WorldWideScience

Sample records for reveal folding kinetics

  1. Energetics, kinetics, and pathway of SNARE folding and assembly revealed by optical tweezers.

    Science.gov (United States)

    Zhang, Yongli

    2017-07-01

    Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are universal molecular engines that drive membrane fusion. Particularly, synaptic SNAREs mediate fast calcium-triggered fusion of neurotransmitter-containing vesicles with plasma membranes for synaptic transmission, the basis of all thought and action. During membrane fusion, complementary SNAREs located on two apposed membranes (often called t- and v-SNAREs) join together to assemble into a parallel four-helix bundle, releasing the energy to overcome the energy barrier for fusion. A long-standing hypothesis suggests that SNAREs act like a zipper to draw the two membranes into proximity and thereby force them to fuse. However, a quantitative test of this SNARE zippering hypothesis was hindered by difficulties to determine the energetics and kinetics of SNARE assembly and to identify the relevant folding intermediates. Here, we first review different approaches that have been applied to study SNARE assembly and then focus on high-resolution optical tweezers. We summarize the folding energies, kinetics, and pathways of both wild-type and mutant SNARE complexes derived from this new approach. These results show that synaptic SNAREs assemble in four distinct stages with different functions: slow N-terminal domain association initiates SNARE assembly; a middle domain suspends and controls SNARE assembly; and rapid sequential zippering of the C-terminal domain and the linker domain directly drive membrane fusion. In addition, the kinetics and pathway of the stagewise assembly are shared by other SNARE complexes. These measurements prove the SNARE zippering hypothesis and suggest new mechanisms for SNARE assembly regulated by other proteins. © 2017 The Protein Society.

  2. RNA folding: structure prediction, folding kinetics and ion electrostatics.

    Science.gov (United States)

    Tan, Zhijie; Zhang, Wenbing; Shi, Yazhou; Wang, Fenghua

    2015-01-01

    Beyond the "traditional" functions such as gene storage, transport and protein synthesis, recent discoveries reveal that RNAs have important "new" biological functions including the RNA silence and gene regulation of riboswitch. Such functions of noncoding RNAs are strongly coupled to the RNA structures and proper structure change, which naturally leads to the RNA folding problem including structure prediction and folding kinetics. Due to the polyanionic nature of RNAs, RNA folding structure, stability and kinetics are strongly coupled to the ion condition of solution. The main focus of this chapter is to review the recent progress in the three major aspects in RNA folding problem: structure prediction, folding kinetics and ion electrostatics. This chapter will introduce both the recent experimental and theoretical progress, while emphasize the theoretical modelling on the three aspects in RNA folding.

  3. Kinetic partitioning mechanism of HDV ribozyme folding

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiawen; Gong, Sha; Wang, Yujie; Zhang, Wenbing, E-mail: wbzhang@whu.edu.cn [Department of Physics, Wuhan University, Wuhan, Hubei 430072 (China)

    2014-01-14

    RNA folding kinetics is directly tied to RNA biological functions. We introduce here a new approach for predicting the folding kinetics of RNA secondary structure with pseudoknots. This approach is based on our previous established helix-based method for predicting the folding kinetics of RNA secondary structure. In this approach, the transition rates for an elementary step: (1) formation, (2) disruption of a helix stem, and (3) helix formation with concomitant partial melting of an incompatible helix, are calculated with the free energy landscape. The folding kinetics of the Hepatitis delta virus (HDV) ribozyme and the mutated sequences are studied with this method. The folding pathways are identified by recursive searching the states with high net flux-in(out) population starting from the native state. The theory results are in good agreement with that of the experiments. The results indicate that the bi-phasic folding kinetics for the wt HDV sequence is ascribed to the kinetic partitioning mechanism: Part of the population will quickly fold to the native state along the fast pathway, while another part of the population will fold along the slow pathway, in which the population is trapped in a non-native state. Single mutation not only changes the folding rate but also the folding pathway.

  4. Kinetics and Thermodynamics of Membrane Protein Folding

    Directory of Open Access Journals (Sweden)

    Ernesto A. Roman

    2014-03-01

    Full Text Available Understanding protein folding has been one of the great challenges in biochemistry and molecular biophysics. Over the past 50 years, many thermodynamic and kinetic studies have been performed addressing the stability of globular proteins. In comparison, advances in the membrane protein folding field lag far behind. Although membrane proteins constitute about a third of the proteins encoded in known genomes, stability studies on membrane proteins have been impaired due to experimental limitations. Furthermore, no systematic experimental strategies are available for folding these biomolecules in vitro. Common denaturing agents such as chaotropes usually do not work on helical membrane proteins, and ionic detergents have been successful denaturants only in few cases. Refolding a membrane protein seems to be a craftsman work, which is relatively straightforward for transmembrane β-barrel proteins but challenging for α-helical membrane proteins. Additional complexities emerge in multidomain membrane proteins, data interpretation being one of the most critical. In this review, we will describe some recent efforts in understanding the folding mechanism of membrane proteins that have been reversibly refolded allowing both thermodynamic and kinetic analysis. This information will be discussed in the context of current paradigms in the protein folding field.

  5. Periodic and stochastic thermal modulation of protein folding kinetics.

    Science.gov (United States)

    Platkov, Max; Gruebele, Martin

    2014-07-21

    Chemical reactions are usually observed either by relaxation of a bulk sample after applying a sudden external perturbation, or by intrinsic fluctuations of a few molecules. Here we show that the two ideas can be combined to measure protein folding kinetics, either by periodic thermal modulation, or by creating artificial thermal noise that greatly exceeds natural thermal fluctuations. We study the folding reaction of the enzyme phosphoglycerate kinase driven by periodic temperature waveforms. As the temperature waveform unfolds and refolds the protein, its fluorescence color changes due to FRET (Förster resonant Energy Transfer) of two donor/acceptor fluorophores labeling the protein. We adapt a simple model of periodically driven kinetics that nicely fits the data at all temperatures and driving frequencies: The phase shifts of the periodic donor and acceptor fluorescence signals as a function of driving frequency reveal reaction rates. We also drive the reaction with stochastic temperature waveforms that produce thermal fluctuations much greater than natural fluctuations in the bulk. Such artificial thermal noise allows the recovery of weak underlying signals due to protein folding kinetics. This opens up the possibility for future detection of a stochastic resonance for protein folding subject to noise with controllable amplitude.

  6. Ligand-promoted protein folding by biased kinetic partitioning.

    Science.gov (United States)

    Hingorani, Karan S; Metcalf, Matthew C; Deming, Derrick T; Garman, Scott C; Powers, Evan T; Gierasch, Lila M

    2017-04-01

    Protein folding in cells occurs in the presence of high concentrations of endogenous binding partners, and exogenous binding partners have been exploited as pharmacological chaperones. A combined mathematical modeling and experimental approach shows that a ligand improves the folding of a destabilized protein by biasing the kinetic partitioning between folding and alternative fates (aggregation or degradation). Computationally predicted inhibition of test protein aggregation and degradation as a function of ligand concentration are validated by experiments in two disparate cellular systems.

  7. Stretched versus compressed exponential kinetics in α-helix folding

    International Nuclear Information System (INIS)

    Hamm, Peter; Helbing, Jan; Bredenbeck, Jens

    2006-01-01

    In a recent paper (J. Bredenbeck, J. Helbing, J.R. Kumita, G.A. Woolley, P. Hamm, α-helix formation in a photoswitchable peptide tracked from picoseconds to microseconds by time resolved IR spectroscopy, Proc. Natl. Acad. Sci USA 102 (2005) 2379), we have investigated the folding of a photo-switchable α-helix with a kinetics that could be fit by a stretched exponential function exp(-(t/τ) β ). The stretching factor β became smaller as the temperature was lowered, a result which has been interpreted in terms of activated diffusion on a rugged energy surface. In the present paper, we discuss under which conditions diffusion problems occur with stretched exponential kinetics (β 1). We show that diffusion problems do have a strong tendency to yield stretched exponential kinetics, yet, that there are conditions (strong perturbation from equilibrium, performing the experiment in the folding direction) under which compressed exponential kinetics would be expected instead. We discuss the kinetics on free energy surfaces predicted by simple initiation-propagation models (zipper models) of α-helix folding, as well as by folding funnel models. We show that our recent experiment has been performed under condition for which models with strong downhill driving force, such as the zipper model, would predict compressed, rather than stretched exponential kinetics, in disagreement with the experimental observation. We therefore propose that the free energy surface along a reaction coordinate that governs the folding kinetics must be relatively flat and has a shape similar to a 1D golf course. We discuss how this conclusion can be unified with the thermodynamically well established zipper model by introducing an additional kinetic reaction coordinate

  8. RNA folding kinetics using Monte Carlo and Gillespie algorithms.

    Science.gov (United States)

    Clote, Peter; Bayegan, Amir H

    2018-04-01

    RNA secondary structure folding kinetics is known to be important for the biological function of certain processes, such as the hok/sok system in E. coli. Although linear algebra provides an exact computational solution of secondary structure folding kinetics with respect to the Turner energy model for tiny ([Formula: see text]20 nt) RNA sequences, the folding kinetics for larger sequences can only be approximated by binning structures into macrostates in a coarse-grained model, or by repeatedly simulating secondary structure folding with either the Monte Carlo algorithm or the Gillespie algorithm. Here we investigate the relation between the Monte Carlo algorithm and the Gillespie algorithm. We prove that asymptotically, the expected time for a K-step trajectory of the Monte Carlo algorithm is equal to [Formula: see text] times that of the Gillespie algorithm, where [Formula: see text] denotes the Boltzmann expected network degree. If the network is regular (i.e. every node has the same degree), then the mean first passage time (MFPT) computed by the Monte Carlo algorithm is equal to MFPT computed by the Gillespie algorithm multiplied by [Formula: see text]; however, this is not true for non-regular networks. In particular, RNA secondary structure folding kinetics, as computed by the Monte Carlo algorithm, is not equal to the folding kinetics, as computed by the Gillespie algorithm, although the mean first passage times are roughly correlated. Simulation software for RNA secondary structure folding according to the Monte Carlo and Gillespie algorithms is publicly available, as is our software to compute the expected degree of the network of secondary structures of a given RNA sequence-see http://bioinformatics.bc.edu/clote/RNAexpNumNbors .

  9. Mapping the kinetic barriers of a Large RNA molecule's folding landscape.

    Directory of Open Access Journals (Sweden)

    Jörg C Schlatterer

    Full Text Available The folding of linear polymers into discrete three-dimensional structures is often required for biological function. The formation of long-lived intermediates is a hallmark of the folding of large RNA molecules due to the ruggedness of their energy landscapes. The precise thermodynamic nature of the barriers (whether enthalpic or entropic that leads to intermediate formation is still poorly characterized in large structured RNA molecules. A classic approach to analyzing kinetic barriers are temperature dependent studies analyzed with Eyring's transition state theory. We applied Eyring's theory to time-resolved hydroxyl radical (•OH footprinting kinetics progress curves collected at eight temperature from 21.5 °C to 51 °C to characterize the thermodynamic nature of folding intermediate formation for the Mg(2+-mediated folding of the Tetrahymena thermophila group I ribozyme. A common kinetic model configuration describes this RNA folding reaction over the entire temperature range studied consisting of primary (fast transitions to misfolded intermediates followed by much slower secondary transitions, consistent with previous studies. Eyring analysis reveals that the primary transitions are moderate in magnitude and primarily enthalpic in nature. In contrast, the secondary transitions are daunting in magnitude and entropic in nature. The entropic character of the secondary transitions is consistent with structural rearrangement of the intermediate species to the final folded form. This segregation of kinetic control reveals distinctly different molecular mechanisms during the two stages of RNA folding and documents the importance of entropic barriers to defining rugged RNA folding landscapes.

  10. Early Events, Kinetic Intermediates and the Mechanism of Protein Folding in Cytochrome c

    Directory of Open Access Journals (Sweden)

    David S. Kliger

    2009-04-01

    Full Text Available Kinetic studies of the early events in cytochrome c folding are reviewed with a focus on the evidence for folding intermediates on the submillisecond timescale. Evidence from time-resolved absorption, circular dichroism, magnetic circular dichroism, fluorescence energy and electron transfer, small-angle X-ray scattering and amide hydrogen exchange studies on the t £ 1 ms timescale reveals a picture of cytochrome c folding that starts with the ~ 1-ms conformational diffusion dynamics of the unfolded chains. A fractional population of the unfolded chains collapses on the 1 – 100 ms timescale to a compact intermediate IC containing some native-like secondary structure. Although the existence and nature of IC as a discrete folding intermediate remains controversial, there is extensive high time-resolution kinetic evidence for the rapid formation of IC as a true intermediate, i.e., a metastable state separated from the unfolded state by a discrete free energy barrier. Final folding to the native state takes place on millisecond and longer timescales, depending on the presence of kinetic traps such as heme misligation and proline mis-isomerization. The high folding rates observed in equilibrium molten globule models suggest that IC may be a productive folding intermediate. Whether it is an obligatory step on the pathway to the high free energy barrier associated with millisecond timescale folding to the native state, however, remains to be determined.

  11. WW domain folding complexity revealed by infrared spectroscopy.

    Science.gov (United States)

    Davis, Caitlin M; Dyer, R Brian

    2014-09-02

    Although the intrinsic tryptophan fluorescence of proteins offers a convenient probe of protein folding, interpretation of the fluorescence spectrum is often difficult because it is sensitive to both global and local changes. Infrared (IR) spectroscopy offers a complementary measure of structural changes involved in protein folding, because it probes changes in the secondary structure of the protein backbone. Here we demonstrate the advantages of using multiple probes, infrared and fluorescence spectroscopy, to study the folding of the FBP28 WW domain. Laser-induced temperature jumps coupled with fluorescence or infrared spectroscopy have been used to probe changes in the peptide backbone on the submillisecond time scale. The relaxation dynamics of the β-sheets and β-turn were measured independently by probing the corresponding IR bands assigned in the amide I region. Using these wavelength-dependent measurements, we observe three kinetics phases, with the fastest process corresponding to the relaxation kinetics of the turns. In contrast, fluorescence measurements of the wild-type WW domain and tryptophan mutants exhibit single-exponential kinetics with a lifetime that corresponds to the slowest phase observed by infrared spectroscopy. Mutant sequences provide evidence of an intermediate dry molten globule state. The slowest step in the folding of this WW domain is the tight packing of the side chains in the transition from the dry molten globule intermediate to the native structure. This study demonstrates that using multiple complementary probes enhances the interpretation of protein folding dynamics.

  12. Equilibrium amide hydrogen exchange and protein folding kinetics

    International Nuclear Information System (INIS)

    Bai Yawen

    1999-01-01

    The classical Linderstrom-Lang hydrogen exchange (HX) model is extended to describe the relationship between the HX behaviors (EX1 and EX2) and protein folding kinetics for the amide protons that can only exchange by global unfolding in a three-state system including native (N), intermediate (I), and unfolded (U) states. For these slowly exchanging amide protons, it is shown that the existence of an intermediate (I) has no effect on the HX behavior in an off-pathway three-state system (I↔U↔N). On the other hand, in an on-pathway three-state system (U↔I↔N), the existence of a stable folding intermediate has profound effect on the HX behavior. It is shown that fast refolding from the unfolded state to the stable intermediate state alone does not guarantee EX2 behavior. The rate of refolding from the intermediate state to the native state also plays a crucial role in determining whether EX1 or EX2 behavior should occur. This is mainly due to the fact that only amide protons in the native state are observed in the hydrogen exchange experiment. These new concepts suggest that caution needs to be taken if one tries to derive the kinetic events of protein folding from equilibrium hydrogen exchange experiments

  13. High Pressure ZZ-Exchange NMR Reveals Key Features of Protein Folding Transition States.

    Science.gov (United States)

    Zhang, Yi; Kitazawa, Soichiro; Peran, Ivan; Stenzoski, Natalie; McCallum, Scott A; Raleigh, Daniel P; Royer, Catherine A

    2016-11-23

    Understanding protein folding mechanisms and their sequence dependence requires the determination of residue-specific apparent kinetic rate constants for the folding and unfolding reactions. Conventional two-dimensional NMR, such as HSQC experiments, can provide residue-specific information for proteins. However, folding is generally too fast for such experiments. ZZ-exchange NMR spectroscopy allows determination of folding and unfolding rates on much faster time scales, yet even this regime is not fast enough for many protein folding reactions. The application of high hydrostatic pressure slows folding by orders of magnitude due to positive activation volumes for the folding reaction. We combined high pressure perturbation with ZZ-exchange spectroscopy on two autonomously folding protein domains derived from the ribosomal protein, L9. We obtained residue-specific apparent rates at 2500 bar for the N-terminal domain of L9 (NTL9), and rates at atmospheric pressure for a mutant of the C-terminal domain (CTL9) from pressure dependent ZZ-exchange measurements. Our results revealed that NTL9 folding is almost perfectly two-state, while small deviations from two-state behavior were observed for CTL9. Both domains exhibited large positive activation volumes for folding. The volumetric properties of these domains reveal that their transition states contain most of the internal solvent excluded voids that are found in the hydrophobic cores of the respective native states. These results demonstrate that by coupling it with high pressure, ZZ-exchange can be extended to investigate a large number of protein conformational transitions.

  14. Oxfold: Kinetic Folding of RNA using Stochastic Context-Free Grammars and Evolutionary Information

    DEFF Research Database (Denmark)

    Anderson, James W.J.; Haas, Pierre A.; Mathieson, Leigh-Anne

    2013-01-01

    Motivation: Many computational methods for RNA secondary structure prediction, and, in particular, for the prediction of a consensus structure of an alignment of RNA sequences, have been developed. Most methods however ignore biophysical factors such as the kinetics of RNA folding; no current...... implementation considers both evolutionary information and folding kinetics, thus losing information which, when considered, might lead to better predictions. Results: We present an iterative algorithm, Oxfold, in the framework of stochastic context-free grammars, that emulates the kinetics of RNA folding...

  15. Folding kinetics of WW domains with the united residue force field for bridging microscopic motions and experimental measurements.

    Science.gov (United States)

    Zhou, Rui; Maisuradze, Gia G; Suñol, David; Todorovski, Toni; Macias, Maria J; Xiao, Yi; Scheraga, Harold A; Czaplewski, Cezary; Liwo, Adam

    2014-12-23

    To demonstrate the utility of the coarse-grained united-residue (UNRES) force field to compare experimental and computed kinetic data for folding proteins, we have performed long-time millisecond-timescale canonical Langevin molecular dynamics simulations of the triple β-strand from the Formin binding protein 28 WW domain and six nonnatural variants, using UNRES. The results have been compared with available experimental data in both a qualitative and a quantitative manner. Complexities of the folding pathways, which cannot be determined experimentally, were revealed. The folding mechanisms obtained from the simulated folding kinetics are in agreement with experimental results, with a few discrepancies for which we have accounted. The origins of single- and double-exponential kinetics and their correlations with two- and three-state folding scenarios are shown to be related to the relative barrier heights between the various states. The rate constants obtained from time profiles of the fractions of the native, intermediate, and unfolded structures, and the kinetic equations fitted to them, correlate with the experimental values; however, they are about three orders of magnitude larger than the experimental ones for most of the systems. These differences are in agreement with the timescale extension derived by scaling down the friction of water and averaging out the fast degrees of freedom when passing from all-atom to a coarse-grained representation. Our results indicate that the UNRES force field can provide accurate predictions of folding kinetics of these WW domains, often used as models for the study of the mechanisms of proein folding.

  16. Solvent-Exposed Salt Bridges Influence the Kinetics of α-Helix Folding and Unfolding.

    Science.gov (United States)

    Meuzelaar, Heleen; Tros, Martijn; Huerta-Viga, Adriana; van Dijk, Chris N; Vreede, Jocelyne; Woutersen, Sander

    2014-03-06

    Salt bridges are known to play an essential role in the thermodynamic stability of the folded conformation of many proteins, but their influence on the kinetics of folding remains largely unknown. Here, we investigate the effect of Glu-Arg salt bridges on the kinetics of α-helix folding using temperature-jump transient-infrared spectroscopy and steady-state UV circular dichroism. We find that geometrically optimized salt bridges (Glu - and Arg + are spaced four peptide units apart, and the Glu/Arg order is such that the side-chain rotameric preferences favor salt-bridge formation) significantly speed up folding and slow down unfolding, whereas salt bridges with unfavorable geometry slow down folding and slightly speed up unfolding. Our observations suggest a possible explanation for the surprising fact that many biologically active proteins contain salt bridges that do not stabilize the native conformation: these salt bridges might have a kinetic rather than a thermodynamic function.

  17. Cotranslational protein folding reveals the selective use of ...

    Indian Academy of Sciences (India)

    to fold properly by decelerating the translation rate at these sites. Thus the cotranslational protein folding is believed to be true for many proteins and is an important selection factor for the selective codon usage to optimize proper gene expres- sion and function (Komar 2009). A web server CS and S has been created by ...

  18. WW Domain Folding Complexity Revealed by Infrared Spectroscopy

    OpenAIRE

    Davis, Caitlin M.; Dyer, R. Brian

    2014-01-01

    Although the intrinsic tryptophan fluorescence of proteins offers a convenient probe of protein folding, interpretation of the fluorescence spectrum is often difficult because it is sensitive to both global and local changes. Infrared (IR) spectroscopy offers a complementary measure of structural changes involved in protein folding, because it probes changes in the secondary structure of the protein backbone. Here we demonstrate the advantages of using multiple probes, infrared and fluorescen...

  19. Slowest kinetic modes revealed by metabasin renormalization

    Science.gov (United States)

    Okushima, Teruaki; Niiyama, Tomoaki; Ikeda, Kensuke S.; Shimizu, Yasushi

    2018-02-01

    Understanding the slowest relaxations of complex systems, such as relaxation of glass-forming materials, diffusion in nanoclusters, and folding of biomolecules, is important for physics, chemistry, and biology. For a kinetic system, the relaxation modes are determined by diagonalizing its transition rate matrix. However, for realistic systems of interest, numerical diagonalization, as well as extracting physical understanding from the diagonalization results, is difficult due to the high dimensionality. Here, we develop an alternative and generally applicable method of extracting the long-time scale relaxation dynamics by combining the metabasin analysis of Okushima et al. [Phys. Rev. E 80, 036112 (2009), 10.1103/PhysRevE.80.036112] and a Jacobi method. We test the method on an illustrative model of a four-funnel model, for which we obtain a renormalized kinematic equation of much lower dimension sufficient for determining slow relaxation modes precisely. The method is successfully applied to the vacancy transport problem in ionic nanoparticles [Niiyama et al., Chem. Phys. Lett. 654, 52 (2016), 10.1016/j.cplett.2016.04.088], allowing a clear physical interpretation that the final relaxation consists of two successive, characteristic processes.

  20. Electrostatic mechanism of nucleosomal array folding revealed by computer simulation.

    Science.gov (United States)

    Sun, Jian; Zhang, Qing; Schlick, Tamar

    2005-06-07

    Although numerous experiments indicate that the chromatin fiber displays salt-dependent conformations, the associated molecular mechanism remains unclear. Here, we apply an irregular Discrete Surface Charge Optimization (DiSCO) model of the nucleosome with all histone tails incorporated to describe by Monte Carlo simulations salt-dependent rearrangements of a nucleosomal array with 12 nucleosomes. The ensemble of nucleosomal array conformations display salt-dependent condensation in good agreement with hydrodynamic measurements and suggest that the array adopts highly irregular 3D zig-zag conformations at high (physiological) salt concentrations and transitions into the extended "beads-on-a-string" conformation at low salt. Energy analyses indicate that the repulsion among linker DNA leads to this extended form, whereas internucleosome attraction drives the folding at high salt. The balance between these two contributions determines the salt-dependent condensation. Importantly, the internucleosome and linker DNA-nucleosome attractions require histone tails; we find that the H3 tails, in particular, are crucial for stabilizing the moderately folded fiber at physiological monovalent salt.

  1. A kinetic model of trp-cage folding from multiple biased molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Fabrizio Marinelli

    2009-08-01

    Full Text Available Trp-cage is a designed 20-residue polypeptide that, in spite of its size, shares several features with larger globular proteins.Although the system has been intensively investigated experimentally and theoretically, its folding mechanism is not yet fully understood. Indeed, some experiments suggest a two-state behavior, while others point to the presence of intermediates. In this work we show that the results of a bias-exchange metadynamics simulation can be used for constructing a detailed thermodynamic and kinetic model of the system. The model, although constructed from a biased simulation, has a quality similar to those extracted from the analysis of long unbiased molecular dynamics trajectories. This is demonstrated by a careful benchmark of the approach on a smaller system, the solvated Ace-Ala3-Nme peptide. For theTrp-cage folding, the model predicts that the relaxation time of 3100 ns observed experimentally is due to the presence of a compact molten globule-like conformation. This state has an occupancy of only 3% at 300 K, but acts as a kinetic trap.Instead, non-compact structures relax to the folded state on the sub-microsecond timescale. The model also predicts the presence of a state at Calpha-RMSD of 4.4 A from the NMR structure in which the Trp strongly interacts with Pro12. This state can explain the abnormal temperature dependence of the Pro12-delta3 and Gly11-alpha3 chemical shifts. The structures of the two most stable misfolded intermediates are in agreement with NMR experiments on the unfolded protein. Our work shows that, using biased molecular dynamics trajectories, it is possible to construct a model describing in detail the Trp-cage folding kinetics and thermodynamics in agreement with experimental data.

  2. Computational design of RNA parts, devices, and transcripts with kinetic folding algorithms implemented on multiprocessor clusters.

    Science.gov (United States)

    Thimmaiah, Tim; Voje, William E; Carothers, James M

    2015-01-01

    With progress toward inexpensive, large-scale DNA assembly, the demand for simulation tools that allow the rapid construction of synthetic biological devices with predictable behaviors continues to increase. By combining engineered transcript components, such as ribosome binding sites, transcriptional terminators, ligand-binding aptamers, catalytic ribozymes, and aptamer-controlled ribozymes (aptazymes), gene expression in bacteria can be fine-tuned, with many corollaries and applications in yeast and mammalian cells. The successful design of genetic constructs that implement these kinds of RNA-based control mechanisms requires modeling and analyzing kinetically determined co-transcriptional folding pathways. Transcript design methods using stochastic kinetic folding simulations to search spacer sequence libraries for motifs enabling the assembly of RNA component parts into static ribozyme- and dynamic aptazyme-regulated expression devices with quantitatively predictable functions (rREDs and aREDs, respectively) have been described (Carothers et al., Science 334:1716-1719, 2011). Here, we provide a detailed practical procedure for computational transcript design by illustrating a high throughput, multiprocessor approach for evaluating spacer sequences and generating functional rREDs. This chapter is written as a tutorial, complete with pseudo-code and step-by-step instructions for setting up a computational cluster with an Amazon, Inc. web server and performing the large numbers of kinefold-based stochastic kinetic co-transcriptional folding simulations needed to design functional rREDs and aREDs. The method described here should be broadly applicable for designing and analyzing a variety of synthetic RNA parts, devices and transcripts.

  3. Kinetic Dissection of the Pre-existing Conformational Equilibrium in the Trypsin Fold*

    Science.gov (United States)

    Vogt, Austin D.; Chakraborty, Pradipta; Di Cera, Enrico

    2015-01-01

    Structural biology has recently documented the conformational plasticity of the trypsin fold for both the protease and zymogen in terms of a pre-existing equilibrium between closed (E*) and open (E) forms of the active site region. How such plasticity is manifested in solution and affects ligand recognition by the protease and zymogen is poorly understood in quantitative terms. Here we dissect the E*-E equilibrium with stopped-flow kinetics in the presence of excess ligand or macromolecule. Using the clotting protease thrombin and its zymogen precursor prethrombin-2 as relevant models we resolve the relative distribution of the E* and E forms and the underlying kinetic rates for their interconversion. In the case of thrombin, the E* and E forms are distributed in a 1:4 ratio and interconvert on a time scale of 45 ms. In the case of prethrombin-2, the equilibrium is shifted strongly (10:1 ratio) in favor of the closed E* form and unfolds over a faster time scale of 4.5 ms. The distribution of E* and E forms observed for thrombin and prethrombin-2 indicates that zymogen activation is linked to a significant shift in the pre-existing equilibrium between closed and open conformations that facilitates ligand binding to the active site. These findings broaden our mechanistic understanding of how conformational transitions control ligand recognition by thrombin and its zymogen precursor prethrombin-2 and have direct relevance to other members of the trypsin fold. PMID:26216877

  4. Structured pathway across the transition state for peptide folding revealed by molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Lipi Thukral

    2011-09-01

    Full Text Available Small globular proteins and peptides commonly exhibit two-state folding kinetics in which the rate limiting step of folding is the surmounting of a single free energy barrier at the transition state (TS separating the folded and the unfolded states. An intriguing question is whether the polypeptide chain reaches, and leaves, the TS by completely random fluctuations, or whether there is a directed, stepwise process. Here, the folding TS of a 15-residue β-hairpin peptide, Peptide 1, is characterized using independent 2.5 μs-long unbiased atomistic molecular dynamics (MD simulations (a total of 15 μs. The trajectories were started from fully unfolded structures. Multiple (spontaneous folding events to the NMR-derived conformation are observed, allowing both structural and dynamical characterization of the folding TS. A common loop-like topology is observed in all the TS structures with native end-to-end and turn contacts, while the central segments of the strands are not in contact. Non-native sidechain contacts are present in the TS between the only tryptophan (W11 and the turn region (P7-G9. Prior to the TS the turn is found to be already locked by the W11 sidechain, while the ends are apart. Once the ends have also come into contact, the TS is reached. Finally, along the reactive folding paths the cooperative loss of the W11 non-native contacts and the formation of the central inter-strand native contacts lead to the peptide rapidly proceeding from the TS to the native state. The present results indicate a directed stepwise process to folding the peptide.

  5. Characterization of the kinetic and thermodynamic landscape of RNA folding using a novel application of isothermal titration calorimetry

    Science.gov (United States)

    Vander Meulen, Kirk A.; Butcher, Samuel E.

    2012-01-01

    A novel isothermal titration calorimetry (ITC) method was applied to investigate RNA helical packing driven by the GAAA tetraloop–receptor interaction in magnesium and potassium solutions. Both the kinetics and thermodynamics were obtained in individual ITC experiments, and analysis of the kinetic data over a range of temperatures provided Arrhenius activation energies (ΔH‡) and Eyring transition state entropies (ΔS‡). The resulting rich dataset reveals strongly contrasting kinetic and thermodynamic profiles for this RNA folding system when stabilized by potassium versus magnesium. In potassium, association is highly exothermic (ΔH25°C = −41.6 ± 1.2 kcal/mol in 150 mM KCl) and the transition state is enthalpically barrierless (ΔH‡ = −0.6 ± 0.5). These parameters are sigificantly positively shifted in magnesium (ΔH25°C = −20.5 ± 2.1 kcal/mol, ΔH‡ = 7.3 ± 2.2 kcal/mol in 0.5 mM MgCl2). Mixed salt solutions approximating physiological conditions exhibit an intermediate thermodynamic character. The cation-dependent thermodynamic landscape may reflect either a salt-dependent unbound receptor conformation, or alternatively and more generally, it may reflect a small per-cation enthalpic penalty associated with folding-coupled magnesium uptake. PMID:22058128

  6. Fluorescence lifetime components reveal kinetic intermediate states upon equilibrium denaturation of carbonic anhydrase II.

    Science.gov (United States)

    Nemtseva, Elena V; Lashchuk, Olesya O; Gerasimova, Marina A; Melnik, Tatiana N; Nagibina, Galina S; Melnik, Bogdan S

    2017-12-21

    In most cases, intermediate states of multistage folding proteins are not 'visible' under equilibrium conditions but are revealed in kinetic experiments. Time-resolved fluorescence spectroscopy was used in equilibrium denaturation studies. The technique allows for detecting changes in the conformation and environment of tryptophan residues in different structural elements of carbonic anhydrase II which in its turn has made it possible to study the intermediate states of carbonic anhydrase II under equilibrium conditions. The results of equilibrium and kinetic experiments using wild-type bovine carbonic anhydrase II and its mutant form with the substitution of leucine for alanine at position 139 (L139A) were compared. The obtained lifetime components of intrinsic tryptophan fluorescence allowed for revealing that, the same as in kinetic experiments, under equilibrium conditions the unfolding of carbonic anhydrase II ensues through formation of intermediate states.

  7. Entanglement in correlated random spin chains, RNA folding and kinetic roughening

    International Nuclear Information System (INIS)

    Rodríguez-Laguna, Javier; Santalla, Silvia N; Ramírez, Giovanni; Sierra, Germán

    2016-01-01

    Average block entanglement in the 1D XX-model with uncorrelated random couplings is known to grow as the logarithm of the block size, in similarity to conformal systems. In this work we study random spin chains whose couplings present long range correlations, generated as gaussian fields with a power-law spectral function. Ground states are always planar valence bond states, and their statistical ensembles are characterized in terms of their block entropy and their bond-length distribution, which follow power-laws. We conjecture the existence of a critical value for the spectral exponent, below which the system behavior is identical to the case of uncorrelated couplings. Above that critical value, the entanglement entropy violates the area law and grows as a power law of the block size, with an exponent which increases from zero to one. Interestingly, we show that XXZ models with positive anisotropy present the opposite behavior, and strong correlations in the couplings lead to lower entropies. Similar planar bond structures are also found in statistical models of RNA folding and kinetic roughening, and we trace an analogy between them and quantum valence bond states. Using an inverse renormalization procedure we determine the optimal spin-chain couplings which give rise to a given planar bond structure, and study the statistical properties of the couplings whose bond structures mimic those found in RNA folding. (paper)

  8. Kinetics and thermodynamics of the thermal inactivation and chaperone assisted folding of zebrafish dihydrofolate reductase.

    Science.gov (United States)

    Thapliyal, Charu; Jain, Neha; Rashid, Naira; Chaudhuri Chattopadhyay, Pratima

    2018-01-01

    The maintenance of thermal stability is a major issue in protein engineering as many proteins tend to form inactive aggregates at higher temperatures. Zebrafish DHFR, an essential protein for the survival of cells, shows irreversible thermal unfolding transition. The protein exhibits complete unfolding and loss of activity at 50 °C as monitored by UV-Visible, fluorescence and far UV-CD spectroscopy. The heat induced inactivation of zDHFR follows first-order kinetics and Arrhenius law. The variation in the value of inactivation rate constant, k with increasing temperatures depicts faster inactivation at elevated temperatures. We have attempted to study the chaperoning ability of a shorter variant of GroEL (minichaperone) and compared it with that of conventional GroEL-GroES chaperone system. Both the chaperone system prevented the aggregation and assisted in refolding of zDHFR. The rate of thermal inactivation was significantly retarded in the presence of chaperones which indicate that it enhances the thermal stability of the enzyme. As minichaperone is less complex, and does not require high energy co-factors like ATP, for its function as compared to conventional GroEL-GroES system, it can act as a very good in vitro as well as in vivo chaperone model for monitoring assisted protein folding phenomenon. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. High-speed image analysis reveals chaotic vibratory behaviors of pathological vocal folds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yu, E-mail: yuzhang@xmu.edu.c [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen Fujian 361005 (China); Shao Jun [Shanghai EENT Hospital of Fudan University, Shanghai (China); Krausert, Christopher R. [Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-7375 (United States); Zhang Sai [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen Fujian 361005 (China); Jiang, Jack J. [Shanghai EENT Hospital of Fudan University, Shanghai (China); Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-7375 (United States)

    2011-01-15

    Research highlights: Low-dimensional human glottal area data. Evidence of chaos in human laryngeal activity from high-speed digital imaging. Traditional perturbation analysis should be cautiously applied to aperiodic high speed image signals. Nonlinear dynamic analysis may be helpful for understanding disordered behaviors in pathological laryngeal systems. - Abstract: Laryngeal pathology is usually associated with irregular dynamics of laryngeal activity. High-speed imaging facilitates direct observation and measurement of vocal fold vibrations. However, chaotic dynamic characteristics of aperiodic high-speed image data have not yet been investigated in previous studies. In this paper, we will apply nonlinear dynamic analysis and traditional perturbation methods to quantify high-speed image data from normal subjects and patients with various laryngeal pathologies including vocal fold nodules, polyps, bleeding, and polypoid degeneration. The results reveal the low-dimensional dynamic characteristics of human glottal area data. In comparison to periodic glottal area series from a normal subject, aperiodic glottal area series from pathological subjects show complex reconstructed phase space, fractal dimension, and positive Lyapunov exponents. The estimated positive Lyapunov exponents provide the direct evidence of chaos in pathological human vocal folds from high-speed digital imaging. Furthermore, significant differences between the normal and pathological groups are investigated for nonlinear dynamic and perturbation analyses. Jitter in the pathological group is significantly higher than in the normal group, but shimmer does not show such a difference. This finding suggests that the traditional perturbation analysis should be cautiously applied to high speed image signals. However, the correlation dimension and the maximal Lyapunov exponent reveal a statistically significant difference between normal and pathological groups. Nonlinear dynamic analysis is capable of

  10. High-speed image analysis reveals chaotic vibratory behaviors of pathological vocal folds

    International Nuclear Information System (INIS)

    Zhang Yu; Shao Jun; Krausert, Christopher R.; Zhang Sai; Jiang, Jack J.

    2011-01-01

    Research highlights: → Low-dimensional human glottal area data. → Evidence of chaos in human laryngeal activity from high-speed digital imaging. → Traditional perturbation analysis should be cautiously applied to aperiodic high speed image signals. → Nonlinear dynamic analysis may be helpful for understanding disordered behaviors in pathological laryngeal systems. - Abstract: Laryngeal pathology is usually associated with irregular dynamics of laryngeal activity. High-speed imaging facilitates direct observation and measurement of vocal fold vibrations. However, chaotic dynamic characteristics of aperiodic high-speed image data have not yet been investigated in previous studies. In this paper, we will apply nonlinear dynamic analysis and traditional perturbation methods to quantify high-speed image data from normal subjects and patients with various laryngeal pathologies including vocal fold nodules, polyps, bleeding, and polypoid degeneration. The results reveal the low-dimensional dynamic characteristics of human glottal area data. In comparison to periodic glottal area series from a normal subject, aperiodic glottal area series from pathological subjects show complex reconstructed phase space, fractal dimension, and positive Lyapunov exponents. The estimated positive Lyapunov exponents provide the direct evidence of chaos in pathological human vocal folds from high-speed digital imaging. Furthermore, significant differences between the normal and pathological groups are investigated for nonlinear dynamic and perturbation analyses. Jitter in the pathological group is significantly higher than in the normal group, but shimmer does not show such a difference. This finding suggests that the traditional perturbation analysis should be cautiously applied to high speed image signals. However, the correlation dimension and the maximal Lyapunov exponent reveal a statistically significant difference between normal and pathological groups. Nonlinear dynamic

  11. Combination of Markov state models and kinetic networks for the analysis of molecular dynamics simulations of peptide folding.

    Science.gov (United States)

    Radford, Isolde H; Fersht, Alan R; Settanni, Giovanni

    2011-06-09

    Atomistic molecular dynamics simulations of the TZ1 beta-hairpin peptide have been carried out using an implicit model for the solvent. The trajectories have been analyzed using a Markov state model defined on the projections along two significant observables and a kinetic network approach. The Markov state model allowed for an unbiased identification of the metastable states of the system, and provided the basis for commitment probability calculations performed on the kinetic network. The kinetic network analysis served to extract the main transition state for folding of the peptide and to validate the results from the Markov state analysis. The combination of the two techniques allowed for a consistent and concise characterization of the dynamics of the peptide. The slowest relaxation process identified is the exchange between variably folded and denatured species, and the second slowest process is the exchange between two different subsets of the denatured state which could not be otherwise identified by simple inspection of the projected trajectory. The third slowest process is the exchange between a fully native and a partially folded intermediate state characterized by a native turn with a proximal backbone H-bond, and frayed side-chain packing and termini. The transition state for the main folding reaction is similar to the intermediate state, although a more native like side-chain packing is observed.

  12. One Peptide Reveals the Two Faces of α-Helix Unfolding-Folding Dynamics.

    Science.gov (United States)

    Jesus, Catarina S H; Cruz, Pedro F; Arnaut, Luis G; Brito, Rui M M; Serpa, Carlos

    2018-04-12

    discrete side chain interactions, a salt bridge, and in particular a single cation-π interaction in the folding dynamics of a naturally occurring α-helix peptide is uniquely revealed by these data.

  13. Modelling reveals kinetic advantages of co-transcriptional splicing.

    Directory of Open Access Journals (Sweden)

    Stuart Aitken

    2011-10-01

    Full Text Available Messenger RNA splicing is an essential and complex process for the removal of intron sequences. Whereas the composition of the splicing machinery is mostly known, the kinetics of splicing, the catalytic activity of splicing factors and the interdependency of transcription, splicing and mRNA 3' end formation are less well understood. We propose a stochastic model of splicing kinetics that explains data obtained from high-resolution kinetic analyses of transcription, splicing and 3' end formation during induction of an intron-containing reporter gene in budding yeast. Modelling reveals co-transcriptional splicing to be the most probable and most efficient splicing pathway for the reporter transcripts, due in part to a positive feedback mechanism for co-transcriptional second step splicing. Model comparison is used to assess the alternative representations of reactions. Modelling also indicates the functional coupling of transcription and splicing, because both the rate of initiation of transcription and the probability that step one of splicing occurs co-transcriptionally are reduced, when the second step of splicing is abolished in a mutant reporter.

  14. Modelling reveals kinetic advantages of co-transcriptional splicing.

    Science.gov (United States)

    Aitken, Stuart; Alexander, Ross D; Beggs, Jean D

    2011-10-01

    Messenger RNA splicing is an essential and complex process for the removal of intron sequences. Whereas the composition of the splicing machinery is mostly known, the kinetics of splicing, the catalytic activity of splicing factors and the interdependency of transcription, splicing and mRNA 3' end formation are less well understood. We propose a stochastic model of splicing kinetics that explains data obtained from high-resolution kinetic analyses of transcription, splicing and 3' end formation during induction of an intron-containing reporter gene in budding yeast. Modelling reveals co-transcriptional splicing to be the most probable and most efficient splicing pathway for the reporter transcripts, due in part to a positive feedback mechanism for co-transcriptional second step splicing. Model comparison is used to assess the alternative representations of reactions. Modelling also indicates the functional coupling of transcription and splicing, because both the rate of initiation of transcription and the probability that step one of splicing occurs co-transcriptionally are reduced, when the second step of splicing is abolished in a mutant reporter.

  15. An atlas of the thioredoxin fold class reveals the complexity of function-enabling adaptations.

    Science.gov (United States)

    Atkinson, Holly J; Babbitt, Patricia C

    2009-10-01

    The group of proteins that contain a thioredoxin (Trx) fold is huge and diverse. Assessment of the variation in catalytic machinery of Trx fold proteins is essential in providing a foundation for understanding their functional diversity and predicting the function of the many uncharacterized members of the class. The proteins of the Trx fold class retain common features-including variations on a dithiol CxxC active site motif-that lead to delivery of function. We use protein similarity networks to guide an analysis of how structural and sequence motifs track with catalytic function and taxonomic categories for 4,082 representative sequences spanning the known superfamilies of the Trx fold. Domain structure in the fold class is varied and modular, with 2.8% of sequences containing more than one Trx fold domain. Most member proteins are bacterial. The fold class exhibits many modifications to the CxxC active site motif-only 56.8% of proteins have both cysteines, and no functional groupings have absolute conservation of the expected catalytic motif. Only a small fraction of Trx fold sequences have been functionally characterized. This work provides a global view of the complex distribution of domains and catalytic machinery throughout the fold class, showing that each superfamily contains remnants of the CxxC active site. The unifying context provided by this work can guide the comparison of members of different Trx fold superfamilies to gain insight about their structure-function relationships, illustrated here with the thioredoxins and peroxiredoxins.

  16. Crystal Structure of Homo Sapiens PTD012 Reveals a Zinc-Containing Hydrolase Fold

    Energy Technology Data Exchange (ETDEWEB)

    Manjasetty,B.; Bussow, K.; Fieber-ErdMan, M.; Roske, Y.; Gobam, J.; Scheich, C.; Gotz, F.; Niesen, F.; Heinemann, U.

    2006-01-01

    The human protein PTD012 is the longer product of an alternatively spliced gene and was described to be localized in the nucleus. The X-ray structure analysis at 1.7 Angstroms resolution of PTD012 through SAD phasing reveals a monomeric protein and a novel fold. The shorter splice form was also studied and appears to be unfolded and non-functional. The structure of PTD012 displays an {alpha}{beta}{beta}{alpha} four-layer topology. A metal ion residing between the central {beta}-sheets is partially coordinated by three histidine residues. X-ray absorption near-edge structure (XANES) analysis identifies the PTD012-bound ion as Zn{sup 2+}. Tetrahedral coordination of the ion is completed by the carboxylate oxygen atom of an acetate molecule taken up from the crystallization buffer. The binding of Zn{sup 2+} to PTD012 is reminiscent of zinc-containing enzymes such as carboxypeptidase, carbonic anhydrase, and {beta}-lactamase. Biochemical assays failed to demonstrate any of these enzyme activities in PTD012. However, PTD012 exhibits ester hydrolase activity on the substrate p-nitrophenyl acetate.

  17. The structure of the TFIIH p34 subunit reveals a von Willebrand factor A like fold.

    Directory of Open Access Journals (Sweden)

    Dominik R Schmitt

    Full Text Available RNA polymerase II dependent transcription and nucleotide excision repair are mediated by a multifaceted interplay of subunits within the general transcription factor II H (TFIIH. A better understanding of the molecular structure of TFIIH is the key to unravel the mechanism of action of this versatile protein complex within these vital cellular processes. The importance of this complex becomes further evident in the context of severe diseases like xeroderma pigmentosum, Cockayne's syndrome and trichothiodystrophy, that arise from single point mutations in TFIIH subunits. Here we describe the structure of the p34 subunit of the TFIIH complex from the eukaryotic thermophilic fungus Chaetomium thermophilum. The structure revealed that p34 contains a von Willebrand Factor A (vWA like domain, a fold which is generally known to be involved in protein-protein interactions. Within TFIIH p34 strongly interacts with p44, a positive regulator of the helicase XPD. Putative protein-protein interfaces are analyzed and possible binding sites for the p34-p44 interaction suggested.

  18. An atlas of the thioredoxin fold class reveals the complexity of function-enabling adaptations.

    Directory of Open Access Journals (Sweden)

    Holly J Atkinson

    2009-10-01

    Full Text Available The group of proteins that contain a thioredoxin (Trx fold is huge and diverse. Assessment of the variation in catalytic machinery of Trx fold proteins is essential in providing a foundation for understanding their functional diversity and predicting the function of the many uncharacterized members of the class. The proteins of the Trx fold class retain common features-including variations on a dithiol CxxC active site motif-that lead to delivery of function. We use protein similarity networks to guide an analysis of how structural and sequence motifs track with catalytic function and taxonomic categories for 4,082 representative sequences spanning the known superfamilies of the Trx fold. Domain structure in the fold class is varied and modular, with 2.8% of sequences containing more than one Trx fold domain. Most member proteins are bacterial. The fold class exhibits many modifications to the CxxC active site motif-only 56.8% of proteins have both cysteines, and no functional groupings have absolute conservation of the expected catalytic motif. Only a small fraction of Trx fold sequences have been functionally characterized. This work provides a global view of the complex distribution of domains and catalytic machinery throughout the fold class, showing that each superfamily contains remnants of the CxxC active site. The unifying context provided by this work can guide the comparison of members of different Trx fold superfamilies to gain insight about their structure-function relationships, illustrated here with the thioredoxins and peroxiredoxins.

  19. Understanding the mechanical properties of DNA origami tiles and controlling the kinetics of their folding and unfolding reconfiguration.

    Science.gov (United States)

    Chen, Haorong; Weng, Te-Wei; Riccitelli, Molly M; Cui, Yi; Irudayaraj, Joseph; Choi, Jong Hyun

    2014-05-14

    DNA origami represents a class of highly programmable macromolecules that can go through conformational changes in response to external signals. Here we show that a two-dimensional origami rectangle can be effectively folded into a short, cylindrical tube by connecting the two opposite edges through the hybridization of linker strands and that this process can be efficiently reversed via toehold-mediated strand displacement. The reconfiguration kinetics was experimentally studied as a function of incubation temperature, initial origami concentration, missing staples, and origami geometry. A kinetic model was developed by introducing the j factor to describe the reaction rates in the cyclization process. We found that the cyclization efficiency (j factor) increases sharply with temperature and depends strongly on the structural flexibility and geometry. A simple mechanical model was used to correlate the observed cyclization efficiency with origami structure details. The mechanical analysis suggests two sources of the energy barrier for DNA origami folding: overcoming global twisting and bending the structure into a circular conformation. It also provides the first semiquantitative estimation of the rigidity of DNA interhelix crossovers, an essential element in structural DNA nanotechnology. This work demonstrates efficient DNA origami reconfiguration, advances our understanding of the dynamics and mechanical properties of self-assembled DNA structures, and should be valuable to the field of DNA nanotechnology.

  20. Protein folding kinetics by combined use of rapid mixing techniques and NMR observation of individual amide protons

    International Nuclear Information System (INIS)

    Roder, H.; Wuethrich, K.

    1986-01-01

    A method to be used for experimental studies of protein folding introduced by Schmid and Baldwin, which is based on the competition between amide hydrogen exchange and protein refolding, was extended by using rapid mixing techniques and 1 H NMR to provide site-resolved kinetic information on the early phases of protein structure acquisition. In this method, a protonated solution of the unfolded protein is rapidly mixed with a deuterated buffer solution at conditions assuring protein refolding in the mixture. This simultaneously initiates the exchange of unprotected amide protons with solvent deuterium and the refolding of protein segments which can protect amide groups from further exchange. After variable reaction times the amide proton exchange is quenched while folding to the native form continues to completion. By using 1 H NMR, the extent of exchange at individual amide sites is then measured in the refolded protein. Competition experiments at variable reaction times or variable pH indicate the time at which each amide group is protected in the refolding process. This technique was applied to the basic pancreatic trypsin inhibitor, for which sequence-specific assignments of the amide proton NMR lines had previously been obtained. For eight individual amide protons located in the beta-sheet and the C-terminal alpha-helix of this protein, apparent refolding rates in the range from 15 s-1 to 60 s-1 were observed. These rates are on the time scale of the fast folding phase observed with optical probes

  1. Method-Unifying View of Loop-Formation Kinetics in Peptide and Protein Folding.

    Science.gov (United States)

    Jacob, Maik H; D'Souza, Roy N; Schwarzlose, Thomas; Wang, Xiaojuan; Huang, Fang; Haas, Elisha; Nau, Werner M

    2018-04-26

    Protein folding can be described as a probabilistic succession of events in which the peptide chain forms loops closed by specific amino acid residue contacts, herein referred to as loop nodes. To measure loop rates, several photophysical methods have been introduced where a pair of optically active probes is incorporated at selected chain positions and the excited probe undergoes contact quenching (CQ) upon collision with the second probe. The quenching mechanisms involved triplet-triplet energy transfer, photoinduced electron transfer, and collision-induced fluorescence quenching, where the fluorescence of Dbo, an asparagine residue conjugated to 2,3-diazabicyclo[2.2.2]octane, is quenched by tryptophan. The discrepancy between the loop rates afforded from these three CQ techniques has, however, remained unresolved. In analyzing this discrepancy, we now report two short-distance FRET methods where Dbo acts as an energy acceptor in combination with tryptophan and naphtylalanine, two donors with largely different fluorescence lifetimes of 1.3 and 33 ns, respectively. Despite the different quenching mechanisms, the rates from FRET and CQ methods were, surprisingly, of comparable magnitude. This combination of FRET and CQ data led to a unifying physical model and to the conclusion that the rate of loop formation in folding reactions varies not only with the kind and number of residues that constitute the chain but also in particular with the size and properties of the residues that constitute the loop node.

