WorldWideScience

Sample records for revealed significant fluctuations

  1. Listening to the Noise: Random Fluctuations Reveal Gene Network Parameters

    Science.gov (United States)

    Munsky, Brian; Trinh, Brooke; Khammash, Mustafa

    2010-03-01

    The cellular environment is abuzz with noise originating from the inherent random motion of reacting molecules in the living cell. In this noisy environment, clonal cell populations exhibit cell-to-cell variability that can manifest significant prototypical differences. Noise induced stochastic fluctuations in cellular constituents can be measured and their statistics quantified using flow cytometry, single molecule fluorescence in situ hybridization, time lapse fluorescence microscopy and other single cell and single molecule measurement techniques. We show that these random fluctuations carry within them valuable information about the underlying genetic network. Far from being a nuisance, the ever-present cellular noise acts as a rich source of excitation that, when processed through a gene network, carries its distinctive fingerprint that encodes a wealth of information about that network. We demonstrate that in some cases the analysis of these random fluctuations enables the full identification of network parameters, including those that may otherwise be difficult to measure. We use theoretical investigations to establish experimental guidelines for the identification of gene regulatory networks, and we apply these guideline to experimentally identify predictive models for different regulatory mechanisms in bacteria and yeast.

  2. Alterations in task-induced activity and resting-state fluctuations in visual and DMN areas revealed in long-term meditators.

    Science.gov (United States)

    Berkovich-Ohana, Aviva; Harel, Michal; Hahamy, Avital; Arieli, Amos; Malach, Rafael

    2016-07-15

    Recently we proposed that the information contained in spontaneously emerging (resting-state) fluctuations may reflect individually unique neuro-cognitive traits. One prediction of this conjecture, termed the "spontaneous trait reactivation" (STR) hypothesis, is that resting-state activity patterns could be diagnostic of unique personalities, talents and life-styles of individuals. Long-term meditators could provide a unique experimental group to test this hypothesis. Using fMRI we found that, during resting-state, the amplitude of spontaneous fluctuations in long-term mindfulness meditation (MM) practitioners was enhanced in the visual cortex and significantly reduced in the DMN compared to naïve controls. Importantly, during a visual recognition memory task, the MM group showed heightened visual cortex responsivity, concomitant with weaker negative responses in Default Mode Network (DMN) areas. This effect was also reflected in the behavioral performance, where MM practitioners performed significantly faster than the control group. Thus, our results uncover opposite changes in the visual and default mode systems in long-term meditators which are revealed during both rest and task. The results support the STR hypothesis and extend it to the domain of local changes in the magnitude of the spontaneous fluctuations. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Significance of quantum fluctuations in roentgen imaging

    Energy Technology Data Exchange (ETDEWEB)

    Strid, K G [Sahlgrenska Sjukhuset, Goeteborg (Sweden)

    1980-01-01

    Quantum fluctuations in the roentgen radiation relief are analysed mathematically. The intrinsic signal-to-noise ratio of the radiation relief for a given object contrast is proportional to the square root of the number of photons contributing to the image of a characteristic detail in the object. In the presence of secondary radiation the signal-to-noise ratio is impaired, since the fluctuations of secondary radiation increase the noise of the radiation relief. By efficient secondary screening, the quality of the relief can be partially recovered. With a dynamically limited recording device, i.e. a film-screen combination, increased detection speed in conjunction with improved secondary screening will either result in unchanged image quality with the gain of an object-dose reduction or provide improved imaging at an unchanged dose value. As regards the relation between contrast resolution and spatial resolution, the dose required to barely demonstrate an object detail of given geometry and composition is found to vary inversely with the fourth power of the linear size of the detail. It is also concluded that recording and secondary-screening devices should always be considered together as far as recording quality is concerned.

  4. Fluctuations and stability in the Advanced Toroidal Facility (ATF) torsatron

    International Nuclear Information System (INIS)

    Harris, J.H.; Charlton, L.A.; Bell, J.D.; Bigelow, T.S.; Carreras, B.A.; Colchin, R.J.; Crume, E.C.; Dominguez, N.; Dunlap, J.L.; Dyer, G.R.; England, A.C.; Glowienka, J.C.; Hillis, D.L.; Hiroe, S.; Horton, L.D.; Howe, H.C.; Isler, R.C.; Jernigan, T.C.; Leboeuf, J.N.; Lee, D.K.; Lynch, V.E.; Lyon, J.F.; Menon, M.M.; Murakami, M.; Rasmussen, D.A.; Uckan, T.; Wilgen, J.B.; Wing, W.R.; Bell, G.L.; Crocker, N.A.; Hanson, G.R.; Thomas, C.E.; Wade, M.R.; Ritz, C.P.

    1990-01-01

    We present the results of experimental and theoretical studies of fluctuations and instabilities in the ATF torsatron, a type of stellarator. Measurements of globally coherent magnetic fluctuations in high-β plasmas with narrow pressure profiles produced by a field error show evidence of self-stabilization ('second stability'); the trends are compatible with theoretical analysis of self-stabilization of resistive curvature-driven instabilities, but there are discrepancies between the absolute experimental and theoretical fluctuation amplitudes. Fluctuation measurements in plasma with broad pressure profiles reveal new phenomena--specifically, toroidally localized magnetic fluctuations, whose amplitudes increase with plasma pressure, and coherent density fluctuations with significant radial width

  5. Inertial picobalance reveals fast mass fluctuations in mammalian cells

    Science.gov (United States)

    Martínez-Martín, David; Fläschner, Gotthold; Gaub, Benjamin; Martin, Sascha; Newton, Richard; Beerli, Corina; Mercer, Jason; Gerber, Christoph; Müller, Daniel J.

    2017-10-01

    The regulation of size, volume and mass in living cells is physiologically important, and dysregulation of these parameters gives rise to many diseases. Cell mass is largely determined by the amount of water, proteins, lipids, carbohydrates and nucleic acids present in a cell, and is tightly linked to metabolism, proliferation and gene expression. Technologies have emerged in recent years that make it possible to track the masses of single suspended cells and adherent cells. However, it has not been possible to track individual adherent cells in physiological conditions at the mass and time resolutions required to observe fast cellular dynamics. Here we introduce a cell balance (a ‘picobalance’), based on an optically excited microresonator, that measures the total mass of single or multiple adherent cells in culture conditions over days with millisecond time resolution and picogram mass sensitivity. Using our technique, we observe that the mass of living mammalian cells fluctuates intrinsically by around one to four per cent over timescales of seconds throughout the cell cycle. Perturbation experiments link these mass fluctuations to the basic cellular processes of ATP synthesis and water transport. Furthermore, we show that growth and cell cycle progression are arrested in cells infected with vaccinia virus, but mass fluctuations continue until cell death. Our measurements suggest that all living cells show fast and subtle mass fluctuations throughout the cell cycle. As our cell balance is easy to handle and compatible with fluorescence microscopy, we anticipate that our approach will contribute to the understanding of cell mass regulation in various cell states and across timescales, which is important in areas including physiology, cancer research, stem-cell differentiation and drug discovery.

  6. Fluctuation dynamics in geoelectrical data: an investigation by using multifractal detrended fluctuation analysis

    International Nuclear Information System (INIS)

    Telesca, Luciano; Colangelo, Gerardo; Lapenna, Vincenzo; Macchiato, Maria

    2004-01-01

    We analyzed fluctuations in the time dynamics of nonstationary geoelectrical data, recorded in a seismic area of southern Italy, by means of the multifractal detrended fluctuation analysis (MF-DFA). The multifractal character of the signal depends mostly on the different long-range properties for small and large fluctuations. The time variation of indices, denoting the departure from monofractal behaviour, reveals an enhancement of the multifractality of the signal prior seismic occurrences

  7. Experimental evidence of significant temperature fluctuations in the plasma edge region of the TJ-I Tokamak

    International Nuclear Information System (INIS)

    Hidalgo, C.; Balbin, R.; Pedrosa, M.A.; Garcia-Cortes, I.; Ochando, M.A.

    1993-01-01

    Density and temperature fluctuations have been measured in the plasma bulk side of the velocity shear location of the TJ-I tokamak using a foast swept Langmuir probe technique. Evidence of sustantial temperature fluctuations which are in phase close to opposition with the corresponding density fluctuations has been found. This result suggests the possible role of radiation in determining edge fluctuation levels and call into question the determination of the density and potential fluctuations from the Langmuir current-probe and floating potential fluctuations. (Author)

  8. Experimental evidence of significant temperature fluctuations in the plasma EDGE region of the TJ-I Tokamak

    International Nuclear Information System (INIS)

    Hidalgo, C.; Balbin, R.; Pedrosa, M. A.; Garcia-Cortes, I.; Ochando, M. A.

    1993-01-01

    Density and temperature fluctuations have been measured in the plasma bulk side of the velocity shear location of the TJ-I tokamak using a feast swept Langmuir probe technique. Evidence of substantial temperature fluctuations which are in phase close to opposition with the corresponding density fluctuations has been found. This result suggests the possible role of radiation in determining edge fluctuation levels and call into question the determination of the density and potential fluctuations from the Langmuir current-probe and floating potential fluctuations. (Author) 16 refs

  9. Experimental evidence of significant temperature fluctuations in the plasma EDGE region of the TJ-I Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, C; Balbin, R; Pedrosa, M A; Garcia-Cortes, I; Ochando, M A

    1993-07-01

    Density and temperature fluctuations have been measured in the plasma bulk side of the velocity shear location of the TJ-I tokamak using a feast swept Langmuir probe technique. Evidence of substantial temperature fluctuations which are in phase close to opposition with the corresponding density fluctuations has been found. This result suggests the possible role of radiation in determining edge fluctuation levels and call into question the determination of the density and potential fluctuations from the Langmuir current-probe and floating potential fluctuations. (Author) 16 refs.

  10. Seahorse (Hippocampinae) population fluctuations in the Ria Formosa Lagoon, south Portugal.

    Science.gov (United States)

    Correia, M; Caldwell, I R; Koldewey, H J; Andrade, J P; Palma, J

    2015-09-01

    Comparisons of three sets of surveys in the Ria Formosa Lagoon, Portugal, over a 13 year period (2001-2002, 2008-2009 and 2010-2013) revealed significant population fluctuations in at least one of the two seahorse (Hippocampinae) species living there, and that those fluctuations were potentially associated with habitat changes in the lagoon. After a significant decline between the first two survey periods (2001-2002 v. 2008-2009), long-snouted seahorse Hippocampus guttulatus populations increased significantly between 2008-2009 surveys and new 2010-2013 surveys. There were no significant differences in H. guttulatus populations between the 2001-2002 and 2010-2013 surveys. In contrast, there were no significant differences in short-snouted seahorse Hippocampus hippocampus densities among the 16 sites surveyed throughout the three sampling periods, although the ability to detect any change was hampered by the low densities of this species in all time periods. Fluctuations in H. guttulatus densities were positively correlated with the percentage of holdfast coverage, but with none of the other environmental variables tested. These results highlight the importance of holdfast availability in maintaining stable seahorse populations. While population fluctuations are certainly more promising than a consistent downward decline, such extreme fluctuations observed for seahorses in the Ria Formosa Lagoon could still leave these two species vulnerable to any additional stressors, particularly during low density periods. © 2015 The Fisheries Society of the British Isles.

  11. Bach Is the Father of Harmony: Revealed by a 1/f Fluctuation Analysis across Musical Genres.

    Science.gov (United States)

    Wu, Dan; Kendrick, Keith M; Levitin, Daniel J; Li, Chaoyi; Yao, Dezhong

    2015-01-01

    Harmony is a fundamental attribute of music. Close connections exist between music and mathematics since both pursue harmony and unity. In music, the consonance of notes played simultaneously partly determines our perception of harmony; associates with aesthetic responses; and influences the emotion expression. The consonance could be considered as a window to understand and analyze harmony. Here for the first time we used a 1/f fluctuation analysis to investigate whether the consonance fluctuation structure in music with a wide range of composers and genres followed the scale free pattern that has been found for pitch, melody, rhythm, human body movements, brain activity, natural images and geographical features. We then used a network graph approach to investigate which composers were the most influential both within and across genres. Our results showed that patterns of consonance in music did follow scale-free characteristics, suggesting that this feature is a universally evolved one in both music and the living world. Furthermore, our network analysis revealed that Bach's harmony patterns were having the most influence on those used by other composers, followed closely by Mozart.

  12. Salmon migration patterns revealed the temporal and spatial fluctuations of the radiocesium levels in terrestrial and ocean environments.

    Science.gov (United States)

    Arai, Takaomi

    2014-01-01

    The disabling of the Fukushima Daiichi Nuclear Power Plant (F1NPP) resulted in the release of radionuclides, including 134Cs and 137Cs, into the air and the ocean. The unpredicted nuclear accident is of global concern for human health and the ecosystem. Although investigations of radionuclides in environments were performed shortly after the accident started, the temporal and spatial impacts and fluctuations on the releasing radionuclides to natural environment remain unclear. I focused on salmon, which migrate from inland to the open ocean globally, to reveal the three-year (May 2011 to February 2014) fluctuations and accumulations of 134Cs and 137Cs from terrestrial to open ocean environments after the F1NPP accident. The 134Cs and 137Cs concentrations in six salmonids exhibited lower temporal variations for three years after the F1NPP accident, suggesting that these radionuclides are widely distributed and these radionuclides remain in the natural environment globally with less convergence. The accumulation patterns were significantly different among the different salmon species. Fluvial (freshwater residence) type salmons exhibited significantly higher accumulation in 134Cs (25.3-40.2 Bq kg(-1) in mean) and 137Cs (41.4-51.7 Bq kg(-1) in mean) than did the anadromous (sea-run) type salmons (0.64-8.03 Bq kg(-1) in mean 134Cs and 0.42-10.2 Bq kg(-1) in mean 137Cs) suggesting widespread contamination in terrestrial environments versus the coastal and open ocean environments. Salmonids are the most highly migratory animals and are characterised by their strong tendency to return home to their natal site for reproduction. Salmonids have a potential to be a good indicator as an effective monitoring animal.

  13. Bach Is the Father of Harmony: Revealed by a 1/f Fluctuation Analysis across Musical Genres.

    Directory of Open Access Journals (Sweden)

    Dan Wu

    Full Text Available Harmony is a fundamental attribute of music. Close connections exist between music and mathematics since both pursue harmony and unity. In music, the consonance of notes played simultaneously partly determines our perception of harmony; associates with aesthetic responses; and influences the emotion expression. The consonance could be considered as a window to understand and analyze harmony. Here for the first time we used a 1/f fluctuation analysis to investigate whether the consonance fluctuation structure in music with a wide range of composers and genres followed the scale free pattern that has been found for pitch, melody, rhythm, human body movements, brain activity, natural images and geographical features. We then used a network graph approach to investigate which composers were the most influential both within and across genres. Our results showed that patterns of consonance in music did follow scale-free characteristics, suggesting that this feature is a universally evolved one in both music and the living world. Furthermore, our network analysis revealed that Bach's harmony patterns were having the most influence on those used by other composers, followed closely by Mozart.

  14. Cross-correlating Cosmic IR and X-ray Background Fluctuations: Evidence of Significant Black Hole Populations Among the CIB Sources

    Science.gov (United States)

    Cappelluti, N.; Kashlinsky, A.; Arendt, R. G.; Comastri, A.; Fazio, G. G.; Finoguenov, A.; Hasinger, G.; Mather, J. C.; Miyaji, T; Moseley, S. H.

    2013-01-01

    In order to understand the nature of the sources producing the recently uncovered cosmic infrared background (CIB) fluctuations, we study cross-correlations between the fluctuations in the source-subtracted CIB from Spitzer/IRAC data and the unresolved cosmic X-ray background from deep Chandra observations. Our study uses data from the EGS/AEGIS field, where both data sets cover an approx = 8' x 45' region of the sky. Our measurement is the cross-power spectrum between the IR and X-ray data. The cross-power signal between the IRAC maps at 3.6 micron and 4.5 micron and the Chandra [0.5-2] keV data has been detected, at angular scales approx >20'', with an overall significance of approx = 3.8 sigma and approx. = 5.6 sigma, respectively. At the same time we find no evidence of significant cross-correlations at the harder Chandra bands. The cross-correlation signal is produced by individual IR sources with 3.6 micron and 4.5 micron magnitudes m(sub AB) approx. > 25-26 and [0.5-2] keV X-ray fluxes black holes than among the known populations. We discuss the various possible origins for the cross-power signal and show that neither local foregrounds nor the known remaining normal galaxies and active galactic nuclei can reproduce the measurements. These observational results are an important new constraint on theoretical modeling of the near-IR CIB fluctuations. local foregrounds, nor the known remaining normal galaxies and active galactic nuclei (AGN) can reproduce the measurements. These observational results are an important new constraint on theoretical modeling of the near-IR CIB fluctuations

  15. Multifractal fluctuations in joint angles during infant spontaneous kicking reveal multiplicativity-driven coordination

    International Nuclear Information System (INIS)

    Stephen, Damian G.; Hsu, Wen-Hao; Young, Diana; Saltzman, Elliot L.; Holt, Kenneth G.; Newman, Dava J.; Weinberg, Marc; Wood, Robert J.; Nagpal, Radhika; Goldfield, Eugene C.

    2012-01-01

    Previous research has considered infant spontaneous kicking as a form of exploration. According to this view, spontaneous kicking provides information about motor degrees of freedom and may shape multijoint coordinations for more complex movement patterns such as gait. Recent work has demonstrated that multifractal, multiplicative fluctuations in exploratory movements index energy flows underlying perceptual-motor information. If infant spontaneous kicking is exploratory and occasions an upstream flow of information from the motor periphery, we expected not only that multiplicativity of fluctuations at the hip should promote multiplicativity of fluctuations at more distal joints (i.e., reflecting downstream effects of neural control) but also that multiplicativity at more distal joints should promote multiplicativity at the hip. Multifractal analysis demonstrated that infant spontaneous kicking in four typically developing infants for evidence of multiplicative fluctuations in multiple joint angles along the leg (i.e., hip, knee, and ankle) exhibited multiplicativity. Vector autoregressive modeling demonstrated that only one leg exhibited downstream effects but that both legs exhibited upstream effects. These results confirm the exploratory aspect of infant spontaneous kicking and suggest chaotic dynamics in motor coordination. They also resonate with existing models of chaos-controlled robotics and noise-based interventions for rehabilitating motor coordination in atypically developing patients.

  16. The Significance of Incorporating Nanoscale Fluctuations in a Constitutive Description of Glassy Polymers

    Science.gov (United States)

    Caruthers, James

    2015-03-01

    The current picture of the glass involves dynamic heterogeneity, where nanoscopic regions of the glass have order-of-magnitude differences in local mobility that evolve with time. Dynamic heterogeneity provides a critical challenge to the traditional nonlinear continuum models, where both temporal and spatial fluctuations are averaged as a result of the continuum postulate. In order to acknowledge dynamic heterogeneity, a Stochastic Constitutive Model (SCM) has been developed to describe the nonlinear viscoelastic behavior of polymeric glasses, where (i) temporal fluctuations are explicitly included and (ii) the local mobility depends upon the local state of the material (e.g. local stress and local entropy) vs. traditional viscoelastic/viscoelastic models where macroscopic mobility depends upon the macroscopic state. The SCM is able to describe a number of nonlinear relaxation phenomena that cannot be predicted by traditional nonlinear viscoelastic/viscoplastic models, including (i) post-yield stress softening and its dependence on annealing time, (ii) the inversion of the strain dependence of nonlinear stress relaxation with the loading rate, (iii) stress memory and (iv) tertiary creep and creep-recovery. This paper will argue that incorporation of nanoscopic fluctuations is a necessary component for a description of the thermomechanical behavior of polymeric glasses. Support from NSF Grant 1363326-CMMI.

  17. Faraday rotation echo spectroscopy and detection of quantum fluctuations.

    Science.gov (United States)

    Chen, Shao-Wen; Liu, Ren-Bao

    2014-04-15

    Central spin decoherence is useful for detecting many-body physics in environments and moreover, the spin echo control can remove the effects of static thermal fluctuations so that the quantum fluctuations are revealed. The central spin decoherence approach, however, is feasible only in some special configurations and often requires uniform coupling between the central spin and individual spins in the baths, which are very challenging in experiments. Here, by making analogue between central spin decoherence and depolarization of photons, we propose a scheme of Faraday rotation echo spectroscopy (FRES) for studying quantum fluctuations in interacting spin systems. The echo control of the photon polarization is realized by flipping the polarization with a birefringence crystal. The FRES, similar to spin echo in magnetic resonance spectroscopy, can suppress the effects of the static magnetic fluctuations and therefore reveal dynamical magnetic fluctuations. We apply the scheme to a rare-earth compound LiHoF4 and calculate the echo signal, which is related to the quantum fluctuations of the system. We observe enhanced signals at the phase boundary. The FRES should be useful for studying quantum fluctuations in a broad range of spin systems, including cold atoms, quantum dots, solid-state impurities, and transparent magnetic materials.

  18. Impact of Precipitation Fluctuation on Desert-Grassland ANPP

    Directory of Open Access Journals (Sweden)

    Liangxu Liu

    2016-11-01

    Full Text Available Precipitation change has significantly influenced annual net primary productivity (ANPP at either annual or seasonal scales in desert steppes in arid and semi-arid regions. In order to reveal the process of precipitation driving ANPP at different time scales, responses of different ANPP levels to the inter-annual and intra-annual precipitation fluctuations were analyzed. ANPP was reversed by building a ground reflectance spectrum model, from 2000 to 2015, using the normalized differential vegetation index of the Moderate-Resolution Imaging Spectroradiometer (MODIS-NDVI data at 250 m × 250 m spatial resolution. Since the description of the differently expressing forms of precipitation are not sufficient in former studies in order to overcome the deficiency of former studies, in this study, intra-annual precipitation fluctuations were analyzed not only with precipitation of May–August, June–August, July–August, and August, respectively, which have direct influence on vegetation productivity within the year, but quantitative description, vector precipitation (R, concentration ratio (Cd, and concentration period (D, were also used to describe the overall characteristics of intra-annual precipitation fluctuations. The concentration ratio and the maximum precipitation period of the intra-annual precipitation were represented by using monthly precipitation. The results showed that: (1 in the period from 1971 to 2015, the maximum annual precipitation is 3.76 times that of the minimum in the Urat desert steppe; (2 vector precipitation is more significantly related to ANPP (r = 0.7724, p = 0.000 compared to meteorological annual precipitation and real annual precipitation influence; and (3 annual precipitation is almost concentrated in 5–8 months and monthly precipitation accumulation has significantly effected ANPP, especially in the period of June–August, since the vegetation composition in the study area was mainly sub-shrubs and perennial

  19. Mesoscale wind fluctuations over Danish waters

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, C.L.

    2010-12-15

    Mesoscale wind fluctuations affect the large scale integration of wind power because they undermine the day-ahead predictability of wind speed and power production, and because they can result in large fluctuations in power generation that must be balanced using reserve power. Large fluctuations in generated power are a particular problem for offshore wind farms because the typically high concentration of turbines within a limited geographical area means that fluctuations can be correlated across large numbers of turbines. Furthermore, organised mesoscale structures that often form over water, such as convective rolls and cellular convection, have length scales of tens of kilometers, and can cause large wind fluctuations on a time scale of around an hour. This thesis is an exploration of the predictability of mesoscale wind fluctuations using observations from the world's first two large offshore wind farms - Horns Rev I in the North Sea, and Nysted in the Baltic Sea. The thesis begins with a climatological analysis of wind fluctuations on time scales of 1-10 hours at the two sites. A novel method for calculating conditional climatologies of spectral information is proposed, based on binning and averaging the time axis of the Hilbert spectrum. Results reveal clear patterns between wind fluctuations and locally observed meteorological conditions. The analysis is expanded by classifying wind fluctuations on time scales of 1-3 hours according to synoptic patterns, satellite pictures and wind classes. Results indicate that cold air outbreaks and open cellular convection are a significant contributor to mesoscale wind variability at Horns Rev. The predictability of mesoscale wind fluctuations is tested by implementing standard statistical models that relate local wind variability to parameters based on a large scale weather analysis. The models show some skill, but only achieve a 15% improvement on a persistence forecast. The possibility of explicitly modelling

  20. Sources of Macroeconomic Fluctuations in MENA Countries

    OpenAIRE

    Balcilar, Mehmet; Bagzibagli, Kemal

    2010-01-01

    A close examination of the MENA region economies reveals a number of fundamental sources of macroeconomic fluctuations. These include economic factors such as exchange rate instability, large public debt, current account deficits, and escalation of inflation. The political factors such as government instability, corruption, bureaucracy, and internal conflicts also are major sources of macroeconomic instability. Thus, the sources of macroeconomic fluctuations in these countri...

  1. Risk hedging against the fuel price fluctuation in energy service business

    International Nuclear Information System (INIS)

    Bannai, Masaaki; Tomita, Yasushi; Ishida, Yasushi; Miyazaki, Takahiko; Akisawa, Atsushi; Kashiwagi, Takao

    2007-01-01

    Energy service business, or energy service company (ESCO), is expanding among industrial users as a means of energy saving. The ESCO business normally tends to become a long-term operation. During the operation, fluctuations of fuel and electricity costs significantly impact on the stability of the profit from ESCO business. Therefore, it is essential to reduce the risk of fuel and electricity cost fluctuations. Generally, a transaction called ''financial derivative'' is used as a measure of hedging against the fuel price fluctuation. In the case of ESCO business, it is necessary to manage the risk of both electricity and fuel price fluctuations because the variation in electricity price strongly affects the profit from ESCO as that in fuel price does. In this paper, the stabilization of the ESCO profit using financial derivatives was discussed by quantitative analyses of the actual data from existing plants. Case studies revealed that the appropriate volume of the fuel derivative implementation was less than a half of the fuel consumption at the ESCO facilities, and it ranged from 5% to 50%. (author)

  2. Electronic zero-point fluctuation forces inside circuit components

    Science.gov (United States)

    Leonhardt, Ulf

    2018-01-01

    One of the most intriguing manifestations of quantum zero-point fluctuations are the van der Waals and Casimir forces, often associated with vacuum fluctuations of the electromagnetic field. We study generalized fluctuation potentials acting on internal degrees of freedom of components in electrical circuits. These electronic Casimir-like potentials are induced by the zero-point current fluctuations of any general conductive circuit. For realistic examples of an electromechanical capacitor and a superconducting qubit, our results reveal the possibility of tunable forces between the capacitor plates, or the level shifts of the qubit, respectively. Our analysis suggests an alternative route toward the exploration of Casimir-like fluctuation potentials, namely, by characterizing and measuring them as a function of parameters of the environment. These tunable potentials may be useful for future nanoelectromechanical and quantum technologies. PMID:29719863

  3. Electronic zero-point fluctuation forces inside circuit components.

    Science.gov (United States)

    Shahmoon, Ephraim; Leonhardt, Ulf

    2018-04-01

    One of the most intriguing manifestations of quantum zero-point fluctuations are the van der Waals and Casimir forces, often associated with vacuum fluctuations of the electromagnetic field. We study generalized fluctuation potentials acting on internal degrees of freedom of components in electrical circuits. These electronic Casimir-like potentials are induced by the zero-point current fluctuations of any general conductive circuit. For realistic examples of an electromechanical capacitor and a superconducting qubit, our results reveal the possibility of tunable forces between the capacitor plates, or the level shifts of the qubit, respectively. Our analysis suggests an alternative route toward the exploration of Casimir-like fluctuation potentials, namely, by characterizing and measuring them as a function of parameters of the environment. These tunable potentials may be useful for future nanoelectromechanical and quantum technologies.

  4. Critical Fluctuations in Spatial Complex Networks

    Science.gov (United States)

    Bradde, Serena; Caccioli, Fabio; Dall'Asta, Luca; Bianconi, Ginestra

    2010-05-01

    An anomalous mean-field solution is known to capture the nontrivial phase diagram of the Ising model in annealed complex networks. Nevertheless, the critical fluctuations in random complex networks remain mean field. Here we show that a breakdown of this scenario can be obtained when complex networks are embedded in geometrical spaces. Through the analysis of the Ising model on annealed spatial networks, we reveal, in particular, the spectral properties of networks responsible for critical fluctuations and we generalize the Ginsburg criterion to complex topologies.

  5. Statistical fluctuations in reactors (1960); Fluctuations statistiques dans les piles (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Raievski, V [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The theory of space dependent fluctuations is developed, taking into account the effect of delayed neutrons. The 'diffusion equation' or Fokker-Planck equation is worked out in the case of age and two group theory, but the first one because of in physical significance is used in this report. The theory is applied to the study of the spectral density of fluctuations and fluctuations of counting rate and current flowing through the charge resistor of an ionisation chamber, the effect of the entrance capacity is discussed. The space dependent theory shows that the fluctuations in the core and reflector of a near critical pile obey to the same law. The spectral densities in the core and reflector are similar, there is no sensible attenuation of high frequency fluctuations in the reflector. Compared to the space independent theory, this theory give better agreement with experience, one can use the simple space independent theory but in checking with experiment it is necessary to introduce numerical factors given by the space dependent theory. (author) [French] La theorie des fluctuations statistiques est developpee dans le cas spatial en tenant compte des neutrons retardes, et dans le cadre de la theorie de l'age vitesse. L'equation d'evolution de la probabilite est egalement etablie dans le cadre de la theorie a deux groupes. Ces considerations sont appliquees a l'etude de la densite spectrale des fluctuations et aux fluctuations des taux de comptage et du courant circulant dans la resistance de charge du detecteur. On etudie en particulier l'effet de la constante de temps introduite par la capacite d'entree. Cette theorie etablit que les fluctuations dans le coeur et le reflecteur suivent la meme loi pour une pile critique, il en est de meme pour la densite spectrale meme a frequence elevee. Par rapport a la theorie d'ensemble, la theorie spatiale donne des coefficients numeriques ou facteurs de forme, qui permettent d'obtenir un bon accord entre la theorie et l

  6. Investigation of the complexity of streamflow fluctuations in a large heterogeneous lake catchment in China

    Science.gov (United States)

    Ye, Xuchun; Xu, Chong-Yu; Li, Xianghu; Zhang, Qi

    2018-05-01

    The occurrence of flood and drought frequency is highly correlated with the temporal fluctuations of streamflow series; understanding of these fluctuations is essential for the improved modeling and statistical prediction of extreme changes in river basins. In this study, the complexity of daily streamflow fluctuations was investigated by using multifractal detrended fluctuation analysis (MF-DFA) in a large heterogeneous lake basin, the Poyang Lake basin in China, and the potential impacts of human activities were also explored. Major results indicate that the multifractality of streamflow fluctuations shows significant regional characteristics. In the study catchment, all the daily streamflow series present a strong long-range correlation with Hurst exponents bigger than 0.8. The q-order Hurst exponent h( q) of all the hydrostations can be characterized well by only two parameters: a (0.354 ≤ a ≤ 0.384) and b (0.627 ≤ b ≤ 0.677), with no pronounced differences. Singularity spectrum analysis pointed out that small fluctuations play a dominant role in all daily streamflow series. Our research also revealed that both the correlation properties and the broad probability density function (PDF) of hydrological series can be responsible for the multifractality of streamflow series that depends on watershed areas. In addition, we emphasized the relationship between watershed area and the estimated multifractal parameters, such as the Hurst exponent and fitted parameters a and b from the q-order Hurst exponent h( q). However, the relationship between the width of the singularity spectrum (Δ α) and watershed area is not clear. Further investigation revealed that increasing forest coverage and reservoir storage can effectively enhance the persistence of daily streamflow, decrease the hydrological complexity of large fluctuations, and increase the small fluctuations.

  7. Global and system-specific resting-state fMRI fluctuations are uncorrelated: principal component analysis reveals anti-correlated networks.

    Science.gov (United States)

    Carbonell, Felix; Bellec, Pierre; Shmuel, Amir

    2011-01-01

    The influence of the global average signal (GAS) on functional-magnetic resonance imaging (fMRI)-based resting-state functional connectivity is a matter of ongoing debate. The global average fluctuations increase the correlation between functional systems beyond the correlation that reflects their specific functional connectivity. Hence, removal of the GAS is a common practice for facilitating the observation of network-specific functional connectivity. This strategy relies on the implicit assumption of a linear-additive model according to which global fluctuations, irrespective of their origin, and network-specific fluctuations are super-positioned. However, removal of the GAS introduces spurious negative correlations between functional systems, bringing into question the validity of previous findings of negative correlations between fluctuations in the default-mode and the task-positive networks. Here we present an alternative method for estimating global fluctuations, immune to the complications associated with the GAS. Principal components analysis was applied to resting-state fMRI time-series. A global-signal effect estimator was defined as the principal component (PC) that correlated best with the GAS. The mean correlation coefficient between our proposed PC-based global effect estimator and the GAS was 0.97±0.05, demonstrating that our estimator successfully approximated the GAS. In 66 out of 68 runs, the PC that showed the highest correlation with the GAS was the first PC. Since PCs are orthogonal, our method provides an estimator of the global fluctuations, which is uncorrelated to the remaining, network-specific fluctuations. Moreover, unlike the regression of the GAS, the regression of the PC-based global effect estimator does not introduce spurious anti-correlations beyond the decrease in seed-based correlation values allowed by the assumed additive model. After regressing this PC-based estimator out of the original time-series, we observed robust anti

  8. Fluctuating ideal-gas lattice Boltzmann method with fluctuation dissipation theorem for nonvanishing velocities.

    Science.gov (United States)

    Kaehler, G; Wagner, A J

    2013-06-01

    Current implementations of fluctuating ideal-gas descriptions with the lattice Boltzmann methods are based on a fluctuation dissipation theorem, which, while greatly simplifying the implementation, strictly holds only for zero mean velocity and small fluctuations. We show how to derive the fluctuation dissipation theorem for all k, which was done only for k=0 in previous derivations. The consistent derivation requires, in principle, locally velocity-dependent multirelaxation time transforms. Such an implementation is computationally prohibitively expensive but, with a small computational trick, it is feasible to reproduce the correct FDT without overhead in computation time. It is then shown that the previous standard implementations perform poorly for non vanishing mean velocity as indicated by violations of Galilean invariance of measured structure factors. Results obtained with the method introduced here show a significant reduction of the Galilean invariance violations.

  9. Cascade-induced fluctuations and the transition from the stable to the critical cavity radius for swelling

    International Nuclear Information System (INIS)

    Hayns, M.R.; Mansur, L.K.

    1985-01-01

    Recently, a cascade diffusion theory was developed to understand cacade-induced fluctuations in point defect flux during irradiation. Application of the theory revealed that such fluctuations give rise to a mechanism of cascade-induced creep that is predicted to be of significant magnitude. Here we extend the investigation to the formation of cavities. Specifically, we explore the possible importance of cascade-induced cavity growth excursions in triggering a transition from the gas-content-dictated stable radius to the critical radius for bias-driven growth. Two methods of analysis are employed. The first uses the variance of fluctuations to assess the average effect of fluctuations. The second is based on the fact that in a large ensemble of cavities, a small fraction will experience larger than average excursions. This prospect is assessed by estimating upper limits to the processes. For the conditions considered, it is concluded that cascade-induced fluctuations are of minor importance in triggering the onset of swelling in a population of stable gas-containing cavities

  10. Propagation of disturbances as voltage fluctuations in transmission networks

    Directory of Open Access Journals (Sweden)

    Albert Hermina

    2016-08-01

    Full Text Available Significant changes occurred in the power system in Romania in recent years by reducing the power used in the system, the number of classic power sources in operation as well as by implementing renewable energy sources, have determined short circuit power reduction (node rigidity in the points where disturbing users are connected, that in the absence of adequate measures, result in disturbances above acceptable levels. The paper analyzes two power systems areas in which are connected users that cause voltage fluctuation. Disturbances as voltage fluctuations resulting in these nodes may exceed the acceptable values and can spread in the transmission network affecting power quality over large system areas. The analysis conducted reveals the influence of short circuit power in nodes where these users are connected and highlights the fact that in some cases (e.g. lines out of operation for maintenance, shutdown of classic units in the area the disturbances in the transmission network sent to the users at lower voltages may have values above those allowed. Technical Code of existing power transmission network makes no reference to voltage fluctuations, as a rule, in the electricity transmission network was considered that this phenomenon should not exist.

  11. Fluctuating Charge-Order in Optimally Doped Bi- 2212 Revealed by Momentum-resolved Electron Energy Loss Spectroscopy

    Science.gov (United States)

    Husain, Ali; Vig, Sean; Kogar, Anshul; Mishra, Vivek; Rak, Melinda; Mitrano, Matteo; Johnson, Peter; Gu, Genda; Fradkin, Eduardo; Norman, Michael; Abbamonte, Peter

    Static charge order is a ubiquitous feature of the underdoped cuprates. However, at optimal doping, charge-order has been thought to be completely suppressed, suggesting an interplay between the charge-ordering and superconducting order parameters. Using Momentum-resolved Electron Energy Loss Spectroscopy (M-EELS) we show the existence of diffuse fluctuating charge-order in the optimally doped cuprate Bi2Sr2CaCu2O8+δ (Bi-2212) at low-temperature. We present full momentum-space maps of both elastic and inelastic scattering at room temperature and below the superconducting transition with 4meV resolution. We show that the ``rods'' of diffuse scattering indicate nematic-like fluctuations, and the energy width defines a fluctuation timescale of 160 fs. We discuss the implications of fluctuating charge-order on the dynamics at optimal doping. This work was supported by the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant GBMF-4542. An early prototype of the M-EELS instrument was supported by the DOE Center for Emergent Superconductivity under Award No. DE-AC02-98CH10886.

  12. Short-term fluctuations in motivation to quit smoking in a sample of smokers in Hawaii.

    Science.gov (United States)

    Herzog, Thaddeus; Pokhrel, Pallav; Kawamoto, Crissy T

    2015-01-01

    Despite its potential for usefulness in informing the development of smoking cessation interventions, short-term fluctuations in motivation to quit is a relatively understudied topic. To assess the prevalence of smokers' day-to-day fluctuations in motivation to quit, and to assess associations of day-to-day fluctuations in motivation to quit with several established cessation-related variables. A cross-sectional survey was administered to smokers in Hawaii (N = 1,567). To assess short-term fluctuations in motivation to quit smoking, participants were asked to respond "True" or "False" to the statement: "My motivation to quit smoking changes from one day to the next." Other items measured desire to quit smoking, intention to quit, confidence in quitting, cigarette dependence, and other cessation-related variables. "My motivation to quit smoking changes from one day to the next" was endorsed as true by 64.7% of smokers, and false by 35.3%. Analyses revealed that smokers who indicated fluctuating motivation were significantly more interested in quitting as compared to smokers without fluctuations. Fluctuations in motivation to quit also were associated with greater confidence in quitting, lesser cigarette dependence, and more recent quitting activity (all p motivation to quit are common. Day-to-day fluctuations in motivation to quit are strongly associated with higher motivation to quit, greater confidence in future quitting, and other positive cessation-relevant trends.

  13. Fluctuations in the cosmic microwave background

    International Nuclear Information System (INIS)

    Banday, A.J.; Wolfendale, A.W.

    1990-01-01

    In view of the importance to contemporary cosmology, and to our understanding of the Universe, of the precise nature of the Cosmic Microwave Background (CMB) spectrum, we consider the effects on this spectrum of contamination by other radiation fields of both galactic and extragalactic origin. Particular attention is given to the significance of measurements of the fluctuations in the 'background' radiation detected at 10.46 GHz and we conclude that these fluctuations are of the same magnitude as those expected from galactic cosmic-ray effects. A more detailed study of the cosmic-ray induced fluctuations and measurements at higher frequencies will be needed before genuine CMB fluctuations can be claimed. (author)

  14. Possible Significance of Early Paleozoic Fluctuations in Bottom Current Intensity, Northwest Iapetus Ocean

    Science.gov (United States)

    Lash, Gary G.

    1986-06-01

    Sedimentologic and geochemical characteristics of red and green deep water mudstone exposed in the central Appalachian orogen define climatically-induced fluctuations in bottom current intensity along the northwest flank of the Iapetus Ocean in Early and Middle Ordovician time. Red mudstone accumulated under the influence of moderate to vigorous bottom current velocities in oxygenated bottom water produced during climatically cool periods. Interbedded green mudstone accumulated at greater sedimentation rates, probably from turbidity currents, under the influence of reduced thermohaline circulation during global warming periods. The close association of green mudstone and carbonate turbidites of Early Ordovician (late Tremadocian to early Arenigian) age suggests that a major warming phase occurred at this time. Increasing temperatures reduced bottom current velocities and resulted in increased production of carbonate sediment and organic carbon on the carbonate platform of eastern North America. Much of the excess carbonate sediment and organic carbon was transported into deep water by turbidity currents. Although conclusive evidence is lacking, this eustatic event may reflect a climatic warming phase that followed the postulated glacio-eustatic Black Mountain event. Subsequent Middle Ordovician fluctuations in bottom current intensity recorded by thin red-green mudstone couplets probably reflect periodic growth and shrinkage of an ice cap rather than major glacial episodes.

  15. Drift-Alfven waves induced optical emission fluctuations in Aditya tokamak

    International Nuclear Information System (INIS)

    Manchanda, R.; Ghosh, J.; Chattopadhyay, P. K.; Chowdhuri, M. B.; Banerjee, Santanu; Ramasubramanian, N.; Patel, Ketan M.; Kumar, Vinay; Vasu, P.; Tanna, R. L.; Paradkar, B.; Gupta, C. N.; Bhatt, S. B.; Raju, D.; Jha, R.; Atrey, P. K.; Joisa, S.; Rao, C. V. S.; Saxena, Y. C.

    2010-01-01

    In Aditya tokamak [S. B. Bhatt et al. Indian J. Pure Appl. Phys. 27, 710 (1989)], an increase in the H α and C 2+ intensity fluctuations from the edge region is observed with an increase in the magnetohydrodynamic (MHD) activity. Very small fluctuation amplitudes of H α and C 2+ intensity are observed in discharges where there is no MHD activity compared to the discharges with MHD activity. These fluctuations in the H α and C 2+ , measured by optical filter--photomultiplier tube combination--are modulated by Mirnov oscillations having a dominant peak with a common frequency ∼7-10 kHz. Further investigation reveals the presence of strong coherent fluctuations in density and floating potential at same frequency as well. These observations indicate the existence of a nonelectrostatic instability, which may be based on the coupled mode of the drift mode and the Alfven mode. The coherent density fluctuations give rise to the experimentally observed coherent H α and C 2+ intensity fluctuations.

  16. Electrostatic fluctuation and fluctuation-induced particle flux during formation of the edge transport barrier in the JFT-2M tokamak

    International Nuclear Information System (INIS)

    Ido, T.; Hamada, Y.; Nagashima, Y.; Nishizawa, A.; Kawasumi, Y.; Miura, Y.; Hoshino, K.; Ogawa, H.; Shinohara, K.; Kamiya, K.; Kusama, Y.

    2005-01-01

    The electrostatic fluctuation with Geodesic-Acoustic-Mode (GAM) frequency is observed in L-mode plasmas. The fluctuation has the poloidal wave number (k θ ) of (-2 ± 24) x 10 -3 (cm -1 ), that corresponds to the poloidal mode number of 1.5 or less, and the radial wave number (k r ) of 0.94 ± 0.05 (cm -1 ), that is corresponds to k r ρ i = 0.26 < 1. The amplitude of the fluctuation changes in the radial direction; it is small near the separatrix and it has maximum at 3 cm inside the separatrix. The relation between the amplitude of potential fluctuation and that of density fluctuation is the same as that of the predicted GAM. The fluctuation is probably GAM. The envelope of ambient density fluctuation and the potential fluctuation have a significant coherence at the GAM frequency. Thus, it is clearly verified that the fluctuation with the GAM frequency correlates with the ambient density fluctuation. The fluctuation with the GAM frequency affects the particle transport through the modulation of the ambient fluctuation. But the effect is not large, and it is not a sufficient condition to form the edge transport barrier and to drive the intermittent particle flux. (author)

  17. Electrostatic fluctuation and fluctuation-induced particle flux during formation of the edge transport barrier in the JFT-2M tokamak

    International Nuclear Information System (INIS)

    Ido, T.; Miura, K.; Hoshino, K.

    2005-01-01

    The electrostatic fluctuation with Geodesic-Acoustic-Mode (GAM) frequency is observed in L-mode plasmas. The fluctuation has the poloidal wave number (k θ ) of (-2 ± 24) x 10 -3 (cm -1 ), that corresponds to the poloidal mode number of 1.5 or less, and the radial wave number (k γ ) of 0.94±0.05 (cm -1 ), that is corresponds to k γ ρ i =0.26 < 1. The amplitude of the fluctuation changes in the radial direction; it is small near the separatrix and it has maximum at 3 cm inside the separatrix. The relation between the amplitude of potential fluctuation and that of density fluctuation is the same as that of the predicted GAM. The fluctuation is probably GAM. The envelope of ambient density fluctuation and the potential fluctuation have a significant coherence at the GAM frequency. Thus, it is clearly verified that the fluctuation with the GAM frequency correlates with the ambient density fluctuation. The fluctuation with the GAM frequency affects the particle transport through the modulation of the ambient fluctuation. But the effect is not large, and it is not a sufficient condition to form the edge transport barrier and to drive the intermittent particle flux. (author)

  18. Measuring shape fluctuations in biological membranes

    International Nuclear Information System (INIS)

    Monzel, C; Sengupta, K

    2016-01-01

    Shape fluctuations of lipid membranes have intrigued cell biologists and physicists alike. In the cellular context, their origin—thermal or active—and their physiological significance are open questions. These small incessant displacements, also called membrane undulations, have mostly been studied in model membranes and membranes of simple cells like erythrocytes. Thermal fluctuations of such membranes have been very well described both theoretically and experimentally; active fluctuations are a topic of current interest. Experimentally, membrane fluctuations are not easy to measure, the main challenge being to develop techniques which are capable of measuring very small displacements at very high speed, and preferably over a large area and long time. Scattering techniques have given access to fluctuations in membrane stacks and a variety of optical microscopy based techniques have been devised to study membrane fluctuations of unilamellar vesicles, erythrocytes and other cells. Among them are flicker spectroscopy, dynamic light scattering, diffraction phase microscopy and reflection interference contrast microscopy. Each of these techniques has its advantages and limitations. Here we review the basic principles of the major experimental techniques used to measure bending or shape fluctuations of biomembranes. We report seminal results obtained with each technique and highlight how these studies furthered our understanding of physical properties of membranes and their interactions. We also discuss suggested role of membrane fluctuations in different biological processes. (topical review)

  19. Recent results on event-by-event fluctuations in ALICE at the LHC

    CERN Document Server

    AUTHOR|(CDS)2083375

    2015-01-01

    Non-statistical event-by-event fluctuations in relativistic heavy-ion collisions have been proposed as a probe of the phase transition of hadronic matter to a deconfined phase of quarks and gluons, the so-called Quark-Gluon Plasma. In a thermodynamical picture of the strongly interacting system formed in heavy-ion collisions, the dynamical fluctuations of net-charge, fluctuations of the mean transverse momentum, mean multiplicity and balance functions are related to the fundamental properties of the system, hence they may reveal information about the QCD phase transition. In this article, recent results on event-by-event measurements of net-charge fluctuations, the measurement of the balance function and mean transverse momentum fluctuations are discussed.

  20. Hydrodynamical fluctuations in smooth shear flows

    International Nuclear Information System (INIS)

    Chagelishvili, G.D.; Khujadze, G.R.; Lominadze, J.G.

    1999-11-01

    Background of hydrodynamical fluctuations in a intrinsically/stochastically forced, laminar, uniform shear flow is studied. The employment of so-called nonmodal mathematical analysis makes it possible to represent the background of fluctuations in a new light and to get more insight into the physics of its formation. The basic physical processes responsible for the formation of vortex and acoustic wave fluctuation backgrounds are analyzed. Interplay of the processes at low and moderate shear rates is described. Three-dimensional vortex fluctuations around a given macroscopic state are numerically calculated. The correlation functions of the fluctuations of physical quantities are analyzed. It is shown that there exists subspace D k in the wave-number space (k-space) that is limited externally by spherical surface with radius k ν ≡ A/ν (where A is the velocity shear parameter, ν - the kinematic viscosity) in the nonequilibrium open system under study. The spatial Fourier harmonics of vortex as well as acoustic wave fluctuations are strongly subjected by flow shear (by the open character of the system) at wave-numbers satisfying the condition k ν . Specifically it is shown that in D k : The fluctuations are non-Markovian; the spatial spectral density of energy of the vortex fluctuations by far exceeds the white-noise; the term of a new type associated to the hydrodynamical fluctuation of velocity appears in the correlation function of pressure; the fluctuation background of the acoustic waves is completely different at low and moderate shear rates (at low shear rates it is reduced in D k in comparison to the uniform (non-shear) flow; at moderate shear rates it it comparable to the background of the vortex fluctuations). The fluctuation background of both the vortex and the acoustic wave modes is anisotropic. The possible significance of the fluctuation background of vortices for the subcritical transition to turbulence and Brownian motion of small macroscopic

  1. Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns.

    Directory of Open Access Journals (Sweden)

    Andrea Maesani

    2015-11-01

    Full Text Available The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs-locomotor bouts-matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior.

  2. Fluctuations of offshore wind generation: Statistical modelling

    DEFF Research Database (Denmark)

    Pinson, Pierre; Christensen, Lasse E.A.; Madsen, Henrik

    2007-01-01

    The magnitude of power fluctuations at large offshore wind farms has a significant impact on the control and management strategies of their power output. If focusing on the minute scale, one observes successive periods with smaller and larger power fluctuations. It seems that different regimes yi...

  3. Fluctuation diamagnetism near surfaces and twinning planes in superconductors

    International Nuclear Information System (INIS)

    Burmistrov, S.N.; Dubovskii, L.B.

    1984-01-01

    Fluctuations of the magnetic moment and of the specific heat near surfaces and twinning planes in superconductors are studied. Fluctuations near a surface yield an additional contribution to the effect of the usual bulk fluctuations on the diamagnetic moment. Such an additional contribution has a singularity near a temperature T/sub c/3(H), which is higher than the bulk superconducting transition temperature in a magnetic field T/sub c/2(H). Depending on the strength of the magnetic field, the singularity of the additional contribution to the magnetic moment can be either logarithmic (strong fields) or of square-root type (weak fields). Experiments which could reveal the aforementioned anomalous behavior are discussed in detail

  4. Distinct role of hydration water in protein misfolding and aggregation revealed by fluctuating thermodynamics analysis.

    Science.gov (United States)

    Chong, Song-Ho; Ham, Sihyun

    2015-04-21

    decrease in solvation free energy, harnessing the monomer solvation free energy earned during the misfolding. The second step, where a compact dimer structure is formed, is driven by direct protein-protein interactions, but again it is accompanied by an increase in solvation free energy. The increased solvation free energy of the dimer will function as the driving force to recruit another Aβ protein in the approach stage of subsequent oligomerizations. The fluctuating thermodynamics analysis of the misfolding and dimerization of the Aβ protein indicates that the interaction of the protein with surrounding water plays a critical role in protein aggregation. Such a water-centric perspective is further corroborated by demonstrating that, for a large number of Aβ mutants and mutants of other protein systems, the change in the experimental aggregation propensity upon mutation has a significant correlation with the protein solvation free energy change. We also find striking discrimination between the positively and negatively charged residues on the protein surface by surrounding water molecules, which is shown to play a crucial role in determining the protein aggregation propensity. We argue that the protein total charge dictates such striking behavior of the surrounding water molecules. Our results provide new insights for understanding and predicting the protein aggregation propensity, thereby offering novel design principles for producing aggregation-resistant proteins for biotherapeutics.

  5. Giant current fluctuations in an overheated single-electron transistor

    Science.gov (United States)

    Laakso, M. A.; Heikkilä, T. T.; Nazarov, Yuli V.

    2010-11-01

    Interplay of cotunneling and single-electron tunneling in a thermally isolated single-electron transistor leads to peculiar overheating effects. In particular, there is an interesting crossover interval where the competition between cotunneling and single-electron tunneling changes to the dominance of the latter. In this interval, the current exhibits anomalous sensitivity to the effective electron temperature of the transistor island and its fluctuations. We present a detailed study of the current and temperature fluctuations at this interesting point. The methods implemented allow for a complete characterization of the distribution of the fluctuating quantities, well beyond the Gaussian approximation. We reveal and explore the parameter range where, for sufficiently small transistor islands, the current fluctuations become gigantic. In this regime, the optimal value of the current, its expectation value, and its standard deviation differ from each other by parametrically large factors. This situation is unique for transport in nanostructures and for electron transport in general. The origin of this spectacular effect is the exponential sensitivity of the current to the fluctuating effective temperature.

  6. Quantum horizon fluctuations of an evaporating black hole

    International Nuclear Information System (INIS)

    Roura, Albert

    2007-01-01

    The quantum fluctuations of a black hole spacetime are studied within a low-energy effective field theory approach to quantum gravity. Our approach accounts for both intrinsic metric fluctuations and those induced by matter fields interacting with the gravitational field. Here we will concentrate on spherically symmetric fluctuations of the black hole horizon. Our results suggest that for a sufficiently massive evaporating black hole, fluctuations can accumulate over time and become significant well before reaching Planckian scales. In addition, we provide the sketch of a proof that the symmetrized two-point function of the stress-tensor operator smeared over a null hypersurface is actually divergent and discuss the implications for the analysis of horizon fluctuations. Finally, a natural way to probe quantum metric fluctuations near the horizon is briefly described

  7. An Objective Fluctuation Score for Parkinson's Disease

    Science.gov (United States)

    Horne, Malcolm K.; McGregor, Sarah; Bergquist, Filip

    2015-01-01

    Introduction Establishing the presence and severity of fluctuations is important in managing Parkinson’s Disease yet there is no reliable, objective means of doing this. In this study we have evaluated a Fluctuation Score derived from variations in dyskinesia and bradykinesia scores produced by an accelerometry based system. Methods The Fluctuation Score was produced by summing the interquartile range of bradykinesia scores and dyskinesia scores produced every 2 minutes between 0900-1800 for at least 6 days by the accelerometry based system and expressing it as an algorithm. Results This Score could distinguish between fluctuating and non-fluctuating patients with high sensitivity and selectivity and was significant lower following activation of deep brain stimulators. The scores following deep brain stimulation lay in a band just above the score separating fluctuators from non-fluctuators, suggesting a range representing adequate motor control. When compared with control subjects the score of newly diagnosed patients show a loss of fluctuation with onset of PD. The score was calculated in subjects whose duration of disease was known and this showed that newly diagnosed patients soon develop higher scores which either fall under or within the range representing adequate motor control or instead go on to develop more severe fluctuations. Conclusion The Fluctuation Score described here promises to be a useful tool for identifying patients whose fluctuations are progressing and may require therapeutic changes. It also shows promise as a useful research tool. Further studies are required to more accurately identify therapeutic targets and ranges. PMID:25928634

  8. RF current drive and plasma fluctuations

    International Nuclear Information System (INIS)

    Peysson, Yves; Decker, Joan; Morini, L; Coda, S

    2011-01-01

    The role played by electron density fluctuations near the plasma edge on rf current drive in tokamaks is assessed quantitatively. For this purpose, a general framework for incorporating density fluctuations in existing modelling tools has been developed. It is valid when rf power absorption takes place far from the fluctuating region of the plasma. The ray-tracing formalism is modified in order to take into account time-dependent perturbations of the density, while the Fokker–Planck solver remains unchanged. The evolution of the electron distribution function in time and space under the competing effects of collisions and quasilinear diffusion by rf waves is determined consistently with the time scale of fluctuations described as a statistical process. Using the ray-tracing code C3PO and the 3D linearized relativistic bounce-averaged Fokker–Planck solver LUKE, the effect of electron density fluctuations on the current driven by the lower hybrid (LH) and the electron cyclotron (EC) waves is estimated quantitatively. A thin fluctuating layer characterized by electron drift wave turbulence at the plasma edge is considered. The effect of fluctuations on the LH wave propagation is equivalent to a random scattering process with a broadening of the poloidal mode spectrum proportional to the level of the perturbation. However, in the multipass regime, the LH current density profile remains sensitive to the ray chaotic behaviour, which is not averaged by fluctuations. The effect of large amplitude fluctuations on the EC driven current is found to be similar to an anomalous radial transport of the fast electrons. The resulting lower current drive efficiency and broader current profile are in better agreement with experimental observations. Finally, applied to the ITER ELMy H-mode regime, the model predicts a significant broadening of the EC driven current density profile with the fluctuation level, which can make the stabilization of neoclassical tearing mode potentially

  9. Multichannel detrended fluctuation analysis reveals synchronized patterns of spontaneous spinal activity in anesthetized cats.

    Directory of Open Access Journals (Sweden)

    Erika E Rodríguez

    Full Text Available The analysis of the interaction and synchronization of relatively large ensembles of neurons is fundamental for the understanding of complex functions of the nervous system. It is known that the temporal synchronization of neural ensembles is involved in the generation of specific motor, sensory or cognitive processes. Also, the intersegmental coherence of spinal spontaneous activity may indicate the existence of synaptic neural pathways between different pairs of lumbar segments. In this study we present a multichannel version of the detrended fluctuation analysis method (mDFA to analyze the correlation dynamics of spontaneous spinal activity (SSA from time series analysis. This method together with the classical detrended fluctuation analysis (DFA were used to find out whether the SSA recorded in one or several segments in the spinal cord of the anesthetized cat occurs either in a random or in an organized manner. Our results are consistent with a non-random organization of the sets of neurons involved in the generation of spontaneous cord dorsum potentials (CDPs recorded either from one lumbar segment (DFA-α mean = 1.04[Formula: see text]0.09 or simultaneously from several lumbar segments (mDFA-α mean = 1.01[Formula: see text]0.06, where α = 0.5 indicates randomness while α = 0.5 indicates long-term correlations. To test the sensitivity of the mDFA method we also examined the effects of small spinal lesions aimed to partially interrupt connectivity between neighboring lumbosacral segments. We found that the synchronization and correlation between the CDPs recorded from the L5 and L6 segments in both sides of the spinal cord were reduced when a lesion comprising the left dorsal quadrant was performed between the segments L5 and L6 (mDFA-[Formula: see text] = 0.992 as compared to initial conditions mDFA-α = 1.186. The synchronization and correlation were reduced even further after a similar additional right spinal lesion (mDFA-α = 0

  10. The study of RMB exchange rate complex networks based on fluctuation mode

    Science.gov (United States)

    Yao, Can-Zhong; Lin, Ji-Nan; Zheng, Xu-Zhou; Liu, Xiao-Feng

    2015-10-01

    In the paper, we research on the characteristics of RMB exchange rate time series fluctuation with methods of symbolization and coarse gaining. First, based on fluctuation features of RMB exchange rate, we define the first type of fluctuation mode as one specific foreign currency against RMB in four days' fluctuating situations, and the second type as four different foreign currencies against RMB in one day's fluctuating situation. With the transforming method, we construct the unique-currency and multi-currency complex networks. Further, through analyzing the topological features including out-degree, betweenness centrality and clustering coefficient of fluctuation-mode complex networks, we find that the out-degree distribution of both types of fluctuation mode basically follows power-law distributions with exponents between 1 and 2. The further analysis reveals that the out-degree and the clustering coefficient generally obey the approximated negative correlation. With this result, we confirm previous observations showing that the RMB exchange rate exhibits a characteristic of long-range memory. Finally, we analyze the most probable transmission route of fluctuation modes, and provide probability prediction matrix. The transmission route for RMB exchange rate fluctuation modes exhibits the characteristics of partially closed loop, repeat and reversibility, which lays a solid foundation for predicting RMB exchange rate fluctuation patterns with large volume of data.

  11. Investigation of the fluctuation range of activity concentrations of natural radionuclides in surface air

    International Nuclear Information System (INIS)

    Winkler, R.; Hoetzl, H.

    1985-01-01

    Daily and seasonal concentration fluctuations of short-lived Rn fission products observed and the seasonal and long-term concentration fluctuations of Pb-210, Po-210, Ra-226, Ra-228, K-40 and Be-7 are discussed; the frequency distributions of the concentration values are illustrated. For a period of several years, the following mean values of activity concentrations were found (μBq/m 3 ): Pb-210: 600 Ra-226: 1.3 K-40: 13, Po-210: 33 Ra-228: 0.5 Be-7: 3700. In accordance with the origin from the soil, there is a significant correlation between the respective activity concentration and air-borne dust concentration for Ra-226, Ra-228, and K-40. The investigation revealed a most significant correlation between the Pb-210 concentration and the stagnancy index, the latter being a measure for the degree of blending of the surface layer of air. The resuspension factors found for Ra-226 and Pb-210 are discussed. (orig./HP) [de

  12. Fluctuations and Photons

    International Nuclear Information System (INIS)

    Gupta, Sourendu

    2007-01-01

    In this talk I discuss measures of fluctuations, especially those leading to the proof that the quark gluon plasma indeed contains quarks. I discuss the quark mass dependence of the critical end point of QCD. Then I discuss probes of the QCD critical point. Non-gaussian behaviour of event-to-event fluctuations of conserved quantum numbers is one such probe. Another is due to the coupling of fluctuations in baryon number and electrical charge, giving rise to long range random fluctuations of local charge density which relax slowly. These fluctuations can scatter photons, giving rise to critical opalescence

  13. Fluctuations and Photons

    Science.gov (United States)

    Gupta, Sourendu

    2007-02-01

    In this talk I discuss measures of fluctuations, especially those leading to the proof that the quark gluon plasma indeed contains quarks. I discuss the quark mass dependence of the critical end point of QCD. Then I discuss probes of the QCD critical point. Non-gaussian behaviour of event-to-event fluctuations of conserved quantum numbers is one such probe. Another is due to the coupling of fluctuations in baryon number and electrical charge, giving rise to long range random fluctuations of local charge density which relax slowly. These fluctuations can scatter photons, giving rise to critical opalescence.

  14. Fluctuations and Photons

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sourendu [Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)

    2007-02-15

    In this talk I discuss measures of fluctuations, especially those leading to the proof that the quark gluon plasma indeed contains quarks. I discuss the quark mass dependence of the critical end point of QCD. Then I discuss probes of the QCD critical point. Non-gaussian behaviour of event-to-event fluctuations of conserved quantum numbers is one such probe. Another is due to the coupling of fluctuations in baryon number and electrical charge, giving rise to long range random fluctuations of local charge density which relax slowly. These fluctuations can scatter photons, giving rise to critical opalescence.

  15. High-frequency fluctuations of surface temperatures in an urban environment

    Science.gov (United States)

    Christen, Andreas; Meier, Fred; Scherer, Dieter

    2012-04-01

    This study presents an attempt to resolve fluctuations in surface temperatures at scales of a few seconds to several minutes using time-sequential thermography (TST) from a ground-based platform. A scheme is presented to decompose a TST dataset into fluctuating, high-frequency, and long-term mean parts. To demonstrate the scheme's application, a set of four TST runs (day/night, leaves-on/leaves-off) recorded from a 125-m-high platform above a complex urban environment in Berlin, Germany is used. Fluctuations in surface temperatures of different urban facets are measured and related to surface properties (material and form) and possible error sources. A number of relationships were found: (1) Surfaces with surface temperatures that were significantly different from air temperature experienced the highest fluctuations. (2) With increasing surface temperature above (below) air temperature, surface temperature fluctuations experienced a stronger negative (positive) skewness. (3) Surface materials with lower thermal admittance (lawns, leaves) showed higher fluctuations than surfaces with high thermal admittance (walls, roads). (4) Surface temperatures of emerged leaves fluctuate more compared to trees in a leaves-off situation. (5) In many cases, observed fluctuations were coherent across several neighboring pixels. The evidence from (1) to (5) suggests that atmospheric turbulence is a significant contributor to fluctuations. The study underlines the potential of using high-frequency thermal remote sensing in energy balance and turbulence studies at complex land-atmosphere interfaces.

  16. Power fluctuations from large wind farms - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Poul; Pinson, P.; Cutululis, N.A.; Madsen, Henrik; Jensen, Leo Enrico; Hjerrild, J.; Heyman Donovan, M.; Vigueras-ROdriguez, A.

    2009-08-15

    Experience from power system operation with the first large offshore wind farm in Denmark: Horns Rev shows that the power from the wind farm is fluctuating significantly at certain times, and that this fluctuation is seen directly on the power exchange between Denmark and Germany. This report describes different models for simulation and prediction of wind power fluctuations from large wind farms, and data acquired at the two large offshore wind farms in Denmark are applied to validate the models. Finally, the simulation model is further developed to enable simulations of power fluctuations from several wind farms simultaneously in a larger geographical area, corresponding to a power system control area. (au)

  17. Effect of altering local protein fluctuations using artificial intelligence

    Directory of Open Access Journals (Sweden)

    Katsuhiko Nishiyama

    2017-03-01

    Full Text Available The fluctuations in Arg111, a significantly fluctuating residue in cathepsin K, were locally regulated by modifying Arg111 to Gly111. The binding properties of 15 dipeptides in the modified protein were analyzed by molecular simulations, and modeled as decision trees using artificial intelligence. The decision tree of the modified protein significantly differed from that of unmodified cathepsin K, and the Arg-to-Gly modification exerted a remarkable effect on the peptide binding properties. By locally regulating the fluctuations of a protein, we may greatly alter the original functions of the protein, enabling novel applications in several fields.

  18. Effect of altering local protein fluctuations using artificial intelligence

    Science.gov (United States)

    Nishiyama, Katsuhiko

    2017-03-01

    The fluctuations in Arg111, a significantly fluctuating residue in cathepsin K, were locally regulated by modifying Arg111 to Gly111. The binding properties of 15 dipeptides in the modified protein were analyzed by molecular simulations, and modeled as decision trees using artificial intelligence. The decision tree of the modified protein significantly differed from that of unmodified cathepsin K, and the Arg-to-Gly modification exerted a remarkable effect on the peptide binding properties. By locally regulating the fluctuations of a protein, we may greatly alter the original functions of the protein, enabling novel applications in several fields.

  19. Chaotic dynamic characteristics of pressure fluctuation signals in hydro-turbine

    Energy Technology Data Exchange (ETDEWEB)

    Su, Wen Tao; An, Shi [School of Management, Harbin Institute of Technology, Harbin (China); Li, Xiao Bin; Lan, Chao Feng; Li, Feng Chen [School of Energy Science and Engineering, Harbin Institute of Technology, Harbin (China); Wang, Jian Sheng [Ministry of Education of China, Tianjin (China)

    2016-11-15

    The pressure fluctuation characteristics in a Francis hydro-turbine running at partial flow conditions were studied based on the chaotic dynamic methods. Firstly, the experimental data of pressure fluctuations in the draft tube at various flow conditions was de-noised using lifting wavelet transformation, then, for the de-noised signals, their spectrum distribution on the frequency domain, the energy variation and the energy partition accounting for the total energy was calculated. Hereby, for the flow conditions ranging from no cavitation to severe cavitation, the chaos dynamic features of fluctuation signals were analyzed, including the temporal-frequency distribution, phase trajectory, Lyapunov exponent and Poincaré map etc. It is revealed that, the main energy of pressure fluctuations in the draft tube locates at low-frequency region. As the cavitation grows, the amplitude of power spectrum at frequency domain becomes larger. For all the flow conditions, all the maximal Lyapunov exponents are larger than zero, and they increase with the cavitation level. Therefore, it is believed that there indeed exist the chaotic attractors in the pressure fluctuation signals for a hydro-turbine.

  20. Tunneling probe of fluctuating superconductivity in disordered thin films

    Science.gov (United States)

    Dentelski, David; Frydman, Aviad; Shimshoni, Efrat; Dalla Torre, Emanuele G.

    2018-03-01

    Disordered thin films close to the superconductor-insulator phase transition (SIT) hold the key to understanding quantum phase transition in strongly correlated materials. The SIT is governed by superconducting quantum fluctuations, which can be revealed, for example, by tunneling measurements. These experiments detect a spectral gap, accompanied by suppressed coherence peaks, on both sides of the transition. Here we describe the insulating side in terms of a fluctuating superconducting field with finite-range correlations. We perform a controlled diagrammatic resummation and derive analytic expressions for the tunneling differential conductance. We find that short-range superconducting fluctuations suppress the coherence peaks even in the presence of long-range correlations. Our approach offers a quantitative description of existing measurements on disordered thin films and accounts for tunneling spectra with suppressed coherence peaks.

