WorldWideScience

Sample records for reverse-time depth migration

  1. Reverse time migration by Krylov subspace reduced order modeling

    Science.gov (United States)

    Basir, Hadi Mahdavi; Javaherian, Abdolrahim; Shomali, Zaher Hossein; Firouz-Abadi, Roohollah Dehghani; Gholamy, Shaban Ali

    2018-04-01

    Imaging is a key step in seismic data processing. To date, a myriad of advanced pre-stack depth migration approaches have been developed; however, reverse time migration (RTM) is still considered as the high-end imaging algorithm. The main limitations associated with the performance cost of reverse time migration are the intensive computation of the forward and backward simulations, time consumption, and memory allocation related to imaging condition. Based on the reduced order modeling, we proposed an algorithm, which can be adapted to all the aforementioned factors. Our proposed method benefit from Krylov subspaces method to compute certain mode shapes of the velocity model computed by as an orthogonal base of reduced order modeling. Reverse time migration by reduced order modeling is helpful concerning the highly parallel computation and strongly reduces the memory requirement of reverse time migration. The synthetic model results showed that suggested method can decrease the computational costs of reverse time migration by several orders of magnitudes, compared with reverse time migration by finite element method.

  2. Elastic least-squares reverse time migration

    KAUST Repository

    Feng, Zongcai; Schuster, Gerard T.

    2016-01-01

    Elastic least-squares reverse time migration (LSRTM) is used to invert synthetic particle-velocity data and crosswell pressure field data. The migration images consist of both the P- and Svelocity perturbation images. Numerical tests on synthetic and field data illustrate the advantages of elastic LSRTM over elastic reverse time migration (RTM). In addition, elastic LSRTM images are better focused and have better reflector continuity than do the acoustic LSRTM images.

  3. Elastic least-squares reverse time migration

    KAUST Repository

    Feng, Zongcai

    2016-09-06

    Elastic least-squares reverse time migration (LSRTM) is used to invert synthetic particle-velocity data and crosswell pressure field data. The migration images consist of both the P- and Svelocity perturbation images. Numerical tests on synthetic and field data illustrate the advantages of elastic LSRTM over elastic reverse time migration (RTM). In addition, elastic LSRTM images are better focused and have better reflector continuity than do the acoustic LSRTM images.

  4. Elastic least-squares reverse time migration

    KAUST Repository

    Feng, Zongcai

    2017-03-08

    We use elastic least-squares reverse time migration (LSRTM) to invert for the reflectivity images of P- and S-wave impedances. Elastic LSRTMsolves the linearized elastic-wave equations for forward modeling and the adjoint equations for backpropagating the residual wavefield at each iteration. Numerical tests on synthetic data and field data reveal the advantages of elastic LSRTM over elastic reverse time migration (RTM) and acoustic LSRTM. For our examples, the elastic LSRTM images have better resolution and amplitude balancing, fewer artifacts, and less crosstalk compared with the elastic RTM images. The images are also better focused and have better reflector continuity for steeply dipping events compared to the acoustic LSRTM images. Similar to conventional leastsquares migration, elastic LSRTM also requires an accurate estimation of the P- and S-wave migration velocity models. However, the problem remains that, when there are moderate errors in the velocity model and strong multiples, LSRTMwill produce migration noise stronger than that seen in the RTM images.

  5. Elastic least-squares reverse time migration

    KAUST Repository

    Feng, Zongcai; Schuster, Gerard T.

    2017-01-01

    We use elastic least-squares reverse time migration (LSRTM) to invert for the reflectivity images of P- and S-wave impedances. Elastic LSRTMsolves the linearized elastic-wave equations for forward modeling and the adjoint equations for backpropagating the residual wavefield at each iteration. Numerical tests on synthetic data and field data reveal the advantages of elastic LSRTM over elastic reverse time migration (RTM) and acoustic LSRTM. For our examples, the elastic LSRTM images have better resolution and amplitude balancing, fewer artifacts, and less crosstalk compared with the elastic RTM images. The images are also better focused and have better reflector continuity for steeply dipping events compared to the acoustic LSRTM images. Similar to conventional leastsquares migration, elastic LSRTM also requires an accurate estimation of the P- and S-wave migration velocity models. However, the problem remains that, when there are moderate errors in the velocity model and strong multiples, LSRTMwill produce migration noise stronger than that seen in the RTM images.

  6. Least-squares reverse time migration of multiples

    KAUST Repository

    Zhang, Dongliang; Schuster, Gerard T.

    2013-01-01

    The theory of least-squares reverse time migration of multiples (RTMM) is presented. In this method, least squares migration (LSM) is used to image free-surface multiples where the recorded traces are used as the time histories of the virtual

  7. Plane-wave Least-squares Reverse Time Migration

    KAUST Repository

    Dai, Wei

    2012-11-04

    Least-squares reverse time migration is formulated with a new parameterization, where the migration image of each shot is updated separately and a prestack image is produced with common image gathers. The advantage is that it can offer stable convergence for least-squares migration even when the migration velocity is not completely accurate. To significantly reduce computation cost, linear phase shift encoding is applied to hundreds of shot gathers to produce dozens of planes waves. A regularization term which penalizes the image difference between nearby angles are used to keep the prestack image consistent through all the angles. Numerical tests on a marine dataset is performed to illustrate the advantages of least-squares reverse time migration in the plane-wave domain. Through iterations of least-squares migration, the migration artifacts are reduced and the image resolution is improved. Empirical results suggest that the LSRTM in plane wave domain is an efficient method to improve the image quality and produce common image gathers.

  8. Ultrasound breast imaging using frequency domain reverse time migration

    Science.gov (United States)

    Roy, O.; Zuberi, M. A. H.; Pratt, R. G.; Duric, N.

    2016-04-01

    Conventional ultrasonography reconstruction techniques, such as B-mode, are based on a simple wave propagation model derived from a high frequency approximation. Therefore, to minimize model mismatch, the central frequency of the input pulse is typically chosen between 3 and 15 megahertz. Despite the increase in theoretical resolution, operating at higher frequencies comes at the cost of lower signal-to-noise ratio. This ultimately degrades the image contrast and overall quality at higher imaging depths. To address this issue, we investigate a reflection imaging technique, known as reverse time migration, which uses a more accurate propagation model for reconstruction. We present preliminary simulation results as well as physical phantom image reconstructions obtained using data acquired with a breast imaging ultrasound tomography prototype. The original reconstructions are filtered to remove low-wavenumber artifacts that arise due to the inclusion of the direct arrivals. We demonstrate the advantage of using an accurate sound speed model in the reverse time migration process. We also explain how the increase in computational complexity can be mitigated using a frequency domain approach and a parallel computing platform.

  9. Least squares reverse time migration of controlled order multiples

    Science.gov (United States)

    Liu, Y.

    2016-12-01

    Imaging using the reverse time migration of multiples generates inherent crosstalk artifacts due to the interference among different order multiples. Traditionally, least-square fitting has been used to address this issue by seeking the best objective function to measure the amplitude differences between the predicted and observed data. We have developed an alternative objective function by decomposing multiples into different orders to minimize the difference between Born modeling predicted multiples and specific-order multiples from observational data in order to attenuate the crosstalk. This method is denoted as the least-squares reverse time migration of controlled order multiples (LSRTM-CM). Our numerical examples demonstrated that the LSRTM-CM can significantly improve image quality compared with reverse time migration of multiples and least-square reverse time migration of multiples. Acknowledgments This research was funded by the National Nature Science Foundation of China (Grant Nos. 41430321 and 41374138).

  10. Multi-source least-squares reverse time migration

    KAUST Repository

    Dai, Wei

    2012-06-15

    Least-squares migration has been shown to improve image quality compared to the conventional migration method, but its computational cost is often too high to be practical. In this paper, we develop two numerical schemes to implement least-squares migration with the reverse time migration method and the blended source processing technique to increase computation efficiency. By iterative migration of supergathers, which consist in a sum of many phase-encoded shots, the image quality is enhanced and the crosstalk noise associated with the encoded shots is reduced. Numerical tests on 2D HESS VTI data show that the multisource least-squares reverse time migration (LSRTM) algorithm suppresses migration artefacts, balances the amplitudes, improves image resolution and reduces crosstalk noise associated with the blended shot gathers. For this example, the multisource LSRTM is about three times faster than the conventional RTM method. For the 3D example of the SEG/EAGE salt model, with a comparable computational cost, multisource LSRTM produces images with more accurate amplitudes, better spatial resolution and fewer migration artefacts compared to conventional RTM. The empirical results suggest that multisource LSRTM can produce more accurate reflectivity images than conventional RTM does with a similar or less computational cost. The caveat is that the LSRTM image is sensitive to large errors in the migration velocity model. © 2012 European Association of Geoscientists & Engineers.

  11. Multi-source least-squares reverse time migration

    KAUST Repository

    Dai, Wei; Fowler, Paul J.; Schuster, Gerard T.

    2012-01-01

    Least-squares migration has been shown to improve image quality compared to the conventional migration method, but its computational cost is often too high to be practical. In this paper, we develop two numerical schemes to implement least-squares migration with the reverse time migration method and the blended source processing technique to increase computation efficiency. By iterative migration of supergathers, which consist in a sum of many phase-encoded shots, the image quality is enhanced and the crosstalk noise associated with the encoded shots is reduced. Numerical tests on 2D HESS VTI data show that the multisource least-squares reverse time migration (LSRTM) algorithm suppresses migration artefacts, balances the amplitudes, improves image resolution and reduces crosstalk noise associated with the blended shot gathers. For this example, the multisource LSRTM is about three times faster than the conventional RTM method. For the 3D example of the SEG/EAGE salt model, with a comparable computational cost, multisource LSRTM produces images with more accurate amplitudes, better spatial resolution and fewer migration artefacts compared to conventional RTM. The empirical results suggest that multisource LSRTM can produce more accurate reflectivity images than conventional RTM does with a similar or less computational cost. The caveat is that the LSRTM image is sensitive to large errors in the migration velocity model. © 2012 European Association of Geoscientists & Engineers.

  12. Plane-wave least-squares reverse-time migration

    KAUST Repository

    Dai, Wei

    2013-06-03

    A plane-wave least-squares reverse-time migration (LSRTM) is formulated with a new parameterization, where the migration image of each shot gather is updated separately and an ensemble of prestack images is produced along with common image gathers. The merits of plane-wave prestack LSRTM are the following: (1) plane-wave prestack LSRTM can sometimes offer stable convergence even when the migration velocity has bulk errors of up to 5%; (2) to significantly reduce computation cost, linear phase-shift encoding is applied to hundreds of shot gathers to produce dozens of plane waves. Unlike phase-shift encoding with random time shifts applied to each shot gather, plane-wave encoding can be effectively applied to data with a marine streamer geometry. (3) Plane-wave prestack LSRTM can provide higher-quality images than standard reverse-time migration. Numerical tests on the Marmousi2 model and a marine field data set are performed to illustrate the benefits of plane-wave LSRTM. Empirical results show that LSRTM in the plane-wave domain, compared to standard reversetime migration, produces images efficiently with fewer artifacts and better spatial resolution. Moreover, the prestack image ensemble accommodates more unknowns to makes it more robust than conventional least-squares migration in the presence of migration velocity errors. © 2013 Society of Exploration Geophysicists.

  13. Multiples least-squares reverse time migration

    KAUST Repository

    Zhang, Dongliang; Zhan, Ge; Dai, Wei; Schuster, Gerard T.

    2013-01-01

    To enhance the image quality, we propose multiples least-squares reverse time migration (MLSRTM) that transforms each hydrophone into a virtual point source with a time history equal to that of the recorded data. Since each recorded trace is treated

  14. Anti-Aliasing filter for reverse-time migration

    KAUST Repository

    Zhan, Ge

    2012-01-01

    We develop an anti-aliasing filter for reverse-time migration (RTM). It is similar to the traditional anti-aliasing filter used for Kirchhoff migration in that it low-pass filters the migration operator so that the dominant wavelength in the operator is greater than two times the trace sampling interval, except it is applied to both primary and multiple reflection events. Instead of applying this filter to the data in the traditional RTM operation, we apply the anti-aliasing filter to the generalized diffraction-stack migration operator. This gives the same migration image as computed by anti-aliased RTM. Download

  15. Multipathing Via Three Parameter Common Image Gathers (CIGs) From Reverse Time Migration

    Science.gov (United States)

    Ostadhassan, M.; Zhang, X.

    2015-12-01

    A noteworthy problem for seismic exploration is effects of multipathing (both wanted or unwanted) caused by subsurface complex structures. We show that reverse time migration (RTM) combined with a unified, systematic three parameter framework that flexibly handles multipathing can be accomplished by adding one more dimension (image time) to the angle domain common image gather (ADCIG) data. RTM is widely used to generate prestack depth migration images. When using the cross-correlation image condition in 2D prestack migration in RTM, the usual practice is to sum over all the migration time steps. Thus all possible wave types and paths automatically contribute to the resulting image, including destructive wave interferences, phase shifts, and other distortions. One reason is that multipath (prismatic wave) contributions are not properly sorted and mapped in the ADCIGs. Also, multipath arrivals usually have different instantaneous attributes (amplitude, phase and frequency), and if not separated, the amplitudes and phases in the final prestack image will not stack coherently across sources. A prismatic path satisfies an image time for it's unique path; Cavalca and Lailly (2005) show that RTM images with multipaths can provide more complete target information in complex geology, as multipaths usually have different incident angles and amplitudes compared to primary reflections. If the image time slices within a cross-correlation common-source migration are saved for each image time, this three-parameter (incident angle, depth, image time) volume can be post-processed to generate separate, or composite, images of any desired subset of the migrated data. Images can by displayed for primary contributions, any combination of primary and multipath contributions (with or without artifacts), or various projections, including the conventional ADCIG (angle vs depth) plane. Examples show that signal from the true structure can be separated from artifacts caused by multiple

  16. Least-squares reverse time migration of multiples

    KAUST Repository

    Zhang, Dongliang

    2013-12-06

    The theory of least-squares reverse time migration of multiples (RTMM) is presented. In this method, least squares migration (LSM) is used to image free-surface multiples where the recorded traces are used as the time histories of the virtual sources at the hydrophones and the surface-related multiples are the observed data. For a single source, the entire free-surface becomes an extended virtual source where the downgoing free-surface multiples more fully illuminate the subsurface compared to the primaries. Since each recorded trace is treated as the time history of a virtual source, knowledge of the source wavelet is not required and the ringy time series for each source is automatically deconvolved. If the multiples can be perfectly separated from the primaries, numerical tests on synthetic data for the Sigsbee2B and Marmousi2 models show that least-squares reverse time migration of multiples (LSRTMM) can significantly improve the image quality compared to RTMM or standard reverse time migration (RTM) of primaries. However, if there is imperfect separation and the multiples are strongly interfering with the primaries then LSRTMM images show no significant advantage over the primary migration images. In some cases, they can be of worse quality. Applying LSRTMM to Gulf of Mexico data shows higher signal-to-noise imaging of the salt bottom and top compared to standard RTM images. This is likely attributed to the fact that the target body is just below the sea bed so that the deep water multiples do not have strong interference with the primaries. Migrating a sparsely sampled version of the Marmousi2 ocean bottom seismic data shows that LSM of primaries and LSRTMM provides significantly better imaging than standard RTM. A potential liability of LSRTMM is that multiples require several round trips between the reflector and the free surface, so that high frequencies in the multiples suffer greater attenuation compared to the primary reflections. This can lead to lower

  17. Synthetic seismic monitoring using reverse-time migration and Kirchhoff migration for CO2 sequestration in Korea

    Science.gov (United States)

    Kim, W.; Kim, Y.; Min, D.; Oh, J.; Huh, C.; Kang, S.

    2012-12-01

    During last two decades, CO2 sequestration in the subsurface has been extensively studied and progressed as a direct tool to reduce CO2 emission. Commercial projects such as Sleipner, In Salah and Weyburn that inject more than one million tons of CO2 per year are operated actively as well as test projects such as Ketzin to study the behavior of CO2 and the monitoring techniques. Korea also began the CCS (CO2 capture and storage) project. One of the prospects for CO2 sequestration in Korea is the southwestern continental margin of Ulleung basin. To monitor the behavior of CO2 underground for the evaluation of stability and safety, several geophysical monitoring techniques should be applied. Among various geophysical monitoring techniques, seismic survey is considered as the most effective tool. To verify CO2 migration in the subsurface more effectively, seismic numerical simulation is an essential process. Furthermore, the efficiency of the seismic migration techniques should be investigated for various cases because numerical seismic simulation and migration test help us accurately interpret CO2 migration. In this study, we apply the reverse-time migration and Kirchhoff migration to synthetic seismic monitoring data generated for the simplified model based on the geological structures of Ulleung basin in Korea. Synthetic seismic monitoring data are generated for various cases of CO2 migration in the subsurface. From the seismic migration images, we can investigate CO2 diffusion patterns indirectly. From seismic monitoring simulation, it is noted that while the reverse-time migration generates clear subsurface images when subsurface structures are steeply dipping, Kirchhoff migration has an advantage in imaging horizontal-layered structures such as depositional sediments appearing in the continental shelf. The reverse-time migration and Kirchhoff migration present reliable subsurface images for the potential site characterized by stratigraphical traps. In case of

  18. Multiples least-squares reverse time migration

    KAUST Repository

    Zhang, Dongliang

    2013-01-01

    To enhance the image quality, we propose multiples least-squares reverse time migration (MLSRTM) that transforms each hydrophone into a virtual point source with a time history equal to that of the recorded data. Since each recorded trace is treated as a virtual source, knowledge of the source wavelet is not required. Numerical tests on synthetic data for the Sigsbee2B model and field data from Gulf of Mexico show that MLSRTM can improve the image quality by removing artifacts, balancing amplitudes, and suppressing crosstalk compared to standard migration of the free-surface multiples. The potential liability of this method is that multiples require several roundtrips between the reflector and the free surface, so that high frequencies in the multiples are attenuated compared to the primary reflections. This can lead to lower resolution in the migration image compared to that computed from primaries.

  19. Sparse least-squares reverse time migration using seislets

    KAUST Repository

    Dutta, Gaurav

    2015-08-19

    We propose sparse least-squares reverse time migration (LSRTM) using seislets as a basis for the reflectivity distribution. This basis is used along with a dip-constrained preconditioner that emphasizes image updates only along prominent dips during the iterations. These dips can be estimated from the standard migration image or from the gradient using plane-wave destruction filters or structural tensors. Numerical tests on synthetic datasets demonstrate the benefits of this method for mitigation of aliasing artifacts and crosstalk noise in multisource least-squares migration.

  20. Q-Least Squares Reverse Time Migration with Viscoacoustic Deblurring Filters

    KAUST Repository

    Chen, Yuqing; Dutta, Gaurav; Dai, Wei; Schuster, Gerard T.

    2017-01-01

    Viscoacoustic least-squares reverse time migration (Q-LSRTM) linearly inverts for the subsurface reflectivity model from lossy data. Compared to the conventional migration methods, it can compensate for the amplitude loss in the migrated images because of the strong subsurface attenuation and can produce reflectors that are accurately positioned in depth. However, the adjoint Q propagators used for backward propagating the residual data are also attenuative. Thus, the inverted images from Q-LSRTM are often observed to have lower resolution when compared to the benchmark acoustic LSRTM images from acoustic data. To increase the resolution and accelerate the convergence of Q-LSRTM, we propose using viscoacoustic deblurring filters as a preconditioner for Q-LSRTM. These filters can be estimated by matching a simulated migration image to its reference reflectivity model. Numerical tests on synthetic and field data demonstrate that Q-LSRTM combined with viscoacoustic deblurring filters can produce images with higher resolution and more balanced amplitudes than images from acoustic RTM, acoustic LSRTM and Q-LSRTM when there is strong attenuation in the background medium. The proposed preconditioning method is also shown to improve the convergence rate of Q-LSRTM by more than 30 percent in some cases and significantly compensate for the lossy artifacts in RTM images.

  1. Q-Least Squares Reverse Time Migration with Viscoacoustic Deblurring Filters

    KAUST Repository

    Chen, Yuqing

    2017-08-02

    Viscoacoustic least-squares reverse time migration (Q-LSRTM) linearly inverts for the subsurface reflectivity model from lossy data. Compared to the conventional migration methods, it can compensate for the amplitude loss in the migrated images because of the strong subsurface attenuation and can produce reflectors that are accurately positioned in depth. However, the adjoint Q propagators used for backward propagating the residual data are also attenuative. Thus, the inverted images from Q-LSRTM are often observed to have lower resolution when compared to the benchmark acoustic LSRTM images from acoustic data. To increase the resolution and accelerate the convergence of Q-LSRTM, we propose using viscoacoustic deblurring filters as a preconditioner for Q-LSRTM. These filters can be estimated by matching a simulated migration image to its reference reflectivity model. Numerical tests on synthetic and field data demonstrate that Q-LSRTM combined with viscoacoustic deblurring filters can produce images with higher resolution and more balanced amplitudes than images from acoustic RTM, acoustic LSRTM and Q-LSRTM when there is strong attenuation in the background medium. The proposed preconditioning method is also shown to improve the convergence rate of Q-LSRTM by more than 30 percent in some cases and significantly compensate for the lossy artifacts in RTM images.

  2. Attenuation compensation in least-squares reverse time migration using the visco-acoustic wave equation

    KAUST Repository

    Dutta, Gaurav

    2013-08-20

    Attenuation leads to distortion of amplitude and phase of seismic waves propagating inside the earth. Conventional acoustic and least-squares reverse time migration do not account for this distortion which leads to defocusing of migration images in highly attenuative geological environments. To account for this distortion, we propose to use the visco-acoustic wave equation for least-squares reverse time migration. Numerical tests on synthetic data show that least-squares reverse time migration with the visco-acoustic wave equation corrects for this distortion and produces images with better balanced amplitudes compared to the conventional approach. © 2013 SEG.

  3. Anisotropy signature in extended images from reverse-time migration

    KAUST Repository

    Sava, Paul

    2012-11-04

    Reverse-time migration can accurately image complex geologic structures in anisotropic media. Extended images at selected locations in the earth, i.e. at common-image-point gathers (CIPs), carry enough information to characterize the angle-dependent illumination and to provide measurements for migration velocity analysis. Furthermore, inaccurate anisotropy leaves a distinctive signature in CIPs, which can be used to evaluate anisotropy through techniques similar to the ones used in conventional wavefield tomography.

  4. Anisotropy signature in extended images from reverse-time migration

    KAUST Repository

    Sava, Paul; Alkhalifah, Tariq Ali

    2012-01-01

    Reverse-time migration can accurately image complex geologic structures in anisotropic media. Extended images at selected locations in the earth, i.e. at common-image-point gathers (CIPs), carry enough information to characterize the angle-dependent illumination and to provide measurements for migration velocity analysis. Furthermore, inaccurate anisotropy leaves a distinctive signature in CIPs, which can be used to evaluate anisotropy through techniques similar to the ones used in conventional wavefield tomography.

  5. 3D Multi‐source Least‐squares Reverse Time Migration

    KAUST Repository

    Dai, Wei

    2010-10-17

    We present the theory and numerical results for least‐squares reverse time migration (LSRTM) of phase‐encoded supergathers, where each supergather is the superposition of phased‐encoded shots. Three type of encoding functions are used in this study: random time shift, random source polarity and random source location selected from a pre‐designed table. Numerical tests for the 3D SEG/EAGE Overthrust model show that multi‐source LSRTM can suppress migration artifacts in the migration image and remove most of the crosstalk noise from multi‐source data. Empirical results suggest that multi‐source LSRTM can provide a noticeable increase in computational efficiency compared to standard RTM, when the CSGs in a supergather are modeled and migrated together with a finite‐difference simulator. If the phase‐encoding functions are dynamically changed after each iteration of LSRTM, the best images are obtained. The potential drawback is that the final results are very sensitive to the accuracy of the starting model.

  6. Multisource Least-squares Reverse Time Migration

    KAUST Repository

    Dai, Wei

    2012-12-01

    Least-squares migration has been shown to be able to produce high quality migration images, but its computational cost is considered to be too high for practical imaging. In this dissertation, a multisource least-squares reverse time migration algorithm (LSRTM) is proposed to increase by up to 10 times the computational efficiency by utilizing the blended sources processing technique. There are three main chapters in this dissertation. In Chapter 2, the multisource LSRTM algorithm is implemented with random time-shift and random source polarity encoding functions. Numerical tests on the 2D HESS VTI data show that the multisource LSRTM algorithm suppresses migration artifacts, balances the amplitudes, improves image resolution, and reduces crosstalk noise associated with the blended shot gathers. For this example, multisource LSRTM is about three times faster than the conventional RTM method. For the 3D example of the SEG/EAGE salt model, with comparable computational cost, multisource LSRTM produces images with more accurate amplitudes, better spatial resolution, and fewer migration artifacts compared to conventional RTM. The empirical results suggest that the multisource LSRTM can produce more accurate reflectivity images than conventional RTM does with similar or less computational cost. The caveat is that LSRTM image is sensitive to large errors in the migration velocity model. In Chapter 3, the multisource LSRTM algorithm is implemented with frequency selection encoding strategy and applied to marine streamer data, for which traditional random encoding functions are not applicable. The frequency-selection encoding functions are delta functions in the frequency domain, so that all the encoded shots have unique non-overlapping frequency content. Therefore, the receivers can distinguish the wavefield from each shot according to the frequencies. With the frequency-selection encoding method, the computational efficiency of LSRTM is increased so that its cost is

  7. Prestack depth migration

    International Nuclear Information System (INIS)

    Postma, R.W.

    1991-01-01

    Two lines form the southern North Sea, with known velocity inhomogeneities in the overburden, have been pre-stack depth migrated. The pre-stack depth migrations are compared with conventional processing, one with severe distortions and one with subtle distortions on the conventionally processed sections. The line with subtle distortions is also compared with post-stack depth migration. The results on both lines were very successful. Both have already influenced drilling decisions, and have caused a modification of structural interpretation in the respective areas. Wells have been drilled on each of the lines, and well tops confirm the results. In fact, conventional processing led to incorrect locations for the wells, both of which were dry holes. The depth migrated sections indicate the incorrect placement, and on one line reveals a much better drilling location. This paper reports that even though processing costs are high for pre-stack depth migration, appropriate use can save millions of dollars in dry-hole expense

  8. Radon depth migration

    International Nuclear Information System (INIS)

    Hildebrand, S.T.; Carroll, R.J.

    1993-01-01

    A depth migration method is presented that used Radon-transformed common-source seismograms as input. It is shown that the Radon depth migration method can be extended to spatially varying velocity depth models by using asymptotic ray theory (ART) to construct wavefield continuation operators. These operators downward continue an incident receiver-array plane wave and an assumed point-source wavefield into the subsurface. The migration velocity model is constrain to have longer characteristic wavelengths than the dominant source wavelength such that the ART approximations for the continuation operators are valid. This method is used successfully to migrate two synthetic data examples: (1) a point diffractor, and (2) a dipping layer and syncline interface model. It is shown that the Radon migration method has a computational advantage over the standard Kirchhoff migration method in that fewer rays are computed in a main memory implementation

  9. Attenuation compensation in least-squares reverse time migration using the visco-acoustic wave equation

    KAUST Repository

    Dutta, Gaurav; Lu, Kai; Wang, Xin; Schuster, Gerard T.

    2013-01-01

    Attenuation leads to distortion of amplitude and phase of seismic waves propagating inside the earth. Conventional acoustic and least-squares reverse time migration do not account for this distortion which leads to defocusing of migration images

  10. Reverse time migration of multiples for OBS data

    KAUST Repository

    Zhang, Dongliang

    2014-01-01

    Reverse time migration of multiples (RTMM) is applied to OBS data with sparse receiver spacing. RTMM for OBS data unlike a marine streamer acquisition is implemented in the common receiver gathers (CRG) and provides a wider and denser illumination for each CRG than the conventional RTM of primaries. Hence, while the the conventional RTM image contains strong aliasing artifacts due to a sparser receiver interval, the RTMM image suffers from this artifacts less. This benefit of RTMM is demonstrated with numerical test on the Marmousi model for sparsely sampled OBS data.

  11. Reverse time migration of multiples for OBS data

    KAUST Repository

    Zhang, Dongliang

    2014-08-05

    Reverse time migration of multiples (RTMM) is applied to OBS data with sparse receiver spacing. RTMM for OBS data unlike a marine streamer acquisition is implemented in the common receiver gathers (CRG) and provides a wider and denser illumination for each CRG than the conventional RTM of primaries. Hence, while the the conventional RTM image contains strong aliasing artifacts due to a sparser receiver interval, the RTMM image suffers from this artifacts less. This benefit of RTMM is demonstrated with numerical test on the Marmousi model for sparsely sampled OBS data.

  12. Reverse time migration of prism waves for salt flank delineation

    KAUST Repository

    Dai, Wei; Schuster, Gerard T.

    2013-01-01

    In this paper, we present a new reverse time migration method for imaging salt flanks with prism wave reflections. It consists of four steps: (1) migrating the seismic data with conventional RTM to give the RTM image; (2) using the RTM image as a reflectivity model to simulate source-side reflections with the Born approximation; (3) zero-lag correlation of the source-side reflection wavefields and receiver-side wavefields to produce the prism wave migration image; and (4) repeating steps 2 and 3 for the receiver-side reflections. An advantage of this method is that there is no need to pick the horizontal reflectors prior to migration of the prism waves. It also separately images the vertical structures at a different step to reduce crosstalk interference. The disadvantage of prism wave migration algorithm is that its computational cost is twice that of conventional RTM. The empirical results with a salt model suggest that prism wave migration can be an effective method for salt flank delineation in the absence of diving waves.

  13. Reverse time migration of prism waves for salt flank delineation

    KAUST Repository

    Dai, Wei

    2013-09-22

    In this paper, we present a new reverse time migration method for imaging salt flanks with prism wave reflections. It consists of four steps: (1) migrating the seismic data with conventional RTM to give the RTM image; (2) using the RTM image as a reflectivity model to simulate source-side reflections with the Born approximation; (3) zero-lag correlation of the source-side reflection wavefields and receiver-side wavefields to produce the prism wave migration image; and (4) repeating steps 2 and 3 for the receiver-side reflections. An advantage of this method is that there is no need to pick the horizontal reflectors prior to migration of the prism waves. It also separately images the vertical structures at a different step to reduce crosstalk interference. The disadvantage of prism wave migration algorithm is that its computational cost is twice that of conventional RTM. The empirical results with a salt model suggest that prism wave migration can be an effective method for salt flank delineation in the absence of diving waves.

  14. Least-squares reverse time migration of marine data with frequency-selection encoding

    KAUST Repository

    Dai, Wei; Huang, Yunsong; Schuster, Gerard T.

    2013-01-01

    The phase-encoding technique can sometimes increase the efficiency of the least-squares reverse time migration (LSRTM) by more than one order of magnitude. However, traditional random encoding functions require all the encoded shots to share

  15. Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation

    KAUST Repository

    Dutta, Gaurav

    2014-10-01

    Strong subsurface attenuation leads to distortion of amplitudes and phases of seismic waves propagating inside the earth. Conventional acoustic reverse time migration (RTM) and least-squares reverse time migration (LSRTM) do not account for this distortion, which can lead to defocusing of migration images in highly attenuative geologic environments. To correct for this distortion, we used a linearized inversion method, denoted as Qp-LSRTM. During the leastsquares iterations, we used a linearized viscoacoustic modeling operator for forward modeling. The adjoint equations were derived using the adjoint-state method for back propagating the residual wavefields. The merit of this approach compared with conventional RTM and LSRTM was that Qp-LSRTM compensated for the amplitude loss due to attenuation and could produce images with better balanced amplitudes and more resolution below highly attenuative layers. Numerical tests on synthetic and field data illustrated the advantages of Qp-LSRTM over RTM and LSRTM when the recorded data had strong attenuation effects. Similar to standard LSRTM, the sensitivity tests for background velocity and Qp errors revealed that the liability of this method is the requirement for smooth and accurate migration velocity and attenuation models.

  16. Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation

    KAUST Repository

    Dutta, Gaurav; Schuster, Gerard T.

    2014-01-01

    Strong subsurface attenuation leads to distortion of amplitudes and phases of seismic waves propagating inside the earth. Conventional acoustic reverse time migration (RTM) and least-squares reverse time migration (LSRTM) do not account for this distortion, which can lead to defocusing of migration images in highly attenuative geologic environments. To correct for this distortion, we used a linearized inversion method, denoted as Qp-LSRTM. During the leastsquares iterations, we used a linearized viscoacoustic modeling operator for forward modeling. The adjoint equations were derived using the adjoint-state method for back propagating the residual wavefields. The merit of this approach compared with conventional RTM and LSRTM was that Qp-LSRTM compensated for the amplitude loss due to attenuation and could produce images with better balanced amplitudes and more resolution below highly attenuative layers. Numerical tests on synthetic and field data illustrated the advantages of Qp-LSRTM over RTM and LSRTM when the recorded data had strong attenuation effects. Similar to standard LSRTM, the sensitivity tests for background velocity and Qp errors revealed that the liability of this method is the requirement for smooth and accurate migration velocity and attenuation models.

  17. Common-image gathers in the offset domain from reverse-time migration

    KAUST Repository

    Zhan, Ge

    2014-04-01

    Kirchhoff migration is flexible to output common-image gathers (CIGs) in the offset domain by imaging data with different offsets separately. These CIGs supply important information for velocity model updates and amplitude-variation-with-offset (AVO) analysis. Reverse-time migration (RTM) offers more insights into complex geology than Kirchhoff migration by accurately describing wave propagation using the two-way wave equation. But, it has difficulty to produce offset domain CIGs like Kirchhoff migration. In this paper, we develop a method for obtaining offset domain CIGs from RTM. The method first computes the RTM operator of an offset gather, followed by a dot product of the operator and the offset data to form a common-offset RTM image. The offset domain CIGs are then achieved after separately migrating data with different offsets. We generate offset domain CIGs on both the Marmousi synthetic data and 2D Gulf of Mexico real data using this approach. © 2014.

  18. Anisotropy signature in reverse-time migration extended images

    KAUST Repository

    Sava, Paul C.; Alkhalifah, Tariq Ali

    2014-01-01

    Reverse-time migration can accurately image complex geologic structures in anisotropic media. Extended images at selected locations in the Earth, i.e., at common-image-point gathers, carry rich information to characterize the angle-dependent illumination and to provide measurements for migration velocity analysis. However, characterizing the anisotropy influence on such extended images is a challenge. Extended common-image-point gathers are cheap to evaluate since they sample the image at sparse locations indicated by the presence of strong reflectors. Such gathers are also sensitive to velocity error that manifests itself through moveout as a function of space and time lags. Furthermore, inaccurate anisotropy leaves a distinctive signature in common-image-point gathers, which can be used to evaluate anisotropy through techniques similar to the ones used in conventional wavefield tomography. It specifically admits a V-shaped residual moveout with the slope of the "V" flanks depending on the anisotropic parameter η regardless of the complexity of the velocity model. It reflects the fourth-order nature of the anisotropy influence on moveout as it manifests itself in this distinct signature in extended images after handling the velocity properly in the imaging process. Synthetic and real data observations support this assertion.

  19. Anisotropy signature in reverse-time migration extended images

    KAUST Repository

    Sava, Paul C.

    2014-11-04

    Reverse-time migration can accurately image complex geologic structures in anisotropic media. Extended images at selected locations in the Earth, i.e., at common-image-point gathers, carry rich information to characterize the angle-dependent illumination and to provide measurements for migration velocity analysis. However, characterizing the anisotropy influence on such extended images is a challenge. Extended common-image-point gathers are cheap to evaluate since they sample the image at sparse locations indicated by the presence of strong reflectors. Such gathers are also sensitive to velocity error that manifests itself through moveout as a function of space and time lags. Furthermore, inaccurate anisotropy leaves a distinctive signature in common-image-point gathers, which can be used to evaluate anisotropy through techniques similar to the ones used in conventional wavefield tomography. It specifically admits a V-shaped residual moveout with the slope of the "V" flanks depending on the anisotropic parameter η regardless of the complexity of the velocity model. It reflects the fourth-order nature of the anisotropy influence on moveout as it manifests itself in this distinct signature in extended images after handling the velocity properly in the imaging process. Synthetic and real data observations support this assertion.

  20. Imaging Fracking Zones by Microseismic Reverse Time Migration for Downhole Microseismic Monitoring

    Science.gov (United States)

    Lin, Y.; Zhang, H.

    2015-12-01

    Hydraulic fracturing is an engineering tool to create fractures in order to better recover oil and gas from low permeability reservoirs. Because microseismic events are generally associated with fracturing development, microseismic monitoring has been used to evaluate the fracking process. Microseismic monitoring generally relies on locating microseismic events to understand the spatial distribution of fractures. For the multi-stage fracturing treatment, fractures created in former stages are strong scatterers in the medium and can induce strong scattering waves on the waveforms for microseismic events induced during later stages. In this study, we propose to take advantage of microseismic scattering waves to image fracking zones by using seismic reverse time migration method. For downhole microseismic monitoring that involves installing a string of seismic sensors in a borehole near the injection well, the observation geometry is actually similar to the VSP (vertical seismic profile) system. For this reason, we adapt the VSP migration method for the common shot gather to the common event gather. Microseismic reverse-time migration method involves solving wave equation both forward and backward in time for each microseismic event. At current stage, the microseismic RTM is based on 2D acoustic wave equation (Zhang and Sun, 2008), solved by the finite-difference method with PML absorbing boundary condition applied to suppress the reflections of artificial boundaries. Additionally, we use local wavefield decomposition instead of cross-correlation imaging condition to suppress the imaging noise. For testing the method, we create a synthetic dataset for a downhole microseismic monitoring system with multiple fracking stages. It shows that microseismic migration using individual event is able to clearly reveal the fracture zone. The shorter distance between fractures and the microseismic event the clearer the migration image is. By summing migration images for many

  1. Modified interferometric imaging condition for reverse-time migration

    Science.gov (United States)

    Guo, Xue-Bao; Liu, Hong; Shi, Ying

    2018-01-01

    For reverse-time migration, high-resolution imaging mainly depends on the accuracy of the velocity model and the imaging condition. In practice, however, the small-scale components of the velocity model cannot be estimated by tomographical methods; therefore, the wavefields are not accurately reconstructed from the background velocity, and the imaging process will generate artefacts. Some of the noise is due to cross-correlation of unrelated seismic events. Interferometric imaging condition suppresses imaging noise very effectively, especially the unknown random disturbance of the small-scale part. The conventional interferometric imaging condition is extended in this study to obtain a new imaging condition based on the pseudo-Wigner distribution function (WDF). Numerical examples show that the modified interferometric imaging condition improves imaging precision.

  2. Conjugate gradient and cross-correlation based least-square reverse time migration and its application

    Science.gov (United States)

    Sun, Xiao-Dong; Ge, Zhong-Hui; Li, Zhen-Chun

    2017-09-01

    Although conventional reverse time migration can be perfectly applied to structural imaging it lacks the capability of enabling detailed delineation of a lithological reservoir due to irregular illumination. To obtain reliable reflectivity of the subsurface it is necessary to solve the imaging problem using inversion. The least-square reverse time migration (LSRTM) (also known as linearized reflectivity inversion) aims to obtain relatively high-resolution amplitude preserving imaging by including the inverse of the Hessian matrix. In practice, the conjugate gradient algorithm is proven to be an efficient iterative method for enabling use of LSRTM. The velocity gradient can be derived from a cross-correlation between observed data and simulated data, making LSRTM independent of wavelet signature and thus more robust in practice. Tests on synthetic and marine data show that LSRTM has good potential for use in reservoir description and four-dimensional (4D) seismic images compared to traditional RTM and Fourier finite difference (FFD) migration. This paper investigates the first order approximation of LSRTM, which is also known as the linear Born approximation. However, for more complex geological structures a higher order approximation should be considered to improve imaging quality.

  3. Analytical reverse time migration: An innovation in imaging of infrastructures using ultrasonic shear waves.

    Science.gov (United States)

    Asadollahi, Aziz; Khazanovich, Lev

    2018-04-11

    The emergence of ultrasonic dry point contact (DPC) transducers that emit horizontal shear waves has enabled efficient collection of high-quality data in the context of a nondestructive evaluation of concrete structures. This offers an opportunity to improve the quality of evaluation by adapting advanced imaging techniques. Reverse time migration (RTM) is a simulation-based reconstruction technique that offers advantages over conventional methods, such as the synthetic aperture focusing technique. RTM is capable of imaging boundaries and interfaces with steep slopes and the bottom boundaries of inclusions and defects. However, this imaging technique requires a massive amount of memory and its computation cost is high. In this study, both bottlenecks of the RTM are resolved when shear transducers are used for data acquisition. An analytical approach was developed to obtain the source and receiver wavefields needed for imaging using reverse time migration. It is shown that the proposed analytical approach not only eliminates the high memory demand, but also drastically reduces the computation time from days to minutes. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Seasonal changes in partial, reverse diel vertical migrations of cisco Coregonus artedi.

    Science.gov (United States)

    Ahrenstorff, T D; Hrabik, T R

    2016-09-01

    The objectives of this study were to (1) document changes in partial, reverse diel vertical migrations (DVM) patterns of cisco Coregonus artedi in Ten Mile Lake, MN, U.S.A., throughout the year and (2) evaluate the mechanisms that may cause shifts in migration behaviour. Results indicated that C. artedi vertical distributions remained deep in the water column during the day and night of the spring and autumn, which was related to a low risk, low reward strategy. During summer, a partial migration occurred where a portion of the population remained deeper according to the low risk, low reward strategy, while the other portion performed a more extensive high risk, high reward reverse DVM. In winter, C. artedi did not migrate because there were only low risk, low reward conditions present at all depths. The extensive partial, reverse DVM during summer probably increased the growth potential of C. artedi, helping individuals survive in a lake with low zooplankton prey resources. © 2016 The Fisheries Society of the British Isles.

  5. Decoupled equations for reverse time migration in tilted transversely isotropic media

    KAUST Repository

    Zhan, Ge; Pestana, Reynam C.; Stoffa, Paul L.

    2012-01-01

    Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, we extend these decoupled equations for modeling and reverse time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled equations remain numerically stable even for models with strong anisotropy and sharp contrasts. © 2012 Society of Exploration Geophysicists.

  6. Decoupled equations for reverse time migration in tilted transversely isotropic media

    KAUST Repository

    Zhan, Ge

    2012-03-01

    Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, we extend these decoupled equations for modeling and reverse time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled equations remain numerically stable even for models with strong anisotropy and sharp contrasts. © 2012 Society of Exploration Geophysicists.

  7. Least-squares reverse time migration with radon preconditioning

    KAUST Repository

    Dutta, Gaurav

    2016-09-06

    We present a least-squares reverse time migration (LSRTM) method using Radon preconditioning to regularize noisy or severely undersampled data. A high resolution local radon transform is used as a change of basis for the reflectivity and sparseness constraints are applied to the inverted reflectivity in the transform domain. This reflects the prior that for each location of the subsurface the number of geological dips is limited. The forward and the adjoint mapping of the reflectivity to the local Radon domain and back are done through 3D Fourier-based discrete Radon transform operators. The sparseness is enforced by applying weights to the Radon domain components which either vary with the amplitudes of the local dips or are thresholded at given quantiles. Numerical tests on synthetic and field data validate the effectiveness of the proposed approach in producing images with improved SNR and reduced aliasing artifacts when compared with standard RTM or LSRTM.

  8. Anisotropic depth migration: reducing lateral-position uncertainty of subsurface structures in the Alberta foothills

    Energy Technology Data Exchange (ETDEWEB)

    Vestrum, R.W.; Lawton, D.C.

    1999-01-01

    Seismic velocity anisotropy causes lateral-positioning errors on seismic images, and the use of anisotropic depth migration corrects this lateral mispositioning of subsurface targets. The assumption of isotropic seismic velocities implies that traditional depth migration corrects only for positioning errors caused by lateral velocity heterogeneity, and mispositioning due to seismic anisotropy remained uncorrected on depth-migrated sections. Also, isotropic depth migration was only applied in cases in which significant lateral velocity changes occurred, and lateral mispositioning due to seismic anisotropy remained uncorrected on time-migrated sections. If seismic is to accurately image the subsurface, then there is a need for reconsidering the assumptions made in depth imaging as well as a need to reconsider at what point depth migration applies to seismic data. Now that it is possible to correct for seismic anisotropy as well as lateral velocity heterogeneity, anisotropic depth migration potentially can be used to improve seismic imaging and positioning in areas in which traditional depth migration did not apply. 5 refs.

  9. Anisotropic depth migration: reducing lateral-position uncertainty of subsurface structures in the Alberta foothills

    Energy Technology Data Exchange (ETDEWEB)

    Vestrum, R.W.; Lawton, D.C.

    1999-11-01

    Seismic velocity anisotropy causes lateral-positioning errors on seismic images, and the use of anisotropic depth migration corrects this lateral mispositioning of subsurface targets. The assumption of isotropic seismic velocities implies that traditional depth migration corrects only for positioning errors caused by lateral velocity heterogeneity, and mispositioning due to seismic anisotropy remained uncorrected on depth-migrated sections. Also, isotropic depth migration was only applied in cases in which significant lateral velocity changes occurred, and lateral mispositioning due to seismic anisotropy remained uncorrected on time-migrated sections. If seismic is to accurately image the subsurface, then there is a need for reconsidering the assumptions made in depth imaging as well as a need to reconsider at what point depth migration applies to seismic data. Now that it is possible to correct for seismic anisotropy as well as lateral velocity heterogeneity, anisotropic depth migration potentially can be used to improve seismic imaging and positioning in areas in which traditional depth migration did not apply. 5 refs.

  10. Comparison of source moment tensor recovered by diffraction stacking migration and source time reversal imaging

    Science.gov (United States)

    Zhang, Q.; Zhang, W.

    2017-12-01

    Diffraction stacking migration is an automatic location methods and widely used in microseismic monitoring of the hydraulic fracturing. It utilizes the stacking of thousands waveform to enhance signal-to-noise ratio of weak events. For surface monitoring, the diffraction stacking method is suffered from polarity reverse among receivers due to radiation pattern of moment source. Joint determination of location and source mechanism has been proposed to overcome the polarity problem but needs significantly increased computational calculations. As an effective method to recover source moment tensor, time reversal imaging based on wave equation can locate microseismic event by using interferometry on the image to extract source position. However, the time reversal imaging is very time consuming compared to the diffraction stacking location because of wave-equation simulation.In this study, we compare the image from diffraction stacking and time reversal imaging to check if the diffraction stacking can obtain similar moment tensor as time reversal imaging. We found that image produced by taking the largest imaging value at each point along time axis does not exhibit the radiation pattern, while with the same level of calculation efficiency, the image produced for each trial origin time can generate radiation pattern similar to time reversal imaging procedure. Thus it is potential to locate the source position by the diffraction stacking method for general moment tensor sources.

  11. Multisource Least-squares Reverse Time Migration

    KAUST Repository

    Dai, Wei

    2012-01-01

    is implemented with random time-shift and random source polarity encoding functions. Numerical tests on the 2D HESS VTI data show that the multisource LSRTM algorithm suppresses migration artifacts, balances the amplitudes, improves image resolution, and reduces

  12. Least-squares reverse time migration of marine data with frequency-selection encoding

    KAUST Repository

    Dai, Wei

    2013-06-24

    The phase-encoding technique can sometimes increase the efficiency of the least-squares reverse time migration (LSRTM) by more than one order of magnitude. However, traditional random encoding functions require all the encoded shots to share the same receiver locations, thus limiting the usage to seismic surveys with a fixed spread geometry. We implement a frequency-selection encoding strategy that accommodates data with a marine streamer geometry. The encoding functions are delta functions in the frequency domain, so that all the encoded shots have unique nonoverlapping frequency content, and the receivers can distinguish the wavefield from each shot with a unique frequency band. Because the encoding functions are orthogonal to each other, there will be no crosstalk between different shots during modeling and migration. With the frequency-selection encoding method, the computational efficiency of LSRTM is increased so that its cost is comparable to conventional RTM for the Marmousi2 model and a marine data set recorded in the Gulf of Mexico. With more iterations, the LSRTM image quality is further improved by suppressing migration artifacts, balancing reflector amplitudes, and enhancing the spatial resolution. We conclude that LSRTM with frequency-selection is an efficient migration method that can sometimes produce more focused images than conventional RTM. © 2013 Society of Exploration Geophysicists.

  13. Least-squares reverse time migration with local Radon-based preconditioning

    KAUST Repository

    Dutta, Gaurav

    2017-03-08

    Least-squares migration (LSM) can produce images with better balanced amplitudes and fewer artifacts than standard migration. The conventional objective function used for LSM minimizes the L2-norm of the data residual between the predicted and the observed data. However, for field-data applications in which the recorded data are noisy and undersampled, the conventional formulation of LSM fails to provide the desired uplift in the quality of the inverted image. We have developed a leastsquares reverse time migration (LSRTM) method using local Radon-based preconditioning to overcome the low signal-tonoise ratio (S/N) problem of noisy or severely undersampled data. A high-resolution local Radon transform of the reflectivity is used, and sparseness constraints are imposed on the inverted reflectivity in the local Radon domain. The sparseness constraint is that the inverted reflectivity is sparse in the Radon domain and each location of the subsurface is represented by a limited number of geologic dips. The forward and the inverse mapping of the reflectivity to the local Radon domain and vice versa is done through 3D Fourier-based discrete Radon transform operators. The weights for the preconditioning are chosen to be varying locally based on the relative amplitudes of the local dips or assigned using quantile measures. Numerical tests on synthetic and field data validate the effectiveness of our approach in producing images with good S/N and fewer aliasing artifacts when compared with standard RTM or standard LSRTM.

  14. Improving imaging quality using least-squares reverse time migration: application to data from Bohai basin

    KAUST Repository

    Zhang, Hao; Liu, Qiancheng; Wu, Jizhong

    2017-01-01

    Least-squares reverse time migration (LSRTM) is a seismic imaging technique based on linear inversion, which usually aims to improve the quality of seismic image through removing the acquisition footprint, suppressing migration artifacts, and enhancing resolution. LSRTM has been shown to produce migration images with better quality than those computed by conventional migration. In this paper, our derivation of LSRTM approximates the near-incident reflection coefficient with the normal-incident reflection coefficient, which shows that the reflectivity term defined is related to the normal-incident reflection coefficient and the background velocity. With reflected data, LSRTM is mainly sensitive to impedance perturbations. According to an approximate relationship between them, we reformulate the perturbation related system into a reflection-coefficient related one. Then, we seek the inverted image through linearized iteration. In the proposed algorithm, we only need the migration velocity for LSRTM considering that the density changes gently when compared with migration velocity. To validate our algorithms, we first apply it to a synthetic case and then a field data set. Both applications illustrate that our imaging results are of good quality.

  15. Improving imaging quality using least-squares reverse time migration: application to data from Bohai basin

    KAUST Repository

    Zhang, Hao

    2017-07-07

    Least-squares reverse time migration (LSRTM) is a seismic imaging technique based on linear inversion, which usually aims to improve the quality of seismic image through removing the acquisition footprint, suppressing migration artifacts, and enhancing resolution. LSRTM has been shown to produce migration images with better quality than those computed by conventional migration. In this paper, our derivation of LSRTM approximates the near-incident reflection coefficient with the normal-incident reflection coefficient, which shows that the reflectivity term defined is related to the normal-incident reflection coefficient and the background velocity. With reflected data, LSRTM is mainly sensitive to impedance perturbations. According to an approximate relationship between them, we reformulate the perturbation related system into a reflection-coefficient related one. Then, we seek the inverted image through linearized iteration. In the proposed algorithm, we only need the migration velocity for LSRTM considering that the density changes gently when compared with migration velocity. To validate our algorithms, we first apply it to a synthetic case and then a field data set. Both applications illustrate that our imaging results are of good quality.

  16. Multisource least-squares reverse-time migration with structure-oriented filtering

    Science.gov (United States)

    Fan, Jing-Wen; Li, Zhen-Chun; Zhang, Kai; Zhang, Min; Liu, Xue-Tong

    2016-09-01

    The technology of simultaneous-source acquisition of seismic data excited by several sources can significantly improve the data collection efficiency. However, direct imaging of simultaneous-source data or blended data may introduce crosstalk noise and affect the imaging quality. To address this problem, we introduce a structure-oriented filtering operator as preconditioner into the multisource least-squares reverse-time migration (LSRTM). The structure-oriented filtering operator is a nonstationary filter along structural trends that suppresses crosstalk noise while maintaining structural information. The proposed method uses the conjugate-gradient method to minimize the mismatch between predicted and observed data, while effectively attenuating the interference noise caused by exciting several sources simultaneously. Numerical experiments using synthetic data suggest that the proposed method can suppress the crosstalk noise and produce highly accurate images.

  17. Magnetotelluric inversion via reverse time migration algorithm of seismic data

    International Nuclear Information System (INIS)

    Ha, Taeyoung; Shin, Changsoo

    2007-01-01

    We propose a new algorithm for two-dimensional magnetotelluric (MT) inversion. Our algorithm is an MT inversion based on the steepest descent method, borrowed from the backpropagation technique of seismic inversion or reverse time migration, introduced in the middle 1980s by Lailly and Tarantola. The steepest descent direction can be calculated efficiently by using the symmetry of numerical Green's function derived from a mixed finite element method proposed by Nedelec for Maxwell's equation, without calculating the Jacobian matrix explicitly. We construct three different objective functions by taking the logarithm of the complex apparent resistivity as introduced in the recent waveform inversion algorithm by Shin and Min. These objective functions can be naturally separated into amplitude inversion, phase inversion and simultaneous inversion. We demonstrate our algorithm by showing three inversion results for synthetic data

  18. Depth migration and de-migration for 3-D migration velocity analysis; Migration profondeur et demigration pour l'analyse de vitesse de migration 3D

    Energy Technology Data Exchange (ETDEWEB)

    Assouline, F.

    2001-07-01

    3-D seismic imaging of complex geologic structures requires the use of pre-stack imaging techniques, the post-stack ones being unsuitable in that case. Indeed, pre-stack depth migration is a technique which allows to image accurately complex structures provided that we have at our disposal a subsurface velocity model accurate enough. The determination of this velocity model is thus a key element for seismic imaging, and to this end, migration velocity analysis methods have met considerable interest. The SMART method is a specific migration velocity analysis method: the singularity of this method is that it does not rely on any restrictive assumptions on the complexity of the velocity model to determine. The SMART method uses a detour through the pre-stack depth migrated domain for extracting multi-offset kinematic information hardly accessible in the time domain. Once achieved the interpretation of the pre-stack depth migrated seismic data, a kinematic de-migration technique of the interpreted events enables to obtain a consistent kinematic database (i.e. reflection travel-times). Then, the inversion of these travel-times, by means of reflection tomography, allows the determination of an accurate velocity model. To be able to really image geologic structures for which the 3-D feature is predominant, we have studied the implementation of migration velocity analysis in 3-D in the context of the SMART method, and more generally, we have developed techniques allowing to overcome the intrinsic difficulties in the 3-D aspects of seismic imaging. Indeed, although formally the SMART method can be directly applied to the case of 3-D complex structures, the feasibility of its implementation requires to choose well the imaging domain. Once this choice done, it is also necessary to conceive a method allowing, via the associated de-migration, to obtain the reflection travel-times. We first consider the offset domain which constitutes, still today, the strategy most usually used

  19. Least-squares reverse time migration of marine data with frequency-selection encoding

    KAUST Repository

    Dai, Wei

    2013-08-20

    The phase-encoding technique can sometimes increase the efficiency of the least-squares reverse time migration (LSRTM) by more than one order of magnitude. However, traditional random encoding functions require all the encoded shots to share the same receiver locations, thus limiting the usage to seismic surveys with a fixed spread geometry. We implement a frequency-selection encoding strategy that accommodates data with a marine streamer geometry. The encoding functions are delta functions in the frequency domain, so that all the en- coded shots have unique non-overlapping frequency content, and the receivers can distinguish the wavefield from each shot with a unique frequency band. Since the encoding functions are orthogonal to each other, there will be no crosstalk between different shots during modeling and migration. With the frequency-selection encoding method, the computational efficiency of LSRTM is increased so that its cost is compara- ble to conventional RTM for both the Marmousi2 model and a marine data set recorded in the Gulf of Mexico. With more iterations, the LSRTM image quality is further improved. We conclude that LSRTM with frequency-selection is an efficient migration method that can sometimes produce more focused images than conventional RTM.

  20. An efficient parallel algorithm: Poststack and prestack Kirchhoff 3D depth migration using flexi-depth iterations

    Science.gov (United States)

    Rastogi, Richa; Srivastava, Abhishek; Khonde, Kiran; Sirasala, Kirannmayi M.; Londhe, Ashutosh; Chavhan, Hitesh

    2015-07-01

    This paper presents an efficient parallel 3D Kirchhoff depth migration algorithm suitable for current class of multicore architecture. The fundamental Kirchhoff depth migration algorithm exhibits inherent parallelism however, when it comes to 3D data migration, as the data size increases the resource requirement of the algorithm also increases. This challenges its practical implementation even on current generation high performance computing systems. Therefore a smart parallelization approach is essential to handle 3D data for migration. The most compute intensive part of Kirchhoff depth migration algorithm is the calculation of traveltime tables due to its resource requirements such as memory/storage and I/O. In the current research work, we target this area and develop a competent parallel algorithm for post and prestack 3D Kirchhoff depth migration, using hybrid MPI+OpenMP programming techniques. We introduce a concept of flexi-depth iterations while depth migrating data in parallel imaging space, using optimized traveltime table computations. This concept provides flexibility to the algorithm by migrating data in a number of depth iterations, which depends upon the available node memory and the size of data to be migrated during runtime. Furthermore, it minimizes the requirements of storage, I/O and inter-node communication, thus making it advantageous over the conventional parallelization approaches. The developed parallel algorithm is demonstrated and analysed on Yuva II, a PARAM series of supercomputers. Optimization, performance and scalability experiment results along with the migration outcome show the effectiveness of the parallel algorithm.

  1. Neutrophil Reverse Migration Becomes Transparent with Zebrafish

    Directory of Open Access Journals (Sweden)

    Taylor W. Starnes

    2012-01-01

    Full Text Available The precise control of neutrophil-mediated inflammation is critical for both host defense and the prevention of immunopathology. In vivo imaging studies in zebrafish, and more recently in mice, have made the novel observation that neutrophils leave a site of inflammation through a process called neutrophil reverse migration. The application of advanced imaging techniques to the genetically tractable, optically transparent zebrafish larvae was critical for these advances. Still, the mechanisms underlying neutrophil reverse migration and its effects on the resolution or priming of immune responses remain unclear. Here, we review the current knowledge of neutrophil reverse migration, its potential roles in host immunity, and the live imaging tools that make zebrafish a valuable model for increasing our knowledge of neutrophil behavior in vivo.

  2. 3D Multi‐source Least‐squares Reverse Time Migration

    KAUST Repository

    Dai, Wei; Boonyasiriwat, Chaiwoot; Schuster, Gerard T.

    2010-01-01

    : random time shift, random source polarity and random source location selected from a pre‐designed table. Numerical tests for the 3D SEG/EAGE Overthrust model show that multi‐source LSRTM can suppress migration artifacts in the migration image and remove

  3. Long-Duration Spaceflight Increases Depth Ambiguity of Reversible Perspective Figures

    Science.gov (United States)

    Clément, Gilles; Allaway, Heather C. M.; Demel, Michael; Golemis, Adrianos; Kindrat, Alexandra N.; Melinyshyn, Alexander N.; Merali, Tahir; Thirsk, Robert

    2015-01-01

    The objective of this study was to investigate depth perception in astronauts during and after spaceflight by studying their sensitivity to reversible perspective figures in which two-dimensional images could elicit two possible depth representations. Other ambiguous figures that did not give rise to a perception of illusory depth were used as controls. Six astronauts and 14 subjects were tested in the laboratory during three sessions for evaluating the variability of their responses in normal gravity. The six astronauts were then tested during four sessions while on board the International Space Station for 5–6 months. They were finally tested immediately after return to Earth and up to one week later. The reaction time decreased throughout the sessions, thus indicating a learning effect. However, the time to first percept reversal and the number of reversals were not different in orbit and after the flight compared to before the flight. On Earth, when watching depth-ambiguous perspective figures, all subjects reported seeing one three-dimensional interpretation more often than the other, i.e. a ratio of about 70–30%. In weightlessness this asymmetry gradually disappeared and after 3 months in orbit both interpretations were seen for the same duration. These results indicate that the perception of “illusory” depth is altered in astronauts during spaceflight. This increased depth ambiguity is attributed to the lack of the gravitational reference and the eye-ground elevation for interpreting perspective depth cues. PMID:26146839

  4. Long-Duration Spaceflight Increases Depth Ambiguity of Reversible Perspective Figures.

    Directory of Open Access Journals (Sweden)

    Gilles Clément

    Full Text Available The objective of this study was to investigate depth perception in astronauts during and after spaceflight by studying their sensitivity to reversible perspective figures in which two-dimensional images could elicit two possible depth representations. Other ambiguous figures that did not give rise to a perception of illusory depth were used as controls. Six astronauts and 14 subjects were tested in the laboratory during three sessions for evaluating the variability of their responses in normal gravity. The six astronauts were then tested during four sessions while on board the International Space Station for 5-6 months. They were finally tested immediately after return to Earth and up to one week later. The reaction time decreased throughout the sessions, thus indicating a learning effect. However, the time to first percept reversal and the number of reversals were not different in orbit and after the flight compared to before the flight. On Earth, when watching depth-ambiguous perspective figures, all subjects reported seeing one three-dimensional interpretation more often than the other, i.e. a ratio of about 70-30%. In weightlessness this asymmetry gradually disappeared and after 3 months in orbit both interpretations were seen for the same duration. These results indicate that the perception of "illusory" depth is altered in astronauts during spaceflight. This increased depth ambiguity is attributed to the lack of the gravitational reference and the eye-ground elevation for interpreting perspective depth cues.

  5. Three-Dimensional Passive-Source Reverse-Time Migration of Converted Waves: The Method

    Science.gov (United States)

    Li, Jiahang; Shen, Yang; Zhang, Wei

    2018-02-01

    At seismic discontinuities in the crust and mantle, part of the compressional wave energy converts to shear wave, and vice versa. These converted waves have been widely used in receiver function (RF) studies to image discontinuity structures in the Earth. While generally successful, the conventional RF method has its limitations and is suited mostly to flat or gently dipping structures. Among the efforts to overcome the limitations of the conventional RF method is the development of the wave-theory-based, passive-source reverse-time migration (PS-RTM) for imaging complex seismic discontinuities and scatters. To date, PS-RTM has been implemented only in 2D in the Cartesian coordinate for local problems and thus has limited applicability. In this paper, we introduce a 3D PS-RTM approach in the spherical coordinate, which is better suited for regional and global problems. New computational procedures are developed to reduce artifacts and enhance migrated images, including back-propagating the main arrival and the coda containing the converted waves separately, using a modified Helmholtz decomposition operator to separate the P and S modes in the back-propagated wavefields, and applying an imaging condition that maintains a consistent polarity for a given velocity contrast. Our new approach allows us to use migration velocity models with realistic velocity discontinuities, improving accuracy of the migrated images. We present several synthetic experiments to demonstrate the method, using regional and teleseismic sources. The results show that both regional and teleseismic sources can illuminate complex structures and this method is well suited for imaging dipping interfaces and sharp lateral changes in discontinuity structures.

  6. Imaging of first-order surface-related multiples by reverse-time migration

    Science.gov (United States)

    Liu, Xuejian; Liu, Yike; Hu, Hao; Li, Peng; Khan, Majid

    2017-02-01

    Surface-related multiples have been utilized in the reverse-time migration (RTM) procedures, and additional illumination for subsurface can be provided. Meanwhile, many cross-talks are generated from undesired interactions between forward- and backward-propagated seismic waves. In this paper, subsequent to analysing and categorizing these cross-talks, we propose RTM of first-order multiples to avoid most undesired interactions in RTM of all-order multiples, where only primaries are forward-propagated and crosscorrelated with the backward-propagated first-order multiples. With primaries and multiples separated during regular seismic data processing as the input data, first-order multiples can be obtained by a two-step scheme: (1) the dual-prediction of higher-order multiples; and (2) the adaptive subtraction of predicted higher-order multiples from all-order multiples within local offset-time windows. In numerical experiments, two synthetic and a marine field data sets are used, where different cross-talks generated by RTM of all-order multiples can be identified and the proposed RTM of first-order multiples can provide a very interpretable image with a few cross-talks.

  7. Rapid expansion and pseudo spectral implementation for reverse time migration in VTI media

    KAUST Repository

    Pestana, Reynam C

    2012-04-24

    In isotropic media, we use the scalar acoustic wave equation to perform reverse time migration (RTM) of the recorded pressure wavefield data. In anisotropic media, P- and SV-waves are coupled, and the elastic wave equation should be used for RTM. For computational efficiency, a pseudo-acoustic wave equation is often used. This may be solved using a coupled system of second-order partial differential equations. We solve these using a pseudo spectral method and the rapid expansion method (REM) for the explicit time marching. This method generates a degenerate SV-wave in addition to the P-wave arrivals of interest. To avoid this problem, the elastic wave equation for vertical transversely isotropic (VTI) media can be split into separate wave equations for P- and SV-waves. These separate wave equations are stable, and they can be effectively used to model and migrate seismic data in VTI media where |ε- δ| is small. The artifact for the SV-wave has also been removed. The independent pseudo-differential wave equations can be solved one for each mode using the pseudo spectral method for the spatial derivatives and the REM for the explicit time advance of the wavefield. We show numerically stable and high-resolution modeling and RTM results for the pure P-wave mode in VTI media. © 2012 Sinopec Geophysical Research Institute.