  2. Autonomously folding protein fragments reveal differences in the energy landscapes of homologous RNases H.

    Directory of Open Access Journals (Sweden)

    Laura E Rosen

    Full Text Available An important approach to understanding how a protein sequence encodes its energy landscape is to compare proteins with different sequences that fold to the same general native structure. In this work, we compare E. coli and T. thermophilus homologs of the protein RNase H. Using protein fragments, we create equilibrium mimics of two different potential partially-folded intermediates (I(core and I(core+1 hypothesized to be present on the energy landscapes of these two proteins. We observe that both T. thermophilus RNase H (ttRNH fragments are folded and have distinct stabilities, indicating that both regions are capable of autonomous folding and that both intermediates are present as local minima on the ttRNH energy landscape. In contrast, the two E. coli RNase H (ecRNH fragments have very similar stabilities, suggesting that the presence of additional residues in the I(core+1 fragment does not affect the folding or structure as compared to I(core. NMR experiments provide additional evidence that only the I(core intermediate is populated by ecRNH. This is one of the biggest differences that has been observed between the energy landscapes of these two proteins. Additionally, we used a FRET experiment in the background of full-length ttRNH to specifically monitor the formation of the I(core+1 intermediate. We determine that the ttRNH I(core+1 intermediate is likely the intermediate populated prior to the rate-limiting barrier to global folding, in contrast to E. coli RNase H for which I(core is the folding intermediate. This result provides new insight into the nature of the rate-limiting barrier for the folding of RNase H.

  3. Ultrafast hydrogen exchange reveals specific structural events during the initial stages of folding of cytochrome c.

    Science.gov (United States)

    Fazelinia, Hossein; Xu, Ming; Cheng, Hong; Roder, Heinrich

    2014-01-15

    Many proteins undergo a sharp decrease in chain dimensions during early stages of folding, prior to the rate-limiting step in folding. However, it remains unclear whether compact states are the result of specific folding events or a general hydrophobic collapse of the poly peptide chain driven by the change in solvent conditions. To address this fundamental question, we extended the temporal resolution of NMR-detected H/D exchange labeling experiments into the microsecond regime by adopting a microfluidics approach. By observing the competition between H/D exchange and folding as a function of labeling pH, coupled with direct measurement of exchange rates in the unfolded state, we were able to monitor hydrogen-bond formation for over 50 individual backbone NH groups within the initial 140 microseconds of folding of horse cytochrome c. Clusters of solvent-shielded amide protons were observed in two α-helical segments in the C-terminal half of the protein, while the N-terminal helix remained largely unstructured, suggesting that proximity in the primary structure is a major factor in promoting helix formation and association at early stages of folding, while the entropically more costly long-range contacts between the N- and C-terminal helices are established only during later stages. Our findings clearly indicate that the initial chain condensation in cytochrome c is driven by specific interactions among a subset of α-helical segments rather than a general hydrophobic collapse.

  4. The structure of KPN03535 (gi|152972051), a novel putative lipoprotein from Klebsiella pneumoniae, reveals an OB-fold

    International Nuclear Information System (INIS)

    Das, Debanu; Kozbial, Piotr; Han, Gye Won; Carlton, Dennis; Jaroszewski, Lukasz; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Bakolitsa, Constantina; Chen, Connie; Chiu, Hsiu-Ju; Chiu, Michelle; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Ellrott, Kyle; Elsliger, Marc-André; Ernst, Dustin; Farr, Carol L.; Feuerhelm, Julie; Grzechnik, Anna; Grant, Joanna C.; Jin, Kevin K.; Johnson, Hope A.; Klock, Heath E.; Knuth, Mark W.; Krishna, S. Sri; Kumar, Abhinav; Marciano, David; McMullan, Daniel; Miller, Mitchell D.; Morse, Andrew T.; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Puckett, Christina; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; Bedem, Henry van den; Weekes, Dana; Wooten, Tiffany; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2009-01-01

    KPN03535 is a protein unique to K. pneumoniae. The crystal structure reveals that KPN03535 represents a novel variant of the OB-fold and is likely to be a DNA-binding lipoprotein. KPN03535 (gi|152972051) is a putative lipoprotein of unknown function that is secreted by Klebsiella pneumoniae MGH 78578. The crystal structure reveals that despite a lack of any detectable sequence similarity to known structures, it is a novel variant of the OB-fold and structurally similar to the bacterial Cpx-pathway protein NlpE, single-stranded DNA-binding (SSB) proteins and toxins. K. pneumoniae MGH 78578 forms part of the normal human skin, mouth and gut flora and is an opportunistic pathogen that is linked to about 8% of all hospital-acquired infections in the USA. This structure provides the foundation for further investigations into this divergent member of the OB-fold family

  5. Transcriptome Reveals 1400-Fold Upregulation of APOA4-APOC3 and 1100-Fold Downregulation of GIF in the Patients with Polycythemia-Induced Gastric Injury.

    Science.gov (United States)

    Li, Kang; Gesang, Luobu; Dan, Zeng; Gusang, Lamu; Dawa, Ciren; Nie, Yuqiang

    2015-01-01

    High-altitude polycythemia (HAPC) inducing gastric mucosal lesion (GML) is still out of control and molecular mechanisms remain widely unknown. To address the issues, endoscopy and histopathological analyses were performed. Meanwhile, microarray-based transcriptome profiling was conducted in the gastric mucosa from 3 pairs of healthy subjects and HAPC-induced GML patients. HAPC caused morphological changes and pathological damages of the gastric mucosa of GML patients. A total of 10304 differentially expressed genes (DEGs) were identified, including 4941 up-regulated and 5363 down-regulated DEGs in gastric mucosa of GML patients compared with healthy controls (fold change ≥2, Ppolycythemia while polycythemia raises the risk of GML. Therefore, the present findings reveal that HAPC-induced GML inspires the protection responses by up-regulating APOA4 and APOC3, and down-regulating GIF. These results may offer the basic information for the treatment of HAPC-induced gastric lesion in the future.

  6. Analysis of residuals from enzyme kinetic and protein folding experiments in the presence of correlated experimental noise.

    Science.gov (United States)

    Kuzmic, Petr; Lorenz, Thorsten; Reinstein, Jochen

    2009-12-01

    Experimental data from continuous enzyme assays or protein folding experiments often contain hundreds, or even thousands, of densely spaced data points. When the sampling interval is extremely short, the experimental data points might not be statistically independent. The resulting neighborhood correlation invalidates important theoretical assumptions of nonlinear regression analysis. As a consequence, certain goodness-of-fit criteria, such as the runs-of-signs test and the autocorrelation function, might indicate a systematic lack of fit even if the experiment does agree very well with the underlying theoretical model. A solution to this problem is to analyze only a subset of the residuals of fit, such that any excessive neighborhood correlation is eliminated. Substrate kinetics of the HIV protease and the unfolding kinetics of UMP/CMP kinase, a globular protein from Dictyostelium discoideum, serve as two illustrative examples. A suitable data-reduction algorithm has been incorporated into software DYNAFIT [P. Kuzmic, Anal. Biochem. 237 (1996) 260-273], freely available to all academic researchers from http://www.biokin.com.

  7. The structure of a conserved Piezo channel domain reveals a novel beta sandwich fold

    Science.gov (United States)

    Kamajaya, Aron; Kaiser, Jens; Lee, Jonas; Reid, Michelle; Rees, Douglas C.

    2014-01-01

    Summary Piezo has recently been identified as a family of eukaryotic mechanosensitive channels composed of subunits containing over 2000 amino acids, without recognizable sequence similarity to other channels. Here, we present the crystal structure of a large, conserved extramembrane domain located just before the last predicted transmembrane helix of C. elegans PIEZO, which adopts a novel beta sandwich fold. The structure was also determined of a point mutation located on a conserved surface at the position equivalent to the human PIEZO1 mutation found in Dehydrated Hereditary Stomatocytosis (DHS) patients (M2225R). While the point mutation does not change the overall domain structure, it does alter the surface electrostatic potential that may perturb interactions with a yet-to-be identified ligand or protein. The lack of structural similarity between this domain and any previously characterized fold, including those of eukaryotic and bacterial channels, highlights the distinctive nature of the Piezo family of eukaryotic mechanosensitive channels. PMID:25242456

  8. The structure of a conserved piezo channel domain reveals a topologically distinct β sandwich fold.

    Science.gov (United States)

    Kamajaya, Aron; Kaiser, Jens T; Lee, Jonas; Reid, Michelle; Rees, Douglas C

    2014-10-07

    Piezo has recently been identified as a family of eukaryotic mechanosensitive channels composed of subunits containing over 2,000 amino acids, without recognizable sequence similarity to other channels. Here, we present the crystal structure of a large, conserved extramembrane domain located just before the last predicted transmembrane helix of C. elegans PIEZO, which adopts a topologically distinct β sandwich fold. The structure was also determined of a point mutation located on a conserved surface at the position equivalent to the human PIEZO1 mutation found in dehydrated hereditary stomatocytosis patients (M2225R). While the point mutation does not change the overall domain structure, it does alter the surface electrostatic potential that may perturb interactions with a yet-to-be-identified ligand or protein. The lack of structural similarity between this domain and any previously characterized fold, including those of eukaryotic and bacterial channels, highlights the distinctive nature of the Piezo family of eukaryotic mechanosensitive channels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Comparative analysis of the folding dynamics and kinetics of an engineered knotted protein and its variants derived from HP0242 of Helicobacter pylori

    Science.gov (United States)

    Wang, Liang-Wei; Liu, Yu-Nan; Lyu, Ping-Chiang; Jackson, Sophie E.; Hsu, Shang-Te Danny

    2015-09-01

    Understanding the mechanism by which a polypeptide chain thread itself spontaneously to attain a knotted conformation has been a major challenge in the field of protein folding. HP0242 is a homodimeric protein from Helicobacter pylori with intertwined helices to form a unique pseudo-knotted folding topology. A tandem HP0242 repeat has been constructed to become the first engineered trefoil-knotted protein. Its small size renders it a model system for computational analyses to examine its folding and knotting pathways. Here we report a multi-parametric study on the folding stability and kinetics of a library of HP0242 variants, including the trefoil-knotted tandem HP0242 repeat, using far-UV circular dichroism and fluorescence spectroscopy. Equilibrium chemical denaturation of HP0242 variants shows the presence of highly populated dimeric and structurally heterogeneous folding intermediates. Such equilibrium folding intermediates retain significant amount of helical structures except those at the N- and C-terminal regions in the native structure. Stopped-flow fluorescence measurements of HP0242 variants show that spontaneous refolding into knotted structures can be achieved within seconds, which is several orders of magnitude faster than previously observed for other knotted proteins. Nevertheless, the complex chevron plots indicate that HP0242 variants are prone to misfold into kinetic traps, leading to severely rolled-over refolding arms. The experimental observations are in general agreement with the previously reported molecular dynamics simulations. Based on our results, kinetic folding pathways are proposed to qualitatively describe the complex folding processes of HP0242 variants.

  10. Human Brain Organoids on a Chip Reveal the Physics of Folding.

    Science.gov (United States)

    Karzbrun, Eyal; Kshirsagar, Aditya; Cohen, Sidney R; Hanna, Jacob H; Reiner, Orly

    2018-05-01

    Human brain wrinkling has been implicated in neurodevelopmental disorders and yet its origins remain unknown. Polymer gel models suggest that wrinkling emerges spontaneously due to compression forces arising during differential swelling, but these ideas have not been tested in a living system. Here, we report the appearance of surface wrinkles during the in vitro development and self-organization of human brain organoids in a micro-fabricated compartment that supports in situ imaging over a timescale of weeks. We observe the emergence of convolutions at a critical cell density and maximal nuclear strain, which are indicative of a mechanical instability. We identify two opposing forces contributing to differential growth: cytoskeletal contraction at the organoid core and cell-cycle-dependent nuclear expansion at the organoid perimeter. The wrinkling wavelength exhibits linear scaling with tissue thickness, consistent with balanced bending and stretching energies. Lissencephalic (smooth brain) organoids display reduced convolutions, modified scaling and a reduced elastic modulus. Although the mechanism here does not include the neuronal migration seen in in vivo , it models the physics of the folding brain remarkably well. Our on-chip approach offers a means for studying the emergent properties of organoid development, with implications for the embryonic human brain.

  11. Structure of a Reptilian Adenovirus Reveals a Phage Tailspike Fold Stabilizing a Vertebrate Virus Capsid.

    Science.gov (United States)

    Menéndez-Conejero, Rosa; Nguyen, Thanh H; Singh, Abhimanyu K; Condezo, Gabriela N; Marschang, Rachel E; van Raaij, Mark J; San Martín, Carmen

    2017-10-03

    Although non-human adenoviruses (AdVs) might offer solutions to problems posed by human AdVs as therapeutic vectors, little is known about their basic biology. In particular, there are no structural studies on the complete virion of any AdV with a non-mammalian host. We combine mass spectrometry, cryo-electron microscopy, and protein crystallography to characterize the composition and structure of a snake AdV (SnAdV-1, Atadenovirus genus). SnAdV-1 particles contain the genus-specific proteins LH3, p32k, and LH2, a previously unrecognized structural component. Remarkably, the cementing protein LH3 has a trimeric β helix fold typical of bacteriophage host attachment proteins. The organization of minor coat proteins differs from that in human AdVs, correlating with higher thermostability in SnAdV-1. These findings add a new piece to the intriguing puzzle of virus evolution, hint at the use of cell entry pathways different from those in human AdVs, and will help development of new, thermostable SnAdV-1-based vectors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Human brain organoids on a chip reveal the physics of folding

    Science.gov (United States)

    Karzbrun, Eyal; Kshirsagar, Aditya; Cohen, Sidney R.; Hanna, Jacob H.; Reiner, Orly

    2018-05-01

    Human brain wrinkling has been implicated in neurodevelopmental disorders and yet its origins remain unknown. Polymer gel models suggest that wrinkling emerges spontaneously due to compression forces arising during differential swelling, but these ideas have not been tested in a living system. Here, we report the appearance of surface wrinkles during the in vitro development and self-organization of human brain organoids in a microfabricated compartment that supports in situ imaging over a timescale of weeks. We observe the emergence of convolutions at a critical cell density and maximal nuclear strain, which are indicative of a mechanical instability. We identify two opposing forces contributing to differential growth: cytoskeletal contraction at the organoid core and cell-cycle-dependent nuclear expansion at the organoid perimeter. The wrinkling wavelength exhibits linear scaling with tissue thickness, consistent with balanced bending and stretching energies. Lissencephalic (smooth brain) organoids display reduced convolutions, modified scaling and a reduced elastic modulus. Although the mechanism here does not include the neuronal migration seen in vivo, it models the physics of the folding brain remarkably well. Our on-chip approach offers a means for studying the emergent properties of organoid development, with implications for the embryonic human brain.

  13. Image Restoration and Analysis of Influenza Virions Binding to Membrane Receptors Reveal Adhesion-Strengthening Kinetics.

    Directory of Open Access Journals (Sweden)

    Donald W Lee

    Full Text Available With the development of single-particle tracking (SPT microscopy and host membrane mimics called supported lipid bilayers (SLBs, stochastic virus-membrane binding interactions can be studied in depth while maintaining control over host receptor type and concentration. However, several experimental design challenges and quantitative image analysis limitations prevent the widespread use of this approach. One main challenge of SPT studies is the low signal-to-noise ratio of SPT videos, which is sometimes inevitable due to small particle sizes, low quantum yield of fluorescent dyes, and photobleaching. These situations could render current particle tracking software to yield biased binding kinetic data caused by intermittent tracking error. Hence, we developed an effective image restoration algorithm for SPT applications called STAWASP that reveals particles with a signal-to-noise ratio of 2.2 while preserving particle features. We tested our improvements to the SPT binding assay experiment and imaging procedures by monitoring X31 influenza virus binding to α2,3 sialic acid glycolipids. Our interests lie in how slight changes to the peripheral oligosaccharide structures can affect the binding rate and residence times of viruses. We were able to detect viruses binding weakly to a glycolipid called GM3, which was undetected via assays such as surface plasmon resonance. The binding rate was around 28 folds higher when the virus bound to a different glycolipid called GD1a, which has a sialic acid group extending further away from the bilayer surface than GM3. The improved imaging allowed us to obtain binding residence time distributions that reflect an adhesion-strengthening mechanism via multivalent bonds. We empirically fitted these distributions using a time-dependent unbinding rate parameter, koff, which diverges from standard treatment of koff as a constant. We further explain how to convert these models to fit ensemble-averaged binding data

  14. Single-Molecule Kinetics Reveal Cation-Promoted DNA Duplex Formation Through Ordering of Single-Stranded Helices

    Science.gov (United States)

    Dupuis, Nicholas F.; Holmstrom, Erik D.; Nesbitt, David J.

    2013-01-01

    In this work, the kinetics of short, fully complementary oligonucleotides are investigated at the single-molecule level. Constructs 6–9 bp in length exhibit single exponential kinetics over 2 orders of magnitude time for both forward (kon, association) and reverse (koff, dissociation) processes. Bimolecular rate constants for association are weakly sensitive to the number of basepairs in the duplex, with a 2.5-fold increase between 9 bp (k′on = 2.1(1) × 106 M−1 s−1) and 6 bp (k′on = 5.0(1) × 106 M−1 s−1) sequences. In sharp contrast, however, dissociation rate constants prove to be exponentially sensitive to sequence length, varying by nearly 600-fold over the same 9 bp (koff = 0.024 s−1) to 6 bp (koff = 14 s−1) range. The 8 bp sequence is explored in more detail, and the NaCl dependence of kon and koff is measured. Interestingly, konincreases by >40-fold (kon = 0.10(1) s−1 to 4.0(4) s−1 between [NaCl] = 25 mM and 1 M), whereas in contrast, koffdecreases by fourfold (0.72(3) s−1 to 0.17(7) s−1) over the same range of conditions. Thus, the equilibrium constant (Keq) increases by ≈160, largely due to changes in the association rate, kon. Finally, temperature-dependent measurements reveal that increased [NaCl] reduces the overall exothermicity (ΔΔH° > 0) of duplex formation, albeit by an amount smaller than the reduction in entropic penalty (−TΔΔS° duplex formation. PMID:23931323

  15. Cell kinetics of the marine sponge Halisarca caerulea reveal rapid cell turnover and shedding

    NARCIS (Netherlands)

    Goeij, de J.M.; Kluijver, de A.; Duyl, van F.C.; Vacelet, J.; Wijffels, R.H.; Goeij, de A.F.P.M.; Cleutjens, J.P.M.; Schutte, B.

    2009-01-01

    This study reveals the peculiar in vivo cell kinetics and cell turnover of the marine sponge Halisarca caerulea under steady-state conditions. The tropical coral reef sponge shows an extremely high proliferation activity, a short cell cycle duration and massive cell shedding. Cell turnover is

  16. Protein folding: Defining a standard set of experimental conditions and a preliminary kinetic data set of two-state proteins

    DEFF Research Database (Denmark)

    Maxwell, Karen L.; Wildes, D.; Zarrine-Afsar, A.

    2005-01-01

    Recent years have seen the publication of both empirical and theoretical relationships predicting the rates with which proteins fold. Our ability to test and refine these relationships has been limited, however, by a variety of difficulties associated with the comparison of folding and unfolding ...... efforts is to set uniform standards for the experimental community and to initiate an accumulating, self-consistent data set that will aid ongoing efforts to understand the folding process....... constructs. The lack of a single approach to data analysis and error estimation, or even of a common set of units and reporting standards, further hinders comparative studies of folding. In an effort to overcome these problems, we define here a consensus set of experimental conditions (25°C at pH 7.0, 50 m...... rates, thermodynamics, and structure across diverse sets of proteins. These difficulties include the wide, potentially confounding range of experimental conditions and methods employed to date and the difficulty of obtaining correct and complete sequence and structural details for the characterized...

  17. How Four Scientists Integrate Thermodynamic and Kinetic Theory, Context, Analogies, and Methods in Protein-Folding and Dynamics Research: Implications for Biochemistry Instruction.

    Science.gov (United States)

    Jeffery, Kathleen A; Pelaez, Nancy; Anderson, Trevor R

    2018-01-01

    To keep biochemistry instruction current and relevant, it is crucial to expose students to cutting-edge scientific research and how experts reason about processes governed by thermodynamics and kinetics such as protein folding and dynamics. This study focuses on how experts explain their research into this topic with the intention of informing instruction. Previous research has modeled how expert biologists incorporate research methods, social or biological context, and analogies when they talk about their research on mechanisms. We used this model as a guiding framework to collect and analyze interview data from four experts. The similarities and differences that emerged from analysis indicate that all experts integrated theoretical knowledge with their research context, methods, and analogies when they explained how phenomena operate, in particular by mapping phenomena to mathematical models; they explored different processes depending on their explanatory aims, but readily transitioned between different perspectives and explanatory models; and they explained thermodynamic and kinetic concepts of relevance to protein folding in different ways that aligned with their particular research methods. We discuss how these findings have important implications for teaching and future educational research. © 2018 K. A. Jeffery et al. CBE—Life Sciences Education © 2018 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Coarsely resolved topography along protein folding pathways

    Science.gov (United States)

    Fernández, Ariel; Kostov, Konstantin S.; Berry, R. Stephen

    2000-03-01

    The kinetic data from the coarse representation of polypeptide torsional dynamics described in the preceding paper [Fernandez and Berry, J. Chem. Phys. 112, 5212 (2000), preceding paper] is inverted by using detailed balance to obtain a topographic description of the potential-energy surface (PES) along the dominant folding pathway of the bovine pancreatic trypsin inhibitor (BPTI). The topography is represented as a sequence of minima and effective saddle points. The dominant folding pathway displays an overall monotonic decrease in energy with a large number of staircaselike steps, a clear signature of a good structure-seeker. The diversity and availability of alternative folding pathways is analyzed in terms of the Shannon entropy σ(t) associated with the time-dependent probability distribution over the kinetic ensemble of contact patterns. Several stages in the folding process are evident. Initially misfolded states form and dismantle revealing no definite pattern in the topography and exhibiting high Shannon entropy. Passage down a sequence of staircase steps then leads to the formation of a nativelike intermediate, for which σ(t) is much lower and fairly constant. Finally, the structure of the intermediate is refined to produce the native state of BPTI. We also examine how different levels of tolerance to mismatches of side chain contacts influence the folding kinetics, the topography of the dominant folding pathway, and the Shannon entropy. This analysis yields upper and lower bounds of the frustration tolerance required for the expeditious and robust folding of BPTI.

  19. Atomistic structural ensemble refinement reveals non-native structure stabilizes a sub-millisecond folding intermediate of CheY

    International Nuclear Information System (INIS)

    Shi, Jade; Schwantes, Christian; Bilsel, Osman

    2017-01-01

    The dynamics of globular proteins can be described in terms of transitions between a folded native state and less-populated intermediates, or excited states, which can play critical roles in both protein folding and function. Excited states are by definition transient species, and therefore are difficult to characterize using current experimental techniques. We report an atomistic model of the excited state ensemble of a stabilized mutant of an extensively studied flavodoxin fold protein CheY. We employed a hybrid simulation and experimental approach in which an aggregate 42 milliseconds of all-atom molecular dynamics were used as an informative prior for the structure of the excited state ensemble. The resulting prior was then refined against small-angle X-ray scattering (SAXS) data employing an established method (EROS). The most striking feature of the resulting excited state ensemble was an unstructured N-terminus stabilized by non-native contacts in a conformation that is topologically simpler than the native state. We then predict incisive single molecule FRET experiments, using these results, as a means of model validation. Our study demonstrates the paradigm of uniting simulation and experiment in a statistical model to study the structure of protein excited states and rationally design validating experiments.

  20. Structures of the first representatives of Pfam family PF06938 (DUF1285) reveal a new fold with repeated structural motifs and possible involvement in signal transduction

    International Nuclear Information System (INIS)

    Han, Gye Won; Bakolitsa, Constantina; Miller, Mitchell D.; Kumar, Abhinav; Carlton, Dennis; Najmanovich, Rafael J.; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Chen, Connie; Chiu, Hsiu-Ju; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Ernst, Dustin; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Jaroszewski, Lukasz; Jin, Kevin K.; Johnson, Hope A.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Marciano, David; McMullan, Daniel; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; Bedem, Henry van den; Weekes, Dana; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The crystal structures of SPO0140 and Sbal-2486 revealed a two-domain structure that adopts a novel fold. Analysis of the interdomain cleft suggests a nucleotide-based ligand with a genome context indicating signaling as a possible role for this family. The crystal structures of SPO0140 and Sbal-2486 were determined using the semiautomated high-throughput pipeline of the Joint Center for Structural Genomics (JCSG) as part of the NIGMS Protein Structure Initiative (PSI). The structures revealed a conserved core with domain duplication and a superficial similarity of the C-terminal domain to pleckstrin homology-like folds. The conservation of the domain interface indicates a potential binding site that is likely to involve a nucleotide-based ligand, with genome-context and gene-fusion analyses additionally supporting a role for this family in signal transduction, possibly during oxidative stress

  1. Simultaneous measurement of amyloid fibril formation by dynamic light scattering and fluorescence reveals complex aggregation kinetics.

    Directory of Open Access Journals (Sweden)

    Aaron M Streets

    Full Text Available An apparatus that combines dynamic light scattering and Thioflavin T fluorescence detection is used to simultaneously probe fibril formation in polyglutamine peptides, the aggregating subunit associated with Huntington's disease, in vitro. Huntington's disease is a neurodegenerative disorder in a class of human pathologies that includes Alzheimer's and Parkinson's disease. These pathologies are all related by the propensity of their associated protein or polypeptide to form insoluble, β-sheet rich, amyloid fibrils. Despite the wide range of amino acid sequence in the aggregation prone polypeptides associated with these diseases, the resulting amyloids display strikingly similar physical structure, an observation which suggests a physical basis for amyloid fibril formation. Thioflavin T fluorescence reports β-sheet fibril content while dynamic light scattering measures particle size distributions. The combined techniques allow elucidation of complex aggregation kinetics and are used to reveal multiple stages of amyloid fibril formation.

  2. Structural Analyses of Avocado sunblotch viroid Reveal Differences in the Folding of Plus and Minus RNA Strands

    Directory of Open Access Journals (Sweden)

    Clémentine Delan-Forino

    2014-01-01

    Full Text Available Viroids are small pathogenic circular single-stranded RNAs, present in two complementary sequences, named plus and minus, in infected plant cells. A high degree of complementarities between different regions of the RNAs allows them to adopt complex structures. Since viroids are naked non-coding RNAs, interactions with host factors appear to be closely related to their structural and catalytic characteristics. Avocado sunblotch viroid (ASBVd, a member of the family Avsunviroidae, replicates via a symmetric RNA-dependant rolling-circle process, involving self-cleavage via hammerhead ribozymes. Consequently, it is assumed that ASBVd plus and minus strands adopt similar structures. Moreover, by computer analyses, a quasi-rod-like secondary structure has been predicted. Nevertheless, secondary and tertiary structures of both polarities of ASBVd remain unsolved. In this study, we analyzed the characteristic of each strand of ASBVd through biophysical analyses. We report that ASBVd transcripts of plus and minus polarities exhibit differences in electrophoretic mobility under native conditions and in thermal denaturation profiles. Subsequently, the secondary structures of plus and minus polarities of ASBVd were probed using the RNA-selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE method. The models obtained show that both polarities fold into different structures. Moreover, our results suggest the existence of a kissing-loop interaction within the minus strand that may play a role in in vivo viroid life cycle.

  3. Single-Molecule Fluorescence Reveals the Oligomerization and Folding Steps Driving the Prion-like Behavior of ASC.

    Science.gov (United States)

    Gambin, Yann; Giles, Nichole; O'Carroll, Ailís; Polinkovsky, Mark; Hunter, Dominic; Sierecki, Emma

    2018-02-16

    Single-molecule fluorescence has the unique ability to quantify small oligomers and track conformational changes at a single-protein level. Here we tackled one of the most extreme protein behaviors, found recently in an inflammation pathway. Upon danger recognition in the cytosol, NLRP3 recruits its signaling adaptor, ASC. ASC start polymerizing in a prion-like manner and the system goes in "overdrive" by producing a single micron-sized "speck." By precisely controlling protein expression levels in an in vitro translation system, we could trigger the polymerization of ASC and mimic formation of specks in the absence of inflammasome nucleators. We utilized single-molecule spectroscopy to fully characterize prion-like behaviors and self-propagation of ASC fibrils. We next used our controlled system to monitor the conformational changes of ASC upon fibrillation. Indeed, ASC consists of a PYD and CARD domains, separated by a flexible linker. Individually, both domains have been found to form fibrils, but the structure of the polymers formed by the full-length ASC proteins remains elusive. For the first time, using single-molecule Förster resonance energy transfer, we studied the relative positions of the CARD and PYD domains of full-length ASC. An unexpectedly large conformational change occurred upon ASC fibrillation, suggesting that the CARD domain folds back onto the PYD domain. However, contradicting current models, the "prion-like" conformer was not initiated by binding of ASC to the NLRP3 platform. Rather, using a new method, hybrid between Photon Counting Histogram and Number and Brightness analysis, we showed that NLRP3 forms hexamers with self-binding affinities around 300nM. Overall our data suggest a new mechanism, where NLRP3 can initiate ASC polymerization simply by increasing the local concentration of ASC above a supercritical level. Copyright © 2017. Published by Elsevier Ltd.

  4. Crystal structure of CobK reveals strand-swapping between Rossmann-fold domains and molecular basis of the reduced precorrin product trap.

    Science.gov (United States)

    Gu, Shuang; Sushko, Oleksandr; Deery, Evelyne; Warren, Martin J; Pickersgill, Richard W

    2015-11-30

    CobK catalyzes the essential reduction of the precorrin ring in the cobalamin biosynthetic pathway. The crystal structure of CobK reveals that the enzyme, despite not having the signature sequence, comprises two Rossmann fold domains which bind coenzyme and substrate respectively. The two parallel β-sheets have swapped their last β-strands giving a novel sheet topology which is an interesting variation on the Rossmann-fold. The trapped ternary complex with coenzyme and product reveals five conserved basic residues that bind the carboxylates of the tetrapyrrole tightly anchoring the product. A loop, disordered in both the apoenzyme and holoenzyme structures, closes around the product further tightening binding. The structure is consistent with a mechanism involving protonation of C18 and pro-R hydride transfer from NADPH to C19 of precorrin-6A and reveals the interactions responsible for the specificity of CobK. The almost complete burial of the reduced precorrin product suggests a remarkable form of metabolite channeling where the next enzyme in the biosynthetic pathway triggers product release.

  5. Structural analyses of Legionella LepB reveal a new GAP fold that catalytically mimics eukaryotic RasGAP.

    Science.gov (United States)

    Yu, Qin; Hu, Liyan; Yao, Qing; Zhu, Yongqun; Dong, Na; Wang, Da-Cheng; Shao, Feng

    2013-06-01

    Rab GTPases are emerging targets of diverse bacterial pathogens. Here, we perform biochemical and structural analyses of LepB, a Rab GTPase-activating protein (GAP) effector from Legionella pneumophila. We map LepB GAP domain to residues 313-618 and show that the GAP domain is Rab1 specific with a catalytic activity higher than the canonical eukaryotic TBC GAP and the newly identified VirA/EspG family of bacterial RabGAP effectors. Exhaustive mutation analyses identify Arg444 as the arginine finger, but no catalytically essential glutamine residues. Crystal structures of LepB313-618 alone and the GAP domain of Legionella drancourtii LepB in complex with Rab1-GDP-AlF3 support the catalytic role of Arg444, and also further reveal a 3D architecture and a GTPase-binding mode distinct from all known GAPs. Glu449, structurally equivalent to TBC RabGAP glutamine finger in apo-LepB, undergoes a drastic movement upon Rab1 binding, which induces Rab1 Gln70 side-chain flipping towards GDP-AlF3 through a strong ionic interaction. This conformationally rearranged Gln70 acts as the catalytic cis-glutamine, therefore uncovering an unexpected RasGAP-like catalytic mechanism for LepB. Our studies highlight an extraordinary structural and catalytic diversity of RabGAPs, particularly those from bacterial pathogens.

  6. Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development

    Directory of Open Access Journals (Sweden)

    Nick D.L. Owens

    2016-01-01

    Full Text Available Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack a comprehensive understanding of transcript kinetics, which limits quantitative biology. This is an acute challenge in embryonic development, where rapid changes in gene expression dictate cell fate decisions. By ultra-high-frequency sampling of Xenopus embryos and absolute normalization of sequence reads, we present smooth gene expression trajectories in absolute transcript numbers. During a developmental period approximating the first 8 weeks of human gestation, transcript kinetics vary by eight orders of magnitude. Ordering genes by expression dynamics, we find that “temporal synexpression” predicts common gene function. Remarkably, a single parameter, the characteristic timescale, can classify transcript kinetics globally and distinguish genes regulating development from those involved in cellular metabolism. Overall, our analysis provides unprecedented insight into the reorganization of maternal and embryonic transcripts and redefines our ability to perform quantitative biology.

  7. Chemical Editing of Macrocyclic Natural Products and Kinetic Profiling Reveal Slow, Tight-Binding Histone Deacetylase Inhibitors with Picomolar Affinities

    DEFF Research Database (Denmark)

    Kitir, Betül; Maolanon, Alex R.; Ohm, Ragnhild G.

    2017-01-01

    medicines. Therefore, detailed mechanistic information and precise characterization of the chemical probes used to investigate the effects of HDAC enzymes are vital. We interrogated Nature's arsenal of macrocyclic nonribosomal peptide HDAC inhibitors by chemical synthesis and evaluation of more than 30...... natural products and analogues. This furnished surprising trends in binding affinities for the various macrocycles, which were then exploited for the design of highly potent class I and IIb HDAC inhibitors. Furthermore, thorough kinetic investigation revealed unexpected inhibitory mechanisms of important...

  8. Multiple states of the Tyr318Leu mutant of dihydroorotate dehydrogenase revealed by single molecule kinetics

    DEFF Research Database (Denmark)

    Shi, J.; Palfey, B.A.; Dertouzos, J.

    2004-01-01

    , with some molecules going through the on-off cycles 5-fold faster than others, however, there is no detectable dynamic disorder in DHOD turnover. When 0.1% reduced Triton X-100, a detergent that more closely simulates the natural membrane environment, is added, our data suggest the degree of static...

  9. Functional Insights Revealed by the Kinetic Mechanism of CRISPR/Cas9.

    Science.gov (United States)

    Raper, Austin T; Stephenson, Anthony A; Suo, Zucai

    2018-02-28

    The discovery of prokaryotic adaptive immunity prompted widespread use of the RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) endonuclease Cas9 for genetic engineering. However, its kinetic mechanism remains undefined, and details of DNA cleavage are poorly characterized. Here, we establish a kinetic mechanism of Streptococcus pyogenes Cas9 from guide-RNA binding through DNA cleavage and product release. Association of DNA to the binary complex of Cas9 and guide-RNA is rate-limiting during the first catalytic turnover, while DNA cleavage from a pre-formed ternary complex of Cas9, guide-RNA, and DNA is rapid. Moreover, an extremely slow release of DNA products essentially restricts Cas9 to be a single-turnover enzyme. By simultaneously measuring the contributions of the HNH and RuvC nuclease activities of Cas9 to DNA cleavage, we also uncovered the kinetic basis by which HNH conformationally regulates the RuvC cleavage activity. Together, our results provide crucial kinetic and functional details regarding Cas9 which will inform gene-editing experiments, guide future research to understand off-target DNA cleavage by Cas9, and aid in the continued development of Cas9 as a biotechnological tool.

  10. Flow chemistry kinetic studies reveal reaction conditions for ready access to unsymmetrical trehalose analogues.

    Science.gov (United States)

    Patel, Mitul K; Davis, Benjamin G

    2010-10-07

    Monofunctionalization of trehalose, a widely-found symmetric plant disaccharide, was studied in a microreactor to give valuable kinetic insights that have allowed improvements in desymmetrization yields and the development of a reaction sequence for large scale monofunctionalizations that allow access to probes of trehalose's biological function.

  11. Relaxation rates of gene expression kinetics reveal the feedback signs of autoregulatory gene networks

    Science.gov (United States)

    Jia, Chen; Qian, Hong; Chen, Min; Zhang, Michael Q.

    2018-03-01

    The transient response to a stimulus and subsequent recovery to a steady state are the fundamental characteristics of a living organism. Here we study the relaxation kinetics of autoregulatory gene networks based on the chemical master equation model of single-cell stochastic gene expression with nonlinear feedback regulation. We report a novel relation between the rate of relaxation, characterized by the spectral gap of the Markov model, and the feedback sign of the underlying gene circuit. When a network has no feedback, the relaxation rate is exactly the decaying rate of the protein. We further show that positive feedback always slows down the relaxation kinetics while negative feedback always speeds it up. Numerical simulations demonstrate that this relation provides a possible method to infer the feedback topology of autoregulatory gene networks by using time-series data of gene expression.

  12. Experimental conditions affecting the kinetics of aqueous HCN polymerization as revealed by UV-vis spectroscopy.

    Science.gov (United States)

    Marín-Yaseli, Margarita R; Moreno, Miguel; de la Fuente, José L; Briones, Carlos; Ruiz-Bermejo, Marta

    2018-02-15

    HCN polymerization is one of the most important and fascinating reactions in prebiotic chemistry, and interest in HCN polymers in the field of materials science is growing. However, little is known about the kinetics of the HCN polymerization process. In the present study, a first approach to the kinetics of two sets of aqueous HCN polymerizations, from NH 4 CN and NaCN, at middle temperatures between 4 and 38°C, has been carried out. For each series, the presence of air and salts in the reaction medium has been systematically explored. A previous kinetic analysis was conducted during the conversion of the insoluble black HCN polymers obtained as gel fractions in these precipitation polymerizations for a reaction of one month, where a limit conversion was achieved at the highest polymerization temperature. The kinetic description of the gravimetric data for this complex system shows a clear change in the linear dependence with the polymerization temperature for the reaction from NH 4 CN, besides a relevant catalytic effect of ammonium, in comparison with those data obtained from the NaCN series. These results also demonstrated the notable influence of air, oxygen, and the saline medium in HCN polymer formation. Similar conclusions were reached when the sol fractions were monitored by UV-vis spectroscopy, and a Hill type correlation was used to describe the polymerization profiles obtained. This technique was chosen because it provides an easy, prompt and fast method to follow the evolution of the liquid or continuous phase of the process under study. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Biophysical Studies on BEX3, the p75NTR-Associated Cell Death Executor, Reveal a High-Order Oligomer with Partially Folded Regions.

    Directory of Open Access Journals (Sweden)

    Katia M S Cabral

    Full Text Available BEX3 (Brain Expressed X-linked protein 3 is a member of a mammal-specific placental protein family. Several studies have found the BEX proteins to be associated with neurodegeneration, the cell cycle and cancer. BEX3 has been predicted to be intrinsically disordered and also to represent an intracellular hub for cell signaling. The pro-apoptotic activity of BEX3 in association with a number of additional proteins has been widely supported; however, to the best of our knowledge, very limited data are available on the conformation of any of the members of the BEX family. In this study, we structurally characterized BEX3 using biophysical experimental data. Small angle X-ray scattering and atomic force microscopy revealed that BEX3 forms a specific higher-order oligomer that is consistent with a globular molecule. Solution nuclear magnetic resonance, partial proteinase K digestion, circular dichroism spectroscopy, and fluorescence techniques that were performed on the recombinant protein indicated that the structure of BEX3 is composed of approximately 31% α-helix and 20% β-strand, contains partially folded regions near the N- and C-termini, and a core which is proteolysis-resistant around residues 55-120. The self-oligomerization of BEX3 has been previously reported in cell culture and is consistent with our in vitro data.

  14. Biophysical Studies on BEX3, the p75NTR-Associated Cell Death Executor, Reveal a High-Order Oligomer with Partially Folded Regions.

    Science.gov (United States)

    Cabral, Katia M S; Raymundo, Diana P; Silva, Viviane S; Sampaio, Laura A G; Johanson, Laizes; Hill, Luis Fernando; Almeida, Fabio C L; Cordeiro, Yraima; Almeida, Marcius S

    2015-01-01

    BEX3 (Brain Expressed X-linked protein 3) is a member of a mammal-specific placental protein family. Several studies have found the BEX proteins to be associated with neurodegeneration, the cell cycle and cancer. BEX3 has been predicted to be intrinsically disordered and also to represent an intracellular hub for cell signaling. The pro-apoptotic activity of BEX3 in association with a number of additional proteins has been widely supported; however, to the best of our knowledge, very limited data are available on the conformation of any of the members of the BEX family. In this study, we structurally characterized BEX3 using biophysical experimental data. Small angle X-ray scattering and atomic force microscopy revealed that BEX3 forms a specific higher-order oligomer that is consistent with a globular molecule. Solution nuclear magnetic resonance, partial proteinase K digestion, circular dichroism spectroscopy, and fluorescence techniques that were performed on the recombinant protein indicated that the structure of BEX3 is composed of approximately 31% α-helix and 20% β-strand, contains partially folded regions near the N- and C-termini, and a core which is proteolysis-resistant around residues 55-120. The self-oligomerization of BEX3 has been previously reported in cell culture and is consistent with our in vitro data.

  15. Crystal structures of the F and pSLT plasmid TraJ N-terminal regions reveal similar homodimeric PAS folds with functional interchangeability

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jun; Wu, Ruiying; Adkins, Joshua N.; Joachimiak, Andrzej; Glover, Mark

    2014-09-16

    In the F-family of conjugative plasmids, TraJ is an essential transcriptional activator of the tra operon that encodes most of the proteins required for conjugation. Here we report for the first time the X-ray crystal structures of the TraJ N-terminal regions from the prototypic F plasmid (TraJF11-130) and from the Salmonella virulence plasmid pSLT (TraJpSLT 1-128). Both proteins form similar homodimeric Per-ARNT-Sim (PAS) fold structures. Mutational analysis reveals that the observed dimeric interface is critical for TraJF transcriptional activation, indicating that dimerization of TraJ is required for its in vivo function. An artificial ligand (oxidized dithiothreitol) occupies a cavity in the TraJF dimer interface, while a smaller cavity in corresponding region of the TraJpSLT structure lacks a ligand. Gas chromatography/mass spectrometry-electron ionization analysis of dithiothreitol-free TraJF suggests indole may be the natural TraJ ligand; however, disruption of the indole biosynthetic pathway does not affect TraJF function. Heterologous PAS domains from pSLT and R100 TraJ can functionally replace the TraJF PAS domain, suggesting that TraJ allelic specificity is mediated by the region C-terminal to the PAS domain.

  16. A Portrait of Ribosomal DNA Contacts with Hi-C Reveals 5S and 45S rDNA Anchoring Points in the Folded Human Genome.

    Science.gov (United States)

    Yu, Shoukai; Lemos, Bernardo

    2016-12-31

    Ribosomal RNAs (rRNAs) account for >60% of all RNAs in eukaryotic cells and are encoded in the ribosomal DNA (rDNA) arrays. The rRNAs are produced from two sets of loci: the 5S rDNA array resides exclusively on human chromosome 1, whereas the 45S rDNA array resides on the short arm of five human acrocentric chromosomes. The 45S rDNA gives origin to the nucleolus, the nuclear organelle that is the site of ribosome biogenesis. Intriguingly, 5S and 45S rDNA arrays exhibit correlated copy number variation in lymphoblastoid cells (LCLs). Here we examined the genomic architecture and repeat content of the 5S and 45S rDNA arrays in multiple human genome assemblies (including PacBio MHAP assembly) and ascertained contacts between the rDNA arrays and the rest of the genome using Hi-C datasets from two human cell lines (erythroleukemia K562 and lymphoblastoid cells). Our analyses revealed that 5S and 45S arrays each have thousands of contacts in the folded genome, with rDNA-associated regions and genes dispersed across all chromosomes. The rDNA contact map displayed conserved and disparate features between two cell lines, and pointed to specific chromosomes, genomic regions, and genes with evidence of spatial proximity to the rDNA arrays; the data also showed a lack of direct physical interaction between the 5S and 45S rDNA arrays. Finally, the analysis identified an intriguing organization in the 5S array with Alu and 5S elements adjacent to one another and organized in opposite orientation along the array. Portraits of genome folding centered on the ribosomal DNA array could help understand the emergence of concerted variation, the control of 5S and 45S expression, as well as provide insights into an organelle that contributes to the spatial localization of human chromosomes during interphase. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. The adsorption and unfolding kinetics determines the folding state of proteins at the air-water interface and thereby the equation of state

    NARCIS (Netherlands)

    Wierenga, P.A.; Egmond, M.R.; Voragen, A.G.J.; Jongh, H.H.J.de

    2006-01-01

    Unfolding of proteins has often been mentioned as an important factor during the adsorption process at air-water interfaces and in the increase of surface pressure at later stages of the adsorption process. This work focuses on the question whether the folding state of the adsorbed protein depends

  18. Active mechanics in living oocytes reveal molecular-scale force kinetics

    Science.gov (United States)

    Ahmed, Wylie; Fodor, Etienne; Almonacid, Maria; Bussonnier, Matthias; Verlhac, Marie-Helene; Gov, Nir; Visco, Paolo; van Wijland, Frederic; Betz, Timo

    Unlike traditional materials, living cells actively generate forces at the molecular scale that change their structure and mechanical properties. This nonequilibrium activity is essential for cellular function, and drives processes such as cell division. Single molecule studies have uncovered the detailed force kinetics of isolated motor proteins in-vitro, however their behavior in-vivo has been elusive due to the complex environment inside the cell. Here, we quantify active forces and intracellular mechanics in living oocytes using in-vivo optical trapping and laser interferometry of endogenous vesicles. We integrate an experimental and theoretical framework to connect mesoscopic measurements of nonequilibrium properties to the underlying molecular- scale force kinetics. Our results show that force generation by myosin-V drives the cytoplasmic-skeleton out-of-equilibrium (at frequencies below 300 Hz) and actively softens the environment. In vivo myosin-V activity generates a force of F ~ 0 . 4 pN, with a power-stroke of length Δx ~ 20 nm and duration τ ~ 300 μs, that drives vesicle motion at vv ~ 320 nm/s. This framework is widely applicable to characterize living cells and other soft active materials.

  19. Quantitative proteomics reveals the kinetics of trypsin-catalyzed protein digestion.

    Science.gov (United States)

    Pan, Yanbo; Cheng, Kai; Mao, Jiawei; Liu, Fangjie; Liu, Jing; Ye, Mingliang; Zou, Hanfa

    2014-10-01

    Trypsin is the popular protease to digest proteins into peptides in shotgun proteomics, but few studies have attempted to systematically investigate the kinetics of trypsin-catalyzed protein digestion in proteome samples. In this study, we applied quantitative proteomics via triplex stable isotope dimethyl labeling to investigate the kinetics of trypsin-catalyzed cleavage. It was found that trypsin cleaves the C-terminal to lysine (K) and arginine (R) residues with higher rates for R. And the cleavage sites surrounded by neutral residues could be quickly cut, while those with neighboring charged residues (D/E/K/R) or proline residue (P) could be slowly cut. In a proteome sample, a huge number of proteins with different physical chemical properties coexists. If any type of protein could be preferably digested, then limited digestion could be applied to reduce the sample complexity. However, we found that protein abundance and other physicochemical properties, such as molecular weight (Mw), grand average of hydropathicity (GRAVY), aliphatic index, and isoelectric point (pI) have no notable correlation with digestion priority of proteins.

  20. Approach for discrimination and quantification of electroactive species: kinetics difference revealed by higher harmonics of Fourier transformed sinusoidal voltammetry.

    Science.gov (United States)

    Fang, Yishan; Huang, Xinjian; Wang, Lishi

    2015-01-06

    Discrimination and quantification of electroactive species are traditionally realized by a potential difference which is mainly determined by thermodynamics. However, the resolution of this approach is limited to tens of millivolts. In this paper, we described an application of Fourier transformed sinusoidal voltammetry (FT-SV) that provides a new approach for discrimination and quantitative evaluation of electroactive species, especially thermodynamic similar ones. Numerical simulation indicates that electron transfer kinetics difference between electroactive species can be revealed by the phase angle of higher order harmonics of FT-SV, and the difference can be amplified order by order. Thus, even a very subtle kinetics difference can be amplified to be distinguishable at a certain order of harmonics. This method was verified with structurally similar ferrocene derivatives which were chosen as the model systems. Although these molecules have very close redox potential (harmonics. The results demonstrated the feasibility and reliability of the method. It was also implied that the combination of the traditional thermodynamic method and this kinetics method can form a two-dimension resolved detection method, and it has the potential to extend the resolution of voltammetric techniques to a new level.

  1. Alteration of biomacromolecule in corn by steam flaking in relation to biodegradation kinetics in ruminant, revealed with vibrational molecular spectroscopy.

    Science.gov (United States)

    Xu, Ningning; Liu, Jianxin; Yu, Peiqiang

    2018-02-15

    Large scale of steam flaked corn has been used in dairy ration to maintain high milk production level. This study aimed to determine effects of steam flaking on processing-induced intrinsic molecular structure changes that were associated with rumen degradation kinetics and nutrients supply. The advanced vibrational molecular spectroscopy was applied to reveal the processing-induced intrinsic structure changes on a molecular basis. The rumen degradation kinetics and nutrient supply were determined using in situ approach in ruminant livestock system. Raw corn grain (RC) and steam flaked corn grain (SFC) were obtained from two different processing plants. The results showed that (1) Compared to RC, SFC had greater truly digestible non-fiber carbohydrate [tdNFC: 86.8 versus 78.0% dry matter (DM)], but lower truly digestible crude protein [tdCP: 7.7 versus 9.0% DM]. (2) The steam flaking increased (PMolecular absorbance intensities of most carbohydrate biopolymers were greater in SFC (Pmolecular spectral intensities were lower (Pmolecular structure and nutrient interactive study showed that carbohydrate spectral intensities were positively (Pmolecular structure changes had an interactive relationship with rumen degradation kinetics. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Revealing chemical processes and kinetics of drug action within single living cells via plasmonic Raman probes.

    Science.gov (United States)

    Li, Shan-Shan; Guan, Qi-Yuan; Meng, Gang; Chang, Xiao-Feng; Wei, Ji-Wu; Wang, Peng; Kang, Bin; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-05-23

    Better understanding the drug action within cells may extend our knowledge on drug action mechanisms and promote new drugs discovery. Herein, we studied the processes of drug induced chemical changes on proteins and nucleic acids in human breast adenocarcinoma (MCF-7) cells via time-resolved plasmonic-enhanced Raman spectroscopy (PERS) in combination with principal component analysis (PCA). Using three popular chemotherapy drugs (fluorouracil, cisplatin and camptothecin) as models, chemical changes during drug action process were clearly discriminated. Reaction kinetics related to protein denaturation, conformational modification, DNA damage and their associated biomolecular events were calculated. Through rate constants and reaction delay times, the different action modes of these drugs could be distinguished. These results may provide vital insights into understanding the chemical reactions associated with drug-cell interactions.

