WorldWideScience

Sample records for review radionuclide transport

  1. Critical review: Radionuclide transport, sediment transport, and water quality mathematical modeling; and radionuclide adsorption/desorption mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Y.; Serne, R.J.; Arnold, E.M.; Cowan, C.E.; Thompson, F.L. [Pacific Northwest Lab., Richland, WA (United States)

    1981-01-01

    This report describes the results of a detailed literature review of radionuclide transport models applicable to rivers, estuaries, coastal waters, the Great Lakes, and impoundments. Some representatives sediment transport and water quality models were also reviewed to evaluate if they can be readily adapted to radionuclide transport modeling. The review showed that most available transport models were developed for dissolved radionuclide in rivers. These models include the mechanisms of advection, dispersion, and radionuclide decay. Since the models do not include sediment and radionuclide interactions, they are best suited for simulating short-term radionuclide migration where: (1) radionuclides have small distribution coefficients; (2) sediment concentrations in receiving water bodies are very low. Only 5 of the reviewed models include full sediment and radionuclide interactions: CHMSED developed by Fields; FETRA SERATRA, and TODAM developed by Onishi et al, and a model developed by Shull and Gloyna. The 5 models are applicable to cases where: (1) the distribution coefficient is large; (2) sediment concentrations are high; or (3) long-term migration and accumulation are under consideration. The report also discusses radionuclide absorption/desorption distribution ratios and addresses adsorption/desorption mechanisms and their controlling processes for 25 elements under surface water conditions. These elements are: Am, Sb, C, Ce, Cm, Co, Cr, Cs, Eu, I, Fe, Mn, Np, P, Pu, Pm, Ra, Ru, Sr, Tc, Th, {sup 3}H, U, Zn and Zr.

  2. Radionuclide distribution and transport in terrestrial and aquatic ecosystems. A critical review of data

    International Nuclear Information System (INIS)

    Coughtrey, P.J.; Jackson, D.; Jones, C.H.; Thorne, M.C.

    1984-01-01

    These volumes present the results of a study undertaken for the Commission of the European Communities. The aim was to review available data concerning the movement of radionuclides through the environment and to recommend values of parameters for use in environmental transport models. The elements reviewed all have radioactive isotopes which could contribute significantly to the radiological impact of chronic releases of radioactivity from nuclear installations within the countries of the European community, i.e. the major activation and fission products. In dividing these elements between volumes an effort has been made to take account of the method of production of their major radioisotopes, together with their chemical similarities and environmental interactions. This volume covers the radionuclide distribution of americium and curium. The main areas which are covered include the deposition of radionuclides on plants and soils, transport in soils, uptake and translocation in plants via the roots and foliage, metabolism in domestic animals and radionuclide transfers through the main physical and biotic components of the aquatic environment. In reviewing these subject areas, account has been taken not only of the literature relating to specific radionuclides, but also of the literature relating to the stable element of which they are radioisotopes. (Auth.)

  3. EBS Radionuclide Transport Abstraction

    International Nuclear Information System (INIS)

    J.D. Schreiber

    2005-01-01

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers

  4. EBS Radionuclide Transport Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Schreiber

    2005-08-25

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport

  5. EBS Radionuclide Transport Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    J. Prouty

    2006-07-14

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport

  6. EBS Radionuclide Transport Abstraction

    International Nuclear Information System (INIS)

    J. Prouty

    2006-01-01

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport

  7. Drift-Scale Radionuclide Transport

    International Nuclear Information System (INIS)

    Houseworth, J.

    2004-01-01

    The purpose of this model report is to document the drift scale radionuclide transport model, taking into account the effects of emplacement drifts on flow and transport in the vicinity of the drift, which are not captured in the mountain-scale unsaturated zone (UZ) flow and transport models ''UZ Flow Models and Submodels'' (BSC 2004 [DIRS 169861]), ''Radionuclide Transport Models Under Ambient Conditions'' (BSC 2004 [DIRS 164500]), and ''Particle Tracking Model and Abstraction of Transport Process'' (BSC 2004 [DIRS 170041]). The drift scale radionuclide transport model is intended to be used as an alternative model for comparison with the engineered barrier system (EBS) radionuclide transport model ''EBS Radionuclide Transport Abstraction'' (BSC 2004 [DIRS 169868]). For that purpose, two alternative models have been developed for drift-scale radionuclide transport. One of the alternative models is a dual continuum flow and transport model called the drift shadow model. The effects of variations in the flow field and fracture-matrix interaction in the vicinity of a waste emplacement drift are investigated through sensitivity studies using the drift shadow model (Houseworth et al. 2003 [DIRS 164394]). In this model, the flow is significantly perturbed (reduced) beneath the waste emplacement drifts. However, comparisons of transport in this perturbed flow field with transport in an unperturbed flow field show similar results if the transport is initiated in the rock matrix. This has led to a second alternative model, called the fracture-matrix partitioning model, that focuses on the partitioning of radionuclide transport between the fractures and matrix upon exiting the waste emplacement drift. The fracture-matrix partitioning model computes the partitioning, between fractures and matrix, of diffusive radionuclide transport from the invert (for drifts without seepage) into the rock water. The invert is the structure constructed in a drift to provide the floor of the

  8. Modelling radionuclide transport in the geosphere: a review of the models available

    International Nuclear Information System (INIS)

    Cacas, M.C.; Cordier, E.; Coudrain-Ribstein, A.; Fargue, D.; Goblet, P.; Jamet, Ph.; Ledoux, E.; Marsily, G. de; Vinsot, A.; Brun, Ch.; Cernes, A.; Jacquier, Ph.; Lewi, J.; Priem, Th.

    1990-01-01

    Over the last twelve years, several models have been developed to simulate the transport of radionuclides in the environment of a radioactive waste repository: - continuous equivalent porous media flow and transport models using the finite element method in 1, 2 or 3 dimensions and taking into account various coupled mechanisms; - discontinuous stochastic fracture network models in 3 dimensions representing flow, transport, matrix diffusion, heat flow and mechanical stress; - geochemical models representing interactions between transported elements and a solid matrix; - transport process models coupling non dominant phenomena such as thermo-diffusion or thermo-gravitation. This paper reviews the role that each of these models can play in safety analyses. 3 refs [fr

  9. Radionuclide transport processes in terrestrial ecosystems

    International Nuclear Information System (INIS)

    Whicker, F.W.

    1983-01-01

    Some major principles and the status of knowledge concerning the transport of radionuclides through terrestrial ecosystems are reviewed. Fundamental processes which control the flow of radionuclides between ecosystem components such as air, soil, plants, and animals are described, with emphasis on deposition, resuspension, plant uptake, ingestion, and assimilation. Properties of radionuclides, organisms, and ecosystems are examined in relation to their influence on the accumulation of radioactive materials by plants and animals. The effects of the physicochemical nature of the radionuclide; morphology, physiology, and behavior of the organism; and soil, nutrient, and trophic characteristics of the ecosystem are highlighted. Observations in natural ecosystems on radionuclides such as 137 Cs, 90 Sr, 131 I, 3 H, and 239 Pu are used to illustrate current concepts. An assessment of the degree to which the processes controlling radionuclide behavior are understood and of our ability to simulate and predict such behavior with computerized models is offered. Finally, brief comments are made on research needs

  10. Colloid-facilitated radionuclide transport: a regulatory perspective

    Science.gov (United States)

    Dam, W. L.; Pickett, D. A.; Codell, R. B.; Nicholson, T. J.

    2001-12-01

    What hydrogeologic-geochemical-microbial conditions and processes affect migration of radionuclides sorbed onto microparticles or native colloid-sized radionuclide particles? The U.S. Nuclear Regulatory Commission (NRC) is responsible for protecting public health, safety, and the environment at numerous nuclear facilities including a potential high-level nuclear waste disposal site. To fulfill these obligations, NRC needs to understand the mechanisms controlling radionuclide release and transport and their importance to performance. The current focus of NRC staff reviews and technical interactions dealing with colloid-facilitated transport relates to the potential nuclear-waste repository at Yucca Mountain, Nevada. NRC staff performed bounding calculations to quantify radionuclide releases available for ground-water transport to potential receptors from a Yucca Mountain repository. Preliminary analyses suggest insignificant doses of plutonium and americium colloids could be derived from spent nuclear fuel. Using surface complexation models, NRC staff found that colloids can potentially lower actinide retardation factors by up to several orders of magnitude. Performance assessment calculations, in which colloidal transport of plutonium and americium was simulated by assuming no sorption or matrix diffusion, indicated no effect of colloids on human dose within the 10,000 year compliance period due largely to long waste-package lifetimes. NRC staff have identified information gaps and developed technical agreements with the U.S. Department of Energy (DOE) to ensure sufficient information will be presented in any potential future Yucca Mountain license application. DOE has agreed to identify which radionuclides could be transported via colloids, incorporate uncertainties in colloid formation, release and transport parameters, and conceptual models, and address the applicability of field data using synthetic microspheres as colloid analogs. NRC is currently

  11. Radionuclides: Accumulation and Transport in Plants.

    Science.gov (United States)

    Gupta, D K; Chatterjee, S; Datta, S; Voronina, A V; Walther, C

    Application of radioactive elements or radionuclides for anthropogenic use is a widespread phenomenon nowadays. Radionuclides undergo radioactive decays releasing ionizing radiation like gamma ray(s) and/or alpha or beta particles that can displace electrons in the living matter (like in DNA) and disturb its function. Radionuclides are highly hazardous pollutants of considerable impact on the environment, food chain and human health. Cleaning up of the contaminated environment through plants is a promising technology where the rhizosphere may play an important role. Plants belonging to the families of Brassicaceae, Papilionaceae, Caryophyllaceae, Poaceae, and Asteraceae are most important in this respect and offer the largest potential for heavy metal phytoremediation. Plants like Lactuca sativa L., Silybum marianum Gaertn., Centaurea cyanus L., Carthamus tinctorius L., Helianthus annuus and H. tuberosus are also important plants for heavy metal phytoremediation. However, transfer factors (TF) of radionuclide from soil/water to plant ([Radionuclide]plant/[Radionuclide]soil) vary widely in different plants. Rhizosphere, rhizobacteria and varied metal transporters like NRAMP, ZIP families CDF, ATPases (HMAs) family like P1B-ATPases, are involved in the radio-phytoremediation processes. This review will discuss recent advancements and potential application of plants for radionuclide removal from the environment.

  12. A study on the characteristics of colloid-associated radionuclide transport in porous media

    International Nuclear Information System (INIS)

    Jeong, Yun Chang

    1997-02-01

    Recently, the radionuclide transport in the form of colloids has been focused intensively in the safety assessment of a radioactive waste repository. As colloids are considered to be able to increase the transport rate of radionuclide through geologic media, the transport of radionuclide should be adjusted by the presence of colloids. The migration of dissolved radionuclide is expected to depend on various process such as advection, dispersion and interactions with soils, and, in addition, the transport of colloid-mediated radionuclide is considered to be more complicated because of the interactions between radionuclides and colloids. In this paper the migration behavior of colloid-associated radionuclides within subsurface are reviewed and studied in detail. The colloid-mediated transport system was modelled and simulated in order to illustrate the effects of colloids on the transport of radionuclide in the aquifer system. The transport rate of radionuclide is mainly controlled by a retardation factor which is controlled by colloidal behaviors, degree of adsorption, and the related geologic parameters. Therefore it is necessary to carefully understand the accelerating tendency of the retardation difference factor, and in this study the trends are analyzed, described and the retardation difference factor is mathematically defined, simplified and applied practically to the safety and performance assessment of a future repository

  13. EBS Radionuclide Transport Abstraction

    International Nuclear Information System (INIS)

    Schreiner, R.

    2001-01-01

    The purpose of this work is to develop the Engineered Barrier System (EBS) radionuclide transport abstraction model, as directed by a written development plan (CRWMS M and O 1999a). This abstraction is the conceptual model that will be used to determine the rate of release of radionuclides from the EBS to the unsaturated zone (UZ) in the total system performance assessment-license application (TSPA-LA). In particular, this model will be used to quantify the time-dependent radionuclide releases from a failed waste package (WP) and their subsequent transport through the EBS to the emplacement drift wall/UZ interface. The development of this conceptual model will allow Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department to provide a more detailed and complete EBS flow and transport abstraction. The results from this conceptual model will allow PA0 to address portions of the key technical issues (KTIs) presented in three NRC Issue Resolution Status Reports (IRSRs): (1) the Evolution of the Near-Field Environment (ENFE), Revision 2 (NRC 1999a), (2) the Container Life and Source Term (CLST), Revision 2 (NRC 1999b), and (3) the Thermal Effects on Flow (TEF), Revision 1 (NRC 1998). The conceptual model for flow and transport in the EBS will be referred to as the ''EBS RT Abstraction'' in this analysis/modeling report (AMR). The scope of this abstraction and report is limited to flow and transport processes. More specifically, this AMR does not discuss elements of the TSPA-SR and TSPA-LA that relate to the EBS but are discussed in other AMRs. These elements include corrosion processes, radionuclide solubility limits, waste form dissolution rates and concentrations of colloidal particles that are generally represented as boundary conditions or input parameters for the EBS RT Abstraction. In effect, this AMR provides the algorithms for transporting radionuclides using the flow geometry and radionuclide concentrations determined by other

  14. Chemical controls on subsurface radionuclide transport

    International Nuclear Information System (INIS)

    King, K.J.; Killey, R.W.D.

    1990-01-01

    Chemical and biochemical processes can affect the movement of contaminants in groundwater. Materials can be almost completely removed from circulation by processes such as precipitation and coprecipitation. Organic compounds or contaminants that are hazardous may be degraded or formed during groundwater transport. Studies at the Chalk River Laboratories of AECL have focused on radionuclide transport, although other contaminants have been and are being investigated. This paper summarizes findings from research that extends back more than 30 years. Much of the work on reactive contaminant transport has centered on 90 Sr; other contaminants have also been considered, however, and features of their behaviour are also reviewed. (25 refs., 5 figs., 4 tabs.)

  15. A review on studies of the transport and the form of radionuclides in the fluvial environment

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Takeshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-06-01

    The Japan Atomic Energy Research Institute has conducted studies with an aim to contribute to understanding the long-term behavior of atmospherically-derived radionuclides deposited on the ground. The present report reviews a series of studies among them which have especially dealt with the behavior of those radionuclides in a fluvial environment. The studies cited here include investigations of 1) the evaluation of the transport rate of the atmospherically-derived radionuclides from the ground via a river to the downstream areas where the affected water is consumed; 2) the physico-chemical form of the radionuclides in the fluvial environment. An investigation in the Kuji river watershed with {sup 137}Cs, {sup 210}Pb and {sup 7}Be has validated i) the importance of suspended particulate materials in the fluvial discharge of those radionuclides, and ii) a methodology to estimate the discharge of those radionuclides based on the regression analysis with the river water flow rate. From a viewpoint of their distribution between water and suspended particles, the form of radionuclides released by the Chernobyl accident in rivers and lakes in the vicinity of the Chernobyl Nuclear Power Plant were analyzed. As a result, a general reasonability and some cautions were suggested when commonly reported distribution ratios obtained in the laboratory and the different environment are applied to describe the partitioning of the radionuclides in specific natural environmental conditions. This experimental investigation in Chernobyl also revealed the role of natural dissolved organics in affecting the dissolution and transport of {sup 239,240}Pu, {sup 241}Am through complexation to form soluble species. Further, a chemical equilibrium model was applied to describe this complexation. The similar model was also applied for the behavior of iron and manganese (hydr)oxides in river recharged aquifers which can bear riverborne radionuclides and can influence their migration. The

  16. A review on studies of the transport and the form of radionuclides in the fluvial environment

    International Nuclear Information System (INIS)

    Matsunaga, Takeshi

    2001-06-01

    The Japan Atomic Energy Research Institute has conducted studies with an aim to contribute to understanding the long-term behavior of atmospherically-derived radionuclides deposited on the ground. The present report reviews a series of studies among them which have especially dealt with the behavior of those radionuclides in a fluvial environment. The studies cited here include investigations of 1) the evaluation of the transport rate of the atmospherically-derived radionuclides from the ground via a river to the downstream areas where the affected water is consumed; 2) the physico-chemical form of the radionuclides in the fluvial environment. An investigation in the Kuji river watershed with 137 Cs, 210 Pb and 7 Be has validated i) the importance of suspended particulate materials in the fluvial discharge of those radionuclides, and ii) a methodology to estimate the discharge of those radionuclides based on the regression analysis with the river water flow rate. From a viewpoint of their distribution between water and suspended particles, the form of radionuclides released by the Chernobyl accident in rivers and lakes in the vicinity of the Chernobyl Nuclear Power Plant were analyzed. As a result, a general reasonability and some cautions were suggested when commonly reported distribution ratios obtained in the laboratory and the different environment are applied to describe the partitioning of the radionuclides in specific natural environmental conditions. This experimental investigation in Chernobyl also revealed the role of natural dissolved organics in affecting the dissolution and transport of 239,240 Pu, 241 Am through complexation to form soluble species. Further, a chemical equilibrium model was applied to describe this complexation. The similar model was also applied for the behavior of iron and manganese (hydr)oxides in river recharged aquifers which can bear riverborne radionuclides and can influence their migration. The obtained findings and the

  17. Modelling of radionuclide transport in forests: Review and future perspectives

    International Nuclear Information System (INIS)

    Shaw, G.; Schell, W.; Linkov, I.

    1997-01-01

    Ecological modeling is a powerful tool which can be used to synthesize information on the dynamic processes which occur in ecosystems. Models of radionuclide transport in forests were first constructed in the mid-1960's, when the consequences of global fallout from nuclear weapons tests and waste disposal in the environment were of great concern. Such models were developed based on site-specific experimental data and were designed to address local needs. These models had a limited applicability in evaluating distinct ecosystems and deposition scenarios. Given the scarcity of information, the same experimental data sets were often used both for model calibration and validation, an approach which clearly constitutes a methodological error. Even though the carry modeling attempts were far from being faultless, they established a useful conceptual approach in that they tried to capture general processes in ecosystems and thus had a holistic nature. Later, radioecological modeling attempted to reveal ecosystem properties by separating the component parts from the whole system, as an approach to simplification. This method worked well for radionuclide transport in agricultural ecosystems, in which the biogeochemistry of radionuclide cycling is relatively well understood and can be influenced by fertilization. Several models have been successfully developed and applied to human dose evaluation and emergency response to contaminating events in agricultural lands

  18. Development of COLLAGE 3; Role for colloids in the transport of radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Klos, Richard (Aleksandria Sciences, Sheffield (United Kingdom)); Bath, Adrian (Intellisci Ltd., Loughborough (United Kingdom))

    2010-03-15

    The issue of colloid-facilitated radionuclide transport (CFRT) was last addressed by the Swedish nuclear regulators in 2001 - 2002. SKI had commissioned the Collage code with subsequent development as Collage 2. This code was employed to investigate the potential role for colloids to have been involved in the transport of radionuclides at the Nevada Test Site and to examine the implications for CFRT in the Swedish disposal programme. It was concluded that colloids could not be ruled out as a mechanism for rapid transport and early release from the geosphere. Recently the 'bentonite erosion scenario' has become of concern. In it the generation of large quantities of bentonite colloids in fractures as a result of fresh water ingress at repository depth is possible. Potentially, these could carry radiologically significant quantities of radionuclides to an early release to the surface system. The objectives of this work are to update the knowledge of colloid-facilitated radionuclide transport through a fractured geosphere and to provide review capability within the SSM. Recent developments in CFRT (reviewed here) indicate that additional parameters needed to be added to the existing Collage 2 plus code in order to adequately represent colloid transport in fractures. This report looks at modifications to the model and discusses the implications of the implementation of the new processes. Authors conclude that the process of colloid filtration is an important mitigating mechanism. A new code - Collage 3 - is demonstrated and suggestions for further work are given

  19. Inverse problem in radionuclide transport

    International Nuclear Information System (INIS)

    Yu, C.

    1988-01-01

    The disposal of radioactive waste must comply with the performance objectives set forth in 10 CFR 61 for low-level waste (LLW) and 10 CFR 60 for high-level waste (HLW). To determine probable compliance, the proposed disposal system can be modeled to predict its performance. One of the difficulties encountered in such a study is modeling the migration of radionuclides through a complex geologic medium for the long term. Although many radionuclide transport models exist in the literature, the accuracy of the model prediction is highly dependent on the model parameters used. The problem of using known parameters in a radionuclide transport model to predict radionuclide concentrations is a direct problem (DP); whereas the reverse of DP, i.e., the parameter identification problem of determining model parameters from known radionuclide concentrations, is called the inverse problem (IP). In this study, a procedure to solve IP is tested, using the regression technique. Several nonlinear regression programs are examined, and the best one is recommended. 13 refs., 1 tab

  20. Sediment and radionuclide transport in rivers: radionuclide transport modeling for Cattaraugus and Buttermilk Creeks, New York

    International Nuclear Information System (INIS)

    Onishi, Y.; Yabusaki, S.B.; Kincaid, C.T.; Skaggs, R.L.; Walters, W.H.

    1982-12-01

    SERATRA, a transient, two-dimensional (laterally-averaged) computer model of sediment-contaminant transport in rivers, satisfactorily resolved the distribution of sediment and radionuclide concentrations in the Cattaraugus Creek stream system in New York. By modeling the physical processes of advection, diffusion, erosion, deposition, and bed armoring, SERATRA routed three sediment size fractions, including cohesive soils, to simulate three dynamic flow events. In conjunction with the sediment transport, SERATRA computed radionuclide levels in dissolved, suspended sediment, and bed sediment forms for four radionuclides ( 137 Cs, 90 Sr, 239 240 Pu, and 3 H). By accounting for time-dependent sediment-radionuclide interaction in the water column and bed, SERATA is a physically explicit model of radionuclide fate and migration. Sediment and radionuclide concentrations calculated by SERATA in the Cattaraugus Creek stream system are in reasonable agreement with measured values. SERATRA is in the field performance phase of an extensive testing program designed to establish the utility of the model as a site assessment tool. The model handles not only radionuclides but other contaminants such as pesticides, heavy metals and other toxic chemicals. Now that the model has been applied to four field sites, including the latest study of the Cattaraugus Creek stream system, it is recommended that a final model be validated through comparison of predicted results with field data from a carefully controlled tracer test at a field site. It is also recommended that a detailed laboratory flume be tested to study cohesive sediment transport, deposition, and erosion characteristics. The lack of current understanding of these characteristics is one of the weakest areas hindering the accurate assessment of the migration of radionuclides sorbed by fine sediments of silt and clay

  1. Online estimation of radionuclide transportation in water environment

    International Nuclear Information System (INIS)

    Yi-Jing Zhang; Li-Sheng Hu

    2017-01-01

    Transportation evaluation of the radionuclide waste discharged from nuclear power plants is an essential licensing issue, especially for inland sites. Basically, the dynamics of radionuclide transportation are nonlinear and time-varying. Motivated by its time-consuming computation, the work proposed an online estimation method for the radionuclide waste in water surface. After extracting the nonlinearity of factors influencing radionuclide transportation, the method utilizes transfer function and generalized autoregressive conditional heteroskedasticity models to perform deterministic and probabilistic estimations. It turns out that, the resulting predictions show high accuracy and can optimize the online discharge management of radioactive waste for nuclear power plants. (author)

  2. Mathematical simulation of sediment and radionuclide transport in estuaries

    International Nuclear Information System (INIS)

    Onishi, Y.; Trent, D.S.

    1982-11-01

    The finite element model LFESCOT (Flow, Energy, Salinity, Sediment and Contaminant Transport Model) was synthesized under this study to simulate radionuclide transport in estuaries to obtain accurate radionuclide distributions which are affected by these factors: time variance, three-dimensional flow, temperature, salinity, and sediments. Because sediment transport and radionuclide adsorption/desorption depend strongly on sizes or types of sediments, FLESCOT simulates sediment and a sediment-sorbed radionuclide for the total of three sediment-size fractions (or sediment types) of both cohesive and noncohesive sediments. It also calculates changes of estuarine bed conditions, including bed elevation changes due to sediment erosion/deposition, and three-dimensional distributions of three bed sediment sizes and sediment-sorbed radionuclides within the bed. Although the model was synthesized for radionuclide transport, it is general enough to also handle other contaminants such as heavy metals, pesticides, or toxic chemicals. The model was checked for its capability for flow, water surface elevation change, salinity, sediment and radionuclide transport under various simple conditions first, confirming the general validity of the model's computational schemes. These tests also revealed that FLESCOT can use large aspect ratios of computational cells, which are necessary in handling long estuarine study areas. After these simple tests, FLESCOT was applied to the Hudson River estuary between Chelsea and the mouth of the river to examine how well the model can predict radionuclide transport through simulating tidally influenced three-dimensional flow, salinity, sediment and radionuclide movements with their interactions

  3. Conditions and processes affecting radionuclide transport

    Science.gov (United States)

    Simmons, Ardyth M.; Neymark, Leonid A.

    2012-01-01

    Characteristics of host rocks, secondary minerals, and fluids would affect the transport of radionuclides from a previously proposed repository at Yucca Mountain, Nevada. Minerals in the Yucca Mountain tuffs that are important for retarding radionuclides include clinoptilolite and mordenite (zeolites), clay minerals, and iron and manganese oxides and hydroxides. Water compositions along flow paths beneath Yucca Mountain are controlled by dissolution reactions, silica and calcite precipitation, and ion-exchange reactions. Radionuclide concentrations along flow paths from a repository could be limited by (1) low waste-form dissolution rates, (2) low radionuclide solubility, and (3) radionuclide sorption onto geological media.

  4. Review of biokinetic and biological transport of transuranic radionuclides in the marine environment

    International Nuclear Information System (INIS)

    Beasley, T.M.; Cross, F.A.

    1980-01-01

    Present understanding of the uptake, retention, and loss of transuranic radionuclides by marine biota is limited. Laboratory experiments have demonstrated that for certain species assimilation of plutonium and americium from labeled food is an efficient process and that direct uptake from seawater is important in the bioaccumulation of all transuranic radionuclides studied to date. Organisms appear to play an important role in the vertical transport of these radioelements from the surface layers of the ocean to greater depths

  5. A review of radionuclide release and transport in recent in-pile experiments

    International Nuclear Information System (INIS)

    Harman, N.F.; Clough, P.N.

    1992-01-01

    The experimental series, reviewed in this work, are LOFT-LP-FP-2, PBF SFD ST to 1-4, Treat/STEP I to 4, and ACRR ST-1 and ST-2. These have the common features of in-core heating of a test fuel bundle to high temperatures (usually with some fuel melting) in an experimental reactor core, and of collecting and analysing the released fission products. They were designed to provide detailed information on the release from fuel of fission products and other radionuclides under LWR severe accident conditions, and on the chemical and physical forms and transport of the fission products. The main aim of this review is to bring together, in a systematic way, information on the conduct of the tests, on their successes and failures, and particularly on the information they generated on the chemical and physical behaviour of released fission products. By examining and analysing the data from all of the tests together, patterns of fission product behaviour may become apparent and insights may be gained, which would not be arrived at from individual test results. Moreover, important lessons may be learned, and useful guidance obtained, relating to the aims and conduct of future experimental programmes of fission product release from fuel and transport behaviour. The conclusions should be particularly relevant to the imminent Phebus-FP in-pile test series at Cadarache

  6. One-dimensional radionuclide transport under time-varying conditions

    International Nuclear Information System (INIS)

    Gelbard, F.; Olague, N.E.; Longsine, D.E.

    1990-01-01

    This paper discusses new analytical and numerical solutions presented for one-dimensional radionuclide transport under time-varying fluid-flow conditions including radioactive decay. The analytical solution assumes that all radionuclides have identical retardation factors, and is limited to instantaneous releases. The numerical solution does not have these limitations, but is tested against the limiting case given for the analytical solution. Reasonable agreement between the two solutions was found. Examples are given for the transport of a three-member radionuclide chain transported over distances and flow rates comparable to those reported for Yucca Mountain, the proposed disposal site for high-level nuclear waste

  7. Food web transport of trace metals and radionuclides from the deep sea: a review

    International Nuclear Information System (INIS)

    Young, J.S.

    1979-06-01

    This report summarizes aspects of the potential distribution pathways of metals and radionuclides, particularly Co and Ni, through a biological trophic framework after their deposition at 4000 to 5000 meters in the North Atlantic or North Pacific. It discusses (a) the basic, deep-sea trophic structure of eutrophic and oligotrophic regions; (b) the transport pathways of biologically available energy to and from the deep sea, pathways that may act as accumulators and vectors of radionuclide distribution, and (c) distribution routes that have come into question as potential carriers of radionuclides from the deep-sea bed to man

  8. Review of radionuclide source terms used for performance-assessment analyses

    International Nuclear Information System (INIS)

    Barnard, R.W.

    1993-06-01

    Two aspects of the radionuclide source terms used for total-system performance assessment (TSPA) analyses have been reviewed. First, a detailed radionuclide inventory (i.e., one in which the reactor type, decay, and burnup are specified) is compared with the standard source-term inventory used in prior analyses. The latter assumes a fixed ratio of pressurized-water reactor (PWR) to boiling-water reactor (BWR) spent fuel, at specific amounts of burnup and at 10-year decay. TSPA analyses have been used to compare the simplified source term with the detailed one. The TSPA-91 analyses did not show a significant difference between the source terms. Second, the radionuclides used in source terms for TSPA aqueous-transport analyses have been reviewed to select ones that are representative of the entire inventory. It is recommended that two actinide decay chains be included (the 4n+2 ''uranium'' and 4n+3 ''actinium'' decay series), since these include several radionuclides that have potentially important release and dose characteristics. In addition, several fission products are recommended for the same reason. The choice of radionuclides should be influenced by other parameter assumptions, such as the solubility and retardation of the radionuclides

  9. Radionuclide transport in a single fissure

    International Nuclear Information System (INIS)

    Eriksen, T.E.

    1988-12-01

    The study of radionuclide migration through rock is currently of great interest due to its relevance to the possible escape paths into the biosphere of radionuclides released from high level radioactive wastes burried in deep geological repositories. While water will provide the vehicle for transportation, interaction with geological material may greatly influence the radionuclide movement relative that of water. A flow system for laboratory studies of radionuclide transport in natural fissures in granitic rock under reducing conditions is described. The system based on the use of synthetic ground water equilibrated with granitic rock in a well sealed system, allow experiments to be carried out at -240 mV reduction potential. In flow experiments with technetium the retardation was found to be dependent on the method used for reducing TcO 4 - . The preparation of the tracer solutions is crucial, as some of the redox-reactions may be very slow. The dynamics of the Tc(VII) reduction and also speciation need to be carried out in separate experiments. (4 illustrations, 5 tables)

  10. Apparatus for the measurement of radionuclide transport rates in rock cores

    International Nuclear Information System (INIS)

    Weed, H.C.; Koszykowski, R.F.; Dibley, L.L.; Murray, I.

    1981-09-01

    An apparatus and procedure for the study of radionuclide transport in intact rock cores are presented in this report. This equipment more closely simulates natural conditions of radionuclide transport than do crushed rock columns. The apparatus and the procedure from rock core preparation through data analysis are described. The retardation factors measured are the ratio of the transport rate of a non-retarded radionuclide, such as 3 H, to the transport rate of a retarded radionuclide. Sample results from a study of the transport of /sup 95m/Tc and 85 Sr in brine through a sandstone core are included

  11. Model for radionuclide transport in running waters

    International Nuclear Information System (INIS)

    Jonsson, Karin; Elert, Mark

    2005-11-01

    Two sites in Sweden are currently under investigation by SKB for their suitability as places for deep repository of radioactive waste, the Forsmark and Simpevarp/Laxemar area. As a part of the safety assessment, SKB has formulated a biosphere model with different sub-models for different parts of the ecosystem in order to be able to predict the dose to humans following a possible radionuclide discharge from a future deep repository. In this report, a new model concept describing radionuclide transport in streams is presented. The main difference from the previous model for running water used by SKB, where only dilution of the inflow of radionuclides was considered, is that the new model includes parameterizations also of the exchange processes present along the stream. This is done in order to be able to investigate the effect of the retention on the transport and to be able to estimate the resulting concentrations in the different parts of the system. The concentrations determined with this new model could later be used for order of magnitude predictions of the dose to humans. The presented model concept is divided in two parts, one hydraulic and one radionuclide transport model. The hydraulic model is used to determine the flow conditions in the stream channel and is based on the assumption of uniform flow and quasi-stationary conditions. The results from the hydraulic model are used in the radionuclide transport model where the concentration is determined in the different parts of the stream ecosystem. The exchange processes considered are exchange with the sediments due to diffusion, advective transport and sedimentation/resuspension and uptake of radionuclides in biota. Transport of both dissolved radionuclides and sorbed onto particulates is considered. Sorption kinetics in the stream water phase is implemented as the time scale of the residence time in the stream water probably is short in comparison to the time scale of the kinetic sorption. In the sediment

  12. Model for radionuclide transport in running waters

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Karin; Elert, Mark [Kemakta Konsult AB, Stockholm (Sweden)

    2005-11-15

    Two sites in Sweden are currently under investigation by SKB for their suitability as places for deep repository of radioactive waste, the Forsmark and Simpevarp/Laxemar area. As a part of the safety assessment, SKB has formulated a biosphere model with different sub-models for different parts of the ecosystem in order to be able to predict the dose to humans following a possible radionuclide discharge from a future deep repository. In this report, a new model concept describing radionuclide transport in streams is presented. The main difference from the previous model for running water used by SKB, where only dilution of the inflow of radionuclides was considered, is that the new model includes parameterizations also of the exchange processes present along the stream. This is done in order to be able to investigate the effect of the retention on the transport and to be able to estimate the resulting concentrations in the different parts of the system. The concentrations determined with this new model could later be used for order of magnitude predictions of the dose to humans. The presented model concept is divided in two parts, one hydraulic and one radionuclide transport model. The hydraulic model is used to determine the flow conditions in the stream channel and is based on the assumption of uniform flow and quasi-stationary conditions. The results from the hydraulic model are used in the radionuclide transport model where the concentration is determined in the different parts of the stream ecosystem. The exchange processes considered are exchange with the sediments due to diffusion, advective transport and sedimentation/resuspension and uptake of radionuclides in biota. Transport of both dissolved radionuclides and sorbed onto particulates is considered. Sorption kinetics in the stream water phase is implemented as the time scale of the residence time in the stream water probably is short in comparison to the time scale of the kinetic sorption. In the sediment

  13. RIVER-RAD, Radionuclide Transport in Surface Waters

    International Nuclear Information System (INIS)

    1996-01-01

    1 - Description of program or function: RIVER-RAD assesses the potential fate of radionuclides released to rivers. The model is simplified in nature and is intended to provide guidance in determining the potential importance of the surface water pathway, relevant transport mechanisms, and key radionuclides in estimating radiological dose to man. 2 - Method of solution: A compartmental linear transfer model is used in RIVER-RAD. The river system model in the code is divided into reaches (compartments) of equal size, each with a sediment compartment below it. The movement of radionuclides is represented by a series of transfers between the reaches, and between the water and sediment compartments of each reach. Within each reach (for both the water and sediment compartments), the radionuclides are assumed to be uniformly mixed. Upward volatilization is allowed from the water compartment, and the transfer of radionuclides between the reaches is determined by the flow rate of the river. Settling and resuspension velocities determine the transfer of absorbed radionuclides between the water and sediment compartments. Radioactive decay and decay-product buildup are incorporated into all transport calculations for all radionuclide chains specified by the user. Each nuclide may have unique input and removal rates. Volatilization and radiological decay are considered as linear rate constants in the model. 3 - Restrictions on the complexity of the problem: None noted

  14. Radionuclide transport in a single fissure

    International Nuclear Information System (INIS)

    Eriksen, T.E.

    1983-01-01

    Radionuclide migration have been studied in natural fissures orieted parallel to the axis of granite drill cores. A short pulse of the radionuclides solution was injected at one end of the fissure and the temporal change in radionuclide concentration of the eluate measured. After several hundred fissure volumes water had been pumped through the fissure following the radionuclide pulse the activity distribution on the fissure surfaces was measured. From the retardation of 152 Eu, 235 Np and 237 Pu it is concluded that these radionuclides are transported in the oxidation states Eu(III), Pu(IV) and Np(V). The distribution coefficients K sub (d) calculated from flow and activity distribution data on the basis of geometric surface area/volume ratios are of the same order as published K sub (d) values obtained from batch equilibrium experiments. (Author)

  15. A study on the radionuclide transport by bacteria in geologic media

    International Nuclear Information System (INIS)

    Han, Byoung Sub

    1997-02-01

    The purpose of this paper is to provide a methodology to develop a predictive model based on a conceptual three phase system and to investigate the influence of bacteria and their generation on the transport of radionuclide in porous and fractured media. The mass balance for bacteria, substrate and radionuclide were formulated. To illustrate the model simply, an equilibrium condition was assumed to partition the substrate, bacteria and radionuclide concentrations between the solid soil matrix, aqueous phase, rock matrix and bacterial surface. From the numerical calculation of the radionuclide transport in the presence of bacteria, it was found that the growth of bacteria and supplied primary substrate as limiting or stimulating growth factor of bacteria are the most important factors of the radionuclide transport. We also found that, depend on the transport of bacteria the temporal and spatial distribution of radionuclide concentration was significantly altered. The model proposed in this study will improve the evaluation of the role of the bacteria in the transport of radionuclide in groundwater systems. Furthermore, this model would be usefully utilized in analyzing the important role of colloidal particulate on the overall performance of radioactive waste safety

  16. Handling Interfaces and Time-varying Properties in Radionuclide Transport Models

    International Nuclear Information System (INIS)

    Robinson, Peter; Watson, Claire

    2010-12-01

    This report documents studies undertaken by Quintessa during 2010 in preparation for the SR-Site review that will be initiated by SSM in 2011. The studies relate to consequence analysis calculations, that is to the calculation of radionuclide release and transport if a canister is breached. A sister report documents modelling work undertaken to investigate the coupled processes relevant to copper corrosion and buffer erosion. The Q eq concept is an important part of SKB's current methodology for radionuclide transport using one-dimensional transport modelling; it is used in particular to model transport at the buffer/fracture interface. Quintessa's QPAC code has been used to investigate the Q eq approach and to explore the importance of heterogeneity in the fracture and spalling on the deposition hole surface. The key conclusions are that: - The basic approach to calculating Q eq values is sound and can be reproduced in QPAC. - The fracture resistance dominates over the diffusive resistance in the buffer except for the highest velocity cases. - Heterogeneity in the fracture, in terms of uncorrelated random variations in the fracture aperture, tends to reduce releases, so the use of a constant average aperture approach is conservative. - Narrow channels could lead to the same release as larger fractures with the same pore velocity, so a channel enhancement factor of √10 should be considered. - A spalling zone that increases the area of contact between flowing water and the buffer has the potential to increase the release significantly and changes the functional dependence of Q eq frac on the flowing velocity. Quintessa's AMBER software has previously been used to reproduce SKB's one-dimensional transport calculations and AMBER allows the use of time varying properties. This capability has been used to investigate the effects of glacial episodes on radionuclide transport. The main parameters that could be affected are sorption coefficients and flow rates. For both

  17. Handling Interfaces and Time-varying Properties in Radionuclide Transport Models

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Peter; Watson, Claire (Quintessa Ltd., Henley-on-Thames (United Kingdom))

    2010-12-15

    This report documents studies undertaken by Quintessa during 2010 in preparation for the SR-Site review that will be initiated by SSM in 2011. The studies relate to consequence analysis calculations, that is to the calculation of radionuclide release and transport if a canister is breached. A sister report documents modelling work undertaken to investigate the coupled processes relevant to copper corrosion and buffer erosion. The Q{sub eq} concept is an important part of SKB's current methodology for radionuclide transport using one-dimensional transport modelling; it is used in particular to model transport at the buffer/fracture interface. Quintessa's QPAC code has been used to investigate the Q{sub eq} approach and to explore the importance of heterogeneity in the fracture and spalling on the deposition hole surface. The key conclusions are that: - The basic approach to calculating Q{sub eq} values is sound and can be reproduced in QPAC. - The fracture resistance dominates over the diffusive resistance in the buffer except for the highest velocity cases. - Heterogeneity in the fracture, in terms of uncorrelated random variations in the fracture aperture, tends to reduce releases, so the use of a constant average aperture approach is conservative. - Narrow channels could lead to the same release as larger fractures with the same pore velocity, so a channel enhancement factor of sq root10 should be considered. - A spalling zone that increases the area of contact between flowing water and the buffer has the potential to increase the release significantly and changes the functional dependence of Q{sub eq}frac on the flowing velocity. Quintessa's AMBER software has previously been used to reproduce SKB's one-dimensional transport calculations and AMBER allows the use of time varying properties. This capability has been used to investigate the effects of glacial episodes on radionuclide transport. The main parameters that could be affected are

  18. Monitoring and characterization of radionuclide transport in the hydrogeologic system

    International Nuclear Information System (INIS)

    Phillips, S.J.; Raymond, J.R.

    1975-01-01

    Historical records pertaining to the 300 North and Wye Burial Grounds at the Hanford Reservation were reviewed as a prerequisite to determining programs for land reclamation. All available historical documents, agency communications, and engineering drawings related to the study areas were located, reviewed, and analyzed. An inventory of recorded location, type, and quantity of radionuclides and associated materials in each burial ground was completed and distributed to cooperating investigators. A geophysical survey of the 300 North Burial Ground was conducted as a basis for detecting the composition, size, distribution, and depth of buried objects and characterizing the sediments in which they are buried. Acoustic, radar, magnetic, and metal detection surveys were completed and their applicability evaluated; drilling techniques and equipment for recovering and characterizing sediments and radioactive contaminated material were developed. Drilling will also determine the amount and dimensional extent of radionuclide migration; sediment-fluid interaction and fluid migration through the unsaturated zone at the 300 North Burial Ground were characterized. A study to determine biological transport of radionuclides at the Wye Burial Ground was also initiated. This study involved a preliminary survey of present flora and fauna inhabiting the Wye Burial Ground site. Plant tissue was chemically and radiochemically analyzed to determine radionuclide migration and possible dose effects and population dynamics of burrowing animals that could potentially be exposed to buried waste materials were investigated

  19. RADIONUCLIDE TRANSPORT MODELS UNDER AMBIENT CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    S. Magnuson

    2004-11-01

    The purpose of this model report is to document the unsaturated zone (UZ) radionuclide transport model, which evaluates, by means of three-dimensional numerical models, the transport of radioactive solutes and colloids in the UZ, under ambient conditions, from the repository horizon to the water table at Yucca Mountain, Nevada.

  20. A review of the role of colloids in the release and transport of radionuclides in the near and far field. Pt. 3

    International Nuclear Information System (INIS)

    Tipping, E.; Higgo, J.J.W.

    1992-01-01

    The role of colloids in the release and transport of radionuclides in the near and far field is discussed and DOE and Nirex funded work is compared with relevant studies by other workers. Gaps in the DOE and Nirex programmes are identified and suggestions for further research are made. This is Part 3 of a three-part review. Part 1 reviews fundamental theory and DOE and Nirex funded work and Part 2 is a comprehensive bibliography (with abstracts). (Author)

  1. EOS7R: Radionuclide transport for TOUGH2

    International Nuclear Information System (INIS)

    Oldenburg, C.M.; Pruess, K.

    1995-11-01

    EOS7R provides radionuclide transport capability for TOUGH2. EOS7R extends the EOS7 module (water, brine, and optional air) to model water, brine, parent component, daughter component, and optional air and heat. The radionuclide components follow a first-order decay law, and may adsorb onto the solid grains. Volatilization of the decaying components is modeled by Henry's Law. The decaying components are normally referred to as radionuclides, but they may in fact by any trace components that decay, adsorb, and volatilize. The decay process need not be radioactive decay, but could be any process that follows a first-order decay law, such as biodegradation. EOS7R includes molecular diffusion for all components in gaseous and aqueous phases using a simplified binary diffusion model. When EOS7R is used with standard TOUGH2, transport occurs by advection and molecular diffusion in all phases. When EOS7R is coupled with the dispersion module T2DM, one obtains T2DMR, the radionuclide transport version of T2DM. T2DMR models advection, diffusion, and hydrodynamic dispersion in rectangular two-dimensional regions. Modeling of radionuclide transport requires input parameters specifying the half-life for first-order decay, distribution coefficients for each rock type for adsorption, and inverse Henry's constants for volatilization. Options can be specified in the input file to model decay in inactive grid blocks and to read from standard EOS7 INCON files. The authors present a number of example problems to demonstrate application and accuracy of TOUGH2/EOS7R. One-dimensional simulation results agree well with analytical solutions. For a two-dimensional salt-dome flow problem, the final distribution of daughter radionuclide component is complicated by the presence of weak recirculation caused by density effects due to salinity

  2. Fate and transport of radionuclides in soil-water environment. Review.

    Science.gov (United States)

    Konoplev, Aleksei

    2017-04-01

    The ease in which radionuclides move through the environment and are taken up by plants and animals is governed by their chemical forms and by site-specific environmental characteristics. The objective of this paper is to review basic mechanisms of the behavior of radiocesium and radiostrontium in the environment after the nuclear accident. Our understanding of radionuclide's speciation and migration processes seems to be adequate and explains similarities and differences of radiocesium (r-Cs) behavior in the environment after Fukushima and Chernobyl accidents. Climate and geographical conditions in Fukushima Prefecture of Japan and Chernobyl's near-field zone are obviously different. In particular, precipitation differs substantially, with the annual average for Fukushima being about 3 times higher than at Chernobyl. The landscapes and soils also differ significantly. What is more, the speciation of r-Cs in the releases was distinct (large fraction of radionuclides was deposited as fuel particles in 30-km zone around Chernobyl NPP, while in Fukushima radiocesium is mostly part of condensation particles including glassy hot particles). Radiocesium (r-Cs) in the environment is strongly bound to soil and sediment particles containing micaceous clay minerals (illite, vermiculite, etc.), which is associated with two basic processes - high selective reversible sorption and fixation. The r-Cs distribution coefficient Kd in Fukushima rivers was found to be 1-2 orders of magnitude higher than corresponding values for rivers and surface runoff of Chernobyl area. This is indicative of higher ability of Fukushima soils and sediments to bind r-Cs. Dissolved r-Cs wash-off for Fukushima river watersheds is essentially slower than those for Chernobyl. However, steeper slopes and higher precipitation in Fukushima area cause higher erosion and higher particulate r-Cs wash-off. For a comparable time after the accident the total r-Cs wash-off from contaminated catchments in Fukushima

  3. Natural analogue studies of the role of colloids, natural organics and microorganisms on radionuclide transport

    International Nuclear Information System (INIS)

    McCarthy, J.F.

    1994-01-01

    Colloids may be important as a geochemical transport mechanism for radionuclides at geological repositories if they are (1) present in the groundwater, (2) stable with respect to both colloidal and chemical stabilities, (3) capable of adsorbing radionuclides, especially if the sorption is irreversible, and (4) mobile in the subsurface. The available evidence from natural analogue and other field studies relevant to these issues is reviewed, as is the potential role of mobile microorganisms (open-quotes biocolloidsclose quotes) on radionuclide migration. Studies have demonstrated that colloids are ubiquitous in groundwater, although colloid concentrations in deep, geochemically stable systems may be too low to affect radionuclide transport. However, even low colloid populations cannot be dismissed as a potential concern because colloids appear to be stable, and many radionuclides that adsorb to colloids are not readily desorbed over long periods. Field studies offer somewhat equivocal evidence concerning colloid mobility and cannot prove or disprove the significance of colloid transport in the far-field environment. Additional research is needed at new sites to properly represent a repository far-field. Performance assessment would benefit from natural analogue studies to examine colloid behavior at sites encompassing a suite of probable groundwater chemistries and that mimic the types of formations selected for radioactive waste repositories

  4. A review of the role of colloids in the release and transport of radionuclides in the near and far field. Pt. 2

    International Nuclear Information System (INIS)

    Tipping, E.; Higgo, J.J.W.

    1992-01-01

    The role of colloids in the release/transport of radionuclides covers a range of scientific disciplines and there is a need for a comprehensive review that pulls together all the relevant research. A literature review has, therefore, been carried out and a bibliography prepared. Entries are in alphabetical (first author) order and abstracts are provided. This is part 2 of a three-part review. Part 1 reviews fundamental theory and DOE and NIREX funded work while Part 3 compares DOE and NIREX-funded work with the other published work and identifies gaps in the DOE and NIREX programmes. (Author)

  5. Fukushima Daiichi-Derived Radionuclides in the Ocean: Transport, Fate, and Impacts.

    Science.gov (United States)

    Buesseler, Ken; Dai, Minhan; Aoyama, Michio; Benitez-Nelson, Claudia; Charmasson, Sabine; Higley, Kathryn; Maderich, Vladimir; Masqué, Pere; Morris, Paul J; Oughton, Deborah; Smith, John N

    2017-01-03

    The events that followed the Tohoku earthquake and tsunami on March 11, 2011, included the loss of power and overheating at the Fukushima Daiichi nuclear power plants, which led to extensive releases of radioactive gases, volatiles, and liquids, particularly to the coastal ocean. The fate of these radionuclides depends in large part on their oceanic geochemistry, physical processes, and biological uptake. Whereas radioactivity on land can be resampled and its distribution mapped, releases to the marine environment are harder to characterize owing to variability in ocean currents and the general challenges of sampling at sea. Five years later, it is appropriate to review what happened in terms of the sources, transport, and fate of these radionuclides in the ocean. In addition to the oceanic behavior of these contaminants, this review considers the potential health effects and societal impacts.

  6. Development of TIGER code for radionuclide transport in a geochemically evolving region

    International Nuclear Information System (INIS)

    Mihara, Morihiro; Ooi, Takao

    2004-01-01

    In a transuranic (TRU) waste geological disposal facility, using cementitious materials is being considered. Cementitious materials will gradually dissolve in groundwater over the long-term. In the performance assessment report of a TRU waste repository in Japan already published, the most conservative radionuclide migration parameter set was selected considering the evolving cementitious material. Therefore, a tool to perform the calculation of radionuclide transport considering long-term geochemically evolving cementitious materials, named the TIGER code, Transport In Geochemically Evolving Region was developed to calculate a more realistic performance assessment. It can calculate radionuclide transport in engineered and natural barrier systems. In this report, mathematical equations of this code are described and validated with analytical solutions and results of other codes for radionuclide transport. The more realistic calculation of radionuclide transport for a TRU waste geological disposal system using the TIGER code could be performed. (author)

  7. PATHWAY: a simulation model of radionuclide-transport through agricultural food chains

    International Nuclear Information System (INIS)

    Kirchner, T.B.; Whicker, F.W.; Otis, M.D.

    1982-01-01

    PATHWAY simulates the transport of radionuclides from fallout through an agricultural ecosystem. The agro-ecosystem is subdivided into several land management units, each of which is used either for grazing animals, for growing hay, or for growing food crops. The model simulates the transport of radionuclides by both discrete events and continuous, time-dependent processes. The discrete events include tillage of soil, harvest and storage of crops,and deposition of fallout. The continuous processes include the transport of radionuclides due to resuspension, weathering, rain splash, percolation, leaching, adsorption and desorption of radionuclides in the soil, root uptake, foliar absorption, growth and senescence of vegetation, and the ingestion assimilation, and excretion of radionuclides by animals. Preliminary validation studies indicate that the model dynamics and simulated values of radionuclide concentrations in several agricultural products agree well with measured values when the model is driven with site specific data on deposition from world-wide fallout

  8. Development of a transportable system for radionuclide analysis

    International Nuclear Information System (INIS)

    Cunningham, W.C.; Anderson, D.L.; Lamont, W.H.; South, P.K.; Rury, M.A.; Beachley, G.M.; Ondov, J.M.

    2008-01-01

    Transportable radioanalytical systems were assembled and tested for quantitative determination of γ-emitting radionuclides and screening of β- emitting radionuclides. Standard operating procedures (SOPs), including instructions for assembly, disassembly, operation, sample collection and analysis, and all other procedures needed, were developed. Foods, as well as National Institute of Standards and Technology, International Atomic Energy Agency, and in-house Reference Materials were analyzed. An SOP for γ-emitting radionuclides was successfully tested at 3 locations. (author)

  9. Radionuclide transport behavior in a generic geological radioactive waste repository.

    Science.gov (United States)

    Bianchi, Marco; Liu, Hui-Hai; Birkholzer, Jens T

    2015-01-01

    We performed numerical simulations of groundwater flow and radionuclide transport to study the influence of several factors, including the ambient hydraulic gradient, groundwater pressure anomalies, and the properties of the excavation damaged zone (EDZ), on the prevailing transport mechanism (i.e., advection or molecular diffusion) in a generic nuclear waste repository within a clay-rich geological formation. By comparing simulation results, we show that the EDZ plays a major role as a preferential flowpath for radionuclide transport. When the EDZ is not taken into account, transport is dominated by molecular diffusion in almost the totality of the simulated domain, and transport velocity is about 40% slower. Modeling results also show that a reduction in hydraulic gradient leads to a greater predominance of diffusive transport, slowing down radionuclide transport by about 30% with respect to a scenario assuming a unit gradient. In addition, inward flow caused by negative pressure anomalies in the clay-rich formation further reduces transport velocity, enhancing the ability of the geological barrier to contain the radioactive waste. On the other hand, local high gradients associated with positive pressure anomalies can speed up radionuclide transport with respect to steady-state flow systems having the same regional hydraulic gradients. Transport behavior was also found to be sensitive to both geometrical and hydrogeological parameters of the EDZ. Results from this work can provide useful knowledge toward correctly assessing the post-closure safety of a geological disposal system. © 2014, National Ground Water Association.

  10. The effect of bacterial generation on the transport of radionuclide in porous media

    International Nuclear Information System (INIS)

    Han, B.S.; Lee, K.J.

    1997-01-01

    The purpose of this paper is to provide a methodology to develop a predictive model based on a conceptual three-phase system and to investigate the influence of bacteria and their generation on the radionuclide transport in porous media. The mass balance equations for bacteria, substrate and radionuclide were formulated. To illustrate the model simply, an equilibrium condition was assumed to partition the substrate, bacteria and radionuclide concentrations, between the solid soil matrix, aqueous phase and bacterial surface. From the numerical calculation of radionuclide transport in the presence of bacteria, it was found that the growth of bacterial and supplied primary substrate as a limiting or stimulating growth factor of bacteria are the most important factors of the radionuclide transport. It was also found that, depending on the transport of bacteria, the temporal and spatial distribution of the radionuclide concentration was significantly affected. The model proposed in this study will improve the evaluation of the role of the bacteria to the transport of radionuclide in groundwater systems. Furthermore, this model can be usefully utilized in analyzing the important role of colloidal particulate on the overall performance of radioactive waste safety. (Author)

  11. The vertical distribution of radionuclides in a Ribble Estuary saltmarsh: transport and deposition of radionuclides

    International Nuclear Information System (INIS)

    Brown, J.E.; McDonald, P.; Parker, A.; Rae, J.E.

    1999-01-01

    Routine discharges of low-level liquid radioactive waste by British Nuclear Fuels plc (BNFL) at Sellafield and Springfields have resulted in enhanced levels of radionuclides in sediments of the Ribble Estuary, NW England, UK. Variations in radionuclide concentrations ( 137 Cs, 230 Th, and 239240 Pu) with depth in a mature saltmarsh core were analysed in order to investigate historical discharge trends and waste-dispersal mechanisms. Core samples from Longton/Hutton Marsh were analysed by gamma-spectrometry and α-spectrometry for radionuclides and by laser granulometry to establish grain-size variations with depth. Distinct subsurface maxima were present for 137 Cs and 239240 Pu with activities as high as 4500 Bq kg -1 for 137 Cs and 600 Bq kg -1 for 239240 Pu. Thorium-230 exhibited complex activity profiles with depth, specific activities ranging between 200 and 2400 Bq kg -1 . The vertical distributions of Sellafield-derived radionuclides ( 137 Cs and 239240 Pu) in mature saltmarsh deposits reflect the time-integrated discharge pattern from Sellafield, implying a transport mechanism that has involved the mixing of sediment labelled with radioactivity from recent discharges and sediment labelled from historical discharge events before deposition. A mechanism involving the transport of contaminated silt therefore seems to dominate. The vertical distribution of Springfields-derived 230 Th in the same areas reflects the annual gross-α discharge pattern from BNFL Springfields. In contrast to the Sellafield-derived radionuclides, a fairly rapid transport mechanism from source to sink is implied, with little or no time for mixing with radionuclides discharged years earlier. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. SCATTER: Source and Transport of Emplaced Radionuclides: Code documentation

    International Nuclear Information System (INIS)

    Longsine, D.E.

    1987-03-01

    SCATTER simulated several processes leading to the release of radionuclides to the site subsystem and then simulates transport via the groundwater of the released radionuclides to the biosphere. The processes accounted for to quantify release rates to a ground-water migration path include radioactive decay and production, leaching, solubilities, and the mixing of particles with incoming uncontaminated fluid. Several decay chains of arbitrary length can be considered simultaneously. The release rates then serve as source rates to a numerical technique which solves convective-dispersive transport for each decay chain. The decay chains are allowed to have branches and each member can have a different radioactive factor. Results are cast as radionuclide discharge rates to the accessible environment

  13. A model for radionuclide transport in the Cooling Water System

    International Nuclear Information System (INIS)

    Kahook, S.D.

    1992-08-01

    A radionuclide transport model developed to assess radiological levels in the K-reactor Cooling Water System (CWS) in the event of an inadvertent process water (PW) leakage to the cooling water (CW) in the heat exchangers (HX) is described. During and following a process water leak, the radionuclide transport model determines the time-dependent release rates of radionuclide from the cooling water system to the environment via evaporation to the atmosphere and blow-down to the Savannah River. The developed model allows for delay times associated with the transport of the cooling water radioactivity through cooling water system components. Additionally, this model simulates the time-dependent behavior of radionuclides levels in various CWS components. The developed model is incorporated into the K-reactor Cooling Tower Activity (KCTA) code. KCTA allows the accident (heat exchanger leak rate) and the cooling tower blow-down and evaporation rates to be described as time-dependent functions. Thus, the postulated leak and the consequence of the assumed leak can be modelled realistically. This model is the first of three models to be ultimately assembled to form a comprehensive Liquid Pathway Activity System (LPAS). LPAS will offer integrated formation, transport, deposition, and release estimates for radionuclides formed in a SRS facility. Process water and river water modules are forthcoming as input and downstream components, respectively, for KCTA

  14. CASCADER: An M-chain gas-phase radionuclide transport and fate model

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Emer, D.F.; Shott, G.J.; Donahue, M.E.

    1993-02-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes through advection and diffusion. Furthermore, parent and daughter radionuclides may decay as they are transported in the soil. CASCADER is a gas-phase, one-space dimensional transport and fate model for M-chain radionuclides in very dry homogeneous or heterogeneous soil. This model contains barometric pressure-induced advection and diffusion together with linear irreversible and linear reversible sorption for each radionuclide. The advection velocity is derived from an embedded air-pumping submodel. The air-pumping submodel is based on an assumption of isothermal conditions, which is driven by barometric pressure. CASCADER allows the concentration of source radionuclides to decay via the classical Bateman chain of simple, first-order kinetic processes. The transported radionuclides also decay via first-order processes while in the soil. A mass conserving, flux-type inlet and exit set of boundary conditions are used. The user must supply the initial distribution for the parent radionuclide in the soil. The initial daughter distribution is found using equilibrium rules. The model is user friendly as it uses a prompt-driven, free-form input. The code is ANSI standard Fortran 77

  15. CASCADER: An m-chain gas-phase radionuclide transport and fate model

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Emer, D.F.; Shott, G.J.; Donahue, M.E.

    1992-06-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes as they are advected and/or dispersed. Furthermore, parent and daughter radionuclides may decay as they are transported in the soil. CASCADER is a gas-phase, one space dimensional transport and fate model for an m-chain of radionuclides in very dry soil. This model contains barometric pressure-induced advection and diffusion together with linear irreversible and linear reversible sorption for each radionuclide. The advocation velocity is derived from an embedded air-pumping submodel. The airpumping submodel is based on an assumption of isothermal conditions and is barometric pressure driven. CASCADER allows the concentration of source radionuclides to decay via the classical Bateman chain of simple, first-order kinetic processes. The transported radionuclides also decay via first-order processes while in the soil. A mass conserving, flux-type inlet and exit set of boundary conditions is used. The user must supply the initial distribution for the parent radionuclide in the soil. The initial daughter distribution is found using equilibrium rules. The model is user friendly as it uses a prompt-driven, free-form input. The code is ANSI standard Fortran 77

  16. Review of SR-Can: Evaluation of SKB's handling of spent fuel performance, radionuclide chemistry and geosphere transport parameters. External review contribution in support of SKI's and SSI's review of SR-Can

    International Nuclear Information System (INIS)

    Stenhouse, Mike; Jegou, Christophe; Brown, Paul; Meinrath, Guenther; Nitsche, Heino; Ekberg, Christian

    2008-03-01

    SR-Can covers the containment phase of the KBS-3 barriers as well as the consequences of releases of radionuclides to the rock and eventually the biosphere (after complete containment within fuel canisters has partially failed). The aim of this report is to provide a range of review comments with respect to those parameters related to spent fuel performance as well as radionuclide chemistry and transport. These parameter values are used in the quantification of consequences due to release of radionuclides from potentially leaking canisters. The report does not cover modelling approaches used for quantification of consequences. However, modelling used to derive parameter values is to some extent addressed (such as calculation of maximum radionuclide concentration due to formation of solubility limiting phases). The following are the key highlights and comments generated in the course of the review: Inconsistencies exist between recommendations provided in technical reports and those quoted in the Data Report. One of the reasons for such inconsistencies has been the timing of different pieces of research. It is hoped that the timing of contributions to SR-Site will be such that these inconsistencies can be avoided. Sensitivity analyses need to be carried out and reported in a number of areas to support some of the assumptions or decisions made in the assessment calculations. The likelihood is that SKB has performed many of the sensitivity analyses identified in different parts of this report, but these need to be reported, preferably to complement the recommendations provided

  17. Hydrologic transport of radionuclides from low-level waste burial grounds

    International Nuclear Information System (INIS)

    Duguid, J.O.

    1979-01-01

    The physical characteristics of the virgin site and of the disturbed site after burial drastically affect the transport of radionuclides from buried waste. The disturbance of the land surface during the waste burial operation causes changes in the local ground-water regimen. These changes can increase the water table elevation and cause the occurrence of perched water in burial trenches. The combination of these changes may lead to submersion of the waste and to increased radionuclide transport from the burial site in both surface and groundwater. Factors such as ion exchange can retard or in some cases, with competing ions, can also mobilize radionuclides and increase their discharge into ground and surface water. Because of complexing agents (organics) contained in the waste, increased mobility of some radionuclides can be expected. The chemical form of radionuclides in the water, the ground-water quality, and the chemistry of the geologic formation in which the waste is buried all influence the movement of radionuclides in the hydrologic system. For the assessment of the environmental impact of low-level waste burial, models capable of simulating both the chemical and the physical factors that affect hydrologic transport must be available. Several models for conducting such simulation are presently available. However, the input parameters used in these models are highly variable; and the accuracy of parameter measurement must be considered in evaluating the reliability of simulated results

  18. A meshless approach to radionuclide transport calculations

    International Nuclear Information System (INIS)

    Perko, J.; Sarler, B.

    2005-01-01

    Over the past thirty years numerical modelling has emerged as an interdisciplinary scientific discipline which has a significant impact in engineering and design. In the field of numerical modelling of transport phenomena in porous media, many commercial codes exist, based on different numerical methods. Some of them are widely used for performance assessment and safety analysis of radioactive waste repositories and groundwater modelling. Although they proved to be an accurate and reliable tool, they have certain limitations and drawbacks. Realistic problems often involve complex geometry which is difficult and time consuming to discretize. In recent years, meshless methods have attracted much attention due to their flexibility in solving engineering and scientific problems. In meshless methods the cumbersome polygonization of calculation domain is not necessary. By this the discretization time is reduced. In addition, the simulation is not as discretization density dependent as in traditional methods because of the lack of polygon interfaces. In this work fully meshless Diffuse Approximate Method (DAM) is used for calculation of radionuclide transport. Two cases are considered; First 1D comparison of 226 Ra transport and decay solved by the commercial Finite Volume Method (FVM) and Finite Element Method (FEM) based packages and DAM. This case shows the level of discretization density dependence. And second realistic 2D case of near-field modelling of radionuclide transport from the radioactive waste repository. Comparison is made again between FVM based code and DAM simulation for two radionuclides: Long-lived 14 C and short-lived 3 H. Comparisons indicate great capability of meshless methods to simulate complex transport problems and show that they should be seriously considered in future commercial simulation tools. (author)

  19. Radionuclide Transport Models Under Ambient Conditions

    International Nuclear Information System (INIS)

    Moridis, G.; Hu, Q.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada. This is in accordance with the ''AMR Development Plan U0060, Radionuclide Transport Models Under Ambient Conditions'' (CRWMS M and O 1999a). This AMR supports the UZ Flow and Transport Process Model Report (PMR). This AMR documents the UZ Radionuclide Transport Model (RTM). This model considers: the transport of radionuclides through fractured tuffs; the effects of changes in the intensity and configuration of fracturing from hydrogeologic unit to unit; colloid transport; physical and retardation processes and the effects of perched water. In this AMR they document the capabilities of the UZ RTM, which can describe flow (saturated and/or unsaturated) and transport, and accounts for (a) advection, (b) molecular diffusion, (c) hydrodynamic dispersion (with full 3-D tensorial representation), (d) kinetic or equilibrium physical and/or chemical sorption (linear, Langmuir, Freundlich or combined), (e) first-order linear chemical reaction, (f) radioactive decay and tracking of daughters, (g) colloid filtration (equilibrium, kinetic or combined), and (h) colloid-assisted solute transport. Simulations of transport of radioactive solutes and colloids (incorporating the processes described above) from the repository horizon to the water table are performed to support model development and support studies for Performance Assessment (PA). The input files for these simulations include transport parameters obtained from other AMRs (i.e., CRWMS M and O 1999d, e, f, g, h; 2000a, b, c, d). When not available, the parameter values used are obtained from the literature. The results of the simulations are used to evaluate the transport of radioactive solutes and colloids, and

  20. Radionuclide transport as vapor through unsaturated fractured rock

    International Nuclear Information System (INIS)

    Green, R.T.

    1986-01-01

    The objective of this study is to identify and examine potential mechanisms of radionuclide transport as vapor at a high-level radioactive waste repository located in unsaturated fractured rock. Transport mechanisms and processes have been investigated near the repository and at larger distances. Transport mechanisms potentially important at larger distances include ordinary diffusion, viscous flow and free convection. Ordinary diffusion includes self and binary diffusion, Knudsen flow and surface diffusion. Pressure flow and slip flow comprise viscous flow. Free convective flow results from a gas density contrast. Transport mechanisms or processes dominant near the repository include ordinary diffusion, viscous flow plus several mechanisms whose driving forces arise from the non-isothermal, radioactive nature of high-level waste. The additional mechanisms include forced diffusion, aerosol transport, thermal diffusion and thermophoresis. Near a repository vapor transport mechanisms and processes can provide a significant means of transport from a failed canister to the geologic medium from which other processes can transport radionuclides to the accessible environment. These issues are believed to be important factors that must be addressed in the assessment of specific engineering designs and site selection of any proposed HLW repository

  1. Hydrologic transport of radionuclides from low-level waste burial grounds

    International Nuclear Information System (INIS)

    Duguid, J.O.

    1977-01-01

    The physical characteristics of the virgin site and of the disturbed site after burial drastically affect the transport of radionuclides from buried waste. The disturbance of the land surface during the waste burial operation causes changes in the local ground-water regimen. These changes can increase the water table elevation and cause the occurrence of perched water in burial trenches. The combination of these changes may lead to submersion of the waste and to increased radionuclide transport from the burial site in both surface and ground water. Factors such as ion exchange can retard or in some cases, with competing ions, can also mobilize radionuclides and increase their discharge into ground and surface water. Because of complexing agents (organics) contained in the waste, increased mobility of some radionuclides can be expected. The chemical form of radionuclides in the water, the ground-water quality, and the chemistry of the geologic formation in which the waste is buried all influence the movement of radionuclides in the hydrologic system. For the assessment of the environmental impact of low-level waste burial, models capable of simulating both the chemical and the physical factors that affect hydrologic transport must be available. Several models for conducting such simulation are presently available. However,the input parameters used in these models are highly variable, and the accuracy of parameter measurement must be considered in evaluating the reliability of simulated results

  2. Speciation and transport of radionuclides in ground water

    International Nuclear Information System (INIS)

    Robertson, D.E.; Toste, A.P.; Abel, K.H.; Cowan, C.E.; Jenne, E.A.; Thomas, C.W.

    1984-01-01

    Studies of the chemical speciation of a number of radionuclides migrating in a slightly contaminated ground water plume are identifying the most mobile species and providing an opportunity to test and/or validate geochemical models of radionuclide transport in ground waters. Results to date have shown that most of the migrating radionuclides are present in anionic or nonionic forms. These include anionic forms of 55 Fe, 60 Co, /sup 99m/Tc, 106 Ru, 131 I, and nonionic forms of 63 Ni and 125 Sb. Strontium-70 and a small fraction of the mobile 60 Co are the only cationic radionuclides which have been detected moving in the ground water plume beyond 30 meters from the source. A comparison of the observed chemical forms with the predicted species calculated from modeling thermodynamic data and ground water chemical parameters has indicated a good agreement for most of the radioelements in the system, including Tc, Np, Cs, Sr, Ce, Ru, Sb, Zn, and Mn. The discrepancies between observed and calculated solutions species were noted for Fe, Co, Ni and I. Traces of Fe, Co, and Ni were observed to migrate in anionic or nonionic forms which the calculations failed to predict. These anionic/nonionic species may be organic complexes having enhanced mobility in ground waters. The radioiodine, for example, was shown to behave totally as an anion but further investigation revealed that 49-57% of this anionic iodine was organically bound. The ground water and aqueous extracts of trench sediments contain a wide variety of organic compounds, some of which could serve as complexing agents for the radionuclides. These results indicate the need for further research at a variety of field sites in defining precisely the chemical forms of the mobile radionuclide species, and in better understanding the role of dissolved organic materials in ground water transport of radionuclides

  3. Colloid-Facilitated Transport of Radionuclides Through The Vadose Zone

    International Nuclear Information System (INIS)

    Markus Flury; James B. Harsh; John F. McCarthy' Peter C. Lichtner; John M. Zachara

    2007-01-01

    The main purpose of this project was to advance the basic scientific understanding of colloid and colloid-facilitated Cs transport of radionuclides in the vadose zone. We focused our research on the hydrological and geochemical conditions beneath the leaking waste tanks at the USDOE Hanford reservation. Specific objectives were (1) to determine the lability and thermodynamic stability of colloidal materials, which form after reacting Hanford sediments with simulated Hanford Tank Waste, (2) to characterize the interactions between colloidal particles and contaminants, i.e., Cs and Eu, (3) to determine the potential of Hanford sediments for in situ mobilization of colloids, (4) to evaluate colloid-facilitated radionuclide transport through sediments under unsaturated flow, (5) to implement colloid-facilitated contaminant transport mechanisms into a transport model, and (6) to improve conceptual characterization of colloid-contaminant-soil interactions and colloid-facilitated transport for clean-up procedures and long-term risk assessment

  4. Transport and accumulation of radionuclides in soil

    International Nuclear Information System (INIS)

    Frissel, M.J.; Jakubick, A.T.; Kernforschungszentrum Karlsruhe G.m.b.H.

    1979-01-01

    The movement of radioactive isotopes through the water phase of soils is by far the most important. Most of the water-transported radioactive isotopes (radionuclides) occur via their dissolved salts, while the rest is carried by small soil particles to which the radionuclides are adsorbed. In the case of many chemicals, it is possible to calculate the movement or migration through soil from adsorption measurements made in the laboratory and from knowledge of the flow pattern of soil water. With increasing complexity of the chemical-soil-water system predictions become more uncertain. In the case of radionuclides the amounts expressed in units of weight are extremely small. This renders terms such as 'soluble' or 'insoluble' inapplicable. In these cases transport of 'radiocolloids' and adsorbed particles as 'insoluble' compounds may be more significant. For fallout strontium and cesium reliable predictive models have been developed. For fallout plutonium such models are under development. For calculations or predictions of the migration of radioactive material from deep soil layers to the soil surface fewer mathematical models are available. Many laboratory studies cannot yet be made due to lack of suitable soil samples from the sites under study. Nevertheless safety studies already carried out in a preliminary way are reliable, since factos such as adsorption of radionuclides on soils are neglected; consequently most safety studies overestimate possible risks. Further studies are required to ascertain how 'pessimistic' are the present safety criteriy. (orig./MG) [de

  5. Simulation of radionuclide transport in U.S. agriculture

    International Nuclear Information System (INIS)

    Sharp, R.D.; Baes, C.F. III.