  1. Quantifying fluctuations in reversible enzymatic cycles and clocks

    Science.gov (United States)

    Wierenga, Harmen; ten Wolde, Pieter Rein; Becker, Nils B.

    2018-04-01

    Biochemical reactions are fundamentally noisy at a molecular scale. This limits the precision of reaction networks, but it also allows fluctuation measurements that may reveal the structure and dynamics of the underlying biochemical network. Here, we study nonequilibrium reaction cycles, such as the mechanochemical cycle of molecular motors, the phosphorylation cycle of circadian clock proteins, or the transition state cycle of enzymes. Fluctuations in such cycles may be measured using either of two classical definitions of the randomness parameter, which we show to be equivalent in general microscopically reversible cycles. We define a stochastic period for reversible cycles and present analytical solutions for its moments. Furthermore, we associate the two forms of the randomness parameter with the thermodynamic uncertainty relation, which sets limits on the timing precision of the cycle in terms of thermodynamic quantities. Our results should prove useful also for the study of temporal fluctuations in more general networks.

  2. General description of magnetic fluctuations in TEXT

    International Nuclear Information System (INIS)

    Kim, Y.J.

    1989-01-01

    The magnetic fluctuations in TEXT (R = 1m, a = 0.26m, ohmically heated tokamak with a full poloidal limiter) have been extensively measured with magnetic probes in the shadow of the limiter with an instrumental range of f -1 (m rms p (f > 50kHz) at the limiter radius is found to be of order 10 -5 T, which is too small to produce significant transport directly. Over the range of discharge parameters in TEXT, the B rms p (f > 50kHz) is observed to have a strong q a dependence (q a -2.2 ) and also a density dependence (n eo -0.8 ). Furthermore, the magnetic fluctuations show a significant correlation with edge electrostatic density fluctuations measured by Langmiur probe inside the limiter radius, and extending along magnetic field lines. Phase variation of the correlated components suggests k double-prime/k perpendicular ∼ 0.005. The B p rms (f >50kHz) is also found to be little dependent on parallel electric field E double-prime. Magnetic fluctuations in both low and high frequency ranges have been characterized by their response to gas puffing, pellet injection, impurity injection, and the effect of an ergodic magnetic limiter. The behavior of magnetic fluctuations with electron cyclotron resonance heating (ECRH) has been also investigated in detail

  3. Magnetic fluctuations associated with density fluctuations in the tokamak edge

    International Nuclear Information System (INIS)

    Kim, Y.J.; Gentle, K.W.; Ritz, C.P.; Rhodes, T.L.; Bengtson, R.D.

    1989-01-01

    Electrostatic density and potential fluctuations occurring with high amplitude near the edge of a tokamak are correlated with components of the fluctuating magnetic field measured outside the limiter radius. It has been established that this turbulence is associated with fluctuations in current as well as density and potential. The correlation extends for substantial toroidal distances, but only if the probes are displaced approximately along field lines, consistent with the short coherence lengths poloidally but long coherence lengths parallel to the field which are characteristic for this turbulence. Furthermore, the correlation can be found only with density fluctuations measured inside the limiter radius; density fluctuations behind the limiter have no detectable magnetic concomitant for the toroidally spaced probes used here. (author). Letter-to-the-editor. 12 refs, 3 figs

  4. Entropic fluctuations in DNA sequences

    Science.gov (United States)

    Thanos, Dimitrios; Li, Wentian; Provata, Astero

    2018-03-01

    The Local Shannon Entropy (LSE) in blocks is used as a complexity measure to study the information fluctuations along DNA sequences. The LSE of a DNA block maps the local base arrangement information to a single numerical value. It is shown that despite this reduction of information, LSE allows to extract meaningful information related to the detection of repetitive sequences in whole chromosomes and is useful in finding evolutionary differences between organisms. More specifically, large regions of tandem repeats, such as centromeres, can be detected based on their low LSE fluctuations along the chromosome. Furthermore, an empirical investigation of the appropriate block sizes is provided and the relationship of LSE properties with the structure of the underlying repetitive units is revealed by using both computational and mathematical methods. Sequence similarity between the genomic DNA of closely related species also leads to similar LSE values at the orthologous regions. As an application, the LSE covariance function is used to measure the evolutionary distance between several primate genomes.

  5. Magnetosheath density fluctuations and magnetopause motion

    Energy Technology Data Exchange (ETDEWEB)

    Sibeck, D.G. [Johns Hopkins Univ. Applied Physics Lab., Laurel, MD (United States); Gosling, J.T. [Los Alamos National Lab., NM (United States)

    1996-01-01

    The interplanetary magnetic field (IMF) orientation controls foreshock densities and modulates the fraction of the solar wind dynamic pressure applied to the magnetosphere. Such pressure variations produce bow shock and magnetopause motion and cause the radial profiles for various magnetosheath parameters to sweep inward and outward past nearly stationary satellites. The authors report ISEE 2 observations of correlated density and speed fluctuations, and anticorrelated density and temperature fluctuations, on an outbound pass through the northern dawnside magnetosheath. Densities decreased when the magnetic field rotated southward and draped about the magnetopause. In the absence of any significant solar wind density or dynamic pressure variations, they interpret the magnetosheath fluctuations as evidence for radial magnetosheath motion induced by variations in the IMF orientation. 41 refs., 8 figs.

  6. Quantum fluctuations from thermal fluctuations in Jacobson formalism

    Energy Technology Data Exchange (ETDEWEB)

    Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Ashour, Amani; Alcheikh, Mohammad [Damascus University, Mathematics Department, Faculty of Science, Damascus (Syrian Arab Republic); Alasfar, Lina [Universite Clermont Auvergne, Laboratoire de Physique Corpusculaire de Clermont-Ferrand, Aubiere (France); Alsaleh, Salwa; Mahroussah, Ahmed [King Saud University, Department of Physics and Astronomy, Riyadh (Saudi Arabia)

    2017-09-15

    In the Jacobson formalism general relativity is obtained from thermodynamics. This is done by using the Bekenstein-Hawking entropy-area relation. However, as a black hole gets smaller, its temperature will increase. This will cause the thermal fluctuations to also increase, and these will in turn correct the Bekenstein-Hawking entropy-area relation. Furthermore, with the reduction in the size of the black hole, quantum effects will also start to dominate. Just as the general relativity can be obtained from thermodynamics in the Jacobson formalism, we propose that the quantum fluctuations to the geometry can be obtained from thermal fluctuations. (orig.)

  7. Birth order and fluctuating asymmetry: a first look.

    Science.gov (United States)

    Lalumière, M L; Harris, G T; Rice, M E

    1999-01-01

    We investigated the hypothesis that maternal immunoreactivity to male-specific features of the foetus can increase developmental instability. We predicted that the participants' number of older brothers would be positively related to the fluctuating asymmetry of ten bilateral morphological traits. The participants were 40 adult male psychiatric patients and 31 adult male hospital employees. Consistent with the hypothesis, the participants' number of older brothers--but not number of older sisters, younger brothers or younger sisters--was positively associated with fluctuating asymmetry. The patients had significantly larger fluctuating asymmetry scores and tended to have more older brothers than the employees, but the positive relationship between the number of older brothers and fluctuating asymmetry was observed in both groups. PMID:10643079

  8. Edge transport and fluctuation induced turbulence characteristics in early SST-1 plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kakati, B., E-mail: bharat.kakati@ipr.res.in; Pradhan, S., E-mail: pradhan@ipr.res.in; Dhongde, J.; Semwal, P.; Yohan, K.; Banaudha, M.

    2017-02-15

    Highlights: • Anomalous particle transport during the high MHD activity at SST-1. • Electrostatic turbulence is modulated by MHD activity at SST-1 tokamak. • Edge floating potential fluctuations shows poloidal long-range cross correlation. - Abstract: Plasma edge transport characteristics are known to be heavily influenced by the edge fluctuation induced turbulences. These characteristics play a critical role towards the confinement of plasma column in a Tokamak. The edge magnetic fluctuations and its subsequent effect on electrostatic fluctuations have been experimentally investigated for the first time at the edge of the SST-1 plasma column. This paper reports the correlations that exist and is experimentally been observed between the edge densities and floating potential fluctuations with the magnetic fluctuations. The edge density and floating potential fluctuations have been measured with the help of poloidally separated Langmuir probes, whereas the magnetic fluctuations have been measured with poloidally spaced Mirnov coils. Increase in magnetic fluctuations associated with enhanced MHD activities has been found to increase the floating potential and ion saturation current. These observations indicate electrostatic turbulence getting influenced with the MHD activities and reveal the edge anomalous particle transport during SST-1 tokamak discharge. Large-scale coherent structures have been observed in the floating potential fluctuations, indicating long-distance cross correlation in the poloidal directions. From bispectral analysis, a strong nonlinear coupling among the floating potential fluctuations is observed in the low-frequency range about 0–15 kHz.

  9. Species packing in eco-evolutionary models of seasonally fluctuating environments.

    Science.gov (United States)

    Kremer, Colin T; Klausmeier, Christopher A

    2017-09-01

    As ecology and evolution become ever more entwined, many areas of ecological theory are being re-examined. Eco-evolutionary analyses of classic coexistence mechanisms are yielding new insights into the structure and stability of communities. We examine fluctuation-dependent coexistence models, identifying communities that are both ecologically and evolutionarily stable. Members of these communities possess distinct environmental preferences, revealing widespread patterns of limiting similarity. This regularity leads to consistent changes in the structure of communities across fluctuation regimes. However, at high amplitudes, subtle differences in the form of fluctuations dramatically affect the collapse of communities. We also show that identical fluctuations can support multiple evolutionarily stable communities - a novel example of alternative stable states within eco-evolutionary systems. Consequently, the configuration of communities will depend on historical contingencies, including details of the adaptive process. Integrating evolution into the study of coexistence offers new insights, while enriching our understanding of ecology. © 2017 John Wiley & Sons Ltd/CNRS.

  10. Diurnal lamotrigine plasma level fluctuations: clinical significance and indication of shorter half-life with chronic administration

    DEFF Research Database (Denmark)

    Nielsen, K.A.; Dahl, M.; Tommerup, E.

    2008-01-01

    -daily regimens without pharmacokinetic interactions exhibited C(min)/C(max) ratios between 0.62 and 0.69. Fluctuations were smaller in those co-medicated with valproate, and reached a ratio of 0.55 in those co-medicated with phenobarbital. The C(max) was as much as 58% above the MTL. Therefore, verification...

  11. The fluctuation theory of the stellar mass loss

    International Nuclear Information System (INIS)

    Andriesse, C.D.

    1981-01-01

    The idea that fluctuations in the mass flow are as significant as the very existence of the flow has led to the development of a fluctuation theory of the stellar mass loss. A general theory for fluctuations in non-equilibrium systems - and such are stellar atmospheres - was developed long ago. In developing the general theory to a specific stellar theory, however, the arguments have not come up in their logical order. The present sketch of this theory improves on that order and is offered as a framework for further study. (Auth.)

  12. Fluctuation diamagnetism in two-band superconductors

    Science.gov (United States)

    Adachi, Kyosuke; Ikeda, Ryusuke

    2016-04-01

    Anomalously large fluctuation diamagnetism around the superconducting critical temperature has been recently observed in iron selenide (FeSe) [Kasahara et al. (unpublished)]. This indicates that superconducting fluctuations (SCFs) play a more significant role in FeSe, which supposedly has a two-band structure, than in the familiar single-band superconductors. Motivated by the data on FeSe, SCF-induced diamagnetism is examined in a two-band system, on the basis of a phenomenological approach with a Ginzburg-Landau functional. The obtained results indicate that the SCF-induced diamagnetism may be more enhanced than that in a single-band system due to the existence of two distinct fluctuation modes. Such enhancement of diamagnetism unique to a two-band system seems consistent with the large diamagnetism observed in FeSe, though still far from a quantitative agreement.

  13. Ras activation by SOS: Allosteric regulation by altered fluctuation dynamics

    Science.gov (United States)

    Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen; Christensen, Sune M.; Abel, Steven M.; Iwig, Jeff; Wu, Hung-Jen; Gureasko, Jodi; Rhodes, Christopher; Petit, Rebecca S.; Hansen, Scott D.; Thill, Peter; Yu, Cheng-Han; Stamou, Dimitrios; Chakraborty, Arup K.; Kuriyan, John; Groves, Jay T.

    2014-01-01

    Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras–guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average. PMID:24994643

  14. Fluctuation scaling, Taylor's law, and crime.

    Directory of Open Access Journals (Sweden)

    Quentin S Hanley

    Full Text Available Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to measles cases. Taylor's law is one such scaling relationship and has been widely applied in ecology to understand communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show complex fluctuation scaling which can be approximated by Taylor's law relationships corresponding to local policing neighborhoods and larger regional and countrywide scales. Regression models applied to local scale data from Derbyshire and Nottinghamshire found that different categories of crime exhibited different scaling exponents with no significant difference between the two regions. On this scale, violence reports were close to a Poisson distribution (α = 1.057 ± 0.026 while burglary exhibited a greater exponent (α = 1.292 ± 0.029 indicative of temporal clustering. These two regions exhibited significantly different pre-exponential factors for the categories of anti-social behavior and burglary indicating that local variations in crime reports can be assessed using fluctuation scaling methods. At regional and countrywide scales, all categories exhibited scaling behavior indicative of temporal clustering evidenced by Taylor's law exponents from 1.43 ± 0.12 (Drugs to 2.094 ± 0081 (Other Crimes. Investigating crime behavior via fluctuation scaling gives insight beyond that of raw numbers and is unique in reporting on all processes contributing to the observed variance and is either robust to or exhibits signs of many types of data manipulation.

  15. Fluctuation scaling, Taylor's law, and crime.

    Science.gov (United States)

    Hanley, Quentin S; Khatun, Suniya; Yosef, Amal; Dyer, Rachel-May

    2014-01-01

    Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to measles cases. Taylor's law is one such scaling relationship and has been widely applied in ecology to understand communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show complex fluctuation scaling which can be approximated by Taylor's law relationships corresponding to local policing neighborhoods and larger regional and countrywide scales. Regression models applied to local scale data from Derbyshire and Nottinghamshire found that different categories of crime exhibited different scaling exponents with no significant difference between the two regions. On this scale, violence reports were close to a Poisson distribution (α = 1.057 ± 0.026) while burglary exhibited a greater exponent (α = 1.292 ± 0.029) indicative of temporal clustering. These two regions exhibited significantly different pre-exponential factors for the categories of anti-social behavior and burglary indicating that local variations in crime reports can be assessed using fluctuation scaling methods. At regional and countrywide scales, all categories exhibited scaling behavior indicative of temporal clustering evidenced by Taylor's law exponents from 1.43 ± 0.12 (Drugs) to 2.094 ± 0081 (Other Crimes). Investigating crime behavior via fluctuation scaling gives insight beyond that of raw numbers and is unique in reporting on all processes contributing to the observed variance and is either robust to or exhibits signs of many types of data manipulation.

  16. Development of fluctuation monitor type sodium ionization detector

    International Nuclear Information System (INIS)

    Yamamoto, Hajime; Sato, Yoshihiko; Ibe, Eishi; Suzuoki, Akira

    1986-01-01

    In order to improve the sensitivity and the reliability of the sodium leak detection system used in the fast breeder reactors, a new type SID (sodium ionization detector) has been developed, in which the monitored signal is only the fluctuating component of the current between the filament and the ion collector. The fluctuating component was extracted by a band pass filter and its root mean square value was calculated as the SID signal. Fluctuation characteristics of the output current were studied by its frequency spectrum. The results revealed that the current spectrum was affected by the particle size distribution of the aerosol and was most clearly distinguished from that of the background current in the frequency region of 0.5 ∼ 10 Hz. Output characteristics of the fluctuation monitor type SID (FM-SID) were obtained as a function of sodium concentration in the gas. The FM-SID sensitivity was lowered by impurities in the gas, such as oxygen and water vapor. Finally, in comparisons with the conventional DC-SIDs, the background noise level of the FM-SID was much lower and S/N ratio was greatly improved. The detectable sodium concentration level was ten times lower than that of the DC-SID. (author)

  17. The neural basis of trait self-esteem revealed by the amplitude of low-frequency fluctuations and resting state functional connectivity.

    Science.gov (United States)

    Pan, Weigang; Liu, Congcong; Yang, Qian; Gu, Yan; Yin, Shouhang; Chen, Antao

    2016-03-01

    Self-esteem is an affective, self-evaluation of oneself and has a significant effect on mental and behavioral health. Although research has focused on the neural substrates of self-esteem, little is known about the spontaneous brain activity that is associated with trait self-esteem (TSE) during the resting state. In this study, we used the resting-state functional magnetic resonance imaging (fMRI) signal of the amplitude of low-frequency fluctuations (ALFFs) and resting state functional connectivity (RSFC) to identify TSE-related regions and networks. We found that a higher level of TSE was associated with higher ALFFs in the left ventral medial prefrontal cortex (vmPFC) and lower ALFFs in the left cuneus/lingual gyrus and right lingual gyrus. RSFC analyses revealed that the strengths of functional connectivity between the left vmPFC and bilateral hippocampus were positively correlated with TSE; however, the connections between the left vmPFC and right inferior frontal gyrus and posterior superior temporal sulcus were negatively associated with TSE. Furthermore, the strengths of functional connectivity between the left cuneus/lingual gyrus and right dorsolateral prefrontal cortex and anterior cingulate cortex were positively related to TSE. These findings indicate that TSE is linked to core regions in the default mode network and social cognition network, which is involved in self-referential processing, autobiographical memory and social cognition. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  18. Does water-level fluctuation affect mercury methylation in wetland soils?

    Energy Technology Data Exchange (ETDEWEB)

    Branfireun, B.A.; Mitchell, C.P.J.; Iraci, J.M. [Toronto Univ., ON (Canada). Dept. of Geography; Krabbenhoft, D.P. [United States Geological Survey, Middleton, WI (United States); Fowle, D.A. [Kansas Univ., Lawrence, KS (United States). Dept. of Geology; Neudahl, L. [Minnesota Power, Duluth, MN (United States)

    2006-07-01

    Mercury (Hg) concentrations in fish vary considerably in freshwater lakes and reservoirs. However, the variations are not generally consistent with physical factors such as basin characteristics, wetland cover or lake chemistry. Pronounced differences in Hg concentrations in fish have been noted in the reservoirs of the St. Louis River system near Duluth Minnesota. The differences were observed between headwater reservoir systems with seasonal flooding and drawdown, and a peaking reservoir with approximately daily water level fluctuations during seasonal lower flow periods. It was suggested that these differences could be attributed to water level fluctuations in the reservoir which influenced the actual production of methylmercury (MeHg) in the surrounding wetland soils. In response to this hypothesis, the authors investigated the role of water level fluctuation in the production and mobilization of MeHg in sediments from wetlands that lie adjacent to a headwater reservoir, a peaking reservoir, and a nearby natural flowage lake used as a control. Preliminary field surveys of the wetland soils revealed that although the average MeHg concentrations in the headwater and peaking reservoir wetlands were not considerably different, both were much higher than the natural lake. Each site demonstrated high variability, but maximum MeHg concentrations ranged from 29.2 ng/g for the peaking reservoir to 4.44 ng/g at the natural lake. A laboratory experiment was therefore performed in which sediments from each wetland were subjected to different water level regimes. The purpose was to assess Hg methylation potential. Stable Hg isotopes were used at the beginning and end of the experiment. In order to determine if water level fluctuation can significantly change the methylation potential of wetland soils on its own, the microbial consortia will also be assessed during the laboratory experiment.

  19. Fluctuations of wormlike micelle fluids in capillary flow

    Science.gov (United States)

    Salipante, Paul; Meek, Stephen; Hudson, Steven; Polymers; Complex Fluids Group Team

    2017-11-01

    We investigate the effect of entrance geometry on the flow stability of wormlike micelles solutions in capillary flow. These solutions exhibit strong shear thinning behavior resulting from micelle breakage and have been observed to undergo large flow rate fluctuations. We investigate these fluctuations using simultaneous measurements of flow rate and pressure drop across a capillary, and we adjust entrance geometry. With a tapered constriction, we observe large persistent fluctuations above a critical flow rate, characterized by rapid decreases in the pressure drop with corresponding increase in flow rate followed by a period of recovery where pressure increases and flow rate decreases. Flow field observations in the tapered entrance show large flow circulations. An abrupt contraction produces smaller transient fluidized jets forming upstream of the constriction and the magnitude of the fluctuations are significantly diminished. The effect of fluid properties is studied by comparing the magnitude and timescales of the fluctuations for surfactant systems with different relaxation times. The onset of fluctuations is compared to a criterion for the onset of elastic instabilities and the magnitude is compared to estimates for changes in channel resistance. NIST on a Chip.

  20. Effect of spin fluctuations on the electronic structure in iron-based superconductors

    Science.gov (United States)

    Heimes, Andreas; Grein, Roland; Eschrig, Matthias

    2012-08-01

    Magnetic inelastic neutron scattering studies of iron-based superconductors reveal a strongly temperature-dependent spin-fluctuation spectrum in the normal conducting state, which develops a prominent low-energy resonance feature when entering the superconducting state. Angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling spectroscopy (STS) allow us to study the fingerprints of fluctuation modes via their interactions with electronic quasiparticles. We calculate such fingerprints in 122 iron pnictides using an experimentally motivated spin-fluctuation spectrum and make a number of predictions that can be tested in ARPES and STS experiments. This includes discussions of the quasiparticle scattering rate and the superconducting order parameter. In quantitative agreement with experiment we reproduce the quasiparticle dispersions obtained from momentum distribution curves as well as energy distribution curves. We discuss the relevance of the coupling between spin fluctuations and electronic excitations for the superconducting mechanism.

  1. On the assumption of vanishing temperature fluctuations at the wall for heat transfer modeling

    Science.gov (United States)

    Sommer, T. P.; So, R. M. C.; Zhang, H. S.

    1993-01-01

    Boundary conditions for fluctuating wall temperature are required for near-wall heat transfer modeling. However, their correct specifications for arbitrary thermal boundary conditions are not clear. The conventional approach is to assume zero fluctuating wall temperature or zero gradient for the temperature variance at the wall. These are idealized specifications and the latter condition could lead to an ill posed problem for fully-developed pipe and channel flows. In this paper, the validity and extent of the zero fluctuating wall temperature condition for heat transfer calculations is examined. The approach taken is to assume a Taylor expansion in the wall normal coordinate for the fluctuating temperature that is general enough to account for both zero and non-zero value at the wall. Turbulent conductivity is calculated from the temperature variance and its dissipation rate. Heat transfer calculations assuming both zero and non-zero fluctuating wall temperature reveal that the zero fluctuating wall temperature assumption is in general valid. The effects of non-zero fluctuating wall temperature are limited only to a very small region near the wall.

  2. Thermal fluctuation problems encountered in LMFRs

    International Nuclear Information System (INIS)

    Gelineau, O.; Sperandio, M.; Martin, P.; Ricard, J.B.; Martin, L.; Bougault, A.

    1994-01-01

    One of the most significant problems of LMFBRs deals with thermal fluctuations. The main reason is that LMFBRs operate with sodium coolant at very different temperatures which leads to the existence of several areas of transition between hot and cold sodium. These transitions areas which are the critical points, maybe found in the reactor block as well as in the secondary and auxiliary loops. The characteristics of these thermal fluctuations are not easy to quantify because of their complex (random) behaviour, and often demand the use of thermalhydraulic mock-up tests. A good knowledge of these phenomena is essential because of the potential high level of damage they can induce on structures. Two typical thermal fluctuation problems encountered on operation reactors are described. They were not originally anticipated at the design stage of the former Phenix and the latter Superphenix reactors. Description and the analyses performed to describe the damaging process are explained. A well known thermal fluctuation problem is presented. It is pointed out how the feedback from the damages observed on operating reactors is used to prevent the components from any high cycle fatigue

  3. Intermittent character of interplanetary magnetic field fluctuations

    International Nuclear Information System (INIS)

    Bruno, Roberto; Carbone, Vincenzo; Chapman, Sandra; Hnat, Bogdan; Noullez, Alain; Sorriso-Valvo, Luca

    2007-01-01

    Interplanetary magnetic field magnitude fluctuations are notoriously more intermittent than velocity fluctuations in both fast and slow wind. This behavior has been interpreted in terms of the anomalous scaling observed in passive scalars in fully developed hydrodynamic turbulence. In this paper, the strong intermittent nature of the interplanetary magnetic field is briefly discussed comparing results performed during different phases of the solar cycle. The scaling properties of the interplanetary magnetic field magnitude show solar cycle variation that can be distinguished in the scaling exponents revealed by structure functions. The scaling exponents observed around the solar maximum coincide, within the errors, to those measured for passive scalars in hydrodynamic turbulence. However, it is also found that the values are not universal in the sense that the solar cycle variation may be reflected in dependence on the structure of the velocity field

  4. Effect of density fluctuations on ECCD in ITER and TCV

    Directory of Open Access Journals (Sweden)

    Coda S.

    2012-09-01

    Full Text Available Density fluctuations near the edge of tokamak plasmas can affect the propagation of electron cyclotron (EC waves. In the present paper, the EC wave propagation in a fluctuating equilibrium is determined using the ray-tracing code C3PO. The evolution of the electron distribution function is calculated self-consistently with the EC wave damping using the 3-D Fokker-Planck solver LUKE. The cumulative effect of fluctuations results in a significant broadening of the current profile combined with a fluctuating power deposition profile. This mechanism improves the simulation of fully non-inductive EC discharges in the TCV tokamaks. Predictive simulations for ITER show that density fluctuations could make the stabilization of NTMs in ITER more challenging.

  5. Nonequilibrium thermodynamics and fluctuation relations for small systems

    International Nuclear Information System (INIS)

    Cao Liang; Ke Pu; Qiao Li-Yan; Zheng Zhi-Gang

    2014-01-01

    In this review, we give a retrospect of the recent progress in nonequilibrium statistical mechanics and thermodynamics in small dynamical systems. For systems with only a few number of particles, fluctuations and nonlinearity become significant and contribute to the nonequilibrium behaviors of the systems, hence the statistical properties and thermodynamics should be carefully studied. We review recent developments of this topic by starting from the Gallavotti—Cohen fluctuation theorem, and then to the Evans—Searles transient fluctuation theorem, Jarzynski free-energy equality, and the Crooks fluctuation relation. We also investigate the nonequilibrium free energy theorem for trajectories involving changes of the heat bath temperature and propose a generalized free-energy relation. It should be noticed that the non-Markovian property of the heat bath may lead to the violation of the free-energy relation. (topical review - statistical physics and complex systems)

  6. Lognormal firing rate distribution reveals prominent fluctuation-driven regime in spinal motor networks

    DEFF Research Database (Denmark)

    Petersen, Peter C.; Berg, Rune W.

    2016-01-01

    fraction that operates within either a ‘mean-driven’ or a ‘fluctuation–driven’ regime. Fluctuation-driven neurons have a ‘supralinear’ input-output curve, which enhances sensitivity, whereas the mean-driven regime reduces sensitivity. We find a rich diversity of firing rates across the neuronal population...... as reflected in a lognormal distribution and demonstrate that half of the neurons spend at least 50 %% of the time in the ‘fluctuation–driven’ regime regardless of behavior. Because of the disparity in input–output properties for these two regimes, this fraction may reflect a fine trade–off between stability...

  7. Torque fluctuations caused by upstream mean flow and turbulence

    Science.gov (United States)

    Farr, T. D.; Hancock, P. E.

    2014-12-01

    A series of studies are in progress investigating the effects of turbine-array-wake interactions for a range of atmospheric boundary layer states by means of the EnFlo meteorological wind tunnel. The small, three-blade model wind turbines drive 4-quadrant motor-generators. Only a single turbine in neutral flow is considered here. The motor-generator current can be measured with adequate sensitivity by means of a current sensor allowing the mean and fluctuating torque to be inferred. Spectra of torque fluctuations and streamwise velocity fluctuations ahead of the rotor, between 0.1 and 2 diameters, show that only the large-scale turbulent motions contribute significantly to the torque fluctuations. Time-lagged cross-correlation between upstream velocity and torque fluctuations are largest over the inner part of the blade. They also show the turbulence to be frozen in behaviour over the 2 diameters upstream of the turbine.

  8. On the origin of shape fluctuations of the cell nucleus.

    Science.gov (United States)

    Chu, Fang-Yi; Haley, Shannon C; Zidovska, Alexandra

    2017-09-26

    The nuclear envelope (NE) presents a physical boundary between the cytoplasm and the nucleoplasm, sandwiched in between two highly active systems inside the cell: cytoskeleton and chromatin. NE defines the shape and size of the cell nucleus, which increases during the cell cycle, accommodating for chromosome decondensation followed by genome duplication. In this work, we study nuclear shape fluctuations at short time scales of seconds in human cells. Using spinning disk confocal microscopy, we observe fast fluctuations of the NE, visualized by fluorescently labeled lamin A, and of the chromatin globule surface (CGS) underneath the NE, visualized by fluorescently labeled histone H2B. Our findings reveal that fluctuation amplitudes of both CGS and NE monotonously decrease during the cell cycle, serving as a reliable cell cycle stage indicator. Remarkably, we find that, while CGS and NE typically fluctuate in phase, they do exhibit localized regions of out-of-phase motion, which lead to separation of NE and CGS. To explore the mechanism behind these shape fluctuations, we use biochemical perturbations. We find the shape fluctuations of CGS and NE to be both thermally and actively driven, the latter caused by forces from chromatin and cytoskeleton. Such undulations might affect gene regulation as well as contribute to the anomalously high rates of nuclear transport by, e.g., stirring of molecules next to NE, or increasing flux of molecules through the nuclear pores.

  9. Fluctuations in work motivation: tasks do not matter!

    Science.gov (United States)

    Navarro, Jose; Curioso, Fernando; Gomes, Duarte; Arrieta, Carlos; Cortes, Mauricio

    2013-01-01

    Previous studies have shown that work motivation fluctuates considerably and in a nonlinear way over time. In the present research, we are interested in studying if the task at hand does or does not influence the presence of these fluctuations. We gathered daily registers from 69 workers during 21 consecutive working days (7036 registers) of task developed and levels of motivation, self-efficacy beliefs and instrumentalities perception. These registers were then categorized into a list of labor activities in main tasks and subtasks by means of three judges with a high level of agreement (97.47% for tasks, and 98.64% for subtasks). Taking the MSSD statistic (mean squared successive difference) of the average of motivation, self-efficacy and instrumentality, and using hierarchical regression analysis we have found that tasks (beta = .03; p = .188) and subtasks (beta = .10; p = .268) do not affect the presence of fluctuations in motivation. These results reveal instability in work motivation independently from the tasks and subtasks that the workers do. We proceed to find that fluctuations in work motivation show a fractal structure across the different tasks we do in a working day. Implications of these results to motivational theory will be discussed as well as possible explanations (e.g. the influence of affect in work motivation) and directions for future research are provided.

  10. Impact of neutral density fluctuations on gas puff imaging diagnostics

    Science.gov (United States)

    Wersal, C.; Ricci, P.

    2017-11-01

    A three-dimensional turbulence simulation of the SOL and edge regions of a toroidally limited tokamak is carried out. The simulation couples self-consistently the drift-reduced two-fluid Braginskii equations to a kinetic equation for neutral atoms. A diagnostic neutral gas puff on the low-field side midplane is included and the impact of neutral density fluctuations on D_α light emission investigated. We find that neutral density fluctuations affect the D_α emission. In particular, at a radial distance from the gas puff smaller than the neutral mean free path, neutral density fluctuations are anti-correlated with plasma density, electron temperature, and D_α fluctuations. It follows that the neutral fluctuations reduce the D_α emission in most of the observed region and, therefore, have to be taken into account when interpreting the amplitude of the D_α emission. On the other hand, higher order statistical moments (skewness, kurtosis) and turbulence characteristics (such as correlation length, or the autocorrelation time) are not significantly affected by the neutral fluctuations. At distances from the gas puff larger than the neutral mean free path, a non-local shadowing effect influences the neutral density fluctuations. There, the D_α fluctuations are correlated with the neutral density fluctuations, and the high-order statistical moments and measurements of other turbulence properties are strongly affected by the neutral density fluctuations.

  11. Enhanced quantum spin fluctuations in a binary Bose-Einstein condensate

    Science.gov (United States)

    Bisset, R. N.; Kevrekidis, P. G.; Ticknor, C.

    2018-02-01

    For quantum fluids, the role of quantum fluctuations may be significant in several regimes such as when the dimensionality is low, the density is high, the interactions are strong, or for low particle numbers. In this paper, we propose a fundamentally different regime for enhanced quantum fluctuations without being restricted by any of the above conditions. Instead, our scheme relies on the engineering of an effective attractive interaction in a dilute, two-component Bose-Einstein condensate (BEC) consisting of thousands of atoms. In such a regime, the quantum spin fluctuations are significantly enhanced (atom bunching with respect to the noninteracting limit) since they act to reduce the interaction energy, a remarkable property given that spin fluctuations are normally suppressed (antibunching) at zero temperature. In contrast to the case of true attractive interactions, our approach is not vulnerable to BEC collapse. We numerically demonstrate that these quantum fluctuations are experimentally accessible by either spin or single-component Bragg spectroscopy, offering a useful platform on which to test beyond-mean-field theories. We also develop a variational model and use it to analytically predict the shift of the immiscibility critical point, finding good agreement with our numerics.

  12. Medium-term fluctuations and the "Great Ratios" of economic growth

    DEFF Research Database (Denmark)

    Groth, Christian; Madsen, Jakob B.

    2016-01-01

    Evidence for the OECD countries show that the “great ratios”, such as the unemployment rate, factor shares, Tobin’s q and the investment-capital ratio, fluctuate significantly on medium-term frequencies of 10-40 years duration. To explain these medium-term fluctuations, we establish a macro...

  13. Towards uncovering the structure of power fluctuations of wind farms.

    Science.gov (United States)

    Liu, Huiwen; Jin, Yaqing; Tobin, Nicolas; Chamorro, Leonardo P

    2017-12-01

    The structure of the turbulence-driven power fluctuations in a wind farm is fundamentally described from basic concepts. A derived tuning-free model, supported with experiments, reveals the underlying spectral content of the power fluctuations of a wind farm. It contains two power-law trends and oscillations in the relatively low- and high-frequency ranges. The former is mostly due to the turbulent interaction between the flow and the turbine properties, whereas the latter is due to the advection between turbine pairs. The spectral wind-farm scale power fluctuations Φ_{P} exhibit a power-law decay proportional to f^{-5/3-2} in the region corresponding to the turbulence inertial subrange and at relatively large scales, Φ_{P}∼f^{-2}. Due to the advection and turbulent diffusion of large-scale structures, a spectral oscillation exists with the product of a sinusoidal behavior and an exponential decay in the frequency domain.

  14. Fluctuations and synchrony of RNA synthesis in nucleoli.

    Science.gov (United States)

    Pliss, Artem; Kuzmin, Andrey N; Kachynski, Aliaksandr V; Baev, Alexander; Berezney, Ronald; Prasad, Paras N

    2015-06-01

    Ribosomal RNA (rRNA) sequences are synthesized at exceptionally high rates and, together with ribosomal proteins (r-proteins), are utilized as building blocks for the assembly of pre-ribosomal particles. Although it is widely acknowledged that tight regulation and coordination of rRNA and r-protein production are fundamentally important for the maintenance of cellular homeostasis, still little is known about the real-time kinetics of the ribosome component synthesis in individual cells. In this communication we introduce a label-free MicroRaman spectrometric approach for monitoring rRNA synthesis in live cultured cells. Remarkably high and rapid fluctuations of rRNA production rates were revealed by this technique. Strikingly, the changes in the rRNA output were synchronous for ribosomal genes located in separate nucleoli of the same cell. Our findings call for the development of new concepts to elucidate the coordination of ribosomal components production. In this regard, numerical modeling further demonstrated that the production of rRNA and r-proteins can be coordinated, regardless of the fluctuations in rRNA synthesis. Overall, our quantitative data reveal a spectacular interplay of inherently stochastic rates of RNA synthesis and the coordination of gene expression.

  15. Nuclear quantum effects and hydrogen bond fluctuations in water

    Science.gov (United States)

    Ceriotti, Michele; Cuny, Jérôme; Parrinello, Michele; Manolopoulos, David E.

    2013-01-01

    The hydrogen bond (HB) is central to our understanding of the properties of water. However, despite intense theoretical and experimental study, it continues to hold some surprises. Here, we show from an analysis of ab initio simulations that take proper account of nuclear quantum effects that the hydrogen-bonded protons in liquid water experience significant excursions in the direction of the acceptor oxygen atoms. This generates a small but nonnegligible fraction of transient autoprotolysis events that are not seen in simulations with classical nuclei. These events are associated with major rearrangements of the electronic density, as revealed by an analysis of the computed Wannier centers and 1H chemical shifts. We also show that the quantum fluctuations exhibit significant correlations across neighboring HBs, consistent with an ephemeral shuttling of protons along water wires. We end by suggesting possible implications for our understanding of how perturbations (solvated ions, interfaces, and confinement) might affect the HB network in water. PMID:24014589

  16. Fluctuations and structure of amphiphilic films; Fluctuations et structure de films d`amphiphiles

    Energy Technology Data Exchange (ETDEWEB)

    Gourier, CH

    1996-07-01

    This thesis is divided in three parts.The first part exposes in a theoretical point of view, how the fluctuations spectrum of an amphiphilic film is governed by its properties and its bidimensional characteristics.The measurements of fluctuations spectra of an interface are accessible with the measurement of intensity that interface diffuses out of the specular angle, we present in the second chapter the principles of the X rays diffusion by a real interface and see how the diffuse diffusion experiments allow to determine the fluctuations spectrum of an amphiphilic film. The second part is devoted to the different experimental techniques that have allowed to realize the study of fluctuation as well as the structural study.The third part is devoted to experimental results concerning the measurements of fluctuations spectra and to the study of the structure of amphiphilic films. We show that it is possible by using an intense source of X rays (ESRF: European Synchrotron Radiation Facility) to measure the water and amphiphilic films fluctuations spectra until molecular scales. The last chapter is devoted to the structural study and film fluctuations made of di-acetylenic molecules. (N.C.)

  17. Influence of thermal fluctuations on ligament break-up: a fluctuating lattice Boltzmann study

    Science.gov (United States)

    Xue, Xiao; Biferale, Luca; Sbragaglia, Mauro; Toschi, Federico

    2017-11-01

    Thermal fluctuations are essential ingredients in a nanoscale system, driving Brownian motion of particles and capillary waves at non-ideal interfaces. Here we study the influence of thermal fluctuations on the breakup of liquid ligaments at the nanoscale. We offer quantitative characterization of the effects of thermal fluctuations on the Plateau-Rayleigh mechanism that drives the breakup process of ligaments. Due to thermal fluctuations, the droplet sizes after break-up need to be analyzed in terms of their distribution over an ensemble made of repeated experiments. To this aim, we make use of numerical simulations based on the fluctuating lattice Boltzmann method (FLBM) for multicomponent mixtures. The method allows an accurate and efficient simulation of the fluctuating hydrodynamics equations of a binary mixture, where both stochastic viscous stresses and diffusion fluxes are introduced. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No 642069.

  18. Orbital Noise of the Earth Causes Intensity Fluctuation in the Geomagnetic Field

    Science.gov (United States)

    Liu, Han-Shou; Kolenkiewicz, R.; Wade, C., Jr.

    2003-01-01

    Orbital noise of Earth's obliquity can provide an insight into the core of the Earth that causes intensity fluctuations in the geomagnetic field. Here we show that noise spectrum of the obliquity frequency have revealed a series of frequency periods centered at 250-, 1OO-, 50-, 41-, 30-, and 26-kyr which are almost identical with the observed spectral peaks from the composite curve of 33 records of relative paleointensity spanning the past 800 kyr (Sint-800 data). A continuous record for the past two million years also reveals the presence of the major 100 kyr periodicity in obliquity noise and geomagnetic intensity fluctuations. These results of correlation suggest that obliquity noise may power the dynamo, located in the liquid outer core of the Earth, which generates the geomagnetic field.

  19. Genetic and environmental transmission of body mass index fluctuation.

    Science.gov (United States)

    Bergin, Jocilyn E; Neale, Michael C; Eaves, Lindon J; Martin, Nicholas G; Heath, Andrew C; Maes, Hermine H

    2012-11-01

    This study sought to determine the relationship between body mass index (BMI) fluctuation and cardiovascular disease phenotypes, diabetes, and depression and the role of genetic and environmental factors in individual differences in BMI fluctuation using the extended twin-family model (ETFM). This study included 14,763 twins and their relatives. Health and Lifestyle Questionnaires were obtained from 28,492 individuals from the Virginia 30,000 dataset including twins, parents, siblings, spouses, and children of twins. Self-report cardiovascular disease, diabetes, and depression data were available. From self-reported height and weight, BMI fluctuation was calculated as the difference between highest and lowest BMI after age 18, for individuals 18-80 years. Logistic regression analyses were used to determine the relationship between BMI fluctuation and disease status. The ETFM was used to estimate the significance and contribution of genetic and environmental factors, cultural transmission, and assortative mating components to BMI fluctuation, while controlling for age. We tested sex differences in additive and dominant genetic effects, parental, non-parental, twin, and unique environmental effects. BMI fluctuation was highly associated with disease status, independent of BMI. Genetic effects accounted for ~34 % of variance in BMI fluctuation in males and ~43 % of variance in females. The majority of the variance was accounted for by environmental factors, about a third of which were shared among twins. Assortative mating, and cultural transmission accounted for only a small proportion of variance in this phenotype. Since there are substantial health risks associated with BMI fluctuation and environmental components of BMI fluctuation account for over 60 % of variance in males and over 50 % of variance in females, environmental risk factors may be appropriate targets to reduce BMI fluctuation.

  20. Time-dependent perpendicular fluctuations in the driven lattice Lorentz gas

    Science.gov (United States)

    Leitmann, Sebastian; Schwab, Thomas; Franosch, Thomas

    2018-02-01

    We present results for the fluctuations of the displacement of a tracer particle on a planar lattice pulled by a step force in the presence of impenetrable, immobile obstacles. The fluctuations perpendicular to the applied force are evaluated exactly in first order of the obstacle density for arbitrarily strong pulling and all times. The complex time-dependent behavior is analyzed in terms of the diffusion coefficient, local exponent, and the non-Skellam parameter, which quantifies deviations from the dynamics on the lattice in the absence of obstacles. The non-Skellam parameter along the force is analyzed in terms of an asymptotic model and reveals a power-law growth for intermediate times.

  1. Multifractal Detrended Fluctuation Analysis of Human gait Diseases

    Directory of Open Access Journals (Sweden)

    Srimonti eDutta

    2013-10-01

    Full Text Available IIn this paper multifractal detrended fluctuation analysis is used to study the human gait time series for normal and diseased sets. It is observed that long range correlation is primarily responsible for the origin of multifractality. The study reveals that the degree of multifractality is more for normal set compared to diseased set. However the method fails to distinguish between the two diseased sets.

  2. One-point fluctuation analysis of the high-energy neutrino sky

    DEFF Research Database (Denmark)

    Feyereisen, Michael R.; Tamborra, Irene; Ando, Shin'ichiro

    2017-01-01

    We perform the first one-point fluctuation analysis of the high-energy neutrino sky. This method reveals itself to be especially suited to contemporary neutrino data, as it allows to study the properties of the astrophysical components of the high-energy flux detected by the IceCube telescope, even...

  3. Phase Fluctuations and the Absence of Topological Defects in Photo-excited Charge Ordered Nickelate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.S.; Chuang, Y.D.; Moore, R.G.; Zhu, Y.; Patthey, L.; Trigo, M.; Lu, D.H.; Kirchmann, P.S.; Krupin, O.; Yi, M.; Langner, M.; Huse, N.; Robinson, J.S.; Chen, Y.; Zhou, S.Y.; Coslovich, G.; Huber, B.; Reis, D.A.; Kaindl, R.A.; Schoenlein, R.W.; Doering, D.

    2012-05-15

    The dynamics of an order parameter's amplitude and phase determines the collective behaviour of novel states emerging in complex materials. Time- and momentum-resolved pump-probe spectroscopy, by virtue of measuring material properties at atomic and electronic time scales out of equilibrium, can decouple entangled degrees of freedom by visualizing their corresponding dynamics in the time domain. Here we combine time-resolved femotosecond optical and resonant X-ray diffraction measurements on charge ordered La{sub 1.75}Sr{sub 0.25}NiO{sub 4} to reveal unforeseen photoinduced phase fluctuations of the charge order parameter. Such fluctuations preserve long-range order without creating topological defects, distinct from thermal phase fluctuations near the critical temperature in equilibrium. Importantly, relaxation of the phase fluctuations is found to be an order of magnitude slower than that of the order parameter's amplitude fluctuations, and thus limits charge order recovery. This new aspect of phase fluctuations provides a more holistic view of the phase's importance in ordering phenomena of quantum matter.

  4. Non-statistical fluctuations in fragmentation of target nuclei in high energy nuclear interactions

    International Nuclear Information System (INIS)

    Ghosh, Dipak; Ghosh, Premomoy; Ghosh, Alokananda; Roy, Jaya

    1994-01-01

    Analysis of target fragmented ''black'' particles in nuclear emulsion from high energy relativistic interactions initiated by 16 O at 2.1 GeV/nucleon and 12 C and 24 Mg at 4.5 GeV/nucleon reveal the existence of non-statistical fluctuations in the azimuthal plane of interaction. The asymmetry or the non-statistical fluctuations, while found to be independent of projectile mass or incident energy, are dependent on the excitation energy of the target nucleus. (Author)

  5. Modification of boundary fluctuations by LHCD in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Song Mei; Wan Baonian; Xu Guosheng; Ling Bili

    2003-01-01

    Measurements of boundary fluctuations and fluctuation driven electron fluxes have been performed in ohmic and lower hybrid current drive enhanced confinement plasma using a graphite Langmuir probe array on HT-7 tokamak. The fluctuations are significantly suppressed and the turbulent fluxes are remarkably depressed in the enhanced plasma. We characterized the statistical properties of fluctuations and the particle flux and found a non-Gaussian character in the whole scrape-off layer with minimum deviations from Gaussian in the proximity of the velocity shear layer in ohmic plasma. In the enhanced plasma the deviations in the boundary region are all reduces obviously. The fluctuations and induced electron fluxes show sporadic bursts asymmetric in time and the asymmetry is remarkably weakened in the lower hybrid current driving (LHCD) phase. The results suggest a coupling between the statistical behaviour of fluctuations and the turbulent flow

  6. Observational Analysis of Variation Characteristics of GPS-Based TEC Fluctuation over China

    Directory of Open Access Journals (Sweden)

    Xifeng Liu

    2016-12-01

    Full Text Available In this study, the characteristics of the total electron content (TEC fluctuations and their regional differences over China were analyzed by utilizing the rate of the TEC index (ROTI based on GPS data from 21 reference stations across China during a solar cycle. The results show that there were significant regional differences at different latitudes. Strong ionospheric TEC fluctuations were usually observed at lower latitudes in southern China, where the occurrence of TEC fluctuations demonstrated typical nighttime- and season-dependent (equinox months features. This phenomenon was consistent with the ionospheric scintillation characteristics of this region. Additionally, compared to low-latitude China, the intensity of TEC fluctuations over mid-latitude China was significantly weaker, and the occurrence of TEC fluctuations was not a nighttime-dependent phenomenon. Moreover, the intensity of TEC fluctuations was much stronger during high solar activity than during low solar activity. Furthermore, the summer-dependent characteristics of TEC fluctuations gradually emerged over lower mid-latitude areas as equinox characteristics weakened. Similar to the equinox characteristics, the summer-dependent characteristics gradually weakened or even disappeared with the increasing latitude. Relevant discussions of this phenomenon are still relatively rare, and it requires further study and analysis.

  7. Nanoscale MOS devices: device parameter fluctuations and low-frequency noise (Invited Paper)

    Science.gov (United States)

    Wong, Hei; Iwai, Hiroshi; Liou, J. J.

    2005-05-01

    It is well-known in conventional MOS transistors that the low-frequency noise or flicker noise is mainly contributed by the trapping-detrapping events in the gate oxide and the mobility fluctuation in the surface channel. In nanoscale MOS transistors, the number of trapping-detrapping events becomes less important because of the large direct tunneling current through the ultrathin gate dielectric which reduces the probability of trapping-detrapping and the level of leakage current fluctuation. Other noise sources become more significant in nanoscale devices. The source and drain resistance noises have greater impact on the drain current noise. Significant contribution of the parasitic bipolar transistor noise in ultra-short channel and channel mobility fluctuation to the channel noise are observed. The channel mobility fluctuation in nanoscale devices could be due to the local composition fluctuation of the gate dielectric material which gives rise to the permittivity fluctuation along the channel and results in gigantic channel potential fluctuation. On the other hand, the statistical variations of the device parameters across the wafer would cause the noise measurements less accurate which will be a challenge for the applicability of analytical flicker noise model as a process or device evaluation tool for nanoscale devices. Some measures for circumventing these difficulties are proposed.

  8. Correlation length of magnetosheath fluctuations: Cluster statistics

    Directory of Open Access Journals (Sweden)

    O. Gutynska

    2008-09-01

    Full Text Available Magnetosheath parameters are usually described by gasdynamic or magnetohydrodynamic (MHD models but these models cannot account for one of the most important sources of magnetosheath fluctuations – the foreshock. Earlier statistical processing of a large amount of magnetosheath observations has shown that the magnetosheath magnetic field and plasma flow fluctuations downstream of the quasiparallel shock are much larger than those at the opposite flank. These studies were based on the observations of a single spacecraft and thus they could not provide full information on propagation of the fluctuations through the magnetosheath.

    We present the results of a statistical survey of the magnetosheath magnetic field fluctuations using two years of Cluster observations. We discuss the dependence of the cross-correlation coefficients between different spacecraft pairs on the orientation of the separation vector with respect to the average magnetic field and plasma flow vectors and other parameters. We have found that the correlation length does not exceed ~1 RE in the analyzed frequency range (0.001–0.125 Hz and does not depend significantly on the magnetic field or plasma flow direction. A close connection of cross-correlation coefficients computed in the magnetosheath with the cross-correlation coefficients between a solar wind monitor and a magnetosheath spacecraft suggests that solar wind structures persist on the background of magnetosheath fluctuations.

  9. Correlation length of magnetosheath fluctuations: Cluster statistics

    Directory of Open Access Journals (Sweden)

    O. Gutynska

    2008-09-01

    Full Text Available Magnetosheath parameters are usually described by gasdynamic or magnetohydrodynamic (MHD models but these models cannot account for one of the most important sources of magnetosheath fluctuations – the foreshock. Earlier statistical processing of a large amount of magnetosheath observations has shown that the magnetosheath magnetic field and plasma flow fluctuations downstream of the quasiparallel shock are much larger than those at the opposite flank. These studies were based on the observations of a single spacecraft and thus they could not provide full information on propagation of the fluctuations through the magnetosheath. We present the results of a statistical survey of the magnetosheath magnetic field fluctuations using two years of Cluster observations. We discuss the dependence of the cross-correlation coefficients between different spacecraft pairs on the orientation of the separation vector with respect to the average magnetic field and plasma flow vectors and other parameters. We have found that the correlation length does not exceed ~1 RE in the analyzed frequency range (0.001–0.125 Hz and does not depend significantly on the magnetic field or plasma flow direction. A close connection of cross-correlation coefficients computed in the magnetosheath with the cross-correlation coefficients between a solar wind monitor and a magnetosheath spacecraft suggests that solar wind structures persist on the background of magnetosheath fluctuations.

  10. Modeling 100,000-year climate fluctuations in pre-Pleistocene time series

    Science.gov (United States)

    Crowley, Thomas J.; Kim, Kwang-Yul; Mengel, John G.; Short, David A.

    1992-01-01

    A number of pre-Pleistocene climate records exhibit significant fluctuations at the 100,000-year (100-ky) eccentricity period, before the time of such fluctuations in global ice volume. The origin of these fluctuations has been obscure. Results reported here from a modeling study suggest that such a response can occur over low-altitude land areas involved in monsoon fluctuations. The twice yearly passage of the sun across the equator and the seasonal timing of perihelion interact to increase both 100-ky and 400-ky power in the modeled temperature field. The magnitude of the temperature response is sufficiently large to leave an imprint on the geologic record, and simulated fluctuations resemble those found in records of Triassic lake levels.

  11. Analysis of Meniscus Fluctuation in a Continuous Casting Slab Mold

    Science.gov (United States)

    Zhang, Kaitian; Liu, Jianhua; Cui, Heng; Xiao, Chao

    2018-03-01

    A water model of slab mold was established to analyze the microscopic and macroscopic fluctuation of meniscus. The fast Fourier transform and wavelet entropy were adopted to analyze the wave amplitude, frequency, and components of fluctuation. The flow patterns under the meniscus were measured by using particle image velocimetry measurement and then the mechanisms of meniscus fluctuation were discussed. The results reflected that wavelet entropy had multi-scale and statistical properties, and it was suitable for the study of meniscus fluctuation details both in time and frequency domain. The basic wave, frequency of which exceeding 1 Hz in the condition of no mold oscillation, was demonstrated in this work. In fact, three basic waves were found: long-wave with low frequency, middle-wave with middle frequency, and short-wave with high frequency. In addition, the upper roll flow in mold had significant effect on meniscus fluctuation. When the position of flow impinged was far from the meniscus, long-wave dominated the fluctuation and the stability of meniscus was enhanced. However, when the velocity of flow was increased, the short-wave dominated the meniscus fluctuation and the meniscus stability was decreased.

  12. Fluctuating Thermodynamics for Biological Processes

    Science.gov (United States)

    Ham, Sihyun

    Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.

  13. New PHOBOS results on event-by-event fluctuations

    Science.gov (United States)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Harnarine, I.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Reed, C.; Remsberg, L. P.; Reuter, M.; Richardson, E.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wyngaardt, S.; Wysłouch, B.

    2006-04-01

    We present new results from the PHOBOS experiment at RHIC on event-by-event fluctuations of particle multiplicities and angular distributions in nucleus-nucleus collisions at RHIC. Our data for Au+Au collisions at √sNN = 200 GeV show that at a level of 10-4 or less, no rare, large-amplitude fluctuations in the total multiplicity distributions or the shape of the pseudorapidity distributions are observed. We however find significant short-range multiplicity correlations in these data, that can be described as particle production in clusters. In Cu+Cu collisions, we observe large final-state azimuthal anisotropies ν2. A common scaling behavior for Cu+Cu and Au+Au for these anisotropies emerges when fluctuations in the initial state geometry are taken into account.

  14. Charge Fluctuations in Nanoscale Capacitors

    Science.gov (United States)

    Limmer, David T.; Merlet, Céline; Salanne, Mathieu; Chandler, David; Madden, Paul A.; van Roij, René; Rotenberg, Benjamin

    2013-09-01

    The fluctuations of the charge on an electrode contain information on the microscopic correlations within the adjacent fluid and their effect on the electronic properties of the interface. We investigate these fluctuations using molecular dynamics simulations in a constant-potential ensemble with histogram reweighting techniques. This approach offers, in particular, an efficient, accurate, and physically insightful route to the differential capacitance that is broadly applicable. We demonstrate these methods with three different capacitors: pure water between platinum electrodes and a pure as well as a solvent-based organic electrolyte each between graphite electrodes. The total charge distributions with the pure solvent and solvent-based electrolytes are remarkably Gaussian, while in the pure ionic liquid the total charge distribution displays distinct non-Gaussian features, suggesting significant potential-driven changes in the organization of the interfacial fluid.

  15. Charge fluctuations in nanoscale capacitors.

    Science.gov (United States)

    Limmer, David T; Merlet, Céline; Salanne, Mathieu; Chandler, David; Madden, Paul A; van Roij, René; Rotenberg, Benjamin

    2013-09-06

    The fluctuations of the charge on an electrode contain information on the microscopic correlations within the adjacent fluid and their effect on the electronic properties of the interface. We investigate these fluctuations using molecular dynamics simulations in a constant-potential ensemble with histogram reweighting techniques. This approach offers, in particular, an efficient, accurate, and physically insightful route to the differential capacitance that is broadly applicable. We demonstrate these methods with three different capacitors: pure water between platinum electrodes and a pure as well as a solvent-based organic electrolyte each between graphite electrodes. The total charge distributions with the pure solvent and solvent-based electrolytes are remarkably Gaussian, while in the pure ionic liquid the total charge distribution displays distinct non-Gaussian features, suggesting significant potential-driven changes in the organization of the interfacial fluid.

  16. Non-statistical fluctuations in fragmentation of target nuclei in high energy nuclear interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Dipak; Ghosh, Premomoy; Ghosh, Alokananda; Roy, Jaya [Jadavpur Univ., Calcutta (India)

    1994-07-01

    Analysis of target fragmented ''black'' particles in nuclear emulsion from high energy relativistic interactions initiated by [sup 16]O at 2.1 GeV/nucleon and [sup 12]C and [sup 24]Mg at 4.5 GeV/nucleon reveal the existence of non-statistical fluctuations in the azimuthal plane of interaction. The asymmetry or the non-statistical fluctuations, while found to be independent of projectile mass or incident energy, are dependent on the excitation energy of the target nucleus. (Author).

  17. Thermodynamic theory of equilibrium fluctuations

    International Nuclear Information System (INIS)

    Mishin, Y.

    2015-01-01

    The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.

  18. Statoil`s exposure to oil price fluctuations: An analysis on investment level and stock price

    OpenAIRE

    Nåmdal, Synne Meling; Meling, Kristine

    2015-01-01

    Master's thesis in Finance In this thesis an econometric analysis of Statoil’s investment level and stock return has been performed, with purpose of examine the affect that fluctuations in the price of crude oil has on these variables. The results revealed that crude oil prices have a significant impact on Statoil´s stock returns, due to the direct impact the crude oil price has on Statoil’s cash flows. The investment level does not seem to be affected by either of the variables in the ana...

  19. Statoil`s exposure to oil price fluctuations: An analysis on investment level and stock price

    OpenAIRE

    Nåmdal, Synne Meling; Meling, Kristine

    2015-01-01

    In this thesis an econometric analysis of Statoil’s investment level and stock return has been performed, with purpose of examine the affect that fluctuations in the price of crude oil has on these variables. The results revealed that crude oil prices have a significant impact on Statoil´s stock returns, due to the direct impact the crude oil price has on Statoil’s cash flows. The investment level does not seem to be affected by either of the variables in the analysis, and this could indicate...

  20. Superconductivity and spin fluctuations

    International Nuclear Information System (INIS)

    Scalapino, D.J.

    1999-01-01

    The organizers of the Memorial Session for Herman Rietschel asked that the author review some of the history of the interplay of superconductivity and spin fluctuations. Initially, Berk and Schrieffer showed how paramagnon spin fluctuations could suppress superconductivity in nearly-ferromagnetic materials. Following this, Rietschel and various co-workers wrote a number of papers in which they investigated the role of spin fluctuations in reducing the Tc of various electron-phonon superconductors. Paramagnon spin fluctuations are also believed to provide the p-wave pairing mechanism responsible for the superfluid phases of 3 He. More recently, antiferromagnetic spin fluctuations have been proposed as the mechanism for d-wave pairing in the heavy-fermion superconductors and in some organic materials as well as possibly the high-Tc cuprates. Here the author will review some of this early history and discuss some of the things he has learned more recently from numerical simulations

  1. Little Ice Age Fluctuations of Quelccaya Ice Cap, Peru

    Science.gov (United States)

    Stroup, J. S.; Kelly, M. A.; Lowell, T.

    2009-12-01

    A record of the past extents of Quelccaya Ice Cap (QIC) provides valuable information about tropical climate change from late glacial to recent time. Here, we examine the timing and regional significance of fluctuations of QIC during the Little Ice Age (LIA; ~1300-1850 AD). One prominent set of moraines, known as the Huancane I moraines, is located ~1 km from the present-day western ice cap margin and provides a near-continuous outline of the most recent advance of QIC. This moraine set was radiocarbon dated (~298 ± 134 and 831 ± 87 yr BP) by Mercer and Palacios (1977) and presented as some of the first evidence for cooling in the tropics during the Little Ice Age. Recent field investigations in the QIC region focused on refining the chronology of the Huancane I moraines. In 2008, new stratigraphic sections exposed by local lake-flooding events revealed multiple layers of peat within the Huancane I moraines. In both 2008 and 2009, samples were obtained for 10Be dating of boulders on Huancane I moraines. A combination of radiocarbon and 10Be ages indicate that the Huancane I moraines were deposited by ice cap expansion after ~3800 yr BP and likely by multiple advances at approximately 1000, 600, 400, and 200 yr BP. Radiocarbon and 10Be chronologies of the Huancane I moraines are compared with the Quelccaya ice core records (Thompson et al., 1985; 1986; 2006). Accumulation data from the ice core records are interpreted to indicate a significant wet period at ~1500-1700 AD followed by a significant drought at ~1720-1860 AD. We examine ice marginal fluctuations during these times to determine influence of such events on the ice cap extent.

  2. Force fluctuations assist nanopore unzipping of DNA

    International Nuclear Information System (INIS)

    Viasnoff, V; Chiaruttini, N; Muzard, J; Bockelmann, U

    2010-01-01

    We experimentally study the statistical distributions and the voltage dependence of the unzipping time of 45 base-pair-long double-stranded DNA through a nanopore. We then propose a quantitative theoretical description considering the nanopore unzipping process as a random walk of the opening fork through the DNA sequence energy landscape biased by a time-fluctuating force. To achieve quantitative agreement fluctuations need to be correlated over the millisecond range and have an amplitude of order k B T/bp. Significantly slower or faster fluctuations are not appropriate, suggesting that the unzipping process is efficiently enhanced by noise in the kHz range. We further show that the unzipping time of short 15 base-pair hairpins does not always increase with the global stability of the double helix and we theoretically study the role of DNA elasticity on the conversion of the electrical bias into a mechanical unzipping force.

  3. Timing and paleoclimatic significance of Holocene glacier fluctuations in the Cordillera Vilcabamba of southern Peru

    Science.gov (United States)

    Licciardi, J. M.; Taggart, J. R.; Schaefer, J. M.; Lund, D. C.

    2009-12-01

    Past fluctuations in climatically sensitive tropical glaciers provide important insight into regional paleoclimatic trends and forcings, but well-dated chronologies are scarce, particularly during the Holocene. We have established precise cosmogenic 10Be surface exposure ages of moraine sequences in the Cordillera Vilcabamba (13°20’S latitude), located in the outer tropics of southern Peru. Results indicate the dominance of two major glacial culminations and associated climatic shifts in the Vilcabamba, including an early Holocene glacial interval and a somewhat less extensive glaciation late in the ‘Little Ice Age’ (LIA) period. Lichenometric measurements on the youngest moraines support the 10Be ages, but uncertainties in the lichen ages arise from the lack of a local lichen growth curve. The Peruvian glacier chronologies differ from a recently-developed New Zealand record but are broadly correlative with well-dated glacial records in Europe, suggesting climate linkages between the tropics and the North Atlantic region. For the latest Holocene, our leading hypothesis is that climate forcings involving southward migration of the Atlantic Intertropical Convergence Zone can explain concurrent glaciations in tropical South America and northern high latitudes, but the influence of other climate drivers such as the El Niño/Southern Oscillation may have also played a role. Estimated differences between equilibrium-line altitudes (ELAs) on modern glaciers and those inferred for expanded latest Holocene glaciers reveal an ELA rise of 165-200 m since the LIA, suggesting that temperatures 1.1-1.3°C cooler than present could have sustained glaciers at their LIA maximum positions if temperature was the only control, and thus providing an upper bound on temperature depression during the LIA. However, further work is required to constrain the likely role of precipitation changes. These new Peruvian glacier chronologies and ELA reconstructions complement ice core and

  4. Non-Gaussian conductivity fluctuations in semiconductors

    International Nuclear Information System (INIS)

    Melkonyan, S.V.

    2010-01-01

    A theoretical study is presented on the statistical properties of conductivity fluctuations caused by concentration and mobility fluctuations of the current carriers. It is established that mobility fluctuations result from random deviations in the thermal equilibrium distribution of the carriers. It is shown that mobility fluctuations have generation-recombination and shot components which do not satisfy the requirements of the central limit theorem, in contrast to the current carrier's concentration fluctuation and intraband component of the mobility fluctuation. It is shown that in general the mobility fluctuation consist of thermal (or intraband) Gaussian and non-thermal (or generation-recombination, shot, etc.) non-Gaussian components. The analyses of theoretical results and experimental data from literature show that the statistical properties of mobility fluctuation and of 1/f-noise fully coincide. The deviation from Gaussian statistics of the mobility or 1/f fluctuations goes hand in hand with the magnitude of non-thermal noise (generation-recombination, shot, burst, pulse noises, etc.).

  5. Fluctuations in quantum chaos

    International Nuclear Information System (INIS)

    Casati, G.; Chirikov, B.V.

    1996-01-01

    Various fluctuations in quantum systems with discrete spectrum are discussed, including recent unpublished results. Open questions and unexplained peculiarities of quantum fluctuations are formulated [ru

  6. Spatial mobility fluctuation induced giant linear magnetoresistance in multilayered graphene foam

    KAUST Repository

    Li, Peng

    2016-07-05

    Giant, positive, and near-temperature-independent linear magnetoresistance (LMR), as large as 340%, was observed in graphene foam with a three-dimensional flexible network. Careful analysis of the magnetoresistance revealed that Shubnikov–de Haas (SdH) oscillations occurred at low temperatures and decayed with increasing temperature. The average classical mobility ranged from 300 (2 K) to 150 (300 K) cm2V−1s−1, which is much smaller than that required by the observed SdH oscillations. To understand the mechanism behind the observation, we performed the same measurements on the microsized graphene sheets that constitute the graphene foam. Much more pronounced SdH oscillations superimposed on the LMR background were observed in these microscaled samples, which correspond to a quantum mobility as high as 26,500cm2V−1s−1. Moreover, the spatial mobility fluctuated significantly from 64,200cm2V−1s−1 to 1370cm2V−1s−1, accompanied by a variation of magnetoresistance from near 20,000% to less than 20%. The presence of SdH oscillations actually excludes the possibility that the observed LMR originated from the extreme quantum limit, because this would demand all electrons to be in the first Landau level. Instead, we ascribe the large LMR to the second case of the classical Parish and Littlewood model, in which spatial mobility fluctuation dominates electrical transport. This is an experimental confirmation of the Parish and Littlewood model by measuring the local mobility randomly (by measuring the microsized graphene sheets) and finding the spatial mobility fluctuation.

  7. Mesoscopic fluctuations of the population of a qubit in a strong alternating field

    Energy Technology Data Exchange (ETDEWEB)

    Denisenko, M. V., E-mail: mar.denisenko@gmail.com; Satanin, A. M. [Lobachevsky State University of Nizhny Novgorod (Russian Federation)

    2016-12-15

    Fluctuations of the population of a Josephson qubit in an alternating field, which is a superposition of electromagnetic pulses with large amplitudes, are studied. It is shown that the relative phase of pulses is responsible for the rate of Landau–Zener transitions and, correspondingly, for the frequency of transitions between adiabatic states. The durations of pulses incident on the qubit are controlled with an accuracy of the field period, which results in strong mesoscopic fluctuations of the population of the qubit. Similar to the magnetic field in mesoscopic physics, the relative phase of pulses can destroy the interference pattern of the population of the qubit. The influence of the duration of the pulse and noise on the revealed fluctuation effects is studied.

  8. Phase fluctuations and the absence of topological defects in a photo-excited charge-ordered nickelate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W. S.; Chuang, Y. D.; Moore, R. G.; Zhu, Y.; Patthey, L.; Trigo, M.; Lu, D. H.; Kirchmann, P. S.; Krupin, O.; Yi, M.; Langner, M.; Huse, N.; Robinson, J. S.; Chen, Y.; Zhou, S. Y.; Coslovich, G.; Huber, B.; Reis, D. A.; Kaindl, R. A.; Schoenlein, R. W.; Doering, D.; Denes, P.; Schlotter, W. F.; Turner, J. J.; Johnson, S. L.; Först, M.; Sasagawa, T.; Kung, Y. F.; Sorini, A. P.; Kemper, A. F.; Moritz, B.; Devereaux, T. P.; Lee, D. -H.; Shen, Z. X.; Hussain, Z.