  3. Mathematical modeling reveals kinetics of lymphocyte recirculation in the whole organism.

    Directory of Open Access Journals (Sweden)

    Vitaly V Ganusov

    2014-05-01

    Full Text Available The kinetics of recirculation of naive lymphocytes in the body has important implications for the speed at which local infections are detected and controlled by immune responses. With a help of a novel mathematical model, we analyze experimental data on migration of 51Cr-labeled thoracic duct lymphocytes (TDLs via major lymphoid and nonlymphoid tissues of rats in the absence of systemic antigenic stimulation. We show that at any point of time, 95% of lymphocytes in the blood travel via capillaries in the lung or sinusoids of the liver and only 5% migrate to secondary lymphoid tissues such as lymph nodes, Peyer's patches, or the spleen. Interestingly, our analysis suggests that lymphocytes travel via lung capillaries and liver sinusoids at an extremely rapid rate with the average residence time in these tissues being less than 1 minute. The model also predicts a relatively short average residence time of TDLs in the spleen (2.5 hours and a longer average residence time of TDLs in major lymph nodes and Peyer's patches (10 hours. Surprisingly, we find that the average residence time of lymphocytes is similar in lymph nodes draining the skin (subcutaneous LNs or the gut (mesenteric LNs or in Peyer's patches. Applying our model to an additional dataset on lymphocyte migration via resting and antigen-stimulated lymph nodes we find that enlargement of antigen-stimulated lymph nodes occurs mainly due to increased entrance rate of TDLs into the nodes and not due to decreased exit rate as has been suggested in some studies. Taken together, our analysis for the first time provides a comprehensive, systems view of recirculation kinetics of thoracic duct lymphocytes in the whole organism.

  4. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms

    Science.gov (United States)

    Young, Jodi N.; Heureux, Ana M.C.; Sharwood, Robert E.; Rickaby, Rosalind E.M.; Morel, François M.M.; Whitney, Spencer M.

    2016-01-01

    While marine phytoplankton rival plants in their contribution to global primary productivity, our understanding of their photosynthesis remains rudimentary. In particular, the kinetic diversity of the CO2-fixing enzyme, Rubisco, in phytoplankton remains unknown. Here we quantify the maximum rates of carboxylation (k cat c), oxygenation (k cat o), Michaelis constants (K m) for CO2 (K C) and O2 (K O), and specificity for CO2 over O2 (SC/O) for Form I Rubisco from 11 diatom species. Diatom Rubisco shows greater variation in K C (23–68 µM), SC/O (57–116mol mol−1), and K O (413–2032 µM) relative to plant and algal Rubisco. The broad range of K C values mostly exceed those of C4 plant Rubisco, suggesting that the strength of the carbon-concentrating mechanism (CCM) in diatoms is more diverse, and more effective than previously predicted. The measured k cat c for each diatom Rubisco showed less variation (2.1–3.7s−1), thus averting the canonical trade-off typically observed between K C and k cat c for plant Form I Rubisco. Uniquely, a negative relationship between K C and cellular Rubisco content was found, suggesting variation among diatom species in how they allocate their limited cellular resources between Rubisco synthesis and their CCM. The activation status of Rubisco in each diatom was low, indicating a requirement for Rubisco activase. This work highlights the need to better understand the correlative natural diversity between the Rubisco kinetics and CCM of diatoms and the underpinning mechanistic differences in catalytic chemistry among the Form I Rubisco superfamily. PMID:27129950

  5. Revealing kinetics and state-dependent binding properties of IKur-targeting drugs that maximize atrial fibrillation selectivity

    Science.gov (United States)

    Ellinwood, Nicholas; Dobrev, Dobromir; Morotti, Stefano; Grandi, Eleonora

    2017-09-01

    The KV1.5 potassium channel, which underlies the ultra-rapid delayed-rectifier current (IKur) and is predominantly expressed in atria vs. ventricles, has emerged as a promising target to treat atrial fibrillation (AF). However, while numerous KV1.5-selective compounds have been screened, characterized, and tested in various animal models of AF, evidence of antiarrhythmic efficacy in humans is still lacking. Moreover, current guidelines for pre-clinical assessment of candidate drugs heavily rely on steady-state concentration-response curves or IC50 values, which can overlook adverse cardiotoxic effects. We sought to investigate the effects of kinetics and state-dependent binding of IKur-targeting drugs on atrial electrophysiology in silico and reveal the ideal properties of IKur blockers that maximize anti-AF efficacy and minimize pro-arrhythmic risk. To this aim, we developed a new Markov model of IKur that describes KV1.5 gating based on experimental voltage-clamp data in atrial myocytes from patient right-atrial samples in normal sinus rhythm. We extended the IKur formulation to account for state-specificity and kinetics of KV1.5-drug interactions and incorporated it into our human atrial cell model. We simulated 1- and 3-Hz pacing protocols in drug-free conditions and with a [drug] equal to the IC50 value. The effects of binding and unbinding kinetics were determined by examining permutations of the forward (kon) and reverse (koff) binding rates to the closed, open, and inactivated states of the KV1.5 channel. We identified a subset of ideal drugs exhibiting anti-AF electrophysiological parameter changes at fast pacing rates (effective refractory period prolongation), while having little effect on normal sinus rhythm (limited action potential prolongation). Our results highlight that accurately accounting for channel interactions with drugs, including kinetics and state-dependent binding, is critical for developing safer and more effective pharmacological anti

  6. Understanding ensemble protein folding at atomic detail

    International Nuclear Information System (INIS)

    Wallin, Stefan; Shakhnovich, Eugene I

    2008-01-01

    Although far from routine, simulating the folding of specific short protein chains on the computer, at a detailed atomic level, is starting to become a reality. This remarkable progress, which has been made over the last decade or so, allows a fundamental aspect of the protein folding process to be addressed, namely its statistical nature. In order to make quantitative comparisons with experimental kinetic data a complete ensemble view of folding must be achieved, with key observables averaged over the large number of microscopically different folding trajectories available to a protein chain. Here we review recent advances in atomic-level protein folding simulations and the new insight provided by them into the protein folding process. An important element in understanding ensemble folding kinetics are methods for analyzing many separate folding trajectories, and we discuss techniques developed to condense the large amount of information contained in an ensemble of trajectories into a manageable picture of the folding process. (topical review)

  7. Kinetic and Thermodynamic Features Reveal That E. coli BCP Is an Unusually Versatile Peroxiredoxin†

    Science.gov (United States)

    Reeves, Stacy A.; Parsonage, Derek; Nelson, Kimberly J.; Poole, Leslie B.

    2011-01-01

    In Escherichia coli, bacterioferritin-comigratory protein (BCP) is a peroxiredoxin (Prx) which catalyzes the reduction of H2O2 and organic hydroperoxides. This protein, along with plant PrxQ, is a founding member of one of the least studied subfamilies of Prxs. Recent structural data have suggested that proteins in the BCP/PrxQ group can exist as monomers or dimers; we report here that, by analytical ultracentrifugation, both oxidized and reduced E. coli BCP behave as monomers in solution at concentrations as high as 200 µM. Unexpectedly, thioredoxin (Trx1)-dependent peroxidase assays conducted by stopped flow spectroscopy demonstrated that Vmax,app increases with increasing Trx1 concentrations, indicating a nonsaturable interaction (Km > 100 µM). At a physiologically reasonable Trx1 concentration of 10 µM, the apparent Km value for H2O2 is ~80 µM, and overall Vmax/Km for H2O2, which remains constant over the various Trx1 concentrations (consistent with a ping-pong mechanism), is about 1.3 × 104 M−1 s−1. Our kinetic analyses demonstrated that BCP can utilize a variety of reducing substrates, including Trx1, Trx2, Grx1 and Grx3. BCP exhibited a high redox potential of −145.9 ± 3.2 mV, the highest to date observed for a Prx. Moreover, BCP exhibited a broad peroxide specificity, with comparable rates for H2O2 and cumene hydroperoxide. We determined a pKa of ~5.8 for the peroxidatic cysteine (Cys45) using both spectroscopic and activity titration data. These findings support an important role for BCP in interacting with multiple substrates and remaining active under highly oxidizing cellular conditions, potentially serving as a defense enzyme of last resort. PMID:21910476

  8. Alteration of biomacromolecule in corn by steam flaking in relation to biodegradation kinetics in ruminant, revealed with vibrational molecular spectroscopy

    Science.gov (United States)

    Xu, Ningning; Liu, Jianxin; Yu, Peiqiang

    2018-02-01

    Large scale of steam flaked corn has been used in dairy ration to maintain high milk production level. This study aimed to determine effects of steam flaking on processing-induced intrinsic molecular structure changes that were associated with rumen degradation kinetics and nutrients supply. The advanced vibrational molecular spectroscopy was applied to reveal the processing-induced intrinsic structure changes on a molecular basis. The rumen degradation kinetics and nutrient supply were determined using in situ approach in ruminant livestock system. Raw corn grain (RC) and steam flaked corn grain (SFC) were obtained from two different processing plants. The results showed that (1) Compared to RC, SFC had greater truly digestible non-fiber carbohydrate [tdNFC: 86.8 versus 78.0% dry matter (DM)], but lower truly digestible crude protein [tdCP: 7.7 versus 9.0% DM]. (2) The steam flaking increased (P < 0.01) rumen degradable DM (RDDM) and starch (RDSt), but decreased (P < 0.01) rumen degradable protein (RDP). (3) Molecular absorbance intensities of most carbohydrate biopolymers were greater in SFC (P < 0.01), but protein amides associated molecular spectral intensities were lower (P < 0.01) in SFC. (4). The molecular structure and nutrient interactive study showed that carbohydrate spectral intensities were positively (P < 0.10) associated with RDDM and RDSt and protein amide spectral intensities were positively (P < 0.10) associated with RDP. This results indicated that the steam flaking induced molecular structure changes had an interactive relationship with rumen degradation kinetics.

  9. A new topology of the HK97-like fold revealed in Bordetella bacteriophage by cryoEM at 3.5 Å resolution

    Science.gov (United States)

    Zhang, Xing; Guo, Huatao; Jin, Lei; Czornyj, Elizabeth; Hodes, Asher; Hui, Wong H; Nieh, Angela W; Miller, Jeff F; Zhou, Z Hong

    2013-01-01

    Bacteriophage BPP-1 infects and kills Bordetella species that cause whooping cough. Its diversity-generating retroelement (DGR) provides a naturally occurring phage-display system, but engineering efforts are hampered without atomic structures. Here, we report a cryo electron microscopy structure of the BPP-1 head at 3.5 Å resolution. Our atomic model shows two of the three protein folds representing major viral lineages: jellyroll for its cement protein (CP) and HK97-like (‘Johnson’) for its major capsid protein (MCP). Strikingly, the fold topology of MCP is permuted non-circularly from the Johnson fold topology previously seen in viral and cellular proteins. We illustrate that the new topology is likely the only feasible alternative of the old topology. β-sheet augmentation and electrostatic interactions contribute to the formation of non-covalent chainmail in BPP-1, unlike covalent inter-protein linkages of the HK97 chainmail. Despite these complex interactions, the termini of both CP and MCP are ideally positioned for DGR-based phage-display engineering. DOI: http://dx.doi.org/10.7554/eLife.01299.001 PMID:24347545

  10. High-Pressure NMR and SAXS Reveals How Capping Modulates Folding Cooperativity of the pp32 Leucine-rich Repeat Protein.

    Science.gov (United States)

    Zhang, Yi; Berghaus, Melanie; Klein, Sean; Jenkins, Kelly; Zhang, Siwen; McCallum, Scott A; Morgan, Joel E; Winter, Roland; Barrick, Doug; Royer, Catherine A

    2018-04-27

    Many repeat proteins contain capping motifs, which serve to shield the hydrophobic core from solvent and maintain structural integrity. While the role of capping motifs in enhancing the stability and structural integrity of repeat proteins is well documented, their contribution to folding cooperativity is not. Here we examined the role of capping motifs in defining the folding cooperativity of the leucine-rich repeat protein, pp32, by monitoring the pressure- and urea-induced unfolding of an N-terminal capping motif (N-cap) deletion mutant, pp32-∆N-cap, and a C-terminal capping motif destabilization mutant pp32-Y131F/D146L, using residue-specific NMR and small-angle X-ray scattering. Destabilization of the C-terminal capping motif resulted in higher cooperativity for the unfolding transition compared to wild-type pp32, as these mutations render the stability of the C-terminus similar to that of the rest of the protein. In contrast, deletion of the N-cap led to strong deviation from two-state unfolding. In both urea- and pressure-induced unfolding, residues in repeats 1-3 of pp32-ΔN-cap lost their native structure first, while the C-terminal half was more stable. The residue-specific free energy changes in all regions of pp32-ΔN-cap were larger in urea compared to high pressure, indicating a less cooperative destabilization by pressure. Moreover, in contrast to complete structural disruption of pp32-ΔN-cap at high urea concentration, its pressure unfolded state remained compact. The contrasting effects of the capping motifs on folding cooperativity arise from the differential local stabilities of pp32, whereas the contrasting effects of pressure and urea on the pp32-ΔN-cap variant arise from their distinct mechanisms of action. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Physics of protein folding

    Science.gov (United States)

    Finkelstein, A. V.; Galzitskaya, O. V.

    2004-04-01

    Protein physics is grounded on three fundamental experimental facts: protein, this long heteropolymer, has a well defined compact three-dimensional structure; this structure can spontaneously arise from the unfolded protein chain in appropriate environment; and this structure is separated from the unfolded state of the chain by the “all-or-none” phase transition, which ensures robustness of protein structure and therefore of its action. The aim of this review is to consider modern understanding of physical principles of self-organization of protein structures and to overview such important features of this process, as finding out the unique protein structure among zillions alternatives, nucleation of the folding process and metastable folding intermediates. Towards this end we will consider the main experimental facts and simple, mostly phenomenological theoretical models. We will concentrate on relatively small (single-domain) water-soluble globular proteins (whose structure and especially folding are much better studied and understood than those of large or membrane and fibrous proteins) and consider kinetic and structural aspects of transition of initially unfolded protein chains into their final solid (“native”) 3D structures.

  12. Fold-recognition and comparative modeling of human α2,3-sialyltransferases reveal their sequence and structural similarities to CstII from Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Balaji Petety V

    2006-04-01

    Full Text Available Abstract Background The 3-D structure of none of the eukaryotic sialyltransferases (SiaTs has been determined so far. Sequence alignment algorithms such as BLAST and PSI-BLAST could not detect a homolog of these enzymes from the protein databank. SiaTs, thus, belong to the hard/medium target category in the CASP experiments. The objective of the current work is to model the 3-D structures of human SiaTs which transfer the sialic acid in α2,3-linkage viz., ST3Gal I, II, III, IV, V, and VI, using fold-recognition and comparative modeling methods. The pair-wise sequence similarity among these six enzymes ranges from 41 to 63%. Results Unlike the sequence similarity servers, fold-recognition servers identified CstII, a α2,3/8 dual-activity SiaT from Campylobacter jejuni as the homolog of all the six ST3Gals; the level of sequence similarity between CstII and ST3Gals is only 15–20% and the similarity is restricted to well-characterized motif regions of ST3Gals. Deriving template-target sequence alignments for the entire ST3Gal sequence was not straightforward: the fold-recognition servers could not find a template for the region preceding the L-motif and that between the L- and S-motifs. Multiple structural templates were identified to model these regions and template identification-modeling-evaluation had to be performed iteratively to choose the most appropriate templates. The modeled structures have acceptable stereochemical properties and are also able to provide qualitative rationalizations for some of the site-directed mutagenesis results reported in literature. Apart from the predicted models, an unexpected but valuable finding from this study is the sequential and structural relatedness of family GT42 and family GT29 SiaTs. Conclusion The modeled 3-D structures can be used for docking and other modeling studies and for the rational identification of residues to be mutated to impart desired properties such as altered stability, substrate

  13. Structure of the first representative of Pfam family PF04016 (DUF364) reveals enolase and Rossmann-like folds that combine to form a unique active site with a possible role in heavy-metal chelation

    International Nuclear Information System (INIS)

    Miller, Mitchell D.; Aravind, L.; Bakolitsa, Constantina; Rife, Christopher L.; Carlton, Dennis; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Feuerhelm, Julie; Grant, Joanna C.; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Marciano, David; McMullan, Daniel; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Reyes, Ron; Bedem, Henry van den; Weekes, Dana; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The crystal structure of the first representative of DUF364 family reveals a combination of enolase N-terminal-like and C-terminal Rossmann-like folds. Analysis of the interdomain cleft combined with sequence and genome context conservation among homologs, suggests a unique catalytic site likely involved in the synthesis of a flavin or pterin derivative. The crystal structure of Dhaf4260 from Desulfitobacterium hafniense DCB-2 was determined by single-wavelength anomalous diffraction (SAD) to a resolution of 2.01 Å using the semi-automated high-throughput pipeline of the Joint Center for Structural Genomics (JCSG) as part of the NIGMS Protein Structure Initiative (PSI). This protein structure is the first representative of the PF04016 (DUF364) Pfam family and reveals a novel combination of two well known domains (an enolase N-terminal-like fold followed by a Rossmann-like domain). Structural and bioinformatic analyses reveal partial similarities to Rossmann-like methyltransferases, with residues from the enolase-like fold combining to form a unique active site that is likely to be involved in the condensation or hydrolysis of molecules implicated in the synthesis of flavins, pterins or other siderophores. The genome context of Dhaf4260 and homologs additionally supports a role in heavy-metal chelation

  14. The disulfide-rich Metridia luciferase refolded from E. coli inclusion bodies reveals the properties of a native folded enzyme produced in insect cells.

    Science.gov (United States)

    Markova, Svetlana V; Larionova, Marina D; Gorbunova, Darya A; Vysotski, Eugene S

    2017-10-01

    The bioluminescence of a marine copepod Metridia longa is determined by a small secreted coelenterazine-dependent luciferase that uses coelenterazine as a substrate of enzymatic reaction to generate light (λ max =480nm). To date, four different isoforms of the luciferase differing in size, sequences, and properties have been cloned by functional screening. All of them contain ten conserved Cys residues that suggests up to five SS intramolecular bonds per luciferase molecule. Whereas the use of copepod luciferases as bioluminescent reporters in biomedical research in vivo is growing from year to year, their application for in vitro assays is still limited by the difficulty in obtaining significant amounts of luciferase. The most cost-effective host for producing recombinant proteins is Escherichia coli. However, prokaryotic and eukaryotic cells maintain the reductive environment in cytoplasm that hinders the disulfide bond formation and consequently the proper folding of luciferase. Here we report the expression of the MLuc7 isoform of M. longa luciferase in E. coli cells and the efficient procedure for refolding from inclusion bodies yielding a high-active monomeric protein. Furthermore, in a set of identical experiments we demonstrate that bioluminescent and structural features of MLuc7 produced in bacterial cells are identical to those of MLuc7 isoform produced from culture medium of insect cells. Although the yield of high-purity protein is only 6mg/L, the application of E. coli cells to produce the luciferase is simpler and more cost-effective than the use of insect cells. We expect that the suggested technology of Metridia luciferase production allows obtaining of sufficient amounts of protein both for the development of novel in vitro analytical assays with the use of MLuc7 as a label and for structural studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Global Kinetic Analysis of Mammalian E3 Reveals pH-dependent NAD+/NADH Regulation, Physiological Kinetic Reversibility, and Catalytic Optimum*

    Science.gov (United States)

    Moxley, Michael A.; Beard, Daniel A.; Bazil, Jason N.

    2016-01-01

    Mammalian E3 is an essential mitochondrial enzyme responsible for catalyzing the terminal reaction in the oxidative catabolism of several metabolites. E3 is a key regulator of metabolic fuel selection as a component of the pyruvate dehydrogenase complex (PDHc). E3 regulates PDHc activity by altering the affinity of pyruvate dehydrogenase kinase, an inhibitor of the enzyme complex, through changes in reduction and acetylation state of lipoamide moieties set by the NAD+/NADH ratio. Thus, an accurate kinetic model of E3 is needed to predict overall mammalian PDHc activity. Here, we have combined numerous literature data sets and new equilibrium spectroscopic experiments with a multitude of independently collected forward and reverse steady-state kinetic assays using pig heart E3. The latter kinetic assays demonstrate a pH-dependent transition of NAD+ activation to inhibition, shown here, to our knowledge, for the first time in a single consistent data set. Experimental data were analyzed to yield a thermodynamically constrained four-redox-state model of E3 that simulates pH-dependent activation/inhibition and active site redox states for various conditions. The developed model was used to determine substrate/product conditions that give maximal E3 rates and show that, due to non-Michaelis-Menten behavior, the maximal flux is different compared with the classically defined kcat. PMID:26644471

  16. Approaching climate-adaptive facades with foldings

    DEFF Research Database (Denmark)

    Sack-Nielsen, Torsten

    2014-01-01

    envelopes based on folding principles such as origami. Three major aspects cover the project’s interest in this topic: Shape, kinetics and the application of new multi-functional materials form the interdisciplinary framework of this research. Shape// Initially small paper sketch models demonstrate folding...

  17. Pre-steady-state kinetic analysis of 1-deoxy-D-xylulose-5-phosphate reductoisomerase from Mycobacterium tuberculosis reveals partially rate-limiting product release by parallel pathways.

    Science.gov (United States)

    Liu, Juan; Murkin, Andrew S

    2012-07-03

    As part of the non-mevalonate pathway for the biosynthesis of the isoprenoid precursor isopentenyl pyrophosphate, 1-deoxy-D-xylulose-5-phosphate (DXP) reductoisomerase (DXR) catalyzes the conversion of DXP into 2-C-methyl-D-erythritol 4-phosphate (MEP) by consecutive isomerization and NADPH-dependent reduction reactions. Because this pathway is essential to many infectious organisms but is absent in humans, DXR is a target for drug discovery. In an attempt to characterize its kinetic mechanism and identify rate-limiting steps, we present the first complete transient kinetic investigation of DXR. Stopped-flow fluorescence measurements with Mycobacterium tuberculosis DXR (MtDXR) revealed that NADPH and MEP bind to the free enzyme and that the two bind together to generate a nonproductive ternary complex. Unlike the Escherichia coli orthologue, MtDXR exhibited a burst in the oxidation of NADPH during pre-steady-state reactions, indicating a partially rate-limiting step follows chemistry. By monitoring NADPH fluorescence during these experiments, the transient generation of MtDXR·NADPH·MEP was observed. Global kinetic analysis supports a model involving random substrate binding and ordered release of NADP(+) followed by MEP. The partially rate-limiting release of MEP occurs via two pathways--directly from the binary complex and indirectly via the MtDXR·NADPH·MEP complex--the partitioning being dependent on NADPH concentration. Previous mechanistic studies, including kinetic isotope effects and product inhibition, are discussed in light of this kinetic mechanism.

  18. Vocal Fold Paralysis

    Science.gov (United States)

    ... here Home » Health Info » Voice, Speech, and Language Vocal Fold Paralysis On this page: What is vocal fold ... Where can I get additional information? What is vocal fold paralysis? Structures involved in speech and voice production ...

  19. The structure of SSO2064, the first representative of Pfam family PF01796, reveals a novel two-domain zinc-ribbon OB-fold architecture with a potential acyl-CoA-binding role

    International Nuclear Information System (INIS)

    Krishna, S. Sri; Aravind, L.; Bakolitsa, Constantina; Caruthers, Jonathan; Carlton, Dennis; Miller, Mitchell D.; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Feuerhelm, Julie; Grant, Joanna C.; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kumar, Abhinav; Marciano, David; McMullan, Daniel; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Reyes, Ron; Rife, Christopher L.; Bedem, Henry van den; Weekes, Dana; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The crystal structure of SSO2064, the first structural representative of Pfam family PF01796 (DUF35), reveals a two-domain architecture comprising an N-terminal zinc-ribbon domain and a C-terminal OB-fold domain. Analysis of the domain architecture, operon organization and bacterial orthologs combined with the structural features of SSO2064 suggests a role involving acyl-CoA binding for this family of proteins. SSO2064 is the first structural representative of PF01796 (DUF35), a large prokaryotic family with a wide phylogenetic distribution. The structure reveals a novel two-domain architecture comprising an N-terminal, rubredoxin-like, zinc ribbon and a C-terminal, oligonucleotide/oligosaccharide-binding (OB) fold domain. Additional N-terminal helical segments may be involved in protein–protein interactions. Domain architectures, genomic context analysis and functional evidence from certain bacterial representatives of this family suggest that these proteins form a novel fatty-acid-binding component that is involved in the biosynthesis of lipids and polyketide antibiotics and that they possibly function as acyl-CoA-binding proteins. This structure has led to a re-evaluation of the DUF35 family, which has now been split into two entries in the latest Pfam release (v.24.0)

  20. Structures of the first representatives of Pfam family PF06684 (DUF1185) reveal a novel variant of the Bacillus chorismate mutase fold and suggest a role in amino-acid metabolism

    International Nuclear Information System (INIS)

    Bakolitsa, Constantina; Kumar, Abhinav; Jin, Kevin K.; McMullan, Daniel; Krishna, S. Sri; Miller, Mitchell D.; Abdubek, Polat; Acosta, Claire; Astakhova, Tamara; Axelrod, Herbert L.; Burra, Prasad; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Elias, Ylva; Ellrott, Kyle; Ernst, Dustin; Farr, Carol L.; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Grzechnik, Slawomir K.; Han, Gye Won; Jaroszewski, Lukasz; Johnson, Hope A.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Marciano, David; Morse, Andrew T.; Murphy, Kevin D.; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Paulsen, Jessica; Puckett, Christina; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; Trout, Christina V.; Bedem, Henry van den; Weekes, Dana; White, Aprilfawn; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-Andre; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    Structures of the first representatives of PF06684 (DUF1185) reveal a Bacillus chorismate mutase-like fold with a potential role in amino-acid synthesis. The crystal structures of BB2672 and SPO0826 were determined to resolutions of 1.7 and 2.1 Å by single-wavelength anomalous dispersion and multiple-wavelength anomalous dispersion, respectively, using the semi-automated high-throughput pipeline of the Joint Center for Structural Genomics (JCSG) as part of the NIGMS Protein Structure Initiative (PSI). These proteins are the first structural representatives of the PF06684 (DUF1185) Pfam family. Structural analysis revealed that both structures adopt a variant of the Bacillus chorismate mutase fold (BCM). The biological unit of both proteins is a hexamer and analysis of homologs indicates that the oligomer interface residues are highly conserved. The conformation of the critical regions for oligomerization appears to be dependent on pH or salt concentration, suggesting that this protein might be subject to environmental regulation. Structural similarities to BCM and genome-context analysis suggest a function in amino-acid synthesis

  1. Flips for 3-folds and 4-folds

    CERN Document Server

    Corti, Alessio

    2007-01-01

    This edited collection of chapters, authored by leading experts, provides a complete and essentially self-contained construction of 3-fold and 4-fold klt flips. A large part of the text is a digest of Shokurov's work in the field and a concise, complete and pedagogical proof of the existence of 3-fold flips is presented. The text includes a ten page glossary and is accessible to students and researchers in algebraic geometry.

  2. Analyzing General Chemistry Texts' Treatment of Rates of Change Concepts in Reaction Kinetics Reveals Missing Conceptual Links

    Science.gov (United States)

    Seethaler, Sherry; Czworkowski, John; Wynn, Lynda

    2018-01-01

    Change over time is a crosscutting theme in the sciences that is pivotal to reaction kinetics, an anchoring concept in undergraduate chemistry, and students' struggles with rates of change are well-documented. Informed by the education scholarship in chemistry, physics, and mathematics, a research team with members from complementary disciplinary…

  3. An overlapping region between the two terminal folding units of the outer surface protein A (OspA) controls its folding behavior.

    Science.gov (United States)

    Makabe, Koki; Nakamura, Takashi; Dhar, Debanjan; Ikura, Teikichi; Koide, Shohei; Kuwajima, Kunihiro

    2018-04-27

    Although many naturally occurring proteins consist of multiple domains, most studies on protein folding to date deal with single-domain proteins or isolated domains of multi-domain proteins. Studies of multi-domain protein folding are required for further advancing our understanding of protein folding mechanisms. Borrelia outer surface protein A (OspA) is a β-rich two-domain protein, in which two globular domains are connected by a rigid and stable single-layer β-sheet. Thus, OspA is particularly suited as a model system for studying the interplays of domains in protein folding. Here, we studied the equilibria and kinetics of the urea-induced folding-unfolding reactions of OspA probed with tryptophan fluorescence and ultraviolet circular dichroism. Global analysis of the experimental data revealed compelling lines of evidence for accumulation of an on-pathway intermediate during kinetic refolding and for the identity between the kinetic intermediate and a previously described equilibrium unfolding intermediate. The results suggest that the intermediate has the fully native structure in the N-terminal domain and the single layer β-sheet, with the C-terminal domain still unfolded. The observation of the productive on-pathway folding intermediate clearly indicates substantial interactions between the two domains mediated by the single-layer β-sheet. We propose that a rigid and stable intervening region between two domains creates an overlap between two folding units and can energetically couple their folding reactions. Copyright © 2018. Published by Elsevier Ltd.

  4. Light-Mediated Kinetic Control Reveals the Temporal Effect of the Raf/MEK/ERK Pathway in PC12 Cell Neurite Outgrowth

    Science.gov (United States)

    Zhang, Kai; Duan, Liting; Ong, Qunxiang; Lin, Ziliang; Varman, Pooja Mahendra; Sung, Kijung; Cui, Bianxiao

    2014-01-01

    It has been proposed that differential activation kinetics allows cells to use a common set of signaling pathways to specify distinct cellular outcomes. For example, nerve growth factor (NGF) and epidermal growth factor (EGF) induce different activation kinetics of the Raf/MEK/ERK signaling pathway and result in differentiation and proliferation, respectively. However, a direct and quantitative linkage between the temporal profile of Raf/MEK/ERK activation and the cellular outputs has not been established due to a lack of means to precisely perturb its signaling kinetics. Here, we construct a light-gated protein-protein interaction system to regulate the activation pattern of the Raf/MEK/ERK signaling pathway. Light-induced activation of the Raf/MEK/ERK cascade leads to significant neurite outgrowth in rat PC12 pheochromocytoma cell lines in the absence of growth factors. Compared with NGF stimulation, light stimulation induces longer but fewer neurites. Intermittent on/off illumination reveals that cells achieve maximum neurite outgrowth if the off-time duration per cycle is shorter than 45 min. Overall, light-mediated kinetic control enables precise dissection of the temporal dimension within the intracellular signal transduction network. PMID:24667437

  5. Development of isothermal-isobaric replica-permutation method for molecular dynamics and Monte Carlo simulations and its application to reveal temperature and pressure dependence of folded, misfolded, and unfolded states of chignolin

    Science.gov (United States)

    Yamauchi, Masataka; Okumura, Hisashi

    2017-11-01

    We developed a two-dimensional replica-permutation molecular dynamics method in the isothermal-isobaric ensemble. The replica-permutation method is a better alternative to the replica-exchange method. It was originally developed in the canonical ensemble. This method employs the Suwa-Todo algorithm, instead of the Metropolis algorithm, to perform permutations of temperatures and pressures among more than two replicas so that the rejection ratio can be minimized. We showed that the isothermal-isobaric replica-permutation method performs better sampling efficiency than the isothermal-isobaric replica-exchange method and infinite swapping method. We applied this method to a β-hairpin mini protein, chignolin. In this simulation, we observed not only the folded state but also the misfolded state. We calculated the temperature and pressure dependence of the fractions on the folded, misfolded, and unfolded states. Differences in partial molar enthalpy, internal energy, entropy, partial molar volume, and heat capacity were also determined and agreed well with experimental data. We observed a new phenomenon that misfolded chignolin becomes more stable under high-pressure conditions. We also revealed this mechanism of the stability as follows: TYR2 and TRP9 side chains cover the hydrogen bonds that form a β-hairpin structure. The hydrogen bonds are protected from the water molecules that approach the protein as the pressure increases.

  6. Covering folded shapes

    Directory of Open Access Journals (Sweden)

    Oswin Aichholzer

    2014-05-01

    Full Text Available Can folding a piece of paper flat make it larger? We explore whether a shape S must be scaled to cover a flat-folded copy of itself. We consider both single folds and arbitrary folds (continuous piecewise isometries \\(S\\to\\mathbb{R}^2\\. The underlying problem is motivated by computational origami, and is related to other covering and fixturing problems, such as Lebesgue's universal cover problem and force closure grasps. In addition to considering special shapes (squares, equilateral triangles, polygons and disks, we give upper and lower bounds on scale factors for single folds of convex objects and arbitrary folds of simply connected objects.

  7. Guiding the folding pathway of DNA origami.

    Science.gov (United States)

    Dunn, Katherine E; Dannenberg, Frits; Ouldridge, Thomas E; Kwiatkowska, Marta; Turberfield, Andrew J; Bath, Jonathan

    2015-09-03

    DNA origami is a robust assembly technique that folds a single-stranded DNA template into a target structure by annealing it with hundreds of short 'staple' strands. Its guiding design principle is that the target structure is the single most stable configuration. The folding transition is cooperative and, as in the case of proteins, is governed by information encoded in the polymer sequence. A typical origami folds primarily into the desired shape, but misfolded structures can kinetically trap the system and reduce the yield. Although adjusting assembly conditions or following empirical design rules can improve yield, well-folded origami often need to be separated from misfolded structures. The problem could in principle be avoided if assembly pathway and kinetics were fully understood and then rationally optimized. To this end, here we present a DNA origami system with the unusual property of being able to form a small set of distinguishable and well-folded shapes that represent discrete and approximately degenerate energy minima in a vast folding landscape, thus allowing us to probe the assembly process. The obtained high yield of well-folded origami structures confirms the existence of efficient folding pathways, while the shape distribution provides information about individual trajectories through the folding landscape. We find that, similarly to protein folding, the assembly of DNA origami is highly cooperative; that reversible bond formation is important in recovering from transient misfoldings; and that the early formation of long-range connections can very effectively enforce particular folds. We use these insights to inform the design of the system so as to steer assembly towards desired structures. Expanding the rational design process to include the assembly pathway should thus enable more reproducible synthesis, particularly when targeting more complex structures. We anticipate that this expansion will be essential if DNA origami is to continue its

  8. Asymmetric hindwing foldings in rove beetles.

    Science.gov (United States)

    Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji

    2014-11-18

    Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right-left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use.

  9. Kinetic and structural studies reveal a unique binding mode of sulfite to the nickel center in urease.

    Science.gov (United States)

    Mazzei, Luca; Cianci, Michele; Benini, Stefano; Bertini, Leonardo; Musiani, Francesco; Ciurli, Stefano

    2016-01-01

    Urease is the most efficient enzyme known to date, and catalyzes the hydrolysis of urea using two Ni(II) ions in the active site. Urease is a virulence factor in several human pathogens, while causing severe environmental and agronomic problems. Sporosarcina pasteurii urease has been used extensively in the structural characterization of the enzyme. Sodium sulfite has been widely used as a preservative in urease solutions to prevent oxygen-induced oxidation, but its role as an inhibitor has also been suggested. In the present study, isothermal titration microcalorimetry was used to establish sulfite as a competitive inhibitor for S. pasteurii urease, with an inhibition constant of 0.19mM at pH7. The structure of the urease-sulfite complex, determined at 1.65Å resolution, shows the inhibitor bound to the dinuclear Ni(II) center of urease in a tridentate mode involving bonds between the two Ni(II) ions in the active site and all three oxygen atoms of the inhibitor, supporting the observed competitive inhibition kinetics. This coordination mode of sulfite has never been observed, either in proteins or in small molecule complexes, and could inspire synthetic coordination chemists as well as biochemists to develop urease inhibitors based on this chemical moiety. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Stochastic kinetics reveal imperative role of anisotropic interfacial tension to determine morphology and evolution of nucleated droplets in nematogenic films

    Science.gov (United States)

    Bhattacharjee, Amit Kumar

    2017-01-01

    For isotropic fluids, classical nucleation theory predicts the nucleation rate, barrier height and critical droplet size by ac- counting for the competition between bulk energy and interfacial tension. The nucleation process in liquid crystals is less understood. We numerically investigate nucleation in monolayered nematogenic films using a mesoscopic framework, in par- ticular, we study the morphology and kinetic pathway in spontaneous formation and growth of droplets of the stable phase in the metastable background. The parameter κ that quantifies the anisotropic elastic energy plays a central role in determining the geometric structure of the droplets. Noncircular nematic droplets with homogeneous director orientation are nucleated in a background of supercooled isotropic phase for small κ. For large κ, noncircular droplets with integer topological charge, accompanied by a biaxial ring at the outer surface, are nucleated. The isotropic droplet shape in a superheated nematic background is found to depend on κ in a similar way. Identical growth laws are found in the two cases, although an unusual two-stage mechanism is observed in the nucleation of isotropic droplets. Temporal distributions of successive events indi- cate the relevance of long-ranged elasticity-mediated interactions within the isotropic domains. Implications for a theoretical description of nucleation in anisotropic fluids are discussed.

  11. Ultra-high-resolution C-arm flat-detector CT angiography evaluation reveals 3-fold higher association rate for sporadic intracranial cavernous malformations and developmental venous anomalies: a retrospective study in consecutive 58 patients with 60 cavernous malformations

    Energy Technology Data Exchange (ETDEWEB)

    Kocak, Burak [Aksaray State Hospital, Department of Radiology, Aksaray (Turkey); Kizilkilic, Osman; Kocer, Naci; Islak, Civan [Istanbul University, Department of Radiology, Cerrahpasa Medical Faculty, Istanbul (Turkey); Oz, Buge; Bakkaloglu, Dogu Vuralli [Istanbul University, Department of Pathology, Cerrahpasa Medical Faculty, Istanbul (Turkey); Isler, Cihan [Istanbul University, Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul (Turkey)

    2017-06-15

    The imaging and surgical literature has confusing association rates for the association between sporadic intracranial cavernous malformations (CMs) and developmental venous anomalies (DVAs). In this study, our purpose was to determine the association rate using ultra-high-resolution C-arm flat-detector CT angiography (FDCTA) and compare it with literature. Fifty-eight patients with 60 sporadic intracranial CMs that underwent an FDCTA study were included in our retrospective study. Re-evaluation of radiological data was performed based on the criteria defined by authors. Isotropic volumetric reconstructions with ultra-high resolution (voxel size of 102 μm{sup 3} for initial; 67 μm{sup 3} and 32 μm{sup 3} for further evaluation) were used for assessment. Sixteen patients underwent surgery for excision of their CMs. Fifty-one of all patients (87.9 %) were associated with a DVA. Undefined local venous structures (UD-LVSs) were observed in the remaining 7 patients (12.1 %). The strength of interobserver agreement was excellent [kappa(k) coefficient = 0.923]. Ultra-high-resolution FDCTA evaluation of CMs and DVAs reveals 3-fold higher association rate compared to the literature. FDCTA for patients with sporadic CMs could help identify the associated DVAs that remained undetected or unclear with other imaging modalities, which can be useful in decision-making processes, planning surgery, and during operation. (orig.)

  12. Solvent Effects on Protein Folding/Unfolding

    Science.gov (United States)

    García, A. E.; Hillson, N.; Onuchic, J. N.

    Pressure effects on the hydrophobic potential of mean force led Hummer et al. to postulate a model for pressure denaturation of proteins in which denaturation occurs by means of water penetration into the protein interior, rather than by exposing the protein hydrophobic core to the solvent --- commonly used to describe temperature denaturation. We study the effects of pressure in protein folding/unfolding kinetics in an off-lattice minimalist model of a protein in which pressure effects have been incorporated by means of the pair-wise potential of mean force of hydrophobic groups in water. We show that pressure slows down the kinetics of folding by decreasing the reconfigurational diffusion coefficient and moves the location of the folding transition state.

  13. Vocal fold paralysis secondary to phonotrauma.

    Science.gov (United States)

    Klein, Travis A L; Gaziano, Joy E; Ridley, Marion B

    2014-01-01

    A unique case of acute onset vocal fold paralysis secondary to phonotrauma is presented. The cause was forceful vocalization by a drill instructor on a firearm range. Imaging studies revealed extensive intralaryngeal and retropharyngeal hemorrhage. Laryngoscopy showed a complete left vocal fold paralysis. Relative voice rest was recommended, and the patient regained normal vocal fold mobility and function after approximately 12 weeks. Copyright © 2014 The Voice Foundation. All rights reserved.

  14. A comparative study of ethylene growth response kinetics in eudicots and monocots reveals a role for gibberellin in growth inhibition and recovery.

    Science.gov (United States)

    Kim, Joonyup; Wilson, Rebecca L; Case, J Brett; Binder, Brad M

    2012-11-01

    Time-lapse imaging of dark-grown Arabidopsis (Arabidopsis thaliana) hypocotyls has revealed new aspects about ethylene signaling. This study expands upon these results by examining ethylene growth response kinetics of seedlings of several plant species. Although the response kinetics varied between the eudicots studied, all had prolonged growth inhibition for as long as ethylene was present. In contrast, with continued application of ethylene, white millet (Panicum miliaceum) seedlings had a rapid and transient growth inhibition response, rice (Oryza sativa 'Nipponbare') seedlings had a slow onset of growth stimulation, and barley (Hordeum vulgare) had a transient growth inhibition response followed, after a delay, by a prolonged inhibition response. Growth stimulation in rice correlated with a decrease in the levels of rice ETHYLENE INSENSTIVE3-LIKE2 (OsEIL2) and an increase in rice F-BOX DOMAIN AND LRR CONTAINING PROTEIN7 transcripts. The gibberellin (GA) biosynthesis inhibitor paclobutrazol caused millet seedlings to have a prolonged growth inhibition response when ethylene was applied. A transient ethylene growth inhibition response has previously been reported for Arabidopsis ethylene insensitive3-1 (ein3-1) eil1-1 double mutants. Paclobutrazol caused these mutants to have a prolonged response to ethylene, whereas constitutive GA signaling in this background eliminated ethylene responses. Sensitivity to paclobutrazol inversely correlated with the levels of EIN3 in Arabidopsis. Wild-type Arabidopsis seedlings treated with paclobutrazol and mutants deficient in GA levels or signaling had a delayed growth recovery after ethylene removal. It is interesting to note that ethylene caused alterations in gene expression that are predicted to increase GA levels in the ein3-1 eil1-1 seedlings. These results indicate that ethylene affects GA levels leading to modulation of ethylene growth inhibition kinetics.

  15. A Comparative Study of Ethylene Growth Response Kinetics in Eudicots and Monocots Reveals a Role for Gibberellin in Growth Inhibition and Recovery1[W][OA

    Science.gov (United States)

    Kim, Joonyup; Wilson, Rebecca L.; Case, J. Brett; Binder, Brad M.

    2012-01-01

    Time-lapse imaging of dark-grown Arabidopsis (Arabidopsis thaliana) hypocotyls has revealed new aspects about ethylene signaling. This study expands upon these results by examining ethylene growth response kinetics of seedlings of several plant species. Although the response kinetics varied between the eudicots studied, all had prolonged growth inhibition for as long as ethylene was present. In contrast, with continued application of ethylene, white millet (Panicum miliaceum) seedlings had a rapid and transient growth inhibition response, rice (Oryza sativa ‘Nipponbare’) seedlings had a slow onset of growth stimulation, and barley (Hordeum vulgare) had a transient growth inhibition response followed, after a delay, by a prolonged inhibition response. Growth stimulation in rice correlated with a decrease in the levels of rice ETHYLENE INSENSTIVE3-LIKE2 (OsEIL2) and an increase in rice F-BOX DOMAIN AND LRR CONTAINING PROTEIN7 transcripts. The gibberellin (GA) biosynthesis inhibitor paclobutrazol caused millet seedlings to have a prolonged growth inhibition response when ethylene was applied. A transient ethylene growth inhibition response has previously been reported for Arabidopsis ethylene insensitive3-1 (ein3-1) eil1-1 double mutants. Paclobutrazol caused these mutants to have a prolonged response to ethylene, whereas constitutive GA signaling in this background eliminated ethylene responses. Sensitivity to paclobutrazol inversely correlated with the levels of EIN3 in Arabidopsis. Wild-type Arabidopsis seedlings treated with paclobutrazol and mutants deficient in GA levels or signaling had a delayed growth recovery after ethylene removal. It is interesting to note that ethylene caused alterations in gene expression that are predicted to increase GA levels in the ein3-1 eil1-1 seedlings. These results indicate that ethylene affects GA levels leading to modulation of ethylene growth inhibition kinetics. PMID:22977279

  16. Kinetic mechanism of human DNA ligase I reveals magnesium-dependent changes in the rate-limiting step that compromise ligation efficiency.

    Science.gov (United States)

    Taylor, Mark R; Conrad, John A; Wahl, Daniel; O'Brien, Patrick J

    2011-07-01

    DNA ligase I (LIG1) catalyzes the ligation of single-strand breaks to complete DNA replication and repair. The energy of ATP is used to form a new phosphodiester bond in DNA via a reaction mechanism that involves three distinct chemical steps: enzyme adenylylation, adenylyl transfer to DNA, and nick sealing. We used steady state and pre-steady state kinetics to characterize the minimal mechanism for DNA ligation catalyzed by human LIG1. The ATP dependence of the reaction indicates that LIG1 requires multiple Mg(2+) ions for catalysis and that an essential Mg(2+) ion binds more tightly to ATP than to the enzyme. Further dissection of the magnesium ion dependence of individual reaction steps revealed that the affinity for Mg(2+) changes along the reaction coordinate. At saturating concentrations of ATP and Mg(2+) ions, the three chemical steps occur at similar rates, and the efficiency of ligation is high. However, under conditions of limiting Mg(2+), the nick-sealing step becomes rate-limiting, and the adenylylated DNA intermediate is prematurely released into solution. Subsequent adenylylation of enzyme prevents rebinding to the adenylylated DNA intermediate comprising an Achilles' heel of LIG1. These ligase-generated 5'-adenylylated nicks constitute persistent breaks that are a threat to genomic stability if they are not repaired. The kinetic and thermodynamic framework that we have determined for LIG1 provides a starting point for understanding the mechanism and specificity of mammalian DNA ligases.

  17. Phi-value analysis of apo-azurin folding: comparison between experiment and theory.

    Science.gov (United States)

    Zong, Chenghang; Wilson, Corey J; Shen, Tongye; Wolynes, Peter G; Wittung-Stafshede, Pernilla

    2006-05-23

    Pseudomonas aeruginosa azurin is a 128-residue beta-sandwich metalloprotein; in vitro kinetic experiments have shown that it folds in a two-state reaction. Here, we used a variational free energy functional to calculate the characteristics of the transition state ensemble (TSE) for folding of the apo-form of P. aeruginosa azurin and investigate how it responds to thermal and mutational changes. The variational method directly yields predicted chevron plots for wild-type and mutant apo-forms of azurin. In parallel, we performed in vitro kinetic-folding experiments on the same set of azurin variants using chemical perturbation. Like the wild-type protein, all apo-variants fold in apparent two-state reactions both in calculations and in stopped-flow mixing experiments. Comparisons of phi (phi) values determined from the experimental and theoretical chevron parameters reveal an excellent agreement for most positions, indicating a polarized, highly structured TSE for folding of P. aeruginosa apo-azurin. We also demonstrate that careful analysis of side-chain interactions is necessary for appropriate theoretical description of core mutants.

  18. Transiently disordered tails accelerate folding of globular proteins.

    Science.gov (United States)

    Mallik, Saurav; Ray, Tanaya; Kundu, Sudip

    2017-07-01

    Numerous biological proteins exhibit intrinsic disorder at their termini, which are associated with multifarious functional roles. Here, we show the surprising result that an increased percentage of terminal short transiently disordered regions with enhanced flexibility (TstDREF) is associated with accelerated folding rates of globular proteins. Evolutionary conservation of predicted disorder at TstDREFs and drastic alteration of folding rates upon point-mutations suggest critical regulatory role(s) of TstDREFs in shaping the folding kinetics. TstDREFs are associated with long-range intramolecular interactions and the percentage of native secondary structural elements physically contacted by TstDREFs exhibit another surprising positive correlation with folding kinetics. These results allow us to infer probable molecular mechanisms behind the TstDREF-mediated regulation of folding kinetics that challenge protein biochemists to assess by direct experimental testing. © 2017 Federation of European Biochemical Societies.

  19. Spherical images and inextensible curved folding

    Science.gov (United States)

    Seffen, Keith A.

    2018-02-01

    In their study, Duncan and Duncan [Proc. R. Soc. London A 383, 191 (1982), 10.1098/rspa.1982.0126] calculate the shape of an inextensible surface folded in two about a general curve. They find the analytical relationships between pairs of generators linked across the fold curve, the shape of the original path, and the fold angle variation along it. They present two special cases of generator layouts for which the fold angle is uniform or the folded curve remains planar, for simplifying practical folding in sheet-metal processes. We verify their special cases by a graphical treatment according to a method of Gauss. We replace the fold curve by a piecewise linear path, which connects vertices of intersecting pairs of hinge lines. Inspired by the d-cone analysis by Farmer and Calladine [Int. J. Mech. Sci. 47, 509 (2005), 10.1016/j.ijmecsci.2005.02.013], we construct the spherical images for developable folding of successive vertices: the operating conditions of the special cases in Duncan and Duncan are then revealed straightforwardly by the geometric relationships between the images. Our approach may be used to synthesize folding patterns for novel deployable and shape-changing surfaces without need of complex calculation.

  20. [Clinical analysis of vocal fold firbrous mass].

    Science.gov (United States)

    Chen, Hao; Sun, Jing Wu; Wan, Guang Lun; Hu, Yan Ming

    2018-03-01

    To explore the character of laryngoscopy finding, voice, and therapy of vocal fold fibrous mass. Clinical data, morphology, voice character, surgery and pathology of 15 cases with vocal fold fibrous mass were analyzed. The morbidity of vocal fold fibrous mass might be related to overuse of voice and laryngopharyngeal reflex. Laryngoscopy revealed shuttle line appearance, smoothness and decreased mucosal wave of vocal fold. These patients were invalid for voice training and might be improved by surgery, but recovery is slow. The morbidity of vocal fold fibrous mass might be related to overuse of voice and laryngopharyngeal reflex. Conservative treatment is ineffective for this disease, and surgery might improve. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.

  1. Folding of multidomain proteins: biophysical consequences of tethering even in apparently independent folding.

    Science.gov (United States)

    Arviv, Oshrit; Levy, Yaakov

    2012-12-01

    Most eukaryotic and a substantial fraction of prokaryotic proteins are composed of more than one domain. The tethering of these evolutionary, structural, and functional units raises, among others, questions regarding the folding process of conjugated domains. Studying the folding of multidomain proteins in silico enables one to identify and isolate the tethering-induced biophysical determinants that govern crosstalks generated between neighboring domains. For this purpose, we carried out coarse-grained and atomistic molecular dynamics simulations of two two-domain constructs from the immunoglobulin-like β-sandwich fold. Each of these was experimentally shown to behave as the "sum of its parts," that is, the thermodynamic and kinetic folding behavior of the constituent domains of these constructs seems to occur independently, with the folding of each domain uncoupled from the folding of its partner in the two-domain construct. We show that the properties of the individual domains can be significantly affected by conjugation to another domain. The tethering may be accompanied by stabilizing as well as destabilizing factors whose magnitude depends on the size of the interface, the length, and the flexibility of the linker, and the relative stability of the domains. Accordingly, the folding of a multidomain protein should not be viewed as the sum of the folding patterns of each of its parts, but rather, it involves abrogating several effects that lead to this outcome. An imbalance between these effects may result in either stabilization or destabilization owing to the tethering. Copyright © 2012 Wiley Periodicals, Inc.

  2. Vocal Fold Collision Modeling

    DEFF Research Database (Denmark)

    Granados, Alba; Brunskog, Jonas; Misztal, M. K.

    2015-01-01

    When vocal folds vibrate at normal speaking frequencies, collisions occurs. The numerics and formulations behind a position-based continuum model of contact is an active field of research in the contact mechanics community. In this paper, a frictionless three-dimensional finite element model...