    1982-01-01

    Because of the recent concern about the impact of energy technologies on man and related health effects, there has emerged a need for models to calculate or predict the effects of radionuclides on man. A general overview is presented of a model that calculates the ingrowth of radionuclides into man's food chain. The FORTRAN IV computer program TERRA, Transport of Environmentally Released Radionuclides in Agriculture, simulates the build-up of radionuclides in soil, four plant food compartments, in meat and milk from beef, and in the livestock food compartments that cause radionuclide build-up in milk and meat from beef. A large data set of spatially oriented parameters has been developed in conjunction with TERRA. This direct-access data set is called SITE, Specific Information on the Terrestrial Environment, and contains 35 parameters for each of 3525 half-degree longitude-latitude cells which define the lower 48 states. TERRA and SITE are used together as a package for determining radionuclide concentrations in man's food anywhere within the conterminous 48 states due to atmospheric releases

  6. RADIONUCLIDE DISPERSION RATES BY AEOLIAN, FLUVIAL, AND POROUS MEDIA TRANSPORT

    International Nuclear Information System (INIS)

    Walton, J.; Goodell, P.; Brashears, C.; French, D.; Kelts, A.

    2005-01-01

    Radionuclide transport was measured from high grade uranium ore boulders near the Nopal I Site, Chihuahua, Mexico. High grade uranium ore boulders were left behind after removal of a uranium ore stockpile at the Prior High Grade Stockpile (PHGS). During the 25 years when the boulder was present, radionuclides were released and transported by sheetflow during precipitation events, wind blown resuspension, and infiltration into the unsaturated zone. In this study, one of the boulders was removed, followed by grid sampling of the surrounding area. Measured gamma radiation levels in three dimensions were used to derive separate dispersion rates by the three transport mechanisms

  7. RADIONUCLIDE DISPERSION RATES BY AEOLIAN, FLUVIAL, AND POROUS MEDIA TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    J. Walton; P. Goodell; C. Brashears; D. French; A. Kelts

    2005-07-11

    Radionuclide transport was measured from high grade uranium ore boulders near the Nopal I Site, Chihuahua, Mexico. High grade uranium ore boulders were left behind after removal of a uranium ore stockpile at the Prior High Grade Stockpile (PHGS). During the 25 years when the boulder was present, radionuclides were released and transported by sheetflow during precipitation events, wind blown resuspension, and infiltration into the unsaturated zone. In this study, one of the boulders was removed, followed by grid sampling of the surrounding area. Measured gamma radiation levels in three dimensions were used to derive separate dispersion rates by the three transport mechanisms.

  8. Radionuclide transport and retardation in tuff

    International Nuclear Information System (INIS)

    Vine, E.N.; Bayhurst, B.P.; Daniels, W.R.; DeVilliers, S.J.; Erdal, B.R.; Lawrence, F.O.; Wolfsberg, K.

    1980-01-01

    Batch measurements provide an understanding of which experimental variables are important. For example, sorption ratios vary little with particle size (and surface area); however, groundwater composition and rock composition are quite important. A general correlation has been identified between mineralogy (major phases) and degree of sorption for strontium, cesium, and barium. Although these are approximate, a more detailed analysis may be possible as more samples are studied and the data base increased. Data from crushed tuff columns indicate that, except in simple cases where sorption coefficients are relatively low, and ion-exchange equilibria not only exist but are the dominant mechanism for removal of radioisotopes from solution, the simple relation between the sorption ratio R/sub d/ (or K/sub d/) and the relative velocity of radionuclides with respect to groundwater velocity may be insufficient to permit accurate modeling of the retardation of radionuclides. Additional work on whole core columns and larger blocks of intact material is required to better understand radionuclide sorption and transport through rock

  9. Transport of radionuclides in the atmosphere during complex meteorological conditions

    International Nuclear Information System (INIS)

    Antic, D.; Telenta, B.

    1991-01-01

    Radionuclides from various sources (nuclear and fossil fuel power plants, nuclear facilities, medical facilities, etc.) are being released to the atmosphere. The meteorological conditions determine the atmospheric turbulence, dispersion, and removal processes of the radionuclides. A two-dimensional version of the cloud model based on the Klemp-Wilhelmson dynamic and Lin et al.'s microphysics and thermodynamics has been adapted and used to simulate the transport of radionuclides emitted from a power plant or other source to the atmosphere. Calculations of the trajectories and radii for a few puffs are included in this paper. These numerical investigations show that the presented model can be used for the transport simulation of radionuclides and for the assessment of the radiological impact of power plants and other sources in safety assessments and comparative studies. Because it can simulate puff trajectories, this model is especially valuable in the presence of complex meteorological conditions

  10. The separation of radionuclide migration by solution and particle transport in LLRW repository buffer material

    International Nuclear Information System (INIS)

    Torok, J.; Buckley, L.P.; Woods, B.L.

    1989-01-01

    Laboratory-scale lysimeter experiments were performed with simulated waste forms placed in candidate buffer materials which have been chosen for a low-level radioactive waste repository. Radionuclide releases into the effluent water and radionuclide capture by the buffer material were determined. The results could not be explained by traditional solution transport mechanisms, and transport by particles released from the waste form and/or transport by buffer particles were suspected as the dominant mechanism for radionuclide release from the lysimeters. To elucidate the relative contribution of particle and solution transport, the waste forms were replaced by a wafer of neutron-activated buffer soaked with selected soluble isotopes. Particle transport was determined by the movement of gamma-emitting neutron-activation products through the lysimeter. Solution transport was quantified by comparing the migration of soluble radionuclides relative to the transport of neutron activation products. The new approach for monitoring radionuclide migration in soil is presented. It facilitates the determination of most of the fundamental coefficients required to model the transport process

  11. Bioturbation as a mechanism for radionuclide transport in soil: relevance of earthworms

    International Nuclear Information System (INIS)

    Mueller-Lemans, H.; Dorp, F. van

    1996-01-01

    In the context of safety analyses performed for radioactive waste repositories, one important group of scenarios assumes that radionuclides escaping from a repository will reach the biosphere via groundwater. Consequently, when calculating radionuclide migration in the biosphere, most of the models used to date concentrate on transport in the liquid phase. In the soil, however, transport in the solid phase can also be important, particularly when burrowing animals displace the soil together with sorbed and low-solubility radionuclides. Given the conditions prevailing in agricultural areas of central Europe, it is mainly earthworms which play a significant role in material displacement and these will be the subject of this report. A numerical example is used to present the equations which, for given distribution coefficients, can be applied to calculate the portions of the transfer coefficient which can be attributed to transport in the liquid and solid phases. The results demonstrate that material transport by soil fauna, and particularly by earthworms, is a relevant mechanism in many cases, especially for the upward transport of strongly sorbing radionuclides. It should therefore be considered in biosphere models. (Author)

  12. Influence of fracture networks on radionuclide transport from solidified waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Seetharam, S.C., E-mail: suresh.seetharam@sckcen.be [Performance Assessments Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, B-2400 Mol (Belgium); Perko, J.; Jacques, D. [Performance Assessments Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, B-2400 Mol (Belgium); Mallants, D. [CSIRO Land and Water, Waite Road – Gate 4, Glen Osmond, SA 5064 (Australia)

    2014-04-01

    Highlights: • Magnitude of peak radionuclide fluxes is less sensitive to the fracture network geometry. • Time of peak radionuclide fluxes is sensitive to the fracture networks. • Uniform flow model mimics a limiting case of a porous medium with large number of fine fractures. • Effect of fracture width on radionuclide flux depends on the ratio of fracture to matrix conductivity. • Effect of increased dispersivity in fractured media does not always result in a lower peak flux for specific fracture networks due to higher concentrations adjacent to the fracture plane. - Abstract: Analysis of the effect of fractures in porous media on fluid flow and mass transport is of great interest in many fields including geotechnical, petroleum, hydrogeology and waste management. This paper presents sensitivity analyses examining the effect of various hypothetical fracture networks on the performance of a planned near surface disposal facility in terms of radionuclide transport behaviour. As it is impossible to predict the initiation and evolution of fracture networks and their characteristics in concrete structures over time scales of interest, several fracture networks have been postulated to test the sensitivity of radionuclide release from a disposal facility. Fluid flow through concrete matrix and fracture networks are modelled via Darcy's law. A single species radionuclide transport equation is employed for both matrix and fracture networks, which include the processes advection, diffusion, dispersion, sorption/desorption and radioactive decay. The sensitivity study evaluates variations in fracture network configuration and fracture width together with different sorption/desorption characteristics of radionuclides in a cement matrix, radioactive decay constants and matrix dispersivity. The effect of the fractures is illustrated via radionuclide breakthrough curves, magnitude and time of peak mass flux, cumulative mass flux and concentration profiles. For the

  13. Influence of fracture networks on radionuclide transport from solidified waste forms

    International Nuclear Information System (INIS)

    Seetharam, S.C.; Perko, J.; Jacques, D.; Mallants, D.

    2014-01-01

    Highlights: • Magnitude of peak radionuclide fluxes is less sensitive to the fracture network geometry. • Time of peak radionuclide fluxes is sensitive to the fracture networks. • Uniform flow model mimics a limiting case of a porous medium with large number of fine fractures. • Effect of fracture width on radionuclide flux depends on the ratio of fracture to matrix conductivity. • Effect of increased dispersivity in fractured media does not always result in a lower peak flux for specific fracture networks due to higher concentrations adjacent to the fracture plane. - Abstract: Analysis of the effect of fractures in porous media on fluid flow and mass transport is of great interest in many fields including geotechnical, petroleum, hydrogeology and waste management. This paper presents sensitivity analyses examining the effect of various hypothetical fracture networks on the performance of a planned near surface disposal facility in terms of radionuclide transport behaviour. As it is impossible to predict the initiation and evolution of fracture networks and their characteristics in concrete structures over time scales of interest, several fracture networks have been postulated to test the sensitivity of radionuclide release from a disposal facility. Fluid flow through concrete matrix and fracture networks are modelled via Darcy's law. A single species radionuclide transport equation is employed for both matrix and fracture networks, which include the processes advection, diffusion, dispersion, sorption/desorption and radioactive decay. The sensitivity study evaluates variations in fracture network configuration and fracture width together with different sorption/desorption characteristics of radionuclides in a cement matrix, radioactive decay constants and matrix dispersivity. The effect of the fractures is illustrated via radionuclide breakthrough curves, magnitude and time of peak mass flux, cumulative mass flux and concentration profiles. For the

  14. Transient simulation and sensitivity analysis for transport of radionuclides in a saturated-unsaturated groundwater flow system

    International Nuclear Information System (INIS)

    Chen, H.H.

    1980-01-01

    Radionuclide transport by groundwater flow is an important pathway in the assessment of the environmental impact of radioactive waste disposal to the biosphere. A numerical model was developed to simulate radionuclide transport by groundwater flow and predict the radionuclide discharge rate to the biosphere. A sensitivity analysis methodology was developed to address the sensitivity of the input parameters of the radionuclide transport equation to the specified response of interest

  15. MIGFRAC - a code for modelling of radionuclide transport in fracture media

    International Nuclear Information System (INIS)

    Satyanarayana, S.V.M.; Mohankumar, N.; Sasidhar, P.

    2002-05-01

    Radionuclides migrate through diffusion process from radioactive waste disposal facilities into fractures present in the host rock. The transport phenomenon is aided by the circulating ground waters. To model the transport of radionuclides in the charnockite rock formations present at Kalpakkam, a numerical code - MIGFRAC has been developed at SHINE Group, IGCAR. The code has been subjected to rigorous tests and the results of the build up of radionuclide concentrations are validated with a test case up to a distance of 100 meter along the fracture. The report discusses the model, code features and the results obtained up to a distance of 400 meter are presented. (author)

  16. ITE CHARACTERIZATION TO SUPPORT CONCEPTUAL MODEL DEVELOPMENT FOR SUBSURFACE RADIONUCLIDE TRANSPORT

    Science.gov (United States)

    Remediation of radionuclide contaminants in ground water often begins with the development of conceptual and analytical models that guide our understanding of the processes controlling radionuclide transport. The reliability of these models is often predicated on the collection o...

  17. Sediment-associated transport and redistribution of Chernobyl fallout radionuclides

    International Nuclear Information System (INIS)

    Walling, D.E.; Rowan, J.S.; Bradley, S.B.

    1989-01-01

    Fallout of Chernobyl-derived radionuclides over the United Kingdom evidenced marked spatial variation. Relatively high levels were recorded in central Wales, but they declined rapidly to the east. As a result the headwaters of the River Severn received significant inputs of fallout, whereas only low levels were recorded over the middle and lower reaches. Measurements of the caesium-137 content of suspended sediment transported by the River Severn and of channel and floodplain sediments collected from various locations within the basin have been used to assess the importance of fluvial transport and redistribution of Chernobyl-derived radionuclides. High concentrations of caesium-137 (up to 1450 mBqg -1 ) were recorded in suspended sediment collected from the lower reaches of the river shortly after the Chernobyl incident and substantial accumulations of Chernobyl-derived radionuclides have been detected in floodplain and channel sediments collected from areas which received only low levels of fallout directly. (author)

  18. Transport of radionuclides by concentrated brine in a porous medium with micropore-macropore structure

    International Nuclear Information System (INIS)

    Hassanizadeh, S.M.

    1987-01-01

    This work concerns itself with the study of effects of soil aggregation and high salt concentrations on the transport of radionuclides by concentrated brine flowing through an aggregated porous medium. The medium is considered to be composed of porous rock aggregates separated by macropores through which the brine flows and transport of salt and radionuclides takes place. The aggregates contain dead-end pores, cracks, and stationary pockets collectively called micropores. The micropore space does not contribute to the flow, but it serves as a storage for salt and radionuclides. Adsorption of radionuclides takes place at internal surfaces of aggregates where they assume that a linear equilibrium isotherm describes the process. A one-dimensional numerical model is developed which is based on two sets of equations: one set for the flow and transport of salt and another set for transport of radionuclides. Results of numerical experiments clearly indicate that the existence of high salt concentrations markedly reduces the peak of nuclides concentration and slows down their movement. Also, it is found that diffusive mass exchange between macropores and aggregates results in a pronounced lowering of the radionuclides concentration peaks. 9 references, 7 figures

  19. Analysis of radionuclide transport through fissured porous media with a perturbation method

    Energy Technology Data Exchange (ETDEWEB)

    Banat, M [JGC Corp., Tokyo (Japan)

    1995-04-01

    This paper presents a specific procedure for obtaining solutions for the transport of radionuclides in a fissured porous media. The concentration profiles are deduced for a wide range of Peclet numbers using a perturbation method with a multiscale of time. Results show clearly that because of an increase of longitudinal dispersion, the radionuclide moves faster with respect to the case of zero dispersion (i.e. an infinite Peclet number). The main purpose of this paper is to demonstrate the practical advantage of the present calculation method with respect to the classical numerical and analytical methods used for radionuclide transport. (author).

  20. Field studies of radionuclide transport at the Chalk River Laboratories

    International Nuclear Information System (INIS)

    Champ, D.R.; Killey, R.W.D.; Moltyaner, G.L.

    1991-01-01

    In this paper the authors summarize the results of: in situ field column experiments to study the transport behaviour of several long-lived radionuclides, 4 natural gradient non-reactive radiotracer injection experiments at the Chalk River Laboratories (CRL) Twin Lake Tracer Test Site, and a model validation study that used data for 90 Sr from two well-defined contaminated groundwater flow systems at CRL. The paper also describes a current re-evaluation of radionuclide release and transport from a 1960 experimental burial (in a CRL sand aquifer) of glass blocks containing fission and activation products. (J.P.N.)

  1. The RADionuclide Transport, Removal, and Dose (RADTRAD) code

    International Nuclear Information System (INIS)

    Miller, L.A.; Chanin, D.I.; Lee, J.

    1993-01-01

    The RADionuclide Transport, Removal, And Dose (RADTRAD) code is designed for US Nuclear Regulatory Commission (USNRC) use to calculate the radiological consequences to the offsite population and to control room operators following a design-basis accident at Light Water Reactor (LWR) power plants. This code utilizes updated reactor accident source terms published in draft NUREG-1465, ''Accident Source Terms for Light-Water Nuclear Power Plants.'' The code will track the transport of radionuclides as they are released from the reactor pressure vessel, travel through the primary containment and other buildings, and are released to the environment. As the radioactive material is transported through the primary containment and other buildings, credit for several removal mechanisms may be taken including sprays, suppression pools, overlying pools, filters, and natural deposition. Simple models are available for these different removal mechanisms that use, as input, information about the conditions in the plant and predict either a removal coefficient (λ) or decontamination factor. The user may elect to use these models or input a single value for a removal coefficient or decontamination factor

  2. Mathematical Basis and Test Cases for Colloid-Facilitated Radionuclide Transport Modeling in GDSA-PFLOTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-31

    This report provides documentation of the mathematical basis for a colloid-facilitated radionuclide transport modeling capability that can be incorporated into GDSA-PFLOTRAN. It also provides numerous test cases against which the modeling capability can be benchmarked once the model is implemented numerically in GDSA-PFLOTRAN. The test cases were run using a 1-D numerical model developed by the author, and the inputs and outputs from the 1-D model are provided in an electronic spreadsheet supplement to this report so that all cases can be reproduced in GDSA-PFLOTRAN, and the outputs can be directly compared with the 1-D model. The cases include examples of all potential scenarios in which colloid-facilitated transport could result in the accelerated transport of a radionuclide relative to its transport in the absence of colloids. Although it cannot be claimed that all the model features that are described in the mathematical basis were rigorously exercised in the test cases, the goal was to test the features that matter the most for colloid-facilitated transport; i.e., slow desorption of radionuclides from colloids, slow filtration of colloids, and equilibrium radionuclide partitioning to colloids that is strongly favored over partitioning to immobile surfaces, resulting in a substantial fraction of radionuclide mass being associated with mobile colloids.

  3. Idaho radionuclide exposure study: Literature review

    International Nuclear Information System (INIS)

    Baker, E.G.; Freeman, H.D.; Hartley, J.N.

    1987-10-01

    Phosphate ores contain elevated levels of natural radioactivity, some of which is released to the environment during processing or use of solid byproducts. The effect of radionuclides from Idaho phosphate processing operations on the local communities has been the subject of much research and study. The literature is reviewed in this report. Two primary radionuclide pathways to the environment have been studied in detail: (1) airborne release of volatile radionuclides, primarily 210 Po, from calciner stacks at the two elemental phosphorus plants; and (2) use of byproduct slag as an aggregate for construction in Soda Springs and Pocatello. Despite the research, there is still no clear understanding of the population dose from radionuclide emissions, effluents, and solid wastes from phosphate processing plants. Two other potential radionuclide pathways to the environment have been identified: radon exhalation from phosphogypsum and ore piles and contamination of surface and ground waters. Recommendations on further study needed to develop a data base for a complete risk assssment are given in the report

  4. Alligator Rivers Analogue project. Radionuclide transport. Final Report - Volume 14

    International Nuclear Information System (INIS)

    Golian, C.; Lever, D.A.; Baker, A.J.; Connell, L.D.; Bennett, D.G.; Read, D.; Lindgreen, M.; Pers, K.; Skagius, K.; Murakami, T.; Ohnuki, T.

    1992-01-01

    The Koongarra orebody and its associated dispersion fan are examined as a geological analogue for the transport of radionuclides from waste repositories. The aim is to build a consistent picture of the transport that has been taking place in the orebody and the important processes controlling the retardation of uranium series isotopes and to test models of radionuclide transport. A particularly distinctive feature of the Koongarra system is the strong seasonal dependence of the groundwater flow. However, the Koongarra system is similar to a radioactive waste disposal system in that mobilization of uranium is taking place as a result of the infiltration of groundwaters that are in gross chemical disequilibrium with the mineralogy of the primary ore body. There are considerable differences between the Koongarra uranium orebody and a radioactive waste repository, particularly a deep waste repository. The Koongarra system is shallow, affected by seasonal hydrogeological changes as well as climatic variations on a longer timescale and transport is taking place in a zone of active weathering. Some of these features make the Koongarra system harder to characterise than a deep repository. However, there are nevertheless many analogies between the processes occurring at Koongarra and those occurring around a deep or shallow waste repository. The difficulties encountered because of the heterogeneity of the Koongarra weathered zone mirror those to be addressed in assessing radionuclide transport in repository systems. The 234 U/ 238 U activity ratios in rock samples from the dispersion fan decrease in the direction of groundwater transport, whereas in many other systems it has been reported that 234 U is preferentially mobile relative to 238 U (Osmond and Cowart, 1982; Osmond et al., 1983). As most uranium resides in the rock rather than in the groundwater, the net recoil flux of uranium daughter radionuclides is usually from the rock to the groundwater, thus leading to ( 234

  5. Alligator Rivers Analogue project. Radionuclide transport. Final Report - Volume 14

    Energy Technology Data Exchange (ETDEWEB)

    Golian, C [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Lever, D A; Baker, A J; Connell, L D [AEA Decommissioning and Radwaste, Harwell (United Kingdom); Bennett, D G; Read, D [WS Atkins Science and Technology Epsom Surrey (United Kingdom); Lindgreen, M; Pers, K; Skagius, K [Kemakta Consultants co., Stockholm (Sweden); Murakami, T; Ohnuki, T [Japan Atomic Energy Research Institute, Tokai-mura, IBARAKI (Japan)

    1993-12-31

    The Koongarra orebody and its associated dispersion fan are examined as a geological analogue for the transport of radionuclides from waste repositories. The aim is to build a consistent picture of the transport that has been taking place in the orebody and the important processes controlling the retardation of uranium series isotopes and to test models of radionuclide transport. A particularly distinctive feature of the Koongarra system is the strong seasonal dependence of the groundwater flow. However, the Koongarra system is similar to a radioactive waste disposal system in that mobilization of uranium is taking place as a result of the infiltration of groundwaters that are in gross chemical disequilibrium with the mineralogy of the primary ore body. There are considerable differences between the Koongarra uranium orebody and a radioactive waste repository, particularly a deep waste repository. The Koongarra system is shallow, affected by seasonal hydrogeological changes as well as climatic variations on a longer timescale and transport is taking place in a zone of active weathering. Some of these features make the Koongarra system harder to characterise than a deep repository. However, there are nevertheless many analogies between the processes occurring at Koongarra and those occurring around a deep or shallow waste repository. The difficulties encountered because of the heterogeneity of the Koongarra weathered zone mirror those to be addressed in assessing radionuclide transport in repository systems. The {sup 234}U/{sup 238}U activity ratios in rock samples from the dispersion fan decrease in the direction of groundwater transport, whereas in many other systems it has been reported that {sup 234}U is preferentially mobile relative to {sup 238}U (Osmond and Cowart, 1982; Osmond et al., 1983). As most uranium resides in the rock rather than in the groundwater, the net recoil flux of uranium daughter radionuclides is usually from the rock to the groundwater

  6. Alligator Rivers Analogue project. Radionuclide transport. Final Report - Volume 14

    Energy Technology Data Exchange (ETDEWEB)

    Golian, C. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Lever, D.A.; Baker, A.J.; Connell, L.D. [AEA Decommissioning and Radwaste, Harwell (United Kingdom); Bennett, D.G.; Read, D. [WS Atkins Science and Technology Epsom Surrey (United Kingdom); Lindgreen, M.; Pers, K.; Skagius, K. [Kemakta Consultants co., Stockholm (Sweden); Murakami, T.; Ohnuki, T. [Japan Atomic Energy Research Institute, Tokai-mura, IBARAKI (Japan)

    1992-12-31

    The Koongarra orebody and its associated dispersion fan are examined as a geological analogue for the transport of radionuclides from waste repositories. The aim is to build a consistent picture of the transport that has been taking place in the orebody and the important processes controlling the retardation of uranium series isotopes and to test models of radionuclide transport. A particularly distinctive feature of the Koongarra system is the strong seasonal dependence of the groundwater flow. However, the Koongarra system is similar to a radioactive waste disposal system in that mobilization of uranium is taking place as a result of the infiltration of groundwaters that are in gross chemical disequilibrium with the mineralogy of the primary ore body. There are considerable differences between the Koongarra uranium orebody and a radioactive waste repository, particularly a deep waste repository. The Koongarra system is shallow, affected by seasonal hydrogeological changes as well as climatic variations on a longer timescale and transport is taking place in a zone of active weathering. Some of these features make the Koongarra system harder to characterise than a deep repository. However, there are nevertheless many analogies between the processes occurring at Koongarra and those occurring around a deep or shallow waste repository. The difficulties encountered because of the heterogeneity of the Koongarra weathered zone mirror those to be addressed in assessing radionuclide transport in repository systems. The {sup 234}U/{sup 238}U activity ratios in rock samples from the dispersion fan decrease in the direction of groundwater transport, whereas in many other systems it has been reported that {sup 234}U is preferentially mobile relative to {sup 238}U (Osmond and Cowart, 1982; Osmond et al., 1983). As most uranium resides in the rock rather than in the groundwater, the net recoil flux of uranium daughter radionuclides is usually from the rock to the groundwater

  7. Radionuclide transport report for the safety assessment SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    This document compiles radionuclide transport calculations of a KBS-3 repository for the safety assessment SR-Site. The SR-Site assessment supports the licence application for a final repository at Forsmark, Sweden

  8. Uncertainties in geologic disposal of high-level wastes - groundwater transport of radionuclides and radiological consequences

    International Nuclear Information System (INIS)

    Kocher, D.C.; Sjoreen, A.L.; Bard, C.S.

    1983-01-01

    The analysis for radionuclide transport in groundwater considers models and methods for characterizing (1) the present geologic environment and its future evolution due to natural geologic processes and to repository development and waste emplacement, (2) groundwater hydrology, (3) radionuclide geochemistry, and (4) the interactions among these phenomena. The discussion of groundwater transport focuses on the nature of the sources of uncertainty rather than on quantitative estimates of their magnitude, because of the lack of evidence that current models can provide realistic quantitative predictions of radionuclide transport in groundwater for expected repository environments. The analysis for the long-term health risk to man following releases of long-lived radionuclides to the biosphere is more quantitative and involves estimates of uncertainties in (1) radionuclide concentrations in man's exposure environment, (2) radionuclide intake by exposed individuals per unit concentration in the environment, (3) the dose per unit intake, (4) the number of exposed individuals, and (5) the health risk per unit dose. For the important long-lived radionuclides in high-level waste, uncertainties in most of the different components of a calculation of individual and collective dose per unit release appear to be no more than two or three orders of magnitude; these uncertainties are certainly much less than uncertainties in predicting groundwater transport of radionuclides between a repository and the biosphere. Several limitations in current models for predicting the health risk to man per unit release to the biosphere are discussed

  9. Radionuclide transport in the repository near-field and far-field

    International Nuclear Information System (INIS)

    Poteri, A.; Nordman, H.; Pulkkanen, V.-M.; Smith, P.

    2014-01-01

    This report is a background report of the TURVA-2012 safety case report 'Assessment of Radionuclide Release Scenarios for the Repository System'. This report gives a comprehensive account of the modelling of radionuclide release from a defective canister and the subsequent migration to the surface groundwater system. The focus of this report is in the radionuclide migration both in the repository near-field and in the repository far-field. Radionuclide releases from the canister and migration through the repository near-field and far-field have also been analysed in the probabilistic sensitivity analysis based on the Monte Carlo simulation method. Those simulations are discussed in a separate report by Cormenzana. Calculation cases are derived from three different types of scenarios: (i) The base scenario that assumes a single initially defective canister located in a cautiously selected canister position, i.e. selecting the failed canister location such that radionuclide release and transport properties are conservative compared to the statistics over all canister locations. Migration processes and parameter values follow the most likely lines of evolution. Repository safety functions are assumed to perform according to the design basis. Calculation cases defined in the Assessment of Radionuclide Release Scenarios report are also supplemented by additional calculation cases that are aimed to study variability between different DFN realisations (additional BS-ALL cases), longitudinal dispersion (BS-RC-ld cases) and alternative realisations of the transport classes along the release paths (BS-RC-tc cases), (ii) Variant scenarios that study declined performance of the repository safety functions. These include enhanced corrosion failure and degradation of the buffer under variant geochemical conditions (iii) Disturbance scenarios that analyse influences of unlikely events on the radionuclide release and migration. Analysis of the variant and disturbance scenarios

  10. A study on the radionuclide transport through fractured porous media based on the network resistance model

    International Nuclear Information System (INIS)

    Hwang, Ki Ha

    2000-02-01

    Before the actual construction of radioactive waste repository, analysis of radionuclide transport is required to predict the radiological effect on public and environment. Many models have been developed to predict the realistic radionuclide transport through the repository. In this study, Network Resistance Model (NRM) that is similar to electrical circuit network is adopted to simulate the radionuclide transport. NRM assume the media of repository as the resistance of the radionuclide transport and describes the transport phenomena of radionuclide by connecting the resistance as network. NRM is easy to apply to describe complex system and take less calculation time compared to the other model. The object of this study is to develop the fast, simple and efficient calculation method to simulate the radionuclide with the newly adopted concept using network resistance. New system configuration specially focused on rock edge region is introduced by dividing the rock matrix. By dividing the rock edge from the main rock matrix region, the rock edge region is more carefully analyzed and compared. Rock edge region can accelerate radionuclide transport due to the reducing effect on the total resistivity of rock matrix. Therefore, increased radioactive dose is expected when we apply NRM methodology in the performance assessment of the repository. Result of the performance assessment can be more conservative and reliable. NRM can be applied to other system configuration and for more complex pathways. NRM is simple to us e and easy to modify than any other modeling method

  11. Review of SR-Can: Evaluation of SKB's handling of spent fuel performance, radionuclide chemistry and geosphere transport parameters. External review contribution in support of SKI's and SSI's review of SR-Can

    Energy Technology Data Exchange (ETDEWEB)

    Stenhouse, Mike (Monitor Scientific LLC, Denver, CO (US)); Jegou, Christophe (Commissariat a l' Energie Atomique (CEA) (FR)); Brown, Paul (Geochem Australia (AU)); Meinrath, Guenther (RER Consultants, Passau (DE)); Nitsche, Heino (Univ. of California, Berkeley (US)); Ekberg, Christian (Chalmers University of Technology (SE))

    2008-03-15

    SR-Can covers the containment phase of the KBS-3 barriers as well as the consequences of releases of radionuclides to the rock and eventually the biosphere (after complete containment within fuel canisters has partially failed). The aim of this report is to provide a range of review comments with respect to those parameters related to spent fuel performance as well as radionuclide chemistry and transport. These parameter values are used in the quantification of consequences due to release of radionuclides from potentially leaking canisters. The report does not cover modelling approaches used for quantification of consequences. However, modelling used to derive parameter values is to some extent addressed (such as calculation of maximum radionuclide concentration due to formation of solubility limiting phases). The following are the key highlights and comments generated in the course of the review: Inconsistencies exist between recommendations provided in technical reports and those quoted in the Data Report. One of the reasons for such inconsistencies has been the timing of different pieces of research. It is hoped that the timing of contributions to SR-Site will be such that these inconsistencies can be avoided. Sensitivity analyses need to be carried out and reported in a number of areas to support some of the assumptions or decisions made in the assessment calculations. The likelihood is that SKB has performed many of the sensitivity analyses identified in different parts of this report, but these need to be reported, preferably to complement the recommendations provided

  12. Monitoring and characterization of radionuclide transport in the hydrogeologic system

    International Nuclear Information System (INIS)

    Phillips, S.J.; Raymond, J.R.

    1975-01-01

    The groundwater monitoring program provides information and data on groundwater quality required to evaluate the impact of waste disposal practices on the Hanford Reservation. The program includes: collection and analysis of groundwater samples on a routine basis; data processing, analysis and reporting; design, construction and maintenance of well sampling structures; and design and implementation of supporting research studies. Within the overall framework of the Groundwater Monitoring Program, the 300 Area and Wye Burial Ground Characterization Program was initiated to evaluate transport of radionuclides in the partially saturated zone above the water table and to provide site characterization at solid waste burial locations on the Reservation. Methods for collecting and analyzing program data include geophysical exploration by ground penetrating radar, refraction and reflection acoustics, magnetics, and metal detection; stratigraphic investigations by drilling and sample collection techniques; evaluation of transport phenomena by in situ psychrometric and gamma-neutron techniques; laboratory characterization of fluid and vapor transport-controlling mechanisms; and evaluation of biological radionuclide transport by organisms inhabiting contaminated areas

  13. The Influence of Fractures on Radionuclide Transport in Granite Formations

    International Nuclear Information System (INIS)

    Guarracino, Luis; Quintana, Fernando; Bevilacqua, Arturo

    2003-01-01

    Simulation of radionuclide transport in fractured hard rocks is of interest to many research areas like geological disposal of high-level nuclear wastes.The objective of this study is to present a numerical simulation of water flow and radionuclide transport near a hypothetical repository in deep geological formations.The water flow is assumed to obey the highly nonlinear Richards' equation, which is approximated using a finite element method for the spatial discretization combined with a third order accurate Crank-Nicholson scheme in time.A Picard iteration scheme is used to treat the non-linear terms of the equation.Contaminant transport is described by the advection-diffusion-reaction equation, assuming linear adsorption and first order decay.This equation is solved using a Sub Grid Scale algorithm.Illustrative examples showing the influence of fractures in the contaminant process for different radioisotopes are presented

  14. Theoretical background and user's manual for the computer code on groundwater flow and radionuclide transport calculation in porous rock

    International Nuclear Information System (INIS)

    Shirakawa, Toshihiko; Hatanaka, Koichiro

    2001-11-01

    In order to document a basic manual about input data, output data, execution of computer code on groundwater flow and radionuclide transport calculation in heterogeneous porous rock, we investigated the theoretical background about geostatistical computer codes and the user's manual for the computer code on groundwater flow and radionuclide transport which calculates water flow in three dimension, the path of moving radionuclide, and one dimensional radionuclide migration. In this report, based on above investigation we describe the geostatistical background about simulating heterogeneous permeability field. And we describe construction of files, input and output data, a example of calculating of the programs which simulates heterogeneous permeability field, and calculates groundwater flow and radionuclide transport. Therefore, we can document a manual by investigating the theoretical background about geostatistical computer codes and the user's manual for the computer code on groundwater flow and radionuclide transport calculation. And we can model heterogeneous porous rock and analyze groundwater flow and radionuclide transport by utilizing the information from this report. (author)

  15. Chancellor Water Colloids: Characterization and Radionuclide Associated Transport

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-26

    Column transport experiments were conducted in which water from the Chancellor nuclear test cavity was transported through crushed volcanic tuff from Pahute Mesa. In one experiment, the cavity water was spiked with solute 137Cs, and in another it was spiked with 239/240Pu(IV) nanocolloids. A third column experiment was conducted with no radionuclide spike at all, although the 137Cs concentrations in the water were still high enough to quantify in the column effluent. The radionuclides strongly partitioned to natural colloids present in the water, which were characterized for size distribution, mass concentration, zeta potential/surface charge, critical coagulation concentration, and qualitative mineralogy. In the spiked water experiments, the unanalyzed portion of the high-concentration column effluent samples were combined and re-injected into the respective columns as a second pulse. This procedure was repeated again for a third injection. Measurable filtration of the colloids was observed after each initial injection of the Chancellor water into the columns, but the subsequent injections (spiked water experiments only) exhibited no apparent filtration, suggesting that the colloids that remained mobile after relatively short transport distances were more resistant to filtration than the initial population of colloids. It was also observed that while significant desorption of 137Cs from the colloids occurred after the first injection in both the spiked and unspiked waters, subsequent injections of the spiked water exhibited much less 137Cs desorption (much greater 137Cs colloid-associated transport). This result suggests that the 137Cs that remained associated with colloids during the first injection represented a fraction that was more strongly adsorbed to the mobile colloids than the initial 137Cs associated with the colloids. A greater amount of the 239/240

  16. Radionuclide transport through heteogeneous media

    International Nuclear Information System (INIS)

    Hadermann, J.

    1980-01-01

    One-dimensional radionuclide migration for conevective water transport with sorption and longitudinal dispersion is investigated. A semianalytic solution for layered media with piecewise constant parametes can be written when taking into account mass conservation and approximate flux conservation at interlayer boundaries. The solution is analytic in the first layer and allows for a recursive calculation in the following layers. Scaling laws for the relevant parameters can be formulated. Numerical examples exhibit the importance of at least a single highly sorbing layer. Small values of dispersivity may not lead to a conservative estimate of conservation at the geological column's end

  17. Effects of bedrock fractures on radionuclide transport near a vertical deposition hole for spent nuclear fuel

    International Nuclear Information System (INIS)

    Pulkkanen, V.-M.; Nordman, H.

    2011-12-01

    Effects of bedrock fractures on radionuclide transport near a vertical deposition hole for spent nuclear fuel are studied computationally. The studied fractures are both natural and excavation damage fractures. The emphasis is on the detailed modelling of geometry in 3D in contrast to the traditional radionuclide transport studies that often concentrate on chain decays, sorption, and precipitation at the expense of the geometry. The built computer model is used to assess the significance of components near a deposition hole for radionuclide transport and to estimate the quality of previously used modelling techniques. The results show nearly exponential decrease of radionuclide mass in the bentonite buffer when the release route is a thin natural fracture. The results also imply that size is the most important property of the tunnel section for radionuclide transport. In addition, the results demonstrate that the boundary layer theory can be used to approximate the release of radionuclides with certain accuracy and that a thin fracture in rock can be modelled, at least to a certain limit, by using a fracture with wider aperture but with same flow rate as the thin fracture. (orig.)

  18. Development and testing of radionuclide transport models for fractured crystalline rock. An overview of the Nagra/JNC radionuclide retardation programme

    International Nuclear Information System (INIS)

    Ota, Kunio; Alexander, W.R.

    2001-01-01

    The joint Nagra/JNC radionuclide Retardation Programme has now been ongoing for more thean 10 years with the main aim of direct testing of radionuclide transport models for fractured crystalline rocks in as realistic a manner as possible. A large programme of field, laboratory and natural analogue studies has been carried out at the Grimsel Test Site in the central Swiss Alps. The understanding and modelling of both the processes and the structures influencing radionuclide transport in fractured crystalline rocks have matured as has the experimental technology, which has contributed to develop confidence in the applicability of the underlying research models in a repository performance assessment. In this report, the successes and set-backs of this programme are discussed as is the general approach to the thorough testing of the process models and of model assumptions. (author)

  19. Assessment of the important radionuclides in nuclear waste

    International Nuclear Information System (INIS)

    Kerrisk, J.F.

    1985-10-01

    The relative importance of the various radionuclides contained in nuclear waste has been assessed by consideration of (1) the quantity of each radionuclide present, (2) the Environmental Protection Agency's release limits for radionuclides, (3) how retardation processes such as solubility and sorption affect radionuclie transport, and (4) the physical and chemical forms of radionuclides in the waste. Three types of waste were reviewed: spent fuel, high-level waste, and defense high-level waste. Conditions specific to the Nevada Nuclear Waste Storage Investigations project potential site at Yucca Mountain were used to describe radionuclide transport. The actinides Am, Pu, Np, and U were identified as the waste elements for which solubility and sorption data were most urgently needed. Other important waste elements were identified as Sr, Cs, C, Ni, Zr, Tc, Th, Ra, and Sn. Under some conditions, radionuclides of three elements (C, Tc, and I) may have high solubility and negligible sorption. The potential for transport of some waste elements (C and I) in the gas phase must also be evaluated for the Yucca Mountain Site. 12 refs., 17 tabs

  20. Effects of macropores on groundwater flow and transport of radionuclides

    International Nuclear Information System (INIS)

    Huff, D.D.; DeAngelis, D.L.; Yeh, G.T.

    1983-01-01

    In humid environments, recent findings have shown that an important component of runoff and associated solute moves rapidly through large continuous voids. Thus, consideration of radionuclide transport in subsurface flow is incomplete without explicit treatment of continuous macropores and interaction between macropore flow and the soil matrix. A computer model, FRACPORT, that simulates the transport of a solute through a fractured porous matrix has been developed. The model employs the Integrated Compartment Method and uses the approach of dividing the porous media into compartments comprising fractures or porous material. The fracture region and a small portion of the porous matrix are simulated using a shorter time step than for the remaining porous matrix. This allows substantial savings in computational time. The model should be useful for analyses of generic problems associated with water and radionuclide transport in macropore systems at shallow-land disposal sites in humid environments. 14 references, 6 figures, 1 table

  1. Quantification of glacial effects on radionuclide transport: transport sensitivity studies for SKI's SITE-94

    International Nuclear Information System (INIS)

    King-Clayton, L.M.; Smith, P.A.; Dverstorp, B.

    1996-01-01

    Site-scale radionuclide transport calculations have been carried out for a hypothetical deep repository at the Aespoe site, southeast Sweden. The work complements and utilizes results from regional-scale, variable density flow modelling in which the groundwater flow field is time-dependent, reflecting the impact of climate evolution over the next 130,000 years at the site. The climate evolution and its impacts are qualitatively described in the Central Climate Change Scenario, which specifies a hypothetical evolution of the local climate over the period modelled, including the periodic development of permafrost conditions and ice sheet advance and retreat. The work summarised here is complementary to the transport calculations undertaken as part of the SKI SITE-94 performance assessment project, with the specific objective of quantifying the impact of transient changes in flow direction and magnitude. The spatial evolution of 79 Se and 129 I contaminant plumes, released from the hypothetical repository under the influence of time-dependent (step-wise varying) head boundary conditions associated with ice sheet and permafrost development, is compared with that of a steady-state Base Case based on continuing present-day conditions. The results indicate that temporal changes in flow conditions due to future climate changes can have a significant effect on the transport of radionuclides from a source at depth. A case with high sub-ice sheet recharge and taliks (ie. gaps in the permafrost), creating groundwater fluxes up to an order of magnitude greater than the Base Case, has the greatest impact on radionuclide flux out of the geosphere, with a maximum 79 Se flux of over three orders of magnitude greater than that of the Base Case. The maximum 129 I flux is nearer one order of magnitude greater than the Base Case. In all cases modelled with time dependent boundary conditions, the greatest radionuclide fluxes occur towards the end of the main glacial periods (periods

  2. Transport of Gas Phase Radionuclides in a Fractured, Low-Permeability Reservoir

    Science.gov (United States)

    Cooper, C. A.; Chapman, J.

    2001-12-01

    The U.S. Atomic Energy Commission (predecessor to the Department of Energy, DOE) oversaw a joint program between industry and government in the 1960s and 1970s to develop technology to enhance production from low-permeability gas reservoirs using nuclear stimulation rather than conventional means (e.g., hydraulic and/or acid fracturing). Project Rio Blanco, located in the Piceance Basin, Colorado, was the third experiment under the program. Three 30-kiloton nuclear explosives were placed in a 2134 m deep well at 1780, 1899, and 2039 m below the land surface and detonated in May 1973. Although the reservoir was extensively fractured, complications such as radionuclide contamination of the gas prevented production and subsequent development of the technology. Two-dimensional numerical simulations were conducted to identify the main transport processes that have occurred and are currently occurring in relation to the detonations, and to estimate the extent of contamination in the reservoir. Minor modifications were made to TOUGH2, the multiphase, multicomponent reservoir simulator developed at Lawrence Berkeley National Laboratories. The simulator allows the explicit incorporation of fractures, as well as heat transport, phase change, and first order radionuclide decay. For a fractured two-phase (liquid and gas) reservoir, the largest velocities are of gases through the fractures. In the gas phase, tritium and one isotope of krypton are the principle radionuclides of concern. However, in addition to existing as a fast pathway, fractures also permit matrix diffusion as a retardation mechanism. Another retardation mechanism is radionuclide decay. Simulations show that incorporation of fractures can significantly alter transport rates, and that radionuclides in the gas phase can preferentially migrate upward due to the downward gravity drainage of liquid water in the pores. This project was funded by the National Nuclear Security Administration, Nevada Operations Office

  3. Assessment of hydrologic transport of radionuclides from the Rio Blanco underground nuclear test site, Colorado

    International Nuclear Information System (INIS)

    Chapman, J.; Earman, S.; Andricevic, R.

    1996-10-01

    DOE is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations used for nuclear testing. Evaluation of radionuclide transport by groundwater is part of preliminary risk analysis. These evaluations allow prioritization of test areas in terms of risk, provide a basis for discussions with regulators and the public about future work, and provide a framework for assessing site characterization data needs. The Rio Blanco site in Colorado was the location of the simultaneous detonation of three 30-kiloton nuclear devices. The devices were located 1780, 1899, and 2039 below ground surface in the Fort Union and Mesaverde formations. Although all the bedrock formations at the site are thought to contain water, those below the Green River Formation (below 1000 in depth) are also gas-bearing, and have very low permeabilities. The transport scenario evaluated was the migration of radionuclides from the blast-created cavity through the Fort Union Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. This modeling was performed to investigate how the uncertainty in various physical parameters affect radionuclide transport at the site, and to serve as a starting point for discussion regarding further investigation; it was not intended to be a definitive simulation of migration pathways or radionuclide concentration values. Given the sparse data, the modeling results may differ significantly from reality. Confidence in transport predictions can be increased by obtaining more site data, including the amount of radionuclides which would have been available for transport (i.e., not trapped in melt glass or vented during gas flow testing), and the hydraulic properties of the formation. 38 refs., 6 figs., 1 tab

  4. GIS Modelling of Radionuclide Transport from the Semipalatinsk Test Site

    Science.gov (United States)

    Balakay, L.; Zakarin, E.; Mahura, A.; Baklanov, A.; Sorensen, J. H.

    2009-04-01

    In this study, the software complex GIS-project MigRad (Migration of Radionuclide) was developed, tested and applied for the territory of the Semipalatinsk test site/ polygon (Republic of Kazakhstan), where since 1961, in total 348 underground nuclear explosions were conducted. The MigRad is oriented on integration of large volumes of different information (mapping, ground-based, and satellite-based survey): and also includes modeling on its base local redistribution of radionuclides by precipitation and surface waters and by long-range transport of radioactive aerosols. The existing thermal anomaly on territory of the polygon was investigated in details, and the object-oriented analysis was applied for the studied area. Employing the RUNOFF model, the simulation of radionuclides migration with surface waters was performed. Employing the DERMA model, the simulation of long-term atmospheric transport, dispersion and deposition patterns for cesium was conducted from 3 selected locations (Balapan, Delegen, and Experimental Field). Employing geoinformation technology, the mapping of the of the high temperature zones and epicenters of radioactive aerosols transport for the territory of the test site was carried out with post-processing and integration of modelling results into GIS environment. Contamination levels of pollution due to former nuclear explosions for population and environment of the surrounding polygon territories of Kazakhstan as well as adjacent countries were analyzed and evaluated. The MigRad was designed as instrument for comprehensive analysis of complex territorial processes influenced by former nuclear explosions on the territory of Semipalatinsk test site. It provides possibilities in detailed analyses for (i) extensive cartographic material, remote sensing, and field measurements data collected in different level databases; (ii) radionuclide migration with flows using accumulation and redistribution of soil particles; (iii) thermal anomalies

  5. Evaluating biological transport of radionuclides at low-level waste burial sites

    International Nuclear Information System (INIS)

    Cadwell, L.L.; Kennedy, W.E.; McKenzie, D.H.

    1983-08-01

    The purpose of the work reported here is to develop and demonstrate methods for evaluating the long-term impact of biological processes at low-level waste (LLW) disposal sites. As part of this effort, we developed order-of-magnitude estimates of dose-to-man resulting from animal burrowing activity and plant translocation of radionuclides. Reference low-level waste sites in both arid and humid areas of the United States were examined. The results of our evaluation for generalized arid LLW burial site are presented here. Dose-to-man estimates resulting from biotic transport are compared with doses calculated from human intrusion exposure scenarios. Dose-to-man estimates, as a result of biotic transport, are of the same order of magnitude as those resulting from a more commonly evaluated human intrusion scenario. The reported lack of potential importance of biotic transport at LLW sites in earlier assessment studies is not confirmed by our findings. These results indicate that biotic transport has the long-term potential to mobilize radionuclides. Therefore, biotic transport should be carefully evaluated during burial site assessment

  6. Fundamental approach to the analysis of radionuclide transport resulting from fluid flow through jointed media

    International Nuclear Information System (INIS)

    Erickson, K.L.

    1981-02-01

    A theoretical and experimental basis is being developed for analysis of radionuclide transport in jointed geologic media. Batch equilibration and rate experiments involving samples of Eleana argillite and Tertiary silicic tuffs in contact with solutions containing Cs, Sr or Pm indicated that most radionuclide sorption is associated with the surfaces of very small intergranular regions and that the rate of sorption is controlled by diffusion of the nuclides into such regions. Based on these experimental results, the continuity equations for radionuclides in the mobile and immobile phases were reduced to a model analogous to Rosen's equations for packed beds and were solved similarly to Rosen's solutions. Using the model and experimental data, limited radionuclide transport analyses were made which indicated that important parameters controlling transport include the intergranular porosity and nuclide penetration depth, fracture plate spacing and length, fluid velocity, and sorption distribution coefficient

  7. Sorption-capacity limited retardation of radionuclides transport in water-saturated packing materials

    International Nuclear Information System (INIS)

    Pescatore, C.; Sullivan, T.

    1984-01-01

    Radionuclides breakthrough times as calculated through constant retardation factors obtained in dilute solutions are non-conservative. The constant retardation approach regards the solid as having infinite sorption capacity throughout the solid. However, as the solid become locally saturated, such as in the proximity of the waste form-packing materials interface, it will exhibit no retardation properties, and transport will take place as if the radionuclides were locally non-reactive. The magnitude of the effect of finite sorption capacity of the packing materials on radionuclide transport is discussed with reference to high-level waste package performance. An example based on literature sorption data indicated that the breakthrough time may be overpredicted by orders of magnitude using a constant retardation factor as compared to using the entire sorption isotherm to obtain a concentration-dependent retardation factor. 8 refs., 3 figs., 3 tabs

  8. Sorption-capacity limited retardation of radionuclides transport in water-saturated packing materials

    International Nuclear Information System (INIS)

    Pescatore, C.; Sullivan, T.

    1984-01-01

    Radionuclides breakthrough times as calculated through constant retardation factors obtained in dilute solutions are non-conservative. The constant retardation approach regards the solid as having infinite sorption capacity throughout the solid. However, as the solid becomes locally saturated, such as in the proximity of the waste form-packing materials interface, it will exhibit no retardation properties, and transport will take place as if the radionuclides were locally non-reactive. The magnitude of the effect of finite sorption capacity of the packing materials on radionuclide transport is discussed with reference to high-level waste package performance. An example based on literature sorption data indicates that the breakthrough time may be overpredicted by orders of magnitude using a constant retardation factor as compared to using the entire sorption isotherm to obtain a concentration-dependent retardation factor. 8 references, 3 figures, 3 tables

  9. MATADOR (Methods for the Analysis of Transport And Deposition Of Radionuclides) code description and User's Manual

    International Nuclear Information System (INIS)

    Avci, H.I.; Raghuram, S.; Baybutt, P.

    1985-04-01

    A new computer code called MATADOR (Methods for the Analysis of Transport And Deposition Of Radionuclides) has been developed to replace the CORRAL-2 computer code which was written for the Reactor Safety Study (WASH-1400). This report is a User's Manual for MATADOR. MATADOR is intended for use in system risk studies to analyze radionuclide transport and deposition in reactor containments. The principal output of the code is information on the timing and magnitude of radionuclide releases to the environment as a result of severely degraded core accidents. MATADOR considers the transport of radionuclides through the containment and their removal by natural deposition and by engineered safety systems such as sprays. It is capable of analyzing the behavior of radionuclides existing either as vapors or aerosols in the containment. The code requires input data on the source terms into the containment, the geometry of the containment, and thermal-hydraulic conditions in the containment

  10. The impacts of pore-scale physical and chemical heterogeneities on the transport of radionuclide-carrying colloids

    Energy Technology Data Exchange (ETDEWEB)

    WU, Ning

    2018-04-24

    Independent of the methods of nuclear waste disposal, the degradation of packaging materials could lead to mobilization and transport of radionuclides into the geosphere. This process can be significantly accelerated due to the association of radionuclides with the backfill materials or mobile colloids in groundwater. The transport of these colloids is complicated by the inherent coupling of physical and chemical heterogeneities (e.g., pore space geometry, grain size, charge heterogeneity, and surface hydrophobicity) in natural porous media that can exist on the length scale of a few grains. In addition, natural colloids themselves are often heterogeneous in their surface properties (e.g., clay platelets possess opposite charges on the surface and along the rim). Both physical and chemical heterogeneities influence the transport and retention of radionuclides under various groundwater conditions. However, the precise mechanisms how these coupled heterogeneities influence colloidal transport are largely elusive. This knowledge gap is a major source of uncertainty in developing accurate models to represent the transport process and to predict distribution of radionuclides in the geosphere.

  11. Radionuclide transfer to freshwater biota species: review of Russian language studies

    International Nuclear Information System (INIS)

    Fesenko, S.; Fesenko, J.; Sanzharova, N.; Karpenko, E.; Titov, I.

    2011-01-01

    Around 130 publications reporting studies on radionuclide transfer to freshwater biota species conducted in the former USSR were reviewed to provide the concentration ratio values. None of these studies were available up to now in the English language reviews or publications. The values derived have been compared with the CR values used for freshwater systems in the International reviews. For some radionuclides reviewed in this paper, the data are in good agreement with the mean CR values presented earlier, however for some of them, in particular, for 241 Am (bivalve molluscs, gastropods and pelagic fish), 60 Co (gastropods, benthic fish and insect larvae), 90 Sr and 137 Cs (benthic fish and zooplankton), the mean values given here are substantially different from those presented earlier. The data reported in this paper for thirty five radionuclides and eleven groups of freshwater species markedly improve the extent of available data for evaluation of radiation impact on freshwater species. - Research highlights: → The paper provides information on concentration ratios to freshwater biota species for 35 radionuclides. Many of the data are for 90 Sr and 137 Cs. → For the majority of radionuclides reviewed in this paper, the CR values are in good agreement with those given in the recent International reviews. → For 241 Am (bivalve molluscs, gastropods and pelagic fish), 60 Co (gastropods, benthic fish and insect larvae), 90 Sr and 137 Cs (benthic fish and zooplankton), the mean values based on review of the Russian language publications are substantially different from those presented in the International reviews. → Information presented in the paper significantly increases the availability of data on radionuclide accumulation in freshwater species.

  12. Laboratory studies of radionuclide transport in fractured Climax granite

    International Nuclear Information System (INIS)

    Failor, R.; Isherwood, D.; Raber, E.; Vandergraaf, T.

    1982-06-01

    This report documents our laboratory studies of radionuclide transport in fractured granite cores. To simulate natural conditions, our laboratory studies used naturally fractured cores and natural ground water from the Climax Granite Stock at the Nevada Test Site. For comparison, additional tests used artificially fractured granite cores or distilled water. Relative to the flow of tritiated water, 85 Sr and /sup 95m/Tc showed little or no retardation, whereas 137 Cs was retarded. After the transport runs the cores retained varying amounts of the injected radionuclides along the fracture. Autoradiography revealed some correlation between sorption and the fracture fill material. Strontium and cesium retention increased when the change was made from natural ground water to distilled water. Artificial fractures retained less 137 Cs than most natural fractures. Estimated fracture apertures from 18 to 60 μm and hydraulic conductivities from 1.7 to 26 x 10 -3 m/s were calculated from the core measurements

  13. Review Paper of Radionuclide Monitoring in Food Sample

    International Nuclear Information System (INIS)

    Noor Fadzilah Yusof; Abdul Kadir Ishak; Wo, Y.M.; Nurrul Assyikeen Mohd Jaffary

    2011-01-01

    The uncontrolled release of radionuclides into the atmospheric and aquatic environments may occur as the result of a nuclear or radiological accident. Monitoring of the accidental release at its source and especially direct monitoring of the environmental contamination with radionuclides is necessary for assessment and application of public protective actions and longer term countermeasures as well as emergency workers' protection. In areas historically contaminated with long lived radionuclides monitoring it is essential to protect the public and substantiation of any radiological incidents. Also, dietary pathways can be contaminated with radioactive materials resulting from natural occurrence or man-made applications especially during routine operation, accidents and migration of radionuclides from radioactive waste disposal repositories into the biosphere. Therefore, efforts should be made to determine the presence of radionuclides in a potentially high radiation area especially in operational nuclear facilities. This paper will review the strategies for food monitoring that has been adapted in most countries to obtain baseline data for future reference. Also, this study is discussing the type of food selection commonly collected as sample for radionuclide analysis in different countries over the years. Sampling procedure and analysis also included in this review for better understanding of the analysis. Stake holders' involvement is considered as an important asset in the establishment of monitoring strategies. As a conclusion, future plans for food monitoring programme in Malaysia are recommended as a preparation to embark on the Nuclear Power Plant programme. (author)

  14. Transuranic radionuclides dispersed into the aquatic environment, a bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Noshkin, V.E.; Stoker, A.C.; Wong, Kai M. [and others

    1994-04-01

    The purpose of this project was to compile a bibliography of references containing environmental transuranic radionuclide data. Our intent was to identify those parameters affecting transuranic radionuclide transport that may be generic and those that may be dependent on chemical form and/or environmental conditions (i.e., site specific) in terrestrial, aquatic and atmospheric environments An understanding of the unique characteristics and similarities between source terms and environmental conditions relative to transuranic radionuclide transport and cycling will provide the ability to assess and predict the long term impact on man and the environment. An additional goal of our literature review, was to extract the ranges of environmental transuranic radionuclide data from the identified references for inclusion in a data base. Related to source term, these ranges of data can be used to calculate the dose to man from the radionuclides, and to perform uncertainty analyses on these dose assessments. On the basis of our reviews, we have arbitrarily outlined five general source terms. These are fallout, fuel cycle waste, accidents, disposal sites and resuspension. Resuspension of the transuranic radionuclides is a unique source term, in that the radionuclides can originate from any of the other source terms. If these transuranic radionuclides become resuspended into the air, they then become important as a source of inhaled radionuclides.

  15. Coupled Transport Phenomena in the Opalinus Clay: Implications for Radionuclide Transport

    International Nuclear Information System (INIS)

    Soler, J.M.

    1999-09-01

    Coupled phenomena (thermal and chemical osmosis, hyperfiltration, coupled diffusion, thermal diffusion, thermal filtration, Dufour effect) may play an important role in fluid, solute and heat transport in clay-rich formations, such as the Opalinus Clay (OPA), which are being considered as potential hosts for radioactive waste repositories. In this study, the potential effects of coupled phenomena on radionuclide transport in the vicinity of a repository for vitrified high-level radioactive waste (HLW) and spent nuclear fuel (SF) hosted by the Opalinus Clay, at times equal to or greater than the expected lifetime of the waste canisters (about 1000 years), have been addressed. Firstly, estimates of the solute fluxes associated with chemical osmosis, hyperfiltration, thermal diffusion and thermal osmosis have been calculated. Available experimental data concerning coupled transport phenomena in compacted clays, and the hydrogeological and geochemical conditions to which the Opalinus Clay is subject, have been used for these estimates. These estimates suggest that thermal osmosis is the only coupled transport mechanism that could have a strong impact on solute and fluid transport in the vicinity of the repository. Secondly, estimates of the heat fluxes associated with thermal filtration and the Dufour effect in the vicinity of the repository have been calculated. The calculated heat fluxes are absolutely negligible compared to the heat flux caused by thermal conduction. As a further step to obtain additional insight into the effects of coupled phenomena on solute transport, the solute fluxes associated with advection, chemical diffusion, thermal and chemical osmosis, hyperfiltration and thermal diffusion have been incorporated into a simple one-dimensional transport equation. The analytical solution of this equation, with appropriate parameters, shows again that thermal osmosis is the only coupled transport mechanism that could have a strong effect on repository

  16. Coupled Transport Phenomena in the Opalinus Clay: Implications for Radionuclide Transport

    Energy Technology Data Exchange (ETDEWEB)

    Soler, J.M.

    1999-09-01

    Coupled phenomena (thermal and chemical osmosis, hyperfiltration, coupled diffusion, thermal diffusion, thermal filtration, Dufour effect) may play an important role in fluid, solute and heat transport in clay-rich formations, such as the Opalinus Clay (OPA), which are being considered as potential hosts for radioactive waste repositories. In this study, the potential effects of coupled phenomena on radionuclide transport in the vicinity of a repository for vitrified high-level radioactive waste (HLW) and spent nuclear fuel (SF) hosted by the Opalinus Clay, at times equal to or greater than the expected lifetime of the waste canisters (about 1000 years), have been addressed. Firstly, estimates of the solute fluxes associated with chemical osmosis, hyperfiltration, thermal diffusion and thermal osmosis have been calculated. Available experimental data concerning coupled transport phenomena in compacted clays, and the hydrogeological and geochemical conditions to which the Opalinus Clay is subject, have been used for these estimates. These estimates suggest that thermal osmosis is the only coupled transport mechanism that could have a strong impact on solute and fluid transport in the vicinity of the repository. Secondly, estimates of the heat fluxes associated with thermal filtration and the Dufour effect in the vicinity of the repository have been calculated. The calculated heat fluxes are absolutely negligible compared to the heat flux caused by thermal conduction. As a further step to obtain additional insight into the effects of coupled phenomena on solute transport, the solute fluxes associated with advection, chemical diffusion, thermal and chemical osmosis, hyperfiltration and thermal diffusion have been incorporated into a simple one-dimensional transport equation. The analytical solution of this equation, with appropriate parameters, shows again that thermal osmosis is the only coupled transport mechanism that could have a strong effect on repository

  17. CASCADER: An M-chain gas-phase radionuclide transport and fate model

    International Nuclear Information System (INIS)

    Cawlfield, D.E.; Emer, D.F.; Lindstrom, F.T.; Shott, G.J.

    1993-09-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes through advection and/or dispersion. Additionally during the transport of parent and daughter radionuclides in soil, radionuclide decay may occur. This version of CASCADER called CASCADR9 starts with the concepts presented in volumes one and three of this series. For a proper understanding of how the model works, the reader should read volume one first. Also presented in this volume is a set of realistic scenarios for buried sources of radon gas, and the input and output file structure for CASCADER9

  18. Conceptual model for regional radionuclide transport from a salt dome repository: a technical memorandum

    International Nuclear Information System (INIS)

    Kier, R.S.; Showalter, P.A.; Dettinger, M.D.

    1980-01-01

    Disposal of high-level radioactive wastes is a major environmental problem influencing further development of nuclear energy in this country. Salt domes in the Gulf Coast Basin are being investigated as repository sites. A major concern is geologic and hydrologic stability of candidate domes and potential transport of radionuclides by groundwater to the biosphere prior to their degradation to harmless levels of activity. This report conceptualizes a regional geohydrologic model for transport of radionuclides from a salt dome repository. The model considers transport pathways and the physical and chemical changes that would occur through time prior to the radionuclides reaching the biosphere. Necessary, but unknown inputs to the regional model involve entry and movement of fluids through the repository dome and across the dome-country rock interface and the effect on the dome and surrounding strata of heat generated by the radioactive wastes

  19. Conceptual model for regional radionuclide transport from a basalt repository site. Final draft, technical memorandum

    International Nuclear Information System (INIS)

    Walton, W.C.; Voorhees, M.L.; Prickett, T.A.

    1980-01-01

    This technical memorandum was prepared to: (1) describe a typical basalt radionuclide repository site, (2) describe geologic and hydrologic processes associated with regional radionuclide transport in basalts, (3) define the parameters required to model regional radionuclide transport from a basalt repository site, and (4) develop a ''conceptual model'' of radionuclide transport from a basalt repository site. In a general hydrological sense, basalts may be described as layered sequences of aquifers and aquitards. The Columbia River Basalt, centered near the semi-arid Pasco Basin, is considered by many to be typical basalt repository host rock. Detailed description of the flow system including flow velocities with high-low hydraulic conductivity sequences are not possible with existing data. However, according to theory, waste-transport routes are ultimately towards the Columbia River and the lengths of flow paths from the repository to the biosphere may be relatively short. There are many physical, chemical, thermal, and nuclear processes with associated parameters that together determine the possible pattern of radionuclide migration in basalts and surrounding formations. Brief process descriptions and associated parameter lists are provided. Emphasis has been placed on the use of the distribution coefficient in simulating ion exchange. The use of the distribution coefficient approach is limited because it takes into account only relatively fast mass transfer processes. In general, knowledge of hydrogeochemical processes is primitive

  20. Conceptual model for regional radionuclide transport from a basalt repository site. Final draft, technical memorandum

    Energy Technology Data Exchange (ETDEWEB)

    Walton, W.C.; Voorhees, M.L.; Prickett, T.A.

    1980-05-23

    This technical memorandum was prepared to: (1) describe a typical basalt radionuclide repository site, (2) describe geologic and hydrologic processes associated with regional radionuclide transport in basalts, (3) define the parameters required to model regional radionuclide transport from a basalt repository site, and (4) develop a ''conceptual model'' of radionuclide transport from a basalt repository site. In a general hydrological sense, basalts may be described as layered sequences of aquifers and aquitards. The Columbia River Basalt, centered near the semi-arid Pasco Basin, is considered by many to be typical basalt repository host rock. Detailed description of the flow system including flow velocities with high-low hydraulic conductivity sequences are not possible with existing data. However, according to theory, waste-transport routes are ultimately towards the Columbia River and the lengths of flow paths from the repository to the biosphere may be relatively short. There are many physical, chemical, thermal, and nuclear processes with associated parameters that together determine the possible pattern of radionuclide migration in basalts and surrounding formations. Brief process descriptions and associated parameter lists are provided. Emphasis has been placed on the use of the distribution coefficient in simulating ion exchange. The use of the distribution coefficient approach is limited because it takes into account only relatively fast mass transfer processes. In general, knowledge of hydrogeochemical processes is primitive.

  1. Radionuclide transfer to freshwater biota species: review of Russian language studies

    Energy Technology Data Exchange (ETDEWEB)

    Fesenko, S., E-mail: s.fesenko@iaea.or [International Atomic Energy Agency, NAAL, 1400 Vienna (Austria); Fesenko, J.; Sanzharova, N.; Karpenko, E.; Titov, I. [Russian Institute of Agricultural Radiology and Radioecology, 249020 Obninsk (Russian Federation)

    2011-01-15

    Around 130 publications reporting studies on radionuclide transfer to freshwater biota species conducted in the former USSR were reviewed to provide the concentration ratio values. None of these studies were available up to now in the English language reviews or publications. The values derived have been compared with the CR values used for freshwater systems in the International reviews. For some radionuclides reviewed in this paper, the data are in good agreement with the mean CR values presented earlier, however for some of them, in particular, for {sup 241}Am (bivalve molluscs, gastropods and pelagic fish), {sup 60}Co (gastropods, benthic fish and insect larvae), {sup 90}Sr and {sup 137}Cs (benthic fish and zooplankton), the mean values given here are substantially different from those presented earlier. The data reported in this paper for thirty five radionuclides and eleven groups of freshwater species markedly improve the extent of available data for evaluation of radiation impact on freshwater species. - Research highlights: {yields} The paper provides information on concentration ratios to freshwater biota species for 35 radionuclides. Many of the data are for {sup 90}Sr and {sup 137}Cs. {yields} For the majority of radionuclides reviewed in this paper, the CR values are in good agreement with those given in the recent International reviews. {yields} For {sup 241}Am (bivalve molluscs, gastropods and pelagic fish), {sup 60}Co (gastropods, benthic fish and insect larvae), {sup 90}Sr and {sup 137}Cs (benthic fish and zooplankton), the mean values based on review of the Russian language publications are substantially different from those presented in the International reviews. {yields} Information presented in the paper significantly increases the availability of data on radionuclide accumulation in freshwater species.

  2. Models for transport and fate of carbon, nutrients and point source released radionuclides to an aquatic ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Kumblad, Linda [Stockholm Univ. (Sweden). Dept. of Systems Ecology; Kautsky, Ulrik [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2004-09-01

    In this report three ecosystem models are described in terms of structure, initial data, and results. All models are dynamic, mass-balanced and describe the transport and fate of elements in an open aquatic ecosystem. The models are based on ecologically sound principles, provide model results with high resolution and transparency, and are constrained by the nutrient dynamics of the ecosystem itself. The processes driving the transport in all the models are both the biological processes such as primary production, consumption, respiration and excretion, and abiotic e.g. water exchange and air-sea exchange. The first model, the CNP-model, describes the distribution and fluxes of carbon and nutrients for the coastal ecosystem off Forsmark. The second model, the C-14 model, is an extension of the CNP-model and describes the transport and distribution of hypothetically released C-14 from the underground repository SFR-1 to the ecosystem above. The third model, the RN-model, is a generic radionuclide flow model that models the transport and distribution of radionuclides other than C-14 hypothetically discharged to the ecosystem. The model also analyses the importance of some radionuclide specific mechanisms for the radionuclide flow. The generic radionuclide model is also based on the CNP-model, but has radionuclide specific mechanisms connected to each compartment.

  3. Models for transport and fate of carbon, nutrients and point source released radionuclides to an aquatic ecosystem

    International Nuclear Information System (INIS)

    Kumblad, Linda

    2004-09-01

    In this report three ecosystem models are described in terms of structure, initial data, and results. All models are dynamic, mass-balanced and describe the transport and fate of elements in an open aquatic ecosystem. The models are based on ecologically sound principles, provide model results with high resolution and transparency, and are constrained by the nutrient dynamics of the ecosystem itself. The processes driving the transport in all the models are both the biological processes such as primary production, consumption, respiration and excretion, and abiotic e.g. water exchange and air-sea exchange. The first model, the CNP-model, describes the distribution and fluxes of carbon and nutrients for the coastal ecosystem off Forsmark. The second model, the C-14 model, is an extension of the CNP-model and describes the transport and distribution of hypothetically released C-14 from the underground repository SFR-1 to the ecosystem above. The third model, the RN-model, is a generic radionuclide flow model that models the transport and distribution of radionuclides other than C-14 hypothetically discharged to the ecosystem. The model also analyses the importance of some radionuclide specific mechanisms for the radionuclide flow. The generic radionuclide model is also based on the CNP-model, but has radionuclide specific mechanisms connected to each compartment

  4. Preliminary integrated calculation of radionuclide cation and anion transport at Yucca Mountain using a geochemical model

    International Nuclear Information System (INIS)

    Birdsell, K.H.; Campbell, K.; Eggert, K.G.; Travis, B.J.

    1989-01-01

    This paper presents preliminary transport calculations for radionuclide movement at Yucca Mountain using preliminary data for mineral distributions, retardation parameter distributions, and hypothetical recharge scenarios. These calculations are not performance assessments, but are used to study the effectiveness of the geochemical barriers at the site at mechanistic level. The preliminary calculations presented have many shortcomings and should be viewed only as a demonstration of the modeling methodology. The simulations were run with TRACRN, a finite-difference porous flow and radionuclide transport code developed for the Yucca Mountain Project. Approximately 30,000 finite-difference nodes are used to represent the unsaturated and saturated zones underlying the repository in three dimensions. Sorption ratios for the radionuclides modeled are assumed to be functions of mineralogic assemblages of the underlying rock. These transport calculations present a representative radionuclide cation, 135 Cs and anion, 99 Tc. The effects on transport of many of the processes thought to be active at Yucca Mountain may be examined using this approach. The model provides a method for examining the integration of flow scenarios, transport, and retardation processes as currently understood for the site. It will also form the basis for estimates of the sensitivity of transport calculations to retardation processes. 11 refs., 17 figs., 1 tab

  5. Artificial neural networks application for horizontal and vertical forecasting radionuclides transport

    International Nuclear Information System (INIS)

    Khil'ko, O.S.; Kovalenko, V.I.; Kundas, S.P.