  8. Rapid expansion and pseudo spectral implementation for reverse time migration in VTI media

    KAUST Repository

    Pestana, Reynam C; Ursin, Bjø rn; Stoffa, Paul L

    2012-01-01

    In isotropic media, we use the scalar acoustic wave equation to perform reverse time migration (RTM) of the recorded pressure wavefield data. In anisotropic media, P- and SV-waves are coupled, and the elastic wave equation should be used for RTM. For computational efficiency, a pseudo-acoustic wave equation is often used. This may be solved using a coupled system of second-order partial differential equations. We solve these using a pseudo spectral method and the rapid expansion method (REM) for the explicit time marching. This method generates a degenerate SV-wave in addition to the P-wave arrivals of interest. To avoid this problem, the elastic wave equation for vertical transversely isotropic (VTI) media can be split into separate wave equations for P- and SV-waves. These separate wave equations are stable, and they can be effectively used to model and migrate seismic data in VTI media where |ε- δ| is small. The artifact for the SV-wave has also been removed. The independent pseudo-differential wave equations can be solved one for each mode using the pseudo spectral method for the spatial derivatives and the REM for the explicit time advance of the wavefield. We show numerically stable and high-resolution modeling and RTM results for the pure P-wave mode in VTI media. © 2012 Sinopec Geophysical Research Institute.

  9. Microseismic imaging using Geometric-mean Reverse-Time Migration in Hydraulic Fracturing Monitoring

    Science.gov (United States)

    Yin, J.; Ng, R.; Nakata, N.

    2017-12-01

    Unconventional oil and gas exploration techniques such as hydraulic fracturing are associated with microseismic events related to the generation and development of fractures. For example, hydraulic fracturing, which is popular in Southern Oklahoma, produces earthquakes that are greater than magnitude 2.0. Finding the accurate locations, and mechanisms, of these events provides important information of local stress conditions, fracture distribution, hazard assessment, and economical impact. The accurate source location is also important to separate fracking-induced and wastewater disposal induced seismicity. Here, we implement a wavefield-based imaging method called Geometric-mean Reverse-Time Migration (GmRTM), which takes the advantage of accurate microseismic location based on wavefield back projection. We apply GmRTM to microseismic data collected during hydraulic fracturing for imaging microseismic source locations, and potentially, fractures. Assuming an accurate velocity model, GmRTM can improve the spatial resolution of source locations compared to HypoDD or P/S travel-time based methods. We will discuss the results from GmRTM and HypoDD using this field dataset and synthetic data.

  10. Plane-wave Least-squares Reverse Time Migration

    KAUST Repository

    Dai, Wei; Schuster, Gerard T.

    2012-01-01

    convergence for least-squares migration even when the migration velocity is not completely accurate. To significantly reduce computation cost, linear phase shift encoding is applied to hundreds of shot gathers to produce dozens of planes waves. A

  11. The Reverse Time Migration technique coupled with Interior Penalty Discontinuous Galerkin method.

    Science.gov (United States)

    Baldassari, C.; Barucq, H.; Calandra, H.; Denel, B.; Diaz, J.

    2009-04-01

    Seismic imaging is based on the seismic reflection method which produces an image of the subsurface from reflected waves recordings by using a tomography process and seismic migration is the industrial standard to improve the quality of the images. The migration process consists in replacing the recorded wavefields at their actual place by using various mathematical and numerical methods but each of them follows the same schedule, according to the pioneering idea of Claerbout: numerical propagation of the source function (propagation) and of the recorded wavefields (retropropagation) and next, construction of the image by applying an imaging condition. The retropropagation step can be realized accouting for the time reversibility of the wave equation and the resulting algorithm is currently called Reverse Time Migration (RTM). To be efficient, especially in three dimensional domain, the RTM requires the solution of the full wave equation by fast numerical methods. Finite element methods are considered as the best discretization method for solving the wave equation, even if they lead to the solution of huge systems with several millions of degrees of freedom, since they use meshes adapted to the domain topography and the boundary conditions are naturally taken into account in the variational formulation. Among the different finite element families, the spectral element one (SEM) is very interesting because it leads to a diagonal mass matrix which dramatically reduces the cost of the numerical computation. Moreover this method is very accurate since it allows the use of high order finite elements. However, SEM uses meshes of the domain made of quadrangles in 2D or hexaedra in 3D which are difficult to compute and not always suitable for complex topographies. Recently, Grote et al. applied the IPDG (Interior Penalty Discontinuous Galerkin) method to the wave equation. This approach is very interesting since it relies on meshes with triangles in 2D or tetrahedra in 3D

  12. Final Project Report: Imaging Fault Zones Using a Novel Elastic Reverse-Time Migration Imaging Technique

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Ting [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tan, Sirui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lin, Youzuo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gao, Kai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-10

    Imaging fault zones and fractures is crucial for geothermal operators, providing important information for reservoir evaluation and management strategies. However, there are no existing techniques available for directly and clearly imaging fault zones, particularly for steeply dipping faults and fracture zones. In this project, we developed novel acoustic- and elastic-waveform inversion methods for high-resolution velocity model building. In addition, we developed acoustic and elastic reverse-time migration methods for high-resolution subsurface imaging of complex subsurface structures and steeply-dipping fault/fracture zones. We first evaluated and verified the improved capabilities of our newly developed seismic inversion and migration imaging methods using synthetic seismic data. Our numerical tests verified that our new methods directly image subsurface fracture/fault zones using surface seismic reflection data. We then applied our novel seismic inversion and migration imaging methods to a field 3D surface seismic dataset acquired at the Soda Lake geothermal field using Vibroseis sources. Our migration images of the Soda Lake geothermal field obtained using our seismic inversion and migration imaging algorithms revealed several possible fault/fracture zones. AltaRock Energy, Inc. is working with Cyrq Energy, Inc. to refine the geologic interpretation at the Soda Lake geothermal field. Trenton Cladouhos, Senior Vice President R&D of AltaRock, was very interested in our imaging results of 3D surface seismic data from the Soda Lake geothermal field. He planed to perform detailed interpretation of our images in collaboration with James Faulds and Holly McLachlan of University of Nevada at Reno. Using our high-resolution seismic inversion and migration imaging results can help determine the optimal locations to drill wells for geothermal energy production and reduce the risk of geothermal exploration.

  13. Incoherent dictionary learning for reducing crosstalk noise in least-squares reverse time migration

    Science.gov (United States)

    Wu, Juan; Bai, Min

    2018-05-01

    We propose to apply a novel incoherent dictionary learning (IDL) algorithm for regularizing the least-squares inversion in seismic imaging. The IDL is proposed to overcome the drawback of traditional dictionary learning algorithm in losing partial texture information. Firstly, the noisy image is divided into overlapped image patches, and some random patches are extracted for dictionary learning. Then, we apply the IDL technology to minimize the coherency between atoms during dictionary learning. Finally, the sparse representation problem is solved by a sparse coding algorithm, and image is restored by those sparse coefficients. By reducing the correlation among atoms, it is possible to preserve most of the small-scale features in the image while removing much of the long-wavelength noise. The application of the IDL method to regularization of seismic images from least-squares reverse time migration shows successful performance.

  14. Reverse-time Migration in Tilted Transversely Isotropic Media with Decoupled Equations

    KAUST Repository

    Zhan, Ge

    2012-12-01

    Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, I extend these decoupled equations for modeling and reverse-time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral (PS) method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled P-wave equation remain numerically stable even for models with strong anisotropy and sharp contrasts. The most desirable feature of the TTI decoupled P-wave equation is that it is absolutely free of shear-wave artifacts and the consequent alleviation of numerical instabilities generally suffered by some systems of coupled equations. However, due to several forward-backward Fourier transforms in wavefield extrapolation at each time step, the computational cost is also high, and thereby hampers its prevalence. I hereby propose to use a hybrid pseudospectral and finite-difference (FD) scheme to solve the TTI decoupled P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms in the equation are replaced by inexpensive FD operators, which in turn accelerates the computation and reduces the computational cost. To demonstrate the

  15. Wavefield Extrapolation in Pseudo-depth Domain

    KAUST Repository

    Ma, Xuxin

    2011-12-11

    Wave-equation based seismic migration and inversion tools are widely used by the energy industry to explore hydrocarbon and mineral resources. By design, most of these techniques simulate wave propagation in a space domain with the vertical axis being depth measured from the surface. Vertical depth is popular because it is a straightforward mapping of the subsurface space. It is, however, not computationally cost-effective because the wavelength changes with local elastic wave velocity, which in general increases with depth in the Earth. As a result, the sampling per wavelength also increases with depth. To avoid spatial aliasing in deep fast media, the seismic wave is oversampled in shallow slow media and therefore increase the total computation cost. This issue is effectively tackled by using the vertical time axis instead of vertical depth. This is because in a vertical time representation, the "wavelength" is essentially time period for vertical rays. This thesis extends the vertical time axis to the pseudo-depth axis, which features distance unit while preserving the properties of the vertical time representation. To explore the potentials of doing wave-equation based imaging in the pseudo-depth domain, a Partial Differential Equation (PDE) is derived to describe acoustic wave in this new domain. This new PDE is inherently anisotropic because the use of a constant vertical velocity to convert between depth and vertical time. Such anisotropy results in lower reflection coefficients compared with conventional space domain modeling results. This feature is helpful to suppress the low wavenumber artifacts in reverse-time migration images, which are caused by the widely used cross-correlation imaging condition. This thesis illustrates modeling acoustic waves in both conventional space domain and pseudo-depth domain. The numerical tool used to model acoustic waves is built based on the lowrank approximation of Fourier integral operators. To investigate the potential

  16. Prestack exploding reflector modeling and migration in TI media

    KAUST Repository

    Wang, H.

    2014-01-01

    Prestack depth migration in anisotropic media, especially those that exhibit tilt, can be costly using reverse time migration (RTM). We present two-way spectral extrapolation of prestack exploding reflector modeling and migration (PERM) in acoustic transversely isotropic (TI) media. We construct systematic ways to evaluate phase angles and phase velocities in dip oriented TI (DTI), vertical TI (VTI) and tilted TI (TTI) media. Migration results from the Marmousi VTI model and the BP2007 TTI model show the feasibility of our approach.

  17. Partial diel migration: A facultative migration underpinned by long-term inter-individual variation.

    Science.gov (United States)

    Harrison, Philip M; Gutowsky, Lee F G; Martins, Eduardo G; Patterson, David A; Cooke, Steven J; Power, Michael

    2017-09-01

    The variations in migration that comprise partial diel migrations, putatively occur entirely as a consequence of behavioural flexibility. However, seasonal partial migrations are increasingly recognised to be mediated by a combination of reversible plasticity in response to environmental variation and individual variation due to genetic and environmental effects. Here, we test the hypothesis that while partial diel migration heterogeneity occurs primarily due to short-term within-individual flexibility in behaviour, long-term individual differences in migratory behaviour also underpin this migration variation. Specifically, we use a hierarchical behavioural reaction norm approach to partition within- and among-individual variation in depth use and diel plasticity in depth use, across short- and long-term time-scales, in a group of 47 burbot (Lota lota) tagged with depth-sensing acoustic telemetry transmitters. We found that within-individual variation at the among-dates-within-seasons and among-seasons scale, explained the dominant proportion of phenotypic variation. However, individuals also repeatedly differed in their expression of migration behaviour over the 2 year study duration. These results reveal that diel migration variation occurs primarily due to short-term within-individual flexibility in depth use and diel migration behaviour. However, repeatable individual differences also played a key role in mediating partial diel migration. These findings represent a significant advancement of our understanding of the mechanisms generating the important, yet poorly understood phenomena of partial diel migration. Moreover, given the pervasive occurrence of diel migrations across aquatic taxa, these findings indicate that individual differences have an important, yet previously unacknowledged role in structuring the temporal and vertical dynamics of aquatic ecosystems. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  18. GPU-accelerated element-free reverse-time migration with Gauss points partition

    Science.gov (United States)

    Zhou, Zhen; Jia, Xiaofeng; Qiang, Xiaodong

    2018-06-01

    An element-free method (EFM) has been demonstrated successfully in elasticity, heat conduction and fatigue crack growth problems. We present the theory of EFM and its numerical applications in seismic modelling and reverse time migration (RTM). Compared with the finite difference method and the finite element method, the EFM has unique advantages: (1) independence of grids in computation and (2) lower expense and more flexibility (because only the information of the nodes and the boundary of the concerned area is required). However, in EFM, due to improper computation and storage of some large sparse matrices, such as the mass matrix and the stiffness matrix, the method is difficult to apply to seismic modelling and RTM for a large velocity model. To solve the problem of storage and computation efficiency, we propose a concept of Gauss points partition and utilise the graphics processing unit to improve the computational efficiency. We employ the compressed sparse row format to compress the intermediate large sparse matrices and attempt to simplify the operations by solving the linear equations with CULA solver. To improve the computation efficiency further, we introduce the concept of the lumped mass matrix. Numerical experiments indicate that the proposed method is accurate and more efficient than the regular EFM.

  19. Wide-azimuth angle-domain imaging for anisotropic reverse-time migration

    KAUST Repository

    Sava, Paul C.; Alkhalifah, Tariq Ali

    2011-01-01

    Extended common-image-point gathers (CIP) constructed by wide-azimuth TI wave-equation migration contain all the necessary information for angle decomposition as a function of the reflection and azimuth angles at selected locations in the subsurface. The reflection and azimuth angles are derived from the extended images using analytic relations between the space-lag and time-lag extensions. This post-imaging decomposition requires only information which is already available at the time of migration, i.e. the model parameters and the tilt angles of the TI medium. The transformation amounts to a linear Radon transform applied to the CIPs obtained after the application of the extended imaging condition. If information about the reflector dip is available at the CIP locations, then only two components of the space-lag vectors are required, thus reducing computational cost and increasing the affordability of the method. This efficient angle decomposition method is suitable for wide-azimuth imaging in anisotropic media with arbitrary orientation of the symmetry plane. © 2011 Society of Exploration Geophysicists.

  20. Plane-wave least-squares reverse-time migration

    KAUST Repository

    Dai, Wei; Schuster, Gerard T.

    2013-01-01

    . The merits of plane-wave prestack LSRTM are the following: (1) plane-wave prestack LSRTM can sometimes offer stable convergence even when the migration velocity has bulk errors of up to 5%; (2) to significantly reduce computation cost, linear phase

  1. Depth migration in transversely isotropic media with explicit operators

    Energy Technology Data Exchange (ETDEWEB)

    Uzcategui, Omar [Colorado School of Mines, Golden, CO (United States)

    1994-12-01

    The author presents and analyzes three approaches to calculating explicit two-dimensional (2D) depth-extrapolation filters for all propagation modes (P, SV, and SH) in transversely isotropic media with vertical and tilted axis of symmetry. These extrapolation filters are used to do 2D poststack depth migration, and also, just as for isotropic media, these 2D filters are used in the McClellan transformation to do poststack 3D depth migration. Furthermore, the same explicit filters can also be used to do depth-extrapolation of prestack data. The explicit filters are derived by generalizations of three different approaches: the modified Taylor series, least-squares, and minimax methods initially developed for isotropic media. The examples here show that the least-squares and minimax methods produce filters with accurate extrapolation (measured in the ability to position steep reflectors) for a wider range of propagation angles than that obtained using the modified Taylor series method. However, for low propagation angles, the modified Taylor series method has smaller amplitude and phase errors than those produced by the least-squares and minimax methods. These results suggest that to get accurate amplitude estimation, modified Taylor series filters would be somewhat preferred in areas with low dips. In areas with larger dips, the least-squares and minimax methods would give a distinctly better delineation of the subsurface structures.

  2. Depth migration of Chernobyl originated 137Cs and 90Sr in soils of Belarus

    International Nuclear Information System (INIS)

    Kagan, L.M.; Kadatsky, V.B.

    1996-01-01

    Depth migration of 137 Cs and 90 Sr was studied in soils of reference sites that have different environmental characteristics and are situated in all four radiochemical regions of Belarus. The parameters as used were: the fraction of the nuclide inventory below a depth of 2 cm; the fraction of the nuclide inventory below a depth of 5 cm; and the thickness of the top soil layer containing 90% of the nuclide inventory. Despite the apparent differences in the nuclide migration at various sites, some common tendencies were observed. During the first 3-5 years after the accident, the 90 Sr depth migration at several watershed and terrace sites did not exceed that of 137 Cs. About 5-15% of the nuclide inventories are below the depth of 5 cm, and 90% are contained in the top 3-7 cm soil layer. However, at the floodplain reference sites, a pronounced tendency for a higher migration rate of 90 Sr was revealed. Less than 5% of the 137 Cs inventory but about 5-30% of the 90 Sr inventory are below 5 cm, and the top soil layer containing 90% of the nuclide inventory is 1-2 cm thicker for 90 Sr. (Author)

  3. Sparse least-squares reverse time migration using seislets

    KAUST Repository

    Dutta, Gaurav; Schuster, Gerard T.

    2015-01-01

    the iterations. These dips can be estimated from the standard migration image or from the gradient using plane-wave destruction filters or structural tensors. Numerical tests on synthetic datasets demonstrate the benefits of this method for mitigation of aliasing

  4. Can lagrangian models reproduce the migration time of European eel obtained from otolith analysis?

    Science.gov (United States)

    Rodríguez-Díaz, L.; Gómez-Gesteira, M.

    2017-12-01

    European eel can be found at the Bay of Biscay after a long migration across the Atlantic. The duration of migration, which takes place at larval stage, is of primary importance to understand eel ecology and, hence, its survival. This duration is still a controversial matter since it can range from 7 months to > 4 years depending on the method to estimate duration. The minimum migration duration estimated from our lagrangian model is similar to the duration obtained from the microstructure of eel otoliths, which is typically on the order of 7-9 months. The lagrangian model showed to be sensitive to different conditions like spatial and time resolution, release depth, release area and initial distribution. In general, migration showed to be faster when decreasing the depth and increasing the resolution of the model. In average, the fastest migration was obtained when only advective horizontal movement was considered. However, faster migration was even obtained in some cases when locally oriented random migration was taken into account.

  5. Reversible twin boundary migration between α″ martensites in a Ti-Nb-Zr-Sn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Tingting; Du, Kui, E-mail: kuidu@imr.ac.cn; Wang, Haoliang; Qi, Lu; He, Suyun; Hao, Yulin; Yang, Rui; Ye, Hengqiang

    2017-03-14

    Cyclic tensile loading tests and transmission electron microscopy investigation are conducted on a Ti-24Nb-4Zr-8Sn (wt%) alloy. Under tensile strain less than 3.3%, most of the deformation strain recovers after unloading but significant energy dissipation occurs during the loading-unloading cycle. Reversible migration of twin boundaries between α″ martensite variants, in virtue of dislocation movement on the twin boundaries, has been revealed by time resolved high-resolution transmission electron microscopy. This twin boundary migration contributes to the energy dissipation effect and consequently the damping property of the titanium alloy.

  6. 3D Seismic Imaging through Reverse-Time Migration on Homogeneous and Heterogeneous Multi-Core Processors

    Directory of Open Access Journals (Sweden)

    Mauricio Araya-Polo

    2009-01-01

    Full Text Available Reverse-Time Migration (RTM is a state-of-the-art technique in seismic acoustic imaging, because of the quality and integrity of the images it provides. Oil and gas companies trust RTM with crucial decisions on multi-million-dollar drilling investments. But RTM requires vastly more computational power than its predecessor techniques, and this has somewhat hindered its practical success. On the other hand, despite multi-core architectures promise to deliver unprecedented computational power, little attention has been devoted to mapping efficiently RTM to multi-cores. In this paper, we present a mapping of the RTM computational kernel to the IBM Cell/B.E. processor that reaches close-to-optimal performance. The kernel proves to be memory-bound and it achieves a 98% utilization of the peak memory bandwidth. Our Cell/B.E. implementation outperforms a traditional processor (PowerPC 970MP in terms of performance (with an 15.0× speedup and energy-efficiency (with a 10.0× increase in the GFlops/W delivered. Also, it is the fastest RTM implementation available to the best of our knowledge. These results increase the practical usability of RTM. Also, the RTM-Cell/B.E. combination proves to be a strong competitor in the seismic arena.

  7. Time-domain least-squares migration using the Gaussian beam summation method

    Science.gov (United States)

    Yang, Jidong; Zhu, Hejun; McMechan, George; Yue, Yubo

    2018-04-01

    With a finite recording aperture, a limited source spectrum and unbalanced illumination, traditional imaging methods are insufficient to generate satisfactory depth profiles with high resolution and high amplitude fidelity. This is because traditional migration uses the adjoint operator of the forward modeling rather than the inverse operator. We propose a least-squares migration approach based on the time-domain Gaussian beam summation, which helps to balance subsurface illumination and improve image resolution. Based on the Born approximation for the isotropic acoustic wave equation, we derive a linear time-domain Gaussian beam modeling operator, which significantly reduces computational costs in comparison with the spectral method. Then, we formulate the corresponding adjoint Gaussian beam migration, as the gradient of an L2-norm waveform misfit function. An L1-norm regularization is introduced to the inversion to enhance the robustness of least-squares migration, and an approximated diagonal Hessian is used as a preconditioner to speed convergence. Synthetic and field data examples demonstrate that the proposed approach improves imaging resolution and amplitude fidelity in comparison with traditional Gaussian beam migration.

  8. Nanopore Device for Reversible Ion and Molecule Sensing or Migration

    Science.gov (United States)

    Pourmand, Nader (Inventor); Vilozny, Boaz (Inventor); Actis, Paolo (Inventor); Seger, R. Adam (Inventor); Singaram, Bakthan (Inventor)

    2015-01-01

    Disclosed are methods and devices for detection of ion migration and binding, utilizing a nanopipette adapted for use in an electrochemical sensing circuit. The nanopipette may be functionalized on its interior bore with metal chelators for binding and sensing metal ions or other specific binding molecules such as boronic acid for binding and sensing glucose. Such a functionalized nanopipette is comprised in an electrical sensor that detects when the nanopipette selectively and reversibly binds ions or small molecules. Also disclosed is a nanoreactor, comprising a nanopipette, for controlling precipitation in aqueous solutions by voltage-directed ion migration, wherein ions may be directed out of the interior bore by a repulsing charge in the bore.

  9. Auditory sensitivity to spectral modulation phase reversal as a function of modulation depth.

    Science.gov (United States)

    Buss, Emily; Grose, John

    2018-01-01

    The present study evaluated auditory sensitivity to spectral modulation by determining the modulation depth required to detect modulation phase reversal. This approach may be preferable to spectral modulation detection with a spectrally flat standard, since listeners appear unable to perform the task based on the detection of temporal modulation. While phase reversal thresholds are often evaluated by holding modulation depth constant and adjusting modulation rate, holding rate constant and adjusting modulation depth supports rate-specific assessment of modulation processing. Stimuli were pink noise samples, filtered into seven octave-wide bands (0.125-8 kHz) and spectrally modulated in dB. Experiment 1 measured performance as a function of modulation depth to determine appropriate units for adaptive threshold estimation. Experiment 2 compared thresholds in dB for modulation detection with a flat standard and modulation phase reversal; results supported the idea that temporal cues were available at high rates for the former but not the latter. Experiment 3 evaluated spectral modulation phase reversal thresholds for modulation that was restricted to either one or two neighboring bands. Flanking bands of unmodulated noise had a larger detrimental effect on one-band than two-band targets. Thresholds for high-rate modulation improved with increasing carrier frequency up to 2 kHz, whereas low-rate modulation appeared more consistent across frequency, particularly in the two-band condition. Experiment 4 measured spectral weights for spectral modulation phase reversal detection and found higher weights for bands in the spectral center of the stimulus than for the lowest (0.125 kHz) or highest (8 kHz) band. Experiment 5 compared performance for highly practiced and relatively naïve listeners, and found weak evidence of a larger practice effect at high than low spectral modulation rates. These results provide preliminary data for a task that may provide a better estimate of

  10. Reversed stereo depth and motion direction with anti-correlated stimuli.

    Science.gov (United States)

    Read, J C; Eagle, R A

    2000-01-01

    We used anti-correlated stimuli to compare the correspondence problem in stereo and motion. Subjects performed a two-interval forced-choice disparity/motion direction discrimination task for different displacements. For anti-correlated 1d band-pass noise, we found weak reversed depth and motion. With 2d anti-correlated stimuli, stereo performance was impaired, but the perception of reversed motion was enhanced. We can explain the main features of our data in terms of channels tuned to different spatial frequencies and orientation. We suggest that a key difference between the solution of the correspondence problem by the motion and stereo systems concerns the integration of information at different orientations.

  11. Application of Post-stack migration to seismic data associated with fault structures

    Science.gov (United States)

    Koduru, Anitha; Mohanty, P. R.

    2015-06-01

    In hydrocarbon exploration, wave-equation migration techniques play an important role in imaging the complex geological structures. Usually, post-stack migration scheme is applied to the seismic data to improve the resolution with restoration of dipping reflectors to their true position. As a result, the migrated time sections are interpretable in terms of subsurface features. As a numerical study, three fault models are considered for the present study. First of all, synthetic time sections are generated corresponding to three models. Later, post stack migration schemes such as Gazdag(PS), Phase-shift with turning rays and reverse time migration (T-K) domain techniques are applied in order to judge the imaging accuracy, preservation of true amplitude and computational speed. All the three post stack time migrated sections delineate the structure with their throw.However, the reverse time migrations (T-K) clearly delineate the reflectors in restoring the throw properly with minimum computational time. In order to test the validity the numerical results, similar exercise has been undertaken using field seismic data of KG basin, India. The results indicates that the field migrated sections are imaged. But, the reverse time migration (T-K ) provides the best subsurface image with restoration of reflectors and collapse of diffracted events with least computational time. Gazdag (PS) and Phase-Shift with turning migrated section shows the reduction of amplitude whereas, the reverse time migration preserved the amplitude fully.

  12. Generalized diffraction-stack migration and filtering of coherent noise

    KAUST Repository

    Zhan, Ge

    2014-01-27

    We reformulate the equation of reverse-time migration so that it can be interpreted as summing data along a series of hyperbola-like curves, each one representing a different type of event such as a reflection or multiple. This is a generalization of the familiar diffraction-stack migration algorithm where the migration image at a point is computed by the sum of trace amplitudes along an appropriate hyperbola-like curve. Instead of summing along the curve associated with the primary reflection, the sum is over all scattering events and so this method is named generalized diffraction-stack migration. This formulation leads to filters that can be applied to the generalized diffraction-stack migration operator to mitigate coherent migration artefacts due to, e.g., crosstalk and aliasing. Results with both synthetic and field data show that generalized diffraction-stack migration images have fewer artefacts than those computed by the standard reverse-time migration algorithm. The main drawback is that generalized diffraction-stack migration is much more memory intensive and I/O limited than the standard reverse-time migration method. © 2014 European Association of Geoscientists & Engineers.

  13. GPU-accelerated Modeling and Element-free Reverse-time Migration with Gauss Points Partition

    Science.gov (United States)

    Zhen, Z.; Jia, X.

    2014-12-01

    Element-free method (EFM) has been applied to seismic modeling and migration. Compared with finite element method (FEM) and finite difference method (FDM), it is much cheaper and more flexible because only the information of the nodes and the boundary of the study area are required in computation. In the EFM, the number of Gauss points should be consistent with the number of model nodes; otherwise the accuracy of the intermediate coefficient matrices would be harmed. Thus when we increase the nodes of velocity model in order to obtain higher resolution, we find that the size of the computer's memory will be a bottleneck. The original EFM can deal with at most 81×81 nodes in the case of 2G memory, as tested by Jia and Hu (2006). In order to solve the problem of storage and computation efficiency, we propose a concept of Gauss points partition (GPP), and utilize the GPUs to improve the computation efficiency. Considering the characteristics of the Gaussian points, the GPP method doesn't influence the propagation of seismic wave in the velocity model. To overcome the time-consuming computation of the stiffness matrix (K) and the mass matrix (M), we also use the GPUs in our computation program. We employ the compressed sparse row (CSR) format to compress the intermediate sparse matrices and try to simplify the operations by solving the linear equations with the CULA Sparse's Conjugate Gradient (CG) solver instead of the linear sparse solver 'PARDISO'. It is observed that our strategy can significantly reduce the computational time of K and Mcompared with the algorithm based on CPU. The model tested is Marmousi model. The length of the model is 7425m and the depth is 2990m. We discretize the model with 595x298 nodes, 300x300 Gauss cells and 3x3 Gauss points in each cell. In contrast to the computational time of the conventional EFM, the GPUs-GPP approach can substantially improve the efficiency. The speedup ratio of time consumption of computing K, M is 120 and the

  14. Effective modeling and reverse-time migration for novel pure acoustic wave in arbitrary orthorhombic anisotropic media

    Science.gov (United States)

    Xu, Shigang; Liu, Yang

    2018-03-01

    The conventional pseudo-acoustic wave equations (PWEs) in arbitrary orthorhombic anisotropic (OA) media usually have coupled P- and SV-wave modes. These coupled equations may introduce strong SV-wave artifacts and numerical instabilities in P-wave simulation results and reverse-time migration (RTM) profiles. However, pure acoustic wave equations (PAWEs) completely decouple the P-wave component from the full elastic wavefield and naturally solve all the aforementioned problems. In this article, we present a novel PAWE in arbitrary OA media and compare it with the conventional coupled PWEs. Through decomposing the solution of the corresponding eigenvalue equation for the original PWE into an ellipsoidal differential operator (EDO) and an ellipsoidal scalar operator (ESO), the new PAWE in time-space domain is constructed by applying the combination of these two solvable operators and can effectively describe P-wave features in arbitrary OA media. Furthermore, we adopt the optimal finite-difference method (FDM) to solve the newly derived PAWE. In addition, the three-dimensional (3D) hybrid absorbing boundary condition (HABC) with some reasonable modifications is developed for reducing artificial edge reflections in anisotropic media. To improve computational efficiency in 3D case, we adopt graphic processing unit (GPU) with Compute Unified Device Architecture (CUDA) instead of traditional central processing unit (CPU) architecture. Several numerical experiments for arbitrary OA models confirm that the proposed schemes can produce pure, stable and accurate P-wave modeling results and RTM images with higher computational efficiency. Moreover, the 3D numerical simulations can provide us with a comprehensive and real description of wave propagation.

  15. Rapid expansion method (REM) for time‐stepping in reverse time migration (RTM)

    KAUST Repository

    Pestana, Reynam C.

    2009-01-01

    We show that the wave equation solution using a conventional finite‐difference scheme, derived commonly by the Taylor series approach, can be derived directly from the rapid expansion method (REM). After some mathematical manipulation we consider an analytical approximation for the Bessel function where we assume that the time step is sufficiently small. From this derivation we find that if we consider only the first two Chebyshev polynomials terms in the rapid expansion method we can obtain the second order time finite‐difference scheme that is frequently used in more conventional finite‐difference implementations. We then show that if we use more terms from the REM we can obtain a more accurate time integration of the wave field. Consequently, we have demonstrated that the REM is more accurate than the usual finite‐difference schemes and it provides a wave equation solution which allows us to march in large time steps without numerical dispersion and is numerically stable. We illustrate the method with post and pre stack migration results.

  16. High-resolution and super stacking of time-reversal mirrors in locating seismic sources

    KAUST Repository

    Cao, Weiping

    2011-07-08

    Time reversal mirrors can be used to backpropagate and refocus incident wavefields to their actual source location, with the subsequent benefits of imaging with high-resolution and super-stacking properties. These benefits of time reversal mirrors have been previously verified with computer simulations and laboratory experiments but not with exploration-scale seismic data. We now demonstrate the high-resolution and the super-stacking properties in locating seismic sources with field seismic data that include multiple scattering. Tests on both synthetic data and field data show that a time reversal mirror has the potential to exceed the Rayleigh resolution limit by factors of 4 or more. Results also show that a time reversal mirror has a significant resilience to strong Gaussian noise and that accurate imaging of source locations from passive seismic data can be accomplished with traces having signal-to-noise ratios as low as 0.001. Synthetic tests also demonstrate that time reversal mirrors can sometimes enhance the signal by a factor proportional to the square root of the product of the number of traces, denoted as N and the number of events in the traces. This enhancement property is denoted as super-stacking and greatly exceeds the classical signal-to-noise enhancement factor of. High-resolution and super-stacking are properties also enjoyed by seismic interferometry and reverse-time migration with the exact velocity model. © 2011 European Association of Geoscientists & Engineers.

  17. MiR-200c suppresses the migration of retinoblastoma cells by reversing epithelial mesenchymal transition

    Directory of Open Access Journals (Sweden)

    Xiao-Lei Shao

    2017-08-01

    Full Text Available AIM: To analyze the relationship between clinical features and epithelial mesenchymal transition (EMT in retinoblastoma (RB, further to investigate whether miR-200c regulates the EMT and migration of RB cells. METHODS: Expression of EMT-related markers and tumor-related factors were detected by immuno-histochemistry analysis in RB tissue from 29 cases. Correlations between their expression and clinical characteristics were analyzed. The regulation effects of miR-200c on EMT-related markers, tumor-related factors were observed in mRNA level and protein level by real-time polymerase chain reaction (PCR and Western blot, respectively, in Y79 and Weri-rb1 cells. Its effects on migration force of these RB cell lines were also detected with Transwell test. RESULTS: Lower expression of E-cadherin was present in the cases with malignant prognosis. MiR-200c promoted the expression of E-cadherin and decreased the expression of Vimentin and N-cadherin in Y79 and Weri-rb1 cells. Migration force of RB cells could be inhibited by miR-200c. CONCLUSION: EMT might be associated with bad prognosis in RB. MiR-200c suppresses the migration of retinoblastomatous cells by reverse EMT.

  18. Timing of seasonal migration in mule deer: effects of climate, plant phenology, and life-history characteristics

    Science.gov (United States)

    Monteith, Kevin L.; Bleich, Vernon C.; Stephenson, Thomas R.; Pierce, Beck M.; Conner, Mary M.; Klaver, Robert W.; Bowyer, R. Terry

    2011-01-01

    Phenological events of plants and animals are sensitive to climatic processes. Migration is a life-history event exhibited by most large herbivores living in seasonal environments, and is thought to occur in response to dynamics of forage and weather. Decisions regarding when to migrate, however, may be affected by differences in life-history characteristics of individuals. Long-term and intensive study of a population of mule deer (Odocoileus hemionus) in the Sierra Nevada, California, USA, allowed us to document patterns of migration during 11 years that encompassed a wide array of environmental conditions. We used two new techniques to properly account for interval-censored data and disentangle effects of broad-scale climate, local weather patterns, and plant phenology on seasonal patterns of migration, while incorporating effects of individual life-history characteristics. Timing of autumn migration varied substantially among individual deer, but was associated with the severity of winter weather, and in particular, snow depth and cold temperatures. Migratory responses to winter weather, however, were affected by age, nutritional condition, and summer residency of individual females. Old females and those in good nutritional condition risked encountering severe weather by delaying autumn migration, and were thus risk-prone with respect to the potential loss of foraging opportunities in deep snow compared with young females and those in poor nutritional condition. Females that summered on the west side of the crest of the Sierra Nevada delayed autumn migration relative to east-side females, which supports the influence of the local environment on timing of migration. In contrast, timing of spring migration was unrelated to individual life-history characteristics, was nearly twice as synchronous as autumn migration, differed among years, was related to the southern oscillation index, and was influenced by absolute snow depth and advancing phenology of plants

  19. Three-dimensional seismic depth migration

    Science.gov (United States)

    Zhou, Hongbo

    1998-12-01

    One-pass 3-D modeling and migration for poststack seismic data may be implemented by replacing the traditional 45sp° one-way wave equation (a third-order partial differential equation) with a pair of second and first order partial differential equations. Except for an extra correction term, the resulting second order equation has a form similar to Claerbout's 15sp° one-way wave equation, which is known to have a nearly circular horizontal impulse response. In this approach, there is no need to compensate for splitting errors. Numerical tests on synthetic data show that this algorithm has the desirable attributes of being second-order in accuracy and economical to solve. A modification of the Crank-Nicholson implementation maintains stability. Absorbing boundary conditions play an important role in one-way wave extrapolations by reducing reflections at grid edges. Clayton and Engquist's 2-D absorbing boundary conditions for one-way wave extrapolation by depth-stepping in the frequency domain are extended to 3-D using paraxial approximations of the scalar wave equation. Internal consistency is retained by incorporating the interior extrapolation equation with the absorbing boundary conditions. Numerical schemes are designed to make the proposed absorbing boundary conditions both mathematically correct and efficient with negligible extra cost. Synthetic examples illustrate the effectiveness of the algorithm for extrapolation with the 3-D 45sp° one-way wave equation. Frequency-space domain Butterworth and Chebyshev dip filters are implemented. By regrouping the product terms in the filter transfer function into summations, a cascaded (serial) Butterworth dip filter can be made parallel. A parallel Chebyshev dip filter can be similarly obtained, and has the same form as the Butterworth filter; but has different coeffcients. One of the advantages of the Chebyshev filter is that it has a sharper transition zone than that of Butterworth filter of the same order. Both

  20. A reverse signaling pathway downstream of Sema4A controls cell migration via Scrib.

    Science.gov (United States)

    Sun, Tianliang; Yang, Lida; Kaur, Harmandeep; Pestel, Jenny; Looso, Mario; Nolte, Hendrik; Krasel, Cornelius; Heil, Daniel; Krishnan, Ramesh K; Santoni, Marie-Josée; Borg, Jean-Paul; Bünemann, Moritz; Offermanns, Stefan; Swiercz, Jakub M; Worzfeld, Thomas

    2017-01-02

    Semaphorins comprise a large family of ligands that regulate key cellular functions through their receptors, plexins. In this study, we show that the transmembrane semaphorin 4A (Sema4A) can also function as a receptor, rather than a ligand, and transduce signals triggered by the binding of Plexin-B1 through reverse signaling. Functionally, reverse Sema4A signaling regulates the migration of various cancer cells as well as dendritic cells. By combining mass spectrometry analysis with small interfering RNA screening, we identify the polarity protein Scrib as a downstream effector of Sema4A. We further show that binding of Plexin-B1 to Sema4A promotes the interaction of Sema4A with Scrib, thereby removing Scrib from its complex with the Rac/Cdc42 exchange factor βPIX and decreasing the activity of the small guanosine triphosphatase Rac1 and Cdc42. Our data unravel a role for Plexin-B1 as a ligand and Sema4A as a receptor and characterize a reverse signaling pathway downstream of Sema4A, which controls cell migration. © 2017 Sun et al.

  1. Solar Open Flux Migration from Pole to Pole: Magnetic Field Reversal.

    Science.gov (United States)

    Huang, G-H; Lin, C-H; Lee, L C

    2017-08-25

    Coronal holes are solar regions with low soft X-ray or low extreme ultraviolet intensities. The magnetic fields from coronal holes extend far away from the Sun, and thus they are identified as regions with open magnetic field lines. Coronal holes are concentrated in the polar regions during the sunspot minimum phase, and spread to lower latitude during the rising phase of solar activity. In this work, we identify coronal holes with outward and inward open magnetic fluxes being in the opposite poles during solar quiet period. We find that during the sunspot rising phase, the outward and inward open fluxes perform pole-to-pole trans-equatorial migrations in opposite directions. The migration of the open fluxes consists of three parts: open flux areas migrating across the equator, new open flux areas generated in the low latitude and migrating poleward, and new open flux areas locally generated in the polar region. All three components contribute to the reversal of magnetic polarity. The percentage of contribution from each component is different for different solar cycle. Our results also show that the sunspot number is positively correlated with the lower-latitude open magnetic flux area, but negatively correlated with the total open flux area.

  2. Common-image gathers in the offset domain from reverse-time migration

    KAUST Repository

    Zhan, Ge; Zhang, Minyu

    2014-01-01

    Kirchhoff migration is flexible to output common-image gathers (CIGs) in the offset domain by imaging data with different offsets separately. These CIGs supply important information for velocity model updates and amplitude-variation-with-offset (AVO

  3. Anatomy of the western Java plate interface from depth-migrated seismic images

    OpenAIRE

    Kopp, Heidrun; Hindle, David; Klaeschen, Dirk; Oncken, O.; Scholl, D.

    2009-01-01

    Newly pre-stack depth-migrated seismic images resolve the structural details of the western Java forearc and plate interface. The structural segmentation of the forearc into discrete mechanical domains correlates with distinct deformation styles. Approximately 2/3 of the trench sediment fill is detached and incorporated into frontal prism imbricates, while the floor sequence is underthrust beneath the décollement. Western Java, however, differs markedly from margins such as Nankai or Barbados...

  4. Mitigation of artifacts in rtm with migration kernel decomposition

    KAUST Repository

    Zhan, Ge; Schuster, Gerard T.

    2012-01-01

    The migration kernel for reverse-time migration (RTM) can be decomposed into four component kernels using Born scattering and migration theory. Each component kernel has a unique physical interpretation and can be interpreted differently

  5. Time-of-flight depth image enhancement using variable integration time

    Science.gov (United States)

    Kim, Sun Kwon; Choi, Ouk; Kang, Byongmin; Kim, James Dokyoon; Kim, Chang-Yeong

    2013-03-01

    Time-of-Flight (ToF) cameras are used for a variety of applications because it delivers depth information at a high frame rate. These cameras, however, suffer from challenging problems such as noise and motion artifacts. To increase signal-to-noise ratio (SNR), the camera should calculate a distance based on a large amount of infra-red light, which needs to be integrated over a long time. On the other hand, the integration time should be short enough to suppress motion artifacts. We propose a ToF depth imaging method to combine advantages of short and long integration times exploiting an imaging fusion scheme proposed for color imaging. To calibrate depth differences due to the change of integration times, a depth transfer function is estimated by analyzing the joint histogram of depths in the two images of different integration times. The depth images are then transformed into wavelet domains and fused into a depth image with suppressed noise and low motion artifacts. To evaluate the proposed method, we captured a moving bar of a metronome with different integration times. The experiment shows the proposed method could effectively remove the motion artifacts while preserving high SNR comparable to the depth images acquired during long integration time.

  6. Introduction to time reversal theory

    International Nuclear Information System (INIS)

    Henley, E.M.

    1987-01-01

    Theory and reaction mechanisms relevant to time reversal invariance are reviewed. Consequences of time reversal invariance are presented under the headings of CP tests, electromagnetic moments, weak emissions or absorptions, and scattering reactions. 8 refs., 4 figs

  7. Status of time reversal invariance

    International Nuclear Information System (INIS)

    Henley, E.M.

    1989-01-01

    Time Reversal Invariance is introduced, and theories for its violation are reviewed. The present experimental and theoretical status of Time Reversal Invariance and tests thereof will be presented. Possible future tests will be discussed. 30 refs., 2 figs., 1 tab

  8. Prestack exploding reflector modelling and migration for anisotropic media

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-10-09

    The double-square-root equation is commonly used to image data by downward continuation using one-way depth extrapolation methods. A two-way time extrapolation of the double-square-root-derived phase operator allows for up and downgoing wavefields but suffers from an essential singularity for horizontally travelling waves. This singularity is also associated with an anisotropic version of the double-square-root extrapolator. Perturbation theory allows us to separate the isotropic contribution, as well as the singularity, from the anisotropic contribution to the operator. As a result, the anisotropic residual operator is free from such singularities and can be applied as a stand alone operator to correct for anisotropy. We can apply the residual anisotropy operator even if the original prestack wavefield was obtained using, for example, reverse-time migration. The residual correction is also useful for anisotropic parameter estimation. Applications to synthetic data demonstrate the accuracy of the new prestack modelling and migration approach. It also proves useful in approximately imaging the Vertical Transverse Isotropic Marmousi model.

  9. Preliminary study of depleted uranium aerosol migration in soils

    International Nuclear Information System (INIS)

    Guo Zhiying; Yu Shui; Zheng Yonghong; Liang Yueqin; Liu Liping; Song Zhanjun; Zhao Fa

    2007-01-01

    Objective: To explore the depth of depleted uranium (DU) migration in six main kinds of Chinese soils and the pollution of the groundwater made by DU migration. Methods: With the circulating column model and the inductively coupled plasma-mass spectrometry (ICP-MS), concentration of uranium and the ratio of 235 U/ 238 U in different depth soils and in the corresponding filter liquids had been determined. Results: In the acid rain of pH 3.0, the migration depth of DU in the washed soil and brown soil were 6-8 cm and 4-6 cm, respectively. And with the increment of the acidity of the acid rain, the migration depth of DU in the soils was increased. The migration depth of DU in the 6 types soils was 0-4 cm. The distributed factor between the liquids and soils was lower than 0.004, and the concentration of uranium in the filter liquids was 0.05-10.33 μg/L. Conclusions: The migration depth of DU in soils can be increased by the acid rain, and the majority of DU was stayed in the upper soils and DU pollution might exist for long time, but the probability of groundwater pollution was low. The migration capability of DU was interrelated with the concentration of organic compound in the soils. (authors)

  10. Visualizing Human Migration Trhough Space and Time

    Science.gov (United States)

    Zambotti, G.; Guan, W.; Gest, J.

    2015-07-01

    Human migration has been an important activity in human societies since antiquity. Since 1890, approximately three percent of the world's population has lived outside of their country of origin. As globalization intensifies in the modern era, human migration persists even as governments seek to more stringently regulate flows. Understanding this phenomenon, its causes, processes and impacts often starts from measuring and visualizing its spatiotemporal patterns. This study builds a generic online platform for users to interactively visualize human migration through space and time. This entails quickly ingesting human migration data in plain text or tabular format; matching the records with pre-established geographic features such as administrative polygons; symbolizing the migration flow by circular arcs of varying color and weight based on the flow attributes; connecting the centroids of the origin and destination polygons; and allowing the user to select either an origin or a destination feature to display all flows in or out of that feature through time. The method was first developed using ArcGIS Server for world-wide cross-country migration, and later applied to visualizing domestic migration patterns within China between provinces, and between states in the United States, all through multiple years. The technical challenges of this study include simplifying the shapes of features to enhance user interaction, rendering performance and application scalability; enabling the temporal renderers to provide time-based rendering of features and the flow among them; and developing a responsive web design (RWD) application to provide an optimal viewing experience. The platform is available online for the public to use, and the methodology is easily adoptable to visualizing any flow, not only human migration but also the flow of goods, capital, disease, ideology, etc., between multiple origins and destinations across space and time.

  11. Multi-source least-squares migration of marine data

    KAUST Repository

    Wang, Xin

    2012-11-04

    Kirchhoff based multi-source least-squares migration (MSLSM) is applied to marine streamer data. To suppress the crosstalk noise from the excitation of multiple sources, a dynamic encoding function (including both time-shifts and polarity changes) is applied to the receiver side traces. Results show that the MSLSM images are of better quality than the standard Kirchhoff migration and reverse time migration images; moreover, the migration artifacts are reduced and image resolution is significantly improved. The computational cost of MSLSM is about the same as conventional least-squares migration, but its IO cost is significantly decreased.

  12. Time Reversal Migration for Passive Sources Using a Maximum Variance Imaging Condition

    KAUST Repository

    Wang, H.; Alkhalifah, Tariq Ali

    2017-01-01

    The conventional time-reversal imaging approach for micro-seismic or passive source location is based on focusing the back-propagated wavefields from each recorded trace in a source image. It suffers from strong background noise and limited acquisition aperture, which may create unexpected artifacts and cause error in the source location. To overcome such a problem, we propose a new imaging condition for microseismic imaging, which is based on comparing the amplitude variance in certain windows, and use it to suppress the artifacts as well as find the right location for passive sources. Instead of simply searching for the maximum energy point in the back-propagated wavefield, we calculate the amplitude variances over a window moving in both space and time axis to create a highly resolved passive event image. The variance operation has negligible cost compared with the forward/backward modeling operations, which reveals that the maximum variance imaging condition is efficient and effective. We test our approach numerically on a simple three-layer model and on a piece of the Marmousi model as well, both of which have shown reasonably good results.

  13. Time Reversal Migration for Passive Sources Using a Maximum Variance Imaging Condition

    KAUST Repository

    Wang, H.

    2017-05-26

    The conventional time-reversal imaging approach for micro-seismic or passive source location is based on focusing the back-propagated wavefields from each recorded trace in a source image. It suffers from strong background noise and limited acquisition aperture, which may create unexpected artifacts and cause error in the source location. To overcome such a problem, we propose a new imaging condition for microseismic imaging, which is based on comparing the amplitude variance in certain windows, and use it to suppress the artifacts as well as find the right location for passive sources. Instead of simply searching for the maximum energy point in the back-propagated wavefield, we calculate the amplitude variances over a window moving in both space and time axis to create a highly resolved passive event image. The variance operation has negligible cost compared with the forward/backward modeling operations, which reveals that the maximum variance imaging condition is efficient and effective. We test our approach numerically on a simple three-layer model and on a piece of the Marmousi model as well, both of which have shown reasonably good results.

  14. Reversible perspective and splitting in time.

    Science.gov (United States)

    Hart, Helen Schoenhals

    2012-01-01

    The element of time--the experience of it and the defensive use of it--is explored in conjunction with the use of reversible perspective as a psychotic defense. Clinical material from a long analysis illustrates how a psychotic patient used the reversible perspective, with its static splitting, to abolish the experience of time. When he improved and the reversible perspective became less effective for him, he replaced it with a more dynamic splitting mechanism using time gaps. With further improvement, the patient began to experience the passage of time, and along with it the excruciating pain of separation, envy, and loss.

  15. Mitigation of artifacts in rtm with migration kernel decomposition

    KAUST Repository

    Zhan, Ge

    2012-01-01

    The migration kernel for reverse-time migration (RTM) can be decomposed into four component kernels using Born scattering and migration theory. Each component kernel has a unique physical interpretation and can be interpreted differently. In this paper, we present a generalized diffraction-stack migration approach for reducing RTM artifacts via decomposition of migration kernel. The decomposition leads to an improved understanding of migration artifacts and, therefore, presents us with opportunities for improving the quality of RTM images.

  16. Least-squares migration of multisource data with a deblurring filter

    KAUST Repository

    Dai, Wei; Wang, Xin; Schuster, Gerard T.

    2011-01-01

    Least-squares migration (LSM) has been shown to be able to produce high-quality migration images, but its computational cost is considered to be too high for practical imaging. We have developed a multisource least-squares migration algorithm (MLSM) to increase the computational efficiency by using the blended sources processing technique. To expedite convergence, a multisource deblurring filter is used as a preconditioner to reduce the data residual. This MLSM algorithm is applicable with Kirchhoff migration, wave-equation migration, or reverse time migration, and the gain in computational efficiency depends on the choice of migration method. Numerical results with Kirchhoff LSM on the 2D SEG/EAGE salt model show that an accurate image is obtained by migrating a supergather of 320 phase-encoded shots. When the encoding functions are the same for every iteration, the input/output cost of MLSM is reduced by 320 times. Empirical results show that the crosstalk noise introduced by blended sources is more effectively reduced when the encoding functions are changed at every iteration. The analysis of signal-to-noise ratio (S/N) suggests that not too many iterations are needed to enhance the S/N to an acceptable level. Therefore, when implemented with wave-equation migration or reverse time migration methods, the MLSM algorithm can be more efficient than the conventional migration method. © 2011 Society of Exploration Geophysicists.

  17. Least-squares migration of multisource data with a deblurring filter

    KAUST Repository

    Dai, Wei

    2011-09-01

    Least-squares migration (LSM) has been shown to be able to produce high-quality migration images, but its computational cost is considered to be too high for practical imaging. We have developed a multisource least-squares migration algorithm (MLSM) to increase the computational efficiency by using the blended sources processing technique. To expedite convergence, a multisource deblurring filter is used as a preconditioner to reduce the data residual. This MLSM algorithm is applicable with Kirchhoff migration, wave-equation migration, or reverse time migration, and the gain in computational efficiency depends on the choice of migration method. Numerical results with Kirchhoff LSM on the 2D SEG/EAGE salt model show that an accurate image is obtained by migrating a supergather of 320 phase-encoded shots. When the encoding functions are the same for every iteration, the input/output cost of MLSM is reduced by 320 times. Empirical results show that the crosstalk noise introduced by blended sources is more effectively reduced when the encoding functions are changed at every iteration. The analysis of signal-to-noise ratio (S/N) suggests that not too many iterations are needed to enhance the S/N to an acceptable level. Therefore, when implemented with wave-equation migration or reverse time migration methods, the MLSM algorithm can be more efficient than the conventional migration method. © 2011 Society of Exploration Geophysicists.

  18. Village level inequality, migration and remittances in rural Mexico: How do they change over time?

    OpenAIRE

    Aslihan Arslan; J. Edward Taylor

    2010-01-01

    We analyze how migration prevalence and remittances shape income distribution using novel panel data that is nationally and regionally representative of rural Mexico. Employing a Gini decomposition and controlling for whole household migration (attrition), we find that migration prevalence has increased between 2002 and 2007 reversing the unequalizing effects of international remittances at the national level. We also analyze regional differences in the effects of remittances on inequality, a...

  19. Time reversibility in the quantum frame

    Energy Technology Data Exchange (ETDEWEB)

    Masot-Conde, Fátima [Escuela Superior Ingenieros, Dpt. Física Aplicada III, Universidad de Sevilla Isla Mágica, 41092- Sevilla (Spain)

    2014-12-04

    Classic Mechanics and Electromagnetism, conventionally taken as time-reversible, share the same concept of motion (either of mass or charge) as the basis of the time reversibility in their own fields. This paper focuses on the relationship between mobile geometry and motion reversibility. The goal is to extrapolate the conclusions to the quantum frame, where matter and radiation behave just as elementary mobiles. The possibility that the asymmetry of Time (Time’s arrow) is an effect of a fundamental quantum asymmetry of elementary particles, turns out to be a consequence of the discussion.

  20. De‐blending reverse‐time migration

    KAUST Repository

    Fei, Tong W.; Luo, Yi; Schuster, Gerard T.

    2010-01-01

    Reverse‐time migration (RTM), based on the full two‐way wave equation, has gained interest and become a popular imaging tool for complex structures in the last few years. The method is well‐known for its ability to better image the steeply dipping and overturned structures than the migration methods based on the one‐way wave equation extrapolation. However, the RTM image often contains low frequency and back‐scattering noise, and the imaging quality is sensitive to the migration velocity. In order to improve the RTM imaging quality and make the RTM image less sensitive to the velocity model, we developed an RTM de‐blending technique which separates upgoing and downgoing source and receiver wavefields, and then use them to construct final RTM images. Test results show that decomposed images obtained from only the downgoing source and receiver wavefields are less sensitive to velocity. It removes unwanted noise and migration artifacts from conventional RTM, and the imaging quality is greatly improved compared with a conventional RTM image.

  1. De‐blending reverse‐time migration

    KAUST Repository

    Fei, Tong W.

    2010-10-17

    Reverse‐time migration (RTM), based on the full two‐way wave equation, has gained interest and become a popular imaging tool for complex structures in the last few years. The method is well‐known for its ability to better image the steeply dipping and overturned structures than the migration methods based on the one‐way wave equation extrapolation. However, the RTM image often contains low frequency and back‐scattering noise, and the imaging quality is sensitive to the migration velocity. In order to improve the RTM imaging quality and make the RTM image less sensitive to the velocity model, we developed an RTM de‐blending technique which separates upgoing and downgoing source and receiver wavefields, and then use them to construct final RTM images. Test results show that decomposed images obtained from only the downgoing source and receiver wavefields are less sensitive to velocity. It removes unwanted noise and migration artifacts from conventional RTM, and the imaging quality is greatly improved compared with a conventional RTM image.

  2. SITE-94. Estimated rates of redox-front migration in granitic rocks

    International Nuclear Information System (INIS)

    Arthur, R.C.

    1996-10-01

    Analytical models for the rate of migration of oxidizing groundwaters are derived based on the stationary-state approximation to coupled fluid flow and water-rock interaction, and are constrained by molar concentrations of ferrous silicate, oxide, and sulfide minerals in the granites and associated fractures comprising the host rock beneath Aespoe. Model results indicate that small amounts of ferrous minerals in Aespoe granites and fractures will retard the downward migration of oxidizing conditions that could be generated by infiltration of glacial meltwaters during periods of glacial maxima and retreat. Calculated front velocities are retarded relative to Darcy fluxes observed in conductive fracture zones at Aespoe (0.3 to 3 m/y) by factors ranging from 10 -3 to 10 -4 . Corresponding times for the front to migrate 500 m vary from 5,100 to 4,400,000 years. Retardation efficiency depends on mineralogy and decreases in the order: fractures > altered granites > unaltered granite. The most conductive structures in these rocks are therefore the most efficient in limiting the rate of front migration. Periods of recharge during glaciation are comparable to times required for an oxidizing front to migrate to repository levels. This suggests an oxidizing front could reach repository depths during a single glacial-interglacial event. The persistence of oxidizing conditions could be relatively short lived, however, because reversal of flow conditions driven by the advance and retreat of ice sheets could cause reducing conditions to be restored. 27 refs

  3. Phase lag control of tidally reversing mega-ripple geometry and bed stress in tidal inlets

    Science.gov (United States)

    Traykovski, P.

    2016-02-01

    Recent observations in the Columbia River Mouth, New River Inlet, and Wasque Shoals have shown that tidally reversing mega-ripples are an ubiquitous bedform morphology in energetic tidal inlets. As the name implies, these bedforms reverse asymmetry and migration direction in each half tidal cycle. With wavelengths of 2 to 5 m and heights of 0.2 to 0.5 m, these bedforms are larger than current formed ripples, but smaller than dunes. Unlike dunes which have a depth dependent geometry, observations indicate the tidally reversing mega-ripples geometry is related to the time dependent tidal flow and independent of depth. Previous empirical relations for predicting the geometry of ripples or dunes do not successfully predict the geometry of these features. A time dependent geometric model was developed that accounts for the reversal of migration and asymmetry to successfully predict bedform geometry. The model requires sufficient sediment transport in each half tidal cycle to reverse the asymmetry before the bedforms begin to grow. Both the observations and model indicate that the complete reversal of asymmetry and development of a steep lee face occurs near or after maximum flow in each half tidal cycle. This phase lag in bedform response to tidal forcing also has important implications for bed stress in tidal inlets. Observations of frictional drag in the Columbia River mouth based on a tidal momentum balance of surface slope over 10 km regressed against quadratic near bed velocity show drag coefficients that fall off as CD U-1.4. Reynolds stress measurements performed using the dual ADV differencing technique show similar relations. The Reynolds stress measurements also show a dramatic asymmetry between accelerating flows and decelerating flows with a factor of 5 increase during deceleration. Pulse coherent Doppler profiles of near bed turbulence indicate that the turbulence is dominated by energetic fluctuations in separation zones downstream of steep lee faces. The

  4. Acoustic reverse-time migration using GPU card and POSIX thread based on the adaptive optimal finite-difference scheme and the hybrid absorbing boundary condition

    Science.gov (United States)

    Cai, Xiaohui; Liu, Yang; Ren, Zhiming

    2018-06-01

    Reverse-time migration (RTM) is a powerful tool for imaging geologically complex structures such as steep-dip and subsalt. However, its implementation is quite computationally expensive. Recently, as a low-cost solution, the graphic processing unit (GPU) was introduced to improve the efficiency of RTM. In the paper, we develop three ameliorative strategies to implement RTM on GPU card. First, given the high accuracy and efficiency of the adaptive optimal finite-difference (FD) method based on least squares (LS) on central processing unit (CPU), we study the optimal LS-based FD method on GPU. Second, we develop the CPU-based hybrid absorbing boundary condition (ABC) to the GPU-based one by addressing two issues of the former when introduced to GPU card: time-consuming and chaotic threads. Third, for large-scale data, the combinatorial strategy for optimal checkpointing and efficient boundary storage is introduced for the trade-off between memory and recomputation. To save the time of communication between host and disk, the portable operating system interface (POSIX) thread is utilized to create the other CPU core at the checkpoints. Applications of the three strategies on GPU with the compute unified device architecture (CUDA) programming language in RTM demonstrate their efficiency and validity.

  5. Leukotriene B4-Neutrophil Elastase Axis Drives Neutrophil Reverse Transendothelial Cell Migration In Vivo.

    Science.gov (United States)

    Colom, Bartomeu; Bodkin, Jennifer V; Beyrau, Martina; Woodfin, Abigail; Ody, Christiane; Rourke, Claire; Chavakis, Triantafyllos; Brohi, Karim; Imhof, Beat A; Nourshargh, Sussan

    2015-06-16

    Breaching endothelial cells (ECs) is a decisive step in the migration of leukocytes from the vascular lumen to the extravascular tissue, but fundamental aspects of this response remain largely unknown. We have previously shown that neutrophils can exhibit abluminal-to-luminal migration through EC junctions within mouse cremasteric venules and that this response is elicited following reduced expression and/or functionality of the EC junctional adhesion molecule-C (JAM-C). Here we demonstrate that the lipid chemoattractant leukotriene B4 (LTB4) was efficacious at causing loss of venular JAM-C and promoting neutrophil reverse transendothelial cell migration (rTEM) in vivo. Local proteolytic cleavage of EC JAM-C by neutrophil elastase (NE) drove this cascade of events as supported by presentation of NE to JAM-C via the neutrophil adhesion molecule Mac-1. The results identify local LTB4-NE axis as a promoter of neutrophil rTEM and provide evidence that this pathway can propagate a local sterile inflammatory response to become systemic. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Fitness consequences of timing of migration and breeding in cormorants.

    Directory of Open Access Journals (Sweden)

    Phillip Gienapp

    Full Text Available In most bird species timing of breeding affects reproductive success whereby early breeding is favoured. In migratory species migration time, especially arrival at the breeding grounds, and breeding time are expected to be correlated. Consequently, migration time should also have fitness consequences. However, in contrast to breeding time, evidence for fitness consequences of migration time is much more limited. Climate change has been shown to negatively affect the synchrony between trophic levels thereby leading to directional selection on timing but again direct evidence in avian migration time is scarce. We here analysed fitness consequences of migration and breeding time in great cormorants and tested whether climate change has led to increased selection on timing using a long-term data set from a breeding colony on the island of Vorsø (Denmark. Reproductive success, measured as number of fledglings, correlated with breeding time and arrival time at the colony and declined during the season. This seasonal decline became steeper during the study period for both migration and breeding time and was positively correlated to winter/spring climate, i.e. selection was stronger after warmer winters/springs. However, the increasing selection pressure on timing seems to be unrelated to climate change as the climatic variables that were related to selection strength did not increase during the study period. There is indirect evidence that phenology or abundances of preferred prey species have changed which could have altered selection on timing of migration and breeding.

  7. Time-reversal symmetry breaking in quantum billiards

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Florian

    2009-01-26

    The present doctoral thesis describes experimentally measured properties of the resonance spectra of flat microwave billiards with partially broken timereversal invariance induced by an embedded magnetized ferrite. A vector network analyzer determines the complex scattering matrix elements. The data is interpreted in terms of the scattering formalism developed in nuclear physics. At low excitation frequencies the scattering matrix displays isolated resonances. At these the effect of the ferrite on isolated resonances (singlets) and pairs of nearly degenerate resonances (doublets) is investigated. The hallmark of time-reversal symmetry breaking is the violation of reciprocity, i.e. of the symmetry of the scattering matrix. One finds that reciprocity holds in singlets; it is violated in doublets. This is modeled by an effective Hamiltonian of the resonator. A comparison of the model to the data yields time-reversal symmetry breaking matrix elements in the order of the level spacing. Their dependence on the magnetization of the ferrite is understood in terms of its magnetic properties. At higher excitation frequencies the resonances overlap and the scattering matrix elements fluctuate irregularly (Ericson fluctuations). They are analyzed in terms of correlation functions. The data are compared to three models based on random matrix theory. The model by Verbaarschot, Weidenmueller and Zirnbauer describes time-reversal invariant scattering processes. The one by Fyodorov, Savin and Sommers achieves the same for systems with complete time-reversal symmetry breaking. An extended model has been developed that accounts for partial breaking of time-reversal invariance. This extended model is in general agreement with the data, while the applicability of the other two models is limited. The cross-correlation function between forward and backward reactions determines the time-reversal symmetry breaking matrix elements of the Hamiltonian to up to 0.3 mean level spacings. Finally

  8. Time-reversal symmetry breaking in quantum billiards

    International Nuclear Information System (INIS)

    Schaefer, Florian

    2009-01-01

    The present doctoral thesis describes experimentally measured properties of the resonance spectra of flat microwave billiards with partially broken timereversal invariance induced by an embedded magnetized ferrite. A vector network analyzer determines the complex scattering matrix elements. The data is interpreted in terms of the scattering formalism developed in nuclear physics. At low excitation frequencies the scattering matrix displays isolated resonances. At these the effect of the ferrite on isolated resonances (singlets) and pairs of nearly degenerate resonances (doublets) is investigated. The hallmark of time-reversal symmetry breaking is the violation of reciprocity, i.e. of the symmetry of the scattering matrix. One finds that reciprocity holds in singlets; it is violated in doublets. This is modeled by an effective Hamiltonian of the resonator. A comparison of the model to the data yields time-reversal symmetry breaking matrix elements in the order of the level spacing. Their dependence on the magnetization of the ferrite is understood in terms of its magnetic properties. At higher excitation frequencies the resonances overlap and the scattering matrix elements fluctuate irregularly (Ericson fluctuations). They are analyzed in terms of correlation functions. The data are compared to three models based on random matrix theory. The model by Verbaarschot, Weidenmueller and Zirnbauer describes time-reversal invariant scattering processes. The one by Fyodorov, Savin and Sommers achieves the same for systems with complete time-reversal symmetry breaking. An extended model has been developed that accounts for partial breaking of time-reversal invariance. This extended model is in general agreement with the data, while the applicability of the other two models is limited. The cross-correlation function between forward and backward reactions determines the time-reversal symmetry breaking matrix elements of the Hamiltonian to up to 0.3 mean level spacings. Finally

  9. Migration and first-time parenthood: Evidence from Kyrgyzstan

    Directory of Open Access Journals (Sweden)

    Gunnar Andersson

    2007-12-01

    Full Text Available This article investigates the reproductive behavior of young women and men in the post-Soviet Central Asian republic of Kyrgyzstan, focusing on the link between migration and fertility. We employ event-history techniques to retrospective data from the 'Marriage, Fertility, and Migration' survey conducted in Northern Kyrgyzstan in 2005 to study patterns in first-time parenthood. We demonstrate the extent to which internal migration is related to family formation and to the patterns of becoming a parent after resettlement. We gain deeper insights into demographic behavior by considering information on factors such as the geographical destination of migration and retrospectively stated motives for reported moves. In addition, our study reveals clear ethno-cultural differences in the timing of entry into parenthood in Kyrgyzstan.