  3. Folding worlds between pages

    CERN Multimedia

    Meier, Matthias

    2010-01-01

    "We all remember pop-up books form our childhood. As fascinated as we were back then, we probably never imagined how much engineering know-how went into these books. Pop-up engineer Anton Radevsky has even managed to fold a 27-kilometre particle accelerator into a book" (4 pages)

  4. Folds and Etudes

    Science.gov (United States)

    Bean, Robert

    2007-01-01

    In this article, the author talks about "Folds" and "Etudes" which are images derived from anonymous typing exercises that he found in a used copy of "Touch Typing Made Simple". "Etudes" refers to the musical tradition of studies for a solo instrument, which is a typewriter. Typing exercises are repetitive attempts to type words and phrases…

  5. Dysphonia and vocal fold telangiectasia in hereditary hemorrhagic telangiectasia.

    Science.gov (United States)

    Chang, Joseph; Yung, Katherine C

    2014-11-01

    This case report is the first documentation of dysphonia and vocal fold telangiectasia as a complication of hereditary hemorrhagic telangiectasia (HHT). Case report of a 40-year-old man with HHT presenting with 2 years of worsening hoarseness. Hoarseness corresponded with a period of anticoagulation. Endoscopy revealed vocal fold scarring, vocal fold telangiectasias, and plica ventricular is suggestive of previous submucosal vocal fold hemorrhage and subsequent counterproductive compensation with ventricular phonation. Hereditary hemorrhagic telangiectasia may present as dysphonia with vocal fold telangiectasias and place patients at risk of vocal fold hemorrhage. © The Author(s) 2014.

  6. The first structure in a family of peptidase inhibitors reveals an unusual Ig-like fold [v2; ref status: indexed, http://f1000r.es/1nx

    Directory of Open Access Journals (Sweden)

    Daniel J Rigden

    2013-08-01

    Full Text Available We report the crystal structure solution of the Intracellular Protease Inhibitor (IPI protein from Bacillus subtilis, which has been reported to be an inhibitor of the intracellular subtilisin Isp1 from the same organism. The structure of IPI is a variant of the all-beta, immunoglobulin (Ig fold. It is possible that IPI is important for protein-protein interactions, of which inhibition of Isp1 is one. The intracellular nature of ISP is questioned, because an alternative ATG codon in the ipi gene would produce a protein with an N-terminal extension containing a signal peptide. It is possible that alternative initiation exists, producing either an intracellular inhibitor or a secreted form that may be associated with the cell surface.  Homologues of the IPI protein from other species are multi-domain proteins, containing signal peptides and domains also associated with the bacterial cell-surface. The cysteine peptidase inhibitors chagasin and amoebiasin also have Ig-like folds, but their topology differs significantly from that of IPI, and they share no recent common ancestor. A model of IPI docked to Isp1 shows similarities to other subtilisin:inhibitor complexes, particularly where the inhibitor interacts with the peptidase active site.

  7. Reinke Edema: Watch For Vocal Fold Cysts.

    Science.gov (United States)

    Tüzüner, Arzu; Demirci, Sule; Yavanoglu, Ahmet; Kurkcuoglu, Melih; Arslan, Necmi

    2015-06-01

    Reinke edema is one of the common cause of dysphonia middle-aged population, and severe thickening of vocal folds require surgical treatment. Smoking plays a major role on etiology. Vocal fold cysts are also benign lesions and vocal trauma blamed for acquired cysts. We would like to present 3 cases with vocal fold cyst related with Reinke edema. First case had a subepidermal epidermoid cyst with Reinke edema, which could be easily observed before surgery during laryngostroboscopy. Second case had a mucous retention cyst into the edematous Reinke tissue, which was detected during surgical intervention, and third case had a epidermoid cyst that occurred 2 months after before microlaryngeal operation regarding Reinke edema reduction. These 3 cases revealed that surgical management of Reinke edema needs a careful dissection and close follow-up after surgery for presence of vocal fold cysts.

  8. The human cerebral cortex is neither one nor many: Neuronal distribution reveals two quantitatively different zones in the grey matter, three in the white matter, and explains local variations in cortical folding

    Directory of Open Access Journals (Sweden)

    Pedro F. M. Ribeiro

    2013-09-01

    Full Text Available The human prefrontal cortex has been considered different in several aspects and relatively enlarged compared to the rest of the cortical areas. Here we determine whether the white and gray matter of the prefrontal portion of the human cerebral cortex have similar or different cellular compositions relative to the rest of the cortical regions by applying the Isotropic Fractionator to analyze the distribution of neurons along the entire anteroposterior axis of the cortex, and its relationship with the degree of gyrification, number of neurons under the cortical surface, and other parameters. The prefrontal region shares with the remainder of the cerebral cortex (except for occipital cortex the same relationship between cortical volume and number of neurons. In contrast, both occipital and prefrontal areas vary from other cortical areas in their connectivity through the white matter, with a systematic reduction of cortical connectivity through the white matter and an increase of the mean axon caliber along the anteroposterior axis. These two parameters explain local differences in the distribution of neurons underneath the cortical surface. We also show that local variations in cortical folding are neither a function of local numbers of neurons nor of cortical thickness, but correlate with properties of the white matter, and are best explained by the folding of the white matter surface. Our results suggest that the human cerebral cortex is divided in two zones (occipital and non-occipital that differ in how neurons distributed across their grey matter volume and in three zones (prefrontal, occipital, and non-occipital that differ in how neurons are connected through the white matter. Thus, the human prefrontal cortex has the largest fraction of neuronal connectivity through the white matter and the smallest average axonal caliber in the white matter within the cortex, although its neuronal composition fits the pattern found for other, non

  9. The Complexity of Folding Self-Folding Origami

    Directory of Open Access Journals (Sweden)

    Menachem Stern

    2017-12-01

    Full Text Available Why is it difficult to refold a previously folded sheet of paper? We show that even crease patterns with only one designed folding motion inevitably contain an exponential number of “distractor” folding branches accessible from a bifurcation at the flat state. Consequently, refolding a sheet requires finding the ground state in a glassy energy landscape with an exponential number of other attractors of higher energy, much like in models of protein folding (Levinthal’s paradox and other NP-hard satisfiability (SAT problems. As in these problems, we find that refolding a sheet requires actuation at multiple carefully chosen creases. We show that seeding successful folding in this way can be understood in terms of subpatterns that fold when cut out (“folding islands”. Besides providing guidelines for the placement of active hinges in origami applications, our results point to fundamental limits on the programmability of energy landscapes in sheets.

  10. The Complexity of Folding Self-Folding Origami

    Science.gov (United States)

    Stern, Menachem; Pinson, Matthew B.; Murugan, Arvind

    2017-10-01

    Why is it difficult to refold a previously folded sheet of paper? We show that even crease patterns with only one designed folding motion inevitably contain an exponential number of "distractor" folding branches accessible from a bifurcation at the flat state. Consequently, refolding a sheet requires finding the ground state in a glassy energy landscape with an exponential number of other attractors of higher energy, much like in models of protein folding (Levinthal's paradox) and other NP-hard satisfiability (SAT) problems. As in these problems, we find that refolding a sheet requires actuation at multiple carefully chosen creases. We show that seeding successful folding in this way can be understood in terms of subpatterns that fold when cut out ("folding islands"). Besides providing guidelines for the placement of active hinges in origami applications, our results point to fundamental limits on the programmability of energy landscapes in sheets.

  11. PREFACE Protein folding: lessons learned and new frontiers Protein folding: lessons learned and new frontiers

    Science.gov (United States)

    Pappu, Rohit V.; Nussinov, Ruth

    2009-03-01

    In appropriate physiological milieux proteins spontaneously fold into their functional three-dimensional structures. The amino acid sequences of functional proteins contain all the information necessary to specify the folds. This remarkable observation has spawned research aimed at answering two major questions. (1) Of all the conceivable structures that a protein can adopt, why is the ensemble of native-like structures the most favorable? (2) What are the paths by which proteins manage to robustly and reproducibly fold into their native structures? Anfinsen's thermodynamic hypothesis has guided the pursuit of answers to the first question whereas Levinthal's paradox has influenced the development of models for protein folding dynamics. Decades of work have led to significant advances in the folding problem. Mean-field models have been developed to capture our current, coarse grain understanding of the driving forces for protein folding. These models are being used to predict three-dimensional protein structures from sequence and stability profiles as a function of thermodynamic and chemical perturbations. Impressive strides have also been made in the field of protein design, also known as the inverse folding problem, thereby testing our understanding of the determinants of the fold specificities of different sequences. Early work on protein folding pathways focused on the specific sequence of events that could lead to a simplification of the search process. However, unifying principles proved to be elusive. Proteins that show reversible two-state folding-unfolding transitions turned out to be a gift of natural selection. Focusing on these simple systems helped researchers to uncover general principles regarding the origins of cooperativity in protein folding thermodynamics and kinetics. On the theoretical front, concepts borrowed from polymer physics and the physics of spin glasses led to the development of a framework based on energy landscape theories. These

  12. Impact of hydrodynamic interactions on protein folding rates depends on temperature

    Science.gov (United States)

    Zegarra, Fabio C.; Homouz, Dirar; Eliaz, Yossi; Gasic, Andrei G.; Cheung, Margaret S.

    2018-03-01

    We investigated the impact of hydrodynamic interactions (HI) on protein folding using a coarse-grained model. The extent of the impact of hydrodynamic interactions, whether it accelerates, retards, or has no effect on protein folding, has been controversial. Together with a theoretical framework of the energy landscape theory (ELT) for protein folding that describes the dynamics of the collective motion with a single reaction coordinate across a folding barrier, we compared the kinetic effects of HI on the folding rates of two protein models that use a chain of single beads with distinctive topologies: a 64-residue α /β chymotrypsin inhibitor 2 (CI2) protein, and a 57-residue β -barrel α -spectrin Src-homology 3 domain (SH3) protein. When comparing the protein folding kinetics simulated with Brownian dynamics in the presence of HI to that in the absence of HI, we find that the effect of HI on protein folding appears to have a "crossover" behavior about the folding temperature. This means that at a temperature greater than the folding temperature, the enhanced friction from the hydrodynamic solvents between the beads in an unfolded configuration results in lowered folding rate; conversely, at a temperature lower than the folding temperature, HI accelerates folding by the backflow of solvent toward the folded configuration of a protein. Additionally, the extent of acceleration depends on the topology of a protein: for a protein like CI2, where its folding nucleus is rather diffuse in a transition state, HI channels the formation of contacts by favoring a major folding pathway in a complex free energy landscape, thus accelerating folding. For a protein like SH3, where its folding nucleus is already specific and less diffuse, HI matters less at a temperature lower than the folding temperature. Our findings provide further theoretical insight to protein folding kinetic experiments and simulations.

  13. First passage analysis of the folding of a β-sheet miniprotein: is it more realistic than the standard equilibrium approach?

    Science.gov (United States)

    Kalgin, Igor V; Chekmarev, Sergei F; Karplus, Martin

    2014-04-24

    Simulations of first-passage folding of the antiparallel β-sheet miniprotein beta3s, which has been intensively studied under equilibrium conditions by A. Caflisch and co-workers, show that the kinetics and dynamics are significantly different from those for equilibrium folding. Because the folding of a protein in a living system generally corresponds to the former (i.e., the folded protein is stable and unfolding is a rare event), the difference is of interest. In contrast to equilibrium folding, the Ch-curl conformations become very rare because they contain unfavorable parallel β-strand arrangements, which are difficult to form dynamically due to the distant N- and C-terminal strands. At the same time, the formation of helical conformations becomes much easier (particularly in the early stage of folding) due to short-range contacts. The hydrodynamic descriptions of the folding reaction have also revealed that while the equilibrium flow field presented a collection of local vortices with closed "streamlines", the first-passage folding is characterized by a pronounced overall flow from the unfolded states to the native state. The flows through the locally stable structures Cs-or and Ns-or, which are conformationally close to the native state, are negligible due to detailed balance established between these structures and the native state. Although there are significant differences in the general picture of the folding process from the equilibrium and first-passage folding simulations, some aspects of the two are in agreement. The rate of transitions between the clusters of characteristic protein conformations in both cases decreases approximately exponentially with the distance between the clusters in the hydrogen bond distance space of collective variables, and the folding time distribution in the first-passage segments of the equilibrium trajectory is in good agreement with that for the first-passage folding simulations.

  14. First Passage Analysis of the Folding of a β-Sheet Miniprotein: Is it More Realistic Than the Standard Equilibrium Approach?

    Science.gov (United States)

    2015-01-01

    Simulations of first-passage folding of the antiparallel β-sheet miniprotein beta3s, which has been intensively studied under equilibrium conditions by A. Caflisch and co-workers, show that the kinetics and dynamics are significantly different from those for equilibrium folding. Because the folding of a protein in a living system generally corresponds to the former (i.e., the folded protein is stable and unfolding is a rare event), the difference is of interest. In contrast to equilibrium folding, the Ch-curl conformations become very rare because they contain unfavorable parallel β-strand arrangements, which are difficult to form dynamically due to the distant N- and C-terminal strands. At the same time, the formation of helical conformations becomes much easier (particularly in the early stage of folding) due to short-range contacts. The hydrodynamic descriptions of the folding reaction have also revealed that while the equilibrium flow field presented a collection of local vortices with closed ”streamlines”, the first-passage folding is characterized by a pronounced overall flow from the unfolded states to the native state. The flows through the locally stable structures Cs-or and Ns-or, which are conformationally close to the native state, are negligible due to detailed balance established between these structures and the native state. Although there are significant differences in the general picture of the folding process from the equilibrium and first-passage folding simulations, some aspects of the two are in agreement. The rate of transitions between the clusters of characteristic protein conformations in both cases decreases approximately exponentially with the distance between the clusters in the hydrogen bond distance space of collective variables, and the folding time distribution in the first-passage segments of the equilibrium trajectory is in good agreement with that for the first-passage folding simulations. PMID:24669953

  15. Microwave-enhanced folding and denaturation of globular proteins

    DEFF Research Database (Denmark)

    Bohr, Henrik; Bohr, Jakob

    2000-01-01

    It is shown that microwave irradiation can affect the kinetics of the folding process of some globular proteins, especially beta-lactoglobulin. At low temperature the folding from the cold denatured phase of the protein is enhanced, while at a higher temperature the denaturation of the protein from...... its folded state is enhanced. In the latter case, a negative temperature gradient is needed for the denaturation process, suggesting that the effects of the microwaves are nonthermal. This supports the notion that coherent topological excitations can exist in proteins. The application of microwaves...

  16. Two states or not two states: Single-molecule folding studies of protein L

    Science.gov (United States)

    Aviram, Haim Yuval; Pirchi, Menahem; Barak, Yoav; Riven, Inbal; Haran, Gilad

    2018-03-01

    Experimental tools of increasing sophistication have been employed in recent years to study protein folding and misfolding. Folding is considered a complex process, and one way to address it is by studying small proteins, which seemingly possess a simple energy landscape with essentially only two stable states, either folded or unfolded. The B1-IgG binding domain of protein L (PL) is considered a model two-state folder, based on measurements using a wide range of experimental techniques. We applied single-molecule fluorescence resonance energy transfer (FRET) spectroscopy in conjunction with a hidden Markov model analysis to fully characterize the energy landscape of PL and to extract the kinetic properties of individual molecules of the protein. Surprisingly, our studies revealed the existence of a third state, hidden under the two-state behavior of PL due to its small population, ˜7%. We propose that this minority intermediate involves partial unfolding of the two C-terminal β strands of PL. Our work demonstrates that single-molecule FRET spectroscopy can be a powerful tool for a comprehensive description of the folding dynamics of proteins, capable of detecting and characterizing relatively rare metastable states that are difficult to observe in ensemble studies.

  17. Heterochiral Knottin Protein: Folding and Solution Structure.

    Science.gov (United States)

    Mong, Surin K; Cochran, Frank V; Yu, Hongtao; Graziano, Zachary; Lin, Yu-Shan; Cochran, Jennifer R; Pentelute, Bradley L

    2017-10-31

    Homochirality is a general feature of biological macromolecules, and Nature includes few examples of heterochiral proteins. Herein, we report on the design, chemical synthesis, and structural characterization of heterochiral proteins possessing loops of amino acids of chirality opposite to that of the rest of a protein scaffold. Using the protein Ecballium elaterium trypsin inhibitor II, we discover that selective β-alanine substitution favors the efficient folding of our heterochiral constructs. Solution nuclear magnetic resonance spectroscopy of one such heterochiral protein reveals a homogeneous global fold. Additionally, steered molecular dynamics simulation indicate β-alanine reduces the free energy required to fold the protein. We also find these heterochiral proteins to be more resistant to proteolysis than homochiral l-proteins. This work informs the design of heterochiral protein architectures containing stretches of both d- and l-amino acids.

  18. Vascular lesions of the vocal fold.

    Science.gov (United States)

    Gökcan, Kürşat Mustafa; Dursun, Gürsel

    2009-04-01

    The aim of the study was to present symptoms, laryngological findings, clinical course, management modalities, and consequences of vascular lesions of vocal fold. This study examined 162 patients, the majority professional voice users, with vascular lesions regarding their presenting symptoms, laryngological findings, clinical courses and treatment results. The most common complaint was sudden hoarseness with hemorrhagic polyp. Microlaryngoscopic surgery was performed in 108 cases and the main indication of surgery was the presence of vocal fold mass or development of vocal polyp during clinical course. Cold microsurgery was utilized for removal of vocal fold masses and feeding vessels cauterized using low power, pulsed CO(2) laser. Acoustic analysis of patients revealed a significant improvement of jitter, shimmer and harmonics/noise ratio values after treatment. Depending on our clinical findings, we propose treatment algorithm where voice rest and behavioral therapy is the integral part and indications of surgery are individualized for each patient.

  19. Vocal fold injection medialization laryngoplasty.

    Science.gov (United States)

    Modi, Vikash K

    2012-01-01

    Unilateral vocal fold paralysis (UVFP) can cause glottic insufficiency that can result in hoarseness, chronic cough, dysphagia, and/or aspiration. In rare circumstances, UVFP can cause airway obstruction necessitating a tracheostomy. The treatment options for UVFP include observation, speech therapy, vocal fold injection medialization laryngoplasty, thyroplasty, and laryngeal reinnervation. In this chapter, the author will discuss the technique of vocal fold injection for medialization of a UVFP. Copyright © 2012 S. Karger AG, Basel.

  20. A partially folded intermediate species of the β-sheet protein apo-pseudoazurin ism trapped during proline-limited folding

    NARCIS (Netherlands)

    Reader, J.S.; van Nuland, N.A.J.; Thompson, G.S.; Ferguson, S.J.; Dobson, C.M.; Radford, S.E.

    2001-01-01

    The folding of apo-pseudoazurin, a 123-residue, predominantly -sheet protein with a complex Greek key topology, has been investigated using several biophysical techniques. Kinetic analysis of refolding using farand near-ultraviolet circular dichroism (UV CD) shows that the protein folds slowly to

  1. How old is your fold?

    NARCIS (Netherlands)

    Winstanley, Henry F.; Abeln, Sanne; Deane, Charlotte M.

    Motivation: At present there exists no age estimate for the different protein structures found in nature. It has become clear from occurrence studies that different folds arose at different points in evolutionary time. An estimation of the age of different folds would be a starting point for many

  2. Teaching computers to fold proteins

    DEFF Research Database (Denmark)

    Winther, Ole; Krogh, Anders Stærmose

    2004-01-01

    A new general algorithm for optimization of potential functions for protein folding is introduced. It is based upon gradient optimization of the thermodynamic stability of native folds of a training set of proteins with known structure. The iterative update rule contains two thermodynamic averages...

  3. Periodic folding of viscous sheets

    Science.gov (United States)

    Ribe, Neil M.

    2003-09-01

    The periodic folding of a sheet of viscous fluid falling upon a rigid surface is a common fluid mechanical instability that occurs in contexts ranging from food processing to geophysics. Asymptotic thin-layer equations for the combined stretching-bending deformation of a two-dimensional sheet are solved numerically to determine the folding frequency as a function of the sheet’s initial thickness, the pouring speed, the height of fall, and the fluid properties. As the buoyancy increases, the system bifurcates from “forced” folding driven kinematically by fluid extrusion to “free” folding in which viscous resistance to bending is balanced by buoyancy. The systematics of the numerically predicted folding frequency are in good agreement with laboratory experiments.

  4. When fast is better: protein folding fundamentals and mechanisms from ultrafast approaches.

    Science.gov (United States)

    Muñoz, Victor; Cerminara, Michele

    2016-09-01

    Protein folding research stalled for decades because conventional experiments indicated that proteins fold slowly and in single strokes, whereas theory predicted a complex interplay between dynamics and energetics resulting in myriad microscopic pathways. Ultrafast kinetic methods turned the field upside down by providing the means to probe fundamental aspects of folding, test theoretical predictions and benchmark simulations. Accordingly, experimentalists could measure the timescales for all relevant folding motions, determine the folding speed limit and confirm that folding barriers are entropic bottlenecks. Moreover, a catalogue of proteins that fold extremely fast (microseconds) could be identified. Such fast-folding proteins cross shallow free energy barriers or fold downhill, and thus unfold with minimal co-operativity (gradually). A new generation of thermodynamic methods has exploited this property to map folding landscapes, interaction networks and mechanisms at nearly atomic resolution. In parallel, modern molecular dynamics simulations have finally reached the timescales required to watch fast-folding proteins fold and unfold in silico All of these findings have buttressed the fundamentals of protein folding predicted by theory, and are now offering the first glimpses at the underlying mechanisms. Fast folding appears to also have functional implications as recent results connect downhill folding with intrinsically disordered proteins, their complex binding modes and ability to moonlight. These connections suggest that the coupling between downhill (un)folding and binding enables such protein domains to operate analogically as conformational rheostats. © 2016 The Author(s).

  5. Oxygen self-diffusion mechanisms in monoclinic Zr O2 revealed and quantified by density functional theory, random walk analysis, and kinetic Monte Carlo calculations

    Science.gov (United States)

    Yang, Jing; Youssef, Mostafa; Yildiz, Bilge

    2018-01-01

    In this work, we quantify oxygen self-diffusion in monoclinic-phase zirconium oxide as a function of temperature and oxygen partial pressure. A migration barrier of each type of oxygen defect was obtained by first-principles calculations. Random walk theory was used to quantify the diffusivities of oxygen interstitials by using the calculated migration barriers. Kinetic Monte Carlo simulations were used to calculate diffusivities of oxygen vacancies by distinguishing the threefold- and fourfold-coordinated lattice oxygen. By combining the equilibrium defect concentrations obtained in our previous work together with the herein calculated diffusivity of each defect species, we present the resulting oxygen self-diffusion coefficients and the corresponding atomistically resolved transport mechanisms. The predicted effective migration barriers and diffusion prefactors are in reasonable agreement with the experimentally reported values. This work provides insights into oxygen diffusion engineering in Zr O2 -related devices and parametrization for continuum transport modeling.

  6. Protein folding and misfolding shining light by infrared spectroscopy

    CERN Document Server

    Fabian, Heinz

    2012-01-01

    Infrared spectroscopy is a new and innovative technology to study protein folding/misfolding events in the broad arsenal of techniques conventionally used in this field. The progress in understanding protein folding and misfolding is primarily due to the development of biophysical methods which permit to probe conformational changes with high kinetic and structural resolution. The most commonly used approaches rely on rapid mixing methods to initiate the folding event via a sudden change in solvent conditions. Traditionally, techniques such as fluorescence, circular dichroism or visible absorption are applied to probe the process. In contrast to these techniques, infrared spectroscopy came into play only very recently, and the progress made in this field up to date which now permits to probe folding events over the time scale from picoseconds to minutes has not yet been discussed in a book. The aim of this book is to provide an overview of the developments as seen by some of the main contributors to the field...

  7. Kinetic Typography

    DEFF Research Database (Denmark)

    van Leeuwen, Theo; Djonov, Emilia

    2014-01-01

    After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images.......After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images....

  8. Functional results after external vocal fold medialization thyroplasty with the titanium vocal fold medialization implant.

    Science.gov (United States)

    Schneider, Berit; Denk, Doris-Maria; Bigenzahn, Wolfgang

    2003-04-01

    A persistent insufficiency of glottal closure is mostly a consequence of a unilateral vocal fold movement impairment. It can also be caused by vocal fold atrophy or scarring processes with regular bilateral respiratory vocal fold function. Because of consequential voice, breathing, and swallowing impairments, a functional surgical treatment is required. The goal of the study was to outline the functional results after medialization thyroplasty with the titanium vocal fold medialization implant according to Friedrich. In the period of 1999 to 2001, an external vocal fold medialization using the titanium implant was performed on 28 patients (12 women and 16 men). The patients were in the age range of 19 to 84 years. Twenty-two patients had a paralysis of the left-side vocal fold, and six patients, of the right-side vocal fold. Detailed functional examinations were executed on all patients before and after the surgery: perceptive voice sound analysis according to the "roughness, breathiness, and hoarseness" method, judgment of the s/z ratio and voice dysfunction index, voice range profile measurements, videostroboscopy, and pulmonary function tests. In case of dysphagia/aspiration, videofluoroscopy of swallowing was also performed. The respective data were statistically analyzed (paired t test, Wilcoxon-test). All patients reported on improvement of voice, swallowing, and breathing functions postoperatively. Videostroboscopy revealed an almost complete glottal closure after surgery in all of the patients. All voice-related parameters showed a significant improvement. An increase of the laryngeal resistance by the medialization procedure could be excluded by analysis of the pulmonary function test. The results confirm the external medialization of the vocal folds as an adequate method in the therapy of voice, swallowing, and breathing impairment attributable to an insufficient glottal closure. The titanium implant offers, apart from good tissue tolerability, the

  9. Vocal fold submucosal infusion technique in phonomicrosurgery.

    Science.gov (United States)

    Kass, E S; Hillman, R E; Zeitels, S M

    1996-05-01

    Phonomicrosurgery is optimized by maximally preserving the vocal fold's layered microstructure (laminae propriae). The technique of submucosal infusion of saline and epinephrine into the superficial lamina propria (SLP) was examined to delineate how, when, and why it was helpful toward this surgical goal. A retrospective review revealed that the submucosal infusion technique was used to enhance the surgery in 75 of 152 vocal fold procedures that were performed over the last 2 years. The vocal fold epithelium was noted to be adherent to the vocal ligament in 29 of the 75 cases: 19 from previous surgical scarring, 4 from cancer, 3 from sulcus vocalis, 2 from chronic hemorrhage, and 1 from radiotherapy. The submucosal infusion technique was most helpful when the vocal fold epithelium required resection and/or when extensive dissection in the SLP was necessary. The infusion enhanced the surgery by vasoconstriction of the microvasculature in the SLP, which improved visualization during cold-instrument tangential dissection. Improved visualization facilitated maximal preservation of the SLP, which is necessary for optimal pliability of the overlying epithelium. The infusion also improved the placement of incisions at the perimeter of benign, premalignant, and malignant lesions, and thereby helped preserve epithelium uninvolved by the disorder.

  10. Human telomere sequence DNA in water-free and high-viscosity solvents: G-quadruplex folding governed by Kramers rate theory.

    Science.gov (United States)

    Lannan, Ford M; Mamajanov, Irena; Hud, Nicholas V

    2012-09-19

    Structures formed by human telomere sequence (HTS) DNA are of interest due to the implication of telomeres in the aging process and cancer. We present studies of HTS DNA folding in an anhydrous, high viscosity deep eutectic solvent (DES) comprised of choline choride and urea. In this solvent, the HTS DNA forms a G-quadruplex with the parallel-stranded ("propeller") fold, consistent with observations that reduced water activity favors the parallel fold, whereas alternative folds are favored at high water activity. Surprisingly, adoption of the parallel structure by HTS DNA in the DES, after thermal denaturation and quick cooling to room temperature, requires several months, as opposed to less than 2 min in an aqueous solution. This extended folding time in the DES is, in part, due to HTS DNA becoming kinetically trapped in a folded state that is apparently not accessed in lower viscosity solvents. A comparison of times required for the G-quadruplex to convert from its aqueous-preferred folded state to its parallel fold also reveals a dependence on solvent viscosity that is consistent with Kramers rate theory, which predicts that diffusion-controlled transitions will slow proportionally with solvent friction. These results provide an enhanced view of a G-quadruplex folding funnel and highlight the necessity to consider solvent viscosity in studies of G-quadruplex formation in vitro and in vivo. Additionally, the solvents and analyses presented here should prove valuable for understanding the folding of many other nucleic acids and potentially have applications in DNA-based nanotechnology where time-dependent structures are desired.

  11. Real-time single-molecule tethered particle motion experiments reveal the kinetics and mechanisms of Cre-mediated site-specific recombination

    Science.gov (United States)

    Fan, Hsiu-Fang

    2012-01-01

    Tyrosine family recombinases (YRs) are widely utilized in genome engineering systems because they can easily direct DNA rearrangement. Cre recombinases, one of the most commonly used types of YRs, catalyze site-specific recombination between two loxP sites without the need for high-energy cofactors, other accessory proteins or a specific DNA target sequence between the loxP sites. Previous structural, analytical ultracentrifuge and electrophoretic analyses have provided details of the reaction kinetics and mechanisms of Cre recombinase activity; whether there are reaction intermediates or side pathways involved has been left unaddressed. Using tethered particle motion (TPM), the Cre-mediated site-specific recombination process has been delineated, from beginning to end, at the single-molecule level, including the formation of abortive complexes and wayward complexes blocking inactive nucleoprotein complexes from entering the recombination process. Reversibility in the strand-cleavage/-ligation process and the formation of a thermally stable Holliday junction intermediate were observed within the Cre-mediated site-specific recombination process. Rate constants for each elementary step, which explain the overall reaction outcomes under various conditions, were determined. Taking the findings of this study together, they demonstrate the potential of single-molecule methodology as an alternative approach for exploring reaction mechanisms in detail. PMID:22467208

  12. Time-dependent flux from pulsed neutrons revealed by superconducting Nb current-biased kinetic inductance detector with "1"0B converter operated at 4 K

    International Nuclear Information System (INIS)

    Miyajima, Shigeyuki; Narukami, Yoshito; Shishido, Hiroaki; Yoshioka, Naohito; Ishida, Takekazu; Fujimaki, Akira; Hidaka, Mutsuo; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Arai, Masatoshi

    2015-01-01

    We have demonstrated a new superconducting detector for a neutron based on Nb superconductor meanderline with a "1"0B conversion layer. We use a current-biased kinetic inductance detector (CB-KID), which is composed of a meanderline, for detection of a neutron with high spatial resolution and fast response. The thickness of Nb meanderlines is 40 nm and widths are 3 μm, 1 μm, and 0.6 μm. The CB-KIDs are fabricated at the center of the Si chip of the size 22 mm × 22 mm and the total area of CB-KIDs covers 8 mm × 8 mm. The chip was cooled to a temperature lower than 4 K below the transition temperature of Nb using a Gifford-McMahon (GM) cryocooler. The Nb CB-KIDs with a "1"0B conversion layer output the voltage by irradiating pulsed neutrons at the material life science experimental facility (MLF) of Japan Proton Accelerator Research Complex (J-PARC) center. The response time of CB-KIDs is about a few tens ns. We have also obtained the time dependence of neutron flux generated from pulsed neutrons using a CB-KID. Experimental results were in good agreement with the simulated results. (author)

  13. Metal cofactor modulated folding and target recognition of HIV-1 NCp7.

    Science.gov (United States)

    Ren, Weitong; Ji, Dongqing; Xu, Xiulian

    2018-01-01

    The HIV-1 nucleocapsid 7 (NCp7) plays crucial roles in multiple stages of HIV-1 life cycle, and its biological functions rely on the binding of zinc ions. Understanding the molecular mechanism of how the zinc ions modulate the conformational dynamics and functions of the NCp7 is essential for the drug development and HIV-1 treatment. In this work, using a structure-based coarse-grained model, we studied the effects of zinc cofactors on the folding and target RNA(SL3) recognition of the NCp7 by molecular dynamics simulations. After reproducing some key properties of the zinc binding and folding of the NCp7 observed in previous experiments, our simulations revealed several interesting features in the metal ion modulated folding and target recognition. Firstly, we showed that the zinc binding makes the folding transition states of the two zinc fingers less structured, which is in line with the Hammond effect observed typically in mutation, temperature or denaturant induced perturbations to protein structure and stability. Secondly, We showed that there exists mutual interplay between the zinc ion binding and NCp7-target recognition. Binding of zinc ions enhances the affinity between the NCp7 and the target RNA, whereas the formation of the NCp7-RNA complex reshapes the intrinsic energy landscape of the NCp7 and increases the stability and zinc affinity of the two zinc fingers. Thirdly, by characterizing the effects of salt concentrations on the target RNA recognition, we showed that the NCp7 achieves optimal balance between the affinity and binding kinetics near the physiologically relevant salt concentrations. In addition, the effects of zinc binding on the inter-domain conformational flexibility and folding cooperativity of the NCp7 were also discussed.

  14. Metal cofactor modulated folding and target recognition of HIV-1 NCp7.

    Directory of Open Access Journals (Sweden)

    Weitong Ren

    Full Text Available The HIV-1 nucleocapsid 7 (NCp7 plays crucial roles in multiple stages of HIV-1 life cycle, and its biological functions rely on the binding of zinc ions. Understanding the molecular mechanism of how the zinc ions modulate the conformational dynamics and functions of the NCp7 is essential for the drug development and HIV-1 treatment. In this work, using a structure-based coarse-grained model, we studied the effects of zinc cofactors on the folding and target RNA(SL3 recognition of the NCp7 by molecular dynamics simulations. After reproducing some key properties of the zinc binding and folding of the NCp7 observed in previous experiments, our simulations revealed several interesting features in the metal ion modulated folding and target recognition. Firstly, we showed that the zinc binding makes the folding transition states of the two zinc fingers less structured, which is in line with the Hammond effect observed typically in mutation, temperature or denaturant induced perturbations to protein structure and stability. Secondly, We showed that there exists mutual interplay between the zinc ion binding and NCp7-target recognition. Binding of zinc ions enhances the affinity between the NCp7 and the target RNA, whereas the formation of the NCp7-RNA complex reshapes the intrinsic energy landscape of the NCp7 and increases the stability and zinc affinity of the two zinc fingers. Thirdly, by characterizing the effects of salt concentrations on the target RNA recognition, we showed that the NCp7 achieves optimal balance between the affinity and binding kinetics near the physiologically relevant salt concentrations. In addition, the effects of zinc binding on the inter-domain conformational flexibility and folding cooperativity of the NCp7 were also discussed.

  15. Curved Folded Plate Timber Structures

    OpenAIRE

    Buri, Hans Ulrich; Stotz, Ivo; Weinand, Yves

    2011-01-01

    This work investigates the development of a Curved Origami Prototype made with timber panels. In the last fifteen years the timber industry has developed new, large size, timber panels. Composition and dimensions of these panels and the possibility of milling them with Computer Numerical Controlled machines shows great potential for folded plate structures. To generate the form of these structures we were inspired by Origami, the Japanese art of paper folding. Common paper tessellations are c...

  16. Multi-scaled explorations of binding-induced folding of intrinsically disordered protein inhibitor IA3 to its target enzyme.

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2011-04-01

    Full Text Available Biomolecular function is realized by recognition, and increasing evidence shows that recognition is determined not only by structure but also by flexibility and dynamics. We explored a biomolecular recognition process that involves a major conformational change - protein folding. In particular, we explore the binding-induced folding of IA3, an intrinsically disordered protein that blocks the active site cleft of the yeast aspartic proteinase saccharopepsin (YPrA by folding its own N-terminal residues into an amphipathic alpha helix. We developed a multi-scaled approach that explores the underlying mechanism by combining structure-based molecular dynamics simulations at the residue level with a stochastic path method at the atomic level. Both the free energy profile and the associated kinetic paths reveal a common scheme whereby IA3 binds to its target enzyme prior to folding itself into a helix. This theoretical result is consistent with recent time-resolved experiments. Furthermore, exploration of the detailed trajectories reveals the important roles of non-native interactions in the initial binding that occurs prior to IA3 folding. In contrast to the common view that non-native interactions contribute only to the roughness of landscapes and impede binding, the non-native interactions here facilitate binding by reducing significantly the entropic search space in the landscape. The information gained from multi-scaled simulations of the folding of this intrinsically disordered protein in the presence of its binding target may prove useful in the design of novel inhibitors of aspartic proteinases.

  17. Folding of DsbB in mixed micelles

    DEFF Research Database (Denmark)

    Otzen, Daniel

    2003-01-01

    state and an unfolding intermediate that accumulates only under unfolding conditions at high mole fractions of SDS. The stability of DsbB is around 4.4 kcal/mol in DM, and this is halved upon reduction of the two periplasmic disulfide bonds, and is sensitive to mutagenesis. With the caveat that kinetic...... is sensitive to changes in lipid and detergent composition. As an attempt to overcome this problem, I present a kinetic analysis of the folding of a membrane protein, disulfide bond reducing protein B (DsbB), in a mixed micelle system consisting of varying molar ratios of sodium dodecyl sulfate (SDS...

  18. Repairing the vibratory vocal fold.

    Science.gov (United States)

    Long, Jennifer L

    2018-01-01

    A vibratory vocal fold replacement would introduce a new treatment paradigm for structural vocal fold diseases such as scarring and lamina propria loss. This work implants a tissue-engineered replacement for vocal fold lamina propria and epithelium in rabbits and compares histology and function to injured controls and orthotopic transplants. Hypotheses were that the cell-based implant would engraft and control the wound response, reducing fibrosis and restoring vibration. Translational research. Rabbit adipose-derived mesenchymal stem cells (ASC) were embedded within a three-dimensional fibrin gel, forming the cell-based outer vocal fold replacement (COVR). Sixteen rabbits underwent unilateral resection of vocal fold epithelium and lamina propria, as well as reconstruction with one of three treatments: fibrin glue alone with healing by secondary intention, replantation of autologous resected vocal fold cover, or COVR implantation. After 4 weeks, larynges were examined histologically and with phonation. Fifteen rabbits survived. All tissues incorporated well after implantation. After 1 month, both graft types improved histology and vibration relative to injured controls. Extracellular matrix (ECM) of the replanted mucosa was disrupted, and ECM of the COVR implants remained immature. Immune reaction was evident when male cells were implanted into female rabbits. Best histologic and short-term vibratory outcomes were achieved with COVR implants containing male cells implanted into male rabbits. Vocal fold cover replacement with a stem cell-based tissue-engineered construct is feasible and beneficial in acute rabbit implantation. Wound-modifying behavior of the COVR implant is judged to be an important factor in preventing fibrosis. NA. Laryngoscope, 128:153-159, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  19. Longitudinal Study of Hepatitis A Infection by Saliva Sampling: The Kinetics of HAV Markers in Saliva Revealed the Application of Saliva Tests for Hepatitis A Study

    Science.gov (United States)

    Amado Leon, Luciane Almeida; de Almeida, Adilson José; de Paula, Vanessa Salete; Tourinho, Renata Santos; Villela, Daniel Antunes Maciel; Gaspar, Ana Maria Coimbra; Lewis-Ximenez, Lia Laura; Pinto, Marcelo Alves

    2015-01-01

    Despite the increasing numbers of studies investigating hepatitis A diagnostic through saliva, the frequency and the pattern of hepatitis A virus (HAV) markers in this fluid still remains unknown. To address this issue, we carried on a longitudinal study to examine the kinetics of HAV markers in saliva, in comparison with serum samples. The present study followed-up ten patients with acute hepatitis A infection during 180 days post diagnosis (dpd). Total anti-HAV was detected in paired serum and saliva samples until the end of the follow-up, showing a peak titer at 90th. However, total anti-HAV level was higher in serum than in saliva samples. This HAV marker showed a probability of 100% to be detected in both serum and saliva during 180 dpd. The IgM anti-HAV could be detected in saliva up to 150 dpd, showing the highest frequency at 30th, when it was detected in all individuals. During the first month of HAV infection, this acute HAV marker showed a detection probability of 100% in paired samples. The detection of IgM anti-HAV in saliva was not dependent on its level in serum, HAV-RNA detection and/or viral load, since no association was found between IgM anti-HAV positivity in saliva and any of these parameter (p>0.05). Most of the patients (80%) were found to contain HAV-RNA in saliva, mainly at early acute phase (30th day). However, it was possible to demonstrate the HAV RNA presence in paired samples for more than 90 days, even after seroconversion. No significant relationship was observed between salivary HAV-RNA positivity and serum viral load, demonstrating that serum viral load is not predictive of HAV-RNA detection in saliva. Similar viral load was seen in paired samples (on average 104 copies/mL). These data demonstrate that the best diagnostic coverage can be achieved by salivary anti-HAV antibodies and HAV-RNA tests during 30–90 dpd. The long detection and high probability of specific-HAV antibodies positivity in saliva samples make the assessment of

  20. NoFold: RNA structure clustering without folding or alignment.

    Science.gov (United States)

    Middleton, Sarah A; Kim, Junhyong

    2014-11-01

    Structures that recur across multiple different transcripts, called structure motifs, often perform a similar function-for example, recruiting a specific RNA-binding protein that then regulates translation, splicing, or subcellular localization. Identifying common motifs between coregulated transcripts may therefore yield significant insight into their binding partners and mechanism of regulation. However, as most methods for clustering structures are based on folding individual sequences or doing many pairwise alignments, this results in a tradeoff between speed and accuracy that can be problematic for large-scale data sets. Here we describe a novel method for comparing and characterizing RNA secondary structures that does not require folding or pairwise alignment of the input sequences. Our method uses the idea of constructing a distance function between two objects by their respective distances to a collection of empirical examples or models, which in our case consists of 1973 Rfam family covariance models. Using this as a basis for measuring structural similarity, we developed a clustering pipeline called NoFold to automatically identify and annotate structure motifs within large sequence data sets. We demonstrate that NoFold can simultaneously identify multiple structure motifs with an average sensitivity of 0.80 and precision of 0.98 and generally exceeds the performance of existing methods. We also perform a cross-validation analysis of the entire set of Rfam families, achieving an average sensitivity of 0.57. We apply NoFold to identify motifs enriched in dendritically localized transcripts and report 213 enriched motifs, including both known and novel structures. © 2014 Middleton and Kim; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  1. A multidisciplinary study of 3-(β-d-glucopyranosyl)-5-substituted-1,2,4-triazole derivatives as glycogen phosphorylase inhibitors: Computation, synthesis, crystallography and kinetics reveal new potent inhibitors.

    Science.gov (United States)

    Kun, Sándor; Begum, Jaida; Kyriakis, Efthimios; Stamati, Evgenia C V; Barkas, Thomas A; Szennyes, Eszter; Bokor, Éva; Szabó, Katalin E; Stravodimos, George A; Sipos, Ádám; Docsa, Tibor; Gergely, Pál; Moffatt, Colin; Patraskaki, Myrto S; Kokolaki, Maria C; Gkerdi, Alkistis; Skamnaki, Vassiliki T; Leonidas, Demetres D; Somsák, László; Hayes, Joseph M

    2018-03-10

    3-(β-d-Glucopyranosyl)-5-substituted-1,2,4-triazoles have been revealed as an effective scaffold for the development of potent glycogen phosphorylase (GP) inhibitors but with the potency very sensitive to the nature of the alkyl/aryl 5-substituent (Kun et al., Eur. J. Med. Chem. 2014, 76, 567). For a training set of these ligands, quantum mechanics-polarized ligand docking (QM-PLD) demonstrated good potential to identify larger differences in potencies (predictive index PI = 0.82) and potent inhibitors with K i 's synthesis. The compounds were prepared in O-perbenzoylated forms by either ring transformation of 5-β-d-glucopyranosyl tetrazole by N-benzyl-arenecarboximidoyl chlorides, ring closure of C-(β-d-glucopyranosyl)formamidrazone with aroyl chlorides, or that of N-(β-d-glucopyranosylcarbonyl)arenethiocarboxamides by hydrazine, followed by deprotections. Kinetics experiments against rabbit muscle GPb (rmGPb) and human liver GPa (hlGPa) revealed five compounds as potent low μM inhibitors with three of these on the submicromolar range for rmGPa. X-ray crystallographic analysis sourced the potency to a combination of favorable interactions from the 1,2,4-triazole and suitable aryl substituents in the GP catalytic site. The compounds also revealed promising calculated pharmacokinetic profiles. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. MARATHON DESPITE UNILATERAL VOCAL FOLD PARALYSIS

    Directory of Open Access Journals (Sweden)

    Matthias Echternach

    2008-06-01

    Full Text Available The principal symptoms of unilateral vocal fold paralysis are hoarseness and difficulty in swallowing. Dyspnea is comparatively rare (Laccourreye et al., 2003. The extent to which unilateral vocal fold paralysis may lead to respiratory problems at all - in contrast to bilateral vocal fold paralysis- has not yet well been determined. On the one hand, inspiration is impaired with unilateral vocal fold paralysis; on the other hand, neither the position of the vocal fold paralysis nor the degree of breathiness correlates with respiratory parameters (Cantarella et al., 2003; 2005. The question of what respiratory stress a patient with a vocal fold paresis can endure has not yet been dealt with.A 43 year-old female patient was suffering from recurrent unspecific respiratory complaints for four months after physical activity. During training for a marathon, she experienced no difficulty in breathing. These unspecific respiratory complaints occurred only after athletic activity and persisted for hours. The patient observed neither an increased coughing nor a stridor. Her voice remained unaltered during the attacks, nor were there any signs of a symptomatic gastroesophageal reflux or infectious disease. A cardio-pulmonary and a radiological examination by means of an X-ray of the thorax also revealed no pathological phenomena. As antiallergic and antiobstructive therapy remained unsuccessful, a laryngological examination was performed in order to exclude a vocal cord dysfunction.Surprisingly enough, the laryngostroboscopy showed, as an initial description, a vocal fold paralysis of the left vocal fold in median position (Figure 1. The anamnestic background for the cause was unclear. The only clue was a thoracotomy on the left side due to a pleuritis in childhood. A subsequent laryngoscopic examination had never been performed. Good mucosa waves and amplitudes were shown bilateral with complete glottal closure. Neither in the acoustic analysis, nor in the

  3. Protein solubility and folding enhancement by interaction with RNA.

    Directory of Open Access Journals (Sweden)

    Seong Il Choi

    Full Text Available While basic mechanisms of several major molecular chaperones are well understood, this machinery has been known to be involved in folding of only limited number of proteins inside the cells. Here, we report a chaperone type of protein folding facilitated by interaction with RNA. When an RNA-binding module is placed at the N-terminus of aggregation-prone target proteins, this module, upon binding with RNA, further promotes the solubility of passenger proteins, potentially leading to enhancement of proper protein folding. Studies on in vitro refolding in the presence of RNA, coexpression of RNA molecules in vivo and the mutants with impaired RNA binding ability suggests that RNA can exert chaperoning effect on their bound proteins. The results suggest that RNA binding could affect the overall kinetic network of protein folding pathway in favor of productive folding over off-pathway aggregation. In addition, the RNA binding-mediated solubility enhancement is extremely robust for increasing soluble yield of passenger proteins and could be usefully implemented for high-throughput protein expression for functional and structural genomic research initiatives. The RNA-mediated chaperone type presented here would give new insights into de novo folding in vivo.

  4. Peroxisomal multifunctional enzyme type 2 from the fruitfly: dehydrogenase and hydratase act as separate entities, as revealed by structure and kinetics.

    Science.gov (United States)

    Haataja, Tatu J K; Koski, M Kristian; Hiltunen, J Kalervo; Glumoff, Tuomo

    2011-05-01

    All of the peroxisomal β-oxidation pathways characterized thus far house at least one MFE (multifunctional enzyme) catalysing two out of four reactions of the spiral. MFE type 2 proteins from various species display great variation in domain composition and predicted substrate preference. The gene CG3415 encodes for Drosophila melanogaster MFE-2 (DmMFE-2), complements the Saccharomyces cerevisiae MFE-2 deletion strain, and the recombinant protein displays both MFE-2 enzymatic activities in vitro. The resolved crystal structure is the first one for a full-length MFE-2 revealing the assembly of domains, and the data can also be transferred to structure-function studies for other MFE-2 proteins. The structure explains the necessity of dimerization. The lack of substrate channelling is proposed based on both the structural features, as well as by the fact that hydration and dehydrogenation activities of MFE-2, if produced as separate enzymes, are equally efficient in catalysis as the full-length MFE-2.

  5. The four-fold way

    International Nuclear Information System (INIS)

    Terazawa, H.

    1986-01-01

    The four-fold way is proposed in a minimal composite model of quarks and leptons. Various new pictures and consequences are presented and discussed. They include 1) generation, 2) quark-lepton mass spectrum, 3) quark mixing, 4) supersymmetry, 5) effective gauge theory. (author)

  6. Molecular and Silica-Supported Molybdenum Alkyne Metathesis Catalysts: Influence of Electronics and Dynamics on Activity Revealed by Kinetics, Solid-State NMR, and Chemical Shift Analysis.

    Science.gov (United States)

    Estes, Deven P; Gordon, Christopher P; Fedorov, Alexey; Liao, Wei-Chih; Ehrhorn, Henrike; Bittner, Celine; Zier, Manuel Luca; Bockfeld, Dirk; Chan, Ka Wing; Eisenstein, Odile; Raynaud, Christophe; Tamm, Matthias; Copéret, Christophe

    2017-12-06

    Molybdenum-based molecular alkylidyne complexes of the type [MesC≡Mo{OC(CH 3 ) 3-x (CF 3 ) x } 3 ] (MoF 0 , x = 0; MoF 3 , x = 1; MoF 6 , x = 2; MoF 9 , x = 3; Mes = 2,4,6-trimethylphenyl) and their silica-supported analogues are prepared and characterized at the molecular level, in particular by solid-state NMR, and their alkyne metathesis catalytic activity is evaluated. The 13 C NMR chemical shift of the alkylidyne carbon increases with increasing number of fluorine atoms on the alkoxide ligands for both molecular and supported catalysts but with more shielded values for the supported complexes. The activity of these catalysts increases in the order MoF 0 molecular and supported species. Detailed solid-state NMR analysis of molecular and silica-supported metal alkylidyne catalysts coupled with DFT/ZORA calculations rationalize the NMR spectroscopic signatures and discernible activity trends at the frontier orbital level: (1) increasing the number of fluorine atoms lowers the energy of the π*(M≡C) orbital, explaining the more deshielded chemical shift values; it also leads to an increased electrophilicity and higher reactivity for catalysts up to MoF 6 , prior to a sharp decrease in reactivity for MoF 9 due to the formation of stable metallacyclobutadiene intermediates; (2) the silica-supported catalysts are less active than their molecular analogues because they are less electrophilic and dynamic, as revealed by their 13 C NMR chemical shift tensors.

  7. Acinetobacter baumannii FolD ligand complexes --potent inhibitors of folate metabolism and a re-evaluation of the structure of LY374571.

    Science.gov (United States)

    Eadsforth, Thomas C; Maluf, Fernando V; Hunter, William N

    2012-12-01

    The bifunctional N(5),N(10)-methylenetetrahydrofolate dehydrogenase/cyclohydrolase (DHCH or FolD), which is widely distributed in prokaryotes and eukaryotes, is involved in the biosynthesis of folate cofactors that are essential for growth and cellular development. The enzyme activities represent a potential antimicrobial drug target. We have characterized the kinetic properties of FolD from the Gram-negative pathogen Acinetobacter baumanni and determined high-resolution crystal structures of complexes with a cofactor and two potent inhibitors. The data reveal new details with respect to the molecular basis of catalysis and potent inhibition. A unexpected finding was that our crystallographic data revealed a different structure for LY374571 (an inhibitor studied as an antifolate) than that previously published. The implications of this observation are discussed. © 2012 The Authors Journal compilation © 2012 FEBS.