    2010-01-01

    Artificial neural networks approach for horizontal and vertical radionuclide transport forecasting was proposed. Runoff factors analysis was considered. Additional artificial neural network structures for physical-chemical properties recognition were used. (authors)

  6. Developing of Watershed Radionuclide Transport Model DHSVM-R as Modification and Extension of Distributed Hydrological and Sediment Dynamics Model DHSVM

    Science.gov (United States)

    Zheleznyak, M.; Kivva, S.; Onda, Y.; Nanba, K.; Wakiyama, Y.; Konoplev, A.

    2015-12-01

    The reliable modeling tools for prediction wash - off radionuclides from watersheds are needed as for assessment the consequences of accidental and industrial releases of radionuclides, as for soil erosion studies using the radioactive tracers. The distributed model of radionuclide transport through watershed in exchangeable and nonexchangeable forms in solute and with sediments was developed and validated for small Chernobyl watersheds in 90th within EU SPARTACUS project (van der Perk et al., 1996). New tendency is coupling of radionuclide transport models and the widely validated hydrological distributed models. To develop radionuclide transport model DHSVM-R the open source Distributed Hydrology Soil Vegetation Model -DHSVM http://www.hydro.washington.edu/Lettenmaier/Models/DHSVM was modified and extended. The main changes provided in the hydrological and sediment transport modules of DHSVM are as follows: Morel-Seytoux infiltration model is added; four-directions schematization for the model's cells flows (D4) is replaced by D8 approach; the finite-difference schemes for solution of kinematic wave equations for overland water flow, stream net flow, and sediment transport are replaced by new computationally efficient scheme. New radionuclide transport module, coupled with hydrological and sediment transport modules, continues SPARTACUS's approach, - it describes radionuclide wash-off from watershed and transport via stream network in soluble phase and on suspended sediments. The hydrological module of DHSVM-R was calibrated and validated for the watersheds of Ukrainian Carpathian mountains and for the subwatersheds of Niida river flowing 137Cs in solute and with suspended sediments to Pacific Ocean at 30 km north of the Fukushima Daiichi NPP. The modules of radionuclide and sediment transport were calibrated and validated versus experimental data for USLE experimental plots in Fukushima Prefecture and versus monitoring data collected in Niida watershed. The role

  7. Distributed models of radionuclide transport on watersheds: development and implementation for the Chernobyl and Fukushima catchments

    Energy Technology Data Exchange (ETDEWEB)

    Kivva, S.; Zheleznyak, M. [Institute of Environmental Radioactivity, Fukushima University (Japan)

    2014-07-01

    The distributed hydrological 'rainfall- runoff' models provide possibilities of the physically based simulation of surface and subsurface flow on watersheds based on the GIS processed data. The success of such modeling approaches for the predictions of the runoff and soil erosion provides a basis for the implementation of the distributed radionuclide transport watershed models. Two distributed watershed models of radionuclide transport - RUNTOX and DHSVM-R have been used to simulate the radionuclide transport in the basin of the Dnieper River, Ukraine and watersheds of Prefecture Fukushima. RUNTOX is used for the simulation of radionuclide wash off from the experimental plots and small watersheds, and DHSVM-R is used for medium and large watersheds RUNTOX is two dimensional distributed hydrological model based on the finite-difference solution of the coupled equations the surface flow, subsurface flow, groundwater flow and advection- dispersion equations of the sediments (eroded soil) and radionuclide transport in liquid and solid phases, taking into parameterize the radionuclide exchanges between liquid and solid phases.. This model has been applied to the experimental plots in Ukraine after the Chernobyl accident and experimental plots in the Fukushima Prefecture. The experience of RUNTOX development and application has been used for the extension of the distributed hydrological model DHSVM by the including of the module of the watershed radionuclide transport. The updated model was named by DHSMV-R. The original DHSVM (Distributed Hydrology Soil Vegetation Model) was developed in the University of Washington and Pacific Northwest National Laboratories. DHSVM is a physical distributed hydrology-vegetation model for complex terrain based on the numerical solution of the network of one dimensional equations. The model accounts explicitly for the spatial distribution of land-surface processes, and can be applied over a range of scales, from plot to large

  8. Literature review of the concentration ratios of selected radionuclides in freshwater and marine fish

    Energy Technology Data Exchange (ETDEWEB)

    Poston, T.M.; Klopfer, D.C.

    1986-09-01

    Concentration ratios (CR's) used for modeling the uptake and food chain transport of radionuclides in fish have usually been conservative; that is, at the high end of reported values. This practice ensures that the dose to the consumer of contaminated fish will not be underestimated. In many models, however, conservative values have been used for all variables that have any uncertainty associated with them. As a result the dose to the consumer is overestimated. Realistic CR values need to be developed to establish model parameters that will accurately reflect tissue burdens in fish and resulting dose rates to consumers. This report reviews and summarizes published literature on the uptake and distribution of stable and radioactive isotopes of 26 elements. Based on this review, we have made recommendations on CR values to be used for modeling the accumulation of radionuclides in fish. Our recommendations are compared with CR values reported in other publications. A generic discussion of abiotic and biotic factors that influence CR values is provided so that CR values may be adjusted based on site-specific characteristics of the fishes habitat. Recommended CR values for freshwater fish and for marine fish are listed. Although this report emphasizes radionuclides, it is applicable to stable elements as well.

  9. Literature review of the concentration ratios of selected radionuclides in freshwater and marine fish

    International Nuclear Information System (INIS)

    Poston, T.M.; Klopfer, D.C.

    1986-09-01

    Concentration ratios (CR's) used for modeling the uptake and food chain transport of radionuclides in fish have usually been conservative; that is, at the high end of reported values. This practice ensures that the dose to the consumer of contaminated fish will not be underestimated. In many models, however, conservative values have been used for all variables that have any uncertainty associated with them. As a result the dose to the consumer is overestimated. Realistic CR values need to be developed to establish model parameters that will accurately reflect tissue burdens in fish and resulting dose rates to consumers. This report reviews and summarizes published literature on the uptake and distribution of stable and radioactive isotopes of 26 elements. Based on this review, we have made recommendations on CR values to be used for modeling the accumulation of radionuclides in fish. Our recommendations are compared with CR values reported in other publications. A generic discussion of abiotic and biotic factors that influence CR values is provided so that CR values may be adjusted based on site-specific characteristics of the fishes habitat. Recommended CR values for freshwater fish and for marine fish are listed. Although this report emphasizes radionuclides, it is applicable to stable elements as well

  10. Relative contributions of natural and waste-derived organics to the subsurface transport of radionuclides

    International Nuclear Information System (INIS)

    Toste, A.P.; Myers, R.B.

    1985-06-01

    Our laboratory is studying the role of organic compounds in the subsurface transport of radionuclides at shallow-land burial sites of low-level nuclear waste, including a commercial site at Maxey Flats, Kentucky, and an aqueous waste disposal site. At the Maxey Flats site, several radionuclides, notably Pu and 60 Co, appear to exist as anionic, organic complexes. Waste-derived organics, particularly chelating agents such as EDTA, HEDTA and associated degradation products (e.g., ED3A), are abundant in aqueous waste leachates and appear to account for the complexation. EDTA, and probably other waste-derived chelating agents as well, are chelated to the Pu and 60 Co in the leachates, potentially mobilizing these radionuclides. In contrast, at the low-level aqueous waste disposal site, naturally-occurring organics, ranging from low molecular weight (MW) acids to high MW humic acids, account for the bulk of the groundwater's organic content. Certain radionuclides, notably 60 Co, 103 Ru and 125 Sb, are mobile as anionic complexes. These radionuclides are clearly associated with higher MW organics, presumably humic and fulvic acids with nominal MW's > 1000. It is clear, therefore, that naturally-occurring organics may play an important role in radionuclide transport, particularly at nuclear waste burial sites containing little in the way of waste-derived organics

  11. Technical Work Plan for: Near Field Environment: Engineered System: Radionuclide Transport Abstraction Model Report

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Schreiber

    2006-12-08

    This technical work plan (TWP) describes work activities to be performed by the Near-Field Environment Team. The objective of the work scope covered by this TWP is to generate Revision 03 of EBS Radionuclide Transport Abstraction, referred to herein as the radionuclide transport abstraction (RTA) report. The RTA report is being revised primarily to address condition reports (CRs), to address issues identified by the Independent Validation Review Team (IVRT), to address the potential impact of transport, aging, and disposal (TAD) canister design on transport models, and to ensure integration with other models that are closely associated with the RTA report and being developed or revised in other analysis/model reports in response to IVRT comments. The RTA report will be developed in accordance with the most current version of LP-SIII.10Q-BSC and will reflect current administrative procedures (LP-3.15Q-BSC, ''Managing Technical Product Inputs''; LP-SIII.2Q-BSC, ''Qualification of Unqualified Data''; etc.), and will develop related Document Input Reference System (DIRS) reports and data qualifications as applicable in accordance with prevailing procedures. The RTA report consists of three models: the engineered barrier system (EBS) flow model, the EBS transport model, and the EBS-unsaturated zone (UZ) interface model. The flux-splitting submodel in the EBS flow model will change, so the EBS flow model will be validated again. The EBS transport model and validation of the model will be substantially revised in Revision 03 of the RTA report, which is the main subject of this TWP. The EBS-UZ interface model may be changed in Revision 03 of the RTA report due to changes in the conceptualization of the UZ transport abstraction model (a particle tracker transport model based on the discrete fracture transfer function will be used instead of the dual-continuum transport model previously used). Validation of the EBS-UZ interface model

  12. Comparison of one-, two-, and three-dimensional models for mass transport of radionuclides

    International Nuclear Information System (INIS)

    Prickett, T.A.; Voorhees, M.L.; Herzog, B.L.

    1980-02-01

    This technical memorandum compares one-, two-, and three-dimensional models for studying regional mass transport of radionuclides in groundwater associated with deep repository disposal of high-level radioactive wastes. In addition, this report outlines the general conditions for which a one- or two-dimensional model could be used as an alternate to a three-dimensional model analysis. The investigation includes a review of analytical and numerical models in addition to consideration of such conditions as rock and fluid heterogeneity, anisotropy, boundary and initial conditions, and various geometric shapes of repository sources and sinks. Based upon current hydrologic practice, each review is taken separately and discussed to the extent that the researcher can match his problem conditions with the minimum number of model dimensions necessary for an accurate solution

  13. The role of particulates in radionuclide transport

    International Nuclear Information System (INIS)

    Vilks, P.; Bachinski, D.B.; Vandergraaf, T.T.

    1991-01-01

    The colloid program at AECL Research is focused on characterizing natural particles in groundwater to evaluate their potential role in radiocolloid formation and to form a database for particle migration studies. The main objective of this program has been the study of colloids (1 to 450 nm) and suspended particles (> 450 nm) in fractured granites and sandstone in various locations in Canada and Switzerland. Groundwater particles were found to consist of clay minerals, micas, quartz, feldspar, iron-silica oxides and organic material. In groundwaters from granite, sandstone and clay-rich rock colloid concentrations were less than 5 mg/L. Some of these groundwaters may contain up to 260 mg/L of suspended particles. However, these particles are not expected to be mobile under the natural flow regimes of deep groundwaters. Provided radiocolloid formation is reversible, it is shown that the colloid concentrations observed in groundwaters from granites will have a negligible effect on radionuclide transport even when making the conservative assumption that these particles travel with the velocity of groundwater. For the case of irreversible radiocolloid formation, an equation is presented to calculate the fraction of total radionuclides in the geosphere which will form radiocolloids. The significance of these radiocolloids will depend upon the total amount of radionuclides released to the geosphere and on particle migration properties. (author)

  14. Radionuclides deposition and fine sediment transport in a forested watershed, central Japan

    Science.gov (United States)

    Nam, S.; Gomi, T.; Kato, H.; Tesfaye, T.; Onda, Y.

    2011-12-01

    We investigated radionuclides deposition and fine sediment transport in a 13 ha headwater watershed, Tochigi prefecture, located in 98.94 km north of Tokyo. The study site was within Karasawa experimental forest, Tokyo University of Agriculture and Technology. We conducted fingerprinting approach, based on the activities of fallout radionuclides, including caesium-134 (Cs-134) caesium-137 (Cs-137) and excess lead-210 (Pb-210ex). For indentifying specific sources of fine sediment, we sampled tree, soil on forested floor, soil on logging road surface, stream bed and stream banks. We investigated the radionuclides (i.e., as Cs-134, Cs-137 and Pb-210ex) deposition on tree after accident of nuclear power plants on March 11, 2011. We sampled fruits, leaves, branches, stems, barks on Japanese cedar (Sugi) and Japanese cypress (Hinoki). To analyze the samples, gammaray spectrometry was performed at a laboratory at the University of Tsukuba (Tsukuba City, Japan) using n-type coaxial low-energy HPGe gamma detectors (EGC-200-R and EGC25-195-R of EURYSIS Co., Lingolsheim, France) coupled with a multichannel analyzer. We also collected soil samples under the forest canopy in various soil depths from 2, 5, 10, 20, 30 cm along transect of hillslopes. Samples at forest road were collected road segments crossing on the middle section of monitoring watersheds. Fine sediment transport in the streams were collected at the outlet of 13 ha watersheds using integrated suspended sediment samplers. This study indicates the some portion of radio nuclide potentially remained on the tree surface. Part of the deposited radionuclides attached to soil particles and transported to the streams. Most of the fine sediment can be transported on road surface and/or near stream side (riparian zones).

  15. The influence of the unsaturated zone on the upward transport of radionuclides in soils

    International Nuclear Information System (INIS)

    Elert, M.; Lindgren, M.

    1993-07-01

    The transport of radionuclides from the deep soil to the surface soil is an important part of biosphere modelling. In this study the effect of transient hydrological conditions on the upward transport of radionuclides through soils has been studied. The effect of varying soil properties, climate conditions have been considered as well as the effect of a fluctuating groundwater level. It was shown that the soil characteristics influences the radionuclide concentration; an increased hydraulic conductivity leads to increase in the concentration in the root zone. The climate conditions were shown to be of major importance. A dispersion dependent on both velocity and saturation leads to a more effective upward transport of radionuclides to the root zone than if dispersion is assumed to be dependent only on the saturation. The boundary condition used in the case with varying groundwater level may be more realistic than the boundary condition applied for the case with a constant groundwater level. All calculations with varying groundwater level gave lower radionuclide concentration in the root zone. Sorption is redox sensitive for many radionuclides and the redox potential in the soil will be affected by the degree of water saturation. The performed calculations did, however, not result in any significant change in the radionuclide concentration in the root zone due to variation in sorption. A comparison between the results of the two models show that the compartment model in all studied cases predicts a higher annual average radionuclide concentration in the root zone than the numerical model. Annual variation in soil water flow were not included in the compartment model. During the summer the concentration in the root zone may be several times higher than the annual average. This may be important for plant uptake, since this increased concentrations coincides with the plant growing season. The calculations made with the simple compartment model also show that these

  16. LASL models for environmental transport of radionuclides in forests

    International Nuclear Information System (INIS)

    Gallegos, A.F.; Smith, W.J.; Johnson, L.J.

    1978-01-01

    The Los Alamos Scientific Laboratory has been developing techniques for evaluating the adequacy of shallow land radioactive disposal sites to contain disposed radionuclides. This report discusses developments in applying a Biological Transport Model to simulate the cycling of plutonium in pinyon-juniper, and ponderosa pine forest ecosystems through serial stage developments using plant growth dynamics created in the model

  17. The transport of natural radionuclides from soil to plants

    International Nuclear Information System (INIS)

    Bikit, I.; Conkic, Lj.; Slivka, J.; Krmar, M.

    1995-01-01

    The transport and accumulation processes of Ra-226, U-238, Th-232 and K-40 from soil to plants have been studied. Plant samples with consumable parts grown below surface have been bred in natural conditions on soil with enhanced levels of natural radioactivity (barren soil of the uranium mine Gabrovnica-Kalna). An intensive transport of heavy natural radionuclides from soil to the roots was established. The transfer factors for U-238 and Ra-226 have been much bigger than for Th-232. The most intensive uptake was registered for beet root. (author)

  18. Modeling of U-series Radionuclide Transport Through Soil at Pena Blanca, Chihuahua, Mexico

    Science.gov (United States)

    Pekar, K. E.; Goodell, P. C.; Walton, J. C.; Anthony, E. Y.; Ren, M.

    2007-05-01

    The Nopal I uranium deposit is located at Pena Blanca in Chihuahua, Mexico. Mining of high-grade uranium ore occurred in the early 1980s, with the ore stockpiled nearby. The stockpile was mostly cleared in the 1990s; however, some of the high-grade boulders have remained there, creating localized sources of radioactivity for a period of 25-30 years. This provides a unique opportunity to study radionuclide transport, because the study area did not have any uranium contamination predating the stockpile in the 1980s. One high-grade boulder was selected for study based upon its shape, location, and high activity. The presumed drip-line off of the boulder was marked, samples from the boulder surface were taken, and then the boulder was moved several feet away. Soil samples were taken from directly beneath the boulder, around the drip-line, and down slope. Eight of these samples were collected in a vertical profile directly beneath the boulder. Visible flakes of boulder material were removed from the surficial soil samples, because they would have higher concentrations of U-series radionuclides and cause the activities in the soil samples to be excessively high. The vertical sampling profile used 2-inch thicknesses for each sample. The soil samples were packaged into thin plastic containers to minimize the attenuation and to standardize sample geometry, and then they were analyzed by gamma-ray spectroscopy with a Ge(Li) detector for Th-234, Pa-234, U-234, Th-230, Ra-226, Pb-214, Bi-214, and Pb-210. The raw counts were corrected for self-attenuation and normalized using BL-5, a uranium standard from Beaverlodge, Saskatchewan. BL-5 allowed the counts obtained on the Ge(Li) to be referenced to a known concentration or activity, which was then applied to the soil unknowns for a reliable calculation of their concentrations. Gamma ray spectra of five soil samples from the vertical profile exhibit decreasing activities with increasing depth for the selected radionuclides

  19. Box modelling approach for evaluation of influence of ice transport of radionuclides for doses to man

    International Nuclear Information System (INIS)

    Iospje, M.

    2002-01-01

    Modelling of the ice transport of radionuclides, which is a unique pathway in the Arctic ocean and adjacent sea areas, is limited by necessity to describe complete processes of incorporation of radioactivity into ice and ice sediment. Freezing / melting processes and transport of 'clean' ice can be described with a good accuracy for relatively short time scale on the basis of the present level of modelling, but detailed description of the sediment entrainment into ice based on the Reynolds equations with attention to coagulation processes is limited by low concentration of particles (grease ice cannot be described) and time scale up to 5 . 10 -2 s (1 . 10 -9 y) what is not available for large time scale and ice masses. Adding the radioactivity incorporation into the ice with following description of transport and fate of radionuclides will lead to further increasing of the complexity of the modelling. Therefore, it is necessary to develop an alternative approach for purposes of radiological assessment on the basis of the box modelling to describe the incorporation of radioactivity into ice and ice sediment, transport of radioactivity by ice and incorporation of radioactivity into sea areas through melding processes. It is shown that the ice transport of radionuclides can be a significant factor for some scenarios and radionuclides. The influence of the ice transport increases with increasing K d values for radionuclides. It is necessary to note that the content and structure of the sediment load in ice vary within wide limits, and therefore, sensitivity and uncertainty analysis can improve the possibility to represent model results satisfactorily. (LN)

  20. Radionuclide transport in fractured media

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    1993-01-01

    Until recently, the classical advective-dispersive transport equation was considered to be an adequate model for describing the motion of a solute (e.g. radionuclides) in porous and fractured media. In this model, the dispersion coefficient is either obtained from a microscopic model of the porous medium or by carefully controlled experiments. As a result of such experiments, a large body of data has been accumulated on the dispersivity. Detailed examination of these data has resulted in a curious phenomenon being discovered; namely, that the longitudinal dispersion length is 'scale-dependent'. That is to say the value deduced depends on the 'size' of the experiment, i.e. on the distance over which measurements are made. Several interesting attempts have been made to develop theories which explain this phenomenon, all based on treating the velocity of the water in the porous medium as a spatially random variable, but retaining the advective-dispersive balance equation. In this work we present an entirely new approach to the problem of solute transport in fractured media based upon an analogy with neutron transport. The new method has several advantages over the previous theories and these will be explained below. Results from the new theory are in agreement with experimental trends and do not require any further adjustment to explain the scale-dependent effect

  1. Implementation of the aquatic radionuclide transport models RIVTOX and COASTOX into the RODOS System

    International Nuclear Information System (INIS)

    Gofman, D.; Lyashenko, G.; Marinets, A.; Mezhueva, I.; Shepeleva, T.; Tkalich, P.; Zheleznyak, M.

    1996-01-01

    The one -dimensional model of radionuclide transport in a network of river channel RIVTOX and two-dimensional lateral-longitudinal model of radionuclide transport in rivers, reservoirs and shallow lakes COASTOX have been implemented into the hydrological model chain of the decision support system RODOS. The software framework is developed to operate the models and to support their coupling with the other parts of RODOS hydrological model chain. The validation studies were performed for RIVTOX and COASTOX on the base of the data sets from Ukrainian, German and United States rivers

  2. Transport and redistribution of Chernobyl fallout radionuclides by fluvial processes: some preliminary evidence

    International Nuclear Information System (INIS)

    Walling, D.E.; Bradley, S.B.

    1988-01-01

    Several measurements of 137 Cs concentrations in suspended sediment transported by the River Severn during the post-Chernobyl period and in recent channel and floodplain deposits along the river emphasise the potential significance of fluvial processes in the transport and concentration of fallout radionuclides. (author)

  3. Radionuclide transport from near-surface repository for radioactive waste - The unsaturated zone approach

    Energy Technology Data Exchange (ETDEWEB)

    Jakimaviciute-Maseliene, V. [Vilnius University (Lithuania); Mazeika, J. [Nature Research Centre (Lithuania); Motiejunas, S. [Radioactive Waste Management Agency (Lithuania)

    2014-07-01

    About 100 000 m{sup 3} of solid conditioned Low and Intermediate Level Waste (LILW), generated during operation and decommissioning of the Ignalina nuclear power plant (INPP), are to be disposed of in a near-surface repository (NSR) - a 'hill'-type repository with reinforced concrete vaults and with engineered and natural barriers. The northeastern Lithuania and the environment of the INPP in particular were recognized as the areas most suitable for a near-surface repository (Stabatiske Site). The engineered barriers of the repository consist of concrete cells surrounded by clay-based material of low permeability with about the same isolating capacity in all directions. The clay materials must be effectively compactable so that required hydraulic conductivity is reached. The Lithuanian Triassic clay turned out to be sufficiently rich in smectites and was proposed as main candidate for sealing of the repository. When the concrete vaults are filled, the repository cover will be constructed. The surface of the mound will be planted with grass. In this study a computer code FEFLOW 5.0 was applied for simulating the transport of the most mobile radionuclides ({sup 3}H, {sup 14}C, {sup 59}Ni and {sup 94}Nb) with moisture through an unsaturated vault of the near-surface repository in Stabatiske Site. The HYDRUS-1D analysis was used to assess the radionuclide transport in the repository and to estimate initial activity concentrations of radionuclides transported from the cemented waste matrix. Radionuclide release from the vault in the unsaturated conditions after closure of the repository and consequent contaminant plume transport has been assessed taking into account site-specific natural and engineering conditions and based on a normal evolution scenario. The highest peak radionuclide activity concentrations were estimated applying the FEFLOW code. The highest value of {sup 14}C activity concentration(about 1.3x10{sup 8} Bq/m{sup 3}) at the groundwater table

  4. Technical Work Plan for: Near Field Environment: Engineered Barrier System: Radionuclide Transport Abstraction Model Report

    International Nuclear Information System (INIS)

    J.D. Schreiber

    2006-01-01

    This technical work plan (TWP) describes work activities to be performed by the Near-Field Environment Team. The objective of the work scope covered by this TWP is to generate Revision 03 of EBS Radionuclide Transport Abstraction, referred to herein as the radionuclide transport abstraction (RTA) report. The RTA report is being revised primarily to address condition reports (CRs), to address issues identified by the Independent Validation Review Team (IVRT), to address the potential impact of transport, aging, and disposal (TAD) canister design on transport models, and to ensure integration with other models that are closely associated with the RTA report and being developed or revised in other analysis/model reports in response to IVRT comments. The RTA report will be developed in accordance with the most current version of LP-SIII.10Q-BSC and will reflect current administrative procedures (LP-3.15Q-BSC, ''Managing Technical Product Inputs''; LP-SIII.2Q-BSC, ''Qualification of Unqualified Data''; etc.), and will develop related Document Input Reference System (DIRS) reports and data qualifications as applicable in accordance with prevailing procedures. The RTA report consists of three models: the engineered barrier system (EBS) flow model, the EBS transport model, and the EBS-unsaturated zone (UZ) interface model. The flux-splitting submodel in the EBS flow model will change, so the EBS flow model will be validated again. The EBS transport model and validation of the model will be substantially revised in Revision 03 of the RTA report, which is the main subject of this TWP. The EBS-UZ interface model may be changed in Revision 03 of the RTA report due to changes in the conceptualization of the UZ transport abstraction model (a particle tracker transport model based on the discrete fracture transfer function will be used instead of the dual-continuum transport model previously used). Validation of the EBS-UZ interface model will be revised to be consistent with

  5. The biological transport of radionuclides in grassland and freshwater ecosystems

    International Nuclear Information System (INIS)

    Rudge, S.A.

    1989-12-01

    This thesis examines the biological transport of radionuclides through terrestrial and aquatic ecosystems, with particular reference to radiocaesium. The semi-natural grassland habitat was located at Drigg, W. Cumbria, contaminated primarily by radioactive fallout, from several sources over the past decade. Advantage was made of the deposition of radionuclides from the Chernobyl reactor incident, which occurred during the early stages of the investigation. The study examined the distribution of radiocaesium for the major components of the grassland ecosystem, within the soil-plant-invertebrate-small mammal food chain. Data concerning temporal fluctuation of radionuclide transfer factors between food chain components are presented. The final section examines the spatial distribution of radiocaesium in sediment and the freshwater eel (Anguilla anguilla) in a small stream contaminated by radioactive effluent. The relationship between activity levels in eels and the sediments in which they rest and forage was investigated. Factors influencing uptake of radiocaesium in freshwater fish were also examined. (author)

  6. Geosphere transport of radionuclides in safety assessment of spent fuel disposal

    Energy Technology Data Exchange (ETDEWEB)

    Jussila, P

    2000-07-01

    The study is associated with a research project of Radiation and Nuclear Safety Authority (STUK) to utilise analytical models in safety assessment for disposal of spent nuclear fuel. Geosphere constitutes a natural barrier for the possible escape of radionuclides from a geological repository of spent nuclear fuel. However, rock contains fractures in which flowing groundwater can transport material. Radionuclide transport in rock is complicated - the flow paths in the geosphere are difficult to characterise and there are various phenomena involved. In mathematical models, critical paths along which radionuclides can reach the biosphere are considered. The worst predictable cases and the effect of the essential parameters can be assessed with the help of such models although they simplify the reality considerably. Some of the main differences between the transport model used and the reality are the mathematical characterisation of the flow route in rock as a smooth and straight fracture and the modelling of the complicated chemical processes causing retardation with the help of a distribution coefficient that does not explain those phenomena. Radionuclide transport models via a heat transfer analogy and analytical solutions of them are derived in the study. The calculations are performed with a created Matlab program for a single nuclide model taking into account 1D advective transport along a fracture, 1D diffusion from the fracture into and within the porous rock matrices surrounding the fracture, retardation within the matrices, and radioactive decay. The results are compared to the results of the same calculation cases obtained by Technical Research Centre of Finland (VTT) and presented in TILA-99 safety assessment report. The model used by VTT is the same but the results have been calculated numerically in different geometry. The differences between the results of the present study and TILA-99 can to a large extent be explained by the different approaches to

  7. Models for transport and fate of carbon, nutrients and radionuclides in the aquatic ecosystem at Oeregrundsgrepen

    Energy Technology Data Exchange (ETDEWEB)

    Erichsen, Anders Christian; Moehlenberg, Flemming; Closter, Rikke Margrethe; Sandberg, Johannes [DHI, Hoersholm (Denmark)

    2010-06-15

    The aim of the work was to provide supplementary input to the risk assessment of a planned final nuclear waste repository at Forsmark. The main deliverable was a computed water exchange between basins in the Forsmark marine area for the period 6500 BC to 9000 AD - based on the hydrodynamic modelling - to be used as input to the landscape dose model. In addition and what is described in this report, a second deliverable was development and application of high-resolution models for the marine ecosystem and radionuclide processes. The purpose of this deliverable was to illustrate the spatial and temporal variation in important processes and parameters, while constituting a complement to previous modelling approaches and providing supporting information to discussions of the marine ecosystem, parameters and variation (see Chapter 4 and 6).To this end, a hydrodynamic model of high temporal and spatial resolution was constructed and calibrated for the Forsmark area. An ecosystem model was then developed and coupled to the hydrodynamic model. In turn, a detailed radionuclide model was coupled to the ecosystem model to provide detailed predictions of radionuclide transport and accumulation in the coastal ecosystem. The ecosystem and radionuclide models were developed in the equation solver MIKE ECOLab that links seamless to the MIKE3 FM hydrodynamic model. The 'standard' ECOLab ecosystem model was extended with six biological state variables, perennial macroalgae, benthic herbivors, detritus feeders, planktivorus fish and, benthic predators representing the relict isopod Saduria and cod. In contrast to the ecosystem model, the radionuclide model was developed from scratch but building on the structure of the ecosystem model and using the output (process rates linking state variables) from the ecosystem model as input to the radionuclide model. Both the ecosystem model and the radionuclide model were run for several years (5-8 years) to bring state variables into quasi

  8. Models for transport and fate of carbon, nutrients and radionuclides in the aquatic ecosystem at Oeregrundsgrepen

    Energy Technology Data Exchange (ETDEWEB)

    Erichsen, Anders Christian; Moehlenberg, Flemming; Closter, Rikke Margrethe; Sandberg, Johannes (DHI, Hoersholm (Denmark))

    2010-06-15

    The aim of the work was to provide supplementary input to the risk assessment of a planned final nuclear waste repository at Forsmark. The main deliverable was a computed water exchange between basins in the Forsmark marine area for the period 6500 BC to 9000 AD - based on the hydrodynamic modelling - to be used as input to the landscape dose model. In addition and what is described in this report, a second deliverable was development and application of high-resolution models for the marine ecosystem and radionuclide processes. The purpose of this deliverable was to illustrate the spatial and temporal variation in important processes and parameters, while constituting a complement to previous modelling approaches and providing supporting information to discussions of the marine ecosystem, parameters and variation (see Chapter 4 and 6).To this end, a hydrodynamic model of high temporal and spatial resolution was constructed and calibrated for the Forsmark area. An ecosystem model was then developed and coupled to the hydrodynamic model. In turn, a detailed radionuclide model was coupled to the ecosystem model to provide detailed predictions of radionuclide transport and accumulation in the coastal ecosystem. The ecosystem and radionuclide models were developed in the equation solver MIKE ECOLab that links seamless to the MIKE3 FM hydrodynamic model. The 'standard' ECOLab ecosystem model was extended with six biological state variables, perennial macroalgae, benthic herbivors, detritus feeders, planktivorus fish and, benthic predators representing the relict isopod Saduria and cod. In contrast to the ecosystem model, the radionuclide model was developed from scratch but building on the structure of the ecosystem model and using the output (process rates linking state variables) from the ecosystem model as input to the radionuclide model. Both the ecosystem model and the radionuclide model were run for several years (5-8 years) to bring state variables into

  9. Models for transport and fate of carbon, nutrients and radionuclides in the aquatic ecosystem at Oeregrundsgrepen

    International Nuclear Information System (INIS)

    Erichsen, Anders Christian; Moehlenberg, Flemming; Closter, Rikke Margrethe; Sandberg, Johannes

    2010-06-01

    The aim of the work was to provide supplementary input to the risk assessment of a planned final nuclear waste repository at Forsmark. The main deliverable was a computed water exchange between basins in the Forsmark marine area for the period 6500 BC to 9000 AD - based on the hydrodynamic modelling - to be used as input to the landscape dose model. In addition and what is described in this report, a second deliverable was development and application of high-resolution models for the marine ecosystem and radionuclide processes. The purpose of this deliverable was to illustrate the spatial and temporal variation in important processes and parameters, while constituting a complement to previous modelling approaches and providing supporting information to discussions of the marine ecosystem, parameters and variation (see Chapter 4 and 6).To this end, a hydrodynamic model of high temporal and spatial resolution was constructed and calibrated for the Forsmark area. An ecosystem model was then developed and coupled to the hydrodynamic model. In turn, a detailed radionuclide model was coupled to the ecosystem model to provide detailed predictions of radionuclide transport and accumulation in the coastal ecosystem. The ecosystem and radionuclide models were developed in the equation solver MIKE ECOLab that links seamless to the MIKE3 FM hydrodynamic model. The 'standard' ECOLab ecosystem model was extended with six biological state variables, perennial macroalgae, benthic herbivors, detritus feeders, planktivorus fish and, benthic predators representing the relict isopod Saduria and cod. In contrast to the ecosystem model, the radionuclide model was developed from scratch but building on the structure of the ecosystem model and using the output (process rates linking state variables) from the ecosystem model as input to the radionuclide model. Both the ecosystem model and the radionuclide model were run for several years (5-8 years) to bring state variables into quasi

  10. Toward a Mechanistic Source Term in Advanced Reactors: Characterization of Radionuclide Transport and Retention in a Sodium Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Brunett, Acacia J.; Bucknor, Matthew; Grabaskas, David

    2016-04-17

    A vital component of the U.S. reactor licensing process is an integrated safety analysis in which a source term representing the release of radionuclides during normal operation and accident sequences is analyzed. Historically, source term analyses have utilized bounding, deterministic assumptions regarding radionuclide release. However, advancements in technical capabilities and the knowledge state have enabled the development of more realistic and best-estimate retention and release models such that a mechanistic source term assessment can be expected to be a required component of future licensing of advanced reactors. Recently, as part of a Regulatory Technology Development Plan effort for sodium cooled fast reactors (SFRs), Argonne National Laboratory has investigated the current state of knowledge of potential source terms in an SFR via an extensive review of previous domestic experiments, accidents, and operation. As part of this work, the significant sources and transport processes of radionuclides in an SFR have been identified and characterized. This effort examines all stages of release and source term evolution, beginning with release from the fuel pin and ending with retention in containment. Radionuclide sources considered in this effort include releases originating both in-vessel (e.g. in-core fuel, primary sodium, cover gas cleanup system, etc.) and ex-vessel (e.g. spent fuel storage, handling, and movement). Releases resulting from a primary sodium fire are also considered as a potential source. For each release group, dominant transport phenomena are identified and qualitatively discussed. The key product of this effort was the development of concise, inclusive diagrams that illustrate the release and retention mechanisms at a high level, where unique schematics have been developed for in-vessel, ex-vessel and sodium fire releases. This review effort has also found that despite the substantial range of phenomena affecting radionuclide release, the

  11. Recent developments in the integrated approach toward characterization of radionuclide transport, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Simmons, A.M.; Canepa, J.A.

    1992-01-01

    The radionuclide migration program for the Yucca Mountain Site Characterization Project (YMP) includes studies of radionuclide solubility, sorption, diffusion, and transport. The study plans incorporate all possible parameters of investigation; decision-making strategies for prioritizing the parameters and evaluating their significance were developed in conjunction with the study plans. After definition of explicit research goals for each study, YMP evaluated the applicability of existing data and formulated experimental approaches for obtaining additional data. This resulted in development of individual testing strategies that were integrated into an overall strategy for the radionuclide migration program designed to provide input to credible performance assessments. The strategies allow for decision points at various steps of data collection and testing. They provide a streamlined process toward a defensible level of understanding of chemical retardation and transport processes that will be used to predict the mountain's ability to isolate waste. (author)

  12. RIVER-RAD: A computer code for simulating the transport of radionuclides in rivers

    International Nuclear Information System (INIS)

    Hetrick, D.M.; McDowell-Boyer, L.M.; Sjoreen, A.L.; Thorne, D.J.; Patterson, M.R.

    1992-11-01

    A screening-level model, RIVER-RAD, has been developed to assess the potential fate of radionuclides released to rivers. The model is simplified in nature and is intended to provide guidance in determining the potential importance of the surface water pathway, relevant transport mechanisms, and key radionuclides in estimating radiological dose to man. The purpose of this report is to provide a description of the model and a user's manual for the FORTRAN computer code

  13. Ecological vectors of radionuclide transport at a solid radioactive waste disposal facility in southeastern Idaho

    International Nuclear Information System (INIS)

    Arthur, W.J.; Markham, O.D.

    1983-01-01

    Radioecological research conducted at the Idaho National Engineering Laboratory Subsurface Disposal Area (SDA) has estimated the quantity of radionuclides transported by various ecosystem components and evaluated the impact of subsurface disposal of radioactive waste on biotic species inhabiting the area. Radiation dose rates received by small mammals ranged from 0.4 to 41790 mrad/day. Small mammal soil burrowing was an upward transport mechanism for transuranic radionuclides. Seventy-seven uCi of radioactivity occurred in SDA vegetation annually. None of these ecological vectors contributed appreciable quantities of radioactive contamination to the environment surrounding the SDA

  14. Transuranic radionuclides dispersed into the environment at accident sites, a bibliography

    International Nuclear Information System (INIS)

    Stoker, A.C.; Noshkin, V.E.; Wong, K.M.

    1994-07-01

    The purpose of this project was to compile a bibliography of references containing environmental transuranic radionuclide data. The authors intent was to identify those parameters affecting transuranic radionuclide transport that may be generic and those that may be dependent on chemical form and/or environmental conditions. An understanding of the unique characteristics and similarities between source terms and environmental conditions relative to transuranic radionuclide transport and cycling will provide the ability to assess and predict the long term impact on man and the environment. An additional goal of the literature review, was to extract the ranges of environmental transuranic radionuclide data from the identified references for inclusion in a data base. Related to source term, these ranges of data can be used to calculate the dose to man from the radionuclides, and to perform uncertainty analyses on these dose assessments

  15. TRING: a computer program for calculating radionuclide transport in groundwater

    International Nuclear Information System (INIS)

    Maul, P.R.

    1984-12-01

    The computer program TRING is described which enables the transport of radionuclides in groundwater to be calculated for use in long term radiological assessments using methods described previously. Examples of the areas of application of the program are activity transport in groundwater associated with accidental spillage or leakage of activity, the shutdown of reactors subject to delayed decommissioning, shallow land burial of intermediate level waste and geologic disposal of high level waste. Some examples of the use of the program are given, together with full details to enable users to run the program. (author)

  16. CASCADER: An m-chain gas-phase radionuclide transport and fate model

    International Nuclear Information System (INIS)

    Cawlfield, D.E.; Been, K.B.; Emer, D.F.; Lindstrom, F.T.; Shott, G.J.

    1993-06-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes through advection and/or diffusion. Furthermore, parent and daughter radionuclides may decay as they are transported in the soil. This is volume two to the CASCADER series, titled CASCADR8. It embodies the concepts presented in volume one of this series. To properly understand how the CASCADR8 model works, the reader should read volume one first. This volume presents the input and output file structure for CASCADR8, and a set of realistic scenarios for buried sources of radon gas

  17. A review of the behaviour of radionuclides in the environment around Dounreay

    International Nuclear Information System (INIS)

    MacKenzie, A.; Begg, F.; Scott, E.

    1996-02-01

    This study was commissioned by Her Majesty's Industrial Pollution Inspectorate of The Scottish Office Environment Department to review published literature on (1) radionuclide discharges from the Dounreay and Vulcan nuclear establishments, (2) environmental monitoring and modelling of the behaviour of radionuclides in the Dounreay environment, (3) local agricultural and fisheries practices and (4) radionuclide research studies carried out in this environment

  18. Modelling the transport of radionuclides through the freshwater environment

    International Nuclear Information System (INIS)

    Hilton, J.; Galvao, J.P.; Foulquier; Pieri, J.; Belli, M.; Vanderbourght, O.

    1993-01-01

    The main objectives of the project are to identify areas where the present generation of models are breaking down, and to improve the fundamental knowledge in these areas so that more easily transportable (generic) models can be developed. Preliminary studies on the importance of bacteria in the food chain have also been included. Several areas of model limitation have been identified and potential causes have been hypothesized. Steady progress is being made towards the verification of these hypotheses and the ultimate goal of a generic model of radionuclide transport in the aquatic environment. Objectives and results of the nine contributions of the project for the reporting period are discussed. (R.P.) 13 refs., 6 figs., 8 tabs

  19. Silica colloids and their effect on radionuclide sorption. A literature review

    International Nuclear Information System (INIS)

    Hoelttae, P.; Hakanen, M.

    2008-05-01

    Silica sol, commercial colloidal silica manufactured by Eka Chemicals in Bohus, Sweden is a promising inorganic grout material for sealing small fractures in low permeable rock. This literature review collects information about the use of silica sol as an injection grout material, the properties of inorganic, especially silica colloids, colloid contents in granitic groundwater conditions, essential characterization methods and colloid-mediated transport of radionuclides. Objective was to evaluate the release and mobility of silica sol colloids, the effect of the groundwater conditions, the amount of colloids compared with natural colloids in Olkiluoto conditions, radionuclide sorption on colloids and their contribution to radionuclide transport. Silica sol seems to be a feasible material to seal fractures with an aperture as small as 10 μm in low permeable rock. The silica sol gel is sufficiently stable to limit to water ingress during the operational phase, the requirement that the pH should be below 11 is fulfilled and the compatibility with Engineered Barrier System (EBS) materials is expected to be good. No significant influence on the bentonite properties caused by the silica sol is expected when calcium chloride is used as an accelerator but the influence of sodium chloride has not been examined. No significant release of colloids is expected under prevailing groundwater conditions. The long-term (100 y) stability of silica sol gel has not yet been clearly demonstrated and a long-term release of silica colloids cannot be excluded. The question is the amount of colloids, how mobile they are and the influence of possible glacial melt waters. The bentonite buffer used in the EBS system is assumed to be a potential source of colloids. In a study in Olkiluoto, bentonite colloids were found only in low salinity groundwater. In general, low salinity water (total dissolved solids -1 ) favours colloid stability and bentonite colloids can remain stable over long

  20. Radionuclide Transport in Fractured Rock: Numerical Assessment for High Level Waste Repository

    Directory of Open Access Journals (Sweden)

    Claudia Siqueira da Silveira

    2013-01-01

    Full Text Available Deep and stable geological formations with low permeability have been considered for high level waste definitive repository. A common problem is the modeling of radionuclide migration in a fractured medium. Initially, we considered a system consisting of a rock matrix with a single planar fracture in water saturated porous rock. Transport in the fracture is assumed to obey an advection-diffusion equation, while molecular diffusion is considered the dominant mechanism of transport in porous matrix. The partial differential equations describing the movement of radionuclides were discretized by finite difference methods, namely, fully explicit, fully implicit, and Crank-Nicolson schemes. The convective term was discretized by the following numerical schemes: backward differences, centered differences, and forward differences. The model was validated using an analytical solution found in the literature. Finally, we carried out a simulation with relevant spent fuel nuclide data with a system consisting of a horizontal fracture and a vertical fracture for assessing the performance of a hypothetical repository inserted into the host rock. We have analysed the bentonite expanded performance at the beginning of fracture, the quantified radionuclide released from a borehole, and an estimated effective dose to an adult, obtained from ingestion of well water during one year.

  1. Geochemical factors affecting radionuclide transport through near and far fields at a Low-Level Waste Disposal Site

    International Nuclear Information System (INIS)

    Kaplan, D.I.; Seme, R.J.; Piepkho, M.G.

    1995-03-01

    The concentration of low-level waste (LLW) contaminants in groundwater is determined by the amount of contaminant present in the solid waste, rate of release from the waste and surrounding barriers, and a number of geochemical processes including adsorption, desorption, diffusion, precipitation, and dissolution. To accurately predict radionuclide transport through the subsurface, it is essential that the important geochemical processes affecting radionuclide transport be identified and, perhaps more importantly, accurately quantified and described in a mathematically defensible manner

  2. Sensitivity and uncertainty analysis of the PATHWAY radionuclide transport model

    International Nuclear Information System (INIS)

    Otis, M.D.

    1983-01-01

    Procedures were developed for the uncertainty and sensitivity analysis of a dynamic model of radionuclide transport through human food chains. Uncertainty in model predictions was estimated by propagation of parameter uncertainties using a Monte Carlo simulation technique. Sensitivity of model predictions to individual parameters was investigated using the partial correlation coefficient of each parameter with model output. Random values produced for the uncertainty analysis were used in the correlation analysis for sensitivity. These procedures were applied to the PATHWAY model which predicts concentrations of radionuclides in foods grown in Nevada and Utah and exposed to fallout during the period of atmospheric nuclear weapons testing in Nevada. Concentrations and time-integrated concentrations of iodine-131, cesium-136, and cesium-137 in milk and other foods were investigated. 9 figs., 13 tabs

  3. Radionuclide transport in a single fissure

    International Nuclear Information System (INIS)

    Eriksen, T.E.

    1984-01-01

    Radionuclide migration has been studied in natural fissures running parallel to the axes of granitic drill cores. A short pulse of radionuclide solution was injected at one end of the fissure and the temporal change in radionuclide concentration of the eluate measured. At the end of each experiment the fissure was opened and the radionuclide distribution on the fissure surfaces measured. The retardation of 241 Am(III) at pH 8.2 as well as the variation in 235 Np(V) retardation with pH are found to be in good agreement with K d-values obtained in batch experiments. The reduction of (TcO - 4 ) to Tc(IV) leads as expected to increasing retardation.(author)

  4. Assessment of hydrologic transport of radionuclides from the Rulison Underground Nuclear Test Site, Colorado

    International Nuclear Information System (INIS)

    Earman, S.; Chapman, J.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Rulison site in west-central Colorado was the location of an underground detonation of a 40-kiloton nuclear device in 1969. The test took place 2,568 m below ground surface in the Mesaverde Formation. Though located below the regional water table, none of the bedrock formations at the site yielded water during hydraulic tests, indicating extremely low permeability conditions. The scenario evaluated was the migration of radionuclides from the blast-created cavity through the Mesaverde Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. The transport calculations are most sensitive to changes in the mean groundwater velocity and the correlation scale of hydraulic conductivity, with transport of strontium and cesium also sensitive to the sorption coefficient

  5. Radionuclide speciation in the environment: a review

    International Nuclear Information System (INIS)

    Moulin, V.; Moulin, C.

    2001-01-01

    Speciation determination is of prime importance to explain and evaluate the mobility, the toxicity and the risk resulting from the presence of trace elements in natural systems, in particular in the case of radionuclides, in the framework of environment and waste management purposes. The present paper will then focus more specifically on the physico-chemical speciation of radionuclides, and more particularly of actinides, in the environment, with emphasis on the behavior in solution: from a chemical point of view (with important ligands including colloidal phases) using experimental data and speciation calculations, as well as from a more technical point of view (with analytical methods for in situ speciation determination and thermodynamic data determination). A review of recent papers (mainly from CEA) is presented. (orig.)

  6. Materials to be used for radionuclide transport experiments (milestones SPL3A1M4)

    International Nuclear Information System (INIS)

    Viani, B.

    1998-02-01

    Experiments to determine the effect of canister corrosion products on the transport of radionuclides will be undertaken using the FE(III) oxides goethite and hematite as proxies for the expected corrosion envelope that will form as a result of alteration of the corrosion allowance overpack prior to the breaching of the waste container. Samples of ESF invert concrete that have been crushed, or left intact but fractured, and that have been subjected to hydrothermal alteration will be used to determine the effect of cementitious materials on transport of radionuclides. A mixture of CaCO 3 , Si0 2 , and aggregate will be used as a proxy for completely carbonated concrete

  7. Review of Russian language studies on radionuclide behaviour in agricultural animals: biological half-lives

    International Nuclear Information System (INIS)

    Fesenko, S.; Isamov, N.; Barnett, C.L.; Beresford, N.A.; Howard, B.J.; Sanzharova, N.; Fesenko, E.

    2015-01-01

    Extensive studies on transfer of radionuclides to animals were carried out in the USSR from the 1950s. Few of these studies were published in the international refereed literature or taken into account in international reviews. This paper continues a series of reviews of Russian language literature on radionuclide transfer to animals, providing information on biological half-lives of radionuclides in various animal tissues. The data are compared, where possible, with those reported in other countries. The data are normally quantified using a single or double exponential accounting for different proportions of the loss. For some products, such as milk, biological half-lives tend to be rapid at 1–3 d for most radionuclides and largely described by a single exponential. However, for other animal products biological half-lives can vary widely as they are influenced by many factors such as the age and size of the animal. Experimental protocols, such as the duration of the study, radionuclide administration and/or sample collection protocol also influence the value of biological half-lives estimated. - Highlights: • The data on biological half-lives from Russian language literature were reviewed. • Radionuclides with the shortest half-lives in animals are those which accumulate in soft tissues. • Short term behaviour is affected by the form in which radionuclides are administered. • There is a tendency for more rapid radionuclide turnover in younger animals

  8. Numerical solution of the radionuclide transport equation

    International Nuclear Information System (INIS)

    Hadermann, J.; Roesel, F.

    1983-11-01

    A numerical solution of the one-dimensional geospheric radionuclide chain transport equation based on the pseudospectral method is developed. The advantages of this approach are flexibility in incorporating space and time dependent migration parameters, arbitrary boundary conditions and solute rock interactions as well as efficiency and reliability. As an application the authors investigate the impact of non-linear sorption isotherms on migration in crystalline rock. It is shown that non-linear sorption, in the present case a Freundlich isotherm, may reduce concentration at the geosphere outlet by orders of magnitude provided the migration time is comparable or larger than the half-life of the nuclide in question. The importance of fixing dispersivity within the continuum approach is stressed. (Auth.)

  9. Organic material in clay-based buffer materials and its potential impact on radionuclide transport

    International Nuclear Information System (INIS)

    Vilks, P.; Goulard, M.; Stroes-Gascoyne, S.; Haveman, S.A.; Bachinski, D.B.; Hamon, C.J.; Comba, R.

    1997-03-01

    AECL has submitted an Environmental Impact Statement (EIS) to evaluate the concept of nuclear fuel disposal at depth in crystalline rock of the Canadian Shield. In this disposal concept used fuel would be emplaced in corrosion-resistant containers which would be surrounded by clay-based buffer and backfill materials. Once groundwater is able to penetrate the buffer and corrosion-resistant container, radionuclides could be transported from the waste form to the surrounding geosphere, and eventually to the biosphere. The release of radionuclides from the waste form and their subsequent transport would be determined by the geochemistry of the disposal vault and surrounding geosphere. Organic substances affect the geochemistry of radionuclides through complexation reactions that increase solubility and alter mobility, by affecting the redox of certain radionuclides and by providing food for microbes. The purpose of this study was to determine whether the buffer and backfill materials proposed for use in a disposal vault contain organics that could be leached by groundwater in large enough quantities to complex with radionuclides and affect their mobility within the disposal vault and surrounding geosphere. Buffer material, made from a mixture of 50 wt.% Avonlea sodium bentonite and 50 wt.% silica sand, was extracted with deionized water to determine the release of dissolved organic carbon, humic acid and fulvic acid. The effect of radiation and heat from the used fuel was simulated by treating samples of buffer before leaching to various amounts of heat (60 deg C and 90 deg C) for periods of 2, 4 and 6 weeks, and to ionizing radiation with doses of 25 kGy and 50 kGy. Humic substances were isolated from the leachates to determine the concentrations of humic and fulvic acids and to determine their functional group content by acid-base titrations. The results showed that groundwater would leach significant amounts of organics that would complex with radionuclides such as

  10. A regional sediment transport modeling for fluvial influx and redistribution of suspended radionuclide in the Fukushima coast

    International Nuclear Information System (INIS)

    Uchiyama, Yusuke; Yamanishi, Takafumi; Tsumune, Daisuke; Miyazawa, Yasumasa

    2014-01-01

    Fluvial discharge from the rivers is viewed as a missing piece for the inventory of the radionuclides in the ocean during the accident at the Fukushima Daiichi Nuclear Power Plant. The land-derived input introduces a time lag behind the direct release through hydrological process because these radionuclides mostly attach to suspended particles (sediments) that are transported quite differently to the dissolved matter in the ocean. We therefore develop a regional sediment transport model consisting of a multi-class non-cohesive sediment transport module, a wave-enhanced bed boundary layer model and a stratigraphy model proposed by Blaas et al. (2007) based on ROMS. (author)

  11. Radionuclide transport modelling for a buried near surface low level radioactive waste

    International Nuclear Information System (INIS)

    Terzi, R.

    2004-01-01

    The disposal of radioactive waste, which is the last step of any radioactive waste management policy, has not yet been developed in Turkey. The existing legislation states only the discharge limits for the radioactive wastes to be discharged to the environment. The objective of this modelling study is to assist in safety assessment and selecting disposal site for gradually increasing non-nuclear radioactive wastes. This mathematical model has been developed for the environmental radiological assessment of near surface disposal sites for the low and intermediate level radioactive wastes. The model comprised of three main components: source term, geosphere transport and radiological assessment. Radiation dose for the babies (1 years age) and adults (≥17 years age) have been computed for the radionuclides Cesium 137 (Cs-137) and Strontium 90 (Sr-90), having the activity of 1.10 12 Becquerel(Bq), in radioactive waste through transport of radionuclide in liquid phase with the various pathways. The model consisted of first order ordinary differential equations was coded as a TCODE file in MATLAB program. The radiation dose to man for the realist case and low probability case have been calculated by using Runge-Kutta solution method in MATLAB programme for radionuclide transport from repository to soil layer and then to the ground water(saturated zone) through drinking water directly and consuming agricultural and animal products pathways in one year period. Also, the fatal cancer risk assessment has been made by taking into account the annual dose received by people. Various dose values for both radionuclides have been found which depended on distribution coefficient, retardation factor and dose conversion factors. The most important critical parameters on radiological safety assessment are the distribution coefficient in soil layer, seepage velocity in unsaturated zone and thickness of the unsaturated zone (soil zone). The highest radiation dose and average dose to

  12. Multicomponent mass transport model: a model for simulating migration of radionuclides in ground water

    International Nuclear Information System (INIS)

    Washburn, J.F.; Kaszeta, F.E.; Simmons, C.S.; Cole, C.R.

    1980-07-01

    This report presents the results of the development of a one-dimensional radionuclide transport code, MMT2D (Multicomponent Mass Transport), for the AEGIS Program. Multicomponent Mass Transport is a numerical solution technique that uses the discrete-parcel-random-wald (DPRW) method to directly simulate the migration of radionuclides. MMT1D accounts for: convection;dispersion; sorption-desorption; first-order radioactive decay; and n-membered radioactive decay chains. Comparisons between MMT1D and an analytical solution for a similar problem show that: MMT1D agrees very closely with the analytical solution; MMT1D has no cumulative numerical dispersion like that associated with solution techniques such as finite differences and finite elements; for current AEGIS applications, relatively few parcels are required to produce adequate results; and the power of MMT1D is the flexibility of the code in being able to handle complex problems for which analytical solution cannot be obtained. Multicomponent Mass Transport (MMT1D) codes were developed at Pacific Northwest Laboratory to predict the movement of radiocontaminants in the saturated and unsaturated sediments of the Hanford Site. All MMT models require ground-water flow patterns that have been previously generated by a hydrologic model. This report documents the computer code and operating procedures of a third generation of the MMT series: the MMT differs from previous versions by simulating the mass transport processes in systems with radionuclide decay chains. Although MMT is a one-dimensional code, the user is referred to the documentation of the theoretical and numerical procedures of the three-dimensional MMT-DPRW code for discussion of expediency, verification, and error-sensitivity analysis

  13. Evaluation of conceptual, mathematical and physical-and-chemical models for describing subsurface radionuclide transport at the Lake Karachai Waste Disposal Site

    International Nuclear Information System (INIS)

    Rumynin, V.G.; Mironenko, V.A.; Sindalovsky, L.N.; Boronina, A.V.; Konosavsky, P.K.; Pozdniakov, S.P.

    1998-01-01

    The goal of this work was to develop the methodology and to improve understanding of subsurface radionuclide transport for application to the Lake Karachai Site and to identify the influence of the processes and interactions involved into transport and fate of the radionuclides. The report is focused on two sets of problems, which have to do both with, hydrodynamic and hydrogeochemical aspects of the contaminant transport

  14. Transport of a Two-Member Decay Chain of Radionuclides Through a Discrete Fracture in a Porous Rock Matrix in the Presence of Colloids

    International Nuclear Information System (INIS)

    Tien, N.-C.; Li Shihhai

    2002-01-01

    Many physical and chemical processes dominate the transport of radionuclides in groundwater. Among these processes, the decay chain process of radionuclides was frequently disregarded in previous research. However, the daughter products may travel much farther than their parents along the fracture. Therefore, some models neglecting the effect of the decay chain may underestimate the transport radionuclide concentration in geological media. The transport of radionuclides in groundwater is also controlled by colloidal particles. The radionuclides may be enhanced or retarded by the colloids, according to the mobility of these colloidal particles. This work describes a novel model of the transport of a two-member decay chain of radionuclides through a discrete fracture in a porous rock matrix in the presence of colloids. The model addresses the following processes: (a) advective transport in the fracture, (b) mechanical dispersion and molecular diffusion along the fracture, (c) molecular diffusion from the fracture to the rock matrix, (d) adsorption onto the fracture wall, (e) adsorption in the rock matrix, and (f) radioactive decay. Furthermore, colloids are assumed to be excluded from the matrix pores because of their size. A fully developed concentration profile system with nonreactive colloids is used to understand the effect of colloidal sizes by using hydrodynamic chromatography. The external forces acting on the colloid surface, such as the inertial, the van der Waals attractive force, the double layer force, and the gravitational force are accounted for. The parameters, the average velocity of the colloid, the dispersion coefficient of the colloid, and the distribution coefficient of radionuclides with colloids are modified according to the colloidal size. The transport equations for the parent radionuclides are solved analytically using the Laplace transformation and inversion method. However, for the transformed solution of the daughter products along the

  15. Modelling of natural organic matter-linked radionuclide transport in Boom clay

    International Nuclear Information System (INIS)

    Govaerts, J.; Maes, N.

    2012-01-01

    Document available in extended abstract form only. In the framework of the Belgian research program on long term management of high-level and/or long-lived radioactive wastes coordinated by ONDRAF/NIRAS, Boom Clay is investigated for its potential to host a deep geological disposal repository. In order to demonstrate the suitability of the Boom Clay as a host rock, the mobility of critical radionuclides in this clay layer has been the subject of research during many years. As actinides, lanthanides and transition metals are known to form strong complexes with organic substances, the influence of the Natural Organic Matter (NOM) present in Boom Clay on the mobility of these critical radionuclides is of crucial importance. Interaction of radionuclides with OM present in Boom Clay could on the one hand retard the migration due to complexation/colloid interaction with the immobile OM, and on the other hand the mobility and solubility of the radionuclide can be enhanced by the formation of complexes/colloids with the mobile OM. The conceptual understanding (and its numerical modelling) of the kinetic stability and transport of these complexes/colloids is therefore regarded as highly important for the the long-term safety assesment of the geological disposal. This can be broken down into two subproblems: 1. Describing the transport behaviour of mobile OM in Boom Clay; 2. Describing the interaction of RN with mobile OM and the transport behaviour of the resulting complexes in Boom Clay. The first part of this paper revolves around the first subproblem, where a robust model for the description of the migration behaviour of Natural Organic Matter (NOM) is derived based on data from column migration experiments using 14 C-labelled NOM Tracer solution, obtained in the framework of the EC TRANCOM-II project. Clay plugs of different lengths and different Darcy velocities were used. Inverse modelling with the MATLAB and COMSOL numerical code was done in order to identify the

  16. Transuranic radionuclides in the environment surrounding radioactive waste diposal sites, a bibliography

    International Nuclear Information System (INIS)

    Stoker, A.C.; Noshkin, V.E.; Wong, K.M.; Brunk, J.L.; Conrado, C.L.; Jones, H.E.; Kehl, S.; Stuart, M.L.; Wasley, L.M.; Bradsher, R.V.

    1994-08-01

    The purpose of this project was to compile a bibliography of references containing environmental transuranic radionuclide data. Our intent was to identify those parameters affecting transuranic radionuclide transport that may be generic and those that may be dependent on chemical form and/or environmental conditions (i.e. site specific). An understanding of the unique characteristics and similarities between source terms and environmental conditions relative to transuranic radionuclide transport and cycling will provide the ability to assess and predict the long term impact on man and the environment. An additional goal of our literature review, was to extract the ranges of environmental transuranic radionuclide data from the identified references for inclusion in a data base. Related to source term, these ranges of data can be used to calculate the dose to man from the radionuclides, and to perform uncertainty analyses on these dose assessments. In an attempt to gather relevant information about the transuranic radionuclides in a variety of environments, we conducted an extensive literature search. In our literature search we identified over 5700 potential written sources of information for review. In addition, we have identified many references which were not found through the literature searches, but which were known to contain useful data. A total of approximately 2600 documents were determined to contain information which would be useful for an in depth study of radionuclides in different environments. The journal articles, books, reports and other documents were reviewed to obtain the source term of the radionuclides studied. Most references containing laboratory study data were not included in our databases. Although these may contain valuable data, we were trying to compile references with information on the behavior of the transuranics in the specific environment being studied

  17. Marine biogeochemistry of radionuclides

    International Nuclear Information System (INIS)

    Fowler, S.W.

    1997-01-01

    Radionuclides entering the ocean from runoff, fallout, or deliberate release rapidly become involved in marine biogeochemical cycles. Sources, sinks and transport of radionuclides and analogue elements are discussed with emphasis placed on how these elements interact with marine organisms. Water, food and sediments are the source terms from which marine biota acquire radionuclides. Uptake from water occurs by surface adsorption, absorption across body surfaces, or a combination of both. Radionuclides ingested with food are either assimilated into tissue or excreted. The relative importance of the food and water pathway in uptake varies with the radionuclide and the conditions under which exposure occurs. Evidence suggests that, compared to the water and food pathways, bioavailability of sediment-bound radionuclides is low. Bioaccumulation processes are controlled by many environmental and intrinsic factors including exposure time, physical-chemical form of the radionuclide, salinity, temperature, competitive effects with other elements, organism size, physiology, life cycle and feeding habits. Once accumulated, radionuclides are transported actively by vertical and horizontal movements of organisms and passively by release of biogenic products, e.g., soluble excreta, feces, molts and eggs. Through feeding activities, particles containing radionuclides are ''packaged'' into larger aggregates which are redistributed upon release. Most radionuclides are not irreversibly bound to such particles but are remineralized as they sink and/or decompose. In the pelagic zones, sinking aggregates can further scavenge particle-reactive elements thus removing them from the surface layers and transporting them to depth. Evidence from both radiotracer experiments and in situ sediment trap studies is presented which illustrates the importance of biological scavenging in controlling the distribution of radionuclides in the water column. (author)

  18. Organic matter linked radionuclide transport in Boom clay - Phenomenological understanding and abstraction to PA

    International Nuclear Information System (INIS)

    Maes, N.; Bruggeman, C.; Liu, D.J.; Salah, S.; Van Laer, L.; Wang, L.; Weetjens, E.; Govaerts, J.; Marivoet, J.; Brassinnes, S.

    2012-01-01

    Document available in extended abstract form only. In the frame of the Belgian research program on long term management of high-level and/or long-lived radioactive wastes coordinated by ONDRAF/NIRAS, plastic clays (i.e., Boom Clay and Ypresian clays) are investigated for their potential to host a deep geological disposal repository for radioactive waste because of, among others, their ability to significantly retard radionuclide releases to the biosphere. The Boom Clay is characterised by the presence of a relatively high amount of dissolved organic matter (DOM, humic substances) which show a strong interaction with a suite of radionuclides (RN) like lanthanides, actinides and transition metals. This interaction with DOM leads in general to an increased mobility of the radionuclide as the OM can act as a colloidal carrier for the radionuclide. Therefore, the quantification and the understanding of the underlying processes are needed for the demonstration of confidence in the host formation to act as a suitable barrier. However, this is not an easy task, given the multitude of processes involved: complexation/colloid formation, sorption, kinetics, filtration, -. In this presentation, we will provide an overview of the research work that leads to a straightforward reactive transport model capturing fairly well the experimental observations. The model can be considered as an intermediate model providing a good basis for further safety abstraction on the one hand and the way to a more detailed phenomenological understanding on the other hand. The research is focussed on the underlying processes that govern speciation, sorption and transport. These underlying processes are investigated in a bottom-up approach, from simple systems to more complex systems. Interpretation is done using thermodynamic based models. Whereas the contribution of Bruggeman et al. focusses mainly on (batch) sorption studies (of trivalent RN), this presentation will provide more details on the

  19. Summary of the data which is used for radionuclide transport analysis in the groundwater

    International Nuclear Information System (INIS)

    Koga, Osamu; Nagara, Shuichi; Matsumura, Toshihiro; Takeuchi, Akira; Takeda, Shinji; Sato, Kazuhiko; Tokizawa, Takayuki

    2004-03-01

    To analyze high precision in groundwater flow and radionuclide transport around Yotsugi open-pit mining place site and around Yotsugi mill tailing yard, besides the topic in past analysis is extracted, following it did examination of the corresponding method and arrangement of physical properties value. It investigated concerning the 3-dimensional flow and transport analysis code which can handle the chain-radionuclide selected. The range of the analytical area examined that become the object of groundwater flow and transport analysis, the wide area, Yotsugi open-pit mining place site and Yotsugi mill tailing yard selected the analytical model area, concerning the range which is surrounded with the divide. Receiving the influence of the alteration zone and the crush zone concerning the coefficient of permeability of the granite, it re-appraised excluding the value which is supposed that water permeability is high. The weathered granite from the lithofacies divided in the high weathered granite and the low weathered granite. As for the geometrical mean of coefficient of permeability of the former 10 -6 m/s order, the later 10 -8 m/s order, there is a difference of 2 orders in both. In addition, the data which is obtained to this year concerning physical properties value for analysis, groundwater level, precipitation and radionuclide density etc. rearranged and data set drew up. (author)

  20. Modified finite element transport model, FETRA, for sediment and radionuclide migration in open coastal waters

    International Nuclear Information System (INIS)

    Onishi, Y.; Arnold, E.M.; Mayer, D.W.

    1979-08-01

    The finite element model, FETRA, simulates transport of sediment and radionuclides (and other contaminants, such as heavy metals, pesticides, and other toxic substances) in surface water bodies. The model is an unsteady, two-dimensional (longitudinal and lateral) model which consists of the following three submodels coupled to include sediment-contaminant interactions: (1) sediment transport submodel, (2) dissolved contaminant transport submodel, and (3) particulate contaminant (contaminant adsorbed by sediment) transport submodel. Under the current phase of the study, FETRA was modified to include sediment-wave interaction in order to extend the applicability of the model to coastal zones and large lakes (e.g., the Great Lakes) where wave actions can be one of the dominant mechanisms to transport sediment and toxic contaminant. FETRA was further modified to handle both linear and quadratic approximations to velocity and depth distributions in order to be compatible with various finite element hydrodynamic models (e.g., RMA II and CAFE) which supply hydrodynamic input data to FETRA. The next step is to apply FETRA to coastal zones to simulate transport of sediment and radionuclides with their interactions in order to test and verify the model under marine and large lacustrine environments

  1. Database for radionuclide transport in the biosphere

    International Nuclear Information System (INIS)

    Jiskra, J.

    1985-01-01

    The biosphere model is the final link in the chain of radionuclide transport models, used for radiation dose calculations from high level waste repositories. This report presents the data needed for biosphere calculations and discusses them where necessary. The first part is dedicated to the nuclide specific parameters like distribution coefficients (water - soil), concentration ratios (soil - plant) and distribution factors (for milk, meat etc.) which are reported in the literature. The second part contains the choice of regions, their division into compartments and the discussion of nutritional habits for man and animals. At the end a theoretical population for each region is estimated based on the consumption rates and on the yield of agricultural products, assuming an autonomous nutrition. (Auth.)

  2. The role of organic complexants and microparticulates in the facilitated transport of radionuclides

    International Nuclear Information System (INIS)

    Schilk, A.J.; Robertson, D.E.; Abel, K.H.; Thomas, C.W.

    1996-12-01

    This progress report describes the results of ongoing radiological and geochemical investigations of the mechanisms of radionuclide transport in groundwater at two low-level waste (LLW) disposal sites within the waste management area of the Chalk River Laboratories (CRL), Ontario, Canada. These sites, the Chemical Pit liquid disposal facility and the Waste Management Area C solid LLW disposal site, have provided valuable 30- to 40-year-old field locations for characterizing the migration of radionuclides and evaluating a number of recent site performance objectives for LLW disposal facilities. This information will aid the NRC and other federal, state, and local regulators, as well as LLW disposal site developers and waste generators, in maximizing the effectiveness of existing or projected LLW disposal facilities for isolating radionuclides from the general public and thereby improving the health and safety aspects of LLW disposal

  3. Study on radionuclides transport from natural evaporating ponds to the atmosphere

    International Nuclear Information System (INIS)

    Liu Keqiang; Zou Changgui

    1997-08-01

    The results of simulated experiments, field monitoring and radiation health risk evaluation of radionuclides transport to the atmosphere from the natural evaporating ponds of a certain nuclear factory, and the estimating method of releasing source strength are presented. The estimated results of radiation health risk show that the maximum individual annual risk is 6.5 x 10 -9 and the total collective annual risk within a radius of 20 km is 3.2 x 10 -5 person, which are caused by operation of the evaporating ponds. It should be pointed out that the above estimated results only refer to one operating year (1990). If the cumulative effect of radionuclides deposition in ground is considered, the risk will increase a little with time until the dynamic balance is achieved. (5 ref., 8 tabs.)

  4. Wind Transport of Radionuclide- Bearing Dust, Peña Blanca, Chihuahua, Mexico

    Science.gov (United States)

    Velarde, R.; Goodell, P. C.; Gill, T. E.; Arimoto, R.

    2007-05-01

    This investigation evaluates radionuclide fractionation during wind erosion of high-grade uranium ore storage piles at Peña Blanca (50km north of Chihuahua City), Chihuahua, Mexico. The aridity of the local environment promotes dust resuspension by high winds. Although active operations ceased in 1983, the Peña Blanca mining district is one of Mexico`s most important uranium ore reserves. The study site contains piles of high grade ore, left loose on the surface, and separated by the specific deposits from which they were derived (Margaritas, Nopal I, and Puerto I). Similar locations do not exist in the United States, since uranium mining sites in the USA have been reclaimed. The Peña Blanca site serves as an analog for the Yucca Mountain project. Dust deposition is collected at Peña Blanca with BSNE sediment catchers (Fryrear, 1986) and marble dust traps (Reheis, 1999). These devices capture windblown sediment; subsequently, the sample data will help quantify potentially radioactive short term field sediment loss from the repository surface and determine sediment flux. Aerosols and surface materials will be analyzed and radioactivity levels established utilizing techniques such as gamma spectroscopy. As a result, we will be able to estimate how much radionuclide contaminated dust is being transported or attached geochemically to fine grain soils or minerals (e.g., clays or iron oxides). The high-grade uranium-bearing material is at secular equilibrium, thus the entire decay series is present. Of resulting interest is not only the aeolian transport of uranium, but also of the other daughter products. These studies will improve our understanding of geochemical cycling of radionuclides with respect to sources, transport, and deposition. The results may also have important implications for the geosciences and homeland security, and potential applications to public health. Funding for this project is provided in part via a NSF grant to Arimoto.

  5. Proposed development of a radionuclide washoff model for the German Reactor Safety Study

    International Nuclear Information System (INIS)

    Helton, J.C.

    1982-11-01

    This report presents a brief overview of the possible development of a model for the attenuation of radionuclide concentrations in urban environments due to rainfall/runoff relationships. The following sequence of actions is suggested: (1) preliminary review, (2) exploratory modeling, (3) detailed literature review, (4) development of mathematical model, (5) development of computer model, and (6) model review including verification and sensitivity analysis. To facilitate the initiation of the indicated efforts, an introduction to the relevant literature is provided. Further, the following topics are also briefly discussed: (1) radionuclide transport and removal in the terrestrial environment, (2) need for a description of the chemical and physical forms of the radionuclides released in a reactor accident, and (3) potential importance of surface-water contamination. (orig./HP) [de

  6. Colloid-facilitated radionuclide transport in the fractured rock: effects of decay chain and limited matrix diffusion

    International Nuclear Information System (INIS)

    Park, J. B.; Park, J. W.; Lee, E. Y.; Kim, C. R.