  10. Time in Science: Reversibility vs. Irreversibility

    Science.gov (United States)

    Pomeau, Yves

    To discuss properly the question of irreversibility one needs to make a careful distinction between reversibility of the equations of motion and the choice of the initial conditions. This is also relevant for the rather confuse philosophy of the wave packet reduction in quantum mechanics. The explanation of this reduction requires also to make precise assumptions on what initial data are accessible in our world. Finally I discuss how a given (and long) time record can be shown in an objective way to record an irreversible or reversible process. Or: can a direction of time be derived from its analysis? This leads quite naturally to examine if there is a possible spontaneous breaking of the time reversal symmetry in many body systems, a symmetry breaking that would be put in evidence objectively by looking at certain specific time correlations.

  11. Seismic Velocity Structure and Improved Seismic Image of the Southern Depression of the Tainan Basin from Pre-Stack Depth Migration

    Directory of Open Access Journals (Sweden)

    Qunshu Tang Chan Zheng

    2010-01-01

    Full Text Available In this paper, a velocity model of the Southern Depression of the Tainan Basin is obtained along with its migrated image from an iterative pre-stack depth migration approach. The Cenozoic strata are uniformly layered with velocities varying from ~1.8 to ~3.6 km s-1. However, the general velocity is slightly lower in the NW segment than the SE. Both fractures and burial depth might be the controls of their seismic velocities. There is an unconformable contact between the Cenozoic and underlying Mesozoic strata with an abrupt velocity jump from ~3.2 to ~4.3 km s-1. The Mesozoic strata are recognized with acoustically distinct reflection patterns (chaotic, deformed and discontinuous and complex internal structures (uplift, folds and faults. Their interval velocities range from ~4.3 to ~4.7 km s-1 within a depth from ~3.5 down to ~12.5 km, and the maximum depositional thickness reaches up to 6.5 km. Multiple tectonic events such as collision, subsidence and uplift might be responsible for the complexity of the Mesozoic strata.

  12. Leukotriene B4-Neutrophil Elastase Axis Drives Neutrophil Reverse Transendothelial Cell Migration In Vivo

    Science.gov (United States)

    Colom, Bartomeu; Bodkin, Jennifer V.; Beyrau, Martina; Woodfin, Abigail; Ody, Christiane; Rourke, Claire; Chavakis, Triantafyllos; Brohi, Karim; Imhof, Beat A.; Nourshargh, Sussan

    2015-01-01

    Summary Breaching endothelial cells (ECs) is a decisive step in the migration of leukocytes from the vascular lumen to the extravascular tissue, but fundamental aspects of this response remain largely unknown. We have previously shown that neutrophils can exhibit abluminal-to-luminal migration through EC junctions within mouse cremasteric venules and that this response is elicited following reduced expression and/or functionality of the EC junctional adhesion molecule-C (JAM-C). Here we demonstrate that the lipid chemoattractant leukotriene B4 (LTB4) was efficacious at causing loss of venular JAM-C and promoting neutrophil reverse transendothelial cell migration (rTEM) in vivo. Local proteolytic cleavage of EC JAM-C by neutrophil elastase (NE) drove this cascade of events as supported by presentation of NE to JAM-C via the neutrophil adhesion molecule Mac-1. The results identify local LTB4-NE axis as a promoter of neutrophil rTEM and provide evidence that this pathway can propagate a local sterile inflammatory response to become systemic. PMID:26047922

  13. Optical Time Reversal from Time-Dependent Epsilon-Near-Zero Media

    Science.gov (United States)

    Vezzoli, Stefano; Bruno, Vincenzo; DeVault, Clayton; Roger, Thomas; Shalaev, Vladimir M.; Boltasseva, Alexandra; Ferrera, Marcello; Clerici, Matteo; Dubietis, Audrius; Faccio, Daniele

    2018-01-01

    Materials with a spatially uniform but temporally varying optical response have applications ranging from magnetic field-free optical isolators to fundamental studies of quantum field theories. However, these effects typically become relevant only for time variations oscillating at optical frequencies, thus presenting a significant hurdle that severely limits the realization of such conditions. Here we present a thin-film material with a permittivity that pulsates (uniformly in space) at optical frequencies and realizes a time-reversing medium of the form originally proposed by Pendry [Science 322, 71 (2008), 10.1126/science.1162087]. We use an optically pumped, 500 nm thick film of epsilon-near-zero (ENZ) material based on Al-doped zinc oxide. An incident probe beam is both negatively refracted and time reversed through a reflected phase-conjugated beam. As a result of the high nonlinearity and the refractive index that is close to zero, the ENZ film leads to time reversed beams (simultaneous negative refraction and phase conjugation) with near-unit efficiency and greater-than-unit internal conversion efficiency. The ENZ platform therefore presents the time-reversal features required, e.g., for efficient subwavelength imaging, all-optical isolators and fundamental quantum field theory studies.

  14. Inhaled tolafentrine reverses pulmonary vascular remodeling via inhibition of smooth muscle cell migration

    Directory of Open Access Journals (Sweden)

    Weissmann Norbert

    2005-11-01

    Full Text Available Abstract Background The aim of the study was to assess the chronic effects of combined phosphodiesterase 3/4 inhibitor tolafentrine, administered by inhalation, during monocrotaline-induced pulmonary arterial hypertension (PAH in rats. Methods CD rats were given a single subcutaneous injection of monocrotaline to induce PAH. Four weeks after, rats were subjected to inhalation of tolafentrine or sham nebulization in an unrestrained, whole body aerosol exposure system. In these animals (i the acute pulmonary vasodilatory efficacy of inhaled tolafentrine (ii the anti-remodeling effect of long-term inhalation of tolafentrine (iii the effects of tolafentrine on the expression profile of 96 genes encoding cell adhesion and extracellular matrix regulation were examined. In addition, the inhibitory effect of tolafentrine on ex vivo isolated pulmonary artery SMC cell migration was also investigated. Results Monocrotaline injection provoked severe PAH (right ventricular systolic pressure increased from 25.9 ± 4.0 to 68.9 ± 3.2 after 4 weeks and 74.9 ± 5.1 mmHg after 6 weeks, cardiac output depression and right heart hypertrophy. The media thickness of the pulmonary arteries and the proportion of muscularization of small precapillary resistance vessels increased dramatically, and the migratory response of ex-vivo isolated pulmonary artery smooth muscle cells (PASMC was increased. Micro-arrays and subsequent confirmation with real time PCR demonstrated upregulation of several extracellular matrix regulation and adhesion genes, such as matrixmetalloproteases (MMP 2, 8, 9, 10, 11, 12, 20, Icam, Itgax, Plat and serpinb2. When chronically nebulized from day 28 to 42 (12 daily aerosol maneuvers, after full establishment of severe pulmonary hypertension, tolafentrine reversed about 60% of all hemodynamic abnormalities, right heart hypertrophy and monocrotaline-induced structural lung vascular changes, including the proportion of pulmonary artery

  15. Skeletonized Least Squares Wave Equation Migration

    KAUST Repository

    Zhan, Ge

    2010-10-17

    The theory for skeletonized least squares wave equation migration (LSM) is presented. The key idea is, for an assumed velocity model, the source‐side Green\\'s function and the geophone‐side Green\\'s function are computed by a numerical solution of the wave equation. Only the early‐arrivals of these Green\\'s functions are saved and skeletonized to form the migration Green\\'s function (MGF) by convolution. Then the migration image is obtained by a dot product between the recorded shot gathers and the MGF for every trial image point. The key to an efficient implementation of iterative LSM is that at each conjugate gradient iteration, the MGF is reused and no new finitedifference (FD) simulations are needed to get the updated migration image. It is believed that this procedure combined with phase‐encoded multi‐source technology will allow for the efficient computation of wave equation LSM images in less time than that of conventional reverse time migration (RTM).

  16. Time reversal communication system

    Science.gov (United States)

    Candy, James V.; Meyer, Alan W.

    2008-12-02

    A system of transmitting a signal through a channel medium comprises digitizing the signal, time-reversing the digitized signal, and transmitting the signal through the channel medium. The channel medium may be air, earth, water, tissue, metal, and/or non-metal.

  17. Time reversibility of quantum diffusion in small-world networks

    Science.gov (United States)

    Han, Sung-Guk; Kim, Beom Jun

    2012-02-01

    We study the time-reversal dynamics of a tight-binding electron in the Watts-Strogatz (WS) small-world networks. The localized initial wave packet at time t = 0 diffuses as time proceeds until the time-reversal operation, together with the momentum perturbation of the strength η, is made at the reversal time T. The time irreversibility is measured by I = |Π( t = 2 T) - Π( t = 0)|, where Π is the participation ratio gauging the extendedness of the wavefunction and for convenience, t is measured forward even after the time reversal. When η = 0, the time evolution after T makes the wavefunction at t = 2 T identical to the one at t = 0, and we find I = 0, implying a null irreversibility or a complete reversibility. On the other hand, as η is increased from zero, the reversibility becomes weaker, and we observe enhancement of the irreversibility. We find that I linearly increases with increasing η in the weakly-perturbed region, and that the irreversibility is much stronger in the WS network than in the local regular network.

  18. Current status of gas migration and swelling experiments using engineering scale model for immediate depth disposal in Japan

    International Nuclear Information System (INIS)

    Higashihara, Tomohiro; Ono, Makoto; Kawaragi, Chie; Saito, Shigeyuki

    2010-01-01

    In intermediate depth disposal facility of radioactive waste in Japan, waste is surrounded with bentonite layer to retard interaction of the waste and groundwater, because the bentonite layer saturated with the groundwater has very low hydraulic conductivity. On the other hand, it is important to confirm stability of barrier system for stress generated together with swelling of the bentonite and to understand effect of increase of gas pressure because of generation of hydrogen gas by corrosion of metallic waste. To understand and evaluate the swelling behavior of the bentonite layer, JNES carries out the experiment. In the experiments, we carry out the swelling experiment to examine the swelling behavior of the bentonite layer and the gas migration experiment to understand the gas migration behavior in the bentonite layer, using engineering scale model of the disposal facility. The swelling experiment has been in operation since June 2010. After this experiment, the gas migration experiment will start in July 2011. (orig.)

  19. Coherence measures in automatic time-migration velocity analysis

    International Nuclear Information System (INIS)

    Maciel, Jonathas S; Costa, Jessé C; Schleicher, Jörg

    2012-01-01

    Time-migration velocity analysis can be carried out automatically by evaluating the coherence of migrated seismic events in common-image gathers (CIGs). The performance of gradient methods for automatic time-migration velocity analysis depends on the coherence measures used as the objective function. We compare the results of four different coherence measures, being conventional semblance, differential semblance, an extended differential semblance using differences of more distant image traces and the product of the latter with conventional semblance. In our numerical experiments, the objective functions based on conventional semblance and on the product of conventional semblance with extended differential semblance provided the best velocity models, as evaluated by the flatness of the resulting CIGs. The method can be easily extended to anisotropic media. (paper)

  20. Time reversal imaging, Inverse problems and Adjoint Tomography}

    Science.gov (United States)

    Montagner, J.; Larmat, C. S.; Capdeville, Y.; Kawakatsu, H.; Fink, M.

    2010-12-01

    With the increasing power of computers and numerical techniques (such as spectral element methods), it is possible to address a new class of seismological problems. The propagation of seismic waves in heterogeneous media is simulated more and more accurately and new applications developed, in particular time reversal methods and adjoint tomography in the three-dimensional Earth. Since the pioneering work of J. Claerbout, theorized by A. Tarantola, many similarities were found between time-reversal methods, cross-correlations techniques, inverse problems and adjoint tomography. By using normal mode theory, we generalize the scalar approach of Draeger and Fink (1999) and Lobkis and Weaver (2001) to the 3D- elastic Earth, for theoretically understanding time-reversal method on global scale. It is shown how to relate time-reversal methods on one hand, with auto-correlations of seismograms for source imaging and on the other hand, with cross-correlations between receivers for structural imaging and retrieving Green function. Time-reversal methods were successfully applied in the past to acoustic waves in many fields such as medical imaging, underwater acoustics, non destructive testing and to seismic waves in seismology for earthquake imaging. In the case of source imaging, time reversal techniques make it possible an automatic location in time and space as well as the retrieval of focal mechanism of earthquakes or unknown environmental sources . We present here some applications at the global scale of these techniques on synthetic tests and on real data, such as Sumatra-Andaman (Dec. 2004), Haiti (Jan. 2010), as well as glacial earthquakes and seismic hum.

  1. Migration and risk: net migration in marginal ecosystems and hazardous areas

    International Nuclear Information System (INIS)

    De Sherbinin, Alex; Levy, Marc; Adamo, Susana; MacManus, Kytt; Yetman, Greg; Mara, Valentina; Razafindrazay, Liana; Aichele, Cody; Pistolesi, Linda; Goodrich, Benjamin; Srebotnjak, Tanja

    2012-01-01

    The potential for altered ecosystems and extreme weather events in the context of climate change has raised questions concerning the role that migration plays in either increasing or reducing risks to society. Using modeled data on net migration over three decades from 1970 to 2000, we identify sensitive ecosystems and regions at high risk of climate hazards that have seen high levels of net in-migration and out-migration over the time period. This paper provides a literature review on migration related to ecosystems, briefly describes the methodology used to develop the estimates of net migration, then uses those data to describe the patterns of net migration for various ecosystems and high risk regions. The study finds that negative net migration generally occurs over large areas, reflecting its largely rural character, whereas areas of positive net migration are typically smaller, reflecting its largely urban character. The countries with largest population such as China and India tend to drive global results for all the ecosystems found in those countries. Results suggest that from 1970 to 2000, migrants in developing countries have tended to move out of marginal dryland and mountain ecosystems and out of drought-prone areas, and have moved towards coastal ecosystems and areas that are prone to floods and cyclones. For North America results are reversed for dryland and mountain ecosystems, which saw large net influxes of population in the period of record. Uncertainties and potential sources of error in these estimates are addressed. (letter)

  2. Remote Whispering Applying Time Reversal

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Brian Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-16

    The purpose of this project was to explore the use of time reversal technologies as a means for communication to a targeted individual or location. The idea is to have the privacy of whispering in one’s ear, but to do this remotely from loudspeakers not located near the target. Applications of this work include communicating with hostages and survivors in rescue operations, communicating imaging and operational conditions in deep drilling operations, monitoring storage of spent nuclear fuel in storage casks without wires, or clandestine activities requiring signaling between specific points. This technology provides a solution in any application where wires and radio communications are not possible or not desired. It also may be configured to self calibrate on a regular basis to adjust for changing conditions. These communications allow two people to converse with one another in real time, converse in an inaudible frequency range or medium (i.e. using ultrasonic frequencies and/or sending vibrations through a structure), or send information for a system to interpret (even allowing remote control of a system using sound). The time reversal process allows one to focus energy to a specific location in space and to send a clean transmission of a selected signal only to that location. In order for the time reversal process to work, a calibration signal must be obtained. This signal may be obtained experimentally using an impulsive sound, a known chirp signal, or other known signals. It may also be determined from a numerical model of a known environment in which the focusing is desired or from passive listening over time to ambient noise.

  3. Time reversal technique for gas leakage detection.

    Science.gov (United States)

    Maksimov, A O; Polovinka, Yu A

    2015-04-01

    The acoustic remote sensing of subsea gas leakage traditionally uses sonars as active acoustic sensors and hydrophones picking up the sound generated by a leak as passive sensors. When gas leaks occur underwater, bubbles are produced and emit sound at frequencies intimately related to their sizes. The experimental implementation of an acoustic time-reversal mirror (TRM) is now well established in underwater acoustics. In the basic TRM experiment, a probe source emits a pulse that is received on an array of sensors, time reversed, and re-emitted. After time reversal, the resulting field focuses back at the probe position. In this study, a method for enhancing operation of the passive receiving system has been proposed by using it in the regime of TRM. Two factors, the local character of the acoustic emission signal caused by the leakage and a resonant nature of the bubble radiation at their birth, make particularly effective scattering with the conjugate wave (CW). Analytical calculations are performed for the scattering of CW wave on a single bubble when CW is formed by bubble birthing wail received on an array, time reversed, and re-emitted. The quality of leakage detection depends on the spatio-temporal distribution of ambient noise.

  4. Underwater Time Service and Synchronization Based on Time Reversal Technique

    Science.gov (United States)

    Lu, Hao; Wang, Hai-bin; Aissa-El-Bey, Abdeldjalil; Pyndiah, Ramesh

    2010-09-01

    Real time service and synchronization are very important to many underwater systems. But the time service and synchronization in existence cannot work well due to the multi-path propagation and random phase fluctuation of signals in the ocean channel. The time reversal mirror technique can realize energy concentration through self-matching of the ocean channel and has very good spatial and temporal focusing properties. Based on the TRM technique, we present the Time Reversal Mirror Real Time service and synchronization (TRMRT) method which can bypass the processing of multi-path on the server side and reduce multi-path contamination on the client side. So TRMRT can improve the accuracy of time service. Furthermore, as an efficient and precise method of time service, TRMRT could be widely used in underwater exploration activities and underwater navigation and positioning systems.

  5. Time-Reversal Generation of Rogue Waves

    Science.gov (United States)

    Chabchoub, Amin; Fink, Mathias

    2014-03-01

    The formation of extreme localizations in nonlinear dispersive media can be explained and described within the framework of nonlinear evolution equations, such as the nonlinear Schrödinger equation (NLS). Within the class of exact NLS breather solutions on a finite background, which describe the modulational instability of monochromatic wave trains, the hierarchy of rational solutions localized in both time and space is considered to provide appropriate prototypes to model rogue wave dynamics. Here, we use the time-reversal invariance of the NLS to propose and experimentally demonstrate a new approach to constructing strongly nonlinear localized waves focused in both time and space. The potential applications of this time-reversal approach include remote sensing and motivated analogous experimental analysis in other nonlinear dispersive media, such as optics, Bose-Einstein condensates, and plasma, where the wave motion dynamics is governed by the NLS.

  6. Multi-component pre-stack time-imaging and migration-based velocity analysis in transversely isotropic media; Imagerie sismique multicomposante et analyse de vitesse de migration en milieu transverse isotrope

    Energy Technology Data Exchange (ETDEWEB)

    Gerea, C.V.

    2001-06-01

    Complementary to the recording of compressional (P-) waves, the observation of P-S converted waves has recently been receiving specific attention. This is mainly due to their tremendous potential as a tool for fracture and lithology characterization, imaging sediments in gas saturated rocks, and imaging shallow sediments with higher resolution than conventional P-P data. In a conventional marine seismic survey, we cannot record P-to-S converted-wave energy since the fluids cannot support shear-wave strain. Thus, to capture the converted-wave energy, we need to record it at the water-bottom casing an ocean-bottom cable (OBC). The S-waves recorded at the seabed are mainly converted from P to S (i.e., PS-waves or C-waves) at the subsurface reflectors. The most accurate way to image seismic data is pre-stack depth migration. In this thesis, I develop a numerically efficient 2.5-D true-amplitude elastic Kirchhoff pre-stack migration algorithm designed to handle OBC data gathered along a single line. All the kinematic and dynamic elastic Green's functions required in the computation of true-amplitude weight term of Kirchhoff summation, are based on the non-hyperbolic explicit approximations of P- and SV-wave travel-times in layered transversely isotropic (VTI) media. Hence, this elastic imaging algorithm is very well-suited for migration-based velocity analysis techniques, for which fast, robust and iterative pre-stack migration is desired. In this thesis, I approach also the topic of anisotropic velocity model building for elastic pre-stack time-imaging. and propose an original methodology for joint PP-PS migration-based velocity analysis (MVA) in layered VTI anisotropic media. Tests on elastic synthetic and real OBC seismic data ascertain the validity of the pre-stack migration algorithm and velocity analysis methodology. (author)

  7. Time reversibility, computer simulation, algorithms, chaos

    CERN Document Server

    Hoover, William Graham

    2012-01-01

    A small army of physicists, chemists, mathematicians, and engineers has joined forces to attack a classic problem, the "reversibility paradox", with modern tools. This book describes their work from the perspective of computer simulation, emphasizing the author's approach to the problem of understanding the compatibility, and even inevitability, of the irreversible second law of thermodynamics with an underlying time-reversible mechanics. Computer simulation has made it possible to probe reversibility from a variety of directions and "chaos theory" or "nonlinear dynamics" has supplied a useful vocabulary and a set of concepts, which allow a fuller explanation of irreversibility than that available to Boltzmann or to Green, Kubo and Onsager. Clear illustration of concepts is emphasized throughout, and reinforced with a glossary of technical terms from the specialized fields which have been combined here to focus on a common theme. The book begins with a discussion, contrasting the idealized reversibility of ba...

  8. Migration of radionuclides in fissured rock

    International Nuclear Information System (INIS)

    Neretnieks, I.

    1982-01-01

    Some computed results of radionuclide migration in fissured rock are presented. The computations are based on a model which describes flow as occurring in a multitude of independent fissures (stratified flow). This gives rise to strong dispersion of channeling. The radionuclide migration in the individual fissures is modelled by the advection equation on a parallel walled channel with porous walls. The nuclides may diffuse into the pores and sorb reversibly on the pore surfaces. The effluent rates of 23 important nuclides are presented as functions of distance and time for various of important parameters such as rock permeability, diffusion coefficients, release rates, time of first release, fissure spacing and fissure width distribution. (Author)

  9. Questions of migration and belonging: understandings of migration under neoliberalism in Ecuador.

    Science.gov (United States)

    Lawson, V

    1999-01-01

    This paper explores alternative understandings and experiences of migration under neoliberalism in Ecuador. Through the case study, the study examines migrants' multiple motivations for mobility and their ambivalence toward the process. Insights from the transnational migration literature were drawn in order to think through the implications of an increasingly contradictory context of economic modernization and its impact upon the sense of possibilities and belonging of migrants. In-depth interviews with urban-destined migrants in Ecuador were drawn to argue that mobility produces ambivalent development subjects. This argument is developed in three sections. First, the paper centers on the epistemological and theoretical basis for the relevance of migrant narratives in extending theorizations of migration. Second, in-depth interviews with migrants to Quito are drawn to explore migrants' sense of belonging and regional affiliation, identity formation through migration, and experiences of alienation and disruption in their lives. Lastly, this paper concludes with a retheorization of the role of migration places in the migrant identity construction.

  10. Reversible migration of silver on memorized pathways in Ag-Ge40S60 films

    Directory of Open Access Journals (Sweden)

    J. Orava

    2015-07-01

    Full Text Available Reversible and reproducible formation and dissolution of silver conductive filaments are studied in Ag-photodoped thin-film Ge40S60 subjected to electric fields. A tip-planar geometry is employed, where a conductive-atomic-force microscopy tip is the tip electrode and a silver patch is the planar electrode. We highlight an inherent “memory” effect in the amorphous chalcogenide solid-state electrolyte, in which particular silver-ion migration pathways are preserved “memorized” during writing and erasing cycles. The “memorized” pathways reflect structural changes in the photodoped chalcogenide film. Structural changes due to silver photodoping, and electrically-induced structural changes arising from silver migration, are elucidated using Raman spectroscopy. Conductive filament formation, dissolution, and electron (reduction efficiency in a lateral device geometry are related to operation of the nano-ionic Programmable Metallization Cell memory and to newly emerging chalcogenide-based lateral geometry MEMS technologies. The methods in this work can also be used for qualitative multi-parameter sampling of metal/amorphous-chalcogenide combinations, characterizing the growth/dissolution rates, retention and endurance of fractal conductive filaments, with the aim of optimizing devices.

  11. Tests of time reversal in neutron-nucleus scattering

    International Nuclear Information System (INIS)

    Bowman, J.D.

    1988-01-01

    Experiments to test time-reversal invariance are discussed. The experiments are based on observables constructed from the momentum and spin vectors of epithermal neutrons and from the spin of an aligned or polarized target. It is shown that the proposed tests are detailed balance tests of time-reversal invariance. The status of the experiments is briefly reviewed. 14 refs., 5 figs

  12. 3D pre-stack time migration; Kiruhihoffuho ni yoru sanjigen jugo mae jikan migration shori

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Y; Matsuoka, T [Japan Petroleum Exploration Corp., Tokyo (Japan); Tsuru, T [Japan National Oil Corp., Tokyo (Japan)

    1997-05-27

    This paper reports pre-stack migration in elastic wave exploration as to its algorithm and examples of processed data. The time migration processing hypothesizes that seismic waves propagate linearly. It calculates travel time by dividing the sum of the straight distance from a vibration transmitting point to an image point and the straight distance from the image point to a vibration receiving point with RMS velocity given as a parameter. To maintain the relative relation of amplitude sizes, the signal on an elliptic body is made smaller in inverse proportion to the size of that elliptic body. With regard to apparent interval of input trace as seen from the reflection surface, or with regard to density, the signal is made smaller by cos{theta} times. While this program deals with three-dimensional migration, its output turns out as an arbitrary two-dimensional plane. The program requires a huge amount of data processing, whereas a method is used, that the input trace is divided, each group is processed by using separate computers, and the results are summed up. 3 refs., 4 figs.

  13. Seismic time-lapse imaging using Interferometric least-squares migration

    KAUST Repository

    Sinha, Mrinal

    2016-09-06

    One of the problems with 4D surveys is that the environmental conditions change over time so that the experiment is insufficiently repeatable. To mitigate this problem, we propose the use of interferometric least-squares migration (ILSM) to estimate the migration image for the baseline and monitor surveys. Here, a known reflector is used as the reference reflector for ILSM. Results with synthetic and field data show that ILSM can eliminate artifacts caused by non-repeatability in time-lapse surveys.

  14. Seismic time-lapse imaging using Interferometric least-squares migration

    KAUST Repository

    Sinha, Mrinal; Schuster, Gerard T.

    2016-01-01

    One of the problems with 4D surveys is that the environmental conditions change over time so that the experiment is insufficiently repeatable. To mitigate this problem, we propose the use of interferometric least-squares migration (ILSM) to estimate the migration image for the baseline and monitor surveys. Here, a known reflector is used as the reference reflector for ILSM. Results with synthetic and field data show that ILSM can eliminate artifacts caused by non-repeatability in time-lapse surveys.

  15. Nonlinear Time-Reversal in a Wave Chaotic System

    Science.gov (United States)

    Frazier, Matthew; Taddese, Biniyam; Ott, Edward; Antonsen, Thomas; Anlage, Steven

    2012-02-01

    Time reversal mirrors are particularly simple to implement in wave chaotic systems and form the basis for a new class of sensors [1-3]. These sensors work by applying the quantum mechanical concepts of Loschmidt echo and fidelity decay to classical waves. The sensors make explicit use of time-reversal invariance and spatial reciprocity in a wave chaotic system to remotely measure the presence of small perturbations to the system. The underlying ray chaos increases the sensitivity to small perturbations throughout the volume explored by the waves. We extend our time-reversal mirror to include a discrete element with a nonlinear dynamical response. The initially injected pulse interacts with the nonlinear element, generating new frequency components originating at the element. By selectively filtering for and applying the time-reversal mirror to the new frequency components, we focus a pulse only onto the element, without knowledge of its location. Furthermore, we demonstrate transmission of arbitrary patterns of pulses to the element, creating a targeted communication channel to the exclusion of 'eavesdroppers' at other locations in the system. [1] Appl. Phys. Lett. 95, 114103 (2009) [2] J. Appl. Phys. 108, 1 (2010) [3] Acta Physica Polonica A 112, 569 (2007)

  16. Bats on a Budget: Torpor-Assisted Migration Saves Time and Energy

    Science.gov (United States)

    McGuire, Liam P.; Jonasson, Kristin A.; Guglielmo, Christopher G.

    2014-01-01

    Bats and birds must balance time and energy budgets during migration. Migrating bats face similar physiological challenges to birds, but nocturnality creates special challenges for bats, such as a conflict between travelling and refueling, which many birds avoid by feeding in daylight and flying at night. As endothermic animals, bats and birds alike must expend substantial amounts of energy to maintain high body temperatures. For migratory birds refueling at stopovers, remaining euthermic during inactive periods reduces the net refuelling rate, thereby prolonging stopover duration and delaying subsequent movement. We hypothesized that bats could mitigate similar ambient-temperature dependent costs by using a torpor-assisted migration strategy. We studied silver-haired bats Lasionycteris noctivagans during autumn migration using a combination of respirometry and temperature-sensitive radiotelemetry to estimate energy costs incurred under ambient temperature conditions, and the energy that bats saved by using torpor during daytime roosting periods. All bats, regardless of sex, age, or body condition used torpor at stopover and saved up to 91% of the energy they would have expended to remain euthermic. Furthermore, bats modulated use of torpor depending on ambient temperature. By adjusting the time spent torpid, bats achieved a rate of energy expenditure independent of the ambient temperature encountered at stopover. By lowering body temperature during inactive periods, fuel stores are spared, reducing the need for refuelling. Optimal migration models consider trade-offs between time and energy. Heterothermy provides a physiological strategy that allows bats to conserve energy without paying a time penalty as they migrate. Although uncommon, some avian lineages are known to use heterothermy, and current theoretical models of migration may not be appropriate for these groups. We propose that thermoregulatory strategies should be an important consideration of future

  17. Wave-equation Q tomography and least-squares migration

    KAUST Repository

    Dutta, Gaurav

    2016-03-01

    This thesis designs new methods for Q tomography and Q-compensated prestack depth migration when the recorded seismic data suffer from strong attenuation. A motivation of this work is that the presence of gas clouds or mud channels in overburden structures leads to the distortion of amplitudes and phases in seismic waves propagating inside the earth. If the attenuation parameter Q is very strong, i.e., Q<30, ignoring the anelastic effects in imaging can lead to dimming of migration amplitudes and loss of resolution. This, in turn, adversely affects the ability to accurately predict reservoir properties below such layers. To mitigate this problem, I first develop an anelastic least-squares reverse time migration (Q-LSRTM) technique. I reformulate the conventional acoustic least-squares migration problem as a viscoacoustic linearized inversion problem. Using linearized viscoacoustic modeling and adjoint operators during the least-squares iterations, I show with numerical tests that Q-LSRTM can compensate for the amplitude loss and produce images with better balanced amplitudes than conventional migration. To estimate the background Q model that can be used for any Q-compensating migration algorithm, I then develop a wave-equation based optimization method that inverts for the subsurface Q distribution by minimizing a skeletonized misfit function ε. Here, ε is the sum of the squared differences between the observed and the predicted peak/centroid-frequency shifts of the early-arrivals. Through numerical tests on synthetic and field data, I show that noticeable improvements in the migration image quality can be obtained from Q models inverted using wave-equation Q tomography. A key feature of skeletonized inversion is that it is much less likely to get stuck in a local minimum than a standard waveform inversion method. Finally, I develop a preconditioning technique for least-squares migration using a directional Gabor-based preconditioning approach for isotropic

  18. Cyclic strain-induced endothelial MMP-2: role in vascular smooth muscle cell migration

    International Nuclear Information System (INIS)

    Sweeney, Nicholas von Offenberg; Cummins, Philip M.; Birney, Yvonne A.; Redmond, Eileen M.; Cahill, Paul A.

    2004-01-01

    Matrix metalloproteinases (MMPs) play a vital role in vasculature response to hemodynamic stimuli via the degradation of extracellular matrix substrates. In this study, we investigated the putative role of cyclic strain-induced endothelial MMP-2 (and MMP-9) expression and release in modulating bovine aortic smooth muscle cell (BASMC) migration in vitro. Equibiaxial cyclic strain of bovine aortic endothelial cells (BAECs) leads to elevation in cellular MMP-2 (and MMP-9) expression, activity, and secretion into conditioned media, events which were time- and force-dependent. Subsequent incubation of BASMCs with conditioned media from chronically strained BAECs (5%, 24 h) significantly reduces BASMC migration (38 ± 6%), an inhibitory effect which could be completely reversed by targeted siRNA 'knock-down' of MMP-2 (but not MMP-9) expression and activity in BAECs. Moreover, inhibition of strain-mediated MMP-2 expression in BAECs by protein tyrosine kinase (PTK) blockade with genistein (50 μM) was also found to completely reverse this inhibitory effect on BASMC migration. Finally, direct supplementation of recombinant MMP-2 into the BASMC migration assay was found to have no significant effect on migration. However, the effect on BASMC migration of MMP-2 siRNA transfection in BAECs could be reversed by supplementation of recombinant MMP-2 into BAEC media prior to (and for the duration of) strain. These findings reveal a potentially novel role for strain-induced endothelial MMP-2 in regulating vascular SMC migration

  19. Vertical migration of 85Sr, 137Cs and 131I in various arable and undisturbed soils

    International Nuclear Information System (INIS)

    Palagyi, S.; Palagyiova, J.

    2002-01-01

    Vertical migration of 85 Sr, 137 Cs and 131 I in some arable and undisturbed single-contaminated soils was studied by gamma-spectrometry measurements in lysimetric laboratory conditions applying irrigation of the soil profiles with wet atmospheric precipitation for about one year (except radioiodine). A new simple exponential compartment (box) model was derived, allowing us to calculate the migration rate constants and migration rates in the individual soil layers (vertical sections) as well as the total vertical migration rate constants and total vertical migration rates of radionuclides in the bulk soil horizon. The data from the time dependence of the depth activity distribution (radionuclide concentration along the vertical soil profile) were used to test the model. The migration rate constants and migration rates were found to be affected by the contaminating radionuclides as well as by the site, type and depth of the soil. The relaxation times of the radionuclides in the soil horizons were calculated. The effects on the rate parameters of the permanent grass cover and the zeolite applied onto the arable soil surfaces were also investigated

  20. Time reversal and parity tests

    International Nuclear Information System (INIS)

    Terwilliger, K.

    1975-01-01

    A recent review by Henley discusses the present status of Time Reversal and Parity symmetry violations, and comments on the implications for high energy hadron scattering. This note will briefly summarize the situation with particular attention to the sizes of possible effects, relating them to experimental accuracy available or reasonably possible at the ZGS

  1. Time-lapse cinematography of the capillary tube cell migration inhibition test.

    Science.gov (United States)

    Bray, M A

    1980-01-01

    The kinetics of human and guinea pig cell migration inhibition have been studied using time-lapse cinematography of cells migrating from capillary tubes. Guinea pig and human cells exhibit markedly different kinetics in the absence of inhibitors. Specific antigen causes a dose-related inhibition of migration for up to 60 h using guinea pig cells and a peak of inhibition after 18 h using the human leucocyte system. The timing of measurement of maximum activity more critical for the latter test. The kinetics of lymphokine generation have been examined and the migration inhibitory activity of the plant mitogen (PHA), a Kurloff cell product and a continuous cell line supernatant have been compared with the inhibitory profiles of lymphokine preparations and specific antigen.

  2. Time-reversal and Bayesian inversion

    Science.gov (United States)

    Debski, Wojciech

    2017-04-01

    Probabilistic inversion technique is superior to the classical optimization-based approach in all but one aspects. It requires quite exhaustive computations which prohibit its use in huge size inverse problems like global seismic tomography or waveform inversion to name a few. The advantages of the approach are, however, so appealing that there is an ongoing continuous afford to make the large inverse task as mentioned above manageable with the probabilistic inverse approach. One of the perspective possibility to achieve this goal relays on exploring the internal symmetry of the seismological modeling problems in hand - a time reversal and reciprocity invariance. This two basic properties of the elastic wave equation when incorporating into the probabilistic inversion schemata open a new horizons for Bayesian inversion. In this presentation we discuss the time reversal symmetry property, its mathematical aspects and propose how to combine it with the probabilistic inverse theory into a compact, fast inversion algorithm. We illustrate the proposed idea with the newly developed location algorithm TRMLOC and discuss its efficiency when applied to mining induced seismic data.

  3. Time reversal invariance for a nonlinear scatterer exhibiting contact acoustic nonlinearity

    Science.gov (United States)

    Blanloeuil, Philippe; Rose, L. R. Francis; Veidt, Martin; Wang, Chun H.

    2018-03-01

    The time reversal invariance of an ultrasonic plane wave interacting with a contact interface characterized by a unilateral contact law is investigated analytically and numerically. It is shown analytically that despite the contact nonlinearity, the re-emission of a time reversed version of the reflected and transmitted waves can perfectly recover the original pulse shape, thereby demonstrating time reversal invariance for this type of contact acoustic nonlinearity. With the aid of finite element modelling, the time-reversal analysis is extended to finite-size nonlinear scatterers such as closed cracks. The results show that time reversal invariance holds provided that all the additional frequencies generated during the forward propagation, such as higher harmonics, sub-harmonics and zero-frequency component, are fully included in the retro-propagation. If the scattered waves are frequency filtered during receiving or transmitting, such as through the use of narrowband transducers, the recombination of the time-reversed waves will not exactly recover the original incident wave. This discrepancy due to incomplete time invariance can be exploited as a new method for characterizing damage by defining damage indices that quantify the departure from time reversal invariance. The sensitivity of these damage indices for various crack lengths and contact stress levels is investigated computationally, indicating some advantages of this narrowband approach relative to the more conventional measurement of higher harmonic amplitude, which requires broadband transducers.

  4. The Two-Time Interpretation and Macroscopic Time-Reversibility

    Directory of Open Access Journals (Sweden)

    Yakir Aharonov

    2017-03-01

    Full Text Available The two-state vector formalism motivates a time-symmetric interpretation of quantum mechanics that entails a resolution of the measurement problem. We revisit a post-selection-assisted collapse model previously suggested by us, claiming that unlike the thermodynamic arrow of time, it can lead to reversible dynamics at the macroscopic level. In addition, the proposed scheme enables us to characterize the classical-quantum boundary. We discuss the limitations of this approach and its broad implications for other areas of physics.

  5. A time reversal damage imaging method for structure health monitoring using Lamb waves

    International Nuclear Information System (INIS)

    Zhang Hai-Yan; Cao Ya-Ping; Sun Xiu-Li; Chen Xian-Hua; Yu Jian-Bo

    2010-01-01

    This paper investigates the Lamb wave imaging method combining time reversal for health monitoring of a metallic plate structure. The temporal focusing effect of the time reversal Lamb waves is investigated theoretically. It demonstrates that the focusing effect is related to the frequency dependency of the time reversal operation. Numerical simulations are conducted to study the time reversal behaviour of Lamb wave modes under broadband and narrowband excitations. The results show that the reconstructed time reversed wave exhibits close similarity to the reversed narrowband tone burst signal validating the theoretical model. To enhance the similarity, the cycle number of the excited signal should be increased. Experiments combining finite element model are then conducted to study the imaging method in the presence of damage like hole in the plate structure. In this work, the time reversal technique is used for the recompression of Lamb wave signals. Damage imaging results with time reversal using broadband and narrowband excitations are compared to those without time reversal. It suggests that the narrowband excitation combined time reversal can locate and determine the size of structural damage more precisely, but the cycle number of the excited signal should be chosen reasonably

  6. Migrating mule deer: effects of anthropogenically altered landscapes.

    Directory of Open Access Journals (Sweden)

    Patrick E Lendrum

    Full Text Available Migration is an adaptive strategy that enables animals to enhance resource availability and reduce risk of predation at a broad geographic scale. Ungulate migrations generally occur along traditional routes, many of which have been disrupted by anthropogenic disturbances. Spring migration in ungulates is of particular importance for conservation planning, because it is closely coupled with timing of parturition. The degree to which oil and gas development affects migratory patterns, and whether ungulate migration is sufficiently plastic to compensate for such changes, warrants additional study to better understand this critical conservation issue.We studied timing and synchrony of departure from winter range and arrival to summer range of female mule deer (Odocoileus hemionus in northwestern Colorado, USA, which has one of the largest natural-gas reserves currently under development in North America. We hypothesized that in addition to local weather, plant phenology, and individual life-history characteristics, patterns of spring migration would be modified by disturbances associated with natural-gas extraction. We captured 205 adult female mule deer, equipped them with GPS collars, and observed patterns of spring migration during 2008-2010.Timing of spring migration was related to winter weather (particularly snow depth and access to emerging vegetation, which varied among years, but was highly synchronous across study areas within years. Additionally, timing of migration was influenced by the collective effects of anthropogenic disturbance, rate of travel, distance traveled, and body condition of adult females. Rates of travel were more rapid over shorter migration distances in areas of high natural-gas development resulting in the delayed departure, but early arrival for females migrating in areas with high development compared with less-developed areas. Such shifts in behavior could have consequences for timing of arrival on birthing areas

  7. Changes in timing of autumn migration in North European songbird populations

    DEFF Research Database (Denmark)

    Tøttrup, Anders Peter; Thorup, Kasper; Rahbek, Carsten

    2006-01-01

    Although studies of changes in the timing of passerine spring migration are numerous, less is known about timing of their autumn departure. We present phenological data on 22 species based on mist-netted birds caught on the Baltic island of Christiansø during autumn migration between 1976 and 1997...... departure (-0.0426 days year-1, P = 0.40). Testing the 12 species for which the entire migration period was included (thus excluding many long-distance migrants), we found an overall earlier departure (-0.18 days year-1, P = 0.007). Short-distance migrants tended to show earlier departure, while long...

  8. Multiple time-reversed guide-sources in shallow water

    Science.gov (United States)

    Gaumond, Charles F.; Fromm, David M.; Lingevitch, Joseph F.; Gauss, Roger C.; Menis, Richard

    2003-10-01

    Detection in a monostatic, broadband, active sonar system in shallow water is degraded by propagation-induced spreading. The detection improvement from multiple spatially separated guide sources (GSs) is presented as a method to mitigate this degradation. The improvement of detection by using information in a set of one-way transmissions from a variety of positions is shown using sea data. The experimental area is south of the Hudson Canyon off the coast of New Jersey. The data were taken using five elements of a time-reversing VLA. The five elements were contiguous and at midwater depth. The target and guide source was an echo repeater positioned at various ranges and at middepth. The transmitted signals were 3.0- to 3.5-kHz LFMs. The data are analyzed to show the amount of information present in the collection, a baseline probability of detection (PD) not using the collection of GS signals, the improvement in PD from the use of various sets of GS signals. The dependence of the improvement as a function of range is also shown. [The authors acknowledge support from Dr. Jeffrey Simmen, ONR321OS, and the chief scientist Dr. Charles Holland. Work supported by ONR.

  9. Energy drift in reversible time integration

    International Nuclear Information System (INIS)

    McLachlan, R I; Perlmutter, M

    2004-01-01

    Energy drift is commonly observed in reversible integrations of systems of molecular dynamics. We show that this drift can be modelled as a diffusion and that the typical energy error after time T is O(√T). (letter to the editor)

  10. Migrating to a real-time distributed parallel simulator architecture

    CSIR Research Space (South Africa)

    Duvenhage, B

    2007-07-01

    Full Text Available A legacy non-distributed logical time simulator is migrated to a distributed architecture to parallelise execution. The existing Discrete Time System Specification (DTSS) modelling formalism is retained to simplify the reuse of existing models...

  11. Theta, time reversal and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gaiotto, Davide [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada); Kapustin, Anton [Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States); Komargodski, Zohar [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 76100 (Israel); Seiberg, Nathan [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States)

    2017-05-17

    SU(N) gauge theory is time reversal invariant at θ=0 and θ=π. We show that at θ=π there is a discrete ’t Hooft anomaly involving time reversal and the center symmetry. This anomaly leads to constraints on the vacua of the theory. It follows that at θ=π the vacuum cannot be a trivial non-degenerate gapped state. (By contrast, the vacuum at θ=0 is gapped, non-degenerate, and trivial.) Due to the anomaly, the theory admits nontrivial domain walls supporting lower-dimensional theories. Depending on the nature of the vacuum at θ=π, several phase diagrams are possible. Assuming area law for space-like loops, one arrives at an inequality involving the temperatures at which CP and the center symmetry are restored. We also analyze alternative scenarios for SU(2) gauge theory. The underlying symmetry at θ=π is the dihedral group of 8 elements. If deconfined loops are allowed, one can have two O(2)-symmetric fixed points. It may also be that the four-dimensional theory around θ=π is gapless, e.g. a Coulomb phase could match the underlying anomalies.

  12. Theta, time reversal and temperature

    International Nuclear Information System (INIS)

    Gaiotto, Davide; Kapustin, Anton; Komargodski, Zohar; Seiberg, Nathan

    2017-01-01

    SU(N) gauge theory is time reversal invariant at θ=0 and θ=π. We show that at θ=π there is a discrete ’t Hooft anomaly involving time reversal and the center symmetry. This anomaly leads to constraints on the vacua of the theory. It follows that at θ=π the vacuum cannot be a trivial non-degenerate gapped state. (By contrast, the vacuum at θ=0 is gapped, non-degenerate, and trivial.) Due to the anomaly, the theory admits nontrivial domain walls supporting lower-dimensional theories. Depending on the nature of the vacuum at θ=π, several phase diagrams are possible. Assuming area law for space-like loops, one arrives at an inequality involving the temperatures at which CP and the center symmetry are restored. We also analyze alternative scenarios for SU(2) gauge theory. The underlying symmetry at θ=π is the dihedral group of 8 elements. If deconfined loops are allowed, one can have two O(2)-symmetric fixed points. It may also be that the four-dimensional theory around θ=π is gapless, e.g. a Coulomb phase could match the underlying anomalies.

  13. Parallelization of Reversible Ripple-carry Adders

    DEFF Research Database (Denmark)

    Thomsen, Michael Kirkedal; Axelsen, Holger Bock

    2009-01-01

    The design of fast arithmetic logic circuits is an important research topic for reversible and quantum computing. A special challenge in this setting is the computation of standard arithmetical functions without the generation of \\emph{garbage}. Here, we present a novel parallelization scheme...... wherein $m$ parallel $k$-bit reversible ripple-carry adders are combined to form a reversible $mk$-bit \\emph{ripple-block carry adder} with logic depth $\\mathcal{O}(m+k)$ for a \\emph{minimal} logic depth $\\mathcal{O}(\\sqrt{mk})$, thus improving on the $mk$-bit ripple-carry adder logic depth $\\mathcal...

  14. Parity- and time-reversal-violating moments of light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Jordy de, E-mail: devries@kvi.nl [KVI, theory group (Netherlands)

    2013-03-15

    I present the calculation of parity- and time-reversal-violating moments of the nucleon and light nuclei, originating from the QCD {theta}-bar term and effective dimension-six operators. By applying chiral effective field theory these calculations are performed in a unified framework. I argue that measurements of a few light-nuclear electric dipole moments would shed light on the mechanism of parity and time-reversal violation.

  15. Time scales of DNAPL migration in sandy aquifers examined via numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard, J.I.; Pang, T.; Kueper, B.H. [University of Edinburgh, Edinburgh (United Kingdom). Inst. of Infrastructure & Environmental

    2007-03-15

    The time required for dense nonaqueous phase liquid (DNAPL) to cease migrating following release to the subsurface is a valuable component of a site conceptual model. This study uses numerical simulation to investigate the migration of six different DNAPLs in sandy aquifers. The most influential parameters governing migration cessation time are the density and viscosity of the DNAPL and the mean hydraulic conductivity of the aquifer. Releases of between 1 and 40 drums of chlorinated solvent DNAPLs, characterized by relatively high density and low viscosity, require on the order of months to a few years to cease migrating in a heterogeneous medium sand aquifer having an average hydraulic conductivity of 7.4 x 10{sup -3} cm/s. In contrast to this, the release of 20 drums of coal tar {rho}{sub D} = 1061 kg/m{sup 3}, {mu}{sub D} = 0.161 Pa(.)s) requires more than 100 years to cease migrating in the same aquifer. Altering the mean hydraulic conductivity of the aquifer results in a proportional change in cessation times. Parameters that exhibit relatively little influence on migration time scales are the DNAPL-water interfacial tension, release volume, source capillary pressure, mean aquifer porosity, and ambient ground water hydraulic gradient. This study also demonstrates that low-density DNAPLs (e.g., coal tar) give rise to greater amounts of lateral spreading and greater amounts of pooling on capillary barriers than high-density DNAPLs such as trichloroethylene or tetrachloroethylene.

  16. Low mass planet migration in magnetically torqued dead zones - II. Flow-locked and runaway migration, and a torque prescription

    Science.gov (United States)

    McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan

    2018-04-01

    We examine the migration of low mass planets in laminar protoplanetary discs, threaded by large scale magnetic fields in the dead zone that drive radial gas flows. As shown in Paper I, a dynamical corotation torque arises due to the flow-induced asymmetric distortion of the corotation region and the evolving vortensity contrast between the librating horseshoe material and background disc flow. Using simulations of laminar torqued discs containing migrating planets, we demonstrate the existence of the four distinct migration regimes predicted in Paper I. In two regimes, the migration is approximately locked to the inward or outward radial gas flow, and in the other regimes the planet undergoes outward runaway migration that eventually settles to fast steady migration. In addition, we demonstrate torque and migration reversals induced by midplane magnetic stresses, with a bifurcation dependent on the disc surface density. We develop a model for fast migration, and show why the outward runaway saturates to a steady speed, and examine phenomenologically its termination due to changing local disc conditions. We also develop an analytical model for the corotation torque at late times that includes viscosity, for application to discs that sustain modest turbulence. Finally, we use the simulation results to develop torque prescriptions for inclusion in population synthesis models of planet formation.

  17. Concerning tests of time-reversal invariance via the polarization-analyzing power equality

    International Nuclear Information System (INIS)

    Conzett, H.E.

    1982-01-01

    Previous tests of time-reversal invariance via comparisons of polarizations and analyzing powers in nuclear scattering have been examined. It is found that all of these comparisons fail as adequate tests of time-reversal invariance either because of a lack of experimental precision or the lack of sensitivity to any time-reversal symmetry violation

  18. Time reversal in polarized neutron decay: the emiT experiment

    CERN Document Server

    Jones, G L; Anaya, J M; Bowles, T J; Chupp, T E; Coulter, K P; Dewey, M S; Freedman, S J; Fujikawa, B K; García, A; Greene, G L; Hwang, S R; Lising, L J; Mumm, H P; Nico, J S; Robertson, R G H; Steiger, T D; Teasdale, W A; Thompson, A K; Wasserman, E G; Wietfeldt, F E; Wilkerson, J F

    2000-01-01

    The standard electro-weak model predicts negligible violation of time-reversal invariance in light quark processes. We report on an experimental test of time-reversal invariance in the beta decay of polarized neutrons as a search for physics beyond the standard model. The emiT collaboration has measured the time-reversal-violating triple-correlation in neutron beta decay between the neutron spin, electron momentum, and neutrino momentum often referred to as the D coefficient. The first run of the experiment produced 14 million events which are currently being analyzed. However, a second run with improved detectors should provide greater statistical precision and reduced systematic uncertainties.

  19. Integration time for the perception of depth from motion parallax.

    Science.gov (United States)

    Nawrot, Mark; Stroyan, Keith

    2012-04-15

    The perception of depth from relative motion is believed to be a slow process that "builds-up" over a period of observation. However, in the case of motion parallax, the potential accuracy of the depth estimate suffers as the observer translates during the viewing period. Our recent quantitative model for the perception of depth from motion parallax proposes that relative object depth (d) can be determined from retinal image motion (dθ/dt), pursuit eye movement (dα/dt), and fixation distance (f) by the formula: d/f≈dθ/dα. Given the model's dynamics, it is important to know the integration time required by the visual system to recover dα and dθ, and then estimate d. Knowing the minimum integration time reveals the incumbent error in this process. A depth-phase discrimination task was used to determine the time necessary to perceive depth-sign from motion parallax. Observers remained stationary and viewed a briefly translating random-dot motion parallax stimulus. Stimulus duration varied between trials. Fixation on the translating stimulus was monitored and enforced with an eye-tracker. The study found that relative depth discrimination can be performed with presentations as brief as 16.6 ms, with only two stimulus frames providing both retinal image motion and the stimulus window motion for pursuit (mean range=16.6-33.2 ms). This was found for conditions in which, prior to stimulus presentation, the eye was engaged in ongoing pursuit or the eye was stationary. A large high-contrast masking stimulus disrupted depth-discrimination for stimulus presentations less than 70-75 ms in both pursuit and stationary conditions. This interval might be linked to ocular-following response eye-movement latencies. We conclude that neural mechanisms serving depth from motion parallax generate a depth estimate much more quickly than previously believed. We propose that additional sluggishness might be due to the visual system's attempt to determine the maximum dθ/dα ratio

  20. Reversal of Hartmann's procedure following acute diverticulitis: is timing everything?

    LENUS (Irish Health Repository)

    Fleming, Fergal J

    2012-02-01

    BACKGROUND: Patients who undergo a Hartmann\\'s procedure may not be offered a reversal due to concerns over the morbidity of the second procedure. The aims of this study were to examine the morbidity post reversal of Hartmann\\'s procedure. METHODS: Patients who underwent a Hartmann\\'s procedure for acute diverticulitis (Hinchey 3 or 4) between 1995 and 2006 were studied. Clinical factors including patient comorbidities were analysed to elucidate what preoperative factors were associated with complications following reversal of Hartmann\\'s procedure. RESULTS: One hundred and ten patients were included. Median age was 70 years and 56% of the cohort were male (n = 61). The mortality and morbidity rate for the acute presentation was 7.3% (n = 8) and 34% (n = 37) respectively. Seventy six patients (69%) underwent a reversal at a median of 7 months (range 3-22 months) post-Hartmann\\'s procedure. The complication rate in the reversal group was 25% (n = 18). A history of current smoking (p = 0.004), increasing time to reversal (p = 0.04) and low preoperative albumin (p = 0.003) were all associated with complications following reversal. CONCLUSIONS: Reversal of Hartmann\\'s procedure can be offered to appropriately selected patients though with a significant (25%) morbidity rate. The identification of potential modifiable factors such as current smoking, prolonged time to reversal and low preoperative albumin may allow optimisation of such patients preoperatively.

  1. Constraints on a parity-even/time-reversal-odd interaction

    International Nuclear Information System (INIS)

    Oers, Willem T.H. van

    2000-01-01

    Time-Reversal-Invariance non-conservation has for the first time been unequivocally demonstrated in a direct measurement, one of the results of the CPLEAR experiment. What is the situation then with regard to time-reversal-invariance non-conservation in systems other than the neutral kaon system? Two classes of tests of time-reversal-invariance need to be distinguished: the first one deals with parity violating (P-odd)/time-reversal-invariance non-conserving (T-odd) interactions, while the second one deals with P-even/T-odd interactions (assuming CPT conservation this implies C-conjugation non-conservation). Limits on a P-odd/T-odd interaction follow from measurements of the electric dipole moment of the neutron. This in turn provides a limit on a P-odd/T-odd pion-nucleon coupling constant which is 10 -4 times the weak interaction strength. Limits on a P-even/T-odd interaction are much less stringent. The better constraint stems also from the measurement of the electric dipole moment of the neutron. Of all the other tests, measurements of charge-symmetry breaking in neutron-proton elastic scattering provide the next better constraint. The latter experiments were performed at TRIUMF (at 477 and 347 MeV) and at IUCF (at 183 MeV). Weak decay experiments (the transverse polarization of the muon in K + →π 0 μ + ν μ and the transverse polarization of the positrons in polarized muon decay) have the potential to provide comparable or possibly better constraints

  2. Reversible migration of silver on memorized pathways in Ag-Ge{sub 40}S{sub 60} films

    Energy Technology Data Exchange (ETDEWEB)

    Orava, J., E-mail: jo316@cam.ac.uk, E-mail: alg13@cam.ac.uk; Greer, A. L., E-mail: jo316@cam.ac.uk, E-mail: alg13@cam.ac.uk [Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Kozicki, M. N. [School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287-6206 (United States); Yannopoulos, S. N. [Foundation of Research and Technology Hellas - Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Patras, P. O. Box 1414 (Greece)

    2015-07-15

    Reversible and reproducible formation and dissolution of silver conductive filaments are studied in Ag-photodoped thin-film Ge{sub 40}S{sub 60} subjected to electric fields. A tip-planar geometry is employed, where a conductive-atomic-force microscopy tip is the tip electrode and a silver patch is the planar electrode. We highlight an inherent “memory” effect in the amorphous chalcogenide solid-state electrolyte, in which particular silver-ion migration pathways are preserved “memorized” during writing and erasing cycles. The “memorized” pathways reflect structural changes in the photodoped chalcogenide film. Structural changes due to silver photodoping, and electrically-induced structural changes arising from silver migration, are elucidated using Raman spectroscopy. Conductive filament formation, dissolution, and electron (reduction) efficiency in a lateral device geometry are related to operation of the nano-ionic Programmable Metallization Cell memory and to newly emerging chalcogenide-based lateral geometry MEMS technologies. The methods in this work can also be used for qualitative multi-parameter sampling of metal/amorphous-chalcogenide combinations, characterizing the growth/dissolution rates, retention and endurance of fractal conductive filaments, with the aim of optimizing devices.

  3. DEPTH-CHARGE static and time-dependent perturbation/sensitivity system for nuclear reactor core analysis. Revision I. [DEPTH-CHARGE code

    Energy Technology Data Exchange (ETDEWEB)

    White, J.R.

    1985-04-01

    This report provides the background theory, user input, and sample problems required for the efficient application of the DEPTH-CHARGE system - a code black for both static and time-dependent perturbation theory and data sensitivity analyses. The DEPTH-CHARGE system is of modular construction and has been implemented within the VENTURE-BURNER computational system at Oak Ridge National Laboratory. The DEPTH module (coupled with VENTURE) solves for the three adjoint functions of Depletion Perturbation Theory and calculates the desired time-dependent derivatives of the response with respect to the nuclide concentrations and nuclear data utilized in the reference model. The CHARGE code is a collection of utility routines for general data manipulation and input preparation and considerably extends the usefulness of the system through the automatic generation of adjoint sources, estimated perturbed responses, and relative data sensitivity coefficients. Combined, the DEPTH-CHARGE system provides, for the first time, a complete generalized first-order perturbation/sensitivity theory capability for both static and time-dependent analyses of realistic multidimensional reactor models. This current documentation incorporates minor revisions to the original DEPTH-CHARGE documentation (ORNL/CSD-78) to reflect some new capabilities within the individual codes.

  4. Full Waveform Inversion Using Oriented Time Migration Method

    KAUST Repository

    Zhang, Zhendong

    2016-04-12

    Full waveform inversion (FWI) for reflection events is limited by its linearized update requirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate the resulting gradient can have an inaccurate update direction leading the inversion to converge into what we refer to as local minima of the objective function. In this thesis, I first look into the subject of full model wavenumber to analysis the root of local minima and suggest the possible ways to avoid this problem. And then I analysis the possibility of recovering the corresponding wavenumber components through the existing inversion and migration algorithms. Migration can be taken as a generalized inversion method which mainly retrieves the high wavenumber part of the model. Conventional impedance inversion method gives a mapping relationship between the migration image (high wavenumber) and model parameters (full wavenumber) and thus provides a possible cascade inversion strategy to retrieve the full wavenumber components from seismic data. In the proposed approach, consider a mild lateral variation in the model, I find an analytical Frechet derivation corresponding to the new objective function. In the proposed approach, the gradient is given by the oriented time-domain imaging method. This is independent of the background velocity. Specifically, I apply the oriented time-domain imaging (which depends on the reflection slope instead of a background velocity) on the data residual to obtain the geometrical features of the velocity perturbation. Assuming that density is constant, the conventional 1D impedance inversion method is also applicable for 2D or 3D velocity inversion within the process of FWI. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearized representations of the reflection response. To eliminate the cross-talk artifacts between different parameters, I

  5. Time-reversed lasing in the terahertz range and its preliminary study in sensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yun, E-mail: shenyunoptics@gmail.com [Department of Physics, Nanchang University, Nanchang 330031 (China); Liu, Huaqing [Department of Physics, Nanchang University, Nanchang 330031 (China); Deng, Xiaohua [Institute of Space Science and Technology, Nanchang University, Nanchang 330031 (China); Wang, Guoping [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2017-02-05

    Time-reversed lasing in a uniform slab and a grating structure are investigated in the terahertz range. The results show that both the uniform slab and grating can support terahertz time-reversed lasing. Nevertheless, due to the tunable effective refractive index, the grating structure can not only exhibit time-reversed lasing more effectively and flexibly than a uniform slab, but also can realize significant absorption in a broader operating frequency range. Furthermore, applications of terahertz time-reversed lasing for novel concentration/thickness sensors are preliminarily studied in a single-channel coherent perfect absorber system. - Highlights: • Time-reversed lasing are investigated in the terahertz range. • The grating structure exhibit time-reversed lasing more effectively and flexibly than a uniform slab. • THz time-reversed lasing for novel concentration/thickness sensors are studied.

  6. DSP-Based Focusing over Optical Fiber Using Time Reversal

    DEFF Research Database (Denmark)

    Piels, Molly; Porto da Silva, Edson; Estaran Tolosa, Jose Manuel

    2014-01-01

    A time-reversal array in multimode fiber is proposed for lossless switching using passive optical splitters. Numerical investigations are performed, and a two-transmitter array that routes a 3GBd QPSK signal through the physical layer is demonstrated experimentally.......A time-reversal array in multimode fiber is proposed for lossless switching using passive optical splitters. Numerical investigations are performed, and a two-transmitter array that routes a 3GBd QPSK signal through the physical layer is demonstrated experimentally....

  7. Estimate of Passive Time Reversal Communication Performance in Shallow Water

    Directory of Open Access Journals (Sweden)

    Sunhyo Kim

    2017-12-01

    Full Text Available Time reversal processes have been used to improve communication performance in the severe underwater communication environment characterized by significant multipath channels by reducing inter-symbol interference and increasing signal-to-noise ratio. In general, the performance of the time reversal is strongly related to the behavior of the q -function, which is estimated by a sum of the autocorrelation of the channel impulse response for each channel in the receiver array. The q -function depends on the complexity of the communication channel, the number of channel elements and their spacing. A q -function with a high side-lobe level and a main-lobe width wider than the symbol duration creates a residual ISI (inter-symbol interference, which makes communication difficult even after time reversal is applied. In this paper, we propose a new parameter, E q , to describe the performance of time reversal communication. E q is an estimate of how much of the q -function lies within one symbol duration. The values of E q were estimated using communication data acquired at two different sites: one in which the sound speed ratio of sediment to water was less than unity and one where the ratio was higher than unity. Finally, the parameter E q was compared to the bit error rate and the output signal-to-noise ratio obtained after the time reversal operation. The results show that these parameters are strongly correlated to the parameter E q .