  8. Physical kinetics

    International Nuclear Information System (INIS)

    Lifschitz, E.M.; Pitajewski, L.P.

    1983-01-01

    The textbook covers the subject under the following headings: kinetic gas theory, diffusion approximation, collisionless plasma, collisions within the plasma, plasma in the magnetic field, theory of instabilities, dielectrics, quantum fluids, metals, diagram technique for nonequilibrium systems, superconductors, and kinetics of phase transformations

  9. A simple quantitative model of macromolecular crowding effects on protein folding: Application to the murine prion protein(121-231)

    Science.gov (United States)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.

    2013-06-01

    A model of protein folding kinetics is applied to study the effects of macromolecular crowding on protein folding rate and stability. Macromolecular crowding is found to promote a decrease of the entropic cost of folding of proteins that produces an increase of both the stability and the folding rate. The acceleration of the folding rate due to macromolecular crowding is shown to be a topology-dependent effect. The model is applied to the folding dynamics of the murine prion protein (121-231). The differential effect of macromolecular crowding as a function of protein topology suffices to make non-native configurations relatively more accessible.

  10. Heparin kinetics

    International Nuclear Information System (INIS)

    Swart, C.A.M. de.

    1983-01-01

    The author has studied the kinetics of heparin and heparin fractions after intravenous administration in humans and in this thesis the results of this study are reported. Basic knowledge about the physico-chemical properties of heparin and its interactions with proteins resulting in anticoagulant and lipolytic effects are discussed in a review (chapter II), which also comprises some clinical aspects of heparin therapy. In chapter III the kinetics of the anticoagulant effect are described after intravenous administration of five commercial heparin preparations. A mathematical model is presented that fits best to these kinetics. The kinetics of the anticoagulant and lipolytic effects after intravenous injection of various 35 S-radiolabelled heparin fractions and their relationship with the disappearance of the radiolabel are described in chapter IV. Chapter V gives a description of the kinetics of two radiolabels after injection of in vitro formed complexes consisting of purified, 125 I-radiolabelled antithrombin III and various 35 S-radiolabelled heparin fractions. (Auth.)

  11. In vivo measurement of vocal fold surface resistance.

    Science.gov (United States)

    Mizuta, Masanobu; Kurita, Takashi; Dillon, Neal P; Kimball, Emily E; Garrett, C Gaelyn; Sivasankar, M Preeti; Webster, Robert J; Rousseau, Bernard

    2017-10-01

    A custom-designed probe was developed to measure vocal fold surface resistance in vivo. The purpose of this study was to demonstrate proof of concept of using vocal fold surface resistance as a proxy of functional tissue integrity after acute phonotrauma using an animal model. Prospective animal study. New Zealand White breeder rabbits received 120 minutes of airflow without vocal fold approximation (control) or 120 minutes of raised intensity phonation (experimental). The probe was inserted via laryngoscope and placed on the left vocal fold under endoscopic visualization. Vocal fold surface resistance of the middle one-third of the vocal fold was measured after 0 (baseline), 60, and 120 minutes of phonation. After the phonation procedure, the larynx was harvested and prepared for transmission electron microscopy. In the control group, vocal fold surface resistance values remained stable across time points. In the experimental group, surface resistance (X% ± Y% relative to baseline) was significantly decreased after 120 minutes of raised intensity phonation. This was associated with structural changes using transmission electron microscopy, which revealed damage to the vocal fold epithelium after phonotrauma, including disruption of the epithelium and basement membrane, dilated paracellular spaces, and alterations to epithelial microprojections. In contrast, control vocal fold specimens showed well-preserved stratified squamous epithelia. These data demonstrate the feasibility of measuring vocal fold surface resistance in vivo as a means of evaluating functional vocal fold epithelial barrier integrity. Device prototypes are in development for additional testing, validation, and for clinical applications in laryngology. NA Laryngoscope, 127:E364-E370, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  12. Force generation by titin folding.

    Science.gov (United States)

    Mártonfalvi, Zsolt; Bianco, Pasquale; Naftz, Katalin; Ferenczy, György G; Kellermayer, Miklós

    2017-07-01

    Titin is a giant protein that provides elasticity to muscle. As the sarcomere is stretched, titin extends hierarchically according to the mechanics of its segments. Whether titin's globular domains unfold during this process and how such unfolded domains might contribute to muscle contractility are strongly debated. To explore the force-dependent folding mechanisms, here we manipulated skeletal-muscle titin molecules with high-resolution optical tweezers. In force-clamp mode, after quenching the force (force trace contained rapid fluctuations and a gradual increase of average force, indicating that titin can develop force via dynamic transitions between its structural states en route to the native conformation. In 4 M urea, which destabilizes H-bonds hence the consolidated native domain structure, the net force increase disappeared but the fluctuations persisted. Thus, whereas net force generation is caused by the ensemble folding of the elastically-coupled domains, force fluctuations arise due to a dynamic equilibrium between unfolded and molten-globule states. Monte-Carlo simulations incorporating a compact molten-globule intermediate in the folding landscape recovered all features of our nanomechanics results. The ensemble molten-globule dynamics delivers significant added contractility that may assist sarcomere mechanics, and it may reduce the dissipative energy loss associated with titin unfolding/refolding during muscle contraction/relaxation cycles. © 2017 The Protein Society.

  13. Thermodynamic properties of an extremely rapid protein folding reaction.

    Science.gov (United States)

    Schindler, T; Schmid, F X

    1996-12-24

    The cold-shock protein CspB from Bacillus subtilis is a very small beta-barrel protein, which folds with a time constant of 1 ms (at 25 degrees C) in a U reversible N two-state reaction. To elucidate the energetics of this extremely fast reaction we investigated the folding kinetics of CspB as a function of both temperature and denaturant concentration between 2 and 45 degrees C and between 1 and 8 M urea. Under all these conditions unfolding and refolding were reversible monoexponential reactions. By using transition state theory, data from 327 kinetic curves were jointly analyzed to determine the thermodynamic activation parameters delta H H2O++, delta S H2O++, delta G H2O++, and delta C p H2O++ for unfolding and refolding and their dependences on the urea concentration. 90% of the total change in heat capacity and 96% of the change in the m value (m = d delta G/d[urea]) occur between the unfolded state and the activated state. This suggests that for CspB the activated state of folding is unusually well structured and almost equivalent to the native protein in its interactions with the solvent. As a consequence of this native-like activated state a strong temperature-dependent enthalpy/entropy compensation is observed for the refolding kinetics, and the barrier to refolding shifts from being largely enthalpic at low temperature to largely entropic at high temperature. This shift originates not from the changes in the folding protein chains itself, but from the changes in the protein-solvent interactions. We speculate that the absence of intermediates and the native-like activated state in the folding of CspB are correlated with the small size and the structural type of this protein. The stabilization of a small beta-sheet as in CspB requires extensive non-local interactions, and therefore incomplete sheets are unstable. As a consequence, the critical activated state is reached only very late in folding. The instability of partially folded structure is a means to

  14. A novel microfluidic mixer based on dual-hydrodynamic focusing for interrogating the kinetics of DNA-protein interaction.

    Science.gov (United States)

    Li, Ying; Xu, Fei; Liu, Chao; Xu, Youzhi; Feng, Xiaojun; Liu, Bi-Feng

    2013-08-21

    Kinetic measurement of biomacromolecular interaction plays a significant role in revealing the underlying mechanisms of cellular activities. Due to the small diffusion coefficient of biomacromolecules, it is difficult to resolve the rapid kinetic process with traditional analytical methods such as stopped-flow or laminar mixers. Here, we demonstrated a unique continuous-flow laminar mixer based on microfluidic dual-hydrodynamic focusing to characterize the kinetics of DNA-protein interactions. The time window of this mixer for kinetics observation could cover from sub-milliseconds to seconds, which made it possible to capture the folding process with a wide dynamic range. Moreover, the sample consumption was remarkably reduced to <0.55 μL min⁻¹, over 1000-fold saving in comparison to those reported previously. We further interrogated the interaction kinetics of G-quadruplex and the single-stranded DNA binding protein, indicating that this novel micromixer would be a useful approach for analyzing the interaction kinetics of biomacromolecules.

  15. Intermediates and the folding of proteins L and G

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Scott; Head-Gordon, Teresa

    2003-07-01

    We use a minimalist protein model, in combination with a sequence design strategy, to determine differences in primary structure for proteins L and G that are responsible for the two proteins folding through distinctly different folding mechanisms. We find that the folding of proteins L and G are consistent with a nucleation-condensation mechanism, each of which is described as helix-assisted {beta}-1 and {beta}-2 hairpin formation, respectively. We determine that the model for protein G exhibits an early intermediate that precedes the rate-limiting barrier of folding and which draws together misaligned secondary structure elements that are stabilized by hydrophobic core contacts involving the third {beta}-strand, and presages the later transition state in which the correct strand alignment of these same secondary structure elements is restored. Finally the validity of the targeted intermediate ensemble for protein G was analyzed by fitting the kinetic data to a two-step first order reversible reaction, proving that protein G folding involves an on-pathway early intermediate, and should be populated and therefore observable by experiment.

  16. Synovial folds in equine articular process joints

    DEFF Research Database (Denmark)

    Thomsen, Line Nymann; Berg, Lise Charlotte; Markussen, Bo

    2013-01-01

    Cervical synovial folds have been suggested as a potential cause of neck pain in humans. Little is known about the extent and characteristics of cervical synovial folds in horses.......Cervical synovial folds have been suggested as a potential cause of neck pain in humans. Little is known about the extent and characteristics of cervical synovial folds in horses....

  17. Kinetic Interface

    DEFF Research Database (Denmark)

    2009-01-01

    A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises.......A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises....

  18. Folding very short peptides using molecular dynamics.

    Directory of Open Access Journals (Sweden)

    Bosco K Ho

    2006-04-01

    Full Text Available Peptides often have conformational preferences. We simulated 133 peptide 8-mer fragments from six different proteins, sampled by replica-exchange molecular dynamics using Amber7 with a GB/SA (generalized-Born/solvent-accessible electrostatic approximation to water implicit solvent. We found that 85 of the peptides have no preferred structure, while 48 of them converge to a preferred structure. In 85% of the converged cases (41 peptides, the structures found by the simulations bear some resemblance to their native structures, based on a coarse-grained backbone description. In particular, all seven of the beta hairpins in the native structures contain a fragment in the turn that is highly structured. In the eight cases where the bioinformatics-based I-sites library picks out native-like structures, the present simulations are largely in agreement. Such physics-based modeling may be useful for identifying early nuclei in folding kinetics and for assisting in protein-structure prediction methods that utilize the assembly of peptide fragments.

  19. Visualization of protein folding funnels in lattice models.

    Directory of Open Access Journals (Sweden)

    Antonio B Oliveira

    Full Text Available Protein folding occurs in a very high dimensional phase space with an exponentially large number of states, and according to the energy landscape theory it exhibits a topology resembling a funnel. In this statistical approach, the folding mechanism is unveiled by describing the local minima in an effective one-dimensional representation. Other approaches based on potential energy landscapes address the hierarchical structure of local energy minima through disconnectivity graphs. In this paper, we introduce a metric to describe the distance between any two conformations, which also allows us to go beyond the one-dimensional representation and visualize the folding funnel in 2D and 3D. In this way it is possible to assess the folding process in detail, e.g., by identifying the connectivity between conformations and establishing the paths to reach the native state, in addition to regions where trapping may occur. Unlike the disconnectivity maps method, which is based on the kinetic connections between states, our methodology is based on structural similarities inferred from the new metric. The method was developed in a 27-mer protein lattice model, folded into a 3×3×3 cube. Five sequences were studied and distinct funnels were generated in an analysis restricted to conformations from the transition-state to the native configuration. Consistent with the expected results from the energy landscape theory, folding routes can be visualized to probe different regions of the phase space, as well as determine the difficulty in folding of the distinct sequences. Changes in the landscape due to mutations were visualized, with the comparison between wild and mutated local minima in a single map, which serves to identify different trapping regions. The extension of this approach to more realistic models and its use in combination with other approaches are discussed.

  20. Traumatic chorioretinal folds treated with intra-vitreal triamcinolone injection

    Directory of Open Access Journals (Sweden)

    Kook Young Kim

    2013-01-01

    Full Text Available A 34-year-old male visited the hospital due to decreased visual acuity in the left eye following an injury from a car accident. In the left eye, best-corrected visual acuity (BCVA was hand motion and intraocular pressure (IOP was 8 mmHg. Choroidal vasodilation and chorioretinal folds were observed by spectral domain-optical coherence tomography (SD-OCT. Topical and systemic steroid treatments did not improve the chorioretinal folds. Twelve months after the injury, intra-vitreal triamcinolone (4 mg/0.1 ml was injected. Six months after intra-vitreal triamcinolone injection, BCVA in the left eye had improved to 20/100. Fundus examination showed improvement in retinal vascular tortuosity and SD-OCT revealed improvements in choroidal vasodilation and chorioretinal folds. Intra-vitreal triamcinolone injection (IVTI was effective against traumatic chorioretinal folds with no recurrence based on objective observation by fundus photography and SD-OCT.

  1. Incremental fold tests of remagnetized carbonate rocks

    Science.gov (United States)

    Van Der Voo, R.; van der Pluijm, B.

    2017-12-01

    Many unmetamorphosed carbonates all over the world are demonstrably remagnetized, with the age of the secondary magnetizations typically close to that of the nearest orogeny in space and time. This observation did not become compelling until the mid-1980's, when the incremental fold test revealed the Appalachian carbonates to carry a syn-deformational remanence of likely Permian age (Scotese et al., 1982, Phys. Earth Planet. Int., v. 30, p. 385-395; Cederquist et al., 2006, Tectonophysics v. 422, p. 41-54). Since that time scores of Appalachian and Rocky Mountain carbonate rocks have added results to the growing database of paleopoles representing remagnetizations. Late Paleozoic remagnetizations form a cloud of results surrounding the reference poles of the Laurentian APWP. Remagnetizations in other locales and with inferred ages coeval with regional orogenies (e.g., Taconic, Sevier/Laramide, Variscan, Indosinian) are also ubiquitous. To be able to transform this cornucopia into valuable anchor-points on the APWP would be highly desirable. This may indeed become feasible, as will be explained next. Recent studies of faulted and folded carbonate-shale sequences have shown that this deformation enhances the illitization of smectite (Haines & van der Pluijm, 2008, Jour. Struct. Geol., v. 30, p. 525-538; Fitz-Diaz et al., 2014, International Geol. Review, v. 56, p. 734-755). 39Ar-40Ar dating of the authigenic illite (neutralizing any detrital illite contribution by taking the intercept of a mixing line) yields, therefore, the age of the deformation. We know that this date is also the age of the syndeformational remanence; thus we have the age of the corresponding paleopole. Results so far are obtained for the Canadian and U.S. Rocky Mountains and for the Spanish Cantabrian carbonates (Tohver et al., 2008, Earth Planet. Sci. Lett., v. 274, p. 524-530) and make good sense in accord with geological knowledge. Incremental fold tests are the tools used for this

  2. Effects of gravity in folding

    Science.gov (United States)

    Minkel, Donald Howe

    Effects of gravity on buckle folding are studied using a Newtonian fluid finite element model of a single layer embedded between two thicker less viscous layers. The methods allow arbitrary density jumps, surface tension coefficients, resistance to slip at the interfaces, and tracking of fold growth to a large amplitudes. When density increases downward in two equal jumps, a layer buckles less and thickens more than with uniform density. When density increases upward in two equal jumps, it buckles more and thickens less. A low density layer with periodic thickness variations buckles more, sometimes explosively. Thickness variations form, even if not present initially. These effects are greater with; smaller viscosities, larger density jump, larger length scale, and slower shortening rate. They also depend on wavelength and amplitude, and these dependencies are described in detail. The model is applied to the explosive growth of the salt anticlines of the Paradox Basin, Colorado and Utah. There, shale (higher density) overlies salt (lower density). Methods for simulating realistic earth surface erosion and deposition conditions are introduced. Growth rates increase both with ease of slip at the salt-shale interface, and when earth surface relief stays low due to erosion and deposition. Model anticlines grow explosively, attaining growth rates and amplitudes close to those of the field examples. Fastest growing wavelengths are the same as seen in the field. It is concluded that a combination of partial-slip at the salt-shale interface, with reasonable earth surface conditions, promotes sufficiently fast buckling of the salt-shale interface due to density inversion alone. Neither basement faulting, nor tectonic shortening is required to account for the observed structures. Of fundamental importance is the strong tendency of gravity to promote buckling in low density layers with thickness variations. These develop, even if not present initially. folds

  3. Kinetics and

    Directory of Open Access Journals (Sweden)

    Mojtaba Ahmadi

    2016-11-01

    Full Text Available The aqueous degradation of Reactive Yellow 84 (RY84 by potassium peroxydisulfate (K2S2O8 has been studied in laboratory scale experiments. The effect of the initial concentrations of potassium peroxydisulfate and RY84, pH and temperature on RY84 degradation were also examined. Experimental data were analyzed using first and second-order kinetics. The degradation kinetics of RY84 of the potassium peroxydisulfate process followed the second-order reaction kinetics. These rate constants have an extreme values similar to of 9.493 mM−1min−1 at a peroxydisulfate dose of 4 mmol/L. Thermodynamic parameters such as activation (Ea and Gibbs free energy (ΔG° were also evaluated. The negative value of ΔGo and Ea shows the spontaneous reaction natural conditions and exothermic nature.

  4. Simulation of fluorescence resonance energy transfer experiments: effect of the dyes on protein folding

    International Nuclear Information System (INIS)

    Allen, Lucy R; Paci, Emanuele

    2010-01-01

    Fluorescence resonance energy transfer is a powerful technique which is often used to probe the properties of proteins and complex macromolecules. The technique relies on relatively large fluorescent dyes which are engineered into the molecule of interest. In the case of small proteins, these dyes may affect the stability of the protein, and modify the folding kinetics and the folding mechanisms which are being probed. Here we use atomistic simulation to investigate the effect that commonly used fluorescent dyes have on the folding of a four-helix bundle protein. We show that, depending on where the dyes are attached, their effect on the kinetic and thermodynamic properties of the protein may be significant. We find that, while the overall folding mechanism is not affected by the dyes, they can destabilize, or even stabilize, intermediate states.

  5. Flexibility damps macromolecular crowding effects on protein folding dynamics: Application to the murine prion protein (121-231)

    Science.gov (United States)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.

    2014-01-01

    A model of protein folding kinetics is applied to study the combined effects of protein flexibility and macromolecular crowding on protein folding rate and stability. It is found that the increase in stability and folding rate promoted by macromolecular crowding is damped for proteins with highly flexible native structures. The model is applied to the folding dynamics of the murine prion protein (121-231). It is found that the high flexibility of the native isoform of the murine prion protein (121-231) reduces the effects of macromolecular crowding on its folding dynamics. The relevance of these findings for the pathogenic mechanism are discussed.

  6. Protein folding and wring resonances

    DEFF Research Database (Denmark)

    Bohr, Jakob; Bohr, Henrik; Brunak, Søren

    1997-01-01

    The polypeptide chain of a protein is shown to obey topological contraints which enable long range excitations in the form of wring modes of the protein backbone. Wring modes of proteins of specific lengths can therefore resonate with molecular modes present in the cell. It is suggested that prot......The polypeptide chain of a protein is shown to obey topological contraints which enable long range excitations in the form of wring modes of the protein backbone. Wring modes of proteins of specific lengths can therefore resonate with molecular modes present in the cell. It is suggested...... that protein folding takes place when the amplitude of a wring excitation becomes so large that it is energetically favorable to bend the protein backbone. The condition under which such structural transformations can occur is found, and it is shown that both cold and hot denaturation (the unfolding...

  7. Granulocyte kinetics

    International Nuclear Information System (INIS)

    Peters, A.M.; Lavender, J.P.; Saverymuttu, S.H.

    1985-01-01

    By using density gradient materials enriched with autologous plasma, the authors have been able to isolate granulocutes from other cellular elements and label them with In-111 without separation from a plasma environment. The kinetic behavior of these cells suggests that phenomena attributed to granulocyte activation are greatly reduced by this labeling. Here, they review their study of granulocyte kinetics in health and disease in hope of quantifying sites of margination and identifying principal sites of destruction. The three principle headings of the paper are distribution, life-span, and destruction

  8. Kinetics from Replica Exchange Molecular Dynamics Simulations.

    Science.gov (United States)

    Stelzl, Lukas S; Hummer, Gerhard

    2017-08-08

    Transitions between metastable states govern many fundamental processes in physics, chemistry and biology, from nucleation events in phase transitions to the folding of proteins. The free energy surfaces underlying these processes can be obtained from simulations using enhanced sampling methods. However, their altered dynamics makes kinetic and mechanistic information difficult or impossible to extract. Here, we show that, with replica exchange molecular dynamics (REMD), one can not only sample equilibrium properties but also extract kinetic information. For systems that strictly obey first-order kinetics, the procedure to extract rates is rigorous. For actual molecular systems whose long-time dynamics are captured by kinetic rate models, accurate rate coefficients can be determined from the statistics of the transitions between the metastable states at each replica temperature. We demonstrate the practical applicability of the procedure by constructing master equation (Markov state) models of peptide and RNA folding from REMD simulations.

  9. Localizing internal friction along the reaction coordinate of protein folding by combining ensemble and single-molecule fluorescence spectroscopy

    Science.gov (United States)

    Borgia, Alessandro; Wensley, Beth G.; Soranno, Andrea; Nettels, Daniel; Borgia, Madeleine B.; Hoffmann, Armin; Pfeil, Shawn H.; Lipman, Everett A.; Clarke, Jane; Schuler, Benjamin

    2012-01-01

    Theory, simulations and experimental results have suggested an important role of internal friction in the kinetics of protein folding. Recent experiments on spectrin domains provided the first evidence for a pronounced contribution of internal friction in proteins that fold on the millisecond timescale. However, it has remained unclear how this contribution is distributed along the reaction and what influence it has on the folding dynamics. Here we use a combination of single-molecule Förster resonance energy transfer, nanosecond fluorescence correlation spectroscopy, microfluidic mixing and denaturant- and viscosity-dependent protein-folding kinetics to probe internal friction in the unfolded state and at the early and late transition states of slow- and fast-folding spectrin domains. We find that the internal friction affecting the folding rates of spectrin domains is highly localized to the early transition state, suggesting an important role of rather specific interactions in the rate-limiting conformational changes. PMID:23149740

  10. Designing cooperatively folded abiotic uni- and multimolecular helix bundles

    Science.gov (United States)

    de, Soumen; Chi, Bo; Granier, Thierry; Qi, Ting; Maurizot, Victor; Huc, Ivan

    2018-01-01

    Abiotic foldamers, that is foldamers that have backbones chemically remote from peptidic and nucleotidic skeletons, may give access to shapes and functions different to those of peptides and nucleotides. However, design methodologies towards abiotic tertiary and quaternary structures are yet to be developed. Here we report rationally designed interactional patterns to guide the folding and assembly of abiotic helix bundles. Computational design facilitated the introduction of hydrogen-bonding functionalities at defined locations on the aromatic amide backbones that promote cooperative folding into helix-turn-helix motifs in organic solvents. The hydrogen-bond-directed aggregation of helices not linked by a turn unit produced several thermodynamically and kinetically stable homochiral dimeric and trimeric bundles with structures that are distinct from the designed helix-turn-helix. Relative helix orientation within the bundles may be changed from parallel to tilted on subtle solvent variations. Altogether, these results prefigure the richness and uniqueness of abiotic tertiary structure behaviour.

  11. Identification of a key structural element for protein folding within beta-hairpin turns.

    Science.gov (United States)

    Kim, Jaewon; Brych, Stephen R; Lee, Jihun; Logan, Timothy M; Blaber, Michael

    2003-05-09

    Specific residues in a polypeptide may be key contributors to the stability and foldability of the unique native structure. Identification and prediction of such residues is, therefore, an important area of investigation in solving the protein folding problem. Atypical main-chain conformations can help identify strains within a folded protein, and by inference, positions where unique amino acids may have a naturally high frequency of occurrence due to favorable contributions to stability and folding. Non-Gly residues located near the left-handed alpha-helical region (L-alpha) of the Ramachandran plot are a potential indicator of structural strain. Although many investigators have studied mutations at such positions, no consistent energetic or kinetic contributions to stability or folding have been elucidated. Here we report a study of the effects of Gly, Ala and Asn substitutions found within the L-alpha region at a characteristic position in defined beta-hairpin turns within human acidic fibroblast growth factor, and demonstrate consistent effects upon stability and folding kinetics. The thermodynamic and kinetic data are compared to available data for similar mutations in other proteins, with excellent agreement. The results have identified that Gly at the i+3 position within a subset of beta-hairpin turns is a key contributor towards increasing the rate of folding to the native state of the polypeptide while leaving the rate of unfolding largely unchanged.

  12. A novel folding blade of wind turbine rotor for effective power control

    International Nuclear Information System (INIS)

    Xie, Wei; Zeng, Pan; Lei, Liping

    2015-01-01

    Highlights: • A novel folding blade for wind turbine power control is proposed. • Wind tunnel experiments were conducted to analyze folding blade validity. • Folding blade is valid to control wind turbine power output. • Compared to pitch control, thrust was reduced by fold control in power regulation. • Optimum fold angles were found for wind turbine start up and aerodynamic brake. - Abstract: A concept of novel folding blade of horizontal axis wind turbine is proposed in current study. The folding blade comprises a stall regulated root blade section and a folding tip blade section with the fold axis inclined relative to blade span. By folding blade, lift force generated on the tip blade section changes and the moment arm also shortens, which leads to variations of power output. The blade folding actuation mechanism with servo motor and worm-gear reducer was designed. Wind turbine rotor control scheme and servo system with double feedback loops for blade fold angle control were proposed. In this study, a small folding blade model was tested in a wind tunnel to analyze its performance. The blade model performance was estimated in terms of rotation torque coefficient and thrust coefficient. Wind tunnel experiments were also conducted for pitch control using the same blade model in order to make a direct comparison. The power control, start up and aerodynamic brake performance of the folding blade were analyzed. According to the wind tunnel experiment results, fold angle magnitude significantly affected blade aerodynamic performance and the thrust characteristic together with the rotation torque characteristic of folding blade were revealed. The experiment results demonstrated that the folding blade was valid to control power output and had advantages in reducing thrust with maximum reduction of 51.1% compared to pitch control. Optimum fold angles of 55° and 90° were also found for start up and aerodynamic brake, respectively

  13. Synthetic oligorotaxanes exert high forces when folding under mechanical load

    Science.gov (United States)

    Sluysmans, Damien; Hubert, Sandrine; Bruns, Carson J.; Zhu, Zhixue; Stoddart, J. Fraser; Duwez, Anne-Sophie

    2018-01-01

    Folding is a ubiquitous process that nature uses to control the conformations of its molecular machines, allowing them to perform chemical and mechanical tasks. Over the years, chemists have synthesized foldamers that adopt well-defined and stable folded architectures, mimicking the control expressed by natural systems1,2. Mechanically interlocked molecules, such as rotaxanes and catenanes, are prototypical molecular machines that enable the controlled movement and positioning of their component parts3-5. Recently, combining the exquisite complexity of these two classes of molecules, donor-acceptor oligorotaxane foldamers have been synthesized, in which interactions between the mechanically interlocked component parts dictate the single-molecule assembly into a folded secondary structure6-8. Here we report on the mechanochemical properties of these molecules. We use atomic force microscopy-based single-molecule force spectroscopy to mechanically unfold oligorotaxanes, made of oligomeric dumbbells incorporating 1,5-dioxynaphthalene units encircled by cyclobis(paraquat-p-phenylene) rings. Real-time capture of fluctuations between unfolded and folded states reveals that the molecules exert forces of up to 50 pN against a mechanical load of up to 150 pN, and displays transition times of less than 10 μs. While the folding is at least as fast as that observed in proteins, it is remarkably more robust, thanks to the mechanically interlocked structure. Our results show that synthetic oligorotaxanes have the potential to exceed the performance of natural folding proteins.

  14. Dynamics of Folds in the Plane

    Science.gov (United States)

    Krylov, Nikolai A.; Rogers, Edwin L.

    2011-01-01

    Take a strip of paper and fold a crease intersecting the long edges, creating two angles. Choose one edge and consider the angle with the crease. Fold the opposite edge along the crease, creating a new crease that bisects the angle. Fold again, this time using the newly created crease and the initial edge, creating a new angle along the chosen…

  15. Unifying evolutionary and thermodynamic information for RNA folding of multiple alignments

    DEFF Research Database (Denmark)

    Seemann, Ernst Stefan; Gorodkin, Jan; Backofen, Rolf

    2008-01-01

    Computational methods for determining the secondary structure of RNA sequences from given alignments are currently either based on thermodynamic folding, compensatory base pair substitutions or both. However, there is currently no approach that combines both sources of information in a single...... the corresponding probability of being single stranded. Furthermore, we found that structurally conserved RNA motifs are mostly supported by folding energies. Other problems (e.g. RNA-folding kinetics) may also benefit from employing the principles of the model we introduce. Our implementation, PETfold, was tested...

  16. Anatomy and Histology of an Epicanthal Fold.

    Science.gov (United States)

    Park, Jae Woo; Hwang, Kun

    2016-06-01

    The aim of this study is to elucidate the precise anatomical and histological detail of the epicanthal fold.Thirty-two hemifaces of 16 Korean adult cadavers were used in this study (30 hemifaces with an epicanthal fold, 2 without an epicanthal fold). In 2 patients who had an epicanthoplasty, the epicanthal folds were sampled.In a dissection, the periorbital skin and subcutaneous tissues were removed and the epicanthal fold was observed in relation to each part of the orbicularis oculi muscle. Specimens including the epicanthal fold were embeddedin in paraffin, sectioned at 10 um, and stained with Hematoxylin-Eosin. The horizontal section in the level of the paplebral fissure was made and the prepared slides were observed under a light microscope.In the specimens without an epicanthal fold, no connection between the upper preseptal muscle and the lower preseptal muscle was found. In the specimens with an epicanthal fold, a connection of the upper preseptal muscle to the lower preseptal muscle was observed. It was present in all 15 hemifaces (100%). There was no connection between the pretarsal muscles. In a horizontal section, the epicanthal fold was composed of 3 compartments: an outer skin lining, a core structure, and an innerskin lining. The core structure was mainly composed of muscular fibers and fibrotic tissue and they were intermingled.Surgeons should be aware of the anatomical details of an epicanthal fold. In removing or reconstructing an epicanthal fold, the fibromuscular core band should also be removed or reconstructed.

  17. Effects of knot type in the folding of topologically complex lattice proteins

    Science.gov (United States)

    Soler, Miguel A.; Nunes, Ana; Faísca, Patrícia F. N.

    2014-07-01

    The folding properties of a protein whose native structure contains a 52 knot are investigated by means of extensive Monte Carlo simulations of a simple lattice model and compared with those of a 31 knot. A 52 knot embedded in the native structure enhances the kinetic stability of the carrier lattice protein in a way that is clearly more pronounced than in the case of the 31 knot. However, this happens at the expense of a severe loss in folding efficiency, an observation that is consistent with the relative abundance of 31 and 52 knots in the Protein Data Bank. The folding mechanism of the 52 knot shares with that of the 31 knot the occurrence of a threading movement of the chain terminus that lays closer to the knotted core. However, co-concomitant knotting and folding in the 52 knot occurs with negligible probability, in sharp contrast to what is observed for the 31 knot. The study of several single point mutations highlights the importance in the folding of knotted proteins of the so-called structural mutations (i.e., energetic perturbations of native interactions between residues that are critical for knotting but not for folding). On the other hand, the present study predicts that mutations that perturb the folding transition state may significantly enhance the kinetic stability of knotted proteins provided they involve residues located within the knotted core.

  18. Physisorption kinetics

    CERN Document Server

    Kreuzer, Hans Jürgen

    1986-01-01

    This monograph deals with the kinetics of adsorption and desorption of molecules physisorbed on solid surfaces. Although frequent and detailed reference is made to experiment, it is mainly concerned with the theory of the subject. In this, we have attempted to present a unified picture based on the master equation approach. Physisorption kinetics is by no means a closed and mature subject; rather, in writing this monograph we intended to survey a field very much in flux, to assess its achievements so far, and to give a reasonable basis from which further developments can take off. For this reason we have included many papers in the bibliography that are not referred to in the text but are of relevance to physisorption. To keep this monograph to a reasonable size, and also to allow for some unity in the presentation of the material, we had to omit a number of topics related to physisorption kinetics. We have not covered to any extent the equilibrium properties of physisorbed layers such as structures, phase tr...

  19. Functional analysis of propeptide as an intramolecular chaperone for in vivo folding of subtilisin nattokinase.

    Science.gov (United States)

    Jia, Yan; Liu, Hui; Bao, Wei; Weng, Meizhi; Chen, Wei; Cai, Yongjun; Zheng, Zhongliang; Zou, Guolin

    2010-12-01

    Here, we show that during in vivo folding of the precursor, the propeptide of subtilisin nattokinase functions as an intramolecular chaperone (IMC) that organises the in vivo folding of the subtilisin domain. Two residues belonging to β-strands formed by conserved regions of the IMC are crucial for the folding of the subtilisin domain through direct interactions. An identical protease can fold into different conformations in vivo due to the action of a mutated IMC, resulting in different kinetic parameters. Some interfacial changes involving conserved regions, even those induced by the subtilisin domain, blocked subtilisin folding and altered its conformation. Insight into the interaction between the subtilisin and IMC domains is provided by a three-dimensional structural model. Copyright © 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Vocal fold elasticity of the Rocky Mountain elk (Cervus elaphus nelsoni) – producing high fundamental frequency vocalization with a very long vocal fold

    OpenAIRE

    Riede, Tobias; Titze, Ingo R.

    2008-01-01

    The vocal folds of male Rocky Mountain elk (Cervus elaphus nelsoni) are about 3 cm long. If fundamental frequency were to be predicted by a simple vibrating string formula, as is often done for the human larynx, such long vocal folds would bear enormous stress to produce the species-specific mating call with an average fundamental frequency of 1 kHz. Predictions would be closer to 50 Hz. Vocal fold histology revealed the presence of a large vocal ligament between the vocal fold epithelium and...

  1. Vocal Fold Vibratory Changes Following Surgical Intervention.

    Science.gov (United States)

    Chen, Wenli; Woo, Peak; Murry, Thomas

    2016-03-01

    High-speed videoendoscopy (HSV) captures direct cycle-to-cycle visualization of vocal fold movement in real time. This ultrafast recording rate is capable of visualizing the vibratory motion of the vocal folds in severely disordered phonation and provides a direct method for examining vibratory changes after vocal fold surgery. The purpose of this study was to examine the vibratory motion before and after surgical intervention. HSV was captured from two subjects with identifiable midvocal fold benign lesions and six subjects with highly aperiodic vocal fold vibration before and after phonosurgery. Digital kymography (DKG) was used to extract high-speed kymographic vocal fold images sampled at the midmembranous, anterior 1/3, and posterior 1/3 region. Spectral analysis was subsequently applied to the DKG to quantify the cycle-to-cycle movements of the left and the right vocal fold, expressed as a spectrum. Before intervention, the vibratory spectrum consisted of decreased and flat-like spectral peaks with robust power asymmetry. After intervention, increases in spectral power and decreases in power symmetry were noted. Spectral power increases were most remarkable in the midmembranous region of the vocal fold. Surgical modification resulted in improved lateral excursion of the vocal folds, vibratory function, and perceptual measures of Voice Handicap Index-10. These changes in vibratory behavior trended toward normal vocal fold vibration. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  2. Advanced path sampling of the kinetic network of small proteins

    NARCIS (Netherlands)

    Du, W.

    2014-01-01

    This thesis is focused on developing advanced path sampling simulation methods to study protein folding and unfolding, and to build kinetic equilibrium networks describing these processes. In Chapter 1 the basic knowledge of protein structure and folding theories were introduced and a brief overview

  3. Adaptive Origami for Efficiently Folded Structures

    Science.gov (United States)

    2016-02-01

    heating. Although a large fold angle at a high temperature is desirable in order to extrapolate the origami geometry toward closure, more emphasis is...AFRL-RQ-WP-TR-2016-0020 ADAPTIVE ORIGAMI FOR EFFICIENTLY FOLDED STRUCTURES James J. Joo and Greg Reich Design and Analysis Branch... ORIGAMI FOR EFFICIENTLY FOLDED STRUCTURES 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) James J

  4. Stochastic kinetics

    International Nuclear Information System (INIS)

    Colombino, A.; Mosiello, R.; Norelli, F.; Jorio, V.M.; Pacilio, N.

    1975-01-01

    A nuclear system kinetics is formulated according to a stochastic approach. The detailed probability balance equations are written for the probability of finding the mixed population of neutrons and detected neutrons, i.e. detectrons, at a given level for a given instant of time. Equations are integrated in search of a probability profile: a series of cases is analyzed through a progressive criterium. It tends to take into account an increasing number of physical processes within the chosen model. The most important contribution is that solutions interpret analytically experimental conditions of equilibrium (moise analysis) and non equilibrium (pulsed neutron measurements, source drop technique, start up procedures)

  5. Interferences of Silica Nanoparticles in Green Fluorescent Protein Folding Processes.

    Science.gov (United States)

    Klein, Géraldine; Devineau, Stéphanie; Aude, Jean Christophe; Boulard, Yves; Pasquier, Hélène; Labarre, Jean; Pin, Serge; Renault, Jean Philippe

    2016-01-12

    We investigated the relationship between unfolded proteins, silica nanoparticles and chaperonin to determine whether unfolded proteins could stick to silica surfaces and how this process could impair heat shock protein activity. The HSP60 catalyzed green fluorescent protein (GFP) folding was used as a model system. The adsorption isotherms and adsorption kinetics of denatured GFP were measured, showing that denaturation increases GFP affinity for silica surfaces. This affinity is maintained even if the surfaces are covered by a protein corona and allows silica NPs to interfere directly with GFP folding by trapping it in its unstructured state. We determined also the adsorption isotherms of HSP60 and its chaperonin activity once adsorbed, showing that SiO2 NP can interfere also indirectly with protein folding through chaperonin trapping and inhibition. This inhibition is specifically efficient when NPs are covered first with a layer of unfolded proteins. These results highlight for the first time the antichaperonin activity of silica NPs and ask new questions about the toxicity of such misfolded proteins/nanoparticles assembly toward cells.

  6. Quantification of Porcine Vocal Fold Geometry.

    Science.gov (United States)

    Stevens, Kimberly A; Thomson, Scott L; Jetté, Marie E; Thibeault, Susan L

    2016-07-01

    The aim of this study was to quantify porcine vocal fold medial surface geometry and three-dimensional geometric distortion induced by freezing the larynx, especially in the region of the vocal folds. The medial surface geometries of five excised porcine larynges were quantified and reported. Five porcine larynges were imaged in a micro-CT scanner, frozen, and rescanned. Segmentations and three-dimensional reconstructions were used to quantify and characterize geometric features. Comparisons were made with geometry data previously obtained using canine and human vocal folds as well as geometries of selected synthetic vocal fold models. Freezing induced an overall expansion of approximately 5% in the transverse plane and comparable levels of nonuniform distortion in sagittal and coronal planes. The medial surface of the porcine vocal folds was found to compare reasonably well with other geometries, although the compared geometries exhibited a notable discrepancy with one set of published human female vocal fold geometry. Porcine vocal folds are qualitatively geometrically similar to data available for canine and human vocal folds, as well as commonly used models. Freezing of tissue in the larynx causes distortion of around 5%. The data can provide direction in estimating uncertainty due to bulk distortion of tissue caused by freezing, as well as quantitative geometric data that can be directly used in developing vocal fold models. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  7. Dynamic enzyme docking to the ribosome coordinates N-terminal processing with polypeptide folding.

    Science.gov (United States)

    Sandikci, Arzu; Gloge, Felix; Martinez, Michael; Mayer, Matthias P; Wade, Rebecca; Bukau, Bernd; Kramer, Günter

    2013-07-01

    Newly synthesized polypeptides undergo various cotranslational maturation steps, including N-terminal enzymatic processing, chaperone-assisted folding and membrane targeting, but the spatial and temporal coordination of these steps is unclear. We show that Escherichia coli methionine aminopeptidase (MAP) associates with ribosomes through a charged loop that is crucial for nascent-chain processing and cell viability. MAP competes with peptide deformylase (PDF), the first enzyme to act on nascent chains, for binding sites at the ribosomal tunnel exit. PDF has extremely fast association and dissociation kinetics, which allows it to frequently sample ribosomes and ensure the processing of nascent chains after their emergence. Premature recruitment of the chaperone trigger factor, or polypeptide folding, negatively affect processing efficiency. Thus, the fast ribosome association kinetics of PDF and MAP are crucial for the temporal separation of nascent-chain processing from later maturation events, including chaperone recruitment and folding.

  8. Tolrestat kinetics

    International Nuclear Information System (INIS)

    Hicks, D.R.; Kraml, M.; Cayen, M.N.; Dubuc, J.; Ryder, S.; Dvornik, D.

    1984-01-01

    The kinetics of tolrestat, a potent inhibitor of aldose reductase, were examined. Serum concentrations of tolrestat and of total 14 C were measured after dosing normal subjects and subjects with diabetes with 14 C-labeled tolrestat. In normal subjects, tolrestat was rapidly absorbed and disappearance from serum was biphasic. Distribution and elimination t 1/2s were approximately 2 and 10 to 12 hr, respectively, after single and multiple doses. Unchanged tolrestat accounted for the major portion of 14 C in serum. Radioactivity was rapidly and completely excreted in urine and feces in an approximate ratio of 2:1. Findings were much the same in subjects with diabetes. In normal subjects, the kinetics of oral tolrestat were independent of dose in the 10 to 800 mg range. Repetitive dosing did not result in unexpected cumulation. Tolrestat was more than 99% bound to serum protein; it did not compete with warfarin for binding sites but was displaced to some extent by high concentrations of tolbutamide or salicylate

  9. There and back again: Two views on the protein folding puzzle.

    Science.gov (United States)

    Finkelstein, Alexei V; Badretdin, Azat J; Galzitskaya, Oxana V; Ivankov, Dmitry N; Bogatyreva, Natalya S; Garbuzynskiy, Sergiy O

    2017-07-01

    The ability of protein chains to spontaneously form their spatial structures is a long-standing puzzle in molecular biology. Experimentally measured folding times of single-domain globular proteins range from microseconds to hours: the difference (10-11 orders of magnitude) is the same as that between the life span of a mosquito and the age of the universe. This review describes physical theories of rates of overcoming the free-energy barrier separating the natively folded (N) and unfolded (U) states of protein chains in both directions: "U-to-N" and "N-to-U". In the theory of protein folding rates a special role is played by the point of thermodynamic (and kinetic) equilibrium between the native and unfolded state of the chain; here, the theory obtains the simplest form. Paradoxically, a theoretical estimate of the folding time is easier to get from consideration of protein unfolding (the "N-to-U" transition) rather than folding, because it is easier to outline a good unfolding pathway of any structure than a good folding pathway that leads to the stable fold, which is yet unknown to the folding protein chain. And since the rates of direct and reverse reactions are equal at the equilibrium point (as follows from the physical "detailed balance" principle), the estimated folding time can be derived from the estimated unfolding time. Theoretical analysis of the "N-to-U" transition outlines the range of protein folding rates in a good agreement with experiment. Theoretical analysis of folding (the "U-to-N" transition), performed at the level of formation and assembly of protein secondary structures, outlines the upper limit of protein folding times (i.e., of the time of search for the most stable fold). Both theories come to essentially the same results; this is not a surprise, because they describe overcoming one and the same free-energy barrier, although the way to the top of this barrier from the side of the unfolded state is very different from the way from the

  10. Strange temperature dependence of the folding rate of a 16-residue β-hairpin

    International Nuclear Information System (INIS)

    Xu Yao; Wang Ting; Gai Feng

    2006-01-01

    The folding/unfolding kinetics of a 16-residue β-hairpin that undergoes cold denaturation at ambient temperatures were investigated by time-resolved infrared spectroscopy coupled with the laser-induced temperature jump (T-jump) initiation method. We found that the relaxation kinetics of this β-hairpin following a T-jump, obtained by probing the amide I' band of the peptide backbone, show strange temperature dependence. At temperatures below approximately 35 deg. C where this β-hairpin mainly exhibits cold denaturation, the T-jump induced relaxation rate is ∼5 μs -1 , whereas at temperatures where heat denaturation takes place, the relaxation rate increases to ∼1 μs -1 . These results cannot be readily explained by a two-state folding model that has been used to describe the folding thermodynamics of this β-hairpin. In addition, these results suggest that the folding free energy barrier separating the cold-denatured state from the folded state is different from that separating the heat-denatured state from the folded state, coinciding with the idea that the mechanism leading to cold denaturation is different from that leading to heat denaturation

  11. Monadic Maps and Folds for Arbitrary Datatypes

    NARCIS (Netherlands)

    Fokkinga, M.M.

    Each datatype constructor comes equiped not only with a so-called map and fold (catamorphism), as is widely known, but, under some condition, also with a kind of map and fold that are related to an arbitrary given monad. This result follows from the preservation of initiality under lifting

  12. Fold and Fit: Space Conserving Shape Editing

    KAUST Repository

    Ibrahim, Mohamed; Yan, Dong-Ming

    2017-01-01

    We present a framework that folds man-made objects in a structure-aware manner for space-conserving storage and transportation. Given a segmented 3D mesh of a man-made object, our framework jointly optimizes for joint locations, the folding order

  13. Merging monads and folds for functional programming

    NARCIS (Netherlands)

    Meijer, E.; Jeuring, J.T.

    1995-01-01

    These notes discuss the simultaneous use of generalised fold operators and monads to structure functional programs. Generalised fold operators structure programs after the decomposition of the value they consume. Monads structure programs after the computation of the value they produce. Our programs

  14. Theoretical study of the folded waveguide

    International Nuclear Information System (INIS)

    Chen, G.L.; Owens, T.L.; Whealton, J.H.

    1988-01-01

    We have applied a three-dimensional (3-D) algorithm for solving Maxwell's equations to the analysis of foleded waveguides used for fusion plasma heating at the ion cyclotron resonance frequency. A rigorous analysis of the magnetic field structure in the folded waveguide is presented. The results are compared to experimenntal measurements. Optimum conditions for the folded waveguide are discussed. 6 refs., 10 figs

  15. Experimental investigation into the mechanism of folding

    NARCIS (Netherlands)

    Kuenen, Ph.H.; Sitter, de L.U.

    1938-01-01

    The investigation of geological structures due to folding led de Sitter to form an opinion on the mechanical problems involved (Bibl. 7). His principal contention is that in simple cases the relative movements of particles with respect to eachother during deformation leading to a fold, have been

  16. A comparison of RNA folding measures

    Directory of Open Access Journals (Sweden)

    Gardner Paul P

    2005-10-01

    Full Text Available Abstract Background In the last few decades there has been a great deal of discussion concerning whether or not noncoding RNA sequences (ncRNAs fold in a more well-defined manner than random sequences. In this paper, we investigate several existing measures for how well an RNA sequence folds, and compare the behaviour of these measures over a large range of Rfam ncRNA families. Such measures can be useful in, for example, identifying novel ncRNAs, and indicating the presence of alternate RNA foldings. Results Our analysis shows that ncRNAs, but not mRNAs, in general have lower minimal free energy (MFE than random sequences with the same dinucleotide frequency. Moreover, even when the MFE is significant, many ncRNAs appear to not have a unique fold, but rather several alternative folds, at least when folded in silico. Furthermore, we find that the six investigated measures are correlated to varying degrees. Conclusion Due to the correlations between the different measures we find that it is sufficient to use only two of them in RNA folding studies, one to test if the sequence in question has lower energy than a random sequence with the same dinucleotide frequency (the Z-score and the other to see if the sequence has a unique fold (the average base-pair distance, D.

  17. Muscular anatomy of the human ventricular folds.

    Science.gov (United States)

    Moon, Jerald; Alipour, Fariborz

    2013-09-01

    Our purpose in this study was to better understand the muscular anatomy of the ventricular folds in order to help improve biomechanical modeling of phonation and to better understand the role of these muscles during phonatory and nonphonatory tasks. Four human larynges were decalcified, sectioned coronally from posterior to anterior by a CryoJane tape transfer system, and stained with Masson's trichrome. The total and relative areas of muscles observed in each section were calculated and used for characterizing the muscle distribution within the ventricular folds. The ventricular folds contained anteriorly coursing thyroarytenoid and ventricularis muscle fibers that were in the lower half of the ventricular fold posteriorly, and some ventricularis muscle was evident in the upper and lateral portions of the fold more anteriorly. Very little muscle tissue was observed in the medial half of the fold, and the anterior half of the ventricular fold was largely devoid of any muscle tissue. All 4 larynges contained muscle bundles that coursed superiorly and medially through the upper half of the fold, toward the lateral margin of the epiglottis. Although variability of expression was evident, a well-defined thyroarytenoid muscle was readily apparent lateral to the arytenoid cartilage in all specimens.

  18. Graph-representation of oxidative folding pathways

    Directory of Open Access Journals (Sweden)

    Kaján László

    2005-01-01

    Full Text Available Abstract Background The process of oxidative folding combines the formation of native disulfide bond with conformational folding resulting in the native three-dimensional fold. Oxidative folding pathways can be described in terms of disulfide intermediate species (DIS which can also be isolated and characterized. Each DIS corresponds to a family of folding states (conformations that the given DIS can adopt in three dimensions. Results The oxidative folding space can be represented as a network of DIS states interconnected by disulfide interchange reactions that can either create/abolish or rearrange disulfide bridges. We propose a simple 3D representation wherein the states having the same number of disulfide bridges are placed on separate planes. In this representation, the shuffling transitions are within the planes, and the redox edges connect adjacent planes. In a number of experimentally studied cases (bovine pancreatic trypsin inhibitor, insulin-like growth factor and epidermal growth factor, the observed intermediates appear as part of contiguous oxidative folding pathways. Conclusions Such networks can be used to visualize folding pathways in terms of the experimentally observed intermediates. A simple visualization template written for the Tulip package http://www.tulip-software.org/ can be obtained from V.A.

  19. Precipitation kinetics in binary Fe–Cu and ternary Fe–Cu–Ni alloys via kMC method

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2017-08-01

    Full Text Available The precipitation kinetics of coherent Cu rich precipitates (CRPs in binary Fe–Cu and ternary Fe–Cu–Ni alloys during thermal aging was modelled by the kinetic Monte Carlo method (kMC. A good agreement of the precipitation kinetics of Fe–Cu was found between the simulation and experimental results, as observed by means of advancement factor and cluster number density. This agreement was obtained owing to the correct description of the fast cluster mobility. The simulation results indicate that the effects of Ni are two-fold: Ni promotes the nucleation of Cu clusters; while the precipitation kinetics appears to be delayed by Ni addition during the coarsening stage. The apparent delayed precipitation kinetics is revealed to be related with the cluster mobility, which are reduced by Ni addition. The reduction effect of the cluster mobility weakens when the CRPs sizes increase. The results provide a view angle on the effects of solute elements upon Cu precipitation kinetics through the consideration of the non-conventional cluster growth mechanism, and kMC is verified to be a powerful approach on that.