    2002-01-01

    Colloid-facilitated radionuclide transport in the fractured rock is studies by considering radioactive decay chain and limited matrix diffusion into surrounding porous media. Semi-analytical solution in the Laplace domain is obtained from the mass balance equation of radionuclides and colloid particles. Numerical inversion of the Laplace solution is used to get the concentration profiles both in a fracture and in rock matrix. There issues are analyzed for the radionuclide concentration in a fracture by 1) formation constant of pseudo-colloid, 2) filtration coefficient of radio-colloid and 3) effective diffusion depth into the surrounding porous rock media

  7. Obtaining and testing of the arbuscular mycorrhizal fungies inocula for the modification of radionuclides transport into the plants

    International Nuclear Information System (INIS)

    Kryipka, A.V.; Sorochins'kij, B.V.

    2003-01-01

    Spores of the arbuscular mycorrhizal (AM) fungies have been isolaten from the plants collected at the Chernobyl zone. Selection of the plants were done due to their high radionuclides' accumulation ability and AM colonization level as well. These spores were used to start the inocula production for the plant treatment aimed to affect radionuclides transport. Spores identification was done based on their morphological and molecular features. Three different AM inocula with high potential to modify 90 Sr and 137 Cs transport at the phytoremediation experiments were obtained

  8. Modeling Radionuclide Decay Chain Migration Using HYDROGEOCHEM

    Science.gov (United States)

    Lin, T. C.; Tsai, C. H.; Lai, K. H.; Chen, J. S.

    2014-12-01

    Nuclear technology has been employed for energy production for several decades. Although people receive many benefits from nuclear energy, there are inevitably environmental pollutions as well as human health threats posed by the radioactive materials releases from nuclear waste disposed in geological repositories or accidental releases of radionuclides from nuclear facilities. Theoretical studies have been undertaken to understand the transport of radionuclides in subsurface environments because that the radionuclide transport in groundwater is one of the main pathway in exposure scenarios for the intake of radionuclides. The radionuclide transport in groundwater can be predicted using analytical solution as well as numerical models. In this study, we simulate the transport of the radionuclide decay chain using HYDROGEOCHEM. The simulated results are verified against the analytical solution available in the literature. Excellent agreements between the numerical simulation and the analytical are observed for a wide spectrum of concentration. HYDROGECHEM is a useful tool assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.

  9. Removal of radionuclides from process streams - a review

    International Nuclear Information System (INIS)

    Itzkovitch, I.J.; Ritcey, G.M.

    1979-04-01

    This report details the origin and control of radium 226, thorium 230 and lead 210 contamination of mill effluent streams from conventional and non-conventional milling of uranium ores, reviews the basic chemistry of the radionuclides as it relates to potential alternatives for control and presents these alternatives along with a summary of published cost data. The conclusions from the study indicate that the current technology, using sulphuric acid processing, solubilizes only a comparatively small quantity of the radionuclides, with the solid containing approximately the same concentration as the original ore. Present technolgy does not provide for complete removal and isolation of the radionuclides. Current practice for control of thorium 230 in liquid effluents by neutralization is adequate to meet present Governmental guidelines. Radium in solution is presently being controlled by precipitation with barium chloride but levels of less than 3 pCi/L of soluble radium could be difficult if not impossible to achieve consistently by this treatment. Indications are that the concentration of lead 210 in liquid effluent may exceed present guidelines. No specific control procedures are employed for lead 210. Methods of isolating radium 226 are required for treating effluents from conventional milling as well as from alternative processes under development. Ion exchange is suggested as a means of isolating these radionuclides. (OT)

  10. Radiation, radionuclides and bacteria: An in-perspective review.

    Science.gov (United States)

    Shukla, Arpit; Parmar, Paritosh; Saraf, Meenu

    2017-12-01

    There has been a significant surge in consumption of radionuclides for various academic and commercial purposes. Correspondingly, there has been a considerable amount of generation of radioactive waste. Bacteria and archaea, being earliest inhabitants on earth serve as model microorganisms on earth. These microbes have consistently proven their mettle by surviving extreme environments, even extreme ionizing radiations. Their ability to accept and undergo stable genetic mutations have led to development of recombinant mutants that are been exploited for remediation of various pollutants such as; heavy metals, hydrocarbons and even radioactive waste (radwaste). Thus, microbes have repeatedly presented themselves to be prime candidates suitable for remediation of radwaste. It is interesting to study the behind-the-scenes interactions these microbes possess when observed in presence of radionuclides. The emphasis is on the indigenous bacteria isolated from radionuclide containing environments as well as the five fundamental interaction mechanisms that have been studied extensively, namely; bioaccumulation, biotransformation, biosorption, biosolubilisation and bioprecipitation. Application of microbes exhibiting such mechanisms in remediation of radioactive waste depends largely on the individual capability of the species. Challenges pertaining to its potential bioremediation activity is also been briefly discussed. This review provides an insight into the various mechanisms bacteria uses to tolerate, survive and carry out processes that could potentially lead the eco-friendly approach for removal of radionuclides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effects of radionuclide decay on waste glass behavior: A critical review

    International Nuclear Information System (INIS)

    Wronkiewicz, D.J.

    1993-12-01

    This paper is an extension of a chapter in an earlier report [1] that provides an updated review on the status of radiation damage problems in nuclear waste glasses. This report will focus on radiation effects on vitrified borosilicate nuclear waste glasses under conditions expected in the proposed Yucca mountain repository. Radiation effects on high-level waste glasses and their surrounding repository environment are important considerations for radionuclide immobilization because of the potential to alter the glass stability and thereby influence the radionuclide retentive properties of this waste form. The influence of radionuclide decay on vitrified nuclear waste may be manifested by several changes, including volume, stored energy, structure, microstructure, mechanical properties, and phase separation. Radiation may also affect the composition of aqueous fluids and atmospheric gases in relatively close proximity to the waste form. What is important to the radionuclide retentive properties of the repository is how these radiation effects collectively or individually influence the durability and radionuclide release from the glass in the event of liquid water contact

  12. Review of Russian language studies on radionuclide behaviour in agricultural animals: biological half-lives.

    Science.gov (United States)

    Fesenko, S; Isamov, N; Barnett, C L; Beresford, N A; Howard, B J; Sanzharova, N; Fesenko, E

    2015-04-01

    Extensive studies on transfer of radionuclides to animals were carried out in the USSR from the 1950s. Few of these studies were published in the international refereed literature or taken into account in international reviews. This paper continues a series of reviews of Russian language literature on radionuclide transfer to animals, providing information on biological half-lives of radionuclides in various animal tissues. The data are compared, where possible, with those reported in other countries. The data are normally quantified using a single or double exponential accounting for different proportions of the loss. For some products, such as milk, biological half-lives tend to be rapid at 1-3 d for most radionuclides and largely described by a single exponential. However, for other animal products biological half-lives can vary widely as they are influenced by many factors such as the age and size of the animal. Experimental protocols, such as the duration of the study, radionuclide administration and/or sample collection protocol also influence the value of biological half-lives estimated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Review of Phosphate in soils: Interaction with micronutrients, radionuclides, and heavy metals

    Science.gov (United States)

    Phosphate-phosphorus present in the vadose zone of soil as native, added, or residual fertilizer influences the retention, transport, and bioavailability of heavy metals, metalloids, or metallic radionuclides to aboveground vegetation, soil microorganisms, and fauna that browse that vegetation, or d...

  14. Assessment of hydrologic transport of radionuclides from the Gasbuggy underground nuclear test site, New Mexico

    International Nuclear Information System (INIS)

    Earman, S.; Chapman, J.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Gasbuggy site in northwestern New Mexico was the location of an underground detonation of a 29-kiloton nuclear device in 1967. The test took place in the Lewis Shale, approximately 182 m below the Ojo Alamo Sandstone, which is the aquifer closest to the detonation horizon. The conservative assumption was made that tritium was injected from the blast-created cavity into the Ojo Alamo Sandstone by the force of the explosion, via fractures created by the shot. Model results suggest that if radionuclides produced by the shot entered the Ojo Alamo, they are most likely contained within the area currently administered by DOE. The transport calculations are most sensitive to changes in the mean groundwater velocity, followed by the variance in hydraulic conductivity, the correlation scale of hydraulic conductivity, the transverse hydrodynamic dispersion coefficient, and uncertainty in the source size. This modeling was performed to investigate how the uncertainty in various physical parameters affects calculations of radionuclide transport at the Gasbuggy site, and to serve as a starting point for discussion regarding further investigation at the site; it was not intended to be a definitive simulation of migration pathways or radionuclide concentration values

  15. Updated model for radionuclide transport in the near-surface till at Forsmark - Implementation of decay chains and sensitivity analyses

    International Nuclear Information System (INIS)

    Pique, Angels; Pekala, Marek; Molinero, Jorge; Duro, Lara; Trinchero, Paolo; Vries, Luis Manuel de

    2013-02-01

    The Forsmark area has been proposed for potential siting of a deep underground (geological) repository for radioactive waste in Sweden. Safety assessment of the repository requires radionuclide transport from the disposal depth to recipients at the surface to be studied quantitatively. The near-surface quaternary deposits at Forsmark are considered a pathway for potential discharge of radioactivity from the underground facility to the biosphere, thus radionuclide transport in this system has been extensively investigated over the last years. The most recent work of Pique and co-workers (reported in SKB report R-10-30) demonstrated that in case of release of radioactivity the near-surface sedimentary system at Forsmark would act as an important geochemical barrier, retarding the transport of reactive radionuclides through a combination of retention processes. In this report the conceptual model of radionuclide transport in the quaternary till at Forsmark has been updated, by considering recent revisions regarding the near-surface lithology. In addition, the impact of important conceptual assumptions made in the model has been evaluated through a series of deterministic and probabilistic (Monte Carlo) sensitivity calculations. The sensitivity study focused on the following effects: 1. Radioactive decay of 135 Cs, 59 Ni, 230 Th and 226 Ra and effects on their transport. 2. Variability in key geochemical parameters, such as the composition of the deep groundwater, availability of sorbing materials in the till, and mineral equilibria. 3. Variability in hydraulic parameters, such as the definition of hydraulic boundaries, and values of hydraulic conductivity, dispersivity and the deep groundwater inflow rate. The overarching conclusion from this study is that the current implementation of the model is robust (the model is largely insensitive to variations in the parameters within the studied ranges) and conservative (the Base Case calculations have a tendency to

  16. Radionuclide behavior in water saturated porous media: Diffusion and infiltration coupling of thermodynamically and kinetically controlled radionuclide water - mineral interactions

    International Nuclear Information System (INIS)

    Spasennykh, M.Yu.; Apps, J.A.

    1995-05-01

    A model is developed describing one dimensional radionuclide transport in porous media coupled with locally reversible radionuclide water-mineral exchange reactions and radioactive decay. Problems are considered in which radionuclide transport by diffusion and infiltration processes occur in cases where radionuclide water-solid interaction are kinetically and thermodynamically controlled. The limits of Sr-90 and Cs-137 migration are calculated over a wide range of the problem variables (infiltration velocity, distribution coefficients, and rate constants of water-mineral radionuclide exchange reactions)

  17. Transport of radionuclides in the biosphere

    International Nuclear Information System (INIS)

    Bundi, A.

    1983-10-01

    The dispersion of radionuclides in the biosphere and their uptake by man via various nutritional pathways is studied using a compartment model. The sample environment is the area of the lower Limmat and Aare valleys. General considerations of the compartmental description of the biosphere are made. The problem of the description of surface features, in particular soil, sediment and water, is studied in detail using the code BIOPATH. This study is intended to be an example of how a model of the biosphere could be constructed. It is shown that this is a reasonable model to calculate the spreading of radionuclides in the biosphere and that it indicates the relative significance of individual compartments, pathways and radionuclides. Calculated values of dose committment, however, should not be used as reference data for safety analyses. (Auth.)

  18. Solubility limited radionuclide transport through geologic media

    International Nuclear Information System (INIS)

    Muraoka, Susumu; Iwamoto, Fumio; Pigford, T.H.

    1980-11-01

    Prior analyses for the migration of radionuclides neglect solubility limits of resolved radionuclide in geologic media. But actually some of the actinides may appear in chemical forms of very low solubility. In the present report we have proposed the migration model with no decay parents in which concentration of radionuclide is limited in concentration of solubility in ground water. In addition, the analytical solutions of the space-time-dependent concentration are presented in the case of step release, band release and exponential release. (author)

  19. Radionuclide transport paths in the nearfield - a KBS-3 concept study

    International Nuclear Information System (INIS)

    Pusch, R.

    1990-07-01

    The general scope of the study has been to identify and define major paths for radionuclide transport from KBS3 canisters, focusing on the nearfield rock. A primary purpose was to document the hydraulic properties of the 'disturbed zones' around blasted tunnels and it is concluded from compilation of theoretical data and field experiment recording that stress relief and blasting effects combine to form a previous zone that extends to about 1 m from the tunnel periphery. It has an average, isotropic hydraulic conductivity of no less than 10 -8 m/s. A second major purpose of the study was to generalize the structure of granitic rock with respect to water-bearing fractures. Forsmark, Finnsjoen, and Stripa data have been considered and found to support the idea of rather regular 'orthogonal' fracture systems with relatively large spacings. The hydraulically active part of the fractures, which can be characterized by simple statistical distributions of persistence, spacing, and aperture, is formed by channels, which can be taken as plane, straight stripes with constant width and aperture. The width can be assumed on the basis of field observations while the aperture is estimated from the bulk conductivity and the geometry of the fracture network. The major transport paths of the rock have been concretized and combined to form a general simplified model intended for calculation of radionuclide transport through water flow and through diffusion through continuous water passages. This model comprises of a circumscribing pervious zone of 'wall disturbance' around the deposition holes in addition to the fracture channels. (author)

  20. Radionuclide transfer to marine biota species: review of Russian language studies.

    Science.gov (United States)

    Fesenko, S; Fesenko, E; Titov, I; Karpenko, E; Sanzharova, N; Fonseca, A Gondin; Brown, J

    2010-11-01

    An extensive programme of experiments on transfer of radionuclides to aquatic species was conducted in the former USSR starting from the early 1950s. Only a few of these studies were made available in the English language literature or taken into account in international reviews of radionuclide behaviour in marine ecosystems. Therefore, an overview of original information on radionuclide transfer to marine biota species available from Russian language literature sources is presented here. The concentration ratio (CR) values for many radionuclides and for marine species such as: (239)Pu, (106)Ru and (95)Zr (crustacean), (54)Mn, (90)Sr, (95)Nb, (106)Ru, (137)Cs (239)Pu, (241)Am and natural U (molluscs), and (54)Mn, (90)Sr, (137)Cs and (144)Ce (fish) are in good agreement with those previously published, whilst for some of them, in particular, for (32)P and (110)Ag (crustaceans), (35)S (molluscs), (32)P, (35)S, (95)Nb, and (106)Ru (macroalgae) and (60)Co and (239,240)Pu (fish) the data presented here suggest that changes in the default CR reference values presented in recent marine reviews may be required. The data presented here are intended to supplement substantially the CR values being collated within the handbook on Wildlife Transfer Coefficients, coordinated under the IAEA EMRAS II programme.

  1. Colloid-Facilitated Radionuclide Transport: Current State of Knowledge from a Nuclear Waste Repository Risk Assessment Perspective

    International Nuclear Information System (INIS)

    Reimus, Paul William; Zavarin, Mavrik; Wang, Yifeng

    2017-01-01

    This report provides an overview of the current state of knowledge of colloid-facilitated radionuclide transport from a nuclear waste repository risk assessment perspective. It draws on work that has been conducted over the past 3 decades, although there is considerable emphasis given to work that has been performed over the past 3-5 years as part of the DOE Used Fuel Disposition Campaign. The timing of this report coincides with the completion of a 3-year DOE membership in the Colloids Formation and Migration (CFM) partnership, an international collaboration of scientists studying colloid-facilitated transport of radionuclides at both the laboratory and field-scales in a fractured crystalline granodiorite at the Grimsel Test Site in Switzerland. This Underground Research Laboratory has hosted the most extensive and carefully-controlled set of colloid-facilitated solute transport experiments that have ever been conducted in an in-situ setting, and a summary of the results to date from these efforts, as they relate to transport over long time and distance scales, is provided in Chapter 3 of this report.

  2. Colloid-Facilitated Radionuclide Transport: Current State of Knowledge from a Nuclear Waste Repository Risk Assessment Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-25

    This report provides an overview of the current state of knowledge of colloid-facilitated radionuclide transport from a nuclear waste repository risk assessment perspective. It draws on work that has been conducted over the past 3 decades, although there is considerable emphasis given to work that has been performed over the past 3-5 years as part of the DOE Used Fuel Disposition Campaign. The timing of this report coincides with the completion of a 3-year DOE membership in the Colloids Formation and Migration (CFM) partnership, an international collaboration of scientists studying colloid-facilitated transport of radionuclides at both the laboratory and field-scales in a fractured crystalline granodiorite at the Grimsel Test Site in Switzerland. This Underground Research Laboratory has hosted the most extensive and carefully-controlled set of colloid-facilitated solute transport experiments that have ever been conducted in an in-situ setting, and a summary of the results to date from these efforts, as they relate to transport over long time and distance scales, is provided in Chapter 3 of this report.

  3. Simplified analytical model for radionuclide transport simulation in the geosphere

    International Nuclear Information System (INIS)

    Hiromoto, G.

    1996-01-01

    In order to evaluate postclosure off-site doses from a low-level radioactive waste disposal facilities, an integrated safety assessment methodology has being developed at Instituto de Pesquisas Energeticas e Nucleares. The source-term modelling approach adopted in this system is described and the results obtained in the IAEA NSARS 'The Safety Assessment of Near-Surface Radioactive Waste Disposal Facilities' programme for model intercomparison studies are presented. The radionuclides released from the waste are calculated using a simple first order kinetics model, and the transport, through porous media below the waste is determined by using an analytical solution of the mass transport equation. The methodology and the results obtained in this work are compared with those reported by others participants of the NSARS programme. (author). 4 refs., 4 figs

  4. Study of groundwater colloids and their ability to transport radionuclides

    International Nuclear Information System (INIS)

    Tjus, K.; Wikberg, P.

    1987-03-01

    Natural occurring colloids in groundwater can adsorb and transport released radionuclides. In this work groundwater colloids have been investigated with zeta potential measurements and dynamic light scattering. The goal was i) to estimate the detection limits of the Institute's equipment for particle size estimation with dynamic light scattering and zeta potential with dynamic light scattering combined with estimation of Doppler shift in the scattered light frequency; ii) to examine several different groundwaters (Stripa, Kamlunge, Svartboberget). The possibility to apply a theoretical adsorption model for interpreting the results is also discussed. (orig.)

  5. Radionuclide transport in fractured rock: quantifying releases from final disposal of high level waste

    International Nuclear Information System (INIS)

    Silveira, Claudia S. da; Alvim, Antonio C.M.

    2013-01-01

    Crystalline rock has been considered as a potentially suitable matrix for high-level radioactive waste (HLW) repository because it is found in very stable geological formations and may have very low permeability. In this study the adopted physical system consists of the rock matrix containing a discrete horizontal fracture in a water saturated porous rock and a system of vertical fractures as a lineament. The transport in the fractures - horizontal and vertical, is assumed to obey a relation convection-diffusion, while the molecular diffusion is considered dominant mechanism of transport in porous rock. In this model the decay chain is considered. We use a code in Fortran 90, where the partial differential equations that describe the movement of radionuclides were discretized by finite differences methods. We use the fully implicit method for temporal discretization schemes. The simulation was performed with relevant data of nuclides in spent fuel for performance assessment in a hypothetical repository, thus quantifying the radionuclides released into the host rock. (author)

  6. Radioanalytical technology for 10 CFR Part 61 and other selected radionuclides: Literature review

    International Nuclear Information System (INIS)

    Thomas, C.W.; Thomas, V.W.; Robertson, D.E.

    1996-03-01

    A comprehensive literature review and assessment was conducted to identify and evaluate radioanalytical technology and procedures used for measuring 10CFR61 radionuclides and other long-lived isotopes. This review evaluated radiochemical procedures currently in use at a number of laboratories in the US, as well as identifying new advanced methods and techniques which could be adapted for routine radiochemical analyses of low-level radioactive waste. The 10CFR61 radionuclides include 14 C, 60 Cl, 59,63 Ni, 90 Sr, 94 Nb, 99 Tc, 129 I, 137 Cs, and TRU isotopes with half lives greater than 5 years. Other low-level radionuclides of interest include 7,10 Be, 26 Al, 36 Cl, 93 Mo, 109,113m Cd, and 121m,126 Sn, which may be present in various types of waste streams from nuclear power stations

  7. Radionuclide transport along a boreal hill slope - elevated soil water concentrations in riparian forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Lidman, Fredrik; Boily, Aasa; Laudon, Hjalmar [Dept. of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83 Umeaa (Sweden); Koehler, Stephan J. [Dept. of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. 7050, 750 07 Uppsala (Sweden)

    2014-07-01

    The transport of radionuclides from forest ecosystems and out into surface waters is a crucial process for understanding the long-term fate of radionuclides in the boreal landscape. Boreal forests are typically dominated by podzol soils, but the streams draining the forests are often lined by highly organic, often peat-like soils, which the radionuclides must pass through in order to reach the stream. This so-called riparian zone therefore represents a fundamentally different biogeochemical environment than ordinary forest soils, e.g. by exhibiting significantly lower pH and higher concentrations of organic colloids, which significantly can affect the mobility of many radionuclides. Since the riparian zone is the last terrestrial environment that the groundwater is in contact with before it enters the stream, previous research has demonstrated its profound impact on the stream water chemistry. Hence, the riparian soils should also be important for the transport and accumulation of radionuclides. Therefore, soil water was sampled using suction lysimeters installed at different depths along a 22 m long forested hill slope transect in northern Sweden, following the flow pathway of the groundwater from the uphill podzol to the riparian zone near the stream channel. The analyses included a wide range of hydrochemical parameters and many radiologically important elements, e.g. U, Th, Ni, C, Sr, Cs, REEs and Cl. The sampling was repeated ten times throughout a year in order to also capture the temporal variability of the soil water chemistry. The water chemistry of the investigated transect displayed a remarkable change as the groundwater approached the stream channel. Strongly increased concentrations of many elements were observed in the riparian soils. For instance, the concentrations of Th were more than 100 times higher than in the riparian zone than in the uphill forest, suggesting that the riparian zone may be a hotspot for radionuclide accumulation. The reason

  8. Microbial mediation of radionuclide transport -significance for the nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Champ, D.R.

    1984-08-01

    The role that microbially catalyzed processes may play in determining, or altering, radionuclide migration is an unresolved question in the Nuclear Fuel Waste Management Program. This report documents the results of a review of the available information on the existence and biochemical capabilities of micro-organisms and the potential for their involvement in processes affecting the migration of radionuclides of interest. The potential was judged sufficient to warrant conducting experiments to assess their role. The outline of an experimental program to address the role of micro-organisms is presented

  9. Updated model for radionuclide transport in the near-surface till at Forsmark - Implementation of decay chains and sensitivity analyses

    Energy Technology Data Exchange (ETDEWEB)

    Pique, Angels; Pekala, Marek; Molinero, Jorge; Duro, Lara; Trinchero, Paolo; Vries, Luis Manuel de [Amphos 21 Consulting S.L., Barcelona (Spain)

    2013-02-15

    The Forsmark area has been proposed for potential siting of a deep underground (geological) repository for radioactive waste in Sweden. Safety assessment of the repository requires radionuclide transport from the disposal depth to recipients at the surface to be studied quantitatively. The near-surface quaternary deposits at Forsmark are considered a pathway for potential discharge of radioactivity from the underground facility to the biosphere, thus radionuclide transport in this system has been extensively investigated over the last years. The most recent work of Pique and co-workers (reported in SKB report R-10-30) demonstrated that in case of release of radioactivity the near-surface sedimentary system at Forsmark would act as an important geochemical barrier, retarding the transport of reactive radionuclides through a combination of retention processes. In this report the conceptual model of radionuclide transport in the quaternary till at Forsmark has been updated, by considering recent revisions regarding the near-surface lithology. In addition, the impact of important conceptual assumptions made in the model has been evaluated through a series of deterministic and probabilistic (Monte Carlo) sensitivity calculations. The sensitivity study focused on the following effects: 1. Radioactive decay of {sup 135}Cs, {sup 59}Ni, {sup 230}Th and {sup 226}Ra and effects on their transport. 2. Variability in key geochemical parameters, such as the composition of the deep groundwater, availability of sorbing materials in the till, and mineral equilibria. 3. Variability in hydraulic parameters, such as the definition of hydraulic boundaries, and values of hydraulic conductivity, dispersivity and the deep groundwater inflow rate. The overarching conclusion from this study is that the current implementation of the model is robust (the model is largely insensitive to variations in the parameters within the studied ranges) and conservative (the Base Case calculations have a

  10. Computer prediction of subsurface radionuclide transport: an adaptive numerical method

    International Nuclear Information System (INIS)

    Neuman, S.P.

    1983-01-01

    Radionuclide transport in the subsurface is often modeled with the aid of the advection-dispersion equation. A review of existing computer methods for the solution of this equation shows that there is need for improvement. To answer this need, a new adaptive numerical method is proposed based on an Eulerian-Lagrangian formulation. The method is based on a decomposition of the concentration field into two parts, one advective and one dispersive, in a rigorous manner that does not leave room for ambiguity. The advective component of steep concentration fronts is tracked forward with the aid of moving particles clustered around each front. Away from such fronts the advection problem is handled by an efficient modified method of characteristics called single-step reverse particle tracking. When a front dissipates with time, its forward tracking stops automatically and the corresponding cloud of particles is eliminated. The dispersion problem is solved by an unconventional Lagrangian finite element formulation on a fixed grid which involves only symmetric and diagonal matrices. Preliminary tests against analytical solutions of ne- and two-dimensional dispersion in a uniform steady state velocity field suggest that the proposed adaptive method can handle the entire range of Peclet numbers from 0 to infinity, with Courant numbers well in excess of 1

  11. Radionuclide Transport: Preparation During 2009 for the SR-Site Review

    International Nuclear Information System (INIS)

    Robinson, Peter; Maul, Philip; Watson, Claire

    2009-12-01

    Post-closure safety assessments for nuclear waste repositories involve radioecological modelling for an underground source term. Following several decades of research and development, the Swedish Nuclear Waste Management Company (SKB) is approaching a phase of license application. According to SKB's plans, an application to construct a geological repository will be submitted by the end of 2010. The application will be supported by a post-closure safety assessment. In order to prepare for the review of the oncoming license application the Swedish Radiation Safety Authority, has performed research and development projects in the area of performance assessment (PA) modelling during recent years. Independent modelling teams have been established, including both 'in house' as well as consultant's competence. Four areas were identified where further research during 2009 would be beneficial: 1. spatially varying transport properties; 2. choices of PDFs (probability density functions) and parameter correlations; 3. SKB's approach to quantifying the role of the various barriers; and 4. combining scenarios. This report documents the research that was undertaken

  12. Radionuclide toxicity

    International Nuclear Information System (INIS)

    Galle, P.

    1982-01-01

    The aim of this symposium was to review the radionuclide toxicity problems. Five topics were discussed: (1) natural and artificial radionuclides (origin, presence or emission in the environment, human irradiation); (2) environmental behaviour of radionuclides and transfer to man; (3) metabolism and toxicity of radionuclides (radioiodine, strontium, rare gas released from nuclear power plants, ruthenium-activation metals, rare earths, tritium, carbon 14, plutonium, americium, curium and einsteinium, neptunium, californium, uranium) cancerogenous effects of radon 222 and of its danghter products; (4) comparison of the hazards of various types of energy; (5) human epidemiology of radionuclide toxicity (bone cancer induction by radium, lung cancer induction by radon daughter products, liver cancer and leukaemia following the use of Thorotrast, thyroid cancer; other site of cancer induction by radionuclides) [fr

  13. Review of hydrodynamic and transport models and data collected near the mid-Atlantic low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Onishi, Y.; Hibler, L.F.; Sherwood, C.R.

    1987-08-01

    The objectives of this study were to (1) briefly review and evaluate available simulation models that may be used to predict the distribution of low-level radioactive waste (LLW) from the 2800-m and 3800-m Low Level Radioactive Disposal Sites in the Mid-Atlantic Continental Slope and Rise on a regional (a few hundred kilometers square) scale, (2) identify pertinent physical, biological, and geological oceanographic data in or near those LLW disposal sites, and (3) determine minimum data requirements for regional modeling. With suitable model modifications such as turbulence closure, enhanced sediment transport, radionuclide transport, and/or curvilinear coordinate system setup, the FLESCOT model, the FLOWER model, and Blumberg's model would be appropriate candidates for regional radionuclide modeling to predict the transport and dispersion of LLW disposed in the 2800-m and 3800-m sites. Although the RMA10 model does not incorporate a turbulence closure scheme, this model, with some modifications, is also an appropriate candidate for regional radionuclide modeling. FLESCOT is currently the only one that solves distributions of flow, turbulence, salinity, water temperature, sediments, dissolved contaminants, and sediment-sorbed contaminants. Thus, the FLESCOT model is recommended to be applied to the 2800-m and 3800-m sites to predict the transport and accumulation of LLW on a regional scale

  14. Importance of biota in radionuclide transport at the SL-1 radioactive waste disposal area

    International Nuclear Information System (INIS)

    Arthur, W.J.; Grant, J.C.; Markham, O.D.

    1983-01-01

    During summer 1981 and 1982, radioecological research was conducted at the Stationary Low Power Reactor-1 radioactive waste disposal area to: (1) identify vegetation, wildlife, and invertebrate species occurring at or using the area; (2) determine radionuclide concentrations in these various ecosystem components; and (3) to evaluate their respective roles in radionuclide uptake and transport through the surrounding environment. Cesium-137 concentrations detected in surface soils, small mammal excavated soils and small mammal tissues collected at the waste disposal site were significantly (P less than or equal to 0.05) greater than control area samples. Strontium-90 and 235 U analyses of SL-1 and control area samples and projections of total mass of ecosystem components in SL-1 area will be completed in summer of 1983 at which time estimates will be made on the total quantity of fission and activation radionuclides occurring in ecological media at the SL-1 waste disposal area

  15. Simple evaluation of groundwater flow and radionuclide transport at Aespoe

    International Nuclear Information System (INIS)

    Dverstorp, B.; Geier, J.; Voss, C.

    1996-12-01

    A simple evaluation of groundwater flux and potential for radionuclide transport at the Aespoe site, from fundamental hydrologic principles, indicates that, based upon data that are available from surface-based investigations, it is not possible to confirm that the bedrock has a high capacity to retard radionuclide release to the surface environment. This result is primarily due to the high spatial variability of hydraulic conductivity, and high uncertainty regarding the relationship among hydrologic and transport parameters within conductive elements of the bedrock. A comparison between Aespoe and seven other study sites in Sweden indicates that it is difficult or impossible to discriminate among these sites in terms of the geologic barrier function, based upon the types of data that are available from present-day methods of site characterization. Groundwater flux is evaluated by a one-dimensional application of Darcy's law to a set of simple, potential pathways for groundwater flow from the repository, which are chosen to yield an appraisal of the wide bounds of possible system behaviour. The configurations of the pathways are specified based on simple assumptions of flow-field structure, and hydraulic driving forces are specified from consideration of regional and local topographic differences. Results are expressed in terms of a parameter group that has been shown to control the barrier function. Comparisons with more detailed hydrological modelling of Aespoe show that, although a reduction in uncertainty is achieved, this reduction is not sufficient to distinguish between good and poor performance of the geologic barrier at the site. 38 refs

  16. The Development and Application of Reactive Transport Modeling Techniques to Study Radionuclide Migration at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    Hari Selvi Viswanathan

    1999-01-01

    Yucca Mountain, Nevada has been chosen as a possible site for the first high level radioactive waste repository in the United States. As part of the site investigation studies, we need to make scientifically rigorous estimations of radionuclide migration in the event of a repository breach. Performance assessment models used to make these estimations are computationally intensive. We have developed two reactive transport modeling techniques to simulate radionuclide transport at Yucca Mountain: (1) the selective coupling approach applied to the convection-dispersion-reaction (CDR) model and (2) a reactive stream tube approach (RST). These models were designed to capture the important processes that influence radionuclide migration while being computationally efficient. The conventional method of modeling reactive transport models is to solve a coupled set of multi-dimensional partial differential equations for the relevant chemical components in the system. We have developed an iterative solution technique, denoted the selective coupling method, that represents a versatile alternative to traditional uncoupled iterative techniques and the filly coupled global implicit method. We show that selective coupling results in computational and memory savings relative to these approaches. We develop RST as an alternative to the CDR method for solving large two- or three-dimensional reactive transport simulations for cases in which one is interested in predicting the flux across a specific control plane. In the RST method, the multidimensional problem is reduced to a series of one-dimensional transport simulations along streamlines. The key assumption with RST is that mixing at the control plane approximates the transverse dispersion between streamlines. We compare the CDR and RST approaches for several scenarios that are relevant to the Yucca Mountain Project. For example, we apply the CDR and RST approaches to model an ongoing field experiment called the Unsaturated Zone

  17. Radionuclide migration in crystalline rock fractures

    International Nuclear Information System (INIS)

    Hoelttae, P.

    2002-01-01

    Crystalline rock has been considered as a host medium for the repository of high radioactive spent nuclear fuel in Finland. The geosphere will act as an ultimate barrier retarding the migration of radionuclides to the biosphere if they are released through the technical barriers. Radionuclide transport is assumed to take place along watercarrying fractures, and retardation will occur both in the fracture and within the rock matrix. To be able to predict the transport and retardation of radionuclides in rock fractures and rock matrices, it is essential to understand the different phenomena involved. Matrix diffusion has been indicated to be an important mechanism, which will retard the transport of radionuclides in rock fractures. Both dispersion and matrix diffusion are processes, which can have similar influences on solute breakthrough curves in fractured crystalline rock. In this work, the migration of radionuclides in crystalline rock fractures was studied by means of laboratory scale column methods. The purpose of the research was to gain a better understanding of various phenomena - particularly matrix diffusion - affecting the transport and retardation behaviour of radionuclides in fracture flow. Interaction between radionuclides and the rock matrix was measured in order to test the compatibility of experimental retardation parameters and transport models used in assessing the safety of underground repositories for spent nuclear fuel. Rock samples of mica gneiss and of unaltered, moderately altered and strongly altered tonalite represented different rock features and porosities offering the possibility to determine experimental boundary limit values for parameters describing both the transport and retardation of radionuclides and rock matrix properties. The dominant matrix diffusion behaviour was demonstrated in porous ceramic column and gas diffusion experiments. Demonstration of the effects of matrix diffusion in crystalline rock fracture succeeded for the

  18. Integration into JRODOS the models of radionuclide transport in rivers, reservoirs and coastal waters to support the emergency response in early accidental stages

    Energy Technology Data Exchange (ETDEWEB)

    Zheleznyak, M.; Bezhenar, R.; Boyko, O.; Ievdin, I.; Koshebutsky, V.; Maderich, V. [Institute of Mathematical Machines and Systems, National Academy of Sciences of Ukraine (Ukraine); Raskob, W.; Trybushnyi, D. [Karlsruhe Institute of Technology, Institut fuer Kern- und Energietechnik (Germany)

    2014-07-01

    The decision support system for offsite nuclear emergency management RODOS (Real-time on-line decision support), developed under several EC RTD Framework Programs, contains many models related to support decision making in case of a nuclear or radiological emergency. Based on the request of the end users, it was re-engineered based on the JAVA technology and further named JRODOS. The consequences of the Fukushima Daiichi Nuclear Power Plant accident clearly demonstrated the importance of modeling tools predicting the radionuclide transport in marine and freshwater environment and assessing the doses to the public via the aquatic food chain to improve decision making in general. As a consequence, such an activity was launched as part of the European project PREPARE aiming to integrate the 3-dimensional model THREETOX for the radionuclide transport in coastal waters, estuaries, deep lakes, and reservoirs into hydrological model chain of JRODOS - JHDM (JRODOS Hydrological Dispersion Module). So far JHDM contains several aquatic radionuclide transport models describing the sequence of the processes 'atmospheric fallout to watershed' - 'radionuclide inflow to a river net' - 'radionuclide transport in river' - 'doses via aquatic pathways'. The implementation of the THREETOX model into this chain by developing also a user friendly interface will extend the applicability of JRODOS to deep fresh water bodies and marine coastal waters. This paper describes the assessment capabilities of this advanced model chain for two examples of the JRODOS implementation in Ukraine. JRODOS is installed in the emergency centers for two Ukrainian Nuclear Power Plants (NPP) - Zaporizzhya NPP (ZNPP) and Rivne NPP (RNPP). The different models of the JHDM were customized for these NPPs taking into account the characteristics of the water bodies in the surroundings of the NPPs. For the RNPP, located at the bank of the Sozh River which is a tributary of the

  19. Radionuclide generators

    International Nuclear Information System (INIS)

    Lambrecht, R.M.

    1983-01-01

    The status of radionuclide generators for chemical research and applications related to the life sciences and biomedical research are reviewed. Emphasis is placed upon convenient, efficient and rapid separation of short-lived daughter radionuclides in a chemical form suitable for use without further chemical manipulation. The focus is on the production of the parent, the radiochemistry associated with processing the parent and daughter, the selection and the characteristic separation methods, and yields. Quality control considerations are briefly noted. The scope of this review includes selected references to applications of radionuclide generators in radiopharmaceutical chemistry, and the life sciences, particularly in diagnostic and therapeutic medicine. The 99 Mo-sup(99m)Tc generator was excluded. 202 references are cited. (orig.)

  20. Fracture hydrology relevant to radionuclide transport. Field work in a granite formation in Cornwall

    International Nuclear Information System (INIS)

    Bourke, P.J.; Hodgkinson, D.P.; Durrance, E.M.; Heath, M.J.

    1985-01-01

    Separation, orientation, apertures and intersections of water-bearing fractures are the variables which control water flow and affect radionuclide transport through fractured rocks. The need is discussed for information on the distribution of these variables in statistical treatments of flow and transport, because of the inadequacy of permeability and porosity data in continuum treatments. Satisfactory methods of measuring distributions of separation, orientation and apetures have been developed and data for Cornish granite are presented. An estimate of the average distance between fracture intersections is made

  1. Sorption of prioritized elements on montmorillonite colloids and their potential to transport radionuclides

    International Nuclear Information System (INIS)

    Wold, Susanna

    2010-04-01

    Due to colloids potential to bind radionuclides (RN) and even mobilise sorbed RN, colloid transport of RN should be taken into account when modeling radionuclide transport in the scenario of a leaking canister in a deep bedrock repository of spent nuclear fuel. Colloids are always present in natural waters and the concentrations are controlled by the groundwater chemistry where specifically the ionic strength is of major importance. In many deep bedrock groundwaters, the ionic strength is fairly high (above the Critical Coagulation Concentration) and therefore colloids are not likely to be stable. In these types of groundwaters colloid concentrations up to 100 μg/l could be expected, and clay colloids organic degradation products and bacteria and viruses represent can be found. In a long time perspective cycles of glaciations can be expected in Sweden as in other Nordic countries. It can not be excluded that glacial melt water can intrude to repository depth with high flows. In this scenario the groundwater conditions may drastically change. In contact with dilute groundwater the bentonite barrier can start to propagate a bentonite gel and further release montmorillonite colloids into water bearing fractures. The concentration of colloids in vicinity of the bentonite barrier can then increase drastically. In contact with Grimsel groundwater types with [Na] and [Ca] of 0.001 and 0.0001 M respectively a montmorillonite concentration of a maximum of 20 mg/l is expected. Further, the groundwater chemistry of Grimsel seems to be representative for glacial meltwater when comparing with the water chemistry data on meltwaters from existing glaciers. A key to be able to model colloid transport of radionuclides is the sorption strength and the sorption reversibility. To facilitate this, a compilation of literature K d -values and an inventory of available sorption kinetic data has been composed for the prioritized elements Pu, Th, Am, Pb, Pa, Ra, Np, Cm, Ac, Tc, Cs, Nb, Ni

  2. Sorption of prioritized elements on montmorillonite colloids and their potential to transport radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Wold, Susanna (Royal Inst. of Technology, Stockholm (Sweden). School of Chemical Science and Engineering, Nuclear Chemistry)

    2010-04-15

    Due to colloids potential to bind radionuclides (RN) and even mobilise sorbed RN, colloid transport of RN should be taken into account when modeling radionuclide transport in the scenario of a leaking canister in a deep bedrock repository of spent nuclear fuel. Colloids are always present in natural waters and the concentrations are controlled by the groundwater chemistry where specifically the ionic strength is of major importance. In many deep bedrock groundwaters, the ionic strength is fairly high (above the Critical Coagulation Concentration) and therefore colloids are not likely to be stable. In these types of groundwaters colloid concentrations up to 100 mug/l could be expected, and clay colloids organic degradation products and bacteria and viruses represent can be found. In a long time perspective cycles of glaciations can be expected in Sweden as in other Nordic countries. It can not be excluded that glacial melt water can intrude to repository depth with high flows. In this scenario the groundwater conditions may drastically change. In contact with dilute groundwater the bentonite barrier can start to propagate a bentonite gel and further release montmorillonite colloids into water bearing fractures. The concentration of colloids in vicinity of the bentonite barrier can then increase drastically. In contact with Grimsel groundwater types with [Na] and [Ca] of 0.001 and 0.0001 M respectively a montmorillonite concentration of a maximum of 20 mg/l is expected. Further, the groundwater chemistry of Grimsel seems to be representative for glacial meltwater when comparing with the water chemistry data on meltwaters from existing glaciers. A key to be able to model colloid transport of radionuclides is the sorption strength and the sorption reversibility. To facilitate this, a compilation of literature K{sub d}-values and an inventory of available sorption kinetic data has been composed for the prioritized elements Pu, Th, Am, Pb, Pa, Ra, Np, Cm, Ac, Tc, Cs, Nb

  3. Natural analogues and radionuclide transport model validation

    International Nuclear Information System (INIS)

    Lever, D.A.

    1987-08-01

    In this paper, some possible roles for natural analogues are discussed from the point of view of those involved with the development of mathematical models for radionuclide transport and with the use of these models in repository safety assessments. The characteristic features of a safety assessment are outlined in order to address the questions of where natural analogues can be used to improve our understanding of the processes involved and where they can assist in validating the models that are used. Natural analogues have the potential to provide useful information about some critical processes, especially long-term chemical processes and migration rates. There is likely to be considerable uncertainty and ambiguity associated with the interpretation of natural analogues, and thus it is their general features which should be emphasized, and models with appropriate levels of sophistication should be used. Experience gained in modelling the Koongarra uranium deposit in northern Australia is drawn upon. (author)

  4. Identification and characterization of potential discharge areas for radionuclide transport by groundwater from a nuclear waste repository in Sweden.

    Science.gov (United States)

    Berglund, Sten; Bosson, Emma; Selroos, Jan-Olof; Sassner, Mona

    2013-05-01

    This paper describes solute transport modeling carried out as a part of an assessment of the long-term radiological safety of a planned deep rock repository for spent nuclear fuel in Forsmark, Sweden. Specifically, it presents transport modeling performed to locate and describe discharge areas for groundwater potentially carrying radionuclides from the repository to the surface where man and the environment could be affected by the contamination. The modeling results show that topography to large extent determines the discharge locations. Present and future lake and wetland objects are central for the radionuclide transport and dose calculations in the safety assessment. Results of detailed transport modeling focusing on the regolith and the upper part of the rock indicate that the identification of discharge areas and objects considered in the safety assessment is robust in the sense that it does not change when a more detailed model representation is used.

  5. IN-SITU RADIONUCLIDE TRANSPORT NEAR THE NOPAL I URANIUM DEPOSIT AT PENA BLANCA, MEXICO: CONSTRAINTS FROM SHORT-LIVED DECAY-SERIES RADIONUCLIDES

    International Nuclear Information System (INIS)

    Luo, S.; Ku, T.L.; Todd, V.; Murrell, M.; Pineda, J. Alfredo Rodriguez; Dinsmoor, J.; Mitchell, A.

    2005-01-01

    For nuclear waste management, an important mechanism by which radioactive waste components are isolated from returning to the human environment, the biosphere, is by the geological barrier in which the effectiveness of the barrier is characterized by in-situ retardation factor, i.e., the transport rate of a radionuclide relative to that of groundwater. As part of natural analog studies of the Yucca Mountain Project of the U. S. Department of Energy, we propose such characterization by using naturally-occurring decay-series radioisotopes as an analog. We collected large-volume (>1000 liters) groundwater samples from three wells (PB, Pozos, and PB4, respectively) near the Nopal I Uranium Ore site at Pena Blanca, Mexico, by using an in-situ Mn-cartridge filtration technique for analysis of short-lived decay-series radionuclides. Results show that the activities of short-lived radioisotopes ( 228 Ra, 224 Ra and 223 Ra) and activity ratios of 224 Ra/ 228 Ra and 224 Ra/ 223 Ra are higher at PB and Pozos than at PB4. In contrast, the 210 Po activity is much lower at PB and Pozos than at PB4. The high Ra activities and activities ratios at PB and Pozos are attributable to the high alpha-recoil input from the aquifer rocks, while the high 210 Po activity at PB4 is due to the enhanced colloidal transport. Based on a uranium-series transport model, we estimate that the in-situ retardation factor of Ra is (0.43 ± 0.02) x 10 3 at PB, (1.68 ± 0.08) x 10 3 at Pozos, and (1.19 ± 0.08) x 10 3 at PB4 and that the mean fracture width in the aquifer rocks is about 0.23 (micro)m at PB, 0.37 (micro)m at Posos, and 4.0 (micro)m at PB4, respectively. The large fracture width at PB4 as derived from the model provides an additional evidence to the inference from the Po measurements that particle-reactive radionuclides are transported mainly as colloidal forms through the large fractures in rocks. Our model also suggests that in addition to alpha recoil, decay of 226 Ra from the adsorbed

  6. Near-field geologic environment as an effective barrier against radionuclide transport

    International Nuclear Information System (INIS)

    Umeki, H.; Sakuma, H.; Ishiguro, K.; Hatanaka, K.; Naito, M.

    1993-01-01

    A generic performance assessment of the geologic disposal system of HLW in Japan has been carried out by the Power Reactor and Nuclear Fuel Development Corporation (PNC) in accordance with the overall HLW management program defined by the Japanese Atomic Energy Commission. A massive engineered barrier system, consisting of vitrified waste, carbon-steel overpack and thick bentonite buffer, is introduced to ensure a long-term performance of the disposal system considering a wide range of geologic environment. A major part of the total performance of the disposal system is borne by the engineered barrier system given a geologic environment that assures and complements the performance of such engineered barrier system. The performance of the natural barrier system coupled with the strong engineered barrier system was investigated by sensitivity analyses. Two types of conceptual model were considered for the analysis to describe radionuclide transport in geologic media and the range of relevant parameters was given by taking the variation of the geologic environment in Japan into account. The results show that the degree of retardation of radionuclide transport chosen in the geologic media varies significantly depending on the parameter values chosen. However, it is indicated that there are realistic combinations of those geologic parameter values which could provide a sufficient degree of retardation within a range of only a few tens of meters from the engineered barrier system. The relative importance of the near-field geologic environment is also discussed

  7. Study of the hydrodynamic circulation and transport of radionuclides in the Ilha Grande Bay -RJ

    International Nuclear Information System (INIS)

    Franklin, Mariza Ramalho

    2001-01-01

    The Almirante Alvaro Alberto Nuclear Center (CNAAA), located at the city of Rio de Janeiro and the liquid effluents are released into the Ilha Grande Bay (BIG). The objective of this work was to simulate mathematically the dispersion of 3 H and 137 Cs present in the liquid effluents that are routinely released into the environment, and in this way contribute to the improvement of the radiological impact assessment associated to these releases. The hydrodynamic circulation pattern of the bay and the transport of radionuclides were simulated by means of numerical modeling techniques by the computational system SisBAHIA (Sistema Base Hidrodinâmica e Ambiental). The results indicate that the local circulation pattern is mainly driven by the propagation of the tidal wave, and is characterized by low current velocities of about 0.1 m.s -1 . The wind stress (normal or extreme ones ) over the free surface does not alter the local circulation pattern significantly. The effluents are released in a rate of about 120 m 3 .s. -1 . As a result, the local hydrodynamics is markedly altered by means of the formation of a huge vortices close to the release area. According to the annual amount of the released radionuclides predicted in the Nuclear Licensing Document, and considering a continuous release it could be predicted that the radionuclide plume would present a low mobility, with most of the activity concentration amount being restricted close to the source. The activity concentration distribution reach the transportation steady state by the end of the 51 st day of simulation. A conservative behavior of both radionuclides in the water column was assumed in the performed simulation. (author)

  8. Application of two-barrier model of radioactive agent transport in sea water for analyzing artificial radionuclide release from containers with radioactive waste dumped in Kara Sea

    Energy Technology Data Exchange (ETDEWEB)

    Grishin, Denis S.; Laykin, Andrey I.; Kuchin, Nickolay L.; Platovskikh, Yuri A. [Krylov State Research Center, Saint Petersburg, 44 Moskovskoe shosse, 196158 (Russian Federation)

    2014-07-01

    Modeling of artificial radionuclide transport in sea water is crucial for prognosis of radioecological situation in regions where dumping of radioactive waste had been made and/or accidents with nuclear submarines had taken place. Distribution of artificial radionuclides in bottom sediments can be a detector of radionuclide release from dumped or sunk objects to marine environment. Proper model can determine the dependence between radionuclide distribution in sediments and radionuclide release. Following report describes two-barrier model of radioactive agent transport in sea water. It was tested on data from 1994 - 2013 expeditions to Novaya Zemlya bays, where regular dumping of solid radioactive waste was practiced by the former USSR from the early 1960's until 1990. Two-barrier model agrees with experimental data and allows more accurate determination of time and intensity of artificial radionuclide release from dumped containers. (authors)

  9. Transport of fallout and reactor radionuclides in the drainage basin of the Hudson River estuary

    International Nuclear Information System (INIS)

    Simpson, H.J.; Linsalata, P.; Olsen, C.R.

    1982-01-01

    The transport and fate of Strontium 90, Cesium 137 and Plutonium 239, 240 in the Hudson River Estuary is discussed. Rates of radionuclide deposition and accumulation over time and space are calculated for the Hudson River watershed, estuary, and continental shelf offshore. 37 references, 7 figures, 15 tables

  10. Radionuclide Transport: Preparation During 2009 for the SR-Site Review

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Peter; Maul, Philip; Watson, Claire (Quintessa Ltd. (United Kingdom))

    2009-12-15

    Post-closure safety assessments for nuclear waste repositories involve radioecological modelling for an underground source term. Following several decades of research and development, the Swedish Nuclear Waste Management Company (SKB) is approaching a phase of license application. According to SKB's plans, an application to construct a geological repository will be submitted by the end of 2010. The application will be supported by a post-closure safety assessment. In order to prepare for the review of the oncoming license application the Swedish Radiation Safety Authority, has performed research and development projects in the area of performance assessment (PA) modelling during recent years. Independent modelling teams have been established, including both 'in house' as well as consultant's competence. Four areas were identified where further research during 2009 would be beneficial: 1. spatially varying transport properties; 2. choices of PDFs (probability density functions) and parameter correlations; 3. SKB's approach to quantifying the role of the various barriers; and 4. combining scenarios. This report documents the research that was undertaken

  11. Evaluation of selected predictive models and parameters for the environmental transport and dosimetry of radionuclides

    International Nuclear Information System (INIS)

    Miller, C.W.; Dunning, D.E. Jr.; Etnier, E.L.; Hoffman, F.O.; Little, C.A.; Meyer, H.R.; Shaeffer, D.L.; Till, J.E.

    1979-07-01

    Evaluations of selected predictive models and parameters used in the assessment of the environmental transport and dosimetry of radionuclides are summarized. Mator sections of this report include a validation of the Gaussian plume disperson model, comparison of the output of a model for the transport of 131 I from vegetation to milk with field data, validation of a model for the fraction of aerosols intercepted by vegetation, an evaluation of dose conversion factors for 232 Th, an evaluation of considering the effect of age dependency on population dose estimates, and a summary of validation results for hydrologic transport models

  12. The role of colloids and suspended particles in radionuclide transport in the Canadian concept for nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Vilks, P.

    1994-02-01

    AECL Research is developing a concept for the permanent disposal of nuclear fuel waste in a deep engineered vault in plutonic rock of the Canadian Shield and is preparing an Environmental Impact Statement (EIS) to document its case for the acceptability of the disposal concept. This report, one in a series of supporting documents for the EIS, addresses the role of particles in radionuclide transport. It summarizes our studies of natural particles in groundwater and presents the arguments used to justify the omission of particle-facilitated transport in the geosphere model that is based on the Whiteshell Research Area (WRA) and used in the postclosure assessment study case. Because radiocolloids formed in the vault will not be able to migrate through the clay buffer, radiocolloid formation in the geosphere will be determined by the sorption of radionuclides onto particles in groundwater. These particles consist of typical fracture-lining minerals, such as clays, micas and quartz; precipitated particles, such as colloidal silica and Fe-Si oxyhydroxides; and organic particles. In groundwater from the WRA, the average concentrations of colloids and suspended particles are 0.34 and 1.4 mg/L respectively. Particle-facilitated transport is not included in the geosphere model because the concentrations of particles in groundwater from the WRA are too low to have a significant impact on radionuclide transport. (author). 92 refs., 11 tabs., 13 figs

  13. Review of speciation and solubility of radionuclides in the near and far field. Pt. 2

    International Nuclear Information System (INIS)

    Smith-Briggs, J.L.

    1992-01-01

    This report represents Part 2 in a series of three reports which review the speciation and solubility of radionuclides in the near and far field. Part 2 is a general bibliography from 1978 to 1991. This report contains the bibliography for the review of speciation and solubility radionuclides in the near and far field from 1978 to 1991. The importance of the solubility and speciation of radionuclides in relation to the safety assessment of the repository is discussed. Solubility is defined, both theoretically and pragmatically, and the factors which influence solubility and speciation are discussed. The literature search was performed using the INIS database. The UKAEA RECAP database, the NIREX report bibliography and a list of DOE reports provided by the DOE were also used. The bibliography is divided into five sections, solubility and speciation experimental data, basic thermodynamic data, solubility limiting solid phases, experimental design and review and overview articles. Some references appear in more than one section. (Author)

  14. Radionuclide daughter inventory generator code: DIG

    International Nuclear Information System (INIS)

    Fields, D.E.; Sharp, R.D.

    1985-09-01

    The Daughter Inventory Generator (DIG) code accepts a tabulation of radionuclide initially present in a waste stream, specified as amounts present either by mass or by activity, and produces a tabulation of radionuclides present after a user-specified elapsed time. This resultant radionuclide inventory characterizes wastes that have undergone daughter ingrowth during subsequent processes, such as leaching and transport, and includes daughter radionuclides that should be considered in these subsequent processes or for inclusion in a pollutant source term. Output of the DIG code also summarizes radionuclide decay constants. The DIG code was developed specifically to assist the user of the PRESTO-II methodology and code in preparing data sets and accounting for possible daughter ingrowth in wastes buried in shallow-land disposal areas. The DIG code is also useful in preparing data sets for the PRESTO-EPA code. Daughter ingrowth in buried radionuclides and in radionuclides that have been leached from the wastes and are undergoing hydrologic transport are considered, and the quantities of daughter radionuclide are calculated. Radionuclide decay constants generated by DIG and included in the DIG output are required in the PRESTO-II code input data set. The DIG accesses some subroutines written for use with the CRRIS system and accesses files containing radionuclide data compiled by D.C. Kocher. 11 refs

  15. Oceanic distributions of radionuclides from nuclear weapons testing

    International Nuclear Information System (INIS)

    Bowen, V.T.

    1977-01-01

    Data on the transport of fallout radionuclides in the Atlantic and Pacific Oceans are reviewed. Relevance of water column fallout data to the disposal of radioactive waste in marine locations is discussed. It is pointed out that regional patterns of delivery of soluble radionuclides must be assumed to persist at least for decades, in spite of the homogenizing action of ocean current systems and that, although there are delays in relation to density discontinuities in the water column, particle-associated radionuclides are generally delivered directly to the sediment surface. The chemistry of particle association appears increasingly complex, in relation both to the element selectivity among kinds of particles, and the stability of the associations once formed, and regional conditions may lead to retention of Pu (and possibly other nuclides) in discrete layers or throughout the water column, in opposition to its general tendency to associate with particles

  16. A simplified model for calculating atmospheric radionuclide transport and early health effects from nuclear reactor accidents

    International Nuclear Information System (INIS)

    Madni, I.K.; Cazzoli, E.G.; Khatib-Rahbar, M.

    1995-01-01

    During certain hypothetical severe accidents in a nuclear power plant, radionuclides could be released to the environment as a plume. Prediction of the atmospheric dispersion and transport of these radionuclides is important for assessment of the risk to the public from such accidents. A simplified PC-based model was developed that predicts time-integrated air concentration of each radionuclide at any location from release as a function of time integrated source strength using the Gaussian plume model. The solution procedure involves direct analytic integration of air concentration equations over time and position, using simplified meteorology. The formulation allows for dry and wet deposition, radioactive decay and daughter buildup, reactor building wake effects, the inversion lid effect, plume rise due to buoyancy or momentum, release duration, and grass height. Based on air and ground concentrations of the radionuclides, the early dose to an individual is calculated via cloudshine, groundshine, and inhalation. The model also calculates early health effects based on the doses. This paper presents aspects of the model that would be of interest to the prediction of environmental flows and their public consequences

  17. Radionuclide transport in the Neogene aquifer system located in the environment of the Boom clay

    International Nuclear Information System (INIS)

    Gedeon, M.; Marivoet, J.; Vandersteen, K.

    2012-01-01

    Document available in extended abstract form only. In the framework the Belgian research program on the long term management of high-level and/or long-lived radioactive waste coordinated by ONDRAF/NIRAS, the Boom Clay is considered as a reference host rock for the geological disposal of high-level radioactive waste in NE-Belgium (Campine area). In the frame of the performance assessments of a disposal system located in the Boom Clay Formation, the transport of radionuclides diffusing through the clay barrier into the aquifers located above is modelled. The transport model for the Neogene aquifer is based on a series of groundwater flow models simulating the aquifer systems in the surroundings of the Boom Clay. This series of groundwater models include the regional north-eastern Belgium model simulating flow both above and below the Boom Clay, the recently updated deep-aquifer pumping model, simulating transient flow in the over-exploited aquifers below the Boom Clay and finally the catchment-scale Neogene aquifer model, simulating flow in the aquifer system above the Boom Clay. The Neogene aquifer system consists of two main aquifers. The Pliocene aquifer is located at the top, separated from the underlying Miocene aquifer by the Kasterlee Clay aquitard. The Miocene aquifer consists of three hydrostratigraphic units: the Diest, Berchem and Voort Formations; with the last two having a lower hydraulic conductivity than the Diest unit. The transport model for the Neogene aquifer represents a fraction of the catchment-scale Neogene aquifer model. It stretches from the local divide between the Grote and Kleine Nete Rivers up to the Kleine Nete River, representing the main model sink. The boundary conditions and the sources/sinks in the Pliocene aquifer are defined mostly by the surface water features, such as the rivers, brooks, lakes and canals. In the partially confined Miocene aquifer, the effect of the surface water features is dampened and the heads at the model

  18. Pathways to man for radionuclides released from disposal sites on land

    International Nuclear Information System (INIS)

    Hill, M.D.

    1986-01-01

    To predict the potential radiological impact on man of the disposal of radioactive wastes it is necessary to identify all the events and processes that could cause releases of radionuclides into the environment, to estimate their probabilities of occurrence and to calculate their consequences, for both individuals and populations. This paper briefly reviews the types of releases that have to be considered for land disposal sites and describes the mathematical models used to calculate rates of transport of radionuclides through the environment and doses to man. The difficulties involved in predicting environmental conditions in the far future are discussed, in the light of the ways in which the results of consequence calculations will be used. Assessments of land disposal of long-lived and highly radioactive wastes are briefly reviewed, with the aim of identifying the most important radionuclides and exposure pathways, and the areas where the models and their databases require improvement. (author)

  19. Transport of radionuclides from the LAMPF lagoons

    International Nuclear Information System (INIS)

    Ferenbaugh, R.W.; Purtymun, W.D.

    1985-01-01

    Monitoring of the discharge water from the Los Alamos Meson Physics Facility lagoons continued during June and December of 1983. The list of radionuclides being monitoring includes 7 Be, 57 Co, 134 Cs, 3 H, 54 Mn, 22 Na, and 83 Rb. The sampling locations and the data obtained to date are presented. Movement of radionuclides around the lagoons has been described in a previous report. 1 reference, 1 table

  20. Modelling of radionuclide transport along the underground access structures of deep geological repositories

    Energy Technology Data Exchange (ETDEWEB)

    Poller, A. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Smith, P. [SAM Switzerland GmbH, Zuerich (Switzerland); Mayer, G.; Hayek, M. [AF-Consult Switzerland AG, Baden (Switzerland)

    2014-08-15

    The arrangement and sealing of the access routes to a deep geological repository for radioactive waste should ensure that any radionuclide release from the emplacement rooms during the post closure phase does not by-pass the geological barriers of the repository system to a significant extent. The base case of the present study, where realistic values for the hydraulic properties of the seals and the associated excavation damage zones were assumed, assesses to what extent this is actually the case for different layout variants (ramp and shaft access and shaft access only). Furthermore, as a test of robustness of system performance against uncertainties related to such seals and the associated excavation damage zones, the present study also considers a broad spectrum of calculation cases including the hypothetical possibility that the seals perform much more poorly than expected and to check whether, consequently, the repository tunnel system and the access structures may provide significant release pathways. The study considers a generic repository system for high-level waste (HLW repository) and for low- and intermediate-level waste (L/ILW repository), both with Opalinus Clay as the host rock. It also considers the alternative possibilities of a ramp or a shaft as the access route for material transport (waste packages, etc.) to the underground facilities. Additional shafts, e.g. for the transport of persons and for ventilation, are included in both cases. The overall modelling approach consists of three broad steps: (a) the network of tunnels and access structures is implemented in a flow model, which serves to calculate water flow rates along the tunnels and through the host rock; (b) all relevant transport paths are implemented in a radionuclide release and transport model, the water flow rates being obtained from the preceding flow model calculations; (c) individual effective dose rates arising from the radionuclides released from the considered repository

  1. Marine radionuclide transport in the northern North Atlantic estimated with an eddy-permitting ocean model - Marine radionuclide transport in the Northern North Atlantic estimated with an Eddy-resolving ocean model

    Energy Technology Data Exchange (ETDEWEB)

    Simonsen, Magne [Norwegian Meteorological institute, P.O. Box 43 Blindern, N-0313 Oslo (Norway); Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Aas (Norway); Isachsen, Paal E.; Saetra, Oeyvind; Klein, Heiko; Bartnicki, Jerzy [Norwegian Meteorological institute, P.O. Box 43 Blindern, N-0313 Oslo (Norway); Salbu, Brit; Lind, Ole C. [Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Aas (Norway)

    2014-07-01

    As a part of the Norwegian Centre for Environmental Radioactivity (CERAD), we have studied transport of radionuclides in the Nordic Seas using an eddy-resolving ocean model. Transport and dispersion is estimated by both Lagrangian (particle) and Eulerian (tracer) methods using currents generated by the Regional Ocean Model System (ROMS) at 4 km horizontal resolution. This relatively high resolution gives a more accurate description of the impact of macro-turbulent advection on transport paths and transport times than achieved in previous studies. The experiments cover historical discharges from the Sellafield reprocessing plant as well as hypothetical accident scenarios from power plants in Great Britain. For the historical Sellafield discharges, model calculations are compared to isotope concentrations observed along the Norwegian Coast and in the Barents Sea. For the accident scenarios, the likely impact on the Norwegian coastal zone is studied considering three different sources for the ocean: direct local discharge, far-field deposition from the atmosphere, and discharge via Norwegian rivers (via atmospheric deposition over land). (authors)

  2. Transport of radionuclides in stochastic media. Pt. 1: The quasi-asymptotic approximation

    International Nuclear Information System (INIS)

    Devooght, J.; Smidts, O.F.

    1996-01-01

    A three-dimensional quasi-asymptotic approximate equation is developed for the transport of radionuclides in a stochastic velocity field. This approximation is derived from an integro-differential equation of transport in stochastic media, commonly encountered in hydrogeology. The quasi-asymptotic equation turns out to be a generalised Telegrapher's equation as found by Williams in the particular context of fractured media. We obtain the Telegrapher's equation without specifying the causes responsible for the random velocity field. Our model may thus be applied in porous media as well as in fractured media. We give the developments leading to the analytical solution of the three-dimensional Telegrapher's equation for constant parameters. This solution is then visualised for a source in the form of a square wave. (Author)

  3. Radionuclides in the study of marine processes

    International Nuclear Information System (INIS)

    Kershaw, P.J.; Woodhead, D.S.

    1991-01-01

    For many years, the radioactive properties of the naturally occurring radionuclides have been used to determine their distributions in the marine environment and, more generally, to gain an understanding of the dynamic processes which control their behaviour in attaining these distributions. More recently the inputs from human activities of both natural and artificial (i.e. man-made) radionuclides have provided additional opportunities for the study of marine processes on local, regional and global scales. The primary objective of the symposium is to provide a forum for an open discussion of the insights concerning processes in the marine environment which can be gained from studies of radionuclide behaviour. Papers have been grouped within the following principal themes; the uses of radionuclides as tracers of water transport; scavenging and particulate transport processes in the oceans as deduced from radionuclide behaviour; processes in the seabed and radionuclides in biological systems. (Author)

  4. Chemical speciation of radionuclides migrating in groundwaters

    International Nuclear Information System (INIS)

    Robertson, D.; Schilk, A.; Abel, K.; Lepel, E.; Thomas, C.; Pratt, S.; Cooper, E.; Hartwig, P.; Killey, R.

    1994-04-01

    In order to more accurately predict the rates and mechanisms of radionuclide migration from low-level waste disposal facilities via groundwater transport, ongoing studies are being conducted at field sites at Chalk River Laboratories to identify and characterize the chemical speciation of mobile, long-lived radionuclides migrating in groundwaters. Large-volume water sampling techniques are being utilized to separate and concentrate radionuclides into particular, cationic, anionic, and nonionic chemical forms. Most radionuclides are migrating as soluble, anionic species that appear to be predominantly organoradionuclide complexes. Laboratory studies utilizing anion exchange chromatography have separated several anionically complexed radionuclides, e.g., 60 Co and 106 Ru, into a number of specific compounds or groups of compounds. Further identification of the anionic organoradionuclide complexes is planned utilizing high resolution mass spectrometry. Large-volume ultra-filtration experiments are characterizing the particulate forms of radionuclides being transported in these groundwaters

  5. Diabetic Gastroparesis: Role of Radionuclide Procedures- A Review

    International Nuclear Information System (INIS)

    Afroz, S.; Rashid, H.; Hossain, S.; Ali, N.F.; Khan, M.S.R.; Taher, A.

    2006-01-01

    Abnormal gastric motility in disordered gastric emptying, called diabetic gastroparesis or gatroparesis diabeticorum, affect up to 50% of diabetics. In diabetic gastroparesis, the normal physiology of gastric emptying is grossly disturbed. Radionuclide scintigraphy is an accurate and sensitive measure of gastric emptying. It is a simple, cheap, efficient and acceptable modality. In this review study, the ability of nuclear medicine was highlighted, which can make general and specific contribution to the management of patients with diabetes and its consequences.(authors)

  6. Assessment of hydrologic transport of radionuclides from the Gnome underground nuclear test site, New Mexico

    International Nuclear Information System (INIS)

    Earman, S.; Chapman, J.; Pohlmann, K.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary site risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Gnome site in southeastern New Mexico was the location of an underground detonation of a 3.5-kiloton nuclear device in 1961, and a hydrologic tracer test using radionuclides in 1963. The tracer test involved the injection of tritium, 90 Sr, and 137 Cs directly into the Culebra Dolomite, a nine to ten-meter-thick aquifer located approximately 150 in below land surface. The Gnome nuclear test was carried out in the Salado Formation, a thick salt deposit located 200 in below the Culebra. Because salt behaves plastically, the cavity created by the explosion is expected to close, and although there is no evidence that migration has actually occurred, it is assumed that radionuclides from the cavity are released into the overlying Culebra Dolomite during this closure process. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides may be present in concentrations exceeding drinking water regulations outside the drilling exclusion boundary established by DOE. Calculated mean tritium concentrations peak at values exceeding the U.S. Environmental Protection Agency drinking water standard of 20,000 pCi/L at distances of up to almost eight kilometers west of the nuclear test

  7. The speciation, stability, solubility and biodegradation of organic co-contaminant radionuclide complexes: A review

    International Nuclear Information System (INIS)

    Keith-Roach, Miranda J.

    2008-01-01

    The potential migration of radionuclides is of concern at contaminated land sites and, in the long term, waste repositories. Pathways of migration need to be characterised on a predictive level so that management decisions can be made with confidence. A pathway that is relatively poorly understood at present is radionuclide solubilisation due to complexation by organic complexing agents that are present in mixed radioactive wastes, and at radioactively contaminated land sites. Interactions of the complexing agents with radionuclides and the host environment, and the response to changes in the physicochemical conditions make their role far from simple to elucidate. In addition, chemical and biodegradation of the organic materials may be important. In this paper, key co-contaminant organics are reviewed with emphasis on their environmental fate and impact on radionuclide migration

  8. The speciation, stability, solubility and biodegradation of organic co-contaminant radionuclide complexes: A review

    Energy Technology Data Exchange (ETDEWEB)

    Keith-Roach, Miranda J. [Biogeochemistry and Environmental Analytical Chemistry Group/Consolidated Radio-isotope Facility, School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)], E-mail: mkeith-roach@plymouth.ac.uk

    2008-06-15

    The potential migration of radionuclides is of concern at contaminated land sites and, in the long term, waste repositories. Pathways of migration need to be characterised on a predictive level so that management decisions can be made with confidence. A pathway that is relatively poorly understood at present is radionuclide solubilisation due to complexation by organic complexing agents that are present in mixed radioactive wastes, and at radioactively contaminated land sites. Interactions of the complexing agents with radionuclides and the host environment, and the response to changes in the physicochemical conditions make their role far from simple to elucidate. In addition, chemical and biodegradation of the organic materials may be important. In this paper, key co-contaminant organics are reviewed with emphasis on their environmental fate and impact on radionuclide migration.

  9. Review of the ecological parameters of radionuclide turnover in vertebrate food chains

    International Nuclear Information System (INIS)

    Kitchings, T.; DiGregorio, D.; Van Voris, P.

