions (smooth endwall and stepped endwall with forward-facing or backward-facing step). Thermochromic liquid crystal (TLC) technique with steady-state heat transfer experiments was used to obtain the whole-field film cooling effectiveness. Results show that, at low turbulence intensity, increasing Reynolds number decreases the effectiveness in most of the vane passage. There is no monotonic trend of influence by Reynolds number at high turbulence intensity. The effect of blowing ratio on the effectiveness has opposite trends at low and high turbulence levels. Increasing turbulent intensity decreases the effectiveness, especially near the inlet of the vane passage. With a stepped endwall, turbulence intensity has only mild effect on the film cooling effectiveness.

  18. Effect of Turbulence Intensity on Cross-Injection Film Cooling at a Stepped or Smooth Endwall of a Gas Turbine Vane Passage

    Directory of Open Access Journals (Sweden)

    Pey-Shey Wu

    2014-01-01

    Full Text Available This study is concerned with a film cooling technique applicable to the protection of the endwalls of a gas turbine vane. In the experiments, cross-injection coolant flow from two-row, paired, inclined holes with nonintersecting centerlines was utilized. The test model is a scaled two-half vane. The levels of turbulence intensity used in the experiments are T.I.=1.8%, 7%, and 12%. Other parameters considered in the film cooling experiments include three inlet Reynolds numbers (9.20×104 , 1.24×105, and  1.50×105, three blowing ratios (0.5, 1.0, and 2.0, and three endwall conditions (smooth endwall and stepped endwall with forward-facing or backward-facing step. Thermochromic liquid crystal (TLC technique with steady-state heat transfer experiments was used to obtain the whole-field film cooling effectiveness. Results show that, at low turbulence intensity, increasing Reynolds number decreases the effectiveness in most of the vane passage. There is no monotonic trend of influence by Reynolds number at high turbulence intensity. The effect of blowing ratio on the effectiveness has opposite trends at low and high turbulence levels. Increasing turbulent intensity decreases the effectiveness, especially near the inlet of the vane passage. With a stepped endwall, turbulence intensity has only mild effect on the film cooling effectiveness.

  19. Heat-Transfer and Pressure Measurements from a Flight Test of the Third 1/18-Scale Model of the Titan Intercontinental Ballistic Missile up to a Mach Number of 3.86 and Reynolds Number per Foot of 23.5 x 10(exp 6) and a Comparison with Heat Transfer

    Science.gov (United States)

    Graham, John B., Jr.

    1958-01-01

    Heat-transfer and pressure measurements were obtained from a flight test of a 1/18-scale model of the Titan intercontinental ballistic missile up to a Mach number of 3.86 and Reynolds number per foot of 23.5 x 10(exp 6) and are compared with the data of two previously tested 1/18-scale models. Boundary-layer transition was observed on the nose of the model. Van Driest's theory predicted heat-transfer coefficients reasonably well for the fully laminar flow but predictions made by Van Driest's theory for turbulent flow were considerably higher than the measurements when the skin was being heated. Comparison with the flight test of two similar models shows fair repeatability of the measurements for fully laminar or turbulent flow.

  20. Experimental study of transition from laminar to turbulent flow in vertical narrow channel

    International Nuclear Information System (INIS)

    Wang Chang; Gao Puzhen; Wang Zhanwei; Tan Sichao

    2012-01-01

    Highlights: ► The effect of wall heating on the laminar to turbulent transition is experimentally studied. ► The flow characteristic demonstrates that heating leads to the delay of transition from laminar to turbulent regimes. ► The heat transfer characteristics also indicates that heating leads to the delay of flow regime transition. - Abstract: Experimental investigation of flow and heat transfer characteristics of a vertical narrow channel with uniform heat flux condition are conducted to analysis the effect of wall heating on the laminar to turbulent transition. The friction factor in the heating condition is compared with that in the adiabatic condition and the results show that wall heating leads to the delay of laminar to turbulent transition. In addition, the heat transfer characteristic indicates that the critical Reynolds number at the point of laminar flow breakdown increases with the increase of fluid temperature difference, and the local Nusselt number at the point of laminar breakdown increases with the increase of the inlet Reynolds number. The analyses of the flow and heat transfer characteristics both indicate that the heating has a stabilizing effect on the water flow at present experimental scale.

  1. Establishment of DNS database in a turbulent channel flow by large-scale simulations

    OpenAIRE

    Abe, Hiroyuki; Kawamura, Hiroshi; 阿部 浩幸; 河村 洋

    2008-01-01

    In the present study, we establish statistical DNS (Direct Numerical Simulation) database in a turbulent channel flow with passive scalar transport at high Reynolds numbers and make the data available at our web site (http://murasun.me.noda.tus.ac.jp/turbulence/). The established database is reported together with the implementation of large-scale simulations, representative DNS results and results on turbulence model testing using the DNS data.

  2. Buoyancy Effects in Turbulent Jet Flames in Crossflow

    Science.gov (United States)

    Boxx, Isaac; Idicheria, Cherian; Clemens, Noel

    2003-11-01

    The aim of this study is to investigate the effects of buoyancy on the structure of turbulent, non-premixed hydrocarbon jet-flames in crossflow (JFICF). This was accomplished using a small jet-in-crossflow facility which can be oriented at a variety of angles with respect to the gravity vector. This facility enables us to alter the relative influence of buoyancy on the JFICF without altering the jet-exit Reynolds number, momentum flux ratio or the geometry of the system. Results are compared to similar, but non-buoyant, JFICF studied in microgravity. Departures of jet-centerline trajectory from the well-known power-law scaling of turbulent JFICF were used to explore the transition from a buoyancy-influenced regime to a momentum dominated one. The primary diagnostic was CCD imaging of soot-luminosity. We present results on ethylene jet flames with jet-exit Reynolds numbers of 1770 to 8000 and momentum flux ratios of 5 to 13.

  3. Turbulent thermal boundary layer on a permeable flat plate

    International Nuclear Information System (INIS)

    Vigdorovich, I. I.

    2007-01-01

    Scaling laws are established for the profiles of temperature, turbulent heat flux, rms temperature fluctuation, and wall heat transfer in the turbulent boundary layer on a flat plate with transpiration. In the case of blowing, the temperature distribution represented in scaling variables outside the viscous sublayer has a universal form known from experimental data for flows over impermeable flat plates. In the case of suction, the temperature distribution is described by a one-parameter family of curves. A universal law of heat transfer having the form of a generalized Reynolds analogy provides a basis for representation of the heat flux distributions corresponding to different Reynolds numbers and transpiration velocities in terms of a function of one variable. The results are obtained without invoking any special closure hypotheses

  4. Numerical Study of Wavy Film Flow on Vertical Plate Using Different Turbulent Models

    Energy Technology Data Exchange (ETDEWEB)

    Min, June Kee [Pusan National University, Busan (Korea, Republic of); Park, Il Seouk [Kyungpook National University, Daegu (Korea, Republic of)

    2014-05-15

    Film flows applied to shell-and-tube heat exchangers in various industrial fields have been studied for a long time. One boundary of the film flow interfaces with a fixed wall, and the other boundary interfaces with a gaseous region. Thus, the flows become so unstable that wavy behaviors are generated on free surfaces as the film Reynolds number increases. First, high-amplitude solitary waves are detected in a low Reynolds number laminar region; then, the waves transit to a low-amplitude, high frequency ripple in a turbulent region. Film thickness is the most significant factor governing heat transfer. Since the wave accompanied in the film flow results in temporal and spatial variations in film thickness, it can be of importance for numerically predicting the film's wavy behavior. In this study, various turbulent models are applied for predicting low-amplitude ripple flows in turbulent regions. The results are compared with existing experimental results, and finally, the applied turbulent models are appraised in from the viewpoint of wavy behaviors.

  5. Numerical Study of Wavy Film Flow on Vertical Plate Using Different Turbulent Models

    International Nuclear Information System (INIS)

    Min, June Kee; Park, Il Seouk

    2014-01-01

    Film flows applied to shell-and-tube heat exchangers in various industrial fields have been studied for a long time. One boundary of the film flow interfaces with a fixed wall, and the other boundary interfaces with a gaseous region. Thus, the flows become so unstable that wavy behaviors are generated on free surfaces as the film Reynolds number increases. First, high-amplitude solitary waves are detected in a low Reynolds number laminar region; then, the waves transit to a low-amplitude, high frequency ripple in a turbulent region. Film thickness is the most significant factor governing heat transfer. Since the wave accompanied in the film flow results in temporal and spatial variations in film thickness, it can be of importance for numerically predicting the film's wavy behavior. In this study, various turbulent models are applied for predicting low-amplitude ripple flows in turbulent regions. The results are compared with existing experimental results, and finally, the applied turbulent models are appraised in from the viewpoint of wavy behaviors

  6. Large eddy simulation of stably stratified turbulence

    International Nuclear Information System (INIS)

    Shen Zhi; Zhang Zhaoshun; Cui Guixiang; Xu Chunxiao

    2011-01-01

    Stably stratified turbulence is a common phenomenon in atmosphere and ocean. In this paper the large eddy simulation is utilized for investigating homogeneous stably stratified turbulence numerically at Reynolds number Re = uL/v = 10 2 ∼10 3 and Froude number Fr = u/NL = 10 −2 ∼10 0 in which u is root mean square of velocity fluctuations, L is integral scale and N is Brunt-Vaïsälä frequency. Three sets of computation cases are designed with different initial conditions, namely isotropic turbulence, Taylor Green vortex and internal waves, to investigate the statistical properties from different origins. The computed horizontal and vertical energy spectra are consistent with observation in atmosphere and ocean when the composite parameter ReFr 2 is greater than O(1). It has also been found in this paper that the stratification turbulence can be developed under different initial velocity conditions and the internal wave energy is dominated in the developed stably stratified turbulence.

  7. Phase-space dynamics of opposition control in wall-bounded turbulent flows

    Science.gov (United States)

    Hwang, Yongyun; Ibrahim, Joseph; Yang, Qiang; Doohan, Patrick

    2017-11-01

    The phase-space dynamics of wall-bounded shear flow in the presence of opposition control is explored by examining the behaviours of a pair of nonlinear equilibrium solutions (exact coherent structures), edge state and life time of turbulence at low Reynolds numbers. While the control modifies statistics and phase-space location of the edge state and the lower-branch equilibrium solution very little, it is also found to regularise the periodic orbit on the edge state by reverting a period-doubling bifurcation. Only the upper-branch equilibrium solution and mean turbulent state are significantly modified by the control, and, in phase space, they gradually approach the edge state on increasing the control gain. It is found that this behaviour results in a significant reduction of the life time of turbulence, indicating that the opposition control significantly increases the probability that the turbulent solution trajectory passes through the edge state. Finally, it is shown that the opposition control increases the critical Reynolds number of the onset of the equilibrium solutions, indicating its capability of transition delay. This work is sponsored by the Engineering and Physical Sciences Research Council (EPSRC) in the UK (EP/N019342/1).