  20. Free energy landscape and multiple folding pathways of an H-type RNA pseudoknot.

    Directory of Open Access Journals (Sweden)

    Yunqiang Bian

    Full Text Available How RNA sequences fold to specific tertiary structures is one of the key problems for understanding their dynamics and functions. Here, we study the folding process of an H-type RNA pseudoknot by performing a large-scale all-atom MD simulation and bias-exchange metadynamics. The folding free energy landscapes are obtained and several folding intermediates are identified. It is suggested that the folding occurs via multiple mechanisms, including a step-wise mechanism starting either from the first helix or the second, and a cooperative mechanism with both helices forming simultaneously. Despite of the multiple mechanism nature, the ensemble folding kinetics estimated from a Markov state model is single-exponential. It is also found that the correlation between folding and binding of metal ions is significant, and the bound ions mediate long-range interactions in the intermediate structures. Non-native interactions are found to be dominant in the unfolded state and also present in some intermediates, possibly hinder the folding process of the RNA.

  1. The Folding of de Novo Designed Protein DS119 via Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Moye Wang

    2016-04-01

    Full Text Available As they are not subjected to natural selection process, de novo designed proteins usually fold in a manner different from natural proteins. Recently, a de novo designed mini-protein DS119, with a βαβ motif and 36 amino acids, has folded unusually slowly in experiments, and transient dimers have been detected in the folding process. Here, by means of all-atom replica exchange molecular dynamics (REMD simulations, several comparably stable intermediate states were observed on the folding free-energy landscape of DS119. Conventional molecular dynamics (CMD simulations showed that when two unfolded DS119 proteins bound together, most binding sites of dimeric aggregates were located at the N-terminal segment, especially residues 5–10, which were supposed to form β-sheet with its own C-terminal segment. Furthermore, a large percentage of individual proteins in the dimeric aggregates adopted conformations similar to those in the intermediate states observed in REMD simulations. These results indicate that, during the folding process, DS119 can easily become trapped in intermediate states. Then, with diffusion, a transient dimer would be formed and stabilized with the binding interface located at N-terminals. This means that it could not quickly fold to the native structure. The complicated folding manner of DS119 implies the important influence of natural selection on protein-folding kinetics, and more improvement should be achieved in rational protein design.

  2. Collagen Content Limits Optical Coherence Tomography Image Depth in Porcine Vocal Fold Tissue.

    Science.gov (United States)

    Garcia, Jordan A; Benboujja, Fouzi; Beaudette, Kathy; Rogers, Derek; Maurer, Rie; Boudoux, Caroline; Hartnick, Christopher J

    2016-11-01

    Vocal fold scarring, a condition defined by increased collagen content, is challenging to treat without a method of noninvasively assessing vocal fold structure in vivo. The goal of this study was to observe the effects of vocal fold collagen content on optical coherence tomography imaging to develop a quantifiable marker of disease. Excised specimen study. Massachusetts Eye and Ear Infirmary. Porcine vocal folds were injected with collagenase to remove collagen from the lamina propria. Optical coherence tomography imaging was performed preinjection and at 0, 45, 90, and 180 minutes postinjection. Mean pixel intensity (or image brightness) was extracted from images of collagenase- and control-treated hemilarynges. Texture analysis of the lamina propria at each injection site was performed to extract image contrast. Two-factor repeated measure analysis of variance and t tests were used to determine statistical significance. Picrosirius red staining was performed to confirm collagenase activity. Mean pixel intensity was higher at injection sites of collagenase-treated vocal folds than control vocal folds (P Fold change in image contrast was significantly increased in collagenase-treated vocal folds than control vocal folds (P = .002). Picrosirius red staining in control specimens revealed collagen fibrils most prominent in the subepithelium and above the thyroarytenoid muscle. Specimens treated with collagenase exhibited a loss of these structures. Collagen removal from vocal fold tissue increases image brightness of underlying structures. This inverse relationship may be useful in treating vocal fold scarring in patients. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  3. Rate constant and reaction coordinate of Trp-cage folding in explicit water

    NARCIS (Netherlands)

    Juraszek, J.; Bolhuis, P.G.

    2008-01-01

    We report rate constant calculations and a reaction coordinate analysis of the rate-limiting folding and unfolding process of the Trp-cage mini-protein in explicit solvent using transition interface sampling. Previous transition path sampling simulations revealed that in this (un)folding process the

  4. Geometric U-folds in four dimensions

    Science.gov (United States)

    Lazaroiu, C. I.; Shahbazi, C. S.

    2018-01-01

    We describe a general construction of geometric U-folds compatible with a non-trivial extension of the global formulation of four-dimensional extended supergravity on a differentiable spin manifold. The topology of geometric U-folds depends on certain flat fiber bundles which encode how supergravity fields are globally glued together. We show that smooth non-trivial U-folds of this type can exist only in theories where both the scalar and space-time manifolds have non-trivial fundamental group and in addition the scalar map of the solution is homotopically non-trivial. Consistency with string theory requires smooth geometric U-folds to be glued using subgroups of the effective discrete U-duality group, implying that the fundamental group of the scalar manifold of such solutions must be a subgroup of the latter. We construct simple examples of geometric U-folds in a generalization of the axion-dilaton model of \

  5. Fold and Fit: Space Conserving Shape Editing

    KAUST Repository

    Ibrahim, Mohamed

    2017-09-01

    We present a framework that folds man-made objects in a structure-aware manner for space-conserving storage and transportation. Given a segmented 3D mesh of a man-made object, our framework jointly optimizes for joint locations, the folding order, and folding angles for each part of the model, enabling it to transform into a spatially efficient configuration while keeping its original functionality as intact as possible. That is, if a model is supposed to withstand several forces in its initial state to serve its functionality, our framework places the joints between the parts of the model such that the model can withstand forces with magnitudes that are comparable to the magnitudes applied on the unedited model. Furthermore, if the folded shape is not compact, our framework proposes further segmentation of the model to improve its compactness in its folded state.

  6. Sarcoidosis Presenting as Bilateral Vocal Fold Immobility.

    Science.gov (United States)

    Hintze, Justin M; Gnagi, Sharon H; Lott, David G

    2018-05-01

    Bilateral true vocal fold paralysis is rarely attributable to inflammatory diseases. Sarcoidosis is a rare but important etiology of bilateral true vocal fold paralysis by compressive lymphadenopathy, granulomatous infiltration, and neural involvement. We describe the first reported case of sarcoidosis presenting as bilateral vocal fold immobility caused by direct fixation by granulomatous infiltration severe enough to necessitate tracheostomy insertion. In addition, we discuss the presentation, the pathophysiology, and the treatment of this disease with a review of the literature of previously reported cases of sarcoidosis-related vocal fold immobility. Sarcoidosis should therefore be an important consideration for the otolaryngologist's differential diagnosis of true vocal fold immobility. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  7. Microvascular lesions of the true vocal fold.

    Science.gov (United States)

    Postma, G N; Courey, M S; Ossoff, R H

    1998-06-01

    Microvascular lesions, also called varices or capillary ectasias, in contrast to vocal fold polyps with telangiectatic vessels, are relatively small lesions arising from the microcirculation of the vocal fold. Varices are most commonly seen in female professional vocalists and may be secondary to repetitive trauma, hormonal variations, or repeated inflammation. Microvascular lesions may either be asymptomatic or cause frank dysphonia by interrupting the normal vibratory pattern, mass, or closure of the vocal folds. They may also lead to vocal fold hemorrhage, scarring, or polyp formation. Laryngovideostroboscopy is the key in determining the functional significance of vocal fold varices. Management of patients with a varix includes medical therapy, speech therapy, and occasionally surgical vaporization. Indications for surgery are recurrent hemorrhage, enlargement of the varix, development of a mass in conjunction with the varix or hemorrhage, and unacceptable dysphonia after maximal medical and speech therapy due to a functionally significant varix.

  8. Fission fragment mass and total kinetic energy distributions of spontaneously fissioning plutonium isotopes

    Science.gov (United States)

    Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.

    2018-03-01

    The fission-fragment mass and total kinetic energy (TKE) distributions are evaluated in a quantum mechanical framework using elongation, mass asymmetry, neck degree of freedom as the relevant collective parameters in the Fourier shape parametrization recently developed by us. The potential energy surfaces (PES) are calculated within the macroscopic-microscopic model based on the Lublin-Strasbourg Drop (LSD), the Yukawa-folded (YF) single-particle potential and a monopole pairing force. The PES are presented and analysed in detail for even-even Plutonium isotopes with A = 236-246. They reveal deep asymmetric valleys. The fission-fragment mass and TKE distributions are obtained from the ground state of a collective Hamiltonian computed within the Born-Oppenheimer approximation, in the WKB approach by introducing a neck-dependent fission probability. The calculated mass and total kinetic energy distributions are found in good agreement with the data.

  9. Predicting protein folding rate change upon point mutation using residue-level coevolutionary information.

    Science.gov (United States)

    Mallik, Saurav; Das, Smita; Kundu, Sudip

    2016-01-01

    Change in folding kinetics of globular proteins upon point mutation is crucial to a wide spectrum of biological research, such as protein misfolding, toxicity, and aggregations. Here we seek to address whether residue-level coevolutionary information of globular proteins can be informative to folding rate changes upon point mutations. Generating residue-level coevolutionary networks of globular proteins, we analyze three parameters: relative coevolution order (rCEO), network density (ND), and characteristic path length (CPL). A point mutation is considered to be equivalent to a node deletion of this network and respective percentage changes in rCEO, ND, CPL are found linearly correlated (0.84, 0.73, and -0.61, respectively) with experimental folding rate changes. The three parameters predict the folding rate change upon a point mutation with 0.031, 0.045, and 0.059 standard errors, respectively. © 2015 Wiley Periodicals, Inc.

  10. Melody discrimination and protein fold classification

    Directory of Open Access Journals (Sweden)

    Robert P. Bywater

    2016-10-01

    Full Text Available One of the greatest challenges in theoretical biophysics and bioinformatics is the identification of protein folds from sequence data. This can be regarded as a pattern recognition problem. In this paper we report the use of a melody generation software where the inputs are derived from calculations of evolutionary information, secondary structure, flexibility, hydropathy and solvent accessibility from multiple sequence alignment data. The melodies so generated are derived from the sequence, and by inference, of the fold, in ways that give each fold a sound representation that may facilitate analysis, recognition, or comparison with other sequences.

  11. A bidirectional shape memory alloy folding actuator

    International Nuclear Information System (INIS)

    Paik, Jamie K; Wood, Robert J

    2012-01-01

    This paper presents a low-profile bidirectional folding actuator based on annealed shape memory alloy sheets applicable for meso- and microscale systems. Despite the advantages of shape memory alloys—high strain, silent operation, and mechanical simplicity—their application is often limited to unidirectional operation. We present a bidirectional folding actuator that produces two opposing 180° motions. A laser-patterned nickel alloy (Inconel 600) heater localizes actuation to the folding sections. The actuator has a thin ( < 1 mm) profile, making it appropriate for use in robotic origami. Various design parameters and fabrication variants are described and experimentally explored in the actuator prototype. (paper)

  12. Folded Plate Structures as Building Envelopes

    DEFF Research Database (Denmark)

    Falk, Andreas; Buelow, Peter von; Kirkegaard, Poul Henning

    2012-01-01

    This paper treats applications of cross-laminated timber (CLT) in structural systems for folded façade solutions. Previous work on CLT-based systems for folded roofs has shown a widening range of structural possibilities to develop timber-based shells. Geometric and material properties play...... CLT-based systems, which are studied and analysed by using a combination of digital tools for structural and environmental design and analysis. The results show gainful, rational properties of folded systems and beneficial effects from an integration of architectural and environmental performance...... criteria in the design of CLT-based façades....

  13. Mechanical Models of Fault-Related Folding

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A. M.

    2003-01-09

    The subject of the proposed research is fault-related folding and ground deformation. The results are relevant to oil-producing structures throughout the world, to understanding of damage that has been observed along and near earthquake ruptures, and to earthquake-producing structures in California and other tectonically-active areas. The objectives of the proposed research were to provide both a unified, mechanical infrastructure for studies of fault-related foldings and to present the results in computer programs that have graphical users interfaces (GUIs) so that structural geologists and geophysicists can model a wide variety of fault-related folds (FaRFs).

  14. Prediction of the optimal set of contacts to fold the smallest knotted protein

    Science.gov (United States)

    Dabrowski-Tumanski, P.; Jarmolinska, A. I.; Sulkowska, J. I.

    2015-09-01

    Knotted protein chains represent a new motif in protein folds. They have been linked to various diseases, and recent extensive analysis of the Protein Data Bank shows that they constitute 1.5% of all deposited protein structures. Despite thorough theoretical and experimental investigations, the role of knots in proteins still remains elusive. Nonetheless, it is believed that knots play an important role in mechanical and thermal stability of proteins. Here, we perform a comprehensive analysis of native, shadow-specific and non-native interactions which describe free energy landscape of the smallest knotted protein (PDB id 2efv). We show that the addition of shadow-specific contacts in the loop region greatly enhances folding kinetics, while the addition of shadow-specific contacts along the C-terminal region (H3 or H4) results in a new folding route with slower kinetics. By means of direct coupling analysis (DCA) we predict non-native contacts which also can accelerate kinetics. Next, we show that the length of the C-terminal knot tail is responsible for the shape of the free energy barrier, while the influence of the elongation of the N-terminus is not significant. Finally, we develop a concept of a minimal contact map sufficient for 2efv protein to fold and analyze properties of this protein using this map.

  15. Prediction of the optimal set of contacts to fold the smallest knotted protein

    International Nuclear Information System (INIS)

    Dabrowski-Tumanski, P; Jarmolinska, A I; Sulkowska, J I

    2015-01-01

    Knotted protein chains represent a new motif in protein folds. They have been linked to various diseases, and recent extensive analysis of the Protein Data Bank shows that they constitute 1.5% of all deposited protein structures. Despite thorough theoretical and experimental investigations, the role of knots in proteins still remains elusive. Nonetheless, it is believed that knots play an important role in mechanical and thermal stability of proteins. Here, we perform a comprehensive analysis of native, shadow-specific and non-native interactions which describe free energy landscape of the smallest knotted protein (PDB id 2efv). We show that the addition of shadow-specific contacts in the loop region greatly enhances folding kinetics, while the addition of shadow-specific contacts along the C-terminal region (H3 or H4) results in a new folding route with slower kinetics. By means of direct coupling analysis (DCA) we predict non-native contacts which also can accelerate kinetics. Next, we show that the length of the C-terminal knot tail is responsible for the shape of the free energy barrier, while the influence of the elongation of the N-terminus is not significant. Finally, we develop a concept of a minimal contact map sufficient for 2efv protein to fold and analyze properties of this protein using this map. (paper)

  16. Supersymmetric quantum mechanics method for the Fokker-Planck equation with applications to protein folding dynamics

    Science.gov (United States)

    Polotto, Franciele; Drigo Filho, Elso; Chahine, Jorge; Oliveira, Ronaldo Junio de

    2018-03-01

    This work developed analytical methods to explore the kinetics of the time-dependent probability distributions over thermodynamic free energy profiles of protein folding and compared the results with simulation. The Fokker-Planck equation is mapped onto a Schrödinger-type equation due to the well-known solutions of the latter. Through a semi-analytical description, the supersymmetric quantum mechanics formalism is invoked and the time-dependent probability distributions are obtained with numerical calculations by using the variational method. A coarse-grained structure-based model of the two-state protein Tm CSP was simulated at a Cα level of resolution and the thermodynamics and kinetics were fully characterized. Analytical solutions from non-equilibrium conditions were obtained with the simulated double-well free energy potential and kinetic folding times were calculated. It was found that analytical folding time as a function of temperature agrees, quantitatively, with simulations and experiments from the literature of Tm CSP having the well-known 'U' shape of the Chevron Plots. The simple analytical model developed in this study has a potential to be used by theoreticians and experimentalists willing to explore, quantitatively, rates and the kinetic behavior of their system by informing the thermally activated barrier. The theory developed describes a stochastic process and, therefore, can be applied to a variety of biological as well as condensed-phase two-state systems.

  17. PyFolding: Open-Source Graphing, Simulation, and Analysis of the Biophysical Properties of Proteins.

    Science.gov (United States)

    Lowe, Alan R; Perez-Riba, Albert; Itzhaki, Laura S; Main, Ewan R G

    2018-02-06

    For many years, curve-fitting software has been heavily utilized to fit simple models to various types of biophysical data. Although such software packages are easy to use for simple functions, they are often expensive and present substantial impediments to applying more complex models or for the analysis of large data sets. One field that is reliant on such data analysis is the thermodynamics and kinetics of protein folding. Over the past decade, increasingly sophisticated analytical models have been generated, but without simple tools to enable routine analysis. Consequently, users have needed to generate their own tools or otherwise find willing collaborators. Here we present PyFolding, a free, open-source, and extensible Python framework for graphing, analysis, and simulation of the biophysical properties of proteins. To demonstrate the utility of PyFolding, we have used it to analyze and model experimental protein folding and thermodynamic data. Examples include: 1) multiphase kinetic folding fitted to linked equations, 2) global fitting of multiple data sets, and 3) analysis of repeat protein thermodynamics with Ising model variants. Moreover, we demonstrate how PyFolding is easily extensible to novel functionality beyond applications in protein folding via the addition of new models. Example scripts to perform these and other operations are supplied with the software, and we encourage users to contribute notebooks and models to create a community resource. Finally, we show that PyFolding can be used in conjunction with Jupyter notebooks as an easy way to share methods and analysis for publication and among research teams. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Entropic formulation for the protein folding process: Hydrophobic stability correlates with folding rates

    Science.gov (United States)

    Dal Molin, J. P.; Caliri, A.

    2018-01-01

    Here we focus on the conformational search for the native structure when it is ruled by the hydrophobic effect and steric specificities coming from amino acids. Our main tool of investigation is a 3D lattice model provided by a ten-letter alphabet, the stereochemical model. This minimalist model was conceived for Monte Carlo (MC) simulations when one keeps in mind the kinetic behavior of protein-like chains in solution. We have three central goals here. The first one is to characterize the folding time (τ) by two distinct sampling methods, so we present two sets of 103 MC simulations for a fast protein-like sequence. The resulting sets of characteristic folding times, τ and τq were obtained by the application of the standard Metropolis algorithm (MA), as well as by an enhanced algorithm (Mq A). The finding for τq shows two things: (i) the chain-solvent hydrophobic interactions {hk } plus a set of inter-residues steric constraints {ci,j } are able to emulate the conformational search for the native structure. For each one of the 103MC performed simulations, the target is always found within a finite time window; (ii) the ratio τq / τ ≅ 1 / 10 suggests that the effect of local thermal fluctuations, encompassed by the Tsallis weight, provides to the chain an innate efficiency to escape from energetic and steric traps. We performed additional MC simulations with variations of our design rule to attest this first result, both algorithms the MA and the Mq A were applied to a restricted set of targets, a physical insight is provided. Our second finding was obtained by a set of 600 independent MC simulations, only performed with the Mq A applied to an extended set of 200 representative targets, our native structures. The results show how structural patterns should modulate τq, which cover four orders of magnitude; this finding is our second goal. The third, and last result, was obtained with a special kind of simulation performed with the purpose to explore a

  19. Structure of the thioredoxin-fold domain of human phosducin-like protein 2

    International Nuclear Information System (INIS)

    Lou, Xiaochu; Bao, Rui; Zhou, Cong-Zhao; Chen, Yuxing

    2009-01-01

    The X-ray crystal structure of the Trx-fold domain of hPDCL2 was solved at 2.70 Å resolution and resembled the Trx-fold domain of rat phosducin. Human phosducin-like protein 2 (hPDCL2) has been identified as belonging to subgroup II of the phosducin (Pdc) family. The members of this family share an N-terminal helix domain and a C-terminal thioredoxin-fold (Trx-fold) domain. The X-ray crystal structure of the Trx-fold domain of hPDCL2 was solved at 2.70 Å resolution and resembled the Trx-fold domain of rat phosducin. Comparative structural analysis revealed the structural basis of their putative functional divergence

  20. Topology Explains Why Automobile Sunshades Fold Oddly

    Science.gov (United States)

    Feist, Curtis; Naimi, Ramin

    2009-01-01

    Automobile sunshades always fold into an "odd" number of loops. The explanation why involves elementary topology (braid theory and linking number, both explained in detail here with definitions and examples), and an elementary fact from algebra about symmetric group.

  1. Origami: Paper Folding--The Algorithmic Way.

    Science.gov (United States)

    Heukerott, Pamela Beth

    1988-01-01

    Describes origami, the oriental art of paper folding as an activity to teach upper elementary students concepts and skills in geometry involving polygons, angles, measurement, symmetry, and congruence. (PK)

  2. Frustration in Condensed Matter and Protein Folding

    Science.gov (United States)

    Li, Z.; Tanner, S.; Conroy, B.; Owens, F.; Tran, M. M.; Boekema, C.

    2014-03-01

    By means of computer modeling, we are studying frustration in condensed matter and protein folding, including the influence of temperature and Thomson-figure formation. Frustration is due to competing interactions in a disordered state. The key issue is how the particles interact to reach the lowest frustration. The relaxation for frustration is mostly a power function (randomly assigned pattern) or an exponential function (regular patterns like Thomson figures). For the atomic Thomson model, frustration is predicted to decrease with the formation of Thomson figures at zero kelvin. We attempt to apply our frustration modeling to protein folding and dynamics. We investigate the homogeneous protein frustration that would cause the speed of the protein folding to increase. Increase of protein frustration (where frustration and hydrophobicity interplay with protein folding) may lead to a protein mutation. Research is supported by WiSE@SJSU and AFC San Jose.

  3. Self-folding miniature elastic electric devices

    International Nuclear Information System (INIS)

    Miyashita, Shuhei; Meeker, Laura; Rus, Daniela; Tolley, Michael T; Wood, Robert J

    2014-01-01

    Printing functional materials represents a considerable impact on the access to manufacturing technology. In this paper we present a methodology and validation of print-and-self-fold miniature electric devices. Polyvinyl chloride laminated sheets based on metalized polyester film show reliable self-folding processes under a heat application, and it configures 3D electric devices. We exemplify this technique by fabricating fundamental electric devices, namely a resistor, capacitor, and inductor. Namely, we show the development of a self-folded stretchable resistor, variable resistor, capacitive strain sensor, and an actuation mechanism consisting of a folded contractible solenoid coil. Because of their pre-defined kinematic design, these devices feature elasticity, making them suitable as sensors and actuators in flexible circuits. Finally, an RLC circuit obtained from the integration of developed devices is demonstrated, in which the coil based actuator is controlled by reading a capacitive strain sensor. (paper)

  4. Benign Lesions of The Vocal Fold

    Directory of Open Access Journals (Sweden)

    Ozgur Surmelioglu

    2013-02-01

    Full Text Available Benign lesions of vocal folds are common disorders. Fifty percent of patients who have sound complaints are found to have these lesions after endoscopic and stroboscopic examinations. Benign vocal fold diseases are primarily caused by vibratory trauma. However they may also occur as a result of viral infections and congenital causes. These lesions are often presented with the complaints of dysphonia. [Archives Medical Review Journal 2013; 22(1.000: 86-95

  5. An Intramolecular Chaperone Inserted in Bacteriophage P22 Coat Protein Mediates Its Chaperonin-independent Folding*

    Science.gov (United States)

    Suhanovsky, Margaret M.; Teschke, Carolyn M.

    2013-01-01

    The bacteriophage P22 coat protein has the common HK97-like fold but with a genetically inserted domain (I-domain). The role of the I-domain, positioned at the outermost surface of the capsid, is unknown. We hypothesize that the I-domain may act as an intramolecular chaperone because the coat protein folds independently, and many folding mutants are localized to the I-domain. The function of the I-domain was investigated by generating the coat protein core without its I-domain and the isolated I-domain. The core coat protein shows a pronounced folding defect. The isolated I-domain folds autonomously and has a high thermodynamic stability and fast folding kinetics in the presence of a peptidyl prolyl isomerase. Thus, the I-domain provides thermodynamic stability to the full-length coat protein so that it can fold reasonably efficiently while still allowing the HK97-like core to retain the flexibility required for conformational switching during procapsid assembly and maturation. PMID:24126914

  6. Circuit topology of self-interacting chains: implications for folding and unfolding dynamics.

    Science.gov (United States)

    Mugler, Andrew; Tans, Sander J; Mashaghi, Alireza

    2014-11-07

    Understanding the relationship between molecular structure and folding is a central problem in disciplines ranging from biology to polymer physics and DNA origami. Topology can be a powerful tool to address this question. For a folded linear chain, the arrangement of intra-chain contacts is a topological property because rearranging the contacts requires discontinuous deformations. Conversely, the topology is preserved when continuously stretching the chain while maintaining the contact arrangement. Here we investigate how the folding and unfolding of linear chains with binary contacts is guided by the topology of contact arrangements. We formalize the topology by describing the relations between any two contacts in the structure, which for a linear chain can either be in parallel, in series, or crossing each other. We show that even when other determinants of folding rate such as contact order and size are kept constant, this 'circuit' topology determines folding kinetics. In particular, we find that the folding rate increases with the fractions of parallel and crossed relations. Moreover, we show how circuit topology constrains the conformational phase space explored during folding and unfolding: the number of forbidden unfolding transitions is found to increase with the fraction of parallel relations and to decrease with the fraction of series relations. Finally, we find that circuit topology influences whether distinct intermediate states are present, with crossed contacts being the key factor. The approach presented here can be more generally applied to questions on molecular dynamics, evolutionary biology, molecular engineering, and single-molecule biophysics.

  7. Folding of non-Euclidean curved shells

    Science.gov (United States)

    Bende, Nakul; Evans, Arthur; Innes-Gold, Sarah; Marin, Luis; Cohen, Itai; Santangelo, Christian; Hayward, Ryan

    2015-03-01

    Origami-based folding of 2D sheets has been of recent interest for a variety of applications ranging from deployable structures to self-folding robots. Though folding of planar sheets follows well-established principles, folding of curved shells involves an added level of complexity due to the inherent influence of curvature on mechanics. In this study, we use principles from differential geometry and thin shell mechanics to establish fundamental rules that govern folding of prototypical creased shells. In particular, we show how the normal curvature of a crease line controls whether the deformation is smooth or discontinuous, and investigate the influence of shell thickness and boundary conditions. We show that snap-folding of shells provides a route to rapid actuation on time-scales dictated by the speed of sound. The simple geometric design principles developed can be applied at any length-scale, offering potential for bio-inspired soft actuators for tunable optics, microfluidics, and robotics. This work was funded by the National Science Foundation through EFRI ODISSEI-1240441 with additional support to S.I.-G. through the UMass MRSEC DMR-0820506 REU program.

  8. Vocal fold hemorrhage: factors predicting recurrence.

    Science.gov (United States)

    Lennon, Christen J; Murry, Thomas; Sulica, Lucian

    2014-01-01

    Vocal fold hemorrhage is an acute phonotraumatic injury treated with voice rest; recurrence is a generally accepted indication for surgical intervention. This study aims to identify factors predictive of recurrence based on outcomes of a large clinical series. Retrospective cohort. Retrospective review of cases of vocal fold hemorrhage presenting to a university laryngology service. Demographic information was compiled. Videostroboscopic exams were evaluated for hemorrhage extent, presence of varix, mucosal lesion, and/or vocal fold paresis. Vocal fold hemorrhage recurrence was the main outcome measure. Follow-up telephone survey was used to complement clinical data. Forty-seven instances of vocal fold hemorrhage were evaluated (25M:22F; 32 professional voice users). Twelve of the 47 (26%) patients experienced recurrence. Only the presence of varix demonstrated significant association with recurrence (P = 0.0089) on multivariate logistic regression. Vocal fold hemorrhage recurred in approximately 26% of patients. Varix was a predictor of recurrence, with 48% of those with varix experiencing recurrence. Monitoring, behavioral management and/or surgical intervention may be indicated to treat patients with such characteristics. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  9. Using enzyme folding to explore the mechanism of therapeutic touch: a feasibility study.

    Science.gov (United States)

    Strickland, Mallory L; Boylan, Helen M

    2010-07-01

    The goal of this research is to design a novel model using protein folding to study Therapeutic Touch, a noncontact form of energy manipulation healing. Presented is a feasibility study suggesting that the denaturation path of ribonuclease A may be a useful model to study the energy exchange underlying therapeutic touch. The folding of ribonuclease A serves as a controlled energy-requiring system in which energy manipulation can be measured by the degree of folding achieved. A kinetic assay and fluorescence spectroscopy are used to assess the enzyme-folding state. The data suggest that the kinetic assay is a useful means of assessing the degree of refolding, and specifically, the enzyme function. However, fluorescence spectroscopy was not shown to be an effective measurement of enzyme structure for the purposes of this work. More research is needed to assess the underlying mechanism of therapeutic touch to complement the existing studies. An enzyme-folding model may provide a useful means of studying the energy exchange in therapeutic touch.

  10. Co-Transcriptional Folding and Regulation Mechanisms of Riboswitches

    Directory of Open Access Journals (Sweden)

    Sha Gong

    2017-07-01

    Full Text Available Riboswitches are genetic control elements within non-coding regions of mRNA. These self-regulatory elements have been found to sense a range of small metabolites, ions, and other physical signals to exert regulatory control of transcription, translation, and splicing. To date, more than a dozen riboswitch classes have been characterized that vary widely in size and secondary structure. Extensive experiments and theoretical studies have made great strides in understanding the general structures, genetic mechanisms, and regulatory activities of individual riboswitches. As the ligand-dependent co-transcriptional folding and unfolding dynamics of riboswitches are the key determinant of gene expression, it is important to investigate the thermodynamics and kinetics of riboswitches both in the presence and absence of metabolites under the transcription. This review will provide a brief summary of the studies about the regulation mechanisms of the pbuE, SMK, yitJ, and metF riboswitches based on the ligand-dependent co-transcriptional folding of the riboswitches.

  11. Conserved nucleation sites reinforce the significance of Phi value analysis in protein-folding studies.

    Science.gov (United States)

    Gianni, Stefano; Jemth, Per

    2014-07-01

    The only experimental strategy to address the structure of folding transition states, the so-called Φ value analysis, relies on the synergy between site directed mutagenesis and the measurement of reaction kinetics. Despite its importance, the Φ value analysis has been often criticized and its power to pinpoint structural information has been questioned. In this hypothesis, we demonstrate that comparing the Φ values between proteins not only allows highlighting the robustness of folding pathways but also provides per se a strong validation of the method. © 2014 International Union of Biochemistry and Molecular Biology.

  12. Kinetics of glucose transport in rat muscle

    DEFF Research Database (Denmark)

    Ploug, Thorkil; Galbo, Henrik; Vinten, Jørgen

    1987-01-01

    The effects of insulin and prior muscle contractions, respectively, on 3-O-methylglucose (3-O-MG) transport in skeletal muscle were studied in the perfused rat hindquarter. Initial rates of entry of 3-O-MG in red gastrocnemius, soleus, and white gastrocnemius muscles as a function of perfusate 3-O-MG...... concentration exhibited Michaelis-Menten kinetics. Uptake by simple diffusion could not be detected. The maximum 3-O-MG transport velocity (Vmax) was increased more by maximum isometric contractions (10- to 40-fold, depending on fiber type) than by insulin (20,000 microU/ml; 3- to 20-fold) in both red and white...

  13. Developing guinea pig brain as a model for cortical folding.

    Science.gov (United States)

    Hatakeyama, Jun; Sato, Haruka; Shimamura, Kenji

    2017-05-01

    The cerebral cortex in mammals, the neocortex specifically, is highly diverse among species with respect to its size and morphology, likely reflecting the immense adaptiveness of this lineage. In particular, the pattern and number of convoluted ridges and fissures, called gyri and sulci, respectively, on the surface of the cortex are variable among species and even individuals. However, little is known about the mechanism of cortical folding, although there have been several hypotheses proposed. Recent studies on embryonic neurogenesis revealed the differences in cortical progenitors as a critical factor of the process of gyrification. Here, we investigated the gyrification processes using developing guinea pig brains that form a simple but fundamental pattern of gyri. In addition, we established an electroporation-mediated gene transfer method for guinea pig embryos. We introduce the guinea pig brain as a useful model system to understand the mechanisms and basic principle of cortical folding. © 2017 Japanese Society of Developmental Biologists.

  14. Protein folding simulations: from coarse-grained model to all-atom model.

    Science.gov (United States)

    Zhang, Jian; Li, Wenfei; Wang, Jun; Qin, Meng; Wu, Lei; Yan, Zhiqiang; Xu, Weixin; Zuo, Guanghong; Wang, Wei

    2009-06-01

    Protein folding is an important and challenging problem in molecular biology. During the last two decades, molecular dynamics (MD) simulation has proved to be a paramount tool and was widely used to study protein structures, folding kinetics and thermodynamics, and structure-stability-function relationship. It was also used to help engineering and designing new proteins, and to answer even more general questions such as the minimal number of amino acid or the evolution principle of protein families. Nowadays, the MD simulation is still undergoing rapid developments. The first trend is to toward developing new coarse-grained models and studying larger and more complex molecular systems such as protein-protein complex and their assembling process, amyloid related aggregations, and structure and motion of chaperons, motors, channels and virus capsides; the second trend is toward building high resolution models and explore more detailed and accurate pictures of protein folding and the associated processes, such as the coordination bond or disulfide bond involved folding, the polarization, charge transfer and protonate/deprotonate process involved in metal coupled folding, and the ion permeation and its coupling with the kinetics of channels. On these new territories, MD simulations have given many promising results and will continue to offer exciting views. Here, we review several new subjects investigated by using MD simulations as well as the corresponding developments of appropriate protein models. These include but are not limited to the attempt to go beyond the topology based Gō-like model and characterize the energetic factors in protein structures and dynamics, the study of the thermodynamics and kinetics of disulfide bond involved protein folding, the modeling of the interactions between chaperonin and the encapsulated protein and the protein folding under this circumstance, the effort to clarify the important yet still elusive folding mechanism of protein BBL

  15. Prevention of vocal fold scarring by local application of basic fibroblast growth factor in a rat vocal fold injury model.

    Science.gov (United States)

    Suzuki, Ryo; Kawai, Yoshitaka; Tsuji, Takuya; Hiwatashi, Nao; Kishimoto, Yo; Tateya, Ichiro; Nakamura, Tatsuo; Hirano, Shigeru

    2017-02-01

    Vocal fold scarring, which causes severe hoarseness, is intractable. The optimal treatment for vocal fold scarring has not been established; therefore, prevention of scarring is important. The aim of this study was to clarify the effectiveness of basic fibroblast growth factor (bFGF) for prevention of postsurgical vocal fold scarring. Prospective animal experiments with controls. The vocal folds of Sprague-Dawley rats were injured unilaterally or bilaterally after local application of a 10 μL solution of bFGF. Larynges ware harvested for histological and immunohistochemical examination 2 months postoperation and for quantitative real-time polymerase chain reaction (qRT-PCR) analysis 1 week postoperation. Histological examination showed significantly increased hyaluronic acid and decreased deposition of dense collagen in the bFGF-treated group at 100 ng/10 μL compared with the sham-treated group. Immunohistochemical examination showed significantly decreased collagen type III deposition in the bFGF-treated group at 100 ng/10 μL compared with the sham-treated group. qRT-PCR revealed that hyaluronan synthase 2 (Has2), Has3, and hepatocyte growth factor were upregulated in bFGF-treated groups compared with sham-treated group. The current results suggest that local application of bFGF at the time of injury has the potential to prevent vocal fold scarring. Preventive injection of bFGF could be applied at the time of phonomicrosurgery to avoid postoperative scar formation. N/A. Laryngoscope, 2016 127:E67-E74, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  16. Experimental investigation of protein folding and misfolding.

    Science.gov (United States)

    Dobson, Christopher M

    2004-09-01

    Newly synthesised proteins need to fold, often to intricate and close-packed structures, in order to function. The underlying mechanism by which this complex process takes place both in vitro and in vivo is now becoming understood, at least in general terms, as a result of the application of a wide range of biophysical and computational methods used in combination with the techniques of biochemistry and protein engineering. It is increasingly apparent, however, that folding is not only crucial for generating biological activity, but that it is also coupled to a wide range of processes within the cell, ranging from the trafficking of proteins to specific organelles to the regulation of cell growth and differentiation. Not surprisingly, therefore, the failure of proteins to fold appropriately, or to remain correctly folded, is associated with a large number of cellular malfunctions that give rise to disease. Misfolding, and its consequences such as aggregation, can be investigated by extending the types of techniques used to study the normal folding process. Application of these techniques is enabling the development of a unified description of the interconversion and regulation of the different conformational states available to proteins in living systems. Such a description proves a generic basis for understanding the fundamental links between protein misfolding and its associated clinical disorders, such as Alzheimer's disease and Type II diabetes, and for exploring novel therapeutic strategies directed at their prevention and treatment on a rational basis.

  17. Bifurcation of self-folded polygonal bilayers

    Science.gov (United States)

    Abdullah, Arif M.; Braun, Paul V.; Hsia, K. Jimmy

    2017-09-01

    Motivated by the self-assembly of natural systems, researchers have investigated the stimulus-responsive curving of thin-shell structures, which is also known as self-folding. Self-folding strategies not only offer possibilities to realize complicated shapes but also promise actuation at small length scales. Biaxial mismatch strain driven self-folding bilayers demonstrate bifurcation of equilibrium shapes (from quasi-axisymmetric doubly curved to approximately singly curved) during their stimulus-responsive morphing behavior. Being a structurally instable, bifurcation could be used to tune the self-folding behavior, and hence, a detailed understanding of this phenomenon is appealing from both fundamental and practical perspectives. In this work, we investigated the bifurcation behavior of self-folding bilayer polygons. For the mechanistic understanding, we developed finite element models of planar bilayers (consisting of a stimulus-responsive and a passive layer of material) that transform into 3D curved configurations. Our experiments with cross-linked Polydimethylsiloxane samples that change shapes in organic solvents confirmed our model predictions. Finally, we explored a design scheme to generate gripper-like architectures by avoiding the bifurcation of stimulus-responsive bilayers. Our research contributes to the broad field of self-assembly as the findings could motivate functional devices across multiple disciplines such as robotics, artificial muscles, therapeutic cargos, and reconfigurable biomedical devices.

  18. Energetics and Kinetics of trans-SNARE Zippering

    Science.gov (United States)

    Rebane, Aleksander A.; Shu, Tong; Krishnakumar, Shyam; Rothman, James E.; Zhang, Yongli

    Synaptic exocytosis relies on assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins into a four-helix bundle to drive membrane fusion. Complementary SNAREs anchored to the synaptic vesicle (v-SNARE) and the plasma membrane (t-SNARE) associate from their N-termini, transiting a half-assembled intermediate (trans-SNARE), and ending at their C-termini with a rapid power stroke that leads to membrane fusion. Although cytosolic SNARE assembly has been characterized, it remains unknown how membranes modulate the energetics and kinetics of SNARE assembly. Here, we present optical tweezers measurements on folding of single membrane proteins in phospholipid bilayers. To our knowledge, this is the first such report. We measured the energetics, kinetics, and assembly intermediates of trans-SNAREs formed between a t-SNARE inserted into a bead-supported bilayer and a v-SNARE in a nanodisc. We found that the repulsive force of the apposed membranes increases the lifetime of the half-assembled intermediate. Our findings provide a single-molecule platform to study the regulation of trans-SNARE assembly by proteins that act on the half-assembled state, and thus reveal the mechanistic basis of the speed and high fidelity of synaptic transmission. This work was supported by US National Institutes of Health Grants F31 GM119312-01 (to A.A.R) and R01 GM093341 (to Y.Z.).

  19. Non-cylindrical fold growth in the Zagros fold and thrust belt (Kurdistan, NE-Iraq)

    Science.gov (United States)

    Bartl, Nikolaus; Bretis, Bernhard; Grasemann, Bernhard; Lockhart, Duncan

    2010-05-01

    The Zagros mountains extends over 1800 km from Kurdistan in N-Iraq to the Strait of Hormuz in Iran and is one of the world most promising regions for the future hydrocarbon exploration. The Zagros Mountains started to form as a result of the collision between the Eurasian and Arabian Plates, whose convergence began in the Late Cretaceous as part of the Alpine-Himalayan orogenic system. Geodetic and seismological data document that both plates are still converging and that the fold and thrust belt of the Zagros is actively growing. Extensive hydrocarbon exploration mainly focuses on the antiforms of this fold and thrust belt and therefore the growth history of the folds is of great importance. This work investigates by means of structural field work and quantitative geomorphological techniques the progressive fold growth of the Permam, Bana Bawi- and Safeen- Anticlines located in the NE of the city of Erbil in the Kurdistan region of Northern Iraq. This part of the Zagros fold and thrust belt belongs to the so-called Simply Folded Belt, which is dominated by gentle to open folding. Faults or fault related folds have only minor importance. The mechanical anisotropy of the formations consisting of a succession of relatively competent (massive dolomite and limestone) and incompetent (claystone and siltstone) sediments essentially controls the deformation pattern with open to gentle parallel folding of the competent layers and flexural flow folding of the incompetent layers. The characteristic wavelength of the fold trains is around 10 km. Due to faster erosion of the softer rock layers in the folded sequence, the more competent lithologies form sharp ridges with steeply sloping sides along the eroded flanks of the anticlines. Using an ASTER digital elevation model in combination with geological field data we quantified 250 drainage basins along the different limbs of the subcylindrical Permam, Bana Bawi- and Safeen- Anticlines. Geomorphological indices of the drainage

  20. The Risk of Vocal Fold Atrophy after Serial Corticosteroid Injections of the Vocal Fold.

    Science.gov (United States)

    Shi, Lucy L; Giraldez-Rodriguez, Laureano A; Johns, Michael M

    2016-11-01

    The aim of this study was to illustrate the risk of vocal fold atrophy in patients who receive serial subepithelial steroid injections for vocal fold scar. This study is a retrospective case report of two patients who underwent a series of weekly subepithelial infusions of 10 mg/mL dexamethasone for benign vocal fold lesion. Shortly after the procedures, both patients developed a weak and breathy voice. The first patient was a 53-year-old man with radiation-induced vocal fold stiffness. Six injections were performed unilaterally, and 1 week later, he developed unilateral vocal fold atrophy with new glottal insufficiency. The second patient was a 67-year-old woman with severe vocal fold inflammation related to laryngitis and calcinosis, Raynaud's phenomenon, esophagean dysmotility, sclerodactyly, and telangiectasia (CREST) syndrome. Five injections were performed bilaterally, and 1 week later, she developed bilateral vocal fold atrophy with a large midline glottal gap during phonation. In both cases, the steroid-induced vocal atrophy resolved spontaneously after 4 months. Serial subepithelial steroid infusions of the vocal folds, although safe in the majority of patients, carry the risk of causing temporary vocal fold atrophy when given at short intervals. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  1. Improvement of a Vocal Fold Imaging System

    Energy Technology Data Exchange (ETDEWEB)

    Krauter, K. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-01

    Medical professionals can better serve their patients through continual update of their imaging tools. A wide range of pathologies and disease may afflict human vocal cords or, as they’re also known, vocal folds. These diseases can affect human speech hampering the ability of the patient to communicate. Vocal folds must be opened for breathing and the closed to produce speech. Currently methodologies to image markers of potential pathologies are difficult to use and often fail to detect early signs of disease. These current methodologies rely on a strobe light and slower frame rate camera in an attempt to obtain images as the vocal folds travel over the full extent of their motion.

  2. Analysis of high-fold gamma data

    International Nuclear Information System (INIS)

    Radford, D. C.; Cromaz, M.; Beyer, C. J.

    1999-01-01

    Historically, γ-γ and γ-γ-γ coincidence spectra were utilized to build nuclear level schemes. With the development of large detector arrays, it has became possible to analyze higher fold coincidence data sets. This paper briefly reports on software to analyze 4-fold coincidence data sets that allows creation of 4-fold histograms (hypercubes) of at least 1024 channels per side (corresponding to a 43 gigachannel data space) that will fit onto a few gigabytes of disk space, and extraction of triple-gated spectra in a few seconds. Future detector arrays may have even much higher efficiencies, and detect as many as 15 or 20 γ rays simultaneously; such data will require very different algorithms for storage and analysis. Difficulties inherent in the analysis of such data are discussed, and two possible new solutions are presented, namely adaptive list-mode systems and 'list-list-mode' storage

  3. Extreme Mechanics: Self-Folding Origami

    Science.gov (United States)

    Santangelo, Christian D.

    2017-03-01

    Origami has emerged as a tool for designing three-dimensional structures from flat films. Because they can be fabricated by lithographic or roll-to-roll processing techniques, they have great potential for the manufacture of complicated geometries and devices. This article discusses the mechanics of origami and kirigami with a view toward understanding how to design self-folding origami structures. Whether an origami structure can be made to fold autonomously depends strongly on the geometry and kinematics of the origami fold pattern. This article collects some of the results on origami rigidity into a single framework, and discusses how these aspects affect the foldability of origami. Despite recent progress, most problems in origami and origami design remain completely open.

  4. In vitro folding of inclusion body proteins.

    Science.gov (United States)

    Rudolph, R; Lilie, H

    1996-01-01

    Insoluble, inactive inclusion bodies are frequently formed upon recombinant protein production in transformed microorganisms. These inclusion bodies, which contain the recombinant protein in an highly enriched form, can be isolated by solid/liquid separation. After solubilization, native proteins can be generated from the inactive material by using in vitro folding techniques. New folding procedures have been developed for efficient in vitro reconstitution of complex hydrophobic, multidomain, oligomeric, or highly disulfide-bonded proteins. These protocols take into account process parameters such as protein concentration, catalysis of disulfide bond formation, temperature, pH, and ionic strength, as well as specific solvent ingredients that reduce unproductive side reactions. Modification of the protein sequence has been exploited to improve in vitro folding.

  5. Exact folded-band chaotic oscillator.

    Science.gov (United States)

    Corron, Ned J; Blakely, Jonathan N

    2012-06-01

    An exactly solvable chaotic oscillator with folded-band dynamics is shown. The oscillator is a hybrid dynamical system containing a linear ordinary differential equation and a nonlinear switching condition. Bounded oscillations are provably chaotic, and successive waveform maxima yield a one-dimensional piecewise-linear return map with segments of both positive and negative slopes. Continuous-time dynamics exhibit a folded-band topology similar to Rössler's oscillator. An exact solution is written as a linear convolution of a fixed basis pulse and a discrete binary sequence, from which an equivalent symbolic dynamics is obtained. The folded-band topology is shown to be dependent on the symbol grammar.

  6. SDEM modelling of fault-propagation folding

    DEFF Research Database (Denmark)

    Clausen, O.R.; Egholm, D.L.; Poulsen, Jane Bang

    2009-01-01

    and variations in Mohr-Coulomb parameters including internal friction. Using SDEM modelling, we have mapped the propagation of the tip-line of the fault, as well as the evolution of the fold geometry across sedimentary layers of contrasting rheological parameters, as a function of the increased offset......Understanding the dynamics and kinematics of fault-propagation-folding is important for evaluating the associated hydrocarbon play, for accomplishing reliable section balancing (structural reconstruction), and for assessing seismic hazards. Accordingly, the deformation style of fault-propagation...... a precise indication of when faults develop and hence also the sequential evolution of secondary faults. Here we focus on the generation of a fault -propagated fold with a reverse sense of motion at the master fault, and varying only the dip of the master fault and the mechanical behaviour of the deformed...

  7. Structural and kinetic mapping of side-chain exposure onto the protein energy landscape.

    Science.gov (United States)

    Bernstein, Rachel; Schmidt, Kierstin L; Harbury, Pehr B; Marqusee, Susan

    2011-06-28

    Identification and characterization of structural fluctuations that occur under native conditions is crucial for understanding protein folding and function, but such fluctuations are often rare and transient, making them difficult to study. Native-state hydrogen exchange (NSHX) has been a powerful tool for identifying such rarely populated conformations, but it generally reveals no information about the placement of these species along the folding reaction coordinate or the barriers separating them from the folded state and provides little insight into side-chain packing. To complement such studies, we have performed native-state alkyl-proton exchange, a method analogous to NSHX that monitors cysteine modification rather than backbone amide exchange, to examine the folding landscape of Escherichia coli ribonuclease H, a protein well characterized by hydrogen exchange. We have chosen experimental conditions such that the rate-limiting barrier acts as a kinetic partition: residues that become exposed only upon crossing the unfolding barrier are modified in the EX1 regime (alkylation rates report on the rate of unfolding), while those exposed on the native side of the barrier are modified predominantly in the EX2 regime (alkylation rates report on equilibrium populations). This kinetic partitioning allows for identification and placement of partially unfolded forms along the reaction coordinate. Using this approach we detect previously unidentified, rarely populated conformations residing on the native side of the barrier and identify side chains that are modified only upon crossing the unfolding barrier. Thus, in a single experiment under native conditions, both sides of the rate-limiting barrier are investigated.

  8. Natural triple beta-stranded fibrous folds.

    Science.gov (United States)

    Mitraki, Anna; Papanikolopoulou, Katerina; Van Raaij, Mark J

    2006-01-01

    A distinctive family of beta-structured folds has recently been described for fibrous proteins from viruses. Virus fibers are usually involved in specific host-cell recognition. They are asymmetric homotrimeric proteins consisting of an N-terminal virus-binding tail, a central shaft or stalk domain, and a C-terminal globular receptor-binding domain. Often they are entirely or nearly entirely composed of beta-structure. Apart from their biological relevance and possible gene therapy applications, their shape, stability, and rigidity suggest they may be useful as blueprints for biomechanical design. Folding and unfolding studies suggest their globular C-terminal domain may fold first, followed by a "zipping-up" of the shaft domains. The C-terminal domains appear to be important for registration because peptides corresponding to shaft domains alone aggregate into nonnative fibers and/or amyloid structures. C-terminal domains can be exchanged between different fibers and the resulting chimeric proteins are useful as a way to solve structures of unknown parts of the shaft domains. The following natural triple beta-stranded fibrous folds have been discovered by X-ray crystallography: the triple beta-spiral, triple beta-helix, and T4 short tail fiber fold. All have a central longitudinal hydrophobic core and extensive intermonomer polar and nonpolar interactions. Now that a reasonable body of structural and folding knowledge has been assembled about these fibrous proteins, the next challenge and opportunity is to start using this information in medical and industrial applications such as gene therapy and nanotechnology.

  9. Folding models for elastic and inelastic scattering

    International Nuclear Information System (INIS)

    Satchler, G.R.