    1976-01-01

    Ecological studies of radionuclides in the environment have a long tradition in developing the capability to identify and predict movement and concentration of nuclides in agricultural food chains leading to man. Food chain pathways and transfer coefficients for the nonagricultural portions of natural and managed ecosystems characteristic of affected habitats adjacent to nuclear facilities have not been adequately characterized to establish reliable models for radionuclide releases. This information is necessary in order to assess the impact that such installations will have on the biota of natural ecosystems. Since food chains are the major processes transferring elements from one trophic level to another in terrestrial ecosystems, information is needed on the (a) food-chain transfer pathways, (b) bioconcentration by each trophic component and (c) turnover rates by receptor organisms. These data are prerequisite inputs for food-chain transport models and can be correlated with species characteristics (e.g., body weight and feeding habits), to provide indices for predictive calculations. Application of these models for radionuclide transfer can aid in the assessment of radioactive releases from nuclear reactor facilities to terrestrial nonagricultural food chains

  10. Final Technical Report: Viral Infection of Subsurface Microorganisms and Metal/Radionuclide Transport

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Karrie A.; Bender, Kelly S.; Li, Yusong

    2013-09-28

    Microbially mediated metabolisms have been identified as a significant factor either directly or indirectly impacting the fate and transport of heavy metal/radionuclide contaminants. To date microorganisms have been isolated from contaminated environments. Examination of annotated finished genome sequences of many of these subsurface isolates from DOE sites, revealed evidence of prior viral infection. To date the role that viruses play influencing microbial mortality and the resulting community structure which directly influences biogeochemical cycling in soils and sedimentary environments remains poorly understood. The objective of this exploratory study was to investigate the role of viral infection of subsurface bacteria and the formation of contaminant-bearing viral particles. This objective was approached by examining the following working hypotheses: (i) subsurface microorganisms are susceptible to viral infections by the indigenous subsurface viral community, and (ii) viral surfaces will adsorb heavy metals and radionuclides. Our results have addressed basic research needed to accomplish the BER Long Term Measure to provide sufficient scientific understanding such that DOE sites would be able to incorporate coupled physical, chemical and biological processes into decision making for environmental remediation or natural attenuation and long-term stewardship by establishing viral-microbial relationships on the subsequent fate and transport of heavy metals and radionuclides. Here we demonstrated that viruses play a significant role in microbial mortality and community structure in terrestrial subsurface sedimentary systems. The production of viral-like particles within subsurface sediments in response to biostimulation with dissolved organic carbon and a terminal electron acceptor resulted in the production of viral-like particles. Organic carbon alone did not result in significant viral production and required the addition of a terminal electron acceptor

  11. The role of physical processes controlling the behaviour of radionuclide contaminants in the aquatic environment: a review of state-of-the-art modelling approaches

    International Nuclear Information System (INIS)

    Monte, Luigi; Perianez, Raul; Boyer, Patrick; Smith, Jim T.; Brittain, John E.

    2009-01-01

    This paper is aimed at presenting and discussing the methodologies implemented in state-of-the-art models for predicting the physical processes of radionuclide migration through the aquatic environment, including transport due to water currents, diffusion, settling and re-suspension. Models are briefly described, model parameter values reviewed and values recommended. The different modelling approaches are briefly classified and the advantages and disadvantages of the various model approaches and methodologies are assessed.

  12. Review of research on impacts to biota of discharges of naturally occurring radionuclides in produced water to the marine environment

    International Nuclear Information System (INIS)

    Hosseini, Ali; Brown, Justin E.; Gwynn, Justin P.; Dowdall, Mark

    2012-01-01

    Produced water has been described as the largest volume waste stream in the exploration and production process of oil and gas. It is accompanied by discharges of naturally occurring radionuclides raising concerns over the potential radiological impacts of produced water on marine biota. In the Northern European marine environment, radioactivity in produced water has received substantial attention owing to the OSPAR Radioactive Substances Strategy which aims at achieving ‘concentrations in the environment near background values for naturally occurring radioactive substances’. This review provides an overview of published research on the impacts to biota from naturally occurring radionuclides discharged in produced water by the offshore oil and gas industry. In addition to summarising studies and data that deal directly with the issue of dose and effect, the review also considers studies related to the impact of added chemicals on the fate of discharged radionuclides. The review clearly illustrates that only a limited number of studies have investigated possible impacts on biota from naturally occurring radionuclides present in produced water. Hence, although these studies indicate that the risk to the environment from naturally occurring radionuclides discharged in produced water is negligible, the substantial uncertainties involved in the assessments of impact make it difficult to be conclusive. With regard to the complexity involved in the problem under consideration there is a pressing need to supplement existing data and acquire new knowledge. Finally, the present work identifies some knowledge gaps to indicate future research requirements. -- Highlights: ► Produced water from offshore oil industry contains naturally occurring radionuclides. ► Published research on the impacts to biota from these radionuclides is reviewed. ► Review includes impact of added chemicals on the fate of discharged radionuclides. ► Studies indicate negligible risk to biota

  13. IN-SITU RADIONUCLIDE TRANSPORT NEAR THE NOPAL I URANIUM DEPOSIT AT PENA BLANCA, MEXICO: CONSTRAINTS FROM SHORT-LIVED DECAY-SERIES RADIONUCLIDES

    Energy Technology Data Exchange (ETDEWEB)

    S. Luo; T.L. Ku; V. Todd; M. Murrell; J. Alfredo Rodriguez Pineda; J. Dinsmoor; A. Mitchell

    2005-07-11

    For nuclear waste management, an important mechanism by which radioactive waste components are isolated from returning to the human environment, the biosphere, is by the geological barrier in which the effectiveness of the barrier is characterized by in-situ retardation factor, i.e., the transport rate of a radionuclide relative to that of groundwater. As part of natural analog studies of the Yucca Mountain Project of the U. S. Department of Energy, we propose such characterization by using naturally-occurring decay-series radioisotopes as an analog. We collected large-volume (>1000 liters) groundwater samples from three wells (PB, Pozos, and PB4, respectively) near the Nopal I Uranium Ore site at Pena Blanca, Mexico, by using an in-situ Mn-cartridge filtration technique for analysis of short-lived decay-series radionuclides. Results show that the activities of short-lived radioisotopes ({sup 228}Ra, {sup 224}Ra and {sup 223}Ra) and activity ratios of {sup 224}Ra/{sup 228}Ra and {sup 224}Ra/{sup 223}Ra are higher at PB and Pozos than at PB4. In contrast, the {sup 210}Po activity is much lower at PB and Pozos than at PB4. The high Ra activities and activities ratios at PB and Pozos are attributable to the high alpha-recoil input from the aquifer rocks, while the high {sup 210}Po activity at PB4 is due to the enhanced colloidal transport. Based on a uranium-series transport model, we estimate that the in-situ retardation factor of Ra is (0.43 {+-} 0.02) x 10{sup 3} at PB, (1.68 {+-} 0.08) x 10{sup 3} at Pozos, and (1.19 {+-} 0.08) x 10{sup 3} at PB4 and that the mean fracture width in the aquifer rocks is about 0.23 {micro}m at PB, 0.37 {micro}m at Posos, and 4.0 {micro}m at PB4, respectively. The large fracture width at PB4 as derived from the model provides an additional evidence to the inference from the Po measurements that particle-reactive radionuclides are transported mainly as colloidal forms through the large fractures in rocks. Our model also suggests that

  14. Conceptual and Numerical Modeling of Radionuclide Transport and Retention in Near-Surface Systems

    International Nuclear Information System (INIS)

    Pique, Angels; Arcos, David; Grandia, Fidel; Molinero, Jorge; Duro, Lara; Berglund, Sten

    2013-01-01

    Scenarios of barrier failure and radionuclide release to the near-surface environment are important to consider within performance and safety assessments of repositories for nuclear waste. A geological repository for spent nuclear fuel is planned at Forsmark, Sweden. Conceptual and numerical reactive transport models were developed in order to assess the retention capacity of the Quaternary till and clay deposits for selected radionuclides, in the event of an activity release from the repository. The elements considered were carbon (C), chlorine (Cl), cesium (Cs), iodine (I), molybdenum (Mo), niobium (Nb), nickel (Ni), radium (Ra), selenium (Se), strontium (Sr), technetium (Tc), thorium (Th), and uranium (U). According to the numerical predictions, the repository-derived nuclides that would be most significantly retained are Th, Ni, and Cs, mainly through sorption onto clays, followed by U, C, Sr, and Ra, trapped by sorption and/or incorporation into mineral phases

  15. Uranium and thorium decay series radionuclides in human and animal foodchains - a review

    International Nuclear Information System (INIS)

    Linsalata, P.

    1994-01-01

    Human exposures along plant and animal pathways to isotopes of U, Th, Ra, Pb, and Po are reviewed. The range and variability of intakes among human populations resulting from dietary sources are presented. Also discussed are the sources of intake among fare animals reared for consumption. Under most circumstances, the soil-plant-human pathway is the predominant route of intake for humans and livestock. Radionuclide distributions within livestock and human tissues, and the transfer factors used to model intakes along various food chain pathways an summarized. Bone is the major site of deposition in livestock and humans. Where possible, summary data and conclusions from previous reviews are considered along with some notable gaps in the data base for natural series radionuclides. 67 refs., 4 figs., 6 tabs

  16. Transport of oxidants and radionuclides through a clay barrier

    International Nuclear Information System (INIS)

    Neretnieks, I.

    1978-02-01

    The masstransfer rate for oxidants to, and radionuclides from a capsule in a repository has been computed. The capsule which is 0.75 m in diameter is surrounded by Montmorillonite clay. The hole is 1.5 m in diameter. For one capsule about 1220g copper will corrode due to oxygen corrosion in 10 000 years. If the fissures in the rock nearest the hole are filled with clay, the corrosion will decrease significantly. This is valid for a case where the groundwater is in equilibrium with oxygen of 0.2 bar pressure (normal air pressure). Measurements of the oxygen content in groundwater at large depths show a more than 1 000 times smaller values. The transport rate will then be correspondingly smaller. Corrosion due to sulphate/sulphide corrosion may reach some 590 g in the same time if there is 10 mg/l of the least abundant component. The radionuclides Sr 90 , Cs 137 , Am 241 and Am 243 will decay totally in the clay barriers. Pu 240 will be seriously hindered. The total dissolution of the uranium oxide in a capsule takes at least 1.8 million years. Nuclides with high solubilities decrease in about 2 000 years to half their original concentration. The sodium in the Montmorillonite clay in the fissures is exchanged for calcium in about 20 000 years. The exchange of the sodium in the clay in the hole takes millions of years

  17. Sediment and radionuclide transport in rivers. Phase 3. Field sampling program for Cattaraugus and Buttermilk Creeks, New York

    International Nuclear Information System (INIS)

    Ecker, R.M.; Walters, W.H.; Onishi, Y.

    1982-08-01

    A field sampling program was conducted on Cattaraugus and Buttermilk Creeks, New York during April 1979 to investigate the transport of radionuclides in surface waters as part of a continuing program to provide data for application and verification of Pacific Northwest Laboratory's (PNL) sediment and radionuclide transport model, SERATRA. Bed sediment, suspended sediment and water samples were collected during unsteady flow conditions over a 45 mile reach of stream channel. Radiological analysis of these samples included gamma ray spectrometry analysis, and radiochemical separation and analysis of Sr-90, Pu-238, Pu-239, 240, Am-241 and Cm-244. Tritium analysis was also performed on water samples. Based on the evaluation of radionuclide levels in Cattaraugus and Buttermilk Creeks, the Nuclear Fuel Services facility at West Valley, New York, may be the source of Cs-137, Sr-90, Cs-134, Co-60, Pu-238, Pu-239, 240, Am-241, Cm-244 and tritium found in the bed sediment, suspended sediment and water of Buttermilk and Cattaraugus Creeks. This field sampling effort was the last of a three phase program to collect hydrologic and radiologic data at different flow conditions

  18. Modelling of radionuclide migration in forest ecosystems. A literature review

    Energy Technology Data Exchange (ETDEWEB)

    Avila, R.; Moberg, L.; Hubbard, L.

    1998-03-01

    The Chernobyl accident has clearly shown the long-term effects of a radioactive contamination of forest ecosystems. This report is based on a literature review of models which describe the migration of radionuclides, radioactive caesium in particular, in forest ecosystems. The report describes the particularities of the forest ecosystem, the time dynamics of the contamination, the transfer processes and factors influencing caesium migration. This provides a basis for a discussion of different approaches for modelling caesium migration in the forest. It is concluded that the studied dynamic models include the most relevant transfer processes both for the acute and the long-term phase after a radioactive deposition. However, most models are site specific and do not consider some of the factors responsible for the differences in radionuclide behaviour and distribution in different types of forests. Although model improvements are constrained by the availability of experimental data and by the lack of knowledge of the migration mechanisms some possible improvements are discussed. This report is part of the LANDSCAPE project. -An integrated approach to radionuclide flow in the semi-natural ecosystems underlying exposure pathways to man. 42 refs, 3 tabs, 9 figs.

  19. Modelling of radionuclide migration in forest ecosystems. A literature review

    International Nuclear Information System (INIS)

    Avila, R.; Moberg, L.; Hubbard, L.

    1998-03-01

    The Chernobyl accident has clearly shown the long-term effects of a radioactive contamination of forest ecosystems. This report is based on a literature review of models which describe the migration of radionuclides, radioactive caesium in particular, in forest ecosystems. The report describes the particularities of the forest ecosystem, the time dynamics of the contamination, the transfer processes and factors influencing caesium migration. This provides a basis for a discussion of different approaches for modelling caesium migration in the forest. It is concluded that the studied dynamic models include the most relevant transfer processes both for the acute and the long-term phase after a radioactive deposition. However, most models are site specific and do not consider some of the factors responsible for the differences in radionuclide behaviour and distribution in different types of forests. Although model improvements are constrained by the availability of experimental data and by the lack of knowledge of the migration mechanisms some possible improvements are discussed. This report is part of the LANDSCAPE project. -An integrated approach to radionuclide flow in the semi-natural ecosystems underlying exposure pathways to man

  20. Speciation of radionuclides in the environment

    International Nuclear Information System (INIS)

    Gunten, H.R. von; Benes, P.

    1994-02-01

    Methods for the determination of the speciation of radionuclides in aerosols, in aquatic solutions, in sediments, soils and rocks are reviewed. At present, most of the results about speciation are deduced from model calculations, model experiments, and separation of species (forms) of radionuclides, e.g., by sequential extraction procedures. Methods of direct determination of speciation of radionuclides (e.g. by laser induced spectroscopy) are in general not yet sensitive enough for a measurement of the very low concentrations of radionuclides in the environment. The methodological part of this paper is followed by a review of the very abundant literature about speciation of important radionuclides in the environment, i.e. in the atmosphere, hydrosphere and lithosphere. The review does not include the biosphere. Literature up to spring 1993 is included (with a few more recent additions). (author)

  1. Modeling studies of mountain-scale radionuclide transport in the unsaturated zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Moridis, George J.; Seol, Yongkoo; Wu, Yu-Shu

    2003-01-01

    We investigate radionuclide transport from a high-level nuclear waste repository to be situated in the unsaturated zone (UZ) at Yucca Mountain (YM), Nevada. Several radioactive solutes (that cover the range of sorption behavior) and colloids of various sizes are studied. The results of the study indicate the importance of the subsurface geology and site hydrology, i.e., the presence of faults (they dominate and control transport), fractures (the main migration pathways), and the relative distribution of zeolitic and vitric tuffs. The effects of the climatic conditions, diffusion, and sorption (for solutes) or infiltration (for colloids) onto the matrix are discussed. The influence of the colloid size on transport is also investigated

  2. Modeling the Hydrogeochemical Transport of Radionuclides through Engineered Barriers System in the Proposed LLW Disposal Site of Taiwan - 12082

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wen-Sheng [Hydrotech Research Institute, National Taiwan University, Taipei, Taiwan (China); Liu, Chen-Wuing; Tsao, Jui-Hsuan [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan (China); Li, Ming-Hsu [Institute of Hydrological and Oceanic Sciences, National Central University, Jhongli, Taiwan (China)

    2012-07-01

    A proposed site for final disposal of low-level radioactive waste located in Daren Township of Taitung County along the southeastern coast has been on the selected list in Taiwan. The geology of the Daren site consists of argillite and meta-sedimentary rocks. A mined cavern design with a tunnel system of 500 m below the surface is proposed. Concrete is used as the main confinement material for the engineered barrier. To investigate the hydrogeochemical transport of radionuclides through engineered barriers system, HYDROGEOCHEM5.0 model was applied to simulate the complex chemical interactions among radionuclides, the cement minerals of the concrete, groundwater flow, and transport in the proposed site. The simulation results showed that the engineered barriers system with the side ditch efficiently drained the ground water and lowered the concentration of the concrete degradation induced species (e.g., hydrogen ion, sulfate, and chloride). The velocity of groundwater observed at side ditch gradually decreased with time due to the fouling of pore space by the mineral formation of ettringite and thaumasite. The short half-life of Co-60, Sr-90 and Cs-137 significantly reduced the concentrations, whereas the long half-life of I-129(1.57x10{sup 7} years) and Am-241(432 years) remain stable concentrations at the interface of waste canister and concrete barrier after 300 years. The mineral saturation index (SI) was much less than zero due to the low aqueous concentration of radionuclide, so that the precipitation formation of Co-60, Sr-90, I-129, Cs-137 and Am-241 related minerals were not found. The effect of adsorption/desorption (i.e., surface complexation model) could be a crucial geochemical mechanism for the modeling of liquid-solid phase behavior of radionuclide in geochemically dynamic environments. Moreover, the development of advanced numerical models that are coupled with hydrogeochemical transport and dose assessment of radionuclide is required in the future

  3. The role of colloids in the transport of radionuclides in geological media

    International Nuclear Information System (INIS)

    Moulin, V.

    1993-01-01

    The main objective of this programme is to understand how colloids could influence the migration behaviour of radionuclides in geological formations. This is being achieved firstly, by identifying the retention mechanisms of colloids and pseudocolloids (association of radionuclides with colloids) on mineral surfaces by static and dynamic experiments, and secondly by investigating the formation of pseudocolloids. Moreover, these studies will be focused on model systems (surfaces, colloids) selected from studies carried out on the El Berrocal site (characterization of the granite, of the colloids). Two types of experiments are planned: for the study of pseudocolloid formation, sorption experiments (batch tests) with radionuclides will be conducted either with model inorganic colloidal suspensions or with mineral monoliths as macroscopic surfaces of colloids. Dynamic experiments will be performed using well-defined packings of both synthetic and natural minerals (major constituents of granite). Moreover, a particular attention will be devoted to the organic coatings (in static and dynamic conditions). These studies will provide data directly usable by migration models to predict colloid transport under conditions relevant to geological disposals. This programme will be carried out in collaboration with the different partners of this contract: CEA (Fontenay-aux-Roses/F), CIEMAT (Madrid/S), CNRS (Orsay/F), GERMETRAD (Nantes/F), GSF (Munich/G), INFM (Padua/I), INTERA (London/UK) with Dr V. Moulin, Dr P. Rivas, Dr J.C. Dran, Pr Pieri, Dr C. Wolfrum, Pr G. Della Mea and Dr P. Grindrod as project leaders respectively. 4 refs., 2 figs., 1 tab

  4. COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES THROUGH THE VADOSE ZONE

    International Nuclear Information System (INIS)

    Flury, Markus

    2003-01-01

    close relations to the following EMSP projects: Project: 70126, Interfacial Soil Chemistry of Radionuclides in the Unsaturated Zone (PI: Jon Chorover) Project: 70070, Reactivity of Primary Soil Minerals and Secondary Precipitates (PI: Kathy Nagy) Cesium Transport in Hanford Sediments: Application of an Experimentally Based Cation Exchange Model (PI: Susan Carroll and Carl Steefel)

  5. Mathematical simulation of sediment and contaminant transport in surface waters. Annual report, October 1977--September 1978

    International Nuclear Information System (INIS)

    Onishi, Y.; Arnold, E.M.; Serne, R.J.; Cowan, C.E.; Thompson, F.L.; Mayer, D.W.

    1979-01-01

    Various pathways exist for exposure of humans and biota to radioactive materials released from nuclear facilities. Hydrologic transport (liquid pathway) is one element in the evaluation of the total radiation dose to man. Mathematical models supported by well-planned field data collection programs can be useful tools in assessing the hydrologic transport and ultimate fate of radionuclides. Radionuclides with high distribution coefficients or radionuclides in surface waters with high suspended sediment concentrations are, to a great extent, adsorbed by river and marine sediments. Thus, otherwise dilute contaminants are concentrated. Contaminated sediments may be deposited on the river and ocean beds creating a significant pathway to man. Contaminated bed sediment in turn may become a long-term source of pollution through desorption and resuspension. In order to assess migration and accumulation of radionuclides in surface waters, mathematical models must correctly simulate essential mechanisms of radionuclide transport. The objectives of this study were: (1) to conduct a critical review of (a) radionuclide transport models as well as sediment transport and representative water quality models in rivers, estuaries, oceans, lakes, and reservoirs, and (b) adsorption and desorption mechanisms of radionuclides with sediments in surface waters; (2) to synthesize a mathematical model capable of predicting short- and long-term transport and accumulation of radionuclides in marine environments

  6. Review of speciation and solubility of radionuclides in the near and far field. Pt. 1

    International Nuclear Information System (INIS)

    Smith-Briggs, J.L.

    1992-01-01

    This report represents Part 1 in a series of three reports which review the speciation and solubility of radionuclides in the near and far field. Part 1 reviews the research funded by UK Nirex Ltd (NIREX) and the Department of the Environment into the solubility and speciation of radionuclides in the near and far fields of a radioactive waste repository. The review is focused on the particular situation prevailing in the UK. UK Nirex Limited are currently planning the development of a deep geological repository for low and intermediate level wastes. In the basic design it is envisaged that the waste material would be immobilised and packed into steel or concrete containers. These containers would be placed in vaults and then backfilled with a cemetitious grout. (Author)

  7. Review and assessment of models for predicting the migration of radionuclides through rivers

    International Nuclear Information System (INIS)

    Monte, Luigi; Boyer, Patrick; Brittain, John E.; Haakanson, Lars; Lepicard, Samuel; Smith, Jim T.

    2005-01-01

    The present paper summarises the results of the review and assessment of state-of-the-art models developed for predicting the migration of radionuclides through rivers. The different approaches of the models to predict the behaviour of radionuclides in lotic ecosystems are presented and compared. The models were classified and evaluated according to their main methodological approaches. The results of an exercise of model application to specific contamination scenarios aimed at assessing and comparing the model performances were described. A critical evaluation and analysis of the uncertainty of the models was carried out. The main factors influencing the inherent uncertainty of the models, such as the incompleteness of the actual knowledge and the intrinsic environmental and biological variability of the processes controlling the behaviour of radionuclides in rivers, are analysed

  8. Uranium and Cesium sorption to bentonite colloids in high salinity and carbonate-rich environments: Implications for radionuclide transport

    Science.gov (United States)

    Tran, E. L.; Teutsch, N.; Klein-BenDavid, O.; Weisbrod, N.

    2017-12-01

    When radionuclides are leaked into the subsurface due to engineered waste disposal container failure, the ultimate barrier to migration of radionuclides into local aquifers is sorption to the surrounding rock matrix and sediments, which often includes a bentonite backfill. The extent of this sorption is dependent on pH, ionic strength, surface area availability, radionuclide concentration, surface mineral composition, and solution chemistry. Colloidal-sized bentonite particles eroded from the backfill have been shown to facilitate the transport of radionuclides sorbed to them away from their source. Thus, sorption of radionuclides such as uranium and cesium to bentonite surfaces can be both a mobilization or retardation factor. Though numerous studies have been conducted to-date on sorption of radionuclides under low ionic strength and carbonate-poor conditions, there has been little research conducted on the behavior of radionuclides in high salinities and carbonate rich conditions typical of aquifers in the vicinity of some potential nuclear repositories. This study attempts to characterize the sorption properties of U(VI) and Cs to bentonite colloids under these conditions using controlled batch experiments. Results indicated that U(VI) undergoes little to no sorption to bentonite colloids in a high-salinity (TDS= 9000 mg/L) artificial groundwater. This lack of sorption was attributed to the formation of CaUO2(CO3)22- and Ca2UO2(CO3)3 aqueous ions which stabilize the UO22+ ions in solution. In contrast, Cs exhibited greater sorption, the extent to which was influenced greatly by the matrix water's ionic strength and the colloid concentration used. Surprisingly, when both U and Cs were together, the presence of U(VI) in solution decreased Cs sorption, possibly due to the formation of stabilizing CaUO2(CO3)22- anions. The implications of this research are that rather than undergoing colloid-facilitated transport, U(VI) is expected to migrate similarly to a

  9. Modeling of radionuclide transport through rock formations and the resulting radiation exposure of reference persons. Calculations using Asse II parameters

    International Nuclear Information System (INIS)

    Kueppers, Christian; Ustohalova, Veronika; Steinhoff, Mathias

    2012-01-01

    The long-term release of radioactivity into the ground water path cannot be excluded for the radioactive waste repository Asse II. The possible radiological consequences were analyzed using a radio-ecological scenario developed by GRS. A second scenario was developed considering the solubility of radionuclides in salt saturated solutions and retarding/retention effects during the radionuclide transport through the cap rock layers. The modeling of possible radiation exposure was based on the lifestyle habits of reference persons. In Germany the calculation procedure for the prediction of radionuclide release from final repositories is not defined by national standards, the used procedures are based on analogue methods from other radiation protection calculations.

  10. Review of short-lived radionuclide activities in the United States

    International Nuclear Information System (INIS)

    Sodd, V.J.

    1985-01-01

    A review is given of the accelerator-produced short-lived radionuclides which are used in radiopharmaceuticals available commercially in the US and of the accelerator facilities devoted primarily to their production. Reactions for the efficient production of 67 Ga, 81 Rb → /sup 81m/Kr, 111 In, 201 Tl, and 123 I are given. Methods for the production of higher purity 123 I are suggested

  11. Development of the numerical model for reactive transport of radionuclide and bacteria in the single fractured rock

    International Nuclear Information System (INIS)

    Kim, Jung Woo; Baik, Min Hoon

    2010-12-01

    On the aspects of safety case of HLW deep geological disposal system, recently, many researchers in the world have been actively studying about the bacterial effects on the radionuclide transport in the fractured rock. However, the domestic research level related on the area is still insufficient. Therefore, the objective of the research is to introduce the theory and development process of the numerical model, which was newly developed to examine the bacterial effects on the radionuclide transport in the single fractured rock, and to test the model by simulating in some imaginary conditions. From the verification by comparing the simulation results with analytical solution considering only solute transport and rock diffusion, the Pearson's correlation coefficient was greater than 0.99 which demonstrates the accuracy of the model. Since the simulation in the model domain of the single fractured core rock resulted in well-matched mass-balances for all solutes, the robustness and stability of the model could be proved again. Therefore, it is expected that the report can guide the potential model users and can be a referring material for a model developer who is trying to expand and/or update the model

  12. Review of the ecological parameters of radionuclide turnover in vertebrate food chains

    International Nuclear Information System (INIS)

    Kitchings, T.; DiGregorio, D.; Van Voris, P.

    1975-01-01

    Ecological studies of radionuclides in the environment have a long tradition in developing the capability to identify and predict movement and concentration of nuclides in agronomic food chains leading to man. Food chain pathways and transfer coefficients for the non-agronomic portions of natural and managed ecosystems characteristic of affected habitats adjacent to nuclear facilities have not been adequately characterized to establish reliable dispersion models for radionuclide releases. This information is necessary in order to assess the impact that such installations will have on the biota of natural ecosystems. Since food chains are the major processes transferring elements from one trophic level to another in terrestrial ecosystems, information is needed on the food-chain transfer pathways, bioconcentration by each trophic component, and turnover rates by receptor organisms. These data are prerequisite inputs for food-chain transport models and can be correlated with species characteristics (e.g., body weight and feeding habitats), to provide indices for predictive dispersion calculations. Application of these models for radionuclide transfer can aid in the assessment of radioactive releases from nuclear reactor facilities to terrestrial non-agronomic food chains. (U.S.)

  13. Emission, transport, deposition, and re-suspension of radionuclides from Fukushima Dai-ichi Nuclear Power Plant in the atmosphere - Overview of 2-year investigations in Japan

    Science.gov (United States)

    Kita, Kazuyuki; Igarashi, Yasuhiro; Yoshida, Naohiro; Nakajima, Teruyuki

    2013-04-01

    Following a huge earthquake and tsunami in Eastern Japan on 11 March, 2011, the accident in Fukushima Dai-ichi Nuclear Power Plant (FDNPP) occurred to emit a large amount of artificial radionuclides to the environment. Soon after the FDNPP accident, many Japanese researchers, as well as researchers in other countries, started monitoring radionuclides in various environmental fields and/or model calculations to understand extent and magnitude of radioactive pollution. In this presentation, we overview these activities for the atmospheric radionuclides in Japan as followings: 1. Investigations to evaluate radionuclide emissions by explosions at FNDPP in March 2011 and to estimate the respiration dose of the radiation at this stage. 2. Investigations to evaluate atmospheric transport and deposition processes of atmospheric radionuclide to determine the extent of radionuclide pollution. -- Based on results of the regular and urgent monitoring results, as well as the mapping of the distribution of radionuclide s accumulated by the deposition to the ground, restoration of their time-dependent emission rates has been tried, and processes determining atmospheric concentration and deposition to the ground have been investigated by using the model calculations. 3. Monitoring of the atmospheric concentrations of radionuclide after the initial, surge phase of FNDPP accident. 4. Investigations to evaluate re-suspension of radionuclide from the ground, including the soil and the vegetation. -- Intensive monitoring of the atmospheric concentrations and deposition amount of radionuclide after the initial, surge phase of the accident enable us to evaluate emission history from FNDPP, atmospheric transport and deposition processes, chemical and physical characteristics of atmospheric radionuclide especially of radio cesium, and re-suspension processes which has become dominant process to supply radio cesium to the atmosphere recently.

  14. Field verification of advanced transport models of radionuclides in heterogeneous soils

    International Nuclear Information System (INIS)

    Visser, W.; Meurs, G.A.M.; Weststrate, F.A.

    1991-01-01

    This report deals with a verification study of advanced transport models of radionuclides in heterogeneous soils. The study reported here is the third phase of a research program carried out by Delft Geotechnics concerning the influence of soil heterogeneities on the migration of radionuclides in the soil and soil-water system. Phases 1 and 2 have been reported earlier in the EC Nuclear Science and technology series (EUR 12111 EN, 1989). The verification study involves the predictive modelling of a field tracer experiment carried out by the British Geological Survey (BGS) at Drigg, Cumbria (UK). Conservative (I 131 , Cl-, H 3 ) as well as non-conservative (Co-EDTA) tracers were used. The inverse modelling shows that micro dispersion may be considered as a soil constant related to grainsize. Micro dispersion shows a slow increase with distance from the source. This increase is caused by mass transfer between adjacent layers of different permeability. Macro dispersion is observed when sampling over a larger interval then permitted by the detail with which the heterogeneity is described in the model. The prediction of the migration of radionuclides through heterogeneous soils is possible. The advection dispersion equation seems to be an adequate description of the migration of conservative tracers. The models based on this equation give comparable results on a small field test scale (3.5 m). The prediction of the migration of adsorbing species is more difficult. The mathematical descriptions seem appropriate, but the heterogeneity in soils seems to create a higher order of uncertainty which can not be described as yet with calculation strategies available at this moment

  15. CRRIS, Health Risk Assessment from Atmospheric Releases of Radionuclides

    International Nuclear Information System (INIS)

    1999-01-01

    1 - Description of program or function: CRRIS consists of eight fully integrated computer codes which calculate environmental transport of atmospheric releases of radionuclides and resulting doses and health risks to individuals or populations. Each code may be used alone for various assessment applications. Because of its modular structure, CRRIS allows assessments to be tailored to the user's needs. Radionuclides are handled by CRRIS either in terms of the released radionuclides or the exposure radionuclides which consist of both the released nuclides and decay products that build up during environmental transport. Atmospheric dispersion calculations are performed by the ANEMOS computer code for distances less than 100 km and the RETADD-II computer code regional-scale distances. Both codes estimate annual-average air concentrations and ground deposition rates by location. SUMIT will translate and scale multiple ANEMOS runs onto a master grid. TERRA reads radionuclide air concentrations and deposition rates to estimate concentrations of radionuclides in food and surface soil. Radiologic decay and ingrowth, soil leaching, and transport through the food chain are included in the calculations. MLSOIL computes an effective radionuclide ground-surface concentration to be used in computing external health effects. The five-layer model of radionuclide transport through soil in MLSOIL provides an alternative to the single-layer model used in TERRA. DFSOIL computes dose factors used in MLSOIL to compute doses from the five soil layers and from the ground surface. ANDROS reads environmental concentrations of radionuclides computed by the other CRRIS codes and produces tables of doses and risks to individuals or populations from atmospheric releases of radionuclides. 2 - Method of solution: SUMIT performs geometric interpolation. TERRA and MLSOIL are terrestrial transport compartment models. DFSOIL computes soil-layer-specific dose factors based on the point-kernel method

  16. The role of fungi in the transfer and cycling of radionuclides in forest ecosystems

    International Nuclear Information System (INIS)

    Steiner, M.; Linkov, I.; Yoshida, S.

    2002-01-01

    Fungi are one of the most important components of forest ecosystems, since they determine to a large extent the fate and transport processes of radionuclides in forests. They play a key role in the mobilization, uptake and translocation of nutrients and are likely to contribute substantially to the long-term retention of radiocesium in organic horizons of forest soil. This paper gives an overview of the role of fungi regarding the transfer and cycling of nutrients and radionuclides, with special emphasis on mycorrhizal symbiosis. Common definitions of transfer factors, soil-fungus and soil-green plant, including their advantages and limitations, are reviewed. Experimental approaches to quantify the bioavailability of radionuclides in soil and potential long-term change are discussed

  17. The role of fungi in the transfer and cycling of radionuclides in forest ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, M. E-mail: msteiner@bfs.de; Linkov, I.; Yoshida, S

    2002-07-01

    Fungi are one of the most important components of forest ecosystems, since they determine to a large extent the fate and transport processes of radionuclides in forests. They play a key role in the mobilization, uptake and translocation of nutrients and are likely to contribute substantially to the long-term retention of radiocesium in organic horizons of forest soil. This paper gives an overview of the role of fungi regarding the transfer and cycling of nutrients and radionuclides, with special emphasis on mycorrhizal symbiosis. Common definitions of transfer factors, soil-fungus and soil-green plant, including their advantages and limitations, are reviewed. Experimental approaches to quantify the bioavailability of radionuclides in soil and potential long-term change are discussed.

  18. Radionuclide fate and effects

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The studies reported here deal with the full range of contaminant behavior and fate, from the initial physicochemical factors that govern radionuclide availability in terrestrial and aquatic environments to studies of contaminant transport by biological means. By design, we focus more on the biologically and chemically mediated transport processes and food-chain pathways than on the purely physical forms of contaminant transport, such as transport by wind and water

  19. Development of radionuclide transport model in the ecosystem of brackish lake Obuchi

    International Nuclear Information System (INIS)

    Ueda, Shinji; Kondo, Kunio; Chikuchi, Yuki; Inaba, Jiro

    2003-01-01

    The purpose of this study is to develop a computer code for a radionuclide transport model in Lake Obuchi which is adjacent to nuclear fuel cycle facilities including a nuclear spent-fuel reprocessing plant under construction in Rokkasho-mura. The lake is brackish and this fact makes the entry mode of radionuclides into the lake and its ecosystem very characteristic. For the construction of the code, it is important to incorporate the characteristics of the ecosystem as well as the hydraulic movements into the model. In the present study we report the biological parameters related to the transport model obtained from field observations and a laboratory experiment. We also give results from development of an advective-diffusion model. Monthly field observations revealed that 18 to 47 species of phytoplankton, 9 to 20 species of zooplankton and 0 to 21 species of benthos were present in the lake. A marked seasonal change was observed in the dominant species for both planktons. Mean carbon masses of DOC, POC, phytoplankton and zooplankton in the lake were 16 x 10 4 , 5.9 x 10 4 , 3.7 x 10 4 and 0.20 x 10 4 kg-C, respectively. Phytoplanktons of 10 species in 8 genera were isolated and maintained in a bacteria-free medium in the laboratory. Some physiological and metabolic characteristics of the planktons were studied under those conditions. An advective-diffusion model was developed for particles in the lake. Field observations showed that the model could simulate formation and elimination of the water current. (author)

  20. A review of the behaviour of U-238 series radionuclides in soils and plants

    International Nuclear Information System (INIS)

    Mitchell, N; Pérez-Sánchez, D; Thorne, M C

    2013-01-01

    The U-238 series of radionuclides is of relevance in a variety of environmental contexts ranging from the remediation of former uranium mining and milling facilities to the deep geological disposal of solid radioactive wastes. Herein, we review what is known concerning the behaviour of radionuclides from the U-238 decay chain in soils and plants. This review is intended to provide a single comprehensive source of information to anyone involved in undertaking environmental impact assessment studies relating to this decay chain. Conclusions are drawn relating to values and ranges of distribution coefficients appropriate to uranium, thorium, radium, lead and polonium in different soil types and under various environmental conditions. Similarly, conclusions are drawn relating to plant:soil concentration ratios for these elements for different plant and soil types, and consideration is given to the distribution of these elements within plants following both root uptake and foliar application. (review)

  1. Transport in biosphere of radionuclides released from finally disposed nuclear waste - background information for transport and dose model

    International Nuclear Information System (INIS)

    Hulmi, R.; Savolainen, I.

    1981-07-01

    An outline is made about the biosphere transport and dose models employed in the estimation of doses due to releases from finally disposed nuclear waste. The models often divide into two parts; the first one describes the transport of radionuclides in those parts of biosphere where the time scale is large (e.g. soil, sea and sea sediment), the second part of the model describes the transport of nuclides in the systems where the time scale is small (e.g. food chains, plants and animals). The description of biosphere conditions includes remarkable uncertainty due to the complexity of the biosphere and its ecosystems. Therefore studies of scenario type are recommended: some values of parametres describing the conditions are assumed, and the consequences are estimated by using these values. The effect of uncertainty in various factors on the uncertainty of final results should be investigated with the employment of alternative scenarios and parametric sensitivity studies. In addition to the ordinary results, intermediate results should be presented. A proposal for the structure of a transport and dose program based on dynamic linear compartment model is presented and mathematical solution alternatives are studied also

  2. LONG-TERM COLLOID MOBILIZATION AND COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES IN A SEMI-ARID VADOSE ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Markus Flury; James B. Harsh; Fred Zhang; Glendon W. Gee; Earl D. Mattson; Peter C. L

    2012-08-01

    The main purpose of this project was to improve the fundamental mechanistic understanding and quantification of long-term colloid mobilization and colloid-facilitated transport of radionuclides in the vadose zone, with special emphasis on the semi-arid Hanford site. While we focused some of the experiments on hydrogeological and geochemical conditions of the Hanford site, many of our results apply to colloid and colloid-facilitated transport in general. Specific objectives were (1) to determine the mechanisms of colloid mobilization and colloid-facilitated radionuclide transport in undisturbed Hanford sediments under unsaturated flow, (2) to quantify in situ colloid mobilization and colloid-facilitated radionuclidetransport from Hanford sediments under field conditions, and (3) to develop a field-scale conceptual and numerical model for colloid mobilization and transport at the Hanford vadose zone, and use that model to predict long-term colloid and colloid- facilitated radionuclide transport. To achieve these goals and objectives, we have used a combination of experimental, theoretical, and numerical methods at different spatial scales, ranging from microscopic investigationsof single particle attachment and detachment to larger-scale field experiments using outdoor lysimeters at the Hanford site. Microscopic and single particle investigations provided fundamental insight into mechanisms of colloid interactions with the air-water interface. We could show that a moving air water interface (such as a moving water front during infiltration and drainage) is very effective in removing and mobilizing particles from a stationary surface. We further demonstrated that it is particularly the advancing air-water interface which is mainly responsible for colloid mobilization. Forces acting on the colloids calculated from theory corroborated our experimental results, and confirm that the detachment forces (surface tension forces) during the advancing air-water interface

  3. Sources of anthropogenic radionuclides in the environment: a review

    International Nuclear Information System (INIS)

    Hu Qinhong; Weng Jianqing; Wang Jinsheng

    2010-01-01

    Studies of radionuclides in the environment have entered a new era with the renaissance of nuclear energy and associated fuel reprocessing, geological disposal of high-level nuclear wastes, and concerns about national security with respect to nuclear non-proliferation. This work presents an overview on sources of anthropogenic radionuclides in the environment, as well as a brief discussion of salient geochemical behavior of important radionuclides. We first discuss the following major anthropogenic sources and current developments that have lead, or could potentially contribute, to the radionuclide contamination of the environment: (1) nuclear weapons program; (2) nuclear weapons testing; (3) nuclear power plants; (4) uranium mining and milling; (5) commercial fuel reprocessing; (6) geological repository of high-level nuclear wastes that include radionuclides might be released in the future, and (7) nuclear accidents. Then, we briefly summarize the inventory of radionuclides 99 Tc and 129 I, as well as geochemical behavior for radionuclides 99 Tc, 129 I, and 237 Np, because of their complex geochemical behavior, long half-lives, and presumably high mobility in the environment; biogeochemical cycling and environment risk assessment must take into account speciation of these redox-sensitive radionuclides.

  4. Flow modelling and radionuclide transport research and development in saturated and unsaturated soils

    International Nuclear Information System (INIS)

    Carvalho Filho, Carlos Alberto de; Branco, Otavio Eurico de Aquino; Loureiro, Celso de Oliveira

    1996-01-01

    The Engenho Nogueira Hydrogeological Project, PROHBEN, was idealized with the goal of implementing an Experimental Hydrogeological basin within its limits, in order to permit the development of hydrogeological studies and techniques, mainly in the modeling of flow and transport of contaminants (radionuclides) in the saturated and unsaturated porous media. The PROHBEN is located in Belo Horizonte, Minas Gerais, amounting a 5 km 2 area. The local porous-granular, heterogeneous and anisotropic, water-table aquifer reaches 40 meters of thickness, and is compound mainly by alluvial deposits and alteration rocks products, with a sandy texture. The flow and transport modeling are being done using the Modflow and MT3D codes. Three master degree researches are being done in the PROHBEN area and one expects is that more researchers come to use this experimental site. (author)

  5. CRRIS: a methodology for assessing the impact of airborne radionuclide releases

    International Nuclear Information System (INIS)

    Baes, C.F. III; Miller, C.W.

    1983-01-01

    The Computerized Radiological Risk Investigation System (CRRIS) consists of six fully integrated computer codes which calculate environmental transport and resulting doses and risks to individuals or populations exposed to atmospheric radionuclide releases. The individual codes may be used alone for various assessment applications or may be run as a system. This presentation provides an overview and introduction to this system of computer codes and their use in conducting nuclear assessments. Radionuclides are handled by CRRIS either in terms of the released radionuclides or in terms of exposure radionuclides which consist of both the released nuclides and all (or a subset of) the decay daughters that grow in during environmental transport. The capability of CRRIS to handle radionuclide chains is accomplished through PRIMUS which serves as a preprocessor by accessing a library of radionuclide decay data and sets up matricies of decay constants which are used by the other CRRIS codes in all calculations involving transport and decay. PRIMUS may also be run independently by the user to define the decay chains, radionuclide decay constants, and branching ratios

  6. Transport of radionuclides by bentonite and silica colloids in a GR-3 synthetic groundwater-interim report

    International Nuclear Information System (INIS)

    Ames, L.L.; McGarrah, J.E.; Walker, B.A.

    1983-08-01

    Radionuclide distributions in groundwater-colloid-basalt systems were measured using GR-3 groundwater and crushed Umtanum basalt at 60 degree C. The objective was to estimate the potential for radionuclide transport from a nuclear waste repository in basalt by colloids suspended in groundwater. Three colloids were studied -- a bentonite colloid representing a potential component of packing or backfill materials in the repository, and two hydrated silica colloids which might represent those generated from a glass waste form. The radioelements studied included isotopes of neptunium, uranium, selenium, technetium, and radium. Measurements of radionuclide distributions in experiments with the bentonite colloid showed that uranium was sorbed strongly on the colloid (under both oxidizing and reducing conditions) but was readily transferred to basalt when it was added to the system. Sorption of neptunium, technetium, and selenium on the colloid was greatly enhanced by using reducing conditions. Only small amounts of neptunium and technetium were transferred to the basalt under reducing conditions, but most of the selenium was readily transferred under these conditions

  7. Mathematical modelling of radionuclide transport through fractured rock using numerical inversion of Laplace transforms: applications to INTRACOIN Level 3

    International Nuclear Information System (INIS)

    Hodgkinson, D.P.; Lever, D.A.; England, T.H.

    1984-01-01

    A model for the transport of radionuclides through fractured rock has been developed and used to study a problem which forms part of Level 3 of the INTRACOIN project (the international exercise in which the results from various radionuclide-migration computer programs are compared). The model includes the effects of 1-D advection, dispersion, kinetic and/or equilibrium surface sorption, diffusion into the rock matrix with equilibrium bulk sorption and radioactive decay, and incorporates flexible input and output boundary conditions. It is evaluated by numerically inverting the analytical solution to the Laplace-transformed transport equations. Matrix diffusion was found to be the most important retardation mechanism for Np based on data reflecting the conditions at the Finnsjeeo site in east central Sweden. However, improved data and field testing are required to make the predictions of such models more reliable. (author)

  8. Regulatory Technology Development Plan - Sodium Fast Reactor. Mechanistic Source Term - Metal Fuel Radionuclide Release

    International Nuclear Information System (INIS)

    Grabaskas, David; Bucknor, Matthew; Jerden, James

    2016-01-01

    The development of an accurate and defensible mechanistic source term will be vital for the future licensing efforts of metal fuel, pool-type sodium fast reactors. To assist in the creation of a comprehensive mechanistic source term, the current effort sought to estimate the release fraction of radionuclides from metal fuel pins to the primary sodium coolant during fuel pin failures at a variety of temperature conditions. These release estimates were based on the findings of an extensive literature search, which reviewed past experimentation and reactor fuel damage accidents. Data sources for each radionuclide of interest were reviewed to establish release fractions, along with possible release dependencies, and the corresponding uncertainty levels. Although the current knowledge base is substantial, and radionuclide release fractions were established for the elements deemed important for the determination of offsite consequences following a reactor accident, gaps were found pertaining to several radionuclides. First, there is uncertainty regarding the transport behavior of several radionuclides (iodine, barium, strontium, tellurium, and europium) during metal fuel irradiation to high burnup levels. The migration of these radionuclides within the fuel matrix and bond sodium region can greatly affect their release during pin failure incidents. Post-irradiation examination of existing high burnup metal fuel can likely resolve this knowledge gap. Second, data regarding the radionuclide release from molten high burnup metal fuel in sodium is sparse, which makes the assessment of radionuclide release from fuel melting accidents at high fuel burnup levels difficult. This gap could be addressed through fuel melting experimentation with samples from the existing high burnup metal fuel inventory.

  9. Regulatory Technology Development Plan - Sodium Fast Reactor. Mechanistic Source Term - Metal Fuel Radionuclide Release

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, David [Argonne National Lab. (ANL), Argonne, IL (United States); Bucknor, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States); Jerden, James [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-01

    The development of an accurate and defensible mechanistic source term will be vital for the future licensing efforts of metal fuel, pool-type sodium fast reactors. To assist in the creation of a comprehensive mechanistic source term, the current effort sought to estimate the release fraction of radionuclides from metal fuel pins to the primary sodium coolant during fuel pin failures at a variety of temperature conditions. These release estimates were based on the findings of an extensive literature search, which reviewed past experimentation and reactor fuel damage accidents. Data sources for each radionuclide of interest were reviewed to establish release fractions, along with possible release dependencies, and the corresponding uncertainty levels. Although the current knowledge base is substantial, and radionuclide release fractions were established for the elements deemed important for the determination of offsite consequences following a reactor accident, gaps were found pertaining to several radionuclides. First, there is uncertainty regarding the transport behavior of several radionuclides (iodine, barium, strontium, tellurium, and europium) during metal fuel irradiation to high burnup levels. The migration of these radionuclides within the fuel matrix and bond sodium region can greatly affect their release during pin failure incidents. Post-irradiation examination of existing high burnup metal fuel can likely resolve this knowledge gap. Second, data regarding the radionuclide release from molten high burnup metal fuel in sodium is sparse, which makes the assessment of radionuclide release from fuel melting accidents at high fuel burnup levels difficult. This gap could be addressed through fuel melting experimentation with samples from the existing high burnup metal fuel inventory.

  10. Literature review of the studies on uptake, retention and distribution of radionuclides by the foetus

    International Nuclear Information System (INIS)

    Lamothe, E.S.

    1989-10-01

    This report summarizes the available literature from the last 10 years dealing with studies on uptake, retention and distribution of radionuclides by an embryo or foetus following maternal intakes. The review concentrates on isotopes commonly used by Canadian licensees. From the animal studies and from the limited human data, it is evident that after maternal contamination, the embryo or foetus accumulates and retains most radionuclides. Very little human data is available and a large fraction of the quoted values for human foetal dose retention are obtained from extrapolation from animal experiments. The information obtained in animal experiments is useful in determining general patterns of retention and distributions of radionuclides within the foetoplacental unit

  11. Theoretical and experimental evaluation of waste transport in selected rocks: 1977 annual report of LBL Contract No. 45901AK. Waste Isolation Safety Assessment Program: collection and generation of transport data

    International Nuclear Information System (INIS)

    Apps, J.A.; Benson, L.V.; Lucas, J.; Mathur, A.K.; Tsao, L.

    1977-09-01

    During fiscal year 1977, the following subtasks were performed. (1) Thermodynamic data were tabulated for those aqueous complexes and solid phases of plutonium, neptunium, americium, and curium likely to form in the environment. (2) Eh-pH diagrams were computed and drafted for plutonium, neptunium, americium and curium at 25 0 C and one atmosphere. (3) The literature on distribution coefficients of plutonium, neptunium, americium, and curium was reviewed. (4) Preliminary considerations were determined for an experimental method of measuring radionuclide transport in water-saturated rocks. (5) The transport mechanisms of radionuclides in water-saturated rocks were reviewed. (6) A computer simulation was attempted of mass transfer involving actinides in water-saturated rocks. Progress in these tasks is reported. Subtasks 1, 2, 3, and 4 are complete. The progress made in subtask 5 is represented by an initial theoretical survey to define the conditions needed to characterize the transport of radionuclides in rocks. Subtask 6 has begun but is not complete

  12. SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION

    International Nuclear Information System (INIS)

    B.W. ARNOLD

    2004-01-01

    The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ

  13. Review of Russian language studies on radionuclide behaviour in agricultural animals: part 2. Transfer to milk

    International Nuclear Information System (INIS)

    Fesenko, S.; Howard, B.J.; Isamov, N.; Voigt, G.; Beresford, N.A.; Sanzharova, N.; Barnett, C.L.

    2007-01-01

    An overview of original information available from Russian language papers on radionuclide transfer to milk is provided. Most of the data presented have not been taken into account in international reviews. The transfer coefficient (F m ) values for radioactive isotopes of strontium, caesium and iodine are in good agreement with those previously published. The Russian language data, often based on experiments with many animals, constitute a considerable increase to the available data for many less well-studied radionuclides. In some instances, the Russian language data suggest changes in recommended values (e.g. Zr and Ru). The information presented here substantially increases the amount of available data on radionuclide transfer to milk and will be included in the current revision of the IAEA TRS Handbook of parameter values for radionuclide transfer

  14. Review of Russian language studies on radionuclide behaviour in agricultural animals: part 2. Transfer to milk.

    Science.gov (United States)

    Fesenko, S; Howard, B J; Isamov, N; Voigt, G; Beresford, N A; Sanzharova, N; Barnett, C L

    2007-01-01

    An overview of original information available from Russian language papers on radionuclide transfer to milk is provided. Most of the data presented have not been taken into account in international reviews. The transfer coefficient (F(m)) values for radioactive isotopes of strontium, caesium and iodine are in good agreement with those previously published. The Russian language data, often based on experiments with many animals, constitute a considerable increase to the available data for many less well-studied radionuclides. In some instances, the Russian language data suggest changes in recommended values (e.g. Zr and Ru). The information presented here substantially increases the amount of available data on radionuclide transfer to milk and will be included in the current revision of the IAEA TRS Handbook of parameter values for radionuclide transfer.

  15. Speciation analysis of radionuclides

    International Nuclear Information System (INIS)

    Salbu, B.

    2010-01-01

    Full text: Naturally occurring and artificially produced radionuclides in the environment can be present in different physico-chemical forms (i. e. radionuclide species) varying in size (nominal molecular mass), charge properties and valence, oxidation state, structure and morphology, density, complexing ability etc. Low molecular mass (LMM) species are believed to be mobile and potentially bioavailable, while high molecular mass (HMM) species such as colloids, polymers, pseudocolloids and particles are considered inert. Due to time dependent transformation processes such as mobilization of radionuclide species from solid phases or interactions of mobile and reactive radionuclide species with components in soils and sediments, however, the original distribution of radionuclides deposited in ecosystems will change over time and influence the ecosystem behaviour. To assess the environmental impact from radionuclide contamination, information on radionuclide species deposited, interactions within affected ecosystems and the time-dependent distribution of radionuclide species influencing mobility and biological uptake is essential. The development of speciation techniques to characterize radionuclide species in waters, soils and sediments should therefore be essential for improving the prediction power of impact and risk assessment models. The present paper reviews fractionation techniques which should be utilised for radionuclide speciation purposes. (author)

  16. Assessing the transport and fate of bioengineered microorganisms in the environment

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Palumbo, A.V.

    1985-01-01

    We review the methods currently available for quantifying the transport and fate of microbes in atmospheric and aqueous media and assess their adequacy for purposes of risk assessment. We review the literature on transport and fate of microorganisms, including studies of: (1) pathways of migration, (2) the survival of microorganisms during transport and fate. In addition, we review the transport and fate models that have been used in environmental risk assessments for radionuclides and toxic chemicals and evaluate their applicability to the problem of assessing environmental risks of bioengineered microorganisms

  17. Research summary: characterization of radionuclide and moisture movement through arid region sediments

    International Nuclear Information System (INIS)

    Gee, G.W.; Jones, T.L.; Rai, D.

    1981-09-01

    This project has the task of understanding the movement of moisture and radionuclides under arid region conditions. This understanding will be used to maximize the isolation of low level waste from the environment. Specific objectives include: field monitoring of moisture and radionuclide transport at an arid region site; assessment of the interaction of radionuclides with unsaturated soils in arid regions; evaluation of radionuclide transport in unsaturated soils by appropriate mathematical models; and assessment of the importance of upward migration of radionuclides by evaporation and diffusion processes. The Burial Waste Test Facility (BWTF) located near Richland, Washington, on the Department of Energy (DOE) Hanford Site has been monitored for water content and radionuclide transport for the past two years. Tritium movement has been observed to depths of 7.6 m in both irrigated and nonirrigated lysimeters. Laboratory tests were conducted to determine how leachate from uranium tailings interacts with geologic materials. Acid leach tailings and tailings solution and geologic materials typical of mill site tailing pits were physically and chemically characterized. Investigation was made of the sorption characteristics of heavy metals and radionuclides on the geologic materials under low and neutral pH conditions. From solubility tests conducted at Pacific Northwest Laboratory, thermodynamic considerations predicted that for the Eh-pH range of natural aqueous environment, the dominant species of Pu is likely to be Pu(V) in relatively oxidizing environments and Pu(III) in reducing environments. Radionuclide transport through unsaturated media was investigated by using two solute transport models to describe the transport of tritium and strontium-85 in laboratory columns. A new approach was used to analyze radon emissions from uranium mill tailings

  18. Conceptual and numerical modelling of radionuclide transport in near-surface systems at Forsmark. SR-Site Biosphere

    International Nuclear Information System (INIS)

    Pique, Angels; Grandia, Fidel; Sena, Clara; Arcos, David; Molinero, Jorge; Duro, Lara; Bruno, Jordi

    2010-11-01

    In the framework of the SR-Site safety assessment, a conceptual and numerical modelling of radionuclide reactive transport in near-surface systems (including till and clay systems) at Forsmark has been carried out. The objective was to evaluate the retention capacity of the near-surface systems, composed of Quaternary deposits, which would be the last natural barrier for an eventual radionuclide release from the deep repository prior to reaching the biosphere. The studied radionuclides are 14 C, 129 I, 36 Cl, 94 Nb, 59 Ni, 93 Mo, 79 Se, 99 Tc, 230 Th, 90 Sr, 226 Ra, 135 Cs and U. Conceptual description and numerical simulations of radionuclide reactive transport show that cation exchange and surface complexation on illite are active processes for the retention of several radionuclides (U, Th, Ni, Cs, Sr, Ra). Surface complexation on iron hydroxide is an active process in the till system, able to effectively retain U and Ni. Another retention process of importance is the incorporation of the radionuclides into mineral phases, either by the precipitation of pure phases or solid solutions. Quantitative modelling has been useful to illustrate the incorporation of C and Sr in the carbonate solid solution in the considered model domains (till and clay), as well as the precipitation of uraninite in the clay sediments and the precipitation of native selenium and radiobarite in the till. Other mineral phases that could, a priori, retain U, Se, Nb and Tc do not precipitate in the simulations, either due to the pH-Eh conditions and/or because the dissolved concentration of the element is not high enough under the considered simulation conditions. It is important to keep in mind that changes in these parameters and in the boundary conditions could modify the predicted behaviour of these elements. The radionuclides that are most significantly retarded are Th, Ni and Cs, mainly through sorption onto illite. Therefore, if the amount of illite (or available sorption sites

  19. Conceptual and numerical modelling of radionuclide transport in near-surface systems at Forsmark. SR-Site Biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Pique, Angels; Grandia, Fidel; Sena, Clara; Arcos, David; Molinero, Jorge; Duro, Lara; Bruno, Jordi (Amphos21 Consulting S.L., Barcelona (Spain))

    2010-11-15

    In the framework of the SR-Site safety assessment, a conceptual and numerical modelling of radionuclide reactive transport in near-surface systems (including till and clay systems) at Forsmark has been carried out. The objective was to evaluate the retention capacity of the near-surface systems, composed of Quaternary deposits, which would be the last natural barrier for an eventual radionuclide release from the deep repository prior to reaching the biosphere. The studied radionuclides are 14C, 129I, 36Cl, 94Nb, 59Ni, 93Mo, 79Se, 99Tc, 230Th, 90Sr, 226Ra, 135Cs and U. Conceptual description and numerical simulations of radionuclide reactive transport show that cation exchange and surface complexation on illite are active processes for the retention of several radionuclides (U, Th, Ni, Cs, Sr, Ra). Surface complexation on iron hydroxide is an active process in the till system, able to effectively retain U and Ni. Another retention process of importance is the incorporation of the radionuclides into mineral phases, either by the precipitation of pure phases or solid solutions. Quantitative modelling has been useful to illustrate the incorporation of C and Sr in the carbonate solid solution in the considered model domains (till and clay), as well as the precipitation of uraninite in the clay sediments and the precipitation of native selenium and radiobarite in the till. Other mineral phases that could, a priori, retain U, Se, Nb and Tc do not precipitate in the simulations, either due to the pH-Eh conditions and/or because the dissolved concentration of the element is not high enough under the considered simulation conditions. It is important to keep in mind that changes in these parameters and in the boundary conditions could modify the predicted behaviour of these elements. The radionuclides that are most significantly retarded are Th, Ni and Cs, mainly through sorption onto illite. Therefore, if the amount of illite (or available sorption sites) decreases, the

  20. The Grimsel radionuclide migration experiment - a contribution to raising confidence in the validity of solute transport models used in performance assessment

    International Nuclear Information System (INIS)

    Frick, U.

    1995-01-01

    The safety assessment of radioactive waste repositories is to provide confidence that the predictive models utilized are applicable for the specific repository systems. Nagra has carried out radionuclide migration experiments at the Grimsel underground test site (Switzerland) for testing of currently used methodologies, data bases, conceptual approaches and codes for modeling radionuclide transport through fractured host rocks. Specific objectives included: identification of the relevant transport processes, to test the extrapolation of laboratory sorption data to field conditions, and to demonstrate the applicability of currently used methodology for conceptualizing or building realistic transport models. Field tests and transport modeling work are complemented by an extensive laboratory program. The field experimental activities focused predominantly on establishing appropriate conditions for identifying relevant transport mechanisms on the scale of a few meters, aiming at full recovery of injected tracers, simple geometry and long-term stability of induced dipole flow fields. A relatively simple homogeneous, dual-porosity advection/diffusion model was built with input from a state of the art petrographic characterisation of the water conducting feature. It was possible to calibrate the model from conservative tracer breakthrough curves. (J.S.). 21 refs., 14 figs., 4 tabs

  1. TERRA: a computer code for simulating the transport of environmentally released radionuclides through agriculture

    International Nuclear Information System (INIS)

    Baes, C.F. III; Sharp, R.D.; Sjoreen, A.L.; Hermann, O.W.

    1984-11-01

    TERRA is a computer code which calculates concentrations of radionuclides and ingrowing daughters in surface and root-zone soil, produce and feed, beef, and milk from a given deposition rate at any location in the conterminous United States. The code is fully integrated with seven other computer codes which together comprise a Computerized Radiological Risk Investigation System, CRRIS. Output from either the long range (> 100 km) atmospheric dispersion code RETADD-II or the short range (<80 km) atmospheric dispersion code ANEMOS, in the form of radionuclide air concentrations and ground deposition rates by downwind location, serves as input to TERRA. User-defined deposition rates and air concentrations may also be provided as input to TERRA through use of the PRIMUS computer code. The environmental concentrations of radionuclides predicted by TERRA serve as input to the ANDROS computer code which calculates population and individual intakes, exposures, doses, and risks. TERRA incorporates models to calculate uptake from soil and atmospheric deposition on four groups of produce for human consumption and four groups of livestock feeds. During the environmental transport simulation, intermediate calculations of interception fraction for leafy vegetables, produce directly exposed to atmospherically depositing material, pasture, hay, and silage are made based on location-specific estimates of standing crop biomass. Pasture productivity is estimated by a model which considers the number and types of cattle and sheep, pasture area, and annual production of other forages (hay and silage) at a given location. Calculations are made of the fraction of grain imported from outside the assessment area. TERRA output includes the above calculations and estimated radionuclide concentrations in plant produce, milk, and a beef composite by location

  2. TERRA: a computer code for simulating the transport of environmentally released radionuclides through agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Baes, C.F. III; Sharp, R.D.; Sjoreen, A.L.; Hermann, O.W.

    1984-11-01

    TERRA is a computer code which calculates concentrations of radionuclides and ingrowing daughters in surface and root-zone soil, produce and feed, beef, and milk from a given deposition rate at any location in the conterminous United States. The code is fully integrated with seven other computer codes which together comprise a Computerized Radiological Risk Investigation System, CRRIS. Output from either the long range (> 100 km) atmospheric dispersion code RETADD-II or the short range (<80 km) atmospheric dispersion code ANEMOS, in the form of radionuclide air concentrations and ground deposition rates by downwind location, serves as input to TERRA. User-defined deposition rates and air concentrations may also be provided as input to TERRA through use of the PRIMUS computer code. The environmental concentrations of radionuclides predicted by TERRA serve as input to the ANDROS computer code which calculates population and individual intakes, exposures, doses, and risks. TERRA incorporates models to calculate uptake from soil and atmospheric deposition on four groups of produce for human consumption and four groups of livestock feeds. During the environmental transport simulation, intermediate calculations of interception fraction for leafy vegetables, produce directly exposed to atmospherically depositing material, pasture, hay, and silage are made based on location-specific estimates of standing crop biomass. Pasture productivity is estimated by a model which considers the number and types of cattle and sheep, pasture area, and annual production of other forages (hay and silage) at a given location. Calculations are made of the fraction of grain imported from outside the assessment area. TERRA output includes the above calculations and estimated radionuclide concentrations in plant produce, milk, and a beef composite by location.

  3. Sediment and radionuclide transport in rivers. Summary report, field sampling program for Cattaraugus and Buttermilk Creeks, New York

    International Nuclear Information System (INIS)

    Walters, W.H.; Ecker, R.M.; Onishi, Y.

    1982-11-01

    A three-phase field sampling program was conducted on the Buttermilk-Cattaraugus Creek system to investigate the transport of radionuclides in surface waters as part of a continuing program to provide data for application and verification of Pacific Northwest Laboratory's (PNL) sediment and radionuclide transport model, SERATRA. Phase 1 of the sampling program was conducted during November and December 1977; Phase 2 during September 1978; and Phase 3 during April 1979. Bed sediment, suspended sediment, and water samples were collected over a 45-mile reach of the creek system. Bed sediment samples were also collected at the mouth of Cattaraugus Creek in Lake Erie. A fourth sampling trip was conducted during May 1980 to obtain supplementary channel geometry data and flood plain sediment samples. Radiological analysis of these samples included gamma ray spectrometry analysis, and radiochemical separation and analysis of Sr-90, Pu-238, Pu-239,240, Am-241 and Cm-244. Tritium analysis was also performed on water samples. Based on the evaluation of radionuclide levels in Cattaraugus and Buttermilk Creeks, the Nuclear Fuel Services facility at West Valley, New York, may be the source of Cs-137, Sr-90, CS-134, Co-60, Pu-238, Pu-239,240, Am-241, Cm-244 and tritium found in the bed sediment, suspended sediment and water of Buttermilk and Cattaraugus Creeks

  4. FTRANS, Radionuclide Flow in Groundwater and Fractured Rock

    International Nuclear Information System (INIS)

    Huyakorn, P.; Golis, M.J.

    1987-01-01

    1 - Description of program or function: FTRANS (Fractured flow and Transport of Radionuclides) is a two-dimensional finite-element code designed to simulate ground-water flow and transport of radioactive nuclides in a fractured porous return medium. FTRANS takes into account fluid interactions between the fractures and porous matrix blocks, advective-dispersive transport in the fractures and diffusion in the porous matrix blocks, and chain reactions of radionuclide components. It has the capability to model the fractured system using either the dual-porosity or the discrete- fracture modeling approach or a combination of both. FTRANS can be used to perform two-dimensional near-field or far-field predictive analyses of ground-water flow and to perform risk assessments of radionuclide transport from nuclear waste repository subsystems to the biosphere. 2 - Restrictions on the complexity of the problem: Although FTRANS does cannot account for deformation processes which can affect the flow capacity and velocity field

  5. Modeling contaminant transport in porous media in relation to nuclear-waste disposal: a review

    International Nuclear Information System (INIS)

    Grove, D.B.; Kipp, K.L.

    1980-01-01

    The modeling of solute transport in saturated porous media is reviewed as it is applied to the movement of radioactive waste in the subsurface. Those processes, both physical and chemical, that affect radionuclide movement are discussed and the references that best illustrate these processes listed. Movement is separated into convection, convection-dispersion, and convection-dispersion and chemical reactions. Solutions of equations describing such movement are divided into one-, two-, and three-dimensional analytical and numerical examples. Discussions of recent work in the area of stochastic modeling are followed by discussions of applications of the models to selected field sites

  6. Status of subseabed repository design concepts and radionuclide

    International Nuclear Information System (INIS)

    Brush, L.H.

    1980-01-01

    Various projects underway in support of the marine disposal of radioactive wastes are described. These include: geochemical studies on sediments; canister-related research and development activities; radionuclide transport studies through smectitic sediments; seawater-sediment interactions under near-field conditions; effects of a radiation field on high temperature, seawater-sediment interactions; sorption of fission products and actinides by deep-sea sediments under far-field (below 100 0 C) conditions; sorption experiments using column diffusion; development of a computer code, IONMIG, to model the migration of radionuclides through undisturbed deep-sea sediments; and planning for a field test of the laboratory measurements and computer models of radionuclide transport

  7. Radionuclide generators

    International Nuclear Information System (INIS)

    Lambrecht, R.M.; Wollongong Univ.; Tomiyoshi, K.; Sekine, T.

    1997-01-01

    The present status and future directions of research and development on radionuclide generator technology are reported. The recent interest to develop double-neutron capture reactions for production of in vivo generators; neutron rich nuclides for radio-immunotherapeutic pharmaceuticals: and advances with ultra-short lived generators is highlighted. Emphasis is focused on: production of the parent radionuclide; the selection and the evaluation of support materials and eluents with respect to the resultant radiochemical yield of the daughter, and the breakthrough of the radionuclide parent: and, the uses of radionuclide generators in radiopharmaceutical chemistry, biomedical and industrial applications. The 62 Zn → 62 Cu, 66 Ni → 66 Cu, 103m Rh → 103 Rh, 188 W → 188 Re and the 225 Ac → 221 Fr → 213 Bi generators are predicted to be emphasized for future development. Coverage of the 99 Mo → 99m Tc generator was excluded, as it the subject of another review. The literature search ended June, 1996. (orig.)

  8. Analysis of NSPP experiment with ART code for analyzing transport behavior of Aerosol and radionuclides

    International Nuclear Information System (INIS)

    Ishigami, Tsutomu; Kobayashi, Kensuke; Kajimoto, Mitsuhiro.

    1989-01-01

    The ART code calculates transport behavior of aerosols and radionuclides during core meltdown accidents in the light water reactors. Since aerosols play an important role in carrying fission products from the core region to the environment, the ART code includes detailed models of aerosol behavior. Aerosols including several radionuclides are classified into many groups according to the aerosol mass. The models of aerosol behavior include agglomeration processes caused by Brownian motion, aerosol settling velocity difference and turbulent flow, and natural deposition processes due to diffusion, thermophoresis, diffusiophoresis, gravitational settling and forced convection. In order to examine validity of the ART models, the NSPP aerosol experiment was analyzed. The ART calculated results showed good agreement with the experimental data. It was ascertained that aerosol growth due to agglomeration, gravitational settling, thermophoresis in an air atmosphere, and diffusiophoresis in an air-steam atmosphere were important physical phenomena in the aerosol behavior. (author)

  9. Estimate of radionuclide release characteristics into containment under severe accident conditions

    International Nuclear Information System (INIS)

    Nourbakhsh, H.P.

    1993-11-01

    A detailed review of the available light water reactor source term information is presented as a technical basis for development of updated source terms into the containment under severe accident conditions. Simplified estimates of radionuclide release and transport characteristics are specified for each unique combination of the reactor coolant and containment system combinations. A quantitative uncertainty analysis in the release to the containment using NUREG-1150 methodology is also presented

  10. Investigating radionuclide bearing suspended sediment transport mechanisms in the Ribble estuary using airborne remote sensing

    International Nuclear Information System (INIS)

    Atkin, P.A.

    2000-10-01

    BNFL Sellafield has been authorised to discharge radionuclides to the Irish Sea since 1952. In the aquatic environment the radionuclides are adsorbed by sediments and are thus redistributed by sediment transport mechanisms. This sediment is known to accumulate in the estuaries of the Irish Sea. BNFL Springfields is also licensed to discharge isotopically different radionuclides directly to the Ribble estuary. Thus there is a need to understand the sediment dynamics of the Ribble estuary in order to understand the fate of these radionuclides within the Ribble estuary. Estuaries are highly dynamic environments that are difficult to monitor using the conventional sampling techniques. However, remote sensing provides a potentially powerful tool for monitoring the hydrodynamics of the estuarine environment by providing data that are both spatially and temporally representative. This research develops a methodology for mapping suspended sediment concentration (SSC) in the Ribble estuary using airborne remote sensing. The first hypothesis, that there is a relationship between SSC and 137 Cs concentration is proven in-situ (R 2 =0.94), thus remotely sensed SSC can act as a surrogate for 137 Cs concentration. Initial in-situ characterisation of the suspended sediments was investigated to identify spatial and temporal variability in grain size distributions and reflectance characteristics for the Ribble estuary. Laboratory experiments were then performed to clearly define the SSC reflectance relationship, identify the optimum CASI wavelengths for quantifying SSC and to demonstrate the effects on reflectance of the environmental variables of salinity and clay content. Images were corrected for variation in solar elevation and angle to give a ground truth calibration for SSC, with an R 2 =0.76. The remaining scatter in this relationship was attributed to the differences in spatial and temporal representation between sampling techniques and remote sensing. The second hypothesis

  11. MARFA user's manual: Migration analysis of radionuclides in the far field

    International Nuclear Information System (INIS)

    Painter, S.; Mancillas, J.

    2013-12-01

    The computer code Migration Analysis of Radionuclides in the Far Field (MARFA) uses a particle-based Monte Carlo method to simulate the transport of radionuclides in a sparsely fractured geological medium. The algorithm uses non-interacting particles to represent packets of radionuclide mass. These particles are moved through the system according to rules that mimic the underlying physical transport and retention processes. The physical processes represented in MARFA include advection, longitudinal dispersion, Fickian diffusion into an infinite or finite rock matrix, equilibrium sorption, decay, and in-growth. Because the algorithm uses non-interacting particles, the transport and retention processes are limited to those that depend linearly on radionuclide concentration. Multiple non-branching decay chains of arbitrary length are supported, as is full heterogeneity in the transport and retention properties. Two variants of the code are provided. These two versions differ in how particles are routed through the computational domain. In MARFA 3.2.3, transport is assumed to occur along a set of trajectories or pathways that originate at radionuclide source locations. The trajectories are intended to represent the movement of hypothetical, advectively transported groundwater tracers and are typically calculated by pathline tracing in a discrete fracture network flow code. The groundwater speed and retention properties along each pathway may change in time, but the pathway trajectories are fixed. MARFA 3.3.1 allows the transport effects of changing flow directions to be represented by abandoning the fixed pathways and performing node routing within MARFA. (orig.)