  8. Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Ahlers, Günter; Grossmann, Siegfried; Lohse, Detlef

    2009-01-01

    The progress in our understanding of several aspects of turbulent Rayleigh-Bénard convection is reviewed. The focus is on the question of how the Nusselt number and the Reynolds number depend on the Rayleigh number Ra and the Prandtl number Pr, and on how the thicknesses of the thermal and the

  9. A spectral chart method for estimating the mean turbulent kinetic energy dissipation rate

    Energy Technology Data Exchange (ETDEWEB)

    Djenidi, L.; Antonia, R.A. [The University of Newcastle, School of Engineering, Newcastle, NSW (Australia)

    2012-10-15

    We present an empirical but simple and practical spectral chart method for determining the mean turbulent kinetic energy dissipation rate left angle {epsilon}right angle in a variety of turbulent flows. The method relies on the validity of the first similarity hypothesis of Kolmogorov (C R (Doklady) Acad Sci R R SS, NS 30:301-305, 1941) (or K41) which implies that spectra of velocity fluctuations scale on the kinematic viscosity {nu} and left angle {epsilon}right angle at large Reynolds numbers. However, the evidence, based on the DNS spectra, points to this scaling being also valid at small Reynolds numbers, provided effects due to inhomogeneities in the flow are negligible. The methods avoid the difficulty associated with estimating time or spatial derivatives of the velocity fluctuations. It also avoids using the second hypothesis of K41, which implies the existence of a -5/3 inertial subrange only when the Taylor microscale Reynolds number R{sub {lambda}} is sufficiently large. The method is in fact applied to the lower wavenumber end of the dissipative range thus avoiding most of the problems due to inadequate spatial resolution of the velocity sensors and noise associated with the higher wavenumber end of this range.The use of spectral data (30 {<=} R{sub {lambda}}{<=} 400) in both passive and active grid turbulence, a turbulent mixing layer and the turbulent wake of a circular cylinder indicates that the method is robust and should lead to reliable estimates of left angle {epsilon}right angle in flows or flow regions where the first similarity hypothesis should hold; this would exclude, for example, the region near a wall. (orig.)

  10. Two-dimensional numerical modeling and solution of convection heat transfer in turbulent He II

    Science.gov (United States)

    Zhang, Burt X.; Karr, Gerald R.

    1991-01-01

    Numerical schemes are employed to investigate heat transfer in the turbulent flow of He II. FEM is used to solve a set of equations governing the heat transfer and hydrodynamics of He II in the turbulent regime. Numerical results are compared with available experimental data and interpreted in terms of conventional heat transfer parameters such as the Prandtl number, the Peclet number, and the Nusselt number. Within the prescribed Reynolds number domain, the Gorter-Mellink thermal counterflow mechanism becomes less significant, and He II acts like an ordinary fluid. The convection heat transfer characteristics of He II in the highly turbulent regime can be successfully described by using the conventional turbulence and heat transfer theories.

  11. Benchmark simulation of turbulent flow through a staggered tube bundle to support CFD as a reactor design tool. Part 1. SRANS CFD simulation

    International Nuclear Information System (INIS)

    Ridluan, Artit; Tokuhiro, Akira

    2008-01-01

    Time-invariant and time-variant numerical simulations of flow through a staggered tube bundle array, idealizing the lower plenum (LP) subsystem configuration of a very high temperature reactor (VHTR), were performed. In Part 1, the CFD prediction of fully periodic isothermal tube-bundle flow using steady Reynolds-averaged Navier-Stokes (SRANS) equations with common turbulence models was investigated at a Reynolds number (Re) of 1.8x10 4 , based on the tube diameter and inlet velocity. Three first-order turbulence models, standard k-ε turbulence, renormalized group (RNG) k-ε, and shear stress transport (SST) k-ω models, and a second-order turbulence model, Reynolds stress model (RSM), were considered. A comparison of CFD simulations and experiment results was made at five locations along (x,y) coordinates. The SRANS simulation showed that no universal model predicted the turbulent Reynolds stresses, and generally, the results were marginal to poor. This is because these models cannot accurately model the periodic, spatiotemporal nature of the complex wake flow structure. (author)

  12. Shear flow generation by Reynolds stress and suppression of resistive g modes

    International Nuclear Information System (INIS)

    Sugama, H.; Horton, W.

    1993-01-01

    The authors have investigated suppression of the resistive g mode turbulence by background shear flow produced by the external source and by the fluctuation-induced Reynolds stress. For that purpose, the authors used the model consisting of the equations describing the electrostatic potential φ≡(φ 0 +φ) and the pressure fluctuation p of the resistive g mode, and the equation for the background poloidal flow. They have done the single-helicity nonlinear simulations using the model equations in the sheared slab configuration. They find that, in the nonlinear turbulent regime, significant suppression of the turbulent transport is realized only when the shear flow v' E exceeds that which makes the fastest-growing linear modes marginally stable. With the shear flow which decreases the fastest linear growth rates by about a half, the turbulent transport in the saturated state is about the same as in the case of no shear flow. As seen from the equation for the background flow v E , the relative efficiency of the external flow and the Reynolds stress for producing shear flow depends on the parameter ν. For large ν, the external flow is a dominant contribution to the total background poloidal shear flow although its strength predicted by the neoclassical theory is not enough to suppress the turbulence significantly. On the other hand, for small ν, they observe that, as the fluctuations grow, the Reynolds stress becomes large and suddenly at some critical point in time shear flow much larger than the external one is generated and leads to the significant reduction of the turbulent transport just like that of the L-H transition in tokamak experiments. It is remarkable that the Reynolds stress due to the resistive g mode fluctuations works not as a conventional viscosity term weakening the shear flow but as a negative viscosity term enhancing it

  13. Numerical simulation of particle-laden turbulent channel flow

    NARCIS (Netherlands)

    Li, Y.; McLaughlin, J.B.; Kontomaris, K.; Portela, L.

    2001-01-01

    This paper presents results for the behavior of particle-laden gases in a small Reynolds number vertical channel down flow. Results will be presented for the effects of particle feedback on the gas-phase turbulence and for the concentration profile of the particles. The effects of density ratio,

  14. Population dynamics at high Reynolds number

    NARCIS (Netherlands)

    Perlekar, P.; Benzi, R.; Nelson, D.R.; Toschi, F.

    2010-01-01

    We study the statistical properties of population dynamics evolving in a realistic two-dimensional compressible turbulent velocity field. We show that the interplay between turbulent dynamics and population growth and saturation leads to quasi-localization and a remarkable reduction in the carrying

  15. Modeling the Aerodynamic Lift Produced by Oscillating Airfoils at Low Reynolds Number

    OpenAIRE

    Khalid, Muhammad Saif Ullah; Akhtar, Imran

    2014-01-01

    For present study, setting Strouhal Number (St) as control parameter, numerical simulations for flow past oscillating NACA-0012 airfoil at 1,000 Reynolds Numbers (Re) are performed. Temporal profiles of unsteady forces; lift and thrust, and their spectral analysis clearly indicate the solution to be a period-1 attractor for low Strouhal numbers. This study reveals that aerodynamic forces produced by plunging airfoil are independent of initial kinematic conditions of airfoil that proves the ex...

  16. Holography of the QGP Reynolds number

    Science.gov (United States)

    McInnes, Brett

    2017-08-01

    The viscosity of the Quark-Gluon Plasma (QGP) is usually described holographically by the entropy-normalized dynamic viscosity η / s. However, other measures of viscosity, such as the kinematic viscosity ν and the Reynolds number Re, are often useful, and they too should be investigated from a holographic point of view. We show that a simple model of this kind puts an upper bound on Re for nearly central collisions at a given temperature; this upper bound is in very good agreement with the observational lower bound (from the RHIC facility). Furthermore, in a holographic approach using only Einstein gravity, η / s does not respond to variations of other physical parameters, while ν and Re can do so. In particular, it is known that the magnetic fields arising in peripheral heavy-ion collisions vary strongly with the impact parameter b, and we find that the holographic model predicts that ν and Re can also be expected to vary substantially with the magnetic field and therefore with b.

  17. Control of wing-tip vortex using winglets at low Reynolds number

    Science.gov (United States)

    Cho, Seunghyun; Choi, Haecheon

    2014-11-01

    Winglets are considered as one of the effective devices for reducing induced drag, and thus many studies have been conducted, but mainly at high Reynolds numbers (Re ~106 ~107) for commercial airplanes. However, small-size unmanned air vehicles (UAV), operating at low Reynolds numbers (Re PIV measurements are conducted at several cross-flow planes for a few different angles of attack (α) . At high angles of attack (7° ~13°) , the winglets with the cant angle of 70° increase the aerodynamic performance, whereas at low angles of attack (2° ~6°) , the wing-tip extension (cant angle of 0°) shows better performances. The velocity fields measured from PIV indicate that, with the winglet, the wing-tip vortex moves away from the wing surface at α =12° , and the downwash motion in the wake behind the trailing edge is decreased, reducing the magnitude of the induced drag. A concept of changing the cant angle during flight is also suggested at this talk. Supported by 2011-0028032.

  18. 3-D numerical study of the effect of Reynolds number and baffle angle on heat transfer and pressure drop of turbulent flow of air through rectangular duct of very small height

    Directory of Open Access Journals (Sweden)

    Abhijit Paul

    2016-09-01

    Full Text Available Present article illustrates a computational study of three-dimensional steady state heat transfer and high turbulent flow characteristics through a rectangular duct with constant heat fluxed upper wall and single rectangular cross-sectioned baffle insertion at different angles. RNG k–ɛ model along with standard wall function based computations has been accomplished applying the finite volume method, and SIMPLE algorithm has been executed for solving the governing equations. For a Reynolds number, Re of 10,000 to 50,000, Prandtl Number, Pr of 0.707 and baffle angle, α of 30°, 60°, 90°, 120°, 150°, computational studies are executed, centred onto the hydraulic diameter, Dh, test section and hydrodynamic entry length of the duct. Flow field has been solved using Ansys Fluent 14.0 software. Study exposes that baffled rectangular duct has a higher average Nusselt number, Nu and Darcy friction factor, f compared to a smooth rectangular duct. Nu as well as f are found to be maximum at 90° baffle angle. Results illustrate that both α and Re play a significant role in heat transfer as well as flow characteristics and also effects TEF. The correctness of the results attained in this study is corroborated by comparing the results with those existing in the literature for smooth rectangular duct within a precision of ±2% for f and ±4% for Nu.

  19. Large-scale influences in near-wall turbulence.

    Science.gov (United States)

    Hutchins, Nicholas; Marusic, Ivan

    2007-03-15

    Hot-wire data acquired in a high Reynolds number facility are used to illustrate the need for adequate scale separation when considering the coherent structure in wall-bounded turbulence. It is found that a large-scale motion in the log region becomes increasingly comparable in energy to the near-wall cycle as the Reynolds number increases. Through decomposition of fluctuating velocity signals, it is shown that this large-scale motion has a distinct modulating influence on the small-scale energy (akin to amplitude modulation). Reassessment of DNS data, in light of these results, shows similar trends, with the rate and intensity of production due to the near-wall cycle subject to a modulating influence from the largest-scale motions.