  8. Naphthalocyanine-based time reversal mirror at 800 nm

    International Nuclear Information System (INIS)

    Galaup, Jean-Pierre; Fraigne, Sebastien; Le Goueet, Jean-Louis; Likforman, Jean-Pierre; Joffre, Manuel

    2004-01-01

    We performed pulse shaping and time reversal experiments using spectral holography based on persistent spectral hole burning in free-base naphthalocyanine-doped films. The application of a new pulse re-compression scheme based on a programmable hole burning material acting as a time reversal mirror is considered. In this work, we adapted the Fourier transform spectral interferometry technique for measuring the amplitude and phase of photon echo signals produced by diffraction of femtosecond pulses on a spectral hologram. We therefore demonstrated that we could control the pulses diffracted from the hologram by shaping and then characterizing these pulses in both amplitude and phase by spectral interferometry

  9. Time-reversed absorbing condition: application to inverse problems

    International Nuclear Information System (INIS)

    Assous, F; Kray, M; Nataf, F; Turkel, E

    2011-01-01

    The aim of this paper is to introduce time-reversed absorbing conditions in time-reversal methods. They enable one to 'recreate the past' without knowing the source which has emitted the signals that are back-propagated. We present two applications in inverse problems: the reduction of the size of the computational domain and the determination, from boundary measurements, of the location and volume of an unknown inclusion. The method does not rely on any a priori knowledge of the physical properties of the inclusion. Numerical tests with the wave and Helmholtz equations illustrate the efficiency of the method. This technique is fairly insensitive to noise in the data

  10. Test of time-reversal invariance at COSY (TRIC)

    Energy Technology Data Exchange (ETDEWEB)

    Eversheim, D., E-mail: evershei@hiskp.uni-bonn.de; Valdau, Yu. [University Bonn, Helmholtz Institut fuer Strahlen- und Kernphysik (Germany); Lorentz, B. [Forschungszentrum Juelich, Institut fuer Kernphysik (Germany)

    2013-03-15

    At the Cooler Synchrotron COSY a novel (P-even, T-odd) null test of time-reversal invariance to an accuracy of 10{sup - 6} is planned as an internal target transmission experiment. The parity conserving time-reversal violating observable is the total cross-section asymmetry A{sub y,xz}. This quantity is measured using a polarized proton beam with an energy of 135 MeV and an internal tensor polarized deuteron target from the PAX atomic beam source. The reaction rate will be measured by means of an integrating beam current transformer. Thus, in this experiment the cooler synchroton ring serves as ideal forward spectrometer, as a detector, and an accelerator.

  11. Theory of reflectivity blurring in seismic depth imaging

    Science.gov (United States)

    Thomson, C. J.; Kitchenside, P. W.; Fletcher, R. P.

    2016-05-01

    A subsurface extended image gather obtained during controlled-source depth imaging yields a blurred kernel of an interface reflection operator. This reflectivity kernel or reflection function is comprised of the interface plane-wave reflection coefficients and so, in principle, the gather contains amplitude versus offset or angle information. We present a modelling theory for extended image gathers that accounts for variable illumination and blurring, under the assumption of a good migration-velocity model. The method involves forward modelling as well as migration or back propagation so as to define a receiver-side blurring function, which contains the effects of the detector array for a given shot. Composition with the modelled incident wave and summation over shots then yields an overall blurring function that relates the reflectivity to the extended image gather obtained from field data. The spatial evolution or instability of blurring functions is a key concept and there is generally not just spatial blurring in the apparent reflectivity, but also slowness or angle blurring. Gridded blurring functions can be estimated with, for example, a reverse-time migration modelling engine. A calibration step is required to account for ad hoc band limitedness in the modelling and the method also exploits blurring-function reciprocity. To demonstrate the concepts, we show numerical examples of various quantities using the well-known SIGSBEE test model and a simple salt-body overburden model, both for 2-D. The moderately strong slowness/angle blurring in the latter model suggests that the effect on amplitude versus offset or angle analysis should be considered in more realistic structures. Although the description and examples are for 2-D, the extension to 3-D is conceptually straightforward. The computational cost of overall blurring functions implies their targeted use for the foreseeable future, for example, in reservoir characterization. The description is for scalar

  12. Local temperature fine-tunes the timing of spring migration in birds

    DEFF Research Database (Denmark)

    Tøttrup, Anders P.; Rainio, Kalle; Coppack, Timothy

    2010-01-01

    and predict consequences of climatic change for migratory birds. In order to better understand migration phenology and adaptation in environmental changes, we here assess the scale at which weather affects timing of spring migration in passerine birds. We use three commonly used proxies of spring......-time climatic conditions: (1) vegetation "greenness" (NDVI) in Europe, (2) local spring temperatures in northern Europe, and (3) the North Atlantic Oscillation Index (NAO) as predictors of the phenology of avian migration as well as the strength of their effect on different subsets of populations...... breeding area. Local temperature was the best single predictor of phenology with the highest explanatory power achieved in combination with NAO. Furthermore, early individuals are more affected by climatic variation compared to individuals on later passage, indicating that climatic change affects subsets...

  13. Centrifuge modelling - migration of radionuclides from engineered trenches

    International Nuclear Information System (INIS)

    Dean, E.T.R.; Schofield, A.N.

    1991-12-01

    This report provides an overview of some centrifuge small-scale physical model tests and 1g experimental and theoretical work relating to the sub-surface migration of a model pollutant (sodium chloride) from a notional prototype surface landfill of width 25 metres and depth 3 metres cut into a 20 metre deep layer of nominally uniform soil overlying a more permeable base layer. An introduction is given to the application of geotechnical centrifuge modelling techniques to pollutant migration studies. Experiments performed at 1/100th scale using the Cambridge 10 metre diameter Geotechnical Beam Centrifuge simulating transport through silt over prototype time periods of around 35 years, are summarised. Comparisons of data with calculations using early versions of the POLLUTE and MIGRATE computer codes are presented. An experiment at 1/400th scale using the new Cambridge Geotechnical Drum Centrifuge, involving transport through clay over a prototype time period of around 1000 years, is described. Potential future uses of centrifuge modelling techniques to simulate long-term migration through more complex hydrological environments are also discussed. (author)

  14. Time reversal focusing of elastic waves in plates for an educational demonstration.

    Science.gov (United States)

    Heaton, Christopher; Anderson, Brian E; Young, Sarah M

    2017-02-01

    The purpose of this research is to develop a visual demonstration of time reversal focusing of vibrations in a thin plate. Various plate materials are tested to provide optimal conditions for time reversal focusing. Specifically, the reverberation time in each plate and the vibration coupling efficiency from a shaker to the plate are quantified to illustrate why a given plate provides the best spatially confined focus as well as the highest focal amplitude possible. A single vibration speaker and a scanning laser Doppler vibrometer (SLDV) are used to provide the time reversal focusing. Table salt is sprinkled onto the plate surface to allow visualization of the high amplitude, spatially localized time reversal focus; the salt is thrown upward only at the focal position. Spatial mapping of the vibration focusing on the plate using the SLDV is correlated to the visual salt jumping demonstration. The time reversal focusing is also used to knock over an object when the object is placed at the focal position; some discussion of optimal objects to use for this demonstration are given.

  15. Body size and condition influence migration timing of juvenile Arctic grayling

    Science.gov (United States)

    Heim, Kurt C.; Wipfli, Mark S.; Whitman, Matthew S.; Seitz, Andrew C.

    2016-01-01

    Freshwater fishes utilising seasonally available habitats within annual migratory circuits time movements out of such habitats with changing hydrology, although individual attributes of fish may also mediate the behavioural response to environmental conditions. We tagged juvenile Arctic grayling in a seasonally flowing stream on the Arctic Coastal Plain in Alaska and recorded migration timing towards overwintering habitat. We examined the relationship between individual migration date, and fork length (FL) and body condition index (BCI) for fish tagged in June, July and August in three separate models. Larger fish migrated earlier; however, only the August model suggested a significant relationship with BCI. In this model, 42% of variability in migration timing was explained by FL and BCI, and fish in better condition were predicted to migrate earlier than those in poor condition. Here, the majority (33%) of variability was captured by FL with an additional 9% attributable to BCI. We also noted strong seasonal trends in BCI reflecting overwinter mass loss and subsequent growth within the study area. These results are interpreted in the context of size and energetic state-specific risks of overwinter starvation and mortality (which can be very high in the Arctic), which may influence individuals at greater risk to extend summer foraging in a risky, yet prey rich, habitat. Our research provides further evidence that heterogeneity among individuals within a population can influence migratory behaviour and identifies potential risks to late season migrants in Arctic beaded stream habitats influenced by climate change and petroleum development.

  16. Methodologies of time to depth conversions in a Campos basin offshore deep water; Metodologias de conversao sismica tempo profundidade em campo gigante de aguas profundas da Bacia de Campos

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Nier M.; Gomes, Jose A.T.; Camarao, Luciano F.; Oliveira, Rildo M. de; Steagall, Daniel E.; Carvalho, Marimonica R.J. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    With the aim to drill a horizontal well in the fault shadow zone, various techniques of time to depth conversion were used in a study to minimize the uncertainties. After removing some wells close to the fault and doing a conversion only based on VELAN (Velocities from Seismic Processing) the result had a considerable difference comparing to a conversion based on VELAN and wells. After this exercise, the confidence on the seismic cube was lost, especially for new projects close to the fault. To drill new wells in that region, a geologic model without the seismic was done to predict the depth values of the top of the reservoir. In addition, a new seismic in depth using the technique PSDM (Pre Stack Depth Migration) will be generated being taken into account that geological model. (author)

  17. Modelling and Comparative Performance Analysis of a Time-Reversed UWB System

    Directory of Open Access Journals (Sweden)

    Popovski K

    2007-01-01

    Full Text Available The effects of multipath propagation lead to a significant decrease in system performance in most of the proposed ultra-wideband communication systems. A time-reversed system utilises the multipath channel impulse response to decrease receiver complexity, through a prefiltering at the transmitter. This paper discusses the modelling and comparative performance of a UWB system utilising time-reversed communications. System equations are presented, together with a semianalytical formulation on the level of intersymbol interference and multiuser interference. The standardised IEEE 802.15.3a channel model is applied, and the estimated error performance is compared through simulation with the performance of both time-hopped time-reversed and RAKE-based UWB systems.

  18. A digital matched filter for reverse time chaos.

    Science.gov (United States)

    Bailey, J Phillip; Beal, Aubrey N; Dean, Robert N; Hamilton, Michael C

    2016-07-01

    The use of reverse time chaos allows the realization of hardware chaotic systems that can operate at speeds equivalent to existing state of the art while requiring significantly less complex circuitry. Matched filter decoding is possible for the reverse time system since it exhibits a closed form solution formed partially by a linear basis pulse. Coefficients have been calculated and are used to realize the matched filter digitally as a finite impulse response filter. Numerical simulations confirm that this correctly implements a matched filter that can be used for detection of the chaotic signal. In addition, the direct form of the filter has been implemented in hardware description language and demonstrates performance in agreement with numerical results.

  19. Analysis of Time Reversible Born-Oppenheimer Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Lin Lin

    2013-12-01

    Full Text Available We analyze the time reversible Born-Oppenheimer molecular dynamics (TRBOMD scheme, which preserves the time reversibility of the Born-Oppenheimer molecular dynamics even with non-convergent self-consistent field iteration. In the linear response regime, we derive the stability condition, as well as the accuracy of TRBOMD for computing physical properties, such as the phonon frequency obtained from the molecular dynamics simulation. We connect and compare TRBOMD with Car-Parrinello molecular dynamics in terms of accuracy and stability. We further discuss the accuracy of TRBOMD beyond the linear response regime for non-equilibrium dynamics of nuclei. Our results are demonstrated through numerical experiments using a simplified one-dimensional model for Kohn-Sham density functional theory.

  20. Time reversal symmetry violation in the YbF molecule

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, B. E., E-mail: ben.sauer@imperial.ac.uk; Devlin, J. A.; Hudson, J. J.; Kara, D. M.; Smallman, I. J.; Tarbutt, M. R.; Hinds, E. A. [Blackett Laboratory Imperial College London, Centre for Cold Matter (United Kingdom)

    2013-03-15

    We present a summary of the techniques used to test time reversal symmetry by measuring the permanent electric dipole moment of the YbF molecule. The results of a recent measurement (Hudson et al., Nature 473:493, 2011) are reported. We review some systematic effects which might mimic time reversal violation and describe how they are overcome. We then discuss improvements to the sensitivity of the apparatus, including both short term technical enhancements as well as a longer term goal to use laser cooled YbF in the experiment.

  1. Time reversal tests in polarized neutron reactions

    International Nuclear Information System (INIS)

    Asahi, Koichiro; Bowman, J.D.; Crawford, B.

    1998-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). In recent years the nuclear weak interaction has been studied in the compound nucleus via parity violation. The observed parity-violating effects are strongly enhanced by nuclear structure. The predictions are that the interaction of polarized neutrons with polarized nuclear targets could be also used to perform sensitive tests of time-reversal-violation because of the nuclear enhancements. The author has designed experiments to search for time-reversal violation in neutron-nucleus interactions. He has also developed techniques to polarize neutrons with laser-polarized 3 He gas targets. Using the polarized 3 He neutron spin filter, he has performed two experiments at LANSCE: an absolute neutron beam polarization measurement with an accuracy of 0.2--0.3% and a neutron spin-rotation measurement on a 139 La sample

  2. Migration and common mental disorder: an improvement in mental health over time?

    Science.gov (United States)

    Butler, Margaret; Warfa, Nasir; Khatib, Yasmin; Bhui, Kamaldeep

    2015-02-01

    Global migration is reaching record high levels and UK migrant groups comprise an increasing proportion of the total population. The migratory process causes stress that can affect mental health. There is limited consistent empirical evidence of a longitudinal nature to explain the association between migration and mental health. This review aims to examine the evidence of a relationship between migration and common mental disorder (CMD) amongst migrants over time. A comprehensive search of medical and psychiatric databases for global quantitative empirical studies investigating incidence of CMD amongst adult migrants from 1975 to July 2012 was conducted. Declines in rates of CMD amongst migrants over time were reported by two thirds of the 18 studies reviewed, less than one third of which were statistically significant. On the contrary, three studies showed an increased rate of CMD, one statistically significant. Individual psychological resources, social support, the acculturation process, cultural variations and time since relocation are identified as statistically significant protective factors against the development of CMD amongst migrants. New enlightening points include the significant impact of varying patterns of psychological distress, of which negative is the most adverse for CMD. Migration is an extremely complex process. Further clarification is needed to gain deeper understanding of the relationship between migration and CMD to address contradictions in the literature and health inequalities amongst migrants.

  3. The effects of sowing time and depth on germination and seedling ...

    African Journals Online (AJOL)

    The aim of this study is to determine the appropriate sowing time and depth in spring for Taurus Cedar (Cedrus libani A. Rich) in Turkey. The effects of sowing time and depth were determined with regard to the germination rate of seedlings' quality. The seeds were collected from Kapidag-Isparta, in Turkey, in 2003 and ...

  4. The evolution of immunity in relation to colonization and migration.

    Science.gov (United States)

    O'Connor, Emily A; Cornwallis, Charlie K; Hasselquist, Dennis; Nilsson, Jan-Åke; Westerdahl, Helena

    2018-05-01

    Colonization and migration have a crucial effect on patterns of biodiversity, with disease predicted to play an important role in these processes. However, evidence of the effect of pathogens on broad patterns of colonization and migration is limited. Here, using phylogenetic analyses of 1,311 species of Afro-Palaearctic songbirds, we show that colonization events from regions of high (sub-Saharan Africa) to low (the Palaearctic) pathogen diversity were up to 20 times more frequent than the reverse, and that migration has evolved 3 times more frequently from African- as opposed to Palaearctic-resident species. We also found that resident species that colonized the Palaearctic from Africa, as well as African species that evolved long-distance migration to breed in the Palaearctic, have reduced diversity of key immune genes associated with pathogen recognition (major histocompatibility complex class I). These results suggest that changes in the pathogen community that occur during colonization and migration shape the evolution of the immune system, potentially by adjusting the trade-off between the benefits of extensive pathogen recognition and the costs of immunopathology that result from high major histocompatibility complex class I diversity.

  5. A Virtual Machine Migration Strategy Based on Time Series Workload Prediction Using Cloud Model

    Directory of Open Access Journals (Sweden)

    Yanbing Liu

    2014-01-01

    Full Text Available Aimed at resolving the issues of the imbalance of resources and workloads at data centers and the overhead together with the high cost of virtual machine (VM migrations, this paper proposes a new VM migration strategy which is based on the cloud model time series workload prediction algorithm. By setting the upper and lower workload bounds for host machines, forecasting the tendency of their subsequent workloads by creating a workload time series using the cloud model, and stipulating a general VM migration criterion workload-aware migration (WAM, the proposed strategy selects a source host machine, a destination host machine, and a VM on the source host machine carrying out the task of the VM migration. Experimental results and analyses show, through comparison with other peer research works, that the proposed method can effectively avoid VM migrations caused by momentary peak workload values, significantly lower the number of VM migrations, and dynamically reach and maintain a resource and workload balance for virtual machines promoting an improved utilization of resources in the entire data center.

  6. Interregional migration in socialist countries: the case of China.

    Science.gov (United States)

    Wei, Y

    1997-03-01

    "This paper analyzes changing interregional migration in China and reveals that the recent eastward migration reverses patterns of migration under Mao. It finds that investment variables are more important than the conventional variables of income and job opportunities in determining China's recent interregional migration. It suggests that both state policy and the global force influence interregional migration, challenging the popular view that the socialist state is the only critical determinant. This paper also criticizes Mao's approach to interregional migration and discusses the impact of migration on development." excerpt

  7. Assessing Task Migration Impact on Embedded Soft Real-Time Streaming Multimedia Applications

    Directory of Open Access Journals (Sweden)

    Alimonda Andrea

    2008-01-01

    Full Text Available Abstract Multiprocessor systems on chips (MPSoCs are envisioned as the future of embedded platforms such as game-engines, smart-phones and palmtop computers. One of the main challenge preventing the widespread diffusion of these systems is the efficient mapping of multitask multimedia applications on processing elements. Dynamic solutions based on task migration has been recently explored to perform run-time reallocation of task to maximize performance and optimize energy consumption. Even if task migration can provide high flexibility, its overhead must be carefully evaluated when applied to soft real-time applications. In fact, these applications impose deadlines that may be missed during the migration process. In this paper we first present a middleware infrastructure supporting dynamic task allocation for NUMA architectures. Then we perform an extensive characterization of its impact on multimedia soft real-time applications using a software FM Radio benchmark.

  8. Assessing Task Migration Impact on Embedded Soft Real-Time Streaming Multimedia Applications

    Directory of Open Access Journals (Sweden)

    Andrea Acquaviva

    2008-01-01

    Full Text Available Multiprocessor systems on chips (MPSoCs are envisioned as the future of embedded platforms such as game-engines, smart-phones and palmtop computers. One of the main challenge preventing the widespread diffusion of these systems is the efficient mapping of multitask multimedia applications on processing elements. Dynamic solutions based on task migration has been recently explored to perform run-time reallocation of task to maximize performance and optimize energy consumption. Even if task migration can provide high flexibility, its overhead must be carefully evaluated when applied to soft real-time applications. In fact, these applications impose deadlines that may be missed during the migration process. In this paper we first present a middleware infrastructure supporting dynamic task allocation for NUMA architectures. Then we perform an extensive characterization of its impact on multimedia soft real-time applications using a software FM Radio benchmark.

  9. Structural and magnetic depth profiles of magneto-ionic heterostructures beyond the interface limit

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, DA; Grutter, AJ; Arenholz, E; Liu, K; Kirby, BJ; Borchers, JA; Maranville, BB

    2016-07-22

    Electric field control of magnetism provides a promising route towards ultralow power information storage and sensor technologies. The effects of magneto-ionic motion have been prominently featured in the modification of interface characteristics. Here, we demonstrate magnetoelectric coupling moderated by voltage-driven oxygen migration beyond the interface in relatively thick AlOx/GdOx/Co(15 nm) films. Oxygen migration and Co magnetization are quantitatively mapped with polarized neutron reflectometry under electro-thermal conditioning. The depth-resolved profiles uniquely identify interfacial and bulk behaviours and a semi-reversible control of the magnetization. Magnetometry measurements suggest changes in the microstructure which disrupt long-range ferromagnetic ordering, resulting in an additional magnetically soft phase. X-ray spectroscopy confirms changes in the Co oxidation state, but not in the Gd, suggesting that the GdOx transmits oxygen but does not source or sink it. These results together provide crucial insight into controlling magnetism via magneto-ionic motion, both at interfaces and throughout the bulk of the films.

  10. The criterion for time symmetry of probabilistic theories and the reversibility of quantum mechanics

    International Nuclear Information System (INIS)

    Holster, A T

    2003-01-01

    Physicists routinely claim that the fundamental laws of physics are 'time symmetric' or 'time reversal invariant' or 'reversible'. In particular, it is claimed that the theory of quantum mechanics is time symmetric. But it is shown in this paper that the orthodox analysis suffers from a fatal conceptual error, because the logical criterion for judging the time symmetry of probabilistic theories has been incorrectly formulated. The correct criterion requires symmetry between future-directed laws and past-directed laws. This criterion is formulated and proved in detail. The orthodox claim that quantum mechanics is reversible is re-evaluated. The property demonstrated in the orthodox analysis is shown to be quite distinct from time reversal invariance. The view of Satosi Watanabe that quantum mechanics is time asymmetric is verified, as well as his view that this feature does not merely show a de facto or 'contingent' asymmetry, as commonly supposed, but implies a genuine failure of time reversal invariance of the laws of quantum mechanics. The laws of quantum mechanics would be incompatible with a time-reversed version of our universe

  11. Real-time lossless compression of depth streams

    KAUST Repository

    Schneider, Jens

    2017-08-17

    Various examples are provided for lossless compression of data streams. In one example, a Z-lossless (ZLS) compression method includes generating compacted depth information by condensing information of a depth image and a compressed binary representation of the depth image using histogram compaction and decorrelating the compacted depth information to produce bitplane slicing of residuals by spatial prediction. In another example, an apparatus includes imaging circuitry that can capture one or more depth images and processing circuitry that can generate compacted depth information by condensing information of a captured depth image and a compressed binary representation of the captured depth image using histogram compaction; decorrelate the compacted depth information to produce bitplane slicing of residuals by spatial prediction; and generate an output stream based upon the bitplane slicing.

  12. Real-time lossless compression of depth streams

    KAUST Repository

    Schneider, Jens

    2017-01-01

    Various examples are provided for lossless compression of data streams. In one example, a Z-lossless (ZLS) compression method includes generating compacted depth information by condensing information of a depth image and a compressed binary representation of the depth image using histogram compaction and decorrelating the compacted depth information to produce bitplane slicing of residuals by spatial prediction. In another example, an apparatus includes imaging circuitry that can capture one or more depth images and processing circuitry that can generate compacted depth information by condensing information of a captured depth image and a compressed binary representation of the captured depth image using histogram compaction; decorrelate the compacted depth information to produce bitplane slicing of residuals by spatial prediction; and generate an output stream based upon the bitplane slicing.

  13. Population, migration and urbanization.

    Science.gov (United States)

    1982-06-01

    Despite recent estimates that natural increase is becoming a more important component of urban growth than rural urban transfer (excess of inmigrants over outmigrants), the share of migration in the total population growth has been consistently increasing in both developed and developing countries. From a demographic perspective, the migration process involves 3 elements: an area of origin which the mover leaves and where he or she is considered an outmigrant; the destination or place of inmigration; and the period over which migration is measured. The 2 basic types of migration are internal and international. Internal migration consists of rural to urban migration, urban to urban migration, rural to rural migration, and urban to rural migration. Among these 4 types of migration various patterns or processes are followed. Migration may be direct when the migrant moves directly from the village to the city and stays there permanently. It can be circular migration, meaning that the migrant moves to the city when it is not planting season and returns to the village when he is needed on the farm. In stage migration the migrant makes a series of moves, each to a city closer to the largest or fastest growing city. Temporary migration may be 1 time or cyclical. The most dominant pattern of internal migration is rural urban. The contribution of migration to urbanization is evident. For example, the rapid urbanization and increase in urban growth from 1960-70 in the Republic of Korea can be attributed to net migration. In Asia the largest component of the population movement consists of individuals and groups moving from 1 rural location to another. Recently, because urban centers could no longer absorb the growing number of migrants from other places, there has been increased interest in the urban to rural population redistribution. This reverse migration also has come about due to slower rates of employment growth in the urban centers and improved economic opportunities

  14. Underlying mechanism of precursory activity from analysis of upward earthquake migration

    Directory of Open Access Journals (Sweden)

    O. A. Molchanov

    2011-01-01

    Full Text Available In this paper we analyse the upward earthquake hypocentral migration in the ten known subduction zones and discuss a possible mechanism of such migration. The total time of the migration appears to range from 2.5 to 10 years. It leads to the estimation of the average velocity Vz~ 60−300 km yr−1. It probably corresponds to the movement of the forcing agent like stress or deformation wave from depths of the upper mantle (600–700 km to the level of the lithosphere with subsequent initiation of fluid migration inside the crust to trigger shallow earthquakes. Averaged over all zones upward migration travel time is about 5 years (< Vz > ≈120 km yr−1 that coincides approximately with the period of characteristic temperature variation (El Nino and crustal seismic periodicity in the Pacific region. These findings are helpful for the study of the seismic precursors and analysis of earthquake triggering.

  15. Performance analysis of an acoustic time reversal system in dynamic and random oceanic environments

    Science.gov (United States)

    Khosla, Sunny Rajendra

    This dissertation provides a theoretical framework along with specific performance predictions for an acoustic time reversal system in shallow oceanic environments. Acoustic time-reversal is a robust means of retrofocusing acoustic energy, in both time and space, to the original sound-source location without any information about the acoustic environment in which it is deployed. The effect of three performance limiting oceanic complexities addressed, include (i)ambient noise field, (ii)reflection and volume scattering from a deterministic soliton internal wave traveling on the thermocline between two water masses, and (iii)volume scattering from a random superposition of linear internal waves convecting a gradient in the sound speed profile. The performance analysis establishes acoustic time reversal to be a promising technology for a two-way communication system in an oceanic medium. For an omni-directional noisy environment a general formulation for the probability of retrofocusing is developed that includes the effect of the medium, accounts for the system hardware and the acoustic parameters. Monte-Carlo simulations in both, a free-space environment and a shallow-ocean sound-channel environment compare well with theory. A 41 element TRA spanning a shallow water depth of 60 m is predicted to return a 70% focal probability at -15 dB SNR for a source to array range of 6 km. Preliminary research with broadband signals suggest that they should outperform narrowband response in both free space and sound channel environments. The impact of the nonlinear solitary waves is addressed using a two-path Green's function to treat the presence of a flat thermocline, and the single scattering Born approximation to address scattering from the soliton internal wave. It is predicted that a stationary soliton located along ray turning paths between the source and the TRA can lead to both enhanced and degraded focal performance. Based on extension of previous research in wave

  16. Consideration of some difficulties in migration velocity analysis; Migration velocity analysis no shomondai ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Akama, K [Japan National Oil Corp., Tokyo (Japan). Technology Research Center; Matsuoka, T [Japan Petroleum Exploration Corp., Tokyo (Japan)

    1997-10-22

    Concerning migration velocity analysis in the seismic exploration method, two typical techniques, out of velocity analysis techniques using residual moveout in the CIP gather, are verified. Deregowski`s method uses pre-stacking deep-level migration records for velocity analysis to obtain velocities free of spatial inconsistency and not dependent on the velocity structure. This method is very like the conventional DMO velocity analysis method and is easy to understand intuitively. In this method, however, error is apt to be aggravated in the process of obtaining the depth-sector velocity from the time-RMS velocity. Al-Yahya`s method formulates the moveout residual in the CIP gather. This assumes horizontal stratification and a small residual velocity, however, and fails to guarantee convergence in the case of a steep structure or a grave model error. In the updating of the velocity model, in addition, it has to maintain required accuracy and, at the same time, incorporate smoothing to ensure not to deteriorate high convergence. 2 refs., 5 figs.

  17. Subtleties in the BABAR measurement of time-reversal violation

    International Nuclear Information System (INIS)

    Efrati, Aielet

    2015-01-01

    A first measurement of time-reversal (T) asymmetries that are not also CP asymmetries has been recently achieved by the B A B AR collaboration. In this talk, which follows the work done in Ref. [1], I discuss the subtleties of this measurement in the presence of direct CP violation, CPT violation, wrong strangeness decays and wrong sign semi-leptonic decays. In particular, I explain why, in order to identify the measured asymmetries with time-reversal violation, one needs to assume (i) the absence of wrong strangeness decays or of CPT violation in strangeness changing decays, and (ii) the absence of wrong sign decays. (paper)

  18. Time reversibility of intracranial human EEG recordings in mesial temporal lobe epilepsy

    Science.gov (United States)

    van der Heyden, M. J.; Diks, C.; Pijn, J. P. M.; Velis, D. N.

    1996-02-01

    Intracranial electroencephalograms from patients suffering from mesial temporal lobe epilepsy were tested for time reversibility. If the recorded time series is irreversible, the input of the recording system cannot be a realisation of a linear Gaussian random process. We confirmed experimentally that the measurement equipment did not introduce irreversibility in the recorded output when the input was a realisation of a linear Gaussian random process. In general, the non-seizure recordings are reversible, whereas the seizure recordings are irreversible. These results suggest that time reversibility is a useful property for the characterisation of human intracranial EEG recordings in mesial temporal lobe epilepsy.

  19. Wages, Welfare Benefits and Migration.

    Science.gov (United States)

    Kennan, John; Walker, James R

    2010-05-01

    Differences in economic opportunities give rise to strong migration incentives, across regions within countries, and across countries. In this paper we focus on responses to differences in welfare benefits across States. We apply the model developed in Kennan and Walker (2008), which emphasizes that migration decisions are often reversed, and that many alternative locations must be considered. We model individual decisions to migrate as a job search problem. A worker starts the life-cycle in some home location and must determine the optimal sequence of moves before settling down. The model is sparsely parameterized. We estimate the model using data from the National Longitudinal Survey of Youth (1979). Our main finding is that income differences do help explain the migration decisions of young welfare-eligible women, but large differences in benefit levels provide surprisingly weak migration incentives.

  20. Migrating to a real-time distributed parallel simulator architecture- An update

    CSIR Research Space (South Africa)

    Duvenhage, B

    2007-09-01

    Full Text Available A legacy non-distributed logical time simulator was previously migrated to a distributed architecture to parallelise execution. The existing Discrete Time System Specification (DTSS) modelling formalism was retained to simplify the reuse of existing...

  1. Amenity migration: the migratory phenomenon in mountain tourism destinations

    Directory of Open Access Journals (Sweden)

    Lía Domínguez de Nakayama

    2007-12-01

    Full Text Available Since long time ago population dynamics in Argentina has been linked to migration. Nevertheless, scientists have concluded that no research has found migration to be due to positive attractors. Almost every research presents migration as the unavoidable outcome of constraining environmental conditions. Recently a new type of migration has come to be, linked with tourism, which has received the denomination of amenity migration, and has as its subjects people who, after being tourist in a certain destination, decide to come back to it as dwellers. They can stay either for the season or the whole year. This movement produces important effects in the collective profile of tourism destinations. This article intends to study demographic and social processes quickened in mountain tourism destinations by this peculiar kind of migration, with a case study in two Argentinean cities San Martín de los Andes (Neuquén y Villa General Belgrano (Córdoba. Documental research and in-depth interviews with migrants as well as natives enables an preliminary understanding of the way this kind of migration affects socio cultural configuration in destination places as well as relationship amongst residents and newcomers and sustainability policies for local development.

  2. Crossover driven by time-reversal symmetry breaking in quantum chaos

    International Nuclear Information System (INIS)

    Taniguchi, N.; Hashimoto, A.; Simons, B.D.; Altshuler, B.L.

    1994-01-01

    Parametric correlations of the energy spectra of quantum chaotic systems are presented in the presence of time-reversal symmetry-breaking perturbations. The spectra disperse as a function of two external perturbations, one of which preserves time-reversal symmetry, while the other violates it. Exact analytical expressions for the parametric two-point autocorrelation function of the density of states are derived in the crossover region by means of the supermatrix method. For the orthogonal-unitary crossover, the velocity distribution is determined and shown to deviate from Gaussian. (orig.)

  3. Using Opaque Image Blur for Real-Time Depth-of-Field Rendering

    DEFF Research Database (Denmark)

    Kraus, Martin

    2011-01-01

    While depth of field is an important cinematographic means, its use in real-time computer graphics is still limited by the computational costs that are necessary to achieve a sufficient image quality. Specifically, color bleeding artifacts between objects at different depths are most effectively...

  4. Constraints of a parity-conserving/time-reversal-non-conserving interaction

    International Nuclear Information System (INIS)

    Oers, Willem T.H. van

    2002-01-01

    Time-Reversal-Invariance non-conservation has for the first time been unequivocally demonstrated in a direct measurement at CPLEAR. One then can ask the question: What about tests of time-reversal-invariance in systems other than the kaon system? Tests of time-reversal-invariance can be distinguished as belonging to two classes: the first one deals with time-reversal-invariance-non-conserving (T-odd)/parity violating (P-odd) interactions, while the second one deals with T-odd/P-even interactions (assuming CPT conservation this implies C-conjugation non-conservation). Limits on a T-odd/P-odd interaction follow from measurements of the electric dipole moment of the neutron ( -26 e.cm [95% C.L.]). It provides a limit on a T-odd/P-odd pion-nucleon coupling constant which is less than 10 -4 times the weak interaction strength. Experimental limits on a T-odd/P-even interaction are much less stringent. Following the standard approach of describing the nucleon-nucleon interaction in terms of meson exchanges, it can be shown that only charged ρ-meson exchange and A 1 -meson exchange can lead to a T-odd/P-even interaction. The better constraints stem from measurements of the electric dipole moment of the neutron and from measurements of charge-symmetry breaking in neutron-proton elastic scattering. The latter experiments were executed at TRIUMF (497 and 347 MeV) and at IUCF (183 MeV). All other experiments, like detailed balance experiments, polarization - analyzing power difference determinations, and five-fold correlation experiments with polarized incident nucleons and aligned nuclear targets, have been shown to be at least an order to magnitude less sensitive. Is there room for further experimentation?

  5. Detection of cavity migration risks using radar interferometric time series

    Science.gov (United States)

    Chang, L.; Hanssen, R. F.

    2012-12-01

    The upward migration of near-surface underground cavities can pose a major hazard for people and infrastructure. Being the major cause of sudden collapse-sinkholes, or causing a sudden lack of support of building foundations, a migrating cavity can cause the collapse of buildings, water defense systems, drainage of water bodies, or transport infrastructure. Cavity migration can occur naturally, e.g. in karst-massifs, but could also be caused by anthropogenic activities such as mining. The chief difficulty in the assessment of sinkhole risk is the lack of prior knowledge on the location of the cavity. Although in situ measurements such as gravimetry, seismic or EM-surveying or GPR are in principle able to detect an underground void, it is generally not economically possible to use these techniques over vast areas. Moreover, the risk of casualties is highest for urbanized areas, in which it is difficult to get close enough to perform these measurements. The second problem is that there is usually no data available prior to the collapse, to understand whether there is for example precursory motion, and how far ahead in time critical levels can be detected. Here we report on the catastrophic collapse of the foundation of an underground parking garage in Heerlen, the Netherlands. In December 2011, some pillars supporting the roof of the garage and the shopping mall above it suddenly subsided more than one meter. This caused the near collapse of a part of the shopping mall, the immediate evacuation of the building, and the decision of the authorities to eliminate the building. In the analysis of the event, several hypotheses were formulated on the driving mechanisms, such as subsurface water flows and karst. However, as the region was subject to coal mining in the last century, alternative hypotheses were cavity migration due to the mining, or rebound of the surface due to mine water. Our study jointly exploits the data archives of four imaging radar satellites, ERS-1

  6. Modulation of epithelial tissue and cell migration by microgrooves.

    NARCIS (Netherlands)

    Dalton, B.A.; Walboomers, X.F.; Dziegielewski, M.; Evans, M.D.; Taylor, S.; Jansen, J.A.; Steele, J.G.

    2001-01-01

    We used a polystyrene substratum to study the response of migrating epithelium to 1- or 5-microm depth microgrooves with groove/ridge widths of 1, 2, 5, or 10 microm. The migration of a tissue sheet was enhanced along the microgrooves, while migration across the microgrooves was inhibited. Changing

  7. Factors affecting timing of closure and non-reversal of temporary ileostomies.

    Science.gov (United States)

    Sier, M F; van Gelder, L; Ubbink, D T; Bemelman, W A; Oostenbroek, R J

    2015-09-01

    Although stoma closure is considered a simple surgical intervention, the interval between construction and reversal is often prolonged, and some ileostomies may never be reversed. We evaluated possible predictors for non-reversal and prolonged interval between construction and reversal. In a cohort study of ileostomy patients treated in a large teaching hospital, we collected data from the surgical complication and enterostomal therapists' registries between January 2001 and December 2011. Parameters responsible for morbidity, mortality, length of stay and time interval between construction and reversal were analysed. Of 485 intentionally temporary ileostomies, 359 were reversed after a median of 5.6 months (IQR 3.8-8.9 months), while 126 (26%) remained permanent. End ileostomy and intra-abdominal abscess independently delayed reversal. Age, end ileostomy, higher body mass index and preoperative radiotherapy were independent factors for non-reversal. Median duration of hospitalisation for reversal was 7.0 days (5-13 days). Morbidity and mortality were 31 and 0.9%, respectively. In 20 patients (5.5%), re-ileostomy was necessary. A substantial number of ileostomies that are intended to be temporary will never be reversed. If reversed, the interval between construction and reversal is longer than anticipated, while morbidity after reversal and duration of hospitalisation are considerable. Besides a temporary ileostomy, there are two other options: no diversion or a permanent colostomy. Shared decision-making is to be preferred in these situations.

  8. Time Reversal Reconstruction Algorithm Based on PSO Optimized SVM Interpolation for Photoacoustic Imaging

    Directory of Open Access Journals (Sweden)

    Mingjian Sun

    2015-01-01

    Full Text Available Photoacoustic imaging is an innovative imaging technique to image biomedical tissues. The time reversal reconstruction algorithm in which a numerical model of the acoustic forward problem is run backwards in time is widely used. In the paper, a time reversal reconstruction algorithm based on particle swarm optimization (PSO optimized support vector machine (SVM interpolation method is proposed for photoacoustics imaging. Numerical results show that the reconstructed images of the proposed algorithm are more accurate than those of the nearest neighbor interpolation, linear interpolation, and cubic convolution interpolation based time reversal algorithm, which can provide higher imaging quality by using significantly fewer measurement positions or scanning times.

  9. High-resolution and super stacking of time-reversal mirrors in locating seismic sources

    KAUST Repository

    Cao, Weiping; Hanafy, Sherif M.; Schuster, Gerard T.; Zhan, Ge; Boonyasiriwat, Chaiwoot

    2011-01-01

    Time reversal mirrors can be used to backpropagate and refocus incident wavefields to their actual source location, with the subsequent benefits of imaging with high-resolution and super-stacking properties. These benefits of time reversal mirrors

  10. Anatomy of the western Java plate interface from depth-migrated seismic images

    Science.gov (United States)

    Kopp, H.; Hindle, D.; Klaeschen, D.; Oncken, O.; Reichert, C.; Scholl, D.

    2009-01-01

    Newly pre-stack depth-migrated seismic images resolve the structural details of the western Java forearc and plate interface. The structural segmentation of the forearc into discrete mechanical domains correlates with distinct deformation styles. Approximately 2/3 of the trench sediment fill is detached and incorporated into frontal prism imbricates, while the floor sequence is underthrust beneath the d??collement. Western Java, however, differs markedly from margins such as Nankai or Barbados, where a uniform, continuous d??collement reflector has been imaged. In our study area, the plate interface reveals a spatially irregular, nonlinear pattern characterized by the morphological relief of subducted seamounts and thicker than average patches of underthrust sediment. The underthrust sediment is associated with a low velocity zone as determined from wide-angle data. Active underplating is not resolved, but likely contributes to the uplift of the large bivergent wedge that constitutes the forearc high. Our profile is located 100 km west of the 2006 Java tsunami earthquake. The heterogeneous d??collement zone regulates the friction behavior of the shallow subduction environment where the earthquake occurred. The alternating pattern of enhanced frictional contact zones associated with oceanic basement relief and weak material patches of underthrust sediment influences seismic coupling and possibly contributed to the heterogeneous slip distribution. Our seismic images resolve a steeply dipping splay fault, which originates at the d??collement and terminates at the sea floor and which potentially contributes to tsunami generation during co-seismic activity. ?? 2009 Elsevier B.V.

  11. Anatomy of the western Java plate interface from depth-migrated seismic images

    Science.gov (United States)

    Kopp, H.; Hindle, D.; Klaeschen, D.; Oncken, O.; Reichert, C.; Scholl, D.

    2009-11-01

    Newly pre-stack depth-migrated seismic images resolve the structural details of the western Java forearc and plate interface. The structural segmentation of the forearc into discrete mechanical domains correlates with distinct deformation styles. Approximately 2/3 of the trench sediment fill is detached and incorporated into frontal prism imbricates, while the floor sequence is underthrust beneath the décollement. Western Java, however, differs markedly from margins such as Nankai or Barbados, where a uniform, continuous décollement reflector has been imaged. In our study area, the plate interface reveals a spatially irregular, nonlinear pattern characterized by the morphological relief of subducted seamounts and thicker than average patches of underthrust sediment. The underthrust sediment is associated with a low velocity zone as determined from wide-angle data. Active underplating is not resolved, but likely contributes to the uplift of the large bivergent wedge that constitutes the forearc high. Our profile is located 100 km west of the 2006 Java tsunami earthquake. The heterogeneous décollement zone regulates the friction behavior of the shallow subduction environment where the earthquake occurred. The alternating pattern of enhanced frictional contact zones associated with oceanic basement relief and weak material patches of underthrust sediment influences seismic coupling and possibly contributed to the heterogeneous slip distribution. Our seismic images resolve a steeply dipping splay fault, which originates at the décollement and terminates at the sea floor and which potentially contributes to tsunami generation during co-seismic activity.

  12. Real-time depth processing for embedded platforms

    Science.gov (United States)

    Rahnama, Oscar; Makarov, Aleksej; Torr, Philip

    2017-05-01

    Obtaining depth information of a scene is an important requirement in many computer-vision and robotics applications. For embedded platforms, passive stereo systems have many advantages over their active counterparts (i.e. LiDAR, Infrared). They are power efficient, cheap, robust to lighting conditions and inherently synchronized to the RGB images of the scene. However, stereo depth estimation is a computationally expensive task that operates over large amounts of data. For embedded applications which are often constrained by power consumption, obtaining accurate results in real-time is a challenge. We demonstrate a computationally and memory efficient implementation of a stereo block-matching algorithm in FPGA. The computational core achieves a throughput of 577 fps at standard VGA resolution whilst consuming less than 3 Watts of power. The data is processed using an in-stream approach that minimizes memory-access bottlenecks and best matches the raster scan readout of modern digital image sensors.

  13. Reversing the irreversible: From limit cycles to emergent time symmetry

    Science.gov (United States)

    Cortês, Marina; Smolin, Lee

    2018-01-01

    In 1979 Penrose hypothesized that the arrows of time are explained by the hypothesis that the fundamental laws are time irreversible [R. Penrose, in General Relativity: An Einstein Centenary Survey (1979)]. That is, our reversible laws, such as the standard model and general relativity are effective, and emerge from an underlying fundamental theory which is time irreversible. In [M. Cortês and L. Smolin, Phys. Rev. D 90, 084007 (2014), 10.1103/PhysRevD.90.084007; 90, 044035 (2014), 10.1103/PhysRevD.90.044035; 93, 084039 (2016), 10.1103/PhysRevD.93.084039] we put forward a research program aiming at realizing just this. The aim is to find a fundamental description of physics above the Planck scale, based on irreversible laws, from which will emerge the apparently reversible dynamics we observe on intermediate scales. Here we continue that program and note that a class of discrete dynamical systems are known to exhibit this very property: they have an underlying discrete irreversible evolution, but in the long term exhibit the properties of a time reversible system, in the form of limit cycles. We connect this to our original model proposal in [M. Cortês and L. Smolin, Phys. Rev. D 90, 084007 (2014), 10.1103/PhysRevD.90.084007], and show that the behaviors obtained there can be explained in terms of the same phenomenon: the attraction of the system to a basin of limit cycles, where the dynamics appears to be time reversible. Further than that, we show that our original models exhibit the very same feature: the emergence of quasiparticle excitations obtained in the earlier work in the space-time description is an expression of the system's convergence to limit cycles when seen in the causal set description.

  14. The Critical Depth of Freeze-Thaw Soil under Different Types of Snow Cover

    Directory of Open Access Journals (Sweden)

    Qiang Fu

    2017-05-01

    Full Text Available Snow cover is the most common upper boundary condition influencing the soil freeze-thaw process in the black soil farming area of northern China. Snow is a porous dielectric cover, and its unique physical properties affect the soil moisture diffusion, heat conduction, freezing rate and other variables. To understand the spatial distribution of the soil water-heat and the variable characteristics of the critical depth of the soil water and heat, we used field data to analyze the freezing rate of soil and the extent of variation in soil water-heat in a unit soil layer under bare land (BL, natural snow (NS, compacted snow (CS and thick snow (TS treatments. The critical depth of the soil water and heat activity under different snow covers were determined based on the results of the analysis, and the variation fitting curve of the difference sequences on the soil temperature and water content between different soil layers and the surface 5-cm soil layer were used to verify the critical depth. The results were as follows: snow cover slowed the rate of soil freezing, and the soil freezing rate under the NS, CS and TS treatments decreased by 0.099 cm/day, 0.147 cm/day and 0.307 cm/day, respectively, compared with that under BL. In addition, the soil thawing time was delayed, and the effect was more significant with increased snow cover. During freeze-thaw cycles, the extent of variation in the water and heat time series in the shallow soil was relatively large, while there was less variation in the deep layer. There was a critical stratum in the vertical surface during hydrothermal migration, wherein the critical depth of soil water and heat change gradually increased with increasing snow cover. The variance in differences between the surface layer and both the soil water and heat in the different layers exhibited “steady-rising-steady” behavior, and the inflection point of the curve is the critical depth of soil freezing and thawing. This critical

  15. Untangling cell tracks: Quantifying cell migration by time lapse image data analysis.

    Science.gov (United States)

    Svensson, Carl-Magnus; Medyukhina, Anna; Belyaev, Ivan; Al-Zaben, Naim; Figge, Marc Thilo

    2018-03-01

    Automated microscopy has given researchers access to great amounts of live cell imaging data from in vitro and in vivo experiments. Much focus has been put on extracting cell tracks from such data using a plethora of segmentation and tracking algorithms, but further analysis is normally required to draw biologically relevant conclusions. Such relevant conclusions may be whether the migration is directed or not, whether the population has homogeneous or heterogeneous migration patterns. This review focuses on the analysis of cell migration data that are extracted from time lapse images. We discuss a range of measures and models used to analyze cell tracks independent of the biological system or the way the tracks were obtained. For single-cell migration, we focus on measures and models giving examples of biological systems where they have been applied, for example, migration of bacteria, fibroblasts, and immune cells. For collective migration, we describe the model systems wound healing, neural crest migration, and Drosophila gastrulation and discuss methods for cell migration within these systems. We also discuss the role of the extracellular matrix and subsequent differences between track analysis in vitro and in vivo. Besides methods and measures, we are putting special focus on the need for openly available data and code, as well as a lack of common vocabulary in cell track analysis. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  16. Time reversed Lamb wave for damage detection in a stiffened aluminum plate

    International Nuclear Information System (INIS)

    Bijudas, C R; Mitra, M; Mujumdar, P M

    2013-01-01

    According to the concept of time reversibility of the Lamb wave, in the absence of damage, a Lamb wave signal can be reconstructed at the transmitter location if a time reversed signal is sent back from the receiver location. This property is used for baseline-free damage detection, where the presence of damage breaks down the time reversibility and the mismatch between the reconstructed and the input signal is inferred as the presence of damage. This paper presents an experimental and a simulation study of baseline-free damage detection in a stiffened aluminum plate by time reversed Lamb wave (TRLW). In this study, single Lamb wave mode (A 0 ) is generated and sensed using piezoelectric (PZT) transducers through specific transducer placement and amplitude tuning. Different stiffening configurations such as plane and T-stiffeners are considered. Damage cases of disbonding of stiffeners from the base plate, and vertical and embedded cracks in the stiffened plate, are studied. The results show that TRLW based schemes can efficiently identify the presence of damage in a stiffened plate. (paper)

  17. Variation of 137Cs migration parameters in soils

    International Nuclear Information System (INIS)

    Silant'ev, A.N.; Shkuratova, I.G.

    1988-01-01

    Quasidiffusion model accounting the oriented migration is used to describe the observed profiles of 137 Cs distribution in soil. A way of model use in case of real soil, the quasidiffusion migration factor being varied, is suggested. It is shown that in the upper thin soil layer the quasidiffusion migration factor and oriented migration rate values are constant. With further increase of depth the quasidiffusion coefficient grows, the oriented migration rate is unchanged. On the basis of location data characteristic values of migration parameters for different soils of the USSR European territory depending on the soil texture, vegetative cover and moistening are determined

  18. The imaginary-time path integral and non-time-reversal-invariant saddle points of the Euclidean action

    International Nuclear Information System (INIS)

    Dasgupta, I.

    1998-01-01

    We discuss new bounce-like (but non-time-reversal-invariant) solutions to Euclidean equations of motion, which we dub boomerons. In the Euclidean path integral approach to quantum theories, boomerons make an imaginary contribution to the vacuum energy. The fake vacuum instability can be removed by cancelling boomeron contributions against contributions from time reversed boomerons (anti-boomerons). The cancellation rests on a sign choice whose significance is not completely understood in the path integral method. (orig.)

  19. Age at migration, family instability, and timing of sexual onset.

    Science.gov (United States)

    Goldberg, Rachel E; Tienda, Marta; Adserà, Alícia

    2017-03-01

    This study builds on and extends previous research on nativity variations in adolescent health and risk behavior by addressing three questions: (1) whether and how generational status and age at migration are associated with timing of sexual onset among U.S. adolescents; (2) whether and how family instability mediates associations between nativity and sexual debut; and (3) whether and how these associations vary by gender. We find that first- and second-generation immigrant youth initiate sexual activity later than native youth. Foreign-born youth who migrate after the start of adolescence exhibit the latest sexual onset; boys' sexual behavior is particularly sensitive to age at migration. Parental union stability is protective for first- and second-generation youth, especially boys; however, instability in co-residence with parents accelerates sexual debut for foreign-born girls, and dilutes protections from parental marital stability. Use of a non-English language at home delays sexual onset for immigrant girls, but not boys. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Depth profiling of tritium by neutron time-of-flight

    International Nuclear Information System (INIS)

    Davis, J.C.; Anderson, J.D.; Lefevre, H.W.

    1976-01-01

    A method to measure the depth profile of tritium implanted or absorbed in materials was developed. The sample to be analyzed is bombarded with a pulsed proton beam and the energy of neutrons produced by the T(p,n) reaction is measured by the time-of-flight technique. From the neutron energy the depth in the target of the T atoms may be inferred. A sensitivity of 0.1 at. percent T or greater is possible. The technique is non-destructive and may be used with thick or radioactive host materials. Samples up to 20 μm in thickness may be profiled with resolution limited by straggling of the proton beam for depths greater than 1 μm. Deuterium depth profiling has been demonstrated using the D(d,n) reaction. The technique has been used to observe the behavior of an implantation spike of T produced by a 400 keV T + beam stopping at a depth of 3 μm in 11 μm thick layers of Ti and TiH. The presence of H in the Ti lattice is observed to inhibit the diffusion of T through the lattice. Effects of the total hydrogen concentration (H + T) being forced above stochiometry at the implantation site are suggested by the shapes of the implantation spikes

  1. Reverse migration: Western European Muslim women’s flights to ISIL territory

    OpenAIRE

    DeSitter, Elizabeth A.

    2015-01-01

    Approved for public release; distribution is unlimited Since early 2014, the Islamic State of Iraq and the Levant (ISIL) has increasingly recruited Western Muslim men and women to its radical ideology. This thesis examines why Western European Muslim women—specifically from France and Great Britain—are voluntarily migrating to ISIL territory to support Islamic extremism. It evaluates women’s involvement in previous terrorist movements and proposes five potential motivations for migration: ...

  2. The Organization of Behavior Over Time: Insights from Mid-Session Reversal

    OpenAIRE

    Rayburn-Reeves, Rebecca M.; Cook, Robert G.

    2016-01-01

    What are the mechanisms by which behavior is organized sequentially over time? The recently developed mid-session reversal (MSR) task offers new insights into this fundamental question. The typical MSR task is arranged to have a single reversed discrimination occurring in a consistent location within each session and across sessions. In this task, we examine the relevance of time, reinforcement, and other factors as the switching cue in the sequential modulation of control in MSR. New analyse...

  3. Decadal shifts in autumn migration timing by Pacific Arctic beluga whales are related to delayed annual sea ice formation.

    Science.gov (United States)

    Hauser, Donna D W; Laidre, Kristin L; Stafford, Kathleen M; Stern, Harry L; Suydam, Robert S; Richard, Pierre R

    2017-06-01

    Migrations are often influenced by seasonal environmental gradients that are increasingly being altered by climate change. The consequences of rapid changes in Arctic sea ice have the potential to affect migrations of a number of marine species whose timing is temporally matched to seasonal sea ice cover. This topic has not been investigated for Pacific Arctic beluga whales (Delphinapterus leucas) that follow matrilineally maintained autumn migrations in the waters around Alaska and Russia. For the sympatric Eastern Chukchi Sea ('Chukchi') and Eastern Beaufort Sea ('Beaufort') beluga populations, we examined changes in autumn migration timing as related to delayed regional sea ice freeze-up since the 1990s, using two independent data sources (satellite telemetry data and passive acoustics) for both populations. We compared dates of migration between 'early' (1993-2002) and 'late' (2004-2012) tagging periods. During the late tagging period, Chukchi belugas had significantly delayed migrations (by 2 to >4 weeks, depending on location) from the Beaufort and Chukchi seas. Spatial analyses also revealed that departure from Beaufort Sea foraging regions by Chukchi whales was postponed in the late period. Chukchi beluga autumn migration timing occurred significantly later as regional sea ice freeze-up timing became later in the Beaufort, Chukchi, and Bering seas. In contrast, Beaufort belugas did not shift migration timing between periods, nor was migration timing related to freeze-up timing, other than for southward migration at the Bering Strait. Passive acoustic data from 2008 to 2014 provided independent and supplementary support for delayed migration from the Beaufort Sea (4 day yr -1 ) by Chukchi belugas. Here, we report the first phenological study examining beluga whale migrations within the context of their rapidly transforming Pacific Arctic ecosystem, suggesting flexible responses that may enable their persistence yet also complicate predictions of how

  4. The effects of quantity and depth of processing on children's time perception.

    Science.gov (United States)

    Arlin, M

    1986-08-01

    Two experiments were conducted to investigate the effects of quantity and depth of processing on children's time perception. These experiments tested the appropriateness of two adult time-perception models (attentional and storage size) for younger ages. Children were given stimulus sets of equal time which varied by level of processing (deep/shallow) and quantity (list length). In the first experiment, 28 children in Grade 6 reproduced presentation times of various quantities of pictures under deep (living/nonliving categorization) or shallow (repeating label) conditions. Students also compared pairs of durations. In the second experiment, 128 children in Grades K, 2, 4, and 6 reproduced presentation times under similar conditions with three or six pictures and with deep or shallow processing requirements. Deep processing led to decreased estimation of time. Higher quantity led to increased estimation of time. Comparative judgments were influenced by quantity. The interaction between age and depth of processing was significant. Older children were more affected by depth differences than were younger children. Results were interpreted as supporting different aspects of each adult model as explanations of children's time perception. The processing effect supported the attentional model and the quantity effect supported the storage size model.

  5. Non-linear time reversal ultrasonic pseudo-tomography

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk; Vejvodová, Šárka; Krofta, Josef; Převorovský, David

    2011-01-01

    Roč. 6, 3/4 (2011), s. 206-213 ISSN 1741-8410. [NDT in Progress. Praha, 05.11.2007-07.11.2007] R&D Projects: GA MPO(CZ) FR-TI1/274 Institutional research plan: CEZ:AV0Z20760514 Keywords : NDT * nonlinear elastic wave spectroscopy * time reversal mirrors * ultrasonic pseudo-tomography Subject RIV: BI - Acoustics http://www.inderscience.com/offer.php?id=43216

  6. Grasping Legal Time : A Legal and Philosophical Analysis of the Role of Time in European Migration Law.

    NARCIS (Netherlands)

    Stronks, Martijn

    2017-01-01

    This book is about time, law and migrants. It consists of a legal and philosophical scrutiny into the question: why do migrants receive stronger rights over the course of time in European migration law? That migrants receive stronger rights over time is easily proven, much more difficult is the

  7. Cross-continental patterns in the timing of southward Peregrine Falcon migration in North America

    NARCIS (Netherlands)

    Worcester, R.; Ydenberg, R.C.

    2008-01-01

    We analyzed the timing of southward migration of Peregrine Falcons (Falco peregrinus) across North America, based on passage data compiled by the Hawk Migration Association of North America, supplemented with two other similar datasets collected by individual observers at sites in western Canada.

  8. Using geographic distribution of well-screen depths and hydrogeologic conditions to identify areas of concern for contaminant migration through inactive supply wells

    Science.gov (United States)

    Gailey, Robert M.

    2018-02-01

    Contaminant migration through inactive supply wells can negatively affect groundwater quality and the combined effects from groups of such wells may cause greater impacts. Because the number of wells in many basins is often large and the geographic areas involved can be vast, approaches are needed to estimate potential impacts and focus limited resources for investigation and corrective measures on the most important areas. One possibility is to evaluate the geographic distribution of well-screen depths relative to hydrogeologic conditions and assess where contaminant migration through wells may be impacting groundwater quality. This approach is demonstrated for a geographically extensive area in the southern Central Valley of California, USA. The conditions that lead to wells acting as conduits for contaminant migration are evaluated and areas where the problem likely occurs are identified. Although only a small fraction of all wells appear to act as conduits, potential impacts may be significant considering needs to control nonpoint-source pollution and improve drinking water quality for rural residents. Addressing a limited number of areas where contaminant migration rates are expected to be high may cost-effectively accomplish the most beneficial groundwater quality protection and improvement. While this work focuses on a specific region, the results indicate that impacts from groups of wells may occur in other areas with similar conditions. Analyses similar to that demonstrated here may guide efficient investigation and corrective action in such areas with benefits occurring for groundwater quality. Potential benefits may justify expenditures to develop the necessary data for performing the analyses.

  9. Application of reverse transcription-PCR and real-time PCR in nanotoxicity research.

    Science.gov (United States)

    Mo, Yiqun; Wan, Rong; Zhang, Qunwei

    2012-01-01

    Reverse transcription-polymerase chain reaction (RT-PCR) is a relatively simple and inexpensive technique to determine the expression level of target genes and is widely used in biomedical science research including nanotoxicology studies for semiquantitative analysis. Real-time PCR allows for the detection of PCR amplification in the exponential growth phase of the reaction and is much more quantitative than traditional RT-PCR. Although a number of kits and reagents for RT-PCR and real-time PCR are commercially available, the basic principles are the same. Here, we describe the procedures for total RNA isolation by using TRI Reagent, for reverse transcription (RT) by M-MLV reverse transcriptase, and for PCR by GoTaq(®) DNA Polymerase. And real-time PCR will be performed on an iQ5 multicolor real-time PCR detection system by using iQ™ SYBR Green Supermix.

  10. Family migration and employment: the importance of migration history and gender.

    Science.gov (United States)

    Bailey, A J; Cooke, T J

    1998-01-01

    "This article uses event history data to specify a model of employment returns to initial migration, onward migration, and return migration among newly married persons in the U.S. Husbands are more likely to be full-time employed than wives, and being a parent reduces the employment odds among married women. Employment returns to repeated migration differ by gender, with more husbands full-time employed after onward migration and more wives full-time employed after return migration events. We interpret these empirical findings in the context of family migration theory, segmented labor market theory, and gender-based responsibilities." Data are from the National Longitudinal Survey of Youth from 1979 to 1991. excerpt

  11. Hydrographic features of anguillid spawning areas: Potential signposts for migrating eels

    DEFF Research Database (Denmark)

    Schabetsberger, Robert; Miller, Michael J.; Dall'Olmo, Giorgio

    2016-01-01

    Catadromous anguillid eels (genus Anguilla) migrate from their freshwater or estuarine habitats to marine spawning areas. Evidence from satellite tagging studies indicates that tropical and temperate eel species exhibit pronounced diel vertical migrations, from between 150-300 m nighttime depths...... to 600-800 m during the day. Collections of eggs and larvae of Japanese eels A. japonica suggest they may spawn at these upper nighttime migration depths. How anguillid eels navigate through the ocean and find their spawning areas remains unknown; thus, this study describes the salinity, temperature...

  12. Expression of macrophage migration inhibitory factor in footpad skin lesions with diabetic neuropathy.

    Science.gov (United States)

    Up Noh, Sun; Lee, Won-Young; Kim, Won-Serk; Lee, Yong-Taek; Jae Yoon, Kyung

    2018-01-01

    Background Diabetic neuropathy originating in distal lower extremities is associated with pain early in the disease course, overwhelming in the feet. However, the pathogenesis of diabetic neuropathy remains unclear. Macrophage migration inhibitory factor has been implicated in the onset of neuropathic pain and the development of diabetes. Objective of this study was to observe pain syndromes elicited in the footpad of diabetic neuropathy rat model and to assess the contributory role of migration inhibitory factor in the pathogenesis of diabetic neuropathy. Methods Diabetic neuropathy was made in Sprague Dawley rats by streptozotocin. Pain threshold was evaluated using von Frey monofilaments for 24 weeks. On comparable experiment time after streptozotocin injection, all footpads were prepared for following procedures; glutathione assay, terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling staining, immunohistochemistry staining, real-time reverse transcription polymerase chain reaction, and Western blot. Additionally, human HaCaT skin keratinocytes were treated with methylglyoxal, transfected with migration inhibitory factor/control small interfering RNA, and prepared for real-time reverse transcription polymerase chain reaction and Western blot. Results As compared to sham group, pain threshold was significantly reduced in diabetic neuropathy group, and glutathione was decreased in footpad skin, simultaneously, cell death was increased. Over-expression of migration inhibitory factor, accompanied by low expression of glyoxalase-I and intraepidermal nerve fibers, was shown on the footpad skin lesions of diabetic neuropathy. But, there was no significance in expression of neurotransmitters and inflammatory mediators such as transient receptor potential vanilloid 1, mas-related G protein coupled receptor D, nuclear factor kappa B, tumor necrosis factor-alpha, and interleukin-6 between diabetic neuropathy group and sham group. Intriguingly

  13. Defocus Deblurring and Superresolution for Time-of-Flight Depth Cameras

    KAUST Repository

    Xiao, Lei

    2015-06-07

    Continuous-wave time-of-flight (ToF) cameras show great promise as low-cost depth image sensors in mobile applications. However, they also suffer from several challenges, including limited illumination intensity, which mandates the use of large numerical aperture lenses, and thus results in a shallow depth of field, making it difficult to capture scenes with large variations in depth. Another shortcoming is the limited spatial resolution of currently available ToF sensors. In this paper we analyze the image formation model for blurred ToF images. By directly working with raw sensor measurements but regularizing the recovered depth and amplitude images, we are able to simultaneously deblur and super-resolve the output of ToF cameras. Our method outperforms existing methods on both synthetic and real datasets. In the future our algorithm should extend easily to cameras that do not follow the cosine model of continuous-wave sensors, as well as to multi-frequency or multi-phase imaging employed in more recent ToF cameras.

  14. Defocus Deblurring and Superresolution for Time-of-Flight Depth Cameras

    KAUST Repository

    Xiao, Lei; Heide, Felix; O'Toole, Matthew; Kolb, Andreas; Hullin, Matthias B.; Kutulakos, Kyros; Heidrich, Wolfgang

    2015-01-01

    Continuous-wave time-of-flight (ToF) cameras show great promise as low-cost depth image sensors in mobile applications. However, they also suffer from several challenges, including limited illumination intensity, which mandates the use of large numerical aperture lenses, and thus results in a shallow depth of field, making it difficult to capture scenes with large variations in depth. Another shortcoming is the limited spatial resolution of currently available ToF sensors. In this paper we analyze the image formation model for blurred ToF images. By directly working with raw sensor measurements but regularizing the recovered depth and amplitude images, we are able to simultaneously deblur and super-resolve the output of ToF cameras. Our method outperforms existing methods on both synthetic and real datasets. In the future our algorithm should extend easily to cameras that do not follow the cosine model of continuous-wave sensors, as well as to multi-frequency or multi-phase imaging employed in more recent ToF cameras.

  15. Time-reversal invariance in multiple collisions between coupled masses

    International Nuclear Information System (INIS)

    Crawford, F.S.