  12. Modelling of Radionuclide Transport by Groundwater Motion in Fractured Bedrock for Performance Assessment Purposes

    International Nuclear Information System (INIS)

    Woerman, Anders; Shulan Xu

    2003-10-01

    Field data of physical properties in heterogeneous crystalline bedrock, like fracture zones, fracture connectivity, matrix porosity and fracture aperture, is associated with uncertainty that can have a significant impact on the analysis of solute transport in fractured rock. The purpose of this study is to develop a performance assessment (PA) model for analyses of radionuclide transport in the geosphere, in which the model takes into account both the effect of heterogeneities of hydrological and geochemical rock properties. By using a travel time description of radionuclide transport in rock fractures, we decompose the transport problem into a one-dimensional mass transfer problem along a distribution of transport pathways and a multi-dimensional flow problem in the fractured bedrock. The hydraulic/flow problem is solved based on a statistical discrete-fracture model (DFM) that represents the network of fractures around the repository and in the surrounding geosphere. A Monte Carlo technique reflects the fact that the representation of the fracture network is uncertain. If the flow residence time PDF exhibits multiple peaks or in another way shows a more erratic hydraulic response on the network scale, the three-dimensional travel time approach is superior to a one-dimensional transport modeling. Examples taken from SITE 94, a study performed by the Swedish Nuclear Power Inspectorate, showed that such cases can be found in safety assessments based on site data. The solute transport is formulated based on partial, differential equations and perturbations (random spatial variability in bedrock properties) are introduced in the coefficients to reflect an uncertainty of the exact appearance of the bedrock associated with the discrete data collection. The combined approach for water flow and solute transport, thereby, recognises an uncertainty in our knowledge in both 1) bedrock properties along individual pathways and 2) the distribution of pathways. Solutions to the

  13. Radionuclide and colloid transport in the Culebra Dolomite and associated complementary cumulative distribution functions in the 1996 performance assessment for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    RAMSEY, JAMES L.; BLAINE,R.; GARNER,J.W.; HELTON,JON CRAIG; JOHNSON,J.D.; SMITH,L.N.; WALLACE,M.

    2000-05-22

    The following topics related to radionuclide and colloid transport in the Culebra Dolomite in the 1996 performance assessment for the Waste Isolation Pilot Plant (WIPP) are presented: (1) mathematical description of models, (2) uncertainty and sensitivity analysis results arising from subjective (i.e., epistemic) uncertainty for individual releases, and (3) construction of complementary cumulative distribution functions (CCDFs) arising from stochastic (i.e., aleatory) uncertainty. The presented results indicate that radionuclide and colloid transport in the Culebra Dolomite does not constitute a serious threat to the effectiveness of the WIPP as a disposal facility for transuranic waste. Even when the effects of uncertain analysis inputs are taken into account, no radionuclide transport to the boundary with the accessible environment was observed; thus the associated CCDFs for comparison with the boundary line specified in the US Environmental Protection Agency's standard for the geologic disposal of radioactive waste (40 CFR 191, 40 CFR 194) are degenerate in the sense of having a probability of zero of exceeding a release of zero.

  14. Field test facility for monitoring water/radionuclide transport through partially saturated geologic media: design, construction, and preliminary description

    International Nuclear Information System (INIS)

    Phillips, S.J.; Campbell, A.C.; Campbell, M.D.; Gee, G.W.; Hoober, H.H.; Schwarzmiller, K.O.

    1979-11-01

    Shallow land burial has been a common practice for disposing radioactive waste materials since the beginning of plutonium production operations. Accurate monitoring of radionuclide transport and factors causing transport within the burial sites is essential to minimizing risks associated with disposal. However, monitoring has not always been adequate. Consequently, the Department of Energy (DOE) has begun a program aimed at better assuring and evaluating containment of radioactive wastes at shallow land burial sites. This program includes a technological base for monitoring transport. As part of the DOE program, Pacific Northwest Laboratory (PNL) is developing geohydrologic monitoring systems to evaluate burial sites located in arid regions. For this project, a field test facility was designed and constructed to assess monitoring systems for near-surface disposal of radioactive waste and to provide information for evaluating site containment performance. The facility is an integrated network of monitoring devices and data collection instruments. This facility is used to measure water and radionuclide migration under field conditions typical of arid regions. Monitoring systems were developed to allow for measurement of both mass and energy balance. Work on the facility is ongoing. Continuing work includes emplacement of prototype monitoring instruments, data collection, and data synthesis. At least 2 years of field data are needed to fully evaluate monitoring information

  15. Radionuclides as tracers of coastal processes in Brazil: review, synthesis, and perspectives

    International Nuclear Information System (INIS)

    Santos, Isaac R.; Burnett, William C.

    2008-01-01

    We review the usefulness, limitations, significance, and coastal management implications of radionuclide measurements in Brazilian coastal environments. We focus on the use of radionuclides as tracers of sedimentary processes and submarine groundwater discharge (SGD). We also discuss artificial radionuclide contamination and high natural radioactivity areas. The interpretation of 14 C-, 137 Cs-, and 210 Pb-derived sedimentation rates has provided evidence that inappropriate soil use by urban and agricultural activities has intensified erosion processes on land, which is reflected in depositional environments, such as coastal lagoons, estuaries and mangroves. Of the processes discussed in this paper, SGD is the one that requires the most scientific effort in the short-term. There have been only two case studies using 222 Rn and radium isotopes as groundwater tracers in Brazil. These investigations showed that SGD can be a major source of nutrients and other dissolved species to the coastal ocean. Baseline 137 Cs, 90 Sr, 239+240 Pu, and 238 Pu concentrations in seawater from the whole Brazilian coastal zone are very low. Therefore, in spite of contamination problems in many ecosystems in the northern hemisphere, artificial radionuclide pollution appears to be negligible along the Brazilian coast. Phosphate fertilizer industries and petroleum processing facilities are the main economic activities producing Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM). Even though a few attempts have been made to assess the radiological effects of these activities, their potential threats indicate a need for the radiological control of their wastes. This review showed that the number of studies within the field of environmental radioactivity is still small in Brazil and much more research is needed to understand processes of high interest for environmental managers. In the near future, it is likely that such studies in Brazil will move from descriptive

  16. Radionuclides as tracers of coastal processes in Brazil: review, synthesis, and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Isaac R.; Burnett, William C., E-mail: santos@ocean.fsu.edu [Florida State University, Tallahassee, FL (United States). Dept. of Oceanography. Environmental Radioactivity Measurement Facility; Godoy, Jose M. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2008-04-15

    We review the usefulness, limitations, significance, and coastal management implications of radionuclide measurements in Brazilian coastal environments. We focus on the use of radionuclides as tracers of sedimentary processes and submarine groundwater discharge (SGD). We also discuss artificial radionuclide contamination and high natural radioactivity areas. The interpretation of {sup 14}C-, {sup 137}Cs-, and {sup 210}Pb-derived sedimentation rates has provided evidence that inappropriate soil use by urban and agricultural activities has intensified erosion processes on land, which is reflected in depositional environments, such as coastal lagoons, estuaries and mangroves. Of the processes discussed in this paper, SGD is the one that requires the most scientific effort in the short-term. There have been only two case studies using {sup 222}Rn and radium isotopes as groundwater tracers in Brazil. These investigations showed that SGD can be a major source of nutrients and other dissolved species to the coastal ocean. Baseline {sup 137}Cs, {sup 90}Sr, {sup 239+240}Pu, and {sup 238}Pu concentrations in seawater from the whole Brazilian coastal zone are very low. Therefore, in spite of contamination problems in many ecosystems in the northern hemisphere, artificial radionuclide pollution appears to be negligible along the Brazilian coast. Phosphate fertilizer industries and petroleum processing facilities are the main economic activities producing Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM). Even though a few attempts have been made to assess the radiological effects of these activities, their potential threats indicate a need for the radiological control of their wastes. This review showed that the number of studies within the field of environmental radioactivity is still small in Brazil and much more research is needed to understand processes of high interest for environmental managers. In the near future, it is likely that such studies

  17. Activation analysis with neutron generators using short-lived radionuclides

    International Nuclear Information System (INIS)

    Salma, I.

    1993-01-01

    The short half-life involves a number of important differences in production, transportation and measurement of radionuclides, and in counting statistics as compared with those in traditional activation analysis. Experiments were performed to investigate the analytical possibilities and prospective utilization of short-lived radionuclides produced by 14-MeV neutron irradiation. A rapid pneumatic transfer system for use with neutron generators was installed and applied for detecting radionuclides with a half-life from 300 ms to 30 s. The transport time for samples with a total mass of 1-4 g is between 130 and 160 ms for pressurized air of 0.1-0.4 MPa. 11 elements were studied by the conventional activation method using both a typical pneumatic transport system (run time 3 s) and the fast pneumatic transport facility. The effect of the cyclic activation technique on the elemental sensitivities was also investigated. (orig.)

  18. Review of Russian-language studies on radionuclide behaviour in agricultural animals: part 4. Transfer to poultry

    International Nuclear Information System (INIS)

    Fesenko, S.; Howard, B.J.; Isamov, N.; Beresford, N.A.; Barnett, C.L.; Sanzharova, N.; Voigt, G.

    2009-01-01

    Data on radionuclide transfer to domestic chickens and ducks obtained from research performed in the former Soviet Union were reviewed to provide transfer coefficient values (Ff) to poultry and edible egg contents. The majority of the data are from experiments with 90 Sr and 137 Cs, reflecting the importance of these radionuclides after global fallout and major radiation accidents. Data for 3 H, 54 Mn, 59 Fe, 60 Co, 22 Na 65 Zn, 131 I and U are also given. The values derived have been compared with those in the current IAEA Handbook of parameter values for the prediction of radionuclide transfer in temperate environments (TRS 364) and the recent revision which incorporates the values from this paper. The Russian-language data give improved estimates for many radionuclides and the revised handbook is now based on the better quality data given for chronic administration.

  19. Review of Russian-language studies on radionuclide behaviour in agricultural animals: part 4. Transfer to poultry.

    Science.gov (United States)

    Fesenko, S; Howard, B J; Isamov, N; Beresford, N A; Barnett, C L; Sanzharova, N; Voigt, G

    2009-10-01

    Data on radionuclide transfer to domestic chickens and ducks obtained from research performed in the former Soviet Union were reviewed to provide transfer coefficient values (Ff) to poultry and edible egg contents. The majority of the data are from experiments with (90)Sr and (137)Cs, reflecting the importance of these radionuclides after global fallout and major radiation accidents. Data for (3)H, (54)Mn, (59)Fe, (60)Co, (22)Na (65)Zn, (131)I and U are also given. The values derived have been compared with those in the current IAEA Handbook of parameter values for the prediction of radionuclide transfer in temperate environments (TRS 364) and the recent revision which incorporates the values from this paper. The Russian-language data give improved estimates for many radionuclides and the revised handbook is now based on the better quality data given for chronic administration.

  20. Review and analysis of parameters for assessing transport of environmentally released radionuclides through agriculture

    International Nuclear Information System (INIS)

    Baes, C.F. III; Sharp, R.D.; Sjoreen, A.L.; Shor, R.W.

    1984-09-01

    Most of the default parameters incorporated into the TERRA computer code are documented including a literature review and systematic analysis of element-specific transfer parameters B/sub v/, B/sub r/, F/sub m/, F/sub f/, and K/sub d/. This review and analysis suggests default values which are consistent with the modeling approaches taken in TERRA and may be acceptable for most assessment applications of the computer code. However, particular applications of the code and additional analysis of elemental transport may require alternative default values. Use of the values reported herein in other computer codes simulating terrestrial transport is not advised without careful interpretation of the limitations and scope these analyses. An approach to determination of vegetation-specific interception fractions is also discussed. The limitations of this approach are many, and its use indicates the need for analysis of deposition, interception, and weathering processes. Judgement must be exercised in interpretation of plant surface concentrations generated. Finally, the location-specific agricultural, climatological, and population parameters in the default SITE data base documented. These parameters are intended as alternatives to average values currently used. Indeed, areas in the United States where intensive crop, milk, or beef production occurs will be reflected in the parameter values as will areas where little agricultural activity occurs. However, the original information sources contained some small error and the interpolation and conversion methods used will add more. Parameters used in TERRA not discussed herein are discussed in the companion report to this one - ORNL-5785. In the companion report the models employed in and the coding of TERRA are discussed. These reports together provide documentation of the TERRA code and its use in assessments. 96 references, 78 figures, 21 tables

  1. Review and analysis of parameters for assessing transport of environmentally released radionuclides through agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Baes, C.F. III; Sharp, R.D.; Sjoreen, A.L.; Shor, R.W.

    1984-09-01

    Most of the default parameters incorporated into the TERRA computer code are documented including a literature review and systematic analysis of element-specific transfer parameters B/sub v/, B/sub r/, F/sub m/, F/sub f/, and K/sub d/. This review and analysis suggests default values which are consistent with the modeling approaches taken in TERRA and may be acceptable for most assessment applications of the computer code. However, particular applications of the code and additional analysis of elemental transport may require alternative default values. Use of the values reported herein in other computer codes simulating terrestrial transport is not advised without careful interpretation of the limitations and scope these analyses. An approach to determination of vegetation-specific interception fractions is also discussed. The limitations of this approach are many, and its use indicates the need for analysis of deposition, interception, and weathering processes. Judgement must be exercised in interpretation of plant surface concentrations generated. Finally, the location-specific agricultural, climatological, and population parameters in the default SITE data base documented. These parameters are intended as alternatives to average values currently used. Indeed, areas in the United States where intensive crop, milk, or beef production occurs will be reflected in the parameter values as will areas where little agricultural activity occurs. However, the original information sources contained some small error and the interpolation and conversion methods used will add more. Parameters used in TERRA not discussed herein are discussed in the companion report to this one - ORNL-5785. In the companion report the models employed in and the coding of TERRA are discussed. These reports together provide documentation of the TERRA code and its use in assessments. 96 references, 78 figures, 21 tables.

  2. Acceptable-doses exceeding in radionuclides transport

    International Nuclear Information System (INIS)

    Delabarre, P.

    2006-01-01

    Without any foregoing signal, the 12-gliding month dose in an employee of a radionuclides transporting firm raised to 44,30 mSv (over the double of the ICRP recommended yearly maximum of 20 mSv). Apart from immediate prohibition of any further professional exposure to ionising radiation for the employee concerned, and an inquiry for possible explanations concerning as well the employer as the employee, an in-depth investigation of the employees previous records took place. Except from the sudden rise, the investigation showed that the personal dosimeter was mostly presented for analysis weeks, even months, too late, what made any immediate action from occupational health and radioprotection side difficult and anyhow far too late. Investigation of the records of the other 30 employees showed that 1) mostly the dosimeters were not presented on the assumed date for analysis, but months to (sometimes) nearly one year late behind schedule 2) for the same job in the same period, registered doses varied from naught to over 8,00 mSv, depending on the employee 3) several employees had a 12-gliding months dose of over 10,00 mSv, even over 15,00 mSv During discussion with employee, employer, occupational physician and an agent of the qualified organisation for dosimeter analysis, the employer was anything but cooperative; the employee also was rather reluctant to answer questions, and given possible causes could not be corroborated. In an attempt to clarify the multiple problems, the Governmental Agency for Nuclear Control was involved, which imposed in a first time a( not very stringent, rather indulgent) action plan. Meanwhile, a written comment on the monthly dosimeter analyses was sent from as well the occupational physician as the analytical firm to the employer and to the concerned employees if a 12-gliding months dose exceeding 10 mSv was determined, without any reaction neither from the employer nor the employees. At the moment of the abstract submission (sept 05

  3. Radionuclide - Soil Organic Matter Interactions

    DEFF Research Database (Denmark)

    Carlsen, Lars

    1985-01-01

    Interactions between soil organic matter, i.e. humic and fulvic acids, and radionuclides of primary interest to shallow land burial of low activity solid waste have been reviewed and to some extent studied experimentally. The radionuclides considered in the present study comprise cesium, strontium...

  4. Solute transport in fractured rock - applications to radionuclide waste repositories

    International Nuclear Information System (INIS)

    Neretnieks, I.

    1990-12-01

    Flow and solute transport in fractured rocks has been intensively studied in the last decade. The increased interest is mainly due to the plans in many countries to site repositories for high level nuclear waste in deep geologic formations. All investigated crystalline rocks have been found to be fractured and most of the water flows in the fractures and fracture zones. The water transports dissolved species and radionuclides. It is thus of interest to be able to understand and to do predictive modelling of the flowrate of water, the flowpaths and the residence times of the water and of the nuclides. The dissolved species including the nuclides will interact with the surrounding rock in different ways and will in many cases be strongly retarded relative to the water velocity. Ionic species may be ion exchanged or sorbed in the mineral surfaces. Charges and neutral species may diffuse into the stagnant waters in the rock matrix and thus be withdrawn from the mobile water. These effects will be strongly dependent on how much rock surface is in contact with the flowing water. It has been found in a set of field experiments and by other observations that not all fractures conduct water. Furthermore it is found that conductive fractures only conduct the water in a small part of the fracture in what is called channels or preferential flowpaths. This report summarizes the present concepts of water flow and solute transport in fractured rocks. The data needs for predictive modelling are discussed and both field and laboratory measurement which have been used to obtain data are described. Several large scale field experiments which have been specially designed to study flow and tracer transport in crystalline rocks are described. In many of the field experients new techniques have been developed and used. (81 refs.) (author)

  5. Radionuclide migration in the unsaturated zone with a variable hydrology

    International Nuclear Information System (INIS)

    Elert, M.; Collin, M.; Andersson, Birgitta; Lindgren, M.

    1990-01-01

    Radionuclide transport from contaminated ground water to the root zone of a soil has been modelled considering a variable hydrology. Hydrological calculations have been coupled with radionuclide transport calculations in order to study the influence of variations in flow rate and saturation, dispersion, and sorption. For non-sorbing radionuclides important seasonal variations in the root zone concentration were found. The dispersivity parameter proved to be very important for both sorbing and non-sorbing nuclides. In addition, some comparison calculations were made with a simple steady-state compartment model. (au)

  6. Review of radionuclides released from the nuclear fuel cycle and methods of assessing dose to man

    International Nuclear Information System (INIS)

    Bryant, P.M.

    1979-01-01

    There are two broad subject areas associated with releases of radionuclides from nuclear fuel cycle installations to the environment in which there are biological implications. One concerns interpretation of doses to man in terms of their radiological significance; the other concerns estimation of environmental transfer of radionuclides and of associated radiation doses to man. The radiation protection philosophy on which past practice regarding effluent releases of radionuclides to the environment was based is illustrated by drawing upon estimates of the associated radiation doses to man given in the 1977 report of the United Nations Scientific Committee on the Effects of Atomic Radiation. The present emphasis in radiation protection philosophy is illustrated by summarizing a review of environmental models relevant to estimation of radiation doses to population groups with reference to effluent releases of 3 H, 14 C, 85 Kr and 129 I; the author carried out the review as a contribution to a current study by an expert group set up by the Nuclear Energy Agency of OECD. Radionuclides of significance in the future may differ from those currently released to the environment because of possible developments in nuclear fuel cycles and options which may be exercised for disposal of high-level radioactive wastes, already in storage or postulated to be produced in the future. (author)

  7. Estimates of potential radionuclide migration at the Bullion site

    International Nuclear Information System (INIS)

    Brikowski, T.H.

    1992-04-01

    The Bullion site in Area 20 of the Nevada Test Site has been selected for an intensive study of the hydrologic consequences of underground testing, including subsequent radionuclide migration. The bulk of the chimney and cavity lie in zeolitized tuffs of low hydraulic conductivity, while the base of the cavity may extend downward into more conductive rhyolite flows. A mathematical analog to the Bullion setting is used here to estimate expected radionuclide migration rates and concentrations. Because of a lack of hydrologic data at the site, two contrasting scenarios are considered. The first is downward-transport, in which downward hydraulic gradients flush chimney contents into the conductive underlying units, enhancing migration. The other is upward-transport, in which upward gradients tend to drive chimney contents into the low-conductivity zeolitized tuffs, discouraging migration. In the downward-transport scenario, radionuclide travel times and concentrations are predicted to be similar to those encountered at Cheshire, requiring approximately 10 years to reach a proposed well 300 m downgradient. The upward transport scenario yields predicted travel times on the order of 2,000 years to the downgradient well. The most likely scenario is a combination of these results, with vertical movement playing a limited role. Radionuclides injected directly into the rhyolites should migrate laterally very quickly, with travel times as in the downward-transport scenario. Those in the zeolitized tuff-walled portion of the chimney should migrate extremely slowly, as in the upward-transport scenario

  8. Aspects of uranium/thorium series disequilibrium applications to radionuclide migration studies

    International Nuclear Information System (INIS)

    Ivanovich, M.

    1989-11-01

    The aim of this paper is to consider the contribution which the uranium/thorium series disequilibrium concept can make to understanding the retardation and transport of radionuclides in the far-field of a radioactive waste repository. In principle, naturally occurring isotopes of uranium, thorium and radium can be regarded as geochemical analogues of the divalent radionuclides and multivalent actinides expected to be present in the radioactive waste inventory. The study of their retardation and/or transport in real rock/water systems which have taken place over geological timescales, can make an important contribution to establishing a rational basis for long-term predictive modelling of radionuclide transport required for safety assessments. (author)

  9. Workshop on spent fuel performance, radionuclide chemistry and geosphere transport parameters, Lidingoe 2008: Overview and evaluation of recent SKB procedures

    International Nuclear Information System (INIS)

    Meinrath, Guenther; Stenhouse, Mike; Brown, Paul; Ekberg, Christian; Jegou, Christophe; Nitsche, Heino

    2009-08-01

    The safety assessment for disposal of spent nuclear fuel canister in the Swedish bedrock should thoroughly address the time period after a containment failure. Such a failure could be expected as a result of corrosion damage or mechanical failure due to rock movement. This report mainly covers some issues connected to parameters used for radionuclide transport calculations in the areas of spent fuel performance (for fuel in contact with groundwater), radionuclide chemistry, and sorption and geosphere transport parameters. Some examples of topics that are elaborated in some detail include statistical treatment of measurement data (for sorption measurements), handling of uncertainties in speciation calculations, use of triangular distributions in safety assessment and physical processes in connection with spent fuel aging. The results emerged from discussions among international experts at a workshop in May 2008. The purpose of this work is providing an overview of ongoing work within the Swedish Nuclear Fuel and Waste Management Co. (SKB), to provide ideas and suggestions for methodology development and to develop review capability within the SSM. The authors conclude that SKB's treatment of uncertainty in speciation calculations has improved, but that additional efforts in the area of error propagation are recommended. In efforts to condense the scope of utilised thermodynamic databases, the authors recommend that exclusion criteria should be explicitly stated. In the area of sorption, there is a need for more thorough analysis of errors in order to establish uncertainty ranges. The most essential improvements concern dose-limiting nuclides (e.g. Ra-226). Triangular distributions are often featured in SKB safety assessment, but it is not clear that the use of such distributions is based on a firm understanding of its properties. Regarding fuel performance, while safety assessment parameters are supported by measurement data there is still a need for better

  10. Workshop on spent fuel performance, radionuclide chemistry and geosphere transport parameters, Lidingoe 2008: Overview and evaluation of recent SKB procedures

    Energy Technology Data Exchange (ETDEWEB)

    Meinrath, Guenther; Stenhouse, Mike; Brown, Paul; Ekberg, Christian; Jegou, Christophe; Nitsche, Heino

    2009-08-15

    The safety assessment for disposal of spent nuclear fuel canister in the Swedish bedrock should thoroughly address the time period after a containment failure. Such a failure could be expected as a result of corrosion damage or mechanical failure due to rock movement. This report mainly covers some issues connected to parameters used for radionuclide transport calculations in the areas of spent fuel performance (for fuel in contact with groundwater), radionuclide chemistry, and sorption and geosphere transport parameters. Some examples of topics that are elaborated in some detail include statistical treatment of measurement data (for sorption measurements), handling of uncertainties in speciation calculations, use of triangular distributions in safety assessment and physical processes in connection with spent fuel aging. The results emerged from discussions among international experts at a workshop in May 2008. The purpose of this work is providing an overview of ongoing work within the Swedish Nuclear Fuel and Waste Management Co. (SKB), to provide ideas and suggestions for methodology development and to develop review capability within the SSM. The authors conclude that SKB's treatment of uncertainty in speciation calculations has improved, but that additional efforts in the area of error propagation are recommended. In efforts to condense the scope of utilised thermodynamic databases, the authors recommend that exclusion criteria should be explicitly stated. In the area of sorption, there is a need for more thorough analysis of errors in order to establish uncertainty ranges. The most essential improvements concern dose-limiting nuclides (e.g. Ra-226). Triangular distributions are often featured in SKB safety assessment, but it is not clear that the use of such distributions is based on a firm understanding of its properties. Regarding fuel performance, while safety assessment parameters are supported by measurement data there is still a need for better

  11. Development of repository-wide radionuclide transport model considering the effects of multiple sources

    International Nuclear Information System (INIS)

    Hatanaka, Koichiro; Watari, Shingo; Ijiri, Yuji

    1999-11-01

    Safety assessment of the geological isolation system according to the groundwater scenario has traditionally been conducted based on the signal canister configuration and then the safety of total system has been evaluated based on the dose rates which were obtained by multiplying the migration rates released from the engineered barrier and/or the natural barrier by dose conversion factors and total number of canisters disposed in the repository. The dose conversion factors can be obtained from the biosphere analysis. In this study, we focused on the effect of multiple sources due to the disposal of canisters at different positions in the repository. By taking the effect of multiple sources into consideration, concentration interference in the repository region is possible to take place. Therefore, radionuclide transport model/code considering the effect of concentration interference due to the multiple sources was developed to make assessments of the effect quantitatively. The newly developed model/code was verified through the comparison analysis with the existing radionuclide transport analysis code used in the second progress report. In addition, the effect of the concentration interference was evaluated by setting a simple problem using the newly developed analysis code. This results shows that the maximum park value of the migration rates from the repository was about two orders of magnitude lower than that based on single canister configuration. Since the analysis code was developed by assuming that all canisters disposed of along the one-dimensional groundwater flow contribute to the concentration interference in the repository region, the assumption should be verified by conducting two or three-dimensional analysis considering heterogeneous geological structure as a future work. (author)

  12. Verification and improvement of predictive algorithms for radionuclide migration

    International Nuclear Information System (INIS)

    Carnahan, C.L.; Miller, C.W.; Remer, J.S.

    1984-01-01

    This research investigated the adequacy of current numerical codes in simulating geochemical interactions affecting radionuclide migration, the level of complexity required in chemical algorithms of transport models, and the validity of the constant-k/sub D/ concept in chemical transport modeling. An initial survey of the literature led to the conclusion that existing numerical codes did not encompass the full range of chemical and physical phenomena influential in radionuclide migration

  13. Hydrology and Radionuclide Migration Program: 1989 progress report

    International Nuclear Information System (INIS)

    Marsh, K.V.

    1992-08-01

    This report presents results from the Lawrence Livermore National Laboratory's participation in the Hydrology and Radionuclide Migration Program (HRMP) at the Nevada Test Site (NTS) during fiscal year 1989. The report compares and summarizes studies of radionuclide and stable element transport atf radionuclide and stable the Cheshire and Cambric sites; progress toward the understanding of colloidal particle transport in porous and fractured media; further calibration of Marinelli beaker containers for gamma-ray spectroscopy; and an appendix listing all announced tests fired near the water table through October 1989. Four such tests were fired in FY89. Laboratory and model investigations of colloid transport in porous and fractured media have supported ongoing field investigations at the NTS. Aqueous chemistry has been shown to control colloid attachment and release from clean mineral surfaces. For colloidal deposits on fracture walls, the current experimental program will determine how this material responds to hydrodynamic forcing and if the porous colloidal deposit causes the more rapid transport of colloids than non-sorbing tracers. Fifteen radionuclides are either frequently found or likely to be found in HRMP and other environmental samples. For 3 of these 15 we have calibrated 4 gamma-ray detectors for use with samples contained in Marinelli beakers. Our calibrations for these three nuclides indicate that the technique is accurate and applicable to the types of environmental samples that we analyze

  14. Mobility of Source Zone Heavy Metals and Radionuclides: The Mixed Roles of Fermentative Activity on Fate and Transport of U and Cr. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, Robin [Montana State Univ., Bozeman, MT (United States); Peyton, Brent M. [Montana State Univ., Bozeman, MT (United States); Apel, William A. [Idaho National Lab., Idaho Falls, ID (United States)

    2014-01-29

    Various U. S. Department of Energy (DOE) low and medium-level radioactive waste sites contain mixtures of heavy metals, radionuclides and assorted organic materials. In addition, there are numerous sites around the world that are contaminated with a mixture of organic and inorganic contaminants. In most sites, over time, water infiltrates the wastes, and releases metals, radionuclides and other contaminants causing transport into the surrounding environment. We investigated the role of fermentative microorganisms in such sites that may control metal, radionuclide and organics migration from source zones. The project was initiated based on the following overarching hypothesis: Metals, radionuclides and other contaminants can be mobilized by infiltration of water into waste storage sites. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These low molecular weight organic acids and alcohols can increase metal and radionuclide mobility by chelation (i.e., certain organic acids) or decrease mobility by stimulating respiratory metal reducing microorganisms. We demonstrated that fermentative organisms capable of affecting the fate of Cr6+, U6+ and trinitrotoluene can be isolated from organic-rich low level waste sites as well as from less organic rich subsurface environments. The mechanisms, pathways and extent of contaminant transformation depend on a variety of factors related to the type of organisms present, the aqueous chemistry as well as the geochemistry and mineralogy. This work provides observations and quantitative data across multiple scales that identify and predict the coupled effects of fermentative carbon and electron flow on the transport of radionuclides, heavy metals and organic contaminants in

  15. Mobility of Source Zone Heavy Metals and Radionuclides: The Mixed Roles of Fermentative Activity on Fate and Transport of U and Cr. Final Report

    International Nuclear Information System (INIS)

    Gerlach, Robin; Peyton, Brent M.; Apel, William A.

    2014-01-01

    Various U. S. Department of Energy (DOE) low and medium-level radioactive waste sites contain mixtures of heavy metals, radionuclides and assorted organic materials. In addition, there are numerous sites around the world that are contaminated with a mixture of organic and inorganic contaminants. In most sites, over time, water infiltrates the wastes, and releases metals, radionuclides and other contaminants causing transport into the surrounding environment. We investigated the role of fermentative microorganisms in such sites that may control metal, radionuclide and organics migration from source zones. The project was initiated based on the following overarching hypothesis: Metals, radionuclides and other contaminants can be mobilized by infiltration of water into waste storage sites. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These low molecular weight organic acids and alcohols can increase metal and radionuclide mobility by chelation (i.e., certain organic acids) or decrease mobility by stimulating respiratory metal reducing microorganisms. We demonstrated that fermentative organisms capable of affecting the fate of Cr6+, U6+ and trinitrotoluene can be isolated from organic-rich low level waste sites as well as from less organic rich subsurface environments. The mechanisms, pathways and extent of contaminant transformation depend on a variety of factors related to the type of organisms present, the aqueous chemistry as well as the geochemistry and mineralogy. This work provides observations and quantitative data across multiple scales that identify and predict the coupled effects of fermentative carbon and electron flow on the transport of radionuclides, heavy metals and organic contaminants in

  16. Predictive capabilities of a two-dimensional model in the ground water transport of radionuclides

    International Nuclear Information System (INIS)

    Gureghian, A.B.; Beskid, N.J.; Marmer, G.J.

    1978-01-01

    The discharge of low-level radioactive waste into tailings ponds is a potential source of ground water contamination. The estimation of the radiological hazards related to the ground water transport of radionuclides from tailings retention systems depends on reasonably accurate estimates of the movement of both water and solute. A two-dimensional mathematical model having predictive capability for ground water flow and solute transport has been developed. The flow equation has been solved under steady-state conditions and the mass transport equation under transient conditions. The simultaneous solution of both equations is achieved through the finite element technique using isoparametric elements, based on the Galerkin formulation. However, in contrast to the flow equation solution, the weighting functions used in the solution of the mass transport equation have a non-symmetric form. The predictive capability of the model is demonstrated using an idealized case based on analyses of field data obtained from the sites of operating uranium mills. The pH of the solution, which regulates the variation of the distribution coefficient (K/sub d/) in a particular site, appears to be the most important factor in the assessment of the rate of migration of the elements considered herein

  17. Structure and function of subsurface microbial communities affecting radionuclide transport and bioimmobilization

    Energy Technology Data Exchange (ETDEWEB)

    Kostka, Joel E. [Florida State Univ., Tallahassee, FL (United States); Prakash, Om [Florida State Univ., Tallahassee, FL (United States); Green, Stefan J. [Florida State Univ., Tallahassee, FL (United States); Akob, Denise [Florida State Univ., Tallahassee, FL (United States); Jasrotia, Puja [Florida State Univ., Tallahassee, FL (United States); Kerkhof, Lee [Rutgers Univ., New Brunswick, NJ (United States); Chin, Kuk-Jeong [Georgia State Univ., Atlanta, GA (United States); Sheth, Mili [Georgia State Univ., Atlanta, GA (United States); Keller, Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Venkateswaran, Amudhan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Elkins, James G. [Univ. of Illinois, Urbana-Champaign, IL (United States); Stucki, Joseph W. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2012-05-01

    Our objectives were to: 1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), 2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and 3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations. Field sampling was conducted at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee. The ORFRC subsurface is exposed to mixed contamination predominated by uranium and nitrate. In short, we effectively addressed all 3 stated objectives of the project. In particular, we isolated and characterized a large number of novel anaerobes with a high bioremediation potential that can be used as model organisms, and we are now able to quantify the function of subsurface sedimentary microbial communities in situ using state-of-the-art gene expression methods (molecular proxies).

  18. Review of Russian language studies on radionuclide behaviour in agricultural animals: part 1. Gut absorption.

    Science.gov (United States)

    Fesenko, S; Isamov, N; Howard, B J; Voigt, G; Beresford, N A; Sanzharova, N

    2007-01-01

    An extensive programme of experiments was conducted in the former USSR on transfer of radionuclides to a wide range of different agricultural animals. Only a few of these studies were made available in the English language literature or taken into account in international reviews of gastrointestinal uptake. The paper gives extended information on Russian research on radionuclide absorption in the gut of farm animals performed in controlled field and laboratory experiments from the 1960s to the current time. The data presented in the paper, together with English language values, will be used to provide recommended values of absorption specifically for farm animals within the revision of the IAEA Handbook of Parameter Values IAEA [International Atomic Energy Agency, 1994. Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Temperate Environments, IAEA technical reports series No. 364. International Atomic Energy Agency, Vienna].

  19. Review of Russian language studies on radionuclide behaviour in agricultural animals: part 1. Gut absorption

    International Nuclear Information System (INIS)

    Fesenko, S.; Isamov, N.; Howard, B.J.; Voigt, G.; Beresford, N.A.; Sanzharova, N.

    2007-01-01

    An extensive programme of experiments was conducted in the former USSR on transfer of radionuclides to a wide range of different agricultural animals. Only a few of these studies were made available in the English language literature or taken into account in international reviews of gastrointestinal uptake. The paper gives extended information on Russian research on radionuclide absorption in the gut of farm animals performed in controlled field and laboratory experiments from the 1960s to the current time. The data presented in the paper, together with English language values, will be used to provide recommended values of absorption specifically for farm animals within the revision of the IAEA Handbook of Parameter Values IAEA [International Atomic Energy Agency, 1994. Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Temperate Environments, IAEA technical reports series No. 364. International Atomic Energy Agency, Vienna

  20. The role of nuclear techniques in the long-term prediction of radionuclide transport

    International Nuclear Information System (INIS)

    Airey, P.L.; Duerden, P.

    1985-01-01

    Problems associated with the long-term prediction of the migration of radionuclides, and the role of natural analogues in reducing the inherent uncertainties are discussed. Particular reference is made to the evaluation of uranium ore bodies in the Alligator Rivers region, Northern Territory, as analogues of high-level radioactive waste repositories. A range of nuclear techniques has been used to identify the role of colloids, of alpha recoil and of mineralogy in transport. Specific mention is made of a method being developed which enables models of the migration of solute through fractured rock to be assessed via a combination of alpha track, fission track and PIXE/PIGME techniques

  1. Radionuclide transfer in terrestrial animals

    International Nuclear Information System (INIS)

    DiGregorio, D.; Kitchings, T.; Van Voris, P.

    1978-01-01

    The analysis of dispersion of radionuclides in terrestrial food chains, generally, is a series of equations identifying the fractional input and outflow rates from trophic level to trophic level. Data that are prerequisite inputs for these food chain transport models include: (1) identification of specific transport pathway, (2) assimilation at each pathway link, and (3) the turnover rate or retention function by successive receptor species in the appropriate food chain. In this report, assimilation coefficients, biological half-lives, and excretion rates for a wide variety of vertebrate and invertebrate species and radionuclides have been compiled from an extensive search of the available literature. Using the information accumulated from the literature, correlations of nuclide metabolism and body weight are also discussed. (author)

  2. Nominal Range Sensitivity Analysis of peak radionuclide concentrations in randomly heterogeneous aquifers

    International Nuclear Information System (INIS)

    Cadini, F.; De Sanctis, J.; Cherubini, A.; Zio, E.; Riva, M.; Guadagnini, A.

    2012-01-01

    Highlights: ► Uncertainty quantification problem associated with the radionuclide migration. ► Groundwater transport processes simulated within a randomly heterogeneous aquifer. ► Development of an automatic sensitivity analysis for flow and transport parameters. ► Proposal of a Nominal Range Sensitivity Analysis approach. ► Analysis applied to the performance assessment of a nuclear waste repository. - Abstract: We consider the problem of quantification of uncertainty associated with radionuclide transport processes within a randomly heterogeneous aquifer system in the context of performance assessment of a near-surface radioactive waste repository. Radionuclide migration is simulated at the repository scale through a Monte Carlo scheme. The saturated groundwater flow and transport equations are then solved at the aquifer scale for the assessment of the expected radionuclide peak concentration at a location of interest. A procedure is presented to perform the sensitivity analysis of this target environmental variable to key parameters that characterize flow and transport processes in the subsurface. The proposed procedure is exemplified through an application to a realistic case study.

  3. Particle and solute migration in porous media. Modeling of simultaneous transport of clay particles and radionuclides in a salinity gradient

    International Nuclear Information System (INIS)

    Faure, M.H.

    1994-03-01

    Understanding the mechanisms which control the transient transport of particles and radionuclides in natural and artificial porous media is a key problem for the assessment of safety of radioactive waste disposals. An experimental study has been performed to characterize the clayey particle mobility in porous media: a laboratory- made column, packed with an unconsolidated sand bentonite (5% weight) sample, is flushed with a salt solution. An original method of salinity gradient allowed us to show and to quantify some typical behaviours of this system: threshold effects in the peptization of particles, creation of preferential pathways, formation of immobile water zones induce solute-transfer limitation. The mathematical modelling accounts for a phenomenological law, where the distribution of particles between the stagnant water zone and the porous medium is a function of sodium chloride concentration. This distribution function is associated with a radionuclide adsorption model, and is included in a convective dispersive transport model with stagnant water zones. It allowed us to simulate the particle and solute transport when the salt environment is modified. The complete model has been validated with experiments involving cesium, calcium and neptunium in a sodium chloride gradient. (author). refs., figs., tabs

  4. Kinetic modeling of microbially-driven redox chemistry of radionuclides in subsurface environments: Coupling transport, microbial metabolism and geochemistry

    International Nuclear Information System (INIS)

    Wang, Yifeng; Papenguth, Hans W.

    2000-01-01

    Microbial degradation of organic matter is a driving force in many subsurface geochemical systems, and therefore may have significant impacts on the fate of radionuclides released into subsurface environments. In this paper, the authors present a general reaction-transport model for microbial metabolism, redox chemistry, and radionuclide migration in subsurface systems. The model explicitly accounts for biomass accumulation and the coupling of radionuclide redox reactions with major biogeochemical processes. Based on the consideration that the biomass accumulation in subsurface environments is likely to achieve a quasi-steady state, they have accordingly modified the traditional microbial growth kinetic equation. They justified the use of the biogeochemical models without the explicit representation of biomass accumulation, if the interest of modeling is in the net impact of microbial reactions on geochemical processes. They then applied their model to a scenario in which an oxic water flow containing both uranium and completing organic ligands is recharged into an oxic aquifer in a carbonate formation. The model simulation shows that uranium can be reduced and therefore immobilized in the anoxic zone created by microbial degradation

  5. Kinetic modeling of microbially-driven redox chemistry of radionuclides in subsurface environments: Coupling transport, microbial metabolism and geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    WANG,YIFENG; PAPENGUTH,HANS W.

    2000-05-04

    Microbial degradation of organic matter is a driving force in many subsurface geochemical systems, and therefore may have significant impacts on the fate of radionuclides released into subsurface environments. In this paper, the authors present a general reaction-transport model for microbial metabolism, redox chemistry, and radionuclide migration in subsurface systems. The model explicitly accounts for biomass accumulation and the coupling of radionuclide redox reactions with major biogeochemical processes. Based on the consideration that the biomass accumulation in subsurface environments is likely to achieve a quasi-steady state, they have accordingly modified the traditional microbial growth kinetic equation. They justified the use of the biogeochemical models without the explicit representation of biomass accumulation, if the interest of modeling is in the net impact of microbial reactions on geochemical processes. They then applied their model to a scenario in which an oxic water flow containing both uranium and completing organic ligands is recharged into an oxic aquifer in a carbonate formation. The model simulation shows that uranium can be reduced and therefore immobilized in the anoxic zone created by microbial degradation.

  6. Model validation studies of water flow and radionuclide transport in vegetated soils using lysimeter data

    Energy Technology Data Exchange (ETDEWEB)

    Butler, A.; Jining Chen [Imperial College of Science, Technology and Medicine, London (United Kingdom)] [and others

    1996-09-01

    Model Uncertainty and Validation was one of the four themes of BIOMOVS II which had been identified by the programme's steering committee. It arose out of a concern that biosphere assessment models are generally simplified representations of highly complex environmental systems which, therefore, include a degree of uncertainty in their outputs. This uncertainty may be due to inadequate representations of the physical, chemical and biological processes; issues associated with scaling up highly non-linear systems; problems of model identification, in particular user interpretation. Therefore, during the course of the 5 year (1991-1996) BIOMOVS II programme a number of working sub-groups reestablished to address these issues. This document is the final report of the Prediction of Upward Migration of Radionuclides in Lysimeters sub-group which was established towards the end of the programme, late in 1994. It describes the 'blind' application of various hydrological and radiochemical transport models to experiment data derived from vegetated lysimeters. In order to investigate soil-to-plant transfer processes affecting the radionuclide migration from contaminated near surface water tables into arable crops, a lysimeter experiment has been undertaken at Imperial College, funded by UK Nirex Ltd. Detailed observations of climate, soil hydrology, plant growth and radiochemical migration were collected on the uptake of various radionuclides by a winter wheat crop. A selected set of data was made available to members of BIOMOVS II in order to allow them to test relevant components of current versions of assessment code. This was a challenging task owing to the rather unusual experimental design, in particular, the introduction of radionuclides at the base of the lysimeter, 5 cm below a fixed water table, and their subsequent upward migration through the soil. The comprehensive hydrological data set available provided various modelers, particularly those

  7. Model validation studies of water flow and radionuclide transport in vegetated soils using lysimeter data

    International Nuclear Information System (INIS)

    Butler, A.; Jining Chen

    1996-09-01

    Model Uncertainty and Validation was one of the four themes of BIOMOVS II which had been identified by the programme's steering committee. It arose out of a concern that biosphere assessment models are generally simplified representations of highly complex environmental systems which, therefore, include a degree of uncertainty in their outputs. This uncertainty may be due to inadequate representations of the physical, chemical and biological processes; issues associated with scaling up highly non-linear systems; problems of model identification, in particular user interpretation. Therefore, during the course of the 5 year (1991-1996) BIOMOVS II programme a number of working sub-groups reestablished to address these issues. This document is the final report of the Prediction of Upward Migration of Radionuclides in Lysimeters sub-group which was established towards the end of the programme, late in 1994. It describes the 'blind' application of various hydrological and radiochemical transport models to experiment data derived from vegetated lysimeters. In order to investigate soil-to-plant transfer processes affecting the radionuclide migration from contaminated near surface water tables into arable crops, a lysimeter experiment has been undertaken at Imperial College, funded by UK Nirex Ltd. Detailed observations of climate, soil hydrology, plant growth and radiochemical migration were collected on the uptake of various radionuclides by a winter wheat crop. A selected set of data was made available to members of BIOMOVS II in order to allow them to test relevant components of current versions of assessment code. This was a challenging task owing to the rather unusual experimental design, in particular, the introduction of radionuclides at the base of the lysimeter, 5 cm below a fixed water table, and their subsequent upward migration through the soil. The comprehensive hydrological data set available provided various modelers, particularly those involved in tritium

  8. Three-dimensional simulation of radionuclides dispersion in the stratified estuaries

    International Nuclear Information System (INIS)

    Koziy, L.; Margvelashvili, N.; Maderich, V.; Zheleznyak, M.

    1999-01-01

    THREE-dimensional model of TOXicants transport (THREETOX) was developed for assessment of potential and real emergency situations in the coastal area of seas and the inland water bodies. It includes the high resolution numerical hydrodynamic submodel, dynamic-thermodynamic ice submodel, submodels of suspended sediment and radionuclide transport. The results of two case studies are described. The first one concerns to two-year simulation of the Chernobyl origin radionuclide transport through Dnieper-Bug estuary into the Black sea. In the second case study the simulations were performed for the assessment of potential emergency situation caused by the radionuclide release from reactors and containers with the liquid radioactive wastes scuttled in the Novaya Zemlya fjords (Tsivolki, Stepovogo and Abrosimov). The presented results demonstrate the capability of THREETOX model to describe the wide spatial and temporal range of transport processes in the coastal area of seas. (author)

  9. Bentonite erosion: effects on the long term performance of the engineered barrier and radionuclide transport - The BELBAR project

    International Nuclear Information System (INIS)

    Sellin, P.; Sundman, D.; Bailey, L.; Missana, T.; Schaefer, T.; Cervinka, R.; Koskinen, K.

    2012-01-01

    Document available in extended abstract form only. BELBaR is a Collaborative Project within the Seventh Framework Programme of the European Atomic Energy Community (Euratom) for nuclear research and training activities. The main aim of BELBaR is to increase knowledge of the processes that control clay colloid stability, generation and its ability to transport radionuclides. The overall purpose of the project is to come up with a new way of treating issues in long-term safety/performance assessment. The project started March 1, 2012 and has a duration of 48 months. The project has 14 partners from seven European countries. The main aim of BELBaR is to reduce the uncertainties in the description of the effect of clay colloids on the long term performance of the engineered barrier and on radionuclide transport as illustrated in Figure 1. This is done by: - Improving the understanding on when bentonite colloids are unstable. For a given site/site evolution, this is critical information, since it determines whether or not clay colloids need to be included in the long-term assessment. - Improving the quantitative models for erosion on the bentonite barrier for the cases when the colloids are stable - Improving the understanding of how radionuclides attach to clay colloids. This information will be used to formulate improved transport models for the assessment of radionuclide transport in the geosphere. To meet the main aim a number of experimental and modelling activities will be undertaken within the project. BELBaR consists of six RTD (research and technical development) work packages and one project management work package. WP1 will have the responsibility to ensure that that the type and values of the parameters selected for experimental and modelling work are those that represent as much as possible the full range of conditions and situations that can be expected in a repository. Drawing on the work undertaken in WP 2 to 5, the general objective of this work package

  10. Stochastic analysis of contaminant transport in porous media: analysis of a two-member radionuclide chain

    International Nuclear Information System (INIS)

    Bonano, E.J.; Shipers, L.R.

    1987-01-01

    In this study the authors extend previous stochastic analyses of contaminant transport in geologic media for a single species to a chain of two species. The authors particular application is the quantification of uncertainties due to lack of characterization of the spatial variability of hydrologic parameters on transport of radionuclides from a high-level waste repository to the biosphere. Radionuclide chains can have a significant impact on demonstrating compliance (or violation) of standards regulating the release to the environment accessible to humans. Two approaches for determining the cross-covariance terms in the mean concentration equations are presented. One uses a Taylor expansion to obtain the cross-covariance between the velocity and concentration fluctuations, while the other is based on a Fourier-Laplace double transform method. For the conditions of interest here, the difference between these two approaches are expected to be small. In addition, the variances are calculated in a unique way by solving another associated partial differential equation. A parametric study is carried out to examine the sensitivity of the mean concentration of the two species and their corresponding variances and cross-covariance on the parameters associated with the structure of the stochastic velocity field. It is found that the dependent variables are most sensitive to the intensity and correlation length of the velocity fluctuations. The magnitude of the variances and cross-covariance of the concentrations are proportional to the magnitude of the mean concentrations which depend on inlet concentration boundary conditions

  11. In-facility transport code review

    International Nuclear Information System (INIS)

    Spore, J.W.; Boyack, B.E.; Bohl, W.R.

    1996-07-01

    The following computer codes were reviewed by the In-Facility Transport Working Group for application to the in-facility transport of radioactive aerosols, flammable gases, and/or toxic gases: (1) CONTAIN, (2) FIRAC, (3) GASFLOW, (4) KBERT, and (5) MELCOR. Based on the review criteria as described in this report and the versions of each code available at the time of the review, MELCOR is the best code for the analysis of in-facility transport when multidimensional effects are not significant. When multi-dimensional effects are significant, GASFLOW should be used

  12. In-situ radionuclide transport and preferential groundwater flows at INEEL (Idaho): Decay-series disequilibrium studies

    International Nuclear Information System (INIS)

    Luo, S.; Ku, T.L.; Roback, R.; Murrell, M.; McLing, T.L.

    2000-01-01

    Uranium and thorium-decay series disequilibria in groundwater occur as a result of water-rock interactions, and they provide site-specific, natural analog information for assessment of in-situ, long-term migration of radionuclides in the far field of a nuclear waste disposal site. In this study, a mass balance model was used to relate the decay-series radionuclide distributions among solution, sorbed and solid phases in an aquifer system to processes of water transport, sorption-desorption, dissolution-precipitation, radioactive ingrowth-decay, and α recoil. Isotopes of U and Rn were measured in 23 groundwater samples collected from a basaltic aquifer at the Idaho National Engineering and Environmental Laboratory (INEEL), Idaho. The results show that groundwater activities of Th and Ra isotopes are 2--4 orders lower than those of their U progenitors. Modeling of the observed disequilibria places the following constraints on the time scale of radionuclide migration and water-rock interaction at INEEL: (1) Time for sorption is minutes for Ra and Th; time for desorption is days for Ra and years for Th; and time for precipitation is days for Th, years for Ra, and centuries for U. (2) Retardation factors due to sorption average > 10 6 for 232 Th, approximately10 4 for 226 Ra, and approximately10 3 for 238 U. (3) Dissolution rates of rocks are approximately70 to 800 mg/L/y. (4) Ages of groundwater range from 222 Rn occur near the groundwater recharging sites as well as in the major flow pathways. Decay of the sorbed parent radionuclides (e.g., 226 Ra and 228 Ra) on micro-fracture surfaces constitutes an important source of their daughter ( 222 Rn and 228 Th) activities in groundwater

  13. Three-Dimensional Radionuclide Transport Through the Unsaturated Zone of the Yucca Mountain Site 3 Colloids

    International Nuclear Information System (INIS)

    G. J. Moridis; Y. Seol

    2007-01-01

    The authors investigated colloid transport in the unsaturated fractured zone by means of three-dimensional site-scale numerical model under present-day climate infiltration, considering varying colloid diameters, kinetic declogging, and filtration. The radionuclide transport model was used to simulate continuous release of colloids into fractures throughout the proposed repository, in which any components of engineered barrier system such as waste package or drip shield were not considered. the results of the study indicate the importance of subsurface geology and site hydrology, i.e., the presence of faults (they dominate and control transport), fractures (the main migration pathways), and the relative distribution of zeolitic and vitric tuffs. The simulations indicate that (1) colloid transport is not significantly affected by varying the filtration parameters, (2) travel time to the water table decreases with the colloid size, (3) larger colloids show little retardation whereas very small ones are retarded significantly, and (4) fracture filtration can have an impact on transport. Because of uncertainties in the fundamentals of colloid transport and an extremely conservative approach (based on an improbably adverse worst-case scenario), caution should be exercised in the analysis and interpretation of the 3-D simulation results. The results discussed here should be viewed as an attempt to identify and evaluate the mechanisms, processes, and geological features that control colloidal transport

  14. Modeling the Long-term Transport and Accumulation of Radionuclides in the Landscape for Derivation of Dose Conversion Factors

    International Nuclear Information System (INIS)

    Avila, Rodolfo Moreno; Ekstroem, Per-Anders; Kautsky, Ulrik

    2006-01-01

    To evaluate the radiological impact of potential releases to the biosphere from a geological repository for spent nuclear fuel, it is necessary to assess the long-term dynamics of the distribution of radionuclides in the environment. In this paper, we propose an approach for making prognoses of the distribution and fluxes of radionuclides released from the geosphere, in discharges of contaminated groundwater, to an evolving landscape. The biosphere changes during the temperate part (spanning approximately 20,000 years) of an interglacial period are handled by building biosphere models for the projected succession of situations. Radionuclide transport in the landscape is modeled dynamically with a series of interconnected radioecological models of those ecosystem types (sea, lake, running water, mire, agricultural land and forest) that occur at present, and are projected to occur in the future, in a candidate area for a geological repository in Sweden. The transformation between ecosystems is modeled as discrete events occurring every thousand years by substituting one model by another. Examples of predictions of the radionuclide distribution in the landscape are presented for several scenarios with discharge locations varying in time and space. The article also outlines an approach for estimating the exposure of man resulting from all possible reasonable uses of a potentially contaminated landscape, which was used for derivation of Landscape Dose Factors

  15. MASCOT user's guide--Version 2.0: Analytical solutions for multidimensional transport of a four-member radionuclide decay chain in ground water

    International Nuclear Information System (INIS)

    Gureghian, A.B.

    1988-07-01

    The MASCOT code computes the two- and three-dimensional space-time dependent convective-dispersive transport of a four-member radionuclide decay chain in unbounded homogeneous porous media, for constant and radionuclide-dependent release, and assuming steady- state isothermal ground-water flow and parallel streamlines. The model can handle a single or multiple finite line source or a Gaussian distributed source in the two-dimensional case, and a single or multiple patch source or bivariate-normal distributed source in the three-dimensional case. The differential equations are solved by Laplace and Fourier transforms and a Gauss-Legendre integration scheme. 33 figs., 3 tabs

  16. Soil Fauna Transport Versus Radionuclide Migration (invited paper)

    International Nuclear Information System (INIS)

    Bunnenberg, C.; Taeschner, M.

    2000-01-01

    From a questionnaire on radioecological topics circulated in the framework of the IUR/EURADOS/EULEP Concerted Action supported by the EC it was concluded that the effect of soil fauna on the redistribution of radionuclides in soils has never been given sufficient attention. The limited data in existence suggest than faunal effects on displacement of radionuclides may be dominant over physicochemical migration. On the basis of a given dataset, an earthworm model is presented which shows that the activity decrease in the top soil layer due to bioturbation may compete with fast physicochemical migration at rates of 1 to 10 cm.y -1 . The model represents a suggestion of how to treat faunal actions and what kind of data are necessary to operate such models. (author)

  17. Performance assessment model development and parameter acquisition for analysis of the transport of natural radionuclides in a Mediterranean watershed

    International Nuclear Information System (INIS)

    Agueero, Almudena

    2005-01-01

    This paper describes the methodology developed to construct a model for predicting the behaviour of the natural radioisotopes of U, Th and Ra in a Mediterranean watershed. The methodology includes the development of the performance assessment model, obtaining water flow and radiological parameters based on experimental data and analysis of results. The model, which accounts for both water flows and mass balances of the radionuclides in a semi-natural environment, provides assessments of radionuclide behaviour in grassland and agricultural soils, rivers and reservoirs, including the processes of radionuclide migration through land and water and interactions between both. From field and laboratory data, it has been possible to obtain parameters for the driving processes considered in the model, water fluxes, source term definition, soil to plant transfer factors and distribution coefficient values. Ranges of parameter values obtained have shown good agreement with published literature data. This general methodological approach was developed to be extended to other radionuclides for the modelling of a biosphere watershed in the context of performance assessment of a High Level Waste (HLW) repository under Mediterranean climate conditions, as well as for forecasting radionuclide transport under similar Mediterranean conditions that will occur in the future in other areas. The application of sensitivity and uncertainty analysis was intended to identify key uncertainties with the aim of setting priorities for future research. The model results for the activity concentration in the reservoir indicate that for 238 U and 230 Th the most relevant parameter is the initial concentrations of the radionuclides in the reservoir sediments. However, for 226 Ra the most important parameter is the precipitation rate over the whole watershed

  18. Chapter 13. Radionuclides in medicine

    International Nuclear Information System (INIS)

    Toelgyessy, J.; Harangozo, M.

    2000-01-01

    This is a chapter of textbook of radioecology for university students. In this chapter authors deal with problems connected with using of radionuclides in medicine. Methods of treatment with using of radionuclides are reviewed. Chapter consists of next parts: (1) Remotion of thyroid gland; (2) Treatment of cerebrally tumour in nuclear reactor; (3) Artificial heart

  19. Radionuclide retardation project at GTS - An overview of lessons learned and ongoing experiments

    International Nuclear Information System (INIS)

    Moeri, A.

    2001-01-01

    The joint Nagra/JNC Radionuclide Migration Programme has now been ongoing for more than 15 years in Nagra's Grimsel Test Site (GTS). The main aim of the programme has been the direct testing of radionuclide transport models in as realistic a manner as possible. The understanding and modelling of both the processes and the structures influencing radionuclide transport/retardation in fractured granitic host rocks have matured as has the experimental technology, which has contributed to develop confidence in the applicability of the underlying research models in a repository performance assessment. In this paper, three in situ experiments which were carried out in a discrete granitic shear zone are briefly presented: The Migration Experiment (MI), the Excavation Experiment (EP) and the ongoing Colloid and Radionuclide Retardation Experiment (CRR). Each project expanded on the experimental experience and research results from the preceding experiment. MI provided a sound data base of in situ tracer breakthrough curves which was used to derive relevant transport parameters by inverse modelling in order to enhance the capability for predictive modelling of tracer transport in a granitic shear zone. The Excavation Project (EP) then focussed on the excavation of the dipole flow field in order to describe the flow paths within the shear zone dipole and the retardation behaviour of sorbing radionuclides that are relevant to post-closure safety. The ongoing CRR experiment actually investigates the influence of bentonite colloids on the radionuclide transport behaviour through a fractured granitic host rock. Again, the experience in planning and handling of complex tracer field experiments gained in the proceeding experiments will be availed. The methodology adopted for the geological and hydrological characterisation of water-conducting features and the simplification of this characterisation for modelling purposes proved to be indeed effective on the modelling of

  20. Underground radionuclide migration at the Nevada Test Site

    International Nuclear Information System (INIS)

    Nimz, G.J.; Thompson, J.L.

    1992-01-01

    This document reviews results from a number of studies concerning underground migration of radionuclides from nuclear test cavities at the Nevada Test Site (NTS). Discussed are all cases known to the Department of Energy's Hydrology and Radionuclide Migration Program where radionuclides have been detected outside of the immediate vicinity of nuclear test cavities that are identifiable as the-source of the nuclides, as well as cases where radionuclides might have been expected and were intentionally sought but not fixed. There are nine locations where source-identifiable radionuclide migration has been detected, one where migration was purposely induced by pumping, and three where migration might be expected but was not found. In five of the nine cases of non-induced migration, the inferred migration mechanism is prompt fracture injection during detonation. In the other four cases, the inferred migration mechanism is water movement. In only a few of the reviewed cases can the actual migration mechanism be stated with confidence, and the attempt has been made to indicate the level of confidence for each case. References are cited where more information may be obtained. As an aid to future study, this document concludes with a brief discussion of the aspects of radionuclide migration that, as the present review indicates, are not yet understood. A course of action is suggested that would produce a better understanding of the phenomenon of radionuclide migration

  1. Radionuclide scanning

    International Nuclear Information System (INIS)

    Shapiro, B.

    1986-01-01

    Radionuclide scanning is the production of images of normal and diseased tissues and organs by means of the gamma-ray emissions from radiopharmaceutical agents having specific distributions in the body. The gamma rays are detected at the body surface by a variety of instruments that convert the invisible rays into visible patterns representing the distribution of the radionuclide in the body. The patterns, or images, obtained can be interpreted to provide or to aid diagnoses, to follow the course of disease, and to monitor the management of various illnesses. Scanning is a sensitive technique, but its specificity may be low when interpreted alone. To be used most successfully, radionuclide scanning must be interpreted in conjunction with other techniques, such as bone radiographs with bone scans, chest radiographs with lung scans, and ultrasonic studies with thyroid scans. Interpretation is also enhanced by providing pertinent clinical information because the distribution of radiopharmaceutical agents can be altered by drugs and by various procedures besides physiologic and pathologic conditions. Discussion of the patient with the radionuclide scanning specialist prior to the study and review of the results with that specialist after the study are beneficial

  2. Surface charge accumulation of particles containing radionuclides in open air.

    Science.gov (United States)

    Kim, Yong-Ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. However, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. A charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify the particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. The study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Natural and Synthetic Barriers to Immobilize Radionuclides

    International Nuclear Information System (INIS)

    Um, W.

    2011-01-01

    The experiments of weathering of glass waste form and the reacted sediments with simulated glass leachates show that radionuclide sequestration can be significantly enhanced by promoting the formation of secondary precipitates. In addition, synthetic phosphate-bearing nanoporous material exhibits high stability at temperature and has a very high K d value for U(VI) removal. Both natural and synthetic barrier materials can be used as additional efficient adsorbents for retarding transport of radionuclides for various contaminated waste streams and waste forms present at U. S. Department of Energy clean-up sites and the proposed geologic radioactive waste disposal facility. In the radioactive waste repository facility, natural or synthetic materials are planned to be used as a barrier material to immobilize and retard radionuclide release. The getter material can be used to selectively scavenge the radionuclide of interest from a liquid waste stream and subsequently incorporate the loaded getters in a cementitious or various monolithic waste forms. Also, the getter material is to reduce the release of radionuclides from monolithic waste forms. Also, the getter material is to reduce the release of radionuclides from monolithic waste forms. Also, the getter material is to reduce the release of radionuclides form monolithic waste forms by being emplaced as a backfill barrier material around the wastes or waste form to minimize the potential around the wastes or waste form to minimize the potential hazard of leached radioactive wastes. The barrier material should be highly efficient to sequester radionuclides and possess physical and chemical stability for long-term exposure to severe weathering conditions. Because potential leaching of radionuclides depends on various environmental and weathering conditions of the near-field repository, the barrier materials must be durable and not disintegrate under a range of moisture, temperature, pressure, radiation, Eh, ph. and

  4. Field test facility for monitoring water/radionuclide transport through partially saturated geologic media: design, construction, and preliminary description. Appendix I. Engineering drawings

    International Nuclear Information System (INIS)

    Phillips, S.J.; Campbell, A.C.; Campbell, M.D.; Gee, G.W.; Hoober, H.H.; Schwarzmiller, K.O.

    1979-11-01

    The engineering plans for a test facility to monitor radionuclide transport in water through partially saturated geological media are included. Drawings for the experimental set-up excavation plan and details, lysimeter, pad, access caisson, and caisson details are presented

  5. Modeling of Groundwater Flow and Radionuclide Transport at the Climax Mine sub-CAU, Nevada Test Site

    International Nuclear Information System (INIS)

    K. Pohlmann; M. Ye; D. Reeves; M. Zavarin; D. Decker; J. Chapman

    2007-01-01

    The Yucca Flat-Climax Mine Corrective Action Unit (CAU) on the Nevada Test Site comprises 747 underground nuclear detonations, all but three of which were conducted in alluvial, volcanic, and carbonate rocks in Yucca Flat. The remaining three tests were conducted in the very different hydrogeologic setting of the Climax Mine granite stock located in Area 15 at the northern end of Yucca Flat. As part of the Corrective Action Investigation (CAI) for the Yucca Flat-Climax Mine CAU, models of groundwater flow and radionuclide transport will be developed for Yucca Flat. However, two aspects of these CAU-scale models require focused modeling at the northern end of Yucca Flat beyond the capability of these large models. First, boundary conditions and boundary flows along the northern reaches of the Yucca Flat-Climax Mine CAU require evaluation to a higher level of detail than the CAU-scale Yucca Flat model can efficiently provide. Second, radionuclide fluxes from the Climax tests require analysis of flow and transport in fractured granite, a unique hydrologic environment as compared to Yucca Flat proper. This report describes the Climax Mine sub-CAU modeling studies conducted to address these issues, with the results providing a direct feed into the CAI for the Yucca Flat-Climax Mine CAU. Three underground nuclear detonations were conducted for weapons effects testing in the Climax stock between 1962 and 1966: Hard Hat, Pile Driver, and Tiny Tot. Though there is uncertainty regarding the position of the water table in the stock, it is likely that all three tests were conducted in the unsaturated zone. In the early 1980s, the Spent Fuel Test-Climax (SFT-C) was constructed to evaluate the feasibility of retrievable, deep geologic storage of commercial nuclear reactor wastes. Detailed mapping of fractures and faults carried out for the SFT-C studies greatly expanded earlier data sets collected in association with the nuclear tests and provided invaluable information for

  6. Modeling of Groundwater Flow and Radionuclide Transport at the Climax Mine sub-CAU, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    K. Pohlmann; M. Ye; D. Reeves; M. Zavarin; D. Decker; J. Chapman

    2007-09-28

    The Yucca Flat-Climax Mine Corrective Action Unit (CAU) on the Nevada Test Site comprises 747 underground nuclear detonations, all but three of which were conducted in alluvial, volcanic, and carbonate rocks in Yucca Flat. The remaining three tests were conducted in the very different hydrogeologic setting of the Climax Mine granite stock located in Area 15 at the northern end of Yucca Flat. As part of the Corrective Action Investigation (CAI) for the Yucca Flat-Climax Mine CAU, models of groundwater flow and radionuclide transport will be developed for Yucca Flat. However, two aspects of these CAU-scale models require focused modeling at the northern end of Yucca Flat beyond the capability of these large models. First, boundary conditions and boundary flows along the northern reaches of the Yucca Flat-Climax Mine CAU require evaluation to a higher level of detail than the CAU-scale Yucca Flat model can efficiently provide. Second, radionuclide fluxes from the Climax tests require analysis of flow and transport in fractured granite, a unique hydrologic environment as compared to Yucca Flat proper. This report describes the Climax Mine sub-CAU modeling studies conducted to address these issues, with the results providing a direct feed into the CAI for the Yucca Flat-Climax Mine CAU. Three underground nuclear detonations were conducted for weapons effects testing in the Climax stock between 1962 and 1966: Hard Hat, Pile Driver, and Tiny Tot. Though there is uncertainty regarding the position of the water table in the stock, it is likely that all three tests were conducted in the unsaturated zone. In the early 1980s, the Spent Fuel Test-Climax (SFT-C) was constructed to evaluate the feasibility of retrievable, deep geologic storage of commercial nuclear reactor wastes. Detailed mapping of fractures and faults carried out for the SFT-C studies greatly expanded earlier data sets collected in association with the nuclear tests and provided invaluable information for

  7. Radionuclide concentrations in white sturgeon from the Columbia River

    International Nuclear Information System (INIS)

    Dauble, D.D.; Price, K.R.; Poston, T.M.

    1993-11-01

    The objectives of this study were to (1) review and summarize historical data on radionuclide concentrations in white sturgeon from the Columbia River, (2) determine present-day radionuclide tissue burdens from different locations in the Columbia River, and (3) compare historical data with current data. We first reviewed and summarized the historical literature on radionuclide concentrations in white sturgeon from the Hanford Reach. Field studies were then conducted to evaluate the relationship among sample locations, age/length of white sturgeon, and present radionuclide tissue burdens. Results and comparisons are discussed in the remainder of this report

  8. Radionuclide distributions and sorption behavior in the Susquehanna--Chesapeake Bay System

    International Nuclear Information System (INIS)

    Olsen, C.R.; Larsen, I.L.; Lowry, P.D.; McLean, R.I.; Domotor, S.L.

    1989-01-01

    Radionuclides released into the Susquehanna--Chesapeake System from the Three Mile Island, Peach Bottom, and Calvert Cliffs nuclear power plants are partitioned among dissolved, particulate, and biological phases and may thus exist in a number of physical and chemical forms. In this project, we have measured the dissolved and particulate distributions of fallout 137 Cs; reactor-released 137 Cs, 134 Cs, 65 Zn, 60 Co, and 58 Co; and naturally occurring 7 Be and 210 Pb in the lower Susquehanna River and Upper Chesapeake Bay. In addition, we chemically leached suspended particles and bottom sediments in the laboratory to determine radionuclide partitioning among different particulate-sorbing phases to complement the site-specific field data. This information has been used to document the important geochemical processes that affect the transport, sorption, distribution, and fate of reactor-released radionuclides (and by analogy, other trace contaminants) in this river-estuarine system. Knowledge of the mechanisms, kinetic factors, and processes that affect radionuclide distributions is crucial for predicting their biological availability, toxicity, chemical behavior, physical transport, and accumulation in aquatic systems. The results from this project provide the information necessary for developing accurate radionuclide-transport and biological-uptake models. 76 refs., 12 figs

  9. Evaluation of radionuclide migration in the homogeneous system of a geological repository

    International Nuclear Information System (INIS)

    Prvakova, S.; Duran, J.; Necas, V.

    2005-01-01

    The aim of this paper is to study radionuclide migration and release from a deep underground repository situated in a clay formation. An insight into the processes influencing the radionuclide transport in the near field and far field will be presented. For the calculation, a set of radionuclides has been chosen, considering the half-life, decay chains, capacity of the sorption, solubility limits and diffusion coefficients. The migration of radionuclides is dependent on transport properties of the particular nuclide. Due to the low hydraulic conductivity of the backfill material and clay geological formation, the transport in the repository occurs mainly by diffusion. The migration rate will be influenced by the water chemistry, solubility, retardation and diffusive properties of the nuclides, and the water flow rate in the clay. The release rates of radionuclides from the geosphere to the biosphere will be converted into the indicative dose rates using dose conversion factors for ingestion. The impact of the critical group is considered via consumption of meat, root vegetables and drinking water from wells. (author)

  10. Movement of radionuclides through unsaturated soils

    International Nuclear Information System (INIS)

    de Sousa, F.N.C.

    1985-01-01

    The advantages of the disposal of low-level radioactive wastes in the unsaturated zone above the fluctuations of the water table have been recognized for some time. However, most the numerical models used to simulate the environmental impact of a shallow land burial site assume that the soils surrounding the waste forms are saturated; this assumption may lead, in many cases, to unrealistic large leach and water flow rates. The main purpose of this study was the development of a procedure which could give a reliable prediction on the movement of radionuclides from shallow land burial sites located in the unsaturated zone. In order to accomplish this objective three different soils having different sand, silt, and clay fractions were selected and characterized. These soils were then used to fill a number of flow columns that were used in tests designed to provide input data for the flow and transport models. A one-dimensional finite element model was developed in order to simulate the water flow and radionuclide transport through unsaturated soils. The results obtained showed that the model accurately described the transport of radionuclides through saturated-unsaturated soils. Simulations were done, for all three soils, involving different degrees of soil saturation, and the results showed that assuming the soils are always saturated may lead to nuclide transport times which are orders of magnitude larger than the real ones, depending on the clay percentage present in the soil

  11. Studies on distribution coefficient (Kd) of naturally occurring radionuclides in geological matrices

    International Nuclear Information System (INIS)

    Pandit, G.G.