  20. Turbulent/non-turbulent interfaces detected in DNS of incompressible turbulent boundary layers

    Science.gov (United States)

    Watanabe, T.; Zhang, X.; Nagata, K.

    2018-03-01

    The turbulent/non-turbulent interface (TNTI) detected in direct numerical simulations is studied for incompressible, temporally developing turbulent boundary layers at momentum thickness Reynolds number Reθ ≈ 2000. The outer edge of the TNTI layer is detected as an isosurface of the vorticity magnitude with the threshold determined with the dependence of the turbulent volume on a threshold level. The spanwise vorticity magnitude and passive scalar are shown to be good markers of turbulent fluids, where the conditional statistics on a distance from the outer edge of the TNTI layer are almost identical to the ones obtained with the vorticity magnitude. Significant differences are observed for the conditional statistics between the TNTI detected by the kinetic energy and vorticity magnitude. A widely used grid setting determined solely from the wall unit results in an insufficient resolution in a streamwise direction in the outer region, whose influence is found for the geometry of the TNTI and vorticity jump across the TNTI layer. The present results suggest that the grid spacing should be similar for the streamwise and spanwise directions. Comparison of the TNTI layer among different flows requires appropriate normalization of the conditional statistics. Reference quantities of the turbulence near the TNTI layer are obtained with the average of turbulent fluids in the intermittent region. The conditional statistics normalized by the reference turbulence characteristics show good quantitative agreement for the turbulent boundary layer and planar jet when they are plotted against the distance from the outer edge of the TNTI layer divided by the Kolmogorov scale defined for turbulent fluids in the intermittent region.

  1. DNS of fully developed turbulent heat transfer of a viscoelastic drag-reducing flow

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Bo [Department of Oil and Gas Storage and Transportation Engineering, China University of Petroleum, Beijing 102249 (China); Kawaguchi, Yasuo [Department of Mechanical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan)

    2005-10-01

    A direct numerical simulation (DNS) of turbulent heat transfer in a channel flow with a Giesekus model was carried out to investigate turbulent heat transfer mechanism of a viscoelastic drag-reducing flow by additives. The configuration was a fully-developed turbulent channel flow with uniform heat flux imposed on both the walls. The temperature was considered as a passive scalar with the effect of buoyancy force neglected. The Reynolds number based on the friction velocity and half the channel height was 150. Statistical quantities such as root-mean-square temperature fluctuations, turbulent heat fluxes and turbulent Prandtl number were obtained and compared with those of a Newtonian fluid flow. Budget terms of the temperature variance and turbulent heat fluxes were also presented. (author)

  2. Multigrid solution of the convection-diffusion equation with high-Reynolds number

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun [George Washington Univ., Washington, DC (United States)

    1996-12-31

    A fourth-order compact finite difference scheme is employed with the multigrid technique to solve the variable coefficient convection-diffusion equation with high-Reynolds number. Scaled inter-grid transfer operators and potential on vectorization and parallelization are discussed. The high-order multigrid method is unconditionally stable and produces solution of 4th-order accuracy. Numerical experiments are included.

  3. LES-ODT Simulations of Turbulent Reacting Shear Layers

    Science.gov (United States)

    Hoffie, Andreas; Echekki, Tarek

    2012-11-01

    Large-eddy simulations (LES) combined with the one-dimensional turbulence (ODT) simulations of a spatially developing turbulent reacting shear layer with heat release and high Reynolds numbers were conducted and compared to results from direct numerical simulations (DNS) of the same configuration. The LES-ODT approach is based on LES solutions for momentum on a coarse grid and solutions for momentum and reactive scalars on a fine ODT grid, which is embedded in the LES computational domain. The shear layer is simulated with a single-step, second-order reaction with an Arrhenius reaction rate. The transport equations are solved using a low Mach number approximation. The LES-ODT simulations yield reasonably accurate predictions of turbulence and passive/reactive scalars' statistics compared to DNS results.

  4. Unsteady effects in flows past stationary airfoils with Gurney flaps due to unsteady flow separations at low Reynolds numbers

    OpenAIRE

    Dan MATEESCU

    2015-01-01

    This paper presents the analysis of the unsteady flows past stationary airfoils equipped with Gurney flaps at low Reynolds numbers, aiming to study the unsteady behavior of the aerodynamic coefficients due to the flow separations occurring at these Reynolds numbers. The Gurney flaps are simple but very efficient lift-increasing devices, which due to their mechanical simplicity are of particular interest for the small size micro-air-vehicles (MAV) flying at low speed and very low Reynolds numb...

  5. Calculation of large Reynolds number two-dimensional flow using discrete vortices with random walk

    International Nuclear Information System (INIS)

    Milinazzo, F.; Saffman, P.G.

    1977-01-01

    The numerical calculation of two-dimensional rotational flow at large Reynolds number is considered. The method of replacing a continuous distribution of vorticity by a finite number, N, of discrete vortices is examined, where the vortices move under their mutually induced velocities plus a random component to simulate effects of viscosity. The accuracy of the method is studied by comparison with the exact solution for the decay of a circular vortex. It is found, and analytical arguments are produced in support, that the quantitative error is significant unless N is large compared with a characteristic Reynolds number. The mutually induced velocities are calculated by both direct summation and by the ''cloud in cell'' technique. The latter method is found to produce comparable error and to be much faster

  6. A Model of the Bubble Break-up in a Turbulent Flow; Modelizacion de la rotura de una Burbuja en un Flujo Turbulento

    Energy Technology Data Exchange (ETDEWEB)

    Bayod, R.; Rodriguez Rodriguez, J.; Martinez Bazan, C.

    2005-07-01

    In this report, a simplified model of the break-up of an air bubble in a turbulent water flow is proposed and analyzed numerically. According to Hinze's theory, and our experimental observations, the external flow field is assumed asymmetric and irrotational for away from the bubble. furthermore the turbulent flow-field is modelled by an asymmetric hyperbolic flow-field and the evolution of the air-water interface is calculated by the levels-set method for a wide range of Reynolds and Weber numbers. Therefore, the break-up times are obtained for super-critical weber numbers and different Reynolds numbers. Therefore, the break-up times are obtained for super-critical Weber and Reynolds numbers allows the comparison of the numeric with our experimental results. Other possible break-up mechanisms for subcritical Weber number, i. e. the break-up by resonance, are also considered. (Author) 20 refs.

  7. Richardson Number, stability and turbulence- A coherent view

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    As turbulence in water is governed by vertical mobility controlled by static stability and horizontal mobility controlled by currents, the Richardson Number should give a measure of turbulence also. It is argued in this note that inverse...

  8. Airfoil-Wake Modification with Gurney Flap at Low Reynolds Number

    Science.gov (United States)

    Gopalakrishnan Meena, Muralikrishnan; Taira, Kunihiko; Asai, Keisuke

    2018-04-01

    The complex wake modifications produced by a Gurney flap on symmetric NACA airfoils at low Reynolds number are investigated. Two-dimensional incompressible flows over NACA 0000 (flat plate), 0006, 0012 and 0018 airfoils at a Reynolds number of $Re = 1000$ are analyzed numerically to examine the flow modifications generated by the flaps for achieving lift enhancement. While high lift can be attained by the Gurney flap on airfoils at high angles of attack, highly unsteady nature of the aerodynamic forces are also observed. Analysis of the wake structures along with the lift spectra reveals four characteristic wake modes (steady, 2S, P and 2P), influencing the aerodynamic performance. The effects of the flap over wide range of angles of attack and flap heights are considered to identify the occurrence of these wake modes, and are encapsulated in a wake classification diagram. Companion three-dimensional simulations are also performed to examine the influence of three-dimensionality on the wake regimes. The spanwise instabilities that appear for higher angles of attack are found to suppress the emergence of the 2P mode. The use of the wake classification diagram as a guidance for Gurney flap selection at different operating conditions to achieve the required aerodynamic performance is discussed.

  9. Near wall turbulence: An experimental view

    Science.gov (United States)

    Stanislas, Michel

    2017-10-01

    The present paper draws upon the experience of the author to illustrate the potential of advanced optical metrology for understanding near-wall-turbulence physics. First the canonical flat plate boundary layer problem is addressed, initially very near to the wall and then in the outer region when the Reynolds number is high enough to generate an outer turbulence peak. The coherent structure organization is examined in detail with the help of stereoscopic particle image velocimetry (PIV). Then the case of a turbulent boundary layer subjected to a mild adverse pressure gradient is considered. The results obtained show the great potential of a joint experimental-numerical approach. The conclusion is that the insight provided by today's optical metrology opens the way for significant improvements in turbulence modeling in upcoming years.

  10. New phenomena in variable-density Rayleigh-Taylor turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Livescu, D; Ristorcelli, J R; Petersen, M R; Gore, R A, E-mail: livescu@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-12-15

    This paper presents several issues related to mixing and turbulence structure in buoyancy-driven turbulence at low to moderate Atwood numbers, A, found from direct numerical simulations in two configurations: classical Rayleigh-Taylor instability and an idealized triply periodic Rayleigh-Taylor flow. Simulations at A up to 0.5 are used to examine the turbulence characteristics and contrast them with those obtained close to the Boussinesq approximation. The data sets used represent the largest simulations to date in each configuration. One of the more remarkable issues explored, first reported in (Livescu and Ristorcelli 2008 J. Fluid Mech. 605 145-80), is the marked difference in mixing between different density fluids as opposed to the mixing that occurs between fluids of commensurate densities, corresponding to the Boussinesq approximation. Thus, in the triply periodic configuration and the non-Boussinesq case, an initially symmetric density probability density function becomes skewed, showing that the mixing is asymmetric, with pure heavy fluid mixing more slowly than pure light fluid. A mechanism producing the mixing asymmetry is proposed and the consequences for the classical Rayleigh-Taylor configuration are discussed. In addition, it is shown that anomalous small-scale anisotropy found in the homogeneous configuration (Livescu and Ristorcelli 2008 J. Fluid Mech. 605 145-80) and Rayleigh-Taylor turbulence at A=0.5 (Livescu et al 2008 J. Turbul. 10 1-32) also occurs near the Boussinesq limit. Results pertaining to the moment closure modelling of Rayleigh-Taylor turbulence are also presented. Although the Rayleigh-Taylor mixing layer width reaches self-similar growth relatively fast, the lower-order terms in the self-similar expressions for turbulence moments have long-lasting effects and derived quantities, such as the turbulent Reynolds number, are slow to follow the self-similar predictions. Since eddy diffusivity in the popular gradient transport hypothesis

  11. Tracking of large-scale structures in turbulent channel with direct numerical simulation of low Prandtl number passive scalar

    Science.gov (United States)

    Tiselj, Iztok

    2014-12-01

    Channel flow DNS (Direct Numerical Simulation) at friction Reynolds number 180 and with passive scalars of Prandtl numbers 1 and 0.01 was performed in various computational domains. The "normal" size domain was ˜2300 wall units long and ˜750 wall units wide; size taken from the similar DNS of Moser et al. The "large" computational domain, which is supposed to be sufficient to describe the largest structures of the turbulent flows was 3 times longer and 3 times wider than the "normal" domain. The "very large" domain was 6 times longer and 6 times wider than the "normal" domain. All simulations were performed with the same spatial and temporal resolution. Comparison of the standard and large computational domains shows the velocity field statistics (mean velocity, root-mean-square (RMS) fluctuations, and turbulent Reynolds stresses) that are within 1%-2%. Similar agreement is observed for Pr = 1 temperature fields and can be observed also for the mean temperature profiles at Pr = 0.01. These differences can be attributed to the statistical uncertainties of the DNS. However, second-order moments, i.e., RMS temperature fluctuations of standard and large computational domains at Pr = 0.01 show significant differences of up to 20%. Stronger temperature fluctuations in the "large" and "very large" domains confirm the existence of the large-scale structures. Their influence is more or less invisible in the main velocity field statistics or in the statistics of the temperature fields at Prandtl numbers around 1. However, these structures play visible role in the temperature fluctuations at low Prandtl number, where high temperature diffusivity effectively smears the small-scale structures in the thermal field and enhances the relative contribution of large-scales. These large thermal structures represent some kind of an echo of the large scale velocity structures: the highest temperature-velocity correlations are not observed between the instantaneous temperatures and

  12. Dynamics and statistics of heavy particles in turbulent flows

    NARCIS (Netherlands)

    Cencini, M.; Bec, J.; Biferale, L.; Boffetta, G.; Celani, A.; Lanotte, A.; Musacchio, S.; Toschi, F.