    2012-05-15

    The dynamics of an order parameter's amplitude and phase determines the collective behaviour of novel states emerging in complex materials. Time- and momentum-resolved pump-probe spectroscopy, by virtue of measuring material properties at atomic and electronic time scales out of equilibrium, can decouple entangled degrees of freedom by visualizing their corresponding dynamics in the time domain. Here we combine time-resolved femotosecond optical and resonant X-ray diffraction measurements on charge ordered La1.75Sr0.25NiO4 to reveal unforeseen photoinduced phase fluctuations of the charge order parameter. Such fluctuations preserve long-range order without creating topological defects, distinct from thermal phase fluctuations near the critical temperature in equilibrium. Importantly, relaxation of the phase fluctuations is found to be an order of magnitude slower than that of the order parameter's amplitude fluctuations, and thus limits charge order recovery. This new aspect of phase fluctuations provides a more holistic view of the phase's importance in ordering phenomena of quantum matter.

  9. Fluorescence fluctuation spectroscopy (FFS)

    CERN Document Server

    Tetin, Sergey

    2012-01-01

    This new volume of Methods in Enzymology continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers fluorescence fluctuation spectroscopy and includes chapters on such topics as Förster resonance energy transfer (fret) with fluctuation algorithms, protein corona on nanoparticles by FCS, and FFS approaches to the study of receptors in live cells. Continues the legacy of this premier serial with quality chapters authored by leaders in the field Covers fluorescence fluctuation spectroscopy Contains chapters on such topics as Förster resonance energy transfer (fret) with fluctuation algorithms, protein corona on nanoparticles by FCS, and FFS approaches to the study of receptors in live cells.

  10. Probability distribution functions for intermittent scrape-off layer plasma fluctuations

    Science.gov (United States)

    Theodorsen, A.; Garcia, O. E.

    2018-03-01

    A stochastic model for intermittent fluctuations in the scrape-off layer of magnetically confined plasmas has been constructed based on a super-position of uncorrelated pulses arriving according to a Poisson process. In the most common applications of the model, the pulse amplitudes are assumed exponentially distributed, supported by conditional averaging of large-amplitude fluctuations in experimental measurement data. This basic assumption has two potential limitations. First, statistical analysis of measurement data using conditional averaging only reveals the tail of the amplitude distribution to be exponentially distributed. Second, exponentially distributed amplitudes leads to a positive definite signal which cannot capture fluctuations in for example electric potential and radial velocity. Assuming pulse amplitudes which are not positive definite often make finding a closed form for the probability density function (PDF) difficult, even if the characteristic function remains relatively simple. Thus estimating model parameters requires an approach based on the characteristic function, not the PDF. In this contribution, the effect of changing the amplitude distribution on the moments, PDF and characteristic function of the process is investigated and a parameter estimation method using the empirical characteristic function is presented and tested on synthetically generated data. This proves valuable for describing intermittent fluctuations of all plasma parameters in the boundary region of magnetized plasmas.

  11. Charge fluctuations in high-electron-mobility transistors: a review

    International Nuclear Information System (INIS)

    Green, F.

    1993-01-01

    The quasi-two-dimensional carrier population, free to move within a near-perfect crystalline matrix, is the key to remarkable improvements in signal gain, current density and quiet operation. Current-fluctuation effects are central to all of these properties. Some of these are easily understood within linear-response theory, but other fluctuation phenomena are less tractable. In particular, nonequilibrium noise poses significant theoretical challenges, both descriptive and predictive. This paper examines a few of the basic physical issues which motivate device-noise theory. The structure and operation of high-electron-mobility transistor are first reviewed. The recent nonlinear fluctuation theory of Stanton and Wilkins (1987) help to identify at least some of the complicated noise physics which can arise when carriers in GaAs-like conduction bands are subjected to high fields. Simple examples of fluctuation-dominated behaviour are discussed, with numerical illustrations. 20 refs., 9 figs

  12. The Effects of Sex Hormonal Fluctuations during Menstrual Cycle on Cortical Excitability and Manual Dexterity (a Pilot Study.

    Directory of Open Access Journals (Sweden)

    Maryam Zoghi

    Full Text Available To investigate whether hormonal fluctuations during the menstrual cycle affect corticospinal excitability, intracortical inhibition (ICI or facilitation (ICF in primary motor cortex, and also whether the hormonal fluctuations have any effect on manual dexterity in neurologically intact women.Twenty volunteers (10 Female, 10 Male were included in this study. The levels of progesterone and estradiol were measured from saliva during the women's menstrual follicular, ovulation and mid-luteal phases. Motor evoked potentials were recorded from the right first dorsal interosseous muscle. Single and paired-pulse Transcranial Magnetic Stimulation (TMS were delivered in a block of 20 stimuli. With paired-pulse technique, 3ms and 10ms inter-stimulus intervals were used to assess ICI and ICF, respectively. The Grooved Pegboard Test (GPT was completed in each session before the TMS assessments. Male participants were tested at similar time intervals as female participants.Mixed design ANOVA revealed that GPT score in female participants was significantly lower at the mid-luteal phase compared to the ovulation phase (p = 0.017. However, it was not correlated with progesterone or estrogen fluctuations during the menstrual cycle. The results also showed that the effect of phase, sex and the interaction of phase by sex for resting motor threshold, ICI or ICF were not significant (p > 0.05.Manual dexterity performance fluctuates during the menstrual cycle in neurologically intact women, which might be due to the balance of the neuromodulatory effects of P4 and E2 in the motor cortex during different phases.

  13. QUASI-PERIODIC FLUCTUATIONS AND CHROMOSPHERIC EVAPORATION IN A SOLAR FLARE RIBBON OBSERVED BY HINODE /EIS, IRIS , AND RHESSI

    Energy Technology Data Exchange (ETDEWEB)

    Brosius, Jeffrey W.; Inglis, Andrew R. [Catholic University of America at NASA Goddard Space Flight Center, Solar Physics Laboratory, Code 671, Greenbelt, MD 20771 (United States); Daw, Adrian N., E-mail: Jeffrey.W.Brosius@nasa.gov [NASA Goddard Space Flight Center, Solar Physics Laboratory, Code 671, Greenbelt, MD 20771 (United States)

    2016-10-20

    The Hinode /Extreme-ultraviolet Imaging Spectrometer (EIS) obtained rapid cadence (11.2 s) EUV stare spectra of an M7.3 flare ribbon in AR 12036 on 2014 April 18. Quasi-periodic ( P ≈ 75.6 ± 9.2 s) intensity fluctuations occurred in emission lines of O iv, Mg vi, Mg vii, Si vii, Fe xiv, and Fe xvi during the flare's impulsive rise, and ended when the maximum intensity in Fe xxiii was reached. The profiles of the O iv–Fe xvi lines reveal that they were all redshifted during most of the interval of quasi-periodic intensity fluctuations, while the Fe xxiii profile revealed multiple components including one or two highly blueshifted ones. This indicates that the flare underwent explosive chromospheric evaporation during its impulsive rise. Fluctuations in the relative Doppler velocities were seen, but their amplitudes were too subtle to extract significant quasi-periodicities. RHESSI detected 25–100 keV hard-X-ray sources in the ribbon near the EIS slit's pointing position during the peaks in the EIS intensity fluctuations. The observations are consistent with a series of energy injections into the chromosphere by nonthermal particle beams. Electron densities derived with Fe xiv (4.6 × 10{sup 10} cm{sup −3}) and Mg vii (7.8 × 10{sup 9} cm{sup −3}) average line intensity ratios during the interval of quasi-periodic intensity fluctuations, combined with the radiative loss function of an optically thin plasma, yield radiative cooling times of 32 s at 2.0 × 10{sup 6} K, and 46 s at 6.3 × 10{sup 5} K (about half the quasi-period); assuming Fe xiv's density for Fe xxiii yields a radiative cooling time of 10{sup 3} s (13 times the quasi-period) at 1.4 × 10{sup 7} K.

  14. Strain fluctuations and elastic constants

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1982-03-01

    It is shown that the elastic strain fluctuations are a direct measure of elastic compliances in a general anisotropic medium; depending on the ensemble in which the fluctuation is measured either the isothermal or the adiabatic compliances are obtained. These fluctuations can now be calculated in a constant enthalpy and pressure, and hence, constant entropy, ensemble due to recent develpments in the molecular dynamics techniques. A calculation for a Ni single crystal under uniform uniaxial 100 tensile or compressive load is presented as an illustration of the relationships derived between various strain fluctuations and the elastic modulii. The Born stability criteria and the behavior of strain fluctuations are shown to be related.

  15. Molecular modelling studies of kdr mutations in voltage gated sodium channel revealed significant conformational variations contributing to insecticide resistance.

    Science.gov (United States)

    Yellapu, Nanda Kumar; Gopal, Jeyakodi; Kasinathan, Gunasekaran; Purushothaman, Jambulingam

    2018-06-01

    Voltage gated sodium channels (VGSC) of mosquito vectors are the primary targets of dichlorodiphenyltrichloroethane (DDT) and other synthetic pyrethroids used in public health programmes. The knockdown resistant (kdr) mutations in VGSC are associated with the insecticide resistance especially in Anophelines. The present study is aimed to emphasize and demarcate the impact of three kdr-mutations such as L1014S, L1014F and L1014H on insecticide resistance. The membrane model of sodium transport domain of VGSC (STD-VGSC) was constructed using de novo approach based on domain and trans-membrane predictions. The comparative molecular modelling studies of wild type and mutant models of STD-VGSC revealed that L1014F mutant was observed to be near native to the wild type model in all the respects, but, L1014S and L1014H mutations showed drastic variations in the energy levels, root mean square fluctuations (RMSF) that resulted in conformational variations. The predicted binding sites also showed variable cavity volumes and RMSF in L1014S and L1014H mutants. Further, DDT also found be bound in near native manner to wild type in L1014F mutant and with variable orientation and affinities in L1014S and L1014H mutants. The variations and fluctuations observed in mutant structures explained that each mutation has its specific impact on the conformation of VGSC and its binding with DDT. The study provides new insights into the structure-function-correlations of mutant STD-VGSC structures and demonstrates the role and effects of kdr mutations on insecticide resistance in mosquito vectors.

  16. Molecular kinetics. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics.

    Science.gov (United States)

    Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen; Christensen, Sune M; Abel, Steven M; Iwig, Jeff; Wu, Hung-Jen; Gureasko, Jodi; Rhodes, Christopher; Petit, Rebecca S; Hansen, Scott D; Thill, Peter; Yu, Cheng-Han; Stamou, Dimitrios; Chakraborty, Arup K; Kuriyan, John; Groves, Jay T

    2014-07-04

    Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras-guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average. Copyright © 2014, American Association for the Advancement of Science.

  17. Isolating long-wavelength fluctuation from structural relaxation in two-dimensional glass: cage-relative displacement

    Science.gov (United States)

    Shiba, Hayato; Keim, Peter; Kawasaki, Takeshi

    2018-03-01

    It has recently been revealed that long-wavelength fluctuation exists in two-dimensional (2D) glassy systems, having the same origin as that given by the Mermin-Wagner theorem for 2D crystalline solids. In this paper, we discuss how to characterise quantitatively the long-wavelength fluctuation in a molecular dynamics simulation of a lightly supercooled liquid. We employ the cage-relative mean-square displacement (MSD), defined on relative displacement to its cage, to quantitatively separate the long-wavelength fluctuation from the original MSD. For increasing system size the amplitude of acoustic long wavelength fluctuations not only increases but shifts to later times causing a crossover with structural relaxation of caging particles. We further analyse the dynamic correlation length using the cage-relative quantities. It grows as the structural relaxation becomes slower with decreasing temperature, uncovering an overestimation by the four-point correlation function due to the long-wavelength fluctuation. These findings motivate the usage of cage-relative MSD as a starting point for analysis of 2D glassy dynamics.

  18. BULK THERMODYNAMICS AND CHARGE FLUCTUATIONS AT NON-VANISHING BARYON DENSITY

    International Nuclear Information System (INIS)

    MIAO, C.; SCHMIDT, C.

    2007-01-01

    We present results on bulk thermodynamic quantities as well as net baryon number, strangeness and electric charge fluctuations in QCD at non-zero density and temperature obtained from lattice calculations with almost physical quark masses for two values of the lattice cut-off aT = 1/4 and 1/6. We show that with our improved p4fa3-action the cut-off effects are under control when using lattices with a temporal extent of 6 or larger and that the contribution to the equation of state, which is due to a finite chemical potential is small for μ q /T < 1. Moreover, at vanishing chemical potential, i.e. under conditions almost realized at RHIC and the LHC, quartic fluctuations of net baryon number and strangeness are large in a narrow temperature interval characterizing the transition region from the low to high temperature phase. At non-zero baryon number density, strangeness fluctuations are enhanced and correlated to fluctuations of the net baryon number. If strangeness is furthermore forced to vanish, as it may be the case in systems created in heavy ion collisions, strangeness fluctuations are significantly smaller than baryon number fluctuations

  19. Critical fluctuations in cortical models near instability

    NARCIS (Netherlands)

    Aburn, M.J.; Holmes, C.A.; Roberts, J.A.; Boonstra, T.W.; Breakspear, M.

    2012-01-01

    Computational studies often proceed from the premise that cortical dynamics operate in a linearly stable domain, where fluctuations dissipate quickly and show only short memory. Studies of human electroencephalography (EEG), however, have shown significant autocorrelation at time lags on the scale

  20. Nonequilibrium fluctuations in a resistor.

    Science.gov (United States)

    Garnier, N; Ciliberto, S

    2005-06-01

    In small systems where relevant energies are comparable to thermal agitation, fluctuations are of the order of average values. In systems in thermodynamical equilibrium, the variance of these fluctuations can be related to the dissipation constant in the system, exploiting the fluctuation-dissipation theorem. In nonequilibrium steady systems, fluctuations theorems (FT) additionally describe symmetry properties of the probability density functions (PDFs) of the fluctuations of injected and dissipated energies. We experimentally probe a model system: an electrical dipole driven out of equilibrium by a small constant current I, and show that FT are experimentally accessible and valid. Furthermore, we stress that FT can be used to measure the dissipated power P = R I2 in the system by just studying the PDFs' symmetries.

  1. Mind-Body Practice Changes Fractional Amplitude of Low Frequency Fluctuations in Intrinsic Control Networks

    Directory of Open Access Journals (Sweden)

    Gao-Xia Wei

    2017-07-01

    Full Text Available Cognitive control impairment is a typical symptom largely reported in populations with neurological disorders. Previous studies have provided evidence about the changes in cognitive control induced by mind-body training. However, the neural correlates underlying the effect of extensive mind-body practice on cognitive control remain largely unknown. Using resting-state functional magnetic resonance imaging, we characterized dynamic fluctuations in large-scale intrinsic connectivity networks associated with mind-body practice, and examined their differences between healthy controls and Tai Chi Chuan (TCC practitioners. Compared with a control group, the TCC group revealed significantly decreased fractional Amplitude of Low Frequency Fluctuations (fALFF in the bilateral frontoparietal network, default mode network and dorsal prefrontal-angular gyri network. Furthermore, we detected a significant association between mind-body practice experience and fALFF in the default mode network, as well as an association between cognitive control performance and fALFF of the frontoparietal network. This provides the first evidence of large-scale functional connectivity in brain networks associated with mind-body practice, shedding light on the neural network changes that accompany intensive mind-body training. It also highlights the functionally plastic role of the frontoparietal network in the context of the “immune system” of mental health recently developed in relation to flexible hub theory.

  2. Mind-Body Practice Changes Fractional Amplitude of Low Frequency Fluctuations in Intrinsic Control Networks.

    Science.gov (United States)

    Wei, Gao-Xia; Gong, Zhu-Qing; Yang, Zhi; Zuo, Xi-Nian

    2017-01-01

    Cognitive control impairment is a typical symptom largely reported in populations with neurological disorders. Previous studies have provided evidence about the changes in cognitive control induced by mind-body training. However, the neural correlates underlying the effect of extensive mind-body practice on cognitive control remain largely unknown. Using resting-state functional magnetic resonance imaging, we characterized dynamic fluctuations in large-scale intrinsic connectivity networks associated with mind-body practice, and examined their differences between healthy controls and Tai Chi Chuan (TCC) practitioners. Compared with a control group, the TCC group revealed significantly decreased fractional Amplitude of Low Frequency Fluctuations (fALFF) in the bilateral frontoparietal network, default mode network and dorsal prefrontal-angular gyri network. Furthermore, we detected a significant association between mind-body practice experience and fALFF in the default mode network, as well as an association between cognitive control performance and fALFF of the frontoparietal network. This provides the first evidence of large-scale functional connectivity in brain networks associated with mind-body practice, shedding light on the neural network changes that accompany intensive mind-body training. It also highlights the functionally plastic role of the frontoparietal network in the context of the "immune system" of mental health recently developed in relation to flexible hub theory.

  3. Enzymatic conformational fluctuations along the reaction coordinate of cytidine deaminase

    OpenAIRE

    Noonan, Ryan C.; Carter, Charles W.; Bagdassarian, Carey K.

    2002-01-01

    Analysis of the crystal structures for cytidine deaminase complexed with substrate analog 3-deazacytidine, transition-state analog zebularine 3,4-hydrate, and product uridine establishes significant changes in the magnitude of atomic-scale fluctuations along the (approximate) reaction coordinate of this enzyme. Differences in fluctuations between the substrate analog complex, transition-state analog complex, and product complex are monitored via changes in corresponding crystallographic tempe...

  4. Nonmotor fluctuations: phenotypes, pathophysiology, management, and open issues.

    Science.gov (United States)

    Classen, Joseph; Koschel, Jiri; Oehlwein, Christian; Seppi, Klaus; Urban, Peter; Winkler, Christian; Wüllner, Ullrich; Storch, Alexander

    2017-08-01

    Parkinson's disease (PD) is a neurodegenerative multisystem disorder characterized by progressive motor symptoms such as bradykinesia, tremor and muscle rigidity. Over the course of the disease, numerous non-motor symptoms, sometimes preceding the onset of motor symptoms, significantly impair patients' quality of life. The significance of non-motor symptoms may outweigh the burden through progressive motor incapacity, especially in later stages of the disease. The advanced stage of the disease is characterized by motor complications such as fluctuations and dyskinesias induced by the long-term application of levodopa therapy. In recent years, it became evident that various non-motor symptoms such as psychiatric symptoms, fatigue and pain also show fluctuations after chronic levodopa therapy (named non-motor fluctuations or NMFs). Although NMFs have moved into the focus of interest, current national guidelines on the treatment of PD may refer to non-motor symptoms and their management, but do not mention NMF, and do not contain recommendations on their management. The present article summarizes major issues related to NMF including clinical phenomenology and pathophysiology, and outlines a number of open issues and topics for future research.

  5. Saccadic gain adaptation is predicted by the statistics of natural fluctuations in oculomotor function

    Directory of Open Access Journals (Sweden)

    Mark V Albert

    2012-12-01

    Full Text Available Due to multiple factors such as fatigue, muscle strengthening, and neural plasticity, the responsiveness of the motor apparatus to neural commands changes over time. To enable precise movements the nervous system must adapt to compensate for these changes. Recent models of motor adaptation derive from assumptions about the way the motor apparatus changes. Characterizing these changes is difficult because motor adaptation happens at the same time, masking most of the effects of ongoing changes. Here, we analyze eye movements of monkeys with lesions to the posterior cerebellar vermis that impair adaptation. Their fluctuations better reveal the underlying changes of the motor system over time. When these measured, unadapted changes are used to derive optimal motor adaptation rules the prediction precision significantly improves. Among three models that similarly fit single-day adaptation results, the model that also matches the temporal correlations of the nonadapting saccades most accurately predicts multiple day adaptation. Saccadic gain adaptation is well matched to the natural statistics of fluctuations of the oculomotor plant.

  6. Influence of ocular perfusion pressure fluctuation on glaucoma

    Directory of Open Access Journals (Sweden)

    Min-Zi Ren

    2015-12-01

    Full Text Available AIM:To investigate the influence of ocular perfusion pressure fluctuation on glaucoma. METHODS:Forty patients with primary open angle glaucoma from January 2013 to June 2015 in our hospital were used as observation group and 40 families were used as control group. Circadian fluctuation of intraocular pressure, blood pressure and ocular perfusion pressure in 24h were determined to obtain systolic ocular perfusion pressure(SOPP, diastolic ocular perfusion pressure(DOPPand mean ocular perfusion pressure(MOPP. Pearson linear correlation was used to analyze the correlation of circadian MOPP fluctuation with cup-disc ratio, mean defect(MDand the picture standard deviation(PSD. RESULTS:The fluctuation of MOPP, SOPP and DOPP of observation group were significantly higher than those of control group(Pr=-0.389, 95%CI:-0.612~-0.082; P=0.011, was positively correlated with PSD(r=0.512, 95%CI:0.139 ~0.782; P=0.008; no correlation was found between it and the vertical cup-disc ratio(r=0.115, 95%CI:0.056~0.369; P=0.355. CONCLUSION:Ocular perfusion pressure fluctuations in patients with primary open angle glaucoma may reflect the severity of the disease and may make the situation aggravating. Therefore through perfusion pressure monitor in 24h may help us understand the ocular blood flow and the development of primary open-angle glaucoma.

  7. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure.

    Science.gov (United States)

    El-Mashad, Hamed M; Zeeman, Grietje; van Loon, Wilko K P; Bot, Gerard P A; Lettinga, Gatze

    2004-11-01

    The influence of temperature, 50 and 60 degrees C, at hydraulic retention times (HRTs) of 20 and 10 days, on the performance of anaerobic digestion of cow manure has been investigated in completely stirred tank reactors (CSTRs). Furthermore, the effect of both daily downward and daily upward temperature fluctuations has been studied. In the daily downward temperature fluctuation regime the temperatures of each reactor was reduced by 10 degrees C for 10 h while in the daily upward fluctuation regime the temperature of each reactor was increased 10 degrees C for 5 h. The results show that the methane production rate at 60 degrees C is lower than that at 50 degrees C at all experimental conditions of imposed HRT except when downward temperature fluctuations were applied at an HRT of 10 days. It also was found that the free ammonia concentration not only affects the acetate-utilising bacteria but also the hydrolysis and acidification process. The upward temperature fluctuation affects the maximum specific methanogenesis activity more severely as compared to imposed downward temperature fluctuations. The results clearly reveal the possibility of using available solar energy at daytime to heat up the reactor(s) without the need of heat storage during nights, especially at an operational temperature of 50 degrees C and at a 20 days HRT, and without the jeopardising of the overheating.

  8. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure

    Energy Technology Data Exchange (ETDEWEB)

    El-Mashad, H.M. [Mansoura University, El-Mansoura (Egypt). Faculty of Agriculture, Department of Agricultural Engineering; Zeeman, G.; Van Loon, W.K.P.; Bot, G.P.A.; Lettinga, G. [Wageningen University Agrotechnion (Netherlands). Department of Agrotechnology and Food Sciences

    2004-11-01

    The influence of temperature, 50 and 60 {sup o}C, at hydraulic retention times (HRTs) of 20 and 10 days, on the performance of anaerobic digestion of cow manure has been investigated in completely stirred tank reactors (CSTRs). Furthermore, the effect of both daily downward and daily upward temperature fluctuations has been studied. In the daily downward temperature fluctuation regime the temperatures of each reactor was reduced by 10 {sup o}C for 10 h while in the daily upward fluctuation regime the temperature of each reactor was increased 10 {sup o}C for 5 h. The results show that the methane production rate at 60 {sup o}C is lower than that at 50 {sup o}C at all experimental conditions of imposed HRT except when downward temperature fluctuations were applied at an HRT of 10 days. It also was found that the free ammonia concentration not only affects the acetate-utilising bacteria but also the hydrolysis and acidification process. The upward temperature fluctuation affects the maximum specific methanogenesis activity more severely as compared to imposed downward temperature fluctuations. The results clearly reveal the possibility of using available solar energy at daytime to heat up the reactor(s) without the need of heat storage during nights, especially at an operational temperature of 50 {sup o}C and at a 20 days HRT, and without the jeopardising of the overheating. (author)

  9. Dynamics and fluctuation spectra of electrostatic resistive interchange turbulence

    International Nuclear Information System (INIS)

    Sydora, R.D.; Leboeuf, J.N.; An, Z.G.; Diamond, P.H.; Lee, G.S.; Hahm, T.S.

    1985-11-01

    The saturation mechanism for density and potential fluctuation spectra which evolve from linearly unstable electrostatic resistive interchange modes, are investigated using particle simulations. Detailed comparisons of the nonlinear evolution, saturation levels and resultant spectra between two- and three-dimensional sheared magnetic field configurations are made. Significant differences appear. The single rational surface, quasilinear-dominated evolution, fluctuation spectrum is adequately described using a density convection model. For the multiple rational surface case, the potential fluctuations are adequately represented by a balance between the nonlinearly modified source (curvature drive) and linear sink (parallel resistive field line diffusion). An accurate description of the density spectrum requires a mode coupling theory based on the two-point density correlation evolution equation. 24 refs., 15 figs

  10. Water table fluctuations and soil biogeochemistry: An experimental approach using an automated soil column system

    Science.gov (United States)

    Rezanezhad, F.; Couture, R.-M.; Kovac, R.; O'Connell, D.; Van Cappellen, P.

    2014-02-01

    Water table fluctuations significantly affect the biological and geochemical functioning of soils. Here, we introduce an automated soil column system in which the water table regime is imposed using a computer-controlled, multi-channel pump connected to a hydrostatic equilibrium reservoir and a water storage reservoir. The potential of this new system is illustrated by comparing results from two columns filled with 45 cm of the same homogenized riparian soil. In one soil column the water table remained constant at -20 cm below the soil surface, while in the other the water table oscillated between the soil surface and the bottom of the column, at a rate of 4.8 cm d-1. The experiment ran for 75 days at room temperature (25 ± 2 °C). Micro-sensors installed at -10 and -30 cm below the soil surface in the stable water table column recorded constant redox potentials on the order of 600 and -200 mV, respectively. In the fluctuating water table column, redox potentials at the same depths oscillated between oxidizing (∼700 mV) and reducing (∼-100 mV) conditions. Pore waters collected periodically and solid-phase analyses on core material obtained at the end of the experiment highlighted striking geochemical differences between the two columns, especially in the time series and depth distributions of Fe, Mn, K, P and S. Soil CO2 emissions derived from headspace gas analysis exhibited periodic variations in the fluctuating water table column, with peak values during water table drawdown. Transient redox conditions caused by the water table fluctuations enhanced microbial oxidation of soil organic matter, resulting in a pronounced depletion of particulate organic carbon in the midsection of the fluctuating water table column. Denaturing Gradient Gel Electrophoresis (DGGE) revealed the onset of differentiation of the bacterial communities in the upper (oxidizing) and lower (reducing) soil sections, although no systematic differences in microbial community structure

  11. Small-scale fluctuations in the microwave background radiation and multiple gravitational lensing

    International Nuclear Information System (INIS)

    Kashlinsky, A.

    1988-01-01

    It is shown that multiple gravitational lensing of the microwave background radiation (MBR) by static compact objects significantly attenuates small-scale fluctuations in the MBR. Gravitational lensing, by altering trajectories of MBR photons reaching an observer, leads to (phase) mixing of photons from regions with different initial fluctuations. As a result of this diffusion process the original fluctuations are damped on scales up to several arcmin. An equation that describes this process and its general solution are given. It is concluded that the present upper limits on the amplitude of the MBR fluctuations on small scales cannot constrain theories of galaxy formation. 25 references

  12. Scrape-off layer-induced beam density fluctuations and their effect on beam emission spectroscopy

    Science.gov (United States)

    Moulton, D.; Marandet, Y.; Tamain, P.; Dif-Pradalier, G.

    2015-07-01

    A statistical model is presented to calculate the magnitude of beam density fluctuations generated by a turbulent scrape-off layer (SOL). It is shown that the SOL can induce neutral beam density fluctuations of a similar magnitude to the plasma density fluctuations in the core, potentially corrupting beam emission spectroscopy measurements. The degree of corruption is quantified by combining simulations of beam and plasma density fluctuations inside a simulated measurement window. A change in pitch angle from the separatrix to the measurement window is found to reduce the effect of beam fluctuations, whose largest effect is to significantly reduce the measured correlation time.

  13. Investigation of the spatial variability and possible origins of wind-induced air pressure fluctuations responsible for pressure pumping

    Science.gov (United States)

    Mohr, Manuel; Laemmel, Thomas; Maier, Martin; Zeeman, Matthias; Longdoz, Bernard; Schindler, Dirk

    2017-04-01

    The exchange of greenhouse gases between the soil and the atmosphere is highly relevant for the climate of the Earth. Recent research suggests that wind-induced air pressure fluctuations can alter the soil gas transport and therefore soil gas efflux significantly. Using a newly developed method, we measured soil gas transport in situ in a well aerated forest soil. Results from these measurements showed that the commonly used soil gas diffusion coefficient is enhanced up to 30% during periods of strong wind-induced air pressure fluctuations. The air pressure fluctuations above the forest floor are only induced at high above-canopy wind speeds (> 5 m s-1) and lie in the frequency range 0.01-0.1 Hz. Moreover, the amplitudes of air pressure fluctuations in this frequency range show a clear quadratic dependence on mean above-canopy wind speed. However, the origin of these wind-induced pressure fluctuations is still unclear. Airflow measurements and high-precision air pressure measurements were conducted at three different vegetation-covered sites (conifer forest, deciduous forest, grassland) to investigate the spatial variability of dominant air pressure fluctuations, their origin and vegetation-dependent characteristics. At the conifer forest site, a vertical profile of air pressure fluctuations was measured and an array consisting of five pressure sensors were installed at the forest floor. At the grassland site, the air pressure measurements were compared with wind observations made by ground-based LIDAR and spatial temperature observations from a fibre-optic sensing network (ScaleX Campaign 2016). Preliminary results show that at all sites the amplitudes of relevant air pressure fluctuations increase with increasing wind speed. Data from the array measurements reveal that there are no time lags between the air pressure signals of different heights, but a time lag existed between the air pressure signals of the sensors distributed laterally on the forest floor

  14. Statistical properties of entropy production derived from fluctuation theorems

    International Nuclear Information System (INIS)

    Merhav, Neri; Kafri, Yariv

    2010-01-01

    Several implications of well-known fluctuation theorems, on the statistical properties of entropy production, are studied using various approaches. We begin by deriving a tight lower bound on the variance of the entropy production for a given mean of this random variable. It is shown that the Evans–Searles fluctuation theorem alone imposes a significant lower bound on the variance only when the mean entropy production is very small. It is then nonetheless demonstrated that upon incorporating additional information concerning the entropy production, this lower bound can be significantly improved, so as to capture extensivity properties. Another important aspect of the fluctuation properties of the entropy production is the relationship between the mean and the variance, on the one hand, and the probability of the event where the entropy production is negative, on the other hand. Accordingly, we derive upper and lower bounds on this probability in terms of the mean and the variance. These bounds are tighter than previous bounds that can be found in the literature. Moreover, they are tight in the sense that there exist probability distributions, satisfying the Evans–Searles fluctuation theorem, that achieve them with equality. Finally, we present a general method for generating a wide class of inequalities that must be satisfied by the entropy production. We use this method to derive several new inequalities that go beyond the standard derivation of the second law

  15. Current status of studies on temperature fluctuation phenomena in LMFRs

    International Nuclear Information System (INIS)

    Ohshima, H.; Muramatsu, T.; Kobayashi, J.; Yamaguchi, A.

    1994-01-01

    This paper describes the current status of studies being performed in PNC on temperature fluctuation phenomena occurring in fast reactors. The studies concentrate on four problems: thermal stratification, thermal striping, core-plenum interaction and free surface sloshing. Both experimental and analytical approaches to reveal these phenomena and to establish design and safety evaluation methods are presented together with future works. (author)

  16. Hadronic Correlations and Fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker

    2008-10-09

    We will provide a review of some of the physics which can be addressed by studying fluctuations and correlations in heavy ion collisions. We will discuss Lattice QCD results on fluctuations and correlations and will put them into context with observables which have been measured in heavy-ion collisions. Special attention will be given to the QCD critical point and the first order co-existence region, and we will discuss how the measurement of fluctuations and correlations can help in an experimental search for non-trivial structures in the QCD phase diagram.

  17. Selection on female behaviour fluctuates with offspring environment.

    Science.gov (United States)

    Taylor, R W; Boutin, S; Humphries, M M; McAdam, A G

    2014-11-01

    Temporal variation in selection has long been proposed as a mechanism by which genetic variation could be maintained despite short-term strong directional selection and has been invoked to explain the maintenance of consistent individual differences in behaviour. We tested the hypothesis that ecological changes through time lead to fluctuating selection, which could promote the maintenance of variation in female behavioural traits in a wild population of North American red squirrels. As predicted, linear selection gradients on female aggression and activity significantly fluctuated across years depending on the level of competition among juveniles for vacant territories. This selection acted primarily through juvenile overwinter survival rather than maternal fecundity. Incorporating uncertainty in individual measures of behaviour reduced the magnitude of annual selection gradients and increased uncertainty in these estimates, but did not affect the overall pattern of temporal fluctuations in natural selection that coincided with the intensity of competition for vacant territories. These temporal fluctuations in selection might, therefore, promote the maintenance of heritable individual differences in behaviour in this wild red squirrel population. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  18. Transcriptome sequencing revealed significant alteration of cortical promoter usage and splicing in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Jing Qin Wu

    Full Text Available While hybridization based analysis of the cortical transcriptome has provided important insight into the neuropathology of schizophrenia, it represents a restricted view of disease-associated gene activity based on predetermined probes. By contrast, sequencing technology can provide un-biased analysis of transcription at nucleotide resolution. Here we use this approach to investigate schizophrenia-associated cortical gene expression.The data was generated from 76 bp reads of RNA-Seq, aligned to the reference genome and assembled into transcripts for quantification of exons, splice variants and alternative promoters in postmortem superior temporal gyrus (STG/BA22 from 9 male subjects with schizophrenia and 9 matched non-psychiatric controls. Differentially expressed genes were then subjected to further sequence and functional group analysis. The output, amounting to more than 38 Gb of sequence, revealed significant alteration of gene expression including many previously shown to be associated with schizophrenia. Gene ontology enrichment analysis followed by functional map construction identified three functional clusters highly relevant to schizophrenia including neurotransmission related functions, synaptic vesicle trafficking, and neural development. Significantly, more than 2000 genes displayed schizophrenia-associated alternative promoter usage and more than 1000 genes showed differential splicing (FDR<0.05. Both types of transcriptional isoforms were exemplified by reads aligned to the neurodevelopmentally significant doublecortin-like kinase 1 (DCLK1 gene.This study provided the first deep and un-biased analysis of schizophrenia-associated transcriptional diversity within the STG, and revealed variants with important implications for the complex pathophysiology of schizophrenia.

  19. Stochastic lumping analysis for linear kinetics and its application to the fluctuation relations between hierarchical kinetic networks

    Energy Technology Data Exchange (ETDEWEB)

    Deng, De-Ming; Chang, Cheng-Hung [Institute of Physics, National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2015-05-14

    Conventional studies of biomolecular behaviors rely largely on the construction of kinetic schemes. Since the selection of these networks is not unique, a concern is raised whether and under which conditions hierarchical schemes can reveal the same experimentally measured fluctuating behaviors and unique fluctuation related physical properties. To clarify these questions, we introduce stochasticity into the traditional lumping analysis, generalize it from rate equations to chemical master equations and stochastic differential equations, and extract the fluctuation relations between kinetically and thermodynamically equivalent networks under intrinsic and extrinsic noises. The results provide a theoretical basis for the legitimate use of low-dimensional models in the studies of macromolecular fluctuations and, more generally, for exploring stochastic features in different levels of contracted networks in chemical and biological kinetic systems.

  20. Stochastic lumping analysis for linear kinetics and its application to the fluctuation relations between hierarchical kinetic networks.

    Science.gov (United States)

    Deng, De-Ming; Chang, Cheng-Hung

    2015-05-14

    Conventional studies of biomolecular behaviors rely largely on the construction of kinetic schemes. Since the selection of these networks is not unique, a concern is raised whether and under which conditions hierarchical schemes can reveal the same experimentally measured fluctuating behaviors and unique fluctuation related physical properties. To clarify these questions, we introduce stochasticity into the traditional lumping analysis, generalize it from rate equations to chemical master equations and stochastic differential equations, and extract the fluctuation relations between kinetically and thermodynamically equivalent networks under intrinsic and extrinsic noises. The results provide a theoretical basis for the legitimate use of low-dimensional models in the studies of macromolecular fluctuations and, more generally, for exploring stochastic features in different levels of contracted networks in chemical and biological kinetic systems.

  1. Structural Origins of Conductance Fluctuations in Gold–Thiolate Molecular Transport Junctions

    KAUST Repository

    French, William R.

    2013-03-21

    We report detailed atomistic simulations combined with high-fidelity conductance calculations to probe the structural origins of conductance fluctuations in thermally evolving Au-benzene-1,4-dithiolate-Au junctions. We compare the behavior of structurally ideal junctions (where the electrodes are modeled as flat surfaces) to structurally realistic, experimentally representative junctions resulting from break-junction simulations. The enhanced mobility of metal atoms in structurally realistic junctions results in significant changes to the magnitude and origin of the conductance fluctuations. Fluctuations are larger by a factor of 2-3 in realistic junctions compared to ideal junctions. Moreover, in junctions with highly deformed electrodes, the conductance fluctuations arise primarily from changes in the Au geometry, in contrast to results for junctions with nondeformed electrodes, where the conductance fluctuations are dominated by changes in the molecule geometry. These results provide important guidance to experimentalists developing strategies to control molecular conductance, and also to theoreticians invoking simplified structural models of junctions to predict their behavior. © 2013 American Chemical Society.

  2. Structural Origins of Conductance Fluctuations in Gold–Thiolate Molecular Transport Junctions

    KAUST Repository

    French, William R.; Iacovella, Christopher R.; Rungger, Ivan; Souza, Amaury Melo; Sanvito, Stefano; Cummings, Peter T.

    2013-01-01

    We report detailed atomistic simulations combined with high-fidelity conductance calculations to probe the structural origins of conductance fluctuations in thermally evolving Au-benzene-1,4-dithiolate-Au junctions. We compare the behavior of structurally ideal junctions (where the electrodes are modeled as flat surfaces) to structurally realistic, experimentally representative junctions resulting from break-junction simulations. The enhanced mobility of metal atoms in structurally realistic junctions results in significant changes to the magnitude and origin of the conductance fluctuations. Fluctuations are larger by a factor of 2-3 in realistic junctions compared to ideal junctions. Moreover, in junctions with highly deformed electrodes, the conductance fluctuations arise primarily from changes in the Au geometry, in contrast to results for junctions with nondeformed electrodes, where the conductance fluctuations are dominated by changes in the molecule geometry. These results provide important guidance to experimentalists developing strategies to control molecular conductance, and also to theoreticians invoking simplified structural models of junctions to predict their behavior. © 2013 American Chemical Society.

  3. Investigation of Parametric Instability of the Planetary Gear under Speed Fluctuations

    Directory of Open Access Journals (Sweden)

    Xinghui Qiu

    2017-01-01

    Full Text Available Planetary gear is widely used in engineering and usually has symmetrical structure. As the number of teeth in contact changes during rotation, the time-varying mesh stiffness parametrically excites the planetary gear and may cause severe vibrations and instabilities. Taking speed fluctuations into account, the time-varying mesh stiffness is frequency modulated, and therefore sideband instabilities may arise and original instabilities are significantly affected. Considering two different speed fluctuations, original and sideband instabilities are numerically and analytically investigated. A rotational lumped-parameter model of the planetary gear is developed, in which the time-varying mesh stiffness, input speed fluctuations, and damping are considered. Closed-form approximations of instability boundaries for primary and combination instabilities are obtained by perturbation analysis and verified by numerical analysis. The effects of speed fluctuations and damping on parametric instability are systematically examined. Because of the frequency modulation, whether a parametric instability occurs cannot be simply predicted by the planet meshing phase which is applicable to constant speed. Besides adjusting the planet meshing phase, speed fluctuation supplies a new thought to minimize certain instability by adjusting the amplitude or frequency of the speed fluctuation. Both original and sideband instabilities are shrunken by damping, and speed fluctuation further shrinks the original instability.

  4. Stochastic and information-thermodynamic structures of population dynamics in a fluctuating environment

    Science.gov (United States)

    Kobayashi, Tetsuya J.; Sughiyama, Yuki

    2017-07-01

    Adaptation in a fluctuating environment is a process of fueling environmental information to gain fitness. Living systems have gradually developed strategies for adaptation from random and passive diversification of the phenotype to more proactive decision making, in which environmental information is sensed and exploited more actively and effectively. Understanding the fundamental relation between fitness and information is therefore crucial to clarify the limits and universal properties of adaptation. In this work, we elucidate the underlying stochastic and information-thermodynamic structure in this process, by deriving causal fluctuation relations (FRs) of fitness and information. Combined with a duality between phenotypic and environmental dynamics, the FRs reveal the limit of fitness gain, the relation of time reversibility with the achievability of the limit, and the possibility and condition for gaining excess fitness due to environmental fluctuation. The loss of fitness due to causal constraints and the limited capacity of real organisms is shown to be the difference between time-forward and time-backward path probabilities of phenotypic and environmental dynamics. Furthermore, the FRs generalize the concept of the evolutionary stable state (ESS) for fluctuating environment by giving the probability that the optimal strategy on average can be invaded by a suboptimal one owing to rare environmental fluctuation. These results clarify the information-thermodynamic structures in adaptation and evolution.

  5. Fluctuations in Schottky barrier heights

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1984-01-01

    A double Schottky barrier is often formed at the grain boundary in polycrystalline semiconductors. The barrier height is shown to fluctuate in value due to the random nature of the impurity positions. The magnitude of the fluctuations is 0.1 eV, and the fluctuations cause the barrier height measured by capacitance to differ from the one measured by electrical conductivity

  6. Fully Quantum Fluctuation Theorems

    Science.gov (United States)

    Åberg, Johan

    2018-02-01

    Systems that are driven out of thermal equilibrium typically dissipate random quantities of energy on microscopic scales. Crooks fluctuation theorem relates the distribution of these random work costs to the corresponding distribution for the reverse process. By an analysis that explicitly incorporates the energy reservoir that donates the energy and the control system that implements the dynamic, we obtain a quantum generalization of Crooks theorem that not only includes the energy changes in the reservoir but also the full description of its evolution, including coherences. Moreover, this approach opens up the possibility for generalizations of the concept of fluctuation relations. Here, we introduce "conditional" fluctuation relations that are applicable to nonequilibrium systems, as well as approximate fluctuation relations that allow for the analysis of autonomous evolution generated by global time-independent Hamiltonians. We furthermore extend these notions to Markovian master equations, implicitly modeling the influence of the heat bath.

  7. Curvature of fluctuation geometry and its implications on Riemannian fluctuation theory

    International Nuclear Information System (INIS)

    Velazquez, L

    2013-01-01

    Fluctuation geometry was recently proposed as a counterpart approach of the Riemannian geometry of inference theory (widely known as information geometry). This theory describes the geometric features of the statistical manifold M of random events that are described by a family of continuous distributions dp(x|θ). A main goal of this work is to clarify the statistical relevance of the Levi-Civita curvature tensor R ijkl (x|θ) of the statistical manifold M. For this purpose, the notion of irreducible statistical correlations is introduced. Specifically, a distribution dp(x|θ) exhibits irreducible statistical correlations if every distribution dp(x-check|θ) obtained from dp(x|θ) by considering a coordinate change x-check = φ(x) cannot be factorized into independent distributions as dp(x-check|θ) = prod i dp (i) (x-check i |θ). It is shown that the curvature tensor R ijkl (x|θ) arises as a direct indicator about the existence of irreducible statistical correlations. Moreover, the curvature scalar R(x|θ) allows us to introduce a criterium for the applicability of the Gaussian approximation of a given distribution function. This type of asymptotic result is obtained in the framework of the second-order geometric expansion of the distribution family dp(x|θ), which appears as a counterpart development of the high-order asymptotic theory of statistical estimation. In physics, fluctuation geometry represents the mathematical apparatus of a Riemannian extension for Einstein’s fluctuation theory of statistical mechanics. Some exact results of fluctuation geometry are now employed to derive the invariant fluctuation theorems. Moreover, the curvature scalar allows us to express some asymptotic formulae that account for the system fluctuating behavior beyond the Gaussian approximation, e.g.: it appears as a second-order correction of the Legendre transformation between thermodynamic potentials, P(θ)=θ i x-bar i -s( x-bar |θ)+k 2 R(x|θ)/6. (paper)

  8. Phylogeographic analysis reveals significant spatial genetic structure of Incarvillea sinensis as a product of mountain building

    Directory of Open Access Journals (Sweden)

    Chen Shaotian

    2012-04-01

    Full Text Available Abstract Background Incarvillea sinensis is widely distributed from Southwest China to Northeast China and in the Russian Far East. The distribution of this species was thought to be influenced by the uplift of the Qinghai-Tibet Plateau and Quaternary glaciation. To reveal the imprints of geological events on the spatial genetic structure of Incarvillea sinensis, we examined two cpDNA segments ( trnH- psbA and trnS- trnfM in 705 individuals from 47 localities. Results A total of 16 haplotypes was identified, and significant genetic differentiation was revealed (GST =0.843, NST = 0.975, P  Conclusions The results revealed that the uplift of the Qinghai-Tibet Plateau likely resulted in the significant divergence between the lineage in the eastern Qinghai-Tibet Plateau and the other one outside this area. The diverse niches in the eastern Qinghai-Tibet Plateau created a wide spectrum of habitats to accumulate and accommodate new mutations. The features of genetic diversity of populations outside the eastern Qinghai-Tibet Plateau seemed to reveal the imprints of extinction during the Glacial and the interglacial and postglacial recolonization. Our study is a typical case of the significance of the uplift of the Qinghai-Tibet Plateau and the Quaternary Glacial in spatial genetic structure of eastern Asian plants, and sheds new light on the evolution of biodiversity in the Qinghai-Tibet Plateau at the intraspecies level.

  9. Net charge fluctuations and local charge compensation

    International Nuclear Information System (INIS)

    Fu Jinghua

    2006-01-01

    We propose net charge fluctuation as a measure of local charge correlation length. It is demonstrated that, in terms of a schematic multiperipheral model, net charge fluctuation satisfies the same Quigg-Thomas relation as satisfied by charge transfer fluctuation. Net charge fluctuations measured in finite rapidity windows depend on both the local charge correlation length and the size of the observation window. When the observation window is larger than the local charge correlation length, the net charge fluctuation only depends on the local charge correlation length, while forward-backward charge fluctuations always have strong dependence on the observation window size. Net charge fluctuations and forward-backward charge fluctuations measured in the present heavy ion experiments show characteristic features similar to those from multiperipheral models. But the data cannot all be understood within this simple model

  10. Fluctuations and confinement in ATF

    International Nuclear Information System (INIS)

    Isler, R.C.; Harris, J.H.; Murakami, M.

    1993-01-01

    In the period immediately prior to the suspension of ATF operation in November, 1991, a great deal of emphasis was palced on investigations of the fundamental mechanisms controlling confinement in this device. At that time, measurements of the density fluctuations throughout the plasma volume indicated the existence of theoretically predicted dissipative trapped electron and resistive interchange instabilities. These identifications were supported by results of dynamic configuration scans of the magnetic fields during which the extent of the magnetic well, shear, and fraction of confined trapped particles were changed continuously. Interpretation of the data from these experiments has been an ongoing exercise. Most recently, analysis of discharges employing strong gas puffing to change density gradients and fluctuation levels have strengthened the view that dissipative trapped electron modes may be present but do not play a significant direct role in energy transport. The present paper summarizes the current understanding concerning the identification of instabilities and their relationship to confinement in ATF

  11. Critical fluctuations in cortical models near instability

    Directory of Open Access Journals (Sweden)

    Matthew J. Aburn

    2012-08-01

    Full Text Available Computational studies often proceed from the premise that cortical dynamics operate in a linearly stable domain, where fluctuations dissipate quickly and show only short memory. Studies of human EEG, however, have shown significant autocorrelation at time lags on the scale of minutes, indicating the need to consider regimes where nonlinearities influence the dynamics. Statistical properties such as increased autocorrelation length, increased variance, power-law scaling and bistable switching have been suggested as generic indicators of the approach to bifurcation in nonlinear dynamical systems. We study temporal fluctuations in a widely-employed computational model (the Jansen-Rit model of cortical activity, examining the statistical signatures that accompany bifurcations. Approaching supercritical Hopf bifurcations through tuning of the background excitatory input, we find a dramatic increase in the autocorrelation length that depends sensitively on the direction in phase space of the input fluctuations and hence on which neuronal subpopulation is stochastically perturbed. Similar dependence on the input direction is found in the distribution of fluctuation size and duration, which show power law scaling that extends over four orders of magnitude at the Hopf bifurcation. We conjecture that the alignment in phase space between the input noise vector and the center manifold of the Hopf bifurcation is directly linked to these changes. These results are consistent with the possibility of statistical indicators of linear instability being detectable in real EEG time series. However, even in a simple cortical model, we find that these indicators may not necessarily be visible even when bifurcations are present because their expression can depend sensitively on the neuronal pathway of incoming fluctuations.

  12. Quantum fluctuations and inflation

    International Nuclear Information System (INIS)

    Bardeen, J.M.; Bublik, G.J.

    1986-05-01

    We study the effect of quantum fluctuations on the roll-down rate of the inflation field in a semiclassical approximation; this is done by treating the inflation field as a classical random field. The quantum fluctuations are simulated by a noise term in the equation of motion. We consider two different inflationary scenarios (new and chaotic inflation) and find that the roll-down rate of the median value of the inflation field is increased by the quantum fluctuations. Non-linear effects may become important in the later stages of the inflationary regime. 8 refs., 2 figs

  13. Quantum fluctuations and inflation

    International Nuclear Information System (INIS)

    Bardeen, J.M.; Bublik, G.J.

    1987-01-01

    The authors study the effect of quantum fluctuations on the roll-down rate of the inflation field in a semiclassical approximation; this is done by treating the inflation field as a classical random field. The quantum fluctuations are simulated by a noise term in the equation of motion. Two different inflationary scenarios (new and chaotic inflation) are considered and it is found that the roll-down rate of the median value of the inflation field is increased by the quantum fluctuations. Non-linear effects may become important in the later stages of the inflationary regime. (author)

  14. Current density fluctuations and ambipolarity of transport

    International Nuclear Information System (INIS)

    Shen, W.; Dexter, R.N.; Prager, S.C.

    1991-10-01

    The fluctuation in the plasma current density is measured in the MIST reversed field pinch experiment. Such fluctuations, and the measured radial profile of the k spectrum of magnetic fluctuations, supports the view and that low frequency fluctuations (f r >) demonstrates that radial particle transport from particle motion parallel to a fluctuating magnetic field is ambipolar over the full frequency range

  15. Interplay between endogenous and exogenous fluctuations in financial markets

    OpenAIRE

    Gontis, Vygintas

    2016-01-01

    We address microscopic, agent based, and macroscopic, stochastic, modeling of the financial markets combining it with the exogenous noise. The interplay between the endogenous dynamics of agents and the exogenous noise is the primary mechanism responsible for the observed long-range dependence and statistical properties of high volatility return intervals. By exogenous noise we mean information flow or/and order flow fluctuations. Numerical results based on the proposed model reveal that the ...

  16. Transcriptome Sequencing Revealed Significant Alteration of Cortical Promoter Usage and Splicing in Schizophrenia

    Science.gov (United States)

    Wu, Jing Qin; Wang, Xi; Beveridge, Natalie J.; Tooney, Paul A.; Scott, Rodney J.; Carr, Vaughan J.; Cairns, Murray J.

    2012-01-01

    Background While hybridization based analysis of the cortical transcriptome has provided important insight into the neuropathology of schizophrenia, it represents a restricted view of disease-associated gene activity based on predetermined probes. By contrast, sequencing technology can provide un-biased analysis of transcription at nucleotide resolution. Here we use this approach to investigate schizophrenia-associated cortical gene expression. Methodology/Principal Findings The data was generated from 76 bp reads of RNA-Seq, aligned to the reference genome and assembled into transcripts for quantification of exons, splice variants and alternative promoters in postmortem superior temporal gyrus (STG/BA22) from 9 male subjects with schizophrenia and 9 matched non-psychiatric controls. Differentially expressed genes were then subjected to further sequence and functional group analysis. The output, amounting to more than 38 Gb of sequence, revealed significant alteration of gene expression including many previously shown to be associated with schizophrenia. Gene ontology enrichment analysis followed by functional map construction identified three functional clusters highly relevant to schizophrenia including neurotransmission related functions, synaptic vesicle trafficking, and neural development. Significantly, more than 2000 genes displayed schizophrenia-associated alternative promoter usage and more than 1000 genes showed differential splicing (FDRschizophrenia-associated transcriptional diversity within the STG, and revealed variants with important implications for the complex pathophysiology of schizophrenia. PMID:22558445

  17. The Spectrum of Wind Power Fluctuations

    Science.gov (United States)

    Bandi, Mahesh

    2016-11-01

    Wind is a variable energy source whose fluctuations threaten electrical grid stability and complicate dynamical load balancing. The power generated by a wind turbine fluctuates due to the variable wind speed that blows past the turbine. Indeed, the spectrum of wind power fluctuations is widely believed to reflect the Kolmogorov spectrum; both vary with frequency f as f - 5 / 3. This variability decreases when aggregate power fluctuations from geographically distributed wind farms are averaged at the grid via a mechanism known as geographic smoothing. Neither the f - 5 / 3 wind power fluctuation spectrum nor the mechanism of geographic smoothing are understood. In this work, we explain the wind power fluctuation spectrum from the turbine through grid scales. The f - 5 / 3 wind power fluctuation spectrum results from the largest length scales of atmospheric turbulence of order 200 km influencing the small scales where individual turbines operate. This long-range influence spatially couples geographically distributed wind farms and synchronizes farm outputs over a range of frequencies and decreases with increasing inter-farm distance. Consequently, aggregate grid-scale power fluctuations remain correlated, and are smoothed until they reach a limiting f - 7 / 3 spectrum. This work was funded by the Collective Interactions Unit, OIST Graduate University, Japan.

  18. Origin of short-period (30-300 s) Doppler frequency fluctuations of lower F region reflections in the equatorial electrojet region

    International Nuclear Information System (INIS)

    Sastri, J.H.; Ramesh, K.B.; Rao, J.V.S.V.; Somayajulu, V.V.

    1991-01-01

    Measurements of phase path P of lower F-region reflections at normal incidence at Kodaikanal revealed the ubiquitous presence of 30-300-s quasi-sinusoidal variations in the time rate of change of phase path, P (Doppler frequency shift) during day time. A study is made of the influence of the irregularities in the equatorial electrojet on the P fluctuations using simultaneous observations of F-region phase path at Kodaikanal and of equatorial electrojet with the VHF-backscatter radar at Thumba. It is shown that the spectral content of the Doppler fluctuations (quantified in terms of variance, sigma squared computed from P time series synthesized through FFT exp -1 (FFT) in the chosen period bands, 30-300 s/30-120 s of the FFT of original P times series) bears a significant positive linear relationship to the horizontal phase velocity of electrojet irregularities (3-m scale size) on a hourly basis. This result is in consonance with earlier findings (Sastri et al., 1990) of a significant linear relationship of sigma squared to the electrojet strength (estimated from H-field data) and a practical cessation of the P fluctuations at times of disappearance of Esq on ionograms (partial/complete counterelectrojet). The present work substantiates the interpretation that the short-period Doppler-frequency fluctuations are due to phase-path changes imposed on lower F region reflections by the refractive-index variations associated with the convective motions of plasma density irregularities (type I and II) in the daytime equatorial electrojet. 49 refs

  19. Interplanetary Alfvenic fluctuations: A stochastic model

    International Nuclear Information System (INIS)

    Barnes, A.

    1981-01-01

    The strong alignment of the average directions of minimum magnetic variance and mean magnetic field in interplanetary Alfvenic fluctuations is inconsistent with the usual wave-propagation models. We investigate the concept of minimum variance for nonplanar Alfvenic fluctuations in which the field direction varies stochastically. It is found that the tendency of the minimum variance and mean field directions to be aligned may be purely a consequence of the randomness of the field direction. In particular, a well-defined direction of minimum variance does not imply that the fluctuations are necessarily planar. The fluctuation power spectrum is a power law for frequencies much higher than the inverse of the correlation time. The probability distribution of directions a randomly fluctuating field of constant magnitude is calculated. A new approach for observational studies of interplanetary fluctuations is suggested

  20. Topics in fluctuating nonlinear hydrodynamics

    International Nuclear Information System (INIS)

    Milner, S.T.

    1986-01-01

    Models of fluctuating nonlinear hydrodynamics have enjoyed much success in explaining the effect of long-wavelength fluctuations in diverse hydrodynamic systems. This thesis explores two such problems; in both, the body of hydrodynamic assumptions powerfully constrains the predictions of a well-posed theory. The effects of layer fluctuations in smectic-A liquid crystals are first examined. The static theory (introduced by Grinstein and Pelcovits) is reviewed. Ward identities, resulting from the arbitrariness of the layering direction, are derived and exploited. The static results motivate an examination of dynamic fluctuation effects. A new sound-damping experiment is proposed that would probe singular dependence of viscosities on applied stress. A theory of Procaccia and Gitterman that reaction rates of chemically reacting binary mixtures are drastically reduced near their thermodynamic critical points is analyzed. Hydrodynamic arguments and Van Hove theory are applied, concluding that the PG idea is drastically slowed, and spatially varying composition fluctuations are at best slowed down over a narrow range of wavenumbers

  1. Do Amplitudes of Water Level Fluctuations Affect the Growth and Community Structure of Submerged Macrophytes?

    Science.gov (United States)

    Wang, Mo-Zhu; Liu, Zheng-Yuan; Luo, Fang-Li; Lei, Guang-Chun; Li, Hong-Li

    2016-01-01

    Submerged macrophytes are subjected to potential mechanical stresses associated with fluctuating water levels in natural conditions. However, few experimental studies have been conducted to further understand the effects of water level fluctuating amplitude on submerged macrophyte species and their assemblages or communities. We designed a controlled experiment to investigate the responses of three submerged macrophyte species (Hydrilla verticillata, Ceratophyllum demersum and Elodea nuttallii) and their combinations in communities to three amplitudes (static, ± 30 cm, ± 60 cm) of water level fluctuations. Results showed that water level fluctuating amplitude had little effects on the community performance and the three tested species responded differently. H. verticillata exhibited more growth in static water and it was negatively affected by either of the water level fluctuations amplitude, however, growth parameters of H. verticillata in two fluctuating water level treatments (i.e., ± 30 cm, ± 60 cm) were not significantly different. On the other hand, the growth of C. demersum was not significantly correlated with different amplitude treatments. However, it became more abundant when water levels fluctuated. E. nuttallii was inhibited by the two fluctuating water level treatments, and was less in growth parameters compared to the other species especially in water level fluctuating conditions. The inherent differences in the adaptive capabilities of the tested species indicate that C. demersum or other species with similar responses may be dominant species to restore submerged macrophyte communities with great fluctuating water levels. Otherwise, H. verticillata, E. nuttallii or other species with similar responses could be considered for constructing the community in static water conditions. PMID:26735689

  2. Do Amplitudes of Water Level Fluctuations Affect the Growth and Community Structure of Submerged Macrophytes?

    Science.gov (United States)

    Wang, Mo-Zhu; Liu, Zheng-Yuan; Luo, Fang-Li; Lei, Guang-Chun; Li, Hong-Li

    2016-01-01

    Submerged macrophytes are subjected to potential mechanical stresses associated with fluctuating water levels in natural conditions. However, few experimental studies have been conducted to further understand the effects of water level fluctuating amplitude on submerged macrophyte species and their assemblages or communities. We designed a controlled experiment to investigate the responses of three submerged macrophyte species (Hydrilla verticillata, Ceratophyllum demersum and Elodea nuttallii) and their combinations in communities to three amplitudes (static, ± 30 cm, ± 60 cm) of water level fluctuations. Results showed that water level fluctuating amplitude had little effects on the community performance and the three tested species responded differently. H. verticillata exhibited more growth in static water and it was negatively affected by either of the water level fluctuations amplitude, however, growth parameters of H. verticillata in two fluctuating water level treatments (i.e., ± 30 cm, ± 60 cm) were not significantly different. On the other hand, the growth of C. demersum was not significantly correlated with different amplitude treatments. However, it became more abundant when water levels fluctuated. E. nuttallii was inhibited by the two fluctuating water level treatments, and was less in growth parameters compared to the other species especially in water level fluctuating conditions. The inherent differences in the adaptive capabilities of the tested species indicate that C. demersum or other species with similar responses may be dominant species to restore submerged macrophyte communities with great fluctuating water levels. Otherwise, H. verticillata, E. nuttallii or other species with similar responses could be considered for constructing the community in static water conditions.

  3. Do Amplitudes of Water Level Fluctuations Affect the Growth and Community Structure of Submerged Macrophytes?

    Directory of Open Access Journals (Sweden)

    Mo-Zhu Wang

    Full Text Available Submerged macrophytes are subjected to potential mechanical stresses associated with fluctuating water levels in natural conditions. However, few experimental studies have been conducted to further understand the effects of water level fluctuating amplitude on submerged macrophyte species and their assemblages or communities. We designed a controlled experiment to investigate the responses of three submerged macrophyte species (Hydrilla verticillata, Ceratophyllum demersum and Elodea nuttallii and their combinations in communities to three amplitudes (static, ± 30 cm, ± 60 cm of water level fluctuations. Results showed that water level fluctuating amplitude had little effects on the community performance and the three tested species responded differently. H. verticillata exhibited more growth in static water and it was negatively affected by either of the water level fluctuations amplitude, however, growth parameters of H. verticillata in two fluctuating water level treatments (i.e., ± 30 cm, ± 60 cm were not significantly different. On the other hand, the growth of C. demersum was not significantly correlated with different amplitude treatments. However, it became more abundant when water levels fluctuated. E. nuttallii was inhibited by the two fluctuating water level treatments, and was less in growth parameters compared to the other species especially in water level fluctuating conditions. The inherent differences in the adaptive capabilities of the tested species indicate that C. demersum or other species with similar responses may be dominant species to restore submerged macrophyte communities with great fluctuating water levels. Otherwise, H. verticillata, E. nuttallii or other species with similar responses could be considered for constructing the community in static water conditions.

  4. Principle of minimal work fluctuations.

    Science.gov (United States)

    Xiao, Gaoyang; Gong, Jiangbin

    2015-08-01

    Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality 〈e-βW〉=e-βΔF, a change in the fluctuations of e-βW may impact how rapidly the statistical average of e-βW converges towards the theoretical value e-βΔF, where W is the work, β is the inverse temperature, and ΔF is the free energy difference between two equilibrium states. Motivated by our previous study aiming at the suppression of work fluctuations, here we obtain a principle of minimal work fluctuations. In brief, adiabatic processes as treated in quantum and classical adiabatic theorems yield the minimal fluctuations in e-βW. In the quantum domain, if a system initially prepared at thermal equilibrium is subjected to a work protocol but isolated from a bath during the time evolution, then a quantum adiabatic process without energy level crossing (or an assisted adiabatic process reaching the same final states as in a conventional adiabatic process) yields the minimal fluctuations in e-βW, where W is the quantum work defined by two energy measurements at the beginning and at the end of the process. In the classical domain where the classical work protocol is realizable by an adiabatic process, then the classical adiabatic process also yields the minimal fluctuations in e-βW. Numerical experiments based on a Landau-Zener process confirm our theory in the quantum domain, and our theory in the classical domain explains our previous numerical findings regarding the suppression of classical work fluctuations [G. Y. Xiao and J. B. Gong, Phys. Rev. E 90, 052132 (2014)].

  5. Some fundamental aspects of fluctuations and coherence in charged-particle beams in storage rings

    International Nuclear Information System (INIS)

    Chattopadhyay, S.

    1984-01-01

    A conceptual survey and exposition is presented of some fundamental aspects of fluctuations and coherence, as well as the interplay between the two, in coasting charged-particle beams - both continuous and bunched - in storage rings. A detailed study is given of the spectral properties of the incoherent phase-space Schottky fluctuations, their propagation as waves in the beam, and the analytic complex coherent beam electromagnetic response or transfer function. The modification or distortion of these by collective interactions is examined in terms of simple regeneration mechanisms. Collective or coherent forces in the beam-storage-ring system are described by defining suitable impedance functions or propagators, and a brief discussion of the coherent collective modes and their stability is provided, including a general and rigorous description of the Nyquist stability criterion. The nature of the critical fluctuations near an instability threshold is explored. The concept of Landau damping and its connection with phase-mixing within the beam is outlined. The important connection between the incoherent fluctuations and the beam response, namely the Fluctuation-Dissipation relation, is revealed. A brief discussion is given of the information degrees of freedom, and effective temperature of the fluctuation signals. Appendices provide a short resume of some general aspects of various interactions in a charged-particle beam-environment system in a storage ring and a general introduction to kinetic theory as applied to particle beams. (orig.)

  6. Edge plasma fluctuations in STOR-M

    International Nuclear Information System (INIS)

    Zhang, W.; Hirose, A.; Zhang, L.; Xiao, C.; Conway, G.D.; Skarsgard, H.M.

    1993-01-01

    In the STOR-M tokamak, the coherence and propagation nature of the density (n e ) and magnetic (B r ) fluctuations are investigated both in the scrape-off layer (SOL, r/a > 1) and at the plasma edge (r/a -2 is of the order of the reverse electron skin depth kθ ≅ ω pe /c. In terms of the hybrid ion Larmor radius ρ s = c s /Ω i , it corresponds to k θρ s ≅ 0.1. These observations support the skin size electromagnetic drift mode which predicts that a low β tokamak discharge is unstable against the skin size electromagnetic instability with a phase velocity significantly smaller than the electron diamagnetic drift velocity. Edge fluctuations observed in STOR-M appear to propagate at the local E x B drift, and the phase velocity in the plasma from is υ theta ≅ 5 x 10 4 cm/sec, compared with the local electron diamagnetic drift, υ e ≅ 2.5 x 10 5 cm/sec. In the SOL region, the density fluctuations propagate in the ion diamagnetic drift, but still with the local E x B drift because E r changes its sign at r/a ≅ 1

  7. Faraday rotation signatures of fluctuation dynamos in young galaxies

    Science.gov (United States)

    Sur, Sharanya; Bhat, Pallavi; Subramanian, Kandaswamy

    2018-03-01

    Observations of Faraday rotation through high-redshift galaxies have revealed that they host coherent magnetic fields that are of comparable strengths to those observed in nearby galaxies. These fields could be generated by fluctuation dynamos. We use idealized numerical simulations of such dynamos in forced compressible turbulence up to rms Mach number of 2.4 to probe the resulting rotation measure (RM) and the degree of coherence of the magnetic field. We obtain rms values of RM at dynamo saturation of the order of 45-55 per cent of the value expected in a model where fields are assumed to be coherent on the forcing scale of turbulence. We show that the dominant contribution to the RM in subsonic and transonic cases comes from the general sea of volume filling fields, rather than from the rarer structures. However, in the supersonic case, strong field regions as well as moderately overdense regions contribute significantly. Our results can account for the observed RMs in young galaxies.

  8. Neutrino propagation in a fluctuating sun

    International Nuclear Information System (INIS)

    Burgess, C.P.; Michaud, D.