    1982-01-01

    The most widely used models are the optical model potential (OMP) for elastic scattering, and its generalization to non-spherical shapes, the deformed optical model potential (DOMP) for inelastic scattering. These models are simple and phenomenological; their parameters are adjusted so as to reproduce empirical data. Nonetheless, there are certain, not always well-defined, constraints to be imposed. The potential shapes and their parameter values must be reasonable and should vary in a smooth and systematic way with the masses of the colliding nuclei and their energy. One way of satisfying these constraints, without going back to a much more fundamental theory, is through the use of folding models. The basic justification for using potentials of the Woods-Saxon shape for nucleon-nucleus scattering, for example, is our knowledge that a nuclear density distribution is more-or-less constant in the nuclear interior with a diffuse surface. When this is folded with a short-range nucleon-nucleon interaction, the result is a similar shape with a more diffuse surface. Folding procedures allow us to incorporate many aspects of nuclear structure (although the nuclear size is one of the most important), as well as theoretical ideas about the effective interaction of two nucleons within nuclear matter. It also provides us with a means of linking information obtained from nuclear (hadronic) interactions with that from other sources, as well as correlating that from the use of different hadronic probes. Folding model potentials, single-folded potentials, and the double-folding model including applications to heavy-ion scattering are discussed

  10. Laryngeal ultrasound and pediatric vocal fold nodules.

    Science.gov (United States)

    Ongkasuwan, Julina; Devore, Danielle; Hollas, Sarah; Jones, Jeremy; Tran, Brandon

    2017-03-01

    The term vocal fold nodules refers to bilateral thickening of the membranous folds with minimal impairment of the vibratory properties of the mucosa. Nodules are thought to be related to repetitive mechanical stress, associated with voice use patterns. Diagnosis is typically made in the office via either rigid or flexible laryngeal stroboscopy. Depending on the individual child, obtaining an optimal view of the larynx can be difficult if not impossible. Recent advances in high-frequency ultrasonography allows for transcervical examination of laryngeal structures. The goal of this project was to determine if laryngeal ultrasound (LUS) can be used to identify vocal fold nodules in dysphonic children. Prospective case-control study in which the patient acted as his or her own control. Forty-six pediatric patients were recruited for participation in this study; the mean age was 4.8 years. Twenty-three did not have any vocal fold lesions and 23 had a diagnosis of vocal fold nodules on laryngeal stroboscopy. Recorded LUSs were reviewed by two pediatric radiologists who were blinded to the nodule status. There was substantial inter-rater agreement (κ = 0.70, 95% confidence interval [CI]: 0.50-0.89) between the two radiologists regarding the presence of nodules. There was also substantial agreement (κ = 0.87, 95% CI: 0.72-1) between LUS and laryngeal stroboscopy. Sensitivity of LUS was 100% (95% CI: 85%-100%) and specificity was 87% (95% CI: 66%-97%). LUS can be used to identify vocal fold nodules in children with substantial agreement with laryngeal stroboscopy. 3b Laryngoscope, 127:676-678, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  11. Protein folding: Over half a century lasting quest. Comment on "There and back again: Two views on the protein folding puzzle" by Alexei V. Finkelstein et al.

    Science.gov (United States)

    Krokhotin, Andrey; Dokholyan, Nikolay V.

    2017-07-01

    Most proteins fold into unique three-dimensional (3D) structures that determine their biological functions, such as catalytic activity or macromolecular binding. Misfolded proteins can pose a threat through aberrant interactions with other proteins leading to a number of diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis [1,2]. What does determine 3D structure of proteins? The first clue to this question came more than fifty years ago when Anfinsen demonstrated that unfolded proteins can spontaneously fold to their native 3D structures [3,4]. Anfinsen's experiments lead to the conclusion that proteins fold to unique native structure corresponding to the stable and kinetically accessible free energy minimum, and protein native structure is solely determined by its amino acid sequence. The question of how exactly proteins find their free energy minimum proved to be a difficult problem. One of the puzzles, initially pointed out by Levinthal, was an inconsistency between observed protein folding times and theoretical estimates. A self-avoiding polymer model of a globular protein of 100-residues length on a cubic lattice can sample at least 1047 states. Based on the assumption that conformational sampling occurs at the highest vibrational mode of proteins (∼picoseconds), predicted folding time by searching among all the possible conformations leads to ∼1027 years (much larger than the age of the universe) [5]. In contrast, observed protein folding time range from microseconds to minutes. Due to tremendous theoretical progress in protein folding field that has been achieved in past decades, the source of this inconsistency is currently understood that is thoroughly described in the review by Finkelstein et al. [6].

  12. MICROFLUIDIC MIXERS FOR THE INVESTIGATION OF PROTEIN FOLDING USING SYNCHROTRON RADIATION CIRCULAR DICHROISM SPECTROSCOPY

    International Nuclear Information System (INIS)

    Kane, A; Hertzog, D; Baumgartel, P; Lengefeld, J; Horsley, D; Schuler, B; Bakajin, O

    2006-01-01

    The purpose of this study is to design, fabricate and optimize microfluidic mixers to investigate the kinetics of protein secondary structure formation with Synchrotron Radiation Circular Dichroism (SRCD) spectroscopy. The mixers are designed to rapidly initiate protein folding reaction through the dilution of denaturant. The devices are fabricated out of fused silica, so that they are transparent in the UV. We present characterization of mixing in the fabricated devices, as well as the initial SRCD data on proteins inside the mixers

  13. Stretching and folding mechanism in foams

    International Nuclear Information System (INIS)

    Tufaile, Alberto; Pedrosa Biscaia Tufaile, Adriana

    2008-01-01

    We have described the stretching and folding of foams in a vertical Hele-Shaw cell containing air and a surfactant solution, from a sequence of upside-down flips. Besides the fractal dimension of the foam, we have observed the logistic growth for the soap film length. The stretching and folding mechanism is present during the foam formation, and this mechanism is observed even after the foam has reached its respective maximum fractal dimension. Observing the motion of bubbles inside the foam, large bubbles present power spectrum associated with random walk motion in both directions, while the small bubbles are scattered like balls in a Galton board

  14. Assessment of thyroplasty for vocal fold paralysis

    DEFF Research Database (Denmark)

    Grøntved, Ågot Møller; Faber, Christian; Jakobsen, John

    2009-01-01

    INTRODUCTION: Thyroplasty with silicone rubber implantation is a surgical procedure for treatment of patients with vocal fold paralysis. The aim of the present study was to evaluate the outcome of the operation and to monitor which of the analyses were the more beneficial. MATERIAL AND METHODS...... because it offers a quantitative measure of the voice capacity and intensity, which are the major problems experienced by patients with vocal fold paralysis. Used together, these tools are highly instrumental in guiding the patient's choice of surgery or no surgery. Udgivelsesdato: 2009-Jan-12...

  15. Stretching and folding mechanism in foams

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, Alberto [Escola de Artes, Ciencias e Humanidades, Soft Matter Laboratory, Universidade de Sao Paulo, 03828-000 Sao Paulo, SP (Brazil)], E-mail: tufaile@usp.br; Pedrosa Biscaia Tufaile, Adriana [Escola de Artes, Ciencias e Humanidades, Soft Matter Laboratory, Universidade de Sao Paulo, 03828-000 Sao Paulo, SP (Brazil)

    2008-10-13

    We have described the stretching and folding of foams in a vertical Hele-Shaw cell containing air and a surfactant solution, from a sequence of upside-down flips. Besides the fractal dimension of the foam, we have observed the logistic growth for the soap film length. The stretching and folding mechanism is present during the foam formation, and this mechanism is observed even after the foam has reached its respective maximum fractal dimension. Observing the motion of bubbles inside the foam, large bubbles present power spectrum associated with random walk motion in both directions, while the small bubbles are scattered like balls in a Galton board.

  16. Multiple routes and milestones in the folding of HIV-1 protease monomer.

    Directory of Open Access Journals (Sweden)

    Massimiliano Bonomi

    Full Text Available Proteins fold on a time scale incompatible with a mechanism of random search in conformational space thus indicating that somehow they are guided to the native state through a funneled energetic landscape. At the same time the heterogeneous kinetics suggests the existence of several different folding routes. Here we propose a scenario for the folding mechanism of the monomer of HIV-1 protease in which multiple pathways and milestone events coexist. A variety of computational approaches supports this picture. These include very long all-atom molecular dynamics simulations in explicit solvent, an analysis of the network of clusters found in multiple high-temperature unfolding simulations and a complete characterization of free-energy surfaces carried out using a structure-based potential at atomistic resolution and a combination of metadynamics and parallel tempering. Our results confirm that the monomer in solution is stable toward unfolding and show that at least two unfolding pathways exist. In our scenario, the formation of a hydrophobic core is a milestone in the folding process which must occur along all the routes that lead this protein towards its native state. Furthermore, the ensemble of folding pathways proposed here substantiates a rational drug design strategy based on inhibiting the folding of HIV-1 protease.

  17. Four residues of propeptide are essential for precursor folding of nattokinase.

    Science.gov (United States)

    Jia, Yan; Cao, Xinhua; Deng, Yu; Bao, Wei; Tang, Changyan; Ding, Hanjing; Zheng, Zhongliang; Zou, Guolin

    2014-11-01

    Subtilisin propeptide functions as an intramolecular chaperone that guides precursor folding. Nattokinase, a member of subtilisin family, is synthesized as a precursor consisting of a signal peptide, a propeptide, and a subtilisin domain, and the mechanism of its folding remains to be understood. In this study, the essential residues of nattokinase propeptide which contribute to precursor folding were determined. Deletion analysis showed that the conserved regions in propeptide were important for precursor folding. Single-site and multi-site mutagenesis studies confirmed the role of Tyr10, Gly13, Gly34, and Gly35. During stage (i) and (ii) of precursor folding, Tyr10 and Gly13 would form the part of interface with subtilisin domain. While Gly34 and Gly35 connected with an α-helix that would stabilize the structure of propeptide. The quadruple Ala mutation, Y10A/G13A/G34A/G35A, resulted in a loss of the chaperone function for the propeptide. This work showed the essential residues of propeptide for precursor folding via secondary structure and kinetic parameter analyses. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  18. Transport kinetics of hydrogen permeable lanthanum tungstate

    Energy Technology Data Exchange (ETDEWEB)

    Falkenstein, Andreas

    2017-01-24

    The electrical conductivity relaxation technique is a widely used method to determine the oxygen transport parameters of mixed ionic-electronic conductors. In recent years, it has been modified to investigate the hydration behavior of proton conducting mixed conductors, giving access to up to four transport parameters in a single relaxation experiment, the diffusion coefficients and surface reaction rates of hydrogen and oxygen. In this work, the transport properties of the fluorite type protonic conductor lanthanum tungstate have been investigated by means of electrical conductivity relaxation. The experiments were performed in a temperature range from 650 C to 950 C, in a pO{sub 2} range from 3 mbar to 100 mbar and in a pH{sub 2}O range from 10 mbar to 100 mbar and in dry atmosphere. At high temperatures, the conductivity relaxation curve follows the expected two-fold non-monotonic behavior upon hydration. At low temperatures, however, the contribution of the fast hydrogen kinetic decreases and by a further decrease of the temperature, the relaxation shows two-fold monotonic behavior. The power factors - the contribution of each single fold relaxation curve to the resulting two-fold relaxation curve, which is a superposition - have been derived to explain the behavior mentioned above. The activation energy of the oxygen incorporation is rather low. Hence, oxidation experiments were performed in dry atmospheres in order to investigate if the origin of the oxygen species is relevant. The results revealed higher activation energies, which was expected, but also higher absolute values of the surface reaction rate and the diffusion coefficient. Oxidation experiments with increasing humidity revealed that the increased diffusivity cannot be attributed to the total concentrations of electron holes and proton interstitials. First experiments using spectroscopic relaxation, which is dependent on the concentration of hydroxy-anions only, were performed. Absorption bands

  19. Fracture zones constrained by neutral surfaces in a fault-related fold: Insights from the Kelasu tectonic zone, Kuqa Depression

    Science.gov (United States)

    Sun, Shuai; Hou, Guiting; Zheng, Chunfang

    2017-11-01

    Stress variation associated with folding is one of the controlling factors in the development of tectonic fractures, however, little attention has been paid to the influence of neutral surfaces during folding on fracture distribution in a fault-related fold. In this study, we take the Cretaceous Bashijiqike Formation in the Kuqa Depression as an example and analyze the distribution of tectonic fractures in fault-related folds by core observation and logging data analysis. Three fracture zones are identified in a fault-related fold: a tensile zone, a transition zone and a compressive zone, which may be constrained by two neutral surfaces of fold. Well correlation reveals that the tensile zone and the transition zone reach the maximum thickness at the fold hinge and get thinner in the fold limbs. A 2D viscoelastic stress field model of a fault-related fold was constructed to further investigate the mechanism of fracturing. Statistical and numerical analysis reveal that the tensile zone and the transition zone become thicker with decreasing interlimb angle. Stress variation associated with folding is the first level of control over the general pattern of fracture distribution while faulting is a secondary control over the development of local fractures in a fault-related fold.

  20. Side chain and backbone contributions of Phe508 to CFTR folding

    Energy Technology Data Exchange (ETDEWEB)

    Thibodeau, Patrick H.; Brautigam, Chad A.; Machius, Mischa; Thomas, Philip J. (U. of Texas-SMED)

    2010-12-07

    Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an integral membrane protein, cause cystic fibrosis (CF). The most common CF-causing mutant, deletion of Phe508, fails to properly fold. To elucidate the role Phe508 plays in the folding of CFTR, missense mutations at this position were generated. Only one missense mutation had a pronounced effect on the stability and folding of the isolated domain in vitro. In contrast, many substitutions, including those of charged and bulky residues, disrupted folding of full-length CFTR in cells. Structures of two mutant nucleotide-binding domains (NBDs) reveal only local alterations of the surface near position 508. These results suggest that the peptide backbone plays a role in the proper folding of the domain, whereas the side chain plays a role in defining a surface of NBD1 that potentially interacts with other domains during the maturation of intact CFTR.

  1. A comparison of RNA folding measures

    DEFF Research Database (Denmark)

    Freyhult, E.; Gardner, P. P.; Moulton, V.

    2005-01-01

    the behaviour of these measures over a large range of Rfam ncRNA families. Such measures can be useful in, for example, identifying novel ncRNAs, and indicating the presence of alternate RNA foldings. Results Our analysis shows that ncRNAs, but not mRNAs, in general have lower minimal free energy (MFE) than....... Conclusion Due to the correlations between the different measures we find that it is sufficient to use only two of them in RNA folding studies, one to test if the sequence in question has lower energy than a random sequence with the same dinucleotide frequency (the Z-score) and the other to see......Background In the last few decades there has been a great deal of discussion concerning whether or not noncoding RNA sequences (ncRNAs) fold in a more well-defined manner than random sequences. In this paper, we investigate several existing measures for how well an RNA sequence folds, and compare...

  2. Mapping the universe of RNA tetraloop folds

    DEFF Research Database (Denmark)

    Bottaro, Sandro; Lindorff-Larsen, Kresten

    2017-01-01

    We report a map of RNA tetraloop conformations constructed by calculating pairwise distances among all experimentally determined four-nucleotide hairpin loops. Tetraloops with similar structures are clustered together and, as expected, the two largest clusters are the canonical GNRA and UNCG fold...

  3. Fold in Origami and Unfold Math

    Science.gov (United States)

    Georgeson, Joseph

    2011-01-01

    Students enjoy origami and like making everything from paper cranes to footballs out of small, colorful squares of paper. They can invent their own shapes and are intrigued by the polyhedrons that they can construct. Paper folding is fun, but where is the math? Unless teachers develop lessons that address mathematical objectives, origami could be…

  4. Self-folding graphene-polymer bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Tao [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China); Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Yoon, ChangKyu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Jin, Qianru [Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Li, Mingen [Department of Physics, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Liu, Zewen [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China); Gracias, David H., E-mail: dgracias@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2015-05-18

    In order to incorporate the extraordinary intrinsic thermal, electrical, mechanical, and optical properties of graphene with three dimensional (3D) flexible substrates, we introduce a solvent-driven self-folding approach using graphene-polymer bilayers. A polymer (SU-8) film was spin coated atop chemically vapor deposited graphene films on wafer substrates and graphene-polymer bilayers were patterned with or without metal electrodes using photolithography, thin film deposition, and etching. After patterning, the bilayers were released from the substrates and they self-folded to form fully integrated, curved, and folded structures. In contrast to planar graphene sensors on rigid substrates, we assembled curved and folded sensors that are flexible and they feature smaller form factors due to their 3D geometry and large surface areas due to their multiple rolled architectures. We believe that this approach could be used to assemble a range of high performance 3D electronic and optical devices of relevance to sensing, diagnostics, wearables, and energy harvesting.

  5. Targeted transtracheal stimulation for vocal fold closure.

    Science.gov (United States)

    Hadley, Aaron J; Thompson, Paul; Kolb, Ilya; Hahn, Elizabeth C; Tyler, Dustin J

    2014-06-01

    Paralysis of the structures in the head and neck due to stroke or other neurological disorder often causes dysphagia (difficulty in swallowing). Patients with dysphagia have a significantly higher incidence of aspiration pneumonia and death. The recurrent laryngeal nerve (RLN), which innervates the intrinsic laryngeal muscles that control the vocal folds, travels superiorly in parallel to the trachea in the tracheoesophageal groove. This study tests the hypothesis that functional electrical stimulation (FES) applied via transtracheal electrodes can produce controlled vocal fold adduction. Bipolar electrodes were placed at 15° intervals around the interior mucosal surface of the canine trachea, and current was applied to the tissue while electromyography (EMG) from the intrinsic laryngeal muscles and vocal fold movement visualization via laryngoscopy were recorded. The lowest EMG thresholds were found at an average location of 100° to the left of the ventral midsagittal line and 128° to the right. A rotatable pair of bipolar electrodes spaced 230° apart were able to stimulate bilaterally both RLNs in every subject. Laryngoscopy showed complete glottal closure with transtracheal stimulation in six of the eight subjects, and this closure was maintained under simultaneous FES-induced laryngeal elevation. Transtracheal stimulation is an effective tool for minimally invasive application of FES to induce vocal fold adduction, providing an alternative mechanism to study airway protection.

  6. Amylose folding under the influence of lipids

    NARCIS (Netherlands)

    Lopez, Cesar A.; de Vries, Alex H.; Marrink, Siewert J.

    2012-01-01

    The molecular dynamics simulation technique was used to study the folding and complexation process of a short amylose fragment in the presence of lipids. In aqueous solution, the amylose chain remains as an extended left-handed helix. After the addition of lipids in the system, however, we observe

  7. Towards a systematic classification of protein folds

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Bohr, Henrik

    1997-01-01

    structures are given a unique name, which simultaneously represent a linear string of physical coupling constants describing hinge spin interactions. We have defined a metric and a precise distance measure between the fold classes. An automated procedure is constructed in which any protein structure...

  8. Folding and Fracturing of Rocks: the background

    Science.gov (United States)

    Ramsay, John G.

    2017-04-01

    This book was generated by structural geology teaching classes at Imperial College. I was appointed lecturer during 1957 and worked together with Dr Gilbert Wilson teaching basic structural geology at B.Sc level. I became convinced that the subject, being essentially based on geometric field observations, required a firm mathematical basis for its future development. In particular it seemed to me to require a very sound understanding of stress and strain. My field experience suggested that a knowledge of two- and three-demensional strain was critical in understanding natural tectonic processes. I found a rich confirmation for this in early publications of deformed fossils, oolitic limestones and spotted slates made by several geologists around the beginning of the 20th century (Sorby, Philips, Haughton, Harker) often using surprisingly sophisticated mathematical methods. These methods were discussed and elaborated in Folding and Fracturing of Rocks in a practical way. The geometric features of folds were related to folding mechanisms and the fold related small scale structures such as cleavage, schistosity and lineation explained in terms of rock strain. My work in the Scottish Highlands had shown just how repeated fold superposition could produce very complex geometric features, while further work in other localities suggested that such geometric complications are common in many orogenic zones. From the development of structural geological studies over the past decades it seems that the readers of this book have found many of the ideas set out are still of practical application. The mapping of these outcrop-scale structures should be emphasised in all field studies because they can be seen as ''fingerprints'' of regional scale tectonic processes. My own understanding of structural geology has been inspired by field work and I am of the opinion that future progress in understanding will be likewise based on careful observation and measurement of the features of

  9. ETIOLOGICAL FACTORS FOR VOCAL FOLD POLYP FORMATION

    Directory of Open Access Journals (Sweden)

    DAŠA GLUVAJIĆ

    2016-05-01

    Full Text Available Background: Vocal fold polyp is one of the most common causes for hoarseness. Many different etiological factors contribute to vocal fold polyp formation. The aim of the study was to find out whether the etiological factors for polyp formation have changed in the last 30 years.Methods: Eighty-one patients with unilateral vocal fold polyp were included in the study. A control group was composed of 50 volunteers without voice problems who matched the patients by age and gender. The data about etiological factors and the findings of phoniatric examination were obtained from the patients' medical documentation and from the questionnaires for the control group. The incidence of etiological factors was compared between the two groups. The program SPSS, Version 18 was used for statistical analysis.Results: The most frequent etiological factors were occupational voice load, GER, allergy and smoking. In 79% of patients 2 – 6 contemporary acting risk factors were found. Occupational voice load (p=0,018 and GER (p=0,004 were significantly more frequent in the patients than in the controls. The other factors did not significantly influence the polyp formation.Conclusions: There are several factors involved simultaneously in the formation of vocal fold polyps both nowadays and 30 years ago. Some of the most common factors remain the same (voice load, smoking, others are new (GER, allergy, which is probably due to the different lifestyle and working conditions than 30 years ago. Occupational voice load and GER were significantly more frequently present in the patients with polyp than in the control group. Regarding the given results it is important to instruct workers with professional vocal load about etiological factors for vocal fold polyp formation.

  10. Inverse folding of RNA pseudoknot structures

    Directory of Open Access Journals (Sweden)

    Li Linda YM

    2010-06-01

    Full Text Available Abstract Background RNA exhibits a variety of structural configurations. Here we consider a structure to be tantamount to the noncrossing Watson-Crick and G-U-base pairings (secondary structure and additional cross-serial base pairs. These interactions are called pseudoknots and are observed across the whole spectrum of RNA functionalities. In the context of studying natural RNA structures, searching for new ribozymes and designing artificial RNA, it is of interest to find RNA sequences folding into a specific structure and to analyze their induced neutral networks. Since the established inverse folding algorithms, RNAinverse, RNA-SSD as well as INFO-RNA are limited to RNA secondary structures, we present in this paper the inverse folding algorithm Inv which can deal with 3-noncrossing, canonical pseudoknot structures. Results In this paper we present the inverse folding algorithm Inv. We give a detailed analysis of Inv, including pseudocodes. We show that Inv allows to design in particular 3-noncrossing nonplanar RNA pseudoknot 3-noncrossing RNA structures-a class which is difficult to construct via dynamic programming routines. Inv is freely available at http://www.combinatorics.cn/cbpc/inv.html. Conclusions The algorithm Inv extends inverse folding capabilities to RNA pseudoknot structures. In comparison with RNAinverse it uses new ideas, for instance by considering sets of competing structures. As a result, Inv is not only able to find novel sequences even for RNA secondary structures, it does so in the context of competing structures that potentially exhibit cross-serial interactions.

  11. Regeneration of Vocal Fold Mucosa Using Tissue-Engineered Structures with Oral Mucosal Cells

    Science.gov (United States)

    Fukahori, Mioko; Chitose, Shun-ichi; Sato, Kiminori; Sueyoshi, Shintaro; Kurita, Takashi; Umeno, Hirohito; Monden, Yu; Yamakawa, Ryoji

    2016-01-01

    Objectives Scarred vocal folds result in irregular vibrations during phonation due to stiffness of the vocal fold mucosa. To date, a completely satisfactory corrective procedure has yet to be achieved. We hypothesize that a potential treatment option for this disease is to replace scarred vocal folds with organotypic mucosa. The purpose of this study is to regenerate vocal fold mucosa using a tissue-engineered structure with autologous oral mucosal cells. Study Design Animal experiment using eight beagles (including three controls). Methods A 3 mm by 3 mm specimen of canine oral mucosa was surgically excised and divided into epithelial and subepithelial tissues. Epithelial cells and fibroblasts were isolated and cultured separately. The proliferated epithelial cells were co-cultured on oriented collagen gels containing the proliferated fibroblasts for an additional two weeks. The organotypic cultured tissues were transplanted to the mucosa-deficient vocal folds. Two months after transplantation, vocal fold vibrations and morphological characteristics were observed. Results A tissue-engineered vocal fold mucosa, consisting of stratified epithelium and lamina propria, was successfully fabricated to closely resemble the normal layered vocal fold mucosa. Laryngeal stroboscopy revealed regular but slightly small mucosal waves at the transplanted site. Immunohistochemically, stratified epithelium expressed cytokeratin, and the distributed cells in the lamina propria expressed vimentin. Elastic Van Gieson staining revealed a decreased number of elastic fibers in the lamina propria of the transplanted site. Conclusion The fabricated mucosa with autologous oral mucosal cells successfully restored the vocal fold mucosa. This reconstruction technique could offer substantial clinical advantages for treating intractable diseases such as scarring of the vocal folds. PMID:26730600

  12. Vocal-fold vibration of patients with Reinke's edema observed using high-speed digital imaging.

    Science.gov (United States)

    Watanabe, Takeshi; Kaneko, Kenichi; Sakaguchi, Koichi; Takahashi, Haruo

    2016-12-01

    We aimed to assess the vocal-fold vibration of patients with moderate-to-severe Reinke's edema using high-speed digital imaging (HSDI) and videostroboscopy and to confirm HSDI usefulness in examining the vocal folds with Reinke's edema. We examined the vocal folds of seven patients (six severe and one moderate; six females and one male; aged 55-74 years; mean 64.7 years) with Reinke's edema using HSDI and videostroboscopy. The following characteristics were analyzed: glottic closure, mucosal-wave propagation, left-right asymmetry, phase shift, frequency difference, periodicity, and contact of the true vocal fold with the false vocal fold. HSDI revealed complete glottic closure, anterior-posterior phase shift, and obvious contact of at least one side of the edematous true vocal fold with the ipsilateral false vocal fold in all patients. Mucosal-wave propagation increased in six patients and decreased in one. Left-right asymmetry was observed in six patients. Left-right phase shifts and left-right frequency differences were observed in four and two patients, respectively. The vibration was periodic in four patients, quasi-periodic in three, and aperiodic in none. Anterior-posterior frequency differences were not observed for any patient. The vocal-fold vibration always synchronized with strobolights in two patients, while the vibration occasionally and never synchronized in two and three patients, respectively. In one patient whose vibration occasionally synchronized, videostroboscopy could not reveal the slight left-right frequency difference of the vibration. It was often difficult to observe vocal-fold vibration correctly in patients with severe Reinke's edema using videostroboscopy. However, HSDI was useful for examining these patients. Our results suggest that HSDI can be very useful for examining the vocal folds of patients with severe Reinke's edema. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Cesium removal and kinetics equilibrium: Precipitation kinetics

    International Nuclear Information System (INIS)

    Barnes, M.J.

    1999-01-01

    This task consisted of both non-radioactive and radioactive (tracer) tests examining the influence of potentially significant variables on cesium tetraphenylborate precipitation kinetics. The work investigated the time required to reach cesium decontamination and the conditions that affect the cesium precipitation kinetics

  14. Feedback-controlled electro-kinetic traps for single-molecule ...

    Indian Academy of Sciences (India)

    2014-01-11

    Jan 11, 2014 ... limited residence time of a given molecule within the detection volume. A common ... information on individual folding pathways, as well as to the internal dynamics between ..... Essentials for building an electro-kinetic trap.

  15. Interaction of the Zagros Fold-Thrust Belt and the Arabian-type, deep-seated folds in the Abadan Plain and the Dezful Embayment, SW Iran

    Energy Technology Data Exchange (ETDEWEB)

    Fard, Iraj Abdollahie [National Iranian Oil Co., Exploration Directorate, Tehran (Iran); Braathen, Alvar [Bergen Univ., Centre for Integrated Petroleum Research, Bergen (Norway); Mokhtari, Mohamad [International Institute of Earthquake Engineering and Seismology, Tehran (Iran); Alavi, Seyed Ahmad [Shahid Beheshti Univ., Earth Sciences Faculty, Tehran (Iran)

    2006-07-01

    The Dezful Embayment and Abadan Plain (SW Iran) contain major parts of the remaining Iranian oil reserves. These oil provinces are characterized by two types of structural closure: very gentle N-S- to NE-SW-trending basement-cored anticlines (Arabian-type highs) in the SE; and open to tight, NW-SE-trending thrust-related folds in the NE (Zagros Fold-Thrust Belt; ZFTB). Most deep-seated anticlines are upright and symmetrical in Cretaceous and older units. In some cases they reveal steep faults in their core which, in the light of regional observations, suggest that the basement is involved in the faulting. Untested plays around these anticlines include reefal build-ups, debris flows, truncated sedimentary sections and onlapping clastic units. The ZFTB shows a classic structural style, with overall shortening reflected in thrust displacement declining from the Dezful Embayment towards the frontal zone in the Abadan Plain. The Early Cambrian Hormuz Salt represents the fundamental sole for the fold-thrust belt and locates major fault-propagation folds in the southwestern Dezful Embayment. These folds represent the main petroleum target of the area. Another important unit is the Mid-Miocene Gachsaran Formation. This detachment reveals both in-sequence and out-of-sequence thrusting. Interaction of deep-seated anticlines and fold-thrust structures results in thrust imbrications and formation of duplexes within the Gachsaran Formation when thrusts abut deep-seated anticlines. Above the crest of the anticlines, thrusts are forced up-section into syn-tectonic deposits, whereas the forelimb reveals out-of-the-syncline thrusts. Several petroleum plays are identified in such zones of structural interaction, including anticlines above buttress-related duplexes, out-of-sequence imbricate thrust fans with associated folds above major anticlines, truncation of footwall layers below potentially sealing thrusts, and sub-thrust anticlines. (Author)

  16. BiP clustering facilitates protein folding in the endoplasmic reticulum.

    Directory of Open Access Journals (Sweden)

    Marc Griesemer

    2014-07-01

    Full Text Available The chaperone BiP participates in several regulatory processes within the endoplasmic reticulum (ER: translocation, protein folding, and ER-associated degradation. To facilitate protein folding, a cooperative mechanism known as entropic pulling has been proposed to demonstrate the molecular-level understanding of how multiple BiP molecules bind to nascent and unfolded proteins. Recently, experimental evidence revealed the spatial heterogeneity of BiP within the nuclear and peripheral ER of S. cerevisiae (commonly referred to as 'clusters'. Here, we developed a model to evaluate the potential advantages of accounting for multiple BiP molecules binding to peptides, while proposing that BiP's spatial heterogeneity may enhance protein folding and maturation. Scenarios were simulated to gauge the effectiveness of binding multiple chaperone molecules to peptides. Using two metrics: folding efficiency and chaperone cost, we determined that the single binding site model achieves a higher efficiency than models characterized by multiple binding sites, in the absence of cooperativity. Due to entropic pulling, however, multiple chaperones perform in concert to facilitate the resolubilization and ultimate yield of folded proteins. As a result of cooperativity, multiple binding site models used fewer BiP molecules and maintained a higher folding efficiency than the single binding site model. These insilico investigations reveal that clusters of BiP molecules bound to unfolded proteins may enhance folding efficiency through cooperative action via entropic pulling.

  17. Axons Pull on the Brain, But Tension Does Not Drive Cortical Folding

    Science.gov (United States)

    Xu, Gang; Knutsen, Andrew K.; Dikranian, Krikor; Kroenke, Christopher D.; Bayly, Philip V.; Taber, Larry A.

    2011-01-01

    During human brain development, the cerebral cortex undergoes substantial folding, leading to its characteristic highly convoluted form. Folding is necessary to accommodate the expansion of the cerbral cortex; abnormal cortical folding is linked to various neurological disorders, including schizophrenia, epilepsy, autism and mental retardation. Although this process requires mechanical forces, the specific force-generating mechanisms that drive folding remain unclear. The two most widely accepted hypotheses are (1) folding is caused by differential growth of the cortex and (2) folding is caused by mechanical tension generated in axons. Direct evidence supporting either theory, however, is lacking. Here we show that axons are indeed under considerable tension in the developing ferret brain, but the patterns of tissue stress are not consistent with a causal role for axonal tension. In particular, microdissection assays reveal that significant tension exists along axons aligned circumferentially in subcortical white matter tracts, as well as those aligned radially inside developing gyri (outward folds). Contrary to previous speculation, however, axonal tension is not directed across developing gyri, suggesting that axon tension does not drive folding. On the other hand, using computational (finite element) models, we show that differential cortical growth accompanied by remodeling of the subplate leads to outward folds and stress fields that are consistent with our microdissection experiments, supporting a mechanism involving differential growth. Local perturbations, such as temporal differences in the initiation of cortical growth, can ensure consistent folding patterns. This study shows that a combination of experimental and computational mechanics can be used to evaluate competing hypotheses of morphogenesis, and illuminate the biomechanics of cortical folding. PMID:20590291

  18. Transcutaneous ultrasound for evaluation of vocal fold movement in patients with thyroid disease

    International Nuclear Information System (INIS)

    Wang, Cheng-Ping; Chen, Tseng-Cheng; Yang, Tsung-Lin; Chen, Chun-Nan; Lin, Chin-Fon; Lou, Pei-Jen; Hu, Ya-Ling; Shieh, Ming-Jium; Hsieh, Fon-Jou

    2012-01-01

    Background: Preoperative evaluation of recurrent laryngeal nerve function is important in the context of thyroid surgery. Transcutaneous ultrasound may be useful to visualize vocal fold movement when evaluating thyroid disease. Methods: A 7–18 MHz linear array transducer was placed transversely on the midline of the thyroid cartilage at the anterior neck of patients with thyroid disease. The gray-scale technique was used, with the scan setting for the thyroid gland. Results: Between August 2008 and March 2010, 705 patients, including 672 patients with normal vocal fold movement and 33 patients with vocal fold paralysis were enrolled. They included 159 male and 546 female patients. Their ages ranged from 10 to 88 years. Vocal fold movement could be seen by ultrasound in 614 (87%) patients, including 589 (88%) patients with normal vocal fold movement and 25 (76%) patients with vocal fold paralysis (p = 0.06). The mean age of patients with visible and invisible vocal fold movement was 46.6 and 57.9 years old, respectively (p = 0.001). Ultrasound was able to see vocal fold movement in 533 (98%) female patients but only in 81 (51%) male patients (p = 0.001). Among the patients with vocal fold paralysis, ultrasound revealed palsied vocal folds in 17 of 18 (94%) female patients but in only 8 of 15 (53%) male patients (p = 0.01). Conclusion: Transcutaneous ultrasound represents an alternative tool to evaluate vocal fold movement for more than 85% of patients with thyroid disease, including more than 90% of female patients and about half of male patients.

  19. Acute Contained Ruptured Aortic Aneurysm Presenting as Left Vocal Fold Immobility

    OpenAIRE

    Gnagi, Sharon H.; Howard, Brittany E.; Hoxworth, Joseph M.; Lott, David G.

    2015-01-01

    Objective. To recognize intrathoracic abnormalities, including expansion or rupture of aortic aneurysms, as a source of acute onset vocal fold immobility. Methods. A case report and review of the literature. Results. An 85-year-old female with prior history of an aortic aneurysm presented to a tertiary care facility with sudden onset hoarseness. On laryngoscopy, the left vocal fold was immobile in the paramedian position. A CT scan obtained that day revealed a new, large hematoma surrounding ...

  20. Improving protein fold recognition by extracting fold-specific features from predicted residue-residue contacts.

    Science.gov (United States)

    Zhu, Jianwei; Zhang, Haicang; Li, Shuai Cheng; Wang, Chao; Kong, Lupeng; Sun, Shiwei; Zheng, Wei-Mou; Bu, Dongbo

    2017-12-01

    Accurate recognition of protein fold types is a key step for template-based prediction of protein structures. The existing approaches to fold recognition mainly exploit the features derived from alignments of query protein against templates. These approaches have been shown to be successful for fold recognition at family level, but usually failed at superfamily/fold levels. To overcome this limitation, one of the key points is to explore more structurally informative features of proteins. Although residue-residue contacts carry abundant structural information, how to thoroughly exploit these information for fold recognition still remains a challenge. In this study, we present an approach (called DeepFR) to improve fold recognition at superfamily/fold levels. The basic idea of our approach is to extract fold-specific features from predicted residue-residue contacts of proteins using deep convolutional neural network (DCNN) technique. Based on these fold-specific features, we calculated similarity between query protein and templates, and then assigned query protein with fold type of the most similar template. DCNN has showed excellent performance in image feature extraction and image recognition; the rational underlying the application of DCNN for fold recognition is that contact likelihood maps are essentially analogy to images, as they both display compositional hierarchy. Experimental results on the LINDAHL dataset suggest that even using the extracted fold-specific features alone, our approach achieved success rate comparable to the state-of-the-art approaches. When further combining these features with traditional alignment-related features, the success rate of our approach increased to 92.3%, 82.5% and 78.8% at family, superfamily and fold levels, respectively, which is about 18% higher than the state-of-the-art approach at fold level, 6% higher at superfamily level and 1% higher at family level. An independent assessment on SCOP_TEST dataset showed consistent

  1. Plasma kinetic theory

    International Nuclear Information System (INIS)

    Elliott, J.A.

    1993-01-01

    Plasma kinetic theory is discussed and a comparison made with the kinetic theory of gases. The plasma is described by a modified set of fluid equations and it is shown how these fluid equations can be derived. (UK)

  2. Ca-Dependent Folding of Human Calumenin

    Science.gov (United States)

    Mazzorana, Marco; Hussain, Rohanah; Sorensen, Thomas

    2016-01-01

    Human calumenin (hCALU) is a six EF-hand protein belonging to the CREC family. As other members of the family, it is localized in the secretory pathway and regulates the activity of SERCA2a and of the ryanodine receptor in the endoplasmic reticulum (ER). We have studied the effects of Ca2+ binding to the protein and found it to attain a more compact structure upon ion binding. Circular Dichroism (CD) measurements suggest a major rearrangement of the protein secondary structure, which reversibly switches from disordered at low Ca2+ concentrations to predominantly alpha-helical when Ca2+ is added. SAXS experiments confirm the transition from an unfolded to a compact structure, which matches the structural prediction of a trilobal fold. Overall our experiments suggest that calumenin is a Ca2+ sensor, which folds into a compact structure, capable of interacting with its molecular partners, when Ca2+ concentration within the ER reaches the millimolar range. PMID:26991433

  3. Self-folding micropatterned polymeric containers.

    Science.gov (United States)

    Azam, Anum; Laflin, Kate E; Jamal, Mustapha; Fernandes, Rohan; Gracias, David H

    2011-02-01

    We demonstrate self-folding of precisely patterned, optically transparent, all-polymeric containers and describe their utility in mammalian cell and microorganism encapsulation and culture. The polyhedral containers, with SU-8 faces and biodegradable polycaprolactone (PCL) hinges, spontaneously assembled on heating. Self-folding was driven by a minimization of surface area of the liquefying PCL hinges within lithographically patterned two-dimensional (2D) templates. The strategy allowed for the fabrication of containers with variable polyhedral shapes, sizes and precisely defined porosities in all three dimensions. We provide proof-of-concept for the use of these polymeric containers as encapsulants for beads, chemicals, mammalian cells and bacteria. We also compare accelerated hinge degradation rates in alkaline solutions of varying pH. These optically transparent containers resemble three-dimensional (3D) micro-Petri dishes and can be utilized to sustain, monitor and deliver living biological components.

  4. Dynamics in thin folded polymer films

    Science.gov (United States)

    Croll, Andrew; Rozairo, Damith

    Origami and Kirigami inspired structures depend on a complex interplay between geometry and material properties. While clearly important to the overall function, very little attention has focused on how extreme curvatures and singularities in real materials influence the overall dynamic behaviour of folded structures. In this work we use a set of three polymer thin films in order to closely examine the interaction of material and geometry. Specifically, we use polydimethylsiloxane (PDMS), polystyrene (PS) and polycarbonate (PC) thin films which we subject to loading in several model geometries of varying complexity. Depending on the material, vastly different responses are noted in our experiments; D-cones can annihilate, cut or lead to a crumpling cascade when pushed through a film. Remarkably, order can be generated with additional perturbation. Finally, the role of adhesion in complex folded structures can be addressed. AFOSR under the Young Investigator Program (FA9550-15-1-0168).

  5. Folding pathways explored with artificial potential functions

    International Nuclear Information System (INIS)

    Ulutaş, B; Bozma, I; Haliloglu, T

    2009-01-01

    This paper considers the generation of trajectories to a given protein conformation and presents a novel approach based on artificial potential functions—originally proposed for multi-robot navigation. The artificial potential function corresponds to a simplified energy model, but with the novelty that—motivated by work on robotic navigation—a nonlinear compositional scheme of constructing the energy model is adapted instead of an additive formulation. The artificial potential naturally gives rise to a dynamic system for the protein structure that ensures collision-free motion to an equilibrium point. In cases where the equilibrium point is the native conformation, the motion trajectory corresponds to the folding pathway. This framework is used to investigate folding in a variety of protein structures, and the results are compared with those of other approaches including experimental studies

  6. Folded membrane dialyzer with mechanically sealed edges

    Energy Technology Data Exchange (ETDEWEB)

    Markley, F.W.

    A semipermeable membrane is folded in accordion fashion to form a stack of pleats and the edges are sealed so as to isolate the opposite surfaces of the membrane. The stack is contained within a case that provides ports for flow of blood in contact with one surface of the membrane through channels formed by the pleats and also provides ports for flow of a dialysate through channels formed by the pleats in contact with the other surface of the membrane. The serpentine side edges of the membrane are sealed by a solidified plastic material, whereas effective mechanical means are provided to seal the end edges of the folded membrane. The mechanical means include a clamping strip which biases case sealing flanges into a sealed relationship with end portions of the membrane near the end edges, which portions extend from the stack and between the sealing flanges.

  7. Image Analysis for Nail-fold Capillaroscopy

    OpenAIRE

    Vucic, Vladimir

    2015-01-01

    Detection of diseases in an early stage is very important since it can make the treatment of patients easier, safer and more ecient. For the detection of rheumatic diseases, and even prediction of tendencies towards such diseases, capillaroscopy is becoming an increasingly recognized method. Nail-fold capillaroscopy is a non-invasive imaging technique that is used for analysis of microcirculation abnormalities that may lead todisease like systematic sclerosis, Reynauds phenomenon and others. ...

  8. Coherent topological phenomena in protein folding

    DEFF Research Database (Denmark)

    Bohr, Henrik; Brunak, Søren; Bohr, Jakob

    1997-01-01

    A theory is presented for coherent topological phenomena in protein dynamics with implications for protein folding and stability. We discuss the relationship to the writhing number used in knot diagrams of DNA. The winding state defines a long-range order along the backbone of a protein with long......-range excitations, `wring' modes, that play an important role in protein denaturation and stability. Energy can be pumped into these excitations, either thermally or by an external force....

  9. Evolution of a protein folding nucleus.

    Science.gov (United States)

    Xia, Xue; Longo, Liam M; Sutherland, Mason A; Blaber, Michael

    2016-07-01

    The folding nucleus (FN) is a cryptic element within protein primary structure that enables an efficient folding pathway and is the postulated heritable element in the evolution of protein architecture; however, almost nothing is known regarding how the FN structurally changes as complex protein architecture evolves from simpler peptide motifs. We report characterization of the FN of a designed purely symmetric β-trefoil protein by ϕ-value analysis. We compare the structure and folding properties of key foldable intermediates along the evolutionary trajectory of the β-trefoil. The results show structural acquisition of the FN during gene fusion events, incorporating novel turn structure created by gene fusion. Furthermore, the FN is adjusted by circular permutation in response to destabilizing functional mutation. FN plasticity by way of circular permutation is made possible by the intrinsic C3 cyclic symmetry of the β-trefoil architecture, identifying a possible selective advantage that helps explain the prevalence of cyclic structural symmetry in the proteome. © 2015 The Protein Society.

  10. Folding Membrane Proteins by Deep Transfer Learning

    KAUST Repository

    Wang, Sheng

    2017-08-29

    Computational elucidation of membrane protein (MP) structures is challenging partially due to lack of sufficient solved structures for homology modeling. Here, we describe a high-throughput deep transfer learning method that first predicts MP contacts by learning from non-MPs and then predicts 3D structure models using the predicted contacts as distance restraints. Tested on 510 non-redundant MPs, our method has contact prediction accuracy at least 0.18 better than existing methods, predicts correct folds for 218 MPs, and generates 3D models with root-mean-square deviation (RMSD) less than 4 and 5 Å for 57 and 108 MPs, respectively. A rigorous blind test in the continuous automated model evaluation project shows that our method predicted high-resolution 3D models for two recent test MPs of 210 residues with RMSD ∼2 Å. We estimated that our method could predict correct folds for 1,345–1,871 reviewed human multi-pass MPs including a few hundred new folds, which shall facilitate the discovery of drugs targeting at MPs.

  11. Protein Folding: Search for Basic Physical Models

    Directory of Open Access Journals (Sweden)

    Ivan Y. Torshin

    2003-01-01

    Full Text Available How a unique three-dimensional structure is rapidly formed from the linear sequence of a polypeptide is one of the important questions in contemporary science. Apart from biological context of in vivo protein folding (which has been studied only for a few proteins, the roles of the fundamental physical forces in the in vitro folding remain largely unstudied. Despite a degree of success in using descriptions based on statistical and/or thermodynamic approaches, few of the current models explicitly include more basic physical forces (such as electrostatics and Van Der Waals forces. Moreover, the present-day models rarely take into account that the protein folding is, essentially, a rapid process that produces a highly specific architecture. This review considers several physical models that may provide more direct links between sequence and tertiary structure in terms of the physical forces. In particular, elaboration of such simple models is likely to produce extremely effective computational techniques with value for modern genomics.

  12. Hierarchical Diagnosis of Vocal Fold Disorders

    Science.gov (United States)

    Nikkhah-Bahrami, Mansour; Ahmadi-Noubari, Hossein; Seyed Aghazadeh, Babak; Khadivi Heris, Hossein

    This paper explores the use of hierarchical structure for diagnosis of vocal fold disorders. The hierarchical structure is initially used to train different second-level classifiers. At the first level normal and pathological signals have been distinguished. Next, pathological signals have been classified into neurogenic and organic vocal fold disorders. At the final level, vocal fold nodules have been distinguished from polyps in organic disorders category. For feature selection at each level of hierarchy, the reconstructed signal at each wavelet packet decomposition sub-band in 5 levels of decomposition with mother wavelet of (db10) is used to extract the nonlinear features of self-similarity and approximate entropy. Also, wavelet packet coefficients are used to measure energy and Shannon entropy features at different spectral sub-bands. Davies-Bouldin criterion has been employed to find the most discriminant features. Finally, support vector machines have been adopted as classifiers at each level of hierarchy resulting in the diagnosis accuracy of 92%.

  13. Thermostability in endoglucanases is fold-specific

    Science.gov (United States)

    2011-01-01

    Background Endoglucanases are usually considered to be synergistically involved in the initial stages of cellulose breakdown-an essential step in the bioprocessing of lignocellulosic plant materials into bioethanol. Despite their economic importance, we currently lack a basic understanding of how some endoglucanases can sustain their ability to function at elevated temperatures required for bioprocessing, while others cannot. In this study, we present a detailed comparative analysis of both thermophilic and mesophilic endoglucanases in order to gain insights into origins of thermostability. We analyzed the sequences and structures for sets of endoglucanase proteins drawn from the Carbohydrate-Active enZymes (CAZy) database. Results Our results demonstrate that thermophilic endoglucanases and their mesophilic counterparts differ significantly in their amino acid compositions. Strikingly, these compositional differences are specific to protein folds and enzyme families, and lead to differences in intramolecular interactions in a fold-dependent fashion. Conclusions Here, we provide fold-specific guidelines to control thermostability in endoglucanases that will aid in making production of biofuels from plant biomass more efficient. PMID:21291533

  14. Thermostability in endoglucanases is fold-specific

    Directory of Open Access Journals (Sweden)

    Wolt Jeffrey D

    2011-02-01

    Full Text Available Abstract Background Endoglucanases are usually considered to be synergistically involved in the initial stages of cellulose breakdown-an essential step in the bioprocessing of lignocellulosic plant materials into bioethanol. Despite their economic importance, we currently lack a basic understanding of how some endoglucanases can sustain their ability to function at elevated temperatures required for bioprocessing, while others cannot. In this study, we present a detailed comparative analysis of both thermophilic and mesophilic endoglucanases in order to gain insights into origins of thermostability. We analyzed the sequences and structures for sets of endoglucanase proteins drawn from the Carbohydrate-Active enZymes (CAZy database. Results Our results demonstrate that thermophilic endoglucanases and their mesophilic counterparts differ significantly in their amino acid compositions. Strikingly, these compositional differences are specific to protein folds and enzyme families, and lead to differences in intramolecular interactions in a fold-dependent fashion. Conclusions Here, we provide fold-specific guidelines to control thermostability in endoglucanases that will aid in making production of biofuels from plant biomass more efficient.

  15. Wrinkles, folds, and plasticity in granular rafts

    Science.gov (United States)

    Jambon-Puillet, Etienne; Josserand, Christophe; Protière, Suzie

    2017-09-01

    We investigate the mechanical response of a compressed monolayer of large and dense particles at a liquid-fluid interface: a granular raft. Upon compression, rafts first wrinkle; then, as the confinement increases, the deformation localizes in a unique fold. This characteristic buckling pattern is usually associated with floating elastic sheets, and as a result, particle laden interfaces are often modeled as such. Here, we push this analogy to its limits by comparing quantitative measurements of the raft morphology to a theoretical continuous elastic model of the interface. We show that, although powerful to describe the wrinkle wavelength, the wrinkle-to-fold transition, and the fold shape, this elastic description does not capture the finer details of the experiment. We describe an unpredicted secondary wavelength, a compression discrepancy with the model, and a hysteretic behavior during compression cycles, all of which are a signature of the intrinsic discrete and frictional nature of granular rafts. It suggests also that these composite materials exhibit both plastic transition and jamming dynamics.

  16. Araguaia fold belt, new geochronological data

    International Nuclear Information System (INIS)

    Lafon, J.M.; Macambira, J.B.; Macambira, M.J.B.; Moura, C.A.V.; Souza, A.C.C.

    1990-01-01

    The northern part of the Araguaia Fold Belt (AFB) outcrops in a N-S direction for about 400 km in the state of Tocantins. Dome-like structures occur in this fold belt also in a N-S direction. Both deformation and metamorphism increase from the West to the East. The basement of the AFB consist of Colmeia complex and Cantao gneiss, which crop out mainly in the core of the dome-like structures. The supracrustals rocks of the fold belt belongs to the Baixo Araguaia supergroup which is divided into the lower Estrondo group and the upper Tocantins group. Preliminary Sm-Nd data from the Colmeia complex (Grota Rica dome) gave Archean model ages of 2.8 Ga (TNd sub(DM)) while Rb-Sr data in the same rocks give an age of 2530 ± 200 Ma. In the others dome-like structures, the Rb-Sr systematics gave ages for the Colmeia a complex of 2239 ± 47 Ma (Colmeia structure) and 1972 ± 46 Ma (Lontra structure). These younger ages are believed to represent partial to total isotopic resetting of the Rb-Sr system during the Transamazonian Event. The Rb-Sr studies of the Cantao gneiss gave an age of 1774 ± 31 Ma. (author)

  17. Effects of Polymer Hydrophobicity on Protein Structure and Aggregation Kinetics in Crowded Milieu.

    Science.gov (United States)

    Breydo, Leonid; Sales, Amanda E; Frege, Telma; Howell, Mark C; Zaslavsky, Boris Y; Uversky, Vladimir N

    2015-05-19

    We examined the effects of water-soluble polymers of various degrees of hydrophobicity on the folding and aggregation of proteins. The polymers we chose were polyethylene glycol (PEG) and UCON (1:1 copolymer of ethylene glycol and propylene glycol). The presence of additional methyl groups in UCON makes it more hydrophobic than PEG. Our earlier analysis revealed that similarly sized PEG and UCON produced different changes in the solvent properties of water in their solutions and induced morphologically different α-synuclein aggregates [Ferreira, L. A., et al. (2015) Role of solvent properties of aqueous media in macromolecular crowding effects. J. Biomol. Struct. Dyn., in press]. To improve our understanding of molecular mechanisms defining behavior of proteins in a crowded environment, we tested the effects of these polymers on secondary and tertiary structure and aromatic residue solvent accessibility of 10 proteins [five folded proteins, two hybrid proteins; i.e., protein containing ordered and disordered domains, and three intrinsically disordered proteins (IDPs)] and on the aggregation kinetics of insulin and α-synuclein. We found that effects of both polymers on secondary and tertiary structures of folded and hybrid proteins were rather limited with slight unfolding observed in some cases. Solvent accessibility of aromatic residues was significantly increased for the majority of the studied proteins in the presence of UCON but not PEG. PEG also accelerated the aggregation of protein into amyloid fibrils, whereas UCON promoted aggregation to amyloid oligomers instead. These results indicate that even a relatively small change in polymer structure leads to a significant change in the effect of this polymer on protein folding and aggregation. This is an indication that protein folding and especially aggregation are highly sensitive to the presence of other macromolecules, and an excluded volume effect is insufficient to describe their effect.