    2006-01-01

    We present the results of direct numerical simulations (DNS) of turbulent flows seeded with millions of passive inertial particles. The maximum Reynolds number is Re¿~ 200. We consider particles much heavier than the carrier flow in the limit when the Stokes drag force dominates their dynamical

  13. Unsteady effects in flows past stationary airfoils with Gurney flaps due to unsteady flow separations at low Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Dan MATEESCU

    2015-12-01

    Full Text Available This paper presents the analysis of the unsteady flows past stationary airfoils equipped with Gurney flaps at low Reynolds numbers, aiming to study the unsteady behavior of the aerodynamic coefficients due to the flow separations occurring at these Reynolds numbers. The Gurney flaps are simple but very efficient lift-increasing devices, which due to their mechanical simplicity are of particular interest for the small size micro-air-vehicles (MAV flying at low speed and very low Reynolds number. The unsteady aerodynamic analysis is performed with an efficient time-accurate numerical method developed for the solution of the Navier-Stokes equations at low Reynolds numbers, which is second-order-accurate in time and space. The paper presents solutions for the unsteady aerodynamic coefficients of lift and drag and for the lift-to-drag ratio of several symmetric and cambered airfoils with Gurney flaps. It was found that although the airfoil is considered stationary, starting from a relatively small incidence (about 8 degrees the flow becomes unsteady due to the unsteadiness of the flow separations occurring at low Reynolds numbers, and the aerodynamic coefficients display periodic oscillations in time. A detailed study is presented in the paper on the influence of various geometric and flow parameters, such as the Gurney flap height, Reynolds number, airfoil relative thickness and relative camber, on the aerodynamic coefficients of lift, drag and lift-to-drag ratio. The flow separation is also studied with the aid of flow visualizations illustrating the changes in the flow pattern at various moments in time.

  14. A Reynolds stress model for near-wall turbulence

    Science.gov (United States)

    Durbin, P. A.

    1993-01-01

    The paper formulates a tensorially consistent near-wall second-order closure model. Redistributive terms in the Reynolds stress equations are modeled by an elliptic relaxation equation in order to represent strongly nonhomogeneous effects produced by the presence of walls; this replaces the quasi-homogeneous algebraic models that are usually employed, and avoids the need for ad hoc damping functions. The model is solved for channel flow and boundary layers with zero and adverse pressure gradients. Good predictions of Reynolds stress components, mean flow, skin friction, and displacement thickness are obtained in various comparisons to experimental and direct numerical simulation data. The model is also applied to a boundary layer flowing along a wall with a 90-deg, constant-radius, convex bend.

  15. Inner-outer predictive wall model for wall-bounded turbulence in hypersonic flow

    Science.gov (United States)

    Martin, M. Pino; Helm, Clara M.

    2017-11-01

    The inner-outer predictive wall model of Mathis et al. is modified for hypersonic turbulent boundary layers. The model is based on a modulation of the energized motions in the inner layer by large scale momentum fluctuations in the logarithmic layer. Using direct numerical simulation (DNS) data of turbulent boundary layers with free stream Mach number 3 to 10, it is shown that the variation of the fluid properties in the compressible flows leads to large Reynolds number (Re) effects in the outer layer and facilitate the modulation observed in high Re incompressible flows. The modulation effect by the large scale increases with increasing free-stream Mach number. The model is extended to include spanwise and wall-normal velocity fluctuations and is generalized through Morkovin scaling. Temperature fluctuations are modeled using an appropriate Reynolds Analogy. Density fluctuations are calculated using an equation of state and a scaling with Mach number. DNS data are used to obtain the universal signal and parameters. The model is tested by using the universal signal to reproduce the flow conditions of Mach 3 and Mach 7 turbulent boundary layer DNS data and comparing turbulence statistics between the modeled flow and the DNS data. This work is supported by the Air Force Office of Scientific Research under Grant FA9550-17-1-0104.

  16. Numerical analysis of flow resistance and heat transfer in the transitional regime of pipe flow with twisted-tape turbulators

    Science.gov (United States)

    Rossi, R.; Cattani, L.; Mocerino, A.; Bozzoli, F.; Rainieri, S.; Caminati, R.; Pagliarini, G.

    2017-11-01

    In this paper, we present the numerical analysis of the fully developed ow and heat transfer in pipes equipped with twisted-tape inserts in the laminar to transitional flow regime. The flow Reynolds number ranges from 210 to 3100 based on the pipe diameter, whereas the Prandtl number of the working fluid, a 40% mixture of water and ethylene glycol, is about 45 at the average film temperature. The numerical study is carried out via Scale Adaptive Simulations (SAS) where the k-ω SST model is employed for turbulence modeling. Using SAS and low-dissipation discretization schemes, the present study shows that it is possible to capture the transition from the laminar regime to the pulsating or pseudo-laminar flow regime induced by the twisted-tape at low Reynolds numbers, as well as the transition to moderate turbulent regime at the higher, yet non-turbulent for smooth pipes, range of Reynolds numbers. Numerical results, validated against experiments performed in a dedicated test rig, show very good agreement with measured data and an increase of the friction factor and Nusselt number in the range of 4 to 7 times and 6 to 15 times, respectively, of the values for an empty pipe.

  17. Surface roughness effects on turbulent Couette flow

    Science.gov (United States)

    Lee, Young Mo; Lee, Jae Hwa

    2017-11-01

    Direct numerical simulation of a turbulent Couette flow with two-dimensional (2-D) rod roughness is performed to examine the effects of the surface roughness. The Reynolds number based on the channel centerline laminar velocity (Uco) and channel half height (h) is Re =7200. The 2-D rods are periodically arranged with a streamwise pitch of λ = 8 k on the bottom wall, and the roughness height is k = 0.12 h. It is shown that the wall-normal extent for the logarithmic layer is significantly shortened in the rough-wall turbulent Couette flow, compared to a turbulent Couette flow with smooth wall. Although the Reynolds stresses are increased in a turbulent channel flow with surface roughness in the outer layer due to large-scale ejection motions produced by the 2-D rods, those of the rough-wall Couette flow are decreased. Isosurfaces of the u-structures averaged in time suggest that the decrease of the turbulent activity near the centerline is associated with weakened large-scale counter-rotating roll modes by the surface roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).

  18. Theoretical study of turbulent channel flow - Bulk properties, pressure fluctuations, and propagation of electromagnetic waves

    Science.gov (United States)

    Canuto, V. M.; Hartke, G. J.; Battaglia, A.; Chasnov, J.; Albrecht, G. F.

    1990-01-01

    In this paper, we apply two theoretical turbulence models, DIA and the recent GISS model, to study properties of a turbulent channel flow. Both models provide a turbulent kinetic energy spectral function E(k) as the solution of a non-linear equation; the two models employ the same source function but different closures. The source function is characterized by a rate n sub s (k) which is derived from the complex eigenvalues of the Orr-Sommerfeld (OS) equation in which the basic flow is taken to be of a Poiseuille type. The O-S equation is solved for a variety of Reynolds numbers corresponding to available experimental data. A physical argument is presented whereby the central line velocity characterizing the basic flow, U0 sup L, is not to be identified with the U0 appearing in the experimental Reynolds number. The theoretical results are compared with two types of experimental data: (1) turbulence bulk properties, and (2) properties that depend strongly on the structure of the turbulence spectrum at low wave numbers. The only existing analytical expression for Pi (k) cannot be used in the present case because it applies to the case of a flat plate, not a finite channel.

  19. Hierarchical order in wall-bounded shear turbulence

    International Nuclear Information System (INIS)

    Carbone, F.; Aubry, N.

    1996-01-01

    Since turbulence at realistic Reynolds numbers, such as those occurring in the atmosphere or in the ocean, involve a high number of modes that cannot be resolved computationally in the foreseeable future, there is a strong motivation for finding techniques which drastically decrease the number of such required modes, particularly under inhomogeneous conditions. The significance of this work is to show that wall-bounded shear turbulence, in its strongly inhomogeneous direction (normal to the wall), can be decomposed into one (or a few) space endash time mother mode(s), with each mother generating a whole family of modes by stretching symmetry. In other words, the generated modes are similar, dilated copies of their mother. In addition, we show that the nature of all previous modes strongly depends on the symmetry itself. These findings constitute the first scaling theory of inhomogeneous turbulence. copyright 1996 American Institute of Physics

  20. Numerical investigation of the vortex-induced vibration of an elastically mounted circular cylinder at high Reynolds number (Re = 104 and low mass ratio using the RANS code.

    Directory of Open Access Journals (Sweden)

    Niaz Bahadur Khan

    Full Text Available This study numerically investigates the vortex-induced vibration (VIV of an elastically mounted rigid cylinder by using Reynolds-averaged Navier-Stokes (RANS equations with computational fluid dynamic (CFD tools. CFD analysis is performed for a fixed-cylinder case with Reynolds number (Re = 104 and for a cylinder that is free to oscillate in the transverse direction and possesses a low mass-damping ratio and Re = 104. Previously, similar studies have been performed with 3-dimensional and comparatively expensive turbulent models. In the current study, the capability and accuracy of the RANS model are validated, and the results of this model are compared with those of detached eddy simulation, direct numerical simulation, and large eddy simulation models. All three response branches and the maximum amplitude are well captured. The 2-dimensional case with the RANS shear-stress transport k-w model, which involves minimal computational cost, is reliable and appropriate for analyzing the characteristics of VIV.