    1997-01-01

    We adapt to neutrino physics a general formulation for particle propagation in fluctuating media, initially developed for applications to electromagnetism and neutron optics. In leading approximation this formalism leads to the usual MSW effective Hamiltonian governing neutrino propagation through a medium. Next-to-leading contributions describe deviations from this description, which arise due to neutrino interactions with fluctuations in the medium. We compute these corrections for two types of fluctuations: (i) microscopic thermal fluctuations and (ii) macroscopic fluctuations in the medium s density. While the first of these reproduces standard estimates, which are negligible for applications to solar neutrinos, we find that the second can be quite large, since it grows in size with the correlation length of the fluctuation. We consider two models in some detail. For fluctuations whose correlations extend only over a local region in space of length l, appreciable effects for MSW oscillations arise if (δn/n) 2 l approx-gt 100m or so. Alternatively, a crude model of helioseismic p-waves gives appreciable effects only when (δn/n)approx-gt 1%. In general the dominant effect is to diminish the quality of the resonance, making the suppression of the 7 Be neutrinos a good experimental probe of fluctuations deep within the sun. Fluctuations can also provide a new mechanism for reducing the solar neutrino flux, giving an energy-independent suppression factor of 1/2 away from the resonant region, even for small vacuum mixing angles. copyright 1997 Academic Press, Inc

  9. Pressure Fluctuations Induced by a Hypersonic Turbulent Boundary Layer

    Science.gov (United States)

    Duan, Lian; Choudhari, Meelan M.; Zhang, Chao

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by a spatially-developed Mach 5.86 turbulent boundary layer. The unsteady pressure field is analyzed at multiple wall-normal locations, including those at the wall, within the boundary layer (including inner layer, the log layer, and the outer layer), and in the free stream. The statistical and structural variations of pressure fluctuations as a function of wall-normal distance are highlighted. Computational predictions for mean velocity pro les and surface pressure spectrum are in good agreement with experimental measurements, providing a first ever comparison of this type at hypersonic Mach numbers. The simulation shows that the dominant frequency of boundary-layer-induced pressure fluctuations shifts to lower frequencies as the location of interest moves away from the wall. The pressure wave propagates with a speed nearly equal to the local mean velocity within the boundary layer (except in the immediate vicinity of the wall) while the propagation speed deviates from the Taylor's hypothesis in the free stream. Compared with the surface pressure fluctuations, which are primarily vortical, the acoustic pressure fluctuations in the free stream exhibit a significantly lower dominant frequency, a greater spatial extent, and a smaller bulk propagation speed. The freestream pressure structures are found to have similar Lagrangian time and spatial scales as the acoustic sources near the wall. As the Mach number increases, the freestream acoustic fluctuations exhibit increased radiation intensity, enhanced energy content at high frequencies, shallower orientation of wave fronts with respect to the flow direction, and larger propagation velocity.

  10. Radial Variations of Outward and Inward Alfvénic Fluctuations Based on Ulysses Observations

    Science.gov (United States)

    Yang, L.; Lee, L. C.; Li, J. P.; Luo, Q. Y.; Kuo, C. L.; Shi, J. K.; Wu, D. J.

    2017-12-01

    Ulysses magnetic and plasma data are used to study hourly scale Alfvénic fluctuations in the solar polar wind. The calculated energy ratio {R}{vA}2(cal) of inward to outward Alfvén waves is obtained from the observed Walén slope through an analytical expression, and the observed {R}{vA}2(obs) is based on a direct decomposition of original Alfvénic fluctuations into outward- and inward-propagating Alfvén waves. The radial variation of {R}{vA}2(cal) shows a monotonically increasing trend with heliocentric distance r, implying the increasing local generation or contribution of inward Alfvén waves. The contribution is also shown by the radial increase in the occurrence of dominant inward fluctuations. We further pointed out a higher occurrence (˜ 83 % of a day in average) of dominant outward Alfvénic fluctuations in the solar wind than previously estimated. Since {R}{vA}2(cal) is more accurate than {R}{vA}2(obs) in the measurement of the energy ratio for dominant outward fluctuations, the values of {R}{vA}2(cal) in our results are likely more realistic in the solar wind than those previously estimated as well as {R}{vA}2(obs) in our results. The duration ratio R T of dominant inward to all Alfvénic fluctuations increases monotonically with r, and is about two or more times that from Voyager 2 observations at r≥slant 4 {au}. These results reveal new qualitative and quantitative features of Alfvénic fluctuations therein compared with previous studies and put constraints on modeling the variation of solar wind fluctuations.

  11. Fluctuation analysis of rotational spectra

    International Nuclear Information System (INIS)

    Doessing, T.; Bracco, A.; Broglia, R.A.; Matsuo, M.

    1996-01-01

    The compound state rotational degree of freedom is ''damped'' in the sense that the electric quadrupole decay of a single quantum state with angular momentum I exhibits a spectrum of final states all having spin I-2. In actual experiments, the cascade of γ-rays associated with each of the members of the ensemble of compound nuclei uses each of the ''discrete'' transitions many more times than the ''continuum'' transitions. Relatively large and small fluctuations in the recorded coincidence spectrum ensue, respectively. The analysis of the fluctuations will be shown to be instrumental to gain insight into the phenomenon of rotational damping. For this purpose, two- and higher-fold coincidence spectra emitted from rotating nuclei are analyzed with respect to the count fluctuations. The coincidences from consecutive γ-rays emitted from discrete rotational bands generate ridges in the E γ1 .E γ2 spectrum, and the fluctuation analysis of the ridges is based upon the ansatz of a random selection of transition energies from band to band. This ansatz is supported by a cranked mean-field calculation for the nucleus 168 Yb, as well as by analyzing resolved bands in 168 Yb and its neighbors. The fluctuation analysis of the central valley (E γ1 =E γ2 ) is based upon the ansatz of fluctuations in the intensity of the transitions of Porter-Thomas type superposed on a smooth spectrum of transition energies. This ansatz is again supported by a mixed-band calculation. The mathematical treatment of count fluctuations is formulated in general (orig.)

  12. Fluctuations and structure of amphiphilic films

    International Nuclear Information System (INIS)

    Gourier, CH.

    1996-01-01

    This thesis is divided in three parts.The first part exposes in a theoretical point of view, how the fluctuations spectrum of an amphiphilic film is governed by its properties and its bidimensional characteristics.The measurements of fluctuations spectra of an interface are accessible with the measurement of intensity that interface diffuses out of the specular angle, we present in the second chapter the principles of the X rays diffusion by a real interface and see how the diffuse diffusion experiments allow to determine the fluctuations spectrum of an amphiphilic film. The second part is devoted to the different experimental techniques that have allowed to realize the study of fluctuation as well as the structural study.The third part is devoted to experimental results concerning the measurements of fluctuations spectra and to the study of the structure of amphiphilic films. We show that it is possible by using an intense source of X rays (ESRF: European Synchrotron Radiation Facility) to measure the water and amphiphilic films fluctuations spectra until molecular scales. The last chapter is devoted to the structural study and film fluctuations made of di-acetylenic molecules. (N.C.)

  13. Multiplicity fluctuations and collective flow in small colliding systems

    Science.gov (United States)

    Kawaguchi, Koji; Murase, Koichi; Hirano, Tetsufumi

    2017-11-01

    Recent observation of collective-flow-like behaviours in small colliding systems attracts significant theoretical and experimental interests. In large colliding systems, large collective flow has been interpreted as manifestation of almost-perfect fluidity of the quark gluon plasma (QGP). So it is quite intriguing to explore how small the QGP can be as a fluid. Multiplicity fluctuations play a crucial role in centrality definition of the events in small colliding systems since the fluctuations are, in general, more important as the system size is getting smaller. To consider the correct multiplicity fluctuations, we employ PYTHIA which naturally describes multiplicity distribution in p+p collisions. We superpose p+p collisions by taking into account the number of participants and that of binary collisions from Monte-Carlo version of Glauber model and evaluate initial entropy density distributions which contain not only multiplicity fluctuations but also fluctuations of longitudinal profiles. Solving hydrodynamic equations followed by the hadronic afterburner, we calculate transverse momentum spectra, elliptic and triangular flow parameters in p+Au, d+Au and 3He+Au collisions at the RHIC energy and p+Pb collisions at the LHC energy. Although a large fraction of final anisotropic flow parameters comes from the fluid-dynamical stage, the effects of hadronic rescatterings turn out to be also important as well in understanding of the flow data in small colliding systems.

  14. Negative velocity fluctuations and non-equilibrium fluctuation relation for a driven high critical current vortex state.

    Science.gov (United States)

    Bag, Biplab; Shaw, Gorky; Banerjee, S S; Majumdar, Sayantan; Sood, A K; Grover, A K

    2017-07-17

    Under the influence of a constant drive the moving vortex state in 2H-NbS 2 superconductor exhibits a negative differential resistance (NDR) transition from a steady flow to an immobile state. This state possesses a high depinning current threshold ([Formula: see text]) with unconventional depinning characteristics. At currents well above [Formula: see text], the moving vortex state exhibits a multimodal velocity distribution which is characteristic of vortex flow instabilities in the NDR regime. However at lower currents which are just above [Formula: see text], the velocity distribution is non-Gaussian with a tail extending to significant negative velocity values. These unusual negative velocity events correspond to vortices drifting opposite to the driving force direction. We show that this distribution obeys the Gallavotti-Cohen Non-Equilibrium Fluctuation Relation (GC-NEFR). Just above [Formula: see text], we also find a high vortex density fluctuating driven state not obeying the conventional GC-NEFR. The GC-NEFR analysis provides a measure of an effective energy scale (E eff ) associated with the driven vortex state. The E eff corresponds to the average energy dissipated by the fluctuating vortex state above [Formula: see text]. We propose the high E eff value corresponds to the onset of high energy dynamic instabilities in this driven vortex state just above [Formula: see text].

  15. The Fluctuation Niche in Plants

    Directory of Open Access Journals (Sweden)

    Jaume Terradas

    2009-01-01

    Full Text Available Classical approaches to niche in coexisting plants have undervalued temporal fluctuations. We propose that fluctuation niche is an important dimension of the total niche and interacts with habitat and life-history niches to provide a better understanding of the multidimensional niche space where ecological interactions occur. To scale a fluctuation niche, it is necessary to relate environmental constrictions or species performance not only to the absolute values of the usual environmental and ecophysiological variables but also to their variances or other measures of variability. We use Mediterranean plant communities as examples, because they present characteristic large seasonal and interannual fluctuations in water and nutrient availabilities, along an episodic-constant gradient, and because the plant responses include a number of syndromes coupled to this gradient.

  16. The Fluctuation Niche in Plants

    International Nuclear Information System (INIS)

    Terradas, J.; Penuelas, J.; Lloret, F.; Penuelas, J.

    2009-01-01

    Classical approaches to niche in coexisting plants have undervalued temporal fluctuations. We propose that fluctuation niche is an important dimension of the total niche and interacts with habitat and life-history niches to provide a better understanding of the multidimensional niche space where ecological interactions occur. To scale a fluctuation niche, it is necessary to relate environmental constrictions or species performance not only to the absolute values of the usual environmental and eco physiological variables but also to their variances or other measures of variability. We use Mediterranean plant communities as examples, because they present characteristic large seasonal and inter annual fluctuations in water and nutrient availabilities, along an episodic-constant gradient, and because the plant responses include a number of syndromes coupled to this gradient.

  17. Fluctuations at electrode-YSZ interfaces

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Hansen, Karin Vels; Skou, Eivind

    2005-01-01

    Current fluctuations at potentiostatically controlled point electrodes of Pt, La$_{0.85}$Sr$_{0.15}$MnO$_3$ and Ni on YSZ surfaces are determined at 1000$^\\circ$C. For the oxygen reduction process on Pt electrodes characteristic sawtooth shaped low frequency fluctuations are observed. At temperat......Current fluctuations at potentiostatically controlled point electrodes of Pt, La$_{0.85}$Sr$_{0.15}$MnO$_3$ and Ni on YSZ surfaces are determined at 1000$^\\circ$C. For the oxygen reduction process on Pt electrodes characteristic sawtooth shaped low frequency fluctuations are observed....../water atmosphere are presented for discussion. The origin of the observations is not known at present but it appears likely that they are related to the activation/deactivation mechanism of SOFCs....

  18. A test particle motion in the Kerr field with fluctuating perturbations

    International Nuclear Information System (INIS)

    Zhuk, I.T.; Piragas, K.A.

    1982-01-01

    Motion of a stochastic test particle in the Kerr black hole field in the approximation of Brown interaction is considered. Probability distribution of orbit position by the latitude angle is revealed, bifurcation values of their parameters are determined. Fluctuating instability of orbits characteristic of critical modes of motion is investigated, properties of some statistical characteristics of the system are identified

  19. Big Bang or vacuum fluctuation

    International Nuclear Information System (INIS)

    Zel'dovich, Ya.B.

    1980-01-01

    Some general properties of vacuum fluctuations in quantum field theory are described. The connection between the ''energy dominance'' of the energy density of vacuum fluctuations in curved space-time and the presence of singularity is discussed. It is pointed out that a de-Sitter space-time (with the energy density of the vacuum fluctuations in the Einstein equations) that matches the expanding Friedman solution may describe the history of the Universe before the Big Bang. (P.L.)

  20. Multiplicity and transverse momentum fluctuations in inelastic proton-proton interactions at the CERN Super Proton Synchrotron

    International Nuclear Information System (INIS)

    Aduszkiewicz, A.; Dominik, W.; Kuich, M.; Matulewicz, T.; Posiadala, M.; Ali, Y.; Brzychczyk, J.; Larsen, D.; Planeta, R.; Richter-Was, E.; Staszel, P.; Wyszynski, O.; Andronov, E.; Feofilov, G.A.; Igolkin, S.; Kondratiev, V.P.; Seryakov, A.; Vechernin, V.V.; Vinogradov, L.; Anticic, T.; Kadija, K.; Susa, T.; Antoniou, N.; Christakoglou, P.; Davis, N.; Diakonos, F.; Kapoyannis, A.; Panagiotou, A.D.; Vassiliou, M.; Baatar, B.; Bunyatov, S.A.; Kolesnikov, V.I.; Krasnoperov, A.; Lyubushkin, V.V.; Malakhov, A.I.; Matveev, V.; Melkumov, G.L.; Tereshchenko, V.; Bay, F.; Di Luise, S.; Rubbia, A.; Sgalaberna, D.; Blondel, A.; Bravar, A.; Debieux, S.; Haesler, A.; Korzenev, A.; Ravonel, M.; Bluemer, J.; Dembinski, H.; Engel, R.; Herve, A.; Mathes, H.J.; Roth, M.; Szuba, M.; Ulrich, R.; Unger, M.; Veberic, D.; Bogomilov, M.; Kolev, D.; Tsenov, R.; Busygina, O.; Golubeva, M.; Guber, F.; Ivashkin, A.; Kurepin, A.; Morozov, S.; Petukhov, O.; Sadovsky, A.; Cirkovic, M.; Manic, D.; Puzovic, J.; Czopowicz, T.; Dynowski, K.; Grebieszkow, K.; Mackowiak-Pawlowska, M.; Maksiak, B.; Sarnecki, R.; Slodkowski, M.; Tefelska, A.; Tefelski, D.; Deveaux, M.; Koziel, M.; Renfordt, R.; Stroebele, H.; Dumarchez, J.; Robert, A.; Ereditato, A.; Hierholzer, M.; Nirkko, M.; Pistillo, C.; Redij, A.; Fodor, Z.; Garibov, A.; Gazdzicki, M.; Grzeszczuk, A.; Kaptur, E.; Kisiel, J.; Kowalski, S.; Pulawski, S.; Schmidt, K.; Wilczek, A.; Hasegawa, T.; Kobayashi, T.; Nakadaira, T.; Nishikawa, K.; Sakashita, K.; Sekiguchi, T.; Shibata, M.; Tada, M.; Kowalik, K.; Rondio, E.; Stepaniak, J.; Laszlo, A.; Marton, K.; Vesztergombi, G.; Lewicki, M.; Naskret, M.; Turko, L.; Marcinek, A.; Mrowczynski, S.; Rybczynski, M.; Seyboth, P.; Stefanek, G.; Wlodarczyk, Z.; Wojtaszek-Szwarc, A.; Pavin, M.; Popov, B.A.; Rauch, W.; Roehrich, D.; Rustamov, A.; Zambelli, L.

    2016-01-01

    Measurements of multiplicity and transverse momentum fluctuations of charged particles were performed in inelastic p+p interactions at 20, 31, 40, 80, and 158 GeV/c beam momentum. Results for the scaled variance of the multiplicity distribution and for three strongly intensive measures of multiplicity and transverse momentum fluctuations Δ[P_T,N], Σ[P_T,N] and Φ_p__T are presented. For the first time the results on fluctuations are fully corrected for experimental biases. The results on multiplicity and transverse momentum fluctuations significantly deviate from expectations for the independent particle production. They also depend on charges of selected hadrons. The string-resonance Monte Carlo models Epos and Urqmd do not describe the data. The scaled variance of multiplicity fluctuations is significantly higher in inelastic p+p interactions than in central Pb+Pb collisions measured by NA49 at the same energy per nucleon. This is in qualitative disagreement with the predictions of the Wounded Nucleon Model. Within the statistical framework the enhanced multiplicity fluctuations in inelastic p+p interactions can be interpreted as due to event-by-event fluctuations of the fireball energy and/or volume. (orig.)

  1. Multiplicity and transverse momentum fluctuations in inelastic proton-proton interactions at the CERN Super Proton Synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Aduszkiewicz, A.; Dominik, W.; Kuich, M.; Matulewicz, T.; Posiadala, M. [University of Warsaw, Faculty of Physics, Warsaw (Poland); Ali, Y.; Brzychczyk, J.; Larsen, D.; Planeta, R.; Richter-Was, E.; Staszel, P.; Wyszynski, O. [Jagiellonian University, Cracow (Poland); Andronov, E.; Feofilov, G.A.; Igolkin, S.; Kondratiev, V.P.; Seryakov, A.; Vechernin, V.V.; Vinogradov, L. [St. Petersburg State University, St. Petersburg (Russian Federation); Anticic, T.; Kadija, K.; Susa, T. [Ruder Boskovic Institute, Zagreb (Croatia); Antoniou, N.; Christakoglou, P.; Davis, N.; Diakonos, F.; Kapoyannis, A.; Panagiotou, A.D.; Vassiliou, M. [University of Athens, Athens (Greece); Baatar, B.; Bunyatov, S.A.; Kolesnikov, V.I.; Krasnoperov, A.; Lyubushkin, V.V.; Malakhov, A.I.; Matveev, V.; Melkumov, G.L.; Tereshchenko, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Bay, F.; Di Luise, S.; Rubbia, A.; Sgalaberna, D. [ETH Zuerich, Zurich (Switzerland); Blondel, A.; Bravar, A.; Debieux, S.; Haesler, A.; Korzenev, A.; Ravonel, M. [University of Geneva, Geneva (Switzerland); Bluemer, J.; Dembinski, H.; Engel, R.; Herve, A.; Mathes, H.J.; Roth, M.; Szuba, M.; Ulrich, R.; Unger, M.; Veberic, D. [Karlsruhe Institute of Technology, Karlsruhe (Germany); Bogomilov, M.; Kolev, D.; Tsenov, R. [University of Sofia, Faculty of Physics, Sofia (Bulgaria); Busygina, O.; Golubeva, M.; Guber, F.; Ivashkin, A.; Kurepin, A.; Morozov, S.; Petukhov, O.; Sadovsky, A. [Institute for Nuclear Research, Moscow (Russian Federation); Cirkovic, M.; Manic, D.; Puzovic, J. [University of Belgrade, Belgrade (Serbia); Czopowicz, T.; Dynowski, K.; Grebieszkow, K.; Mackowiak-Pawlowska, M.; Maksiak, B.; Sarnecki, R.; Slodkowski, M.; Tefelska, A.; Tefelski, D. [Warsaw University of Technology, Warsaw (Poland); Deveaux, M.; Koziel, M.; Renfordt, R.; Stroebele, H. [University of Frankfurt, Frankfurt (Germany); Dumarchez, J.; Robert, A. [University of Paris VI and VII, LPNHE, Paris (France); Ereditato, A.; Hierholzer, M.; Nirkko, M.; Pistillo, C.; Redij, A. [University of Bern, Bern (Switzerland); Fodor, Z. [Wigner Research Centre for Physics of the Hungarian Academy of Sciences, Budapest (Hungary); University of Wroclaw, Wroclaw (Poland); Garibov, A. [National Nuclear Research Center, Baku (Azerbaijan); Gazdzicki, M. [University of Frankfurt, Frankfurt (Germany); Jan Kochanowski University in Kielce, Kielce (Poland); Grzeszczuk, A.; Kaptur, E.; Kisiel, J.; Kowalski, S.; Pulawski, S.; Schmidt, K.; Wilczek, A. [University of Silesia, Katowice (Poland); Hasegawa, T.; Kobayashi, T.; Nakadaira, T.; Nishikawa, K.; Sakashita, K.; Sekiguchi, T.; Shibata, M.; Tada, M. [Institute for Particle and Nuclear Studies, KEK, Tsukuba (Japan); Kowalik, K.; Rondio, E.; Stepaniak, J. [National Center for Nuclear Research, Warsaw (Poland); Laszlo, A.; Marton, K.; Vesztergombi, G. [Wigner Research Centre for Physics of the Hungarian Academy of Sciences, Budapest (Hungary); Lewicki, M.; Naskret, M.; Turko, L. [University of Wroclaw, Wroclaw (Poland); Marcinek, A. [Jagiellonian University, Cracow (Poland); University of Wroclaw, Wroclaw (Poland); Mrowczynski, S.; Rybczynski, M.; Seyboth, P.; Stefanek, G.; Wlodarczyk, Z.; Wojtaszek-Szwarc, A. [Jan Kochanowski University in Kielce, Kielce (Poland); Pavin, M. [Ruder Boskovic Institute, Zagreb (Croatia); University of Paris VI and VII, LPNHE, Paris (France); Popov, B.A. [University of Paris VI and VII, LPNHE, Paris (France); Joint Institute for Nuclear Research, Dubna (RU); Rauch, W. [Fachhochschule Frankfurt, Frankfurt (DE); Roehrich, D. [University of Bergen, Bergen (NO); Rustamov, A. [National Nuclear Research Center, Baku (AZ); University of Frankfurt, Frankfurt (DE); Zambelli, L. [University of Paris VI and VII, LPNHE, Paris (FR); Institute for Particle and Nuclear Studies, KEK, Tsukuba (JP)

    2016-11-15

    Measurements of multiplicity and transverse momentum fluctuations of charged particles were performed in inelastic p+p interactions at 20, 31, 40, 80, and 158 GeV/c beam momentum. Results for the scaled variance of the multiplicity distribution and for three strongly intensive measures of multiplicity and transverse momentum fluctuations Δ[P{sub T},N], Σ[P{sub T},N] and Φ{sub p{sub T}} are presented. For the first time the results on fluctuations are fully corrected for experimental biases. The results on multiplicity and transverse momentum fluctuations significantly deviate from expectations for the independent particle production. They also depend on charges of selected hadrons. The string-resonance Monte Carlo models Epos and Urqmd do not describe the data. The scaled variance of multiplicity fluctuations is significantly higher in inelastic p+p interactions than in central Pb+Pb collisions measured by NA49 at the same energy per nucleon. This is in qualitative disagreement with the predictions of the Wounded Nucleon Model. Within the statistical framework the enhanced multiplicity fluctuations in inelastic p+p interactions can be interpreted as due to event-by-event fluctuations of the fireball energy and/or volume. (orig.)

  2. Spin fluctuations and the

    Directory of Open Access Journals (Sweden)

    V.M. Loktev

    2008-09-01

    Full Text Available We analyze the spectral properties of a phenomenological model for a weakly doped two-dimensional antiferromagnet, in which the carriers move within one of the two sublattices where they were introduced. Such a constraint results in the free carrier spectra with the maxima at k=(± π/2 , ± π/2 observed in some cuprates. We consider the spectral properties of the model by taking into account fluctuations of the spins in the antiferromagnetic background. We show that such fluctuations lead to a non-pole-like structure of the single-hole Green's function and these fluctuations can be responsible for some anomalous "strange metal" properties of underdoped cuprates in the nonsuperconducting regime.

  3. Information-to-free-energy conversion: Utilizing thermal fluctuations.

    Science.gov (United States)

    Toyabe, Shoichi; Muneyuki, Eiro

    2013-01-01

    Maxwell's demon is a hypothetical creature that can convert information to free energy. A debate that has lasted for more than 100 years has revealed that the demon's operation does not contradict the laws of thermodynamics; hence, the demon can be realized physically. We briefly review the first experimental demonstration of Maxwell's demon of Szilard's engine type that converts information to free energy. We pump heat from an isothermal environment by using the information about the thermal fluctuations of a Brownian particle and increase the particle's free energy.

  4. Can Intrinsic Fluctuations Increase Efficiency in Neural Information Processing?

    Science.gov (United States)

    Liljenström, Hans

    2003-05-01

    All natural processes are accompanied by fluctuations, characterized as noise or chaos. Biological systems, which have evolved during billions of years, are likely to have adapted, not only to cope with such fluctuations, but also to make use of them. We investigate how the complex dynamics of the brain, including oscillations, chaos and noise, can affect the efficiency of neural information processing. In particular, we consider the amplification and functional role of internal fluctuations. Using computer simulations of a neural network model of the olfactory cortex and hippocampus, we demonstrate how microscopic fluctuations can result in global effects at the network level. We show that the rate of information processing in associative memory tasks can be maximized for optimal noise levels, analogous to stochastic resonance phenomena. Noise can also induce transitions between different dynamical states, which could be of significance for learning and memory. A chaotic-like behavior, induced by noise or by an increase in neuronal excitability, can enhance system performance if it is transient and converges to a limit cycle memory state. We speculate whether this dynamical behavior perhaps could be related to (creative) thinking.

  5. Fluctuations and Instability in Sedimentation

    KAUST Repository

    Guazzelli, É lisabeth; Hinch, John

    2011-01-01

    This review concentrates on the fluctuations of the velocities of sedimenting spheres, and on the structural instability of a suspension of settling fibers. For many years, theoretical estimates and numerical simulations predicted the fluctuations

  6. Influence of longitudinal spin fluctuations on the phase transition features in chiral magnets

    Science.gov (United States)

    Belemuk, A. M.; Stishov, S. M.

    2018-04-01

    Using the classical Monte Carlo calculations, we investigate the effects of longitudinal spin fluctuations on the helimagnetic transition in a Heisenberg magnet with the Dzyaloshinskii-Moriya interaction. We use variable spin amplitudes in the framework of the spin-lattice Hamiltonian. It is this kind of fluctuations that naturally occur in an itinerant system. We show that the basic features of the helical phase transition are not changed much by the longitudinal spin fluctuations though the transition temperature Tc and the fluctuation hump seen in specific heat at T >Tc is significantly affected. We report thermodynamic and structural effects of these fluctuations. By increasing the system size in the Monte Carlo modeling, we are able to reproduce the ring shape scattering intensity above the helimagnetic transition temperature Tc, which transforms into the spiral spots seen below Tc in the neutron scattering experiments.

  7. Localized description of valence fluctuations

    International Nuclear Information System (INIS)

    Alascio, B.; Allub, R.; Aligia, A.

    1979-07-01

    The authors set up a model for intermediate valence equivalent to the ''atomic'' limit of the Anderson Hamiltonian. Detailed analysis of this model shows that most of the essential characteristics of valence fluctuators are already present in this crudely simplified Hamiltonian. The spin-spin and the 4f charge-charge correlation functions are studied and it is shown that it is possible to define a spin fluctuation frequency ωsub(s.f.) and a charge fluctuation frequency ωsub(ch.f.).ωsub(s.f.) and ωsub(ch.f.) can differ considerably for some values of the parameters of the model. The magnetic susceptibility and the specific heat are calculated as functions of temperature and it is shown how the results simulate the behaviour found in valence fluctuators. (author)

  8. Quantum fluctuations in insulating ferroelectrics

    International Nuclear Information System (INIS)

    Riseborough, Peter S.

    2010-01-01

    Graphical abstract: It has been proposed that in a ferroelectric insulator, an applied magnetic field may couple the transverse phonon modes and produce left and right circularly polarized phonon modes which are no longer degenerate. We quantize the theory and examine the effects of quantal fluctuations. In particular, we show that the zero point fluctuations result in a large diamagnetic contribution to the magnetic susceptibility. - Abstract: It has been proposed that in a ferroelectric insulator, an applied magnetic field may couple the transverse phonon modes and produce left and right circularly polarized phonon modes which are no longer degenerate. We quantize the theory and examine the effects of quantal fluctuations. In particular, we show that the zero-point fluctuations result in a large diamagnetic contribution to the magnetic susceptibility.

  9. The fluctuating gap model

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xiaobin

    2011-01-15

    The quasi-one-dimensional systems exhibit some unusual phenomenon, such as the Peierls instability, the pseudogap phenomena and the absence of a Fermi-Dirac distribution function line shape in the photoemission spectroscopy. Ever since the discovery of materials with highly anisotropic properties, it has been recognized that fluctuations play an important role above the three-dimensional phase transition. This regime where the precursor fluctuations are presented can be described by the so called fluctuating gap model (FGM) which was derived from the Froehlich Hamiltonian to study the low energy physics of the one-dimensional electron-phonon system. Not only is the FGM of great interest in the context of quasi-one-dimensional materials, liquid metal and spin waves above T{sub c} in ferromagnets, but also in the semiclassical approximation of superconductivity, it is possible to replace the original three-dimensional problem by a directional average over effectively one-dimensional problem which in the weak coupling limit is described by the FGM. In this work, we investigate the FGM in a wide temperature range with different statistics of the order parameter fluctuations. We derive a formally exact solution to this problem and calculate the density of states, the spectral function and the optical conductivity. In our calculation, we show that a Dyson singularity appears in the low energy density of states for Gaussian fluctuations in the commensurate case. In the incommensurate case, there is no such kind of singularity, and the zero frequency density of states varies differently as a function of the correlation lengths for different statistics of the order parameter fluctuations. Using the density of states we calculated with non-Gaussian order parameter fluctuations, we are able to calculate the static spin susceptibility which agrees with the experimental data very well. In the calculation of the spectral functions, we show that as the correlation increases, the

  10. The fluctuating gap model

    International Nuclear Information System (INIS)

    Cao, Xiaobin

    2011-01-01

    The quasi-one-dimensional systems exhibit some unusual phenomenon, such as the Peierls instability, the pseudogap phenomena and the absence of a Fermi-Dirac distribution function line shape in the photoemission spectroscopy. Ever since the discovery of materials with highly anisotropic properties, it has been recognized that fluctuations play an important role above the three-dimensional phase transition. This regime where the precursor fluctuations are presented can be described by the so called fluctuating gap model (FGM) which was derived from the Froehlich Hamiltonian to study the low energy physics of the one-dimensional electron-phonon system. Not only is the FGM of great interest in the context of quasi-one-dimensional materials, liquid metal and spin waves above T c in ferromagnets, but also in the semiclassical approximation of superconductivity, it is possible to replace the original three-dimensional problem by a directional average over effectively one-dimensional problem which in the weak coupling limit is described by the FGM. In this work, we investigate the FGM in a wide temperature range with different statistics of the order parameter fluctuations. We derive a formally exact solution to this problem and calculate the density of states, the spectral function and the optical conductivity. In our calculation, we show that a Dyson singularity appears in the low energy density of states for Gaussian fluctuations in the commensurate case. In the incommensurate case, there is no such kind of singularity, and the zero frequency density of states varies differently as a function of the correlation lengths for different statistics of the order parameter fluctuations. Using the density of states we calculated with non-Gaussian order parameter fluctuations, we are able to calculate the static spin susceptibility which agrees with the experimental data very well. In the calculation of the spectral functions, we show that as the correlation increases, the quasi

  11. Local fluctuations of the signed traded volumes and the dependencies of demands: a copula analysis

    Science.gov (United States)

    Wang, Shanshan; Guhr, Thomas

    2018-03-01

    We investigate how the local fluctuations of the signed traded volumes affect the dependence of demands between stocks. We analyze the empirical dependence of demands using copulas and show that they are well described by a bivariate K copula density function. We find that large local fluctuations strongly increase the positive dependence but lower slightly the negative one in the copula density. This interesting feature is due to cross-correlations of volume imbalances between stocks. Also, we explore the asymmetries of tail dependencies of the copula density, which are moderate for the negative dependencies but strong for the positive ones. For the latter, we reveal that large local fluctuations of the signed traded volumes trigger stronger dependencies of demands than of supplies, probably indicating a bull market with persistent raising of prices.

  12. Investigation of the cavitation fluctuation characteristics in a Venturi injector

    International Nuclear Information System (INIS)

    Xu, Yuncheng; Chen, Yan; Wang, Zijun; Zhou, Lingjiu; Yan, Haijun

    2015-01-01

    The suction flow rate in a Venturi injector increases to a maximum and appears to be unstable when critical cavitation occurs. This study analyzes changes in the cavitation length in high-speed videos of a Venturi injector with critical cavitation to find periodic fluctuations in the cavitation cloud. Pressure fluctuation measurements show a dominant low frequency fluctuation that is almost as large as the oscillation frequency seen visually for the same conditions. The variation of the cavitation numbers and the measured transient outlet pressure show that critical cavitation occurs in the Venturi injector when the peak-to-peak pressure difference is greater than a critical value. Moreover, when the cavitation numbers become very small in the cavitation areas, the peak-to-peak pressures begin to decrease. The relationship between the suction performance and the outlet pressure fluctuations has a significant inflection point which can be used to determine proper working conditions. These experimental statistics provide a pressure range based on the inlet and outlet pressures for which the improvement of suction performance will not substantially change the outlet pressure fluctuations. Both the high-speed photography and the pressure measurement show the periodic oscillations of the cavitation cloud in a Venturi injector and can be used to detect the occurrence of critical cavitation. (paper)

  13. Investigation of the cavitation fluctuation characteristics in a Venturi injector

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuncheng; Chen, Yan; Wang, Zijun; Zhou, Lingjiu; Yan, Haijun, E-mail: yanhj@cau.edu.cn [College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083 (China)

    2015-04-15

    The suction flow rate in a Venturi injector increases to a maximum and appears to be unstable when critical cavitation occurs. This study analyzes changes in the cavitation length in high-speed videos of a Venturi injector with critical cavitation to find periodic fluctuations in the cavitation cloud. Pressure fluctuation measurements show a dominant low frequency fluctuation that is almost as large as the oscillation frequency seen visually for the same conditions. The variation of the cavitation numbers and the measured transient outlet pressure show that critical cavitation occurs in the Venturi injector when the peak-to-peak pressure difference is greater than a critical value. Moreover, when the cavitation numbers become very small in the cavitation areas, the peak-to-peak pressures begin to decrease. The relationship between the suction performance and the outlet pressure fluctuations has a significant inflection point which can be used to determine proper working conditions. These experimental statistics provide a pressure range based on the inlet and outlet pressures for which the improvement of suction performance will not substantially change the outlet pressure fluctuations. Both the high-speed photography and the pressure measurement show the periodic oscillations of the cavitation cloud in a Venturi injector and can be used to detect the occurrence of critical cavitation. (paper)

  14. Analysis of fluctuations in semiconductor devices

    Science.gov (United States)

    Andrei, Petru

    The random nature of ion implantation and diffusion processes as well as inevitable tolerances in fabrication result in random fluctuations of doping concentrations and oxide thickness in semiconductor devices. These fluctuations are especially pronounced in ultrasmall (nanoscale) semiconductor devices when the spatial scale of doping and oxide thickness variations become comparable with the geometric dimensions of devices. In the dissertation, the effects of these fluctuations on device characteristics are analyzed by using a new technique for the analysis of random doping and oxide thickness induced fluctuations. This technique is universal in nature in the sense that it is applicable to any transport model (drift-diffusion, semiclassical transport, quantum transport etc.) and it can be naturally extended to take into account random fluctuations of the oxide (trapped) charges and channel length. The technique is based on linearization of the transport equations with respect to the fluctuating quantities. It is computationally much (a few orders of magnitude) more efficient than the traditional Monte-Carlo approach and it yields information on the sensitivity of fluctuations of parameters of interest (e.g. threshold voltage, small-signal parameters, cut-off frequencies, etc.) to the locations of doping and oxide thickness fluctuations. For this reason, it can be very instrumental in the design of fluctuation-resistant structures of semiconductor devices. Quantum mechanical effects are taken into account by using the density-gradient model as well as through self-consistent Poisson-Schrodinger computations. Special attention is paid to the presenting of the technique in a form that is suitable for implementation on commercial device simulators. The numerical implementation of the technique is discussed in detail and numerous computational results are presented and compared with those previously published in literature.

  15. Analysis of dynamic multiplicity fluctuations at PHOBOS

    Science.gov (United States)

    Chai, Zhengwei; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J. L.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wyslouch, B.

    2005-01-01

    This paper presents the analysis of the dynamic fluctuations in the inclusive charged particle multiplicity measured by PHOBOS for Au+Au collisions at surdsNN = 200GeV within the pseudo-rapidity range of -3 < η < 3. First the definition of the fluctuations observables used in this analysis is presented, together with the discussion of their physics meaning. Then the procedure for the extraction of dynamic fluctuations is described. Some preliminary results are included to illustrate the correlation features of the fluctuation observable. New dynamic fluctuations results will be available in a later publication.

  16. Universal mesoscopic conductance fluctuations

    International Nuclear Information System (INIS)

    Evangelou, S.N.

    1992-01-01

    The theory of conductance fluctuations in disordered metallic systems with size large compared to the mean free path of the electron but small compared to localization length is considered. It is demonstrates that fluctuations have an universal character and are due to repulsion between levels and spectral rigidity. The basic fluctuation measures for the energy spectrum in the mesoscopic regime of disordered systems are consistent with the Gaussian random matrix ensemble predictions. Although our disordered electron random matrix ensemble does not belong to the Gaussian ensemble the two ensembles turn out to be essentially similar. The level repulsion and the spectral rigidity found in nuclear spectra should also be observed in the metallic regime of Anderson localization. 7 refs. (orig.)

  17. Wind fluctuations over the North Sea

    DEFF Research Database (Denmark)

    Vincent, Claire Louise; Pinson, Pierre; Giebel, Gregor

    2011-01-01

    Climatological patterns in wind speed fluctuations with periods of 1 min to 10 h are analysed using data from a meteorological mast in the Danish North Sea. Fluctuations on these time scales are of particular relevance to the effective management of the power supply from large wind farms. The Hil......Climatological patterns in wind speed fluctuations with periods of 1 min to 10 h are analysed using data from a meteorological mast in the Danish North Sea. Fluctuations on these time scales are of particular relevance to the effective management of the power supply from large wind farms...

  18. Electric Field Fluctuations in Water

    Science.gov (United States)

    Thorpe, Dayton; Limmer, David; Chandler, David

    2013-03-01

    Charge transfer in solution, such as autoionization and ion pair dissociation in water, is governed by rare electric field fluctuations of the solvent. Knowing the statistics of such fluctuations can help explain the dynamics of these rare events. Trajectories short enough to be tractable by computer simulation are virtually certain not to sample the large fluctuations that promote rare events. Here, we employ importance sampling techniques with classical molecular dynamics simulations of liquid water to study statistics of electric field fluctuations far from their means. We find that the distributions of electric fields located on individual water molecules are not in general gaussian. Near the mean this non-gaussianity is due to the internal charge distribution of the water molecule. Further from the mean, however, there is a previously unreported Bjerrum-like defect that stabilizes certain large fluctuations out of equilibrium. As expected, differences in electric fields acting between molecules are gaussian to a remarkable degree. By studying these differences, though, we are able to determine what configurations result not only in large electric fields, but also in electric fields with long spatial correlations that may be needed to promote charge separation.

  19. Insects in fluctuating thermal environments.

    Science.gov (United States)

    Colinet, Hervé; Sinclair, Brent J; Vernon, Philippe; Renault, David

    2015-01-07

    All climate change scenarios predict an increase in both global temperature means and the magnitude of seasonal and diel temperature variation. The nonlinear relationship between temperature and biological processes means that fluctuating temperatures lead to physiological, life history, and ecological consequences for ectothermic insects that diverge from those predicted from constant temperatures. Fluctuating temperatures that remain within permissive temperature ranges generally improve performance. By contrast, those which extend to stressful temperatures may have either positive impacts, allowing repair of damage accrued during exposure to thermal extremes, or negative impacts from cumulative damage during successive exposures. We discuss the mechanisms underlying these differing effects. Fluctuating temperatures could be used to enhance or weaken insects in applied rearing programs, and any prediction of insect performance in the field-including models of climate change or population performance-must account for the effect of fluctuating temperatures.

  20. Nonequilibrium quantum fluctuations of work.

    Science.gov (United States)

    Allahverdyan, A E

    2014-09-01

    The concept of work is basic for statistical thermodynamics. To gain a fuller understanding of work and its (quantum) features, it needs to be represented as an average of a fluctuating quantity. Here I focus on the work done between two moments of time for a thermally isolated quantum system driven by a time-dependent Hamiltonian. I formulate two natural conditions needed for the fluctuating work to be physically meaningful for a system that starts its evolution from a nonequilibrium state. The existing definitions do not satisfy these conditions due to issues that are traced back to noncommutativity. I propose a definition of fluctuating work that is free of previous drawbacks and that applies for a wide class of nonequilibrium initial states. It allows the deduction of a generalized work-fluctuation theorem that applies for an arbitrary (out-of-equilibrium) initial state.

  1. Coupled Quantum Fluctuations and Quantum Annealing

    Science.gov (United States)

    Hormozi, Layla; Kerman, Jamie

    We study the relative effectiveness of coupled quantum fluctuations, compared to single spin fluctuations, in the performance of quantum annealing. We focus on problem Hamiltonians resembling the the Sherrington-Kirkpatrick model of Ising spin glass and compare the effectiveness of different types of fluctuations by numerically calculating the relative success probabilities and residual energies in fully-connected spin systems. We find that for a small class of instances coupled fluctuations can provide improvement over single spin fluctuations and analyze the properties of the corresponding class. Disclaimer: This research was funded by ODNI, IARPA via MIT Lincoln Laboratory under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  2. Stability and fluctuations in black hole thermodynamics

    International Nuclear Information System (INIS)

    Ruppeiner, George

    2007-01-01

    I examine thermodynamic fluctuations for a Kerr-Newman black hole in an extensive, infinite environment. This problem is not strictly solvable because full equilibrium with such an environment cannot be achieved by any black hole with mass M, angular momentum J, and charge Q. However, if we consider one (or two) of M, J, or Q to vary so slowly compared with the others that we can regard it as fixed, instances of stability occur, and thermodynamic fluctuation theory could plausibly apply. I examine seven cases with one, two, or three independent fluctuating variables. No knowledge about the thermodynamic behavior of the environment is needed. The thermodynamics of the black hole is sufficient. Let the fluctuation moment for a thermodynamic quantity X be √( 2 >). Fluctuations at fixed M are stable for all thermodynamic states, including that of a nonrotating and uncharged environment, corresponding to average values J=Q=0. Here, the fluctuation moments for J and Q take on maximum values. That for J is proportional to M. For the Planck mass it is 0.3990(ℎ/2π). That for Q is 3.301e, independent of M. In all cases, fluctuation moments for M, J, and Q go to zero at the limit of the physical regime, where the temperature goes to zero. With M fluctuating there are no stable cases for average J=Q=0. But, there are transitions to stability marked by infinite fluctuations. For purely M fluctuations, this coincides with a curve which Davies identified as a phase transition

  3. Charge-imbalance fluctuations in superconductors

    International Nuclear Information System (INIS)

    Lemberger, T.R.

    1981-01-01

    We calculate that the mean-square amplitude of the fluctuations of the condensate chemical potential μ/sub s/ due to charge-imbalance fluctuations in the limit Δ/k/sub B/T 2 > = 2(k/sub B/T) 2 /πdeltaΩN(0) in a volume Ω of superconductor. We relate these fluctuations via Nyquist's theorem to measured values of the contribution of self-injected charge imbalance to the dc resistance of SIN tunnel junctions. In this relation the dynamic charge-imbalance relaxation rate is 1/tau/sub E/, the electron-phonon scattering rate

  4. Temperature fluctuation spectral analysis of turbulent flow in circular sections with internal roughness

    International Nuclear Information System (INIS)

    Blanco, Rosa L.D.; Moeller, Sergio V.

    1995-01-01

    The experimental study of the temperature fluctuation in a circular section pipe with artificial roughness is presented. Micro thermocouples are applied for the measurements of the temperature and its fluctuations. Auto spectral density functions as well as autocorrelation functions were obtained by means of a Fourier Analyzer. Results compared to measurements performed in a smooth pipe, show that the turbulent scales for the temperature fluctuations increase in the regions near the walls, without significant changes in the regions near the center of the pipe. (author). 15 refs, 10 figs

  5. Complexity of low-frequency blood oxygen level-dependent fluctuations covaries with local connectivity.

    Science.gov (United States)

    Anderson, Jeffrey S; Zielinski, Brandon A; Nielsen, Jared A; Ferguson, Michael A

    2014-04-01

    Very low-frequency blood oxygen level-dependent (BOLD) fluctuations have emerged as a valuable tool for describing brain anatomy, neuropathology, and development. Such fluctuations exhibit power law frequency dynamics, with largest amplitude at lowest frequencies. The biophysical mechanisms generating such fluctuations are poorly understood. Using publicly available data from 1,019 subjects of age 7-30, we show that BOLD fluctuations exhibit temporal complexity that is linearly related to local connectivity (regional homogeneity), consistently and significantly covarying across subjects and across gray matter regions. This relationship persisted independently of covariance with gray matter density or standard deviation of BOLD signal. During late neurodevelopment, BOLD fluctuations were unchanged with age in association cortex while becoming more random throughout the rest of the brain. These data suggest that local interconnectivity may play a key role in establishing the complexity of low-frequency BOLD fluctuations underlying functional magnetic resonance imaging connectivity. Stable low-frequency power dynamics may emerge through segmentation and integration of connectivity during development of distributed large-scale brain networks. Copyright © 2013 Wiley Periodicals, Inc.

  6. Optimal control of quantum systems: Origins of inherent robustness to control field fluctuations

    International Nuclear Information System (INIS)

    Rabitz, Herschel

    2002-01-01

    The impact of control field fluctuations on the optimal manipulation of quantum dynamics phenomena is investigated. The quantum system is driven by an optimal control field, with the physical focus on the evolving expectation value of an observable operator. A relationship is shown to exist between the system dynamics and the control field fluctuations, wherein the process of seeking optimal performance assures an inherent degree of system robustness to such fluctuations. The presence of significant field fluctuations breaks down the evolution of the observable expectation value into a sequence of partially coherent robust steps. Robustness occurs because the optimization process reduces sensitivity to noise-driven quantum system fluctuations by taking advantage of the observable expectation value being bilinear in the evolution operator and its adjoint. The consequences of this inherent robustness are discussed in the light of recent experiments and numerical simulations on the optimal control of quantum phenomena. The analysis in this paper bodes well for the future success of closed-loop quantum optimal control experiments, even in the presence of reasonable levels of field fluctuations

  7. Fluctuations and correlations in nucleus-nucleus collisions within transport approaches

    International Nuclear Information System (INIS)

    Konchakovski, Volodymyr P.

    2009-01-01

    choice of collision systems and collision energies for the experimental search of the QCD critical point. Other observables are fluctuations of ratios of hadrons (e.g. pions, kaons, protons, etc.) which are not so much affected by volume fluctuations. In particular HSD results for the kaon-to-pion ratio fluctuations, which has been regarded as promising observable for a long time, are presented from low SPS energies up to high energies at RHIC. In addition to the HSD calculations statistical model is also used in terms of microcanonical, canonical and grand canonical ensembles. Further a study of the system size event-by-event fluctuations causing rapidity forward-backward correlations in relativistic heavy-ion collisions is presented. The HSD simulations reveal strong forward-backward correlations and reproduce the main qualitative features of the STAR data in A+A collisions at RHIC energies. It has been shown that strong forward-backward correlations arise due to an averaging over many different events that belong to one centrality bin. An optimization of the experimental selection of centrality classes is presented, which is relevant for the program of the NA61 collaboration at CERN, the low-energy program at RHIC, as well as future experiments at FAIR. (orig.)

  8. Fluctuations and correlations in nucleus-nucleus collisions within transport approaches

    Energy Technology Data Exchange (ETDEWEB)

    Konchakovski, Volodymyr P.

    2009-10-01

    optimal choice of collision systems and collision energies for the experimental search of the QCD critical point. Other observables are fluctuations of ratios of hadrons (e.g. pions, kaons, protons, etc.) which are not so much affected by volume fluctuations. In particular HSD results for the kaon-to-pion ratio fluctuations, which has been regarded as promising observable for a long time, are presented from low SPS energies up to high energies at RHIC. In addition to the HSD calculations statistical model is also used in terms of microcanonical, canonical and grand canonical ensembles. Further a study of the system size event-by-event fluctuations causing rapidity forward-backward correlations in relativistic heavy-ion collisions is presented. The HSD simulations reveal strong forward-backward correlations and reproduce the main qualitative features of the STAR data in A+A collisions at RHIC energies. It has been shown that strong forward-backward correlations arise due to an averaging over many different events that belong to one centrality bin. An optimization of the experimental selection of centrality classes is presented, which is relevant for the program of the NA61 collaboration at CERN, the low-energy program at RHIC, as well as future experiments at FAIR. (orig.)

  9. Initial state fluctuations and final state correlations: status and open questions

    International Nuclear Information System (INIS)

    Adare, Andrew; Luzum, Matthew; Petersen, Hannah

    2013-01-01

    The recent appreciation of the importance of event-by-event fluctuations in relativistic heavy-ion collisions has lead to a large amount of diverse theoretical and experimental activity. In particular, there is significant interest in understanding the fluctuations in the initial stage of a collision, how exactly these fluctuations are propagated through the system evolution, and how they are manifested in correlations between measured particles. In order to address these questions a workshop was organized on ‘initial state fluctuations and final state correlations’, held at ECT* in Trento, Italy during the week of 2–6 July 2012. The goal was to collect recent work in order to provide a coherent picture of the current status of our understanding, to identify important questions that remain open, and to set a course for future research. Here we report the outcome of the presentations and discussions, focusing on the most important conclusions. (comment)

  10. Fuel Cells for Balancing Fluctuation Renewable Energy Sources

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad

    2007-01-01

    In the perspective of using fuel cells for integration of fluctuating renewable energy the SOFCs are the most promising. These cells have the advantage of significantly higher electricity efficiency than competing technologies and fuel flexibility. Fuel cells in general also have the advantage of...... with hydrogen production or electric cars, and on the other hand using biomass and bio fuels [11]. Fuel cells can have an important role in these future energy systems.......In the perspective of using fuel cells for integration of fluctuating renewable energy the SOFCs are the most promising. These cells have the advantage of significantly higher electricity efficiency than competing technologies and fuel flexibility. Fuel cells in general also have the advantage...... flexibility, such as SOFCs, heat pumps and heat storage technologies are more important than storing electricity as hydrogen via electrolysis in energy systems with high amounts of wind [12]. Unnecessary energy conversions should be avoided. However in future energy systems with wind providing more than 50...

  11. Multiplicity and transverse momentum fluctuations in inelastic proton-proton interactions at the CERN Super Proton Synchrotron

    CERN Document Server

    Aduszkiewicz, A.; Andronov, E.; Antićić, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Blümer, J.; Bogomilov, M.; Bravar, A.; Brzychczyk, J.; Bunyatov, S.A.; Busygina, O.; Christakoglou, P.; Cirković, M.; Czopowicz, T.; Davis, N.; Debieux, S.; Dembinski, H.; Deveaux, M.; Diakonos, F.; Di Luise, S.; Dominik, W.; Dumarchez, J.; Dynowski, K.; Engel, R.; Ereditato, A.; Feofilov, G.A.; Fodor, Z.; Garibov, A.; Gaździcki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hasegawa, T.; Herve, A.; Hierholzer, M.; Igolkin, S.; Ivashkin, A.; Kadija, K.; Kapoyannis, A.; Kaptur, E.; Kisiel, J.; Kobayashi, T.; Kolesnikov, V.I.; Kolev, D.; Kondratiev, V.P.; Korzenev, A.; Kowalik, K.; Kowalski, S.; Koziel, M.; Krasnoperov, A.; Kuich, M.; Kurepin, A.; Larsen, D.; László, A.; Lewicki, M.; Lyubushkin, V.V.; Maćkowiak-Pawłowska, M.; Maksiak, B.; Malakhov, A.I.; Manić, D.; Marcinek, A.; Marton, K.; Mathes, H.J.; Matulewicz, T.; Matveev, V.; Melkumov, G.L.; Morozov, S.; Mrówczyński, S.; Nakadaira, T.; Naskręt, M.; Nirkko, M.; Nishikawa, K.; Panagiotou, A.D.; Pavin, M.; Petukhov, O.; Pistillo, C.; Płaneta, R.; Popov, B.A.; Posiadała, M.; Puławski, S.; Puzović, J.; Rauch, W.; Ravonel, M.; Redij, A.; Renfordt, R.; Richter-Was, E.; Robert, A.; Röhrich, D.; Rondio, E.; Roth, M.; Rubbia, A.; Rustamov, A.; Rybczynski, M.; Sadovsky, A.; Sakashita, K.; Sarnecki, R.; Schmidt, K.; Sekiguchi, T.; Seryakov, A.; Seyboth, P.; Sgalaberna, D.; Shibata, M.; Słodkowski, M.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Ströbele, H.; Šuša, T.; Szuba, M.; Tada, M.; Tefelska, A.; Tefelski, D.; Tereshchenko, V.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberič, D.; Vechernin, V.V.; Vesztergombi, G.; Vinogradov, L.; Wilczek, A.; Wlodarczyk, Z.; Wojtaszek-Szwarc, A.; Wyszyński, O.; Zambelli, L.

    2016-11-21

    Measurements of multiplicity and transverse momentum fluctuations of charged particles were performed in inelastic p+p interactions at 20, 31, 40, 80 and 158 GeV/c beam momentum. Results for the scaled variance of the multiplicity distribution and for three strongly intensive measures of multiplicity and transverse momentum fluctuations \\$\\Delta[P_{T},N]\\$, \\$\\Sigma[P_{T},N]\\$ and \\$\\Phi_{p_T}\\$ are presented. For the first time the results on fluctuations are fully corrected for experimental biases. The results on multiplicity and transverse momentum fluctuations significantly deviate from expectations for the independent particle production. They also depend on charges of selected hadrons. The string-resonance Monte Carlo models EPOS and UrQMD do not describe the data. The scaled variance of multiplicity fluctuations is significantly higher in inelastic p+p interactions than in central Pb+Pb collisions measured by NA49 at the same energy per nucleon. This is in qualitative disagreement with the predictions ...

  12. Study of droplet flow in a T-shape microchannel with bottom wall fluctuation

    Science.gov (United States)

    Pang, Yan; Wang, Xiang; Liu, Zhaomiao

    2018-03-01

    Droplet generation in a T-shape microchannel, with a main channel width of 50 μm , side channel width of 25 μm, and height of 50 μm, is simulated to study the effects of the forced fluctuation of the bottom wall. The periodic fluctuations of the bottom wall are applied on the near junction part of the main channel in the T-shape microchannel. Effects of bottom wall's shape, fluctuation periods, and amplitudes on the droplet generation are covered in the research of this protocol. In the simulation, the average size is affected a little by the fluctuations, but significantly by the fixed shape of the deformed bottom wall, while the droplet size range is expanded by the fluctuations under most of the conditions. Droplet sizes are distributed in a periodic pattern with small amplitude along the relative time when the fluctuation is forced on the bottom wall near the T-junction, while the droplet emerging frequency is not varied by the fluctuation. The droplet velocity is varied by the bottom wall motion, especially under the shorter period and the larger amplitude. When the fluctuation period is similar to the droplet emerging period, the droplet size is as stable as the non-fluctuation case after a development stage at the beginning of flow, while the droplet velocity is varied by the moving wall with the scope up to 80% of the average velocity under the conditions of this investigation.

  13. Charge Fluctuations in Nanoscale Capacitors

    NARCIS (Netherlands)

    Limmer, D.T.; Merlet, C.; Salanne, M.; Chandler, D.; Madden, P.A.; van Roij, R.H.H.G.; Rotenberg, B.

    2013-01-01

    The fluctuations of the charge on an electrode contain information on the microscopic correlations within the adjacent fluid and their effect on the electronic properties of the interface. We investigate these fluctuations using molecular dynamics simulations in a constant-potential ensemble with

  14. Fluctuating attention in Parkinson's disease

    DEFF Research Database (Denmark)

    Starrfelt, Randi; Aarsland, Dag; Janvin, Carmen

    2001-01-01

    Lewy body dementia (DLB), which share many clinical and pathological features with Parkinson’s disease (PD), is charac- terised by marked fluctuations in cognition and consciousness. Fluctuating cognition has not been formally studied in PD, although some studies indicate that PD patients show...

  15. Fluctuations and Instability in Sedimentation

    KAUST Repository

    Guazzelli, Élisabeth

    2011-01-21

    This review concentrates on the fluctuations of the velocities of sedimenting spheres, and on the structural instability of a suspension of settling fibers. For many years, theoretical estimates and numerical simulations predicted the fluctuations of the velocities of spheres to increase with the size of the container, whereas experiments found no such variation. Two ideas have increased our understanding. First, the correlation length of the velocity fluctuations was found experimentally to be 20 interparticle separations. Second, in dilute suspensions, a vertical variation in the concentration due to the spreading of the front with the clear fluid can inhibit the velocity fluctuations. In a very dilute regime, a homogeneous suspension of fibers suffers a spontaneous instability in which fast descending fiber-rich columns are separated by rising fiber-sparse columns. In a semidilute regime, the settling is hindered, more so than for spheres. © 2011 by Annual Reviews. All rights reserved.

  16. Changes in low-frequency fluctuations in patients with antisocial personality disorder revealed by resting-state functional MRI.

    Directory of Open Access Journals (Sweden)

    Huasheng Liu

    Full Text Available Antisocial Personality Disorder (APD is a personality disorder that is most commonly associated with the legal and criminal justice systems. The study of the brain in APD has important implications in legal contexts and in helping ensure social stability. However, the neural contribution to the high prevalence of APD is still unclear. In this study, we used resting-state functional magnetic resonance imaging (fMRI to investigate the underlying neural mechanisms of APD. Thirty-two healthy individuals and thirty-five patients with APD were recruited. The amplitude of low-frequency fluctuations (ALFF was analyzed for the whole brain of all subjects. Our results showed that APD patients had a significant reduction in the ALFF in the right orbitofrontal cortex, the left temporal pole, the right inferior temporal gyrus, and the left cerebellum posterior lobe compared to normal controls. We observed that the right orbitofrontal cortex had a negative correlation between ALFF values and MMPI psychopathic deviate scores. Alterations in ALFF in these specific brain regions suggest that APD patients may be associated with abnormal activities in the fronto-temporal network. We propose that our results may contribute in a clinical and forensic context to a better understanding of APD.

  17. Fluctuation-enhanced electric conductivity in electrolyte solutions.

    Science.gov (United States)

    Péraud, Jean-Philippe; Nonaka, Andrew J; Bell, John B; Donev, Aleksandar; Garcia, Alejandro L

    2017-10-10

    We analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson-Nernst-Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation-anion diffusion coefficient. Specifically, we predict a nonzero cation-anion Maxwell-Stefan coefficient proportional to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye-Huckel-Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Finally, we show that strong applied electric fields result in anisotropically enhanced "giant" velocity fluctuations and reduced fluctuations of salt concentration.

  18. Event-by-event fluctuations of the mean transverse momentum $M_{p_{T}}$ at SPS energies

    CERN Document Server

    Appelshäuser, Harald

    2004-01-01

    The study of event-by-event fluctuations has been proposed as a tool to investigate the properties of hot and dense nuclear matter created in nuclear collisions. Significant fluctuations of the mean transverse momentum beyond purely statistical ones may signal the passage of the system through the QCD phase boundary or close to the critical point. Fluctuations of M/sub PT/ provide valuable information about the dynamical evolution of A A collisions. In this contribution, recent measurements by the CERES experiment at the CERN-SPS are discussed. The analysis comprises a centrality dependent study of M/sub PT/ fluctuations near mid-rapidity in Pb-Au collisions at 40, 80, and 158 A GeV/c. The non-statistical (dynamical) contribution to M/sub PT/ fluctuations has been evaluated in terms of the fluctuation measure Sigma /sub PT/.

  19. Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations

    Science.gov (United States)

    Kwapień, Jarosław; Oświecimka, Paweł; DroŻdŻ, Stanisław

    2015-11-01

    The detrended cross-correlation coefficient ρDCCA has recently been proposed to quantify the strength of cross-correlations on different temporal scales in bivariate, nonstationary time series. It is based on the detrended cross-correlation and detrended fluctuation analyses (DCCA and DFA, respectively) and can be viewed as an analog of the Pearson coefficient in the case of the fluctuation analysis. The coefficient ρDCCA works well in many practical situations but by construction its applicability is limited to detection of whether two signals are generally cross-correlated, without the possibility to obtain information on the amplitude of fluctuations that are responsible for those cross-correlations. In order to introduce some related flexibility, here we propose an extension of ρDCCA that exploits the multifractal versions of DFA and DCCA: multifractal detrended fluctuation analysis and multifractal detrended cross-correlation analysis, respectively. The resulting new coefficient ρq not only is able to quantify the strength of correlations but also allows one to identify the range of detrended fluctuation amplitudes that are correlated in two signals under study. We show how the coefficient ρq works in practical situations by applying it to stochastic time series representing processes with long memory: autoregressive and multiplicative ones. Such processes are often used to model signals recorded from complex systems and complex physical phenomena like turbulence, so we are convinced that this new measure can successfully be applied in time-series analysis. In particular, we present an example of such application to highly complex empirical data from financial markets. The present formulation can straightforwardly be extended to multivariate data in terms of the q -dependent counterpart of the correlation matrices and then to the network representation.

  20. Fluctuation of blood pressure and pulse rate during colostomy irrigation.

    Science.gov (United States)

    Sadahiro, S; Noto, T; Tajima, T; Mitomi, T; Miyazaki, T; Numata, M

    1995-06-01

    The aim of this study was to determine the effects of colostomy irrigation on the vital signs of patients with left colostomy. Twenty-two consecutive patients who underwent abdominoperineal resection for cancer of the lower rectum and had left lower quadrant end colostomy were included in this study. Subjective symptoms, blood pressure, and pulse rate during the first irrigation were investigated. Fluctuation of blood pressure during instillation was 8.0/8.5 mmHg (average) and 25.0/17.9 mmHg during evacuation. Fluctuation of pulse rate was 5.5 per minute (average) during instillation and 11.5 per minute during evacuation. The number of subjects who showed more than 20% fluctuation of systolic pressure was 12 (54.5 percent) and that of diastolic pressure was 14 (63.6 percent). One of 22 patients complained of illness during irrigation. Although colostomy irrigation showed no significant effects on vital signs in the majority of patients, it caused a significant reduction in both blood pressure and pulse rate in a small number of patients. Careful attention should be paid to vital signs considering the possibility of such effects, especially on the initial irrigation.

  1. Measurements and modelling of electrostatic fluctuations in the scrape-off layer of ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Endler, M; Niedermeyer, H; Giannone, L.; Holzhauer, E; Rudyj, A; Theimer, G; Tsois, N [Association Euratom-Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); ASDEX Team

    1995-11-01

    In the edge plasma of the ASDEX tokamak, electrostatic fluctuations were observed with Langmuir probes and in H{sub {alpha}} light with high poloidal and temporal resolution. These fluctuations contribute a significant fraction to the `anomalous` radial particle transport in the scrape-off layer (SOL). The basic properties and the dependence of the fluctuations parameters on the discharge conditions are documented. A model for an instability mechanism specific to the SOL is introduced and the experimentally observed fluctuation parameters are compared with the predictions of the linearized version of this model. For plasma temperatures above {approx} 10eV in the SOL the observed parameter dependences of the fluctuations are well reproduced by the model. By mixing length arguments the radial transport and the resulting density and pressure gradients in the SOL are estimated from the model. Their dependence on plasma temperature and density qualitatively agrees with the behaviour observed in ohmic discharges on ASDEX. (author). 54 refs, 25 figs.

  2. Measurements and modelling of electrostatic fluctuations in the scrape-off layer of ASDEX

    International Nuclear Information System (INIS)

    Endler, M.; Niedermeyer, H.; Giannone, L.; Holzhauer, E.; Rudyj, A.; Theimer, G.; Tsois, N.

    1995-01-01

    In the edge plasma of the ASDEX tokamak, electrostatic fluctuations were observed with Langmuir probes and in H α light with high poloidal and temporal resolution. These fluctuations contribute a significant fraction to the 'anomalous' radial particle transport in the scrape-off layer (SOL). The basic properties and the dependence of the fluctuations parameters on the discharge conditions are documented. A model for an instability mechanism specific to the SOL is introduced and the experimentally observed fluctuation parameters are compared with the predictions of the linearized version of this model. For plasma temperatures above ∼ 10eV in the SOL the observed parameter dependences of the fluctuations are well reproduced by the model. By mixing length arguments the radial transport and the resulting density and pressure gradients in the SOL are estimated from the model. Their dependence on plasma temperature and density qualitatively agrees with the behaviour observed in ohmic discharges on ASDEX. (author). 54 refs, 25 figs

  3. 2D image of local density and magnetic fluctuations from line-integrated interferometry-polarimetry measurements.

    Science.gov (United States)

    Lin, L; Ding, W X; Brower, D L

    2014-11-01

    Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved.

  4. 2D image of local density and magnetic fluctuations from line-integrated interferometry-polarimetry measurements

    International Nuclear Information System (INIS)

    Lin, L.; Ding, W. X.; Brower, D. L.

    2014-01-01

    Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved

  5. Measurement of magnetic fluctuation induced energy transport

    International Nuclear Information System (INIS)

    Fiksel, G.; Prager, S.C.; Shen, W.; Stoneking, M.

    1993-11-01

    The local electron energy flux produced by magnetic fluctuations has been measured directly in the MST reversed field pinch (over the radial range r/a > 0.75). The flux, produced by electrons traveling parallel to a fluctuating magnetic field, is obtained from correlation between the fluctuations in the parallel heat flux and the radial magnetic field. The fluctuation induced flux is large (100 kW/cm 2 ) in the ''core'' (r/a 2 ) in the edge

  6. Simulation of Temperature Fluctuations in Stirling Engine Regenerator Matrices

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegaard; Carlsen, Henrik; Thomsen, Per Grove

    2003-01-01

    The objective of this study has been to create a model for studying the effects of fluctuations in regenerator matrix temperatures on Stirling engine performance. A one-dimensional model with axial discretisation of engine components has been formulated using the balance equations for mass, energy...... and accurately calculated. Simulation results have been compared to experimental data for a 9 kW Stirling engine and reasonable agreement has been found over a wide range of operating conditions using Helium or Nitrogen as working gas. Simulation results indicate that fluctuations in the regenerator matrix...... temperatures have significant impact on the regenerator loss, the engine power output, and the cycle efficiency....

  7. Pricing of Fluctuations in Electricity Markets

    OpenAIRE

    Tsitsiklis, John N.; Xu, Yunjian

    2012-01-01

    In an electric power system, demand fluctuations may result in significant ancillary cost to suppliers. Furthermore, in the near future, deep penetration of volatile renewable electricity generation is expected to exacerbate the variability of demand on conventional thermal generating units. We address this issue by explicitly modeling the ancillary cost associated with demand variability. We argue that a time-varying price equal to the suppliers' instantaneous marginal cost may not achieve s...

  8. Recent results of studies of plasma fluctuations in stellarators by microwave scattering technique

    International Nuclear Information System (INIS)

    Skvortsova, N.N.; Batanov, G.M.; Kolik, L.V.; Petrov, A.E.; Pshenichnikov, A.A.; Sarksyan, K.A.; Kharchev, N.K.; Khol'nov, Yu.V.; Kubo, S.; Sanchez, J.