    1989-01-01

    The time evolution of two mechanical oscillators coupled by a spring can (but need not) exhibit an instant t = 2t' when the initial conditions at t = 0 have been exactly restored. When that is the case, then at t = t' energy and momentum have been exchanged exactly as in an elastic collision between two free particles, and the evolution of the system from t = t' to 2t' is related to that from 0 to t' by time-reversal invariance. A similar ''simulation of elastic scattering'' at t = t' can occur for two free particles coupled via collisions with an intermediary mass that bounces back and forth between the two particles provided the intermediary is left at rest at t = t'. Examined here is the time evolution of the exchange of momentum and energy for these two examples, determining the values of the coupling spring constant (or mass value) of the intermediating spring (or mass) needed to simulate single elastic scattering between free particles, and looking at the manifestation of time-reversal invariance

  16. Quantum-Enhanced Sensing Based on Time Reversal of Nonlinear Dynamics.

    Science.gov (United States)

    Linnemann, D; Strobel, H; Muessel, W; Schulz, J; Lewis-Swan, R J; Kheruntsyan, K V; Oberthaler, M K

    2016-07-01

    We experimentally demonstrate a nonlinear detection scheme exploiting time-reversal dynamics that disentangles continuous variable entangled states for feasible readout. Spin-exchange dynamics of Bose-Einstein condensates is used as the nonlinear mechanism which not only generates entangled states but can also be time reversed by controlled phase imprinting. For demonstration of a quantum-enhanced measurement we construct an active atom SU(1,1) interferometer, where entangled state preparation and nonlinear readout both consist of parametric amplification. This scheme is capable of exhausting the quantum resource by detecting solely mean atom numbers. Controlled nonlinear transformations widen the spectrum of useful entangled states for applied quantum technologies.

  17. Time-Reversal MUSIC Imaging with Time-Domain Gating Technique

    Science.gov (United States)

    Choi, Heedong; Ogawa, Yasutaka; Nishimura, Toshihiko; Ohgane, Takeo

    A time-reversal (TR) approach with multiple signal classification (MUSIC) provides super-resolution for detection and localization using multistatic data collected from an array antenna system. The theory of TR-MUSIC assumes that the number of antenna elements is greater than that of scatterers (targets). Furthermore, it requires many sets of frequency-domain data (snapshots) in seriously noisy environments. Unfortunately, these conditions are not practical for real environments due to the restriction of a reasonable antenna structure as well as limited measurement time. We propose an approach that treats both noise reduction and relaxation of the transceiver restriction by using a time-domain gating technique accompanied with the Fourier transform before applying the TR-MUSIC imaging algorithm. Instead of utilizing the conventional multistatic data matrix (MDM), we employ a modified MDM obtained from the gating technique. The resulting imaging functions yield more reliable images with only a few snapshots regardless of the limitation of the antenna arrays.

  18. Moho Depth Variations in the Northeastern North China Craton Revealed by Receiver Function Imaging

    Science.gov (United States)

    Zhang, P.; Chen, L.; Yao, H.; Fang, L.

    2016-12-01

    The North China Craton (NCC), one of the oldest cratons in the world, has attracted wide attention in Earth Science for decades because of the unusual Mesozoic destruction of its cratonic lithosphere. Understanding the deep processes and mechanism of this craton destruction demands detailed knowledge about the deep structure of the region. In this study, we used two-year teleseismic receiver function data from the North China Seismic Array consisting of 200 broadband stations deployed in the northeastern NCC to image the Moho undulation of the region. A 2-D wave equation-based poststack depth migration method was employed to construct the structural images along 19 profiles, and a pseudo 3D crustal velocity model of the region based on previous ambient noise tomography and receiver function study was adopted in the migration. We considered both the Ps and PpPs phases, but in some cases we also conducted PpSs+PsPs migration using different back azimuth ranges of the data, and calculated the travel times of all the considered phases to constrain the Moho depths. By combining the structure images along the 19 profiles, we got a high-resolution Moho depth map beneath the northeastern NCC. Our results broadly consist with the results of previous active source studies [http://www.craton.cn/data], and show a good correlation of the Moho depths with geological and tectonic features. Generally, the Moho depths are distinctly different on the opposite sides of the North-South Gravity Lineament. The Moho in the west are deeper than 40 km and shows a rapid uplift from 40 km to 30 km beneath the Taihang Mountain Range in the middle. To the east in the Bohai Bay Basin, the Moho further shallows to 30-26 km depth and undulates by 3 km, coinciding well with the depressions and uplifts inside the basin. The Moho depth beneath the Yin-Yan Mountains in the north gradually decreases from 42 km in the west to 25 km in the east, varying much smoother than that to the south.

  19. Focusing over Optical Fiber Using Time Reversal

    DEFF Research Database (Denmark)

    Piels, Molly; Porto da Silva, Edson; Estaran Tolosa, Jose Manuel

    2015-01-01

    A time-reversal array in multimode fiber is proposed for lossless remotely controlled switching using passive optical splitters. The signal to be transmitted is digitally pre-distorted so that it is routed through the physical layer in order to arrive at only one receiver in an array. System...... performance in the presence of additive white gaussian noise, modal group delay, and timing error is investigated numerically for single-mode and 10-mode fiber. Focusing using a two-transmitter array and 44 km of single- mode fiber is demonstrated experimentally for 3 GBd QPSK signals with a bit error rate...

  20. Imaging near-surface heterogeneities by natural migration of backscattered surface waves: Field data test

    KAUST Repository

    Liu, Zhaolun; AlTheyab, Abdullah; Hanafy, Sherif M.; Schuster, Gerard T.

    2017-01-01

    We have developed a methodology for detecting the presence of near-surface heterogeneities by naturally migrating backscattered surface waves in controlled-source data. The near-surface heterogeneities must be located within a depth of approximately one-third the dominant wavelength λ of the strong surface-wave arrivals. This natural migration method does not require knowledge of the near-surface phase-velocity distribution because it uses the recorded data to approximate the Green’s functions for migration. Prior to migration, the backscattered data are separated from the original records, and the band-passed filtered data are migrated to give an estimate of the migration image at a depth of approximately one-third λ. Each band-passed data set gives a migration image at a different depth. Results with synthetic data and field data recorded over known faults validate the effectiveness of this method. Migrating the surface waves in recorded 2D and 3D data sets accurately reveals the locations of known faults. The limitation of this method is that it requires a dense array of receivers with a geophone interval less than approximately one-half λ.

  1. Imaging near-surface heterogeneities by natural migration of backscattered surface waves: Field data test

    KAUST Repository

    Liu, Zhaolun

    2017-03-06

    We have developed a methodology for detecting the presence of near-surface heterogeneities by naturally migrating backscattered surface waves in controlled-source data. The near-surface heterogeneities must be located within a depth of approximately one-third the dominant wavelength λ of the strong surface-wave arrivals. This natural migration method does not require knowledge of the near-surface phase-velocity distribution because it uses the recorded data to approximate the Green’s functions for migration. Prior to migration, the backscattered data are separated from the original records, and the band-passed filtered data are migrated to give an estimate of the migration image at a depth of approximately one-third λ. Each band-passed data set gives a migration image at a different depth. Results with synthetic data and field data recorded over known faults validate the effectiveness of this method. Migrating the surface waves in recorded 2D and 3D data sets accurately reveals the locations of known faults. The limitation of this method is that it requires a dense array of receivers with a geophone interval less than approximately one-half λ.

  2. UV B-induced vertical migrations of cyanobacteria in a microbial mat

    International Nuclear Information System (INIS)

    Rebout, B.M.; Garcia-Pichel, F.

    1995-01-01

    Exposure to moderate doses of UV B (0.35 to 0.79 W m -2 s -1 or 0.98 to 2.2 μmol of photons m -2 s -1 at 310 nm) caused the surface layers of microbial mats from Solar Lake, Sinai, Egypt, to become visibly lighter green. Concurrent with the color change were rapid and dramatic reductions in gross photosynthesis and in the resultant high porewater oxygen concentrations in the surface layers of the mats. The depths at which both maximum gross photosynthesis and maximum oxygen concentrations occurred were displaced downward. In contrast, gross photosynthesis in the deeper layers of the mats increased in response to UV B incident upon the surface. The cessation of exposure to UV B partially reversed all of these changes. Taken together, these responses suggest that photoautotrophic members of the mat community, most likely the dominant cyanobacterium Microcoleus chthonoplastes, were migrating in response to the added UV B. The migration phenomenon was also observed in response to increases in visible radiation and UV A, but UV B was ca. 100-fold more effective than visible radiation and ca. 20-fold more effective than UV A in provoking the response. Migrating microorganisms within this mat are apparently able to sense UV B directly and respond behaviorally to limit their exposure to UV. Because of strong vertical gradients of light and dissolved substances in microbial mats, the migration and the resultant vertical redistribution of photosynthetic activity have important consequences for both the photobiology of the cyanobacteria and the net primary productivity of the mat ecosystem

  3. Synthesis of Fischer carbene complexes of iridium by C-H bond activation of methyl and cyclic ethers: Evidence for reversible {alpha}-hydrogen migration

    Energy Technology Data Exchange (ETDEWEB)

    Luecke, H.F.; Arndtsen, B.A.; Burger, P.; Bergman, R.G. [Lawrence Berkeley Lab., CA (United States)]|[Univ. of California, Berkeley, CA (United States)

    1996-03-13

    We report here a mild and versatile route to Fischer carbene complexes of iridium via the activation of C-H bonds of methyl and cyclic ethers, along with our preliminary studies of this rare family of carbene complexes. Theoretical studies suggest that {alpha}-hydrogen migrations can be kinetically favorable if a coordinatively unsaturated species can be accessed. Thus, the lability of the triflate ligand presumably facilitates this process. Further evidence for the rapidity, as well as reversibility, of this rearrangement was obtained by NMR analysis. 20 refs.

  4. State policies and internal migration in Asia.

    Science.gov (United States)

    Oberai, A S

    1981-01-01

    The objective of this discussion is to identify policies and programs in Asia that are explicitly or implicitly designed to influence migration, to investigate why they were adopted and how far they have actually been implemented, and to assess their direct and indirect consequences. For study purposes, policies and programs are classified according to whether they prohibit or reverse migration, redirect or channel migration to specific rural or urban locations, reduce the total volume of migration, or encourage or discourage urban in-migration. Discussion of each type of policy is accompanied by a description of its rationale and implementation mechanism, examples of countries in Asia that have recourse to it, and its intended or actual effect on migration. Several countries in Asia have taken direct measures to reverse the flow of migration and to stop or discourage migration to urban areas. These measures have included administrative and legal controls, police registration, and direct "rustication" programs to remove urban inhabitants to the countryside. The availability of public land has prompted many Asian countries to adopt schemes that have been labeled resettlement, transmigration, colonization, or land development. These schemes have been designed to realize 1 or more of the following objectives: to provide land and income to the landless; increase agricultural production; correct spatial imbalances in the distribution of population; or exploit frontier lands for reasons of national security. 1 of the basic goals of decentralized industrialization and regional development policies has been the reduction of interregional disparities and the redirection of migrations from large metropolitan areas to smaller and medium sized towns. To encourage industry to move to small urban locations initial infrastructure investments, tax benefits, and other incentives have been offered. Policies to reduce the overall volume of migration have frequently included rural

  5. In situ study on reverse polarity effect in Cu/Sn–9Zn/Ni interconnect undergoing liquid–solid electromigration

    Energy Technology Data Exchange (ETDEWEB)

    Huang, M.L., E-mail: huang@dlut.edu.cn; Zhang, Z.J.; Zhao, N.; Yang, F.

    2015-01-15

    Highlights: • Abnormal reverse polarity effect in Cu/Sn–9Zn/Ni interconnect during L–S EM was observed. • The reverse polarity effect was resulted from directional diffusion of Zn to cathode. • Positive effective charge number is responsible for directional diffusion of Zn atom. • The effective charge number value of Zn was calculated to be +0.63 based on a model. • This effect is beneficial to EM reliability of micro-bump solder interconnect. - Abstract: Synchrotron radiation real-time imaging technology was used to in situ study the interfacial reactions in Cu/Sn–9Zn/Ni solder interconnects undergoing liquid–solid electromigration (L–S EM). The reverse polarity effect, evidenced by the continuous growth of intermetallic compound (IMC) layer at the cathode and the thinning of the IMC layer at the anode, was resulted from the abnormal directional migration of Zn atoms toward the cathode in electric field. This abnormal migration behavior was induced by the positive effective charge number (Z{sup ∗}) of Zn atoms, which was calculated to be +0.63 based on the Cu fluxes and the consumption kinetics of the anode Cu. Irrespective of the flowing direction of electrons, the consumption of Cu film was obvious while that of Ni film was limited. The dissolution of anode Cu followed a linear relationship with time while that of cathode Cu followed a parabolic relationship with time. It is more damaging with electrons flowing from the Ni to the Cu than that from the Cu to the Ni. The simulated Zn concentration distributions gave an explanation on the relationship between abnormal migration behavior of Zn atoms and the dissolution of Cu film under electron wind force. The abnormal directional migration of Zn atoms toward the cathode prevented the dissolution of cathode substrate, which is beneficial to improve the EM reliability of micro-bump solder interconnects.

  6. Anatomy of the Java plate interface from depth-migrated seismic images: Implications for sediment transfer

    Science.gov (United States)

    Kopp, H.; Hindle, D.; Klaeschen, D.; Oncken, O.; Reichert, C.; Scholl, D.

    2008-12-01

    We present seismic data from the western Java margin off Indonesia. The newly pre-stack depth migrated seismic images resolve the structural details of the western Java forearc and the fate of sediment subducted at the trench. Approximately 2/3 of the trench sediment fill is detached and incorporated into frontal prism imbricates, while the floor sequence is transported down a subduction channel. Basal mass transfer occurs by episodic accretion of sediment beneath the submerged forearc as the active detachment stepwise descends to a deeper level below the outer wedge. Fluctuations in subduction channel dimensions are enhanced by deep-reaching thrust faults that are traced from a velocity singularity marking the top of the oceanic basement towards the seafloor. These thrust faults breach the subduction channel and inhibit recycling of material to mantle depth, while serving as an incremental ramp along which the active detachment is transferred to a lower position. The high ratio of accreted/subducted sediment is associated with the evolution of a large bivergent wedge (>100 km) despite the comparatively low sediment input to the trench (<2 km). We used quantitative DEM modeling to gain some insight into the evolution of the distinct tectonic units. In the modelling, initiation of sediment accretion occurs against the arc rock framework, which is imaged in the MCS data. Overthrusting of the wedge onto the forearc basin is also expressed in a prominent retro-thrust imaged in the seismic data. The seismic data document an end-member type of subduction zone where near-complete accretion of the trench sediment fill by frontal and basal accretion is supported by the lack of evidence for subducted sediment in the geochemical signature of Mt. Guntur and Mt. Gallunggung, two volcanoes positioned in the prolongation of our seismic line on Java.

  7. Migration, income redistribution, and international capital mobility

    OpenAIRE

    Meckl, Jürgen

    1994-01-01

    This paper studies income-redistribution effects from labor migration in a small open economy under alternative assumptions on the international mobility of capital. Our principal result is that induced international capital flows dampen or may even reverse redistribution effects. However, as long as the location of capital is unaffected by migration redistribntion effects may be greater if some of the capital is foreign owned, depending on whether labor and capital are friends or enemies. On...

  8. Patterns of change in timing of spring migration in North European songbird populations

    DEFF Research Database (Denmark)

    Tøttrup, Anders Peter; Thorup, Kasper; Rahbek, Carsten

    2006-01-01

    From 1976 to 1997 passerines were mist-netted and ringed on the island of Christiansø, in the Baltic Sea. Here we present analyses of phenological changes (i.e. time of arrival) for 25 species based on the entire populations of mist-netted songbirds during spring migration. We used two approaches...... to be important for our understanding of population-dynamic changes in relation to climate change. These differences may also have long-term evolutionary consequences. Migration distance seems to affect the degree of change in arrival time, but we found no difference between species wintering in different regions...... of Africa....

  9. Reversal time of jump-noise magnetization dynamics in nanomagnets via Monte Carlo simulations

    Science.gov (United States)

    Parthasarathy, Arun; Rakheja, Shaloo

    2018-06-01

    The jump-noise is a nonhomogeneous Poisson process which models thermal effects in magnetization dynamics, with special applications in low temperature escape rate phenomena. In this work, we develop improved numerical methods for Monte Carlo simulation of the jump-noise dynamics and validate the method by comparing the stationary distribution obtained empirically against the Boltzmann distribution. In accordance with the Néel-Brown theory, the jump-noise dynamics display an exponential relaxation toward equilibrium with a characteristic reversal time, which we extract for nanomagnets with uniaxial and cubic anisotropy. We relate the jump-noise dynamics to the equivalent Landau-Lifshitz dynamics up to second order correction for a general energy landscape and obtain the analogous Néel-Brown theory's solution of the reversal time. We find that the reversal time of jump-noise dynamics is characterized by Néel-Brown theory's solution at the energy saddle point for small noise. For large noise, the magnetization reversal due to jump-noise dynamics phenomenologically represents macroscopic tunneling of magnetization.

  10. Time-lapse imaging of fault properties at seismogenic depth using repeating earthquakes, active sources and seismic ambient noise

    Science.gov (United States)

    Cheng, Xin

    2009-12-01

    The time-varying stress field of fault systems at seismogenic depths plays the mort important role in controlling the sequencing and nucleation of seismic events. Using seismic observations from repeating earthquakes, controlled active sources and seismic ambient noise, five studies at four different fault systems across North America, Central Japan, North and mid-West China are presented to describe our efforts to measure such time dependent structural properties. Repeating and similar earthquakes are hunted and analyzed to study the post-seismic fault relaxation at the aftershock zone of the 1984 M 6.8 western Nagano and the 1976 M 7.8 Tangshan earthquakes. The lack of observed repeating earthquakes at western Nagano is attributed to the absence of a well developed weak fault zone, suggesting that the fault damage zone has been almost completely healed. In contrast, the high percentage of similar and repeating events found at Tangshan suggest the existence of mature fault zones characterized by stable creep under steady tectonic loading. At the Parkfield region of the San Andreas Fault, repeating earthquake clusters and chemical explosions are used to construct a scatterer migration image based on the observation of systematic temporal variations in the seismic waveforms across the occurrence time of the 2004 M 6 Parkfield earthquake. Coseismic fluid charge or discharge in fractures caused by the Parkfield earthquake is used to explain the observed seismic scattering properties change at depth. In the same region, a controlled source cross-well experiment conducted at SAFOD pilot and main holes documents two large excursions in the travel time required for a shear wave to travel through the rock along a fixed pathway shortly before two rupture events, suggesting that they may be related to pre-rupture stress induced changes in crack properties. At central China, a tomographic inversion based on the theory of seismic ambient noise and coda wave interferometry

  11. Time-reversal symmetry breaking by ac field: Effect of ...

    Indian Academy of Sciences (India)

    deviate from 2 thus signalling on the time-reversal breaking by the ac field. ... is also the parity effect: the enchancement is only present if either P or Q is even. ... analysis (see figure 1) is possible and the ergodic zero-dimensional approx-.

  12. Transducer frequency response variations investigated by time reversal calibration

    Czech Academy of Sciences Publication Activity Database

    Kober, Jan; Převorovský, Zdeněk

    2016-01-01

    Roč. 26, č. 2 (2016), A16-A16 ISSN 1213-3825. [Europen Conference on Acoustic Emission Testing /32./. 07.09.2016-09.09.2016, Praha] Institutional support: RVO:61388998 Keywords : calibration * time reversal * transducer * frequency response Subject RIV: BI - Acoustics

  13. Unitarity and time reversal in the Glauber model

    International Nuclear Information System (INIS)

    Lazard, C.; Lombard, R.J.

    1984-12-01

    It has been pointed out by Formanek (1976-1980) that for incident energies above the particle production threshold the usual Glauber formulation of particle-nucleus scattering violates unitarity and time reversal invariance. We propose a simple method for recovering T-invariance and we discuss unitarity in view of the proposed modification. Numerical estimates are given to check the importance of T-invariance effects

  14. A time-reversal invariant topological phase at the surface of a 3D topological insulator

    International Nuclear Information System (INIS)

    Bonderson, Parsa; Nayak, Chetan; Qi, Xiao-Liang

    2013-01-01

    A 3D fermionic topological insulator has a gapless Dirac surface state protected by time-reversal symmetry and charge conservation symmetry. The surface state can be gapped by introducing ferromagnetism to break time-reversal symmetry, introducing superconductivity to break charge conservation, or entering a topological phase. In this paper, we construct a minimal gapped topological phase that preserves both time-reversal and charge conservation symmetries and supports Ising-type non-Abelian anyons. This phase can be understood heuristically as emerging from a surface s-wave superconducting state via the condensation of eight-vortex composites. The topological phase inherits vortices supporting Majorana zero modes from the surface superconducting state. However, since it is time-reversal invariant, the surface topological phase is a distinct phase from the Ising topological phase, which can be viewed as a quantum-disordered spin-polarized p x + ip y superconductor. We discuss the anyon model of this topological phase and the manner in which time-reversal symmetry is realized in it. We also study the interfaces between the topological state and other surface gapped phases. (paper)

  15. The brief time-reversibility of the local Lyapunov exponents for a small chaotic Hamiltonian system

    International Nuclear Information System (INIS)

    Waldner, Franz; Hoover, William G.; Hoover, Carol G.

    2014-01-01

    Highlights: •We consider the local Lyapunov spectrum for a four-dimensional Hamilton system. •Its stable periodic motion can be reversed for long times. •In the chaotic motion, time reversal occurs only for a short time. •Perturbations will change this short unstable case into a different stable case. •These observations might relate chaos to the Second Law of Thermodynamics. - Abstract: We consider the local (instantaneous) Lyapunov spectrum for a four-dimensional Hamiltonian system. Its stable periodic motion can be reversed for long times. Its unstable chaotic motion, with two symmetric pairs of exponents, cannot. In the latter case reversal occurs for more than a thousand fourth-order Runge–Kutta time steps, followed by a transition to a new set of paired Lyapunov exponents, unrelated to those seen in the forward time direction. The relation of the observed chaotic dynamics to the Second Law of Thermodynamics is discussed

  16. Political motivations for intra-European migration.

    Science.gov (United States)

    Bygnes, Susanne; Flipo, Aurore

    2017-08-01

    Motivations for migrating within the European Union have mainly been attributed to economic, career and lifestyle choices. This article suggests that political dissatisfaction is also an important motivator of recent intra-European migration. In our analysis of in-depth interviews with Romanian migrants in Spain and with Spanish migrants in Norway, we found a common emphasis on the political dimensions of their decision to migrate. In the interviews, the economic component of migration was often related to bad governance and negative perceptions of the state. The similarities of Spanish and Romanian migration narratives are especially striking because Spain and Romania represent substantially different migratory, political and economic contexts. However, migration is more obviously intertwined with conventional acts of political protest in the Spanish case. We suggest that differences in democratic contexts are pivotal in people's reactions to and framing of their deep dissatisfaction with domestic politics, as found in many European countries today.

  17. Time-reversed ultrasonically encoded (TRUE) focusing for deep-tissue optogenetic modulation

    Science.gov (United States)

    Brake, Joshua; Ruan, Haowen; Robinson, J. Elliott; Liu, Yan; Gradinaru, Viviana; Yang, Changhuei

    2018-02-01

    The problem of optical scattering was long thought to fundamentally limit the depth at which light could be focused through turbid media such as fog or biological tissue. However, recent work in the field of wavefront shaping has demonstrated that by properly shaping the input light field, light can be noninvasively focused to desired locations deep inside scattering media. This has led to the development of several new techniques which have the potential to enhance the capabilities of existing optical tools in biomedicine. Unfortunately, extending these methods to living tissue has a number of challenges related to the requirements for noninvasive guidestar operation, speed, and focusing fidelity. Of existing wavefront shaping methods, time-reversed ultrasonically encoded (TRUE) focusing is well suited for applications in living tissue since it uses ultrasound as a guidestar which enables noninvasive operation and provides compatibility with optical phase conjugation for high-speed operation. In this paper, we will discuss the results of our recent work to apply TRUE focusing for optogenetic modulation, which enables enhanced optogenetic stimulation deep in tissue with a 4-fold spatial resolution improvement in 800-micron thick acute brain slices compared to conventional focusing, and summarize future directions to further extend the impact of wavefront shaping technologies in biomedicine.

  18. Cyclic grain boundary migration during high temperature fatigue--I: microstructural observations

    International Nuclear Information System (INIS)

    Langdon, T.G.; Gifkins, R.S.

    1983-01-01

    Experiments were conducted on high purity lead at room temperature using reverse bending and torsion fatigue at low cyclic frequencies (less than or equal to1.50 Hz). Metallographic observations after testing show that there is a one-to-one correspondence between the markings from grain boundary migration and the number and pattern of cyclic loading, and this correspondence is maintained up to >100 cycles. Grain boundary sliding occurs in each cycle in addition to the migration, and this leads to the development of broad triple point folds. If the strain amplitude is maintained constant, it is shown that the average distance migrated in each cycle increases as the imposed frequency is decreased. The distance migrated is often exceptionally large in the first cycle of testing, and there is often a similar large initial displacement if the test is interrupted for periods of time from 1 to 24 h and then continued. For large grain sizes (greater than or equal to 2000μm), the migration markings may lead to a zig-zag pattern where the individual segments lie fairly close to 45 0 to the stress axis. A model is described which accounts for the one-to-one correspondence and which is consistent with a fine structure observed within the migration markings

  19. Fast damage imaging using the time-reversal technique in the frequency–wavenumber domain

    International Nuclear Information System (INIS)

    Zhu, R; Huang, G L; Yuan, F G

    2013-01-01

    The time-reversal technique has been successfully used in structural health monitoring (SHM) for quantitative imaging of damage. However, the technique is very time-consuming when it is implemented in the time domain. In this paper, we study the technique in the frequency–wavenumber (f–k) domain for fast real-time imaging of multiple damage sites in plates using scattered flexural plate waves. Based on Mindlin plate theory, the time reversibility of dispersive flexural waves in an isotropic plate is theoretically investigated in the f–k domain. A fast damage imaging technique is developed by using the cross-correlation between the back-propagated scattered wavefield and the incident wavefield in the frequency domain. Numerical simulations demonstrate that the proposed technique cannot only localize multiple damage sites but also potentially identify their sizes. Moreover, the time-reversal technique in the f–k domain is about two orders of magnitude faster than the method in the time domain. Finally, experimental testing of an on-line SHM system with a sparse piezoelectric sensor array is conducted for fast multiple damage identification using the proposed technique. (paper)

  20. Real-time depth measurement for micro-holes drilled by lasers

    Science.gov (United States)

    Lin, Cheng-Hsiang; Powell, Rock A.; Jiang, Lan; Xiao, Hai; Chen, Shean-Jen; Tsai, Hai-Lung

    2010-02-01

    An optical system based on the confocal principle has been developed for real-time precision measurements of the depth of micro-holes during the laser drilling process. The capability of the measuring system is theoretically predicted by the Gaussian lens formula and experimentally validated to achieve a sensitivity of 0.5 µm. A nanosecond laser system was used to drill holes, and the hole depths were measured by the proposed measuring system and by the cut-and-polish method. The differences between these two measurements are found to be 5.0% for hole depths on the order of tens of microns and 11.2% for hundreds of microns. The discrepancies are caused mainly by the roughness of the bottom surface of the hole and by the existence of debris in the hole. This system can be easily implemented in a laser workstation for the fabrication of 3D microstructures.

  1. Migration depth and residence time of juvenile salmonids in the forebays of hydropower dams prior to passage through turbines or juvenile bypass systems: implications for turbine-passage survival.

    Science.gov (United States)

    Li, Xinya; Deng, Zhiqun D; Brown, Richard S; Fu, Tao; Martinez, Jayson J; McMichael, Geoffrey A; Skalski, John R; Townsend, Richard L; Trumbo, Bradly A; Ahmann, Martin L; Renholds, Jon F

    2015-01-01

    Little is known about the three-dimensional depth distributions in rivers of individually marked fish that are in close proximity to hydropower facilities. Knowledge of the depth distributions of fish approaching dams can be used to understand how vulnerable fish are to injuries such as barotrauma as they pass through dams. To predict the possibility of barotrauma injury caused by pressure changes during turbine passage, it is necessary to understand fish behaviour relative to acclimation depth in dam forebays as they approach turbines. A guiding study was conducted using high-resolution three-dimensional tracking results of salmonids implanted with Juvenile Salmon Acoustic Telemetry System transmitters to investigate the depth distributions of subyearling and yearling Chinook salmon (Oncorhynchus tshawytscha) and juvenile steelhead (Oncorhynchus mykiss) passing two dams on the Snake River in Washington State. Multiple approaches were evaluated to describe the depth at which fish were acclimated, and statistical analyses were performed on large data sets extracted from ∼28 000 individually tagged fish during 2012 and 2013. Our study identified patterns of depth distributions of juvenile salmonids in forebays prior to passage through turbines or juvenile bypass systems. This research indicates that the median depth at which juvenile salmonids approached turbines ranged from 2.8 to 12.2 m, with the depths varying by species/life history, year, location (which dam) and diel period (between day and night). One of the most enlightening findings was the difference in dam passage associated with the diel period. The amount of time that turbine-passed fish spent in the immediate forebay prior to entering the powerhouse was much lower during the night than during the day. This research will allow scientists to understand turbine-passage survival better and enable them to assess more accurately the effects of dam passage on juvenile salmon survival.

  2. Time-reversal acoustics and ultrasound-assisted convection-enhanced drug delivery to the brain.

    Science.gov (United States)

    Olbricht, William; Sistla, Manjari; Ghandi, Gaurav; Lewis, George; Sarvazyan, Armen

    2013-08-01

    Time-reversal acoustics is an effective way of focusing ultrasound deep inside heterogeneous media such as biological tissues. Convection-enhanced delivery is a method of delivering drugs into the brain by infusing them directly into the brain interstitium. These two technologies are combined in a focusing system that uses a "smart needle" to simultaneously infuse fluid into the brain and provide the necessary feedback for focusing ultrasound using time-reversal acoustics. The effects of time-reversal acoustics-focused ultrasound on the spatial distribution of infused low- and high-molecular weight tracer molecules are examined in live, anesthetized rats. Results show that exposing the rat brain to focused ultrasound significantly increases the penetration of infused compounds into the brain. The addition of stabilized microbubbles enhances the effect of ultrasound exposure.

  3. Time-reversal focusing of an expanding soliton gas in disordered replicas

    KAUST Repository

    Fratalocchi, Andrea; Armaroli, A.; Trillo, S.

    2011-01-01

    We investigate the properties of time reversibility of a soliton gas, originating from a dispersive regularization of a shock wave, as it propagates in a strongly disordered environment. An original approach combining information measures and spin glass theory shows that time-reversal focusing occurs for different replicas of the disorder in forward and backward propagation, provided the disorder varies on a length scale much shorter than the width of the soliton constituents. The analysis is performed by starting from a new class of reflectionless potentials, which describe the most general form of an expanding soliton gas of the defocusing nonlinear Schrödinger equation.

  4. Time-reversal focusing of an expanding soliton gas in disordered replicas

    KAUST Repository

    Fratalocchi, Andrea

    2011-05-31

    We investigate the properties of time reversibility of a soliton gas, originating from a dispersive regularization of a shock wave, as it propagates in a strongly disordered environment. An original approach combining information measures and spin glass theory shows that time-reversal focusing occurs for different replicas of the disorder in forward and backward propagation, provided the disorder varies on a length scale much shorter than the width of the soliton constituents. The analysis is performed by starting from a new class of reflectionless potentials, which describe the most general form of an expanding soliton gas of the defocusing nonlinear Schrödinger equation.

  5. Matching and correlation computations in stereoscopic depth perception.

    Science.gov (United States)

    Doi, Takahiro; Tanabe, Seiji; Fujita, Ichiro

    2011-03-02

    A fundamental task of the visual system is to infer depth by using binocular disparity. To encode binocular disparity, the visual cortex performs two distinct computations: one detects matched patterns in paired images (matching computation); the other constructs the cross-correlation between the images (correlation computation). How the two computations are used in stereoscopic perception is unclear. We dissociated their contributions in near/far discrimination by varying the magnitude of the disparity across separate sessions. For small disparity (0.03°), subjects performed at chance level to a binocularly opposite-contrast (anti-correlated) random-dot stereogram (RDS) but improved their performance with the proportion of contrast-matched (correlated) dots. For large disparity (0.48°), the direction of perceived depth reversed with an anti-correlated RDS relative to that for a correlated one. Neither reversed nor normal depth was perceived when anti-correlation was applied to half of the dots. We explain the decision process as a weighted average of the two computations, with the relative weight of the correlation computation increasing with the disparity magnitude. We conclude that matching computation dominates fine depth perception, while both computations contribute to coarser depth perception. Thus, stereoscopic depth perception recruits different computations depending on the disparity magnitude.

  6. The double-slit experiment and the time-reversed fire alarm

    International Nuclear Information System (INIS)

    Halabi, T.

    2010-01-01

    When both slits of the double-slit experiment are open, closing one paradoxically increases the detection rate at some points on the detection screen. Feynman famously warned that temptation to understand such a puzzling feature only draws into blind alleys. Nevertheless, we gain insight into this feature by drawing an analogy between the double-slit experiment and a time-reversed fire alarm. Much as closing the slit increases probability of a future detection, ruling out fire drill scenarios, having heard the fire alarm, increases probability of a past fire (using Bayesian inference). Classically, Bayesian inference is associated with computing probabilities of past events. We therefore identify this feature of the double-slit experiment with a time-reversed thermodynamic arrow. We believe that much of the enigma of quantum mechanics is simply due to some variation of time's arrow. In further support of this, we employ a plausible formulation of the thermodynamic arrow to derive an uncertainty in classical mechanics that is reminiscent of quantum uncertainty.

  7. Kinetics and reversibility of radiocaesium solid/liquid partitioning in sediments

    International Nuclear Information System (INIS)

    Comans, R.N.J.

    1998-01-01

    The kinetics and reversibility of radiocaesium solid/liquid partitioning in sediments have been reviewed and interpreted in terms of a mechanistic framework. This framework is based on the premise that radiocaesium is almost exclusively and highly-selectively bound to the frayed particle edges of illitic clay minerals in the sediments. Several processes with distinctly different rates can be distinguished in radiocaesium sorption to sediments. 2- and 3-box kinetic models can describe both the overall solid/liquid partitioning in sediments and the reversible (exchangeable) and irreversible (nonexchangeable or 'fixed') fractions of radiocaesium in sediments over time scales relevant for natural aquatic systems. The obtained rate parameters indicate that reversible partitioning of radiocaesium dominates over the first few days following a contamination event, whereas irreversible kinetics becomes important over time scales of weeks to months. The slow process, which reduces the exchangeability of sediment-bound radiocaesium over time, is believed to result from a migration of radiocaesium from exchangeable sites on the frayed edges of illite towards less-exchangeable interlayer sites. Long-term extraction of radiocaesium from historically contaminated sediments has given evidence for a reverse (remobilization) process with a half-life of the order of tens of years. These findings suggest that the long-term exchangeability of radiocaesium in sediments may be higher than the few % which is generally assumed. (orig.)

  8. Oceanic migration behaviour of tropical Pacific eels from Vanuatu

    DEFF Research Database (Denmark)

    Schabetsberger, R; Økland, F; Aarestrup, K

    2013-01-01

    Information on oceanic migrations and spawning areas of tropical Pacific freshwater eels (genus Anguilla) is very limited. Lake Letas and its single outflowing river, Mbe Solomul on Gaua Island, Vanuatu, were surveyed for large migrating individuals. Twenty-four Anguilla marmorata (87 to 142 cm),...... impact of the lunar cycle on the upper limit of migration depths was found in A. marmorata (full moon: 230 m, new moon: 170 m). These behaviours may be explained as a trade-off between predator avoidance and the necessity to maintain a sufficiently high metabolism for migration....

  9. Downstage migration after neoadjuvant chemoradiotherapy for rectal cancer: the reverse of the Will Rogers phenomenon?

    Science.gov (United States)

    Fokas, Emmanouil; Liersch, Torsten; Fietkau, Rainer; Hohenberger, Werner; Hess, Clemens; Becker, Heinz; Sauer, Rolf; Wittekind, Christian; Rödel, Claus

    2015-06-01

    Downstaging after neoadjuvant treatment is increasingly used as a prognostic factor and surrogate endpoint in clinical trials. However, in recent trials of neoadjuvant 5-fluorouracil-based chemoradiotherapy for rectal cancer, downstaging did not translate into a benefit with regard to either disease-free survival (DFS) or overall survival. By analyzing the 10-year outcome data of the German CAO/ARO/AIO-94 phase 3 trial, the authors demonstrated that significantly fewer patients had poor prognostic features (eg, ypT3-4, ypN1-2) after preoperative 5-fluorouracil-based chemoradiotherapy. Nevertheless, these patients with International Union for Cancer Control stage II disease were found to be at a higher risk of developing distant metastases and had poorer DFS compared with patients with corresponding TNM tumor (sub)groups in the postoperative treatment arm, whereas patients with International Union for Cancer Control stage III disease demonstrated a nonsignificant trend toward a worse outcome after preoperative treatment. Overall, DFS remained identical in both treatment arms. Thus, "downstage migration" after neoadjuvant treatment resembles the reverse of the Will Rogers phenomenon and therefore may not be a reliable endpoint for long-term outcomes. © 2015 American Cancer Society.

  10. Twilight vertical migrations of zooplankton in a Chilean fjord

    Science.gov (United States)

    Valle-Levinson, Arnoldo; Castro, Leonardo; Cáceres, Mario; Pizarro, Oscar

    2014-12-01

    Time series of acoustic backscatter and vertical velocity profiles were obtained at three sites along a Chilean fjord with the purpose of determining dominant structures of vertical migrations of the sound scattering layer. Ancillary data obtained with stratified net samples indicated that the sound scattering layer may have been dominated by euphausiids and decapods. Therefore, distributions of acoustic backscatter anomalies and vertical velocities were attributed to vertical migrations of predominantly these organisms. Migration patterns were dominated by twilight excursions in which organisms swam toward the water surface at sunset, spent 100 m). This migration strategy can also be termed 'semidiel migration' as two double excursions were linked to light levels. The reasons for this twilight migration remain uncertain. But it is possible that the up and down motion around sunset was related to predation avoidance, hunger-satiation state, ontogeny, seaward transport evasion, or reaction to the environmental shock from the pycnocline, or a combination of all or some of them. In contrast, the sunrise double excursion was probably linked to feeding requirements by organisms that need to spend the day at great depth with no food available. This study demonstrated the existence of semidiel patterns throughout the fjord and through prolonged periods. In addition, identification of this pattern by acoustic backscatter was complemented by direct vertical velocity measurements. It is proposed that twilight vertical migration is a common strategy in Chilean fjords.

  11. Long-term acoustical observations of the mesopelagic fish Maurolicus muelleri reveal novel and varied vertical migration patterns

    KAUST Repository

    Staby, A; Rø stad, Anders; Kaartvedt, Stein

    2011-01-01

    . The data revealed known patterns as normal diel vertical migration (DVM), midnight sinking between dusk and dawn, and periods without migrations, as well as novel behaviours consisting of early morning ascents, reverse diel vertical migrations

  12. Processes of the excitation energy migration and transfer in Ce3+-doped alkali gadolinium phosphates studied with time-resolved photoluminescence spectroscopy technique

    International Nuclear Information System (INIS)

    Stryganyuk, G.; Shalapska, T.; Voloshinovskii, A.; Gektin, A.; Krasnikov, A.; Zazubovich, S.

    2011-01-01

    Spectral-kinetic characteristics of Gd 3+ and Ce 3+ luminescence from a series of Ce 3+ -doped alkali gadolinium phosphates of MGdP 4 O 12 type (M=Li, Na, Cs) have been studied within 4.2-300 K temperature range using time-resolved luminescence spectroscopy techniques. The processes of energy migration along the Gd 3+ sub-lattice and energy transfer between the Gd 3+ and Ce 3+ ions have been investigated. Peculiarities of these processes have been compared for MGdP 4 O 12 phosphate hosts with different alkali metal ions. A contribution of different levels from the 6 P j multiplet of the lowest Gd 3+ excited state into the energy migration and transfer processes has been clarified. The phonon-assisted occupation of high-energy 6 P 5/2,3/2 levels by Gd 3+ in the excited 6 P j state has been revealed as a shift of Gd 3+6 P j → 8 S 7/2 emission into the short-wavelength spectral range upon the temperature increase. The relaxation of excited Gd 3+ via phonon-assisted population of Gd 3+6 P 5/2 level (next higher one to the lowest excited 6 P 7/2 ) is supposed to be responsible for the rise in probability of energy migration within the Gd 3+ sub-lattice initiating the Gd 3+ →Ce 3+ energy transfer at T 3+ →Ce 3+ energy transfer at T>150 K is explained by the increase in probability of Gd 3+ relaxation into the highest 6 P 3/2 level of the 6 P j multiplet. An efficient reversed Ce 3+ →Gd 3+ energy transfer has been revealed for the studied phosphates at 4.2 K. - Highlights: →We investigate the Gd 3+ -Ce 3+ energy transfer in alkali gadolinium phosphates. → Thermal population of Gd 3+6 P 5/2 level improves migration along the Gd sub-lattice. → Increasing overlap of Gd 3+ and Ce 3+ states enhances the Gd 3+ -Ce 3+ energy transfer. → In LiGdP 4 O 12 :Ce and NaGdP 4 O 12 :Ce an efficient Ce 3+ -Gd 3+ transfer occurs at 4-300 K. → An effective reverse Gd 3+ -Ce 3+ energy transfer becomes possible at T>150 K.

  13. Investigation on nuclide migration behaviors

    International Nuclear Information System (INIS)

    Baik, Minhoon; Park, Chungkyun; Kim, Seungsoo

    2012-04-01

    In this study, we investigated the properties of geochemical reactions and sorption of high-level radionuclides and highly-mobile radionuclides in deep geological disposal environments. We also analyzed the dissolution properties of pyro wastes and constructed databases for the geochemical reactions and sorption for the safety assessment of HLW disposal. Technologies for measuring diffusion depths of radionuclides through fracture surfaces and rock matrix were developed in KURT conditions and their diffusion properties were analyzed and evaluated. The combined reactions of radionuclide/mineral/microbe in deep disposal environments were investigated and the effects of microbe on the radionuclide migration and disposal system behaviors were evaluated. In-situ solute migration system and on-line monitoring system were installed in KURT and the migration and retardation behaviors of various solutes and their interaction with fracture-filling materials were investigated. Basic properties of KURT groundwater colloids were analyzed using various methods. In addition, in-situ colloid migration experiments through a rock fracture were carried out and the developed migration model was verified. We have participated in Colloid Formation and Migration (CFM) international joint project in GTS and obtained reliability for our research results by comparing research results each other

  14. Nonmuscle myosin IIA and IIB differentially contribute to intrinsic and directed migration of human embryonic lung fibroblasts.

    Science.gov (United States)

    Kuragano, Masahiro; Murakami, Yota; Takahashi, Masayuki

    2018-03-25

    Nonmuscle myosin II (NMII) plays an essential role in directional cell migration. In this study, we investigated the roles of NMII isoforms (NMIIA and NMIIB) in the migration of human embryonic lung fibroblasts, which exhibit directionally persistent migration in an intrinsic manner. NMIIA-knockdown (KD) cells migrated unsteadily, but their direction of migration was approximately maintained. By contrast, NMIIB-KD cells occasionally reversed their direction of migration. Lamellipodium-like protrusions formed in the posterior region of NMIIB-KD cells prior to reversal of the migration direction. Moreover, NMIIB KD led to elongation of the posterior region in migrating cells, probably due to the lack of load-bearing stress fibers in this area. These results suggest that NMIIA plays a role in steering migration by maintaining stable protrusions in the anterior region, whereas NMIIB plays a role in maintenance of front-rear polarity by preventing aberrant protrusion formation in the posterior region. These distinct functions of NMIIA and NMIIB might promote intrinsic and directed migration of normal human fibroblasts. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Evidence of Diel Vertical Migration of Mesopelagic Sound-Scattering Organisms in the Arctic

    Directory of Open Access Journals (Sweden)

    Harald Gjøsæter

    2017-10-01

    Full Text Available While sound scattering layers (SSLs have been described previously from ice-covered waters in the Arctic, the existence of a viable mesopelagic community that also includes mesopelagic fishes in the Arctic has been questioned. In addition, it has been hypothesized that vertical migration would hardly exist in these areas. We wanted to check if deep scattering layers (DSLs was found to the west and north of Svalbard (79°30′N−82°10′N during autumn 2015, and if present; whether organisms in such DSLs undertook vertical migrations. Our null hypothesis was that there would be no evidence of diel vertical migration. Multi-frequency acoustic observations by hull mounted echo sounder (18, 38, and 120 kHz revealed a DSL at depths ~210–510 m in areas with bottom depths exceeding ~600 m. Investigating eight geographical locations that differed with respect to time periods, light cycle and sea ice conditions, we show that the deeper layer of DSL displayed a clear ascending movement during night time and a descending movement during daytime. The high-light weighted mean depth (WMD (343–514 m with respect to backscattered energy was statistically deeper than the low-light WMD (179–437 m for the locations studied. This behavior of the DSL was found to be consistent both when the sun was continuously above the horizon and after it started to set on 1 September, and both in open water and sea ice covered waters. The WMD showed an increasing trend, while the nautical area backscattering strength from the DSL showed a decreasing trend from south to north among the studied locations. Hydrographic observations revealed that the diel migration was found in the lower part of the north-flowing Atlantic Water, and was disconnected from the surface water masses above the Atlantic Water during day and night. The organisms conducting vertical migrations were studied by vertical and oblique hauls with zooplankton nets and pelagic trawls. These data suggest

  16. Complex vertical migration of larvae of the ghost shrimp, Nihonotrypaea harmandi, in inner shelf waters of western Kyushu, Japan

    Science.gov (United States)

    Tamaki, Akio; Mandal, Sumit; Agata, Yoshihiro; Aoki, Ikumi; Suzuki, Toshikazu; Kanehara, Hisao; Aoshima, Takashi; Fukuda, Yasushi; Tsukamoto, Hideshi; Yanagi, Tetsuo

    2010-01-01

    The position of meroplanktonic larvae in the water column with depth-dependent current velocities determines horizontal transport trajectories. For those larvae occurring in inner shelf waters, little is known about how combined diel and tidally-synchronized vertical migration patterns shift ontogenetically. The vertical migration of larvae of Nihonotrypaea harmandi (Decapoda: Thalassinidea: Callianassidae) was investigated in mesotidal, inner shelf waters of western Kyushu, Japan in July-August 2006. The larval sampling at seven depth layers down to 60 m was conducted every 3 h for 36 h in a 68.5-m deep area 10 km off a major coastal adult habitat. Within a 61-65-m deep area 5-7.5 km off the adult habitat, water temperature, salinity, chlorophyll a concentration, and photon flux density were measured, and water currents there were characterized from harmonic analysis of current meter data collected in 2008. The water column was stratified, with pycnocline, chlorophyll a concentration maximum, and 2% of photon flux density at 2 m, recorded at around 22-24 m. The stratified residual currents were detected in their north component, directed offshore and onshore in the upper and lower mixed layers, respectively. More than 87% of larvae occurred between 20 m and 60 m, producing a net onshore transport of approximately 1.3 km d -1. At the sunset flooding tide, all zoeal-stage larvae ascended, which could further promote retention (1.4-km potential onshore transport in 3 h). The actual onshore transport of larvae was detected by observing their occurrence pattern in a shallow embayment area with the adult habitat for 24 h in October 1994. However, ontogenetic differences in the vertical migration pattern in inner shelf waters were also apparent, with the maximum mean positions of zoeae deepening with increasing stages. Zoeae I and II performed a reverse diel migration, with their minimum and maximum depths being reached around noon and midnight, respectively. Zoeae IV

  17. Time reversal signal processing in acoustic emission testing

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk; Krofta, Josef; Kober, Jan; Dvořáková, Zuzana; Chlada, Milan; Dos Santos, S.

    2014-01-01

    Roč. 19, č. 12 (2014) ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] Institutional support: RVO:61388998 Keywords : acoustic emission (AE) * ultrasonic testing (UT) * signal processing * source location * time reversal acoustic s * acoustic emission * signal processing and transfer Subject RIV: BI - Acoustic s http://www.ndt.net/events/ECNDT2014/app/content/Slides/637_Prevorovsky.pdf

  18. Effect of bench time polymerization on depth of cure of dental composite resin

    Science.gov (United States)

    Harahap, K.; Yudhit, A.; Sari, F.

    2017-07-01

    The aim of this research was to investigate the effect of bench time before light cured polymerization on the depth of cure of dental composite resin. Nanofiller composite resin (Filtek Z350 XT,3M, ESPE,China) was used in this study. Sixty samples of nanofiller composite resin were made and divided into control and test groups with bench time for 0, 15, 30, 45, and 60 min. For the test group, composite resins were stored in refrigerator with 4°C temperatures. Meanwhile, for the control groups, the composite resin was stored at room temperature. The samples were prepared using metal mould with size diameter of 6 mm and 4 mm in thickness. Samples were cured for 20 s by using visible blue light curing unit. Part of samples that unpolymerized were removed by using a plastic spatula. The remaining parts of samples were measured by digital caliper and noted as depth of cure (mm). Data were analyzed to one-way ANOVA and LSD tests (p≤0.05). Results showed there was no significance differences between test groups (p=0.5). A 60 minutes bench time group showed the highest depth of cure value among test group, and it was almost similar with control group value. It can be concluded that longer bench time can increase the depth of cure of composite resin.

  19. In Vivo Real-Time Imaging of Exogenous HGF-Triggered Cell Migration in Rat Intact Soleus Muscles

    International Nuclear Information System (INIS)

    Ishido, Minenori; Kasuga, Norikatsu

    2012-01-01

    The transplantation of myogenic cells is a potentially effective therapy for muscular dystrophy. However, this therapy has achieved little success because the diffusion of transplanted myogenic cells is limited. Hepatocyte growth factor (HGF) is one of the primary triggers to induce myogenic cell migration in vitro. However, to our knowledge, whether exogenous HGF can trigger the migration of myogenic cells (i.e. satellite cells) in intact skeletal muscles in vivo has not been reported. We previously reported a novel in vivo real-time imaging method in rat skeletal muscles. Therefore, the present study examined the relationship between exogenous HGF treatment and cell migration in rat intact soleus muscles using this imaging method. As a result, it was indicated that the cell migration velocity was enhanced in response to increasing exogenous HGF concentration in skeletal muscles. Furthermore, the expression of MyoD was induced in satellite cells in response to HGF treatment. We first demonstrated in vivo real-time imaging of cell migration triggered by exogenous HGF in intact soleus muscles. The experimental method used in the present study will be a useful tool to understand further the regulatory mechanism of HGF-induced satellite cell migration in skeletal muscles in vivo

  20. Classical reconstruction of interference patterns of position-wave-vector-entangled photon pairs by the time-reversal method

    Science.gov (United States)

    Ogawa, Kazuhisa; Kobayashi, Hirokazu; Tomita, Akihisa

    2018-02-01

    The quantum interference of entangled photons forms a key phenomenon underlying various quantum-optical technologies. It is known that the quantum interference patterns of entangled photon pairs can be reconstructed classically by the time-reversal method; however, the time-reversal method has been applied only to time-frequency-entangled two-photon systems in previous experiments. Here, we apply the time-reversal method to the position-wave-vector-entangled two-photon systems: the two-photon Young interferometer and the two-photon beam focusing system. We experimentally demonstrate that the time-reversed systems classically reconstruct the same interference patterns as the position-wave-vector-entangled two-photon systems.

  1. Seismic migration in generalized coordinates

    Science.gov (United States)

    Arias, C.; Duque, L. F.

    2017-06-01

    Reverse time migration (RTM) is a technique widely used nowadays to obtain images of the earth’s sub-surface, using artificially produced seismic waves. This technique has been developed for zones with flat surface and when applied to zones with rugged topography some corrections must be introduced in order to adapt it. This can produce defects in the final image called artifacts. We introduce a simple mathematical map that transforms a scenario with rugged topography into a flat one. The three steps of the RTM can be applied in a way similar to the conventional ones just by changing the Laplacian in the acoustic wave equation for a generalized one. We present a test of this technique using the Canadian foothills SEG velocity model.

  2. Seismic migration in generalized coordinates

    International Nuclear Information System (INIS)

    Arias, C.; Duque, L. F.

    2017-01-01

    Reverse time migration (RTM) is a technique widely used nowadays to obtain images of the earth’s sub-surface, using artificially produced seismic waves. This technique has been developed for zones with flat surface and when applied to zones with rugged topography some corrections must be introduced in order to adapt it. This can produce defects in the final image called artifacts. We introduce a simple mathematical map that transforms a scenario with rugged topography into a flat one. The three steps of the RTM can be applied in a way similar to the conventional ones just by changing the Laplacian in the acoustic wave equation for a generalized one. We present a test of this technique using the Canadian foothills SEG velocity model. (paper)

  3. Real-time depth monitoring and control of laser machining through scanning beam delivery system

    International Nuclear Information System (INIS)

    Ji, Yang; Grindal, Alexander W; Fraser, James M; Webster, Paul J L

    2015-01-01

    Scanning optics enable many laser applications in manufacturing because their low inertia allows rapid movement of the process beam across the sample. We describe our method of inline coherent imaging for real-time (up to 230 kHz) micron-scale (7–8 µm axial resolution) tracking and control of laser machining depth through a scanning galvo-telecentric beam delivery system. For 1 cm trench etching in stainless steel, we collect high speed intrapulse and interpulse morphology which is useful for further understanding underlying mechanisms or comparison with numerical models. We also collect overall sweep-to-sweep depth penetration which can be used for feedback depth control. For trench etching in silicon, we show the relationship of etch rate with average power and scan speed by computer processing of depth information without destructive sample post-processing. We also achieve three-dimensional infrared continuous wave (modulated) laser machining of a 3.96 × 3.96 × 0.5 mm 3 (length × width × maximum depth) pattern on steel with depth feedback. To the best of our knowledge, this is the first successful demonstration of direct real-time depth monitoring and control of laser machining with scanning optics. (paper)

  4. Nonlinear Time Reversal Acoustic Method of Friction Stir Weld Assessment, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the project is demonstration of the feasibility of Friction Stir Weld (FSW) assessment by novel Nonlinear Time Reversal Acoustic (TRA) method. Time...

  5. Estimating medication stopping fraction and real-time prevalence of drug use in pharmaco-epidemiologic databases. An application of the reverse waiting time distribution

    DEFF Research Database (Denmark)

    Støvring, Henrik; Pottegård, Anton; Hallas, Jesper

    2017-01-01

    Purpose: To introduce the reverse waiting time distribution (WTD) and show how it can be used to estimate stopping fractions and real-time prevalence of treatment in pharmacoepidemiological studies. Methods: The reverse WTD is the distribution of time from the last dispensed prescription of each......-hoc decision rules for automated implementations, and it yields estimates of real-time prevalence....... patient within a time window to the end of it. It is a mirrored version of the ordinary WTD, which considers the first dispensed prescription of patients within a time window. Based on renewal process theory, the reverse WTD can be analyzed as an ordinary WTD with maximum likelihood estimation. Based...

  6. A critical survey of live virtual machine migration techniques

    Directory of Open Access Journals (Sweden)

    Anita Choudhary

    2017-11-01

    Full Text Available Abstract Virtualization techniques effectively handle the growing demand for computing, storage, and communication resources in large-scale Cloud Data Centers (CDC. It helps to achieve different resource management objectives like load balancing, online system maintenance, proactive fault tolerance, power management, and resource sharing through Virtual Machine (VM migration. VM migration is a resource-intensive procedure as VM’s continuously demand appropriate CPU cycles, cache memory, memory capacity, and communication bandwidth. Therefore, this process degrades the performance of running applications and adversely affects efficiency of the data centers, particularly when Service Level Agreements (SLA and critical business objectives are to be met. Live VM migration is frequently used because it allows the availability of application service, while migration is performed. In this paper, we make an exhaustive survey of the literature on live VM migration and analyze the various proposed mechanisms. We first classify the types of Live VM migration (single, multiple and hybrid. Next, we categorize VM migration techniques based on duplication mechanisms (replication, de-duplication, redundancy, and compression and awareness of context (dependency, soft page, dirty page, and page fault and evaluate the various Live VM migration techniques. We discuss various performance metrics like application service downtime, total migration time and amount of data transferred. CPU, memory and storage data is transferred during the process of VM migration and we identify the category of data that needs to be transferred in each case. We present a brief discussion on security threats in live VM migration and categories them in three different classes (control plane, data plane, and migration module. We also explain the security requirements and existing solutions to mitigate possible attacks. Specific gaps are identified and the research challenges in improving

  7. Seasonal variations in vertical migration of glacier lanternfish, Benthosema glaciale

    KAUST Repository

    Dypvik, Eivind; Rø stad, Anders; Kaartvedt, Stein

    2012-01-01

    The seasonal variations in glacier lanternfish (Benthosema glaciale) vertical distribution and diel vertical migration (DVM) were studied by use of a bottom-mounted upward-facing 38 kHz echo sounder deployed at 392 m depth and cabled to shore in Masfjorden (~6052?N, ~524?E), Norway. Acoustic data from July 2007-October 2008 were analyzed, and scattering layers below ~220 m during daytime were attributed to glacier lanternfish based on net sampling in this, and previous studies, as well as from analysis of the acoustic data. At these depths, three different diel behavioral strategies were apparent: normal diel vertical migration (NDVM), inverse DVM (IDVM), and no DVM (NoDVM). NoDVM was present all year, while IDVM was present in autumn and winter, and NDVM was present during spring and summer. The seasonal differences in DVM behavior seem to correlate with previously established seasonal distribution of prey. We hypothesize that in regions with seasonally migrating zooplankton, such as where calanoid copepods overwinter at depth, similar plasticity in DVM behavior might occur in other populations of lanternfishes. 2012 The Author(s).

  8. Seasonal variations in vertical migration of glacier lanternfish, Benthosema glaciale

    KAUST Repository

    Dypvik, Eivind

    2012-06-05

    The seasonal variations in glacier lanternfish (Benthosema glaciale) vertical distribution and diel vertical migration (DVM) were studied by use of a bottom-mounted upward-facing 38 kHz echo sounder deployed at 392 m depth and cabled to shore in Masfjorden (~6052?N, ~524?E), Norway. Acoustic data from July 2007-October 2008 were analyzed, and scattering layers below ~220 m during daytime were attributed to glacier lanternfish based on net sampling in this, and previous studies, as well as from analysis of the acoustic data. At these depths, three different diel behavioral strategies were apparent: normal diel vertical migration (NDVM), inverse DVM (IDVM), and no DVM (NoDVM). NoDVM was present all year, while IDVM was present in autumn and winter, and NDVM was present during spring and summer. The seasonal differences in DVM behavior seem to correlate with previously established seasonal distribution of prey. We hypothesize that in regions with seasonally migrating zooplankton, such as where calanoid copepods overwinter at depth, similar plasticity in DVM behavior might occur in other populations of lanternfishes. 2012 The Author(s).

  9. Time-reversibility in seismic sequences: Application to the seismicity of Mexican subduction zone

    Science.gov (United States)

    Telesca, L.; Flores-Márquez, E. L.; Ramírez-Rojas, A.

    2018-02-01

    In this paper we investigate the time-reversibility of series associated with the seismicity of five seismic areas of the subduction zone beneath the Southwest Pacific Mexican coast, applying the horizontal visibility graph method to the series of earthquake magnitudes, interevent times, interdistances and magnitude increments. We applied the Kullback-Leibler divergence D that is a metric for quantifying the degree of time-irreversibility in time series. Our findings suggest that among the five seismic areas, Jalisco-Colima is characterized by time-reversibility in all the four seismic series. Our results are consistent with the peculiar seismo-tectonic characteristics of Jalisco-Colima, which is the closest to the Middle American Trench and belongs to the Mexican volcanic arc.

  10. Discover potential in a search for time-reversal invariance violation in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gudkov, Vladimir, E-mail: gudkov@sc.edu; Song, Young-Ho [University of South Carolina, Department of Physics and Astronomy (United States)

    2013-03-15

    Time reversal invariance violating (TRIV) effects in low energy physics could be very important in searching for new physics, being complementary to neutron and atomic electric dipole moment (EDM) measurements. In this relation, we discuss a sensitivity of some TRIV observables to different models of time-reversal (CP) violation and their dependencies on nuclear structure. As a measure of a sensitivity of TRIV effects to the value of TRIV nucleon coupling constant, we introduce a coefficient of a 'discovery potential', which shows a possible factor for improving the current limits of the EDM experiments by measuring nuclear TRIV effects.

  11. A cross-correlation objective function for least-squares migration and visco-acoustic imaging

    KAUST Repository

    Dutta, Gaurav

    2014-08-05

    Conventional acoustic least-squares migration inverts for a reflectivity image that best matches the amplitudes of the observed data. However, for field data applications, it is not easy to match the recorded amplitudes because of the visco-elastic nature of the earth and inaccuracies in the estimation of source signature and strength at different shot locations. To relax the requirement for strong amplitude matching of least-squares migration, we use a normalized cross-correlation objective function that is only sensitive to the similarity between the predicted and the observed data. Such a normalized cross-correlation objective function is also equivalent to a time-domain phase inversion method where the main emphasis is only on matching the phase of the data rather than the amplitude. Numerical tests on synthetic and field data show that such an objective function can be used as an alternative to visco-acoustic least-squares reverse time migration (Qp-LSRTM) when there is strong attenuation in the subsurface and the estimation of the attenuation parameter Qp is insufficiently accurate.

  12. A cross-correlation objective function for least-squares migration and visco-acoustic imaging

    KAUST Repository

    Dutta, Gaurav; Sinha, Mrinal; Schuster, Gerard T.

    2014-01-01

    Conventional acoustic least-squares migration inverts for a reflectivity image that best matches the amplitudes of the observed data. However, for field data applications, it is not easy to match the recorded amplitudes because of the visco-elastic nature of the earth and inaccuracies in the estimation of source signature and strength at different shot locations. To relax the requirement for strong amplitude matching of least-squares migration, we use a normalized cross-correlation objective function that is only sensitive to the similarity between the predicted and the observed data. Such a normalized cross-correlation objective function is also equivalent to a time-domain phase inversion method where the main emphasis is only on matching the phase of the data rather than the amplitude. Numerical tests on synthetic and field data show that such an objective function can be used as an alternative to visco-acoustic least-squares reverse time migration (Qp-LSRTM) when there is strong attenuation in the subsurface and the estimation of the attenuation parameter Qp is insufficiently accurate.

  13. Non-Abelian parafermions in time-reversal-invariant interacting helical systems

    Science.gov (United States)

    Orth, Christoph P.; Tiwari, Rakesh P.; Meng, Tobias; Schmidt, Thomas L.

    2015-02-01

    The interplay between bulk spin-orbit coupling and electron-electron interactions produces umklapp scattering in the helical edge states of a two-dimensional topological insulator. If the chemical potential is at the Dirac point, umklapp scattering can open a gap in the edge state spectrum even if the system is time-reversal invariant. We determine the zero-energy bound states at the interfaces between a section of a helical liquid which is gapped out by the superconducting proximity effect and a section gapped out by umklapp scattering. We show that these interfaces pin charges which are multiples of e /2 , giving rise to a Josephson current with 8 π periodicity. Moreover, the bound states, which are protected by time-reversal symmetry, are fourfold degenerate and can be described as Z4 parafermions. We determine their braiding statistics and show how braiding can be implemented in topological insulator systems.

  14. Reversal agents in anaesthesia and critical care

    Directory of Open Access Journals (Sweden)

    Nibedita Pani

    2015-01-01

    Full Text Available Despite the advent of short and ultra-short acting drugs, an in-depth knowledge of the reversal agents used is a necessity for any anaesthesiologist. Reversal agents are defined as any drug used to reverse the effects of anaesthetics, narcotics or potentially toxic agents. The controversy on the routine reversal of neuromuscular blockade still exists. The advent of newer reversal agents like sugammadex have made the use of steroidal neuromuscular blockers like rocuronium feasible in rapid sequence induction situations. We made a review of the older reversal agents and those still under investigation for drugs that are regularly used in our anaesthesia practice.

  15. Intestinal myoelectric activity and contractile motility in dogs with a reversed jejunal segment after extensive small bowel resection.

    Science.gov (United States)

    Uchiyama, M; Iwafuchi, M; Ohsawa, Y; Yagi, M; Iinuma, Y; Ohtani, S

    1992-06-01

    To evaluate the functioning and effectiveness of a reversed jejunal segment after extensive small bowel resection, we continuously measured the postoperative bowel motility (using bipolar electrodes and/or contractile strain gage force transducers) in interdigestive and postprandial conscious dogs at 2 to 5 weeks after surgery. The fasting duodenal migrating myoelectric (or motor) complex (MMC) occurred at markedly longer intervals in dogs with a 20-cm reversed jejunal segment created after 75% to 80% extensive small bowel resection (group 3) than in dogs that received extensive resection alone (group 2) or dogs that underwent construction of a reversed jejunal segment without bowel resection (group 1). The MMC arising from the duodenum was often interrupted at the jejunum above the proximal anastomosis and did not migrate smoothly to the reversed segment or terminal ileum in group 3. In addition, brief small discordant contractions were frequent in the reversed segment and the jejunum above the proximal anastomosis in group 3. The duration of the postprandial period without duodenal MMC activity was significantly prolonged in groups 2 and 3. These results suggest that the transit time and passage of intestinal contents were delayed and that the periodical MMC was disturbed in group 3. The delay of transit time was due to prolongation of the interval between duodenal MMCs, the interruption of MMC propagation at the jejunum above the proximal anastomosis, the dominance of MMCs that followed the inherent anatomical continuity of the bowel, and discordant movements across the proximal anastomosis. Functional obstruction could be a potential problem in a 20-cm reversed jejunal segment inserted after extensive small bowel resection.