  1. Characteristics and structure of turbulent 3D offset jets

    International Nuclear Information System (INIS)

    Agelin-Chaab, M.; Tachie, M.F.

    2011-01-01

    Highlights: → We investigated three-dimensional turbulent offset jets using particle image velocimetry. → We examined the effects of offset height and Reynolds number on the structure of 3D offset jets. → Effects of Reynolds number and offset height on the decay and growth rates exist close to the exit. → This study provides additional insight and comprehensive data for validating numerical models. - Abstract: Three-dimensional turbulent offset jets were investigated using a particle image velocimetry technique. The measurements were performed at three different exit Reynolds numbers and for four offset heights. The results in the early region of flow development clearly show significant effects of Reynolds number and offset height on the decay of maximum mean velocity and growth of the shear layer. On the contrary, the decay and spread rates were found to be nearly independent of offset height at larger downstream distances. The decay rates of 1.18 ± 0.03 as well as the spread rates of 0.055 ± 0.001 and 0.250 ± 0.005 obtained, respectively, in the wall-normal and lateral directions fall in the range of values reported in previous studies. The locations of the maximum mean velocities increased nearly linearly with streamwise distance in the self-similar region. Analysis from two-point velocity correlations revealed substantially larger structures in the outer layer and self-similar region than in the inner layer and developing region. It was also observed that the hairpin vortices in the inner regions of the wall jets are inclined at angles of 11.2 o ± 0.6 o , which are in good agreement with reported values in boundary layer studies.

  2. Computational simulation of turbulent natural convection in a volumetrically heated square cavity

    International Nuclear Information System (INIS)

    Vieira, Camila Braga; Su, Jian; Niceno, Bojan

    2012-01-01

    This work aims to analyze the turbulent natural convection in a volumetrically heated fluid with similar characteristics of an oxide layer of a molten core in the lower head of the pressure vessel. The simulations were carried out in a square cavity with isothermal walls, for Rayleigh numbers (Ra) ranging from 10 9 to 10 11 . Different turbulence models based on Reynolds Averaged Navier-Stokes equations were studied, such as the standard k - ε, low-Reynolds-k - ε, and Shear Stress Transport (SST), using the open-source Computational Fluid Dynamics (CFD) code - Open FOAM (Open Field Operation and Manipulation). The results of the three turbulence models were compared versus the results of experimental correlations and other authors’ simulations, and the conclusion was that the most promising model proves to be the SST, due to its accuracy and robustness. (author)

  3. Reynolds Averaged Navier-Stokes (RANS) equation solutions of wind turbine wakes

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Daniel Evandro; Horn, Diego Anderson; Petry, Adriane Prisco [Thermal and Energy Study Group, Mechanical Engeneering Department, Federal University of Rio Grande do Sul, Porto Alegre (Brazil)], E-mail: adrianep@mecanica.ufrgs.br

    2010-07-01

    This paper aims to evaluate the influence of three different turbulence models in the study of a wind turbine wake. Numerical Simulation is used as working tool to characterize the flow through the wind turbines, it is used the numeric simulation. The numerical analysis is based on the finite volume method and the Reynolds Averaged Navier-Stokes (RANS) equations. Three turbulence models are used to represent the total effects of turbulence in the flow: the two equations k-classical and the RNG k- models, based on the turbulent viscosity; and the Shear Stress Transport (SST) model, based on the transport of the Reynolds tensor. The results of the 'u' velocity profiles are compared to experimental data from Vermeer (2003) at distances equivalent to 2, 4, 6, 8, 10 and 16 diameters downstream from the turbine. Results shows that the SST model gives better results until 6 diameters, beyond this distance there is no significant differences between the compared models. (author)

  4. Langevin equation of a fluid particle in wall-induced turbulence

    NARCIS (Netherlands)

    Brouwers, J.J.H.

    2010-01-01

    We derive the Langevin equation describing the stochastic process of fluid particle motion in wall-inducedturbulence (turbulent flow in pipes, channels, and boundary layers including the atmospheric surface layer).The analysis is based on the asymptotic behavior at a large Reynolds number. We use

  5. The lagRST Model: A Turbulence Model for Non-Equilibrium Flows

    Science.gov (United States)

    Lillard, Randolph P.; Oliver, A. Brandon; Olsen, Michael E.; Blaisdell, Gregory A.; Lyrintzis, Anastasios S.

    2011-01-01

    This study presents a new class of turbulence model designed for wall bounded, high Reynolds number flows with separation. The model addresses deficiencies seen in the modeling of nonequilibrium turbulent flows. These flows generally have variable adverse pressure gradients which cause the turbulent quantities to react at a finite rate to changes in the mean flow quantities. This "lag" in the response of the turbulent quantities can t be modeled by most standard turbulence models, which are designed to model equilibrium turbulent boundary layers. The model presented uses a standard 2-equation model as the baseline for turbulent equilibrium calculations, but adds transport equations to account directly for non-equilibrium effects in the Reynolds Stress Tensor (RST) that are seen in large pressure gradients involving shock waves and separation. Comparisons are made to several standard turbulence modeling validation cases, including an incompressible boundary layer (both neutral and adverse pressure gradients), an incompressible mixing layer and a transonic bump flow. In addition, a hypersonic Shock Wave Turbulent Boundary Layer Interaction with separation is assessed along with a transonic capsule flow. Results show a substantial improvement over the baseline models for transonic separated flows. The results are mixed for the SWTBLI flows assessed. Separation predictions are not as good as the baseline models, but the over prediction of the peak heat flux downstream of the reattachment shock that plagues many models is reduced.

  6. Novel methods for evaluation of the Reynolds number of synthetic jets

    Czech Academy of Sciences Publication Activity Database

    Kordík, Jozef; Broučková, Zuzana; Vít, T.; Pavelka, Miroslav; Trávníček, Zdeněk

    2014-01-01

    Roč. 55, č. 6 (2014), 1757_1-1757_16 ISSN 0723-4864 R&D Projects: GA ČR GPP101/12/P556 Institutional support: RVO:61388998 Keywords : synthetic jet * synthetic jet actuator * Reynolds number Subject RIV: BK - Fluid Dynamics Impact factor: 1.670, year: 2014 http://link.springer.com/article/10.1007%2Fs00348-014-1757-x

  7. Laser-Doppler measurements of laminar and turbulent flow in a pipe bend

    Energy Technology Data Exchange (ETDEWEB)

    Enayet, M.M.; Gibson, M.M.; Taylor, A.M.K.P.; Yianneskis, M.

    1982-12-01

    Laser-Doppler measurements are reported for laminar and turbulent flow through a 90/sup 0/ bend of circular cross-section with mean radius of curvature equal to 2.8 times the diameter. The measurements were made in cross-stream planes 0.58 diameters upstream of the bend inlet plane, in 30, 60, and 75/sup 0/ planes in the bend and in planes one and six diameters downstream of the exit plane. Three sets of data were obtained: for laminar flow at Reynolds numbers of 500 and 1093 and for turbulent flow at the maximum obtainable Reynolds number of 43 000. The results show the development of strong pressure-driven secondary flows in the form of a pair of counter-rotating vortices in the streamwise direction. The strength and character of the secondary flows were found to depend on the thickness and nature of the inlet boundary layerd, conditions which could not be varied independently of Reynolds number. The quantitative anemometer measurements are supported by flow visualization studies. Refractive index matching at the fluid-wall interface was not used; the measurements consist, therefore, of streamwise components of mean and fluctuating velocities only, supplemented by wall pressure measurements for the turbulent flow. This displacement of the laser measurement volume due to refraction is allowed for in simple geometrical calculations. The results are intended for use as benchmark data for calibrating flow calculation methods.

  8. Analysis of optimal Reynolds number for developing laminar forced convection in double sine ducts based on entropy generation minimization principle

    International Nuclear Information System (INIS)

    Ko, T.H.

    2006-01-01

    In the present paper, the entropy generation and optimal Reynolds number for developing forced convection in a double sine duct with various wall heat fluxes, which frequently occurs in plate heat exchangers, are studied based on the entropy generation minimization principle by analytical thermodynamic analysis as well as numerical investigation. According to the thermodynamic analysis, a very simple expression for the optimal Reynolds number for the double sine duct as a function of mass flow rate, wall heat flux, working fluid and geometric dimensions is proposed. In the numerical simulations, the investigated Reynolds number (Re) covers the range from 86 to 2000 and the wall heat flux (q'') varies as 160, 320 and 640 W/m 2 . From the numerical simulation of the developing laminar forced convection in the double sine duct, the effect of Reynolds number on entropy generation in the duct has been examined, through which the optimal Reynolds number with minimal entropy generation is detected. The optimal Reynolds number obtained from the analytical thermodynamic analysis is compared with the one from the numerical solutions and is verified to have a similar magnitude of entropy generation as the minimal entropy generation predicted by the numerical simulations. The optimal analysis provided in the present paper gives worthy information for heat exchanger design, since the thermal system could have the least irreversibility and best exergy utilization if the optimal Re can be used according to practical design conditions

  9. A New Approach for Accurate Prediction of Liquid Loading of Directional Gas Wells in Transition Flow or Turbulent Flow

    Directory of Open Access Journals (Sweden)

    Ruiqing Ming

    2017-01-01

    Full Text Available Current common models for calculating continuous liquid-carrying critical gas velocity are established based on vertical wells and laminar flow without considering the influence of deviation angle and Reynolds number on liquid-carrying. With the increase of the directional well in transition flow or turbulent flow, the current common models cannot accurately predict the critical gas velocity of these wells. So we built a new model to predict continuous liquid-carrying critical gas velocity for directional well in transition flow or turbulent flow. It is shown from sensitivity analysis that the correction coefficient is mainly influenced by Reynolds number and deviation angle. With the increase of Reynolds number, the critical liquid-carrying gas velocity increases first and then decreases. And with the increase of deviation angle, the critical liquid-carrying gas velocity gradually decreases. It is indicated from the case calculation analysis that the calculation error of this new model is less than 10%, where accuracy is much higher than those of current common models. It is demonstrated that the continuous liquid-carrying critical gas velocity of directional well in transition flow or turbulent flow can be predicted accurately by using this new model.

  10. Numerical modeling of buoyancy-driven turbulent flows in enclosures

    International Nuclear Information System (INIS)

    Hsieh, K.J.; Lien, F.S.

    2004-01-01

    Modeling turbulent natural convection in enclosures with differentially heated vertical walls is numerically challenging, in particular, when low-Reynolds-number (low-Re) models are adopted. When the turbulence level in the core region of cavity is low, most low-Re models, particular those showing good performance for bypass transitional flows, tend to relaminarize the flow and, as a consequence, significantly underpredict the near-wall turbulence intensities and boundary-layer thickness. Another challenge associated with low-turbulence buoyancy-driven flows in enclosures is its inherent unsteadiness, which can pose convergence problems when a steady Reynolds-averaged Navier-Stokes (RANS) equation is solved. In the present study, an unsteady RANS approach in conjunction with the low-Re k-ε model of Lien and Leschziner [Int. J. Comput. Fluid Dyn. 12 (1999) 1] is initially adopted and the predicted flow field is found effectively relaminarized. To overcome this difficulty, likely caused by the low-Re functions in the ε-equation, the two-layer approach is attempted, in which ε is prescribed algebraically using the one-equation k-l model of Wolfshtein [Int. J. Heat Mass Transfer 12 (1969) 301]. The two-layer approach combined with a quadratic stress-strain relation gives overall the best performance in terms of mean velocities, temperature and turbulence quantities

  11. Splitting of turbulent spot in transitional pipe flow

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.