    2014-01-01

    Accurate prediction of fate and transport of toxic and radioactive metals in the subsurface of uranium tailing pond sites is critical to the assessment of environmental impact and to the development of effective remediation technologies. The mobility of radionuclides and toxic metals is enhanced by acidification of tailings due to sulphide oxidation catalysed by microbial activity. Due to infiltration of water, there is a possibility of leaching of these radionuclides and toxic metals from the tailings pond to the ground water. Sorption onto mineral surfaces is an important mechanism for reducing radionuclide concentrations along ground water flow paths and retarding radionuclide migration to the accessible environment. Reactive transport of ground water contaminants often assume that the reaction governing the retardation of a particular contaminant or radionuclide can be described by simple partitioning constant, K d . This constant is assumed to account for all the reversible sorption processes affecting transport of the contaminant. Experimental determination of site-specific K d values is absolutely essential for the accurate estimation of reactive transport of these contaminants. The results of such studies would be helpful to model migration of these pollutants and to estimate the radiation dose to members of the public through groundwater drinking pathway at different distances from the tailings pond. In the present study it is clearly observed that K d values of most of the radionuclides are strongly dependent on different soil and ground water parameters. The relationships generated between distribution coefficient values of different radionuclides and different soil and ground water parameters can be used to generate look up table. And these relationships can also be used for the prediction of K d values of different radionuclides by using the different physico-chemical parameters of soil and ground water of the particular location

  12. Development of computation model on the GoldSim platform for the radionuclide transport in the geosphere with the time-dependent parameters

    International Nuclear Information System (INIS)

    Koo, Shigeru; Inagaki, Manabu

    2010-06-01

    In the high-level radioactive waste (HLW) disposal system, numerical evaluation for radionuclide transport with the time-dependent parameters is necessary to evaluate various scenarios. In H12 report, numerical calculation code MESHNOTE and TIGER were used for the evaluation of some natural phenomena scenarios that had to handle the time-dependent parameters. In the future, the necessity of handling the time-dependent parameters will be expected to increase, and more efficient calculation and improvement of quality control of input/output parameters will be required. Therefore, for the purpose of corresponding this requirement, a radionuclide transport model has been developed on the GoldSim platform. The GoldSim is a general simulation software, that was used for the computation modeling of Yucca Mountain Project. The conceptual model, the mathematical model and the verification of the GoldSim model are described in this report. In the future, application resources on this report will be able to upgrade for perturbation scenarios analysis model and other conceptual models. (author)

  13. Sellafield waste radionuclides in Irish sea intertidal and salt marsh sediments.

    Science.gov (United States)

    Mackenzie, A B; Scott, R D

    1993-09-01

    Low level liquid radioactive waste discharges from the Sellafield nuclear fuel reprocessing plant in north west England had generated environmental inventories of about 3 × 10(16) Bq of(137)Cs, 6.8 × 10(14) Bq of(239,240)Pu and 8.9 × 10(14) Bq of(241)Am by 1990. Most of the(239,240)Pu and(241)Am and about 10% of the(137)Cs has been retained in a deposit of fine marine sediment close to the discharge point. The quantities of radionuclides discharged annually from Sellafield decreased by two orders of magnitude from the mid-1970s to 1990 but estimated critical group internal and external exposure decreased by less than one order of magnitude over this period. This indicates that during the period of reduced discharges, radionuclides already in the environment from previous releases continued to contribute to the critical group exposure and highlights the need to understand processes controlling the environmental distribution of the radionuclides.Redistribution of the contaminated marine sediment is potentially of major significance in this context, in particular if it results in transport of radionuclides to intertidal areas, where contact with the human population is relatively likely.A review is presented of published work relating to Sellafield waste radionuclides in Irish Sea sediments. Data on temporal and spatial trends in radionuclide concentrations and activity ratios are collated from a number of sources to show that the dominant mechanism of radionuclide supply to intertidal areas is by redistribution of the contaminated marine sediment. The implications of this mechanism of supply for trends in critical group radiation exposure are considered.

  14. Review of Russian language studies on radionuclide behaviour in agricultural animals: 3. Transfer to muscle

    Energy Technology Data Exchange (ETDEWEB)

    Fesenko, S. [International Atomic Energy Agency, NAAL, 1400 Vienna (Austria)], E-mail: s.fesenko@iaea.org; Isamov, N. [Russian Institute of Agricultural Radiology and Radioecology, 249020 Obninsk (Russian Federation); Howard, B.J.; Beresford, N.A.; Barnett, C.L. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LAI 4AP (United Kingdom); Sanzharova, N. [Russian Institute of Agricultural Radiology and Radioecology, 249020 Obninsk (Russian Federation); Voigt, G. [International Atomic Energy Agency, NAAL, 1400 Vienna (Austria)

    2009-03-15

    Over 150 publications reporting studies conducted in the former USSR were reviewed to provide transfer coefficients (F{sub f}) to the muscle of domestic animals from experiments using chronic administration, often for long timescales in large scale experiments. Only a few of these studies were made available in the English language literature or taken into account in international reviews. The values derived have been compared with expected values reported by the IAEA's Handbook of parameter values for the prediction of radionuclide transfer in temperate environments (TRS 364) where possible. The information presented here has been used in the current updating of parameters recommended for environmental assessments by the IAEA. Many of the reported values are for Sr due to the Mayak accident and Cs due to the Chernobyl accident. Nevertheless, the reported data for a wide range of radionuclides, in particular for Ru, Sb, and Zn markedly improve the extent of available data.

  15. Review of Russian language studies on radionuclide behaviour in agricultural animals: 3. Transfer to muscle.

    Science.gov (United States)

    Fesenko, S; Isamov, N; Howard, B J; Beresford, N A; Barnett, C L; Sanzharova, N; Voigt, G

    2009-03-01

    Over 150 publications reporting studies conducted in the former USSR were reviewed to provide transfer coefficients (F(f)) to the muscle of domestic animals from experiments using chronic administration, often for long timescales in large scale experiments. Only a few of these studies were made available in the English language literature or taken into account in international reviews. The values derived have been compared with expected values reported by the IAEA's Handbook of parameter values for the prediction of radionuclide transfer in temperate environments (TRS 364) where possible. The information presented here has been used in the current updating of parameters recommended for environmental assessments by the IAEA. Many of the reported values are for Sr due to the Mayak accident and Cs due to the Chernobyl accident. Nevertheless, the reported data for a wide range of radionuclides, in particular for Ru, Sb, and Zn markedly improve the extent of available data.

  16. Dynamics of radionuclides in forest ecosystems

    International Nuclear Information System (INIS)

    Steiner, M.

    2004-01-01

    The unique physiology and the layered structure of forest ecosystems result in dynamic transport and transfer processes which greatly differ from those in agricultural ecosystems. Radionuclides are retained in the upper organic horizons of forest soil for several decades and remain highly available for uptake by fungi and green plants. Contamination levels of mushrooms and game may therefore by far exceed those of agricultural produce. The efficient cycling of nutrients and radionuclides, which is characteristic for ecosystems poor in nutrients, can largely be attributed to forest soil with its complex and multi-layered structure and fungal activity. Fungi directly affect dynamic processes, playing a key role in the mobilization, uptake and translocation of nutrients and radionuclides. Fungal fruit bodies may be highly contaminated foodstuff and fodder. They are most likely the cause of the surprising trend of increasing contamination of wild boar which has been observed in the last few years in Germany. This paper is intended to give a qualitative survey of dynamic transport processes in forests and their relevance for radiation exposure to man. (orig.)

  17. Analysis gives sensibility two models gives migration and transport gives radionuclides in the geosphere

    International Nuclear Information System (INIS)

    Torres Berdeguez, M. B.; Gil Castillo, R.; Peralta Vidal, J.L.

    1998-01-01

    An sensibility analysis it was applied two models, the first one, a model compressible for the near field (I finish source) The second, a simple model gives migration and transport radionuclides in the geosphere. The study was developed varying the securities ed simultaneously at the same time each parameter and observing the results in changes in the output and input. The intention in analysis it is to determine the parameter that but it influences in the variation the concentration. The statistical technique Regression it was employee in the study. This statistical method is used to analyze the dependence between a dependent variable and an or but independent variables

  18. Radionuclide content of Las Vegas wash sediments

    International Nuclear Information System (INIS)

    Rudin, M.J.; Meyers, A.M.; Johnson, W.H.

    1996-01-01

    The Las Vegas Wash is an excavated waterway channel which drains all surface water and effluent discharge from sewage-treatment facilities from the greater Las Vegas Metropolitan Area to Lake Mead. Runoff and erosion processes are expected to transport man-made radioactivity that was deposited over the past several decades in the Las Vegas Valley. Additionally, radionuclides disposed of via the city's sanitary system are expected to accumulate in the Wash sediments. Fine and coarse sediment samples were collected at 100 m intervals and analyzed to determine the distribution of alpha- and gamma-emitting radionuclides in the lower 5,500 in of the Las Vegas Wash. Results indicate little accumulation of long-lived fission products in upstream Wash sediments. However, trace amounts of fission products measured in downstream sediments suggest the resuspension and transport of radioactive particulate matter within the Wash. Levels of naturally-occurring radionuclides found in Wash sediments were found to be consistent with levels typically found in southeast Nevada soils

  19. Natural-Series Radionuclides in Traditional Aboriginal Foods in Tropical Northern Australia: A Review

    Directory of Open Access Journals (Sweden)

    Paul Martin

    2004-01-01

    Full Text Available This paper gives a review of available information on natural-series radionuclides in traditional Aboriginal foods of northern Australia. Research on this topic has been carried out primarily for radiological impact assessment purposes in relation to uranium mining activities in the region. Many of the studies have concentrated on providing purely concentration data or concentration ratios, although more detailed uptake studies have been undertaken for freshwater mussels, turtles, and water lilies. The most-studied radionuclides are 238U and 226Ra. However, dose estimates based on current data highlight the importance of 210Po, particularly for the natural (nonmining-related dose. Data on uptake by terrestrial flora and fauna are scarce in comparison with aquatic organisms, and this knowledge gap will need to be addressed in relation to planning for uranium minesite rehabilitation.

  20. Quantitative assessment of radionuclide retention in the near-surface system at Forsmark. Development of a reactive transport model using Forsmark 1.2 data

    International Nuclear Information System (INIS)

    Grandia, Fidel; Sena, Clara; Arcos, David; Molinero, Jorge; Duro, Lara; Bruno, Jordi

    2007-12-01

    The main objective of this work is to assess the migration behaviour of selected long-lived radionuclides through the near-surface system of Forsmark, with special focus on the evaluation of the capacity of the Quaternary deposits and sediments for radionuclide retention. The work reported here is based on data and information from Forsmark Site Descriptive Model version 1.2. From the geological point of view, the near-surface systems in the Forsmark area consist of Quaternary deposits and sediments that overlay the granitic bedrock. Glacial till is the more abundant outcropping Quaternary deposit and the remainder is made of clayey deposits. These types of near-surface sediments show distinctive hydraulic and geochemical features. The main reactive mineral in the till deposits, for the time horizons considered in this work, is calcium carbonate together with minor amounts of clay minerals (e.g. illite). The till deposits forms aquifers with relatively high hydraulic conductivities. In contrast, glacial and post-glacial clays are basically composed of illite with low to very low amounts of calcium carbonate, and containing organic matter-rich layers (gyttja), which can promote reducing conditions in the porewaters. All these clays exhibits relatively low hydraulic conductivity values. Five radionuclides have been selected for conceptualization and qualitative evaluation of retention process: U as an actinide, Se as a redox-sensitive radionuclide, Cs as a monovalent cation, Sr as a divalent cation, and I as an anion radionuclide. Overall, radionuclide retention capacity in the surface systems at Forsmark can be provided by sorption on charged surfaces of clays and oxyhydroxides, co-precipitation with sulphates, sulphides, oxyhydroxides and carbonates, and sorption on organic matter. Two-dimensional coupled hydrogeological and reactive solute transport models have been developed to simulate the geochemical behaviour of U, Cs and Sr. These three radionuclides have

  1. Review of global environmental-transport models for 3H, 14C, 85Kr, and 129I

    International Nuclear Information System (INIS)

    Kocher, D.C.; Killough, G.G.

    1983-01-01

    Global environmental transport models for the long-lived and mobile radionuclides 3 H, 14 C, 85 Kr, and 129 I are reviewed from the perspective of their application to collective dose assessments following releases, e.g., from the nuclear fuel cycle. Contributions to the collective dose commitment from first-pass local and regional exposures are compared. Current global models for 14 C and 85 Kr appear to be satisfactory for dose assessment purposes. Global modeling for 3 H is more difficult than for 14 C and 85 Kr, because of the different physico-chemical forms in which atmospheric releases occur. Global models for 129 I models indicate the primary importance of retention in surface soils for collective doses during the first 10 4 years following atmospheric releases and the importance of long-term transport to ocean sediments for reducing the dose commitment

  2. Mass transport by groundwater

    International Nuclear Information System (INIS)

    Ledoux, E.; Goblet, P.; Jamet, Ph.; De Marsily, G.; Des Orres, P.E.; Lewi, J.

    1991-01-01

    The first analyses of the safety of radioactive waste disposal published in 1970s were mostly of a generic type using the models of radionuclide migration in the geosphere. These simply constructed models gave way to more sophisticated techniques in order to represent better the complexity and diversity of geological media. In this article, it is attempted to review the various concepts used to quantify radionuclide migration and the evolution of their incorporation into the models. First, it was examined how the type of discontinuity occurring in geological media affects the choice of a representative model. The principle of transport in the subsurface was reviewed, and the effect that coupled processes exert to groundwater flow and mass migration was discussed. The processes that act directly to cause groundwater flow were distinguished. The method of validating such models by comparing the results with the geochemical systems in nature was explained. (K.I.)

  3. Simulating Radionuclide Migrations of Low-level Wastes in Nearshore Environment

    Science.gov (United States)

    Lu, C. C.; Li, M. H.; Chen, J. S.; Yeh, G. T.

    2016-12-01

    Tunnel disposal into nearshore mountains was tentatively selected as one of final disposal sites for low-level wastes in Taiwan. Safety assessment on radionuclide migrations in far-filed may involve geosphere processes under coastal environments and into nearshore ocean. In this study the 3-D HYDROFEOCHE5.6 numerical model was used to perform simulations of groundwater flow and radionuclide transport with decay chains. Domain of interest on the surface includes nearby watersheds delineated by digital elevation models and nearshore seabed. As deep as 800 m below the surface and 400 m below sea bed were considered for simulations. The disposal site was located at 200m below the surface. Release rates of radionuclides from near-field was estimated by analytical solutions of radionuclide diffusion with decay out of engineered barriers. Far-field safety assessments were performed starting from the release of radionuclides out of engineered barriers to a time scale of 10,000 years. Sensitivity analyses of geosphere and transport parameters were performed to improve our understanding of safety on final disposal of low-level waste in nearshore environments.

  4. Long-term calculation of radionuclides concentration in the ocean by OGCM

    International Nuclear Information System (INIS)

    Tsumune, Daisuke; Maruyama, Koki; Nakashiki, Norikazu; Aoyama, Michio; Hirose, Katsumi

    2000-01-01

    The ocean transports of radioactive materials have been carried out from Europe to Japan through the several routes on the world ocean. To sustain the safety of the transport of radioactive materials and to gain the public acceptance, it is necessary evaluate the radionuclide concentration in the ocean at the hypothetical submergence of radioactive materials into the world ocean. The purpose of this study is to develop a new method to evaluate the radionuclides concentration in the world ocean. A method to calculate the concentration of radionuclides in the ocean was developed using an ocean general circulation model (OGCM). The concentration of radionuclides ( 137 Cs, 90 Sr and 239+240 Pu) in the ocean was calculated from 1957 to 1994, on the assumption that these radionuclides were injected into the ocean only as the fallout from the atmospheric weapons tests. The calculated concentrations gave a good agreement with the observed data. The concentration of radionuclides in the ocean was estimated by this method in case of the hypothetical submergence of a package of fresh MOX fuel into the ocean on the routes of ocean transport from Europe to Japan. We calculated the concentration of 6 radionuclides ( 238 Pu, 239 Pu, 240 Pu, 241 Pu, 242 Pu and 241 Am) over 1000 years. It takes 3.5 CPU hours for 1000-year calculation by the supercomputer HITACHI S3800. The concentration in the ocean due to the hypothetical submergence of a package of fresh MOX fuel is estimated to be much smaller than the present background concentration of fallout. (author)

  5. Quantitative assessment of radionuclide retention in the near-surface system at Forsmark. Development of a reactive transport model using Forsmark 1.2 data

    Energy Technology Data Exchange (ETDEWEB)

    Grandia, Fidel; Sena, Clara; Arcos, David; Molinero, Jorge; Duro, Lara; Bruno, Jordi (Amphos XXI Consulting S.L., Barcelona (Spain))

    2007-12-15

    The main objective of this work is to assess the migration behaviour of selected long-lived radionuclides through the near-surface system of Forsmark, with special focus on the evaluation of the capacity of the Quaternary deposits and sediments for radionuclide retention. The work reported here is based on data and information from Forsmark Site Descriptive Model version 1.2. From the geological point of view, the near-surface systems in the Forsmark area consist of Quaternary deposits and sediments that overlay the granitic bedrock. Glacial till is the more abundant outcropping Quaternary deposit and the remainder is made of clayey deposits. These types of near-surface sediments show distinctive hydraulic and geochemical features. The main reactive mineral in the till deposits, for the time horizons considered in this work, is calcium carbonate together with minor amounts of clay minerals (e.g. illite). The till deposits forms aquifers with relatively high hydraulic conductivities. In contrast, glacial and post-glacial clays are basically composed of illite with low to very low amounts of calcium carbonate, and containing organic matter-rich layers (gyttja), which can promote reducing conditions in the porewaters. All these clays exhibits relatively low hydraulic conductivity values. Five radionuclides have been selected for conceptualization and qualitative evaluation of retention process: U as an actinide, Se as a redox-sensitive radionuclide, Cs as a monovalent cation, Sr as a divalent cation, and I as an anion radionuclide. Overall, radionuclide retention capacity in the surface systems at Forsmark can be provided by sorption on charged surfaces of clays and oxyhydroxides, co-precipitation with sulphates, sulphides, oxyhydroxides and carbonates, and sorption on organic matter. Two-dimensional coupled hydrogeological and reactive solute transport models have been developed to simulate the geochemical behaviour of U, Cs and Sr. These three radionuclides have

  6. Radionuclide Therapies in Molecular Imaging and Precision Medicine.

    Science.gov (United States)

    Kendi, A Tuba; Moncayo, Valeria M; Nye, Jonathon A; Galt, James R; Halkar, Raghuveer; Schuster, David M

    2017-01-01

    This article reviews recent advances and applications of radionuclide therapy. Individualized precision medicine, new treatments, and the evolving role of radionuclide therapy are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Introduction to CRRIS: a computerized radiological risk investigation system for assessing atmospheric releases of radionuclides

    International Nuclear Information System (INIS)

    Baes, C.F. III; Miller, C.W.; Kocher, D.C.; Sjoreen, A.L.; Murphy, B.D.

    1985-08-01

    The CRRIS is a Computerized Radiological Risk Investigation System consisting of eight fully integrated computer codes which calculate environmental transport of atmospheric releases of radionuclides and resulting doses and health risks to individuals or populations. Each code may also be used alone for various assessment applications. Radionuclides are handled by the CRRIS either in terms of the released radionuclides or the exposure radionuclides which consist of both the released nuclides and decay products that grow in during environmental transport. The CRRIS is not designed to simulate short-term effects. 51 refs

  8. Effect on localized waste-container failure on radionuclide transport from an underground nuclear waste vault

    International Nuclear Information System (INIS)

    Cheung, S.C.H.; Chan, T.

    1983-07-01

    In the geological disposal of nuclear fuel waste, one option is to emplace the waste container in a borehole drilled into the floor of the underground vault. In the borehole, the waste container is surrounded by a compacted soil material known as the buffer. A finite-element simulation has been performed to study the effect of localized partial failure of the waste container on the steady-state radionuclide transport by diffusion from the container through the buffer to the surrounding rock and/or backfill. In this study, the radionuclide concentration at the buffer-backfill interface is assumed to be zero. Two cases are considered at the interface between the buffer and the rock. In case 1, a no-flux boundary condition is used to simulate intact rock. In case 2, a constant radionuclide concentration condition is used to simulate fractured rock with groundwater flow. The results show that the effect of localized partial failure of the waste container on the total flux is dependent on the boundary condition at the buffer-rock interface. For the intact rock condition, the total flux is mainly dependent on the location of the failure. The total flux increases as the location changes from the bottom to the top of the emplaced waste container. For a given localized failure of the waste container, the total flux remains unaffected by the area of failed surface below the top of the failure. For fractured rock, the total flux is directly proportional to the failed surface area of the waste container regardless of the failure location

  9. Simplified analytical model to simulate radionuclide release from radioactive waste trenches

    International Nuclear Information System (INIS)

    Sa, Bernardete Lemes Vieira de

    2001-01-01

    In order to evaluate postclosure off-site doses from low-level radioactive waste disposal facilities, a computer code was developed to simulate the radionuclide released from waste form, transport through vadose zone and transport in the saturated zone. This paper describes the methodology used to model these process. The radionuclide released from the waste is calculated using a model based on first order kinetics and the transport through porous media was determined using semi-analytical solution of the mass transport equation, considering the limiting case of unidirectional convective transport with three-dimensional dispersion in an isotropic medium. The results obtained in this work were compared with other codes, showing good agreement. (author)

  10. Trace elements and radionuclides in palm oil, soil, water, and leaves from oil palm plantations: A review.

    Science.gov (United States)

    Olafisoye, O B; Oguntibeju, O O; Osibote, O A

    2017-05-03

    Oil palm (Elaeisguineensis) is one of the most productive oil producing plant in the world. Crude palm oil is composed of triglycerides supplying the world's need of edible oils and fats. Palm oil also provides essential elements and antioxidants that are potential mediators of cellular functions. Experimental studies have demonstrated the toxicity of the accumulation of significant amounts of nonessential trace elements and radionuclides in palm oil that affects the health of consumers. It has been reported that uptake of trace elements and radionuclides from the oil palm tree may be from water and soil on the palm plantations. In the present review, an attempt was made to revise and access knowledge on the presence of some selected trace elements and radionuclides in palm oil, soil, water, and leaves from oil palm plantations based on the available facts and data. Existing reports show that the presence of nonessential trace elements and radionuclides in palm oil may be from natural or anthropogenic sources in the environment. However, the available literature is limited and further research need to be channeled to the investigation of trace elements and radionuclides in soil, water, leaves, and palm oil from oil palm plantations around the globe.

  11. Watershed wash-off of atmospherically deposited radionuclides: a review of normalized entrainment coefficients

    International Nuclear Information System (INIS)

    Garcia-Sanchez, L.; Konoplev, A.V.

    2009-01-01

    Radionuclide wash-off is the transport of activity by flowing water over the soil surface (runoff). To complete existing reviews on long-term removal rates, this paper focuses on short-term wash-off fluxes, quantified in the literature by soil-runoff transfer factors called normalized liquid and solid entrainment coefficients (noted K l *, K s *). Compiled data concerned essentially 137 Cs and 90 Sr wash-off measured under simulated rainfalls on small experimental plots after Chernobyl fallout in the exclusion zone. K l * and K s * values span approximately one order of magnitude. Their validity is limited to a season, and their representativeness is limited by restricted studied situations, notably dominant unsoluble forms in fallout, light soils and intense rainfalls. Formulas based on a simplified representation of the soil-runoff system were proposed to generalize the existing values for other conditions. However, their implementation requires a more systematic compilation of the available information, including decisive influence factors such as the fraction of exchangeable form, distribution coefficient, suspended matter enrichment ratio. Entrainment coefficients K l * and K s * were mathematically related to the transfer function approach. The proposed relationships proved their complementarity in terms of time support and captured fluctuations. Both approaches should be used in assessments to estimate average fluxes and their variability.

  12. A probabilistic dispersion model applied to the long-range transport of radionuclides from the Chernobyl accident

    DEFF Research Database (Denmark)

    Lauritzen, B.; Mikkelsen, T.

    1999-01-01

    Long-range atmospheric transport of radionuclides from the Chernobyl accident is modelled as an Eulerian diffusion process. From observations of the gross deposition pattern of particulate radiocaesium an effective long-range Eddy diffusivity K of the order of 10(6) m(2) s(-1) is inferred....... A corresponding effective deposition length for caesium, R-Cs, defined las the effective distance from Chernobyl to where the aerosols have been deposited, is found to be R-Cs approximate to 1000 km. From the observations of the regional variability of the Chernobyl fallout a simple probabilistic assessment...

  13. Radionuclides in radiation-induced bystander effect; may it share in radionuclide therapy?

    Science.gov (United States)

    Widel, M

    2017-01-01

    For many years in radiobiology and radiotherapy predominated the conviction that cellular DNA is the main target for ionizing radiation, however, the view has changed in the past 20 years. Nowadays, it is assumed that not only directed (targeted) radiation effect, but also an indirect (non-targeted) effect may contribute to the result of radiation treatment. Non-targeted effect is relatively well recognized after external beam irradiation in vitro and in vivo, and comprises such phenomena like radiation-induced bystander effect (RIBE), genomic instability, adaptive response and abscopal (out of field) effect. These stress-induced and molecular signaling mediated phenomena appear in non-targeted cells as variety responses resembling that observed in directly hit cells. Bystander effects can be both detrimental and beneficial in dependence on dose, dose-rate, cell type, genetic status and experimental condition. Less is known about radionuclide-induced non-targeted effects in radionuclide therapy, although, based on characteristics of the radionuclide radiation, on experiments in vitro utilizing classical and 3-D cell cultures, and preclinical study on animals it seems obvious that exposure to radionuclide is accompanied by various bystander effects, mostly damaging, less often protective. This review summarizes existing data on radionuclide induced bystander effects comprising radionuclides emitting beta- and alpha-particles and Auger electrons used in tumor radiotherapy and diagnostics. So far, separation of the direct effect of radionuclide decay from crossfire and bystander effects in clinical targeted radionuclide therapy is impossible because of the lack of methods to assess whether, and to what extent bystander effect is involved in human organism. Considerations on this topic are also included.

  14. Transportation of natural radionuclides and rare earth light elements in the lagoon system of Buena, RJ

    International Nuclear Information System (INIS)

    Lauria, Dejanira da Costa

    1999-03-01

    it was investigated the transport of the series natural radionuclides and the earth rare light elements in a coastal lagoon system, located in a monazite rich region, in the coast north region of Rio de Janeiro state. The lagoon water showed off abnormal concentrations of radium isotopes and of the earth rare light elements (ERLEs). The longitudinal gradient of the Ra, of the ERLEs and of the major ion concentration's, whose data were obtained during two and half years of the research at the place, and the statistical analysis pointed to two mainly source as responsible for the water lagoon composition - the marine and the underground waters. The underground water supplies the radionuclides and ERLEs, possibly originated by monazite lixiviation. Based on the water speciation modeling, the results of laboratory adsorption on sediment experiments and the sediment characterization, the behavior of the radio isotopes, the ERLEs, U, Th e Pb-210, along of the lagoon, are discussed. It is also discussed the role of the aquatic macrophyte Typha dominguesis Pers in the nuclide uptake and the following liberation. (author)

  15. Verification and improvement of predictive algorithms for radionuclide migration

    International Nuclear Information System (INIS)

    Carnahan, C.L.; Miller, C.W.; Remer, J.S.

    1984-01-01

    This research addresses issues relevant to numerical simulation and prediction of migration of radionuclides in the environment of nuclear waste repositories. Specific issues investigated are the adequacy of current numerical codes in simulating geochemical interactions affecting radionuclide migration, the level of complexity required in chemical algorithms of transport models, and the validity of the constant-k/sub D/ concept in chemical transport modeling. An initial survey of the literature led to the conclusion that existing numerical codes did not encompass the full range of chemical and physical phenomena influential in radionuclide migration. Studies of chemical algorithms have been conducted within the framework of a one-dimensional numerical code that simulates the transport of chemically reacting solutes in a saturated porous medium. The code treats transport by dispersion/diffusion and advection, and equilibrium-controlled proceses of interphase mass transfer, complexation in the aqueous phase, pH variation, and precipitation/dissolution of secondary solids. Irreversible, time-dependent dissolution of solid phases during transport can be treated. Mass action, transport, and sorptive site constraint equations are expressed in differential/algebraic form and are solved simultaneously. Simulations using the code show that use of the constant-k/sub D/ concept can produce unreliable results in geochemical transport modeling. Applications to a field test and laboratory analogs of a nuclear waste repository indicate that a thermodynamically based simulator of chemical transport can successfully mimic real processes provided that operative chemical mechanisms and associated data have been correctly identified and measured, and have been incorporated in the simulator. 17 references, 10 figures

  16. Laboratory and field studies related to the Radionuclide Migration Project: Progress report, October 1, 1985-September 30, 1986

    International Nuclear Information System (INIS)

    Thompson, J.L.

    1987-08-01

    In this report we describe the work done at Los Alamos in support of the Radionuclide Migration project during fiscal year 1986. We have continued to monitor the transport of tritium and 85 Kr from the Cambric explosion zone to the satellite well, which is pumped at 600 gal/min. Corresponding movement of cationic radionuclides such as 137 Cs and 90 Sr has not yet been observed after 12 yr of pumping, nor have we seen evidence that these strongly sorbing ions move in conjunction with colloids. We have analyzed more data from the Cheshire study site but have not resolved the uncertainties regarding the distribution and movement of radioactive materials at this location. Our attempts to improve our analytical capability for 36 Cl and 99 Tc have resulted in some progress. Similarly, we have increased our understanding of radionuclide transport phenomena such as channeling in fracture flow and anion exclusion in zeolites and clays. A sample exchange with Lawrence Livermore National Laboratory has helped us identify critical steps in our procedures for collecting and analyzing large-volume water samples. We have surveyed potential sites on Pahute Mesa at the Nevada Test Site for future radionuclide migration studies and conclude that there are none other than Cheshire presently available, and none are likely to be created in the near future. The Laboratory has engaged recently in radionuclide migration studies sponsored by our weapons program; we reviewed this work in an appendix to the annual report

  17. A review of some geocolloid transport studies in the Farfield relevant to radioactive waste disposal

    International Nuclear Information System (INIS)

    Longworth, G.; Ivanovich, M.

    1990-01-01

    The major pathway for the spread of radionuclides within the geosphere surrounding a radioactive waste repository is the groundwater. Since ground waters contain colloidal particles which can sorb radionuclides and may be mobile, it is important to assess whether the presence of colloids will significantly change the radionuclide burden carried by the groundwater. Groundwater colloids from a variety of aquifers have been characterized in terms of their physical, chemical, and actinide compositions. The partition of natural series actinides has been measured using isotope dilution alpha spectrometry, between the particulate, colloid and solution phases. When the colloids are inorganic in character the fraction of total actinide activities on the colloid phase is less than one per cent for uranium and <10% for thorium. In the case of organic colloids/complexes, however, 80-90% of the uranium or thorium load is carried by the colloid phase. In addition, measurements of daughter/parent isotopic activity ratio demonstrate that the uranium associated with the colloid phase is not in chemical equilibrium with that in the groundwater. The transport of colloids is being studied using labelled synthetic colloids in a shallow glacial sand aquifer in which a set of ordered boreholes over a scale of several meters has been established by the British Geological Survey. The stability and transport behavior of these colloids has been established in laboratory column experiments before their use in a field tracer experiment. The implications of this work for modeling radionuclide transport in the geosphere is discussed. 8 refs., 3 tabs

  18. Radionuclide Sensors for Water Monitoring

    International Nuclear Information System (INIS)

    Grate, Jay W.; Egorov, Oleg B.; DeVol, Timothy A.

    2004-01-01

    Radionuclide contamination in the soil and groundwater at U.S. Department of Energy (DOE) sites is a severe problem that requires monitoring and remediation. Radionuclide measurement techniques are needed to monitor surface waters, groundwater, and process waters. Typically, water samples are collected and transported to an analytical laboratory, where costly radiochemical analyses are performed. To date, there has been very little development of selective radionuclide sensors for alpha- and beta-emitting radionuclides such as 90Sr, 99Tc, and various actinides of interest. The objective of this project is to investigate novel sensor concepts and materials for sensitive and selective determination of beta- and alpha-emitting radionuclide contaminants in water. To meet the requirements for loW--level, isotope-specific detection, the proposed sensors are based on radiometric detection. As a means to address the fundamental challenge of the short ranges of beta and alpha particle s in water, our overall approach is based on localization of preconcentration/separation chemistries directly on or within the active area of a radioactivity detector. Automated microfluidics is used for sample manipulation and sensor regeneration or renewal. The outcome of these investigations will be the knowledge necessary to choose appropriate chemistries for selective preconcentration of radionuclides from environmental samples, new materials that combine chemical selectivity with scintillating properties, new materials that add chemical selectivity to solid-state diode detectors, new preconcentrating column sensors, and improved instrumentation and signal processing for selective radionuclide sensors. New knowledge will provide the basis for designing effective probes and instrumentation for field and in situ measurements

  19. A new statistical method for transfer coefficient calculations in the framework of the general multiple-compartment model of transport for radionuclides in biological systems.

    Science.gov (United States)

    Garcia, F; Arruda-Neto, J D; Manso, M V; Helene, O M; Vanin, V R; Rodriguez, O; Mesa, J; Likhachev, V P; Filho, J W; Deppman, A; Perez, G; Guzman, F; de Camargo, S P

    1999-10-01

    A new and simple statistical procedure (STATFLUX) for the calculation of transfer coefficients of radionuclide transport to animals and plants is proposed. The method is based on the general multiple-compartment model, which uses a system of linear equations involving geometrical volume considerations. By using experimentally available curves of radionuclide concentrations versus time, for each animal compartment (organs), flow parameters were estimated by employing a least-squares procedure, whose consistency is tested. Some numerical results are presented in order to compare the STATFLUX transfer coefficients with those from other works and experimental data.

  20. A new statistical method for transfer coefficient calculations in the framework of the general multiple-compartment model of transport for radionuclides in biological systems

    International Nuclear Information System (INIS)

    Garcia, F.; Manso, M.V.; Rodriguez, O.; Mesa, J.; Arruda-Neto, J.D.T.; Helene, O.M.; Vanin, V.R.; Likhachev, V.P.; Pereira Filho, J.W.; Deppman, A.; Perez, G.; Guzman, F.; Camargo, S.P. de

    1999-01-01

    A new and simple statistical procedure (STATFLUX) for the calculation of transfer coefficients of radionuclide transport to animals and plants is proposed. The method is based on the general multiple-compartment model, which uses a system of linear equations involving geometrical volume considerations. By using experimentally available curves of radionuclide concentrations versus time, for each animal compartment (organs), flow parameters were estimated by employing a least-squares procedure, whose consistency is tested. Some numerical results are presented in order to compare the STATFLUX transfer coefficients with those from other works and experimental data. (author)

  1. Hydrology and radionuclide migration program 1987 progress report

    International Nuclear Information System (INIS)

    Marsh, K.V.

    1991-03-01

    This report presents results from the Lawrence Livermore National Laboratory's participation in the Hydrology and Radionuclide Migration Program at the Nevada Test Site (NTS) during the fiscal year 1987. The report discussed initial data from a new well (UE20n-1) drilled at the Cheshire site; presents a description of a proposed laboratory study of migration of colloids in fractured media; lists data collected during the drilling and initial sampling of UE20n-1; and describes a tentative proposal for work to be performed in FY88 by Lamont-Doherty Geological Observatory. Groundwater sampled from the new well at the Cheshire site contains tritium concentrations comparable to those measured in previous years from locations above and within the Cheshire cavity. This presence of tritium, as well as several other radionuclides, in a well 100 m away from the cavity region indicates transport of radionuclides, validates a proposed model of the flow path, and provides data on rates of groundwater flow. Previous work at the Cheshire site has shown that radionuclides are transported by colloids through fractured media. However, we have no data that can be used for predictive modeling, and existing theories are not applicable. While physical transport mechanisms of sub-micrometer colloids to defined mineral surfaces are well known, predictions based on well-defined conditions differ from experimental observations by orders of magnitude. The U.C. Berkeley group has designed a laboratory experiment to quantify colloid retention and permeability alteration by the retained colloids

  2. TRANSPORT THROUGH CRACKED CONCRETE: LITERATURE REVIEW

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.

    2012-05-11

    Concrete containment structures and cement-based fills and waste forms are used at the Savannah River Site to enhance the performance of shallow land disposal systems designed for containment of low-level radioactive waste. Understanding and measuring transport through cracked concrete is important for describing the initial condition of radioactive waste containment structures at the Savannah River Site (SRS) and for predicting performance of these structures over time. This report transmits the results of a literature review on transport through cracked concrete which was performed by Professor Jason Weiss, Purdue University per SRR0000678 (RFP-RQ00001029-WY). This review complements the NRC-sponsored literature review and assessment of factors relevant to performance of grouted systems for radioactive waste disposal. This review was performed by The Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, and The University of Aberdeen, Aberdeen Scotland and was focused on tank closure. The objective of the literature review on transport through cracked concrete was to identify information in the open literature which can be applied to SRS transport models for cementitious containment structures, fills, and waste forms. In addition, the literature review was intended to: (1) Provide a framework for describing and classifying cracks in containment structures and cementitious materials used in radioactive waste disposal, (2) Document the state of knowledge and research related to transport through cracks in concrete for various exposure conditions, (3) Provide information or methodology for answering several specific questions related to cracking and transport in concrete, and (4) Provide information that can be used to design experiments on transport through cracked samples and actual structures.

  3. Transport Through Cracked Concrete: Literature Review

    International Nuclear Information System (INIS)

    Langton, C.

    2012-01-01

    Concrete containment structures and cement-based fills and waste forms are used at the Savannah River Site to enhance the performance of shallow land disposal systems designed for containment of low-level radioactive waste. Understanding and measuring transport through cracked concrete is important for describing the initial condition of radioactive waste containment structures at the Savannah River Site (SRS) and for predicting performance of these structures over time. This report transmits the results of a literature review on transport through cracked concrete which was performed by Professor Jason Weiss, Purdue University per SRR0000678 (RFP-RQ00001029-WY). This review complements the NRC-sponsored literature review and assessment of factors relevant to performance of grouted systems for radioactive waste disposal. This review was performed by The Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, and The University of Aberdeen, Aberdeen Scotland and was focused on tank closure. The objective of the literature review on transport through cracked concrete was to identify information in the open literature which can be applied to SRS transport models for cementitious containment structures, fills, and waste forms. In addition, the literature review was intended to: (1) Provide a framework for describing and classifying cracks in containment structures and cementitious materials used in radioactive waste disposal, (2) Document the state of knowledge and research related to transport through cracks in concrete for various exposure conditions, (3) Provide information or methodology for answering several specific questions related to cracking and transport in concrete, and (4) Provide information that can be used to design experiments on transport through cracked samples and actual structures.

  4. A basic toxicity classification of radionuclides

    International Nuclear Information System (INIS)

    1963-01-01

    In the course of its work in the field of health and safety the International Atomic Energy Agency has often met the practical requirement for grading radionuclides in order of their relative radiotoxicities. This need was particularly evident when the Agency's Basic Safety Standards for the protection of health against ionizing radiation were in preparation, when it was necessary to exempt quantities of radionuclides from inclusion in the norms. A basic toxicity grading might be of help to laboratories in meeting some of their requirements in problems related to waste management as well as for the design of experimental facilities. It should also serve as a basis for the development of safety criteria for laboratory equipment and procedures for handling and transporting various quantities and kinds of radionuclides. The purpose of the present Report is to make a toxicity grading of the radionuclides according to the risk of biological injury which they may cause when they have become incorporated in the human body. 4 refs, 4 tabs

  5. A basic toxicity classification of radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    1963-04-01

    In the course of its work in the field of health and safety the International Atomic Energy Agency has often met the practical requirement for grading radionuclides in order of their relative radiotoxicities. This need was particularly evident when the Agency's Basic Safety Standards for the protection of health against ionizing radiation were in preparation, when it was necessary to exempt quantities of radionuclides from inclusion in the norms. A basic toxicity grading might be of help to laboratories in meeting some of their requirements in problems related to waste management as well as for the design of experimental facilities. It should also serve as a basis for the development of safety criteria for laboratory equipment and procedures for handling and transporting various quantities and kinds of radionuclides. The purpose of the present Report is to make a toxicity grading of the radionuclides according to the risk of biological injury which they may cause when they have become incorporated in the human body. 4 refs, 4 tabs.

  6. Radionuclide concentrations in agricultural products near the Hanford Site, 1982 through 1992

    International Nuclear Information System (INIS)

    Antonio, E.J.

    1994-06-01

    The Pacific Northwest Laboratory reviewed monitoring data for agricultural products collected from 1982 through 1992 near the Hanford Site to determine radionuclide concentration trends. While samples were collected and analyzed, and results reported annual in Hanford Site environmental reports, an 11-year data set was reviewed for this report to increase the ability to assess trends and potential Hanford effects. Products reviewed included milk, chicken, eggs, beef, vegetables, fruit, wine, wheat, and alfalfa. To determine which radionuclides were detected sufficiently often to permit analysis for trends and effects, each radionuclide concentration and its associated uncertainty were ratioed. Radionuclides were considered routinely detectable if more than 50% of the ratios were between zero and one. Data for these radionuclides were then analyzed statistically, using analyses of variance. The statistical analyses indicated the following: for the most part, there were no measurable effects for Hanford operations; radionuclide concentrations in all products reviewed remained relatively low when compared to concentrations that would result in a 1-mrem effective dose equivalent to an individual; radionuclide concentrations are decreasing in general; however, 90 Sr concentrations in all media and 129 I in milk increased from 1982 to 1986, then decreased gradually for the remainder of the review period. The 129 I concentrations may be correlated with processing of irradiated reactor fuel at the Plutonium-Uranium Extraction (PUREX) Plant

  7. Chemistry of groundwater and the migration process of radionuclides

    International Nuclear Information System (INIS)

    Olteanu, Mirela; Popa, Aurelia; Crina, Bucur

    2001-01-01

    Establishing the criteria of selection of a host site for final repository of low and intermediate radioactive waste is based upon the study of two major components, the radioactivity diffusion in disposal site and the environmental impact. The hydrological characteristics of geological formation are the main factors that control radionuclides moving (migration), because, in general, the water is the natural way for dissolving and transport of these in environment. In interaction of the water with environment, the water is present like a dynamic and complex system, which contents dissolved or suspension of mineral and organic substances. Knowing the water-soil system interaction mechanism, the physical-chemical characteristics of each component in this system, the mobility in time of radionuclides, from the repository in environment can be estimated. In migration, the main problem is determination of transport rate of radionuclides in environment. (authors)

  8. Artificial environmental radionuclides in Europe and methods of lowering their foodstuff contamination – a review

    Directory of Open Access Journals (Sweden)

    Katarína Beňová

    2016-01-01

    Full Text Available This review discusses the consequences of the food chain contamination with radionuclides, especially focusing on the radiocaesium impact after the Chernobyl nuclear accident. In particular, the 137Cs isotope still represents a risk. Until present it is still detectable in the meat of game animals, especially in wild boar, but also in elk and reindeer. Although the occurrence of highly contaminated foods in most of Europe is currently limited, along the German-Czech border (the Šumava Region the activity concentration of the 137Cs isotope in the meat of wild boar exceeds the acceptable limit several times. Additionally, the article describes simple processing technologies (cooking, pickling etc. that lead to reduction of radionuclides in contaminated food.

  9. Anthropogenic radioactivity in aerosol. A review focusing on studies during the 2000s

    International Nuclear Information System (INIS)

    Igarashi, Yasuhito

    2009-01-01

    Large-scale injection of huge amounts of any pollutant into the atmosphere has health and environmental impacts, but also provides an opportunity for understanding associated bio-geochemical cycles. Radiologically important, long-lived radionuclides emitted by atmospheric nuclear tests, such as 90 Sr, 137 Cs, and plutonium isotopes, are good examples. These radionuclides remain in the biosphere, although dilution and radioactive decay have mitigated their radiation impact, which is at present negligible compared with natural radiation. Nevertheless, the study of their redistribution over the Earth's surface can enhance understanding of various environmental processes. In this review, available up-to-date information on the source, transport, and deposition of these radionuclides in the atmosphere is collected and these aspects of radionuclides in various global regions are reviewed. In regions adjacent to arid or semi-arid lands, aeolian dust is likely the dominant source of these radionuclides, whereas in northern regions adjacent to contaminated boreal forests, forest fires are a more important source, especially of 137 Cs in air. Understanding of the atmospheric processes responsible for the redistribution of these radionuclides can improve forecast models in various environmental research fields. Future tasks include continued long-term monitoring and data integration with global data consistency and data analysis with modern chemical transport models. (author)

  10. Biosphere transport of radionuclides. First modelling by using a selected example

    International Nuclear Information System (INIS)

    Bundi, A.

    1984-12-01

    The dispersion of radionuclides in the biosphere and their uptake by man via various nutritional pathways is studied using a compartment model. The sample environment is the area of the lower Limmat and Aare valleys. General considerations of the compartmental description of the biosphere are made. The problem of the description of surface features, in particular soil, sediment and water, is studied in detail using the code BIOPATH. This study is intended to be an example of how a model of the biosphere could be constructed. It is shown that this is a reasonable model to calculate the spreading of radionuclides in the biosphere and that it indicates the relative significance of individual compartments, pathways and radionuclides. Calculated values of doses to man, however, should not be used as reference data for safety analyses. (author)

  11. Radiopharmaceuticals and other compounds labelled with short-lived radionuclides

    CERN Document Server

    Welch, Michael J

    2013-01-01

    Radiopharmaceuticals and Other Compounds Labelled with Short-Lived Radionuclides covers through both review and contributed articles the potential applications and developments in labeling with short-lived radionuclides whose use is restricted to institutions with accelerators. The book discusses the current and potential use of generator-produced radionuclides as well as other short-lived radionuclides, and the problems of quality control of such labeled compounds. The book is useful to nuclear medicine physicians.

  12. Reactive Transport and Coupled THM Processes in Engineering Barrier Systems (EBS)

    International Nuclear Information System (INIS)

    Steefel, Carl; Rutqvist, Jonny; Tsang, Chin-Fu; Liu, Hui-Hai; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-01-01

    Geological repositories for disposal of high-level nuclear wastes generally rely on a multi-barrier system to isolate radioactive wastes from the biosphere. The multi-barrier system typically consists of a natural barrier system, including repository host rock and its surrounding subsurface environment, and an engineering barrier system (EBS). EBS represents the man-made, engineered materials placed within a repository, including the waste form, waste canisters, buffer materials, backfill and seals (OECD, 2003). EBS plays a significant role in the containment and long-term retardation of radionuclide release. EBS is involved in complex thermal, hydrogeological, mechanical, chemical and biological processes, such as heat release due to radionuclide decay, multiphase flow (including gas release due to canister corrosion), swelling of buffer materials, radionuclide diffusive transport, waste dissolution and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) for EBS and the entire repository. Within the EBS group of Used Fuel Disposition (UFD) Campaign, LBNL is currently focused on (1) thermal-hydraulic-mechanical-chemical (THMC) processes in buffer materials (bentonite) and (2) diffusive transport in EBS associated with clay host rock, with a long-term goal to develop a full understanding of (and needed modeling capabilities to simulate) impacts of coupled processes on radionuclide transport in different components of EBS, as well as the interaction between near-field host rock (e.g., clay) and EBS and how they effect radionuclide release. This final report documents the progress that LBNL has made in its focus areas. Specifically, Section 2 summarizes progress on literature review for THMC processes and reactive-diffusive radionuclide transport in bentonite. The literature review provides a picture of the state-of-the-art of the relevant research areas

  13. Reactive Transport and Coupled THM Processes in Engineering Barrier Systems (EBS)

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, Carl; Rutqvist, Jonny; Tsang, Chin-Fu; Liu, Hui-Hai; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    Geological repositories for disposal of high-level nuclear wastes generally rely on a multi-barrier system to isolate radioactive wastes from the biosphere. The multi-barrier system typically consists of a natural barrier system, including repository host rock and its surrounding subsurface environment, and an engineering barrier system (EBS). EBS represents the man-made, engineered materials placed within a repository, including the waste form, waste canisters, buffer materials, backfill and seals (OECD, 2003). EBS plays a significant role in the containment and long-term retardation of radionuclide release. EBS is involved in complex thermal, hydrogeological, mechanical, chemical and biological processes, such as heat release due to radionuclide decay, multiphase flow (including gas release due to canister corrosion), swelling of buffer materials, radionuclide diffusive transport, waste dissolution and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) for EBS and the entire repository. Within the EBS group of Used Fuel Disposition (UFD) Campaign, LBNL is currently focused on (1) thermal-hydraulic-mechanical-chemical (THMC) processes in buffer materials (bentonite) and (2) diffusive transport in EBS associated with clay host rock, with a long-term goal to develop a full understanding of (and needed modeling capabilities to simulate) impacts of coupled processes on radionuclide transport in different components of EBS, as well as the interaction between near-field host rock (e.g., clay) and EBS and how they effect radionuclide release. This final report documents the progress that LBNL has made in its focus areas. Specifically, Section 2 summarizes progress on literature review for THMC processes and reactive-diffusive radionuclide transport in bentonite. The literature review provides a picture of the state-of-the-art of the relevant research areas

  14. A review of measurement and characterisation of airborne long-lived alpha-emitting radionuclides

    International Nuclear Information System (INIS)

    Bigu, J.

    1993-01-01

    Sampling principles, monitoring instrumentation and characterisation of Long-Lived Radioactive Dust (LLRD) generated in U-Th mine and mill operations are discussed. Methods and techniques for the quantification, radionuclide identification and the study of other important characteristics of LLRD (e.g., electrical charge) are reviewed. Furthermore, field and laboratory measurements and methods of radiation dose assessment are revised. Some emphasis is placed in this work on occupational worker exposure assessment and the principles, methods and techniques of 'external' radiation exposure, internal dosimetry, and dosimetric models. It is clear that in spite of constant advances in the several areas which are the subject of this paper, there is still considerable room for improvement. For example, there is no universally accepted sampling protocol and sampler for routine LLRD monitoring for occupational hygiene exposure calculation purposes. Other areas for improvement could include calibration of instrumentation and improved sensitivity in radionuclide quantification and identification. 105 refs., 6 tabs., 3 figs

  15. Simulation of radionuclide retardation at Yucca Mountain using a stochastic mineralogical/geochemical model

    International Nuclear Information System (INIS)

    Birdsell, K.H.; Campbell, K.; Eggert, K.; Travis, B.J.

    1990-01-01

    This paper presents preliminary transport calculations for radionuclide movement at Yucca Mountain. Several different realizations of spatially distributed sorption coefficients are used to study the sensitivity of radionuclide migration. These sorption coefficients are assumed to be functions of the mineralogic assemblages of the underlying rock. The simulations were run with TRACRN 1 , a finite-difference porous flow and radionuclide transport code developed for the Yucca Mountain Project. Approximately 30,000 nodes are used to represent the unsaturated and saturated zones underlying the repository in three dimensions. Transport calculations for a representative radionuclide cation, 135 Cs, and anion, 99 Tc, are presented. Calculations such as these will be used to study the effectiveness of the site's geochemical barriers at a mechanistic level and to help guide the geochemical site characterization program. The preliminary calculations should be viewed as a demonstration of the modeling methodology rather than as a study of the effectiveness of the geochemical barriers. The model provides a method for examining the integration of flow scenarios with transport and retardation processes as currently understood for the site. The effects on transport of many of the processes thought to be active at Yucca Mountain may be examined using this approach. 11 refs., 14 figs., 1 tab

  16. Influence of speciation on the geospheric migration of radionuclides

    International Nuclear Information System (INIS)

    Hadermann, J.; Schweingruber, M.

    1982-01-01

    For geosphere transport calculations in safety analyses of waste repositories it is generally assumed that the retardation of a migrating radionuclide is characterized by a single retention factor. However, in groundwater, radionuclides exist in various chemical forms with strongly differing sorption properties. We consider the effect of pseudo first order chemical reactions in liquid phase on migration. Conditions are derived under which local equilibrium in liquid phase is well fulfilled and migration is governed by a single effective retention factor. It is argued that in geosphere transport, equilibrium is likely to exist even when laboratory measurements show chromatographic separations. (author)

  17. Radionuclides for therapy: a review

    International Nuclear Information System (INIS)

    Roesler, H.; Noelpp, U.; Triller, K.J.; Steffen, R.

    1986-01-01

    Progress in angiographic techniques has been a gradual evolutionary development which now permits the selective and superselective access to a tumor's vascular bed. A diagnostic angiographic procedure can be supplemented by a one-step, quick application of embolizing radioactive material. This endoarterial radionuclide embolizing tumor therapy has the maximum selectivity among radiotherapeutic methods, with the highest radiation doses to the tumor and neglectible exposure of normal tissue. Spread of radioactivity by diffusion or leaching can be prevented

  18. Radionuclide transport and dose assessment modelling in biosphere assessment 2009

    International Nuclear Information System (INIS)

    Hjerpe, T.; Broed, R.

    2010-11-01

    Following the guidelines set forth by the Ministry of Trade and Industry (now Ministry of Employment and Economy), Posiva is preparing to submit a construction license application for the final disposal spent nuclear fuel at the Olkiluoto site, Finland, by the end of the year 2012. Disposal will take place in a geological repository implemented according to the KBS-3 method. The long-term safety section supporting the license application will be based on a safety case that, according to the internationally adopted definition, will be a compilation of the evidence, analyses and arguments that quantify and substantiate the safety and the level of expert confidence in the safety of the planned repository. This report documents in detail the conceptual and mathematical models and key data used in the landscape model set-up, radionuclide transport modelling, and radiological consequences analysis applied in the 2009 biosphere assessment. Resulting environmental activity concentrations in landscape model due to constant unit geosphere release rates, and the corresponding annual doses, are also calculated and presented in this report. This provides the basis for understanding the behaviour of the applied landscape model and subsequent dose calculations. (orig.)

  19. Environmental dispersion of long-lived radionuclides in the geosphere and biosphere

    International Nuclear Information System (INIS)

    Myttenaere, C.; Avogadro, A.; Murray, C.N.

    1984-01-01

    Knowledge of the migration of radionuclides in the terrestrial environment is one of the key elements in assessment of the risk resulting from potential or actual releases from nuclear facilities. Among the various radionuclides arising from the nuclear fuel cycle, long-lived fission products and actinides are of particular concern for the different disposal options considered for radioactive wastes. Current knowledge of the processes that are responsible for their migration through different compartments of the environment (geosphere and biosphere) is reviewed. Migration in the geosphere is governed by a number of different mechanisms that have a wide range of reaction rates. Certain processes may be identified that control short-term behaviour and others long term. In assessing these processes, which relate to the interaction between solid and liquid phases, special attention is paid to the time-scale as well as the dynamic nature of the controlling processes. The current state of knowledge and the major research efforts under way concerning the predominant processes identified in different geological disposal options are reviewed. Various mechanisms control the behaviour of long-lived radionuclides and actinides in the soil and their migration in the biosphere. Regarding the biological uptake, particular attention is drawn to the 'ageing' phenomena and their consequences on radioactivity transfer in the different food chains. Similarities in the biogeochemical properties of natural and man-made elements that could further our understanding of the long-term behaviour of radionuclides are discussed. Consequently, all these considerations justify study of the biogeochemical aspects of the transfer of radioactivity in the environment. In the actual state of knowledge the uncertainties in the parameters used in the models may lead to difficulty in long-term dose estimation. Assessment of the dose received by man appears to be more strongly limited by the quality of

  20. Targeted Radionuclide Therapy

    Directory of Open Access Journals (Sweden)

    David Cheng

    2011-10-01

    Full Text Available Targeted radiotherapy is an evolving and promising modality of cancer treatment. The killing of cancer cells is achieved with the use of biological vectors and appropriate radionuclides. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. Several different radiopharmaceuticals are currently being used by various administration routes and targeting mechanisms. This article aims to briefly review the current status of targeted radiotherapy as well as to outline the advantages and disadvantages of radionuclides used for this purpose.

  1. Targeted Radionuclide Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ersahin, Devrim, E-mail: devrimersahin@yahoo.com; Doddamane, Indukala; Cheng, David [Department of Diagnostic Radiology, School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06520 (United States)

    2011-10-11

    Targeted radiotherapy is an evolving and promising modality of cancer treatment. The killing of cancer cells is achieved with the use of biological vectors and appropriate radionuclides. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. Several different radiopharmaceuticals are currently being used by various administration routes and targeting mechanisms. This article aims to briefly review the current status of targeted radiotherapy as well as to outline the advantages and disadvantages of radionuclides used for this purpose.

  2. Targeted Radionuclide Therapy

    International Nuclear Information System (INIS)

    Ersahin, Devrim; Doddamane, Indukala; Cheng, David

    2011-01-01

    Targeted radiotherapy is an evolving and promising modality of cancer treatment. The killing of cancer cells is achieved with the use of biological vectors and appropriate radionuclides. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. Several different radiopharmaceuticals are currently being used by various administration routes and targeting mechanisms. This article aims to briefly review the current status of targeted radiotherapy as well as to outline the advantages and disadvantages of radionuclides used for this purpose

  3. Impact of kinetics and flow path heterogeneity on nanoparticle/radionuclide migration

    International Nuclear Information System (INIS)

    Huber, Florian M.

    2011-01-01

    The prevailing PhD thesis experimentally investigates the impact of both sorption/desorption (reversibility) and reduction kinetics on radionuclide migration in synthetic and natural systems from the nano-to the centimeter scale. Furthermore, the impact of fracture heterogeneity on flow and solute/nanoparticle transport as a potential additional retardation mechanism is examined both on an experimental and numerical basis. The process of sorptive reduction of U(VI) to sparingly soluble tetravalent uranium by structural bound Fe(II) in magnetite shows fast kinetics (hours to a few days contact time). A clear correlation between the Fe(II) content on the magnetite surface and the amount of U(VI) was observed, that is, increasing U(IV) with increasing Fe(II). Moreover, a congruency between the measured Eh(SHE) and the U valence state can partly been derived within the analytical uncertainties of the redox potential measurements. Thus, secondary phases as the stainless steel corrosion product magnetite can have beneficial effects on radionuclide migration as an effective retardation pathway for redox sensitive radionuclides. Beside, the studies on U(VI) maghemite sorption show that oxidized surfaces can possess long-term reduction capacities further enhancing radionuclide retention. Concerning the colloid-facilitated radionuclide transport, the batch sorption reversibility studies revealed the significance of kinetically controlled radionuclide desorption from the colloidal phase and subsequent sorption to the fracture filling materials (independent of the mineralogy and/or size fraction). By this process, initially colloidal associated radionuclides like the tri-and tetravalent radionuclides Th, Pu and Am are effectively retarded leading to an increase in the residence time. These reversibility results need to be included in codes for simulating colloid-facilitated radionuclide transport to reduce the conservatism and degree of uncertainties in input parameters

  4. Impact of kinetics and flow path heterogeneity on nanoparticle/radionuclide migration

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Florian M.

    2011-11-29

    The prevailing PhD thesis experimentally investigates the impact of both sorption/desorption (reversibility) and reduction kinetics on radionuclide migration in synthetic and natural systems from the nano-to the centimeter scale. Furthermore, the impact of fracture heterogeneity on flow and solute/nanoparticle transport as a potential additional retardation mechanism is examined both on an experimental and numerical basis. The process of sorptive reduction of U(VI) to sparingly soluble tetravalent uranium by structural bound Fe(II) in magnetite shows fast kinetics (hours to a few days contact time). A clear correlation between the Fe(II) content on the magnetite surface and the amount of U(VI) was observed, that is, increasing U(IV) with increasing Fe(II). Moreover, a congruency between the measured Eh(SHE) and the U valence state can partly been derived within the analytical uncertainties of the redox potential measurements. Thus, secondary phases as the stainless steel corrosion product magnetite can have beneficial effects on radionuclide migration as an effective retardation pathway for redox sensitive radionuclides. Beside, the studies on U(VI) maghemite sorption show that oxidized surfaces can possess long-term reduction capacities further enhancing radionuclide retention. Concerning the colloid-facilitated radionuclide transport, the batch sorption reversibility studies revealed the significance of kinetically controlled radionuclide desorption from the colloidal phase and subsequent sorption to the fracture filling materials (independent of the mineralogy and/or size fraction). By this process, initially colloidal associated radionuclides like the tri-and tetravalent radionuclides Th, Pu and Am are effectively retarded leading to an increase in the residence time. These reversibility results need to be included in codes for simulating colloid-facilitated radionuclide transport to reduce the conservatism and degree of uncertainties in input parameters

  5. Radionuclide concentrations in white sturgeon from the Columbia River. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Dauble, D.D.; Price, K.R.; Poston, T.M.

    1993-11-01

    The objectives of this study were to (1) review and summarize historical data on radionuclide concentrations in white sturgeon from the Columbia River, (2) determine present-day radionuclide tissue burdens from different locations in the Columbia River, and (3) compare historical data with current data. We first reviewed and summarized the historical literature on radionuclide concentrations in white sturgeon from the Hanford Reach. Field studies were then conducted to evaluate the relationship among sample locations, age/length of white sturgeon, and present radionuclide tissue burdens. Results and comparisons are discussed in the remainder of this report.

  6. The behaviour of radionuclides in soil

    International Nuclear Information System (INIS)

    Bunzl, K.

    1987-01-01

    Radionuclides in soil are of natural as well as of artificial origin. Their migration in the soil and their availability for ecological processes depend considerably on the extent at which they are sorbed. The methods for the determination of the vertical rate of migration are described. For most radionuclides this transport is very slow (a few cm per year). Cs-137 is of especial interest. It is sorbed strongly by most soils and, as a consequence, its root uptake is small. However, as a result of the sorption, this radionuclide is eluted from the root zone only very slowly and its thus available for the root uptake for many years. The Cs-137 concentrations in plants to be expected in the coming years as a result of the fallout from Chernobyl are small. (orig.) [de

  7. Modelling of radionuclide migration and heat transport from an High-Level-Radioactive-Waste-repository (HLW) in Boom clay

    International Nuclear Information System (INIS)

    Put, M.; Henrion, P.

    1992-01-01

    For the modelling of the migration of radionuclides in the Boom clay formation, the analytical code MICOF has been updated with a 3-dimensional analytical solution for discrete sources. the MICOF program is used for the calculation of the release of α and β emitters from the HIGH LEVEL RADIOACTIVE WASTES (HLW). A coherent conceptual model is developed which describes all the major physico-chemical phenomena influencing the migration of radionuclides in the Boom clay. The concept of the diffusion accessible porosity is introduced and included in the MICOF code. Different types of migration experiments are described with their advantages and disadvantages. The thermal impact of the HLW disposal in the stratified Boom clay formation has been evaluated by a finite element simulation of the coupled heat and mass transport equation. The results of the simulations show that under certain conditions thermal convection cells may form, but the convective heat transfer in the clay formation is negligible. 6 refs., 19 figs., 2 tabs., 5 appendices

  8. Modeling of radionuclide transport through rock formations and the resulting radiation exposure of reference persons. Calculations using Asse II parameters; Modellierung des Transports von Radionukliden durch Gesteinsschichten und der resultierenden Strahlenexposition von Referenzpersonen. Berechnungen mit Parametern der Asse II

    Energy Technology Data Exchange (ETDEWEB)

    Kueppers, Christian; Ustohalova, Veronika; Steinhoff, Mathias

    2012-05-21

    The long-term release of radioactivity into the ground water path cannot be excluded for the radioactive waste repository Asse II. The possible radiological consequences were analyzed using a radio-ecological scenario developed by GRS. A second scenario was developed considering the solubility of radionuclides in salt saturated solutions and retarding/retention effects during the radionuclide transport through the cap rock layers. The modeling of possible radiation exposure was based on the lifestyle habits of reference persons. In Germany the calculation procedure for the prediction of radionuclide release from final repositories is not defined by national standards, the used procedures are based on analogue methods from other radiation protection calculations.

  9. BLT-EC (Breach, Leach Transport, and Equilibrium Chemistry), a finite-element model for assessing the release of radionuclides from low-level waste disposal units: Background, theory, and model description

    International Nuclear Information System (INIS)

    MacKinnon, R.J.; Sullivan, T.M.; Simonson, S.A.; Suen, C.J.

    1995-08-01

    Performance assessment models typically account for the processes of sorption and dissolution-precipitation by using an empirical distribution coefficient, commonly referred to as K d that combines the effects of all chemical reactions between solid and aqueous phases. In recent years, however, there has been an increasing awareness that performance assessments based solely on empirically based K d models may be incomplete, particularly for applications involving radionuclides having sorption and solubility properties that are sensitive to variations in the in-situ chemical environment. To accommodate variations in the in-situ chemical environment, and to assess its impact on radionuclide mobility, it is necessary to model radionuclide release, transport, and chemical processes in a coupled fashion. This modeling has been done and incorporated into the two-dimensional, finite-element, computer code BLT-EC (Breach, Leach, Transport, Equilibrium Chemistry). BLT-EC is capable of predicting container degradation, waste-form leaching, and advective-dispersive, multispecies, solute transport. BLT-EC accounts for retardation directly by modeling the chemical processes of complexation, sorption, dissolution-precipitation, ion-exchange, and oxidation-reduction reactions. In this report we: (1) present a detailed description of the various physical and chemical processes that control the release and migration of radionuclides from shallow land LLW disposal facilities; (2) formulate the mathematical models that represent these processes; (3) outline how these models are incorporated and implemented in BLT-EC; and (4) demonstrate the application of BLT-EC on a set of example problems

  10. The reactor accident at Chernobyl: A possibility to test colloid-controlled transport of radionuclides

    International Nuclear Information System (INIS)

    Von Gunten, H.R.; Waber, U.; Krahenbuhl, U.

    1987-01-01

    Radioactive fall-out from the damaged nuclear power plant at Chernobyl (USSR) has been measured between May 2 and May 20, 1986 in the River Glatt (Zurich, Switzerland) and in a shallow groundwater stream which is hydraulically connected to the river. Water infiltrating from the river into the groundwater was sampled at different distances and depths by means of a system of piezometer tubes which are part of an experimental installation for the investigation of groundwater quality and migration processes. The aquifer is a quarternary glaciofluvial deposit consisting of stones, gravel, sand, silt and clays. It is typical for large parts of alpine and peri-alpine regions and contains in Switzerlamd about 80% of the drinking water supplies. The radionuclides Tc-99m, Ru-103, I-131, Te-132, Cs-134 and Cs-137 were measured several times in the river water and in the groundwater using calibrated Ge(Li) gamma-ray spectrometers. Based on the present state of data evaluation the authors conclude that anionic species like iodides, ruthenates or tellurates are not or only slightly sorbed, whereas cesium is completely retained during infiltration from the river into the groundwater. Colloid (>0.05 μm) controlled migration of radionuclides in this heterogeneous glaciofluvial deposits is a transport mechanism of minor importance. However, with the present data it cannot be excluded completely

  11. Radionuclides in the food chain

    International Nuclear Information System (INIS)

    Harley, J.H.; Schmidt, G.D.

    1988-01-01

    Radionuclides in the Food Chain reviews past experience in meeting the challenge of radionuclide contamination of foodstuffs and water sources and, in the wake of the reactor accidents at Chernobyl and Three Mile Island, presents current concepts and programs relating to measurement, surveillance, effects, risk management, evaluation guidelines, and control and regulatory activities. This volume, based on a symposium sponsored by the International Life Sciences Institute in association with the International Institute for Applied Systems Analysis, which brought together both radiation experts and food industry policymakers, examines such vital topics as structural problems in large-scale crisis-managment systems; dose assessment from man-made sources; international recommendations on radiation protection; airborne contamination, as well as aquatic and soilborne radionuclides; food-chain contamination from testing nuclear devices; long-term health effects of radionuclides in food and water supplies; and use of mathematical models in risk assessment and management. (orig.)

  12. Initial Radionuclide Inventories

    Energy Technology Data Exchange (ETDEWEB)

    H. Miller

    2004-09-19

    The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only. Bounding waste stream information and data were collected that capture probable limits. For commercially generated waste, this analysis considers alternative waste stream projections to bound the characteristics of wastes likely to be encountered using arrival scenarios that potentially impact the commercial spent nuclear fuel (CSNF) waste stream. For TSPA-LA, this radionuclide inventory analysis considers U.S. Department of Energy (DOE) high-level radioactive waste (DHLW) glass and two types of spent nuclear fuel (SNF): CSNF and DOE-owned (DSNF). These wastes are placed in two groups of waste packages: the CSNF waste package and the codisposal waste package (CDSP), which are designated to contain DHLW glass and DSNF, or DHLW glass only. The radionuclide inventory for naval SNF is provided separately in the classified ''Naval Nuclear Propulsion Program Technical Support Document'' for the License Application. As noted previously, the radionuclide inventory data presented here is intended only for TSPA-LA postclosure calculations. It is not applicable to preclosure safety calculations. Safe storage, transportation, and ultimate disposal of these wastes require safety analyses to support the design and licensing of repository equipment and facilities. These analyses will require radionuclide inventories to represent the radioactive source term that must be accommodated during handling, storage and disposition of these wastes. This analysis uses the best available information to identify the radionuclide inventory that is expected at the last year of last emplacement

  13. Hydrology and radionuclide migration program 1987 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, K.V. (comp.)

    1991-03-01

    This report presents results from the Lawrence Livermore National Laboratory's participation in the Hydrology and Radionuclide Migration Program at the Nevada Test Site (NTS) during the fiscal year 1987. The report discussed initial data from a new well (UE20n-1) drilled at the Cheshire site; presents a description of a proposed laboratory study of migration of colloids in fractured media; lists data collected during the drilling and initial sampling of UE20n-1; and describes a tentative proposal for work to be performed in FY88 by Lamont-Doherty Geological Observatory. Groundwater sampled from the new well at the Cheshire site contains tritium concentrations comparable to those measured in previous years from locations above and within the Cheshire cavity. This presence of tritium, as well as several other radionuclides, in a well 100 m away from the cavity region indicates transport of radionuclides, validates a proposed model of the flow path, and provides data on rates of groundwater flow. Previous work at the Cheshire site has shown that radionuclides are transported by colloids through fractured media. However, we have no data that can be used for predictive modeling, and existing theories are not applicable. While physical transport mechanisms of sub-micrometer colloids to defined mineral surfaces are well known, predictions based on well-defined conditions differ from experimental observations by orders of magnitude. The U.C. Berkeley group has designed a laboratory experiment to quantify colloid retention and permeability alteration by the retained colloids.

  14. Remediation of radionuclide pollutants through biosorption - an overview

    Energy Technology Data Exchange (ETDEWEB)

    Das, Nilanjana [Environmental Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore (India)

    2012-01-15

    The development of nuclear science and technology has led to the increase of nuclear wastes containing radionuclides to be released and disposed in the environment. Pollution caused by radionuclides is a serious problem throughout the world. To solve the problem, substantial research efforts have been directed worldwide to adopt sustainable technologies for the treatment of radionuclide containing wastes. Biosorption represents a technological innovation as well as a cost effective excellent remediation technology for cleaning up radionuclides from aqueous environment. A variety of biomaterials viz. algae, fungi, bacteria, plant biomass, etc. have been reported for radionuclide remediation with encouraging results. This paper reviews the achievements and current status of radionuclide remediation through biosorption which will provide insights into this research frontier. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Radionuclides in analytical chemistry

    International Nuclear Information System (INIS)

    Tousset, J.

    1984-01-01

    Applications of radionuclides in analytical chemistry are reviewed in this article: tracers, radioactive sources and activation analysis. Examples are given in all these fields and it is concluded that these methods should be used more widely [fr

  16. Particles and solutes migration in porous medium : radionuclides and clayey particles simultaneous transport under the effect of a salinity gradient

    International Nuclear Information System (INIS)

    Faure, M.H.

    1994-01-01

    This work deals with the radiation protection of high-level and long-life radioactive waste storages. The colloids presence in ground waters can accelerate the radionuclides migration in natural geological deposits. The aim of this thesis is then to control particularly the particles motion in porous medium in order to anticipate quantitatively their migration. Liquid chromatography columns are filled with a clayey sand and fed with a decreasing concentration sodium chloride solution in order to study the particles outlet under a salinity gradient. When the porous medium undergoes a decrease of salinity it deteriorates. The adsorption of the cations : sodium 22, calcium 45, cesium 137 and neptunium 237 is then studied by the ions exchange method. The radionuclide solution is injected before the decrease of the feed solution salinity. The decrease of the sodium chloride concentration leads to the decrease of the radionuclides concentration because the adsorption competition between the sodium ion and the injected cation is lower. The particles transport, without fouling of the porous medium, is carried out in particular physical and chemical conditions which are described. (O.L.). 71 refs., 105 figs., 26 tabs

  17. Parameter-sensitivity analysis of near-field radionuclide transport in buffer material and rock for an underground nuclear fuel waste vault

    International Nuclear Information System (INIS)

    Cheung, S.C.H.; Chan, T.