  16. Test of feasibility of a novel high precision test of time reversal invariance

    International Nuclear Information System (INIS)

    Samuel, Deepak

    2007-01-01

    The first results of a feasibility test of a novel high precision test of time reversal invariance are reported. The Time Reversal Invariance test at COSY (TRIC) was planned to measure the time reversal violating observable A y,xz with an accuracy of 10 -6 in proton-deuteron (p-d) scattering. A novel technique for measuring total cross sections is introduced and the achievable precision of this measuring technique is tested. The correlation coefficient A y,y in p-d scattering fakes a time-reversal violating effect. This work reports the feasibility test of the novel method in the measurement of A y,y in p-p scattering. The first step in the experimental design was the development of a hard real-time data acquisition system. To meet stringent latency requirements, the capabilities of Windows XP had to be augmented with a real-time subsystem. The remote control feature of the data acquisition enables users to operate it from any place via an internet connection. The data acquisition proved its reliability in several beam times without any failures. The analysis of the data showed the presence of 1/f noise which substantially limits the quality of our measurements. The origin of 1/f noise was traced and found to be the Barkhausen noise from the ferrite core of the beam current transformer (BCT). A global weighted fitting technique based on a modified Wiener-Khinchin method was developed and used to suppress the influence of 1/f noise, which increased the error bar of the results by a factor 3. This is the only deviation from our expectations. The results are presented and discussed. (orig.)

  17. Test of feasibility of a novel high precision test of time reversal invariance

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Deepak

    2007-07-01

    The first results of a feasibility test of a novel high precision test of time reversal invariance are reported. The Time Reversal Invariance test at COSY (TRIC) was planned to measure the time reversal violating observable A{sub y,xz} with an accuracy of 10{sup -6} in proton-deuteron (p-d) scattering. A novel technique for measuring total cross sections is introduced and the achievable precision of this measuring technique is tested. The correlation coefficient A{sub y,y} in p-d scattering fakes a time-reversal violating effect. This work reports the feasibility test of the novel method in the measurement of A{sub y,y} in p-p scattering. The first step in the experimental design was the development of a hard real-time data acquisition system. To meet stringent latency requirements, the capabilities of Windows XP had to be augmented with a real-time subsystem. The remote control feature of the data acquisition enables users to operate it from any place via an internet connection. The data acquisition proved its reliability in several beam times without any failures. The analysis of the data showed the presence of 1/f noise which substantially limits the quality of our measurements. The origin of 1/f noise was traced and found to be the Barkhausen noise from the ferrite core of the beam current transformer (BCT). A global weighted fitting technique based on a modified Wiener-Khinchin method was developed and used to suppress the influence of 1/f noise, which increased the error bar of the results by a factor 3. This is the only deviation from our expectations. The results are presented and discussed. (orig.)

  18. Surface hopping, transition state theory and decoherence. I. Scattering theory and time-reversibility.

    Science.gov (United States)

    Jain, Amber; Herman, Michael F; Ouyang, Wenjun; Subotnik, Joseph E

    2015-10-07

    We provide an in-depth investigation of transmission coefficients as computed using the augmented-fewest switches surface hopping algorithm in the low energy regime. Empirically, microscopic reversibility is shown to hold approximately. Furthermore, we show that, in some circumstances, including decoherence on top of surface hopping calculations can help recover (as opposed to destroy) oscillations in the transmission coefficient as a function of energy; these oscillations can be studied analytically with semiclassical scattering theory. Finally, in the spirit of transition state theory, we also show that transmission coefficients can be calculated rather accurately starting from the curve crossing point and running trajectories forwards and backwards.

  19. Detecting a subsurface cylinder by a Time Reversal MUSIC like method

    Science.gov (United States)

    Solimene, Raffaele; Dell'Aversano, Angela; Leone, Giovanni

    2014-05-01

    In this contribution the problem of imaging a buried homogeneous circular cylinder is dealt with for a two-dimensional scalar geometry. Though the addressed geometry is extremely simple as compared to real world scenarios, it can be considered of interest for a classical GPR civil engineering applicative context: that is the subsurface prospecting of urban area in order to detect and locate buried utilities. A large body of methods for subsurface imaging have been presented in literature [1], ranging from migration algorithms to non-linear inverse scattering approaches. More recently, also spectral estimation methods, which benefit from sub-array data arrangement, have been proposed and compared in [2].Here a Time Reversal MUSIC (TRM) like method is employed. TRM has been initially conceived to detect point-like scatterers and then generalized to the case of extended scatterers [3]. In the latter case, no a priori information about the scatterers is exploited. However, utilities often can be schematized as circular cylinders. Here, we develop a TRM variant which use this information to properly tailor the steering vector while implementing TRM. Accordingly, instead of a spatial map [3], the imaging procedure returns the scatterer's parameters such as its center position, radius and dielectric permittivity. The study is developed by numerical simulations. First the free-space case is considered in order to more easily introduce the idea and the problem mathematical structure. Then the analysis is extended to the half-space case. In both situations a FDTD forward solver is used to generate the synthetic data. As usual in TRM, a multi-view/multi-static single-frequency configuration is considered and emphasis is put on the role played by the number of available sensors. Acknowledgement This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar." [1] A. Randazzo and R

  20. Migration of 134,137Cs radionuclides in the soil and uptake by plants in German spruce forests

    International Nuclear Information System (INIS)

    Buermann, W.; Drissner, J.; Miller, R.; Heider, R.; Lindner, G.; Zibold, G.; Sykowa, T.

    1994-01-01

    In southern German spruce forests on different geological substrates the depth distributions of the activity inventories of 134 Cs and 137 Cs radionuclides from Chernobyl and nuclear weapons testing fallout and the corresponding activity concentrations in the dry mass of different plants were measured. Using a compartment model based on first order kinetics, the vertical residence half-times and migration rates of 137 Cs were calculated. Migration rates decrease with increasing soil depth and retention time of the 137 Cs radionuclides in the soil. The aggregated soil to plant transfer factors [m 2 /kg] on the other hand, are comparatively high: Up to 1.1 m 2 /kg for fern, and smaller values for bilberry and raspberry. It is suggested that a fixation of cesium radionuclides in the organic matter of the litter debris occurs and that the transfer to plants is mediated by carrier substances produced by microorganisms responsible for the degradation of the litter. (orig.)

  1. Some factors affecting time reversal signal reconstruction

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk; Kober, Jan

    2015-01-01

    Roč. 70, September (2015), s. 604-608 ISSN 1875-3892. [ICU International Congress on Ultrasonics 2015. Metz, 10.05.2015-15.05.2015] Institutional support: RVO:61388998 Keywords : nondestructive testing * time reversal signal processing * ultrasonic source reconstruction * acoustic emission * coda wave interferometry Subject RIV: BI - Acoustic s http://ac.els-cdn.com/S1875389215007762/1-s2.0-S1875389215007762-main.pdf?_tid=1513a4a2-9e5b-11e5-9693-00000aab0f27&acdnat=1449655153_455a4e32a1135236d0796c3f973ff58e

  2. A Perspective for Time-Varying Channel Compensation with Model-Based Adaptive Passive Time-Reversal

    Directory of Open Access Journals (Sweden)

    Lussac P. MAIA

    2015-06-01

    Full Text Available Underwater communications mainly rely on acoustic propagation which is strongly affected by frequency-dependent attenuation, shallow water multipath propagation and significant Doppler spread/shift induced by source-receiver-surface motion. Time-reversal based techniques offer a low complexity solution to decrease interferences caused by multipath, but a complete equalization cannot be reached (it saturates when maximize signal to noise ratio and these techniques in conventional form are quite sensible to channel variations along the transmission. Acoustic propagation modeling in high frequency regime can yield physical-based information that is potentially useful to channel compensation methods as the passive time-reversal (pTR, which is often employed in Digital Acoustic Underwater Communications (DAUC systems because of its low computational cost. Aiming to overcome the difficulties of pTR to solve time-variations in underwater channels, it is intended to insert physical knowledge from acoustic propagation modeling in the pTR filtering. Investigation is being done by the authors about the influence of channel physical parameters on propagation of coherent acoustic signals transmitted through shallow water waveguides and received in a vertical line array of sensors. Time-variant approach is used, as required to model high frequency acoustic propagation on realistic scenarios, and applied to a DAUC simulator containing an adaptive passive time-reversal receiver (ApTR. The understanding about the effects of changes in physical features of the channel over the propagation can lead to design ApTR filters which could help to improve the communications system performance. This work presents a short extension and review of the paper 12, which tested Doppler distortion induced by source-surface motion and ApTR compensation for a DAUC system on a simulated time-variant channel, in the scope of model-based equalization. Environmental focusing approach

  3. Towards Real-Time Facial Landmark Detection in Depth Data Using Auxiliary Information

    Directory of Open Access Journals (Sweden)

    Connah Kendrick

    2018-06-01

    Full Text Available Modern facial motion capture systems employ a two-pronged approach for capturing and rendering facial motion. Visual data (2D is used for tracking the facial features and predicting facial expression, whereas Depth (3D data is used to build a series of expressions on 3D face models. An issue with modern research approaches is the use of a single data stream that provides little indication of the 3D facial structure. We compare and analyse the performance of Convolutional Neural Networks (CNN using visual, Depth and merged data to identify facial features in real-time using a Depth sensor. First, we review the facial landmarking algorithms and its datasets for Depth data. We address the limitation of the current datasets by introducing the Kinect One Expression Dataset (KOED. Then, we propose the use of CNNs for the single data stream and merged data streams for facial landmark detection. We contribute to existing work by performing a full evaluation on which streams are the most effective for the field of facial landmarking. Furthermore, we improve upon the existing work by extending neural networks to predict into 3D landmarks in real-time with additional observations on the impact of using 2D landmarks as auxiliary information. We evaluate the performance by using Mean Square Error (MSE and Mean Average Error (MAE. We observe that the single data stream predicts accurate facial landmarks on Depth data when auxiliary information is used to train the network. The codes and dataset used in this paper will be made available.

  4. Migration-driven aggregation behaviors in job markets with direct foreign immigration

    International Nuclear Information System (INIS)

    Sun, Ruoyan

    2014-01-01

    This Letter introduces a new set of rate equations describing migration-driven aggregation behaviors in job markets with direct foreign immigration. We divide the job market into two groups: native and immigrant. A reversible migration of jobs exists in both groups. The interaction between two groups creates a birth and death rate for the native job market. We find out that regardless of initial conditions or the rates, the total number of cities with either job markets decreases. This indicates a more concentrated job markets for both groups in the future. On the other hand, jobs available for immigrants increase over time but the ones for natives are uncertain. The native job markets can either expand or shrink or remain constant due to combined effects of birth and death rates. Finally, we test our analytical results with the population data of all counties in the US from 2000 to 2011. - Highlights: • A rate equation model describing the migration of job market is proposed. • We study the migration-driven aggregation behaviors over the longer term. • An illustrative example is given to check the effectiveness of the model

  5. Migration-driven aggregation behaviors in job markets with direct foreign immigration

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ruoyan

    2014-09-05

    This Letter introduces a new set of rate equations describing migration-driven aggregation behaviors in job markets with direct foreign immigration. We divide the job market into two groups: native and immigrant. A reversible migration of jobs exists in both groups. The interaction between two groups creates a birth and death rate for the native job market. We find out that regardless of initial conditions or the rates, the total number of cities with either job markets decreases. This indicates a more concentrated job markets for both groups in the future. On the other hand, jobs available for immigrants increase over time but the ones for natives are uncertain. The native job markets can either expand or shrink or remain constant due to combined effects of birth and death rates. Finally, we test our analytical results with the population data of all counties in the US from 2000 to 2011. - Highlights: • A rate equation model describing the migration of job market is proposed. • We study the migration-driven aggregation behaviors over the longer term. • An illustrative example is given to check the effectiveness of the model.

  6. Real-time multiple human perception with color-depth cameras on a mobile robot.

    Science.gov (United States)

    Zhang, Hao; Reardon, Christopher; Parker, Lynne E

    2013-10-01

    The ability to perceive humans is an essential requirement for safe and efficient human-robot interaction. In real-world applications, the need for a robot to interact in real time with multiple humans in a dynamic, 3-D environment presents a significant challenge. The recent availability of commercial color-depth cameras allow for the creation of a system that makes use of the depth dimension, thus enabling a robot to observe its environment and perceive in the 3-D space. Here we present a system for 3-D multiple human perception in real time from a moving robot equipped with a color-depth camera and a consumer-grade computer. Our approach reduces computation time to achieve real-time performance through a unique combination of new ideas and established techniques. We remove the ground and ceiling planes from the 3-D point cloud input to separate candidate point clusters. We introduce the novel information concept, depth of interest, which we use to identify candidates for detection, and that avoids the computationally expensive scanning-window methods of other approaches. We utilize a cascade of detectors to distinguish humans from objects, in which we make intelligent reuse of intermediary features in successive detectors to improve computation. Because of the high computational cost of some methods, we represent our candidate tracking algorithm with a decision directed acyclic graph, which allows us to use the most computationally intense techniques only where necessary. We detail the successful implementation of our novel approach on a mobile robot and examine its performance in scenarios with real-world challenges, including occlusion, robot motion, nonupright humans, humans leaving and reentering the field of view (i.e., the reidentification challenge), human-object and human-human interaction. We conclude with the observation that the incorporation of the depth information, together with the use of modern techniques in new ways, we are able to create an

  7. Experimental study of time-reversal invariance in neutron-nucleus interactions

    International Nuclear Information System (INIS)

    Shaparov, E.I.; Shimizu, H.M.

    1996-01-01

    Experimental approaches for the test of time-reversal invariance in neutron-nucleus interactions are reviewed. Possible transmission experiments with polarized neutron beams and polarized or aligned targets are discussed as well as neutron capture experiments with unpolarized resonance neutrons. 102 refs., 13 figs., 3 tabs

  8. Time-domain incomplete Gauss-Newton full-waveform inversion of Gulf of Mexico data

    KAUST Repository

    AlTheyab, Abdullah; Wang, Xin; Schuster, Gerard T.

    2013-01-01

    We apply the incomplete Gauss-Newton full-waveform inversion (TDIGN-FWI) to Gulf of Mexico (GOM) data in the space-time domain. In our application, iterative least-squares reverse-time migration (LSRTM) is used to estimate the model update at each

  9. Electronic tags and genetics explore variation in migrating steelhead kelts (oncorhynchus mykiss), Ninilchik river, Alaska

    Science.gov (United States)

    Nielsen, J.L.; Turner, S.M.; Zimmerman, C.E.

    2011-01-01

    Acoustic and archival tags examined freshwater and marine migrations of postspawn steelhead kelts (Oncorhynchus mykiss) in the Ninilchik River, Alaska, USA. Postspawn steelhead were captured at a weir in 2002-2005. Scale analysis indicated multiple migratory life histories and spawning behaviors. Acoustic tags were implanted in 99 kelts (2002-2003), and an array of acoustic receivers calculated the average speed of outmigration, timing of saltwater entry, and duration of residency in the vicinity of the river mouth. Ocean migration data were recovered from two archival tags implanted in kelts in 2004 (one male and one female). Archival tags documented seasonal differences in maximum depth and behavior with both fish spending 97% of time at sea <6 m depth (day and night). All study fish were double tagged with passive integrated transponder (PIT) tags implanted in the body cavity. Less than 4% of PIT tags were retained in postspawn steelhead. Molecular genetics demonstrated no significant differences in genetic population structure across years or among spawning life history types, suggesting a genetically panmictic population with highly diverse life history characteristics in the Ninilchik River.

  10. Structure-from-motion: dissociating perception, neural persistence, and sensory memory of illusory depth and illusory rotation.

    Science.gov (United States)

    Pastukhov, Alexander; Braun, Jochen

    2013-02-01

    In the structure-from-motion paradigm, physical motion on a screen produces the vivid illusion of an object rotating in depth. Here, we show how to dissociate illusory depth and illusory rotation in a structure-from-motion stimulus using a rotationally asymmetric shape and reversals of physical motion. Reversals of physical motion create a conflict between the original illusory states and the new physical motion: Either illusory depth remains constant and illusory rotation reverses, or illusory rotation stays the same and illusory depth reverses. When physical motion reverses after the interruption in presentation, we find that illusory rotation tends to remain constant for long blank durations (T (blank) ≥ 0.5 s), but illusory depth is stabilized if interruptions are short (T (blank) ≤ 0.1 s). The stability of illusory depth over brief interruptions is consistent with the effect of neural persistence. When this is curtailed using a mask, stability of ambiguous vision (for either illusory depth or illusory rotation) is disrupted. We also examined the selectivity of the neural persistence of illusory depth. We found that it relies on a static representation of an interpolated illusory object, since changes to low-level display properties had little detrimental effect. We discuss our findings with respect to other types of history dependence in multistable displays (sensory stabilization memory, neural fatigue, etc.). Our results suggest that when brief interruptions are used during the presentation of multistable displays, switches in perception are likely to rely on the same neural mechanisms as spontaneous switches, rather than switches due to the initial percept choice at the stimulus onset.

  11. Depth geological model building: application to the 3D high resolution 'ANDRA' seismic block

    International Nuclear Information System (INIS)

    Mari, J.L.; Yven, B.

    2012-01-01

    separation, static corrections, velocity analysis and pre-stack time migration. After migration, a model-based inversion (a priori impedance model obtained from well data) provides a 3D impedance block. No well being located in the 3D area, additional 2D lines have been recorded to calibrate 3D data on 3 wells situated outside of the 3D area. The time-to-depth conversion (by Bayesian Kriging) of 10 seismic horizons has been done and the time-to-depth conversion model has been computed in order to perform the depth conversion of any seismic block. Figure 1 is an example of the results obtained with the in-line 405 of the 3D seismic block. Figure 1 (left) shows the acoustic impedance distribution both in the 0.28 - 0.43 s time interval and in the 500 - 750 m depth interval after time- to-depth conversion. The low values of acoustic impedance are associated with the target interval situated between the top of Lower Oxfordian and the top of the Carbonated Dogger. Figure also shows the density distribution in the same depth interval. The density section has been flattened at the top of the White Kimmeridgian limestones and the histograms of the density values have been computed for different depth intervals. Figure 1 on the left shows the results: - between the top of White Kimmeridgian limestones and the top of Beaumont dolomites. On the histogram, 3 modes can be observed. - between the top of Lower Oxfordian and the top of carbonated Dogger. It is the depth interval associated with the geological target. On the histogram, 1 single mode is observed. The average density is 2.38 g/cm 3 and the associated standard deviation is 0.03 g/cm 3 . - between the top and the base of carbonated Dogger. On the histogram, 1 single mode is observed. The average density is 2.66 g/cm 3 and the associated standard deviation is 0.06 g/cm 3 . We have demonstrated the benefit of combining time-to-depth conversion of seismic horizons by Bayesian kriging, consistent seismic velocity model and acoustic

  12. Carbon export by vertically migrating zooplankton

    DEFF Research Database (Denmark)

    Hansen, Agnethe Nøhr; Visser, André W.

    2016-01-01

    Through diel vertical migration (DVM), zooplankton add an active transport to the otherwise passive sinking of detrital material that constitutes the biological pump. This active transport has proven difficult to quantify. We present a model that estimates both the temporal and depth characterist...... is transported than at either equatorial or boreal latitudes. We estimate that the amount of carbon transported below the mixed layer by migrating zooplankton in the North Atlantic Ocean constitutes 27% (16–30%) of the total export flux associated with the biological pump in that region...

  13. Fish Species in a Changing World: The Route and Timing of Species Migration between Tropical and Temperate Ecosystems in Eastern Atlantic.

    Directory of Open Access Journals (Sweden)

    Awaluddin Halirin Kaimuddin

    2016-09-01

    Full Text Available The presence of tropical species has been reported in Atlantic-European waters with increasing frequency in recent years. Unfortunately, the history of their migrations is not well understood. In this study, we examined the routes and timing of fish migrations in several ecosystems of the East Atlantic Ocean, combining several publicly available and unpublicized datasets on species occurrences. The species studied were those noted as exotic or rare outside their previous known area of distribution. We used sea surface temperature (SST data obtained from 30 years of satellite observation to define three distinct time periods. Within these periods, temperature trends were studied in six ecosystems: the North Sea, the Celtic Sea, the South European Atlantic Waters, the Mediterranean Sea, the Canary Current and the Guinea Current. We also incorporated bathymetry data to describe the distribution of species. Measurement across a relatively large spatial extent was made possible by incorporating the capabilities of GIS.While SST increased consistently over time in all of the ecosystems observed, the change in number of species differed among ecosystems. The number of species in the middle regions, such as the South European Atlantic Shelf and the Western Mediterranean Sea, tended to increase over time. These regions received numbers of species from the lower or the upper latitudes according to season. Of all of the species observed in the recent period, 7 species from the Canary Current tended to be found in the Western Mediterranean Sea, and 6 species from these two regions extended their distributions to the South European Atlantic Shelf. Twelve species from the Canary Current moved seasonally to the Guinea Current. In the northern regions, 13 species moved seasonally in the North Sea and the Celtic Seas, and 12 of these species reached the South European Atlantic Shelf.This study presents a picture of routes and timing of species migration at the

  14. Thermal migration of iron implanted in aluminium at high doses

    International Nuclear Information System (INIS)

    Asundi, V.K.; Joshi, M.C.; Deb, S.K.; Soud, D.K.; Kulkarni, V.N.; Sundararaman, M.

    1978-01-01

    The anneal behaviour of the Fe-Al metastable system produced by implantation of Fe + ions at 30 keV has been reported. The implant concentrations between 18-42 at percent have been chosen, in order to exceed the normal solid solubility of Fe in Al by about three orders of magnitude. Isothermal annealing has been done under vacuum (55 x 10 -6 Torr) at 400deg C and 570 deg C. The iron depth profiles have been determined, by Rutherford backscattering of 2 MeV He + ions. It has been found that 1) as annealing proceeds, all specimens show rapid enhanced diffusion initially (upto about 30 m), followed by a much slower diffusion as iron ions migrate inwards (2) at implant concentrations 23 at percent, double peaks appear in iron depth profiles, followed by rapid migration of diffused iron towards surface and (3) at still higher anneal times, the out-diffused iron moves inward again. This kind of out-diffusion behaviour in a metallic system has not been reported earlier in the literature. Also, the presence of Fe 4 Al 13 has been identified as terminal phase, using x-ray diffraction techniques. (K.B.)

  15. Two proteins with reverse transcriptase activities associated with hepatitis B virus-like particles

    International Nuclear Information System (INIS)

    Bavand, M.R.; Laub, O.

    1988-01-01

    Recent studies suggest that hepatitis B virus (HBV), despite being a DNA virus, replicates via an RNA intermediate. The HBV life cycle is therefore a permuted version of the RNA retroviral life cycle. Sequence homology between retroviral reverse transcriptase and the putative HBV polymerase gene product suggests the presence of an HBV reverse transcriptase. As yet, there has been no direct evidence that reverse transcriptase activity is present in the viral particle. The authors used activity gel analysis to detect the in situ catalytic activities of DNA polymerases after sodium dodecyl sulfate-polyacrylamide gel electrophorsis. These studies demonstrated that HBV-like particles secreted by a differentiated human hepatoma cell line tranfected with genomic HBV DNA contain two major polymerase activities which migrate as ∼90- and ∼70-kilodalton (kDa) proteins. This demonstrated, for the first time, that HBV-like particles contain a novel DNA polymerase-reverse transcriptase activity. Furthermore, they propose that the 70-kDa reverse transcriptase may be produced by proteolytic self-cleavage of the 90-kDa precursor protein

  16. The Organization of Behavior Over Time: Insights from Mid-Session Reversal.

    Science.gov (United States)

    Rayburn-Reeves, Rebecca M; Cook, Robert G

    2016-01-01

    What are the mechanisms by which behavior is organized sequentially over time? The recently developed mid-session reversal (MSR) task offers new insights into this fundamental question. The typical MSR task is arranged to have a single reversed discrimination occurring in a consistent location within each session and across sessions. In this task, we examine the relevance of time, reinforcement, and other factors as the switching cue in the sequential modulation of control in MSR. New analyses also highlight some of the potential mechanisms underlying this serially organized behavior. MSR provides new evidence and we offer some ideas about how cues interact to compete for the control of behavior within and across sessions. We suggest that MSR is an excellent preparation for studying the competition among psychological states and their resolution toward action.

  17. Testing the causality of Hawkes processes with time reversal

    Science.gov (United States)

    Cordi, Marcus; Challet, Damien; Muni Toke, Ioane

    2018-03-01

    We show that univariate and symmetric multivariate Hawkes processes are only weakly causal: the true log-likelihoods of real and reversed event time vectors are almost equal, thus parameter estimation via maximum likelihood only weakly depends on the direction of the arrow of time. In ideal (synthetic) conditions, tests of goodness of parametric fit unambiguously reject backward event times, which implies that inferring kernels from time-symmetric quantities, such as the autocovariance of the event rate, only rarely produce statistically significant fits. Finally, we find that fitting financial data with many-parameter kernels may yield significant fits for both arrows of time for the same event time vector, sometimes favouring the backward time direction. This goes to show that a significant fit of Hawkes processes to real data with flexible kernels does not imply a definite arrow of time unless one tests it.

  18. Time reversal for ultrasonic transcranial surgery and echographic imaging

    Science.gov (United States)

    Tanter, Mickael; Aubry, Jean-Francois; Vignon, Francois; Fink, Mathias

    2005-09-01

    High-intensity focused ultrasound (HIFU) is able to induce non-invasively controlled and selective destruction of tissues by focusing ultrasonic beams within organs, analogous to a magnifying glass that concentrates enough sunlight to burn a hole in paper. The brain is an attractive organ in which to perform ultrasonic tissue ablation, but such an application has been hampered by the strong defocusing effect of the skull bone. Our group has been involved in this topic for several years, providing proofs of concept and proposing technological solutions to this problem. Thanks to a high-power time-reversal mirror, presented here are in vivo thermal lesions induced through the skull of 12 sheep. Thermal lesions were confirmed by T2-weighted magnetic resonance post-treatment images and histological examination. These results provide striking evidence that noninvasive ultrasound brain surgery is feasible. A recent approach for high-resolution brain ultrasonic imaging will also be discussed with a skull aberration correction technique based on twin arrays technology. The correction of transcranial ultrasonic images is implemented on a new generation of time-reversal mirrors relying on a fully programmable transmit and receive beamformer.

  19. Time reversal invariance - a test in free neutron decay

    Energy Technology Data Exchange (ETDEWEB)

    Lising, Laura Jean [Univ. of California, Berkeley, CA (United States)

    1999-01-01

    Time reversal invariance violation plays only a small role in the Standard Model, and the existence of a T-violating effect above the predicted level would be an indication of new physics. A sensitive probe of this symmetry in the weak interaction is the measurement of the T-violating ''D''-correlation in the decay of free neutrons. The triple-correlation Dσn∙pe x pv involves three kinematic variables, the neutron spin, electron momentu, and neutrino (or proton) momentum, and changes sign under time reversal. This experiment detects the decay products of a polarized cold neutron beam with an octagonal array of scintillation and solid-state detectors. Data from first run at NIST's Cold Neutron Research Facility give a D-coefficient of -0.1 ± 1.3(stat.) ± 0.7(syst) x 10-3 This measurement has the greatest bearing on extensions to the Standard model that incorporate leptoquarks, although exotic fermion and lift-right symmetric models also allow a D as large as the present limit.

  20. Transmission mode acoustic time-reversal imaging for nondestructive evaluation

    Science.gov (United States)

    Lehman, Sean K.; Devaney, Anthony J.

    2002-11-01

    In previous ASA meetings and JASA papers, the extended and formalized theory of transmission mode time reversal in which the transceivers are noncoincident was presented. When combined with the subspace concepts of a generalized MUltiple SIgnal Classification (MUSIC) algorithm, this theory is used to form super-resolution images of scatterers buried in a medium. These techniques are now applied to ultrasonic nondestructive evaluation (NDE) of parts, and shallow subsurface seismic imaging. Results are presented of NDE experiments on metal and epoxy blocks using data collected from an adaptive ultrasonic array, that is, a ''time-reversal machine,'' at Lawrence Livermore National Laboratory. Also presented are the results of seismo-acoustic subsurface probing of buried hazardous waste pits at the Idaho National Engineering and Environmental Laboratory. [Work performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.] [Work supported in part by CenSSIS, the Center for Subsurface Sensing and Imaging Systems, under the Engineering Research Centers Program of the NSF (award number EEC-9986821) as well as from Air Force Contracts No. F41624-99-D6002 and No. F49620-99-C0013.

  1. Temperature affects the timing of spawning and migration of North Sea mackerel

    DEFF Research Database (Denmark)

    Jansen, Teunis; Gislason, Henrik

    2011-01-01

    Climate change accentuates the need for knowing how temperature impacts the life history and productivity of economically and ecologically important species of fish. We examine the influence of temperature on the timing of the spawning and migrations of North Sea Mackerel using data from larvae C...

  2. The impact of small irrigation diversion dams on the recent migration rates of steelhead and redband trout (Oncorhynchus mykiss)

    Science.gov (United States)

    Weigel, Dana E.; Connolly, Patrick J.; Powell, Madison S.

    2013-01-01

    Barriers to migration are numerous in stream environments and can occur from anthropogenic activities (such as dams and culverts) or natural processes (such as log jams or dams constructed by beaver (Castor canadensis)). Identification of barriers can be difficult when obstructions are temporary or incomplete providing passage periodically. We examine the effect of several small irrigation diversion dams on the recent migration rates of steelhead (Oncorhynchus mykiss) in three tributaries to the Methow River, Washington. The three basins had different recent migration patterns: Beaver Creek did not have any recent migration between sites, Libby Creek had two-way migration between sites and Gold Creek had downstream migration between sites. Sites with migration were significantly different from sites without migration in distance, number of obstructions, obstruction height to depth ratio and maximum stream gradient. When comparing the sites without migration in Beaver Creek to the sites with migration in Libby and Gold creeks, the number of obstructions was the only significant variable. Multinomial logistic regression identified obstruction height to depth ratio and maximum stream gradient as the best fitting model to predict the level of migration among sites. Small irrigation diversion dams were limiting population interactions in Beaver Creek and collectively blocking steelhead migration into the stream. Variables related to stream resistance (gradient, obstruction number and obstruction height to depth ratio) were better predictors of recent migration rates than distance, and can provide important insight into migration and population demographic processes in lotic species.

  3. Intrauterin Device Migration to the Bladder and Endoscopic Treatment; Case Report

    Directory of Open Access Journals (Sweden)

    Ižsmail Nalbant

    2014-08-01

    Full Text Available An intrauterine device (IUD is a long term, efficient, reversible and common method of contraception. IUD migration into the bladder is a rarely observed complication. Chronic pelvic pain, vaginal discharge, resistant urinary tract infections and bladder irritative voiding symptoms in the presence of IUD migration should be considered. This study aimed to report cases of bladder petrified IUD.

  4. Rapid expansion method (REM) for time‐stepping in reverse time migration (RTM)

    KAUST Repository

    Pestana, Reynam C.; Stoffa, Paul L.

    2009-01-01

    an analytical approximation for the Bessel function where we assume that the time step is sufficiently small. From this derivation we find that if we consider only the first two Chebyshev polynomials terms in the rapid expansion method we can obtain the second

  5. DEPTH-CHARGE static and time-dependent perturbation/sensitivity system for nuclear reactor core analysis. Revision I

    International Nuclear Information System (INIS)

    White, J.R.

    1985-04-01

    This report provides the background theory, user input, and sample problems required for the efficient application of the DEPTH-CHARGE system - a code black for both static and time-dependent perturbation theory and data sensitivity analyses. The DEPTH-CHARGE system is of modular construction and has been implemented within the VENTURE-BURNER computational system at Oak Ridge National Laboratory. The DEPTH module (coupled with VENTURE) solves for the three adjoint functions of Depletion Perturbation Theory and calculates the desired time-dependent derivatives of the response with respect to the nuclide concentrations and nuclear data utilized in the reference model. The CHARGE code is a collection of utility routines for general data manipulation and input preparation and considerably extends the usefulness of the system through the automatic generation of adjoint sources, estimated perturbed responses, and relative data sensitivity coefficients. Combined, the DEPTH-CHARGE system provides, for the first time, a complete generalized first-order perturbation/sensitivity theory capability for both static and time-dependent analyses of realistic multidimensional reactor models. This current documentation incorporates minor revisions to the original DEPTH-CHARGE documentation (ORNL/CSD-78) to reflect some new capabilities within the individual codes

  6. A Baseline-Free Defect Imaging Technique in Plates Using Time Reversal of Lamb Waves

    International Nuclear Information System (INIS)

    Jeong, Hyunjo; Cho, Sungjong; Wei, Wei

    2011-01-01

    We present an analytical investigation for a baseline-free imaging of a defect in plate-like structures using the time-reversal of Lamb waves. We first consider the flexural wave (A 0 mode) propagation in a plate containing a defect, and reception and time reversal process of the output signal at the receiver. The received output signal is then composed of two parts: a directly propagated wave and a scattered wave from the defect. The time reversal of these waves recovers the original input signal, and produces two additional sidebands that contain the time-of-flight information on the defect location. One of the side-band signals is then extracted as a pure defect signal. A defect localization image is then constructed from a beamforming technique based on the time-frequency analysis of the side band signal for each transducer pair in a network of sensors. The simulation results show that the proposed scheme enables the accurate, baseline-free imaging of a defect. (fundamental areas of phenomenology(including applications))

  7. Satellite- versus temperature-derived green wave indices for predicting the timing of spring migration of avian herbivores

    NARCIS (Netherlands)

    Shariati Najafabadi, M.; Najafabadi, M.S.; Darvishzadeh, R.; Skidmore, A.K.; Kölzsch, Andrea; Vrieling, A.; Nolet, Bart A.; Exo, Klaus-Michael; Meratnia, Nirvana; Havinga, Paul J.M.; Stahl, Julia; Toxopeus, A.G.

    2015-01-01

    According to the green wave hypothesis, herbivores follow the flush of spring growth of forage plants during their spring migration to northern breeding grounds. In this study we compared two green wave indices for predicting the timing of the spring migration of avian herbivores: the

  8. Effect of Time and Burial Depth on Breaking Seed dormancy and Germination of Weed Seeds

    Directory of Open Access Journals (Sweden)

    marzie mazhari

    2016-02-01

    Full Text Available Introduction: Weeds limit crop growth, development and yield through competing. Seed bank of weeds in field is one of the sources which can affect weed management and their control methods. Environmental conditions during seed maturation and following dispersal interact to influence the germination phenology of many species. Disturbance plays a key role in the maintenance of habitat for many plant species, particularly referrals, for example, fire ephemerals, desert annuals, and arable weeds. Seed germination and emergence depend on endogenous and exogenous factors. Viable seeds are dormant when all environmental conditions are appropriate for germination but seeds fail to germinate. Thus, dormancy plays an important ecological role in preventing seed germination, being a major contributor to seed persistence of some species in soil. Buried seeds of annual weeds are certainly subjected to different soil moisture conditions during their dormancy release season (winter according to the annual rainfall pattern and burial depth. Shallow buried seeds are exposed to soil moisture fluctuations that could affect their dormancy status. Laboratory studies showed that desiccation and subsequent re-hydration of seeds could stimulate germination and modify seed light requirements. Seeds buried in deeper layers of the soil would not be exposed to such fluctuations in soil moisture, but would be exposed to different soil moisture environments depending on weather and soil characteristics. The effects of interactions between temperature, and soil or seed moisture, on seed dormancy changes have been reported for several species. Therefore, the objectives of this study were to determine the effect of time and burial depth treatments on seed germination and seedling emergence of Aegilops cylindrica, Agropyrom repens, Avena fatua, Bromus dantoniae, Cynodon dactylon, Cyprus rotundus, Setaria viridis, Anthriscus sylvestris, Centurea cyanus. Materials and Methods: In

  9. Robust and Reversible Audio Watermarking by Modifying Statistical Features in Time Domain

    Directory of Open Access Journals (Sweden)

    Shijun Xiang

    2017-01-01

    Full Text Available Robust and reversible watermarking is a potential technique in many sensitive applications, such as lossless audio or medical image systems. This paper presents a novel robust reversible audio watermarking method by modifying the statistic features in time domain in the way that the histogram of these statistical values is shifted for data hiding. Firstly, the original audio is divided into nonoverlapped equal-sized frames. In each frame, the use of three samples as a group generates a prediction error and a statistical feature value is calculated as the sum of all the prediction errors in the frame. The watermark bits are embedded into the frames by shifting the histogram of the statistical features. The watermark is reversible and robust to common signal processing operations. Experimental results have shown that the proposed method not only is reversible but also achieves satisfactory robustness to MP3 compression of 64 kbps and additive Gaussian noise of 35 dB.

  10. Depth resolution and preferential sputtering in depth profiling of sharp interfaces

    International Nuclear Information System (INIS)

    Hofmann, S.; Han, Y.S.; Wang, J.Y.

    2017-01-01

    Highlights: • Interfacial depth resolution from MRI model depends on sputtering rate differences. • Depth resolution critically depends on the dominance of roughness or atomic mixing. • True (depth scale) and apparent (time scale) depth resolutions are different. • Average sputtering rate approximately yields true from apparent depth resolution. • Profiles by SIMS and XPS are different but similar to surface concentrations. - Abstract: The influence of preferential sputtering on depth resolution of sputter depth profiles is studied for different sputtering rates of the two components at an A/B interface. Surface concentration and intensity depth profiles on both the sputtering time scale (as measured) and the depth scale are obtained by calculations with an extended Mixing-Roughness-Information depth (MRI)-model. The results show a clear difference for the two extreme cases (a) preponderant roughness and (b) preponderant atomic mixing. In case (a), the interface width on the time scale (Δt(16–84%)) increases with preferential sputtering if the faster sputtering component is on top of the slower sputtering component, but the true resolution on the depth scale (Δz(16–84%)) stays constant. In case (b), the interface width on the time scale stays constant but the true resolution on the depth scale varies with preferential sputtering. For similar order of magnitude of the atomic mixing and the roughness parameters, a transition state between the two extremes is obtained. While the normalized intensity profile of SIMS represents that of the surface concentration, an additional broadening effect is encountered in XPS or AES by the influence of the mean electron escape depth which may even cause an additional matrix effect at the interface.

  11. Depth resolution and preferential sputtering in depth profiling of sharp interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, S. [Max Planck Institute for Intelligent Systems (formerly MPI for Metals Research), Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Han, Y.S. [Department of Physics, Shantou University, 243 Daxue Road, Shantou, 515063 Guangdong (China); Wang, J.Y., E-mail: wangjy@stu.edu.cn [Department of Physics, Shantou University, 243 Daxue Road, Shantou, 515063 Guangdong (China)

    2017-07-15

    Highlights: • Interfacial depth resolution from MRI model depends on sputtering rate differences. • Depth resolution critically depends on the dominance of roughness or atomic mixing. • True (depth scale) and apparent (time scale) depth resolutions are different. • Average sputtering rate approximately yields true from apparent depth resolution. • Profiles by SIMS and XPS are different but similar to surface concentrations. - Abstract: The influence of preferential sputtering on depth resolution of sputter depth profiles is studied for different sputtering rates of the two components at an A/B interface. Surface concentration and intensity depth profiles on both the sputtering time scale (as measured) and the depth scale are obtained by calculations with an extended Mixing-Roughness-Information depth (MRI)-model. The results show a clear difference for the two extreme cases (a) preponderant roughness and (b) preponderant atomic mixing. In case (a), the interface width on the time scale (Δt(16–84%)) increases with preferential sputtering if the faster sputtering component is on top of the slower sputtering component, but the true resolution on the depth scale (Δz(16–84%)) stays constant. In case (b), the interface width on the time scale stays constant but the true resolution on the depth scale varies with preferential sputtering. For similar order of magnitude of the atomic mixing and the roughness parameters, a transition state between the two extremes is obtained. While the normalized intensity profile of SIMS represents that of the surface concentration, an additional broadening effect is encountered in XPS or AES by the influence of the mean electron escape depth which may even cause an additional matrix effect at the interface.

  12. Development of an ion time-of-flight spectrometer for neutron depth profiling

    Science.gov (United States)

    Cetiner, Mustafa Sacit

    Ion time-of-flight spectrometry techniques are investigated for applicability to neutron depth profiling. Time-of-flight techniques are used extensively in a wide range of scientific and technological applications including energy and mass spectroscopy. Neutron depth profiling is a near-surface analysis technique that gives concentration distribution versus depth for certain technologically important light elements. The technique uses thermal or sub-thermal neutrons to initiate (n, p) or (n, alpha) reactions. Concentration versus depth distribution is obtained by the transformation of the energy spectrum into depth distribution by using stopping force tables of the projectiles in the substrate, and by converting the number of counts into concentration using a standard sample of known dose value. Conventionally, neutron depth profiling measurements are based on charged particle spectrometry, which employs semiconductor detectors such as a surface barrier detector (SBD) and the associated electronics. Measurements with semiconductor detectors are affected by a number of broadening mechanisms, which result from the interactions between the projectile ion and the detector material as well as fluctuations in the signal generation process. These are inherent features of the detection mechanism that involve the semiconductor detectors and cannot be avoided. Ion time-of-flight spectrometry offers highly precise measurement capabilities, particularly for slow particles. For high-energy low-mass particles, measurement resolution tends to degrade with all other parameters fixed. The threshold for more precise ion energy measurements with respect to conventional techniques, such as direct energy measurement by a surface barrier detector, is directly related to the design and operating parameters of the device. Time-of-flight spectrometry involves correlated detection of two signals by a coincidence unit. In ion time-of-flight spectroscopy, the ion generates the primary input

  13. Focused fluorescence excitation with time-reversed ultrasonically encoded light and imaging in thick scattering media

    International Nuclear Information System (INIS)

    Lai, Puxiang; Suzuki, Yuta; Xu, Xiao; Wang, Lihong V

    2013-01-01

    Scattering dominates light propagation in biological tissue, and therefore restricts both resolution and penetration depth in optical imaging within thick tissue. As photons travel into the diffusive regime, typically 1 mm beneath human skin, their trajectories transition from ballistic to diffusive due to the increased number of scattering events, which makes it impossible to focus, much less track, photon paths. Consequently, imaging methods that rely on controlled light illumination are ineffective in deep tissue. This problem has recently been addressed by a novel method capable of dynamically focusing light in thick scattering media via time reversal of ultrasonically encoded (TRUE) diffused light. Here, using photorefractive materials as phase conjugate mirrors, we show a direct visualization and dynamic control of optical focusing with this light delivery method, and demonstrate its application for focused fluorescence excitation and imaging in thick turbid media. These abilities are increasingly critical for understanding the dynamic interactions of light with biological matter and processes at different system levels, as well as their applications for biomedical diagnosis and therapy. (letter)

  14. SOX15 regulates proliferation and migration of endometrial cancer cells.

    Science.gov (United States)

    Rui, Xiaohui; Xu, Yun; Jiang, Xiping; Guo, Caixia; Jiang, Jingting

    2017-10-31

    The study aimed to investigate the effects of Sry-like high mobility group box 15 ( SOX15 ) on proliferation and migration of endometrial cancer (EC) cells. Immunohistochemistry (IHC) was applied to determine the expression of SOX15 in EC tissues and adjacent tissues. We used cell transfection method to construct the HEC-1-A and Ishikawa cell lines with stable overexpression and low expression SOX15 Reverse-transcription quantitative real-time PCR (RT-qPCR) and Western blot were performed to examine expression of SOX15 mRNA and SOX15 protein, respectively. By conducting a series of cell proliferation assay and migration assay, we analyzed the influence of SOX15 overexpression or low expression on EC cell proliferation and migration. The expression of SOX15 mRNA and protein in EC tissues was significantly lower than that in adjacent tissues. After lentivirus-transfecting SOX15 , the expression level of SOX15 mRNA and protein was significantly increased in cells of SOX15 group, and decreased in sh- SOX15 group. Overexpression of SOX15 could suppress cell proliferation, while down-regulation of SOX15 increased cell proliferation. Flow cytometry results indicated that overexpression of SOX15 induced the ratio of cell-cycle arrest in G 1 stage. In addition, Transwell migration assay results showed that SOX15 overexpression significantly inhibited cell migration, and also down-regulation of SOX15 promoted the migration. As a whole, SOX15 could regulate the proliferation and migration of EC cells and up- regulation of SOX15 could be valuable for EC treatment. © 2017 The Author(s).

  15. Female Migration, Local Context and Contraception Use in Urban ...

    African Journals Online (AJOL)

    AJRH Managing Editor

    While residing in a community with major transport problems has a negative effect. .... Despite slight decline of total fertility in urban areas from 5.1 ... travelling costs to reach better quality contraceptive ..... towards a reversal? Migration trends ...

  16. A time reversal transmission approach for multi-user UWB communications

    DEFF Research Database (Denmark)

    Nguyen, Tuan Hung; Kovacs Z., Istvan; Eggers, Patrick

    2005-01-01

    In this paper we propose and evaluate the performance of the time reversal technique in impulse radio UWB communications. The evaluation was based on measured channel impulse responses in the UWB frequency band of 3 to 5 GHz of a 4x1 MISO system with both vertical and horizontal polarization at t...

  17. New results for time reversed symplectic dynamic systems and quadratic functionals

    Directory of Open Access Journals (Sweden)

    Roman Simon Hilscher

    2012-05-01

    Full Text Available In this paper, we examine time scale symplectic (or Hamiltonian systems and the associated quadratic functionals which contain a forward shift in the time variable. Such systems and functionals have a close connection to Jacobi systems for calculus of variations and optimal control problems on time scales. Our results, among which we consider the Reid roundabout theorem, generalize the corresponding classical theory for time reversed discrete symplectic systems, as well as they complete the recently developed theory of time scale symplectic systems.

  18. Two applications of time reversal mirrors: Seismic radio and seismic radar

    KAUST Repository

    Hanafy, Sherif M.; Schuster, Gerard T.

    2011-01-01

    Two seismic applications of time reversal mirrors (TRMs) are introduced and tested with field experiments. The first one is sending, receiving, and decoding coded messages similar to a radio except seismic waves are used. The second one is, similar

  19. Topological Field Theory of Time-Reversal Invariant Insulators

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiao-Liang; Hughes, Taylor; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    We show that the fundamental time reversal invariant (TRI) insulator exists in 4 + 1 dimensions, where the effective field theory is described by the 4 + 1 dimensional Chern-Simons theory and the topological properties of the electronic structure is classified by the second Chern number. These topological properties are the natural generalizations of the time reversal breaking (TRB) quantum Hall insulator in 2 + 1 dimensions. The TRI quantum spin Hall insulator in 2 + 1 dimensions and the topological insulator in 3 + 1 dimension can be obtained as descendants from the fundamental TRI insulator in 4 + 1 dimensions through a dimensional reduction procedure. The effective topological field theory, and the Z{sub 2} topological classification for the TRI insulators in 2+1 and 3+1 dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of novel and measurable phenomena, the most striking of which is the topological magneto-electric effect, where an electric field generates a magnetic field in the same direction, with an universal constant of proportionality quantized in odd multiples of the fine structure constant {alpha} = e{sup 2}/hc. Finally, we present a general classification of all topological insulators in various dimensions, and describe them in terms of a unified topological Chern-Simons field theory in phase space.

  20. The Role of Reversed Equatorial Zonal Transport in Terminating an ENSO Event

    Science.gov (United States)

    Chen, H. C.; Hu, Z. Z.; Huang, B.; Sui, C. H.

    2016-02-01

    In this study, we demonstrate that a sudden reversal of anomalous equatorial zonal current at the peaking ENSO phase triggers the rapid termination of an ENSO event. Throughout an ENSO cycle, the anomalous equatorial zonal current is strongly controlled by the concavity of the anomalous thermocline meridional structure near the equator. During the ENSO developing phase, the anomalous zonal current in the central and eastern Pacific generally enhances the ENSO growth through its zonal SST advection. In the mature phase of ENSO, however, the equatorial thermocline depth anomalies are reflected in the eastern Pacific and slowly propagate westward off the equator in both hemispheres. As a result, the concavity of the thermocline anomalies near the equator is reversed, i.e., the off-equatorial thermocline depth anomalies become higher than that on the equator for El Niño events and lower for La Niño events. This meridional change of thermocline structure reverses zonal transport rapidly in the central-to-eastern equatorial Pacific, which weakens the ENSO SST anomalies by reversed advection. More importantly, the reversed zonal mass transport weakens the existing zonal tilting of equatorial thermocline and suppresses the thermocline feedback. Both processes are concentrated in the eastern equatorial Pacific and can be effective on subseasonal time scales. These current reversal effects are built-in to the ENSO peak phase and independent of the zonal wind effect on thermocline slope. It functions as an oceanic control on ENSO evolution during both El Niño and La Niña events.

  1. Least-squares reverse time migration with radon preconditioning

    KAUST Repository

    Dutta, Gaurav; Agut, Cyril; Giboli, Matteo; Williamson, Paul

    2016-01-01

    domain and back are done through 3D Fourier-based discrete Radon transform operators. The sparseness is enforced by applying weights to the Radon domain components which either vary with the amplitudes of the local dips or are thresholded at given

  2. Experimental effects of immersion time and water temperature on body condition, burying depth and timing of spawning of the tellinid bivalve Macoma balthica

    Science.gov (United States)

    de Goeij, Petra; Honkoop, Pieter J.

    2003-03-01

    The burying depth of many bivalve molluscs on intertidal mudflats varies throughout the year and differs between places. Many factors are known to influence burying depth on a seasonal or spatial scale, with temperature and tidal regime probably being very important. Burying depth, body condition and gonadal development of Macoma balthica were followed throughout winter and spring in an experiment in which water temperature and immersion time were manipulated. Unexpectedly, relative water temperature, in contrast to the prediction, did not generally affect body condition or burying depth. This was probably a consequence of the exceptionally overall low water temperatures during the experimental winter. Differences in temperature did, however, result in different timing of spawning: M. balthica spawned earlier at higher spring temperatures. Longer immersion times led to higher body condition only late in spring, but led to deeper burying throughout almost the whole period. There was no effect of immersion time on the timing of spawning. We conclude that a longer immersion time leads to deeper burying, independent of body condition. We also conclude that burying behaviour of M. balthica is not determined by the moment of spawning.

  3. On the record process of time-reversible spectrally-negative Markov additive processes

    NARCIS (Netherlands)

    J. Ivanovs; M.R.H. Mandjes (Michel)

    2009-01-01

    htmlabstractWe study the record process of a spectrally-negative Markov additive process (MAP). Assuming time-reversibility, a number of key quantities can be given explicitly. It is shown how these key quantities can be used when analyzing the distribution of the all-time maximum attained by MAPs

  4. Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch

    International Nuclear Information System (INIS)

    Hedqvist, A.; Rachlew-Kaellne, E.

    1998-01-01

    Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and Z eff together with a description of the interpretation and the equipment are presented. (author)

  5. Contact mechanics of reverse total shoulder arthroplasty during abduction: the effect of neck-shaft angle, humeral cup depth, and glenosphere diameter.

    Science.gov (United States)

    Langohr, G Daniel G; Willing, Ryan; Medley, John B; Athwal, George S; Johnson, James A

    2016-04-01

    Implant design parameters can be changed during reverse shoulder arthroplasty (RSA) to improve range of motion and stability; however, little is known regarding their impact on articular contact mechanics. The purpose of this finite element study was to investigate RSA contact mechanics during abduction for different neck-shaft angles, glenosphere sizes, and polyethylene cup depths. Finite element RSA models with varying neck-shaft angles (155°, 145°, 135°), sizes (38 mm, 42 mm), and cup depths (deep, normal, shallow) were loaded with 400 N at physiological abduction angles. The contact area and maximum contact stress were computed. The contact patch and the location of maximum contact stress were typically located inferomedially in the polyethylene cup. On average for all abduction angles investigated, reducing the neck-shaft angle reduced the contact area by 29% for 155° to 145° and by 59% for 155° to 135° and increased maximum contact stress by 71% for 155° to 145° and by 286% for 155° to 135°. Increasing the glenosphere size increased the contact area by 12% but only decreased maximum contact stress by 2%. Decreasing the cup depth reduced the contact area by 40% and increased maximum contact stress by 81%, whereas increasing the depth produced the opposite effect (+52% and -36%, respectively). The location of the contact patch and maximum contact stress in this study matches the area of damage seen frequently on clinical retrievals. This finding suggests that damage to the inferior cup due to notching may be potentiated by contact stresses. Increasing the glenosphere diameter improved the joint contact area and did not affect maximum contact stress. However, although reducing the neck-shaft angle and cup depth can improve range of motion, our study shows that this also has some negative effects on RSA contact mechanics, particularly when combined. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc

  6. Austenitic Reversion of Cryo-rolled Ti-Stabilized Austenitic Stainless Steel: High-Resolution EBSD Investigation

    Science.gov (United States)

    Tiamiyu, A. A.; Odeshi, A. G.; Szpunar, J. A.

    2018-02-01

    In this study, AISI 321 austenitic stainless steel (ASS) was cryo-rolled and subsequently annealed at 650 and 800 °C to reverse BCC α'-martensite to FCC γ-austenite. The texture evolution associated with the reversion at the selected temperatures was investigated using high-resolution EBSD. After the reversion, TiC precipitates were observed to be more stable in 650 °C-annealed specimens than those reversed at 800 °C. {110} texture was mainly developed in specimens subjected to both annealing temperatures. However, specimens reversed at 650 °C have stronger texture than those annealed at 800 °C, even at the higher annealing time. The strong intensity of {110} texture component is attributed to the ability of AISI 321 ASS to memorize the crystallographic orientation of the deformed austenite, a phenomenon termed texture memory. The development of weaker texture in 800 °C-annealed specimens is attributed to the residual strain relief in grains, dissolution of grain boundary precipitates, and an increase in atomic migration along the grain boundaries. Based on the observed features of the reversed austenite grains and estimation from an existing model, it is suspected that the austenite reversion at 650 and 800 °C undergone diffusional and martensitic shear reversion, respectively.

  7. Resulting long-term intestinal motility in dogs following construction of a reversed jejunal segment after extensive small bowel resection.

    Science.gov (United States)

    Uchiyama, M; Iwafuchi, M; Ohsawa, Y; Yagi, M; Iinuma, Y; Ohtani, S

    1994-10-01

    To evaluate the long-term function and effective motility of a reversed jejunal segment after extensive small bowel resection, the authors continuously measured postoperative bowel motility during interdigestive and postprandial periods in conscious dogs 6 to 10 months after surgery. The long-term findings were compared with previously reported short-term results measured 2 to 4 weeks after the operation. In the long-term follow-up dogs with a 20-cm reversed jejunal segment constructed after extensive (75% to 80%) small bowel resection, the fasting duodenal migrating myoelectric (or motor) complex (MMC) was often interrupted in the jejunum above the reversed segment, and did not migrate smoothly to the reversed segment or terminal ileum. The MMCs arising from the duodenum predominantly propagated to the ileum through the inherent anatomic continuity of the bowel. In addition, brief small discordant contractions were frequent in the reversed segment and the jejunum, above the proximal anastomosis. These findings are similar to those of the MMC propagation pattern noted 2 to 4 weeks after surgery. However, the postprandial duration without duodenal MMC activity was significantly shorter in the dogs with long-term follow-up than in those with short-term follow-up (both were longer than in control dogs). Marked dilatation of the jejunum and reversed jejunal segment was noted across the proximal anastomosis. These results suggest that the transit time and passage of intestinal contents can be delayed and stagnated for at least 10 months after extensive small bowel resection with a 20-cm reversed jejunal segment.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Effect of irradiation times on the polymerization depth of contemporary fissure sealants with different opacities

    Directory of Open Access Journals (Sweden)

    Boniek Castillo Dutra Borges

    2011-04-01

    Full Text Available The aim of this study was to evaluate the depth of curing of 10 contemporary blue light-activated dental flowable materials at several opacities, influenced by different irradiation times using FT-IR spectroscopy. Fifty-five specimens (n = 5 with a 5-mm diameter and 1-mm thickness of translucent (Opallis Flow T, yellowed (Master Flow A2; Opallis Flow A2; Natural Flow A2; Fluroshield Yellowed, and opaque materials (Master Flow OA2; Natural Flow O; Opallis Flow OA3.5; Opallis Flow OP; Fluroshield White were obtained at six curing times (10s, 20s, 30s, 40s, 50s, and 60s using a high-intensity LED (Coltolux, Coltène/Whaledent. The degree of conversion (DC (% was obtained using the Nexus 470 FTIR Spectrometer (Nicolet Instruments, USA. The FTIR-ATR spectra for uncured and cured samples were analyzed using a ZnSe crystal. The top and bottom surfaces of the cured specimens were analyzed to obtain the depth of curing. Two-way ANOVA was used to analyze the data. The highest curing depth was obtained by Natural Flow OA2, while the lowest was shown by Master Flow OA2. The shortest curing time generated similar depths of cure in comparison with the most extensive for Opallis Flow A2 and Fluroshield Yellowed. Therefore, depth of curing, influenced by the irradiation time, was dependent on the materials. Using the Natural Flow OA2 opaque sealant and the 10-s curing time for Opallis Flow A2 and Fluroshield Yellowed may represent alternative approaches to sealing tooth fissures.

  9. Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing

    DEFF Research Database (Denmark)

    Horvath, R.; Pedersen, H.C.; Skivesen, N.

    2005-01-01

    The effect of the attachment and spreading of living cells on the modes of a grating coupled reverse symmetry waveguide sensor is investigated in real time. The reverse symmetry design has an increased probing depth into the sample making it well suited for the monitoring of cell morphology....... As a result, significant changes in the incoupling peak height and peak shape were observed during cell attachment and spreading. It is suggested that the area under the incoupling peaks reflects the initial cell attachment process, while the mean peak position is mostly governed by the spreading of the cells...

  10. Migration Decision-Making among Mexican Youth: Individual, Family, and Community Influences

    Science.gov (United States)

    Tucker, Christine M.; Torres-Pereda, Pilar; Minnis, Alexandra M.; Bautista-Arredondo, Sergio A.

    2013-01-01

    We explored migration decisions using in-depth, semistructured interviews with male and female youth ages 14 to 24 (n = 47) from two Mexican communities, one with high and one with low U.S. migration density. Half were return migrants and half were nonmigrants with relatives in the United States. Migrant and nonmigrant youth expressed different…

  11. Satellite tracking of the migration of Whooper Swans Cygnus cygnus wintering in Japan

    Science.gov (United States)

    Shimada, Tetsuo; Yamaguchi, Noriyuki M.; Hijikata, N.; Hiraoka, Emiko N.; Hupp, Jerry; Flint, Paul L.; Tokita, Ken-ichi; Fujita, Go; Uchida, Kiyoshi; Sato, F.; Kurechi, Masayuki; Pearce, John M.; Ramey, Andy M.; Higuchi, Hiroyoshi

    2014-01-01

    We satellite-tracked Whooper Swans Cygnus cygnus wintering in northern Japan to document their migration routes and timing, and to identify breeding areas. From 47 swans that we marked at Lake Izunuma-Uchinuma, Miyagi Prefecture, northeast Honshu, and at Lake Kussharo, east Hokkaido, we observed 57 spring and 33 autumn migrations from 2009-2012. In spring, swans migrated north along Sakhalin Island from eastern Hokkaido using stopovers in Sakhalin, at the mouth of the Amur River and in northern coastal areas of the Sea of Okhotsk. They ultimately reached molting/breedmg areas along the Indigirka River and the lower Kolyma River in northern Russia. In autumn, the swans basically reversed the spring migration routes. We identified northern Honshu, eastern Hokkaido, coastal areas in Sakhalin, the lower Amur River and northern coastal areas of the Sea of Okhotsk as the most frequent stopover sites, and the middle reaches of the Indigirka and the lower Kolyma River as presumed breeding sites. Our results are helpful in understanding the distribution of the breeding and stopover sites of Whooper Swans wintering in Japan and in identifying their major migration habitats. Our findings contribute to understanding the potential transmission process of avian influenza viruses potentially carried by swans, and provide information necessary to conserve Whooper Swans in East Asia.

  12. Weather conditions associated with autumn migration by mule deer in Wyoming

    Directory of Open Access Journals (Sweden)

    Chadwick D. Rittenhouse

    2015-06-01

    Full Text Available Maintaining ecological integrity necessitates a proactive approach of identifying and acquiring lands to conserve unfragmented landscapes, as well as evaluating existing mitigation strategies to increase connectivity in fragmented landscapes. The increased use of highway underpasses and overpasses to restore connectivity for wildlife species offers clear conservation benefits, yet also presents a unique opportunity to understand how weather conditions may impact movement of wildlife species. We used remote camera observations (19,480 from an existing wildlife highway underpass in Wyoming and daily meteorological observations to quantify weather conditions associated with autumn migration of mule deer in 2009 and 2010. We identified minimal daily temperature and snow depth as proximate cues associated with mule deer migration to winter range. These weather cues were consistent across does and bucks, but differed slightly by year. Additionally, extreme early season snow depth or cold temperature events appear to be associated with onset of migration. This information will assist wildlife managers and transportation officials as they plan future projects to maintain and enhance migration routes for mule deer.

  13. Radionuclide-migration model for buried waste at the Savannah River Plant

    International Nuclear Information System (INIS)

    King, C.M.; Root, R.W. Jr.

    1982-01-01

    Solid waste has been buried at the Savannah River Plant burial ground since 1953. The solid waste is contaminated with alpha-emitting transuranium (TRU) nuclides, with beta-gamma-emitting activation and fission products, and with tritium. To provide guidance for the current use and eventual permanent retirement of the burial site from active service, a radionuclide environmental transport model has been used to project the potential influence on man if the burial site were occupied after decommissioning. The model used to simulate nuclide migration includes the various hydrological, animal, vegetative, atmospheric, and terrestrial pathways in estimating dose to man as a function of time. Specific scenarios include a four-person home farm on the 195-acre burial ground. Key input to the model includes site-specific nuclide migration rates through soil, nuclide distribution coefficients, and site topography. Coupled with literature data on plant and animal concentration factors, transfer coefficients reflecting migration routes are input to a set of linear differential equations for subsequent matrix solution. Output from the model is the nuclide-specific decayed curie intake by man. To discern principal migration routes, model-compartment inventories with time can also be displayed. Dose projections subsequently account for organ concentrations in man for the nuclide of interest. Radionuclide migration has been examined in depth with the dose-to-man model. Movement by vegetative pathways is the primary route for potential dose to man for short-lived isotopes. Hydrological routes provide a secondary scheme for long-lived nuclides. Details of model methodology are reviewed

  14. Rattleback dynamics and its reversal time of rotation

    Science.gov (United States)

    Kondo, Yoichiro; Nakanishi, Hiizu

    2017-06-01

    A rattleback is a rigid, semielliptic toy which exhibits unintuitive behavior; when it is spun in one direction, it soon begins pitching and stops spinning, then it starts to spin in the opposite direction, but in the other direction, it seems to spin just steadily. This puzzling behavior results from the slight misalignment between the principal axes for the inertia and those for the curvature; the misalignment couples the spinning with the pitching and the rolling oscillations. It has been shown that under the no-slip condition and without dissipation the spin can reverse in both directions, and Garcia and Hubbard obtained the formula for the time required for the spin reversal tr [Proc. R. Soc. Lond. A 418, 165 (1988), 10.1098/rspa.1988.0078]. In this work, we reformulate the rattleback dynamics in a physically transparent way and reduce it to a three-variable dynamics for spinning, pitching, and rolling. We obtain an expression of the Garcia-Hubbard formula for tr by a simple product of four factors: (1) the misalignment angle, (2) the difference in the inverses of inertia moment for the two oscillations, (3) that in the radii for the two principal curvatures, and (4) the squared frequency of the oscillation. We perform extensive numerical simulations to examine validity and limitation of the formula, and find that (1) the Garcia-Hubbard formula is good for both spinning directions in the small spin and small oscillation regime, but (2) in the fast spin regime especially for the steady direction, the rattleback may not reverse and shows a rich variety of dynamics including steady spinning, spin wobbling, and chaotic behavior reminiscent of chaos in a dissipative system.

  15. Differential geometric invariants for time-reversal symmetric Bloch-bundles: The “Real” case

    International Nuclear Information System (INIS)

    De Nittis, Giuseppe; Gomi, Kiyonori

    2016-01-01

    Topological quantum systems subjected to an even (resp. odd) time-reversal symmetry can be classified by looking at the related “Real” (resp. “Quaternionic”) Bloch-bundles. If from one side the topological classification of these time-reversal vector bundle theories has been completely described in De Nittis and Gomi [J. Geom. Phys. 86, 303–338 (2014)] for the “Real” case and in De Nittis and Gomi [Commun. Math. Phys. 339, 1–55 (2015)] for the “Quaternionic” case, from the other side it seems that a classification in terms of differential geometric invariants is still missing in the literature. With this article and its companion [G. De Nittis and K. Gomi (unpublished)] we want to cover this gap. More precisely, we extend in an equivariant way the theory of connections on principal bundles and vector bundles endowed with a time-reversal symmetry. In the “Real” case we generalize the Chern-Weil theory and we show that the assignment of a “Real” connection, along with the related differential Chern class and its holonomy, suffices for the classification of “Real” vector bundles in low dimensions.