    2017-11-01

    Recent study (Wu et al., PNAS, 1509451112, 2015) demonstrated the feasibility and accuracy of direct computation of the Osborne Reynolds' pipe transition problem without the unphysical, axially periodic boundary condition. Here we use this approach to study the splitting of turbulent spot in transitional pipe flow, a feature first discovered by E.R. Lindgren (Arkiv Fysik 15, 1959). It has been widely believed that spot splitting is a mysterious stochastic process that has general implications on the lifetime and sustainability of wall turbulence. We address the following two questions: (1) What is the dynamics of turbulent spot splitting in pipe transition? Specifically, we look into any possible connection between the instantaneous strain rate field and the spot splitting. (2) How does the passive scalar field behave during the process of pipe spot splitting. In this study, the turbulent spot is introduced at the inlet plane through a sixty degree wide numerical wedge within which fully-developed turbulent profiles are assigned over a short time interval; and the simulation Reynolds numbers are 2400 for a 500 radii long pipe, and 2300 for a 1000 radii long pipe, respectively. Numerical dye is tagged on the imposed turbulent spot at the inlet. Splitting of the imposed turbulent spot is detected very easily. Preliminary analysis of the DNS results seems to suggest that turbulent spot slitting can be easily understood based on instantaneous strain rate field, and such spot splitting may not be relevant in external flows such as the flat-plate boundary layer.

  12. Holography of the QGP Reynolds number

    Directory of Open Access Journals (Sweden)

    Brett McInnes

    2017-08-01

    Full Text Available The viscosity of the Quark–Gluon Plasma (QGP is usually described holographically by the entropy-normalized dynamic viscosity η/s. However, other measures of viscosity, such as the kinematic viscosity ν and the Reynolds number Re, are often useful, and they too should be investigated from a holographic point of view. We show that a simple model of this kind puts an upper bound on Re for nearly central collisions at a given temperature; this upper bound is in very good agreement with the observational lower bound (from the RHIC facility. Furthermore, in a holographic approach using only Einstein gravity, η/s does not respond to variations of other physical parameters, while ν and Re can do so. In particular, it is known that the magnetic fields arising in peripheral heavy-ion collisions vary strongly with the impact parameter b, and we find that the holographic model predicts that ν and Re can also be expected to vary substantially with the magnetic field and therefore with b.

  13. Measurements of Heat Transfer and Boundary-Layer Transition on an 8-Inch-Diameter Hemisphere-Cylinder in Free Flight for a Mach Number Range of 2.00 to 3.88

    Science.gov (United States)

    Garland, Benjamine J.; Chauvin, Leo T.

    1957-01-01

    Measurements of aerodynamic heat transfer have been made along the hemisphere and cylinder of a hemisphere-cylinder rocket-propelled model in free flight up to a Mach number of 3.88. The test Reynolds number based on free-stream condition and diameter of model covered a range from 2.69 x l0(exp 6) to 11.70 x 10(exp 6). Laminar, transitional, and turbulent heat-transfer coefficients were obtained. The laminar data along the body agreed with laminar theory for blunt bodies whereas the turbulent data along the cylinder were consistently lower than that predicted by the turbulent theory for a flat plate. Measurements of heat transfer at the stagnation point were, in general, lower than the theory for stagnation-point heat transfer. When the Reynolds number to the junction of the hemisphere-cylinder was greater than 6 x l0(exp 6), the transitional Reynolds number varied from 0.8 x l0(exp 6) to 3.0 x 10(exp 6); however, than 6 x l(exp 6) when the Reynolds number to the junction was less, than the transitional Reynolds number varied from 7.0 x l0(exp 6) to 24.7 x 10(exp 6).

  14. Ground effects on the stability of separated flow around an airfoil at low Reynolds numbers

    Science.gov (United States)

    He, Wei; Yu, Peng; Li, Larry K. B.

    2017-11-01

    We perform a BiGlobal stability analysis on the separated flow around a NACA 4415 airfoil at low Reynolds numbers (Re = 300 - 1000) and a high angle of attack α =20° with a focus on the effect of the airfoil's proximity to a moving ground. The results show that the most dominant perturbation is the Kelvin-Helmholtz mode and that this traveling mode becomes less unstable as the airfoil approaches the ground, although this stabilizing effect diminishes with increasing Reynolds number. By performing a Floquet analysis, we find that this ground effect can also stabilize secondary instabilities. This numerical-theoretical study shows that the ground can have a significant influence on the stability of separated flow around an airfoil at low Reynolds numbers, which could have implications for the design of micro aerial vehicles and for the understanding of natural flyers such as insects and birds. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815) and the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase) under Grant No.U1501501.

  15. Experiment on smooth, circular cylinders in cross-flow in the critical Reynolds number regime

    Science.gov (United States)

    Miau, J. J.; Tsai, H. W.; Lin, Y. J.; Tu, J. K.; Fang, C. H.; Chen, M. C.

    2011-10-01

    Experiments were conducted for 2D circular cylinders at Reynolds numbers in the range of 1.73 × 105-5.86 × 105. In the experiment, two circular cylinder models made of acrylic and stainless steel, respectively, were employed, which have similar dimensions but different surface roughness. Particular attention was paid to the unsteady flow behaviors inferred by the signals obtained from the pressure taps on the cylinder models and by a hot-wire probe in the near-wake region. At Reynolds numbers pertaining to the initial transition from the subcritical to the critical regimes, pronounced pressure fluctuations were measured on the surfaces of both cylinder models, which were attributed to the excursion of unsteady flow separation over a large circumferential region. At the Reynolds numbers almost reaching the one-bubble state, it was noted that the development of separation bubble might switch from one side to the other with time. Wavelet analysis of the pressure signals measured simultaneously at θ = ±90° further revealed that when no separation bubble was developed, the instantaneous vortex-shedding frequencies could be clearly resolved, about 0.2, in terms of the Strouhal number. The results of oil-film flow visualization on the stainless steel cylinder of the one-bubble and two-bubble states showed that the flow reattachment region downstream of a separation bubble appeared not uniform along the span of the model. Thus, the three dimensionality was quite evident.

  16. Spectrum of resistivity gradient driven turbulence

    International Nuclear Information System (INIS)

    Terry, P.W.; Diamond, P.H.; Shaing, K.C.; Garcia, L.; Carreras, B.A.

    1986-01-01

    The resistivity fluctuation correlation function and electrostatic potential spectrum of resistivity gradient driven turbulence are calculated analytically and compared to the results of three dimensional numerical calculations. Resistivity gradient driven turbulence is characterized by effective Reynolds' numbers of order unity. Steady-state solution of the renormalized spectrum equations yields an electrostatic potential spectrum (circumflex phi 2 )/sub ktheta/ approx. k/sub theta//sup -3.25/. Agreement of the analytically calculated potential spectrum and mean-square radial velocity with the results of multiple helicity numerical calculations is excellent. This comparison constitutes a quantitative test of the analytical turbulence theory used. The spectrum of magnetic fluctuations is also calculated, and agrees well with that obtained from the numerical computations. 13 refs., 8 figs

  17. Features of the laminar-turbulent transition in supersonic axisymmetric microjets

    Science.gov (United States)

    Maslov, A. A.; Aniskin, V. M.; Mironov, S. G.

    2016-10-01

    In this paper, a supersonic core length of microjets is studied in terms of laminar-turbulent transition in the microjet mixing layer. Previously, it was discovered that this transition has a determining influence on the supersonic core length. A possibility of simulation of microjet flows is estimated through the use of Reynolds number computed by the nozzle diameter and the nozzle exit gas parameters. These experimental data were obtained using Pitot tube when the jets escaping from the nozzle of 0.6 mm into the low-pressure space. This experiment made it possible to achieve a large jet pressure ratio when the Reynolds number values were low which specify the microjets' behavior. The supersonic core length, phase of the laminar-turbulent transition and flow characteristics in the space are obtained. Such an approach provides simulation of the characteristics of microjets and macrojets, and also explains preliminary proposition and some data obtained for microjets.

  18. Direct Numerical Simulation of Passive Scalar Mixing in Shock Turbulence Interaction

    Science.gov (United States)

    Gao, Xiangyu; Bermejo-Moreno, Ivan; Larsson, Johan

    2017-11-01

    Passive scalar mixing in the canonical shock-turbulence interaction configuration is investigated through shock-capturing Direct Numerical Simulations (DNS). Scalar fields with different Schmidt numbers are transported by an initially isotropic turbulent flow field passing across a nominally planar shock wave. A solution-adaptive hybrid numerical scheme on Cartesian structured grids is used, that combines a fifth-order WENO scheme near shocks and a sixth-order central-difference scheme away from shocks. The simulations target variations in the shock Mach number, M (from 1.5 to 3), turbulent Mach number, Mt (from 0.1 to 0.4, including wrinkled- and broken-shock regimes), and scalar Schmidt numbers, Sc (from 0.5 to 2), while keeping the Taylor microscale Reynolds number constant (Reλ 40). The effects on passive scalar statistics are investigated, including the streamwise evolution of scalar variance budgets, pdfs and spectra, in comparison with their temporal evolution in decaying isotropic turbulence.

  19. Osborne Reynolds pipe flow: Direct simulation from laminar through gradual transition to fully developed turbulence.

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J; Baltzer, Jon R

    2015-06-30

    The precise dynamics of breakdown in pipe transition is a century-old unresolved problem in fluid mechanics. We demonstrate that the abruptness and mysteriousness attributed to the Osborne Reynolds pipe transition can be partially resolved with a spatially developing direct simulation that carries weakly but finitely perturbed laminar inflow through gradual rather than abrupt transition arriving at the fully developed turbulent state. Our results with this approach show during transition the energy norms of such inlet perturbations grow exponentially rather than algebraically with axial distance. When inlet disturbance is located in the core region, helical vortex filaments evolve into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow when they descend to the surface from the core produces small-scale hairpin packets, which leads to breakdown. When inlet disturbance is near the wall, certain quasi-spanwise structure is stretched into a Lambda vortex, and develops into a large-scale hairpin vortex. Small-scale hairpin packets emerge near the tip region of the large-scale hairpin vortex, and subsequently grow into a turbulent spot, which is itself a local concentration of small-scale hairpin vortices. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition, suggesting the possibility of a partial unification. Under parabolic base flow the friction factor overshoots Moody's correlation. Plug base flow requires stronger inlet disturbance for transition. Accuracy of the results is demonstrated by comparing with analytical solutions before breakdown, and with fully developed turbulence measurements after the completion of transition.