    2005-01-01

    Microwave scattering diagnostics are described that allow direct measurements of the turbulent processes in a high-temperature plasma of magnetic confinement systems. Plasma density fluctuations in the heating region of the L-2M stellarator were measured from microwave scattering at the fundamental and the second harmonics of the heating gyrotron radiation. In the TJ-II stellarator, a separate 2-mm microwave source was used to produce a probing beam; the measurements were performed at the middle of the plasma radius. Plasma density fluctuations in the axial (heating) region of the LHD stellarator were measured from microwave scattering at the fundamental harmonic of the heating gyrotron radiation. Characteristic features of fluctuations, common for all three devices, are revealed with the methods of statistical and spectral analysis. These features are the wide frequency Fourier and wavelet spectra, autocorrelation functions with slowly decreasing tails, and non-Gaussian probability distributions of the magnitudes and the increments of the magnitude of fluctuations. The drift-dissipative instability and the instability driven by trapped electrons are examined as possible sources of turbulence in a high-temperature plasma. Observations showed the high level of coherence between turbulent fluctuations in the central region and at the edge of the plasma in L-2M. It is shown in L-2M that the relative intensity of the second harmonic of gyrotron radiation on the axis of a microwave beam after quasi-optical filtering in a four-mirror quasi-optical transmission line is about -50 dB of the total radiation intensity. Spatiotemporal structures in plasma density fluctuations were observed in the central region of the plasma column. The correlation time between the structures was found to be on the order of 1 ms. It is shown that, the spectrum of the signal from the second-harmonic scattering extends to higher frequencies in comparison with that from the fundamental

  9. Asymmetric statistical features of the Chinese domestic and international gold price fluctuation

    Science.gov (United States)

    Cao, Guangxi; Zhao, Yingchao; Han, Yan

    2015-05-01

    Analyzing the statistical features of fluctuation is remarkably significant for financial risk identification and measurement. In this study, the asymmetric detrended fluctuation analysis (A-DFA) method was applied to evaluate asymmetric multifractal scaling behaviors in the Shanghai and New York gold markets. Our findings showed that the multifractal features of the Chinese and international gold spot markets were asymmetric. The gold return series persisted longer in an increasing trend than in a decreasing trend. Moreover, the asymmetric degree of multifractals in the Chinese and international gold markets decreased with the increase in fluctuation range. In addition, the empirical analysis using sliding window technology indicated that multifractal asymmetry in the Chinese and international gold markets was characterized by its time-varying feature. However, the Shanghai and international gold markets basically shared a similar asymmetric degree evolution pattern. The American subprime mortgage crisis (2008) and the European debt crisis (2010) enhanced the asymmetric degree of the multifractal features of the Chinese and international gold markets. Furthermore, we also make statistical tests for the results of multifractatity and asymmetry, and discuss the origin of them. Finally, results of the empirical analysis using the threshold autoregressive conditional heteroskedasticity (TARCH) and exponential generalized autoregressive conditional heteroskedasticity (EGARCH) models exhibited that good news had a more significant effect on the cyclical fluctuation of the gold market than bad news. Moreover, good news exerted a more significant effect on the Chinese gold market than on the international gold market.

  10. Currents and fluctuations of quantum heat transport in harmonic chains

    International Nuclear Information System (INIS)

    Motz, T; Ankerhold, J; Stockburger, J T

    2017-01-01

    Heat transport in open quantum systems is particularly susceptible to the modeling of system–reservoir interactions. It thus requires us to consistently treat the coupling between a quantum system and its environment. While perturbative approaches are successfully used in fields like quantum optics and quantum information, they reveal deficiencies—typically in the context of thermodynamics, when it is essential to respect additional criteria such as fluctuation-dissipation theorems. We use a non-perturbative approach for quantum dissipative dynamics based on a stochastic Liouville–von Neumann equation to provide a very general and extremely efficient formalism for heat currents and their correlations in open harmonic chains. Specific results are derived not only for first- but also for second-order moments, which requires us to account for both real and imaginary parts of bath–bath correlation functions. Spatiotemporal patterns are compared with weak coupling calculations. The regime of stronger system–reservoir couplings gives rise to an intimate interplay between reservoir fluctuations and heat transfer far from equilibrium. (paper)

  11. Magnetic fluctuation measurements in the Tokapole II tokamak

    International Nuclear Information System (INIS)

    LaPointe, M.A.

    1990-09-01

    Magnetic fluctuation measurements have been made in the Tokapole II tokamak in the frequency range 10 kHz ≤ f ≤ 5 MHz. The fluctuations above 500 kHz varied greatly as the effective edge safety factor, q a , was varied over the range 0.8 ≤ q a ≤ 3.8. As q a was varied from 3.8 to 0.8 the high frequency magnetic fluctuation amplitude increased by over three orders of magnitude. The fluctuation amplitude for 0.5 to 2.0 MHz was a factor of 10 lower than the fluctuation amplitude in the range 100 to 400 kHz for q a of 0.8. When q a was increased to 3.8 the difference between the differing frequency ranges increased to a factor of 10 3 . Comparison of the measured broadband fluctuation amplitudes with those predicted from thermally driven Alfven and magnetosonic waves shows that the amplitudes are at least 1000 times larger than the theoretical predictions. This indicates that there is some other mechanism driving the higher frequency magnetic fluctuations. Estimates show that the contribution by the magnetic fluctuations above 500 kHz to the estimated electron energy loss from stochastic fields is negligible. The profiles of the various components of the magnetic fluctuations indicate the possibility that the shear in the magnetic field may stabilize whatever instabilities drive the magnetic fluctuations

  12. Two-mode bosonic quantum metrology with number fluctuations

    Science.gov (United States)

    De Pasquale, Antonella; Facchi, Paolo; Florio, Giuseppe; Giovannetti, Vittorio; Matsuoka, Koji; Yuasa, Kazuya

    2015-10-01

    We search for the optimal quantum pure states of identical bosonic particles for applications in quantum metrology, in particular, in the estimation of a single parameter for the generic two-mode interferometric setup. We consider the general case in which the total number of particles is fluctuating around an average N with variance Δ N2 . By recasting the problem in the framework of classical probability, we clarify the maximal accuracy attainable and show that it is always larger than the one reachable with a fixed number of particles (i.e., Δ N =0 ). In particular, for larger fluctuations, the error in the estimation diminishes proportionally to 1 /Δ N , below the Heisenberg-like scaling 1 /N . We also clarify the best input state, which is a quasi-NOON state for a generic setup and, for some special cases, a two-mode Schrödinger-cat state with a vacuum component. In addition, we search for the best state within the class of pure Gaussian states with a given average N , which is revealed to be a product state (with no entanglement) with a squeezed vacuum in one mode and the vacuum in the other.

  13. Forward-backward multiplicity fluctuation and longitudinal harmonics in high-energy nuclear collisions

    Science.gov (United States)

    Jia, Jiangyong; Radhakrishnan, Sooraj; Zhou, Mingliang; Huo, Peng

    2016-12-01

    Forward-backward (FB) multiplicity fluctuation in high-energy nuclear collisions can be quantified by two-particle pseudo-rapidity correlation function and its expansion into Legendre polynomials. The corresponding coefficients represent different fluctuation modes in longitudinal direction. The leading term corresponds to the asymmetry of numbers of the participants from the two colliding nuclei. This method is tested in events generated from AMPT and HIJING model. The an signal are found to be strongly dampened in AMPT than in HIJIGN, due to weaker short-range correlaitons and final-state effects in AMPT. Two-particle correlation also reveals an intresting shallow minimum around Δη ≈ 0 in AMPT events, which is absent in HIJING results. The method opens a new avenue to elucidate the particle production mechanism and early time dynamics in heavy-ion collisions.

  14. Event-by-event particle multiplicity fluctuations in Pb-Pb collisions with ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Arslandok, Mesut [Institut fuer Kernphysik, Goethe-Universitaet Frankfurt (Germany); Collaboration: ALICE-Collaboration

    2014-07-01

    The study of event-by-event fluctuations of identified hadrons may reveal the degrees of freedom of the strongly interacting mater created in heavy-ion collisions. Particle identification that is based on the measurement of the specific ionization energy loss dE/dx works well on a statistical basis, however, suffers from ambiguities when applied on the event-by-event level. A novel experimental technique called the ''Identity Method'' was recently proposed to overcome such limitations. The method follows a probabilistic approach using the inclusive dE/dx distributions measured in the ALICE TPC, and determines the moments of the multiplicity distributions by an unfolding procedure. In this contribution, the status of an event-by-event fluctuation analysis that applies the Identity Method to Pb-Pb data from ALICE is presented.

  15. Fluctuation of shower front structure: measurements, Esub(p) approximately 1018 eV

    International Nuclear Information System (INIS)

    Barrett, M.L.; Watson, A.A.; Wild, P.; Wilson, J.G.

    1975-01-01

    The work of Watson and Wilson (1974) on the introduction of a parameter of shower-front development fluctuations has been extended using a purpose-built recording system yielding results over an increased distance range from the shower axis. An exhaustive study of possible spurious sources of the observed features has been undertaken, and none of significance have been identified. The values of the fluctuation parameter now given are considered well-established. (orig.) [de

  16. Attention Network Test in adults with ADHD - the impact of affective fluctuations

    Directory of Open Access Journals (Sweden)

    Lundervold Astri J

    2011-07-01

    Full Text Available Abstract Background The Attention Network Test (ANT generates measures of different aspects of attention/executive function. In the present study we investigated whether adults with ADHD performed different from controls on measures of accuracy, variability and vigilance as well as the control network. Secondly, we studied subgroups of adults with ADHD, expecting impairment on measures of the alerting and control networks in a subgroup with additional symptoms of affective fluctuations. Methods A group of 114 adults (ADHD n = 58; controls n = 56 performed the ANT and completed the Adult ADHD Rating Scale (ASRS and the Mood Disorder Questionnaire (MDQ. The latter was used to define affective fluctuations. Results The sex distribution was similar in the two groups, but the ADHD group was significantly older (p = .005 and their score on a test of intellectual function (WASI significantly lower than in the control group (p = .007. The two groups were not significantly different on measures of the three attention networks, but the ADHD group was generally less accurate (p = .001 and showed a higher variability through the task (p = .033. The significance was only retained for the accuracy measure when age and IQ scores were controlled for. Within the ADHD group, individuals reporting affective fluctuations (n = 22 were slower (p = .015 and obtained a lower score on the alerting network (p = .018 and a higher score on the conflict network (p = .023 than those without these symptoms. The significance was retained for the alerting network (p = .011, but not the conflict network (p = .061 when we controlled for the total ASRS and IQ scores. Discussion Adults with ADHD were characterized by impairment on accuracy and variability measures calculated from the ANT. Within the ADHD group, adults reporting affective fluctuations seemed to be more alert (i.e., less impacted by alerting cues, but slower and more distracted by conflicting stimuli than the

  17. Fluctuation traits of Litchi wholesale price in China

    Science.gov (United States)

    Yan, F. F.; Qi, W. E.; Ouyang, X.

    2017-07-01

    This paper chose the wholesale price of litchi as research object based on the daily data of 11 main sales markets in China -- Beijing, Chengdu, Guangzhou, Hefei, Jiaxing, Nanjing, Shanghai, Shenyang, Changsha, Zhengzhou and Chongqing from April 1, 2012 to September 30, 2016. After analyzing the fluctuation characteristics with BP filter method and H-P filter method, and the fluctuation trends of litchi wholesale price in China obtained by BP filter are roughly consistent with the trends obtained by H-P filter. The main conclusions are as follows: there is strong cyclicality in the fluctuation of litchi wholesale price; the period of fluctuations of litchi wholesale prices are not repeatable; litchi wholesale price fluctuates asymmetrically in one fluctuation cycle.

  18. Cascading of fluctuations in interdependent energy infrastructures: Gas-grid coupling

    International Nuclear Information System (INIS)

    Chertkov, Michael; Backhaus, Scott; Lebedev, Vladimir

    2015-01-01

    Highlights: • Fracturing and low cost of gas stimulated significant recent expansion of the natural gas networks. • Power system operators transition to gas as the main supply, also facing new reliability challenges. • Natural gas-fired generators vary burn-rates to balance fluctuating output of wind generation. • Impact of the gas-generator variations is seen in diffusive jitter of pressure within the gas network. • Fluctuating pressure impacts both reliability of natural gas deliveries and safety of pipeline operations. - Abstract: The revolution of hydraulic fracturing has dramatically increased the supply and lowered the cost of natural gas in the United States driving an expansion of natural gas-fired generation capacity in many electrical grids. Unrelated to the natural gas expansion, lower capital costs and renewable portfolio standards are driving an expansion of intermittent renewable generation capacity such as wind and photovoltaic generation. These two changes may potentially combine to create new threats to the reliability of these interdependent energy infrastructures. Natural gas-fired generators are often used to balance the fluctuating output of wind generation. However, the time-varying output of these generators results in time-varying natural gas burn rates that impact the pressure in interstate transmission pipelines. Fluctuating pressure impacts the reliability of natural gas deliveries to those same generators and the safety of pipeline operations. We adopt a partial differential equation model of natural gas pipelines and use this model to explore the effect of intermittent wind generation on the fluctuations of pressure in natural gas pipelines. The mean square pressure fluctuations are found to grow linearly in time with points of maximum deviation occurring at the locations of flow reversals.

  19. Inter-band phase fluctuations in macroscopic quantum tunneling of multi-gap superconducting Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Asai, Hidehiro, E-mail: hd-asai@aist.go.jp [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Ota, Yukihiro [CCSE, Japan Atomic Energy Agency, Kashiwa, Chiba 277-8587 (Japan); Kawabata, Shiro [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Nori, Franco [CEMS, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2014-09-15

    Highlights: • We study MQT in Josephson junctions composed of multi-gap superconductors. • We derive a formula of the MQT escape rate for multiple phase differences. • We investigate the effect of inter-band phase fluctuation on MQT. • The MQT escape rate is significantly enhanced by the inter-band phase fluctuation. - Abstract: We theoretically investigate macroscopic quantum tunneling (MQT) in a hetero Josephson junction formed by a conventional single-gap superconductor and a multi-gap superconductor. In such Josephson junctions, phase differences for each tunneling channel are defined, and the fluctuation of the relative phase differences appear which is referred to as Josephson–Leggett’s mode. We take into account the effect of the fluctuation in the tunneling process and calculate the MQT escape rate for various junction parameters. We show that the fluctuation of relative phase differences drastically enhances the escape rate.

  20. Inter-band phase fluctuations in macroscopic quantum tunneling of multi-gap superconducting Josephson junctions

    International Nuclear Information System (INIS)

    Asai, Hidehiro; Ota, Yukihiro; Kawabata, Shiro; Nori, Franco

    2014-01-01

    Highlights: • We study MQT in Josephson junctions composed of multi-gap superconductors. • We derive a formula of the MQT escape rate for multiple phase differences. • We investigate the effect of inter-band phase fluctuation on MQT. • The MQT escape rate is significantly enhanced by the inter-band phase fluctuation. - Abstract: We theoretically investigate macroscopic quantum tunneling (MQT) in a hetero Josephson junction formed by a conventional single-gap superconductor and a multi-gap superconductor. In such Josephson junctions, phase differences for each tunneling channel are defined, and the fluctuation of the relative phase differences appear which is referred to as Josephson–Leggett’s mode. We take into account the effect of the fluctuation in the tunneling process and calculate the MQT escape rate for various junction parameters. We show that the fluctuation of relative phase differences drastically enhances the escape rate

  1. Fluctuation characteristics in detached recombining plasmas

    International Nuclear Information System (INIS)

    Ohno, Noriyasu; Tanaka, Naoyuki; Takamura, Shuichi; Budaev, Viatcheslav

    2002-01-01

    Fluctuation in detached recombining plasmas has been investigated experimentally in the linear divertor plasma simulator, NAGDIS-II. As increasing neutral gas pressure, floating potential fluctuation of the target plate installed at the end of the NADIS-II device becomes larger and bursty negative spikes are observed in the signal associated with a transition from attached to detached a plasmas. The fluctuation property has been analyzed by using Fast Fourier Transform (FFT), probability distribution function (PDF) and wavelet transform. The PDF of the floating potential fluctuation in the attached plasma condition obeys the Gaussian distribution function, on the other hand, the PDF in detached plasma shows a strong deviation from the Gaussian distribution function, which can be characterized by flatness and skewness. Comparison of the fluctuation properties between the floating potential and the optical emission from the detached plasma has been done based on the wavelet transform to show that a strong correlation between them, which could indicate bursty transport of energetic electrons from upstream to downstream region along the magnetic field. (author)

  2. Sphalerons, small fluctuations, and baryon-number violation in electroweak theory

    International Nuclear Information System (INIS)

    Arnold, P.; McLerran, L.

    1987-01-01

    We study the formalism of the sphaleron approximation to baryon-number violation in the standard model at temperatures near 1 TeV. We investigate small fluctuations of the sphaleron, the competition of large-scale sphalerons with thermal fluctuations, and the damping of the transition rate in the plasma. We find a suppression of the rate due to Landau damping and due to factors arising from zero modes. Our approximations are valid in the regime 2M/sub W/(T) 2 . We find that the rate of baryon-number violation is still significantly larger than the expansion rate of the Universe

  3. Antiferromagnetic spin fluctuations in the heavy-fermion superconductor Ce2PdIn8

    Science.gov (United States)

    Tran, V. H.; Hillier, A. D.; Adroja, D. T.; Kaczorowski, D.

    2012-09-01

    Inelastic neutron scattering and muon spin relaxation/rotation (μSR) measurements were performed on the heavy-fermion superconductor Ce2PdIn8. The observed scaling of the imaginary part of the dynamical susceptibility χ''Tα∝f(ℏω/kBT) with α=3/2 revealed a non-Fermi liquid character of the normal state, being due to critical antiferromagnetic fluctuations near a T=0 quantum phase transition. The longitudinal-field μSR measurements indicated that superconductivity and antiferromagnetic spin fluctuations coexist in Ce2PdIn8 on a microscopic scale. The observed power-law temperature dependence of the magnetic penetration depth λ∝T3/2, deduced from the transverse-field μSR data, strongly confirms an unconventional superconductivity in this compound.

  4. A fluctuation method to calculate the third order elastic constants in crystalline solids

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zimu [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Qu, Jianmin, E-mail: j-qu@northwestern.edu [Department of Civil and Environmental Engineering, Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208 (United States)

    2015-05-28

    This paper derives exact expressions of the isothermal third order elastic constants (TOE) in crystalline solids in terms of the kinetic and potential energies of the system. These expressions reveal that the TOE constants consist of a Born component and a relaxation component. The Born component is simply the third derivative of the system's potential energy with respect to the deformation, while the relaxation component is related to the non-uniform rearrangements of the atoms when the system is subject to a macroscopic deformation. Further, based on the general expressions derived here, a direct (fluctuation) method of computing the isothermal TOE constants is developed. Numerical examples of using this fluctuation method are given to compute the TOE constants of single crystal iron.

  5. Thermal fluctuations in a hyperscaling-violation background

    Energy Technology Data Exchange (ETDEWEB)

    Pourhassan, Behnam [Damghan University, School of Physics, Damghan (Iran, Islamic Republic of); Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Upadhyay, Sudhaker [Indian Institute of Technology Kharagpur, Centre for Theoretical Studies, Kharagpur (India); Al Asfar, Lina [Universite Blaise Pascal, Laboratoire de Physique Corpusculaire de Clermont-Ferrand, Aubiere (France)

    2017-08-15

    In this paper, we study the effect of thermal fluctuations on the thermodynamics of a black geometry with hyperscaling violation. These thermal fluctuations in the thermodynamics of this system are produced from quantum corrections of geometry describing this system. We discuss the stability of this system using specific heat and the entire Hessian matrix of the free energy. We will analyze the effects of thermal fluctuations on the stability of this system. We also analyze the effects of thermal fluctuations on the criticality of the hyperscaling-violation background. (orig.)

  6. Multi-scale response of runoff to climate fluctuation in the headwater region of Kaidu River in Xinjiang of China

    Science.gov (United States)

    Bai, Ling; Chen, Zhongsheng; Xu, Jianhua; Li, Weihong

    2016-08-01

    Based on the hydrological and meteorological data in the headwater region of the Kaidu River during 1960-2009, the multi-scale characteristics of runoff variability were analyzed using the ensemble empirical mode decomposition method (EEMD), and the aim is to investigate the oscillation mode structure characteristics of runoff change and its response to climate fluctuation at different time scales. Results indicated that in the past 50 years, the overall runoff of Kaidu River in Xinjiang has showed a significant nonlinear upward trend, and its changes have obviously exhibited an inter-annual scale (quasi-3 and quasi-6-year) and inter-decadal scale (quasi-10 and quasi-25-year). Variance contribution rates of each component manifested that the inter-decadal change had been playing a more important role in the overall runoff change for Kaidu River, and the reconstructed inter-annual variation trend could describe the fluctuation state of the original runoff anomaly during the study period. The reconstructed inter-decadal variability effectively revealed that the runoff for Kaidu River changed over the years, namely the states of abundance and low water period appear alternately. In addition, we found that runoff has a positive correlation to precipitation and temperature at different time scales, but they are most significant and relevant at inter-decadal scale, indicating the inter-decadal scale is most suitable for investigating the responses of runoff dynamics to climate fluctuation. At the same time, the results also suggested that EEMD is an effective method to analyze the multi-scale characteristics of nonlinear and non-stationary signal.

  7. Fluctuating Asymmetry of Human Populations: A Review

    Directory of Open Access Journals (Sweden)

    John H. Graham

    2016-12-01

    Full Text Available Fluctuating asymmetry, the random deviation from perfect symmetry, is a widely used population-level index of developmental instability, developmental noise, and robustness. It reflects a population’s state of adaptation and genomic coadaptation. Here, we review the literature on fluctuating asymmetry of human populations. The most widely used bilateral traits include skeletal, dental, and facial dimensions; dermatoglyphic patterns and ridge counts; and facial shape. Each trait has its advantages and disadvantages, but results are most robust when multiple traits are combined into a composite index of fluctuating asymmetry (CFA. Both environmental (diet, climate, toxins and genetic (aneuploidy, heterozygosity, inbreeding stressors have been linked to population-level variation in fluctuating asymmetry. In general, these stressors increase average fluctuating asymmetry. Nevertheless, there have been many conflicting results, in part because (1 fluctuating asymmetry is a weak signal in a sea of noise; and (2 studies of human fluctuating asymmetry have not always followed best practices. The most serious concerns are insensitive asymmetry indices (correlation coefficient and coefficient of indetermination, inappropriate size scaling, unrecognized mixture distributions, inappropriate corrections for directional asymmetry, failure to use composite indices, and inattention to measurement error. Consequently, it is often difficult (or impossible to compare results across traits, and across studies.

  8. Ongoing activity in temporally coherent networks predicts intra-subject fluctuation of response time to sporadic executive control demands.

    Science.gov (United States)

    Nozawa, Takayuki; Sugiura, Motoaki; Yokoyama, Ryoichi; Ihara, Mizuki; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Kanno, Akitake; Kawashima, Ryuta

    2014-01-01

    Can ongoing fMRI BOLD signals predict fluctuations in swiftness of a person's response to sporadic cognitive demands? This is an important issue because it clarifies whether intrinsic brain dynamics, for which spatio-temporal patterns are expressed as temporally coherent networks (TCNs), have effects not only on sensory or motor processes, but also on cognitive processes. Predictivity has been affirmed, although to a limited extent. Expecting a predictive effect on executive performance for a wider range of TCNs constituting the cingulo-opercular, fronto-parietal, and default mode networks, we conducted an fMRI study using a version of the color-word Stroop task that was specifically designed to put a higher load on executive control, with the aim of making its fluctuations more detectable. We explored the relationships between the fluctuations in ongoing pre-trial activity in TCNs and the task response time (RT). The results revealed the existence of TCNs in which fluctuations in activity several seconds before the onset of the trial predicted RT fluctuations for the subsequent trial. These TCNs were distributed in the cingulo-opercular and fronto-parietal networks, as well as in perceptual and motor networks. Our results suggest that intrinsic brain dynamics in these networks constitute "cognitive readiness," which plays an active role especially in situations where information for anticipatory attention control is unavailable. Fluctuations in these networks lead to fluctuations in executive control performance.

  9. Fluctuations in the multiparticle dynamics

    International Nuclear Information System (INIS)

    Bozek, P.; Ploszajczak, M.

    1993-01-01

    The appearance and properties of intermittent fluctuations in physical systems, in particular the formation of rare structures in transport phenomena are discussed. The distribution of fluctuations approaches a limiting log-normal statistical distribution. The log-normal distribution is introduced as a simple parametrization of the energy fluctuations leading to the subthreshold production of particles in nuclear collisions, and it is shown that it fits all available data both for total π 0 production cross section as well as the π 0 kinetic energy spectra for E/A < 90 MeV. It is suggested that the same universal distribution should also describe the subthreshold production of other hadrons like η and K. (author) 36 refs., 11 figs

  10. An experimental study of plasma fluctuations in the TCV and TEXTOR Tokamaks

    International Nuclear Information System (INIS)

    Mejeire de, C. A.

    2013-01-01

    The main body of this thesis reports on the commissioning and first measurements with a novel tangential phase-contrast imaging (TPCI) diagnostic, which had previously been installed in the TCV tokamak. The instrument measures fluctuations in line-integrated electron density along 9 parallel chords within a 6 cm diameter CO 2 laser beam. TPCI measurements reveal the first evidence in TCV of the geodesic acoustic mode (GAM), which is an oscillating zonal flow. Frequency, radial wavelength, radial extent and propagation are all in qualitative agreement with a gyro-kinetic simulation and recent theoretical work. The mode is found to have a modest, but measurable magnetic component, whose spatial structure is characterised for the first time in a toroidal plasma. For some experiments, clear evidence is found of the theoretically expected m/n = 2/0 mode structure, although in others the structure appears to be more complex. Electron energy confinement in X 2 heated TCV L-mode plasmas had previously been observed to increase on changing the triangularity (δ) of the poloidal plasma cross-section from δ = +0.4 to δ = −0.4. Measurements with the TPCI diagnostic reveal that this change coincides with a clear decrease in both the absolute level and the decorrelation time of broadband electron density fluctuations. This is in agreement with the conjecture that the increased confinement time is caused by a change in the turbulent state. The second part of the thesis reports on a fluctuation study in the TEXTOR tokamak. At sufficiently weak toroidal magnetic field, NBI heated, limited TEXTOR plasmas exhibit bursts of beam-ion driven ‘fishbone’ and Alfvén modes, which are characterised using the multi-antenna reflectometer and Mirnov coils. In H-mode the fishbone triggers ELMs and in L-mode it triggers previously unobserved bursts of particle recycling, resembling the ELMs. The reflectometer phase shows statistically significant bispectral coherence between the fishbone

  11. Fluctuations, dynamical instabilities and clusterization processes

    International Nuclear Information System (INIS)

    Burgio, G.F.; Chomaz, Ph.; Randrup, J.

    1992-01-01

    Recent progress with regard to the numerical simulation of fluctuations in nuclear dynamics is reported. Cluster formation in unstable nuclear matter is studied within the framework of a Boltzmann-Langevin equation developed to describe large amplitude fluctuations. Through the Fourier analysis of the fluctuating nuclear density in coordinate space, the onset of the clusterization is related to the dispersion relation of harmonic density oscillations. This detailed study on the simple two-dimensional case demonstrates the validity of the general approach. It is also shown, how the inclusion of fluctuations implies a description in terms of ensemble of trajectories and it is discussed why the presence of a stochastic term may cure the intrinsic unpredictability of deterministic theories (such as mean-field approximation) in presence of instabilities and/or chaos. (author) 8 refs., 3 figs

  12. Characterizing multi-scale self-similar behavior and non-statistical properties of fluctuations in financial time series

    Science.gov (United States)

    Ghosh, Sayantan; Manimaran, P.; Panigrahi, Prasanta K.

    2011-11-01

    We make use of wavelet transform to study the multi-scale, self-similar behavior and deviations thereof, in the stock prices of large companies, belonging to different economic sectors. The stock market returns exhibit multi-fractal characteristics, with some of the companies showing deviations at small and large scales. The fact that, the wavelets belonging to the Daubechies’ (Db) basis enables one to isolate local polynomial trends of different degrees, plays the key role in isolating fluctuations at different scales. One of the primary motivations of this work is to study the emergence of the k-3 behavior [X. Gabaix, P. Gopikrishnan, V. Plerou, H. Stanley, A theory of power law distributions in financial market fluctuations, Nature 423 (2003) 267-270] of the fluctuations starting with high frequency fluctuations. We make use of Db4 and Db6 basis sets to respectively isolate local linear and quadratic trends at different scales in order to study the statistical characteristics of these financial time series. The fluctuations reveal fat tail non-Gaussian behavior, unstable periodic modulations, at finer scales, from which the characteristic k-3 power law behavior emerges at sufficiently large scales. We further identify stable periodic behavior through the continuous Morlet wavelet.

  13. Origin of density fluctuations in extended inflation

    International Nuclear Information System (INIS)

    Kolb, E.W.; Salopek, D.S.; Turner, M.S.

    1990-01-01

    We calculate both the curvature and isocurvature density fluctuations that arise due to quantum fluctuations in a simple model of extended inflation based upon the Jordan-Brans-Dicke theory. The curvature fluctuations that arise due to quantum fluctuations in the Brans-Dicke field in general have a non-scale-invariant spectrum and an amplitude that is cosmologically acceptable and interesting without having to tune any coupling constant to a very small value. The curvature perturbations that arise due to the Higgs field are subdominant. If there are other massless fields in the theory, e.g., an axion or an ilion, then isocurvature fluctuations arise in these fields too. Production of gravitational waves and the massless particles associated with excitations of the Brans-Dicke field are also discussed. Several attempts at more realistic models of extended inflation are also analyzed. The importance of the Einstein conformal frame in calculating curvature fluctuations is emphasized. When viewed in this frame, extended inflation closely resembles slow-rollover inflation with an exponential potential, and the usual formula for the amplitude of curvature perturbations applies directly

  14. Origin of density fluctuations in extended inflation

    International Nuclear Information System (INIS)

    Kolb, E.W.; Salopek, D.S.; Turner, M.S.

    1990-05-01

    The density fluctuations (both curvature and isocurvature) that arise due to quantum fluctuations in a simple model of extended inflation based upon the Jordan-Brans-Dicke theory are calculated. Curvature fluctuations arise due to quantum fluctuations in the Brans-Dicke field, in general have a nonscale-invariant spectrum, and can have an amplitude that is cosmologically acceptable and interesting without having to tune any coupling constant to a very small value. The density perturbations that arise due to the inflation field are subdominant. If there are other massless fields in the theory, e.g., an axion or an ilion, then isocurvature fluctuations arise in these fields too. Production of gravitational waves and the massless particles associated with excitations of the Brans-Dicke field are also discussed. Several attempts at more realistic models of extended inflation are also analyzed. The importance of the Einstein conformal frame in calculating curvature fluctuations is emphasized. When viewed in this frame, extended inflation closely resembles slow-rollover inflation with an exponential potential and the usual formula for the amplitude of curvature perturbations applies

  15. Spontaneous Slow Fluctuation of EEG Alpha Rhythm Reflects Activity in Deep-Brain Structures: A Simultaneous EEG-fMRI Study.

    Directory of Open Access Journals (Sweden)

    Kei Omata

    Full Text Available The emergence of the occipital alpha rhythm on brain electroencephalogram (EEG is associated with brain activity in the cerebral neocortex and deep brain structures. To further understand the mechanisms of alpha rhythm power fluctuation, we performed simultaneous EEGs and functional magnetic resonance imaging recordings in human subjects during a resting state and explored the dynamic relationship between alpha power fluctuation and blood oxygenation level-dependent (BOLD signals of the brain. Based on the frequency characteristics of the alpha power time series (APTS during 20-minute EEG recordings, we divided the APTS into two components: fast fluctuation (0.04-0.167 Hz and slow fluctuation (0-0.04 Hz. Analysis of the correlation between the MRI signal and each component revealed that the slow fluctuation component of alpha power was positively correlated with BOLD signal changes in the brain stem and the medial part of the thalamus and anterior cingulate cortex, while the fast fluctuation component was correlated with the lateral part of the thalamus and the anterior cingulate cortex, but not the brain stem. In summary, these data suggest that different subcortical structures contribute to slow and fast modulations of alpha spectra on brain EEG.

  16. Emergent dynamics of spiking neurons with fluctuating threshold

    Science.gov (United States)

    Bhattacharjee, Anindita; Das, M. K.

    2017-05-01

    Role of fluctuating threshold on neuronal dynamics is investigated. The threshold function is assumed to follow a normal probability distribution. Standard deviation of inter-spike interval of the response is computed as an indicator of irregularity in spike emission. It has been observed that, the irregularity in spiking is more if the threshold variation is more. A significant change in modal characteristics of Inter Spike Intervals (ISI) is seen to occur as a function of fluctuation parameter. Investigation is further carried out for coupled system of neurons. Cooperative dynamics of coupled neurons are discussed in view of synchronization. Total and partial synchronization regimes are depicted with the help of contour plots of synchrony measure under various conditions. Results of this investigation may provide a basis for exploring the complexities of neural communication and brain functioning.

  17. Effects of the amplitude and frequency of salinity fluctuations on antioxidant responses in juvenile tongue sole, Cynoglossus semilaevis

    Energy Technology Data Exchange (ETDEWEB)

    Khairnar, S.A.; Tian, X.; Dong, S.; Fang, Z.; Solanki, B.V.; Shanthanagouda, H.A.

    2016-11-01

    To understand the tolerance of tongue sole, Cynoglossus semilaevis, to varying salinities, the effects of the amplitude (2, 4, 6 and 8 g/L) and frequency (2, 4 and 8 days) of salinity fluctuations on the activities of antioxidant responses, including acidic phosphatase (ACP), alkaline phosphatase (AKP), catalase (CAT) and superoxide dismutase (SOD) from antioxidant system in liver, muscle, gills and kidney were investigated in this study. The results showed that the antioxidant responses of tongue sole were highly tissue-specific during the varying salinity fluctuations. In all tissues, ACP and AKP activity was found to be highest at moderate salinity fluctuations compared to the control, low and high salinity treatments (p<0.05). SOD and CAT activities had significant effect due to salinity fluctuations in all tissues (p<0.05), except in hepatic and renal tissues. Variations in branchial SOD activity proved that salinity fluctuations had greater impact on tongue sole at moderate and high fluctuating salinities compared to the control and low fluctuating salinities, whereas the branchial CAT activities showed contrasting trend. Further, cortisol levels were significantly affected in lower and higher salinity fluctuations. However, plasma cortisol levels remained low in moderate salinity fluctuations and control (p<0.05). Taken together, the results indicated that salinity fluctuations could effectively stimulate and enhance the antioxidant enzyme activity in the liver, kidney, gills and muscle of the juvenile tongue sole, thus effectively eliminating the excessive reactive oxygen species and minimizing the body damage in tongue sole or could be for any other euryhaline teleosts. (Author)

  18. Magnetic Fluctuations during plasma current rise of divertor discharge in JT-60

    International Nuclear Information System (INIS)

    Ushigusa, Kenkichi; Kikuchi, Mitsuru; Hosogane, Nobuyuki; Tsuji, Syunji; Hayashi, Kazuo.

    1986-03-01

    During a current rise phase in the JT-60 divertor discharge, a series of magnetic fluctuations which do not rotate poloidally (phase-locking) is observed. They cause a cooling of plasma periphery and an enhancement of H α emission in the divertor chamber. A significant increase in β P + 1 i /2 with minor disruptions during the phase-locked magnetic fluctuation suggests a relaxation of the current profile in the current rise phase of the divertor discharge. (author)

  19. On the dynamical fluctuations in the multiparticle final states of e+e- collisions

    International Nuclear Information System (INIS)

    Liu Fuming; Liu Feng; Liu Lianshou

    1999-01-01

    The scaling property of factorial moments in the multiparticle final-states of e + e - collisions is studied in both the laboratory and the thrust-axis coordinate systems by using the Jetset generator. It turns out that in both of the two cases, the 3-dimensional lnF 2 -lnM are approximately straight lines when the phase space are divided isotropically in different directions, showing that the dynamical fluctuations in the multiparticle final-state of e + e - collisions are approximately isotropic. In the lab system, the three γ parameters obtained by fitting F 2 -M of p x , p y , p z to Ochs formula respectively are approximately equal. In the thrust system, the three γ values obtained by fitting F 2 (y)-M, F 2 (p t )-M and F 2 (φ)-M are also close to each other provided the starting point in fitting F 2 (φ)-M is chosen appropriately. All of these provide further evidence for the above assertion. The results show that the essential feature, i.e. anisotropy of approximate) isotropy, of the dynamical fluctuations in soft and hard processes can be revealed by studying the scaling property of factorial moments in the collisions. Therefore, further investigation of the scaling properties of factorial moments in various kinds of collisions processes is significant for the understanding of the essential characteristics of collision dynamics

  20. Zero-point oscillations, zero-point fluctuations, and fluctuations of zero-point oscillations

    International Nuclear Information System (INIS)

    Khalili, Farit Ya

    2003-01-01

    Several physical effects and methodological issues relating to the ground state of an oscillator are considered. Even in the simplest case of an ideal lossless harmonic oscillator, its ground state exhibits properties that are unusual from the classical point of view. In particular, the mean value of the product of two non-negative observables, kinetic and potential energies, is negative in the ground state. It is shown that semiclassical and rigorous quantum approaches yield substantially different results for the ground state energy fluctuations of an oscillator with finite losses. The dependence of zero-point fluctuations on the boundary conditions is considered. Using this dependence, it is possible to transmit information without emitting electromagnetic quanta. Fluctuations of electromagnetic pressure of zero-point oscillations are analyzed, and the corresponding mechanical friction is considered. This friction can be viewed as the most fundamental mechanism limiting the quality factor of mechanical oscillators. Observation of these effects exceeds the possibilities of contemporary experimental physics but almost undoubtedly will be possible in the near future. (methodological notes)

  1. Quantum Fluctuations for Gravitational Impulsive Waves

    OpenAIRE

    Enginer, Y.; Hortacsu, M.; Ozdemir, N.

    1998-01-01

    Quantum fluctuations for a massless scalar field in the background metric of spherical impulsive gravitational waves through Minkowski and de Sitter spaces are investigated. It is shown that there exist finite fluctuations for de Sitter space.

  2. Dynamical study of the radial structure of the fluctuations measured by a reciprocating Langmuir probe in Tore Supra

    International Nuclear Information System (INIS)

    Devynck, P.; Antar, G.; Wang, G.; Garbet, X.; Gunn, J.; Pascal, J.Y.

    1999-01-01

    The fluctuations in the Scrape Off Layer (S.O.L.) of Tore Supra are studied with a movable Langmuir probe biased to ion saturation current. The probe system consists of three probes separated poloidally (0.68 cm between two nearby probes). The probe has no magnetic connection to the mid plane limiter on which the plasma is leaning, but the radial profile of the ion saturation current fluctuations displays a dip at the limiter position. At the same location the ion saturation current displays a dip at the limiter position. At the same location the ion saturation current displays an inflexion point. A correlation analysis technique is developed to study the radial behaviour of the fluctuations. It reveals that this dip is associated with a reduction of the poloidal velocity of the fluctuations with no sign reversal. In the dip the mean poloidal correlation length of the fluctuations is also reduced. These observations are consistent with a reduction of the fluctuations by a shear of the radial electric field created at the limiter surface. The autocorrelation time is also calculated. It increases slightly in the dip and is found to be sensitive to both the convection time and lifetime of the turbulent structures, because these quantities are of the same order. (authors)

  3. Phase fluctuations model for EM wave propagation through solar scintillation at superior solar conjunction

    Science.gov (United States)

    Xu, Guanjun; Song, Zhaohui

    2017-04-01

    Traveling solar wind disturbances have a significant influence on radio wave characteristics during the superior solar conjunction communication. This paper considers the impact of solar scintillation on phase fluctuations of electromagnetic (EM) wave propagation during the superior solar conjunction. Based on the Geometric Optics approximation, the close-form approximation model for phase fluctuations is developed. Both effects of anisotropic temporal variations function of plasma irregularities and their power spectrum are presented and analyzed numerically. It is found that phase fluctuations rapidly decrease with increasing Sun-Earth-Probe angle and decrease with increasing frequency at the rate of 1/f2. Moreover, the role of various features of the solar wind irregularities and their influence on the EM wave characteristic parameters is studied and discussed. Finally, we study the phase fluctuations of typical cases in order to better understand the impact of phase fluctuations in future deep space communication scenarios during solar conjunction periods.

  4. Superposed epoch analysis of physiological fluctuations: possible space weather connections.

    Science.gov (United States)

    Wanliss, James; Cornélissen, Germaine; Halberg, Franz; Brown, Denzel; Washington, Brien

    2018-03-01

    There is a strong connection between space weather and fluctuations in technological systems. Some studies also suggest a statistical connection between space weather and subsequent fluctuations in the physiology of living creatures. This connection, however, has remained controversial and difficult to demonstrate. Here we present support for a response of human physiology to forcing from the explosive onset of the largest of space weather events-space storms. We consider a case study with over 16 years of high temporal resolution measurements of human blood pressure (systolic, diastolic) and heart rate variability to search for associations with space weather. We find no statistically significant change in human blood pressure but a statistically significant drop in heart rate during the main phase of space storms. Our empirical findings shed light on how human physiology may respond to exogenous space weather forcing.

  5. Superposed epoch analysis of physiological fluctuations: possible space weather connections

    Science.gov (United States)

    Wanliss, James; Cornélissen, Germaine; Halberg, Franz; Brown, Denzel; Washington, Brien

    2018-03-01

    There is a strong connection between space weather and fluctuations in technological systems. Some studies also suggest a statistical connection between space weather and subsequent fluctuations in the physiology of living creatures. This connection, however, has remained controversial and difficult to demonstrate. Here we present support for a response of human physiology to forcing from the explosive onset of the largest of space weather events—space storms. We consider a case study with over 16 years of high temporal resolution measurements of human blood pressure (systolic, diastolic) and heart rate variability to search for associations with space weather. We find no statistically significant change in human blood pressure but a statistically significant drop in heart rate during the main phase of space storms. Our empirical findings shed light on how human physiology may respond to exogenous space weather forcing.

  6. Brownian motion in Robertson-Walker spacetimes from electromagnetic vacuum fluctuations

    International Nuclear Information System (INIS)

    Bessa, Carlos H. G.; Bezerra, V. B.; Ford, L. H.

    2009-01-01

    We consider the effects of the vacuum fluctuations of a quantized electromagnetic field on particles in an expanding universe. We find that these particles typically undergo Brownian motion and acquire a nonzero mean squared velocity that depends on the scale factor of the universe. This Brownian motion can be interpreted as due to noncancellation of anticorrelated vacuum fluctuations in the time-dependent background spacetime. Alternatively, one can interpret this effect as the particles acquiring energy from the background spacetime geometry, a phenomenon that cannot occur in a static spacetime. We treat several types of coupling between the electromagnetic field and the particles and several model universes. We also consider both free particles, which, on the average, move on geodesics, and particles in bound systems. There are significant differences between these two cases, which illustrates that nongeodesic motion alters the effects of the vacuum fluctuations. We discuss the possible applications of this Brownian motion effect to cosmological scenarios.

  7. Photon counting and fluctuation of molecular movement

    International Nuclear Information System (INIS)

    Inohara, Koichi

    1978-01-01

    The direct measurement of the fluctuation of molecular motions, which provides with useful information on the molecular movement, was conducted by introducing photon counting method. The utilization of photon counting makes it possible to treat the molecular system consisting of a small number of molecules like a radioisotope in the detection of a small number of atoms, which are significant in biological systems. This method is based on counting the number of photons of the definite polarization emitted in a definite time interval from the fluorescent molecules excited by pulsed light, which are bound to the marked large molecules found in a definite spatial region. Using the probability of finding a number of molecules oriented in a definite direction in the definite spatial region, the probability of counting a number of photons in a definite time interval can be calculated. Thus the measurable count rate of photons can be related with the fluctuation of molecular movement. The measurement was carried out under the condition, in which the probability of the simultaneous arrival of more than two photons at a detector is less than 1/100. As the experimental results, the resolving power of photon-counting apparatus, the frequency distribution of the number of photons of some definite polarization counted for 1 nanosecond are shown. In the solution, the variance of the number of molecules of 500 on the average is 1200, which was estimated from the experimental data by assuming normal distribution. This departure from the Poisson distribution means that a certain correlation does exist in molecular movement. In solid solution, no significant deviation was observed. The correlation existing in molecular movement can be expressed in terms of the fluctuation of the number of molecules. (Nakai, Y.)

  8. Analysis of differential method for compensating fluctuations in product thickness when radiometric testing

    International Nuclear Information System (INIS)

    Pokrovskij, A.V.; Kvasnitsa, M.S.

    1979-01-01

    Given are the estimates of information capabilities of the differential method for measuring radiation flux in radiation defectoscopy as well as efficiency of application of automatic radiation facilities to control taking into account the statistical regularities of product thickness fluctuations. Dependences of signal to noise ratio on the regularities of product thickness fluctuations have been found and optimization, on this basis, of the design and parameters of processing instrumentation was carried out. It is shown, that with 60-80 mm interval of product thickness fluctuations correlation (welded joints) it is expedient to use two radiation beams with their crossing on a mean product plane. When the interval of correlation of thickness fluctuations is great it is effective to use the geometry of radioscopy with parallel radiation beams. This permits to use only one radiation source without significant reducing the compensation efficiency, that in most cases simplifies the development and application of radiometric systems. Thus the efficiency of applying the differential method for radiation beam detection to compensate product thickness fluctuations is primarily determined by statistical regularities of the given fluctuations. The account of the regularities in the development of the processing instrumentation results in the most complete extraction of useful information, containing in the radiation beams being detected

  9. Detecting method for crude oil price fluctuation mechanism under different periodic time series

    International Nuclear Information System (INIS)

    Gao, Xiangyun; Fang, Wei; An, Feng; Wang, Yue

    2017-01-01

    Highlights: • We proposed the concept of autoregressive modes to indicate the fluctuation patterns. • We constructed transmission networks for studying the fluctuation mechanism. • There are different fluctuation mechanism under different periodic time series. • Only a few types of autoregressive modes control the fluctuations in crude oil price. • There are cluster effects during the fluctuation mechanism of autoregressive modes. - Abstract: Current existing literatures can characterize the long-term fluctuation of crude oil price time series, however, it is difficult to detect the fluctuation mechanism specifically under short term. Because each fluctuation pattern for one short period contained in a long-term crude oil price time series have dynamic characteristics of diversity; in other words, there exhibit various fluctuation patterns in different short periods and transmit to each other, which reflects the reputedly complicate and chaotic oil market. Thus, we proposed an incorporated method to detect the fluctuation mechanism, which is the evolution of the different fluctuation patterns over time from the complex network perspective. We divided crude oil price time series into segments using sliding time windows, and defined autoregressive modes based on regression models to indicate the fluctuation patterns of each segment. Hence, the transmissions between different types of autoregressive modes over time form a transmission network that contains rich dynamic information. We then capture transmission characteristics of autoregressive modes under different periodic time series through the structure features of the transmission networks. The results indicate that there are various autoregressive modes with significantly different statistical characteristics under different periodic time series. However, only a few types of autoregressive modes and transmission patterns play a major role in the fluctuation mechanism of the crude oil price, and these

  10. Fluctuation relations for anomalous dynamics

    International Nuclear Information System (INIS)

    Chechkin, A V; Klages, R

    2009-01-01

    We consider work fluctuation relations (FRs) for generic types of dynamics generating anomalous diffusion: Lévy flights, long-correlated Gaussian processes and time-fractional kinetics. By combining Langevin and kinetic approaches we calculate the probability distributions of mechanical and thermodynamical work in two paradigmatic nonequilibrium situations, respectively: a particle subject to a constant force and a particle in a harmonic potential dragged by a constant force. We check the transient FR for two models exhibiting superdiffusion, where a fluctuation-dissipation relation does not exist, and for two other models displaying subdiffusion, where there is a fluctuation-dissipation relation. In the two former cases the conventional transient FR is not recovered, whereas in the latter two it holds either exactly or in the long-time limit. (letter)

  11. Multiscale fluctuations in nuclear response

    International Nuclear Information System (INIS)

    Lacroix, D.; Chomaz, Ph.

    1999-01-01

    The nuclear collective response is investigated in the framework of a doorway picture in which the spreading width of the collective emotion is described as a coupling to more and more complex configurations. It is shown that this coupling induces fluctuations of the observed strength. In the case of a hierarchy of overlapping decay channels, Ericson fluctuations are observed at different scales. Methods for extracting these scales and the related lifetimes are discussed. Finally, it is shown that the coupling of different states at one level of complexity to some common decay channels at the next level, may produce interference-like patterns in the nuclear response. This quantum effect leads to anew type of fluctuations with a typical width related to the level spacing. (author)

  12. Multiscale fluctuations in nuclear response

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, D.; Chomaz, Ph

    1999-01-01

    The nuclear collective response is investigated in the framework of a doorway picture in which the spreading width of the collective emotion is described as a coupling to more and more complex configurations. It is shown that this coupling induces fluctuations of the observed strength. In the case of a hierarchy of overlapping decay channels, Ericson fluctuations are observed at different scales. Methods for extracting these scales and the related lifetimes are discussed. Finally, it is shown that the coupling of different states at one level of complexity to some common decay channels at the next level, may produce interference-like patterns in the nuclear response. This quantum effect leads to anew type of fluctuations with a typical width related to the level spacing. (author) 25 refs.

  13. Pairing fluctuations in trapped Fermi gases

    International Nuclear Information System (INIS)

    Viverit, Luciano; Bruun, Georg M.; Minguzzi, Anna; Fazio, Rosario

    2004-01-01

    We examine the contribution of pairing fluctuations to the superfluid order parameter for harmonically trapped atomic Fermi gases in the BCS regime. In the limit of small systems we consider, both analytically and numerically, their space and temperature dependence. We predict a parity effect, i.e., that pairing fluctuations show a maximum or a minimum at the center of the trap, depending on the value of the last occupied shell being even or odd. We propose to detect pairing fluctuations by measuring the density-density correlation function after a ballistic expansion of the gas

  14. Environmental fluctuations restrict eco-evolutionary dynamics in predator-prey system.

    Science.gov (United States)

    Hiltunen, Teppo; Ayan, Gökçe B; Becks, Lutz

    2015-06-07

    Environmental fluctuations, species interactions and rapid evolution are all predicted to affect community structure and their temporal dynamics. Although the effects of the abiotic environment and prey evolution on ecological community dynamics have been studied separately, these factors can also have interactive effects. Here we used bacteria-ciliate microcosm experiments to test for eco-evolutionary dynamics in fluctuating environments. Specifically, we followed population dynamics and a prey defence trait over time when populations were exposed to regular changes of bottom-up or top-down stressors, or combinations of these. We found that the rate of evolution of a defence trait was significantly lower in fluctuating compared with stable environments, and that the defence trait evolved to lower levels when two environmental stressors changed recurrently. The latter suggests that top-down and bottom-up changes can have additive effects constraining evolutionary response within populations. The differences in evolutionary trajectories are explained by fluctuations in population sizes of the prey and the predator, which continuously alter the supply of mutations in the prey and strength of selection through predation. Thus, it may be necessary to adopt an eco-evolutionary perspective on studies concerning the evolution of traits mediating species interactions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Fluctuation effects on bubble growth in hot nuclear matter

    International Nuclear Information System (INIS)

    Santiago, A.J.; Chung, K.C.

    1991-01-01

    The evolution of bubbles with arbitrary density in an infinite nuclear system is studied in a simplified treatment. Kinetic pressure fluctuations on the bubble surface are considered. The critical radius, evolution time and probability for bubble expansion are shown to depend significantly on the initial bubble density. (author)

  16. Revealing time bunching effect in single-molecule enzyme conformational dynamics.

    Science.gov (United States)

    Lu, H Peter

    2011-04-21

    In this perspective, we focus our discussion on how the single-molecule spectroscopy and statistical analysis are able to reveal enzyme hidden properties, taking the study of T4 lysozyme as an example. Protein conformational fluctuations and dynamics play a crucial role in biomolecular functions, such as in enzymatic reactions. Single-molecule spectroscopy is a powerful approach to analyze protein conformational dynamics under physiological conditions, providing dynamic perspectives on a molecular-level understanding of protein structure-function mechanisms. Using single-molecule fluorescence spectroscopy, we have probed T4 lysozyme conformational motions under the hydrolysis reaction of a polysaccharide of E. coli B cell walls by monitoring the fluorescence resonant energy transfer (FRET) between a donor-acceptor probe pair tethered to T4 lysozyme domains involving open-close hinge-bending motions. Based on the single-molecule spectroscopic results, molecular dynamics simulation, a random walk model analysis, and a novel 2D statistical correlation analysis, we have revealed a time bunching effect in protein conformational motion dynamics that is critical to enzymatic functions. Bunching effect implies that conformational motion times tend to bunch in a finite and narrow time window. We show that convoluted multiple Poisson rate processes give rise to the bunching effect in the enzymatic reaction dynamics. Evidently, the bunching effect is likely common in protein conformational dynamics involving in conformation-gated protein functions. In this perspective, we will also discuss a new approach of 2D regional correlation analysis capable of analyzing fluctuation dynamics of complex multiple correlated and anti-correlated fluctuations under a non-correlated noise background. Using this new method, we are able to map out any defined segments along the fluctuation trajectories and determine whether they are correlated, anti-correlated, or non-correlated; after which, a

  17. Density Fluctuations in a Polar Coronal Hole

    Science.gov (United States)

    Hahn, Michael; D’Huys, Elke; Savin, Daniel Wolf

    2018-06-01

    We have measured the root-mean-square (rms) amplitude of intensity fluctuations, ΔI, in plume and interplume regions of a polar coronal hole. These intensity fluctuations correspond to density fluctuations. Using data from the Sun Watcher using the Active Pixel System detector and Image Processing on the Project for Onboard Autonomy (Proba2), our results extend up to a height of about 1.35 R ⊙. One advantage of the rms analysis is that it does not rely on a detailed evaluation of the power spectrum, which is limited by noise levels to low heights in the corona. The rms approach can be performed up to larger heights where the noise level is greater, provided that the noise itself can be quantified. At low heights, both the absolute ΔI, and the amplitude relative to the mean intensity, ΔI/I, decrease with height. However, starting at about 1.2 R ⊙, ΔI/I increases, reaching 20%–40% by 1.35 R ⊙. This corresponds to density fluctuations of Δn e/n e ≈ 10%–20%. The increasing relative amplitude implies that the density fluctuations are generated in the corona itself. One possibility is that the density fluctuations are generated by an instability of Alfvén waves. This generation mechanism is consistent with some theoretical models and with observations of Alfvén wave amplitudes in coronal holes. Although we find that the energy of the observed density fluctuations is small, these fluctuations are likely to play an important indirect role in coronal heating by promoting the reflection of Alfvén waves and driving turbulence.

  18. Statistical fluctuations of the number of neutrons in a pile; Fluctuations statistiques du nombre de neutrons dans une pile

    Energy Technology Data Exchange (ETDEWEB)

    Raievski, V [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The theory of the statistical fluctuations in a pile is extended to the space dependent case, and gives the fluctuations of the number of neutrons in a cell of the core or reflector of the pile. This number changes through elementary processes occurring at random, which are, capture, source, fission and scattering. Of all these processes, fission is the only one which changes more than one neutron at a time and so is responsible of the deviation of the fluctuations from a Poisson law. The importance of this deviation depends on the dimensions of the cell compared to the slowing down length. When the dimensions are small, the fluctuations close to a Poisson law. (author) [French] La theorie des fluctuations statistiques est etendue au cas local et donne les fluctuations du nombre de neutrons dans une cellule situee dans le coeur ou le reflecteur de la pile. Ce nombre evolue au cours du temps sous l'influence de phenomenes aleatoires qui sont la capture, la diffusion, les sources et les neutrons secondaires de fission. L'emission simultanee de plusieurs neutrons distingue ce phenomene des precedents qui n'affectent qu'un neutron individuellement. L'importance de ce phenomene sur la loi de fluctuation depend des dimensions de la cellule par rapport a la longueur de ralentissement. Quand ces dimensions sont petites, le caractere particulier de ce phenomene disparait. (auteur)

  19. Fluctuating hydrodynamics for ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lazaridis, Konstantinos [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States); Wickham, Logan [Department of Computer Science, Washington State University, Richland, 99354 (United States); Voulgarakis, Nikolaos, E-mail: n.voulgarakis@wsu.edu [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States)

    2017-04-25

    We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau–Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids. - Highlights: • A new fluctuating hydrodynamics method for ionic liquids. • Description of ionic liquid morphology in bulk and near electrified surfaces. • Direct comparison with experimental measurements.

  20. Studies on fluctuating asymmetry (FA for certain morphological traits in four species of the Drosophila bipectinata complex

    Directory of Open Access Journals (Sweden)

    Banerjee Parul

    2015-01-01

    Full Text Available Fluctuating asymmetry (FA is defined as subtle deviations from perfect bilateral symmetry, evident in differences between the right and the left sides of any given trait. It is a pattern of variation between sides and measures developmental instability. Differences in the level of FA may be used for comparing developmental precision among closely related species and thus may give an idea whether developmental stability was affected during the divergence and separation of populations into distinct species. Keeping this in view, FA was studied in four species of the Drosophila bipectinata complex i.e. D. bipectinata, D. parabipectinata, D. malerkotliana and D. pseudoananassae. In females of all the four species, FA values did not vary significantly for any of the traits considered. However, in case of males, they varied significantly for Wing length (WL and sex comb tooth number (SCTN. Also, while in females Composite fluctuating asymmetry (CFA did not exhibit significant variation, in males it was found to vary significantly across the four species. However, Bonferroni t-tests did not reveal any consistent difference in FA levels between any two species. The magnitude of FA was found to differ significantly among traits and CFA values were found to be higher for males than females in all the four species. Therefore, it may be concluded that the level of FA shows trait specific variations and males are more prone to developmental perturbations. However, the FA levels are more or less similar in all the four species of this complex. Thus, developmental precision remains nearly same in all the four species of this complex irrespective of the degree of evolutionary divergence reached.

  1. Fluctuations in high-energy particle collisions

    International Nuclear Information System (INIS)

    Gronqvist, Hanna

    2016-01-01

    We study fluctuations that are omnipresent in high-energy particle collisions. These fluctuations can be either of either classical or quantum origin and we will study both. Firstly, we consider the type of quantum fluctuations that arise in proton-proton collisions. These are computable perturbatively in quantum field theory and we will focus on a specific class of diagrams in this set-up. Secondly, we will consider the fluctuations that are present in collisions between nuclei that can be heavier than protons. These are the quantum laws of nature that describe the positions of nucleons within a nucleus, but also the hydrodynamic fluctuations of classical, thermal origin that affect the evolution of the medium produced in heavy-ion collisions. The fluctuations arising in proton-proton collisions can be computed analytically up to a certain order in perturbative quantum field theory. We will focus on one-loop diagrams of a fixed topology. Loop diagrams give rise to integrals that typically are hard to evaluate. We show how modern mathematical methods can be used to ease their computation. We will study the relations among unitarity cuts of a diagram, the discontinuity across the corresponding branch cut and the coproduct. We show how the original integral corresponding to a given diagram can be reconstructed from the information contained in the coproduct. We expect that these methods can be applied to solve more complicated topologies and help in the computation of new amplitudes in the future. Finally, we study the two types of fluctuations arising in heavy-ion collisions. These are related either to the initial state or the intermediate state of matter produced in such collisions. The initial state fluctuations are experimentally observed to give rise to non-Gaussianities in the final-state spectra. We show how these non-Gaussianities can be explained by the random position and interaction energy of 'sources' in the colliding nuclei. Furthermore, we

  2. Thermal fluctuation based study of aqueous deficient dry eyes by non-invasive thermal imaging.

    Science.gov (United States)

    Azharuddin, Mohammad; Bera, Sumanta Kr; Datta, Himadri; Dasgupta, Anjan Kr

    2014-03-01

    In this paper we have studied the thermal fluctuation patterns occurring at the ocular surface of the left and right eyes for aqueous deficient dry eye (ADDE) patients and control subjects by thermal imaging. We conducted our experiment on 42 patients (84 eyes) with aqueous deficient dry eyes and compared with 36 healthy volunteers (72 eyes) without any history of ocular surface disorder. Schirmer's test, Tear Break-up Time, tear Meniscus height and fluorescein staining tests were conducted. Ocular surface temperature measurement was done, using an FL-IR thermal camera and thermal fluctuation in left and right eyes was calculated and analyzed using MATLAB. The time series containing the sum of squares of the temperature fluctuation on the ocular surface were compared for aqueous deficient dry eye and control subjects. Significant statistical difference between the fluctuation patterns for control and ADDE was observed (p eyes are significantly correlated in controls but not in ADDE subjects. The possible origin of such correlation in control and lack of correlation in the ADDE subjects is discussed in the text. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A Generalization of Electromagnetic Fluctuation-Induced Casimir Energy

    Directory of Open Access Journals (Sweden)

    Yi Zheng

    2015-01-01

    Full Text Available Intermolecular forces responsible for adhesion and cohesion can be classified according to their origins; interactions between charges, ions, random dipole—random dipole (Keesom, random dipole—induced dipole (Debye are due to electrostatic effects; covalent bonding, London dispersion forces between fluctuating dipoles, and Lewis acid-base interactions are due to quantum mechanical effects; pressure and osmotic forces are of entropic origin. Of all these interactions, the London dispersion interaction is universal and exists between all types of atoms as well as macroscopic objects. The dispersion force between macroscopic objects is called Casimir/van der Waals force. It results from alteration of the quantum and thermal fluctuations of the electrodynamic field due to the presence of interfaces and plays a significant role in the interaction between macroscopic objects at micrometer and nanometer length scales. This paper discusses how fluctuational electrodynamics can be used to determine the Casimir energy/pressure between planar multilayer objects. Though it is confirmation of the famous work of Dzyaloshinskii, Lifshitz, and Pitaevskii (DLP, we have solved the problem without having to use methods from quantum field theory that DLP resorted to. Because of this new approach, we have been able to clarify the contributions of propagating and evanescent waves to Casimir energy/pressure in dissipative media.

  4. Nonstandard primordial fluctuations from a polynomial inflation potential

    International Nuclear Information System (INIS)

    Hodges, H.M.; Kofman, L.A.; Primack, J.R.; California Univ., Santa Cruz, CA; California Univ., Berkeley, CA

    1990-01-01

    We examine in detail the properties of inflation determined from the most general renormalizable potential for a single real scalar field Φ: V(Φ)=AΦ 4 /4+BΦ 3 /3+CΦ 2 /2+V 0 . We find sets of parameters that can strongly break scale invariance, with a valley in the usual Zel'dovich spectrum. Such a valley can lead to earlier galaxy formation and more large scale structure in the Universe than in the usual scale-invariant cold dark matter scenario. We also find that the parameters of the potential can be many orders of magnitude larger than what would be allowed without the inclusion of the cubic term, which can lead to high reheat temperatures T reh ≅ 10 15 GeV. We have mapped out all regions of parameter space and have identified those regions that produce interesting behavior, as well as the entire region that leads to an acceptable inflationary scenario with small enough fluctuations. We further explore the possibility of generating interesting non-gaussian adiabatic density fluctuations from this potential, and find that it is unlikely for general single scalar field potentials that do not contain false vacua in the path of the inflaton, as significant non-gaussian behavior implies too large a fluctuation amplitude. (orig.)

  5. Holocene sea-level fluctuation in the southern hemisphere

    Science.gov (United States)

    Isla, Federico Ignacio

    If rising sea levels dominate in the northern hemisphere (NH), falling or fluctuating sea levels predominate in the southern hemisphere (SH). Endogenic processes (tectonics, isostasy or geoidal changes) could explain local or regional mean sea level (MSL) fluctuations but not an hemispherical one. Evidence from South America, Africa, Antarctica, Australia and the Pacific and Indian Oceans suggest that the Holocene transgression rose above the present MSL, in higher latitudes before the tropics. By plotting latitude against the age of MSL arrival at present coasts, good correlation is observed. Oceanic salinity mixing has been already proposed to explain this mid-Holocene sea-level fluctuation. Climate could be the only factor responsible for this hemisphere-wide behavior of MSL. It has been suggested previously that the climate of the SH precedes that of the NH by 3000 years. The climatic optimum, or maximum warmth, occurred predominantly about 6000 BP in the NH, but about 10-9000 BP in the SH. Short-term climatic effects on the sea level (monsoons, southern oscillation/El Niño phenomena) should have significant occurrences during the past in the windiest oceanic hemisphere. This latitudinal trend in former MSL should be considered when using shorelines as reference points for measuring vertical crustal movements.

  6. Effect of static porosity fluctuations on reactive transport in a porous medium

    Science.gov (United States)

    L'Heureux, Ivan

    2018-02-01

    Reaction-diffusive transport phenomena in porous media are ubiquitous in engineering applications, biological and geochemical systems. The porosity field is usually random in space, but most models consider the porosity field as a well-defined deterministic function of space and time and ignore the porosity fluctuations. They use a reaction-diffusion equation written in terms of an average porosity and average concentration fields. In this contribution, we treat explicitly the effect of spatial porosity fluctuations on the dynamics of a concentration field for the case of a one-dimensional reaction-transport system with nonlinear kinetics. Three basic assumptions are considered. (i) The porosity fluctuations are assumed to have Gaussian properties and an arbitrary variance; (ii) we assume that the noise correlation length is small compared to the relevant macroscopic length scale; (iii) and we assume that the kinetics of the reactive term in the equations for the fluctuations is a self-consistently determined constant. Elimination of the fluctuating part of the concentration field from the dynamics leads to a renormalized equation involving the average concentration field. It is shown that the noise leads to a renormalized (generally smaller) diffusion coefficient and renormalized kinetics. Within the framework of the approximations used, numerical simulations are in agreement with our theory. We show that the porosity fluctuations may have a significant effect on the transport of a reactive species, even in the case of a homogeneous average porosity.

  7. Elliptic Flow, Initial Eccentricity and Elliptic Flow Fluctuations in Heavy Ion Collisions at RHIC

    Science.gov (United States)

    Nouicer, Rachid; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holzman, B.; Iordanova, A.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    2008-12-01

    We present measurements of elliptic flow and event-by-event fluctuations established by the PHOBOS experiment. Elliptic flow scaled by participant eccentricity is found to be similar for both systems when collisions with the same number of participants or the same particle area density are compared. The agreement of elliptic flow between Au+Au and Cu+Cu collisions provides evidence that the matter is created in the initial stage of relativistic heavy ion collisions with transverse granularity similar to that of the participant nucleons. The event-by-event fluctuation results reveal that the initial collision geometry is translated into the final state azimuthal particle distribution, leading to an event-by-event proportionality between the observed elliptic flow and initial eccentricity.

  8. Theory of electromagnetic fluctuations for magnetized multi-species plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Roberto E., E-mail: roberto.navarro@ug.uchile.cl; Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Araneda, Jaime [Departamento de Física, Universidad de Concepción, Concepción 4070386 (Chile); Moya, Pablo S. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Department of Physics, Catholic University of America, Washington, D. C. 20064 (United States); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Valdivia, Juan A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro de Estudios Interdisciplinarios Básicos y Aplicados en Complejidad, CEIBA complejidad, Bogotá (Colombia)

    2014-09-15

    Analysis of electromagnetic fluctuations in plasma provides relevant information about the plasma state and its macroscopic properties. In particular, the solar wind persistently sustains a small but detectable level of magnetic fluctuation power even near thermal equilibrium. These fluctuations may be related to spontaneous electromagnetic fluctuations arising from the discreteness of charged particles. Here, we derive general expressions for the plasma fluctuations in a multi-species plasma following arbitrary distribution functions. This formalism, which generalizes and includes previous works on the subject, is then applied to the generation of electromagnetic fluctuations propagating along a background magnetic field in a plasma of two proton populations described by drifting bi-Maxwellians.

  9. Model of cancer growth affected by irradiation. Effect of fluctuating intensity of the dose

    International Nuclear Information System (INIS)

    Gudowska-Nowak, E.

    1984-01-01

    The behaviour of a biological model system which describes the growth of a cancer cell population in the presence of external irradiation is studied. The effect of randomly fluctuating source of radiation is analysed and its influence on cancer cell extinction is presented. The main stress is put on the biological significance of random fluctuations which seem to favour rejection of a tumor. (author)

  10. Non-linear Membrane Properties in Entorhinal Cortical Stellate Cells Reduce Modulation of Input-Output Responses by Voltage Fluctuations

    Science.gov (United States)

    Fernandez, Fernando R.; Malerba, Paola; White, John A.

    2015-01-01

    The presence of voltage fluctuations arising from synaptic activity is a critical component in models of gain control, neuronal output gating, and spike rate coding. The degree to which individual neuronal input-output functions are modulated by voltage fluctuations, however, is not well established across different cortical areas. Additionally, the extent and mechanisms of input-output modulation through fluctuations have been explored largely in simplified models of spike generation, and with limited consideration for the role of non-linear and voltage-dependent membrane properties. To address these issues, we studied fluctuation-based modulation of input-output responses in medial entorhinal cortical (MEC) stellate cells of rats, which express strong sub-threshold non-linear membrane properties. Using in vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output responses by random voltage fluctuations in stellate cells is significantly limited. In stellate cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages mediated by Na+ conductance activation limits the ability of fluctuations to elicit spikes. Similarly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for the exponential term that matches stellate cell membrane properties, a low degree of fluctuation-based modulation of input-output responses can be attained. These results demonstrate that fluctuation-based modulation of input-output responses is not a universal feature of neurons and can be significantly limited by subthreshold voltage-gated conductances. PMID:25909971

  11. Plasma diffusion due to magnetic field fluctuations

    International Nuclear Information System (INIS)

    Okuda, H.; Lee, W.W.; Lin, A.T.