  16. Majorana bound states in two-channel time-reversal-symmetric nanowire systems

    DEFF Research Database (Denmark)

    Gaidamauskas, Erikas; Paaske, Jens; Flensberg, Karsten

    2014-01-01

    We consider time-reversal-symmetric two-channel semiconducting quantum wires proximity coupled to a conventional s-wave superconductor. We analyze the requirements for a non-trivial topological phase, and find that necessary conditions are 1) the determinant of the pairing matrix in channel space...

  17. Deformation effect and five-fold correlation time reversal test in neutron resonances using aligned 165Ho

    International Nuclear Information System (INIS)

    Huffman, P.R.; Roberson, N.R.; Gould, C.R.; Haase, D.G.

    1993-01-01

    In 1988, Bunakov proposed a test of parity (P) even time reversal (T) violation in the neighborhood of two interfering p-wave resonances of the same spin. A similar enhancement exists if a d-wave and s-wave resonance interfere. Until now, however, no suitable resonances have been located in nuclei which can be aligned, and the only tests of time reversal violation in neutron transmission have been carried out with MeV-energy neutrons. The authors estimate the deformation effect cross sections for neutron resonances in aligned 165 Ho, and estimate the sensitivity of a five-fold correlation time reversal test carried out on a resonance that exhibits a deformation effect

  18. Regulating the migration of smooth muscle cells by a vertically distributed poly(2-hydroxyethyl methacrylate) gradient on polymer brushes covalently immobilized with RGD peptides.

    Science.gov (United States)

    Wu, Sai; Du, Wang; Duan, Yiyuan; Zhang, Deteng; Liu, Yixiao; Wu, Bingbing; Zou, Xiaohui; Ouyang, Hongwei; Gao, Changyou

    2018-05-30

    biological cues perpendicular to the substrate, which is the usual case for the biological signaling molecules to locate in ECM in vivo, has been scarcely studied, and has not been used to guide the directional migration of cells. In this study, we prepare a depth gradient of RGD peptides along the polymer chains, which is used to guide the directional migration of SMCs after a second hydrophilic bock is prepared in a gradient manner. For the first time the directional migration of SMCs is achieved under the guidance of a depth gradient of RGD ligands. The mechanisms of different cell migration abilities are further discussed based on the results of cell adhesion, cell adhesion force, cytoskeleton alignment and expression of relative proteins and genes. This work paves a new strategy by fabricating a gradient polymer brushes with immobilized bioactive molecules to dominate the directional cell migration, and elucidates the mechanisms underlining the biased migration along RGD depth localization gradients, shedding a light for the design of novel biomaterials to control and guide cell migration and invasion. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via geranylgeranylation and RhoA activation

    International Nuclear Information System (INIS)

    Al-Haidari, Amr A.; Syk, Ingvar; Thorlacius, Henrik

    2014-01-01

    Highlights: • Simvastatin blocked CCL17-induced and CCR4-dependent RhoA activation in HT29 cells. • CCL17/CCR4-mediated migration of colon cancer cells was antagonised by simvastatin. • Cell migration recovered by adding Mevalonate and geranylgeranyl pyrophosphate. • Targeting HMG-CoA reductase might be useful to inhibit colon cancer metastasis. - Abstract: Background: Simvastatin is widely used to lower cholesterol levels in patients with cardiovascular diseases, although accumulating evidence suggests that statins, such as simvastatin, also exert numerous anti-tumoral effects. Aim: The aim of this study was to examine the effect of simvastatin on colon cancer cell migration. Methods: Migration assays were performed to evaluate CCL17-induced colon cancer cell (HT-29) chemotaxis. In vitro tumor growth and apoptosis were assessed using a proliferation assay and annexin V assay, respectively. Active RhoA protein levels in CCL17-stimulated colon cancer cells were quantified using a G-LISA assay. Results: We found that simvastatin dose-dependently decreased CCL17-induced colon cancer cell migration. Simvastatin had no effect on colon cancer cell proliferation or apoptosis. Inhibition of beta chemokine receptor 4, CCR4, reduced CCL17-evoked activation of RhoA in colon cancer cells. Moreover, administration of mevalonate reversed the inhibitory effect of simvastatin on CCL17-induced colon cancer cell migration. Interestingly, co-incubation with geranylgeranyl pyrophosphate (GGPP) antagonized the inhibitory impact of simvastatin on colon cancer cell migration triggered by CCL17. Moreover, we observed that simvastatin decreased CCL17-induced activation of RhoA in colon cancer cells. Administration of mevalonate and GGPP reversed the inhibitory effect of simvastatin on CCL17-provoked RhoA activation in colon cancer cells. Conclusions: Taken together, our findings show for the first time that HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via

  20. Time reversal odd fragmentation functions in semi-inclusive deep inelastic lepton-hadron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mulders, P.J. [National Inst. for Nuclear Physics and High Energy Physics, Amsterdam (Netherlands); Levelt, J. [Univ. of Erlangen-Nuernberg (Germany)

    1994-04-01

    In semi-inclusive scattering of polarized leptons from unpolarized hadrons, one can measure a time reversal odd structure function. It shows up as a sin({phi}) asymmetry of the produced hadrons. This asymmetry can be expressed as the product of a twist-three {open_quotes}hadron {r_arrow} quark{close_quotes} profile function and a time reversal odd twist-two {open_quotes}quark {r_arrow} hadron{close_quotes} fragmentation function. This fragmentation function can only be measured for nonzero transverse momenta of the produced hadron. Its appearance is a consequence of final state interactions between the produced hadron and the rest of the final state.

  1. Health services for reproductive tract infections among female migrant workers in industrial zones in Ha Noi, Viet Nam: an in-depth assessment

    Directory of Open Access Journals (Sweden)

    Kim Le

    2012-02-01

    Full Text Available Abstract Background Rural-to-urban migration involves a high proportion of females because job opportunities for female migrants have increased in urban industrial areas. Those who migrate may be healthier than those staying in the village and they may benefit from better health care services at destination, but the 'healthy' effect can be reversed at destination due to migration-related health risk factors. The study aimed to explore the need for health care services for reproductive tract infections (RTIs among female migrants working in the Sai Dong industrial zone as well as their services utilization. Methods The cross sectional study employed a mixed method approach. A cohort of 300 female migrants was interviewed to collect quantitative data. Two focus groups and 20 in-depth interviews were conducted to collect qualitative data. We have used frequency and cross-tabulation techniques to analyze the quantitative data and the qualitative data was used to triangulate and to provide more in-depth information. Results The needs for health care services for RTI were high as 25% of participants had RTI syndromes. Only 21.6% of female migrants having RTI syndromes ever seek helps for health care services. Barriers preventing migrants to access services were traditional values, long working hours, lack of information, and high cost of services. Employers had limited interests in reproductive health of female migrants, and there was ineffective collaboration between the local health system and enterprises. These barriers were partly caused by lack of health promotion programs suitable for migrants. Most respondents needed more information on RTIs and preferred to receive these from their employers since they commonly work shifts - and spend most of their day time at work. Conclusion While RTIs are a common health problem among female migrant workers in industrial zones, female migrants had many obstacles in accessing RTI care services. The findings

  2. Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch

    Science.gov (United States)

    Hedqvist, Anders; Rachlew-Källne, Elisabeth

    1998-09-01

    Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and 0741-3335/40/9/004/img1 together with a description of the interpretation and the equipment are presented.

  3. Evaluation of Depth of Field for depth perception in DVR

    KAUST Repository

    Grosset, A.V.Pascal; Schott, Mathias; Bonneau, Georges-Pierre; Hansen, Charles D.

    2013-01-01

    In this paper we present a user study on the use of Depth of Field for depth perception in Direct Volume Rendering. Direct Volume Rendering with Phong shading and perspective projection is used as the baseline. Depth of Field is then added to see its impact on the correct perception of ordinal depth. Accuracy and response time are used as the metrics to evaluate the usefulness of Depth of Field. The onsite user study has two parts: static and dynamic. Eye tracking is used to monitor the gaze of the subjects. From our results we see that though Depth of Field does not act as a proper depth cue in all conditions, it can be used to reinforce the perception of which feature is in front of the other. The best results (high accuracy & fast response time) for correct perception of ordinal depth occurs when the front feature (out of the two features users were to choose from) is in focus and perspective projection is used. © 2013 IEEE.

  4. Evaluation of Depth of Field for depth perception in DVR

    KAUST Repository

    Grosset, A.V.Pascal

    2013-02-01

    In this paper we present a user study on the use of Depth of Field for depth perception in Direct Volume Rendering. Direct Volume Rendering with Phong shading and perspective projection is used as the baseline. Depth of Field is then added to see its impact on the correct perception of ordinal depth. Accuracy and response time are used as the metrics to evaluate the usefulness of Depth of Field. The onsite user study has two parts: static and dynamic. Eye tracking is used to monitor the gaze of the subjects. From our results we see that though Depth of Field does not act as a proper depth cue in all conditions, it can be used to reinforce the perception of which feature is in front of the other. The best results (high accuracy & fast response time) for correct perception of ordinal depth occurs when the front feature (out of the two features users were to choose from) is in focus and perspective projection is used. © 2013 IEEE.

  5. Off-Line High-pH Reversed-Phase Fractionation for In-Depth Phosphoproteomics

    DEFF Research Database (Denmark)

    Batth, Tanveer S; Francavilla, Chiara; Olsen, Jesper V

    2014-01-01

    thousands of phosphorylation sites. However, in-depth phosphoproteomics often require off-line enrichment and fractionation techniques. In this study, we provide a detailed analysis of the physicochemical characteristics of phosphopeptides, which have been fractionated by off-line high-pH chromatography (Hp...... phosphorylated peptides over that with SCX. Further optimizations in the pooling and concatenation strategy increased the total number of multiphosphorylated peptides detected after HpH fractionation. In conclusion, we provide a basic framework and resource for performing in-depth phosphoproteome studies...

  6. Using Opaque Image Blur for Real-Time Depth-of-Field Rendering and Image-Based Motion Blur

    DEFF Research Database (Denmark)

    Kraus, Martin

    2013-01-01

    While depth of field is an important cinematographic means, its use in real-time computer graphics is still limited by the computational costs that are necessary to achieve a sufficient image quality. Specifically, color bleeding artifacts between objects at different depths are most effectively...... that the opaque image blur can also be used to add motion blur effects to images in real time....

  7. Reverse Algols

    Science.gov (United States)

    Leung, K. C.

    1989-01-01

    Reverse Algols, binary systems with a semidetached configuration in which the more massive component is in contact with the critical equipotential surface, are examined. Observational evidence for reverse Algols is presented and the parameters of seven reverse Algols are listed. The evolution of Algols and reverse Algols is discussed. It is suggested that, because reverse Algols represent the premass-reversal semidetached phase of close binary evolution, the evolutionary time scale between regular and reverse Algols is the ratio of the number of confirmed systems of these two Algol types.

  8. Soros’ Migration Plan – A Myth or Reality?

    Directory of Open Access Journals (Sweden)

    Boris Divinský

    2017-12-01

    Full Text Available The author of this contribution attempts to objectively describe and assess the so-called Soros Migration Plan. It is a rather imprecise concept, mostly used by the media and politicians, attributed to a set of statements, publicised by American investor George Soros. His opinions were released as a reaction to the refugee (migration crisis in Europe culminating in 2015 – 2016, but present until now. Since their publication, Soros’ views attracted the attention of policymakers, scholars, non-govern- mental organisations and, especially, the media which labelled them as his migration plan. However, only a few persons studied these theses in more depth. Not only for this reason, the plan is interpreted very differently as either a strategy to destroy the original European culture, a remedy for the entire migration crisis, a well-intentioned, but amateurish solution out of the persisting problems, or its existence is totally denied. What are the facts about Soros’ Migration Plan?

  9. Climate change and timing of avian breeding and migration: evolutionary versus plastic changes

    NARCIS (Netherlands)

    Charmantier, A.; Gienapp, P.

    2014-01-01

    There are multiple observations around the globe showing that in many avian species, both the timing of migration and breeding have advanced, due to warmer springs. Here, we review the literature to disentangle the actions of evolutionary changes in response to selection induced by climate change

  10. Time reversal mirror and perfect inverse filter in a microscopic model for sound propagation

    International Nuclear Information System (INIS)

    Calvo, Hernan L.; Danieli, Ernesto P.; Pastawski, Horacio M.

    2007-01-01

    Time reversal of quantum dynamics can be achieved by a global change of the Hamiltonian sign (a hasty Loschmidt daemon), as in the Loschmidt Echo experiments in NMR, or by a local but persistent procedure (a stubborn daemon) as in the time reversal mirror (TRM) used in ultrasound acoustics. While the first is limited by chaos and disorder, the last procedure seems to benefit from it. As a first step to quantify such stability we develop a procedure, the perfect inverse filter (PIF), that accounts for memory effects, and we apply it to a system of coupled oscillators. In order to ensure a numerical many-body dynamics intrinsically reversible, we develop an algorithm, the pair partitioning, based on the Trotter strategy used for quantum dynamics. We analyze situations where the PIF gives substantial improvements over the TRM

  11. Precise discussion of time-reversal asymmetries in B-meson decays

    International Nuclear Information System (INIS)

    Morozumi, Takuya; Okane, Hideaki; Umeeda, Hiroyuki

    2015-01-01

    BaBar collaboration announced that they observed time reversal (T) asymmetry through B meson system. In the experiment, time dependencies of two distinctive processes, B_−→ (B"0)-bar and (B"0)-bar →B_− (− expresses CP value) are compared with each other. In our study, we examine event number difference of these two processes. In contrast to the BaBar asymmetry, the asymmetry of events number includes the overall normalization difference for rates. Time dependence of the asymmetry is more general and it includes terms absent in one used by BaBar collaboration. Both of the BaBar asymmetry and ours are naively thought to be T-odd since two processes compared are related with flipping time direction. We investigate the time reversal transformation property of our asymmetry. Using our notation, one can see that the asymmetry is not precisely a T-odd quantity, taking into account indirect CP and CPT violation of K meson systems. The effect of ϵ_K is extracted and gives rise to O(10"−"3) contribution. The introduced parameters are invariant under rephasing of quarks so that the coefficients of our asymmetry are expressed as phase convention independent quantities. Some combinations of the asymmetry enable us to extract parameters for wrong sign decays of B_d meson, CPT violation, etc. We also study the reason why the T-even terms are allowed to contribute to the asymmetry, and find that several conditions are needed for the asymmetry to be a T-odd quantity.

  12. Reverse waffle cone technique in management of stent dislodgement into intracranial aneurysms.

    Science.gov (United States)

    Luo, Chao-Bao; Lai, Yen-Jun; Teng, Michael Mu-Huo; Chang, Feng-Chi; Lin, Chung-Jung; Guo, Wan-Yuo

    2013-09-01

    Stent-assisted coil embolization (SACE) is a common method to manage intracranial wide-neck aneurysm. Using this technique, a stent must be successfully deployed into the parent artery to cross the aneurysm neck. We describe the reverse waffle cone technique in management of intra-procedural stent dislodgement during SACE of internal carotid artery (ICA) wide-neck aneurysms. Two patients with unruptured wide-neck ICA aneurysms underwent SACE. Intra-procedural forward stent migration occurred during catheterization with proximal stent dislodgement and migration into the aneurysm sac. Navigation of a second stent to bridge the aneurysm neck failed in one patient because the second stent was impeded by the dislodged stent. Using the reverse waffle cone technique, a microcatheter was navigated into the aneurysm sacs. Coils were safely detached into each aneurysm sac without any device assistance. The two wide-neck aneurysms were successfully treated with preservation of flow to the internal carotid arteries. The complication of intra-procedural distal stent migration and dislodgement, with proximal stent prolapse into an aneurysm sac, may not result in a failure to coil the aneurysm. The reverse waffle cone technique provides an effective treatment in the management of this complication. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Intravesical Migration of a Failed and Forgotten Intrauterine ...

    African Journals Online (AJOL)

    Intrauterine contraceptive device (IUCD) is a commonly utilized reversible contraceptive technique especially in the developing world. Though effective, it is not immune to complications. Migration of the device is a rare but serious complication which may be symptomatic or asymptomatic. We report a case of a 45yr old ...

  14. Migration of radiostrontium in Spanish soils

    International Nuclear Information System (INIS)

    Olondo, C.; Herranz, M.; Idoeta, R.; Legarda, F.

    2012-01-01

    In this paper, we have studied the strontium migration occurs in the main Spanish soils and has obtained a tool that is able to reproduce. This would have established the depth distribution profiles of the activity of that isotope presents the soil, thereby obtaining a graphical representation of the current radiological situation of the ground.

  15. Migration of 137Cs and 90Sr in undisturbed soil profiles under controlled and close-to-real conditions

    International Nuclear Information System (INIS)

    Forsberg, S.; Rosen, K.; Fernandez, V.; Juhan, H.

    2000-01-01

    Migration of 137 Cs and 90 Sr in undisturbed soil was studied in large lysimeters three and four years after contamination, as part of a larger European project studying radionuclide soil-plant interactions. The lysimeters were installed in greenhouses with climate control and contaminated with radionuclides in an aerosol mixture, simulating fallout from a nuclear accident. The soil types studied were loam, silt loam, sandy loam and loamy sand. The soils were sampled to 30-40 cm depth in 1997 and 1998. The total deposition of 137 Cs ranged from 24 to 45 MBq/m 2 , and of 90 Sr from 23 to 52 MBq/m 2 . It was shown that migration of 137 Cs was fastest in sandy loam, and of 90 Sr fastest in sandy loam and loam. The slowest migration of both nuclides was found in loamy sand. Retention within the upper 5 cm was 60% for both 137 Cs and 90 Sr in sandy loam, while in loamy sand it was 97 and 96%, respectively. In 1998, migration rates, calculated as radionuclide weighted median depth (migration centre) divided by time since deposition were 1.1 cm/year for both 137 Cs and 90 Sr in sandy loam, 0.8 and 1.0 cm/year, respectively, in loam, 0.6 and 0.8 cm/year in silt loam, and 0.4 and 0.6 cm/year for 137 Cs and 90 Sr, respectively, in loamy sand. A distinction is made between short-term migration, caused by events soon after deposition and less affected by soil type, and long-term migration, more affected by e.g. soil texture. Three to four years after deposition, effects of short-term migration is still dominant in the studied soils

  16. Imaging near-surface heterogeneities by natural migration of backscattered surface waves

    KAUST Repository

    AlTheyab, Abdullah

    2016-02-01

    We present a migration method that does not require a velocity model to migrate backscattered surface waves to their projected locations on the surface. This migration method, denoted as natural migration, uses recorded Green\\'s functions along the surface instead of simulated Green\\'s functions. The key assumptions are that the scattering bodies are within the depth interrogated by the surface waves, and the Green\\'s functions are recorded with dense receiver sampling along the free surface. This natural migration takes into account all orders of multiples, mode conversions and non-linear effects of surface waves in the data. The natural imaging formulae are derived for both active source and ambient-noise data, and computer simulations show that natural migration can effectively image near-surface heterogeneities with typical ambient-noise sources and geophone distributions.

  17. Dispersal time for ancient human migrations: Americas and Europe colonization

    Science.gov (United States)

    Flores, J. C.

    2007-07-01

    I apply the recently proposed intermittence strategy to investigate the ancient human migrations in the world. That is, the Americas colonization (Bering-bridge and Pacific-coast theories) and Neanderthal replacement in Europe around 45000 years before the present. Using a mathematical equation related to diffusion and ballistic motion, I calculate the colonization time in all these cases in good agreement with archeological data (including Neolithic transition in Europe). Moreover, to support these calculations, I obtain analytically the effective speed of colonization in Europe veff=0.62 [km/yr] and related to the Aurignacian culture propagation.

  18. Polar Kerr effect studies of time reversal symmetry breaking states in heavy fermion superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schemm, E.R., E-mail: eschemm@alumni.stanford.edu [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Levenson-Falk, E.M. [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Department of Physics, Stanford University, Stanford, CA 94305 (United States); Kapitulnik, A. [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Department of Physics, Stanford University, Stanford, CA 94305 (United States); Department of Applied Physics, Stanford University, Stanford, CA 94305 (United States); Stanford Institute of Energy and Materials Science, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2017-04-15

    Highlights: • Polar Kerr effect (PKE) probes broken time-reversal symmetry (TRS) in superconductors. • Absence of PKE below Tc in CeCoIn{sub 5} is consistent with dx2-y2 order parameter symmetry. • PKE in the B phase of the multiphase superconductor UPt3 agrees with an E2u model. • Data on URu2Si2 show broken TRS and additional structure in the superconducting state. - Abstract: The connection between chiral superconductivity and topological order has emerged as an active direction in research as more instances of both have been identified in condensed matter systems. With the notable exception of {sup 3}He-B, all of the known or suspected chiral – that is to say time-reversal symmetry-breaking (TRSB) – superfluids arise in heavy fermion superconductors, although the vast majority of heavy fermion superconductors preserve time-reversal symmetry. Here we review recent experimental efforts to identify TRSB states in heavy fermion systems via measurement of polar Kerr effect, which is a direct consequence of TRSB.

  19. "International Migration and Gender Discrimination among Children Left Behind"

    Science.gov (United States)

    Antman, Francisca M

    2011-05-01

    This paper considers how international migration of the head of household affects the allocation of resources toward boys relative to girls within households remaining in the home country. I address the endogeneity of migration with a differences-in-differences style regression model that compares those households in which migrants have already returned home with those in which migrants are still away. The evidence suggests that while the head of household is away a greater fraction of resources are spent on girls relative to boys, but upon his return, this pattern is reversed.

  20. Time reversal in photoacoustic tomography and levitation in a cavity

    International Nuclear Information System (INIS)

    Palamodov, V P

    2014-01-01

    A class of photoacoustic acquisition geometries in R n is considered such that the spherical mean transform admits an exact filtered back projection reconstruction formula. The reconstruction is interpreted as a time reversion mirror that reproduces exactly an arbitrary source distribution in the cavity. A series of examples of non-uniqueness of the inverse potential problem is constructed based on the same geometrical technique. (paper)

  1. Effective Lagrangians and parity-conserving time-reversal violation at low energies

    International Nuclear Information System (INIS)

    Engel, J.; Frampton, P.H.; Springer, R.P.

    1996-01-01

    Using effective Lagrangians, we argue that any time-reversal-violating but parity-conserving effects are too small to be observed in flavor-conserving nuclear processes without dramatic improvement in experimental accuracy. In the process we discuss other arguments that have appeared in the literature. copyright 1996 The American Physical Society

  2. Mechanisms and velocities of anthropogenic Pb migration in Mediterranean soils

    International Nuclear Information System (INIS)

    Erel, Y.

    1998-01-01

    The isotopic composition of Pb measured in soil samples was used to determine rates and mechanisms of anthropogenic Pb migration in the soil. Petrol-Pb found in soluble halogenated aerosols migrates into the soil and is retained in the soil by the stationary soil particles. Lead infiltration velocity is approximately 5 x 10 -1 cm/year, and its retardation factor is estimated to be on the order of 1 x 10 3 . The infiltration of Pb into the soil is best described by the advection-dispersion equation under the assumption that the time scale of the longitudinal dispersion is much longer than the time scale of advection. Therefore, the contribution of dispersion to the solution of the advection-dispersion equation is negligible. As a result, the soil profile of petrol-Pb resembles the time-dependent input function of petrol-Pb. The estimated petrol-Pb penetration velocity and the isotopic composition profile of Pb in off-road soil are used for the computation of the fraction of anthropogenic Pb in this soil. It is calculated that the fraction of anthropogenic Pb in the acid-leached soil samples and in the soil residue of this soil profile drops from 60 and 22% near the surface to 6 and 0% at a depth of 33 cm, respectively. The downward migration velocity of Pb in soils of the studied area, which are typically 50 to 100 cm deep, implies a residence time of Pb in the soil of 100 to 200 years

  3. Development and Applications of Time of Flight Neutron Depth Profiling

    International Nuclear Information System (INIS)

    Cady, Bingham; Unlu, Kenan

    2005-01-01

    The depth profiles of intentional or intrinsic constituents of a sample provide valuable information for the characterization of materials. For example, the subtle differences in spatial distribution and composition of many chemical species in the near surface region and across interfacial boundaries can significantly alter the electronic and optical properties of materials. A number of analytical techniques for depth profiling have been developed during the last two decades. neutron Depth Profiling (NDP) is one of the leading analytical techniques. The NDP is a nondestructive near surface technique that utilizes thermal/cold neutron beam to measure the concentration of specific light elements versus their depth in materials. The depth is obtained from the energy loss of protons, alphas or recoil atoms in substrate materials. Since the charged particle energy determination using surface barrier detector is used for NDP, the depth resolution is highly dependent on the detectors an d detection instruments. The depth resolutions of a few tens of nm are achieved with available NDP facilities in the world. However, the performance of NDP needs to be improved in order to obtain a few A depth resolutions

  4. Migration Decision-Making among Mexican Youth: Individual, Family, and Community Influences.

    Science.gov (United States)

    Tucker, Christine M; Torres-Pereda, Pilar; Minnis, Alexandra M; Bautista-Arredondo, Sergio A

    2013-05-07

    We explored migration decisions using in-depth, semi-structured interviews with male and female youth ages 14 to 24 (n=47) from two Mexican communities, one with high and one with low U.S. migration density. Half were return migrants and half were non-migrants with relatives in the U.S. Migrant and non-migrant youth expressed different preferences, especially in terms of education and their ability to wait for financial gain. Reasons for migration were mostly similar across the two communities; however, the perceived risk of the migration journey was higher in the low density migration community while perceived opportunities in Mexico were higher in the high density migration community. Reasons for return were related to youths' initial social and economic motivations for migration. A greater understanding of factors influencing migration decisions may provide insight into the vulnerability of immigrant youth along the journey, their adaptation process in the U.S., and their reintegration in Mexico.

  5. Liraglutide attenuates the migration of retinal pericytes induced by advanced glycation end products.

    Science.gov (United States)

    Lin, Wen-Jian; Ma, Xue-Fei; Hao, Ming; Zhou, Huan-Ran; Yu, Xin-Yang; Shao, Ning; Gao, Xin-Yuan; Kuang, Hong-Yu

    2018-07-01

    Retinal pericyte migration represents a novel mechanism of pericyte loss in diabetic retinopathy (DR), which plays a crucial role in the early impairment of the blood-retinal barrier (BRB). Glucagon-like peptide-1 (GLP-1) has been shown to protect the diabetic retina in the early stage of DR; however, the relationship between GLP-1 and retinal pericytes has not been discussed. In this study, advanced glycation end products (AGEs) significantly increased the migration of primary bovine retinal pericytes without influencing cell viability. AGEs also significantly enhanced phosphatidylinositol 3-kinase (PI3K)/Akt activation, and changed the expressions of migration-related proteins, including phosphorylated focal adhesion kinase (p-FAK), matrix metalloproteinase (MMP)-2 and vinculin. PI3K inhibition significantly attenuated the AGEs-induced migration of retinal pericytes and reversed the overexpression of MMP-2. Glucagon-like peptide-1 receptor (Glp1r) was expressed in retinal pericytes, and liraglutide, a GLP-1 analog, significantly attenuated the migration of pericytes by Glp1r and reversed the changes in p-Akt/Akt, p-FAK/FAK, vinculin and MMP-2 levels induced by AGEs, indicating that the protective effect of liraglutide was associated with the PI3K/Akt pathway. These results provided new insights into the mechanism underlying retinal pericyte migration. The early use of liraglutide exerts a potential bebefical effect on regulating pericyte migration, which might contribute to mechanisms that maintain the integrity of vascular barrier and delay the development of DR. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. MiADMSA reverses impaired mitochondrial energy metabolism and neuronal apoptotic cell death after arsenic exposure in rats

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, Nidhi; Mehta, Ashish; Yadav, Abhishek [Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Gwalior-474 002 (India); Binukumar, B.K.; Gill, Kiran Dip [Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh-160 012 (India); Flora, Swaran J.S., E-mail: sjsflora@hotmail.com [Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Gwalior-474 002 (India)

    2011-11-15

    Arsenicosis, due to contaminated drinking water, is a serious health hazard in terms of morbidity and mortality. Arsenic induced free radicals generated are known to cause cellular apoptosis through mitochondrial driven pathway. In the present study, we investigated the effect of arsenic interactions with various complexes of the electron transport chain and attempted to evaluate if there was any complex preference of arsenic that could trigger apoptosis. We also evaluated if chelation with monoisoamyl dimercaptosuccinic acid (MiADMSA) could reverse these detrimental effects. Our results indicate that arsenic exposure induced free radical generation in rat neuronal cells, which diminished mitochondrial potential and enzyme activities of all the complexes of the electron transport chain. Moreover, these complexes showed differential responses towards arsenic. These early events along with diminished ATP levels could be co-related with the later events of cytosolic migration of cytochrome c, altered bax/bcl{sub 2} ratio, and increased caspase 3 activity. Although MiADMSA could reverse most of these arsenic-induced altered variables to various extents, DNA damage remained unaffected. Our study for the first time demonstrates the differential effect of arsenic on the complexes leading to deficits in bioenergetics leading to apoptosis in rat brain. However, more in depth studies are warranted for better understanding of arsenic interactions with the mitochondria. -- Research highlights: Black-Right-Pointing-Pointer Arsenic impairs mitochondrial energy metabolism leading to neuronal apoptosis. Black-Right-Pointing-Pointer Arsenic differentially affects mitochondrial complexes, I - III and IV being more sensitive than complex II. Black-Right-Pointing-Pointer Arsenic-induced apoptosis initiates through ROS generation or impaired [Ca{sup 2+}]i homeostasis. Black-Right-Pointing-Pointer MiADMSA reverses arsenic toxicity via intracellular arsenic- chelation, antioxidant

  7. Gender-specific out-migration, deforestation and urbanization in the Ecuadorian Amazon

    Science.gov (United States)

    Barbieri, Alisson F.; Carr, David L.

    2005-07-01

    The Ecuadorian Amazon, one of the richest reserves of biodiversity in the world, has faced one of the highest rates of deforestation of any Amazonian nation. Most of this forest elimination has been caused by agricultural colonization that followed the discovery of oil fields in 1967. Since the 1990s, an increasing process of urbanization has also engendered new patterns of population mobility within the Amazon, along with traditional ways by which rural settlers make their living. However, while very significant in its effects on deforestation, urbanization and regional development, population mobility within the Amazon has hardly been studied at all, as well as the distinct migration patterns between men and women. This paper uses a longitudinal dataset of 250 farm households in the Northern Ecuadorian Amazon to understand differentials between men and women migrants to urban and rural destinations and between men and women non-migrants. First, we use hazard analysis based on the Kaplan-Meier (KM) estimator to obtain the cumulative probability that an individual living in the study area in 1990 or at time t, will out-migrated at some time, t+ n, before 1999. Results indicate that out-migration to other rural areas in the Amazon, especially pristine areas is considerably greater than out-migration to the growing, but still incipient, Amazonian urban areas. Furthermore, men are more likely to out-migrate to rural areas than women, while the reverse occurs for urban areas. Difference-of-means tests were employed to examine potential factors accounting for differentials between male and female out-migration to urban and rural areas. Among the key results, relative to men younger women are more likely to out-migrate to urban areas; more difficult access from farms to towns and roads constrains women's migration; and access to new lands in the Amazon-an important cause of further deforestation-is more associated with male out-migration. Economic factors such as

  8. Ultrasonic Stimulation of Mouse Skin Reverses the Healing Delays in Diabetes and Aging by Activation of Rac1.

    Science.gov (United States)

    Roper, James A; Williamson, Rosalind C; Bally, Blandine; Cowell, Christopher A M; Brooks, Rebecca; Stephens, Phil; Harrison, Andrew J; Bass, Mark D

    2015-11-01

    Chronic skin-healing defects are one of the leading challenges to lifelong well-being, affecting 2-5% of populations. Chronic wound formation is linked to age and diabetes and frequently leads to major limb amputation. Here we identify a strategy to reverse fibroblast senescence and improve healing rates. In healthy skin, fibronectin activates Rac1 in fibroblasts, causing migration into the wound bed, and driving wound contraction. We discover that mechanical stimulation of the skin with ultrasound can overturn healing defects by activating a calcium/CamKinaseII/Tiam1/Rac1 pathway that substitutes for fibronectin-dependent signaling and promotes fibroblast migration. Treatment of diabetic and aged mice recruits fibroblasts to the wound bed and reduces healing times by 30%, restoring healing rates to those observed in young, healthy animals. Ultrasound treatment is equally effective in rescuing the healing defects of animals lacking fibronectin receptors, and can be blocked by pharmacological inhibition of the CamKinaseII pathway. Finally, we discover that the migration defects of fibroblasts from human venous leg ulcer patients can be reversed by ultrasound, demonstrating that the approach is applicable to human chronic samples. By demonstrating that this alternative Rac1 pathway can substitute for that normally operating in the skin, we identify future opportunities for management of chronic wounds.

  9. Insulin-like Growth Factor Binding Protein 7 Mediates Glioma Cell Growth and Migration

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2008-12-01

    Full Text Available Insulin-like growth factor binding protein 7 (IGFBP-7 is the only member of the IGFBP superfamily that binds strongly to insulin, suggesting that IGFBP-7 may have different functions from other IGFBPs. Unlike other IGFBPs, the expression and functions of IGFBP-7 in glioma tumors have not been reported. Using cDNA microarray analysis, we found that expression of IGFBP-7 correlated with the grade of glioma tumors and the overall patient survival. This finding was further validated by real-time reverse transcription-polymerase chain reaction and Western blot analysis. We used RNAi to examine the role of IGFBP-7 in glioma cells, inhibiting IGFBP-7 expression by short interfering RNA transfection. Cell proliferation was suppressed after IGFBP-7 expression was inhibited for 5 days, and glioma cell growth was stimulated consistently by the addition of recombinant IGFBP-7 protein. Moreover, glioma cell migration was attenuated by IGFBP-7 depletion but enhanced by IGFBP-7 overexpression and addition. Overexpression of AKT1 in IGFBP-7-overxpressed cells attenuated the IGFBP-7-promoted migration and further enhanced inhibition of IGFBP-7 depletion on the migration. Phosphorylation of AKT and Erk1/2 was also inversely regulated by IGFBP-7 expression. These two factors together suggest that IGFBP-7 can regulate glioma cell migration through the AKT-ERK pathway, thereby playing an important role in glioma growth and migration.

  10. Short-term visual memory for location in depth: A U-shaped function of time.

    Science.gov (United States)

    Reeves, Adam; Lei, Quan

    2017-10-01

    Short-term visual memory was studied by displaying arrays of four or five numerals, each numeral in its own depth plane, followed after various delays by an arrow cue shown in one of the depth planes. Subjects reported the numeral at the depth cued by the arrow. Accuracy fell with increasing cue delay for the first 500 ms or so, and then recovered almost fully. This dipping pattern contrasts with the usual iconic decay observed for memory traces. The dip occurred with or without a verbal or color-shape retention load on working memory. In contrast, accuracy did not change with delay when a tonal cue replaced the arrow cue. We hypothesized that information concerning the depths of the numerals decays over time in sensory memory, but that cued recall is aided later on by transfer to a visual memory specialized for depth. This transfer is sufficiently rapid with a tonal cue to compensate for the sensory decay, but it is slowed by the need to tag the arrow cue's depth relative to the depths of the numerals, exposing a dip when sensation has decayed and transfer is not yet complete. A model with a fixed rate of sensory decay and varied transfer rates across individuals captures the dip as well as the cue modality effect.

  11. Time reversal and the neutron

    International Nuclear Information System (INIS)

    Chupp, T. E.; Cooper, R. L.; Coulter, K. P.; Freedman, S. J.; Fujikawa, B. K.; Jones, G. L.; Garcia, A.; Mumm, H. P.; Nico, J. S.; Thompson, A. K.; Trull, C.; Wietfeldt, F. E.; Wilkerson, J. F.

    2013-01-01

    We have measured the triple correlation D n >/J n ·(β e x p-hat ν ) with a polarized cold-neutron beam (Mumm et al., Phys Rev Lett 107:102301, 2011; Chupp et al., Phys Rev C 86:035505, 2012). A non-zero value of D can arise due to parity-even-time-reversal-odd interactions that imply CP violation. Final-state effects also contribute to D at the level of 10  − 5 and can be calculated with precision of 1 % or better. The D coefficient is uniquely sensitive to the imaginary part of the ratio of axial-vector and vector beta-decay amplitudes as well as to scalar and tensor interactions that could arise due to beyond-Standard-Model physics. Over 300 million proton-electron coincidence events were used in a blind analysis with the result D = [ − 0.94±1.89 (stat)±0.97(sys)]×10  − 4 . Assuming only vector and axial vector interactions in beta decay, our result can be interpreted as a measure of the phase of the axial-vector coupling relative to the vector coupling, φ AV = 180.012 ° ± 0.028 °. This result also improves constrains on certain non-VA interactions.

  12. Time reversal and the neutron

    Energy Technology Data Exchange (ETDEWEB)

    Chupp, T. E., E-mail: chupp@umich.edu; Cooper, R. L.; Coulter, K. P. [Univeristy of Michigan (United States); Freedman, S. J.; Fujikawa, B. K. [University of California and Lawrence Berkeley Laboratory (United States); Jones, G. L. [Hamilton College (United States); Garcia, A. [University of Washington (United States); Mumm, H. P.; Nico, J. S.; Thompson, A. K. [National Institute of Standards and Technology (United States); Trull, C.; Wietfeldt, F. E. [Tulane University (United States); Wilkerson, J. F. [University of North Carolina (United States); Collaboration: emiT II Collaboration

    2013-03-15

    We have measured the triple correlation D/J{sub n}{center_dot}({beta}{sub e} x p-hat{sub {nu}}) with a polarized cold-neutron beam (Mumm et al., Phys Rev Lett 107:102301, 2011; Chupp et al., Phys Rev C 86:035505, 2012). A non-zero value of D can arise due to parity-even-time-reversal-odd interactions that imply CP violation. Final-state effects also contribute to D at the level of 10{sup - 5} and can be calculated with precision of 1 % or better. The D coefficient is uniquely sensitive to the imaginary part of the ratio of axial-vector and vector beta-decay amplitudes as well as to scalar and tensor interactions that could arise due to beyond-Standard-Model physics. Over 300 million proton-electron coincidence events were used in a blind analysis with the result D = [ - 0.94{+-}1.89 (stat){+-}0.97(sys)] Multiplication-Sign 10{sup - 4}. Assuming only vector and axial vector interactions in beta decay, our result can be interpreted as a measure of the phase of the axial-vector coupling relative to the vector coupling, {phi}{sub AV} = 180.012 Degree-Sign {+-} 0.028 Degree-Sign . This result also improves constrains on certain non-VA interactions.

  13. Time Reversal Acoustic Structural Health Monitoring Using Array of Embedded Sensors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Time Reversal Acoustic (TRA) structural health monitoring with an embedded sensor array represents a new approach to in-situ nondestructive evaluation of air-space...

  14. Neural Integration of Information Specifying Human Structure from Form, Motion, and Depth

    Science.gov (United States)

    Jackson, Stuart; Blake, Randolph

    2010-01-01

    Recent computational models of biological motion perception operate on ambiguous two-dimensional representations of the body (e.g., snapshots, posture templates) and contain no explicit means for disambiguating the three-dimensional orientation of a perceived human figure. Are there neural mechanisms in the visual system that represent a moving human figure’s orientation in three dimensions? To isolate and characterize the neural mechanisms mediating perception of biological motion, we used an adaptation paradigm together with bistable point-light (PL) animations whose perceived direction of heading fluctuates over time. After exposure to a PL walker with a particular stereoscopically defined heading direction, observers experienced a consistent aftereffect: a bistable PL walker, which could be perceived in the adapted orientation or reversed in depth, was perceived predominantly reversed in depth. A phase-scrambled adaptor produced no aftereffect, yet when adapting and test walkers differed in size or appeared on opposite sides of fixation aftereffects did occur. Thus, this heading direction aftereffect cannot be explained by local, disparity-specific motion adaptation, and the properties of scale and position invariance imply higher-level origins of neural adaptation. Nor is disparity essential for producing adaptation: when suspended on top of a stereoscopically defined, rotating globe, a context-disambiguated “globetrotter” was sufficient to bias the bistable walker’s direction, as were full-body adaptors. In sum, these results imply that the neural signals supporting biomotion perception integrate information on the form, motion, and three-dimensional depth orientation of the moving human figure. Models of biomotion perception should incorporate mechanisms to disambiguate depth ambiguities in two-dimensional body representations. PMID:20089892

  15. Spontaneous breaking of time-reversal symmetry in topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Karnaukhov, Igor N., E-mail: karnaui@yahoo.com

    2017-06-21

    Highlights: • Proposed a new approach for description of phase transitions in topological insulators. • Considered the mechanism of spontaneous breaking of time-reversal symmetry in topological insulators. • The Haldane model can be implemented in real compounds of the condensed matter physics. - Abstract: The system of spinless fermions on a hexagonal lattice is studied. We have considered tight-binding model with the hopping integrals between the nearest-neighbor and next-nearest-neighbor lattice sites, that depend on the direction of the link. The links are divided on three types depending on the direction, the hopping integrals are defined by different phases along the links. The energy of the system depends on the phase differences, the solutions for the phases, that correspond to the minimums of the energy, lead to a topological insulator state with the nontrivial Chern numbers. We have analyzed distinct topological states and phase transitions, the behavior of the chiral gapless edge modes, have defined the Chern numbers. The band structure of topological insulator (TI) is calculated, the ground-state phase diagram in the parameter space is obtained. We propose a novel mechanism of realization of TI, when the TI state is result of spontaneous breaking of time-reversal symmetry due to nontrivial stable solutions for the phases that determine the hopping integrals along the links and show that the Haldane model can be implemented in real compounds of the condensed matter physics.

  16. Splitting of the rate matrix as a definition of time reversal in master equation systems

    International Nuclear Information System (INIS)

    Liu Fei; Le, Hong

    2012-01-01

    Motivated by recent progress in nonequilibrium fluctuation relations, we present a generalized time reversal for stochastic master equation systems with discrete states, which is defined as a splitting of the rate matrix into irreversible and reversible parts. An immediate advantage of this definition is that a variety of fluctuation relations can be attributed to different matrix splittings. Additionally, we find that the accustomed total entropy production formula and conditions of the detailed balance must be modified appropriately to account for the reversible rate part, which was previously ignored. (paper)

  17. Measuring the spin Chern number in time-reversal-invariant Hofstadter optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dan-Wei, E-mail: zdanwei@126.com [Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, SPTE, South China Normal University, Guangzhou 510006 (China); Cao, Shuai, E-mail: shuaicao2004@163.com [Department of Applied Physics, College of Electronic Engineering, South China Agricultural University, Guangzhou 510642 China (China)

    2016-10-14

    We propose an experimental scheme to directly measure the spin Chern number of the time-reversal-invariant Hofstadter model in optical lattices. We first show that this model can be realized by using ultracold Fermi atoms with two pseudo-spin states encoded by the internal Zeeman states in a square optical lattice and the corresponding topological Bloch bands are characterized by the spin Chern number. We then propose and numerically demonstrate that this topological invariant can be extracted from the shift of the hybrid Wannier center in the optical lattice. By spin-resolved in situ detection of the atomic densities along the transverse direction combined with time-of-flight measurement along another spatial direction, the spin Chern number in this system is directly measured. - Highlights: • The cold-atom optical-lattice scheme for realizing the time-reversal-invariant Hofstadter model is proposed. • The intrinsic spin Chern number related to the hybrid Wannier center in the optical lattice is investigated. • Direct measurement of the spin Chern number in the proposed system is theoretically demonstrated.

  18. Kinetics of a Migration-Driven Aggregation-Fragmentation Process

    Institute of Scientific and Technical Information of China (English)

    ZHUANG You-Yi; LIN Zhen-Quan; KE Jian-Hong

    2003-01-01

    We propose a reversible model of the migration-driven aggregation-fragmentation process with the sym-metric migration rate kernels K(k;j) = K'(k;j) = λkjv and the constant aggregation rates I1, I2 and fragmentationrates J1, J2. Based on the mean-field theory, we investigate the evolution behavior of the aggregate size distributions inseveral cases with different values of index v. We find that the fragmentation reaction plays a more important role in the kinetic behaviors of the system than the aggregation and migration. When J1 = 0 and J2 = 0, the aggregate sizedistributions ak(t) and bk(t) obey the conventional scaling law, while when J1 > 0 and J2 > 0, they obey the modifiedscaling law with an exponential scaling function. The total mass of either species remains conserved.

  19. Kinetic behaviours of aggregate growth driven by time-dependent migration, birth and death

    International Nuclear Information System (INIS)

    Zhu Shengqing; Yang Shunyou; Ke Jianhong; Lin Zhenquan

    2008-01-01

    We propose a dynamic growth model to mimic some social phenomena, such as the evolution of cities' population, in which monomer migrations occur between any two aggregates and monomer birth/death can simultaneously occur in each aggregate. Considering the fact that the rate kernels of migration, birth and death processes may change with time, we assume that the migration rate kernel is ijf(t), and the self-birth and death rate kernels are ig 1 (t) and ig 2 (t), respectively. Based on the mean-field rate equation, we obtain the exact solution of this model and then discuss semi-quantitatively the scaling behaviour of the aggregate size distribution at large times. The results show that in the long-time limit, (i) if ∫ t 0 g 1 (t') dt'/∫ t 0 g 2 (t') dt' ≥ 1 or exp{∫ t 0 [g 2 (t') - g 1 (t')] dt'}/∫ t 0 f(t') dt' → 0, the aggregate size distribution a k (t) can obey a generalized scaling form; (ii) if ∫ t 0 g 1 (t') dt'/∫ t 0 g 2 (t') dt' → 0 and exp ∫ t 0 [g 2 (t') - g 1 (t') dt'/∫ t 0 f(t') dt' → ∞, a k (t) can take a scale-free form and decay exponentially in size k; (iii) a k (t) will satisfy a modified scaling law in the remaining cases. Moreover, the total mass of aggregates depends strongly on the net birth rate g 1 (t) - g 2 (t) and evolves exponentially as exp{∫ t 0 [g 1 (t') - g 2 (t')] dt'}, which is in qualitative agreement with the evolution of the total population of a country in real world

  20. Lamellipodia and Membrane Blebs Drive Efficient Electrotactic Migration of Rat Walker Carcinosarcoma Cells WC 256.

    Science.gov (United States)

    Sroka, Jolanta; Krecioch, Izabela; Zimolag, Eliza; Lasota, Slawomir; Rak, Monika; Kedracka-Krok, Sylwia; Borowicz, Pawel; Gajek, Marta; Madeja, Zbigniew

    2016-01-01

    The endogenous electric field (EF) may provide an important signal for directional cell migration during wound healing, embryonic development and cancer metastasis but the mechanism of cell electrotaxis is poorly understood. Additionally, there is no research addressing the question on the difference in electrotactic motility of cells representing various strategies of cell movement-specifically blebbing vs. lamellipodial migration. In the current study we constructed a unique experimental model which allowed for the investigation of electrotactic movement of cells of the same origin but representing different modes of cell migration: weakly adherent, spontaneously blebbing (BC) and lamellipodia forming (LC) WC256 cells. We report that both BC and LC sublines show robust cathodal migration in a physiological EF (1-3 V/cm). The directionality of cell movement was completely reversible upon reversing the field polarity. However, the full reversal of cell direction after the change of EF polarity was much faster in the case of BC (10 minutes) than LC cells (30 minutes). We also investigated the distinct requirements for Rac, Cdc42 and Rho pathways and intracellular Ca2+ in electrotaxis of WC256 sublines forming different types of cell protrusions. It was found that Rac1 is required for directional movement of LC to a much greater extent than for BC, but Cdc42 and RhoA are more crucial for BC than for LC cells. The inhibition of ROCK did not affect electrotaxis of LC in contrast to BC cells. The results also showed that intracellular Ca2+ is essential only for the electrotactic reaction of BC cells. Moreover, inhibition of MLCK and myosin II did not affect the electrotaxis of LC in contrast to BC cells. In conclusion, our results revealed that both lamellipodia and membrane blebs can efficiently drive electrotactic migration of WC 256 carcinosarcoma cells, however directional migration is mediated by different signalling pathways.

  1. Multiuser underwater acoustic communication using single-element virtual time reversal mirror

    Institute of Scientific and Technical Information of China (English)

    YIN JingWei; WANG YiLin; WANG Lei; HUI JunYing

    2009-01-01

    Pattern time delay shift coding (PDS) scheme is introduced and combined with spread spectrum tech-nique called SS-PDS for short which is power-saving and competent for long-range underwater acous-tic networks.Single-element virtual time reversal mirror (VTRM) is presented in this paper and validated by the lake trial results.Employing single-element VTRM in multiuser communication system based on SS-PDS can separate different users' information simultaneously at master node as indicated in the simulation results.

  2. SUPPRESSING DIFFRACTION EFFECT USING KIRCHHOFF PRE-STACK TIME MIGRATION ON 2D SEISMIC MULTICHANNEL DATA AT FLORES SEA

    Directory of Open Access Journals (Sweden)

    Tumpal Benhard Nainggolan

    2017-07-01

    Full Text Available 2D seismic multichannel survey has been carried out by Marine Geological Institute of Indonesia to interpret imaging and sub-surface geological information in the Flores Sea. Seismic data processing starts from pre-processing until migration stage. Migration is an important stage in the seismic processing, because at this stage the effects of diffraction and oblique reflectors caused by fault, salt domes, wedging, etc. will be repositioned to the actual points. One example of diffraction effects can be seen on the seismic section of a conventional stacking that have not migrated, i.e. resulting in an apparent bowtie reflector. Geologists find difficulties in interpreting geological information from diffracted seismic section, so it needs further processing to overcome the effects. By using Kirchhoff method and carried out during the Pre-Stack Time Migration (PSTM, this method turns out to produce migrated seismic section which is much better than conventional stacked one. This is due to the Kirchhoff method suppressed the identified diffraction effects, so that the geologist can interpret geological structure of the resulting migrated seismic section of the Flores Sea.

  3. Study of time variation of terrestrial gamma radiation due to depth distribution of soil moisture content

    International Nuclear Information System (INIS)

    Yoshioka, Katsuhiro

    1994-01-01

    An empirical equation was deduced from studies of time variations of terrestrial gamma exposure rate and soil moisture content with depth distribution in the surface layer. It was definitely suggested that the variation of terrestrial gamma exposure rate is most strongly influenced by the change of soil moisture content at 5 cm depth. The seasonal variation with a relative maximum in early autumn and a relative minimum in early spring was clearly obtained in the consequence of long time measurements of terrestrial gamma exposure rate and degree of soil dryness. The diurnal change and phase difference due to the effect of depth were also obtained in the dynamic characteristics of soil moisture content at 3 different depths. From the comparison between measured terrestrial gamma exposure rate and that evaluated from soil moisture content using the empirical equation, it was seen that seasonal variations of the both agreed fairly well as a whole. (author)

  4. New Limit on Time-Reversal Violation in Beta Decay

    International Nuclear Information System (INIS)

    Mumm, H. P.; Chupp, T. E.; Cooper, R. L.; Coulter, K. P.; Freedman, S. J.; Fujikawa, B. K.; Garcia, A.; Jones, G. L.; Nico, J. S.; Thompson, A. K.; Trull, C. A.; Wietfeldt, F. E.; Wilkerson, J. F.

    2011-01-01

    We report the results of an improved determination of the triple correlation DP·(p e xp v ) that can be used to limit possible time-reversal invariance in the beta decay of polarized neutrons and constrain extensions to the standard model. Our result is D=[-0.96±1.89(stat)±1.01(sys)]x10 -4 . The corresponding phase between g A and g V is φ AV =180.013 deg. ±0.028 deg. (68% confidence level). This result represents the most sensitive measurement of D in nuclear β decay.

  5. Effect of Migration Pathway on Travel Time and Survival of Acoustic-Tagged Juvenile Salmonids in the Columbia River Estuary

    Energy Technology Data Exchange (ETDEWEB)

    Harnish, Ryan A.; Johnson, Gary E.; McMichael, Geoffrey A.; Hughes, Michael S.; Ebberts, Blaine D.

    2012-02-01

    Off-channel areas (side channels, tidal flats, sand bars, and shallow-water bays) may serve as important migration corridors through estuarine environments for salmon and steelhead smolts. Relatively large percentages (21-33%) of acoustic-tagged yearling and subyearling Chinook salmon and steelhead smolts were detected migrating through off-channel areas of the Columbia River estuary in 2008. The probability of survival for off-channel migrants (0.78-0.94) was similar to or greater than the survival probability of main channel migrants (0.67-0.93). Median travel times were similar for all species or run types and migration pathways we examined, ranging from 1-2 d. The route used by smolts to migrate through the estuary may affect their vulnerability to predation. Acoustic-tagged steelhead that migrated nearest to avian predator nesting colonies experienced higher predation rates (24%) than those that migrated farthest from the colonies (10%). The use of multiple migration pathways may be advantageous to out-migrating smolts because it helps to buffer against high rates of mortality, which may occur in localized areas, and helps to minimize inter- and intraspecific competition.

  6. Time domain diffuse Raman spectrometer based on a TCSPC camera for the depth analysis of diffusive media.

    Science.gov (United States)

    Konugolu Venkata Sekar, S; Mosca, S; Tannert, S; Valentini, G; Martelli, F; Binzoni, T; Prokazov, Y; Turbin, E; Zuschratter, W; Erdmann, R; Pifferi, A

    2018-05-01

    We present a time domain diffuse Raman spectrometer for depth probing of highly scattering media. The system is based on, to the best of our knowledge, a novel time-correlated single-photon counting (TCSPC) camera that simultaneously acquires both spectral and temporal information of Raman photons. A dedicated non-contact probe was built, and time domain Raman measurements were performed on a tissue mimicking bilayer phantom. The fluorescence contamination of the Raman signal was eliminated by early time gating (0-212 ps) the Raman photons. Depth sensitivity is achieved by time gating Raman photons at different delays with a gate width of 106 ps. Importantly, the time domain can provide time-dependent depth sensitivity leading to a high contrast between two layers of Raman signal. As a result, an enhancement factor of 2170 was found for our bilayer phantom which is much higher than the values obtained by spatial offset Raman spectroscopy (SORS), frequency offset Raman spectroscopy (FORS), or hybrid FORS-SORS on a similar phantom.

  7. The nucleon electric dipole form factor from dimension-six time-reversal violation

    NARCIS (Netherlands)

    de Vries, J.; Mereghetti, E.; Timmermans, R. G. E.; van Kolck, U.

    2011-01-01

    We calculate the electric dipole form factor of the nucleon that arises as a low-energy manifestation of time-reversal violation in quark-gluon interactions of effective dimension 6: the quark electric and chromoelectric dipole moments, and the gluon chromoelectric dipole moment. We use the

  8. Radionuclide migration in soil within the estrangement zone of ChNPP

    International Nuclear Information System (INIS)

    Mikhalkin, G.S.; Arkhipov, A.N.; Arkhipov, N.P.; Sukhoruchkin, A.K.

    1992-01-01

    The problems of the radionuclide migration and redistribution in soil within the estrangement zone of ChNPP have been discussed. It has been demonstrated that the surface radioactive contamination of soil that has been represented principally by the particles of the waste nuclear fuel eventually migrates into soil depth. In this case the radionuclides remain principally the fuel matrix components, the fuel matrix decomposing gradually and releasing the radionuclides. The mechanisms of the radionuclide migration can be described with the quasi-diffusion migration model in most cases. On the 5th year since the accident the major portion of the radionuclides (95-99%) is still kept within 0-5 cm layer of soil. 3 figs.; 7 tabs

  9. Migration of Water Pulse Through Fractured Porous Media

    International Nuclear Information System (INIS)

    Finsterle, S.; Fabryka-Martin, J. T.; Wang, J. S. Y.

    2001-01-01

    Contaminant transport from waste-disposal sites is strongly affected by the presence of fractures and the degree of fracture-matrix interaction. Characterization of potential contaminant plumes at such sites is difficult, both experimentally and numerically. Simulations of water flow through fractured rock were performed to examine the penetration depth of a large pulse of water entering such a system. Construction water traced with lithium bromide was released during the excavation of a tunnel at Yucca Mountain, Nevada, which is located in an unsaturated fractured tuff formation. Modeling of construction-water migration is qualitatively compared with bromide-to-chloride (Br/CI) ratio data for pore-water salts extracted from drillcores. The influences of local heterogeneities in the fracture network and variations in hydrogeologic parameters were examined by sensitivity analyses and Monte Carlo simulations. The simulation results are qualitatively consistent with the observed Br/CI signals, although these data may only indicate a minimum penetration depth, and water may have migrated further through the fracture network

  10. Trace interpolation by slant-stack migration

    International Nuclear Information System (INIS)

    Novotny, M.

    1990-01-01

    The slant-stack migration formula based on the radon transform is studied with respect to the depth steep Δz of wavefield extrapolation. It can be viewed as a generalized trace-interpolation procedure including wave extrapolation with an arbitrary step Δz. For Δz > 0 the formula yields the familiar plane-wave decomposition, while for Δz > 0 it provides a robust tool for migration transformation of spatially under sampled wavefields. Using the stationary phase method, it is shown that the slant-stack migration formula degenerates into the Rayleigh-Sommerfeld integral in the far-field approximation. Consequently, even a narrow slant-stack gather applied before the diffraction stack can significantly improve the representation of noisy data in the wavefield extrapolation process. The theory is applied to synthetic and field data to perform trace interpolation and dip reject filtration. The data examples presented prove that the radon interpolator works well in the dip range, including waves with mutual stepouts smaller than half the dominant period

  11. Is there a connection between weather at departure sites, onset of migration and timing of soaring-bird autumn migration in Israel?

    NARCIS (Netherlands)

    Shamoun-Baranes, J.; van Loon, E.E.; Alon, D.; Alpert, P.; Yom-Tov, Y.; Leshem, Y.

    2006-01-01

    Aims Different aspects of soaring-bird migration are influenced by weather. However, the relationship between weather and the onset of soaring-bird migration, particularly in autumn, is not clear. Although long-term migration counts are often unavailable near the breeding areas of many soaring birds

  12. “International Migration and Gender Discrimination among Children Left Behind”

    Science.gov (United States)

    Antman, Francisca M.

    2012-01-01

    This paper considers how international migration of the head of household affects the allocation of resources toward boys relative to girls within households remaining in the home country. I address the endogeneity of migration with a differences-in-differences style regression model that compares those households in which migrants have already returned home with those in which migrants are still away. The evidence suggests that while the head of household is away a greater fraction of resources are spent on girls relative to boys, but upon his return, this pattern is reversed. PMID:23239896

  13. Migration Performance for Legacy Data Access

    Directory of Open Access Journals (Sweden)

    Kam Woods

    2008-12-01

    Full Text Available We present performance data relating to the use of migration in a system we are creating to provide web access to heterogeneous document collections in legacy formats. Our goal is to enable sustained access to collections such as these when faced with increasing obsolescence of the necessary supporting applications and operating systems. Our system allows searching and browsing of the original files within their original contexts utilizing binary images of the original media. The system uses static and dynamic file migration to enhance collection browsing, and emulation to support both the use of legacy programs to access data and long-term preservation of the migration software. While we provide an overview of the architectural issues in building such a system, the focus of this paper is an in-depth analysis of file migration using data gathered from testing our software on 1,885 CD-ROMs and DVDs. These media are among the thousands of collections of social and scientific data distributed by the United States Government Printing Office (GPO on legacy media (CD-ROM, DVD, floppy disk under the Federal Depository Library Program (FDLP over the past 20 years.

  14. Nuclide-migration field experiments

    International Nuclear Information System (INIS)

    Erdal, B.R.; Wolfsberg, K.; Johnstone, J.K.; Erickson, K.L.; Friedman, A.M.; Fried, S.; Hines, J.J.

    1981-03-01

    When considering groundwater flow and radionuclide retention in the complex flow systems that can occur in geologic formations, one has a serious problem in determining if laboratory studies are being performed under conditions appropriate to natural systems. This document is the project plan for a program designed to begin to address these problems. The project is being carried out jointly by the Los Alamos National Laboratory, Sandia National Laboratories, and Argonne National Laboratory. The work has three principal objectives: (1) to develop the experimental, instrumental, and safety techniques necessary to conduct controlled, small-scale radionuclide migration field experiments, including those involving actinides; (2) to use these techniques to define radionuclide migration through rock by performing generic, at-depth experiments under closely monitored conditions; and (3) to determine whether available lithologic, geochemical, and hydrologic properties together with existing or developing transport models are sufficient and appropriate to describe real field conditions

  15. Nuclide-migration field experiments

    Energy Technology Data Exchange (ETDEWEB)

    Erdal, B.R.; Wolfsberg, K.; Johnstone, J.K.; Erickson, K.L.; Friedman, A.M.; Fried, S.; Hines, J.J.

    1981-03-01

    When considering groundwater flow and radionuclide retention in the complex flow systems that can occur in geologic formations, one has a serious problem in determining if laboratory studies are being performed under conditions appropriate to natural systems. This document is the project plan for a program designed to begin to address these problems. The project is being carried out jointly by the Los Alamos National Laboratory, Sandia National Laboratories, and Argonne National Laboratory. The work has three principal objectives: (1) to develop the experimental, instrumental, and safety techniques necessary to conduct controlled, small-scale radionuclide migration field experiments, including those involving actinides; (2) to use these techniques to define radionuclide migration through rock by performing generic, at-depth experiments under closely monitored conditions; and (3) to determine whether available lithologic, geochemical, and hydrologic properties together with existing or developing transport models are sufficient and appropriate to describe real field conditions.

  16. The time-reversal- and parity-violating nuclear potential in chiral effective theory

    NARCIS (Netherlands)

    Maekawa, C. M.; Mereghetti, E.; de Vries, J.; van Kolck, U.

    2011-01-01

    We derive the parity- and time-reversal-violating nuclear interactions stemming from the QCD (theta) over bar term and quark/gluon operators of effective dimension 6: quark electric dipole moments, quark and gluon chromo-electric dipole moments, and two four-quark operators. We work in the framework

  17. Statistics of resonances and time reversal reconstruction in aluminum acoustic chaotic cavities

    NARCIS (Netherlands)

    Antoniuk, O.; Sprik, R.

    2010-01-01

    The statistical properties of wave propagation in classical chaotic systems are of fundamental interest in physics and are the basis for diagnostic tools in materials science. The statistical properties depend in particular also on the presence of time reversal invariance in the system, which can be

  18. Stable and efficient Q-compensated least-squares migration with compressive sensing, sparsity-promoting, and preconditioning

    Science.gov (United States)

    Chai, Xintao; Wang, Shangxu; Tang, Genyang; Meng, Xiangcui

    2017-10-01

    The anelastic effects of subsurface media decrease the amplitude and distort the phase of propagating wave. These effects, also referred to as the earth's Q filtering effects, diminish seismic resolution. Ignoring anelastic effects during seismic imaging process generates an image with reduced amplitude and incorrect position of reflectors, especially for highly absorptive media. The numerical instability and the expensive computational cost are major concerns when compensating for anelastic effects during migration. We propose a stable and efficient Q-compensated imaging methodology with compressive sensing, sparsity-promoting, and preconditioning. The stability is achieved by using the Born operator for forward modeling and the adjoint operator for back propagating the residual wavefields. Constructing the attenuation-compensated operators by reversing the sign of attenuation operator is avoided. The method proposed is always stable. To reduce the computational cost that is proportional to the number of wave-equation to be solved (thereby the number of frequencies, source experiments, and iterations), we first subsample over both frequencies and source experiments. We mitigate the artifacts caused by the dimensionality reduction via promoting sparsity of the imaging solutions. We further employ depth- and Q-preconditioning operators to accelerate the convergence rate of iterative migration. We adopt a relatively simple linearized Bregman method to solve the sparsity-promoting imaging problem. Singular value decomposition analysis of the forward operator reveals that attenuation increases the condition number of migration operator, making the imaging problem more ill-conditioned. The visco-acoustic imaging problem converges slower than the acoustic case. The stronger the attenuation, the slower the convergence rate. The preconditioning strategy evidently decreases the condition number of migration operator, which makes the imaging problem less ill-conditioned and

  19. Physicians' Migration: Perceptions of Pakistani Medical Students.

    Science.gov (United States)

    Hossain, Nazli; Shah, Nusrat; Shah, Tahira; Lateef, Sidra Binte

    2016-08-01

    To study the perceptions of medical students about factors responsible for physicians'migration. Cross-sectional survey. Dow Medical College and Civil Hospital, Karachi, from April to May 2015. Aself-administered structured questionnaire was used including demographic details, attitudes about push and pull factors of migration, and reasons for migrating or not migrating abroad. Final year students and interns were included. Likert scale from 1 to 4 (1=strongly disagree to 4=strongly agree) was used to assess attitudes. Data was analyzed by SPSS version 16. Atotal of 240 medical students, mostly females (n=181, 75%) (60% final year and 40% interns), participated in the study. Majority wished to go abroad (n=127; 54%) with United States being the favourite destination (n=80; 66.1%) and internal medicine fields being the preferred choice for specialization (n=126; 54%). The major pull factors were better quality of postgraduate education abroad (n=110; 48.2%) and economic prospects (80; 35.2%); while the push factors were a weak healthcare system (n=219; 94.3%), inadequate salary structure (n=205; 88.3%), insecurity (n=219; 93.9%) and increasing religious intolerance in Pakistan (n=183; 78.5%). This survey highlights the continuing trend of physician migration from Pakistan owing to an interplay of various push and pull factors. Majority of our medical students wish to migrate, mainly due to low salaries, poor job structure, and insecurity. Urgent interventions are required to reverse this trend of medical brain-drain.