  20. Incompressible Turbulent Flow Simulation Using the κ-ɛ Model and Upwind Schemes

    Directory of Open Access Journals (Sweden)

    V. G. Ferreira

    2007-01-01

    Full Text Available In the computation of turbulent flows via turbulence modeling, the treatment of the convective terms is a key issue. In the present work, we present a numerical technique for simulating two-dimensional incompressible turbulent flows. In particular, the performance of the high Reynolds κ-ɛ model and a new high-order upwind scheme (adaptative QUICKEST by Kaibara et al. (2005 is assessed for 2D confined and free-surface incompressible turbulent flows. The model equations are solved with the fractional-step projection method in primitive variables. Solutions are obtained by using an adaptation of the front tracking GENSMAC (Tomé and McKee (1994 methodology for calculating fluid flows at high Reynolds numbers. The calculations are performed by using the 2D version of the Freeflow simulation system (Castello et al. (2000. A specific way of implementing wall functions is also tested and assessed. The numerical procedure is tested by solving three fluid flow problems, namely, turbulent flow over a backward-facing step, turbulent boundary layer over a flat plate under zero-pressure gradients, and a turbulent free jet impinging onto a flat surface. The numerical method is then applied to solve the flow of a horizontal jet penetrating a quiescent fluid from an entry port beneath the free surface.

  1. Overdamped large-eddy simulations of turbulent pipe flow up to Reτ = 1500

    Science.gov (United States)

    Feldmann, Daniel; Avila, Marc

    2018-04-01

    We present results from large-eddy simulations (LES) of turbulent pipe flow in a computational domain of 42 radii in length. Wide ranges of shear the Reynolds number and Smagorinsky model parameter are covered, 180 ≤ Reτ ≤ 1500 and 0.05 ≤ Cs ≤ 1.2, respectively. The aim is to asses the effect of Cs on the resolved flow field and turbulence statistics as well as to test whether very large scale motions (VLSM) in pipe flow can be isolated from the near-wall cycle by enhancing the dissipative character of the static Smagorinsky model with elevated Cs values. We found that the optimal Cs to achieve best agreement with reference data varies with Reτ and further depends on the wall normal location and the quantity of interest. Furthermore, for increasing Reτ , the optimal Cs for pipe flow LES seems to approach the theoretically optimal value for LES of isotropic turbulence. In agreement with previous studies, we found that for increasing Cs small-scale streaks in simple flow field visualisations are gradually quenched and replaced by much larger smooth streaks. Our analysis of low-order turbulence statistics suggests, that these structures originate from an effective reduction of the Reynolds number and thus represent modified low-Reynolds number near-wall streaks rather than VLSM. We argue that overdamped LES with the static Smagorinsky model cannot be used to unambiguously determine the origin and the dynamics of VLSM in pipe flow. The approach might be salvaged by e.g. using more sophisticated LES models accounting for energy flux towards large scales or explicit anisotropic filter kernels.

  2. Direct numerical simulation of the passive scalar field in a two-dimensional turbulent channel flow

    International Nuclear Information System (INIS)

    Kasagi, N.; Tomita, Y.; Kuroda, A.

    1991-01-01

    This paper reports on a direct numerical simulation (DNS) of the fully developed thermal field in a two-dimensional turbulent channel flow of air that was carried out. The iso-flux condition is imposed on the walls so that the local mean temperature linearly increases in the streamwise direction. The computation was executed on 1,589,248 grid points by using a spectral method. The statistics obtained include rms velocity and temperature fluctuations, Reynolds stresses, turbulent heat fluxes and other higher order correlations. They are compared mainly with the DNS data obtained by Kim and Moin (1987) and Kim (1987) in a higher Reynolds number flow with isothermal walls. Agreement between these two results is generally good. Each term in the budget equations of temperature variance, its dissipation rate and turbulent heat fluxes is also calculated in order to establish a data base of convective heat transfer for thermal turbulence modeling

  3. Turbulence modification in bubbly upward pipe flow. Extraction of time resolved turbulent microscopic structure by high speed PIV

    International Nuclear Information System (INIS)

    Yoshimura, Koki; Minato, Daiju; Sato, Yohei; Hishida, Koichi

    2004-01-01

    The objective of the present study is to obtain detailed information on the effects of bubbles on modification of turbulent structure by time-series measurements using a high speed time-resolved PIV. The experiments were carried out in a fully-developed vertical pipe with upflow of water at the Reynolds number of 9700 and the void fraction of 0.5%. It is observed that turbulence production was decreased and the dissipation rate was enhanced in the whole domain. We analyzed the effects of bubbles on modification of the energy cascade process from power spectra of velocity fluctuation of the continuous phase. (author)

  4. Intermittency in the relative separations of tracers and of heavy particles in turbulent flows

    NARCIS (Netherlands)

    Biferale, L.; Lanotte, A.S.; Scatamacchia, R.; Toschi, F.

    2014-01-01

    Results from direct numerical simulations (DNS) of particle relative dispersion in three-dimensional homogeneous and isotropic turbulence at Reynolds number Re_¿ ~ 300 are presented. We study point-like passive tracers and heavy particles, at Stokes number St = 0.6, 1 and 5. Particles are emitted

  5. Modeling of Turbulent Swirling Flows

    Science.gov (United States)

    Shih, Tsan-Hsing; Zhu, Jiang; Liou, William; Chen, Kuo-Huey; Liu, Nan-Suey; Lumley, John L.

    1997-01-01

    Aircraft engine combustors generally involve turbulent swirling flows in order to enhance fuel-air mixing and flame stabilization. It has long been recognized that eddy viscosity turbulence models are unable to appropriately model swirling flows. Therefore, it has been suggested that, for the modeling of these flows, a second order closure scheme should be considered because of its ability in the modeling of rotational and curvature effects. However, this scheme will require solution of many complicated second moment transport equations (six Reynolds stresses plus other scalar fluxes and variances), which is a difficult task for any CFD implementations. Also, this scheme will require a large amount of computer resources for a general combustor swirling flow. This report is devoted to the development of a cubic Reynolds stress-strain model for turbulent swirling flows, and was inspired by the work of Launder's group at UMIST. Using this type of model, one only needs to solve two turbulence equations, one for the turbulent kinetic energy k and the other for the dissipation rate epsilon. The cubic model developed in this report is based on a general Reynolds stress-strain relationship. Two flows have been chosen for model evaluation. One is a fully developed rotating pipe flow, and the other is a more complex flow with swirl and recirculation.

  6. Partial Cavity Flows at High Reynolds Numbers

    Science.gov (United States)

    Makiharju, Simo; Elbing, Brian; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2009-11-01

    Partial cavity flows created for friction drag reduction were examined on a large-scale. Partial cavities were investigated at Reynolds numbers up to 120 million, and stable cavities with frictional drag reduction of more than 95% were attained at optimal conditions. The model used was a 3 m wide and 12 m long flat plate with a plenum on the bottom. To create the partial cavity, air was injected at the base of an 18 cm backwards-facing step 2.1 m from the leading edge. The geometry at the cavity closure was varied for different flow speeds to optimize the closure of the cavity. Cavity gas flux, thickness, frictional loads, and cavity pressures were measured over a range of flow speeds and air injection fluxes. High-speed video was used extensively to investigate the unsteady three dimensional cavity closure, the overall cavity shape and oscillations.

  7. Life stages of wall-bounded decay of Taylor-Couette turbulence

    NARCIS (Netherlands)

    Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Arza, Vamsi Spandan; Verzicco, Roberto; Lohse, Detlef

    2017-01-01

    The decay of Taylor-Couette turbulence, i.e., the flow between two coaxial and independently rotating cylinders, is numerically studied by instantaneously stopping the forcing from an initially statistically stationary flow field at a Reynolds number of Re=3.5×104. The effect of wall friction is

  8. Drag Measurements over Embedded Cavities in a Low Reynolds Number Couette Flow

    Science.gov (United States)

    Gilmer, Caleb; Lang, Amy; Jones, Robert

    2010-11-01

    Recent research has revealed that thin-walled, embedded cavities in low Reynolds number flow have the potential to reduce the net viscous drag force acting on the surface. This reduction is due to the formation of embedded vortices allowing the outer flow to pass over the surface via a roller bearing effect. It is also hypothesized that the scales found on butterfly wings may act in a similar manner to cause a net increase in flying efficiency. In this experimental study, rectangular embedded cavities were designed as a means of successfully reducing the net drag across surfaces in a low Reynolds number flow. A Couette flow was generated via a rotating conveyor belt immersed in a tank of high viscosity mineral oil above which the plates with embedded cavities were placed. Drag induced on the plate models was measured using a force gauge and compared directly to measurements acquired over a flat plate. Various cavity aspect ratios and gap heights were tested in order to determine the conditions under which the greatest drag reductions occurred.

  9. An Experimental Comparison Between Flexible and Rigid Airfoils at Low Reynolds Numbers

    Science.gov (United States)

    Uzodinma, Jaylon; Macphee, David

    2017-11-01

    This study uses experimental and computational research methods to compare the aerodynamic performance of rigid and flexible airfoils at a low Reynolds number throughout varying angles of attack. This research can be used to improve the design of small wind turbines, micro-aerial vehicles, and any other devices that operate at low Reynolds numbers. Experimental testing was conducted in the University of Alabama's low-speed wind tunnel, and computational testing was conducted using the open-source CFD code OpenFOAM. For experimental testing, polyurethane-based (rigid) airfoils and silicone-based (flexible) airfoils were constructed using acrylic molds for NACA 0012 and NACA 2412 airfoil profiles. Computer models of the previously-specified airfoils were also created for a computational analysis. Both experimental and computational data were analyzed to examine the critical angles of attack, the lift and drag coefficients, and the occurrence of laminar boundary separation for each airfoil. Moreover, the computational simulations were used to examine the resulting flow fields, in order to provide possible explanations for the aerodynamic performances of each airfoil type. EEC 1659710.

  10. Hybrid Large Eddy Simulation / Reynolds Averaged Navier-Stokes Modeling in Directed Energy Applications

    Science.gov (United States)

    Zilberter, Ilya Alexandrovich

    In this work, a hybrid Large Eddy Simulation / Reynolds-Averaged Navier Stokes (LES/RANS) turbulence model is applied to simulate two flows relevant to directed energy applications. The flow solver blends the Menter Baseline turbulence closure near solid boundaries with a Lenormand-type subgrid model in the free-stream with a blending function that employs the ratio of estimated inner and outer turbulent length scales. A Mach 2.2 mixing nozzle/diffuser system representative of a gas laser is simulated under a range of exit pressures to assess the ability of the model to predict the dynamics of the shock train. The simulation captures the location of the shock train responsible for pressure recovery but under-predicts the rate of pressure increase. Predicted turbulence production at the wall is found to be highly sensitive to the behavior of the RANS turbulence model. A Mach 2.3, high-Reynolds number, three-dimensional cavity flow is also simulated in order to compute the wavefront aberrations of an optical beam passing thorough the cavity. The cavity geometry is modeled using an immersed boundary method, and an auxiliary flat plate simulation is performed to replicate the effects of the wind-tunnel boundary layer on the computed optical path difference. Pressure spectra extracted on the cavity walls agree with empirical predictions based on Rossiter's formula. Proper orthogonal modes of the wavefront aberrations in a beam originating from the cavity center agree well with experimental data despite uncertainty about in flow turbulence levels and boundary layer thicknesses over the wind tunnel window. Dynamic mode decomposition of a planar wavefront spanning the cavity reveals that wavefront distortions are driven by shear layer oscillations at the Rossiter frequencies; these disturbances create eddy shocklets that propagate into the free-stream, creating additional optical wavefront distortion.