    1983-08-01

    An analytical model has been developed for radionuclide transport in the vicinity of a nuclear fuel waste container emplaced in a borehole. The model considers diffusion in the buffer surrounding the waste container, and both diffusion and groundwater convection in the rock around the borehole. A parameter-sensitivity analysis has been done to study the effects on radionuclide flux of (a) Darcian velocity of groundwater in the rock, (b) effective porosity of the buffer, (c) porosity of the rock, (d) radial buffer thickness, and (e) radius and length of the container. It is found that the radionuclide flux, Fsub(R), and the total integrated flux, Fsub(T), are greater for horizontal flow than for vertical flow; Fsub(R) decreases with increasing radial buffer thickness for all Darcian velocities, whereas Fsub(T) decreases at high velocities but increases at low velocities. The rate of change of Fsub(R) and of Fsub(T) decreases with decreasing flow velocity and increasing buffer thickness; Fsub(R) is greater for higher effective porosity of buffer or rock; and Fsub(R) increases and Fsub(T) decreases with decreasing container radius or length

  18. Review of literature on bioassay methods for estimating radionuclides in urine

    International Nuclear Information System (INIS)

    Prasad, M.V.R.; Surya Narayana, D.S.; Jeevanram, R.K.; Sundarajan, A.R.

    1991-01-01

    Bioassay methods of certain important radionuclides encountered in the nuclear fuel cycle operations, viz., thorium, uranium, sup(239)Pu, sup(241)Am, sup(90)Sr, sup(99)Tc, sup(106)Ru, sup(137)Cs are reviewed, with special emphasis on urinalysis. Since the preconcentration is an important prerequisite for bioassay, various preconcentration methods are also discussed. Brief account of various instruments both nuclear and analytical used in the bioassay programme is included. The sensitivities of the methods cited in the literature vis-a-vis the derived recording levels indicated in ICRP recommendations are compared. Literature surveyed up to 1990 is tabulated. (author). 96 refs., 1 fig ., 3 tabs

  19. Evaluation of colloid transport issues and recommendations for SKI performance assessments

    Energy Technology Data Exchange (ETDEWEB)

    Wickham, S. M.; Bennett, D. G.; Higgo, J. J. W. [Galson Sciences Ltd., Oakham (United Kingdom)

    2000-08-01

    The primary objective of this project was to develop recommendations to SKI for evaluating the potential significance of colloids in performance assessment (PA) studies by: Updating a previous review of the treatment of colloids in PA studies for radioactive waste repositories and to include information on PAs published in the period 1997-1999. We have reviewed sixteen PAs conducted in nine countries and have made the following observations: All PAs include colloid formation and colloid transport in their FEP list. Although some programmes have deferred consideration of colloidal radionuclide transport until further research has been performed, more recent PAs do account for the effects of colloids. PAs of disposal systems in which the waste canister is surrounded by a bentonite buffer do not consider the effect of colloids on the source term. These PAs assume that all colloids are filtered by the bentonite buffer and cannot escape from the near-field. PAs of disposal systems with no bentonite buffer have to account for mobilisation of radionuclides from the waste by colloids. The concentration of colloids that may form in the repository is a key uncertainty. Many PA programmes have modelled colloidal radionuclide transport in the geosphere using one-dimensional transport equations. No PA has included a comprehensive treatment of colloid transport using mechanistic modelling. Some PAs have not undertaken modelling of colloid transport in the geosphere, but have relied instead on arguments that such transport processes will be of low consequence to the performance of the disposal system. Five PAs have shown the effects of colloid transport through the geosphere to be potentially significant. For the disposal of spent nuclear fuel, SKB has developed the KBS-3 concept. For the disposal of long-lived low-level and intermediate-level radioactive waste, SKB has developed the SFL 3-5 concept. In the SFL 3-5 concept, waste is placed in underground disposal caverns and

  20. Radionuclide co-precipitation

    International Nuclear Information System (INIS)

    Bruno, J.; Sandino, A.

    1987-12-01

    The thermodynamic and kinetic behaviour of the minor components of the spent fuel matrix has been theoretically and experimentally investigated. Two different situations have been studied: Part I, the near field scenario, where the release and migration of the minor components is dependent on the solubility behaviour of UO 2 (s); Part II, the far field, where the solubility and transport of the radionuclides is related to the major geochemical processes occurring. (orig.)

  1. Uptake by plants of radionuclides from FUSRAP waste materials

    International Nuclear Information System (INIS)

    Knight, M.J.

    1983-04-01

    Radionuclides from FUSRAP wastes potentially may be taken up by plants during remedial action activities and permanent near-surface burial of contaminated materials. In order to better understand the propensity of radionuclides to accumulate in plant tissue, soil and plant factors influencing the uptake and accumulation of radionuclides by plants are reviewed. In addition, data describing the uptake of the principal radionuclides present in FUSRAP wastes (uranium-238, thorium-230, radium-226, lead-210, and polonium-210) are summarized. All five radionuclides can accumulate in plant root tissue to some extent, and there is potential for the translocation and accumulation of these radionuclides in plant shoot tissue. Of these five radionuclides, radium-226 appears to have the greatest potential for translocation and accumulation in plant shoot tissue. 28 references, 1 figure, 3 tables

  2. Uptake by plants of radionuclides from FUSRAP waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Knight, M.J.

    1983-04-01

    Radionuclides from FUSRAP wastes potentially may be taken up by plants during remedial action activities and permanent near-surface burial of contaminated materials. In order to better understand the propensity of radionuclides to accumulate in plant tissue, soil and plant factors influencing the uptake and accumulation of radionuclides by plants are reviewed. In addition, data describing the uptake of the principal radionuclides present in FUSRAP wastes (uranium-238, thorium-230, radium-226, lead-210, and polonium-210) are summarized. All five radionuclides can accumulate in plant root tissue to some extent, and there is potential for the translocation and accumulation of these radionuclides in plant shoot tissue. Of these five radionuclides, radium-226 appears to have the greatest potential for translocation and accumulation in plant shoot tissue. 28 references, 1 figure, 3 tables.

  3. Radionuclide generators for biomedical applications

    International Nuclear Information System (INIS)

    Finn, R.D.; Molinski, V.J.; Hupf, H.B.; Kramer, H.

    1983-10-01

    This document reviews the chemical literature of those radionuclide generators that have gained or appear to possess utility in medical imaging. The text represents a conscientious effort to peruse the scientific literature through 1980. The intent of this work is to provide a reference point for the investigator who is interested in the development of a particular generator system and the refinements which have been reported. Moreover, the incorporation of the particular daughter radionuclide into a suitable radiodiagnostic agent is presented

  4. Use of MICRAS code on the evaluation of the maximum radionuclides concentrations due to transport/migration of decay chain in groundwaters

    International Nuclear Information System (INIS)

    Aquino Branco, O.E. de

    1995-01-01

    This paper presents a methodology for the evaluation of the maximum radionuclides concentrations in groundwaters, due to the transport/migration of decay chains. Analytical solution of the equations system is difficult, even if only three elements of the decay chain are considered. Therefore, a numerical solution is most convenient. An application of the MICRAS code, developed to assess maximum concentrations of each radionuclide, starting with the initial concentrations, is presented. The maximum concentration profile for 226 Ra, calculated using MICRAS, is compared with the results obtained through an analytical and a numerical model. The fitness of results is considered good. Simplified models, like the one represented by the application of MICRAS, are largely employed in the section in the selection and characterization of sites for radioactive wastes repositories and in studies of safety evaluation for the same purpose. A detailed analysis of the transport/migration of contaminants in aquifers requires a large quantify of data from the site and from the installation as well, which makes this analysis expensive and inviable during the preliminary phases of the studies. (author). 6 refs, 1 fig, 1 tab

  5. The uptake of radionuclides by plants

    International Nuclear Information System (INIS)

    Cawse, P.A.; Turner, G.S.

    1982-02-01

    A review of the literature, since 1970, on the research into the uptake of radionuclides by plants, with references to earlier soil and plant studies on the fate of nuclear weapons fallout. Experimental data on the uptake of plutonium isotopes, americium 241, cesium 137, radium 226, curium 244 and neptunium 237 and details of the chemical form of the radionuclide, soil type and plant growth period are tabulated. (U.K.)

  6. Transport and deposition of particles and radionuclides at the Puy de Dome, France

    International Nuclear Information System (INIS)

    Bourcier, L.

    2009-01-01

    Aerosol particles play a key role both on air quality and on the radiative balance of the Earth. Their sources, as well as their deposition are key stages in their life cycle. This work is a contribution in a better knowledge of the chemical composition of particles, cloud droplets and rain droplets. The specificity of our study is to couple, on three sampling sites (Puy de Dome (1465 m a.s.l.), Opme (660 m a.s.l.) and Cezeaux (400 m a.s.l.)), observations on the chemical composition and the radionuclides activity in cloud/rain/aerosol phases. We observed, in aerosol phase, ionic and carbonaceous concentrations and radionuclides activity higher in summer than in winter at the Puy de Dome, inverse of the seasonal variation observed at the Cezeaux for chemical compounds. From these observations, we offer a representative composition de each mass air type. This work is supplemented by a study of cloud and rain liquid, which allow us to study the scavenging of the pollutants by the rain. The chemical composition of the rain reveals a similar behaviour to that of the particles at the Puy de Dome, indicating that the role of activation and scavenging of particles is preponderant in the composition of the rain. This is confirmed by a study of the environmental and structural factors of the rain which do not seem to influence the washout ratio in a significant manner. Our work highlights the role of long range transport of pollutants in the composition of atmospheric liquid phase. (author)

  7. Transport and accumulation of radionuclides and stable elements in a Missouri River reservoir

    International Nuclear Information System (INIS)

    Callender, E.; Robbins, J.A.

    1993-01-01

    Several long sediment cores from the Cheyenne River Embayment of Lake Oahe, a 250-km-long Missouri River reservoir in South Dakota, have been analyzed for radionuclides and stable elements. The combination of fine-scale sampling and rapid sedimentation produces radionuclide distributions that can be used to estimate the detailed chronology of particle transport processes in the Oahe reservoir system. A self-consistent and quantitative treatment of the Cesium 137 data suggests processes to which characteristic times may be associated. Times that characterize system-wide processes include (1) an integration time of several years reflecting retention of the sediment-bound tracer in regions within or external to the reservoir, (2) a relaxation time of approximately 15 years reflecting a decreasing rate of sediment accumulation ascribed to shoreline stabilization, (3) a time of a few months characterizing the breadth of riverine signatures in cores due to integration effects in the Cheyenne River system and deltaic deposits, and (4) times of a few years associated with propagation of riverine load signatures along the embayment. The distribution of total sedimentary arsenic confirms the validity of the variable sedimentation model. In 1977, a tailings retention facility was built at the Homestake Mine site, and the unrestricted input of As ceased. As a result of this remedial action, the concentration of sedimentary As decreased dramatically. Because there is minimal diagenesis of chemical constituents in the rapidly accumulating sediments, stable element signatures, in addition to radiotracers, may be used to reconstruct hydrologic events in drainage basins that contribute sediment to lakes and reservoirs

  8. The fate and importance of radionuclides produced in nuclear events

    Energy Technology Data Exchange (ETDEWEB)

    Shore, B; Anspaugh, L; Chertok, R; Gofman, J; Harrison, F; Heft, R; Koranda, J; Ng, Y; Phelps, P; Potter, G; Tamplin, A [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1969-07-01

    Some of the major program at the Bio-Medical Division concerned with the fate and importance of the fission products, the radionuclides induced in the device materials, the radionuclides induced in the environment surrounding the device, and the tritium produced in Plowshare cratering events will be discussed. These programs include (1) critical unknowns in predicting organ and body burdens from radionuclides produced in cratering events; (2) the analysis with a high-resolution solid state gamma ray spectrometer of radionuclides in complex biological and environmental samples; (3) the characterization of radioactive particles from cratering detonation; (4) the biological availability to beagles, pigs and goats of radionuclides in Plowshare debris; (5) the biological availability to aquatic animals of radionuclides in Plowshare and other nuclear debris and the biological turnover of critical nuclides in specific aquatic animals; (6) the biological availability of Plowshare and other nuclear debris radionuclides to dairy cows and the transplacental transport of debris radionuclides in the dairy cow; (7) the persistence and behavior of radionuclides, particularly tritium, at sites of Plowshare and other nuclear detonations; and (8) somatic effects of Low Dose Radiation: Chromosome studies. (author)

  9. The fate and importance of radionuclides produced in nuclear events

    International Nuclear Information System (INIS)

    Shore, B.; Anspaugh, L.; Chertok, R.; Gofman, J.; Harrison, F.; Heft, R.; Koranda, J.; Ng, Y.; Phelps, P.; Potter, G.; Tamplin, A.

    1969-01-01

    Some of the major program at the Bio-Medical Division concerned with the fate and importance of the fission products, the radionuclides induced in the device materials, the radionuclides induced in the environment surrounding the device, and the tritium produced in Plowshare cratering events will be discussed. These programs include (1) critical unknowns in predicting organ and body burdens from radionuclides produced in cratering events; (2) the analysis with a high-resolution solid state gamma ray spectrometer of radionuclides in complex biological and environmental samples; (3) the characterization of radioactive particles from cratering detonation; (4) the biological availability to beagles, pigs and goats of radionuclides in Plowshare debris; (5) the biological availability to aquatic animals of radionuclides in Plowshare and other nuclear debris and the biological turnover of critical nuclides in specific aquatic animals; (6) the biological availability of Plowshare and other nuclear debris radionuclides to dairy cows and the transplacental transport of debris radionuclides in the dairy cow; (7) the persistence and behavior of radionuclides, particularly tritium, at sites of Plowshare and other nuclear detonations; and (8) somatic effects of Low Dose Radiation: Chromosome studies. (author)

  10. Numerical simulation of the impact of water-air fronts on radionuclides plumes in heterogeneous media

    International Nuclear Information System (INIS)

    Aquino, J.; Francisco, A.S.; Pereira, F.; Amaral Souto, H.P.

    2004-01-01

    The goal of this paper is to investigate the interaction of water-air fronts with radionuclide plumes in unsaturated heterogeneous porous media. This problem is modeled by a system of equations that describes both the water-air flow and the radionuclide transport. The water-air problem is solved numerically by a mixed finite element combined with a non-oscillatory central difference scheme. For the radionuclide transport equation we use the Modified Method of Characteristics (MMOC). We present the results of numerical simulations for heterogeneous permeability fields taking into account sorption effects. (author)

  11. Modelling of near-field radionuclide transport phenomena in a KBS-3V type of repository for nuclear waste with Goldsim Code - and verification against previous methods

    International Nuclear Information System (INIS)

    Pulkkanen, V.-M.; Nordman, H.

    2010-03-01

    Traditional radionuclide transport models overestimate significantly some phenomena, or completely ignore them. This motivates the development of new more precise models. As a result, this work is a description of commissioning of a new KBS-3V near-field radionuclide transport model, which has been done with a commercial software called GoldSim. According to earlier models, GoldSim model uses rz coordinates, but the solubilities of radionuclides have been treated more precisely. To begin with, the physical phenomena concerning near-field transport have been introduced according to GoldSim way of thinking. Also, the computational methods of GoldSim have been introduced and compared to methods used earlier. The actual verification of GoldSim model has been carried out by comparing the GoldSim results from simple cases to the corresponding results obtained with REPCOM, a software developed by VTT and used in several safety assessments. The results agree well. Finally, a few complicated cases were studied. In these cases, the REPCOM's limitations in handling of some phenomena become evident. The differences in the results are caused especially by the extension of the solubility limit to the whole computational domain, and the element-wise treatment of the solubilities which was used instead of nuclide-wise treatment. This work has been carried out as a special assignment to the former laboratory of Advanced Energy Systems in Helsinki University of Technology. The work was done at VTT. (orig.)

  12. CIEMAT results in the frame of the european project Mechanisms governing the behaviour and transport of transuranics (analogues) and other radionuclides in marine ecosystems

    International Nuclear Information System (INIS)

    Gasco, C.; Anton, M.P.

    1996-01-01

    This report summarises the objectives and more relevant conclusions obtained by CIEMAT in the frame of the project Mechanisms governing the behaviour and transport of transuranics (analogues) and other radionuclides in marine ecosystems. The overall objective of this project was to identify the basic mechanisms and define the key parameters governing the physico-chemical speciation, vertical and horizontal mobility, biological magnification, incorporation to seabed sediments and ultimate fate of transuranium and other long-lived radionuclides in the marine environment, with a view to providing high-quality data of a universal character for use in the development and validation of predictive models based on fundamental mechanisms rather than the simpler box-model approach. This research was carried out in different European marine ecosystems: those directly affected by controlled releases from Nuclear Industries and/or accidents and those characterized by being preferent radionuclides accumulation sites (submarine canyons, estuaries, etc.). (Author)

  13. Evaluation of colloid transport issues and recommendations for SKI performance assessments

    International Nuclear Information System (INIS)

    Wickham, S. M.; Bennett, D. G.; Higgo, J. J. W.

    2000-08-01

    The primary objective of this project was to develop recommendations to SKI for evaluating the potential significance of colloids in performance assessment (PA) studies by: Updating a previous review of the treatment of colloids in PA studies for radioactive waste repositories and to include information on PAs published in the period 1997-1999. We have reviewed sixteen PAs conducted in nine countries and have made the following observations: All PAs include colloid formation and colloid transport in their FEP list. Although some programmes have deferred consideration of colloidal radionuclide transport until further research has been performed, more recent PAs do account for the effects of colloids. PAs of disposal systems in which the waste canister is surrounded by a bentonite buffer do not consider the effect of colloids on the source term. These PAs assume that all colloids are filtered by the bentonite buffer and cannot escape from the near-field. PAs of disposal systems with no bentonite buffer have to account for mobilisation of radionuclides from the waste by colloids. The concentration of colloids that may form in the repository is a key uncertainty. Many PA programmes have modelled colloidal radionuclide transport in the geosphere using one-dimensional transport equations. No PA has included a comprehensive treatment of colloid transport using mechanistic modelling. Some PAs have not undertaken modelling of colloid transport in the geosphere, but have relied instead on arguments that such transport processes will be of low consequence to the performance of the disposal system. Five PAs have shown the effects of colloid transport through the geosphere to be potentially significant. For the disposal of spent nuclear fuel, SKB has developed the KBS-3 concept. For the disposal of long-lived low-level and intermediate-level radioactive waste, SKB has developed the SFL 3-5 concept. In the SFL 3-5 concept, waste is placed in underground disposal caverns and

  14. Characterizing and modelling the radionuclide transport properties of fracture zones in plutonic rocks of the Canadian Shield

    International Nuclear Information System (INIS)

    Davison, C.C.; Kozak, E.T.; Frost, L.H.; Everitt, R.A.; Brown, A.; Gascoyne, M.; Scheier, N.W.

    1999-01-01

    Plutonic rocks of the Canadian Shield were investigated as a potential host medium for nuclear fuel waste disposal of used CANDU nuclear fuel. Field investigations at several geologic research areas on the Shield have shown that major fracture zones are the dominant pathways for the large scale movement of groundwater and solutes through plutonic rock bodies. Because of this, a significant amount of the geoscience work has focused on methods to identify, characterize and model the radionuclide transport properties of major fracture zones in the fractured plutonic rocks of the Shield. In order to quantify the transport properties of such fracture zones a series of, groundwater tracer tests were performed over a period of several years in several major, low dipping fracture zones. Sixteen tracer tests were performed using dipole recirculation methods to evaluate transport over distance scales ranging from 17 m to 700 m. It was concluded that only tracer tests can provide useful estimates of the effective porosity and dispersivity characteristics of these large fracture zones in plutonic rocks of the Canadian Shield. (author)

  15. Environmental Baseline File National Transportation

    International Nuclear Information System (INIS)

    Harris, M.

    1999-01-01

    This Environmental Baseline File summarizes and consolidates information related to the national-level transportation of commercial spent nuclear fuel. Topics addressed include: shipments of commercial spent nuclear fuel based on mostly truck and mostly rail shipping scenarios; transportation routing for commercial spent nuclear fuel sites and DOE sites; radionuclide inventories for various shipping container capacities; transportation routing; populations along transportation routes; urbanized area population densities; the impacts of historical, reasonably foreseeable, and general transportation; state-level food transfer factors; Federal Guidance Report No. 11 and 12 radionuclide dose conversion factors; and national average atmospheric conditions

  16. Comprehensive cooling water study annual report. Volume IV: radionuclide and heavy metal transport, Savannah River Plant

    International Nuclear Information System (INIS)

    Gladden, J.B.; Lower, M.W.; Mackey, H.E.; Specht, W.L.; Wilde, E.W.

    1985-07-01

    The principal sources of tritium, radiocesium, and radiocobalt in the environment at the Savannah River Plant have been reactor area effluent discharges to onsite streams. Radioactive releases began in 1955, with the period of major reactor releases occurring between 1955 and 1968. Since the early 1970s, releases, except for tritium releases, have been substantially reduced. Radioisotope liquid releases resulted specifically from leaching of reactor fuel elements with cladding failures which exposed the underlying fuel to water. The direct sources of these releases were heat exchanger cooling water, spent fuel storage and disassembly basin effluents, and process water from each of the reactor areas. Offsite radiochemical monitoring of water and sediment at upriver and downriver water treatment facilities indicates that SRP contributions of gamma-emitting radionuclide levels present at these facilities are minute. Tritium in water attributable to SRP operations is routinely detected at the downriver facilities; however, total alpha and nonvolatile beta concentrations attributable to SRP liquid releases are not detected at the downriver facilities. The historic material balance calculated for onsite releases of tritium transported to the Savannah River exhibits a high accounting of tritium released. Other radionuclides released to onsite streams have primarily remained in onsite floodplains. Radionuclide releases associated with reactor operations are derived primarily from disassembly basin water releases in the reactor areas and historically have been the major source of radioactivity released to onsite streams. The movement and interaction of these releases have been governed by cooling water discharges. Liquid releases continue to meet DOE concentration guides for the various radioisotopes in onsite streams and in the Savannah River

  17. Transport of fallout and reactor radionuclides in the drainage basin of the Hudson River estuary

    International Nuclear Information System (INIS)

    Simpson, H.J.; Linsalata, P.; Olsen, C.R.; Cohen, N.; Trier, R.M.

    1987-01-01

    Fallout plutonium and radiocesium derived from both weapons testing and local reactor releases are found in the water column and sediments of the Hudson River in readily measurable amounts. The history of fallout delivery and dissolved phase runoff from the drainage basin of 80 Sr, 137 Cs, and /sup 239,240/Pu have been extensively documented since the mid-1950s. Sediment and water column concentrations of 134 Cs, 137 Cs, and /sup 239,240/Pu in the Hudson have also been documented since the mid-1960's and are summarized. Since the peak fallout years, substantial portions of the fallout radionuclides in the drainage basin have become unavailable to normal weathering processes as reflected by a measured decrease in the fallout nuclide transport to the waters of the tidal Hudson. Budget calculations indicate that plutonium may be transported into the estuary from the coastal ocean, and that desorption of radiocesium from particles has allowed a substantial fraction of radiocesium to be exported from the Hudson to marine waters. 29 references, 6 figures, 8 tables

  18. The flow of radionuclides through the Canadian archipelago

    International Nuclear Information System (INIS)

    Ellis, K.; Smith, J.N.

    1999-01-01

    The transport of contaminants to the Canadian Arctic by air and in water and their concentration through the marine food web has lead to enhanced levels of contaminants in several foods of Canadian northern inhabitants. Artificial radionuclides in the marine water can be used to determine water circulation and to trace contaminant transport through the Canadian Archipelago

  19. A model for radionuclide transport by colloids in the geosphere

    International Nuclear Information System (INIS)

    Ledoux, E.

    1993-01-01

    This research project finds its place in the framework of the coordinated RADWAS-program and is found under the contract F12W-CT91-0079 of the Commission of European Communities. Five partners are involved in the project: Ecole des Mines de Paris/ARMINES (E. Ledoux, J. van der Lee); INTAKTA (M.D. de Cayeux); Rijksinstituut voor Volksgezondheid en Milieuhygiene (R. van der Weerd); CNRS-Laboratoire des Sciences du Genie Chimique (J. Dodds, M. Sardin, E. Rodier); ENRESA-CIEMAT (J. Astudillo, A. Hernandez). The main objective of the project is the development of a mathematical model for the migration of colloids and associated radionuclides in groundwaters through geological media. Laboratory migration experiments support the model development and will be used to test the validity of the computer codes. Furthermore, the model must be able to interpret field experiments in order to be applicable as a safety assessment tool for radioactive waste disposals. The project work can be divided into three parts: 1. Theoretical work including a literature survey, formulation of conceptual models, screening of phenomena by means of simple calculations and development of preliminary computer codes. Formulation of the general outline of a final mathematical concept. 2. Migration experiments in laboratory aimed at studying the fundamental transport mechanisms for colloidal substances. Model or artificial colloids are preferable in this stage to achieve fully controlled conditions. Modeling results will stimulate experimental design. Finally, natural geological media will be used to investigate the applicability of fundamental transport mechanisms to a more realistic environment. 3. Final model development, resulting in an operational tool for column experiments and long term safety assessment. A field data base will be compiled and applied to the model for validation purposes. 3 figs

  20. Radionuclide assessment of pulmonary microvascular permeability

    Energy Technology Data Exchange (ETDEWEB)

    Groeneveld, A.B.J. [Medical Intensive Care Unit, Department of Internal Medicine, Free University Hospital, De Boelelaan 1117, 1081 HV Amsterdam (Netherlands)

    1997-04-01

    The literature has been reviewed to evaluate the technique and clinical value of radionuclide measurements of microvascular permeability and oedema formation in the lungs. Methodology, modelling and interpretation vary widely among studies. Nevertheless, most studies agree on the fact that the measurement of permeability via pulmonary radioactivity measurements of intravenously injected radiolabelled proteins versus that in the blood pool, the so-called pulmonary protein transport rate (PTR), can assist the clinician in discriminating between permeability oedema of the lungs associated with the adult respiratory distress syndrome (ARDS) and oedema caused by an increased filtration pressure, for instance in the course of cardiac disease, i.e. pressure-induced pulmonary oedema. Some of the techniques used to measure PTR are also able to detect subclinical forms of lung microvascular injury not yet complicated by permeability oedema. This may occur after cardiopulmonary bypass and major vascular surgery, for instance. By paralleling the clinical severity and course of the ARDS, the PTR method may also serve as a tool to evaluate new therapies for the syndrome. Taken together, the currently available radionuclide methods, which are applicable at the bedside in the intensive care unit, may provide a gold standard for detecting minor and major forms of acute microvascular lung injury, and for evaluating the severity, course and response to treatment. (orig.). With 2 tabs.

  1. Important processes affecting the release and migration of radionuclides from a deep geological repository

    International Nuclear Information System (INIS)

    Barátová, Dana; Nečas, Vladimír

    2017-01-01

    The processes that affect significantly the transport of contaminants through the near field and far field of a deep geological repository of spent nuclear fuel were studied. The processes can be generally divided into (i) processes related to the release of radionuclides from the spent nuclear fuel; (ii) processes related to the radionuclide transport mechanisms (such as advection and diffusion); and (iii) processes affecting the rate of radionuclide migration through the multi-barrier repository system. A near-field and geosphere model of an unspecified geological repository sited in a crystalline rock is also described. Focus of the treatment is on the effects of the different processes on the activity flow of the major safety-relevant radionuclides. The activity flow was simulated for one spent fuel cask by using the GoldSim simulation tool. (orig.)

  2. Presence of radionuclides in sludge from conventional drinking water treatment plants. A review

    International Nuclear Information System (INIS)

    Fonollosa, E.; Nieto, A.; Peñalver, A.; Aguilar, C.; Borrull, F.

    2015-01-01

    The analysis of sludge samples generated during water treatment processes show that different radioisotopes of uranium, thorium and radium, among others can accumulate in that kind of samples, even the good removal rates obtained in the aqueous phase (by comparison of influent and effluent water concentrations). Inconsequence, drinking water treatment plants are included in the group of Naturally Occurring Radioactive Material (NORM) industries. The accumulation of radionuclides can be a serious problem especially when this sludge is going to be reused, so more exhaustive information is required to prevent the possible radiological impact of these samples in the environment and also on the people. The main aim of this review is to outline the current situation regarding the different studies reported in the literature up to date focused on the analysis of the radiological content of these sludge samples from drinking water treatment plants. In this sense, special attention is given to the recent approaches for their determination. Another important aim is to discuss about the final disposal of these samples and in this regard, sludge reuse (including for example direct agricultural application or also as building materials) are together with landfilling the main reported strategies. - Highlights: • In this review we discuss the methods used to determine radionuclides in sludge from DWTP. • We summarize the different coagulants used and the consequences in the characteristics of the sludge. • We mention different possibilities to reuse the sludge generated in DWTPs

  3. SR 97 - Radionuclide transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Maria [Kemakta Konsult AB, Stockholm (Sweden); Lindstroem, Fredrik [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    1999-12-01

    An essential component of a safety assessment is to calculate radionuclide release and dose consequences for different scenarios and cases. The SKB tools for such a quantitative assessment are used to calculate the maximum releases and doses for the hypothetical repository sites Aberg, Beberg and Ceberg for the initial canister defect scenario and also for the glacial melting case for Aberg. The reasonable cases, i.e. all parameters take reasonable values, results in maximum biosphere doses of 5x10{sup -8} Sv/yr for Aberg, 3x10{sup -8} Sv/yr for Beberg and 1x10{sup -8} Sv/yr for Ceberg for peat area. These doses lie significantly below 0.15 mSv/yr. (A dose of 0.15 mSv/yr for unit probability corresponds to the risk limit of 10{sup -5} per year for the most exposed individuals recommended in regulations.) The conclusion that the maximum risk would lie well below 10{sup -5} per year is also demonstrated by results from the probabilistic calculations, which directly assess the resulting risk by combining dose and probability estimates. The analyses indicate that the risk is 2x10{sup -5} Sv/yr for Aberg, 8x10{sup -7} Sv/yr for Beberg and 3x10{sup -8} Sv/yr for Ceberg. The analysis shows that the most important parameters in the near field are the number of defective canisters and the instant release fraction. The influence from varying one parameter never changes the doses as much as an order of magnitude. In the far field the most important uncertainties affecting release and retention are associated with permeability and connectivity of the fractures in the rock. These properties affect several parameters. Highly permeable and well connected fractures imply high groundwater fluxes and short groundwater travel times. Sparsely connected or highly variable fracture properties implies low flow wetted surface along migration paths. It should, however, be remembered that the far-field parameters have little importance if the near-field parameters take their reasonable

  4. SR 97 - Radionuclide transport calculations

    International Nuclear Information System (INIS)

    Lindgren, Maria; Lindstroem, Fredrik

    1999-12-01

    An essential component of a safety assessment is to calculate radionuclide release and dose consequences for different scenarios and cases. The SKB tools for such a quantitative assessment are used to calculate the maximum releases and doses for the hypothetical repository sites Aberg, Beberg and Ceberg for the initial canister defect scenario and also for the glacial melting case for Aberg. The reasonable cases, i.e. all parameters take reasonable values, results in maximum biosphere doses of 5x10 -8 Sv/yr for Aberg, 3x10 -8 Sv/yr for Beberg and 1x10 -8 Sv/yr for Ceberg for peat area. These doses lie significantly below 0.15 mSv/yr. (A dose of 0.15 mSv/yr for unit probability corresponds to the risk limit of 10 -5 per year for the most exposed individuals recommended in regulations.) The conclusion that the maximum risk would lie well below 10 -5 per year is also demonstrated by results from the probabilistic calculations, which directly assess the resulting risk by combining dose and probability estimates. The analyses indicate that the risk is 2x10 -5 Sv/yr for Aberg, 8x10 -7 Sv/yr for Beberg and 3x10 -8 Sv/yr for Ceberg. The analysis shows that the most important parameters in the near field are the number of defective canisters and the instant release fraction. The influence from varying one parameter never changes the doses as much as an order of magnitude. In the far field the most important uncertainties affecting release and retention are associated with permeability and connectivity of the fractures in the rock. These properties affect several parameters. Highly permeable and well connected fractures imply high groundwater fluxes and short groundwater travel times. Sparsely connected or highly variable fracture properties implies low flow wetted surface along migration paths. It should, however, be remembered that the far-field parameters have little importance if the near-field parameters take their reasonable values. In that case almost all

  5. Radionuclide transport calculations from high-level long-lived radioactive waste disposal in deep clayey geologic formation toward adjacent aquifers

    International Nuclear Information System (INIS)

    Genty, A.; Le Potier, C.

    2007-01-01

    In the context of high-level nuclear waste repository safety calculations, the modeling of radionuclide migration is of first importance. Three dimensional radionuclide transport calculations in geological repository need to describe objects of the meter scale embedded in geologic layer formations of kilometer extension. A complete and refined spatial description would end up with at least meshes of hundreds of millions to billions elements. The resolution of this kind of problem is today not reachable with classical computers due to resources limitations. Although parallelized computation appears as potential tool to handle multi-scale calculations, to our knowledge no attempt have been yet performed. One emerging solution for repository safety calculations on very large cells meshes consists in using a domain decomposition approach linked to massive parallelized computer calculation. In this approach, the repository domain is divided in small elementary domains and transport calculation are performed independently on different processor for each elementary domain. Before to develop this possible solution, we performed some preliminary test in order to access the order of magnitude of cells needed to perform converged calculation on one elementary disposal domain and to check if Finite Volume (FV) based on Multi Point Flux Approximation (MPFA) spatial scheme or more classical Mixed Hybrid Finite Element (MHFE) spatial scheme were adapted for those calculations in highly heterogeneous porous media. Our preliminary results point out that MHFE and VF schemes applied on non-parallelepiped hexahedral cells for flow and transport calculations in highly heterogeneous media gave satisfactory results. Nevertheless further investigations and additional calculations are needed in order to exhibit the mesh discretization level needed to perform converged calculations. (authors)

  6. The release of organic material from clay based buffer materials and its potential implications for radionuclide transport

    International Nuclear Information System (INIS)

    Vilks, P.; Stroes-Gascoyne, S.; Goulard, M.; Haveman, S.A.; Bachinski, D.B.

    1998-01-01

    In the Canadian nuclear fuel waste disposal concept used fuel would be placed in corrosion resistant containers which would be surrounded by clay-based buffer and backfill materials in an engineered vault excavated at 500 to 1000 m depth in crystalline rock formations in the Canadian shield. Organic substances could affect radionuclide mobility due to the effects of redox and complexation reactions that increase solubility and alter mobility. The purpose of this study was to determine whether the buffer and backfill materials, proposed for use in a disposal vault, contain organics that could be leached by groundwater in large enough quantities to affect radionuclide mobility within the disposal vault and surrounding geosphere complex. Buffer material, made from a mixture of 50 wt.% Avonlea sodium bentonite and 50 wt.% silica sand, was extracted with deionized water to determine the release of dissolved organic carbon (DOC), humic acid and fulvic acid. The effect of radiation and heat from the used fuel was simulated by treating samples of buffer before leaching to various amounts of heat (60 and 90 C) for periods of 2, 4 and 6 weeks, and to ionizing radiation with doses of 25 kGy and 50 kGy. The results showed that groundwater would leach significant amounts of organics from buffer that complex with radionuclides such as the actinides, potentially affecting their solubility and transport within the disposal vault and possibly the surrounding geosphere. In addition, the leached organics would likely stimulate microbial growth by several orders of magnitude. Heating and radiation affect the amount and nature of leachable organics. (orig.)

  7. STRUCTURE AND FUNCTION OF SUBSURFACE MICROBIAL COMMUNITIES AFFECTING RADIONUCLIDE TRANSPORT AND BIOIMMOBILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Joel E. Kostka; Lee Kerkhof; Kuk-Jeong Chin; Martin Keller; Joseph W. Stucki

    2011-06-15

    The objectives of this project were to: (1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), (2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and (3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee, where the subsurface is exposed to mixed contamination predominated by uranium and nitrate. A total of 20 publications (16 published or 'in press' and 4 in review), 10 invited talks, and 43 contributed seminars/ meeting presentations were completed during the past four years of the project. PI Kostka served on one proposal review panel each year for the U.S. DOE Office of Science during the four year project period. The PI leveraged funds from the state of Florida to purchase new instrumentation that aided the project. Support was also leveraged by the PI from the Joint Genome Institute in the form of two successful proposals for genome sequencing. Draft genomes are now available for two novel species isolated during our studies and 5 more genomes are in the pipeline. We effectively addressed each of the three project objectives and research highlights are provided. Task I - Isolation and characterization of novel anaerobes: (1) A wide range of pure cultures of metal-reducing bacteria, sulfate-reducing bacteria, and denitrifying bacteria (32 strains) were isolated from subsurface sediments of the Oak Ridge Field Research Center (ORFRC), where the subsurface is exposed to mixed contamination of uranium and nitrate. These isolates which

  8. Clay as a barrier to radionuclide migration: a review

    International Nuclear Information System (INIS)

    Higgo, J.J.W.

    1986-05-01

    Because of their low permeability, high sorption capacity and plasticity, clay bodies are potentially suitable repositories for radioactive waste. The paper discusses the factors that influence radionuclide mobility in natural clay materials. Methods for determining radionuclide migration rates are described and compared. Data requirements necessary to establish whether or not a particular site is suitable for waste disposal are discussed. Suggestions are made as to the most important generic research that needs to be carried out. In the appendix, some of the most relevant, published, sorption and diffusion data are summarised and compared. (author)

  9. Determination of long-lived radionuclides in environment

    International Nuclear Information System (INIS)

    Seki, Riki

    2001-01-01

    This review summarized the recent papers published after 1985, because Higuchi had written 'Radiometry in Environment' for Advanced Review in this journal, 1985. Separation, purification and measurement method of long-lived radionuclide without light elements are reported. To determine radionuclide in the environment, a pretreatment of sample such as enrichment and separation is need. An extraction chromatography and adsorbents, for example, active carbon and AMP, were developed for the above objects. For analysis of low level radionuclide, background was decreased. ICP-MS, RIMS (Resonance Ionization Mass Spectroscopy) and AMS were used to determine mass of long-lived ones. ICP-MS can measure 93 Zr, 99 Tc, 107 Pd, 129 I and 135 Cs in the radioactive waste without a chemical analysis. RIMS determined 41 Ca, 236-244 Pu, 90 Sr and 237 Np. AMS showed good results for pure beta emitter nuclides ad trace long-lived radionuclide, for example, 14 C, 10 Be, 26 Al, 36 Cl, 129 I and 236 U. Measurement method and results of 14 C, 10 Be, 26 Al, 36 Cl, 41 Ca, 63 Ni, 79 Se, 85 Kr, 99 Tc, 129 I, 237 Np and Pu were explained. (S.Y.)

  10. Effects of sorption hysteresis on radionuclide releases from waste packages

    International Nuclear Information System (INIS)

    Barney, G.S.; Reed, D.T.

    1985-01-01

    A one-dimensional, numerical transport model was used to calculate radionuclide releases from waste packages emplaced in a nuclear waste repository in basalt. The model incorporates both sorption and desorption isotherm parameters measured previously for sorption of key radionuclides on the packing material component of the waste package. Sorption hysteresis as described by these isotherms lowered releases of some radionuclides by as much as two orders of magnitude. Radionuclides that have low molar inventories (relative to uranium), high solubility, and strongly sorbed, are most affected by sorption hysteresis. In these cases, almost the entire radionuclide inventory is sorbed on the packing material. The model can be used to help optimize the thickness of the packing material layer by comparing release rate versus packing material thickness curves with Nuclear Regulatory Commission (NRC) and Environmental Protection Agency (EPA) release limits

  11. The glass block site radionuclide migration study

    International Nuclear Information System (INIS)

    Killey, R.W.D.; Champ, D.R.

    1990-01-01

    In 1960 25 nepheline syenite glass blocks containing 14 TBq of mixed fission products in 50 kg of glass were placed below the water table in a shallow sand aquifer at Chalk River Laboratories. Experimental studies undertaken at the site since 1960 have included detailed mapping of the plume of 90 Sr in 1963, 1966 and 1971. Mathematical modeling studies have employed the radiostrontium plume data in determining the split between ion exchange and chemisorption of 90 Sr, and in obtaining reaction rate data for chemisorption. The distribution of 137 Cs on downgradient soils was mapped in 1963 and 1979. An extended plume of low-level 137 Cs contamination observed in the 1979 study prompted an investigation of the role of particulate materials in radionuclide transport. IN 1983, large volume groundwater sampling and separation of cationic, anionic, and neutral dissolved species, as well as particulates, detected anionic and cationic dissolved europium isotopes (154 and 155), and again encountered particulate 137 Cs. A variety of investigations of cesium and strontium sorption have provided a data base on sediment mineralogy, particle surface features, and information on sorption sites and processes. The year 1990 saw the inauguration of a three-year program to update investigations of radionuclide release, transport, and sorption at the glass block site. The first stage of the program has been a detailed definition and simulation of the hydrogeologic setting. Plume mapping and aqueous speciation studies are in progress. This paper summarizes past investigations, reviews the status of the current program, and discusses components of future studies, including investigations of sediment sorption mechanisms. (Author) (17 refs., 8 figs.)

  12. Database for radionuclide transport in the biosphere: nuclide specific and geographic data for northern Switzerland

    International Nuclear Information System (INIS)

    Jiskra, J.

    1985-01-01

    The biosphere model is the final link in the chain of radionuclide transport models, used for radiation dose calculations from high-level waste repositories. This report presents the data needed for biosphere calculations and discusses them where necessary. The first part is dedicated to the nuclide specific parameters like distribution coefficients (water -soil), concentration ratios (soil - plant) and distribution factors (for milk, meat, etc.) which are reported in the literature. The second part contains the choice of regions, their division into compartments and the discussion of nutritional habits for man and animals. At the end a theoretical human population for each region is estimated based on the consumption rates and on the yield of agricultural products, assuming an autonomous nutrition. (author)

  13. Cycle of radionuclides released into waters by the nuclear industry

    International Nuclear Information System (INIS)

    Bovard, A.; Grauby, A.

    1975-01-01

    A review is made of the main radionuclides released by nuclear industry into the aquatic environment. The water-sediment interactions, the uptake of radionuclides by aquatic organisms and the problem of irrigation water are considered [fr

  14. A study on the formation and transport of radioactive colloids in porous media

    International Nuclear Information System (INIS)

    Chung, Jin Yop

    1992-02-01

    Colloid particles, which may be supplied naturally by groundwater, are shown to be important potential vehicles for the transport of radionuclides in geologic media. Colloid particles have also large available sites for adsorption because small particles have high surface areas per unit mass. This possibility leads us to investigate the controlling factors of colloids in groundwater to simulate the radionuclide behavior at the repository. Analytical models that can be generalized for the purpose, however, are not available yet. Therefore, in this study the mechanisms that affect the colloid transport were reviewed carefully and, also in order to evaluate the extent of their effects, general and analytical model combined with modified filtration equation was developed. This modified filtration equation including colloidal particle size effect was solved as a function of colloidal particle size, which is a important factor affecting the colloidal transport, grain diameter of porous media, groundwater velocity, distance, and time. Also, as another measure to estimate colloidal particle size effect, analytical method to calculate the adsorption of radionuclides on the colloid, concepts of transport velocity and migration distance were introduced. To evaluate the relative contribution of colloid to the radionuclide transport quatitatively, colloidal transport was compared with the corresponding solute transport under same conditions. Finally, the three phase analysis was proposed to treat the radionuclide transport more practically. A good agreement was obtained between the predicted result by modified filtration equation and the corresponding published experimental data. As the colloidal size is increased, the effect of diffusional velocity on the mobility decreases and that of gravitational settling increases, respectively, whereas the mobility reduction due to filtration increases when interception and gravitational settling dominate. Results of case studies about

  15. Modelling of the radionuclide transport through terrestrial food chains

    International Nuclear Information System (INIS)

    Hanusik, V.

    1991-01-01

    The paper presents a terrestrial food chains model for computing potential human intake of radionuclides released into the atmosphere during normal NPP operation. Attention is paid to the choice of model parameter values. Results obtained by our approach are compared to those applied in current methodology. (orig.) [de

  16. Statistical analysis of fallout radionuclides transfer to paddy-field rice

    International Nuclear Information System (INIS)

    Takahashi, T.; Morisawa, S.; Inoue, Y.

    1996-01-01

    Radionuclides released from nuclear facilities to atmosphere are transported through various pathways in biosphere and cause human exposure. Among these radionuclides transfer pathways, an ingestion of crops containing radionuclides is one of the dominant pathway for human exposure. For the safety assessment of nuclear facilities, it is important to understand the behavior of radionuclides in agricultural environment and to describe them in a mathematical model. In this paper, a statistical model is proposed for estimating the concentration of fallout radionuclides in paddy-field rice, the staple food for Japanese people. For describing behavior of fallout radionuclides in a paddy-field, a dynamic model and a statistical model have been proposed respectively. The model used in this study has been developed assuming that the amount of radionuclides transfer to brown rice (hulled rice) or polished rice through direct deposition of airborne radionuclides (the direct deposition pathway) and root uptake from a paddy soil (the root uptake pathway) are proportional to the deposition flux of radionuclides and concentration of radionuclides in paddy soil respectively. That is, the model has two independent variables; the deposition flux of radionuclides and the concentration of radionuclides in the paddy soil, and has single dependent variable; the concentration of radionuclides in brown rice or polished rice. The regression analysis is applied by using environmental monitoring data. Then the distribution of radionuclides between rice-bran (skin part of rice crop) and polished rice (core part) through both the direct deposition pathway and the root uptake pathway are evaluated by the model. (author)

  17. Formation and transport of radioactive colloids in porous media

    International Nuclear Information System (INIS)

    Chung, J.Y.; Lee, K.J.

    1993-01-01

    This paper deals with the effect of the presence of colloids in natural groundwater on radionuclide transport. The system considered here treats groundwater as a dispersing medium and colloid or finely divided solid material resulting from several different repository sources as a dispersed phase. Evaluation of the radionuclides adsorption on colloid, concepts of effective transport velocity and migration distance, and mathematical formulation of the filtration equation were driven, along with the case studies using typical parameter values of a conceptual radioactive waste repository and concentration on the effect of poly dispersed colloid on radionuclide transport. This paper also introduces the three phase analysis to treat the radionuclide transport more practically. When compared with the previously published experimental data, the modified filtration equation gives a satisfactory result. Results of the case studies show that the reduction of colloidal size enhances the corresponding colloid concentration when colloidal transport is only affected by diffusion phenomena. However, the three phase analysis shows that this trend can be reversed if the colloidal filtration becomes a dominant mechanism in the colloidal transport. Consequently, these results show that colloid could play a very important role in radionuclide transport under a repository environment

  18. Sensitivity analysis on retardation effect of natural barriers against radionuclide transport

    International Nuclear Information System (INIS)

    Hatanaka, K.

    1994-01-01

    The generic performance assessment of the geological disposal system for high level waste (HLW) in Japan has been carried out by the Power Reactor and Nuclear Fuel Development Corporation (PNC) in accordance with the overall HLW management program defined by the Atomic Energy Commission of Japan. The Japanese concept of the geological disposal system is based on a multi-barrier system which is composed of vitrified waste, carbon steel overpack, thick bentonite buffer and a variety of realistic geological conditions. The main objectives of the study are the detailed analysis of the performance of engineered barrier system (EBS) and the analysis of the performance of natural barrier system (NBS) and the evaluation of its compliance with the required overall system performance. Sensitivity analysis was carried out for the objectives to investigate the way and extent of the retardation in the release to biosphere by the effect of NBS, and to clarify the conditions which is sufficient to ensure that the overall system meets safety requirement. The radionuclide transport model in geological media, the sensitivity analysis, and the calculated results of the retardation effect of NBS in terms of the sensitivity parameters are reported. (K.I.)

  19. Modeling Groundwater Flow and Transport of Radionuclides at Amchitka Island's Underground Nuclear Tests: Milrow, Long Shot, and Cannikin

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed Hassan; Karl Pohlmann; Jenny Chapman

    2002-11-19

    Since 1963, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive material in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site (NTS), but a limited number of experiments were conducted in other locations. One of these locations, Amchitka Island, Alaska is the subject of this report. Three underground nuclear tests were conducted on Amchitka Island. Long Shot was an 80-kiloton-yield test conducted at a depth of 700 meters (m) on October 29, 1965 (DOE, 2000). Milrow had an announced yield of about 1,000 kilotons, and was detonated at a depth of 1,220 m on October 2, 1969. Cannikin had an announced yield less than 5,000 kilotons, and was conducted at a depth of 1,790 m on November 6, 1971. The purpose of this work is to provide a portion of the information needed to conduct a human-health risk assessment of the potential hazard posed by the three underground nuclear tests on Amchitka Island. Specifically, the focus of this work is the subsurface transport portion, including the release of radionuclides from the underground cavities and their movement through the groundwater system to the point where they seep out of the ocean floor and into the marine environment. This requires a conceptual model of groundwater flow on the island using geologic, hydrologic, and chemical information, a numerical model for groundwater flow, a conceptual model of contaminant release and transport properties from the nuclear test cavities, and a numerical model for contaminant transport. Needed for the risk assessment are estimates of the quantity of radionuclides (in terms of mass flux) from the underground tests on Amchitka that could discharge to the ocean, the time of possible discharge, and the location in terms of distance from shoreline. The radionuclide data presented here are all reported in terms of normalized

  20. Bio-inspired digital signal processing for fast radionuclide mixture identification

    Science.gov (United States)

    Thevenin, M.; Bichler, O.; Thiam, C.; Bobin, C.; Lourenço, V.

    2015-05-01

    Countries are trying to equip their public transportation infrastructure with fixed radiation portals and detectors to detect radiological threat. Current works usually focus on neutron detection, which could be useless in the case of dirty bomb that would not use fissile material. Another approach, such as gamma dose rate variation monitoring is a good indication of the presence of radionuclide. However, some legitimate products emit large quantities of natural gamma rays; environment also emits gamma rays naturally. They can lead to false detections. Moreover, such radio-activity could be used to hide a threat such as material to make a dirty bomb. Consequently, radionuclide identification is a requirement and is traditionally performed by gamma spectrometry using unique spectral signature of each radionuclide. These approaches require high-resolution detectors, sufficient integration time to get enough statistics and large computing capacities for data analysis. High-resolution detectors are fragile and costly, making them bad candidates for large scale homeland security applications. Plastic scintillator and NaI detectors fit with such applications but their resolution makes identification difficult, especially radionuclides mixes. This paper proposes an original signal processing strategy based on artificial spiking neural networks to enable fast radionuclide identification at low count rate and for mixture. It presents results obtained for different challenging mixtures of radionuclides using a NaI scintillator. Results show that a correct identification is performed with less than hundred counts and no false identification is reported, enabling quick identification of a moving threat in a public transportation. Further work will focus on using plastic scintillators.

  1. Radionuclides in house dust

    CERN Document Server

    Fry, F A; Green, N; Hammond, D J

    1985-01-01

    Discharges of radionuclides from the British Nuclear Fuel plc (BNFL) reprocessing plant at Sellafield in Cumbria have led to elevated concentrations radionuclides in the local environment. The major routes of exposure of the public are kept under review by the appropriate Government departments and monitoring is carried out both by the departments and by BNFL itself. Recently, there has been increasing public concern about general environmental contamination resulting from the discharges and, in particular, about possible exposure of members of the public by routes not previously investigated in detail. One such postulated route of exposure that has attracted the interest of the public, the press and Parliament arises from the presence of radionuclides within houses. In view of this obvious and widespread concern, the Board has undertaken a sampling programme in a few communities in Cumbria to assess the radiological significance of this source of exposure. From the results of our study, we conclude that, alt...

  2. Coprecipitation of radionuclides: basic concepts, literature review and first applications

    Energy Technology Data Exchange (ETDEWEB)

    Curti, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-11-01

    Coprecipitation of radionuclides with solid products is currently not analysed quantitatively in safety assessments for nuclear waste repositories, although this process is thought to be an important mechanism for limiting nuclide concentrations in solution. This is due to the fact that neither the solid phases controlling coprecipitation nor the parameter values necessary to describe this process are known sufficiently. This introductory report provides basic knowledge on this subject and a review of experimental data from the literature. Emphasis is placed on experiments of trace metal coprecipitation with calcite, because this mineral is a dominating alteration product of cement in the Swiss L/ILW repository. This resulted in a database of partition coefficients, which allow to describe empirically the distribution of trace elements between calcite and solution and thus to quantify coprecipitation processes. Since laboratory data on coprecipitation with calcite are lacking for many safety-relevant radioelements, their partition coefficients were inferred with the help of estimation techniques. Such techniques rely on empirical correlations, which relate the uptake of trace metals in calcite (measured in laboratory tests) with selected chemical properties of the coprecipitated metals (e.g. ionic radius, sorption properties, solubility products of the pure trace metal carbonates). The combination of these correlations with independent geochemical evidence allows the extrapolation of radioelement-specific partition coefficients, which are then used for the quantitative modelling. In a first step the potential role of radionuclide coprecipitation during cement degradation in the L/ILW repository planned at Wellenberg is assessed. (author) figs., tabs., refs.

  3. Coprecipitation of radionuclides: basic concepts, literature review and first applications

    International Nuclear Information System (INIS)

    Curti, E.

    1997-11-01

    Coprecipitation of radionuclides with solid products is currently not analysed quantitatively in safety assessments for nuclear waste repositories, although this process is thought to be an important mechanism for limiting nuclide concentrations in solution. This is due to the fact that neither the solid phases controlling coprecipitation nor the parameter values necessary to describe this process are known sufficiently. This introductory report provides basic knowledge on this subject and a review of experimental data from the literature. Emphasis is placed on experiments of trace metal coprecipitation with calcite, because this mineral is a dominating alteration product of cement in the Swiss L/ILW repository. This resulted in a database of partition coefficients, which allow to describe empirically the distribution of trace elements between calcite and solution and thus to quantify coprecipitation processes. Since laboratory data on coprecipitation with calcite are lacking for many safety-relevant radioelements, their partition coefficients were inferred with the help of estimation techniques. Such techniques rely on empirical correlations, which relate the uptake of trace metals in calcite (measured in laboratory tests) with selected chemical properties of the coprecipitated metals (e.g. ionic radius, sorption properties, solubility products of the pure trace metal carbonates). The combination of these correlations with independent geochemical evidence allows the extrapolation of radioelement-specific partition coefficients, which are then used for the quantitative modelling. In a first step the potential role of radionuclide coprecipitation during cement degradation in the L/ILW repository planned at Wellenberg is assessed. (author) figs., tabs., refs

  4. MARFA version 3.2.2 user's manual: migration analysis of radionuclides in the far field

    International Nuclear Information System (INIS)

    Painter, Scott; Mancillas, James

    2009-12-01

    The computer code Migration Analysis of Radionuclides in the Far Field (MARFA) uses a particle-based Monte Carlo method to simulate the transport of radionuclides in a sparsely fractured geological medium. Transport in sparsely fractured rock is of interest because this medium may serve as a barrier to migration of radionuclides to the accessible environment. The physical processes represented in MARFA include advection, longitudinal dispersion, Fickian diffusion into an infinite or finite rock matrix, equilibrium sorption, decay, and in-growth. Multiple non-branching decay chains of arbitrary length are supported. This document describes the technical basis and input requirements for MARFA Version 3.2.2. MARFA Version 3.2 included new capabilities to accommodate transient flow velocities and sorption parameters, which are assumed to be piecewise constant in time. Version 3.2.1 was a minor change from Version 3.2 to allow a more convenient input format for sorption information. New capabilities in Version 3.2.2 include an option to specify a non-zero start time for the simulation, an optional input parameter that decreases the amount of retention within a single fracture because of flow channeling, and an alternative method for sampling the radionuclide source. MARFA uses the particle on random streamline segment algorithm /Painter et al. 2006/, a Monte Carlo algorithm combining time-domain random walk methods with pathway stochastic simulation. The algorithm uses non-interacting particles to represent packets of radionuclide mass. These particles are moved through the system according to rules that mimic the underlying physical transport and retention processes. The set of times required for particles to pass through the geological barrier are then used to reconstruct discharge rates (mass or activity basis). Because the algorithm uses non-interacting particles, the transport and retention processes are limited to those that depend linearly on radionuclide

  5. Biokinetics of radionuclides and treatment of accidental intakes

    International Nuclear Information System (INIS)

    Taylor, D.M.; Stradling, G.N.; Menetrier, F.

    2003-01-01

    This paper describes the objectives and reviews the progress of EULEP Working Party 5, convened under the auspices of the European Union's Fifth Framework Programme, to 'cluster' two EU-supported contracts, Biokinetics and Dosimetry of Internal Contamination (BIODOS (EU Contract FIS5-1999-00214)) and Radionuclide Biokinetics Database (EULEP) ( RBDATA-EULEP (Concerted Action Contract FIS5-1999-00218), and two non-EU funded projects, Biokinetics of Radionuclides in Human Volunteers (RNHV (non-EU Funded Project) and Treatment of Accidental Intakes of Radionuclides (TAIR (part-funded by EULEP)). (author)

  6. Complementary modelling of radionuclide retention in the near-surface system at Forsmark. Development of a reactive transport model using Forsmark 1.2 data

    Energy Technology Data Exchange (ETDEWEB)

    Sena, Clara; Grandia, Fidel; Arcos, David; Molinero, Jorge; Duro, Lara (Amphos XXI Consulting S.L., Barcelona (Spain))

    2008-10-15

    sensitivity analysis of the more relevant parameters considered in the reactive transport numerical models is also presented here. From the main report of the SR-Can project it is stated that Ra is one of the radionuclides with greater contribution to the radioactive doses that might be transferred to the biosphere in the context of repository release. For this reason, Ra was added to the set of radionuclides (Sr, Cs, and U). Another improvement in the numerical simulations presented here is the calculation of the hydrogeochemical steady state of the near-surface system, prior to repository release. This is done to approach the present-day conditions at Forsmark. In addition, radionuclides derived from repository release have been discriminated from those of natural origin, already present in the groundwaters. Radionuclides coming from repository were labelled as RDCs, RDSr, and RDU (RD stands for repository-derived). Ra was not labelled since the presence of this radionuclide in the modelled domain is exclusively attributed to repository release due to the extremely low concentrations observed in the natural waters of Forsmark. The results attained in the reactive transport models built in this work show that the near-surface systems at Forsmark constitute a geochemical reactive barrier able to retain radionuclides by several key processes, namely cation exchange, adsorption on mineral surfaces and precipitation of pure phases and solid solutions. The reactive transport simulations predict that repository-derived Sr, U, and Cs are retained in the solid phase of both Quaternary deposits under study, while Ra is effectively retained in the till deposit only. Ra is not retained in the glacial clay deposit since saturation of barite, which is the only retention mechanism considered in the simulations for this radionuclide, is not reached in this system. The simulations indicate that, in the till deposit, Sr is retained via cation exchange and coprecipitation with calcite, U is

  7. Environmental Baseline File for National Transportation

    International Nuclear Information System (INIS)

    1999-01-01

    This Environmental Baseline File summarizes and consolidates information related to the national-level transportation of commercial spent nuclear fuel. Topics address include: shipments of commercial spent nuclear fuel based on mostly truck and mostly rail shipping scenarios; transportation routing for commercial spent nuclear fuel sites and DOE sites; radionuclide inventories for various shipping container capacities; transportation routing; populations along transportation routes; urbanized area population densities; the impacts of historical, reasonably foreseeable, and general transportation; state-level food transfer factors; Federal Guidance Report No. 11 and 12 radionuclide dose conversion factors; and national average atmospheric conditions

  8. Microbiological Transformations of Radionuclides in the Subsurface

    International Nuclear Information System (INIS)

    Marshall, Matthew J.; Beliaev, Alex S.; Fredrickson, Jim K.

    2010-01-01

    Microorganisms are ubiquitous in subsurface environments although their populations sizes and metabolic activities can vary considerably depending on energy and nutrient inputs. As a result of their metabolic activities and the chemical properties of their cell surfaces and the exopolymers they produce, microorganisms can directly or indirectly facilitate the biotransformation of radionuclides, thus altering their solubility and overall fate and transport in the environment. Although biosorption to cell surfaces and exopolymers can be an important factor modifying the solubility of some radionuclides under specific conditions, oxidation state is often considered the single most important factor controlling their speciation and, therefore, environmental behavior.

  9. Processes and parameters involved in modeling radionuclide transport from bedded salt repositories. Final report. Technical memorandum

    International Nuclear Information System (INIS)

    Evenson, D.E.; Prickett, T.A.; Showalter, P.A.

    1979-07-01

    The parameters necessary to model radionuclide transport in salt beds are identified and described. A proposed plan for disposal of the radioactive wastes generated by nuclear power plants is to store waste canisters in repository sites contained in stable salt formations approximately 600 meters below the ground surface. Among the principal radioactive wastes contained in these canisters will be radioactive isotopes of neptunium, americium, uranium, and plutonium along with many highly radioactive fission products. A concern with this form of waste disposal is the possibility of ground-water flow occurring in the salt beds and endangering water supplies and the public health. Specifically, the research investigated the processes involved in the movement of radioactive wastes from the repository site by groundwater flow. Since the radioactive waste canisters also generate heat, temperature is an important factor. Among the processes affecting movement of radioactive wastes from a repository site in a salt bed are thermal conduction, groundwater movement, ion exchange, radioactive decay, dissolution and precipitation of salt, dispersion and diffusion, adsorption, and thermomigration. In addition, structural changes in the salt beds as a result of temperature changes are important. Based upon the half-lives of the radioactive wastes, he period of concern is on the order of a million years. As a result, major geologic phenomena that could affect both the salt bed and groundwater flow in the salt beds was considered. These phenomena include items such as volcanism, faulting, erosion, glaciation, and the impact of meteorites. CDM reviewed all of the critical processes involved in regional groundwater movement of radioactive wastes and identified and described the parameters that must be included to mathematically model their behavior. In addition, CDM briefly reviewed available echniques to measure these parameters

  10. Illicit Trafficking of Natural Radionuclides

    Science.gov (United States)

    Friedrich, Steinhäusler; Lyudmila, Zaitseva

    2008-08-01

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.

  11. Illicit Trafficking of Natural Radionuclides

    International Nuclear Information System (INIS)

    Friedrich, Steinhaeusler; Lyudmila, Zaitseva

    2008-01-01

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium ( 20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces

  12. Sediment transport modelling in the Gulf of Lion with the perspective of studying the fate of radionuclides originated by the Rhone River

    International Nuclear Information System (INIS)

    Dufois, Francois

    2008-01-01

    Among the various contaminants introduced in the environment, artificial radionuclides appear particularly important to consider because of their chemical toxicity and / or of their radio-toxicity. Some radionuclides present a high affinity with particles so that the study of the sediment dynamics is a useful preliminary to the study of their dispersion on the open sea. This thesis is focused on the fate of sediments in the Gulf of Lion (NW Mediterranean sea) and in particular on the impact of the Rhone River, which is the main source of particulate matter in the Gulf of Lion. In order to study the sediment transport mechanisms on various space and time scales, this thesis is based on mathematical modelling. The hydro-sedimentary model set up in the Gulf of Lion, which takes into account the gathered effect of waves and currents, was supported by recent hydro-sedimentary data analyses. CARMA (winter 2006/2007) and SCOPE (winter 2007/2008) experiments were used to better understand the physical processes which control the sediment transport on the Rhone pro-delta and to validate the model. The period of the centennial Rhone River flood of December 2003 was also simulated in order to determine the impact of such extreme events on the fate of sediments. Both observations and simulations of the studied periods highlight the high capacity of erosion and transport induced by south-eastern storms on the pro-delta

  13. An Updated Site Scale Saturated Zone Ground Water Transport Model For Yucca Mountain

    International Nuclear Information System (INIS)

    S. Kelkar; H. Viswanathan; A. Eddebbarrh; M. Ding; P. Reimus; B. Robinson; B. Arnold; A. Meijer

    2006-01-01

    The Yucca Mountain site scale saturated zone transport model has been revised to incorporate the updated flow model based on a hydrogeologic framework model using the latest lithology data, increased grid resolution that better resolves the geology within the model domain, updated Kd distributions for radionuclides of interest, and updated retardation factor distributions for colloid filtration. The resulting numerical transport model is used for performance assessment predictions of radionuclide transport and to guide future data collection and modeling activities. The transport model results are validated by comparing the model transport pathways with those derived from geochemical data, and by comparing the transit times from the repository footprint to the compliance boundary at the accessible environment with those derived from 14 C-based age estimates. The transport model includes the processes of advection, dispersion, fracture flow, matrix diffusion, sorption, and colloid-facilitated transport. The transport of sorbing radionuclides in the aqueous phase is modeled as a linear, equilibrium process using the Kd model. The colloid-facilitated transport of radionuclides is modeled using two approaches: the colloids with irreversibly embedded radionuclides undergo reversible filtration only, while the migration of radionuclides that reversibly sorb to colloids is modeled with modified values for sorption coefficient and matrix diffusion coefficients. Model breakthrough curves for various radionuclides at the compliance boundary are presented along with their sensitivity to various parameters

  14. Potential influence of organic compounds on the transport of radionuclides from a geologic repository. Assessment of effectiveness of geologic isolation systems

    Energy Technology Data Exchange (ETDEWEB)

    Silviera, D.J.

    1981-03-01

    This study identifies organic compounds that may be present in a repository and outlines plausible interactions and mechanisms that may influence the forms and chemical behavior of these compounds. A review of the literature indicates that large quantities of organic radioactive wastes are generated by the nuclear industry and if placed in a repository could increase or decrease the leach rate and sorption characteristics of waste radionuclides. The association of radionuclides with organic matter can render the nuclides soluble or insoluble depending on the particular nuclide and such parameters as the pH, Eh, and temperature of the hydrogeologic system as well as the properties of the organic compounds themselves. 44 references.

  15. Potential influence of organic compounds on the transport of radionuclides from a geologic repository. Assessment of effectiveness of geologic isolation systems

    International Nuclear Information System (INIS)

    Silviera, D.J.

    1981-03-01

    This study identifies organic compounds that may be present in a repository and outlines plausible interactions and mechanisms that may influence the forms and chemical behavior of these compounds. A review of the literature indicates that large quantities of organic radioactive wastes are generated by the nuclear industry and if placed in a repository could increase or decrease the leach rate and sorption characteristics of waste radionuclides. The association of radionuclides with organic matter can render the nuclides soluble or insoluble depending on the particular nuclide and such parameters as the pH, Eh, and temperature of the hydrogeologic system as well as the properties of the organic compounds themselves. 44 references

  16. Compilation of data for radionuclide transport analysis

    International Nuclear Information System (INIS)

    2001-11-01

    This report is one of the supporting documents to the updated safety assessment (project SAFE) of the Swedish repository for low and intermediate level waste, SFR 1. A number of calculation cases for quantitative analysis of radionuclide release and dose to man are defined based on the expected evolution of the repository, geosphere and biosphere in the Base Scenario and other scenarios selected. The data required by the selected near field, geosphere and biosphere models are given and the values selected for the calculations are compiled in tables. The main sources for the selected values of the migration parameters in the repository and geosphere models are the safety assessment of a deep repository for spent fuel, SR 97, and the preliminary safety assessment of a repository for long-lived, low- and intermediate level waste, SFL 3-5. For the biosphere models, both site-specific data and generic values of the parameters are selected. The applicability of the selected parameter values is discussed and the uncertainty is qualitatively addressed for data to the repository and geosphere migration models. Parameter values selected for these models are in general pessimistic in order not to underestimate the radionuclide release rates. It is judged that this approach combined with the selected calculation cases will illustrate the effects of uncertainties in processes and events that affects the evolution of the system as well as in quantitative data that describes this. The biosphere model allows for probabilistic calculations and the uncertainty in input data are quantified by giving minimum, maximum and mean values as well as the type of probability distribution function

  17. Compilation of data for radionuclide transport analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-11-01

    This report is one of the supporting documents to the updated safety assessment (project SAFE) of the Swedish repository for low and intermediate level waste, SFR 1. A number of calculation cases for quantitative analysis of radionuclide release and dose to man are defined based on the expected evolution of the repository, geosphere and biosphere in the Base Scenario and other scenarios selected. The data required by the selected near field, geosphere and biosphere models are given and the values selected for the calculations are compiled in tables. The main sources for the selected values of the migration parameters in the repository and geosphere models are the safety assessment of a deep repository for spent fuel, SR 97, and the preliminary safety assessment of a repository for long-lived, low- and intermediate level waste, SFL 3-5. For the biosphere models, both site-specific data and generic values of the parameters are selected. The applicability of the selected parameter values is discussed and the uncertainty is qualitatively addressed for data to the repository and geosphere migration models. Parameter values selected for these models are in general pessimistic in order not to underestimate the radionuclide release rates. It is judged that this approach combined with the selected calculation cases will illustrate the effects of uncertainties in processes and events that affects the evolution of the system as well as in quantitative data that describes this. The biosphere model allows for probabilistic calculations and the uncertainty in input data are quantified by giving minimum, maximum and mean values as well as the type of probability distribution function.

  18. Review of computer models used for post closure safety assessment of nuclear waste repositories in the FRG

    International Nuclear Information System (INIS)

    Bogorinski, P.; Baltes, B.; Martens, K.H.

    1987-01-01

    In the FRG, disposal of nuclear wastes takes place in deep geologic formations. For longterm safety assessment of such a repository, groundwater transport provides a release scenario for the radionuclides to the biosphere. GRs reviewed a methodology that was implemented by the research group of PSE to simulate migration of radionuclides in the geosphere. The examination included the applicability of theoretical models, numerical experiments, comparison to results of diverse computer codes as well as experience from international intercomparison studies. The review concluded that the hydrological model may be applied to full extent unless density effects have to be considered whereas there are some restrictions in the use of the nuclide transport model

  19. The behavior of radionuclides in the soils of Rocky Flats, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Litaor, M I [Tel-Hai Rodman Coll., Upper Galilee (Israel); Barth, G; Zika, E M; Litus, G; Moffitt, J; Daniels, H [Colorado Univ., Civil and Environmental Engineering Dept., Boulder, CO (United States)

    1998-05-01

    Radionuclide contamination of soils in Rocky Flats, Colorado, resulted from leaking drums of Pu-contaminated oil stored at an outdoor area. To evaluated the mechanisms of radionuclide transport from the contaminated soils to groundwater, an advanced monitoring system was installed across a toposequence. The impact of natural rain, snowmelt, and large-scale rain simulations on the mobility and distribution of the radionuclides in soil interstitial water was studied. The distribution of radionuclides during the monitoring period from 1993 to 1995 suggested that Pu-239 + 240 and Am-241 are largely immobile in semi-arid soils. Fractionation of Pu-239 + 240 and Am-241 to different particle sizes in the soil interstitial water suggested that most of the radionuclides (83-97%) were associated with suspended particles, whereas the level of radionuclides associated with colloidal (0.45 {mu}m > X > 1 nm) and nonfilterable (< 1 nm) fractions ranged from 1.5 to 15%. (author).

  20. Oral intake of radionuclides in the population

    International Nuclear Information System (INIS)

    Johansson, L.

    1982-11-01

    Dose factors of some radionuclides have been reviewed with respect to a chronic oral intake by members of the public. The radionuclides taken into account are Pu-239, Np-237, Ra-226, Th-230, Pa-231, Tc-99 and I-129, all of which might be of potential hazard at a long term storage disposal. The parameter which has the major influence on the dose factor, for most of the radionuclides studied, is the uptake from the gut. In order to assess the dose factor it is therefore essential to make a good estimate of the gastrointestinal uptake of the radionuclides under the actual conditions. The annual limit of intake (ALI) given in ICRP 30, is intended to be applicable on a population of workers, and for a single intake. Since the gut uptake figures in the ICRP-publication are based mainly on uptake values recieved in experiment animals, given single relatively large oral doses of the isotope studied. From a review of current literature, gut absorbation factors and dose factors, to be used for members of the public at a chronic oral intake, are suggested. Compared with those for workers in ICRP 30, the dose factors increases for plutonium and protactinium, and decreases for neptunium. (Author)