  20. Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths.

    Science.gov (United States)

    Serrano, X; Baums, I B; O'Reilly, K; Smith, T B; Jones, R J; Shearer, T L; Nunes, F L D; Baker, A C

    2014-09-01

    The deep reef refugia hypothesis proposes that deep reefs can act as local recruitment sources for shallow reefs following disturbance. To test this hypothesis, nine polymorphic DNA microsatellite loci were developed and used to assess vertical connectivity in 583 coral colonies of the Caribbean depth-generalist coral Montastraea cavernosa. Samples were collected from three depth zones (≤10, 15-20 and ≥25 m) at sites in Florida (within the Upper Keys, Lower Keys and Dry Tortugas), Bermuda, and the U.S. Virgin Islands. Migration rates were estimated to determine the probability of coral larval migration from shallow to deep and from deep to shallow. Finally, algal symbiont (Symbiodinium spp.) diversity and distribution were assessed in a subset of corals to test whether symbiont depth zonation might indicate limited vertical connectivity. Overall, analyses revealed significant genetic differentiation by depth in Florida, but not in Bermuda or the U.S. Virgin Islands, despite high levels of horizontal connectivity between these geographic locations at shallow depths. Within Florida, greater vertical connectivity was observed in the Dry Tortugas compared to the Lower or Upper Keys. However, at all sites, and regardless of the extent of vertical connectivity, migration occurred asymmetrically, with greater likelihood of migration from shallow to intermediate/deep habitats. Finally, most colonies hosted a single Symbiodinium type (C3), ruling out symbiont depth zonation of the dominant symbiont type as a structuring factor. Together, these findings suggest that the potential for shallow reefs to recover from deep-water refugia in M. cavernosa is location-specific, varying among and within geographic locations likely as a consequence of local hydrology. © 2014 John Wiley & Sons Ltd.

  1. Newmark-Beta-FDTD method for super-resolution analysis of time reversal waves

    Science.gov (United States)

    Shi, Sheng-Bing; Shao, Wei; Ma, Jing; Jin, Congjun; Wang, Xiao-Hua

    2017-09-01

    In this work, a new unconditionally stable finite-difference time-domain (FDTD) method with the split-field perfectly matched layer (PML) is proposed for the analysis of time reversal (TR) waves. The proposed method is very suitable for multiscale problems involving microstructures. The spatial and temporal derivatives in this method are discretized by the central difference technique and Newmark-Beta algorithm, respectively, and the derivation results in the calculation of a banded-sparse matrix equation. Since the coefficient matrix keeps unchanged during the whole simulation process, the lower-upper (LU) decomposition of the matrix needs to be performed only once at the beginning of the calculation. Moreover, the reverse Cuthill-Mckee (RCM) technique, an effective preprocessing technique in bandwidth compression of sparse matrices, is used to improve computational efficiency. The super-resolution focusing of TR wave propagation in two- and three-dimensional spaces is included to validate the accuracy and efficiency of the proposed method.

  2. Superresolution Imaging Using Resonant Multiples and Plane-wave Migration Velocity Analysis

    KAUST Repository

    Guo, Bowen

    2017-08-28

    Seismic imaging is a technique that uses seismic echoes to map and detect underground geological structures. The conventional seismic image has the resolution limit of λ/2, where λ is the wavelength associated with the seismic waves propagating in the subsurface. To exceed this resolution limit, this thesis develops a new imaging method using resonant multiples, which produces superresolution images with twice or even more the spatial resolution compared to the conventional primary reflection image. A resonant multiple is defined as a seismic reflection that revisits the same subsurface location along coincident reflection raypath. This reverberated raypath is the reason for superresolution imaging because it increases the differences in reflection times associated with subtle changes in the spatial location of the reflector. For the practical implementation of superresolution imaging, I develop a post-stack migration technique that first enhances the signal-to-noise ratios (SNRs) of resonant multiples by a moveout-correction stacking method, and then migrates the post-stacked resonant multiples with the associated Kirchhoff or wave-equation migration formula. I show with synthetic and field data examples that the first-order resonant multiple image has about twice the spatial resolution compared to the primary reflection image. Besides resolution, the correct estimate of the subsurface velocity is crucial for determining the correct depth of reflectors. Towards this goal, wave-equation migration velocity analysis (WEMVA) is an image-domain method which inverts for the velocity model that maximizes the similarity of common image gathers (CIGs). Conventional WEMVA based on subsurface-offset, angle domain or time-lag CIGs requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, I present a new WEMVA method using plane-wave CIGs. Plane-wave CIGs reduce the

  3. Role of echocardiography in reducing shock reversal time in pediatric septic shock: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Ahmed A. EL-Nawawy

    Full Text Available Abstract Objective: To evaluate the role of echocardiography in reducing shock reversal time in pediatric septic shock. Methods: A prospective study conducted in the pediatric intensive care unit of a tertiary care teaching hospital from September 2013 to May 2016. Ninety septic shock patients were randomized in a 1:1 ratio for comparing the serial echocardiography-guided therapy in the study group with the standard therapy in the control group regarding clinical course, timely treatment, and outcomes. Results: Shock reversal was significantly higher in the study group (89% vs. 67%, with significantly reduced shock reversal time (3.3 vs. 4.5 days. Pediatric intensive care unit stay in the study group was significantly shorter (8 ± 3 vs. 14 ± 10 days. Mortality due to unresolved shock was significantly lower in the study group. Fluid overload was significantly lower in the study group (11% vs. 44%. In the study group, inotropes were used more frequently (89% vs. 67% and initiated earlier (12[0.5-24] vs. 24[6-72] h with lower maximum vasopressor inotrope score (120[30-325] vs. 170[80-395], revealing predominant use of milrinone (62% vs. 22%. Conclusion: Serial echocardiography provided crucial data for early recognition of septic myocardial dysfunction and hypovolemia that was not apparent on clinical assessment, allowing a timely management and resulting in shock reversal time reduction among children with septic shock.

  4. Testing three common stocking methods: Differences in smolt size, migration rate and timing of two strains of stocked Atlantic salmon ( Salmo salar )

    DEFF Research Database (Denmark)

    Birnie-Gauvin, Kim; Larsen, Martin Hage; Thomassen, Søren T.

    2018-01-01

    The influence of three common stocking practices for two strains (Ätran and Burrishoole) of hatchery-reared Atlantic salmon, Salmo salar, on smolt size, migration probability and migration timing were investigated in situ. Using a common garden experiment, fish from these populations were release...... to inherited factors, and emphasize the importance of considering age of fish and time spent in the hatchery when stocking populations in the wild to maximize smolt output......The influence of three common stocking practices for two strains (Ätran and Burrishoole) of hatchery-reared Atlantic salmon, Salmo salar, on smolt size, migration probability and migration timing were investigated in situ. Using a common garden experiment, fish from these populations were released...... as fry, half-year olds and oneyear olds. Our results indicate that fish released at the fry and half-year stage produce smaller smolts, and migrate later in the year than their counterparts released at one-year of age, for both the Ätran and the Burrishoole populations. While fry had the lowest...

  5. Timing of pre-nuptial migration and leap-frog patterns in Yellow ...

    African Journals Online (AJOL)

    nuptial migration period, in parts of the wintering grounds most distant from the breeding area. Birds breeding at the highest latitudes are the latest to depart on prenuptial migration, and so can take advantage of this surge by extending their ...

  6. Full Waveform Inversion Using Oriented Time Migration Method

    KAUST Repository

    Zhang, Zhendong

    2016-01-01

    Full waveform inversion (FWI) for reflection events is limited by its linearized update requirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate the resulting gradient can have

  7. Long-term changes in migration timing of Song Thrush Turdus philomelos at the southern Baltic coast in response to temperatures on route and at breeding grounds.

    Science.gov (United States)

    Redlisiak, Michał; Remisiewicz, Magdalena; Nowakowski, Jarosław K

    2018-05-26

    Climate warming causes the advancement of spring arrival of many migrant birds breeding in Europe, but the effects on their autumn migration are less known. We aimed to determine any changes in the timing of Song Thrush captured during spring and autumn migrations at the Polish Baltic coast from 1975 to 2014, and if these were related to long-term changes of temperature at their breeding grounds and migration routes. The timing of spring migration at Hel ringing station in 1975-2014 did not show long-term advance, but they had responded to environmental conditions on the year-to-year basis. The warmer the temperatures were in April on their migration route, the earlier were the dates of the median and the end of spring migration at Hel. The beginning of autumn migration at the Mierzeja Wiślana ringing station advanced by 5 days between 1975 and 2014. The warmer the April on route, and the July at the Song Thrushes' breeding grounds, the earlier young birds began autumn migration across the Baltic coast. We suggest this was a combined effect of adults' migration and breeding early during warm springs and young birds getting ready faster for autumn migration during warm summers. The average time span of 90% of the autumn migration was extended by 5 days, probably because of early migration of young birds from first broods and late of those from second broods enabled by warm springs and summers. The response of Song Thrushes' migration timing to temperatures on route and at the breeding grounds indicated high plasticity in the species and suggested it might adapt well to climate changes.

  8. The consequences of Ireland's culture of medical migration.

    Science.gov (United States)

    Humphries, Niamh; Crowe, Sophie; McDermott, Cian; McAleese, Sara; Brugha, Ruairi

    2017-12-28

    In recent years, Ireland has experienced a large-scale, outward migration of doctors. This presents a challenge for national policy makers and workforce planners seeking to build a self-sufficient medical workforce that trains and retains enough doctors to meet demand. Although, traditionally, medical migration has been considered beneficial to the Irish health system, austerity has brought a greater level of uncertainty to the health system and, with it, a need to reappraise the professional culture of migration and its impact on the Irish health system. This paper illustrates how a culture of migration informs career and migration plans. It draws on quantitative data-registration and migration data from source and destination countries-and qualitative data-in-depth interviews with 50 doctors who had undertaken postgraduate medical training in Ireland. Of 50 respondents, 42 highlighted the importance of migration. The culture of medical migration rests on two assumptions-that international training/experience is beneficial to all doctors and that those who emigrate will return to Ireland with additional skills and experience. This assumption of return is challenged by a new generation of doctors whose professional lives have been shaped by globalisation and by austerity. Global comparisons reveal the comparatively poor working conditions, training and career opportunities in Ireland and the relative attractiveness of a permanent career abroad. In light of these changes, there is a need to critically appraise the culture of medical migration to determine if and in what circumstances migration is appropriate to the needs of the Irish health system. The paper considers the need to reappraise the culture of medical migration and the widespread emigration that it promotes.

  9. Factors affecting timing of closure and non-reversal of temporary ileostomies

    NARCIS (Netherlands)

    Sier, M. F.; van Gelder, L.; Ubbink, D. T.; Bemelman, W. A.; Oostenbroek, R. J.

    2015-01-01

    Although stoma closure is considered a simple surgical intervention, the interval between construction and reversal is often prolonged, and some ileostomies may never be reversed. We evaluated possible predictors for non-reversal and prolonged interval between construction and reversal. In a cohort

  10. Test of time reversal invariance in p-p elastic scattering at 198.5 MeV

    International Nuclear Information System (INIS)

    Davis, C.A.; Greeniaus, L.G.; Moss, G.A.

    1986-01-01

    A precise measurement of the polarization-analyzing power difference in p-p elastic scattering has been made at 198.5 MeV to improve the experimental limits on time reversal violation in proton-proton scattering in this energy region. The experiment was performed in a kinematic regime where sensitivities to time reversal violating amplitudes should be high. Experimental methods which eliminated the need to refer to absolute values of the beam polarization or to the analyzing power of a polarimeter were used. The result is (P-A) = 0.0047 with a statistical uncertainty of +- 0.0025 and a systematic uncertainty of +- 0.0015

  11. Breast cancer detection using time reversal

    Science.gov (United States)

    Sheikh Sajjadieh, Mohammad Hossein

    Breast cancer is the second leading cause of cancer death after lung cancer among women. Mammography and magnetic resonance imaging (MRI) have certain limitations in detecting breast cancer, especially during its early stage of development. A number of studies have shown that microwave breast cancer detection has potential to become a successful clinical complement to the conventional X-ray mammography. Microwave breast imaging is performed by illuminating the breast tissues with an electromagnetic waveform and recording its reflections (backscatters) emanating from variations in the normal breast tissues and tumour cells, if present, using an antenna array. These backscatters, referred to as the overall (tumour and clutter) response, are processed to estimate the tumour response, which is applied as input to array imaging algorithms used to estimate the location of the tumour. Due to changes in the breast profile over time, the commonly utilized background subtraction procedures used to estimate the target (tumour) response in array processing are impractical for breast cancer detection. The thesis proposes a new tumour estimation algorithm based on a combination of the data adaptive filter with the envelope detection filter (DAF/EDF), which collectively do not require a training step. After establishing the superiority of the DAF/EDF based approach, the thesis shows that the time reversal (TR) array imaging algorithms outperform their conventional conterparts in detecting and localizing tumour cells in breast tissues at SNRs ranging from 15 to 30dB.

  12. Reflection tomography from pre-stack migrated images; Tomographie de reflexion a partir des images migrees avant addition

    Energy Technology Data Exchange (ETDEWEB)

    Adler, F

    1996-10-29

    The application of reflection tomography to data from complex geological structures is very interesting in the hydrocarbons exploration. Indeed, it contributes to localize the hydrocarbons potential traps. The used reflection tomography method is faced with two major difficulties. Travel time picking is difficult or impossible in seismic time sections. The processing of multiple arrival travel times needs an adequate formulation of reflection tomography. In order to solve the first problem, we adopt the approach of the SMART (Sequential Migration Aided Reflection Tomography) method which is an original method for the implementation of migration velocity analysis. The velocity model is automatically calculated by reflection tomography. The kinematic data set for reflection tomography is constructed from pre-stack depth-migrated images that are interpreted in the chosen migration configuration. For the implementation of the SMART method in the common-offset domain, we propose an original formulation of reflection tomography that takes multiple arrival travel times, which are calculated from common-offset migrated images, into account. In this new formulation, we look for a model such that a modelling, which consists in shooting in this model from the source locations with some ray parameters at the source, matches some emergence conditions: for each offset, the rays emerge at the receiver locations (given by the offset) with the same travel times and the same travel time slopes as observed in the associated common-offset section. These conditions constitute the kinematic data set for tomographic inversion. The common-offset travel time slope is the difference between the ray parameter at the receiver and the ray parameter at the source. Therefore, the ray parameter at the source is an unknown and has to be determined together with the model parameters during inversion. (author)

  13. Lateral Casimir-Polder forces by breaking time-reversal symmetry

    Science.gov (United States)

    Oude Weernink, Ricardo R. Q. P. T.; Barcellona, Pablo; Buhmann, Stefan Yoshi

    2018-03-01

    We examine the lateral Casimir-Polder force acting on a circular rotating emitter near a dielectric plane surface. As the circular motion breaks time-reversal symmetry, the spontaneous emission in a direction parallel to the surface is in general anisotropic. We show that a lateral force arises which can be interpreted as a recoil force because of this asymmetric emission. The force is an oscillating function of the distance between the emitter and the surface, and the lossy character of the dielectric strongly influences the results in the near-field regime. The force exhibits also a population-induced dynamics, decaying exponentially with respect to time on time scales of the inverse of the spontaneous decay rate. We propose that this effect could be detected measuring the velocity acquired by the emitter, following different cycles of excitation and spontaneous decay. Our results are expressed in terms of the Green's tensor and can therefore easily be applied to more complex geometries.

  14. The reversed and normal flux contributions to axial dipole decay for 1880-2015

    Science.gov (United States)

    Metman, M. C.; Livermore, P. W.; Mound, J. E.

    2018-03-01

    The axial dipole component of Earth's internal magnetic field has been weakening since at least 1840, an effect widely believed to be attributed to the evolution of reversed flux patches (RFPs). These are regions on the core-mantle boundary (CMB) where the sign of radial flux deviates from that of the dominant sign of hemispheric radial flux. We study dipole change over the past 135 years using the field models gufm1, COV-OBS.x1 and CHAOS-6; we examine the impact of the choice of magnetic equator on the identification of reversed flux, the contribution of reversed and normal flux to axial dipole decay, and how reversed and normal field evolution has influenced the axial dipole. We show that a magnetic equator defined as a null-flux curve of the magnetic field truncated at spherical harmonic degree 3 allows us to robustly identify reversed flux, which we demonstrate is a feature of at least degree 4 or 5. Additionally, our results indicate that the evolution of reversed flux accounts for approximately two-thirds of the decay of the axial dipole, while one third of the decay is attributed to the evolution of the normal field. We find that the decay of the axial dipole over the 20th century is associated with both the expansion and poleward migration of reversed flux patches. In contrast to this centennial evolution, changes in the structure of secular variation since epoch 2000 indicate that poleward migration currently plays a much reduced role in the ongoing dipole decay.

  15. Extended common-image-point gathers for anisotropic wave-equation migration

    KAUST Repository

    Sava, Paul C.; Alkhalifah, Tariq Ali

    2010-01-01

    In regions characterized by complex subsurface structure, wave-equation depth migration is a powerful tool for accurately imaging the earth’s interior. The quality of the final image greatly depends on the quality of the model which includes

  16. Toward predictive scenarios of planetary migration

    International Nuclear Information System (INIS)

    Baruteau, Clement

    2008-01-01

    The recent detection of extra-solar planets has provided an exciting opportunity to test our theories of planet formation and evolution. An impressive result is the significant proportion of giant planets located much closer to their star than Mercury is from our own Sun. These planets should have formed further out in the protoplanetary disc, thus one needs to explain how they could move closer to their host star. Remarkably enough, such an explanation was proposed well before the discovery of the first exo-planet. It considered the interaction between a planet and the protoplanetary disc, which leads to a decrease of the planet's semi-major axis. This is known as planetary migration. Many studies have shown that the migration timescale of low-mass planets is much shorter than the lifetime of the disc. All planets should therefore have migrated to the vicinity of their host star. This is at least in contradiction with the locations of the planets in our Solar System. In order to elaborate predictive scenarios of planet formation and evolution, it is of primary interest to refine our understanding of disc-planet interactions. The inclusion of the disc self-gravity is an illustration of this. With analytical and numerical arguments, I show that discarding the self-gravity leads to a significant overestimate of the differential Lindblad torque for migrating low-mass planets. Another aspect explored in this thesis is the impact of the gas thermodynamics on migration. I show that the thermodynamic evolution of the disc induces an additional contribution to the corotation torque, which may dramatically slow down or even reverse the migration of low-mass planets. (author) [fr

  17. Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site

    Energy Technology Data Exchange (ETDEWEB)

    Pal, S., E-mail: sp5hd@Virginia.EDU; Lee, T.R.; Phelps, S.; De Wekker, S.F.J.

    2014-10-15

    concentration variability • Only accumulation mode particles are affected by boundary layer dilution effect. • Effect of wind reversal in a valley on the diurnal cycle of particle concentrations. • Decreasing trend in the boundary layer depths resulted in an increasing trend in aerosol concentration. • Effect of boundary layer depth growth rate on aerosol concentration.

  18. Time-reversal-violating Schiff moment of 199Hg

    International Nuclear Information System (INIS)

    Jesus, J.H. de; Engel, J.

    2005-01-01

    We calculate the Schiff moment of the nucleus 199 Hg, created by πNN vertices that are odd under parity (P) and time-reversal (T). Our approach, formulated in diagrammatic perturbation theory with important core-polarization diagrams summed to all orders, gives a close approximation to the expectation value of the Schiff operator in the odd-A Hartree-Fock-Bogoliubov ground state generated by a Skyrme interaction and a weak P- and T-odd pion-exchange potential. To assess the uncertainty in the results, we carry out the calculation with several Skyrme interactions, the quality of which we test by checking predictions for the isoscalar-E1 strength distribution in 208 Pb, and estimate most of the important diagrams we omit

  19. Laser ultrasound and simulated time reversal on bulk waves for non destructive control

    International Nuclear Information System (INIS)

    Diot, G; Walaszek, H; Kouadri-David, A; Guégan, S; Flifla, J

    2014-01-01

    Laser welding of aluminium generally creates embedded welding defects, such as porosities or cracks. Non Destructive Inspection (NDI) after processing may ensure an acceptable weld quality by defect detection. Nowadays, NDI techniques used to control the inside of a weld are mainly limited to X-Rays or ultrasonics. The current paper describes the use of a Laser Ultrasound (LU) technique to inspect porosities in 2 and 4-mm thick sheet lap welds. First experimentations resulted in the detection of 0.5-mm drilled holes in bulk aluminium sheets. The measurement of the depth of these defects is demonstrated too. Further experimentations shows the applicability of the LU technique to detect porosities in aluminium laser welds. However, as the interpretation of raw measures is limiting the detection capacity of this technique, we developed a signal processing using Time-Reversal capabilities to enhance detection capacities. Furthermore, the signal processing output is a geometrical image of the material's inner state, increasing the ease of interpretation. It is based on a mass-spring simulation which enables the back-propagation of the acquired ultrasound signal. The spring-mass simulation allows the natural generation of all the different sound waves and thus enables the back-propagation of a raw signal without any need of filtering or wave identification and extraction. Therefore the signal processing uses the information contained in the compression wave as well as in the shear wave

  20. On the focusing conditions in time-reversed acoustics, seismic interferometry, and Marchenko imaging

    NARCIS (Netherlands)

    Wapenaar, C.P.A.; Van der Neut, J.R.; Thorbecke, J.W.; Vasconcelos, I.; Van Manen, D.J.; Ravasi, M.

    2014-01-01

    Despite the close links between the fields of time-reversed acoustics, seismic interferometry and Marchenko imaging, a number of subtle differences exist. This paper reviews the various focusing conditions of these methods, the causality/acausality aspects of the corresponding focusing wavefields,

  1. Multi-source least-squares reverse time migration with topography

    KAUST Repository

    Zhang, Dongliang; Schuster, Gerard T.; Zhan, Ge

    2013-01-01

    We demonstrate an accurate method for calculating LSM images from data recorded on irregular topography. Our results with both the Marmousi and Foothill models with steep topography suggest the effectiveness of this method.

  2. Multi-source least-squares reverse time migration with topography

    KAUST Repository

    Zhang, Dongliang

    2013-09-22

    We demonstrate an accurate method for calculating LSM images from data recorded on irregular topography. Our results with both the Marmousi and Foothill models with steep topography suggest the effectiveness of this method.

  3. Modeling approach to various time and spatial scale environmental issues in Fukushima. Related to radioactive cesium migration in aquatic systems

    International Nuclear Information System (INIS)

    Kurikami, Hiroshi; Kitamura, Akihiro; Yamada, Susumu; Machida, Masahiko

    2015-01-01

    Several numerical models have been prepared to deal with various time- and spatial-scale issues related to radioactive cesium migration in environment in Fukushima area. The SACT (Soil and Cesium Transport) model developed by the Japan Atomic Energy Agency (JAEA) predicts middle- to long-term evolution of radioactive cesium distribution due to soil erosion, subsequent sediment transport and deposition, and radioactive cesium migration based on the Universal Soil Loss Equation (USLE). The TODAM (Time-dependent One-dimensional Degradation and Migration) model, iRIC/Nays2D and the FLESCOT (Flow, Energy, Salinity, Sediment, Contaminant Transport) model are one-, two- and three-dimensional river/reservoir/coastal models, respectively. Based on conservation equations of sediment and radioactive cesium, they treat advection and diffusion of suspended sediment and cesium, deposition of sediment to bed, re-suspension from bed and adsorption/desorption of radioactive cesium. These models are suitable for small and short time scale issues such as high discharges of sediment and radioactive cesium from rivers due to heavy rainfall events. This paper describes fragments of the JAEA’s approaches of modeling to deal with the issues corresponding to radioactive cesium migration in environment with some case studies. (author)

  4. Bounds on Time Reversal Violation From Polarized Neutron Capture With Unpolarized Targets.

    Science.gov (United States)

    Davis, E D; Gould, C R; Mitchell, G E; Sharapov, E I

    2005-01-01

    We have analyzed constraints on parity-odd time-reversal noninvariant interactions derived from measurements of the energy dependence of parity-violating polarized neutron capture on unpolarized targets. As previous authors found, a perturbation in energy dependence due to a parity (P)-odd time (T)-odd interaction is present. However, the perturbation competes with T-even terms which can obscure the T-odd signature. We estimate the magnitudes of these competing terms and suggest strategies for a practicable experiment.

  5. The Anguilla spp. migration problem: 40 million years of evolution and two millennia of speculation

    DEFF Research Database (Denmark)

    Righton, D.; Aarestrup, K.; Jellyman, D.

    2012-01-01

    , information on migratory behaviour is remarkably sketchy. The latest knowledge on the requirements for successful migration and field data on the migrations of adults and larvae are presented, how experiments on swimming efficiency have progressed the understanding of migration are highlighted...... and the challenges of swimming at depth considered. The decline of Anguilla spp. across the world is an ongoing concern for fisheries and environmental managers. New developments in the knowledge of eel migration will, in addition to solving a centuries old mystery, probably help to identify how this decline might...

  6. Capture of microtubule plus-ends at the actin cortex promotes axophilic neuronal migration by enhancing microtubule tension in the leading process.

    Science.gov (United States)

    Hutchins, B Ian; Wray, Susan

    2014-01-01

    Microtubules are a critical part of neuronal polarity and leading process extension, thus microtubule movement plays an important role in neuronal migration. However, the dynamics of microtubules during the forward movement of the nucleus into the leading process (nucleokinesis) is unclear and may be dependent on the cell type and mode of migration used. In particular, little is known about cytoskeletal changes during axophilic migration, commonly used in anteroposterior neuronal migration. We recently showed that leading process actin flow in migrating GnRH neurons is controlled by a signaling cascade involving IP3 receptors, CaMKK, AMPK, and RhoA. In the present study, microtubule dynamics were examined in GnRH neurons. Failure of the migration of these cells leads to the neuroendocrine disorder Kallmann Syndrome. Microtubules translocated forward along the leading process shaft during migration, but reversed direction and moved toward the nucleus when migration stalled. Blocking calcium release through IP3 receptors halted migration and induced the same reversal of microtubule translocation, while blocking cortical actin flow prevented microtubules from translocating toward the distal leading process. Super-resolution imaging revealed that microtubule plus-end tips are captured at the actin cortex through calcium-dependent mechanisms. This work shows that cortical actin flow draws the microtubule network forward through calcium-dependent capture in order to promote nucleokinesis, revealing a novel mechanism engaged by migrating neurons to facilitate movement.

  7. AFSC/RACE/GAP/Nichol: Archival tag depth and temperature data from northern rock sole

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Depth data from archival tags on northern rock sole (Lepidopsetta polyxystra) were examined to assess whether fish used tidal currents to aid horizontal migration....

  8. Parity and time-reversal violation in nuclei and atoms

    International Nuclear Information System (INIS)

    Adelberger, E.G.

    1986-01-01

    Two topics are briefly reviewed: the parity (P)-violating NN interaction and the time-reversal (T) and P-violating electric moments (EDM's) of atoms. The ΔI = 1 P-violating NN amplitude dominated by weak π +- exchange is found to be appreciably smaller than bag-model predictions. This may be a dynamical symmetry of flavor-conserving hadronic weak processes reminiscent of the ΔI = 1/2 rule in flavor-changing decays. General principles of experimental searches for atomic EDM's are discussed. Atomic EDM's are sensitive to electronic or nuclear EDM's and to a P-and-T-violating electron-quark interaction. Even though the experimental precision is still ∼10 4 times worse than counting statistics, the recent results have reached a sensitivity to nuclear EDM's which rivals that of the neutron EDM data. Further significant improvements can be expected

  9. First passage times for multiple particles with reversible target-binding kinetics

    Science.gov (United States)

    Grebenkov, Denis S.

    2017-10-01

    We investigate the first passage problem for multiple particles that diffuse towards a target, partially adsorb there, and then desorb after a finite exponentially distributed residence time. We search for the first time when m particles undergoing such reversible target-binding kinetics are found simultaneously on the target that may trigger an irreversible chemical reaction or a biophysical event. Even if the particles are independent, the finite residence time on the target yields an intricate temporal coupling between particles. We compute analytically the mean first passage time (MFPT) for two independent particles by mapping the original problem to higher-dimensional surface-mediated diffusion and solving the coupled partial differential equations. The respective effects of the adsorption and desorption rates on the MFPT are revealed and discussed.

  10. Migration signatures across the decades: Net migration by age in U.S. counties, 1950-2010

    Directory of Open Access Journals (Sweden)

    Richelle L. Winkler

    2015-05-01

    Full Text Available Background: Migration is the primary population redistribution process in the United States. Selective migration by age, race/ethnic group, and spatial location governs population integration, affects community and economic development, contributes to land use change, and structures service needs. Objective: Delineate historical net migration patterns by age, race/ethnic, and rural-urban dimensions for United States counties. Methods: Net migration rates by age for all US counties are aggregated from 1950−2010, summarized by rural-urban location and compared to explore differential race/ethnic patterns of age-specific net migration over time. Results: We identify distinct age-specific net migration 'signatures' that are consistent over time within county types, but different by rural-urban location and race/ethnic group. There is evidence of moderate population deconcentration and diminished racial segregation between 1990 and 2010. This includes a net outflow of Blacks from large urban core counties to suburban and smaller metropolitan counties, continued Hispanic deconcentration, and a slowdown in White counterurbanization. Conclusions: This paper contributes to a fuller understanding of the complex patterns of migration that have redistributed the U.S. population over the past six decades. It documents the variability in county age-specific net migration patterns both temporally and spatially, as well as the longitudinal consistency in migration signatures among county types and race/ethnic groups.

  11. Sorption and Migration Mechanisms of 237 Np through Sandy Soil

    International Nuclear Information System (INIS)

    Chantaraprachoom, Nanthavan; Tanaka, Tadao

    2003-06-01

    In order to evaluate migration behavior of radioactive nuclides in the disposal of low-level radioactive waste into a shallow land burial, the sorption characteristic and migration behavior of 237 Np through sandy soil was studied. Two experimental methods were performed by using batch and column systems. The distribution coefficients (K d ) obtained from the adsorption and desorption process are rather small about 16 and 21 cm 3 /g respectively. Size distribution of 237 Np species in the influent solution was measured by ultra-filtration technique. Migration mechanism of 237 Np was studied by column experiments. The experimental condition was the influence of volume of eluting solution; 100, 300, 500, 1000 and 2000 ml respectively. The result from five column experiments confirm that the sorption characteristics of 237 Np are mainly controlled by a reversible ion-exchange reaction and the migration of 237 Np in the sandy soil can be estimated by using the K d concept

  12. College Student Migration.

    Science.gov (United States)

    Fenske, Robert H.; And Others

    This study examines the background characteristics of two large national samples of first-time enrolled freshmen who (a) attended college within their state of residence but away from their home community, (b) migrated to a college in an adjacent state, (c) migrated to a college in a distant state, and (d) attended college in their home community.…

  13. A simple method for migrating narrow aperture, noisy seismic reflection data and application to Project INDEPTH (International Deep Profiling of Tibet and the Himalaya) deep seismic profiles

    Science.gov (United States)

    Alsdorf, Doug

    1997-08-01

    Migration of deep seismic data is often hindered by a narrow recording aperture (line length by record length) and a low signal-to-noise ratio. The severity of typical migration artifacts (e.g., lateral smearing of discontinuous reflections into synforms, "smiles") increases with travel time such that interpreters of deep seismic data have often substituted migrated line drawings for the actual sections. As part of Project INDEPTH (International Deep Profiling of Tibet and the Himalaya), a new migration method was developed to address both the noise and migration issues. The method works in the time-space domain and uses the simple, constant velocity, straight ray path to perform the migration. First, only amplitudes within a given range are retained for migration, thus avoiding high-amplitude noise bursts and low-amplitude background noise. Then, the local dip of a reflection is found by automatically fitting a straight line to the highest amplitudes within a small window (several time samples by several traces) and calculating the dip of the line using a constant velocity. Finally, using this dip, the method migrates a selected amplitude value. The dips, lateral positions, and depths of the migrated events compare very well with output from more conventional algorithms (e.g.,fk-Stolt, finite difference, etc.). The advantages of the new method include fewer artifacts, fast computer run times, low memory use and the ability to migrate long profiles and travel times (e.g., 50 s). The output of the method is a grid of migrated amplitudes (not wavelets) or dip values which is particularly effective for making small figures, such as those needed for publication. The principal disadvantage is the use of a constant migration velocity.

  14. Radionuclide chain migration in fissured rock

    International Nuclear Information System (INIS)

    Rasmuson, A.; Neretnieks, I.

    1982-04-01

    Diffusion into the rock matrix has a large impact on the migration of radionuclides in the geosphere. The aim of the present study is to investigate the effect of this mechanism on radionuclide chain migration. For this purpose a previously used numerical code TRUMP is extended to incorporate chain decay. The algorithm is also changed to directly include the decay terms. The extended version was given the acronym TRUCHN. Numerical solutions from TRUCHN are compared with the analytical solutions developed by Lester et al. A good agreement is obtained. To illustrate the impact of matrix diffusion on the arrival times to the biosphere of the members of a radionuclide chain a number of numerical calculations were done for the two chains U-238 to Th-230 to Ra-226 and Pu-239 to U-235 to Pa-231. The resulting curves are compared with the results for surface sorption (penetration depth 10 - 4 m) and volume sorption (complete penetration) obtained with the computer program GETOUT. The difference in first arrival times are very large. The arrival times in the surface and volume sorption cases, differ with as much as four orders of magnitude. The corresponding times for instationary diffusion are located between these extreme values. A daughter nuclide which is strongly sorbed may be heavily retarded if it is produced far inside the rock matrix and has a long way to diffuse before it reaches the flowing water. This effect is investigated, by considering diffusion only of a radionuclide chain, with analytical and numerical (TRUCHN) methods. Finally, in connection with the reconcentration effect, some means of describing the outflow of a daughter nuclide in terms of the outflow of its parent nuclide are proposed. (Authors)

  15. First direct observation of time-reversal violation

    International Nuclear Information System (INIS)

    Angelopoulos, A.; Apostolakis, A.; Aslanides, E.; Bertin, V.; Ealet, A.; Henry-Couannier, F.; Le Gac, R.; Montanet, F.; Touchard, F.; Backenstoss, G.; Benelli, A.; Kokkas, P.; Leimgruber, F.; Pavlopoulos, P.; Polivka, G.; Rickenbach, R.; Schietinger, T.; Tauscher, L.; Vlachos, S.; Bargassa, P.

    2000-01-01

    Using its unique capability of strangeness tagging at K 0 production in pp-bar→K ± π ± K 0 (K-bar) 0 ) and at decay with the lepton charge in semileptonic decays CPLEAR measured the semileptonic decay-rate asymmetry (R(K-bar) 0 →e + π - ν)-R(K 0 →e - π + ν-bar)/R(K-bar) 0 →e + π - ν)+R(K 0 →e - π + ν-bar). The asymmetry, fitted over the eigentime interval 1-20 τ S , yielded a non-zero result of (6.6±1.3 stat ±1.1 syst )x10 -3 . A thorough phenomenological analysis identifies T violation in K 0 mixing and/or CPT violation in semileptonic decays as possible interpretations. A confrontation with world data on neutral kaon decays, however, excludes the latter with sufficient precision to establish the result as the first direct observation of time reversal non-invariance

  16. Joint DOE/NRC field study of tracer migration in the unsaturated zone

    International Nuclear Information System (INIS)

    Nyhan, J.; Polzer, W.; Essington, E.; Cokal, E.; Lane, L.; Lopez, E.; Stallings, E.; Walker, R.

    1986-03-01

    The results of a joint DOE/NRC field experiment to evaluate leaching and transport of solutes in a sandy silt backfill used for shallow land burial operations at Los Alamos are presented for steady-state and unsteady-state flow conditions. The migration of iodide, bromide, and lithium through the backfill material is studied as functions of depth and time and they are compared with one another. The bromide and iodide tracer data are used to estimate the diffusion coefficient, the tortuosity factor, and dispersivity. These values are used to calculate effective dispersion coefficients for subsequent analyses of the retardation factor and the distribution coefficient for lithium using least squares procedures. The results of the tracer migration study are discussed relative to challenges facing the waste management community, and chemical transport modeling opportunities are presented for a modeling workshop to be held in FY86

  17. Features of geologic structure of 'Lira' object territory and possible radionuclide migration pathways

    International Nuclear Information System (INIS)

    Belyashov, D.N.; Mokhov, V.A.; Melent'ev, M.I.; Kislyj, B.I.

    1999-01-01

    In the upper part of Karachaganak salt couple on the Lira object there are 6 artificially created chambers designed for gas condensate store at the depth 850-900 m. The chambers were created with help of underground nuclear explosions. At present a general assessment of radionuclide migration pathways from underground points of an explosion on the surrounding territories in the Lira vicinage is done. On the basis of analysis of geological and hydrogeological data by the Lira area the 4 stratigraphical and hypsometric level of possible radionuclide migration pathways could be marked out. The first of these levels related with Upper Permian saliferous sediments and it covers depths about 1 km up to couple roofing. Here the radionuclide migration will take part by tectonic breaks and fractured reservoirs, activated by energies of conducted explosions. Higher stratigraphic and hypsometric levels have been related with sediments of trias, Jurassic and partially of Cretaceous (second level), pliocene and pliocene-under Quaternary age (third level) and Quaternary sediments of Ural, Ilek and Berezovka rivers terraces (fourth level) where it is possible considerable lateral radionuclide migration in the northern and southern directions toward the couple's framing carvings

  18. Subsurface migration of petroleum hydrocarbons: A case study of immiscible migration and chromatographic separation

    International Nuclear Information System (INIS)

    Dawson, H.E.

    1991-01-01

    The subsurface distribution of a leaked crude oil illustrates the combined influence of both the chemical and physical properties of soil and free product on the migration of petroleum hydrocarbons. Immiscible phase behavior was observed, as well as chromatographic-like separation of the lighter constituents of the crude oil from the heavier constituents. After downward migration through approximately 50 ft of unsaturated, heterogeneous alluvial sediments, the crude oil formed a horizontal plume on top of a perched, saturated zone. Immiscible phase trapping is evident from the occurrence of very high concentration of hydrocarbons in both the vertical and horizontal plumes. Samples taken from the vertical zone of contamination indicate a transition from heavier hydrocarbons near the surface to lighter hydrocarbons at depth. This phenomenon is attributed to chromatographic-like separation of the heavier hydrocarbons by the soil, possibly due to preferential solubility of the lighter hydrocarbons in percolating ran water

  19. Marriage Migration Versus Family Reunification : How Does the Marriage and Migration History Affect the Timing of First and Second Childbirth Among Turkish Immigrants in Germany?

    NARCIS (Netherlands)

    Wolf, Katharina

    2016-01-01

    Our study focuses on the fertility of first-generation female and male Turkish migrants in Germany. To evaluate whether timing effects such as fertility disruption or an interrelation of marriage, migration and childbirth occur, we examine first and second births in the years before and after

  20. Optimized 4-bit Quantum Reversible Arithmetic Logic Unit

    Science.gov (United States)

    Ayyoub, Slimani; Achour, Benslama

    2017-08-01

    Reversible logic has received a great attention in the recent years due to its ability to reduce the power dissipation. The main purposes of designing reversible logic are to decrease quantum cost, depth of the circuits and the number of garbage outputs. The arithmetic logic unit (ALU) is an important part of central processing unit (CPU) as the execution unit. This paper presents a complete design of a new reversible arithmetic logic unit (ALU) that can be part of a programmable reversible computing device such as a quantum computer. The proposed ALU based on a reversible low power control unit and small performance parameters full adder named double Peres gates. The presented ALU can produce the largest number (28) of arithmetic and logic functions and have the smallest number of quantum cost and delay compared with existing designs.

  1. Deterministic time-reversible thermostats: chaos, ergodicity, and the zeroth law of thermodynamics

    Science.gov (United States)

    Patra, Puneet Kumar; Sprott, Julien Clinton; Hoover, William Graham; Griswold Hoover, Carol

    2015-09-01

    The relative stability and ergodicity of deterministic time-reversible thermostats, both singly and in coupled pairs, are assessed through their Lyapunov spectra. Five types of thermostat are coupled to one another through a single Hooke's-law harmonic spring. The resulting dynamics shows that three specific thermostat types, Hoover-Holian, Ju-Bulgac, and Martyna-Klein-Tuckerman, have very similar Lyapunov spectra in their equilibrium four-dimensional phase spaces and when coupled in equilibrium or nonequilibrium pairs. All three of these oscillator-based thermostats are shown to be ergodic, with smooth analytic Gaussian distributions in their extended phase spaces (coordinate, momentum, and two control variables). Evidently these three ergodic and time-reversible thermostat types are particularly useful as statistical-mechanical thermometers and thermostats. Each of them generates Gibbs' universal canonical distribution internally as well as for systems to which they are coupled. Thus they obey the zeroth law of thermodynamics, as a good heat bath should. They also provide dissipative heat flow with relatively small nonlinearity when two or more such temperature baths interact and provide useful deterministic replacements for the stochastic Langevin equation.

  2. Upward migration of Vesuvius magma chamber over the past 20,000 years.

    Science.gov (United States)

    Scaillet, B; Pichavant, M; Cioni, R

    2008-09-11

    Forecasting future eruptions of Vesuvius is an important challenge for volcanologists, as its reawakening could threaten the lives of 700,000 people living near the volcano. Critical to the evaluation of hazards associated with the next eruption is the estimation of the depth of the magma reservoir, one of the main parameters controlling magma properties and eruptive style. Petrological studies have indicated that during past activity, magma chambers were at depths between 3 and 16 km (refs 3-7). Geophysical surveys have imaged some levels of seismic attenuation, the shallowest of which lies at 8-9 km depth, and these have been tentatively interpreted as levels of preferential magma accumulation. By using experimental phase equilibria, carried out on material from four main explosive events at Vesuvius, we show here that the reservoirs that fed the eruptive activity migrated from 7-8 km to 3-4 km depth between the ad 79 (Pompeii) and ad 472 (Pollena) events. If data from the Pomici di Base event 18.5 kyr ago and the 1944 Vesuvius eruption are included, the total upward migration of the reservoir amounts to 9-11 km. The change of preferential magma ponding levels in the upper crust can be attributed to differences in the volatile content and buoyancy of ascending magmas, as well as to changes in local stress field following either caldera formation or volcano spreading. Reservoir migration, and the possible influence on feeding rates, should be integrated into the parameters used for defining expected eruptive scenarios at Vesuvius.

  3. Morphological constraints on changing avian migration phenology.

    Science.gov (United States)

    Møller, A P; Rubolini, D; Saino, N

    2017-06-01

    Many organisms at northern latitudes have responded to climate warming by advancing their spring phenology. Birds are known to show earlier timing of spring migration and reproduction in response to warmer springs. However, species show heterogeneous phenological responses to climate warming, with those that have not advanced or have delayed migration phenology experiencing population declines. Although some traits (such as migration distance) partly explain heterogeneity in phenological responses, the factors affecting interspecies differences in the responsiveness to climate warming have yet to be fully explored. In this comparative study, we investigate whether variation in wing aspect ratio (reflecting relative wing narrowness), an ecomorphological trait that is strongly associated with flight efficiency and migratory behaviour, affects the ability to advance timing of spring migration during 1960-2006 in a set of 80 European migratory bird species. Species with larger aspect ratio (longer and narrower wings) showed smaller advancement of timing of spring migration compared to species with smaller aspect ratio (shorter and wider wings) while controlling for phylogeny, migration distance and other life-history traits. In turn, migration distance positively predicted aspect ratio across species. Hence, species that are better adapted to migration appear to be more constrained in responding phenologically to rapid climate warming by advancing timing of spring migration. Our findings corroborate the idea that aspect ratio is a major evolutionary correlate of migration, and suggest that selection for energetically efficient flights, as reflected by high aspect ratio, may hinder phenotypically plastic/microevolutionary adjustments of migration phenology to ongoing climatic changes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  4. Alongshore Variation in the Depth of Activation: Implications of Oil Residence Time

    Science.gov (United States)

    Flores, P.; Houser, C.

    2016-12-01

    In 2010 the Deepwater Horizon Oil Spill released approximately 5 million barrels of oil into the Gulf of Mexico just as the nearshore and beach profile were recovering from winter storms. As a consequence, oil mats and tar balls were trapped at depth within the beach and nearshore profile. Excavation of this buried oil during subsequent storms creates the potential for the contamination of adjacent beaches and the degradation of marine ecosystems, which can in turn negatively impact local economies that depend on fisheries and tourism. The potential for oil burial and persistence is dependent on four things: the physio-chemical nature of the oil as it reaches the nearshore environment, the pre-existing morphology of the beach and nearshore, and the evolution of that morphology after the oil is deposited. The depth at which the oil is buried is also dependent on the beach profile during the time of the spill. The purpose of this study is to characterize the alongshore variation in depth of activation on a Deepwater Horizon impacted section of Pensacola Beach, Florida with regards to the implications of oil residence time. Ground- Penetrating Radar (GPR) surveys were conducted along two parallel 1-km transects adjacent to the swash zone and the dune. Additional cross- shore transects were completed every 150 m from the base of the dune to the top of the swash zone. Sediments cores were taken at the crossing points of the alongshore and cross-shore transects, to calibrate the GPR surveys and complete an elemental analysis for the identification of storm layers. The cores were also analyzed for the presence of buried oil.

  5. Striations, duration, migration and tidal response in deep tremor.

    Science.gov (United States)

    Ide, Satoshi

    2010-07-15

    Deep tremor in subduction zones is thought to be caused by small repeating shear slip events on the plate interface with significant slow components. It occurs at a depth of about 30 kilometres and provides valuable information on deep plate motion and shallow stress accumulation on the fault plane of megathrust earthquakes. Tremor has been suggested to repeat at a regular interval, migrate at various velocities and be modulated by tidal stress. Here I show that some time-invariant interface property controls tremor behaviour, using precise location of tremor sources with event duration in western Shikoku in the Nankai subduction zone, Japan. In areas where tremor duration is short, tremor is more strongly affected by tidal stress and migration is inhibited. Where tremor lasts longer, diffusive migration occurs with a constant diffusivity of 10(4) m(2) s(-1). The control property may be the ratio of brittle to ductile areas, perhaps determined by the influence of mantle wedge serpentinization on the plate interface. The spatial variation of the controlling property seems to be characterized by striations in tremor source distribution, which follows either the current or previous plate subduction directions. This suggests that the striations and corresponding interface properties are formed through the subduction of inhomogeneous structure, such as seamounts, for periods as long as ten million years.

  6. Migration Pathways, Behavioural Thermoregulation and Overwintering Grounds of Blue Sharks in the Northwest Atlantic

    Science.gov (United States)

    Campana, Steven E.; Dorey, Anna; Fowler, Mark; Joyce, Warren; Wang, Zeliang; Yashayaev, Igor

    2011-01-01

    The blue shark Prionace glauca is the most abundant large pelagic shark in the Atlantic Ocean. Although recaptures of tagged sharks have shown that the species is highly migratory, migration pathways towards the overwintering grounds remain poorly understood. We used archival satellite pop-up tags to track 23 blue sharks over a mean period of 88 days as they departed the coastal waters of North America in the autumn. Within 1–2 days of entering the Gulf Stream (median date of 21 Oct), all sharks initiated a striking diel vertical migration, taking them from a mean nighttime depth of 74 m to a mean depth of 412 m during the day as they appeared to pursue vertically migrating squid and fish prey. Although functionally blind at depth, calculations suggest that there would be a ∼2.5-fold thermoregulatory advantage to swimming and feeding in the markedly cooler deep waters, even if there was any reduced foraging success associated with the extreme depth. Noting that the Gulf Stream current speeds are reduced at depth, we used a detailed circulation model of the North Atlantic to examine the influence of the diving behaviour on the advection experienced by the sharks. However, there was no indication that the shark diving resulted in a significant modification of their net migratory pathway. The relative abundance of deep-diving sharks, swordfish, and sperm whales in the Gulf Stream and adjacent waters suggests that it may serve as a key winter feeding ground for large pelagic predators in the North Atlantic. PMID:21373198

  7. Lamellipodia and Membrane Blebs Drive Efficient Electrotactic Migration of Rat Walker Carcinosarcoma Cells WC 256

    Science.gov (United States)

    Sroka, Jolanta; Krecioch, Izabela; Zimolag, Eliza; Lasota, Slawomir; Rak, Monika; Kedracka-Krok, Sylwia; Borowicz, Pawel; Gajek, Marta; Madeja, Zbigniew

    2016-01-01

    The endogenous electric field (EF) may provide an important signal for directional cell migration during wound healing, embryonic development and cancer metastasis but the mechanism of cell electrotaxis is poorly understood. Additionally, there is no research addressing the question on the difference in electrotactic motility of cells representing various strategies of cell movement—specifically blebbing vs. lamellipodial migration. In the current study we constructed a unique experimental model which allowed for the investigation of electrotactic movement of cells of the same origin but representing different modes of cell migration: weakly adherent, spontaneously blebbing (BC) and lamellipodia forming (LC) WC256 cells. We report that both BC and LC sublines show robust cathodal migration in a physiological EF (1–3 V/cm). The directionality of cell movement was completely reversible upon reversing the field polarity. However, the full reversal of cell direction after the change of EF polarity was much faster in the case of BC (10 minutes) than LC cells (30 minutes). We also investigated the distinct requirements for Rac, Cdc42 and Rho pathways and intracellular Ca2+ in electrotaxis of WC256 sublines forming different types of cell protrusions. It was found that Rac1 is required for directional movement of LC to a much greater extent than for BC, but Cdc42 and RhoA are more crucial for BC than for LC cells. The inhibition of ROCK did not affect electrotaxis of LC in contrast to BC cells. The results also showed that intracellular Ca2+ is essential only for the electrotactic reaction of BC cells. Moreover, inhibition of MLCK and myosin II did not affect the electrotaxis of LC in contrast to BC cells. In conclusion, our results revealed that both lamellipodia and membrane blebs can efficiently drive electrotactic migration of WC 256 carcinosarcoma cells, however directional migration is mediated by different signalling pathways. PMID:26863616

  8. Lamellipodia and Membrane Blebs Drive Efficient Electrotactic Migration of Rat Walker Carcinosarcoma Cells WC 256.

    Directory of Open Access Journals (Sweden)

    Jolanta Sroka

    Full Text Available The endogenous electric field (EF may provide an important signal for directional cell migration during wound healing, embryonic development and cancer metastasis but the mechanism of cell electrotaxis is poorly understood. Additionally, there is no research addressing the question on the difference in electrotactic motility of cells representing various strategies of cell movement-specifically blebbing vs. lamellipodial migration. In the current study we constructed a unique experimental model which allowed for the investigation of electrotactic movement of cells of the same origin but representing different modes of cell migration: weakly adherent, spontaneously blebbing (BC and lamellipodia forming (LC WC256 cells. We report that both BC and LC sublines show robust cathodal migration in a physiological EF (1-3 V/cm. The directionality of cell movement was completely reversible upon reversing the field polarity. However, the full reversal of cell direction after the change of EF polarity was much faster in the case of BC (10 minutes than LC cells (30 minutes. We also investigated the distinct requirements for Rac, Cdc42 and Rho pathways and intracellular Ca2+ in electrotaxis of WC256 sublines forming different types of cell protrusions. It was found that Rac1 is required for directional movement of LC to a much greater extent than for BC, but Cdc42 and RhoA are more crucial for BC than for LC cells. The inhibition of ROCK did not affect electrotaxis of LC in contrast to BC cells. The results also showed that intracellular Ca2+ is essential only for the electrotactic reaction of BC cells. Moreover, inhibition of MLCK and myosin II did not affect the electrotaxis of LC in contrast to BC cells. In conclusion, our results revealed that both lamellipodia and membrane blebs can efficiently drive electrotactic migration of WC 256 carcinosarcoma cells, however directional migration is mediated by different signalling pathways.

  9. Electric Dipole States and Time Reversal Violation in Nuclei

    International Nuclear Information System (INIS)

    Auerbach, N.

    2016-01-01

    The nuclear Schiff moment is essential in the mechanism that induces a parity and time reversal violation in the atom. In this presentation we explore theoretically the properties and systematics of the isoscalar dipole in nuclei with the emphasis on the low-energy strength and the inverse energy weighted sum which determines the Schiff moment. We also study the influence of the isovector dipole strength distribution on the Schiff moment. The influence of a large neutron excess in nuclei is examined. The centroid energies of the isoscalar giant resonance (ISGDR) and the overtone of the isovector giant dipole resonance (OIVGDR) are given for a range of nuclei. (paper)

  10. In situ migration experiment in argillaceous formation

    International Nuclear Information System (INIS)

    Yoshida, Hidekazu

    1990-01-01

    International cooperative R and D has been performed within the five years framework of the bilateral agreement between PNC (Power Reactor and Nuclear Fuel Development Corporation) and SCK/CEN (Studiecentrum voor Kernergie/Centre D'etude de L'energie Nucleaire, Mol, Belgium) which is focused on 'The Migration Experiment in argillaceous formation.' This Tertiary argillaceous formation, called Boom clay, is located at about 230m depth in Mol-Dessel area, Belgium. The argillaceous rock is considered to have a high capability for retardation to radionuclides when they migrate in geosphere because of a high content of clay minerals and dissolved carbon-rich pore water. The main purpose of this collaboration work is to characterize the migration phenomena in sedimentary rock through understanding of the behaviour of radionuclides migration in the argillaceous formation. The present report describes the preliminary results of in situ one-dimensional migration experiment with labelled clay core emplaced in borehole under advective condition. In the experiment, radioactive tracer Sr-85 and Eu-152+154 have been used in order to determine the apparent dispersion coefficient and retardation factor of Boom clay. Finally, the following conclusions were obtained by in situ measurement and calculation based on a appropriate migration model; a) From the Sr-85 experiment, diffusive behavior is interpreted to be a dominant phenomena on radionuclides transportation. b) From the Eu-152+154 experiment, very small non-retarded fraction is observed. (author)

  11. Study on experimental models to analyze radionuclide migration behaviors through porous geologic media

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Mukai, Masayuki

    2012-08-01

    The migration phenomenon of radionuclide through geological media such as soils and porous rocks, which is important in underground disposal of radioactive wastes, can be described by the advection-dispersion of groundwater and the interactions of radionuclide with geological media. On the other hand, to understand the migration phenomenon, actual migration data are experimentally acquired by a batch test, a column test and field trial. In the present study, experimental models about the interactions of radionuclide between the solid phase and the liquid phase were discussed systematically to interpret the migration data acquired by the various techniques and conditions. Equilibrium, reversibility, linearity, mechanism and chemistry in the interactions were considered in discussion of the experimental models. A calculation program, which can analyze migration data obtained under various conditions by applying the selected 9 types of experimental models, was maintained. The calculation program makes it be able to predict the migration behavior of radionuclide under various conditions and to decide the important parameter by a fitting analysis of the migration data. (author)

  12. A comparison of petrophysical data inputs for establishing time-depth relationships: a guide for future drilling expeditions

    Science.gov (United States)

    Boaga, J.; Sauermilch, I.; Mateo, Z. R. P.

    2017-12-01

    Time-depth relationships (TDR) are crucial in correlating drillhole and core information to seismic reflection profiles, for accurate resource estimation, scientific interpretation and to guide drilling operations. Conventional seismic time-depth domain conversion utilizes downhole sonic logs (DSI), calibrated using available checkshot data, which are local travel times from the surface to a particular depth. Scientific drilling programs (ODP and IODP) also measure P-wave velocity (PWL or C) on recovered core samples. Only three percent of all ODP and IODP sites record all three velocity measurements, however this information can be instructive as sometimes these data input show dissimilar TDR. These representative sites provide us with an opportunity to perform a comparative analysis highlighting the differences and similarities of TDRs derived from checkshot, downhole, and laboratory measurements. We then discuss the impact of lithology, stratigraphy, water column and other petrophysical properties in the predictive accuracy of TDR calculations, in an effort to provide guidance for future drilling and coring expeditions.

  13. Migration of radionuclides following shallow land burial

    International Nuclear Information System (INIS)

    Sedlet, J.; Golchert, N.W.

    1980-01-01

    A study of radionuclide migration was conducted at a facility used from 1944 to 1949 for the shallow land burial of radwaste produced during operations with two reactors and related nuclear research. It is situated in glacial drift 45 m thick. Underlying the drift is a generally level Silurian dolomite bedrock 60 m thick. The thickness of the drift decreases as the surface slopes downhill (north) until the dolomite reaches the surface and forms the bed of a river, 700 m to the north. This study was begun after tritiated water was detected in two picnic wells north of the facility, between the burial plot and the river. Surface and subsurface measurements indicate that tritium is migrating out of the burial site, but no other radionuclides have left the plot. The tritium concentrations decrease with distance from the plot. Tritium was found in the subsoil at all depths sampled, so the ground beneath and immediately around the plot contains tritium down to the dolomite aquifer. Time of travel of water from the burial plot to the nearest well is estimated to be 54 months. This would imply the peak concentration would reach the dolomite in about 35 years. By this time, 86% of the tritium would have disappeared by radioactive decay. The cyclical nature of the tritium content in the two wells implies that tritiated water is carried from the burial site by the spring rains when they recharge the groundwater supply

  14. Refugee and Forced Migration Studies Online

    DEFF Research Database (Denmark)

    Andersson, Vibeke

    developments in communications technologies and the Internet and the proliferation of websites such as the CARFMS – Online Research and Teaching Tool and Practitioners Forum (ORTT & PF) and the Refugee Research Network (RRN), as examples, have contributed to the accessibility of information, knowledge......IASFM 14: Contested Spaces and Cartographic Challenges Kolkata, India, January 6-9, 2013 ABSTRACT for a Roundtable on the topic of Refugee and Forced Migration Studies Online: Harnessing “the Cloud” for Knowledge Generation, Instruction, and Mobilization With the advent of the Internet...... and the proliferation of websites and online instruments on refugee and forced migration studies the nature of research and information gathering, analysis, and dissemination, along with advocacy, has altered fundamentally both in its range, depth and scope. This Roundtable will seek to review how the latest...

  15. Noncolocated Time-Reversal MUSIC: High-SNR Distribution of Null Spectrum

    Science.gov (United States)

    Ciuonzo, Domenico; Rossi, Pierluigi Salvo

    2017-04-01

    We derive the asymptotic distribution of the null spectrum of the well-known Multiple Signal Classification (MUSIC) in its computational Time-Reversal (TR) form. The result pertains to a single-frequency non-colocated multistatic scenario and several TR-MUSIC variants are here investigated. The analysis builds upon the 1st-order perturbation of the singular value decomposition and allows a simple characterization of null-spectrum moments (up to the 2nd order). This enables a comparison in terms of spectrums stability. Finally, a numerical analysis is provided to confirm the theoretical findings.

  16. Resolution limits of migration and linearized waveform inversion images in a lossy medium

    KAUST Repository

    Schuster, Gerard T.; Dutta, Gaurav; Li, Jing

    2017-01-01

    The vertical-and horizontal-resolution limits Delta x(lossy) and Delta z(lossy) of post-stack migration and linearized waveform inversion images are derived for lossy data in the far-field approximation. Unlike the horizontal resolution limit Delta x proportional to lambda z/L in a lossless medium which linearly worsens in depth z, Delta x(lossy) proportional to z(2)/QL worsens quadratically with depth for a medium with small Q values. Here, Q is the quality factor, lambda is the effective wavelength, L is the recording aperture, and loss in the resolution formulae is accounted for by replacing lambda with z/Q. In contrast, the lossy vertical-resolution limit Delta z(lossy) only worsens linearly in depth compared to Delta z proportional to lambda for a lossless medium. For both the causal and acausal Q models, the resolution limits are linearly proportional to 1/Q for small Q. These theoretical predictions are validated with migration images computed from lossy data.

  17. Resolution limits of migration and linearized waveform inversion images in a lossy medium

    KAUST Repository

    Schuster, Gerard T.

    2017-03-10

    The vertical-and horizontal-resolution limits Delta x(lossy) and Delta z(lossy) of post-stack migration and linearized waveform inversion images are derived for lossy data in the far-field approximation. Unlike the horizontal resolution limit Delta x proportional to lambda z/L in a lossless medium which linearly worsens in depth z, Delta x(lossy) proportional to z(2)/QL worsens quadratically with depth for a medium with small Q values. Here, Q is the quality factor, lambda is the effective wavelength, L is the recording aperture, and loss in the resolution formulae is accounted for by replacing lambda with z/Q. In contrast, the lossy vertical-resolution limit Delta z(lossy) only worsens linearly in depth compared to Delta z proportional to lambda for a lossless medium. For both the causal and acausal Q models, the resolution limits are linearly proportional to 1/Q for small Q. These theoretical predictions are validated with migration images computed from lossy data.

  18. Dispersal and migration

    Directory of Open Access Journals (Sweden)

    Schwarz, C.

    2004-06-01

    philopatric movement of geese using a classic multi–state design. Previous studies of philopaty often rely upon simple return rates —however, good mark–recapture studies do not need to assume equal detection probabilities in space and time. This is likely the most important contribution of multi–state modelling to the study of movement. As with many of these studies, the most pressing problem in the analysis is the explosion in the number of parameters and the need to choose parsimonious modelss to get good precision. Drake and Alisauska demonstrate that model choice still remains an art with a great deal of biological insight being very helpful in the task. There is still plenty of scope for novel methods to study migration. Traditionally, there has been a clear cut distinction between birds being labelled as “migrant” or “resident” on the basis of field observations and qualitative interpretations of patterns of ring–recoveries. However, there are intermediate species where only part of the population migrates (partial migrants or where different components of the population migrate to different extents (differential migrants. Siriwardena, Wernham and Baillie (Siriwardena et al., 2004 develop a novel method that produces a quantitative index of migratory tendency. The method uses distributions of ringing–to–recovery distances to classify individual species’ patterns of movement relative to those of other species. The areas between species’ cumulative distance distributions are used with multi–dimensional scaling to produce a similarity map among species. This map can be used to investigate the factors that affect the migratory strategies that species adopt, such as body size, territoriality and distribution, and in studies of their consequences for demographic parameters such as annual survival and the timing of breeding. The key assumption of the method is the similar recovery effort of species over space and time. It would be interesting to

  19. Radon migration in the ground: a supplementary review

    International Nuclear Information System (INIS)

    Tanner, A.B.

    1980-01-01

    Water is the most important agent in enabling radon isotopes to escape from solid material: Water absorbs kinetic energy of the recoil atom of radon; it is an active agent in altering and hydrating mineral surfaces, thus enhancing their emanating power; and it decreases the adsorption of radon on mineral surfaces. Once in rock and soil pores, radon atoms migrate by diffusion and by transport in varying proportions. In diffusion and transport calculations, it is desirable to use the radon concentration in the interstitial fluid as the concentration parameter and to include porosity explicity. The transport component is important in dry, permeable soils in the upper layers but is much reduced below depths of several tens of meters. Research in disequilibriums in radionuclides of the uranium and thorium series suggests that much assumed migration of 222 Rn is, in fact, a more general migration of uranium and radium isotopes

  20. Time-Reversal Study of the Hemet (CA) Tremor Source

    Science.gov (United States)

    Larmat, C. S.; Johnson, P. A.; Guyer, R. A.

    2010-12-01

    Since its first observation by Nadeau & Dolenc (2005) and Gomberg et al. (2008), tremor along the San Andreas fault system is thought to be a probe into the frictional state of the deep part of the fault (e.g. Shelly et al., 2007). Tremor is associated with slow, otherwise deep, aseismic slip events that may be triggered by faint signals such as passing waves from remote earthquakes or solid Earth tides.Well resolved tremor source location is key to constrain frictional models of the fault. However, tremor source location is challenging because of the high-frequency and highly-scattered nature of tremor signal characterized by the lack of isolated phase arrivals. Time Reversal (TR) methods are emerging as a useful tool for location. The unique requirement is a good velocity model for the different time-reversed phases to arrive coherently onto the source point. We present results of location for a tremor source near the town of Hemet, CA, which was triggered by the 2002 M 7.9 Denali Fault earthquake (Gomberg et al., 2008) and by the 2009 M 6.9 Gulf of California earthquake. We performed TR in a volume model of 88 (N-S) x 70 (W-E) x 60 km (Z) using the full-wave 3D wave-propagation package SPECFEM3D (Komatitsch et al., 2002). The results for the 2009 episode indicate a deep source (at about 22km) which is about 4km SW the fault surface scarp. We perform STA/SLA and correlation analysis in order to have independent confirmation of the Hemet tremor source. We gratefully acknowledge the support of the U. S. Department of Energy through the LANL/LDRD Program for this work.