    1979-01-01

    Plasma diffusion due to magnetic field fluctuations has been studied in two dimensions for a plasma near thermal equilibrium and when the fluctuations are suprathermal. It is found that near thermal equilibrium electron diffusion varies as B -2 when the collisionless skin depth is greater than the thermal electron gyroradius and is generally smaller than the diffusion due to collisions or electrostatic fluctuations for a low-β plasma. When the suprathermal magnetic fluctuation exists because of macroscopic plasma currents, electron diffusion is enhanced due to the coalescence of current filaments and magnetic islands. Magnetic field energy is found to condense to the longest wavelength available in the system and stays there longer than the electron diffusion time scale

  12. Fluctuation microscopy: a probe of medium range order

    International Nuclear Information System (INIS)

    Treacy, M M J; Gibson, J M; Fan, L; Paterson, D J; McNulty, I

    2005-01-01

    Fluctuation microscopy is a hybrid diffraction-imaging technique that detects medium range order in amorphous materials by examining spatial fluctuations in coherent scattering. These fluctuations appear as speckle in images and diffraction patterns. The volume of material contributing to the speckle is determined by the point-spread function (the resolution) of the imaging optics and the sample thickness. The spatial periodicities being probed are related to the diffraction vector. Statistical analysis of the speckle allows the random and non-random (ordered) contributions to be discriminated. The image resolution that gives the maximum speckle contrast, as determined by the normalized variance of the image intensity, is determined by the characteristic length scale of the ordering. Because medium range ordering length scales can extend out to about the tenth coordination shell, fluctuation microscopy tends to be a low image resolution technique. This review presents the kinematical scattering theory underpinning fluctuation microscopy and a description of fluctuation electron microscopy as it has been employed in the transmission electron microscope for studying amorphous materials. Recent results using soft x-rays for studying nanoscale materials are also presented. We summarize outstanding issues and point to possible future directions for fluctuation microscopy as a technique

  13. Fluctuations measured by flush mounted versus proud divertor Langmuir probes - why are they different?

    Science.gov (United States)

    Garcia, O. E.; Kuang, A. Q.; Brunner, D.; Labombard, B.; Kube, R.

    2017-10-01

    A flush-mounted, toroidally-elongated, and field-aligned divertor `rail' Langmuir probe array was installed in Alcator C-Mod in 2015. This geometry is heat flux tolerant and effectively mitigates sheath expansion effects down to incident field line angles of 0.5 degree. Further complications have arisen that cannot be explained by sheath-expansion. In particular, the `rail' probe geometry measures significantly higher plasma fluctuation levels in the common flux region compared to traditional proud probes, whereas they are similar in the private flux zone. In some instances, the amplitudes of ion saturation current fluctuations normalized to the mean are a factor of 2 higher; probability distribution functions correspondingly record large amplitude events that are not seen by the proud probes. This discrepancy also appears to depend on divertor plasma regime. For example, fluctuations become similar near the strikepoint when the electron temperature is low. To ensure that these discrepancies were not due to perturbations caused by the voltage bias or currents collected by the probes, the two Langmuir probe systems were left to `float' and the fluctuation statistics analyzed. Yet, even in this non-perturbative situation, there exist clear differences in the fluctuation characteristics. The raises two questions: how does the probe geometry affect plasma fluctuations measurements and what are the true plasma fluctuations experienced by the divertor surface? Supported by USDoE awards DE-FC02-99ER54512.

  14. Fluctuations in a system depending on several random parameters. Application to reactors (1962); Fluctuations d'un systeme dependant de plusieurs parametres aleatoires. Application aux reacteurs nucleaires (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Blaquiere, A [Faculte des Sciences de Paris, 75 (France); Pachowska, R [Universite Technique de Varsovie (Poland)

    1962-07-01

    We have previously developed a method for studying neutronic fluctuations in nuclear reactors using the analogy between the behaviour of a reactor and that of certain common radioelectric circuits. The fluctuations may then be calculated by introducing into the circuit a suitable noise source. By this method we have been able to consider the overall fluctuations in a particularly simple form and we have provided a physical significance for certain results obtained more laboriously by other methods. The object of the present report is to generalise this method and in particular to extend it to the case of a reactor having a cellular structure and to apply it to fluctuations within a cell. It is thus shown that the fluctuations in a cell are the resultant of two terms: - a rapidly evolving Poissonian noise, not related to the overall fluctuations; - a slowly evolving noise, when the reactor is not too far from criticality, which is related to the overall fluctuations. The first term arises from a rapid 'ordering' of the system, during which time the cells come mutually into equilibrium. The second term is due to the coordinated evolution of all the cells, after the end of the first transitory phase. The conclusions reached show that it would be useful to complete the study with an analysis of non-linear phenomena which can considerably influence the transitory behaviour of the cells during the initial pre-equilibrium phase. This report also Stresses the relationship of the new method to the old methods. It tends also to place pile fluctuation theory in a more general framework, that of the fluctuations of a system depending on several random parameters; from this point of view, the method could easily be transposed and adapted to the study of other physical problems of this type. (authors) [French] Nous avons precedemment developpe une methode d'etude des fluctuations neutroniques des reacteurs nucleaires mettant a profit l'analogie entre le comportement d

  15. Adaptation to Temporally Fluctuating Environments by the Evolution of Maternal Effects.

    Directory of Open Access Journals (Sweden)

    Snigdhadip Dey

    2016-02-01

    Full Text Available All organisms live in temporally fluctuating environments. Theory predicts that the evolution of deterministic maternal effects (i.e., anticipatory maternal effects or transgenerational phenotypic plasticity underlies adaptation to environments that fluctuate in a predictably alternating fashion over maternal-offspring generations. In contrast, randomizing maternal effects (i.e., diversifying and conservative bet-hedging, are expected to evolve in response to unpredictably fluctuating environments. Although maternal effects are common, evidence for their adaptive significance is equivocal since they can easily evolve as a correlated response to maternal selection and may or may not increase the future fitness of offspring. Using the hermaphroditic nematode Caenorhabditis elegans, we here show that the experimental evolution of maternal glycogen provisioning underlies adaptation to a fluctuating normoxia-anoxia hatching environment by increasing embryo survival under anoxia. In strictly alternating environments, we found that hermaphrodites evolved the ability to increase embryo glycogen provisioning when they experienced normoxia and to decrease embryo glycogen provisioning when they experienced anoxia. At odds with existing theory, however, populations facing irregularly fluctuating normoxia-anoxia hatching environments failed to evolve randomizing maternal effects. Instead, adaptation in these populations may have occurred through the evolution of fitness effects that percolate over multiple generations, as they maintained considerably high expected growth rates during experimental evolution despite evolving reduced fecundity and reduced embryo survival under one or two generations of anoxia. We develop theoretical models that explain why adaptation to a wide range of patterns of environmental fluctuations hinges on the existence of deterministic maternal effects, and that such deterministic maternal effects are more likely to contribute to

  16. Denitrifying Bioreactors Resist Disturbance from Fluctuating Water Levels

    Directory of Open Access Journals (Sweden)

    Sarah K. Hathaway

    2017-06-01

    Full Text Available Nitrate can be removed from wastewater streams, including subsurface agricultural drainage systems, using woodchip bioreactors to promote microbial denitrification. However, the variations in water flow in these systems could make reliable performance from this microbially-mediated process a challenge. In the current work, the effects of fluctuating water levels on nitrate removal, denitrifying activity, and microbial community composition in laboratory-scale bioreactors were investigated. The performance was sensitive to changing water level. An average of 31% nitrate was removed at high water level and 59% at low water level, despite flow adjustments to maintain a constant theoretical hydraulic retention time. The potential activity, as assessed through denitrifying enzyme assays, averaged 0.0008 mg N2O-N/h/dry g woodchip and did not show statistically significant differences between reactors, sampling depths, or operational conditions. In the denitrifying enzyme assays, nitrate removal consistently exceeded nitrous oxide production. The denitrifying bacterial communities were not significantly different from each other, regardless of water level, meaning that the denitrifying bacterial community did not change in response to disturbance. The overall bacterial communities, however, became more distinct between the two reactors when one reactor was operated with periodic disturbances of changing water height, and showed a stronger effect at the most severely disturbed location. The communities were not distinguishable, though, when comparing the same location under high and low water levels, indicating that the communities in the disturbed reactor were adapted to fluctuating conditions rather than to high or low water level. Overall, these results describe a biological treatment process and microbial community that is resistant to disturbance via water level fluctuations.

  17. Coherent density fluctuation model as a local-scale limit to ATDHF

    International Nuclear Information System (INIS)

    Antonov, A.N.; Petkov, I.Zh.; Stoitsov, M.V.

    1985-04-01

    The local scale transformation method is used for the construction of an Adiabatic Time-Dependent Hartree-Fock approach in terms of the local density distribution. The coherent density fluctuation relations of the model result in a particular case when the ''flucton'' local density is connected with the plane wave determinant model function be means of the local-scale coordinate transformation. The collective potential energy expression is obtained and its relation to the nuclear matter energy saturation curve is revealed. (author)

  18. Non-equilibrium fluctuation-induced interactions

    International Nuclear Information System (INIS)

    Dean, David S

    2012-01-01

    We discuss non-equilibrium aspects of fluctuation-induced interactions. While the equilibrium behavior of such interactions has been extensively studied and is relatively well understood, the study of these interactions out of equilibrium is relatively new. We discuss recent results on the non-equilibrium behavior of systems whose dynamics is of the dissipative stochastic type and identify a number of outstanding problems concerning non-equilibrium fluctuation-induced interactions.

  19. Longitudinal fluctuations and decorrelation of anisotropic flow

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Long-Gang [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Petersen, Hannah [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Qin, Guang-You [Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Roy, Victor [Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Wang, Xin-Nian [Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Nuclear Science Division MS70R0319, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-12-15

    We investigate the decorrelation of 2nd and 3rd order anisotropic flow for charged particles in two different pseudo rapidity (η) windows by varying the pseudo rapidity gap, in an event-by-event (3+1)D ideal hydrodynamic model, with fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. We visualize the parton distribution at initial state for Pb+Pb collisions at LHC and Au+Au collisions at RHIC, and demonstrate the longitudinal fluctuations originating from the asymmetry between forward and backward going participants, the fluctuations of the string length and the fluctuations due to finite number of partons at different beam energies. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation than at LHC, indicating larger longitudinal fluctuations at lower beam energies.

  20. Edge fluctuation studies in Heliotron J

    International Nuclear Information System (INIS)

    Mizuuchi, T.; Chechkin, V.V.; Ohashi, K.; Sorokovoy, E.L.; Chechkin, A.V.; Gonchar, V.Yu.; Takahashi, K.; Kobayashi, S.; Nagasaki, K.; Okada, H.; Yamamoto, S.; Sano, F.; Kondo, K.; Nishino, N.; Kawazome, H.; Shidara, H.; Kaneko, S.; Fukagawa, Y.; Morita, Y.; Nakazawa, S.; Nishio, S.; Tsuboi, S.; Yamada, M.

    2005-01-01

    Low frequency and small-scale fluctuations of density and potential near the last closed flux surface are investigated by using Langmuir probes for the second harmonic ECH plasmas in a helical-axis heliotron device, Heliotron J. The existence of a plasma layer with a radial electric field shear was indicated near the last closed flux surface. Near this layer, the reversal of phase velocity and de-correlation of the fluctuations were observed. On the other hand, it is suggested that a considerable fraction of the fluctuation induced particle flux is carried off through the intermittent events. Preliminary analyses to classify the PDFs of the ion-saturation current fluctuation as stable Levy distributions demonstrate that the Levy index decreases from the inner to the outer region of edge plasma, suggesting that the PDFs near the boundary region of Heliotron J are nearly Gaussian, whereas at the outer regions of plasma they become strongly non-Gaussian

  1. Effects of limited spatial resolution on fluctuation measurements

    International Nuclear Information System (INIS)

    Bravenec, R.V.; Wootton, A.J.

    1994-01-01

    The finite sample volumes of fluctuation diagnostics distort the measurements not only by averaging the gross fluctuation parameters over the sample volumes, but more importantly (except for collective scattering), by attenuating the shorter wavelength components. In this work the response of various sample volume sizes and orientations to a model fluctuation power spectrum S(k,ω) are examined. The model spectrum is fashioned after observations by far-infrared scattering on TEXT. The sample-volume extent in the direction of propagation of the turbulence is shown to be the most critical - not only does it reduce the measured fluctuation amplitude and correlation length (as does an extent perpendicular to the propagation direction), but also reduces the measured mean frequency and increases the apparent average phase velocity of the fluctuations. The differing sizes, shapes, and orientations of the sample volumes among fluctuation diagnostics, as well as deliberate variations within a single diagnostic, provide information on the form of the underlying turbulence and can be exploited to refine the model

  2. Studies of Fluctuation Processes in Nuclear Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ayik, Sakir [Tennessee Technological Univ., Cookeville, TN (United States). Dept. of Physics

    2016-04-14

    The standard one-body transport approaches have been extensively applied to investigate heavy-ion collision dynamics at low and intermediate energies. At low energies the approach is the mean-field description of the time-dependent Hartree-Fock (TDHF) theory. At intermediate energies the approach is extended by including a collision term, and its application has been carried out mostly in the semi-classical framework of the Boltzmann-Uhling-Uhlenbeck (BUU) model. The standard transport models provide a good understanding of the average properties of the collision dynamics in terms of the effective interactions in both low and intermediate energies. However, the standard models are inadequate for describing the fluctuation dynamics of collective motion at low energies and disassembling of the nuclear system into fragments at intermediate energies resulting from the growth of density fluctuations in the spinodal region. Our tasks have been to improve the standard transport approaches by incorporating fluctuation mechanisms into the description. There are mainly two different mechanisms for fluctuations: (i) Collisional fluctuations generated by binary nucleon collisions, which provide the dominant mechanism at intermediate energies, and (ii) One-body mechanism or mean-field fluctuations, which is the dominant mechanism at low energies. In the first part of our project, the PI extended the standard transport model at intermediate energies by incorporating collisional mechanism according to the “Generalized Langevin Description” of Mori formalism. The PI and his collaborators carried out a number of applications for describing dynamical mechanism of nuclear multi fragmentations, and nuclear collective response in the semi-classical framework of the approach, which is known as the Boltzmann-Langevin model. In the second part of the project, we considered dynamical description at low energies. Because of the effective Pauli blocking, the collisional dissipation and

  3. Charge Fluctuations of an Uncharged Black Hole

    OpenAIRE

    Schiffer, Marcelo

    2016-01-01

    In this paper we calculate charge fluctuations of a Schwarzschild black-hole of mass $M$ confined within a perfectly reflecting cavity of radius R in thermal equilibrium with various species of radiation and fermions . Charge conservation is constrained by a Lagrange multiplier (the chemical potential). Black hole charge fluctuations are expected owing to continuous absorption and emission of particles by the black hole. For black holes much more massive than $10^{16} g$ , these fluctuations ...

  4. Revealing Abrupt and Spontaneous Ruptures of Protein Native Structure under picoNewton Compressive Force Manipulation.

    Science.gov (United States)

    Chowdhury, S Roy; Cao, Jin; He, Yufan; Lu, H Peter

    2018-03-27

    Manipulating protein conformations for exploring protein structure-function relationship has shown great promise. Although protein conformational changes under pulling force manipulation have been extensively studied, protein conformation changes under a compressive force have not been explored quantitatively. The latter is even more biologically significant and relevant in revealing protein functions in living cells associated with protein crowdedness, distribution fluctuations, and cell osmotic stress. Here we report our experimental observations on abrupt ruptures of protein native structures under compressive force, demonstrated and studied by single-molecule AFM-FRET spectroscopic nanoscopy. Our results show that the protein ruptures are abrupt and spontaneous events occurred when the compressive force reaches a threshold of 12-75 pN, a force amplitude accessible from thermal fluctuations in a living cell. The abrupt ruptures are sensitive to local environment, likely a general and important pathway of protein unfolding in living cells.

  5. Temperature fluctuations in a LiNbO 3 melt during crystal growth

    Science.gov (United States)

    Suzuki, Tetsuro

    2004-10-01

    Variations in temperature induced by forced convection on the surface of a LiNbO3 melt during crystal growth have been studied. Temperature measurements on the melt surface of single crystals growing (∅ 50 mm) at rotation rates of 15-40 rpm on an RF-heated Czochralski puller has revealed that the melt surface continuously alternates between a steady and unsteady state of flow. This was attributed to the intermittently turbulent flow mode at intermediate rotation rates. The fluctuation period is thought to depend on the thickness of its boundary layer. The boundary layer varies in thickness due to the melt flow, which stops as the interface moves toward the crystal and resumes once the interface reverts to its former position. By contrast, at above 60 rpm, the melt surface temperature drops without fluctuation, indicating that turbulent flow is dominant at faster rotation rates.

  6. Plasma fluctuations and confinement of fusion reaction products

    International Nuclear Information System (INIS)

    Coppi, B.; Pegoraro, F.

    1981-01-01

    The interaction between the fluctuations that can be excited in a magnetically confined plasma and the high-energy-particle population produced by fusion reactions is analyzed in view of its relevance to the process of thermonuclear ignition. The spectrum of the perturbations that, in the absence of fusion reaction products, would be described by the incompressible ideal magnetohydrodynamic approximation is studied considering finite value of the plasma pressure relative ot the magnetic pressure. The combined effects of the magnetic field curvature and shear are taken into account and the relevant spectrum is shown to consist of a continuous portion, that could be identified as a mixture of shear-Alfven and interchange oscillations, and a discrete unstable part corresponding to the so-called ballooning modes. The rate of diffusion of the fusion reaction products induced by oscillations in the continuous part of the spectrum, as estimated from the appropriate quasi-linear theory, is found to be significantly smaller than could be expected if normal modes (i.e., nonconvective solutions) were excited. However, a relatively wide intermediate region is identified where opalescent fluctuations, capable of achieving significant amplitudes and corresponding to a quasi-discrete spectrum, can be excited

  7. Quantum fluctuations

    International Nuclear Information System (INIS)

    Reynaud, S.; Giacobino, S.; Zinn-Justin, J.

    1997-01-01

    This course is dedicated to present in a pedagogical manner the recent developments in peculiar fields concerned by quantum fluctuations: quantum noise in optics, light propagation through dielectric media, sub-Poissonian light generated by lasers and masers, quantum non-demolition measurements, quantum electrodynamics applied to cavities and electrical circuits involving superconducting tunnel junctions. (A.C.)

  8. Multi moment cancellation of participant fluctuations

    OpenAIRE

    Begun, Viktor; Mackowiak-Pawlowska, Maja

    2017-01-01

    We summarize the new method for the correction of participant fluctuations in high energy nucleus-nucleus collisions. It allows to estimate a fluctuation baseline in comparison to a useful signal. In particular cases of a weak signal compared to baseline, it allows to cancel the baseline contribution from participants.

  9. Impact of macrozoobenthic bioturbation and wind fluctuation interactions on net methylmercury in freshwater lakes.

    Science.gov (United States)

    Wang, Peifang; Yao, Yu; Wang, Chao; Hou, Jun; Qian, Jin; Miao, Lingzhan

    2017-11-01

    The methylmercury (MeHg) as the toxic fractions has presented significant threats to biota in freshwater ecosystems. Hg methylation process is demonstrated to be manipulated by biota process (benthic disturbance and algae bloom existence) as well as the abiotic influence (wind fluctuation and illumination intensity) in freshwater ecosystems. However, the mechanisms influencing Hg methylation are still unclear, and the coupled influences of the biotic and abiotic process with the shifts in variation on methylmercury remain unexplored. Accordingly, an annular flume experiment which simulated the freshwater ecosystem, was conducted for 108 days to examine the influences of typical disturbance by chironomid larvae and wind fluctuations on MeHg variation in sediment profiles. The in-situ, passive sampler technique of revealing diffusive gradients in thin films (DGT) encompassed the special resin, based on referenced extraction and coloration-computer imaging densitometry, were employed to obtain labile MeHg, Fe, and S concentrations at high resolution. The results indicate that larval bioturbation during the initial period of the experiment could diminish bioavailable MeHg concentrations and change the diffusion direction of MeHg fluxes. However, this inhibitive effect on MeHg concentrations ceased with larvae eclosion. Compared to bioturbation, wind fluctuation exerted slow but sustained inhibition on MeHg release. Furthermore, the eight parameters (dissolved organic carbon (DOC), DO, labile Fe and S concentrations, pH, sulfate-reducing bacteria (SRB) abundance in sediment, oxidation-reduction potential (ORP) and EC) could explain more of variation in MeHg concentrations which indicated by the canonical correspondence analysis. And these eight parameters manifest higher explanatory power for MeHg distributed in newly formed sediment. More notably, the comparison results of the multiple and simple regression directly demonstrated the DOC was the fundamental and robust

  10. FLUCTUATING JAUNDICE IN THE ADENOCARCINOMA OF THE AMPULLA OF VATER: a classic sign or an exception?

    Science.gov (United States)

    Alves, José Roberto; Amico, Enio Campos; Souza, Dyego Leandro Bezerra de; Oliveira, Patrick Vanttinny Vieira de; Maranhão, Ícaro Godeiro de Oliveira

    2015-01-01

    Some authors consider the fluctuating jaundice as a classic sign of the adenocarcinoma of the ampulla of Vater. Assessing the frequency of fluctuating jaundice in their forms of its depiction in the patients with adenocarcinoma of the ampulla of Vater. Observational and retrospective study, conducted through analyses of medical records from patients subjected to pancreatic cephalic resections between February 2008 and July 2013. The pathological examination of the surgical specimen was positive to adenocarcinoma of the ampulla of Vater. Concepts and differences on clinical and laboratory fluctuating jaundice were standardized. It was subdivided into type A and type B laboratory fluctuating jaundice. Twenty patients were selected. One of them always remained anicteric, 11 patients developed progressive jaundice, 2 of them developed clinical and laboratory fluctuating jaundice, 5 presented only laboratory fluctuating jaundice and one did not present significant variations on total serum bilirubin levels. Among the seven patients with fluctuating jaundice, two were classified as type A, one as type B and four were not classified due to lack information. Finally, progressive jaundice was the prevailing presentation form in these patients (11 cases). This series of cases suggested that clinical fluctuating jaundice is a uncommon signal in adenocarcinoma of the ampulla of Vater.

  11. Phase space fluctuations and dynamics of fluctuations of collective variables

    Energy Technology Data Exchange (ETDEWEB)

    Benhassine, B.; Farine, M.; Idier, D.; Remaud, B.; Sebille, F. (Lab. de Physique Nucleaire, IN2P3/CNRS, 44 - Nantes (France) Nantes Univ., 44 (France)); Hernandez, E.S. (Dept. de Fisica, Ciudad Universitaria, Buenos Aires (Argentina))

    1992-08-03

    Within the framework of theoretical approaches based on stochastic transport equation of one-body distribution function, a numerical treatment of the fluctuations of collective observables is studied and checked in comparison with analytical results either at equilibrium or close to it. (orig.).

  12. Phase space fluctuations and dynamics of fluctuations of collective variables

    International Nuclear Information System (INIS)

    Benhassine, B.; Farine, M.; Idier, D.; Remaud, B.; Sebille, F.; Hernandez, E.S.

    1992-01-01

    Within the framework of theoretical approaches based on stochastic transport equation of one-body distribution function, a numerical treatment of the fluctuations of collective observables is studied and checked in comparison with analytical results either at equilibrium or close to it. (orig.)

  13. Fluctuation conductivity of thin superconductive vanadium films

    International Nuclear Information System (INIS)

    Dmitrenko, I.M.; Sidorenko, A.S.; Fogel, N.Y.

    1982-01-01

    Resistive transitions into the superconductive state are studied in thin [d >T/sub c/ the experimental data on the excess conductivity of the films agree qualitatively and quantitively with Aslamazov--Larkin theory. There is no Maki--Thompson contribution to fluctuation conductivity. Near T/sub c/ the excess conductivity sigma' changes exponentially with temperature in accordance with the predictions of the theory of the critical fluctuations of the order parameter. The values of the effective charge carrier mass defined from data on sigma' for the low fluctuation and critical fluctuation regions differ markedly. This difference is within the spread of effective masses for various charge carrier groups already known for vanadium. Causes of the difference in resistive behavior for the regions T >T/sub c/ are considered

  14. Fluctuating selection on basal metabolic rate.

    Science.gov (United States)

    Nilsson, Johan F; Nilsson, Jan-Åke

    2016-02-01

    BMR (Basal metabolic rate) is an important trait in animal life history as it represents a significant part of animal energy budgets. BMR has also been shown to be positively related to sustainable work rate and maximal thermoregulatory capacity. To this date, most of the studies have focused on the causes of interspecific and intraspecific variation in BMR, and fairly little is known about the fitness consequences of different metabolic strategies. In this study, we show that winter BMR affects local survival in a population of wild blue tits (Cyanistes caeruleus), but that the selection direction differs between years. We argue that this fluctuating selection is probably a consequence of varying winter climate with a positive relation between survival and BMR during cold and harsh conditions, but a negative relation during mild winters. This fluctuating selection can not only explain the pronounced variation in BMR in wild populations, but will also give us new insights into how energy turnover rates can shape the life-history strategies of animals. Furthermore, the study shows that the process of global warming may cause directional selection for a general reduction in BMR, affecting the general life-history strategy on the population level.

  15. Event-by-Event Elliptic Flow Fluctuations from PHOBOS

    Science.gov (United States)

    Wosiek, B.; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Richardson, E.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Woźniak, K.; Wyngaardt, S.; Wysłouch, B.

    2009-04-01

    Recently PHOBOS has focused on the study of fluctuations and correlations in particle production in heavy-ion collisions at the highest energies delivered by the Relativistic Heavy Ion Collider (RHIC). In this report, we present results on event-by-event elliptic flow fluctuations in (Au+Au) collisions at sqrt {sNN}=200 GeV. A data-driven method was used to estimate the dominant contribution from non-flow correlations. Over the broad range of collision centralities, the observed large elliptic flow fluctuations are in agreement with the fluctuations in the initial source eccentricity.

  16. Number fluctuations of cold, spatially split bosonic objects

    International Nuclear Information System (INIS)

    Sakmann, Kaspar; Streltsov, Alexej I.; Cederbaum, Lorenz S.; Alon, Ofir E.

    2011-01-01

    We investigate the number fluctuations of spatially split many-boson systems employing a theorem about the maximally and minimally attainable variances of an observable. The number fluctuations of many-boson systems are given for different numbers of lattice sites and both mean-field and many-body wave functions. It is shown which states maximize the particle number fluctuations, both in lattices and double wells. The fragmentation of the states is discussed, and it is shown that the number fluctuations of some fragmented states are identical to those of fully condensed states.

  17. Quantum fluctuations in the bag and nucleon observables

    International Nuclear Information System (INIS)

    Maxwell, O.V.; Vento, V.

    1982-03-01

    A time-dependent, perturbative formalism is developed to describe the effect of quantum fluctuations of the quark fields inside a hadronic bag on physical observables. This formalism differs from previous ones in that (1) all contributions to second order in the QCD coupling constant are generated systematically and included in the numerical treatment; (2) the intermediate sums are carried out over a full set of states consistent with parity and SU(2) coupling rules. After removing the logarithmic divergences arising from the intermediate state sums in the 1-body terms and applying a finite renormalization, the second order fluctuation corrections to several proton and neutron observables are computed. The results obtained are significantly different from those obtained in earlier calculations. In no case considered are the calculated corrections sufficient to account for existing discrepancies between empirical values and lower order hadronic bag results for nucleon observables

  18. Annual Precipitation Fluctuation and Spatial Differentiation Characteristics of the Horqin Region

    Directory of Open Access Journals (Sweden)

    Liangxu Liu

    2017-01-01

    Full Text Available Precipitation is the main water source for vegetation survival in arid and semi-arid areas. However, previous studies always focus on the effects of precipitation in different time scales, but ignore the effects of precipitation in different spatial scales. To further study the effects of precipitation fluctuation in different spatial scales, we used the wavelet analysis method to analyze its temporal and spatial change based on data from eighteen meteorological stations during 1961–2015 in Horqin region. Results showed that: (1 from the overall tendency of precipitation changes, the precipitation inter-annual variations in Horqin region had the tendency of gradually decreasing from the southeast (District IV to the northwest; (2 the precipitation anomalies of District I–IV between 1960 and 1980 were small and approximate to the normal value; (3 in the time scale of 23–32 years, the cyclical fluctuations were very significant and the annual precipitation underwent two cyclical fluctuations from a period of low precipitation to a period of high precipitation; and (4 as results of analyzing the spatial wavelet variance of sub-region, the main cycle of precipitation in District I, District II and District III was between 10 and 11 years, while the main cycle of precipitation in District IV was 25 years. The main conclusions include the following. (1 This region tended to be arid, and the precipitation gradually decreased from the southeast (District IV to northwest (District I. (2 The influence of spatial differentiation characteristics on precipitation fluctuation in this region was cyclical fluctuation, which gradually decreased from the southeast to the northwest. The length of the cyclical change period gradually shortened. In the first main cycle, whose annual precipitation changes were most significant, the changing characteristic was District IV and District I decreased from 25 years to 10 years. (3 Predicated from the cyclical

  19. Size effects in many-valley fluctuations in semiconductors

    International Nuclear Information System (INIS)

    Sokolov, V.N.; Kochelap, V.A.

    1995-08-01

    We present the results of theoretical investigations of nonhomogeneous fluctuations in submicron active regions of many-valley semiconductors with equivalent valleys(Ge, Si-type), where the dimension 2d of the region is comparable to or less than the intervalley diffusion relaxation length L iv . It is shown that for arbitrary orientations of the valley axes (the crystal axes) with respect to lateral sample surfaces, the fluctuation spectra depend on the bias voltage applied to the layer in the region of weak nonheating electric fields. The new physical phenomenon is reported: the fluctuation spectra depend on the sample thickness, with 2d iv the suppression of fluctuations arises for fluctuation frequencies ω -1 iv , τ -1 iv is the characteristic intervalley relaxation time. (author). 43 refs, 5 figs

  20. The effects of observational correlated noises on multifractal detrended fluctuation analysis

    Science.gov (United States)

    Gulich, Damián; Zunino, Luciano

    2012-08-01

    We have numerically investigated the effects that observational correlated noises have on the generalized Hurst exponents, h(q), estimated by using the multifractal generalization of detrended fluctuation analysis (MF-DFA). More precisely, artificially generated stochastic binomial multifractals with increased amount of colored noises were analyzed via MF-DFA. It has been recently shown that for moderate additions of white noise, the generalized Hurst exponents are significantly underestimated for qeffects of additive noise, short- term memory and periodic trends, Physica A 390 (2011) 2480-2490]. In this paper, we have found that h(q) with q≥2 are also affected when correlated noises are considered. This is due to the fact that the spurious correlations influence the scaling behaviors associated to large fluctuations. The results obtained are significant for practical situations, where noises with different correlations are inherently present.

  1. Soil phosphorus redistribution among iron-bearing minerals under redox fluctuation

    Science.gov (United States)

    Lin, Y.; Bhattacharyya, A.; Campbell, A.; Nico, P. S.; Pett-Ridge, J.; Silver, W. L.

    2016-12-01

    Phosphorus (P) is a key limiting nutrient in tropical forests that governs primary production, litter decomposition, and soil respiration. A large proportion of P in these highly weathered soils is bound to short-range ordered or poorly crystalline iron (Fe) minerals. It is well-documented that these Fe minerals are redox-sensitive; however, little is known about how Fe-redox interactions affect soil P turnover. We evaluated the impacts of oxic/anoxic fluctuation on soil P fractions and reactive Fe species in a laboratory incubation experiment. Soils from a humid tropical forest were amended with plant biomass and incubated for up to 44 days under four redox regimes: static oxic, static anoxic, high frequency fluctuating (4-day oxic/4-day anoxic), and low frequency fluctuating (8-day oxic/4-day anoxic). We found that the static anoxic treatment induced a 10-fold increase in Fe(II) (extracted by hydrochloric acid) and a 1.5-fold increase in poorly crystalline Fe (extracted by ammonium oxalate), suggesting that anoxic conditions drastically increased Fe(III) reduction and the formation of amorphous Fe minerals. Static anoxic conditions also increased Fe-bound P (extracted by sodium hydroxide) and increased the oxalate-extractable P by up to 110% relative to static oxic conditions. In two fluctuating treatments, Fe(II) and oxalate-extractable Fe and P were all increased by short-term reduction events after 30 minutes, but fell back to their initial levels after 3 hours. These results suggest that reductive dissolution of Fe(III) minerals mobilized a significant amount of P; however, this P could be rapidly re-adsorbed. Furthermore, bioavailable P extracted by sodium bicarbonate solution was largely unaffected by redox regimes and was only increased by static anoxic conditions after 20 days. Overall, our data demonstrate that a significant amount of soil P may be liberated and re-adsorbed by Fe minerals during redox fluctuation. Even though bioavailable P appears to be

  2. Simultaneous Microwave Imaging System for Density and Temperature Fluctuation Measurements on TEXTOR

    International Nuclear Information System (INIS)

    Park, H.; Mazzucato, E.; Munsat, T.; Domier, C.W.; Johnson, M.; Luhmann, N.C. Jr.; Wang, J.; Xia, Z.; Classen, I.G.J.; Donne, A.J.H.; Pol, M.J. van de

    2004-01-01

    Diagnostic systems for fluctuation measurements in plasmas have, of necessity, evolved from simple 1-D systems to multi-dimensional systems due to the complexity of the MHD and turbulence physics of plasmas illustrated by advanced numerical simulations. Using the recent significant advancements in millimeter wave imaging technology, Microwave Imaging Reflectometry (MIR) and Electron Cyclotron Emission Imaging (ECEI), simultaneously measuring density and temperature fluctuations, are developed for TEXTOR. The MIR system was installed on TEXTOR and the first experiment was performed in September, 2003. Subsequent MIR campaigns have yielded poloidally resolved spectra and assessments of poloidal velocity. The new 2-D ECE Imaging system (with a total of 128 channels), installed on TEXTOR in December, 2003, successfully captured a true 2-D images of Te fluctuations of m=1 oscillation (''sawteeth'') near the q ∼ 1 surface for the first time

  3. Mercury exposure may influence fluctuating asymmetry in waterbirds

    Science.gov (United States)

    Herring, Garth; Eagles-Smith, Collin A.; Ackerman, Joshua T.

    2017-01-01

    Variation in avian bilateral symmetry can be an indicator of developmental instability in response to a variety of stressors, including environmental contaminants. The authors used composite measures of fluctuating asymmetry to examine the influence of mercury concentrations in 2 tissues on fluctuating asymmetry within 4 waterbird species. Fluctuating asymmetry increased with mercury concentrations in whole blood and breast feathers of Forster's terns (Sterna forsteri), a species with elevated mercury concentrations. Specifically, fluctuating asymmetry in rectrix feather 1 was the most strongly correlated structural variable of those tested (wing chord, tarsus, primary feather 10, rectrix feather 6) with mercury concentrations in Forster's terns. However, for American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), and Caspian terns (Hydroprogne caspia), the authors found no relationship between fluctuating asymmetry and either whole-blood or breast feather mercury concentrations, even though these species had moderate to elevated mercury exposure. The results indicate that mercury contamination may act as an environmental stressor during development and feather growth and contribute to fluctuating asymmetry of some species of highly contaminated waterbirds.

  4. Potential Fluctuations and Localization Effects in CZTS Single Crystals, as Revealed by Optical Spectroscopy

    Science.gov (United States)

    Bleuse, Joël; Ducroquet, Frédérique; Mariette, Henri

    2018-03-01

    Reports on Cu_2 ZnSn(S_x Se_{1-x} )_4 (CZTSSe) solar cell devices all show an open-circuit voltage lower than expected, especially when compared to CuIn_x Ga_{1-x} (S,Se)_2 devices, which reduces their power efficiency and delays their development. A high concentration of intrinsic defects in CZTSSe, and their stabilization through neutral complex formation, which induces some local fluctuations, are at the origin of local energy shifts in the conduction and valence band edges. The implied band tail in Cu_2 ZnSnS_4 is studied in this work by combining three types of optical spectroscopy data: emission spectra compared to photoluminescence excitation spectroscopy, emission spectra as a function of excitation power, and time-resolved photoluminescence spectra. All these data converge to show that both the bandgap and the band tail of localized states just below are dependent on the degree of order/disorder in the Cu/Zn cation sublattice of the quaternary structure: in the more ordered structures, the bandgap increases by about 50 meV, and the energy range of the band tail is decreased from about 110 to 70 meV.

  5. Effect of magnetic and density fluctuations on the propagation of lower hybrid waves in tokamaks

    Science.gov (United States)

    Vahala, George; Vahala, Linda; Bonoli, Paul T.

    1992-12-01

    Lower hybrid waves have been used extensively for plasma heating, current drive, and ramp-up as well as sawteeth stabilization. The wave kinetic equation for lower hybrid wave propagation is extended to include the effects of both magnetic and density fluctuations. This integral equation is then solved by Monte Carlo procedures for a toroidal plasma. It is shown that even for magnetic/density fluctuation levels on the order of 10-4, there are significant magnetic fluctuation effects on the wave power deposition into the plasma. This effect is quite pronounced if the magnetic fluctuation spectrum is peaked within the plasma. For Alcator-C-Mod [I. H. Hutchinson and the Alcator Group, Proceedings of the IEEE 13th Symposium on Fusion Engineering (IEEE, New York, 1990), Cat. No. 89CH 2820-9, p. 13] parameters, it seems possible to be able to infer information on internal magnetic fluctuations from hard x-ray data—especially since the effects of fluctuations on electron power density can explain the hard x-ray data from the JT-60 tokamak [H. Kishimoto and JT-60 Team, in Plasma Physics and Controlled Fusion (International Atomic Energy Agency, Vienna, 1989), Vol. I, p. 67].

  6. Fluctuating asymmetry, sociosexuality, and intrasexual competitive tactics.

    Science.gov (United States)

    Simpson, J A; Gangestad, S W; Christensen, P N; Leck, K

    1999-01-01

    Heterosexual men and women were told they were competing with another same-sex individual for a date with an attractive opposite-sex interviewer. After answering 6 questions, participants were asked to tell the competitor why the interviewer should choose them over the competitor. Participants' videotaped behavior was coded for different behavioral tactics. Men who were more symmetrical and who had a more unrestricted sociosexual orientation were more likely to use direct competition tactics than were less symmetrical and restricted men. Restricted men accentuated their positive personal qualities, presenting themselves as "nice guys." Structural equation modeling revealed that fluctuating asymmetry (FA) was directly associated with the use of direct competition tactics. However, the link between FA and presenting oneself as a nice guy was mediated through sociosexuality. No effects were found for women.

  7. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes.

    Science.gov (United States)

    Schmittner, Andreas; Galbraith, Eric D

    2008-11-20

    Earth's climate and the concentrations of the atmospheric greenhouse gases carbon dioxide (CO(2)) and nitrous oxide (N(2)O) varied strongly on millennial timescales during past glacial periods. Large and rapid warming events in Greenland and the North Atlantic were followed by more gradual cooling, and are highly correlated with fluctuations of N(2)O as recorded in ice cores. Antarctic temperature variations, on the other hand, were smaller and more gradual, showed warming during the Greenland cold phase and cooling while the North Atlantic was warm, and were highly correlated with fluctuations in CO(2). Abrupt changes in the Atlantic meridional overturning circulation (AMOC) have often been invoked to explain the physical characteristics of these Dansgaard-Oeschger climate oscillations, but the mechanisms for the greenhouse-gas variations and their linkage to the AMOC have remained unclear. Here we present simulations with a coupled model of glacial climate and biogeochemical cycles, forced only with changes in the AMOC. The model simultaneously reproduces characteristic features of the Dansgaard-Oeschger temperature, as well as CO(2) and N(2)O fluctuations. Despite significant changes in the land carbon inventory, CO(2) variations on millennial timescales are dominated by slow changes in the deep ocean inventory of biologically sequestered carbon and are correlated with Antarctic temperature and Southern Ocean stratification. In contrast, N(2)O co-varies more rapidly with Greenland temperatures owing to fast adjustments of the thermocline oxygen budget. These results suggest that ocean circulation changes were the primary mechanism that drove glacial CO(2) and N(2)O fluctuations on millennial timescales.

  8. Novikov Engine with Fluctuating Heat Bath Temperature

    Science.gov (United States)

    Schwalbe, Karsten; Hoffmann, Karl Heinz

    2018-04-01

    The Novikov engine is a model for heat engines that takes the irreversible character of heat fluxes into account. Using this model, the maximum power output as well as the corresponding efficiency of the heat engine can be deduced, leading to the well-known Curzon-Ahlborn efficiency. The classical model assumes constant heat bath temperatures, which is not a reasonable assumption in the case of fluctuating heat sources. Therefore, in this article the influence of stochastic fluctuations of the hot heat bath's temperature on the optimal performance measures is investigated. For this purpose, a Novikov engine with fluctuating heat bath temperature is considered. Doing so, a generalization of the Curzon-Ahlborn efficiency is found. The results can help to quantify how the distribution of fluctuating quantities affects the performance measures of power plants.

  9. On the temporal fluctuations of pulsating auroral luminosity

    International Nuclear Information System (INIS)

    Yamamoto, Tatsundo

    1988-01-01

    From a study of all-sky TV records, it is shown that the luminosity fluctuations of pulsating auroras can be understood in terms of a series of pulses with rapid on-off switchings in burstlike fashion and that the widths of successive pulses (pulsation on times) are fairly constant. This is common even when luminosity fluctuations consist of complex-irregular variations, in contrast to the pulsation off time that is significantly variable. Complex-irregular variations are ground to be due to simultaneous appearance of more pulsating patches that exhibit movements eastward and westward over the site, and each of the patches shows primarily isolated luminosity pulses. Several examples are presented and described in detail. A natural consequence of these observations is that the classical concept of period does not mean much and the luminosity fluctuations should be treated as a series of individual isolated pulses where the pulsation on time is the most essential quantity. These characteristics are briefly discussed in relation to VLF/ELF wave-particle interactions in the magnetosphere. Then a new interpretation of the nonlinear relaxation oscillation model is proposed, where the propagation effect of VLF/ELF waves in low energy plasm irregularities near the magnetospheric equatorial plane plays an essential role to produce rapid on-off switchings of precipitating energetic electron fluxes. Both electromagnetic and electrostatic waves are possibly related to the precipitation pulsations

  10. DENSITY FLUCTUATIONS UPSTREAM AND DOWNSTREAM OF INTERPLANETARY SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Pitňa, A.; Šafránková, J.; Němeček, Z.; Goncharov, O.; Němec, F.; Přech, L. [Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Chen, C. H. K. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Zastenker, G. N., E-mail: jana.safrankova@mff.cuni.cz [Space Research Institute of Russian Academy of Sciences, Moscow, Russia, Profsoyuznaya ul. 84/32, Moscow 117997 (Russian Federation)

    2016-03-01

    Interplanetary (IP) shocks as typical large-scale disturbances arising from processes such as stream–stream interactions or Interplanetary Coronal Mass Ejection (ICME) launching play a significant role in the energy redistribution, dissipation, particle heating, acceleration, etc. They can change the properties of the turbulent cascade on shorter scales. We focus on changes of the level and spectral properties of ion flux fluctuations upstream and downstream of fast forward oblique shocks. Although the fluctuation level increases by an order of magnitude across the shock, the spectral slope in the magnetohydrodynamic range is conserved. The frequency spectra upstream of IP shocks are the same as those in the solar wind (if not spoiled by foreshock waves). The spectral slopes downstream are roughly proportional to the corresponding slopes upstream, suggesting that the properties of the turbulent cascade are conserved across the shock; thus, the shock does not destroy the shape of the spectrum as turbulence passes through it. Frequency spectra downstream of IP shocks often exhibit “an exponential decay” in the ion kinetic range that was earlier reported at electron scales in the solar wind or at ion scales in the interstellar medium. We suggest that the exponential shape of ion flux spectra in this range is caused by stronger damping of the fluctuations in the downstream region.

  11. Joint probability distributions and fluctuation theorems

    International Nuclear Information System (INIS)

    García-García, Reinaldo; Kolton, Alejandro B; Domínguez, Daniel; Lecomte, Vivien

    2012-01-01

    We derive various exact results for Markovian systems that spontaneously relax to a non-equilibrium steady state by using joint probability distribution symmetries of different entropy production decompositions. The analytical approach is applied to diverse problems such as the description of the fluctuations induced by experimental errors, for unveiling symmetries of correlation functions appearing in fluctuation–dissipation relations recently generalized to non-equilibrium steady states, and also for mapping averages between different trajectory-based dynamical ensembles. Many known fluctuation theorems arise as special instances of our approach for particular twofold decompositions of the total entropy production. As a complement, we also briefly review and synthesize the variety of fluctuation theorems applying to stochastic dynamics of both continuous systems described by a Langevin dynamics and discrete systems obeying a Markov dynamics, emphasizing how these results emerge from distinct symmetries of the dynamical entropy of the trajectory followed by the system. For Langevin dynamics, we embed the 'dual dynamics' with a physical meaning, and for Markov systems we show how the fluctuation theorems translate into symmetries of modified evolution operators

  12. pO2 Fluctuation Pattern and Cycling Hypoxia in Human Cervical Carcinoma and Melanoma Xenografts

    International Nuclear Information System (INIS)

    Ellingsen, Christine; Øvrebø, Kirsti Marie; Galappathi, Kanthi; Mathiesen, Berit; Rofstad, Einar K.

    2012-01-01

    Purpose: Blood perfusion in tumors is spatially and temporally heterogeneous, resulting in local fluctuations in tissue oxygen tension (pO 2 ) and tissue regions showing cycling hypoxia. In this study, we investigated whether the pO 2 fluctuation pattern and the extent of cycling hypoxia differ between tumor types showing high (e.g., cervical carcinoma xenograft) and low (e.g., melanoma xenograft) fractions of connective tissue-associated blood vessels. Methods and Materials: Two cervical carcinoma lines (CK-160 and TS-415) and two melanoma lines (A-07 and R-18) transplanted into BALB/c nu/nu mice were included in the study. Tissue pO 2 was measured simultaneously in two positions in each tumor by using a two-channel OxyLite fiber-optic oxygen-sensing device. The extent of acute and chronic hypoxia was assessed by combining a radiobiological and a pimonidazole-based immunohistochemical assay of tumor hypoxia. Results: The proportion of tumor regions showing pO 2 fluctuations, the pO 2 fluctuation frequency in these regions, and the relative amplitude of the pO 2 fluctuations were significantly higher in the melanoma xenografts than in the cervical carcinoma xenografts. Cervical carcinoma and melanoma xenografts did not differ significantly in the fraction of acutely hypoxic cells or the fraction of chronically hypoxic cells. However, the ratio between fraction of acutely hypoxic cells and fraction of chronically hypoxic cells was significantly higher in melanoma than in cervical carcinoma xenografts. Conclusions: Temporal heterogeneity in blood flow and tissue pO 2 in tumors may depend on tumor histology. Connective tissue surrounding microvessels may stabilize blood flow and pO 2 and, thus, protect tumor tissue from cycling hypoxia.

  13. Seed metabolomic study reveals significant metabolite variations and correlations among different soybean cultivars.

    Science.gov (United States)

    Lin, Hong; Rao, Jun; Shi, Jianxin; Hu, Chaoyang; Cheng, Fang; Wilson, Zoe A; Zhang, Dabing; Quan, Sheng

    2014-09-01

    Soybean [Glycine max (L.) Merr.] is one of the world's major crops, and soybean seeds are a rich and important resource for proteins and oils. While "omics" studies, such as genomics, transcriptomics, and proteomics, have been widely applied in soybean molecular research, fewer metabolomic studies have been conducted for large-scale detection of low molecular weight metabolites, especially in soybean seeds. In this study, we investigated the seed metabolomes of 29 common soybean cultivars through combined gas chromatography-mass spectrometry and ultra-performance liquid chromatography-tandem mass spectrometry. One hundred sixty-nine named metabolites were identified and subsequently used to construct a metabolic network of mature soybean seed. Among the 169 detected metabolites, 104 were found to be significantly variable in their levels across tested cultivars. Metabolite markers that could be used to distinguish genetically related soybean cultivars were also identified, and metabolite-metabolite correlation analysis revealed some significant associations within the same or among different metabolite groups. Findings from this work may potentially provide the basis for further studies on both soybean seed metabolism and metabolic engineering to improve soybean seed quality and yield. © 2014 Institute of Botany, Chinese Academy of Sciences.

  14. Seed metabolomic study reveals significant metabolite variations and correlations among different soybean cultivars

    Institute of Scientific and Technical Information of China (English)

    Hong Lin; Jun Rao; Jianxin Shi; Chaoyang Hu; Fang Cheng; Zoe AWilson; Dabing Zhang; Sheng Quan

    2014-01-01

    Soybean [Glycine max (L.) Merr.] is one of the world’s major crops, and soybean seeds are a rich and important resource for proteins and oils. While “omics”studies, such as genomics, transcriptomics, and proteomics, have been widely applied in soybean molecular research, fewer metabolomic studies have been conducted for large-scale detection of low molecular weight metabolites, especial y in soybean seeds. In this study, we investigated the seed metabolomes of 29 common soybean cultivars through combined gas chromatography-mass spectrometry and ultra-performance liquid chromatography-tandem mass spectrometry. One hundred sixty-nine named metabolites were identified and subsequently used to construct a metabolic network of mature soybean seed. Among the 169 detected metabolites, 104 were found to be significantly variable in their levels across tested cultivars. Metabolite markers that could be used to distinguish genetical y related soybean cultivars were also identified, and metabolite-metabolite correlation analysis revealed some significant associations within the same or among different metabolite groups. Findings from this work may potentially provide the basis for further studies on both soybean seed metabolism and metabolic engineering to improve soybean seed quality and yield.

  15. Influence of fluctuating strain on exciton reflection spectra

    DEFF Research Database (Denmark)

    Skettrup, Torben

    1982-01-01

    The influence of an internal distribution of strain on the exciton reflection spectra is investigated. The resulting fluctuating optical constants give rise to a fluctuating phase of reflectivity. The standard deviation σ of these phase fluctuations is the quantity which can be observed...... to derive the dependence of the phase of reflectivity on the direction of the fluctuating optical axis. The results obtained for σ are compared with the experimental depolarization spectra of ZnO. The only fitting parameter is the common standard deviation of the strain components. It is found......, for example, between crossed polarizers or from ellipsometric measurements. Assuming the phase fluctuations to obey a Gaussian distribution, σ can be expressed in a simple way in terms of the degree of polarization or the depolarization of the reflected light. σ is then derived in terms of the standard...

  16. Nonequilibrium fluctuations in micro-MHD effects on electrodeposition

    International Nuclear Information System (INIS)

    Aogaki, Ryoichi; Morimoto, Ryoichi; Asanuma, Miki

    2010-01-01

    In copper electrodeposition under a magnetic field parallel to electrode surface, different roles of two kinds of nonequilibrium fluctuations for micro-magnetohydrodynamic (MHD) effects are discussed; symmetrical fluctuations are accompanied by the suppression of three dimensional (3D) nucleation by micro-MHD flows (the 1st micro-MHD effect), whereas asymmetrical fluctuations controlling 2D nucleation yield secondary nodules by larger micro-MHD flows (the 2nd micro-MHD effect). Though the 3D nucleation with symmetrical fluctuations is always suppressed by the micro-MHD flows, due to the change in the rate-determining step from electron transfer to mass transfer, the 2D nucleation with asymmetrical fluctuations newly turns unstable, generating larger micro-MHD flows. As a result, round semi-spherical deposits, i.e., secondary nodules are yielded. Using computer simulation, the mechanism of the 2nd micro-MHD effect is validated.

  17. Discussion on the establishment of blood glucose fluctuation animal models

    OpenAIRE

    Chun-Liu Gai; Jing-Ru Zhao; Xiao-Long Chen

    2014-01-01

    AIM: To provide the experimental basis for the in vivo study of blood glucose fluctuation injury mechanism, through intraperitoneal injection of glucose to establish blood glucose fluctuation animal models and to simulate blood glucose fluctuation of patients with diabetes.METHODS: Rats were randomly divided into four groups: normal control group(NC), normal fluctuation group(NF), diabetes mellitus group(DM)and diabetes fluctuation group(DF). Diabetic models were induced through intraperitone...

  18. Intrinsic intensity fluctuations in random lasers

    International Nuclear Information System (INIS)

    Molen, Karen L. van der; Mosk, Allard P.; Lagendijk, Ad

    2006-01-01

    We present a quantitative experimental and theoretical study of intensity fluctuations in the emitted light of a random laser that has different realizations of disorder for every pump pulse. A model that clarifies these intrinsic fluctuations is developed. We describe the output versus input power graphs of the random laser with an effective spontaneous emission factor (β factor)

  19. A new approach of chaos and complex network method to study fluctuation and phase transition in nuclear collision at high energy

    Energy Technology Data Exchange (ETDEWEB)

    Bhaduri, Susmita; Bhaduri, Anirban; Ghosh, Dipak [Deepa Ghosh Research Foundation, Kolkata (India)

    2017-06-15

    In the endeavour to study fluctuation and a signature of phase transition in ultrarelativistic nuclear collision during the process of particle production, an approach based on chaos and complex network is proposed. In this work we have attempted an exhaustive study of pion fluctuation in η space, φ space, their cross-correlation and finally two-dimensional fluctuation in terms of scaling of void probability distribution. The analysis is done on the η values and their corresponding φ values extracted from the {sup 32}S-Ag/Br interaction at an incident energy of 200 GeV per nucleon. The methods used are Multifractal Detrended Cross-Correlation Analysis (MF-DXA) and a chaos-based rigorous complex network method -Visibility Graph. The analysis reveals that the highest degree of cross-correlation between pseudorapidity and azimuthal angles exists in the most central region of the interaction. The analysis further shows that two-dimensional void distribution corresponding to the η-φ space reveals a strong scaling behaviour. Both cross-correlation coefficients of MF-DXA and PSVG (Power of the Scale-freeness in Visibility Graph, which is implicitly connected with the Hurst exponent) can be effectively used for the quantitative assessment of pion fluctuation in a very precise manner and have the capability to assess the tendency of approaching criticality for phase transitions. (orig.)

  20. Stock Market Fluctuations and Self-Harm among Children and Adolescents in Hong Kong.

    Science.gov (United States)

    Wong, Wilfred Hing-Sang; Lee, James Chun-Yin; Ho, Frederick Ka-Wing; Li, Tim Man-Ho; Ip, Patrick; Chow, Chun-Bong

    2017-06-09

    Although a few studies investigated the impact of stock market fluctuations on population health, the question of whether stock market fluctuations have an impact on self-harm in children and adolescents remain unanswered. This study therefore investigated the association between stock market fluctuations and self-harm among children and adolescents in Hong Kong. Daily self-harm attendance records were retrieved from all 18 local Accident and Emergency Departments (AED) from 2001 to 2012. 4931 children and adolescents who committed self-harm were included. The results indicated positive correlation between daily change in stock market index, Hang Seng Index (∇HSI, per 300 points), and daily self-harm incident risk of children and adolescents, without time lag between the two. The incident risk ratio for ∇HSI was 1.09 ( p = 0.0339) in children and 1.06 ( p = 0.0246) in adolescents. Importantly, non-trading days were found to impose significant protective effect in both groups against self-harm risk. Our results showed that stock market fluctuations were related to self-harm behaviors in children and adolescents. Parents and professionals should be educated about the potential harm of stock market fluctuations and the importance of effective parenting in reducing self-harm among children and adolescents.

  1. PDF models and synthetic model for the wind speed fluctuations based on the resolution of Langevin equation

    International Nuclear Information System (INIS)

    Calif, Rudy

    2012-01-01

    Highlights: ► Probability Density Functions are proposed to fit the wind speed fluctuations distributions for three representative classes. ► Stochastic simulations are performed using a Langevin equation for each class. ► The properties of simulated and measured wind speed sequences are close. -- Abstract: Wind energy production is very sensitive to turbulent wind speed. Thus rapid variation of wind speed due to changes in the local meteorological conditions can lead to electrical power variations of the order of the nominal power output, in particular when wind power variations on very short time scales, range at few seconds to 1 h, are considered. In small grid as they exist on islands (Guadeloupean Archipelago: French West Indies) such fluctuations can cause instabilities in case of intermediate power shortages. The developed analysis in reveals three main classes of time series for the wind speed fluctuations. In this work, Probability Density Functions (PDFs) are proposed to fit the wind speed fluctuations distributions in each class. After, to simulate wind speed fluctuations sequences, we use a stochastic differential equation, the Langevin equation considering Gaussian turbulence PDF (class I), Gram–Charlier PDF (class II) and a mixture of gaussian PDF (class III). The statistical and dynamical properties of simulated wind sequences are close to those of measured wind sequences, for each class.

  2. Frequency-dependent changes in the amplitude of low-frequency fluctuations in Internet gaming disorder

    Directory of Open Access Journals (Sweden)

    Xiao eLin

    2015-09-01

    Full Text Available Neuroimaging studies have revealed that the task-related functional brain activities are impaired in Internet gaming disorder (IGD subjects. However, little is known about the alternations in spontaneous brain activities about them. Recent studies have proposed that the brain activities of different frequency ranges are generated by different nervous activities and have different physiological and psychological functions. Thus, in this study, we set to explore the spontaneous brain activities in IGD subjects by measuring the fractional amplitude of low-frequency fluctuation (fALFF, to investigate band-specific changes of resting-state fALFF. We subdivided the frequency range into five bands based on literatures. Comparing to healthy controls, the IGD group showed decreased fALFF values in the cerebellum posterior lobe and increased fALFF values in superior temporal gyrus. Significant interactions between frequency bands and groups were found in the cerebellum, the anterior cingulate, the lingual gyrus, the middle temporal gyrus and the middle frontal gyrus. Those brain regions are proved related to the executive function and decision-making. These results revealed the changed spontaneous brain activity of IGD, which contributed to understanding the underlying pathophysiology of IGD.

  3. Origin of cosmological density fluctuations

    International Nuclear Information System (INIS)

    Carr, B.J.

    1984-11-01

    The density fluctuations required to explain the large-scale cosmological structure may have arisen spontaneously as a result of a phase transition in the early Universe. There are several ways in which such fluctuations may have ben produced, and they could have a variety of spectra, so one should not necessarily expect all features of the large-scale structure to derive from a simple power law spectrum. Some features may even result from astrophysical amplification mechanisms rather than gravitational instability. 128 references

  4. Quantum Fluctuations of Vortex Lattices in Ultracold Gases

    OpenAIRE

    Kwasigroch, M. P.; Cooper, N. R.

    2012-01-01

    We discuss the effects of quantum fluctuations on the properties of vortex lattices in rapidly rotating ultracold atomic gases. We develop a variational method that goes beyond the Bogoliubov theory by including the effects of interactions between the quasiparticle excitations. These interactions are found to have significant quantitative effects on physical properties even at relatively large filling factors. We use our theory to predict the expected experimental signatures of quantum fluctu...

  5. Nonlinear dynamics of mushy layers induced by external stochastic fluctuations.

    Science.gov (United States)

    Alexandrov, Dmitri V; Bashkirtseva, Irina A; Ryashko, Lev B

    2018-02-28

    The time-dependent process of directional crystallization in the presence of a mushy layer is considered with allowance for arbitrary fluctuations in the atmospheric temperature and friction velocity. A nonlinear set of mushy layer equations and boundary conditions is solved analytically when the heat and mass fluxes at the boundary between the mushy layer and liquid phase are induced by turbulent motion in the liquid and, as a result, have the corresponding convective form. Namely, the 'solid phase-mushy layer' and 'mushy layer-liquid phase' phase transition boundaries as well as the solid fraction, temperature and concentration (salinity) distributions are found. If the atmospheric temperature and friction velocity are constant, the analytical solution takes a parametric form. In the more common case when they represent arbitrary functions of time, the analytical solution is given by means of the standard Cauchy problem. The deterministic and stochastic behaviour of the phase transition process is analysed on the basis of the obtained analytical solutions. In the case of stochastic fluctuations in the atmospheric temperature and friction velocity, the phase transition interfaces (mushy layer boundaries) move faster than in the deterministic case. A cumulative effect of these noise contributions is revealed as well. In other words, when the atmospheric temperature and friction velocity fluctuate simultaneously due to the influence of different external processes and phenomena, the phase transition boundaries move even faster. This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'.This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'. © 2018 The Author(s).

  6. Broadband magnetic and density fluctuations in the TCA tokamak

    International Nuclear Information System (INIS)

    Hollenstein, Ch.; Keller, R.; Pochelon, A.; Ryter, F.; Sawley, M.L.; Simm, W.; Weisen, H.

    1987-01-01

    The results of comparative studies of broadband magnetic and density fluctuations during ohmic discharges in the TCA tokamak are described. Long coherence lengths are observed in poloidal and toroidal directions between magnetic probes in the scrape-off layer. A phase contrast diagnostic provides a newly accessible range of density fluctuations in the bulk plasma with very long wavelengths. Langmuir probes provide similar measurements in the scrape-off layer. Statistical dispersion relations for both density and magnetic fluctuations are deduced and are shown to be substantially different. Low mean poloidal wavenumbers (m ∼ 2 at 100 kHz) are obtained for the magnetic fluctuations, in contrast to the much higher values measured for density fluctuations. The difference between magnetic and density fluctuations is also reflected in different scalings with plasma parameters and with electron confinement time. The helicity of the coherent magnetic structures is analyzed to show that interior regions of the plasma, such as the q = 2 region contribute to the magnetic activity at the edge. This explains why the magnetic fluctuations measured at the edge are likely to reflect the confinement properties of the bulk plasma. The results of detailed probe rotation experiments and coherence measurements give indications of the physical nature and origin of magnetic fluctuations

  7. Study of the statistical physics bases on superstatistics from the β-fluctuated to the T-fluctuated form

    Science.gov (United States)

    Sargolzaeipor, S.; Hassanabadi, H.; Chung, W. S.

    2018-04-01

    In this paper, we study the T -fluctuated form of superstatistics. In this form, some thermodynamic quantities such as the Helmholtz energy, the entropy and the internal energy, are expressed in terms of the T -fluctuated form for a canonical ensemble. In addition, the partition functions in the formalism for 2-level and 3-level distributions are derived. Then we make use of the T -fluctuated superstatistics for a quantum harmonic oscillator problem and the thermal properties of the system for three statistics of the Bose-Einstein, Maxwell-Boltzmann and Fermi-Dirac statistics are calculated. The effect of the deformation parameter on these properties is examined. All the results recover the well-known results by removing the deformation parameter.

  8. Thermal turbulent convection: thermal plumes and fluctuations; Convection thermique turbulente: panaches et fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Gibert, M

    2007-10-15

    In this study we investigate the phenomenon of thermal turbulent convection in new and unprecedented ways. The first system we studied experimentally is an infinite vertical channel, where a constant vertical mean gradient of temperature exists. Inside this channel the average mass flux is null. The results obtained from our measurements reveal that the flow is mainly inertial; indeed the dissipative coefficients (here the viscosity) play a role only to define a coherence length L. This length is the distance over which the thermal plumes can be considered as 'free falling' objects. The horizontal transport, of heat and momentum, is entirely due to fluctuations. The associated 'mixing length' is small compared to the channel width. In the other hand, the vertical heat transport is due to coherent structures: the heat plumes. Those objects were also investigated in a Lagrangian study of the flow in the bulk of a Rayleigh-Benard cell. The probe, which has the same density as the fluid used in this experiment, is a sphere of 2 cm in diameter with embarked thermometers and radio-emitter. The heat plumes transport it, which allows a statistical study of such objects. (author)

  9. Origin of fluctuations in atmospheric pressure arc plasma devices

    International Nuclear Information System (INIS)

    Ghorui, S.; Das, A.K.

    2004-01-01

    Fluctuations in arc plasma devices are extremely important for any technological application in thermal plasma. The origin of such fluctuations remains unexplained. This paper presents a theory for observed fluctuations in atmospheric pressure arc plasma devices. A qualitative explanation for observed behavior on atmospheric pressure arc plasma fluctuations, reported in the literature, can be obtained from the theory. The potential of the theory is demonstrated through comparison of theoretical predictions with reported experimental observations

  10. Propagation of the lower hybrid wave in a density fluctuating scrape-off layer (SOL)

    International Nuclear Information System (INIS)

    Madi, M; Peysson, Y; Decker, J; Kabalan, K Y

    2015-01-01

    The perturbation of the lower hybrid wave (LH) power spectrum by fluctuations of the plasma in the vicinity of the antenna is investigated by solving the full wave equation in a slab geometry using COMSOL Multiphysics®. The numerical model whose generality allows to study the effect of various types of fluctuations, including those with short characteristic wavelengths is validated against a coupling code in quiescent regimes. When electron density fluctuations along the toroidal direction are incorporated in the dielectric tensor over a thin perturbed layer in front of the grill, the power spectrum may be strongly modified from the antenna mouth to the plasma separatrix as the LH wave propagates. The diffraction effect by density fluctuations leads to the appearance of multiple satellite lobes with randomly varying positions and the averaged perturbation is found to be maximum for the Fourier components of the fluctuating spectrum in the vicinity of the launched LH wavelength. This highlights that fast toroidal inhomogeneities with short characteristics length scales in front of the grill may change significantly the initial LH power spectrum used in coupled ray-tracing and Fokker–Planck calculations. (paper)

  11. Computer simulations of phospholipid - membrane thermodynamic fluctuations

    DEFF Research Database (Denmark)

    Pedersen, U.R.; Peters, Günther H.j.; Schröder, T.B.

    2008-01-01

    This paper reports all-atom computer simulations of five phospholipid membranes, DMPC, DPPC, DMPG, DMPS, and DMPSH, with a focus on the thermal equilibrium fluctuations of volume, energy, area, thickness, and order parameter. For the slow fluctuations at constant temperature and pressure (defined...... membranes, showing a similar picture. The cause of the observed strong correlations is identified by splitting volume and energy into contributions from tails, heads, and water, showing that the slow volume-energy fluctuations derive from the tail region’s van der Waals interactions and are thus analogous...

  12. Manipulating lightcone fluctuations in an analogue cosmic string

    Directory of Open Access Journals (Sweden)

    Jiawei Hu

    2018-02-01

    Full Text Available We study the flight time fluctuations in an anisotropic medium inspired by a cosmic string with an effective fluctuating refractive index caused by fluctuating vacuum electric fields, which are analogous to the lightcone fluctuations due to fluctuating spacetime metric when gravity is quantized. The medium can be realized as a metamaterial that mimics a cosmic string in the sense of transformation optics. For a probe light close to the analogue string, the flight time variance is ν times that in a normal homogeneous and isotropic medium, where ν is a parameter characterizing the deficit angle of the spacetime of a cosmic string. The parameter ν, which is always greater than unity for a real cosmic string, is determined by the dielectric properties of the metamaterial for an analogue string. Therefore, the flight time fluctuations of a probe light can be manipulated by changing the electric permittivity and magnetic permeability of the analogue medium. We argue that it seems possible to fabricate a metamaterial that mimics a cosmic string with a large ν in laboratory so that a currently observable flight time variance might be achieved.

  13. Manipulating lightcone fluctuations in an analogue cosmic string

    Science.gov (United States)

    Hu, Jiawei; Yu, Hongwei

    2018-02-01

    We study the flight time fluctuations in an anisotropic medium inspired by a cosmic string with an effective fluctuating refractive index caused by fluctuating vacuum electric fields, which are analogous to the lightcone fluctuations due to fluctuating spacetime metric when gravity is quantized. The medium can be realized as a metamaterial that mimics a cosmic string in the sense of transformation optics. For a probe light close to the analogue string, the flight time variance is ν times that in a normal homogeneous and isotropic medium, where ν is a parameter characterizing the deficit angle of the spacetime of a cosmic string. The parameter ν, which is always greater than unity for a real cosmic string, is determined by the dielectric properties of the metamaterial for an analogue string. Therefore, the flight time fluctuations of a probe light can be manipulated by changing the electric permittivity and magnetic permeability of the analogue medium. We argue that it seems possible to fabricate a metamaterial that mimics a cosmic string with a large ν in laboratory so that a currently observable flight time variance might be achieved.

  14. Fluctuation spectroscopy: From Rayleigh-Jeans waves to Abrikosov vortex clusters

    Science.gov (United States)

    Varlamov, A. A.; Galda, A.; Glatz, A.