  11. Lattice Boltzmann equation calculation of internal, pressure-driven turbulent flow

    International Nuclear Information System (INIS)

    Hammond, L A; Halliday, I; Care, C M; Stevens, A

    2002-01-01

    We describe a mixing-length extension of the lattice Boltzmann approach to the simulation of an incompressible liquid in turbulent flow. The method uses a simple, adaptable, closure algorithm to bound the lattice Boltzmann fluid incorporating a law-of-the-wall. The test application, of an internal, pressure-driven and smooth duct flow, recovers correct velocity profiles for Reynolds number to 1.25 x 10 5 . In addition, the Reynolds number dependence of the friction factor in the smooth-wall branch of the Moody chart is correctly recovered. The method promises a straightforward extension to other curves of the Moody chart and to cylindrical pipe flow

  12. Monodimensional estimation of maximum Reynolds shear stress in the downstream flow field of bileaflet valves.

    Science.gov (United States)

    Grigioni, Mauro; Daniele, Carla; D'Avenio, Giuseppe; Barbaro, Vincenzo

    2002-05-01

    Turbulent flow generated by prosthetic devices at the bloodstream level may cause mechanical stress on blood particles. Measurement of the Reynolds stress tensor and/or some of its components is a mandatory step to evaluate the mechanical load on blood components exerted by fluid stresses, as well as possible consequent blood damage (hemolysis or platelet activation). Because of the three-dimensional nature of turbulence, in general, a three-component anemometer should be used to measure all components of the Reynolds stress tensor, but this is difficult, especially in vivo. The present study aimed to derive the maximum Reynolds shear stress (RSS) in three commercially available prosthetic heart valves (PHVs) of wide diffusion, starting with monodimensional data provided in vivo by echo Doppler. Accurate measurement of PHV flow field was made using laser Doppler anemometry; this provided the principal turbulence quantities (mean velocity, root-mean-square value of velocity fluctuations, average value of cross-product of velocity fluctuations in orthogonal directions) needed to quantify the maximum turbulence-related shear stress. The recorded data enabled determination of the relationship, the Reynolds stresses ratio (RSR) between maximum RSS and Reynolds normal stress in the main flow direction. The RSR was found to be dependent upon the local structure of the flow field. The reported RSR profiles, which permit a simple calculation of maximum RSS, may prove valuable during the post-implantation phase, when an assessment of valve function is made echocardiographically. Hence, the risk of damage to blood constituents associated with bileaflet valve implantation may be accurately quantified in vivo.

  13. The smallest thermal scales in a turbulent channel flow at Prandtl number

    International Nuclear Information System (INIS)

    Bergant, R.; Tiselj, I.

    2004-01-01

    For describing the turbulent heat transfer from a wall to a fluid at low Reynolds (Re < 10000) and low Prandtl numbers (Pr < 20) a direct numerical simulation (DNS) can be used, which describes all the length and time scales of the phenomenon. The object of this paper is to find out the influence of the smallest temperature scales on the largest ones, which are responsible for the macro behavior of the near-wall heat transfer. Simulation, performed at Re = 2650 and Pr = 1, was calculated for velocity field with the DNS accuracy and for three different temperature fields. First temperature field, calculated with the DNS accuracy, was used as a reference to the second and third temperature fields where the highest Fourier coefficients in streamwise and spanwise directions were filtered and damped. It means, that the smallest temperature scales were not described with DNS accuracy anymore. New approach shows that results, for at least first and second order statistics, are comparable to the DNS ones without filtering and damping. (author)

  14. CFD Simulation of Heat Transfer and Turbulent Fluid Flow over a Double Forward-Facing Step

    Directory of Open Access Journals (Sweden)

    Hussein Togun

    2013-01-01

    Full Text Available Heat transfer and turbulent water flow over a double forward-facing step were investigated numerically. The finite volume method was used to solve the corresponding continuity, momentum, and energy equations using the K-ε model. Three cases, corresponding to three different step heights, were investigated for Reynolds numbers ranging from 30,000 to 100,000 and temperatures ranging from 313 to 343 K. The bottom of the wall was heated, whereas the top was insulated. The results show that the Nusselt number increased with the Reynolds number and step height. The maximum Nusselt number was observed for case 3, with a Reynolds number of 100,000 and temperature of 343 K, occurring at the second step. The behavior of the Nusselt number was similar for all cases at a given Reynolds number and temperature. A recirculation zone was observed before and after the first and second steps in the contour maps of the velocity field. In addition, the results indicate that the coefficient pressure increased with increasing Reynolds number and step height. ANSYS FLUENT 14 (CFD software was employed to run the simulations.

  15. Effect of free-stream turbulence on boundary layer transition.

    Science.gov (United States)

    Goldstein, M E

    2014-07-28

    This paper is concerned with the transition to turbulence in flat plate boundary layers due to moderately high levels of free-stream turbulence. The turbulence is assumed to be generated by an (idealized) grid and matched asymptotic expansions are used to analyse the resulting flow over a finite thickness flat plate located in the downstream region. The characteristic Reynolds number Rλ based on the mesh size λ and free-stream velocity is assumed to be large, and the turbulence intensity ε is assumed to be small. The asymptotic flow structure is discussed for the generic case where the turbulence Reynolds number εRλ and the plate thickness and are held fixed (at O(1) and O(λ), respectively) in the limit as [Formula: see text] and ε→0. But various limiting cases are considered in order to explain the relevant transition mechanisms. It is argued that there are two types of streak-like structures that can play a role in the transition process: (i) those that appear in the downstream region and are generated by streamwise vorticity in upstream flow and (ii) those that are concentrated near the leading edge and are generated by plate normal vorticity in upstream flow. The former are relatively unaffected by leading edge geometry and are usually referred to as Klebanoff modes while the latter are strongly affected by leading edge geometry and are more streamwise vortex-like in appearance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. Acoustic Radiation From a Mach 14 Turbulent Boundary Layer

    Science.gov (United States)

    Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the turbulence statistics and the radiation field generated by a high-speed turbulent boundary layer with a nominal freestream Mach number of 14 and wall temperature of 0:18 times the recovery temperature. The flow conditions fall within the range of nozzle exit conditions of the Arnold Engineering Development Center (AEDC) Hypervelocity Tunnel No. 9 facility. The streamwise domain size is approximately 200 times the boundary-layer thickness at the inlet, with a useful range of Reynolds number corresponding to Re 450 ?? 650. Consistent with previous studies of turbulent boundary layer at high Mach numbers, the weak compressibility hypothesis for turbulent boundary layers remains applicable under this flow condition and the computational results confirm the validity of both the van Driest transformation and Morkovin's scaling. The Reynolds analogy is valid at the surface; the RMS of fluctuations in the surface pressure, wall shear stress, and heat flux is 24%, 53%, and 67% of the surface mean, respectively. The magnitude and dominant frequency of pressure fluctuations are found to vary dramatically within the inner layer (z/delta 0.< or approx. 0.08 or z+ < or approx. 50). The peak of the pre-multiplied frequency spectrum of the pressure fluctuation is f(delta)/U(sub infinity) approx. 2.1 at the surface and shifts to a lower frequency of f(delta)/U(sub infinity) approx. 0.7 in the free stream where the pressure signal is predominantly acoustic. The dominant frequency of the pressure spectrum shows a significant dependence on the freestream Mach number both at the wall and in the free stream.

  17. Gravitational sedimentation of cloud of solid spherical particles at small Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2015-01-01

    Full Text Available The experimental results of study of gravitational sedimentation of highly-concentrated systems of solid spherical particles at small Reynolds numbers Re<1 are presented. Empirical equation for drag coefficient of the particle assembly has been obtained. The influence of initial particle concentration in the cloud on its dynamics and velocity has been analysed.

  18. Turbulence Amplification with Incidence at the Leading Edge of a Compressor Cascade

    Directory of Open Access Journals (Sweden)

    Garth V. Hobson

    1999-01-01

    Full Text Available Detailed measurements, with a two-component laser-Doppler velocimeter and a thermal anemometer were made near the suction surface leading edge of controlled-diffusion airfoils in cascade. The Reynolds number was near 700,000, Mach number equal to 0.25, and freestream turbulence was at 1.5% ahead of the cascade.

  19. Experimental Studies of the Aerothermal Characteristics of the Project Orion CEV heat Shield in High Speed Transitional and Turbulent Flows

    Science.gov (United States)

    Wadhams, T.P.; MacLean, M.; Holden, M.S.; Cassady, A.M.

    2009-01-01

    An experimental program has been completed by CUBRC exploring laminar, transitional, and turbulent flows over a 7.0% scale model of the Project ORION CEV geometry. This program was executed primarily to answer questions concerning the increase in heat transfer on the windward, or "hot shoulder" of the CEV heat shield from laminar to turbulent flow. To answer these questions CUBRC constructed and instrumented a 14.0 inch diameter Project ORION CEV model and ran a range of Reynolds numbers based on diameter from 1.0 to over 40 million at a Mach number of 8.0. These Reynolds numbers were selected to cover laminar to turbulent heating data on the "hot shoulder". Data obtained during these runs will be used to guide design decisions as they apply to heat shield thickness and extent. Several experiments at higher enthalpies were achieved to obtain data for code validation with real gas effects and transition. CUBRC also performed computation studies of these experiments to aid in the data reduction process and study turbulence modeling.

  20. Premixed autoignition in compressible turbulence

    Science.gov (United States)

    Konduri, Aditya; Kolla, Hemanth; Krisman, Alexander; Chen, Jacqueline

    2016-11-01

    Prediction of chemical ignition delay in an autoignition process is critical in combustion systems like compression ignition engines and gas turbines. Often, ignition delay times measured in simple homogeneous experiments or homogeneous calculations are not representative of actual autoignition processes in complex turbulent flows. This is due the presence of turbulent mixing which results in fluctuations in thermodynamic properties as well as chemical composition. In the present study the effect of fluctuations of thermodynamic variables on the ignition delay is quantified with direct numerical simulations of compressible isotropic turbulence. A premixed syngas-air mixture is used to remove the effects of inhomogeneity in the chemical composition. Preliminary results show a significant spatial variation in the ignition delay time. We analyze the topology of autoignition kernels and identify the influence of extreme events resulting from compressibility and intermittency. The dependence of ignition delay time on Reynolds and turbulent Mach numbers is also quantified. Supported by Basic Energy Sciences, Dept of Energy, United States.