    2018-01-01

    Superconducting (SC) fluctuations, discovered in the late 1960s, have constituted an important research area in superconductivity as they are manifest in a variety of phenomena. Indeed, the underlying physics of SC fluctuations makes it possible to elucidate the fundamental properties of the superconducting state. The interest in SC fluctuation phenomena was further enhanced with the discovery of cuprate high-temperature superconductors (HTSs). In these materials, superconducting fluctuations appear over a wide range of temperatures due to the superconductors extremely short coherence lengths and low effective dimensionality of the electron systems. These strong fluctuations lead to anomalous properties of the normal state in some HTS materials. Within the framework of the phenomenological Ginzburg-Landau theory, and more extensively in the diagrammatic microscopic approach based on BCS theory, SC fluctuations as well as other quantum contributions (weak localization, etc.) enabled a new way to investigate and characterize disordered electron systems, granular metals, Josephson structures, artificial superlattices, and others. The characteristic feature of SC fluctuations is its strong dependence on temperature and magnetic field in the vicinity of the superconducting phase transition. This dependence allows the separation of fluctuation effects from other contributions and provides information about the microscopic parameters of a material, in particular, the critical temperature and the zero-temperature critical magnetic field. As such, SC fluctuations are very sensitive to the relaxation processes that break phase coherence and can be used as a versatile characterization instrument for SCs: Fluctuation spectroscopy has emerged as a powerful tool for studying the properties of superconducting systems on a quantitative level. Here the physics of SC fluctuations is reviewed, commencing from a qualitative description of thermodynamic fluctuations close to the

  15. Current fluctuation of electron and hole carriers in multilayer WSe{sub 2} field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Seung-Pil; Shin, Jong Mok; Jang, Ho-Kyun; Jin, Jun Eon; Kim, Gyu-Tae, E-mail: gtkim@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 02481 (Korea, Republic of); Kim, Yong Jin; Kim, Young Keun [Department of Materials Science and Engineering, Korea University, Seoul 02481 (Korea, Republic of); Shin, Minju [School of Electrical Engineering, Korea University, Seoul 02481 (Korea, Republic of); IMEP-LAHC, Grenoble INP-MINATEC, 3 Parvis Louis Neel, 38016 Grenoble (France)

    2015-12-14

    Two-dimensional materials have outstanding scalability due to their structural and electrical properties for the logic devices. Here, we report the current fluctuation in multilayer WSe{sub 2} field effect transistors (FETs). In order to demonstrate the impact on carrier types, n-type and p-type WSe{sub 2} FETs are fabricated with different work function metals. Each device has similar electrical characteristics except for the threshold voltage. In the low frequency noise analysis, drain current power spectral density (S{sub I}) is inversely proportional to frequency, indicating typical 1/f noise behaviors. The curves of the normalized drain current power spectral density (NS{sub I}) as a function of drain current at the 10 Hz of frequency indicate that our devices follow the carrier number fluctuation with correlated mobility fluctuation model. This means that current fluctuation depends on the trapping-detrapping motion of the charge carriers near the channel interface. No significant difference is observed in the current fluctuation according to the charge carrier type, electrons and holes that occurred in the junction and channel region.

  16. Analysis of water-level fluctuations in Wisconsin wells

    Science.gov (United States)

    Patterson, G.L.; Zaporozec, A.

    1987-01-01

    More than 60 percent of the residents of Wisconsin use ground water as their primary water source. Water supplies presently are abundant, but ground-water levels continually fluctuate in response to natural factors and human-related stresses. A better understanding of the magnitude, duration, and frequency of past fluctuations, and the factors controlling these fluctuations may help anticipate future changes in ground-water levels.

  17. An analog model for quantum lightcone fluctuations in nonlinear optics

    International Nuclear Information System (INIS)

    Ford, L.H.; De Lorenci, V.A.; Menezes, G.; Svaiter, N.F.

    2013-01-01

    We propose an analog model for quantum gravity effects using nonlinear dielectrics. Fluctuations of the spacetime lightcone are expected in quantum gravity, leading to variations in the flight times of pulses. This effect can also arise in a nonlinear material. We propose a model in which fluctuations of a background electric field, such as that produced by a squeezed photon state, can cause fluctuations in the effective lightcone for probe pulses. This leads to a variation in flight times analogous to that in quantum gravity. We make some numerical estimates which suggest that the effect might be large enough to be observable. - Highlights: ► Lightcone fluctuations, quantum fluctuations of the effective speed of light, are a feature of quantum gravity. ► Nonlinear dielectrics have a variable speed of light, analogous to the effects of gravity. ► Fluctuating electric fields create the effect of lightcone fluctuations in a nonlinear material. ► We propose to use squeezed light in a nonlinear material as an analog model of lightcone fluctuations. ► Variation in the speed of propagation of pulses is the observational signature of lightcone fluctuations.

  18. Lake level fluctuations boost toxic cyanobacterial "oligotrophic blooms".

    Directory of Open Access Journals (Sweden)

    Cristiana Callieri

    Full Text Available Global warming has been shown to strongly influence inland water systems, producing noticeable increases in water temperatures. Rising temperatures, especially when combined with widespread nutrient pollution, directly favour the growth of toxic cyanobacteria. Climate changes have also altered natural water level fluctuations increasing the probability of extreme events as dry periods followed by heavy rains. The massive appearance of Dolichospermum lemmermannii ( = planktonic Anabaena, a toxic species absent from the pelagic zone of the subalpine oligotrophic Lake Maggiore before 2005, could be a consequence of the unusual fluctuations of lake level in recent years. We hypothesized that these fluctuations may favour the cyanobacterium as result of nutrient pulses from the biofilms formed in the littoral zone when the lake level is high. To help verify this, we exposed artificial substrates in the lake, and evaluated their nutrient enrichment and release after desiccation, together with measurements of fluctuations in lake level, precipitation and D. lemmermannii population. The highest percentage of P release and the lowest C:P molar ratio of released nutrients coincided with the summer appearance of the D. lemmermannii bloom. The P pulse indicates that fluctuations in level counteract nutrient limitation in this lake and it is suggested that this may apply more widely to other oligotrophic lakes. In view of the predicted increase in water level fluctuations due to climate change, it is important to try to minimize such fluctuations in order to mitigate the occurrence of cyanobacterial blooms.

  19. Inverse scattering problem in turbulent magnetic fluctuations

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2016-08-01

    Full Text Available We apply a particular form of the inverse scattering theory to turbulent magnetic fluctuations in a plasma. In the present note we develop the theory, formulate the magnetic fluctuation problem in terms of its electrodynamic turbulent response function, and reduce it to the solution of a special form of the famous Gelfand–Levitan–Marchenko equation of quantum mechanical scattering theory. The last of these applies to transmission and reflection in an active medium. The theory of turbulent magnetic fluctuations does not refer to such quantities. It requires a somewhat different formulation. We reduce the theory to the measurement of the low-frequency electromagnetic fluctuation spectrum, which is not the turbulent spectral energy density. The inverse theory in this form enables obtaining information about the turbulent response function of the medium. The dynamic causes of the electromagnetic fluctuations are implicit to it. Thus, it is of vital interest in low-frequency magnetic turbulence. The theory is developed until presentation of the equations in applicable form to observations of turbulent electromagnetic fluctuations as input from measurements. Solution of the final integral equation should be done by standard numerical methods based on iteration. We point to the possibility of treating power law fluctuation spectra as an example. Formulation of the problem to include observations of spectral power densities in turbulence is not attempted. This leads to severe mathematical problems and requires a reformulation of inverse scattering theory. One particular aspect of the present inverse theory of turbulent fluctuations is that its structure naturally leads to spatial information which is obtained from the temporal information that is inherent to the observation of time series. The Taylor assumption is not needed here. This is a consequence of Maxwell's equations, which couple space and time evolution. The inversion procedure takes

  20. Analysis of environmental issues related to small-scale hydroelectric development. III. Water level fluctuation

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrand, S.G. (ed.)

    1980-10-01

    Potential environmental impacts in reservoirs and downstream river reaches below dams that may be caused by the water level fluctuation resulting from development and operation of small scale (under 25MW) hydroelectric projects are identified. The impacts discussed will be of potential concern at only those small-scale hydroelectric projects that are operated in a store and release (peaking) mode. Potential impacts on physical and chemical characteristics in reservoirs resulting from water level fluctuation include resuspension and redistribution of bank and bed sediment; leaching of soluble organic matter from sediment in the littoral zone; and changes in water quality resulting from changes in sediment and nutrient trap efficiency. Potential impacts on reservoir biota as a result of water level fluctuation include habitat destruction and the resulting partial or total loss of aquatic species; changes in habitat quality, which result in reduced standing crop and production of aquatic biota; and possible shifts in species diversity. The potential physical effects of water level fluctuation on downstream systems below dams are streambed and bank erosion and water quality problems related to resuspension and redistribution of these materials. Potential biological impacts of water level fluctuation on downstream systems below dams result from changes in current velocity, habitat reduction, and alteration in food supply. These alterations, either singly or in combination, can adversely affect aquatic populations below dams. The nature and potential significance of adverse impacts resulting from water level fluctuation are discussed. Recommendations for site-specific evaluation of water level fluctuation at small-scale hydroelectric projects are presented.

  1. Magnetic fluctuations in the plasma of KT-5C tokamak

    International Nuclear Information System (INIS)

    Lu Ronghua; Pan Gesheng; Wang Zhijiang; Wen Yizhi; Yu Changxuan; Wan Shude; Liu Wandong; Wang Jun; Xu Min; Xiao Delong; Yu Yi

    2004-01-01

    A newly developed moveable magnetic probe array was installed on KT-5C tokamak. The profiles of radial and poloidal magnetic fluctuations of the plasma have been measured for (0.5r/a1.1). The experimental results indicate that there is a radial gradient which is greater than relative electrostatic fluctuations and the magnetic fluctuations contribute a little to losses. A strong coherence between fluctuations of 4 mm nearby two points suggests that the magnetic fluctuations have quite a long correlation length

  2. Effect of Alfvenic fluctuations on the solar wind

    International Nuclear Information System (INIS)

    Chien, T.H.

    1974-01-01

    The major source of microscale fluctuations in the interplanetary medium due to the outwardly propagating Alfven waves is considered. The effect of the Alfven waves on the supersonic expansion of the solar wind is studied under the assumption that the motion of the interplanetary medium can be resolved physically into a comparatively smooth and slowly varying mesoscale flow and field with very irregular disordered incompressible microscale Alfvenic fluctuations superposed on it. The important features of the solar wind such as heat conduction flux, spiral interplanetary magnetic field, and proton thermal anisotropy are included in the theory. For inviscid, steady state, spherically symmetrical model of the solar wind, the two-fluid formulation of the background mesoscale MHD equations is obtained. The results show that during the expansion process, fluctuation energy is converted into the kinetic energy of the solar wind. Due to the presence of the Alfvenic fluctuations, the velocity of the solar wind is about 5 percent higher than that without considering the fluctuations. (U.S.)

  3. Detection limit for rate fluctuations in inhomogeneous Poisson processes

    Science.gov (United States)

    Shintani, Toshiaki; Shinomoto, Shigeru

    2012-04-01

    Estimations of an underlying rate from data points are inevitably disturbed by the irregular occurrence of events. Proper estimation methods are designed to avoid overfitting by discounting the irregular occurrence of data, and to determine a constant rate from irregular data derived from a constant probability distribution. However, it can occur that rapid or small fluctuations in the underlying density are undetectable when the data are sparse. For an estimation method, the maximum degree of undetectable rate fluctuations is uniquely determined as a phase transition, when considering an infinitely long series of events drawn from a fluctuating density. In this study, we analytically examine an optimized histogram and a Bayesian rate estimator with respect to their detectability of rate fluctuation, and determine whether their detectable-undetectable phase transition points are given by an identical formula defining a degree of fluctuation in an underlying rate. In addition, we numerically examine the variational Bayes hidden Markov model in its detectability of rate fluctuation, and determine whether the numerically obtained transition point is comparable to those of the other two methods. Such consistency among these three principled methods suggests the presence of a theoretical limit for detecting rate fluctuations.

  4. Detection limit for rate fluctuations in inhomogeneous Poisson processes.

    Science.gov (United States)

    Shintani, Toshiaki; Shinomoto, Shigeru

    2012-04-01

    Estimations of an underlying rate from data points are inevitably disturbed by the irregular occurrence of events. Proper estimation methods are designed to avoid overfitting by discounting the irregular occurrence of data, and to determine a constant rate from irregular data derived from a constant probability distribution. However, it can occur that rapid or small fluctuations in the underlying density are undetectable when the data are sparse. For an estimation method, the maximum degree of undetectable rate fluctuations is uniquely determined as a phase transition, when considering an infinitely long series of events drawn from a fluctuating density. In this study, we analytically examine an optimized histogram and a Bayesian rate estimator with respect to their detectability of rate fluctuation, and determine whether their detectable-undetectable phase transition points are given by an identical formula defining a degree of fluctuation in an underlying rate. In addition, we numerically examine the variational Bayes hidden Markov model in its detectability of rate fluctuation, and determine whether the numerically obtained transition point is comparable to those of the other two methods. Such consistency among these three principled methods suggests the presence of a theoretical limit for detecting rate fluctuations.

  5. Influence of Plasma Pressure Fluctuation on RF Wave Propagation

    International Nuclear Information System (INIS)

    Liu Zhiwei; Bao Weimin; Li Xiaoping; Liu Donglin; Zhou Hui

    2016-01-01

    Pressure fluctuations in the plasma sheath from spacecraft reentry affect radio-frequency (RF) wave propagation. The influence of these fluctuations on wave propagation and wave properties is studied using methods derived by synthesizing the compressible turbulent flow theory, plasma theory, and electromagnetic wave theory. We study these influences on wave propagation at GPS and Ka frequencies during typical reentry by adopting stratified modeling. We analyzed the variations in reflection and transmission properties induced by pressure fluctuations. Our results show that, at the GPS frequency, if the waves are not totally reflected then the pressure fluctuations can remarkably affect reflection, transmission, and absorption properties. In extreme situations, the fluctuations can even cause blackout. At the Ka frequency, the influences are obvious when the waves are not totally transmitted. The influences are more pronounced at the GPS frequency than at the Ka frequency. This suggests that the latter can mitigate blackout by reducing both the reflection and the absorption of waves, as well as the influences of plasma fluctuations on wave propagation. Given that communication links with the reentry vehicles are susceptible to plasma pressure fluctuations, the influences on link budgets should be taken into consideration. (paper)

  6. Correlation analysis between the current fluctuation characteristics and the conductive filament morphology of HfO2-based memristor

    Science.gov (United States)

    Li, Yi; Yin, Kang-Sheng; Zhang, Mei-Yun; Cheng, Long; Lu, Ke; Long, Shi-Bing; Zhou, Yaxiong; Wang, Zhuorui; Xue, Kan-Hao; Liu, Ming; Miao, Xiang-Shui

    2017-11-01

    Memristors are attracting considerable interest for their prospective applications in nonvolatile memory, neuromorphic computing, and in-memory computing. However, the nature of resistance switching is still under debate, and current fluctuation in memristors is one of the critical concerns for stable performance. In this work, random telegraph noise (RTN) as the indication of current instabilities in distinct resistance states of the Pt/Ti/HfO2/W memristor is thoroughly investigated. Standard two-level digital-like RTN, multilevel current instabilities with non-correlation/correlation defects, and irreversible current transitions are observed and analyzed. The dependence of RTN on the resistance and read bias reveals that the current fluctuation depends strongly on the morphology and evolution of the conductive filament composed of oxygen vacancies. Our results link the current fluctuation behaviors to the evolution of the conductive filament and will guide continuous optimization of memristive devices.

  7. Seasonal and daily fluctuation of diatoms during spring tide periods in Kerkennah Islands

    Directory of Open Access Journals (Sweden)

    Mounir Ben brahim

    2015-06-01

    Full Text Available Objective: To study seasonal and the daily distribution of diatoms in the three tidal periods (flood, slack and ebb period during the spring tide. Methods: Water samples were taken and environmental variables were measured three times in each tidal period during 10 days of spring tide. Sampling was done in 2007 in Cercina station located in the western coast of Kerkennah (34°41'27'' N; 11°07'45'' E (Southern Tunisia. Results: Nutrients showed significant variation between seasons, increasing in spring and decreasing noticeably in autumn and winter. About 36 diatom species were found. Results revealed a remarkable abundance increase in spring and summer. Irregular differences in diatom abundances were revealed over the tidal periods, with the highest rates being detected during the flood and the ebb period, while the abundance rate was lowest during the slack period. This could presumably be attributed to the increase of nutrient supply of suspended particulate matter during water motion. The results revealed a correlation between diatom abundance and temperature, NO2 - , NO3 - , Si(OH4 and PO4 3 . Temperature seemed to be the most important factors which may influence the distribution and diatom abundance. Conclusions: Tide has various effects on the nutrients status and diatoms community (in terms of species composition, succession and abundance between different tidal periods. Fluctuation of diatoms was correlated with changes in the circulation of water bodies and changes in nutrient regime.

  8. Hyper-Ramsey spectroscopy with probe-laser-intensity fluctuations

    Science.gov (United States)

    Beloy, K.

    2018-03-01

    We examine the influence of probe-laser-intensity fluctuations on hyper-Ramsey spectroscopy. We assume, as is appropriate for relevant cases of interest, that the probe-laser intensity I determines both the Rabi frequency (∝√{I } ) and the frequency shift to the atomic transition (∝I ) during probe-laser interactions with the atom. The spectroscopic signal depends on these two quantities that covary with fluctuations in the probe-laser intensity. Introducing a simple model for the fluctuations, we find that the signature robustness of the hyper-Ramsey method can be compromised. Taking the Yb+ electric octupole clock transition as an example, we quantify the clock error under different levels of probe-laser-intensity fluctuations.

  9. Modified diffusion with memory for cyclone track fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Bernido, Christopher C., E-mail: cbernido@mozcom.com [Research Center for Theoretical Physics, Central Visayan Institute Foundation, Jagna, Bohol 6308 (Philippines); Carpio-Bernido, M. Victoria [Research Center for Theoretical Physics, Central Visayan Institute Foundation, Jagna, Bohol 6308 (Philippines); Escobido, Matthew G.O. [W. Sycip Graduate School of Business, Asian Institute of Management, 123 Paseo de Roxas Ave., Makati City 1260 (Philippines)

    2014-06-13

    Fluctuations in a time series for tropical cyclone tracks are investigated based on an exponentially modified Brownian motion. The mean square displacement (MSD) is evaluated and compared to a recent work on cyclone tracks based on fractional Brownian motion (fBm). Unlike the work based on fBm, the present approach is found to capture the behavior of MSD versus time graphs for cyclones even for large values of time. - Highlights: • Cyclone track fluctuations are modeled as stochastic processes with memory. • Stochastic memory functions beyond fractional Brownian motion are introduced. • The model captures the behavior of cyclone track fluctuations for longer periods of time. • The approach can model time series for other fluctuating phenomena.

  10. Fluctuations and transport in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Nevins, W.M.; Chen, L.

    1979-11-01

    A formalism is developed for calculating the equilibrium fluctuation level in an inhomogeneous plasma. This formalism is applied to the collisionless drift wave in a sheared magnetic field. The fluctuation level is found to be anomalously large due to both the presence of weakly damped normal modes and convective amplification. As the magnetic shear is reduced, the steady-state fluctuation spectrum is found to increase both in coherence and in amplitude. The transport associated with this mode is evaluated. The diffusion coefficient is found to scale as D is proportional to B 2 /nT/sup 1/2/

  11. Magnetic fluctuations in heavy fermion systems

    International Nuclear Information System (INIS)

    Broholm, C.L.

    1989-06-01

    Magnetic order and fluctuations in the heavy Fermion systems UPt 3 , U 2 Zn 17 and URu 2 Si 2 have been studied by neutron scattering. Single crystalline samples and triple-axis neutron-scattering techniques with energy transfers between 0 and 40 meV and energy resolutions between 0.1 meV and 4 meV have been employed. UPt 3 develops an antiferromagnetically ordered moment of (0.02±0.005) μ B below T N = 5 K which doubles the unit cell in the basal plane and coexists with superconductivity below T c = 0.5 K. The magnetic fluctuations are relaxational, and enhanced at the antiferromagnetic zone center in a low-energy regime. The characteristic zone-center relaxation energy is 0.3 meV. The temperature- and field-dependence of the antiferromagnetic order in the superconducting phase suggest a close relation between these two properties in UPt 3 . U 2 Zn 17 has a broad spectrum of magnetic fluctuations, even below T N = 9.7 K, of which the transverse part below 10 meV is strongly enhanced at the antiferromagnetic zone center. The system has an anomalously extended critical region and the antiferromagnetic phase transition seems to be driven by the temperature-dependence of an effective RKKY interaction, as anticipated theoretically. URu 2 Si 2 , a strongly anisotropic heavy Fermion system, has a high-energy regime of antiferromagnetically-correlated overdamped magnetic fluctuations. Below T N = 17.5 K weak antiferromagnetic order, μ = (0.04±0.01)μ B , with finite correlations along the tetragonal c axis, develops along with a low-energy regime of strongly dispersive singlet-singlet excitations. Below T c = 1 K antiferromagnetism coexists with superconductivity. A phenomenological model describing the exchange-enhanced overdamped magnetic fluctuations of heavy Fermion systems is proposed. Our experimental results are compared to the anomalous bulk properties of heavy Fermion systems, and to magnetic fluctuations in other metallic magnets. (orig.)

  12. Fluctuations in multi-particle production and γ/π0-ratios in 200 A GeV 16O+Au collisions

    International Nuclear Information System (INIS)

    Lund, I.; Albrecht, R.; Bock, R.; Claesson, G.; Gutbrod, H.H.; Kolb, B.W.; Schmidt, H.R.; Siemiarczuk, T.; Awes, T.C.; Baktash, C.; Ferguson, L.; Lee, I.Y.; Plasil, F.; Young, G.R.; Beckmann, P.; Berger, F.; Dragon, L.; Glasow, R.; Kampert, K.H.; Loehner, H.; Peitzmann, T.; Purschke, M.; Santo, R.; Franz, A.; Kristiansson, P.; Poskanzer, A.M.; Ritter, H.G.; Garpman, S.; Gustafsson, H.A.; Oskarsson, A.; Otterlund, I.; Persson, S.; Stenlund, E.; Obenshain, F.E.; Soerensen, S.P.

    1989-01-01

    Preliminary data from 200 A GeV 16 O+Au reactions are presented. A study of the fluctuations in the particle density in the pseudo-rapidity interval 2.4≤η≤4.0 reveals non-statistical fluctuations down to Δη=0.1. We discuss the possible consequences of this observation. A preliminary analysis of the γ/π 0 -ratio in the pseudorapidity interval 1.5≤η≤2.1 results in an excess over known photon sources for the central reactions. No excess is seen in peripheral reactions. We describe the method of analysis and outline the forthcoming investigations. (orig.)

  13. Colloid mobilization and transport during capillary fringe fluctuations.

    Science.gov (United States)

    Aramrak, Surachet; Flury, Markus; Harsh, James B; Zollars, Richard L

    2014-07-01

    Capillary fringe fluctuations due to changing water tables lead to displacement of air-water interfaces in soils and sediments. These moving air-water interfaces can mobilize colloids. We visualized colloids interacting with moving air-water interfaces during capillary fringe fluctuations by confocal microscopy. We simulated capillary fringe fluctuations in a glass-bead-filled column. We studied four specific conditions: (1) colloids suspended in the aqueous phase, (2) colloids attached to the glass beads in an initially wet porous medium, (3) colloids attached to the glass beads in an initially dry porous medium, and (4) colloids suspended in the aqueous phase with the presence of a static air bubble. Confocal images confirmed that the capillary fringe fluctuations affect colloid transport behavior. Hydrophilic negatively charged colloids initially suspended in the aqueous phase were deposited at the solid-water interface after a drainage passage, but then were removed by subsequent capillary fringe fluctuations. The colloids that were initially attached to the wet or dry glass bead surface were detached by moving air-water interfaces in the capillary fringe. Hydrophilic negatively charged colloids did not attach to static air-bubbles, but hydrophobic negatively charged and hydrophilic positively charged colloids did. Our results demonstrate that capillary fringe fluctuations are an effective means for colloid mobilization.

  14. Tunneling time in fluctuating symmetric double wells: Suppression and enhancement of tunneling by spatial symmetry-preserving perturbations

    International Nuclear Information System (INIS)

    Kar, Susmita; Bhattacharyya, S.P.

    2011-01-01

    Graphical abstract: Spatial symmetry-preserving sinusoidal fluctuations of symmetric double-well parameters cause enhancement of tunneling at ω ∼ ω 0 while rectified sinusoidal fluctuations suppress it at ω∼(ω 0 )/2 . Research highlights: → Spatial symmetry-preserving sinusoidal and rectified sinusoidal fluctuations of symmetrical double-well parameters have contrasting effects on tunneling. → Sinusoidal fluctuations at frequency ω ∼ ω 0 causes resonance enhancement of tunneling, ω 0 being the 0 + ↔ 1 + transition frequency. → Under rectified sinusoidal fluctuations at a frequency ω∼1/2 ω 0 suppression or coherent destruction of tunneling is observed due to barrier localization. → The observations are explained by energy-gain analysis and analysis of the time-dependent overlap amplitudes. - Abstract: We investigate how tunneling-time gets affected by spatial symmetry preserving fluctuations in the parameters determining the width, barrier height and well-depth of a symmetric double-well potential. Sinusoidal and rectified sinusoidal fluctuations of the well-parameters are shown to have contrasting effects. Significant enhancement of tunneling is noticed when the well-parameters fluctuate sinusoidally with frequency ω ∼ ω 0 while under rectified sinusoidal perturbation, quenching of tunneling takes place at a fluctuation frequency ω∼1/2 ω 0 ,ω 0 , being the frequency of the lowest transition allowed by the fluctuation induced spatial perturbation of even parity. Time-dependent Hellmann-Feynman theorem is invoked to analyze the energy changes induced by fluctuations. It turns out that the enhancement of tunneling in the sinusoidally fluctuating double well at frequency ω ∼ ω 0 is caused by transition to 1 ± levels under the barrier while in the rectified sinusoidal field at ω∼1/2 ω 0 , a two-photon like process suppresses the tunneling by inducing barrier localization.

  15. Forecasting of magnitude and duration of currency crises based on the analysis of distortions of fractal scaling in exchange rate fluctuations

    Science.gov (United States)

    Uritskaya, Olga Y.

    2005-05-01

    Results of fractal stability analysis of daily exchange rate fluctuations of more than 30 floating currencies for a 10-year period are presented. It is shown for the first time that small- and large-scale dynamical instabilities of national monetary systems correlate with deviations of the detrended fluctuation analysis (DFA) exponent from the value 1.5 predicted by the efficient market hypothesis. The observed dependence is used for classification of long-term stability of floating exchange rates as well as for revealing various forms of distortion of stable currency dynamics prior to large-scale crises. A normal range of DFA exponents consistent with crisis-free long-term exchange rate fluctuations is determined, and several typical scenarios of unstable currency dynamics with DFA exponents fluctuating beyond the normal range are identified. It is shown that monetary crashes are usually preceded by prolonged periods of abnormal (decreased or increased) DFA exponent, with the after-crash exponent tending to the value 1.5 indicating a more reliable exchange rate dynamics. Statistically significant regression relations (R=0.99, pcurrency crises and the degree of distortion of monofractal patterns of exchange rate dynamics are found. It is demonstrated that the parameters of these relations characterizing small- and large-scale crises are nearly equal, which implies a common instability mechanism underlying these events. The obtained dependences have been used as a basic ingredient of a forecasting technique which provided correct in-sample predictions of monetary crisis magnitude and duration over various time scales. The developed technique can be recommended for real-time monitoring of dynamical stability of floating exchange rate systems and creating advanced early-warning-system models for currency crisis prevention.

  16. Verifying detailed fluctuation relations for discrete feedback-controlled quantum dynamics

    Science.gov (United States)

    Camati, Patrice A.; Serra, Roberto M.

    2018-04-01

    Discrete quantum feedback control consists of a managed dynamics according to the information acquired by a previous measurement. Energy fluctuations along such dynamics satisfy generalized fluctuation relations, which are useful tools to study the thermodynamics of systems far away from equilibrium. Due to the practical challenge to assess energy fluctuations in the quantum scenario, the experimental verification of detailed fluctuation relations in the presence of feedback control remains elusive. We present a feasible method to experimentally verify detailed fluctuation relations for discrete feedback control quantum dynamics. Two detailed fluctuation relations are developed and employed. The method is based on a quantum interferometric strategy that allows the verification of fluctuation relations in the presence of feedback control. An analytical example to illustrate the applicability of the method is discussed. The comprehensive technique introduced here can be experimentally implemented at a microscale with the current technology in a variety of experimental platforms.

  17. Fluctuations of the electron temperature measured by intensity interferometry on the W7-AS stellarator

    International Nuclear Information System (INIS)

    Sattler, S.

    1993-12-01

    Fluctuations of the electron temperature can cause a significant amount of the anomalous electron heat conductivity observed on fusion plasmas, even with relative amplitudes below one per cent. None of the standard diagnostics utilized for measuring the electron temperature in the confinement region of fusion plasmas is provided with sufficient spatial and temporal resolution and the sensitivity for small fluctuation amplitudes. In this work a new diagnostic for the measurement of electron temperature fluctuations in the confinement region of fusion plasmas was developed, built up, tested and successfully applied on the W7-AS Stellarator. Transport relevant fluctuations of the electron temperature can in principle be measured by radiometry of the electron cyclotron emission (ECE), but they might be buried completely in natural fluctuations of the ECE due to the thermal nature of this radiation. Fluctuations with relative amplitudes below one per cent can be measured with a temporal resolution in the μs-range and a spatial resolution of a few cm only with the help of correlation techniques. The intensity interferometry method, developed for radio astronomy, was applied here: two independent but identical radiometers are viewing the same emitting volume along crossed lines of sight. If the angle between the sightlines is chosen above a limiting value, which is determined by the spatial coherence properties of thermal radiation, the thermal noise is uncorrelated while the temperature fluctuations remain correlated. With the help of this technique relative amplitudes below 0.1% are accessible to measurement. (orig.)

  18. Attention Network Test in adults with ADHD - the impact of affective fluctuations

    DEFF Research Database (Denmark)

    Lundervold, Astri J; Adolfsdottir, Steinunn; Halleland, Helene

    2011-01-01

    ABSTRACT: BACKGROUND: The Attention Network Test (ANT) generates measures of different aspects of attention/executive function. In the present study we investigated whether adults with ADHD performed different from controls on measures of accuracy, variability and vigilance as well as the control...... network. Secondly, we studied subgroups of adults with ADHD, expecting impairment on measures of the alerting and control networks in a subgroup with additional symptoms of affective fluctuations. METHODS: A group of 114 adults (ADHD n=58; controls n=56) performed the ANT and completed the Adult ADHD...... Rating Scale (ASRS) and the Mood Disorder Questionnaire (MDQ). The latter was used to define affective fluctuations. RESULTS: The sex distribution was similar in the two groups, but the ADHD group was significantly older (p=.005) and their score on a test of intellectual function (WASI) significantly...

  19. Intrinsically-generated fluctuating activity in excitatory-inhibitory networks

    Science.gov (United States)

    Mastrogiuseppe, Francesca; Ostojic, Srdjan

    2017-01-01

    Recurrent networks of non-linear units display a variety of dynamical regimes depending on the structure of their synaptic connectivity. A particularly remarkable phenomenon is the appearance of strongly fluctuating, chaotic activity in networks of deterministic, but randomly connected rate units. How this type of intrinsically generated fluctuations appears in more realistic networks of spiking neurons has been a long standing question. To ease the comparison between rate and spiking networks, recent works investigated the dynamical regimes of randomly-connected rate networks with segregated excitatory and inhibitory populations, and firing rates constrained to be positive. These works derived general dynamical mean field (DMF) equations describing the fluctuating dynamics, but solved these equations only in the case of purely inhibitory networks. Using a simplified excitatory-inhibitory architecture in which DMF equations are more easily tractable, here we show that the presence of excitation qualitatively modifies the fluctuating activity compared to purely inhibitory networks. In presence of excitation, intrinsically generated fluctuations induce a strong increase in mean firing rates, a phenomenon that is much weaker in purely inhibitory networks. Excitation moreover induces two different fluctuating regimes: for moderate overall coupling, recurrent inhibition is sufficient to stabilize fluctuations; for strong coupling, firing rates are stabilized solely by the upper bound imposed on activity, even if inhibition is stronger than excitation. These results extend to more general network architectures, and to rate networks receiving noisy inputs mimicking spiking activity. Finally, we show that signatures of the second dynamical regime appear in networks of integrate-and-fire neurons. PMID:28437436

  20. Statistical properties of turbulent transport and fluctuations in tokamak and stellarator devices

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, C; Pedrosa, M A; Milligen, B Van; Sanchez, E; Balbin, R; Garcia-Cortes, I [Euratom-CIEMAT Association, Madrid (Spain); Bleuel, J; Giannone, L.; Niedermeyer, H [Euratom-IPP Association, Garching (Germany)

    1997-05-01

    The statistical properties of fluctuations and turbulent transport have been studied in the plasma boundary region of stellarator (TJ-IU, W7-AS) and tokamak (TJ-I) devices. The local flux probability distribution function shows the bursty character of the flux and presents a systematic change as a function of the radial location. There exist large amplitude transport bursts that account for a significant part of the total flux. There is a strong similarity between the statistical properties of the turbulent fluxes in different devices. The value of the radial coherence associated with fluctuations and turbulent transport is strongly intermittent. This result emphasizes the importance of measurements with time resolution in understanding the interplay between the edge and the core regions in the plasma. For measurements in the plasma edge region of the TJ-IU torsatron, the turbulent flux does not, in general, show a larger radial coherence than the one associated with the fluctuations. (author). 14 refs, 6 figs.

  1. Total charge fluctuation in heavy ion collision

    International Nuclear Information System (INIS)

    Mishra, D.K.; Netrakanti, P.K.; Mohanty, A.K.; Garg, P.

    2014-01-01

    Event-by-event fluctuations of positive, negative, total and net charge produced in relativistic nuclear collisions have been of interest to explore phase transition and/or a critical end point (CEP) which is believed to exist somewhere between the hadronic phase and the quark-gluon phase of the QCD phase diagram. The entropy is closely related to the particle multiplicity, and it is expected to be approximately conserved during the evolution of the matter created at the early stage. The entropy fluctuations are not directly observed but can be inferred from the experimentally measured quantities. The final state mean multiplicity is proportional to the entropy of the initial state ( ∼ S). The particle multiplicity can be measured on an event-by-event basis, whereas the entropy is defined by averaging the particle multiplicities in the ensemble of events. Thus, the dynamical entropy fluctuations can be measured experimentally by measuring the fluctuations in the mean multiplicity

  2. Collective fluctuations in networks of noisy components

    International Nuclear Information System (INIS)

    Masuda, Naoki; Kawamura, Yoji; Kori, Hiroshi

    2010-01-01

    Collective dynamics result from interactions among noisy dynamical components. Examples include heartbeats, circadian rhythms and various pattern formations. Because of noise in each component, collective dynamics inevitably involve fluctuations, which may crucially affect the functioning of the system. However, the relation between the fluctuations in isolated individual components and those in collective dynamics is not clear. Here, we study a linear dynamical system of networked components subjected to independent Gaussian noise and analytically show that the connectivity of networks determines the intensity of fluctuations in the collective dynamics. Remarkably, in general directed networks including scale-free networks, the fluctuations decrease more slowly with system size than the standard law stated by the central limit theorem. They even remain finite for a large system size when global directionality of the network exists. Moreover, such non-trivial behavior appears even in undirected networks when nonlinear dynamical systems are considered. We demonstrate it with a coupled oscillator system.

  3. Density fluctuations in ohmic Asdex discharges

    International Nuclear Information System (INIS)

    Dodel, G.; Holzhauer, E.

    1989-01-01

    The investigations on the wave-number and frequency spectra of the density fluctuations, occurring in the different operational modes of ASDEX, are summarized. The aim of the experiments is to study the physical nature of fluctuations and their influence on anomalous transport. The scattering system is described. The results reported were obtained using a 100 mW, λ = 119 μm CW CH-30H laser and homodyne detection

  4. Work extraction from quantum systems with bounded fluctuations in work

    Science.gov (United States)

    Richens, Jonathan G.; Masanes, Lluis

    2016-11-01

    In the standard framework of thermodynamics, work is a random variable whose average is bounded by the change in free energy of the system. This average work is calculated without regard for the size of its fluctuations. Here we show that for some processes, such as reversible cooling, the fluctuations in work diverge. Realistic thermal machines may be unable to cope with arbitrarily large fluctuations. Hence, it is important to understand how thermodynamic efficiency rates are modified by bounding fluctuations. We quantify the work content and work of formation of arbitrary finite dimensional quantum states when the fluctuations in work are bounded by a given amount c. By varying c we interpolate between the standard and minimum free energies. We derive fundamental trade-offs between the magnitude of work and its fluctuations. As one application of these results, we derive the corrected Carnot efficiency of a qubit heat engine with bounded fluctuations.

  5. Quantum Fluctuations of Low Dimensional Bose-Einstein ...

    African Journals Online (AJOL)

    A system of low dimensional condensed ultracold atomic gases inside a field of a laser-driven optical cavity exhibits dispersive optical bistability. During such a process the system also shows quantum fluctuations. Condensate fluctuations are highly manifested particularly in low dimensional systems. In this paper we have ...

  6. Effect of pressure fluctuations on Richtmyer-Meshkov coherent structures

    Science.gov (United States)

    Bhowmick, Aklant K.; Abarzhi, Snezhana

    2016-11-01

    We investigate the formation and evolution of Richtmyer Meshkov bubbles after the passage of a shock wave across a two fluid interface in the presence of pressure fluctuations. The fluids are ideal and incompressible and the pressure fluctuations are scale invariant in space and time, and are modeled by a power law time dependent acceleration field with exponent -2. Solutions indicate sensitivity to pressure fluctuations. In the linear regime, the growth of curvature and bubble velocity is linear. The growth rate is dominated by the initial velocity for weak pressure fluctuations, and by the acceleration term for strong pressure fluctuations. In the non-linear regime, the bubble curvature is constant and the solutions form a one parameter family (parametrized by the bubble curvature). The solutions are shown to be convergent and asymptotically stable. The physical solution (stable fastest growing) is a flat bubble for small pressure fluctuations and a curved bubble for large pressure fluctuations. The velocity field (in the frame of references accounting for the background motion) involves intense motion of the fluids in a vicinity of the interface, effectively no motion of the fluids away from the interfaces, and formation of vortical structures at the interface. The work is supported by the US National Science Foundation.

  7. Concentration fluctuations in gas releases by industrial accidents

    DEFF Research Database (Denmark)

    Nielsen, M.; Chatwin, P.C.; Ejsing Jørgensen, Hans

    2002-01-01

    The COFIN project studied existing remote-sensing Lidar data on concentration fluctuations in atmospheric dispersion from continuous sources at ground level. Fluctuations are described by stochastic models developed by a combination of statisticalanalyses and surface-layer scaling. The statistical...... and the probability distribution for the plume centreline. The distance-neighbour function generalizedfor higher-order statistics has a universal exponential shape. Simulation tools for concentration fluctuations have been developed for either multiple correlated time series or multi-dimensional fields. These tools...... moments and probability density distribution of the fluctuations are most accurately determined in a frame of reference following the instantaneous plume centreline. The spatial distribution of thesemoments is universal with a gaussian core and exponential tails. The instantaneous plume width...

  8. Measurement of magnetic fluctuations on ZT-40(M)

    International Nuclear Information System (INIS)

    Miller, G.

    1990-01-01

    The mathematical basis for experimental measurement of magnetic fluctuations in a Reversed Field Pinch is reviewed. A quasi-static drift model is introduced as the frame-work for analysis of the five-fixed-probe technique. The extrapolation of edge-measured rvec B r fluctuations into the plasma is discussed. Correlations between magnetic and other fluctuations expected from a quasi-static model are derived and transport-relevant correlations are discussed. Data from ZT-40(M) are presented

  9. Holocene and latest Pleistocene climate and glacier fluctuations in Iceland

    Science.gov (United States)

    Geirsdóttir, Áslaug; Miller, Gifford H.; Axford, Yarrow; Ólafsdóttir, Sædís

    2009-10-01

    Multiproxy climate records from Iceland document complex changes in terrestrial climate and glacier fluctuations through the Holocene, revealing some coherent patterns of change as well as significant spatial variability. Most studies on the Last Glacial Maximum and subsequent deglaciation reveal a dynamic Iceland Ice Sheet (IIS) that responded abruptly to changes in ocean currents and sea level. The IIS broke up catastrophically around 15 ka as the Polar Front migrated northward and sea level rose. Indications of regional advance or halt of the glaciers are seen in late Alleröd/early Younger Dryas time and again in PreBoreal time. Due to the apparent rise of relative sea level in Iceland during this time, most sites contain evidence for fluctuating, tidewater glacier termini occupying paleo fjords and bays. The time between the end of the Younger Dryas and the Preboreal was characterized by repeated jökulhlaups that eroded glacial deposits. By 10.3 ka, the main ice sheet was in rapid retreat across the highlands of Iceland. The Holocene thermal maximum (HTM) was reached after 8 ka with land temperatures estimated to be 3 °C higher than the 1961-1990 reference, and net precipitation similar to modern. Such temperatures imply largely ice-free conditions across Iceland in the early to mid-Holocene. Several marine and lacustrine sediment climate proxies record substantial summer temperature depression between 8.5 and 8 ka, but no moraines have been detected from that time. Termination of the HTM and onset of Neoglacial cooling took place sometime after 6 ka with increased glacier activity between 4.5 and 4.0 ka, intensifying between 3.0 and 2.5 ka. Although a distinct warming during the Medieval Warm Period is not dramatically apparent in Icelandic records, the interval from ca AD 0 to 1200 is commonly characterized by relative stability with slow rates of change. The literature most commonly describes Little Ice Age moraines (ca AD 1250-1900) as representing the

  10. Effects of periodical salinity fluctuation on the growth, molting, energy homeostasis and molting-related gene expression of Litopenaeus vannamei

    Science.gov (United States)

    Zhang, Dan; Guo, Xiantao; Wang, Fang; Dong, Shuanglin

    2016-10-01

    To determine the response of Litopenaeus vannamei to periodical salinity fluctuation, a 30-day experiment was conducted in laboratory. In this experiment, two salinity fluctuation amplitudes of 4 (group S4) and 10 (group S10) were designed. The constant salinity of 30 (group S0) was used as the control. Levels of shrimp growth, molting frequency (MF), cellular energy status (ATP, ADP and AMP), as well as the expression of genes encoding molt-inhibiting hormone (MIH), crustacean hyperglycemic hormone (CHH), ecdysteroid-regulated protein (ERP), and energy-related AMP-activated protein kinase (AMPK) were determined. The results showed that periodical salinity fluctuation significantly influenced all indicators except MF which ranged from 13.3% in group S10 to15.4% in group S4. In comparison with shrimps cultured at the constant salinity of 30, those in group S4 showed a significant elevation in growth rate, food conversion efficiency, cellular energy status, ERP and MIH gene transcript abundance, and a significant reduction in CHH and AMPK transcript abundance ( P MIH and CHH gene expression when compared to the control ( P < 0.05). According to our findings, L. vannamei may be highly capable of tolerating salinity fluctuation. When ambient salinity fluctuated at approx. 4, the increased MF and energy stores in organisms may aid to promoting shrimp growth.

  11. Turbulent Spot Pressure Fluctuation Wave Packet Model

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler, closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.

  12. Classical and quantum temperature fluctuations via holography

    Energy Technology Data Exchange (ETDEWEB)

    Balatsky, Alexander V. [KTH Royal Inst. of Technology, Stockholm (Sweden); Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gudnason, Sven Bjarke [KTH Royal Inst. of Technology, Stockholm (Sweden); Thorlacius, Larus [KTH Royal Inst. of Technology, Stockholm (Sweden); University of Iceland, Reykjavik (Iceland); Zarembo, Konstantin [KTH Royal Inst. of Technology, Stockholm (Sweden); Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Uppsala Univ. (Sweden); Krikun, Alexander [KTH Royal Inst. of Technology, Stockholm (Sweden); Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Kedem, Yaron [KTH Royal Inst. of Technology, Stockholm (Sweden)

    2014-05-27

    We study local temperature fluctuations in a 2+1 dimensional CFT on the sphere, dual to a black hole in asymptotically AdS space-time. The fluctuation spectrum is governed by the lowest-lying hydrodynamic sound modes of the system whose frequency and damping rate determine whether temperature fluctuations are thermal or quantum. We calculate numerically the corresponding quasinormal frequencies and match the result with the hydrodynamics of the dual CFT at large temperature. As a by-product of our analysis we determine the appropriate boundary conditions for calculating low-lying quasinormal modes for a four-dimensional Reissner-Nordstrom black hole in global AdS.

  13. Faraday polarization fluctuations of satellite beacon signals

    Science.gov (United States)

    Lee, M. C.; Klobuchar, J. A.

    1988-01-01

    The anisotropic effects of random density irregularities in causing Faraday polarization fluctuations of VHF radio signals are examined, taking both rod-like and sheet-like irregularities into consideration. It is found that the variance of Faraday polarization fluctuations depends on the ratio of perpendicular to parallel correlation lengths. The anisotropic effect of rod-like ionospheric irregularities are shown to be most appreciable for longitudinal propagation. The anisotropic effect of sheet-like ionospheric irregularities, however, is not strongly dependent on the radio propagation angle. During transionospheric propagation at large angles with respect to the geomagnetic field, sheet-like irregularities may cause greater Faraday polarization fluctuations than rod-like irregularities.

  14. Investigation of the impact of dose fluctuations on tumour control

    International Nuclear Information System (INIS)

    Zavgorodni, S.F.; Royal Adelaide Hospital,; Booth, J.; Adelaide University,; Rosenfeld, A.

    2001-01-01

    Full text: The importance of spatial uniformity of the dose across the Planning Target Volume (PTV) has been investigated previously with the conclusion stated in 'uniform dose theorem' concluding that the uniform dose results in the highest Tumour Control Probability (TCP). The dose fluctuations, which appear in fractionated treatments as a result of setup errors, organ motion, treatment machine calibration and other reasons can be seen as temporal dose non-uniformity. The intuitive expectation, that the temporal dose non-uniformity would also reduce TCP, has been tested. The impact of temporal dose non-uniformity has been investigated considering intra and inter-treatment dose fluctuations. The dose was considered to be spatially uniform. The convolution technique was used and analytical expression of TCP accounting for the dose fluctuation has also been derived. Both techniques used Probability Density Function (PDF) to account for the dose fluctuations. The dose fluctuations with PDF symmetrical around its mean value (Gaussian) as well as non-symmetrical PDFs were both investigated. The symmetrical PDFs represented the fluctuations, which appear in the whole PTV as a result of day to day variation in treatment machine output. Non-symmetrical PDFs represented the dose fluctuations at the edges of PTV as a result of setup errors and organ motion. The effect of the dose fluctuations has been expressed in terms of an extra dose δ (positive or negative) which should be added to the value of temporally uniform dose in order to provide the same TCP as the one resulting from temporally non-uniform (fluctuating) dose. Intra-treatment dose fluctuations resulted in an increased TCP, though the effect is relatively small (δ<1 Gy for the treatment dose of 60 Gy). However, inter-treatment fluctuations of the dose reduced TCP for a patient population. The size of effect increases with the standard deviation of the PDF. Random ultra-treatment dose fluctuations resulted in

  15. Effects of limited spatial resolution on fluctuation measurements (invited)

    International Nuclear Information System (INIS)

    Bravenec, R.V.; Wootton, A.J.

    1995-01-01

    The finite sample volumes of fluctuation diagnostics distort the measurements not only by averaging the gross fluctuation parameters over the sample volumes, but more importantly (except for collective scattering), by attenuating the shorter wavelength components. In this work, the response of various sample volume sizes and orientations to a model fluctuation power spectrum S(k,ω) are examined. The model spectrum is fashioned after observations by far-infrared scattering on TEXT. The sample-volume extent in the direction of propagation of the turbulence is shown to be the most critical---not only does it reduce the measured fluctuation amplitude and increase the correlation length (as does an extent perpendicular to the propagation direction), but it also reduces the measured mean frequency and increases the apparent average phase velocity of the fluctuations. The differing sizes, shapes, and orientations of the sample volumes among fluctuation diagnostics, as well as deliberate variations within a single diagnostic, provide information on the form of the underlying turbulence and can be exploited to refine the model

  16. Time evolution of linearized gauge field fluctuations on a real-time lattice

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, A. [CERN, Theoretical Physics Department, Geneva (Switzerland); University of Stavanger, Faculty of Science and Technology, Stavanger (Norway); Lappi, T. [University of Jyvaeskylae, Department of Physics, P.O. Box 35, Jyvaeskylae (Finland); University of Helsinki, Helsinki Institute of Physics, P.O. Box 64, Helsinki (Finland); Peuron, J. [University of Jyvaeskylae, Department of Physics, P.O. Box 35, Jyvaeskylae (Finland)

    2016-12-15

    Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Due to instabilities, small quantum fluctuations on top of the classical background may significantly affect the dynamics of the system. In this paper we argue for the need for a numerical calculation of a system of classical gauge fields and small linearized fluctuations in a way that keeps the separation between the two manifest. We derive and test an explicit algorithm to solve these equations on the lattice, maintaining gauge invariance and Gauss' law. (orig.)

  17. Time evolution of linearized gauge field fluctuations on a real-time lattice

    CERN Document Server

    Kurkela, Aleksi; Peuron, Jarkko

    2016-01-01

    Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Due to instabilities, small quantum fluctuations on top of the classical background may significantly affect the dynamics of the system. In this paper we argue for the need for a numerical calculation of a system of classical gauge fields and small linearized fluctuations in a way that keeps the separation between the two manifest. We derive and test an explicit algorithm to solve these equations on the lattice, maintaining gauge invariance and Gauss's law.

  18. RSA fluctuation in major depressive disorder.

    Science.gov (United States)

    Rottenberg, Jonathan; Clift, April; Bolden, Sarah; Salomon, Kristen

    2007-05-01

    Cardiac vagal control, as measured by indices of respiratory sinus arrhythmia (RSA), has been investigated as a marker of impaired self-regulation in mental disorders, including depression. Past work in depressed samples has focused on deficits in resting RSA levels, with mixed results. This study tested the hypothesis that depression involves abnormal RSA fluctuation. RSA was measured in depressed and healthy control participants during rest and during two reactivity tasks, each followed by a recovery period. Relative to controls, depressed persons exhibited lower resting RSA levels as well as less RSA fluctuation, primarily evidenced by a lack of task-related vagal suppression. Group differences in RSA fluctuation were not accounted for by differences in physical health or respiration, whereas group differences in resting RSA level did not survive covariate analyses. Depression may involve multiple deficits in cardiac vagal control.

  19. Extracellular matrix fluctuations during early embryogenesis

    International Nuclear Information System (INIS)

    Szabó, A; Rupp, P A; Rongish, B J; Little, C D; Czirók, A

    2011-01-01

    Extracellular matrix (ECM) movements and rearrangements were studied in avian embryos during early stages of development. We show that the ECM moves as a composite material, whereby distinct molecular components as well as spatially separated layers exhibit similar displacements. Using scanning wide field and confocal microscopy we show that the velocity field of ECM displacement is smooth in space and that ECM movements are correlated even at locations separated by several hundred micrometers. Velocity vectors, however, strongly fluctuate in time. The autocorrelation time of the velocity fluctuations is less than a minute. Suppression of the fluctuations yields a persistent movement pattern that is shared among embryos at equivalent stages of development. The high resolution of the velocity fields allows a detailed spatio-temporal characterization of important morphogenetic processes, especially tissue dynamics surrounding the embryonic organizer (Hensen's node)

  20. Reconstruction of a Broadband Spectrum of Alfvenic Fluctuations

    Science.gov (United States)

    Vinas, Adolfo F.; Fuentes, Pablo S. M.; Araneda, Jaime A.; Maneva, Yana G.

    2014-01-01

    Alfvenic fluctuations in the solar wind exhibit a high degree of velocities and magnetic field correlations consistent with Alfven waves propagating away and toward the Sun. Two remarkable properties of these fluctuations are the tendencies to have either positive or negative magnetic helicity (-1 less than or equal to sigma(sub m) less than or equal to +1) associated with either left- or right- topological handedness of the fluctuations and to have a constant magnetic field magnitude. This paper provides, for the first time, a theoretical framework for reconstructing both the magnetic and velocity field fluctuations with a divergence-free magnetic field, with any specified power spectral index and normalized magnetic- and cross-helicity spectrum field fluctuations for any plasma species. The spectrum is constructed in the Fourier domain by imposing two conditions-a divergence-free magnetic field and the preservation of the sense of magnetic helicity in both spaces-as well as using Parseval's theorem for the conservation of energy between configuration and Fourier spaces. Applications to the one-dimensional spatial Alfvenic propagation are presented. The theoretical construction is in agreement with typical time series and power spectra properties observed in the solar wind. The theoretical ideas presented in this spectral reconstruction provide a foundation for more realistic simulations of plasma waves, solar wind turbulence, and the propagation of energetic particles in such fluctuating fields.

  1. Transient fluctuation relations for time-dependent particle transport

    Science.gov (United States)

    Altland, Alexander; de Martino, Alessandro; Egger, Reinhold; Narozhny, Boris

    2010-09-01

    We consider particle transport under the influence of time-varying driving forces, where fluctuation relations connect the statistics of pairs of time-reversed evolutions of physical observables. In many “mesoscopic” transport processes, the effective many-particle dynamics is dominantly classical while the microscopic rates governing particle motion are of quantum-mechanical origin. We here employ the stochastic path-integral approach as an optimal tool to probe the fluctuation statistics in such applications. Describing the classical limit of the Keldysh quantum nonequilibrium field theory, the stochastic path integral encapsulates the quantum origin of microscopic particle exchange rates. Dynamically, it is equivalent to a transport master equation which is a formalism general enough to describe many applications of practical interest. We apply the stochastic path integral to derive general functional fluctuation relations for current flow induced by time-varying forces. We show that the successive measurement processes implied by this setup do not put the derivation of quantum fluctuation relations in jeopardy. While in many cases the fluctuation relation for a full time-dependent current profile may contain excessive information, we formulate a number of reduced relations, and demonstrate their application to mesoscopic transport. Examples include the distribution of transmitted charge, where we show that the derivation of a fluctuation relation requires the combined monitoring of the statistics of charge and work.

  2. Entropic Repulsion Between Fluctuating Surfaces

    Science.gov (United States)

    Janke, W.

    The statistical mechanics of fluctuating surfaces plays an important role in a variety of physical systems, ranging from biological membranes to world sheets of strings in theories of fundamental interactions. In many applications it is a good approximation to assume that the surfaces possess no tension. Their statistical properties are then governed by curvature energies only, which allow for gigantic out-of-plane undulations. These fluctuations are the “entropic” origin of long-range repulsive forces in layered surface systems. Theoretical estimates of these forces for simple model surfaces are surveyed and compared with recent Monte Carlo simulations.

  3. Density, temperature, and potential fluctuation measurements by the swept Langmuir probe technique in Wendelstein 7-AS

    International Nuclear Information System (INIS)

    Giannone, L.; Balbin, R.; Niedermeyer, H.; Endler, M.; Herre, G.; Hidalgo, C.; Rudyj, A.; Theimer, G.; Verplanke, P.

    1994-01-01

    In the Wendelstein 7-AS stellarator (W7-AS) [Plasma Phys. Controlled Fusion 33, 1591 (1991)], current-voltage characteristics of the Langmuir probe at sweep frequencies in the range 400 kHz to 1 MHz were measured and it was found that the mean and fluctuation values of the ion saturation current, floating potential, and electron temperature were independent of the sweep frequency. A radial scan in the vicinity of the velocity shear layer was performed. The simultaneous sweeping of 3 probe tips showed a statistically significant spatial coherence of the fluctuations in the poloidal direction and a decrease in spatial coherence of the fluctuations with increasing tip separation could be demonstrated. The observation of a change in the propagation direction of fluctuations as the shear layer was crossed and a calculation of the transport spectrum show that the swept probe method is capable of reproducing known results. Apparent temperature fluctuations, due to variations of density and potential during a sweep, are shown by simulations to be only of importance at frequencies above half the Nyquist frequency

  4. Remarks on transport theories of interplanetary fluctuations

    International Nuclear Information System (INIS)

    Ye Zhou; Matthaeus, W.H.

    1990-01-01

    The structure of approximate transport theories for the radial behavior of interplanetary fluctuations is reconsidered. The emphasis is on theories derived under the assumption of scale separation; i.e., the correlation length of the fluctuations is much less than the scale of large inhomogeneities. In these cases the zero-wavelength limit provides a first approximation to the spectral evolution equations for the radial dependence of interplanetary fluctuation spectra. The goal here is to investigate the structure of a recently presented (Zhou and Matthaeus, 1989) transport theory, in which coupling of inward- and outward-type fluctuations appears in the leading order, an effect the authors call mixing. In linear theory, mixing-type couplings of inward-type and outward-type waves are formally a nonresonant effect. However, leading order mixing terms do not vanish at zero wavelength for fluctuations that vary nearly perpendicular to the local magnetic field, or when the mean magnetic field is weak. Leading order mixing terms also survive when the dispersion relation fails and there is a nonunique relationship between frequency and wave number. The former case corresponds to nearly two-dimensional structures; these are included, for example, in isotropic models of turbulence. The latter instance occurs when wave-wave couplings are sufficiently strong. Thus there are a variety of situations in which leading order mixing effects are expected to be present

  5. Effect of wind fluctuating on self-starting aerodynamics characteristics of VAWT

    Institute of Scientific and Technical Information of China (English)

    朱建阳; 蒋林; 赵慧

    2016-01-01

    The present work deals with an investigation of the self-starting aerodynamic characteristics of VAWT under fluctuating wind. In contrast to the previous studies, the rotational speed of the turbine is not fixed, the rotation of the turbine is determined by the dynamic interaction between the fluctuating wind and turbine. A weak coupling method is developed to simulate the dynamic interaction between the fluctuating wind and passive rotation turbine, and the results show that if the fluctuating wind with appropriate fluctuation amplitude and frequency, the self-starting aerodynamic characteristics of VAWT will be enhanced. It is also found that compared with the fluctuation amplitude, the fluctuation frequency of the variation in wind velocity is shown to have a minor effect on the performance of the turbine. The analysis will provide straightforward physical insight into the self-starting aerodynamic characteristics of VAWT under fluctuating wind.

  6. The break-up dynamics of liquid threads revealed by laser radiation pressure and optocapillarity

    Science.gov (United States)

    Petit, Julien; Robert de Saint Vincent, Matthieu; Rivière, David; Kellay, Hamid; Delville, Jean-Pierre

    2014-09-01

    We show how optocapillary stresses and optical radiation pressure effects in two-phase liquids open the way for investigating the difficult problem of liquid thread breakup at small scales when surfactants are present at the interface or when the roughness of the interface becomes significant. Using thermocapillary stresses driven by light to pinch a surfactant-laden microjet, we observe deviations from the expected visco-capillary law governed by a balance between viscosity and interfacial tension. We suggest that these deviations are due to time varying interfacial tension resulting from the surfactant depletion at the neck pinching location, and we experimentally confirm this mechanism. The second case is representative of the physics of nanojets. Considering a near critical liquid-liquid interface, where the roughness of the interfaces may be tuned, we use the radiation pressure of a laser wave to produce stable fluctuating liquid columns and study their breakup. We show how pinching crosses over from the visco-capillary to a fluctuation dominated regime and describe this new regime. These experiments exemplify how optofluidics can reveal new physics of fluids.

  7. Limits of Gaussian fluctuations in the cosmic microwave background at 19.2 GHz

    Science.gov (United States)

    Boughn, S. P.; Cheng, E. S.; Cottingham, D. A.; Fixsen, D. J.

    1992-01-01

    The Northern Hemisphere data from the 19.2 GHz full sky survey are analyzed to place limits on the magnitude of Gaussian fluctuations in the cosmic microwave background implied by a variety of correlation functions. Included among the models tested are the monochromatic and Gaussian-shaped families, and those with power-law spectra for n values between -2 and 1. An upper bound is placed on the quadrupole anisotropy of Delta T/T less than 3.2 x 10 exp -5 rms, and an upper bound on scale-invariant (n = 1) fluctuations of a2 less than 4.5 x 10 exp -5 (95 percent confidence level). There is significant contamination of these data from Galactic emission, and improvement of the modeling of the Galaxy could yield a significant reduction of these upper bounds.

  8. Squeezing of thermal and quantum fluctuations: Universal features

    DEFF Research Database (Denmark)

    Svensmark, Henrik; Flensberg, Karsten

    1993-01-01

    We study the classical and quantum fluctuations of a general damped forced oscillator close to a bifurcation instability. Near the instability point, the fluctuations are strongly phase correlated and are squeezed. In the limit of low damping, it is shown that the system has universal features when...... scaled with the damping. The same scaling law applies to the classical and to the quantum regimes. We furthermore show that the coupling to the environment is crucial in the generation of squeezed fluctuations....

  9. Correlated mixture between adiabatic and isocurvature fluctuations and recent CMB observations

    International Nuclear Information System (INIS)

    Andrade, Ana Paula A.; Wuensche, Carlos Alexandre; Ribeiro, Andre Luis Batista

    2005-01-01

    This work presents a reduced χ ν 2 test to search for non-Gaussian signals in the cosmic microwave background radiation (CMBR) TT power spectrum of recent CMBR data, Wilkinson Anisotropy Microwave Probe, Arcminute Cosmology Bolometer Array Receiver, and Cosmic Background Imager data sets, assuming a mixed density field including adiabatic and isocurvature fluctuations. We assume a skew positive mixed model with adiabatic inflation perturbations plus additional isocurvature perturbations possibly produced by topological defects. The joint probability distribution used in this context is a weighted combination of Gaussian and non-Gaussian random fields. Results from simulations of CMBR temperature for the mixed field show a distinct signature in CMB power spectrum for very small deviations (∼0.1%) from a pure Gaussian field, and can be used as a direct test for the nature of primordial fluctuations. A reduced χ ν 2 test applied on the most recent CMBR observations reveals that an isocurvature fluctuations field is not ruled out and indeed permits a very good description for a flat geometry Λ-CDM Universe, χ 930 2 ∼1.5, rather than the simple inflationary standard model with χ 930 2 ∼2.3. This result may looks is particular discrepant with the reduced χ 2 of 1.07 obtained with the same model in Spergel et al. [Astrophys. J. 148, 175 (2003)] for temperature only, however, our work is restricted to a region of the parameter space that does not include the best fit model for TT only of Spergel et al.

  10. Temporal fluctuations after a quantum quench: Many-particle dephasing

    Science.gov (United States)

    Marquardt, Florian; Kiendl, Thomas

    After a quantum quench, the expectation values of observables continue to fluctuate in time. In the thermodynamic limit, one expects such fluctuations to decrease to zero, in order for standard statistical physics to hold. However, it is a challenge to determine analytically how the fluctuations decay as a function of system size. So far, there have been analytical predictions for integrable models (which are, naturally, somewhat special), analytical bounds for arbitrary systems, and numerical results for moderate-size systems. We have discovered a dynamical regime where the decrease of fluctuations is driven by many-particle dephasing, instead of a redistribution of occupation numbers. On the basis of this insight, we are able to provide exact analytical expressions for a model with weak integrability breaking (transverse Ising chain with additional terms). These predictions explicitly show how fluctuations are exponentially suppressed with system size.

  11. Conditional analysis of floating potential fluctuations at the edge of the Texas Experimental Tokamak Upgrade (TEXT-U)

    International Nuclear Information System (INIS)

    Filippas, A.V.; Bengston, R.D.; Li, G.; Meier, M.; Ritz, C.P.; Powers, E.J.

    1995-01-01

    Fluctuations in floating potential in the scrape-off layer and plasma edge were analyzed using a conditional statistical analysis technique. The floating potential fluctuations had a nearly Gaussian probability density function with the largest deviation from a Gaussian at the shear layer. The conditional averaging technique followed the statistical evolution of selected conditions in the floating potential signal. The decay rate of a conditional feature in time or space showed a small systematic variation with the amplitude of condition chosen. Either long-lived coherent structures are not present in statistically significant numbers, or the fluctuations are dominated by a large number of coherent structures with a nearly Gaussian distribution of fluctuation amplitudes, or conditional analysis using the amplitude of the floating potential as a condition is not a sensitive technique for identifying coherent structures

  12. Fluctuating exciton localization in giant π-conjugated spoked-wheel macrocycles

    Science.gov (United States)

    Aggarwal, A. Vikas; Thiessen, Alexander; Idelson, Alissa; Kalle, Daniel; Würsch, Dominik; Stangl, Thomas; Steiner, Florian; Jester, Stefan-S.; Vogelsang, Jan; Höger, Sigurd; Lupton, John M.

    2013-11-01

    Conjugated polymers offer potential for many diverse applications, but we still lack a fundamental microscopic understanding of their electronic structure. Elementary photoexcitations (excitons) span only a few nanometres of a molecule, which itself can extend over microns, and how their behaviour is affected by molecular dimensions is not immediately obvious. For example, where is the exciton formed within a conjugated segment and is it always situated on the same repeat units? Here, we introduce structurally rigid molecular spoked wheels, 6 nm in diameter, as a model of extended π conjugation. Single-molecule fluorescence reveals random exciton localization, which leads to temporally varying emission polarization. Initially, this random localization arises after every photon absorption event because of temperature-independent spontaneous symmetry breaking. These fast fluctuations are slowed to millisecond timescales after prolonged illumination. Intramolecular heterogeneity is revealed in cryogenic spectroscopy by jumps in transition energy, but emission polarization can also switch without a spectral jump occurring, which implies long-range homogeneity in the local dielectric environment.

  13. Structural features that predict real-value fluctuations of globular proteins.

    Science.gov (United States)

    Jamroz, Michal; Kolinski, Andrzej; Kihara, Daisuke

    2012-05-01

    It is crucial to consider dynamics for understanding the biological function of proteins. We used a large number of molecular dynamics (MD) trajectories of nonhomologous proteins as references and examined static structural features of proteins that are most relevant to fluctuations. We examined correlation of individual structural features with fluctuations and further investigated effective combinations of features for predicting the real value of residue fluctuations using the support vector regression (SVR). It was found that some structural features have higher correlation than crystallographic B-factors with fluctuations observed in MD trajectories. Moreover, SVR that uses combinations of static structural features showed accurate prediction of fluctuations with an average Pearson's correlation coefficient of 0.669 and a root mean square error of 1.04 Å. This correlation coefficient is higher than the one observed in predictions by the Gaussian network model (GNM). An advantage of the developed method over the GNMs is that the former predicts the real value of fluctuation. The results help improve our understanding of relationships between protein structure and fluctuation. Furthermore, the developed method provides a convienient practial way to predict fluctuations of proteins using easily computed static structural features of proteins. Copyright © 2012 Wiley Periodicals, Inc.

  14. Active Brownian particles with velocity-alignment and active fluctuations

    International Nuclear Information System (INIS)

    Großmann, R; Schimansky-Geier, L; Romanczuk, P

    2012-01-01

    We consider a model of active Brownian particles (ABPs) with velocity alignment in two spatial dimensions with passive and active fluctuations. Here, active fluctuations refers to purely non-equilibrium stochastic forces correlated with the heading of an individual active particle. In the simplest case studied here, they are assumed to be independent stochastic forces parallel (speed noise) and perpendicular (angular noise) to the velocity of the particle. On the other hand, passive fluctuations are defined by a noise vector independent of the direction of motion of a particle, and may account, for example, for thermal fluctuations. We derive a macroscopic description of the ABP gas with velocity-alignment interaction. Here, we start from the individual-based description in terms of stochastic differential equations (Langevin equations) and derive equations of motion for the coarse-grained kinetic variables (density, velocity and temperature) via a moment expansion of the corresponding probability density function. We focus here on the different impact of active and passive fluctuations on onset of collective motion and show how active fluctuations in the active Brownian dynamics can change the phase-transition behaviour of the system. In particular, we show that active angular fluctuations lead to an earlier breakdown of collective motion and to the emergence of a new bistable regime in the mean-field case. (paper)

  15. Duality and reciprocity of fluctuation-dissipation relations in conductors.

    Science.gov (United States)

    Reggiani, Lino; Alfinito, Eleonora; Kuhn, Tilmann

    2016-09-01

    By analogy with linear response, we formulate the duality and reciprocity properties of current and voltage fluctuations expressed by Nyquist relations, including the intrinsic bandwidths of the respective fluctuations. For this purpose, we individuate total-number and drift-velocity fluctuations of carriers inside a conductor as the microscopic sources of noise. The spectral densities at low frequency of the current and voltage fluctuations and the respective conductance and resistance are related in a mutually exclusive way to the corresponding noise source. The macroscopic variances of current and voltage fluctuations are found to display a dual property via a plasma conductance that admits a reciprocal plasma resistance. Analogously, the microscopic noise sources are found to obey a dual property and a reciprocity relation. The formulation is carried out in the frame of the grand canonical (for current noise) and canonical (for voltage noise) ensembles, and results are derived that are valid for classical as well as degenerate statistics, including fractional exclusion statistics. The unifying theory so developed sheds new light on the microscopic interpretation of dissipation and fluctuation phenomena in conductors. In particular, it is proven that for fermions, as a consequence of the Pauli principle, nonvanishing single-carrier velocity fluctuations at zero temperature are responsible for diffusion but not for current noise, which vanishes in this limit.

  16. Limits on arcsecond-scale fluctuations in the cosmic microwave background

    International Nuclear Information System (INIS)

    Knoke, J.E.; Partridge, R.B.; Ratner, M.I.; Shapiro, I.I.

    1984-01-01

    We used the NRAO Very Large Array in its C configuration at a wavelength of 6 cm to set upper limits on the rms fluctuation of sky brightness on angular scales of 6''--18'' from sources too weak to be detected individually. At the highest resolution, we establish a limit of 8 μJy per beam area on the rms sky fluctuation. If this fluctuation level is the result of a Poisson distribution of unresolved sources, each of flux density S 0 Jy, then the number density of such sources per steradian must be less than 0.08 S 0 -2 sr -1 . For alternative models in which all sources are resolved, we derive less stringent limits. Our limits on the rms sky fluctuation also establish limits on the rms temperature fluctuation ΔT for simple models of fluctuations in the cosmic microwave background: (ΔT/2.7 K) -3 and (ΔT/2.7 K) -3 for Gaussian temperature fluctuations of angular scale 6'' and 18'', respectively

  17. Measurement of current density fluctuations and ambipolar particle flux due to magnetic fluctuations in MST

    International Nuclear Information System (INIS)

    Shen, Weimin.

    1992-08-01

    Studies of magnetic fluctuation induced particle transport on Reversed Field Pinch plasmas were done on the Madison Symmetric Torus. Plasma current density and current density fluctuations were measured using a multi-coil magnetic probes. The low frequency (f parallel B r >. The result of zero net charged particle loss was obtained, meaning the flux is ambipolar. The ambipolarity of low frequency global tearing modes is satisfied through the phase relations determined by tearing instabilities. The ambipolarity of high frequency localized modes could be partially explained by the simple model of Waltz based on the radial average of small scale turbulence

  18. Collective fluctuations in magnetized plasma: Transition probability approach

    International Nuclear Information System (INIS)

    Sosenko, P.P.

    1997-01-01

    Statistical plasma electrodynamics is elaborated with special emphasis on the transition probability approach and quasi-particles, and on modern applications to magnetized plasmas. Fluctuation spectra in the magnetized plasma are calculated in the range of low frequencies (with respect to the cyclotron one), and the conditions for the transition from incoherent to collective fluctuations are established. The role of finite-Larmor-radius effects and particle polarization drift in such a transition is explained. The ion collective features in fluctuation spectra are studied. 63 refs., 30 figs

  19. pO{sub 2} Fluctuation Pattern and Cycling Hypoxia in Human Cervical Carcinoma and Melanoma Xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Ellingsen, Christine; Ovrebo, Kirsti Marie; Galappathi, Kanthi; Mathiesen, Berit [Radiation Biology and Tumor Physiology Group, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo (Norway); Rofstad, Einar K., E-mail: einar.k.rofstad@rr-research.no [Radiation Biology and Tumor Physiology Group, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo (Norway)

    2012-07-15

    Purpose: Blood perfusion in tumors is spatially and temporally heterogeneous, resulting in local fluctuations in tissue oxygen tension (pO{sub 2}) and tissue regions showing cycling hypoxia. In this study, we investigated whether the pO{sub 2} fluctuation pattern and the extent of cycling hypoxia differ between tumor types showing high (e.g., cervical carcinoma xenograft) and low (e.g., melanoma xenograft) fractions of connective tissue-associated blood vessels. Methods and Materials: Two cervical carcinoma lines (CK-160 and TS-415) and two melanoma lines (A-07 and R-18) transplanted into BALB/c nu/nu mice were included in the study. Tissue pO{sub 2} was measured simultaneously in two positions in each tumor by using a two-channel OxyLite fiber-optic oxygen-sensing device. The extent of acute and chronic hypoxia was assessed by combining a radiobiological and a pimonidazole-based immunohistochemical assay of tumor hypoxia. Results: The proportion of tumor regions showing pO{sub 2} fluctuations, the pO{sub 2} fluctuation frequency in these regions, and the relative amplitude of the pO{sub 2} fluctuations were significantly higher in the melanoma xenografts than in the cervical carcinoma xenografts. Cervical carcinoma and melanoma xenografts did not differ significantly in the fraction of acutely hypoxic cells or the fraction of chronically hypoxic cells. However, the ratio between fraction of acutely hypoxic cells and fraction of chronically hypoxic cells was significantly higher in melanoma than in cervical carcinoma xenografts. Conclusions: Temporal heterogeneity in blood flow and tissue pO{sub 2} in tumors may depend on tumor histology. Connective tissue surrounding microvessels may stabilize blood flow and pO{sub 2} and, thus, protect tumor tissue from cycling hypoxia.

  20. Thermal performance curves under daily thermal fluctuation: A study in helmeted water toad tadpoles.

    Science.gov (United States)

    Bartheld, José L; Artacho, Paulina; Bacigalupe, Leonardo

    2017-12-01

    Most research in physiological ecology has focused on the effects of mean changes in temperature under the classic "hot vs cold" acclimation treatment; however, current evidence suggests that an increment in both the mean and variance of temperature could act synergistically to amplify the negative effects of global temperature increase and how it would affect fitness and performance-related traits in ectothermic organisms. We assessed the effects of acclimation to daily variance of temperature on thermal performance curves of swimming speed in helmeted water toad tadpoles (Calyptocephalella gayi). Acclimation treatments were 20°C ± 0.1 SD (constant) and 20°C ± 1.5 SD (fluctuating). We draw two key findings: first, tadpoles exposed to daily temperature fluctuation had reduced maximal performance (Z max ), and flattened thermal performance curves, thus supporting the "vertical shift or faster-slower" hypothesis, and suggesting that overall swimming performance would be lower through an examination of temperatures under more realistic and ecologically-relevant fluctuating regimens; second, there was significant interindividual variation in performance traits by means of significant repeatability estimates. Our present results suggest that the widespread use of constant acclimation temperatures in laboratory experiments to estimate thermal performance curves (TPCs) may lead to an overestimation of actual organismal performance. We encourage the use of temperature fluctuation acclimation treatments to better understand the variability of physiological traits, which predict ecological and evolutionary responses to global change. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Fluorescence fluctuation spectroscopy (FFS), part A

    CERN Document Server

    Tetin, Sergey

    2013-01-01

    This new volume of Methods in Enzymology continues the legacy of this premier serial by containing quality chapters authored by leaders in the field. This volume covers Fluorescence Fluctuation SpectroscopyContains chapters on such topics as Time-integrated fluorescence cumulant analysis, Pulsed Interleaved Excitation, and raster image correlation spectroscopy and number and brightness analysis.Continues the legacy of this premier serial with quality chapters authored by leaders in the fieldCovers fluorescence fluctuation spectroscopyContains chapte

  2. Near-Milne realization of scale-invariant fluctuations

    International Nuclear Information System (INIS)

    Magueijo, Joao

    2007-01-01

    A near-Milne universe produces a very red spectrum of vacuum quantum fluctuations but has the potential to produce near-scale-invariant thermal fluctuations. This happens if the energy and entropy are mildly subextensive, for example, if there is a Casimir contribution. Therefore, one does not need to invoke corrections to Einstein gravity (as in loop quantum cosmology) for a thermal scenario to be viable. Neither do we need the energy to scale like the area, as in scenarios where the thermal fluctuations are subject to a phase transition in the early universe. Some odd features of this model are pointed out: whether they are fatal or merely unusual will need to be investigated further

  3. Fluctuating functions related to quality of life in advanced Parkinson disease: effects of duodenal levodopa infusion.

    Science.gov (United States)

    Isacson, D; Bingefors, K; Kristiansen, I S; Nyholm, D

    2008-12-01

    To assess fluctuations in quality of life (QoL) and motor performance in patients with advanced Parkinson disease (PD) treated with continuous daytime duodenal levodopa/carbidopa infusion or conventional therapy. Of 18 patients completing a 6-week trial (DIREQT), 12 were followed for up to 6 months and assessed using electronic diaries and the PD Questionnaire-39 (PDQ-39). During the trial and follow-up, major diurnal fluctuations were observed, especially for hyperkinesia, 'off' time, ability to walk and depression. Duodenal infusion was associated with significantly more favourable outcomes compared with conventional treatment for satisfaction with overall functioning, 'off' time and ability to walk, with improved outcomes with PDQ-39. Relative to conventional treatment, infusion therapy may stabilize and significantly improve motor function and patient's QoL. The potential for daily fluctuation in PD symptoms means single measures of treatment effectiveness can result in bias in effect estimates and hence repeated measures are recommended.

  4. Derivation and precision of mean field electrodynamics with mesoscale fluctuations

    Science.gov (United States)

    Zhou, Hongzhe; Blackman, Eric G.

    2018-06-01

    Mean field electrodynamics (MFE) facilitates practical modelling of secular, large scale properties of astrophysical or laboratory systems with fluctuations. Practitioners commonly assume wide scale separation between mean and fluctuating quantities, to justify equality of ensemble and spatial or temporal averages. Often however, real systems do not exhibit such scale separation. This raises two questions: (I) What are the appropriate generalized equations of MFE in the presence of mesoscale fluctuations? (II) How precise are theoretical predictions from MFE? We address both by first deriving the equations of MFE for different types of averaging, along with mesoscale correction terms that depend on the ratio of averaging scale to variation scale of the mean. We then show that even if these terms are small, predictions of MFE can still have a significant precision error. This error has an intrinsic contribution from the dynamo input parameters and a filtering contribution from differences in the way observations and theory are projected through the measurement kernel. Minimizing the sum of these contributions can produce an optimal scale of averaging that makes the theory maximally precise. The precision error is important to quantify when comparing to observations because it quantifies the resolution of predictive power. We exemplify these principles for galactic dynamos, comment on broader implications, and identify possibilities for further work.

  5. Electrostatic fluctuation in Low-{beta} plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Krane, B

    1997-11-01

    The thesis gives an overview, which by no means is complete, to two dimensional plasma flows. The plasma is taken to be strongly magnetized such that magnetic fields generated by internal currents are small compared to the background magnetic field. This requires that the magnetic pressure exerted by the ambient magnetic field is large compared to the pressure due to thermal fluctuations, i.e. low-{beta} plasma. The author also assume low frequency electrostatic fluctuations with {omega}<<{omega}{sub c}i where {omega}{sub c}i is the ion gyro frequency. A brief introduction to nonlinear phenomena in two dimensional plasma flows has been presented. Particular attention was given to simple models describing flute and drift modes. Although the derivations of the model equations are based on different assumptions regarding the plasma conditions, the resulting equations exhibit similar behavior in some respects. For instance, both the simple guiding center model and the Hasegawa-Mima model have stable dipolar structures. The inverse cascade was also found in both models. However, it is evident that there are significant differences, first of all the Hasegawa-Mima model assumes a background density gradient which makes it an inhomogeneous model. Secondly, in this model the electrons respond instantaneously to variations in the ion density by moving along the magnetic field, thereby introducing Debye shielding.

  6. Electrostatic fluctuation in Low-β plasmas

    International Nuclear Information System (INIS)

    Krane, B

    1997-11-01

    The thesis gives an overview, which by no means is complete, to two dimensional plasma flows. The plasma is taken to be strongly magnetized such that magnetic fields generated by internal currents are small compared to the background magnetic field. This requires that the magnetic pressure exerted by the ambient magnetic field is large compared to the pressure due to thermal fluctuations, i.e. low-β plasma. The author also assume low frequency electrostatic fluctuations with ω c i where ω c i is the ion gyro frequency. A brief introduction to nonlinear phenomena in two dimensional plasma flows has been presented. Particular attention was given to simple models describing flute and drift modes. Although the derivations of the model equations are based on different assumptions regarding the plasma conditions, the resulting equations exhibit similar behavior in some respects. For instance, both the simple guiding center model and the Hasegawa-Mima model have stable dipolar structures. The inverse cascade was also found in both models. However, it is evident that there are significant differences, first of all the Hasegawa-Mima model assumes a background density gradient which makes it an inhomogeneous model. Secondly, in this model the electrons respond instantaneously to variations in the ion density by moving along the magnetic field, thereby introducing Debye shielding

  7. Temporal step fluctuations on a conductor surface: electromigration force, surface resistivity and low-frequency noise

    International Nuclear Information System (INIS)

    Williams, E D; Bondarchuk, O; Tao, C G; Yan, W; Cullen, W G; Rous, P J; Bole, T

    2007-01-01

    Scattering of charge carriers from surface structures will become an increasing factor in the resistivity as the structure decreases in size to the nanoscale. The effects of scattering at the most basic surface defect, a kink in a step edge, are here analyzed using the continuum step model. Using a Langevin analysis, it has been shown that the electromigration force on the atoms at the step edge causes changes in the temporal evolution of the step-edge. For an electromigration force acting perpendicular to the average step edge and mass-transport dominated by step-edge diffusion, significant deviations from the usual t 1/4 scaling of the displacement correlation function occur dependent on a critical time τ and the direction of the force relative to the step edge (i.e. uphill or downhill). Experimental observations of step fluctuations on Ag(111) show the predicted changes among step fluctuations without current, and with current in the up- and down-hill directions for a current density of order 10 5 A cm -2 . The results yield the magnitude of the electromigration force acting on kinked sites at the step-edge. This in turn yields the contribution of the fluctuating steps to the surface resistivity, which exceeds 1% of the bulk resistivity as wire diameters decrease below 10s of nanometres. The temporal fluctuations of kink density can thus also be related to resistivity noise. Relating the known fluctuation spectrum of the step displacements to fluctuations in their lengths, the corresponding resistivity noise is predicted to show spectral signatures of ∼f -1/2 for step fluctuations governed by random attachment/detachment, and ∼f -3/4 for step fluctuations governed by step-edge diffusion

  8. Non-Gaussian probability distributions of solar wind fluctuations

    Directory of Open Access Journals (Sweden)

    E. Marsch

    Full Text Available The probability distributions of field differences ∆x(τ=x(t+τ-x(t, where the variable x(t may denote any solar wind scalar field or vector field component at time t, have been calculated from time series of Helios data obtained in 1976 at heliocentric distances near 0.3 AU. It is found that for comparatively long time lag τ, ranging from a few hours to 1 day, the differences are normally distributed according to a Gaussian. For shorter time lags, of less than ten minutes, significant changes in shape are observed. The distributions are often spikier and narrower than the equivalent Gaussian distribution with the same standard deviation, and they are enhanced for large, reduced for intermediate and enhanced for very small values of ∆x. This result is in accordance with fluid observations and numerical simulations. Hence statistical properties are dominated at small scale τ by large fluctuation amplitudes that are sparsely distributed, which is direct evidence for spatial intermittency of the fluctuations. This is in agreement with results from earlier analyses of the structure functions of ∆x. The non-Gaussian features are differently developed for the various types of fluctuations. The relevance of these observations to the interpretation and understanding of the nature of solar wind magnetohydrodynamic (MHD turbulence is pointed out, and contact is made with existing theoretical concepts of intermittency in fluid turbulence.

  9. Mercury exposure may influence fluctuating asymmetry in waterbirds.

    Science.gov (United States)

    Herring, Garth; Eagles-Smith, Collin A; Ackerman, Joshua T

    2017-06-01

    Variation in avian bilateral symmetry can be an indicator of developmental instability in response to a variety of stressors, including environmental contaminants. The authors used composite measures of fluctuating asymmetry to examine the influence of mercury concentrations in 2 tissues on fluctuating asymmetry within 4 waterbird species. Fluctuating asymmetry increased with mercury concentrations in whole blood and breast feathers of Forster's terns (Sterna forsteri), a species with elevated mercury concentrations. Specifically, fluctuating asymmetry in rectrix feather 1 was the most strongly correlated structural variable of those tested (wing chord, tarsus, primary feather 10, rectrix feather 6) with mercury concentrations in Forster's terns. However, for American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), and Caspian terns (Hydroprogne caspia), the authors found no relationship between fluctuating asymmetry and either whole-blood or breast feather mercury concentrations, even though these species had moderate to elevated mercury exposure. The results indicate that mercury contamination may act as an environmental stressor during development and feather growth and contribute to fluctuating asymmetry of some species of highly contaminated waterbirds. Environ Toxicol Chem 2017;36:1599-1605. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  10. Fluctuations in macroscopically agitated plasma:quasiparticles and effective temperature

    International Nuclear Information System (INIS)

    Sosenko, P.P.; Gresillon, D.

    1994-01-01

    Fluctuations in the plasma, in which macroscopic fluid-like motion is agitated due to large-scale and low-frequency electro-magnetic fields, are studied. Such fields can be produced by external factors or internally, for example due to turbulence. Fluctuation spectral distributions are calculated with regard to the renormalization of the transition probability for a test-particle and of the test-particle shielding. If the correlation length for the random fluid-like motion is large as compared to the fluctuation scale lengths, then the fluctuation spectral distributions can be explained in terms of quasiparticles originating from macroscopic plasma agitation and of an effective temperature

  11. Local Polar Fluctuations in Lead Halide Perovskite Crystals

    Science.gov (United States)

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; Egger, David A.; Hull, Trevor; Stoumpos, Constantinos C.; Zheng, Fan; Heinz, Tony F.; Kronik, Leeor; Kanatzidis, Mercouri G.; Owen, Jonathan S.; Rappe, Andrew M.; Pimenta, Marcos A.; Brus, Louis E.

    2017-03-01

    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH3 NH3 PbBr3 ) and all-inorganic (CsPbBr3 ) lead-halide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. MD simulations indicate that head-to-head Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr3 .

  12. Local Polar Fluctuations in Lead Halide Perovskite Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; Egger, David A.; Hull, Trevor; Stoumpos, Constantinos C.; Zheng, Fan; Heinz, Tony F.; Kronik, Leeor; Kanatzidis, Mercouri G.; Owen, Jonathan S.; Rappe, Andrew M.; Pimenta, Marcos A.; Brus, Louis E.

    2017-03-01

    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH3NH3PbBr3) and all-inorganic (CsPbBr3) leadhalide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. MD simulations indicate that head-tohead Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr3.

  13. Consideration of fluctuation in secondary beam intensity of heavy ion beam probe measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, A.; Iguchi, H.; Lee, S.; Hamada, Y.

    1997-01-01

    Heavy ion beam probes have capability to detect local electron density fluctuation in the interior of plasmas through the detected beam intensity fluctuation. However, the intensity fluctuation should suffer a certain degree of distortion from electron density and temperature fluctuations on the beam orbits, and as a result the signal can be quite different from the local density fluctuation. This paper will present a condition that the intensity fluctuation can be regarded as being purely local electron density fluctuation, together with discussion about the contamination of the fluctuation along the beam orbits to the beam intensity fluctuation. (author)

  14. Topological-Sector Fluctuations and Curie-Law Crossover in Spin Ice

    Directory of Open Access Journals (Sweden)

    L. D. C. Jaubert

    2013-02-01

    Full Text Available At low temperatures, a spin ice enters a Coulomb phase—a state with algebraic correlations and topologically constrained spin configurations. We show how analytical and numerical approaches for model spin-ice systems reveal a crossover between two Curie laws. One of these laws characterizes the high-temperature paramagnetic regime, while the other, which we call the “spin-liquid Curie law,” characterizes the low-temperature Coulomb-phase regime, which provides implicit evidence that the topological sector fluctuates. We compare our theory with experiment for Ho_{2}Ti_{2}O_{7}, where this process leads to a nonstandard temperature evolution of the bulk susceptibility and the wave-vector-dependent magnetic susceptibility, as measured by neutron scattering. Theory and experiment agree for bulk quantities and at large scattering wave vectors, but differences at small wave vectors indicate that the classical spin-ice states are not equally populated at low temperatures. More generally, the crossover appears to be a generic property of the emergent gauge field for a classical spin liquid, and it sheds light on the experimental difficulty of measuring a precise Curie-Weiss temperature in frustrated materials. The susceptibility at finite wave vectors is shown to be a local probe of fluctuations among topological sectors on varying length scales.

  15. Fluctuation theorem for Hamiltonian Systems: Le Chatelier's principle

    Science.gov (United States)

    Evans, Denis J.; Searles, Debra J.; Mittag, Emil

    2001-05-01

    For thermostated dissipative systems, the fluctuation theorem gives an analytical expression for the ratio of probabilities that the time-averaged entropy production in a finite system observed for a finite time takes on a specified value compared to the negative of that value. In the past, it has been generally thought that the presence of some thermostating mechanism was an essential component of any system that satisfies a fluctuation theorem. In the present paper, we point out that a fluctuation theorem can be derived for purely Hamiltonian systems, with or without applied dissipative fields.

  16. Time-clustering behavior of sharp fluctuation sequences in Chinese stock markets

    International Nuclear Information System (INIS)

    Yuan Ying; Zhuang Xintian; Liu Zhiying; Huang Weiqiang

    2012-01-01

    Sharp fluctuations (in particular, extreme fluctuations) of asset prices have a great impact on financial markets and risk management. Therefore, investigating the time dynamics of sharp fluctuation is a challenge in the financial fields. Using two different representations of the sharp fluctuations (inter-event times and series of counts), the time clustering behavior in the sharp fluctuation sequences of stock markets in China is studied with several statistical tools, including coefficient of variation, Allan Factor, Fano Factor as well as R/S (rescaled range) analysis. All of the empirical results indicate that the time dynamics of the sharp fluctuation sequences can be considered as a fractal process with a high degree of time-clusterization of the events. It can help us to get a better understanding of the nature and dynamics of sharp fluctuation of stock price in stock markets.

  17. Energy fluctuations in a biharmonically driven nonlinear system

    Indian Academy of Sciences (India)

    analyse the nature of work and heat fluctuations and show that the steady state fluctuation .... The above equation is the statement of the first law of thermodynamics and ..... One of the authors (AMJ) thanks DST, India for financial support.

  18. Turbulent fluctuations and radial transport in the scrape-off layer of the ASDEX tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Endler, M [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85740 Garching (Germany); Giannone, L. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85740 Garching (Germany); McCormick, K [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85740 Garching (Germany); Niedermeyer, H [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85740 Garching (Germany); Rudyj, A [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85740 Garching (Germany); Theimer, G [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85740 Garching (Germany); Tsois, N [NCSR ` Demokritos` , Athens (Greece); ASDEX Team

    1995-04-01

    Electrostatic fluctuations have been measured in the scrape-off layer of ASDEX by Langmuir probes and by observation of H{sub {alpha}} light with high poloidal and temporal resolution. It was demonstrated that these fluctuations contribute a significant, if not dominant, fraction of the ``anomalous`` radial particle transport. A model for an instability mechanism specific to the SOL is presented including density, temperature and electric potential fluctuations. From this model mixing length estimates for the radial transport and resulting density and pressure gradients in the SOL are derived and compared to measurements in the mid-plane and in the divertor of ASDEX. In spite of several simplifications in the model a quantitative agreement up to factors of 1-3 and a qualitative agreement for variations of discharge parameters is achieved between the model predictions and the measurements. ((orig.)).

  19. Turbulent fluctuations and radial transport in the scrape-off layer of the ASDEX tokamak

    International Nuclear Information System (INIS)

    Endler, M.; Giannone, L.; McCormick, K.; Niedermeyer, H.; Rudyj, A.; Theimer, G.; Tsois, N.

    1995-01-01

    Electrostatic fluctuations have been measured in the scrape-off layer of ASDEX by Langmuir probes and by observation of H α light with high poloidal and temporal resolution. It was demonstrated that these fluctuations contribute a significant, if not dominant, fraction of the ''anomalous'' radial particle transport. A model for an instability mechanism specific to the SOL is presented including density, temperature and electric potential fluctuations. From this model mixing length estimates for the radial transport and resulting density and pressure gradients in the SOL are derived and compared to measurements in the mid-plane and in the divertor of ASDEX. In spite of several simplifications in the model a quantitative agreement up to factors of 1-3 and a qualitative agreement for variations of discharge parameters is achieved between the model predictions and the measurements. ((orig.))

  20. Calculation and analysis of thermal–hydraulics fluctuations in pressurized water reactors

    International Nuclear Information System (INIS)

    Malmir, Hessam; Vosoughi, Naser

    2015-01-01

    Highlights: • Single-phase thermal–hydraulics noise equations are originally derived in the frequency domain. • The fluctuations of all the coolant parameters are calculated, without any simplifying assumptions. • The radial distribution of the temperature fluctuations in the fuel, gap and cladding are taken into account. • The closed-loop calculations are performed by means of the point kinetics noise theory. • Both the space- and frequency-dependence of the thermal–hydraulics fluctuations are analyzed. - Abstract: Analysis of thermal–hydraulics fluctuations in pressurized water reactors (e.g., local and global temperature or density fluctuations, as well as primary and charging pumps fluctuations) has various applications in calculation or measurement of the core dynamical parameters (temperature or density reactivity coefficients) in addition to thermal–hydraulics surveillance and diagnostics. In this paper, the thermal–hydraulics fluctuations in PWRs are investigated. At first, the single-phase thermal–hydraulics noise equations (in the frequency domain) are originally derived, without any simplifying assumptions. The fluctuations of all the coolant parameters, as well as the radial distribution of the temperature fluctuations in the fuel, gap and cladding are taken into account. Then, the derived governing equations are discretized using the finite volume method (FVM). Based on the discretized equations and the proposed algorithm of solving, a single heated channel noise calculation code (SHC-Noise) is developed, by which the steady-state and fluctuating parameters of PWR fuel assemblies can be calculated. The noise sources include the inlet coolant temperature and velocity fluctuations, in addition to the power density noises. The developed SHC-Noise code is benchmarked in different cases and scenarios. Furthermore, to show the effects of the power feedbacks, the closed-loop calculations are performed by means of the point kinetics noise

  1. Lead-position dependent regular oscillations and random fluctuations of conductance in graphene quantum dots

    International Nuclear Information System (INIS)

    Huang Liang; Yang Rui; Lai Yingcheng; Ferry, David K

    2013-01-01

    Quantum interference causes a wavefunction to have sensitive spatial dependence, and this has a significant effect on quantum transport. For example, in a quantum-dot system, the conductance can depend on the lead positions. We investigate, for graphene quantum dots, the conductance variations with the lead positions. Since for graphene the types of boundaries, e.g., zigzag and armchair, can fundamentally affect the quantum transport characteristics, we focus on rectangular graphene quantum dots, for which the effects of boundaries can be systematically studied. For both zigzag and armchair horizontal boundaries, we find that changing the positions of the leads can induce significant conductance variations. Depending on the Fermi energy, the variations can be either regular oscillations or random conductance fluctuations. We develop a physical theory to elucidate the origin of the conductance oscillation/fluctuation patterns. In particular, quantum interference leads to standing-wave-like-patterns in the quantum dot which, in the absence of leads, are regulated by the energy-band structure of the corresponding vertical graphene ribbon. The observed ‘coexistence’ of regular oscillations and random fluctuations in the conductance can be exploited for the development of graphene-based nanodevices. (paper)

  2. Quantum fluctuation of the order parameter in polyacetylene

    International Nuclear Information System (INIS)

    Su Zhao-bin; Wang Ya-xin; Yu Lu.

    1984-07-01

    The effects of the lattice quantum fluctuation upon the order parameter in the Peierls systems are studied by using the Green's function technique. The order parameter is reduced but survives the quantum fluctuations in agreement with the Monte Carlo simulations. (author)

  3. Event by event fluctuations in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker

    2001-01-01

    The authors discuss the physics underlying event-by-event fluctuations in relativistic heavy ion collisions. We will argue that the fluctuations of the ratio of positively over negatively charged particles may serve as a unique signature for the Quark Gluon Plasma.

  4. Critical thermal limits affected differently by developmental and adult thermal fluctuations

    DEFF Research Database (Denmark)

    Salachan, Paul Vinu; Sørensen, Jesper Givskov

    2017-01-01

    the developmental and adult life stages. For developmental acclimation, we found mildly detrimental effects of high amplitude fluctuations for critical thermal minima, while the critical thermal maxima showed a beneficial response to higher amplitude fluctuations. For adult acclimation involving shifts between...... fluctuating and constant regimes, cold tolerance was shown to be dictated by developmental temperature conditions irrespective of the adult treatments, while the acquired heat tolerance was readily lost when flies developed at fluctuating temperature were shifted to a constant regime as adults. Interestingly......, we also found that effect of fluctuations at any life stage was gradually lost with prolonged adult maintenance suggesting a more prominent effect of fluctuations during developmental compared to adult acclimation in Drosophila melanogaster....

  5. Preformed template fluctuations promote fibril formation: Insights from lattice and all-atom models

    Energy Technology Data Exchange (ETDEWEB)

    Kouza, Maksim, E-mail: mkouza@chem.uw.edu.pl; Kolinski, Andrzej [Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warszaw (Poland); Co, Nguyen Truong [Department of Physics, Institute of Technology, National University of HCM City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City (Viet Nam); Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City (Viet Nam); Nguyen, Phuong H. [Laboratoire de Biochimie Theorique, UPR 9080 CNRS, IBPC, Universite Paris 7, 13 rue Pierre et Marie Curie, 75005 Paris (France); Li, Mai Suan, E-mail: masli@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland)

    2015-04-14

    Fibril formation resulting from protein misfolding and aggregation is a hallmark of several neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. Despite the fact that the fibril formation process is very slow and thus poses a significant challenge for theoretical and experimental studies, a number of alternative pictures of molecular mechanisms of amyloid fibril formation have been recently proposed. What seems to be common for the majority of the proposed models is that fibril elongation involves the formation of pre-nucleus seeds prior to the creation of a critical nucleus. Once the size of the pre-nucleus seed reaches the critical nucleus size, its thermal fluctuations are expected to be small and the resulting nucleus provides a template for sequential (one-by-one) accommodation of added monomers. The effect of template fluctuations on fibril formation rates has not been explored either experimentally or theoretically so far. In this paper, we make the first attempt at solving this problem by two sets of simulations. To mimic small template fluctuations, in one set, monomers of the preformed template are kept fixed, while in the other set they are allowed to fluctuate. The kinetics of addition of a new peptide onto the template is explored using all-atom simulations with explicit water and the GROMOS96 43a1 force field and simple lattice models. Our result demonstrates that preformed template fluctuations can modulate protein aggregation rates and pathways. The association of a nascent monomer with the template obeys the kinetics partitioning mechanism where the intermediate state occurs in a fraction of routes to the protofibril. It was shown that template immobility greatly increases the time of incorporating a new peptide into the preformed template compared to the fluctuating template case. This observation has also been confirmed by simulation using lattice models and may be invoked to understand the role of template fluctuations in

  6. Bispectral analysis applied to coherent floating potential fluctuations obtained in the edge plasmas on JFT-2M

    International Nuclear Information System (INIS)

    Nagashima, Y; Itoh, K; Itoh, S-I; Fujisawa, A; Hoshino, K; Takase, Y; Yagi, M; Ejiri, A; Ida, K; Shinohara, K; Uehara, K; Kusama, Y

    2006-01-01

    This paper presents results of bispectral analysis applied to floating potential fluctuations in the edge region of ohmically heated plasmas in the JAERI Fusion Torus-2 Modified (JFT-2M) tokamak. Inside the outermost surface of plasmas, coherent mode fluctuations (CMs) in floating potential were observed around the frequency of the geodesic acoustic mode. The squared bicoherence shows significant nonlinear couplings between the CMs and background fluctuations. The biphase at the frequency of the CMs is localized around π, while that at frequencies of background fluctuations distributes in a wide range. The total bicoherence at the frequency of the CMs is proportional to the squared amplitude of the CMs. These observations are consistent with the theoretical prediction on the drift wave-zonal flow systems. Interpretation of the absolute value of the total bicoherence is also discussed

  7. Work and power fluctuations in a critical heat engine

    Science.gov (United States)

    Holubec, Viktor; Ryabov, Artem

    2017-09-01

    We investigate fluctuations of output work for a class of Stirling heat engines with working fluid composed of interacting units and compare these fluctuations to an average work output. In particular, we focus on engine performance close to a critical point where Carnot's efficiency may be attained at a finite power as reported by M. Campisi and R. Fazio [Nat. Commun. 7, 11895 (2016), 10.1038/ncomms11895]. We show that the variance of work output per cycle scales with the same critical exponent as the heat capacity of the working fluid. As a consequence, the relative work fluctuation diverges unless the output work obeys a rather strict scaling condition, which would be very hard to fulfill in practice. Even under this condition, the fluctuations of work and power do not vanish in the infinite system size limit. Large fluctuations of output work thus constitute inseparable and dominant element in performance of the macroscopic heat engines close to a critical point.

  8. Work and power fluctuations in a critical heat engine.

    Science.gov (United States)

    Holubec, Viktor; Ryabov, Artem

    2017-09-01

    We investigate fluctuations of output work for a class of Stirling heat engines with working fluid composed of interacting units and compare these fluctuations to an average work output. In particular, we focus on engine performance close to a critical point where Carnot's efficiency may be attained at a finite power as reported by M. Campisi and R. Fazio [Nat. Commun. 7, 11895 (2016)2041-172310.1038/ncomms11895]. We show that the variance of work output per cycle scales with the same critical exponent as the heat capacity of the working fluid. As a consequence, the relative work fluctuation diverges unless the output work obeys a rather strict scaling condition, which would be very hard to fulfill in practice. Even under this condition, the fluctuations of work and power do not vanish in the infinite system size limit. Large fluctuations of output work thus constitute inseparable and dominant element in performance of the macroscopic heat engines close to a critical point.

  9. Non-Markovian dynamics of dust charge fluctuations in dusty plasmas

    Science.gov (United States)

    Asgari, H.; Muniandy, S. V.; Ghalee, Amir; Ghalee

    2014-06-01

    Dust charge fluctuates even in steady-state uniform plasma due to the discrete nature of the charge carriers and can be described using standard Langevin equation. In this work, two possible approaches in order to introduce the memory effect in dust charging dynamics are proposed. The first part of the paper provides the generalization form of the fluctuation-dissipation relation for non-Markovian systems based on generalized Langevin equations to determine the amplitudes of the dust charge fluctuations for two different kinds of colored noises under the assumption that the fluctuation-dissipation relation is valid. In the second part of the paper, aiming for dusty plasma system out of equilibrium, the fractionalized Langevin equation is used to derive the temporal two-point correlation function of grain charge fluctuations which is shown to be non-stationary due to the dependence on both times and not the time difference. The correlation function is used to derive the amplitude of fluctuations for early transient time.

  10. [Transfer characteristic and source identification of soil heavy metals from water-level-fluctuating zone along Xiangxi River, three-Gorges Reservoir area].

    Science.gov (United States)

    Xu, Tao; Wang, Fei; Guo, Qiang; Nie, Xiao-Qian; Huang, Ying-Ping; Chen, Jun

    2014-04-01

    Transfer characteristics of heavy metals and their evaluation of potential risk were studied based on determining concentration of heavy metal in soils from water-level-fluctuating zone (altitude:145-175 m) and bank (altitude: 175-185 m) along Xiangxi River, Three Gorges Reservoir area. Factor analysis-multiple linear regression (FA-MLR) was employed for heavy metal source identification and source apportionment. Results demonstrate that, during exposing season, the concentration of soil heavy metals in water-level-fluctuation zone and bank showed the variation, and the concentration of soil heavy metals reduced in shallow soil, but increased in deep soil at water-level-fluctuation zone. However, the concentration of soil heavy metals reduced in both shallow and deep soil at bank during the same period. According to the geoaccumulation index,the pollution extent of heavy metals followed the order: Cd > Pb > Cu > Cr, Cd is the primary pollutant. FA and FA-MLR reveal that in soils from water-level-fluctuation zone, 75.60% of Pb originates from traffic, 62.03% of Cd is from agriculture, 64.71% of Cu and 75.36% of Cr are from natural rock. In soils from bank, 82.26% of Pb originates from traffic, 68.63% of Cd is from agriculture, 65.72% of Cu and 69.33% of Cr are from natural rock. In conclusion, FA-MLR can successfully identify source of heavy metal and compute source apportionment of heavy metals, meanwhile the transfer characteristic is revealed. All these information can be a reference for heavy metal pollution control.

  11. Simultaneous measurement of 3 fluctuating plasma parameters

    International Nuclear Information System (INIS)

    Carlson, A.; Giannone, L.

    1991-01-01

    Langmuir triple probes can provide simultaneous measurements of n e , T e and V pl with good temporal and spatial resolution, and therefore are especially suited to detailed investigations of plasma turbulence in the scrape-off-layer. Unfortunately, the finite tip separation coupled with the fluctuating gradients prevents a simple interpretation of the results. We have developed a method using, essentially, two or more triple probes, which allows a good estimate of the three plasma parameters and their spatial derivatives at each point of time (assuming tip separation is much less than correlation length and dimensionless fluctuation levels are much less than unity). In particular, we can unambiguously measure the temperature fluctuations and the turbulent particle and heat flux. (author) 1 fig

  12. Simultaneous measurement of 3 fluctuating plasma parameters

    International Nuclear Information System (INIS)

    Carlson, A.; Giannone, L.

    1991-01-01

    Langmuir triple probes can provide simultaneous measurements of n e , T e , and V pl with good temporal and spatial resolution, and therefore are especially suited to detailed investigations of plasma turbulence in the scrape-off-layer. Unfortunately, the finite tip separation coupled with the fluctuating gradients prevents a simple interpretation of the results. We have developed a method using, essentially, two or more triple probes, which allows a good estimate of the three plasma parameters and their spatial derivatives at each point of time (assuming tip separation is much less than correlation length and dimensionless fluctuation levels are much less than unity). In particular, we can unambiguously measure the temperature fluctuations and the turbulent particle and heat flux. (orig.)

  13. Simultaneous measurement of 3 fluctuating plasma parameters

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, A; Giannone, L. (Max-Planck-Institut fuer Plasmaphysik, Garching (Germany))

    1991-01-01

    Langmuir triple probes can provide simultaneous measurements of n[sub e], T[sub e] and V[sub pl] with good temporal and spatial resolution, and therefore are especially suited to detailed investigations of plasma turbulence in the scrape-off-layer. Unfortunately, the finite tip separation coupled with the fluctuating gradients prevents a simple interpretation of the results. We have developed a method using, essentially, two or more triple probes, which allows a good estimate of the three plasma parameters and their spatial derivatives at each point of time (assuming tip separation is much less than correlation length and dimensionless fluctuation levels are much less than unity). In particular, we can unambiguously measure the temperature fluctuations and the turbulent particle and heat flux. (author) 1 fig.

  14. Evidence of strong proton shape fluctuations from incoherent diffraction

    International Nuclear Information System (INIS)

    Mantysaari, H.; Schenke, B.

    2016-01-01

    We show within the saturation framework that measurements of exclusive vector meson production at high energy provide evidence for strong geometric fluctuations of the proton. In comparison, the effect of saturation scale and color charge fluctuations is weak. This knowledge will allow detailed future measurements of the incoherent cross section to tightly constrain the fluctuating geometry of the proton as a function of the parton momentum fraction x.

  15. Pressure fluctuation characteristics of flow field of mixed flow nuclear primary pump

    International Nuclear Information System (INIS)

    Wang Chunlin; Yang Xiaoyong; Li Changjun; Jia Fei; Zhao Binjuan

    2013-01-01

    In order to research the pressure fluctuation characteristics of flow field of mixed flow nuclear primary pump, this study used the technique of ANSYS-Workbench and CFX fluid solid heat coupling to do numerical simulation analysis for model pump. According to the situation of pressure fluctuation of time domain and frequency domain, the main cause of pressure fluctuation was discussed. For different flow, the pressure fluctuations were compared. This study shows it is feasible that large eddy simulation method is used for the research of pressure fluctuation. The pressure fluctuation amplitudes of four sections are increasing from wheel hub to wheel rim. The pressure fluctuation of inlet and outlet of impeller depends on the rotational frequency of impeller. Along with the fluid flowing away from the impeller, the effect of the impeller on the fluid pressure fluctuation weakens gradually. Comparing the different results of three flow conditions, the pressure fluctuation in design condition flow is superior to the others. (authors)

  16. Measuring Motion-Induced B0-Fluctuations in the Brain Using Field Probes

    DEFF Research Database (Denmark)

    Andersen, Mads; Hanson, Lars G.; Madsen, Kristoffer Hougaard

    2016-01-01

    Purpose: Fluctuations of the background magnetic field (B0) due to body and breathing motion can lead to significant artifacts in brain imaging at ultrahigh field. Corrections based on real-time sensing using external field probes show great potential. This study evaluates different aspects of fi...

  17. Thermal and active fluctuations of a compressible bilayer vesicle

    Science.gov (United States)

    Sachin Krishnan, T. V.; Yasuda, Kento; Okamoto, Ryuichi; Komura, Shigeyuki

    2018-05-01

    We discuss thermal and active fluctuations of a compressible bilayer vesicle by using the results of hydrodynamic theory for vesicles. Coupled Langevin equations for the membrane deformation and the density fields are employed to calculate the power spectral density matrix of membrane fluctuations. Thermal contribution is obtained by means of the fluctuation dissipation theorem, whereas active contribution is calculated from exponentially decaying time correlation functions of active random forces. We obtain the total power spectral density as a sum of thermal and active contributions. An apparent response function is further calculated in order to compare with the recent microrheology experiment on red blood cells. An enhanced response is predicted in the low-frequency regime for non-thermal active fluctuations.

  18. Fluctuating hydrodynamics, current fluctuations, and hyperuniformity in boundary-driven open quantum chains.

    Science.gov (United States)

    Carollo, Federico; Garrahan, Juan P; Lesanovsky, Igor; Pérez-Espigares, Carlos

    2017-11-01

    We consider a class of either fermionic or bosonic noninteracting open quantum chains driven by dissipative interactions at the boundaries and study the interplay of coherent transport and dissipative processes, such as bulk dephasing and diffusion. Starting from the microscopic formulation, we show that the dynamics on large scales can be described in terms of fluctuating hydrodynamics. This is an important simplification as it allows us to apply the methods of macroscopic fluctuation theory to compute the large deviation (LD) statistics of time-integrated currents. In particular, this permits us to show that fermionic open chains display a third-order dynamical phase transition in LD functions. We show that this transition is manifested in a singular change in the structure of trajectories: while typical trajectories are diffusive, rare trajectories associated with atypical currents are ballistic and hyperuniform in their spatial structure. We confirm these results by numerically simulating ensembles of rare trajectories via the cloning method, and by exact numerical diagonalization of the microscopic quantum generator.

  19. Escape routes, weak links, and desynchronization in fluctuation-driven networks

    DEFF Research Database (Denmark)

    Schäfer, Benjamin; Matthiae, Moritz; Zhang, Xiaozhu

    2017-01-01

    Shifting our electricity generation from fossil fuel to renewable energy sources introduces large fluctuations to the power system. Here, we demonstrate how increased fluctuations, reduced damping, and reduced intertia may undermine the dynamical robustness of power grid networks. Focusing...... on fundamental noise models, we derive analytic insights into which factors limit the dynamic robustness and how fluctuations may induce a system escape from an operating state. Moreover, we identify weak links in the grid that make it particularly vulnerable to fluctuations. These results thereby not only...

  20. Fluctuation-dissipation theorem in general relativity and the cosmological constant

    International Nuclear Information System (INIS)

    Mottola, E.

    1992-01-01

    Vacuum fluctuations are an essential feature of quantum field theory. Yet, the smallness of the scalar curvature of our universe suggests that the zero-point energy associated with these fluctuations does not curve spacetime. A possible way out of this paradox is suggested by the fact that microscopic fluctuations are generally accompanied by dissipative behavior in macroscopic systems. The intimate relation between the two is expressed by a fluctuation-dissipation theorem which extends to general relativity. The connection between quantum fluctuations and dissipation suggests a mechanism for the conversion of coherent stresses in the curvature of space into ordinary matter or radiation, thereby relaxing the effective cosmological ''constant'' to zero over time. The expansion of the universe may be the effect of this time-asymmetric relaxation process

  1. On statistical fluctuations in the dibaryon spectra

    International Nuclear Information System (INIS)

    Bazhanskij, I.I.; Luk'yanov, V.K.; Reznik, B.L.; Titov, A.I.

    1988-01-01

    The aim of this report is to show, that idea about statistical nature of dibaryon resonances corresponds to the present experimental data. Condition for cross section fluctuation occurrence is linked with value of decay width for isolated dibaryon in nucleon channel. Γ in terms of dibaryon potential quark model and q 6 → NN dibaryon decay for q 6 state with S 6 orbital symmetry and (S=I, I=0) deuteron quantum numbers are calculated as an example. np → ppπ - , dp → ppn and elastic pp-scattering are considered and distributions of cross sections and correlation functions obtained from these reactions are presented to investigate cross section fluctuations in spectra of effective masses of two-nucleon systems. Supposition about fluctuation pattern does not contradict the experiment. Curves, calculated with x l α < or approx. 0.05 partial amplitude parameter and full width of Γ < or approx. 20 MeV dibaryon resonances comply to the present experiment best. Fluctuation peculiarities -peaks in cross sections have approximately the same energy width (Γ ∼ 15-20 MeV) as the observed narrow peak in effective mass spectra of some reactions. 16 refs.; 3 figs

  2. Macroeconomic fluctuations and mortality in postwar Japan.

    Science.gov (United States)

    Granados, José A Tapia

    2008-05-01

    Recent research has shown that after long-term declining trends are excluded, mortality rates in industrial countries tend to rise in economic expansions and fall in economic recessions. In the present work, co-movements between economic fluctuations and mortality changes in postwar Japan are investigated by analyzing time series of mortality rates and eight economic indicators. To eliminate spurious associations attributable to trends, series are detrended either via Hodrick-Prescott filtering or through differencing. As previously found in other industrial economies, general mortality and age-specific death rates in Japan tend to increase in expansions and drop in recessions, for both males and females. The effect, which is slightly stronger for males, is particularly noticeable in those aged 45-64. Deaths attributed to heart disease, pneumonia, accidents, liver disease, and senility--making up about 41% of total mortality--tend to fluctuate procyclically, increasing in expansions. Suicides, as well as deaths attributable to diabetes and hypertensive disease, make up about 4% of total mortality and fluctuate countercyclically, increasing in recessions. Deaths attributed to other causes, making up about half of total deaths, don't show a clearly defined relationship with the fluctuations of the economy.

  3. Quantifying fluctuations of resting state networks using arterial spin labeling perfusion MRI.

    Science.gov (United States)

    Dai, Weiying; Varma, Gopal; Scheidegger, Rachel; Alsop, David C

    2016-03-01

    Blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) has been widely used to investigate spontaneous low-frequency signal fluctuations across brain resting state networks. However, BOLD only provides relative measures of signal fluctuations. Arterial Spin Labeling (ASL) MRI holds great potential for quantitative measurements of resting state network fluctuations. This study systematically quantified signal fluctuations of the large-scale resting state networks using ASL data from 20 healthy volunteers by separating them from global signal fluctuations and fluctuations caused by residual noise. Global ASL signal fluctuation was 7.59% ± 1.47% relative to the ASL baseline perfusion. Fluctuations of seven detected resting state networks vary from 2.96% ± 0.93% to 6.71% ± 2.35%. Fluctuations of networks and residual noise were 6.05% ± 1.18% and 6.78% ± 1.16% using 4-mm resolution ASL data applied with Gaussian smoothing kernel of 6mm. However, network fluctuations were reduced by 7.77% ± 1.56% while residual noise fluctuation was markedly reduced by 39.75% ± 2.90% when smoothing kernel of 12 mm was applied to the ASL data. Therefore, global and network fluctuations are the dominant structured noise sources in ASL data. Quantitative measurements of resting state networks may enable improved noise reduction and provide insights into the function of healthy and diseased brain. © The Author(s) 2015.

  4. Analysis of jitter due to call-level fluctuations

    NARCIS (Netherlands)

    M.R.H. Mandjes (Michel)

    2005-01-01

    textabstractIn communication networks used by constant bit rate applications, call-level dynamics (i.e., entering and leaving calls) lead to fluctuations in the load, and therefore also fluctuations in the delay (jitter). By intentionally delaying the packets at the destination, one can transform

  5. Environmental factors influencing fluctuation of share prices on ...

    African Journals Online (AJOL)

    Environmental factors influencing fluctuation of share prices on Nigeria stock exchange market. ... What are these environmental variables that affect the fluctuation of share prices in Nigeria? ... The results show inflation, money supply, total deficits index of industrial production, interest rate and GDP influence stock prices.

  6. Equalizing effect of the fluctuation in areal irradiance; Chiikinai ni okeru shugo nissha no hendo yokusei koka

    Energy Technology Data Exchange (ETDEWEB)

    Minowa, J; Kurokawa, K [Tokyo University of Agriculture and Technology, Tokyo (Japan); Otani, K; Tsuda, I; Sakuta, K [Electrotechnical Laboratory, Tsukuba (Japan)

    1997-11-25

    Aggravation in electric power quality is concerned because of irregular output power caused by a large number of photovoltaic power generation systems connected with the power grids. However, averaging of the irregularity may be expected in a wide area due to time-based shift in cloud movements. In order to identify this effect, insolation data were measured in terms of planes at multiple points in the city of Tsukuba to discuss the fluctuation equalizing effect. The system is composed of nine instruments to measure insolation plane characteristics, nine terminal station units, and a base station unit. The insolation data express the horizontal plane insolation intensity at a sampling interval of one minute. Insolation fluctuation (standard deviation of insolation fluctuation components) was defined as an index of the insolation fluctuation. Based on the index, an averaging effect when the photovoltaic systems are installed in a number of locations was considered by using statistic estimation. As a result, the averaging effect was obtained even in an area with a radius of several kilometers. In addition, the measurement data revealed that there is an upper limit in the effect depending on the number of system installation. It was also made clear that the data are affected by distances to connect the photovoltaic power generation systems with each other and by climatic conditions. 3 refs., 6 figs.

  7. Driving reconnection in sheared magnetic configurations with forced fluctuations

    Science.gov (United States)

    Pongkitiwanichakul, Peera; Makwana, Kirit D.; Ruffolo, David

    2018-02-01

    We investigate reconnection of magnetic field lines in sheared magnetic field configurations due to fluctuations driven by random forcing by means of numerical simulations. The simulations are performed with an incompressible, pseudo-spectral magnetohydrodynamics code in 2D where we take thick, resistively decaying, current-sheet like sheared magnetic configurations which do not reconnect spontaneously. We describe and test the forcing that is introduced in the momentum equation to drive fluctuations. It is found that the forcing does not change the rate of decay; however, it adds and removes energy faster in the presence of the magnetic shear structure compared to when it has decayed away. We observe that such a forcing can induce magnetic reconnection due to field line wandering leading to the formation of magnetic islands and O-points. These reconnecting field lines spread out as the current sheet decays with time. A semi-empirical formula is derived which reasonably explains the formation and spread of O-points. We find that reconnection spreads faster with stronger forcing and longer correlation time of forcing, while the wavenumber of forcing does not have a significant effect. When the field line wandering becomes large enough, the neighboring current sheets with opposite polarity start interacting, and then the magnetic field is rapidly annihilated. This work is useful to understand how forced fluctuations can drive reconnection in large scale current structures in space and astrophysical plasmas that are not susceptible to reconnection.

  8. Characterisation of work function fluctuations for high-precision experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kahlenberg, Jan; Bickmann, Edward; Heil, Werner; Otten, Ernst W.; Schmidt, Christian; Wunderle, Alexander [Johannes Gutenberg-Universitaet Mainz (Germany); Babutzka, Martin; Schoenung, Kerstin [Karlsruher Institut fuer Technologie (Germany); Beck, Marcus [Johannes Gutenberg-Universitaet Mainz (Germany); Helmholtz-Institut Mainz (Germany)

    2016-07-01

    For a wide range of high-precision experiments in physics, well-defined electric potentials for achieving high measurement accuracies are required. An accurate determination of the electric potential is crucial for the measurement of the neutrino mass (KATRIN) as well as the measurement of the e{sup -} anti ν{sub e} correlation coefficient a in free neutron decay (aSPECT). Work function fluctuations on the electrodes lead to uncertainties in the distribution of the electric potential. For aSPECT, the electric potential has to be known at an accuracy of 10 mV. However, due to the patch effect of gold, work function fluctuations of several 100 meV can occur. Therefore, the work function distributions of the gold-plated electrodes have been measured using a Kelvin probe. Furthermore, the change of work function distributions over time as well as the influence of relative humidity on the work function measurement have been investigated. For aSPECT, the work function distributions of the gold-plated electrodes have been measured using a Kelvin probe. Due to the patch effect of gold, work function fluctuations of up to 160 meV occur. This would lead to a significant uncertainty of the potential barrier, which should be known at an accuracy of 10 mV. Furthermore, the change of work function distributions over time as well as the influence of relative humidity on the work function measurement have been investigated.

  9. Simulation of power fluctuation of wind farms based on frequency domain

    DEFF Research Database (Denmark)

    Lin, Jin; Sun, Yuanzhang; Li, Guojie

    2011-01-01

    The wind power fluctuation model built up in the frequency domain is mathematically equivalent with that in the time domain, and has a clearer physical meaning therefore describes the fluctuation more accurately. However, the simulation of this model is required to deal with the time......-frequency transformation related to the power spectrum density (PSD), which is more special and complicated than normal transformations. Meanwhile, the computational complexity also increases significantly, more computation resources are needed. These problems negatively affect the engineering application of the model....... To overcome these disadvantages, the physical meaning of PSD based on fundamental concepts is presented, so that the specialties of this model compared with conventional ones can be understood. Then the time-frequency transformation algorithm is derived, which is fast to be implemented in digital computers...

  10. Fluctuations and correlations of conserved charges near the QCD critical point

    International Nuclear Information System (INIS)

    Fu Weijie; Wu Yueliang

    2010-01-01

    We study the fluctuations and correlations of conserved charges, such as the baryon number, the electric charge and the strangeness, at the finite temperature and the nonzero baryon chemical potential in an effective model. The fluctuations are calculated up to the fourth-order and the correlations to the third-order. We find that the second-order fluctuations and correlations have a peak or valley structure when the chiral phase transition takes place with the increase of the baryon chemical potential; the third-order fluctuations and correlations change their signs during the chiral phase transition; and the fourth-order fluctuations have two maxima and one minimum. We also depict contour plots of various fluctuations and correlations of conserved charges in the plane of temperature and the baryon chemical potential. It is found that higher-order fluctuations and correlations of conserved charges are superior to the second-order ones to be used to search for the critical point in heavy ion collision experiments.

  11. Long-range correlations in rectal temperature fluctuations of healthy infants during maturation.

    Directory of Open Access Journals (Sweden)

    Georgette Stern

    Full Text Available BACKGROUND: Control of breathing, heart rate, and body temperature are interdependent in infants, where instabilities in thermoregulation can contribute to apneas or even life-threatening events. Identifying abnormalities in thermoregulation is particularly important in the first 6 months of life, where autonomic regulation undergoes critical development. Fluctuations in body temperature have been shown to be sensitive to maturational stage as well as system failure in critically ill patients. We thus aimed to investigate the existence of fractal-like long-range correlations, indicative of temperature control, in night time rectal temperature (T(rec patterns in maturing infants. METHODOLOGY/PRINCIPAL FINDINGS: We measured T(rec fluctuations in infants every 4 weeks from 4 to 20 weeks of age and before and after immunization. Long-range correlations in the temperature series were quantified by the correlation exponent, alpha using detrended fluctuation analysis. The effects of maturation, room temperature, and immunization on the strength of correlation were investigated. We found that T(rec fluctuations exhibit fractal long-range correlations with a mean (SD alpha of 1.51 (0.11, indicating that T(rec is regulated in a highly correlated and hence deterministic manner. A significant increase in alpha with age from 1.42 (0.07 at 4 weeks to 1.58 (0.04 at 20 weeks reflects a change in long-range correlation behavior with maturation towards a smoother and more deterministic temperature regulation, potentially due to the decrease in surface area to body weight ratio in the maturing infant. alpha was not associated with mean room temperature or influenced by immunization CONCLUSIONS: This study shows that the quantification of long-range correlations using alpha derived from detrended fluctuation analysis is an observer-independent tool which can distinguish developmental stages of night time T(rec pattern in young infants, reflective of maturation of

  12. Charging a Capacitor from an External Fluctuating Potential using a Single Conical Nanopore

    Science.gov (United States)

    Gomez, Vicente; Ramirez, Patricio; Cervera, Javier; Nasir, Saima; Ali, Mubarak; Ensinger, Wolfgang; Mafe, Salvador

    2015-01-01

    We explore the electrical rectification of large amplitude fluctuating signals by an asymmetric nanostructure operating in aqueous solution. We show experimentally and theoretically that a load capacitor can be charged to voltages close to 1 V within a few minutes by converting zero time-average potentials of amplitudes in the range 0.5–3 V into average net currents using a single conical nanopore. This process suggests that significant energy conversion and storage from an electrically fluctuating environment is feasible with a nanoscale pore immersed in a liquid electrolyte solution, a system characteristic of bioelectronics interfaces, electrochemical cells, and nanoporous membranes. PMID:25830563

  13. Fluctuation current in superconducting loops

    International Nuclear Information System (INIS)

    Berger, Jorge

    2012-01-01

    A superconducting loop that encloses noninteger flux holds a permanent current. On the average, this current is also present above T c , and has been measured in recent years. We are able to evaluate the permanent current within the TDGL or the Kramer-Watts-Tobin models for loops of general configuration, i.e., we don't require uniform cross section, material or temperature. We can also consider situations in which the width is not negligible in comparison to the radius. Our results agree with experiments. The situations with which we deal at present include fluctuation superconductivity in two-band superconductors, equilibrium thermal fluctuations of supercurrent along a weak link, and ratchet effects.

  14. Event-by-event fluctuations of average transverse momentum in central Pb + Pb collisions at 158 GeV per nucleon

    CERN Document Server

    Appelshauser, H.; Bailey, S.J.; Barna, D.; Barnby, L.S.; Bartke, J.; Barton, R.A.; Betev, L.; Bialkowska, H.; Billmeier, A.; Blyth, C.O.; Bock, R.; Boimska, B.; Bormann, C.; Brady, F.P.; Brockmann, R.; Brun, R.; Buncic, P.; Caines, H.L.; Carr, L.D.; Cebra, D.A.; Cooper, G.E.; Cramer, J.G.; Cristinziani, M.; Csato, P.; Dunn, J.; Eckardt, V.; Eckhardt, F.; Ferguson, M.I.; Fischer, H.G.; Flierl, D.; Fodor, Z.; Foka, P.; Freund, P.; Friese, V.; Fuchs, M.; Gabler, F.; Gal, J.; Ganz, R.; Gazdzicki, M.; Geist, Walter M.; Gladysz, E.; Grebieszkow, J.; Gunther, J.; Harris, J.W.; Hegyi, S.; Henkel, T.; Hill, L.A.; Hummler, H.; Igo, G.; Irmscher, D.; Jacobs, P.; Jones, P.G.; Kadija, K.; Kolesnikov, V.I.; Kowalski, M.; Lasiuk, B.; Levai, P.; Malakhov, A.I.; Margetis, S.; Markert, C.; Melkumov, G.L.; Mock, A.; Molnar, J.; Nelson, John M.; Oldenburg, M.; Odyniec, G.; Palla, G.; Panagiotou, A.D.; Petridis, A.; Piper, A.; Porter, R.J.; Poskanzer, Arthur M.; Prindle, D.J.; Puhlhofer, F.; Reid, J.G.; Renfordt, R.; Retyk, W.; Ritter, H.G.; Rohrich, D.; Roland, C.; Roland, G.; Rudolph, H.; Rybicki, A.; Sammer, T.; Sandoval, A.; Sann, H.; Semenov, A.Yu.; Schafer, E.; Schmischke, D.; Schmitz, N.; Schonfelder, S.; Seyboth, P.; Seyerlein, J.; Sikler, F.; Skrzypczak, E.; Snellings, R.; Squier, G.T.A.; Stock, R.; Strobele, H.; Struck, Chr.; Susa, T.; Szentpetery, I.; Sziklai, J.; Toy, M.; Trainor, T.A.; Trentalange, S.; Ullrich, T.; Vassiliou, M.; Veres, G.; Vesztergombi, G.; Voloshin, S.; Vranic, D.; Wang, F.; Weerasundara, D.D.; Wenig, S.; Whitten, C.; Wienold, T.; Wood, L.; Xu, N.; Yates, T.A.; Zimanyi, J.; Zhu, X.Z.; Zybert, R.

    1999-01-01

    We present first data on event-by-event fluctuations in the average transverse momentum of charged particles produced in Pb+Pb collisions at the CERN SPS. This measurement provides previously unavailable information allowing sensitive tests of microscopic and thermodynamic collision models and to search for fluctuations expected to occur in the vicinity of the predicted QCD phase transition. We find that the observed variance of the event-by-event average transverse momentum is consistent with independent particle production modified by the known two-particle correlations due to quantum statistics and final state interactions and folded with the resolution of the NA49 apparatus. For two specific models of non-statistical fluctuations in transverse momentum limits are derived in terms of fluctuation amplitude. We show that a significant part of the parameter space for a model of isospin fluctuations predicted as a consequence of chiral symmetry restoration in

  15. Power fluctuation reduction methodology for the grid-connected renewable power systems

    Science.gov (United States)

    Aula, Fadhil T.; Lee, Samuel C.

    2013-04-01

    This paper presents a new methodology for eliminating the influence of the power fluctuations of the renewable power systems. The renewable energy, which is to be considered an uncertain and uncontrollable resource, can only provide irregular electrical power to the power grid. This irregularity creates fluctuations of the generated power from the renewable power systems. These fluctuations cause instability to the power system and influence the operation of conventional power plants. Overall, the power system is vulnerable to collapse if necessary actions are not taken to reduce the impact of these fluctuations. This methodology aims at reducing these fluctuations and makes the generated power capability for covering the power consumption. This requires a prediction tool for estimating the generated power in advance to provide the range and the time of occurrence of the fluctuations. Since most of the renewable energies are weather based, as a result a weather forecast technique will be used for predicting the generated power. The reduction of the fluctuation also requires stabilizing facilities to maintain the output power at a desired level. In this study, a wind farm and a photovoltaic array as renewable power systems and a pumped-storage and batteries as stabilizing facilities are used, since they are best suitable for compensating the fluctuations of these types of power suppliers. As an illustrative example, a model of wind and photovoltaic power systems with battery energy and pumped hydro storage facilities for power fluctuation reduction is included, and its power fluctuation reduction is verified through simulation.

  16. Edge fluctuations in the MST [Madison Symmetric Torus] reversed field pinch

    International Nuclear Information System (INIS)

    Almagri, A.; Assadi, S.; Beckstead, J.; Chartas, G.; Crocker, N.; Den Hartog, D.; Dexter, R.; Hokin, S.; Holly, D.; Nilles, E.; Prager, S.; Rempel, T.; Sarff, J.; Scime, E.; Shen, W.; Spragins, C.; Sprott, J.; Starr, G.; Stoneking, M.; Watts, C.

    1990-10-01

    Edge magnetic and electrostatic fluctuations are measured in the Madison Symmetric Torus (MST) reversed field pinch. At low frequency ( e > p e /p e where φ and p e are the fluctuating potential and pressure, respectively). From measurements of the fluctuating density, temperature, and potential we infer that the electrostatic fluctuation induced transport of particles and energy can be substantial. 13 refs., 11 figs

  17. Membrane fluctuations mediate lateral interaction between cadherin bonds

    Science.gov (United States)

    Fenz, Susanne F.; Bihr, Timo; Schmidt, Daniel; Merkel, Rudolf; Seifert, Udo; Sengupta, Kheya; Smith, Ana-Sunčana

    2017-09-01

    The integrity of living tissues is maintained by adhesion domains of trans-bonds formed between cadherin proteins residing on opposing membranes of neighbouring cells. These domains are stabilized by lateral cis-interactions between the cadherins on the same cell. However, the origin of cis-interactions remains perplexing since they are detected only in the context of trans-bonds. By combining experimental, analytical and computational approaches, we identify bending fluctuations of membranes as a source of long-range cis-interactions, and a regulator of trans-interactions. Specifically, nanometric membrane bending and fluctuations introduce cooperative effects that modulate the affinity and binding/unbinding rates for trans-dimerization, dramatically affecting the nucleation and growth of adhesion domains. Importantly, this regulation relies on physical principles and not on details of protein-protein interactions. These omnipresent fluctuations can thus act as a generic control mechanism in all types of cell adhesion, suggesting a hitherto unknown physiological role for recently identified active fluctuations of cellular membranes.

  18. Event-by-event fluctuations in mean pT and mean eT in √(sNN)=130 GeV Au+Au collisions

    International Nuclear Information System (INIS)

    Adcox, K.; El Chenawi, K.; Ghosh, T.K.; Greene, S.V.; Maguire, C.F.; Miller, T.E.; Rose, A.A.; Adler, S.S.; Aronson, S.H.; David, G.; Desmond, E.J.; Ewell, L.; Franz, A.; Guryn, W.; Haggerty, J.S.; Johnson, B.M.; Kistenev, E.; Kroon, P.J.; Mahon, J.; Makdisi, Y.I.

    2002-01-01

    Distributions of event-by-event fluctuations of the mean transverse momentum and mean transverse energy near mid-rapidity have been measured in Au+Au collisions at √(s NN )=130 GeV at the Relativistic Heavy-Ion Collider. By comparing the distributions to what is expected for statistically independent particle emission, the magnitude of nonstatistical fluctuations in mean transverse momentum is determined to be consistent with zero. Also, no significant nonrandom fluctuations in mean transverse energy are observed. By constructing a fluctuation model with two event classes that preserve the mean and variance of the semi-inclusive p T or e T spectra, we exclude a region of fluctuations in √(s NN )=130 GeV Au+Au collisions

  19. Large-scale fluctuations in the diffusive decomposition of solid solutions

    International Nuclear Information System (INIS)

    Karpov, V.G.; Grimsditch, M.

    1995-01-01

    The concept of an instability in the classic Ostwald ripening theory with respect to compositional fluctuations is suggested. We show that small statistical fluctuations in the precipitate phase lead to gigantic Coulomb-like fluctuations in the solute concentration which in turn affect the ripening. As a result large-scale fluctuations in both the precipitate and solute concentrations appear. These fluctuations are characterized by amplitudes of the order of the average values of the corresponding quantities and by a space scale L∼(na) -1/2 which is considerably greater than both the average nuclear radius and internuclear distance. The Lifshitz-Slyozov theory of ripening is shown to remain locally applicable, over length scales much less than L. The implications of these findings for elastic light scattering in solid solutions that have undergone Ostwald ripening are considered

  20. Large-scale fluctuations in the diffusive decomposition of solid solutions

    Science.gov (United States)

    Karpov, V. G.; Grimsditch, M.

    1995-04-01

    The concept of an instability in the classic Ostwald ripening theory with respect to compositional fluctuations is suggested. We show that small statistical fluctuations in the precipitate phase lead to gigantic Coulomb-like fluctuations in the solute concentration which in turn affect the ripening. As a result large-scale fluctuations in both the precipitate and solute concentrations appear. These fluctuations are characterized by amplitudes of the order of the average values of the corresponding quantities and by a space scale L~(na)-1/2 which is considerably greater than both the average nuclear radius and internuclear distance. The Lifshitz-Slyozov theory of ripening is shown to remain locally applicable, over length scales much less than L. The implications of these findings for elastic light scattering in solid solutions that have undergone Ostwald ripening are considered.