  18. Timing of isoclinal folds in multiply deformed high metamorphic grade region using FIA succession

    Science.gov (United States)

    Cao, Hui; Cai, Zhihui

    2013-04-01

    Multiply deformed and isoclinally folded interlayered high metamorphic grade gneisses and schists can be very difficult rocks for resolving early formed stratigraphic and structural relationships. When such rocks contain porphyroblasts a new approach is possible because of the way in which porphyroblast growth is affected by crenulation versus reactivation of compositional layering. The asymmetries of the overprinting foliations preserved as inclusion trails that define the FIAs can be used to investigate whether an enigmatic isoclinal fold is an antiform or synform. This approach also reveals when the fold first formed during the tectonic history of the region. Isoclinally folded rocks in the Arkansas River region of Central Colorado contain relics of fold hinges that have been very difficult to ascertain whether they are antiforms or synforms because of younger refolding effects and the locally truncated nature of coarse compositional layering. With the realization that rocks with a schistosity parallel to bedding (S0 parallel S1) have undergone lengthy histories of deformation that predate the obvious first deformation came recognition that large scale regional folds can form early during this process and be preserved throughout orogenesis. This extensive history is lost within the matrix because of reactivational shear on the compositional layering. However, it can be extracted by measuring FIAs. Recent work using this approach has revealed that the trends of axial planes of all map scale folds, when plotted on a rose diagram, strikingly reflect the FIA trends. That is, although it was demonstrated that the largest scale regional folds commonly form early in the total history, other folds can form and be preserved from subsequent destruction in the strain shadows of plutons or through the partitioning of deformation due to heterogeneities at depth.

  19. pH-jump induced α-helix folding of poly-L-glutamic acid

    International Nuclear Information System (INIS)

    Donten, Mateusz L.; Hamm, Peter

    2013-01-01

    Highlights: ► pH-jump as truly biomimetic tool to initiate non-equilibrium dynamics of biomolecules. ► Design criteria to widen the applicability of pH-jumps are developed. ► Folding of poly-L-Glu in dependence of starting pH, pH jump size and helix length. ► Length dependence provides strong evidence for a nucleation–propagation scenario. - Abstract: pH jumps are a truly biomimetic technique to initiate non-equilibrium dynamics of biomolecules. In this work, the pH jump induced α-helix folding of poly-L-glutamic acid is investigated upon proton release from o-nitrobenzaldehyde. The aim of this work is twofold: On the one hand, design criteria of pH jump experiments are discussed, on the other hand, the folding mechanism of poly-L-glutamic acid is clarified by probing the IR response of the amide I band. Its folding kinetics is studied in dependence of the starting pD, the size of the pD jump and the length of the helix. While no dependence on the first two parameters could be detected, the folding time varies from 0.6 μs to 1.8 μs for helix lengths of 20 residue to 440 residue, respectively. It converges to a long-length limit at about 50 residue, a result which is attributed to a nucleation–propagation mechanism

  20. Course 12: Proteins: Structural, Thermodynamic and Kinetic Aspects

    Science.gov (United States)

    Finkelstein, A. V.

    1 Introduction 2 Overview of protein architectures and discussion of physical background of their natural selection 2.1 Protein structures 2.2 Physical selection of protein structures 3 Thermodynamic aspects of protein folding 3.1 Reversible denaturation of protein structures 3.2 What do denatured proteins look like? 3.3 Why denaturation of a globular protein is the first-order phase transition 3.4 "Gap" in energy spectrum: The main characteristic that distinguishes protein chains from random polymers 4 Kinetic aspects of protein folding 4.1 Protein folding in vivo 4.2 Protein folding in vitro (in the test-tube) 4.3 Theory of protein folding rates and solution of the Levinthal paradox

  1. Glass ionomer application for vocal fold augmentation: Histopathological analysis on rabbit vocal fold.

    Science.gov (United States)

    Demirci, Sule; Tuzuner, Arzu; Callıoglu, Elif Ersoy; Yumusak, Nihat; Arslan, Necmi; Baltacı, Bülent

    2016-04-01

    The aim of this study was to investigate the use of glass ionomer cement (GIC) as an injection material for vocal fold augmentation and to evaluate the biocompatibility of the material. Ten adult New Zealand rabbits were used. Under general anesthesia, 0.1-cc GIC was injected to one vocal fold and the augmentation of vocal fold was observed. No injection was applied to the opposite side, which was accepted as the control group. The animals were sacrificed after 3 months and the laryngeal specimens were histopathologically evaluated. The injected and the noninjected control vocal folds were analyzed. The GIC particles were observed in histological sections on the injected side, and no foreign body giant cells, granulomatous inflammation, necrosis, or marked chronic inflammation were detected around the glass ionomer particles. Mild inflammatory reactions were noticed in only two specimens. The noninjected sides of vocal folds were completely normal. The findings of this study suggest that GIC is biocompatible and may be further investigated as an alternative injection material for augmentation of the vocal fold. Further studies are required to examine the viscoelastic properties of GIC and the long-term effects in experimental studies. NA. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  2. A Rat Excised Larynx Model of Vocal Fold Scar

    Science.gov (United States)

    Welham, Nathan V.; Montequin, Douglas W.; Tateya, Ichiro; Tateya, Tomoko; Choi, Seong Hee; Bless, Diane M.

    2009-01-01

    Purpose: To develop and evaluate a rat excised larynx model for the measurement of acoustic, aerodynamic, and vocal fold vibratory changes resulting from vocal fold scar. Method: Twenty-four 4-month-old male Sprague-Dawley rats were assigned to 1 of 4 experimental groups: chronic vocal fold scar, chronic vocal fold scar treated with 100-ng basic…

  3. Pre-Steady-State Kinetic Analysis of Truncated and Full-Length Saccharomyces cerevisiae DNA Polymerase Eta

    Science.gov (United States)

    Brown, Jessica A.; Zhang, Likui; Sherrer, Shanen M.; Taylor, John-Stephen; Burgers, Peter M. J.; Suo, Zucai

    2010-01-01

    Understanding polymerase fidelity is an important objective towards ascertaining the overall stability of an organism's genome. Saccharomyces cerevisiae DNA polymerase η (yPolη), a Y-family DNA polymerase, is known to efficiently bypass DNA lesions (e.g., pyrimidine dimers) in vivo. Using pre-steady-state kinetic methods, we examined both full-length and a truncated version of yPolη which contains only the polymerase domain. In the absence of yPolη's C-terminal residues 514–632, the DNA binding affinity was weakened by 2-fold and the base substitution fidelity dropped by 3-fold. Thus, the C-terminus of yPolη may interact with DNA and slightly alter the conformation of the polymerase domain during catalysis. In general, yPolη discriminated between a correct and incorrect nucleotide more during the incorporation step (50-fold on average) than the ground-state binding step (18-fold on average). Blunt-end additions of dATP or pyrene nucleotide 5′-triphosphate revealed the importance of base stacking during the binding of incorrect incoming nucleotides. PMID:20798853

  4. Pre-Steady-State Kinetic Analysis of Truncated and Full-Length Saccharomyces cerevisiae DNA Polymerase Eta

    Directory of Open Access Journals (Sweden)

    Jessica A. Brown

    2010-01-01

    Full Text Available Understanding polymerase fidelity is an important objective towards ascertaining the overall stability of an organism's genome. Saccharomyces cerevisiae DNA polymerase η (yPolη, a Y-family DNA polymerase, is known to efficiently bypass DNA lesions (e.g., pyrimidine dimers in vivo. Using pre-steady-state kinetic methods, we examined both full-length and a truncated version of yPolη which contains only the polymerase domain. In the absence of yPolη's C-terminal residues 514–632, the DNA binding affinity was weakened by 2-fold and the base substitution fidelity dropped by 3-fold. Thus, the C-terminus of yPolη may interact with DNA and slightly alter the conformation of the polymerase domain during catalysis. In general, yPolη discriminated between a correct and incorrect nucleotide more during the incorporation step (50-fold on average than the ground-state binding step (18-fold on average. Blunt-end additions of dATP or pyrene nucleotide 5′-triphosphate revealed the importance of base stacking during the binding of incorrect incoming nucleotides.

  5. Kinetics of vein graft hyperplasia

    International Nuclear Information System (INIS)

    Zwolak, R.M.; Adams, M.C.; Clowes, A.W.

    1986-01-01

    Human aortocoronary vein grafts fail due to accelerated occlusive disease. The possibility that this is related to cellular hyperplasia was investigated in a rabbit model where kinetics of vein graft thickening, endothelial (EC) repair, and smooth muscle cell (SMC) proliferation were measured from 2 days to 24 weeks after implanting jugular vein segments in the carotid artery. Immediately after graft placement focal EC denudation was observed. These defects were repaired within 1 week and did not recur. By 4 weeks intimal area had increased 30 fold from 0.028 +/- 0.004 to 0.705 +/- 0.021 mm 2 , and a 24 weeks was 0.93 +/- 0.21 mm 2 . This response did not produce a reduction in graft lumen area. EC and SMC thymidine-labeling index were measured by en face and cross-section autoradiography after injection of 3 H-thymidine and perfusion fixation. Despite rapid EC surface repair EC labeling index remained elevated and only returned to normal levels at 12 weeks; SMC labeling was 10 fold greater than baseline even at 24 weeks (0.22% vs 0.02%). SMC mass demonstrated morphometrically increased between 2 and 12 weeks. Intimal thickening in vein grafts is due to SMC proliferation and develops after the EC layer has been restored. In contrast, intimal SMC proliferate in damaged arteries when the EC layer is absent and cease when the EC layer is regenerated

  6. Folded Sheet Versus Transparent Sheet Models for Human Symmetry Judgments

    Directory of Open Access Journals (Sweden)

    Jacques Ninio

    2011-07-01

    Full Text Available As a contribution to the mysteries of human symmetry perception, reaction time data were collected on the detection of symmetry or repetition violations, in the context of short term visual memory studies. The histograms for reaction time distributions are rather narrow in the case of symmetry judgments. Their analysis was performed in terms of a simple kinetic model of a mental process in two steps, a slow one for the construction of the representation of the images to be compared, and a fast one, in the 50 ms range, for the decision. There was no need for an additional ‘mental rotation’ step. Symmetry seems to facilitate the construction step. I also present here original stimuli showing a color equalization effect across a symmetry axis, and its counterpart in periodic patterns. According to a “folded sheet model”, when a shape is perceived, the brain automatically constructs a mirror-image representation of the shape. Based in part on the reaction time analysis, I present here an alternative “transparent sheet” model in which the brain constructs a single representation, which can be accessed from two sides, thus generating simultaneously a pattern and its mirror-symmetric partner. Filtering processes, implied by current models of symmetry perception could intervene at an early stage, by nucleating the propagation of similar perceptual groupings in the two symmetric images.

  7. Folding of polymer chains with short-range binormal interactions

    International Nuclear Information System (INIS)

    Craig, A; Terentjev, E M

    2006-01-01

    We study the structure of chains which have anisotropic short-range contact interactions that depend on the alignment of the binormal vectors of chain segments. This represents a crude model of hydrogen bonding or 'stacking' interactions out of the plane of curvature. The polymers are treated as ribbon-like semi-flexible chains, where the plane of the ribbon is determined by the local binormal. We show that with dipole-dipole interactions between the binormals of contacting chain segments, mean-field theory predicts a first-order transition to a binormally aligned state. We describe the onset of this transition as a function of the temperature-dependent parameters that govern the chain stiffness and the strength of the binormal interaction, as well as the binormal alignment's coupling to chain collapse. We also examine a metastable state governing the folding kinetics. Finally, we discuss the possible mesoscopic structure of the aligned phase, and application of our model to secondary structure motifs like β-sheets and α-helices, as well as composite structures like β-(amyloid) fibrils

  8. Nanoscale Dewetting Transition in Protein Complex Folding

    Science.gov (United States)

    Hua, Lan; Huang, Xuhui; Liu, Pu; Zhou, Ruhong; Berne, Bruce J.

    2011-01-01

    In a previous study, a surprising drying transition was observed to take place inside the nanoscale hydrophobic channel in the tetramer of the protein melittin. The goal of this paper is to determine if there are other protein complexes capable of displaying a dewetting transition during their final stage of folding. We searched the entire protein data bank (PDB) for all possible candidates, including protein tetramers, dimers, and two-domain proteins, and then performed the molecular dynamics (MD) simulations on the top candidates identified by a simple hydrophobic scoring function based on aligned hydrophobic surface areas. Our large scale MD simulations found several more proteins, including three tetramers, six dimers, and two two-domain proteins, which display a nanoscale dewetting transition in their final stage of folding. Even though the scoring function alone is not sufficient (i.e., a high score is necessary but not sufficient) in identifying the dewetting candidates, it does provide useful insights into the features of complex interfaces needed for dewetting. All top candidates have two features in common: (1) large aligned (matched) hydrophobic areas between two corresponding surfaces, and (2) large connected hydrophobic areas on the same surface. We have also studied the effect on dewetting of different water models and different treatments of the long-range electrostatic interactions (cutoff vs PME), and found the dewetting phenomena is fairly robust. This work presents a few proteins other than melittin tetramer for further experimental studies of the role of dewetting in the end stages of protein folding. PMID:17608515

  9. Synovial folds in the knee joint

    International Nuclear Information System (INIS)

    Schaefer, H.

    1987-01-01

    Stimulated by arthroscopic insight into central abnormalities of the knee joint and by the large number of unexplained case of 'anterior knee pain', we have studied the synovia in more than 2000 contrast examinations of the joint. Surprisingly, and contrary to the views expressed in the literature, the clinically significant plica parapatellaris medialis was seen as frequently during pneumo-arthrography as during more complex procedures. Abnormalities in the synovial fold emerged as a discreet disease identified as the 'medial shelf syndrome' and should be included in the differential diagnosis of causes of pain round the lower end of the femur and patella. (orig.) [de

  10. Investigation of hindwing folding in ladybird beetles by artificial elytron transplantation and microcomputed tomography.

    Science.gov (United States)

    Saito, Kazuya; Nomura, Shuhei; Yamamoto, Shuhei; Niiyama, Ryuma; Okabe, Yoji

    2017-05-30

    Ladybird beetles are high-mobility insects and explore broad areas by switching between walking and flying. Their excellent wing transformation systems enabling this lifestyle are expected to provide large potential for engineering applications. However, the mechanism behind the folding of their hindwings remains unclear. The reason is that ladybird beetles close the elytra ahead of wing folding, preventing the observation of detailed processes occurring under the elytra. In the present study, artificial transparent elytra were transplanted on living ladybird beetles, thereby enabling us to observe the detailed wing-folding processes. The result revealed that in addition to the abdominal movements mentioned in previous studies, the edge and ventral surface of the elytra, as well as characteristic shaped veins, play important roles in wing folding. The structures of the wing frames enabling this folding process and detailed 3D shape of the hindwing were investigated using microcomputed tomography. The results showed that the tape spring-like elastic frame plays an important role in the wing transformation mechanism. Compared with other beetles, hindwings in ladybird beetles are characterized by two seemingly incompatible properties: ( i ) the wing rigidity with relatively thick veins and ( ii ) the compactness in stored shapes with complex crease patterns. The detailed wing-folding process revealed in this study is expected to facilitate understanding of the naturally optimized system in this excellent deployable structure.

  11. Ectasias and varices of the vocal fold: clearing the striking zone.

    Science.gov (United States)

    Hochman, I; Sataloff, R T; Hillman, R E; Zeitels, S M

    1999-01-01

    Vascular malformations such as ectasias and varices (Es and Vs) are frequently encountered in patients who present with recurrent vocal fold hemorrhage and/or other traumatic vocal fold lesions. This study examined Es and Vs with regard to their anatomic presentation, phonomicrosurgical management, and treatment outcome. Forty-two patients (39 of them singers) were treated for a total of 87 Es and Vs: 67 of 87 (77%) were on the superior surface of the vocal fold and 20 of 87 (23%) were on the medial surface of the vocal fold. Eighty-three percent were located in the middle musculomembranous region (the striking zone), where the greatest aerodynamically induced shearing stresses occur during phonation. Treatment was performed with carbon dioxide laser cauterization (13 patients), or a new technique utilizing cold instrument excision by means of epithelial cordotomies (23 patients), while a combined approach was employed in 6 patients. Comparisons of preoperative and postoperative stroboscopy revealed improvement or no significant change in all patients in whom the cold instrument technique was used, and increased epithelial stiffness was noted in 4 of 19 patients in whom the carbon dioxide laser was used. Clearing the striking zone appears to have halted further hemorrhages by removing the the fragile Es and Vs from this injury-prone region of the vocal fold. Interpretations of stroboscopic examinations were directed at providing new insights into the biomechanical forces of vocal fold vibration that probably contribute to the genesis of Es and Vs in the vocal folds.

  12. Why and how does native topology dictate the folding speed of a protein?

    Science.gov (United States)

    Rustad, Mark; Ghosh, Kingshuk

    2012-11-01

    , we find our new topology based metric (combining ACO, COC1, and COC2) scales as N0.54, N being the number of amino acids in a protein. This is in remarkable agreement with a previous argument based on random systems that predict protein folding speed depends on exp (- N0.5). The first principle calculation presented here provides deeper insights to the role of topology in protein folding and unifies many parallel arguments, seemingly disconnected, demonstrating the existence of universal mechanism in protein folding kinetics that can be understood from simple polymer physics based principles.

  13. Evaluation of Dying Vocal Fold Epithelial Cells by Ultrastructural Features and TUNEL Method

    Science.gov (United States)

    Novaleski, Carolyn K.; Mizuta, Masanobu; Rousseau, Bernard

    2016-01-01

    Cell death is a regulated mechanism of eliminating cells to maintain tissue homeostasis. This study described two methodological procedures for evaluating cell death in the epithelium of immobilized, approximated, and vibrated vocal folds from 12 New Zealand white breeder rabbits. The gold standard technique of transmission electron microscopy evaluated high-quality ultrastructural criteria of cell death and a common immunohistochemical marker, terminal deoxynucleotidyl transferase dUTP nick end labeling method, to confirm cell death signaling. Results revealed that ultrastructural characteristics of apoptotic cell death, specifically condensed chromatin and apoptotic bodies, were observed after vocal fold vibration and approximation. Although episodes of necrotic cell death were rare, few enlarged cell nuclei were present after vibration and approximation. The vocal fold expresses an immunohistochemical marker for apoptosis along the apical surface of the epithelium. This study provides a solid foundation for future investigations regarding the role of cell death in vocal fold health and disease. PMID:27537846

  14. Folding model analysis of alpha radioactivity

    International Nuclear Information System (INIS)

    Basu, D N

    2003-01-01

    Radioactive decay of nuclei via emission of α-particles has been studied theoretically in the framework of a superasymmetric fission model using the double folding (DF) procedure for obtaining the α-nucleus interaction potential. The DF nuclear potential has been obtained by folding in the density distribution functions of the α nucleus and the daughter nucleus with a realistic effective interaction. The M3Y effective interaction has been used for calculating the nuclear interaction potential which has been supplemented by a zero-range pseudo-potential for exchange along with the density dependence. The nuclear microscopic α-nucleus potential thus obtained has been used along with the Coulomb interaction potential to calculate the action integral within the WKB approximation. This subsequently yields calculations for the half-lives of α decays of nuclei. The density dependence and the exchange effects have not been found to be very significant. These calculations provide reasonable estimates for the lifetimes of α-radioactivity of nuclei

  15. Fast kinetics of calcium dissociation from calsequestrin

    Directory of Open Access Journals (Sweden)

    MARIANELA BELTRÁN

    2006-01-01

    Full Text Available We measured the kinetics of calcium dissociation from calsequestrin in solution or forming part of isolated junctional sarcoplasmic reticulum membranes by mixing calsequestrin equilibrated with calcium with calcium-free solutions in a stopped-flow system. In parallel, we measured the kinetics of the intrinsic fluorescence changes that take place following calcium dissociation from calsequestrin. We found that at 25ºC calcium dissociation was 10-fold faster for calsequestrin attached to junctional membranes (k = 109 s-1 than in solution. These results imply that calcium dissociation from calsequestrin in vivo is not rate limiting during excitation-contraction coupling. In addition, we found that the intrinsic fluorescence decrease for calsequestrin in solution or forming part of junctional membranes was significantly slower than the rates of calcium dissociation. The kinetics of intrinsic fluorescence changes had two components for calsequestrin associated to junctional membranes and only one for calsequestrin in solution; the faster component was 8-fold faster (k = 54.1 s-1 than the slower component (k = 6.9 s-1, which had the same k value as for calsequestrin in solution. These combined results suggest that the presence of calsequestrin at high concentrations in a restricted space, such as when bound to the junctional membrane, accelerates calcium dissociation and the resulting structural changes, presumably as a result of cooperative molecular interactions.

  16. Process of tight junction recovery in the injured vocal fold epithelium: Morphological and paracellular permeability analysis.

    Science.gov (United States)

    Suzuki, Ryo; Katsuno, Tatsuya; Kishimoto, Yo; Nakamura, Ryosuke; Mizuta, Masanobu; Suehiro, Atsushi; Yamashita, Masaru; Nakamura, Tatsuo; Tateya, Ichiro; Omori, Koichi

    2018-04-01

    The vocal fold epithelium that includes tight junction (TJ)-based barrier function protects underlying connective tissues from external insults. TJs play an important role to control paracellular permeability of not only solutes but also ions, and preserve the vocal fold homeostasis. However, the distribution of TJs and paracellular diffusion barrier across the entire vocal fold epithelium are still unknown. The aim of this study was to identify the distribution of TJs in the vocal fold epithelium and to characterize the recovery process of TJ-based paracellular diffusion barrier in a rat model of vocal fold injury. Animal experiments with controls. Normal and vocal fold-injured rats were used. Larynges were harvested for immunohistochemical examination of TJ proteins. For functional analysis, a tracer permeability assay was performed using EZ-Link Sulfo-NHS-LC-Biotin. TJ proteins occludin and zonula occludens 1 signals were localized to the junctional regions of the most luminal cell layers of the vocal fold epithelium. The injured region had been recovered with epithelium at 5 days postinjury, but the paracellular diffusion barrier assays revealed that biotinylation reagents diffused into the lamina propria at 5 days postinjury, and were blocked at the epithelium at 14 and 28 days postinjury. It was strongly suggested that TJs in the vocal fold epithelium exist at the junctional regions of the first layer of stratified squamous epithelium. TJ-based paracellular diffusion barrier following vocal fold injury is recovered by 14 days postinjury, and this period corresponds with the time course of structural changes in the regenerating epithelium layer. NA. Laryngoscope, 128:E150-E156, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  17. Epithelial Folding Driven by Apical or Basal-Lateral Modulation: Geometric Features, Mechanical Inference, and Boundary Effects.

    Science.gov (United States)

    Wen, Fu-Lai; Wang, Yu-Chiun; Shibata, Tatsuo

    2017-06-20

    During embryonic development, epithelial sheets fold into complex structures required for tissue and organ functions. Although substantial efforts have been devoted to identifying molecular mechanisms underlying epithelial folding, far less is understood about how forces deform individual cells to sculpt the overall sheet morphology. Here we describe a simple and general theoretical model for the autonomous folding of monolayered epithelial sheets. We show that active modulation of intracellular mechanics along the basal-lateral as well as the apical surfaces is capable of inducing fold formation in the absence of buckling instability. Apical modulation sculpts epithelia into shallow and V-shaped folds, whereas basal-lateral modulation generates deep and U-shaped folds. These characteristic tissue shapes remain unchanged when subject to mechanical perturbations from the surroundings, illustrating that the autonomous folding is robust against environmental variabilities. At the cellular scale, how cells change shape depends on their initial aspect ratios and the modulation mechanisms. Such cell deformation characteristics are verified via experimental measurements for a canonical folding process driven by apical modulation, indicating that our theory could be used to infer the underlying folding mechanisms based on experimental data. The mechanical principles revealed in our model could potentially guide future studies on epithelial folding in diverse systems. Copyright © 2017. Published by Elsevier Inc.

  18. Principles of chemical kinetics

    CERN Document Server

    House, James E

    2007-01-01

    James House's revised Principles of Chemical Kinetics provides a clear and logical description of chemical kinetics in a manner unlike any other book of its kind. Clearly written with detailed derivations, the text allows students to move rapidly from theoretical concepts of rates of reaction to concrete applications. Unlike other texts, House presents a balanced treatment of kinetic reactions in gas, solution, and solid states. The entire text has been revised and includes many new sections and an additional chapter on applications of kinetics. The topics covered include quantitative rela

  19. Introduction to chemical kinetics

    CERN Document Server

    Soustelle, Michel

    2013-01-01

    This book is a progressive presentation of kinetics of the chemical reactions. It provides complete coverage of the domain of chemical kinetics, which is necessary for the various future users in the fields of Chemistry, Physical Chemistry, Materials Science, Chemical Engineering, Macromolecular Chemistry and Combustion. It will help them to understand the most sophisticated knowledge of their future job area. Over 15 chapters, this book present the fundamentals of chemical kinetics, its relations with reaction mechanisms and kinetic properties. Two chapters are then devoted to experimental re

  20. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.

    Science.gov (United States)

    Melvin, Iain; Ie, Eugene; Kuang, Rui; Weston, Jason; Stafford, William Noble; Leslie, Christina

    2007-05-22

    Predicting a protein's structural class from its amino acid sequence is a fundamental problem in computational biology. Much recent work has focused on developing new representations for protein sequences, called string kernels, for use with support vector machine (SVM) classifiers. However, while some of these approaches exhibit state-of-the-art performance at the binary protein classification problem, i.e. discriminating between a particular protein class and all other classes, few of these studies have addressed the real problem of multi-class superfamily or fold recognition. Moreover, there are only limited software tools and systems for SVM-based protein classification available to the bioinformatics community. We present a new multi-class SVM-based protein fold and superfamily recognition system and web server called SVM-Fold, which can be found at http://svm-fold.c2b2.columbia.edu. Our system uses an efficient implementation of a state-of-the-art string kernel for sequence profiles, called the profile kernel, where the underlying feature representation is a histogram of inexact matching k-mer frequencies. We also employ a novel machine learning approach to solve the difficult multi-class problem of classifying a sequence of amino acids into one of many known protein structural classes. Binary one-vs-the-rest SVM classifiers that are trained to recognize individual structural classes yield prediction scores that are not comparable, so that standard "one-vs-all" classification fails to perform well. Moreover, SVMs for classes at different levels of the protein structural hierarchy may make useful predictions, but one-vs-all does not try to combine these multiple predictions. To deal with these problems, our method learns relative weights between one-vs-the-rest classifiers and encodes information about the protein structural hierarchy for multi-class prediction. In large-scale benchmark results based on the SCOP database, our code weighting approach

  1. Spontaneous Unfolding-Refolding of Fibronectin Type III Domains Assayed by Thiol Exchange: THERMODYNAMIC STABILITY CORRELATES WITH RATES OF UNFOLDING RATHER THAN FOLDING.

    Science.gov (United States)

    Shah, Riddhi; Ohashi, Tomoo; Erickson, Harold P; Oas, Terrence G

    2017-01-20

    Globular proteins are not permanently folded but spontaneously unfold and refold on time scales that can span orders of magnitude for different proteins. A longstanding debate in the protein-folding field is whether unfolding rates or folding rates correlate to the stability of a protein. In the present study, we have determined the unfolding and folding kinetics of 10 FNIII domains. FNIII domains are one of the most common protein folds and are present in 2% of animal proteins. FNIII domains are ideal for this study because they have an identical seven-strand β-sandwich structure, but they vary widely in sequence and thermodynamic stability. We assayed thermodynamic stability of each domain by equilibrium denaturation in urea. We then assayed the kinetics of domain opening and closing by a technique known as thiol exchange. For this we introduced a buried Cys at the identical location in each FNIII domain and measured the kinetics of labeling with DTNB over a range of urea concentrations. A global fit of the kinetics data gave the kinetics of spontaneous unfolding and refolding in zero urea. We found that the folding rates were relatively similar, ∼0.1-1 s -1 , for the different domains. The unfolding rates varied widely and correlated with thermodynamic stability. Our study is the first to address this question using a set of domains that are structurally homologous but evolved with widely varying sequence identity and thermodynamic stability. These data add new evidence that thermodynamic stability correlates primarily with unfolding rate rather than folding rate. The study also has implications for the question of whether opening of FNIII domains contributes to the stretching of fibronectin matrix fibrils. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Improving decoy databases for protein folding algorithms

    KAUST Repository

    Lindsey, Aaron

    2014-01-01

    Copyright © 2014 ACM. Predicting protein structures and simulating protein folding are two of the most important problems in computational biology today. Simulation methods rely on a scoring function to distinguish the native structure (the most energetically stable) from non-native structures. Decoy databases are collections of non-native structures used to test and verify these functions. We present a method to evaluate and improve the quality of decoy databases by adding novel structures and removing redundant structures. We test our approach on 17 different decoy databases of varying size and type and show significant improvement across a variety of metrics. We also test our improved databases on a popular modern scoring function and show that they contain a greater number of native-like structures than the original databases, thereby producing a more rigorous database for testing scoring functions.

  3. Folded tandem ion accelerator facility at BARC

    International Nuclear Information System (INIS)

    Agarwal, Arun; Padmakumar, Sapna; Subrahmanyam, N.B.V.; Singh, V.P.; Bhatt, J.P.; Ware, Shailaja V.; Pol, S.S; Basu, A.; Singh, S.K.; Krishnagopal, S.; Bhagwat, P.V.

    2017-01-01

    The 5.5 MV single stage Van de Graaff (VDG) accelerator was in continuous operation at Nuclear Physics Division (NPD), Bhabha Atomic Research Centre (BARC) since its inception in 1962. During 1993-96, VDG accelerator was converted to a Folded Tandem Ion Accelerator (FOTIA). The scientists and engineers of NPD, IADD (then a part of NPD) along with several other divisions of BARC joined hands together in designing, fabrication, installation and commissioning of the FOTIA for the maximum terminal voltage of 6 MV. After experiencing the first accelerated ion beam on the target from FOTIA during April 2000, different ion species were accelerated and tested. Now this accelerator FOTIA is in continuous use for different kind of experiments

  4. Electrotransfection of Polyamine Folded DNA Origami Structures.

    Science.gov (United States)

    Chopra, Aradhana; Krishnan, Swati; Simmel, Friedrich C

    2016-10-12

    DNA origami structures are artificial molecular nanostructures in which DNA double helices are forced into a closely packed configuration by a multitude of DNA strand crossovers. We show that three different types of origami structures (a flat sheet, a hollow tube, and a compact origami block) can be formed in magnesium-free buffer solutions containing low (origami folding is proportional to the DNA concentration. At excessive amounts, the structures aggregate and precipitate. In contrast to origami structures formed in conventional buffers, the resulting structures are stable in the presence of high electric field pulses, such as those commonly used for electrotransfection experiments. We demonstrate that spermidine-stabilized structures are stable in cell lysate and can be delivered into mammalian cells via electroporation.

  5. Some physical approaches to protein folding

    Science.gov (United States)

    Bascle, J.; Garel, T.; Orland, H.

    1993-02-01

    To understand how a protein folds is a problem which has important biological implications. In this article, we would like to present a physics-oriented point of view, which is twofold. First of all, we introduce simple statistical mechanics models which display, in the thermodynamic limit, folding and related transitions. These models can be divided into (i) crude spin glass-like models (with their Mattis analogs), where one may look for possible correlations between the chain self-interactions and the folded structure, (ii) glass-like models, where one emphasizes the geometrical competition between one- or two-dimensional local order (mimicking α helix or β sheet structures), and the requirement of global compactness. Both models are too simple to predict the spatial organization of a realistic protein, but are useful for the physicist and should have some feedback in other glassy systems (glasses, collapsed polymers .... ). These remarks lead us to the second physical approach, namely a new Monte-Carlo method, where one grows the protein atom-by-atom (or residue-by-residue), using a standard form (CHARMM .... ) for the total energy. A detailed comparison with other Monte-Carlo schemes, or Molecular Dynamics calculations, is then possible; we will sketch such a comparison for poly-alanines. Our twofold approach illustrates some of the difficulties one encounters in the protein folding problem, in particular those associated with the existence of a large number of metastable states. Le repliement des protéines est un problème qui a de nombreuses implications biologiques. Dans cet article, nous présentons, de deux façons différentes, un point de vue de physicien. Nous introduisons tout d'abord des modèles simples de mécanique statistique qui exhibent, à la limite thermodynamique, des transitions de repliement. Ces modèles peuvent être divisés en (i) verres de spin (éventuellement à la Mattis), où l'on peut chercher des corrélations entre les

  6. Kinetic equation solution by inverse kinetic method

    International Nuclear Information System (INIS)

    Salas, G.

    1983-01-01

    We propose a computer program (CAMU) which permits to solve the inverse kinetic equation. The CAMU code is written in HPL language for a HP 982 A microcomputer with a peripheral interface HP 9876 A ''thermal graphic printer''. The CAMU code solves the inverse kinetic equation by taking as data entry the output of the ionization chambers and integrating the equation with the help of the Simpson method. With this program we calculate the evolution of the reactivity in time for a given disturbance

  7. The review on tessellation origami inspired folded structure

    Science.gov (United States)

    Chu, Chai Chen; Keong, Choong Kok

    2017-10-01

    Existence of folds enhances the load carrying capacity of a folded structure which makes it suitable to be used for application where large open space is required such as large span roof structures and façade. Folded structure is closely related to origami especially the tessellation origami. Tessellation origami provides a folded configuration with facetted surface as a result from repeated folding pattern. Besides that, tessellation origami has flexible folding mechanism that produced a variety of 3-dimensional folded configurations. Despite the direct relationship between fold in origami and folded structure, the idea of origami inspired folded structure is not properly reviewed in the relevant engineering field. Hence, this paper aims to present the current studies from related discipline which has direct relation with application of tessellation origami in folded structure. First, tessellation origami is properly introduced and defined. Then, the review covers the topic on the origami tessellation design suitable for folded structure, its modeling and simulation method, and existing studies and applications of origami as folded structure is presented. The paper also includes the discussion on the current issues related to each topic.

  8. Improving Protein Fold Recognition by Deep Learning Networks

    Science.gov (United States)

    Jo, Taeho; Hou, Jie; Eickholt, Jesse; Cheng, Jianlin

    2015-12-01

    For accurate recognition of protein folds, a deep learning network method (DN-Fold) was developed to predict if a given query-template protein pair belongs to the same structural fold. The input used stemmed from the protein sequence and structural features extracted from the protein pair. We evaluated the performance of DN-Fold along with 18 different methods on Lindahl’s benchmark dataset and on a large benchmark set extracted from SCOP 1.75 consisting of about one million protein pairs, at three different levels of fold recognition (i.e., protein family, superfamily, and fold) depending on the evolutionary distance between protein sequences. The correct recognition rate of ensembled DN-Fold for Top 1 predictions is 84.5%, 61.5%, and 33.6% and for Top 5 is 91.2%, 76.5%, and 60.7% at family, superfamily, and fold levels, respectively. We also evaluated the performance of single DN-Fold (DN-FoldS), which showed the comparable results at the level of family and superfamily, compared to ensemble DN-Fold. Finally, we extended the binary classification problem of fold recognition to real-value regression task, which also show a promising performance. DN-Fold is freely available through a web server at http://iris.rnet.missouri.edu/dnfold.

  9. Improving Protein Fold Recognition by Deep Learning Networks.

    Science.gov (United States)

    Jo, Taeho; Hou, Jie; Eickholt, Jesse; Cheng, Jianlin

    2015-12-04

    For accurate recognition of protein folds, a deep learning network method (DN-Fold) was developed to predict if a given query-template protein pair belongs to the same structural fold. The input used stemmed from the protein sequence and structural features extracted from the protein pair. We evaluated the performance of DN-Fold along with 18 different methods on Lindahl's benchmark dataset and on a large benchmark set extracted from SCOP 1.75 consisting of about one million protein pairs, at three different levels of fold recognition (i.e., protein family, superfamily, and fold) depending on the evolutionary distance between protein sequences. The correct recognition rate of ensembled DN-Fold for Top 1 predictions is 84.5%, 61.5%, and 33.6% and for Top 5 is 91.2%, 76.5%, and 60.7% at family, superfamily, and fold levels, respectively. We also evaluated the performance of single DN-Fold (DN-FoldS), which showed the comparable results at the level of family and superfamily, compared to ensemble DN-Fold. Finally, we extended the binary classification problem of fold recognition to real-value regression task, which also show a promising performance. DN-Fold is freely available through a web server at http://iris.rnet.missouri.edu/dnfold.

  10. RNAiFold: a web server for RNA inverse folding and molecular design.

    Science.gov (United States)

    Garcia-Martin, Juan Antonio; Clote, Peter; Dotu, Ivan

    2013-07-01

    Synthetic biology and nanotechnology are poised to make revolutionary contributions to the 21st century. In this article, we describe a new web server to support in silico RNA molecular design. Given an input target RNA secondary structure, together with optional constraints, such as requiring GC-content to lie within a certain range, requiring the number of strong (GC), weak (AU) and wobble (GU) base pairs to lie in a certain range, the RNAiFold web server determines one or more RNA sequences, whose minimum free-energy secondary structure is the target structure. RNAiFold provides access to two servers: RNA-CPdesign, which applies constraint programming, and RNA-LNSdesign, which applies the large neighborhood search heuristic; hence, it is suitable for larger input structures. Both servers can also solve the RNA inverse hybridization problem, i.e. given a representation of the desired hybridization structure, RNAiFold returns two sequences, whose minimum free-energy hybridization is the input target structure. The web server is publicly accessible at http://bioinformatics.bc.edu/clotelab/RNAiFold, which provides access to two specialized servers: RNA-CPdesign and RNA-LNSdesign. Source code for the underlying algorithms, implemented in COMET and supported on linux, can be downloaded at the server website.

  11. Glycoprotein folding and quality-control mechanisms in protein-folding diseases

    Directory of Open Access Journals (Sweden)

    Sean P. Ferris

    2014-03-01

    Full Text Available Biosynthesis of proteins – from translation to folding to export – encompasses a complex set of events that are exquisitely regulated and scrutinized to ensure the functional quality of the end products. Cells have evolved to capitalize on multiple post-translational modifications in addition to primary structure to indicate the folding status of nascent polypeptides to the chaperones and other proteins that assist in their folding and export. These modifications can also, in the case of irreversibly misfolded candidates, signal the need for dislocation and degradation. The current Review focuses on the glycoprotein quality-control (GQC system that utilizes protein N-glycosylation and N-glycan trimming to direct nascent glycopolypeptides through the folding, export and dislocation pathways in the endoplasmic reticulum (ER. A diverse set of pathological conditions rooted in defective as well as over-vigilant ER quality-control systems have been identified, underlining its importance in human health and disease. We describe the GQC pathways and highlight disease and animal models that have been instrumental in clarifying our current understanding of these processes.

  12. Effect of Vocal Fold Medialization on Dysphagia in Patients with Unilateral Vocal Fold Immobility.

    Science.gov (United States)

    Cates, Daniel J; Venkatesan, Naren N; Strong, Brandon; Kuhn, Maggie A; Belafsky, Peter C

    2016-09-01

    The effect of vocal fold medialization (VFM) on vocal improvement in persons with unilateral vocal fold immobility (UVFI) is well established. The effect of VFM on the symptom of dysphagia is uncertain. The purpose of this study is to evaluate dysphagia symptoms in patients with UVFI pre- and post-VFM. Case series with chart review. Academic tertiary care medical center. The charts of 44 persons with UVFI who underwent VFM between June 1, 2013, and December 31, 2014, were abstracted from a prospectively maintained database at the University of California, Davis, Voice and Swallowing Center. Patient demographics, indications, and type of surgical procedure were recorded. Self-reported swallowing impairment was assessed with the validated 10-item Eating Assessment Tool (EAT-10) before and after surgery. A paired samples t test was used to compare pre- and postmedialization EAT-10 scores. Forty-four patients met criteria and underwent either vocal fold injection (73%) or thyroplasty (27%). Etiologies of vocal fold paralysis were iatrogenic (55%), idiopathic (29%), benign or malignant neoplastic (9%), traumatic (5%), or related to the late effects of radiation (2%). EAT-10 (mean ± SD) scores improved from 12.2 ± 11.1 to 7.7 ± 7.2 after medialization (P dysphagia and report significant improvement in swallowing symptoms following VFM. The symptomatic improvement appears to be durable over time. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  13. Multiple molecule effects on the cooperativity of protein folding transitions in simulations

    Science.gov (United States)

    Lewis, Jacob I.; Moss, Devin J.; Knotts, Thomas A.

    2012-06-01

    Though molecular simulation of proteins has made notable contributions to the study of protein folding and kinetics, disagreement between simulation and experiment still exists. One of the criticisms levied against simulation is its failure to reproduce cooperative protein folding transitions. This weakness has been attributed to many factors such as a lack of polarizability and adequate capturing of solvent effects. This work, however, investigates how increasing the number of proteins simulated simultaneously can affect the cooperativity of folding transitions — a topic that has received little attention previously. Two proteins are studied in this work: phage T4 lysozyme (Protein Data Bank (PDB) ID: 7LZM) and phage 434 repressor (PDB ID: 1R69). The results show that increasing the number of proteins molecules simulated simultaneously leads to an increase in the macroscopic cooperativity for transitions that are inherently cooperative on the molecular level but has little effect on the cooperativity of other transitions. Taken as a whole, the results identify one area of consideration to improving simulations of protein folding.

  14. Communication: Role of explicit water models in the helix folding/unfolding processes

    Science.gov (United States)

    Palazzesi, Ferruccio; Salvalaglio, Matteo; Barducci, Alessandro; Parrinello, Michele

    2016-09-01

    In the last years, it has become evident that computer simulations can assume a relevant role in modelling protein dynamical motions for their ability to provide a full atomistic image of the processes under investigation. The ability of the current protein force-fields in reproducing the correct thermodynamics and kinetics systems behaviour is thus an essential ingredient to improve our understanding of many relevant biological functionalities. In this work, employing the last developments of the metadynamics framework, we compare the ability of state-of-the-art all-atom empirical functions and water models to consistently reproduce the folding and unfolding of a helix turn motif in a model peptide. This theoretical study puts in evidence that the choice of the water models can influence the thermodynamic and the kinetics of the system under investigation, and for this reason cannot be considered trivial.

  15. Self-folding origami at any energy scale

    Science.gov (United States)

    Pinson, Matthew B.; Stern, Menachem; Carruthers Ferrero, Alexandra; Witten, Thomas A.; Chen, Elizabeth; Murugan, Arvind

    2017-05-01

    Programmable stiff sheets with a single low-energy folding motion have been sought in fields ranging from the ancient art of origami to modern meta-materials research. Despite such attention, only two extreme classes of crease patterns are usually studied; special Miura-Ori-based zero-energy patterns, in which crease folding requires no sheet bending, and random patterns with high-energy folding, in which the sheet bends as much as creases fold. We present a physical approach that allows systematic exploration of the entire space of crease patterns as a function of the folding energy. Consequently, we uncover statistical results in origami, finding the entropy of crease patterns of given folding energy. Notably, we identify three classes of Mountain-Valley choices that have widely varying `typical' folding energies. Our work opens up a wealth of experimentally relevant self-folding origami designs not reliant on Miura-Ori, the Kawasaki condition or any special symmetry in space.

  16. Kinematics of large scale asymmetric folds and associated smaller ...

    Indian Academy of Sciences (India)

    The present work reiterates the importance of analysis of ... these models is the assumption that the folds are passive folds ... applicability of these models is thus limited in the case of ...... with contrasted rheological properties, a theory for the.

  17. Phonosurgery of vocal fold polyps, cysts and nodules is beneficial

    DEFF Research Database (Denmark)

    Jensen, Jane Bjerg; Rasmussen, Niels

    2013-01-01

    This study reports our experience with microscopic phonosurgery (PS) of benign lesions of the vocal folds.......This study reports our experience with microscopic phonosurgery (PS) of benign lesions of the vocal folds....

  18. Eight-fold quantum states blossom in a high-temperature superconductor

    CERN Multimedia

    2003-01-01

    "Researchers based at Lawrence Berkeley National Laboratory and the University of California at Berkeley have used a scanning tunneling microscope (STM) to reveal eight-fold patterns of quasiparticle interference in the high-temperature superconductor Bi-2212 (bismuth strontium calcium copper oxide)" (2 pages).

  19. Oxidation kinetics of corium pool

    Energy Technology Data Exchange (ETDEWEB)

    Sulatsky, A.A., E-mail: andrei314@mail.ru [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation); Smirnov, S.A. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA), St. Petersburg (Russian Federation); Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Kotova, S.Yu. [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation); Fischer, M.; Hellmann, S. [AREVA NP GmbH, Erlangen (Germany); Tromm, W.; Miassoedov, A. [Forschungzentrum Karlsruhe (FZK), Karlsruhe (Germany); Bottomley, D. [EUROPÄISCHE KOMMISSION, Joint Research Centre Institut für Transurane (ITU), Karlsruhe (Germany); Piluso, P. [CEA Cadarache-DEN/DTN/STRI, St.Paul-lez-Durance (France); Barrachin, M. [Institut de Radioprotection et Sûreté Nucléaire, St.Paul-lez-Durance (France)

    2013-09-15

    Highlights: • The analysis of experimental data on molten corium oxidation was been carried out. • The analysis has revealed the main factors influencing the oxidation kinetics. • The analysis was used for developing a qualitative analytical model. • The numerical modeling has confirmed the results of experimental data analysis. -- Abstract: Experimental, theoretical and numerical studies of oxidation kinetics of an open surface corium pool have been reported. The experiments have been carried out within OECD MASCA program and ISTC METCOR, METCOR-P and EVAN projects. It has been shown that the melt oxidation is controlled by an oxidant supply to the melt free surface from the atmosphere, not by the reducer supply from the melt. The project experiments have not detected any input of the zirconium oxidation kinetics into the process chemistry. The completed analysis puts forward a simple analytical model, which gives an explanation of the main features of melt oxidation process. The numerical modeling results are in good agreement with experimental data and theoretical considerations.

  20. Oxidation kinetics of corium pool

    International Nuclear Information System (INIS)

    Sulatsky, A.A.; Smirnov, S.A.; Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Kotova, S.Yu.; Fischer, M.; Hellmann, S.; Tromm, W.; Miassoedov, A.; Bottomley, D.; Piluso, P.; Barrachin, M.

    2013-01-01

    Highlights: • The analysis of experimental data on molten corium oxidation was been carried out. • The analysis has revealed the main factors influencing the oxidation kinetics. • The analysis was used for developing a qualitative analytical model. • The numerical modeling has confirmed the results of experimental data analysis. -- Abstract: Experimental, theoretical and numerical studies of oxidation kinetics of an open surface corium pool have been reported. The experiments have been carried out within OECD MASCA program and ISTC METCOR, METCOR-P and EVAN projects. It has been shown that the melt oxidation is controlled by an oxidant supply to the melt free surface from the atmosphere, not by the reducer supply from the melt. The project experiments have not detected any input of the zirconium oxidation kinetics into the process chemistry. The completed analysis puts forward a simple analytical model, which gives an explanation of the main features of melt oxidation process. The numerical modeling results are in good agreement with experimental data and theoretical considerations

  1. Redox kinetics and mechanism in silicate melts

    International Nuclear Information System (INIS)

    Cochain, B.

    2009-12-01

    This work contributes to better understand iron redox reactions and mechanisms in silicate melts. It was conducted on compositions in both Na 2 O-B 2 O 3 -SiO 2 -FeO and Na 2 O-Al 2 O 3 -SiO 2 -FeO systems. The influence of boron-sodium and aluminum-sodium substitutions and iron content on properties and structure of glasses and on the iron redox kinetics has been studied by Raman, Moessbauer and XANES spectroscopies at the B and Fe K-edges. In borosilicate glasses, an increase in iron content or in the Fe 3+ /ΣFe redox state implies a structural rearrangement of the BO 4 species in the glass network whereas the BO 3 and BO 4 relative proportions remain nearly constant. In all studied glasses and melts, Fe 3+ is a network former in tetrahedral coordination, unless for aluminosilicates of ratio Al/Na≥1 where Fe 3+ is a network modifier in five-fold coordination. Near Tg, diffusion of network modifying cations controls the iron redox kinetics along with a flux of electron holes. At liquidus temperatures, oxygen diffusion is considered to be the mechanism that governs redox reactions. This study shows the role played by the silicate network polymerization on the redox kinetics. In borosilicate melts, iron redox kinetics depends on the boron speciation between BO 3 and BO 4 that depends itself on the sodium content. Furthermore, an increase in the network-former/network-modifier ratio implies a decrease in oxygen diffusion that results in a slowing down of the redox kinetics. The obtained results allow a description of the iron redox kinetics for more complex compositions as natural lavas or nuclear waste model glasses. (author)

  2. Diagnostic and therapeutic pitfalls in benign vocal fold diseases

    Science.gov (United States)

    Bohlender, Jörg

    2013-01-01

    More than half of patients presenting with hoarseness show benign vocal fold changes. The clinician should be familiar with the anatomy, physiology and functional aspects of voice disorders and also the modern diagnostic and therapeutic possibilities in order to ensure an optimal and patient specific management. This review article focuses on the diagnostic and therapeutic limitations and difficulties of treatment of benign vocal fold tumors, the management and prevention of scarred vocal folds and the issue of unilateral vocal fold paresis. PMID:24403969

  3. Kinetics in radiation chemistry

    International Nuclear Information System (INIS)

    Hummel, A.

    1987-01-01

    In this chapter the authors first briefly review the kinetics of first- and second-order processes for continuous and pulsed irradiation, without taking the effects of nonhomogeneous formation of the species into consideration. They also discuss diffusion controlled reactions under conditions where interactions of more than two particles can be neglected, first the kinetics of the diffusion-controlled reaction of randomly generated species (homogeneous reaction) and then that of isolated pairs of reactants. The latter is often called geminate kinetics when dealing with pairs of oppositely charged species; they shall use this term for the kinetics of isolated pairs in general. In the last section they discuss briefly the kinetics of groups of more than two reactants

  4. Non-kinetic capabilities: complementing the kinetic prevalence to targeting

    OpenAIRE

    Ducheine, P.

    2014-01-01

    Targeting is used in military doctrine to describe a military operational way, using (military) means to influence a target (or addressee) in order to achieve designated political and/or military goals. The four factors italicized are used to analyse non-kinetic targeting, complementing our knowledge and understanding of the kinetic prevalence. Paradoxically, non-kinetic targeting is not recognized as a separate concept: kinetic and non-kinetic are intertwined facets of targeting. Kinetic tar...

  5. Constructing a folding model for protein S6 guided by native fluctuations deduced from NMR structures

    International Nuclear Information System (INIS)

    Lammert, Heiko; Noel, Jeffrey K.; Haglund, Ellinor; Onuchic, José N.; Schug, Alexander

    2015-01-01

    The diversity in a set of protein nuclear magnetic resonance (NMR) structures provides an estimate of native state fluctuations that can be used to refine and enrich structure-based protein models (SBMs). Dynamics are an essential part of a protein’s functional native state. The dynamics in the native state are controlled by the same funneled energy landscape that guides the entire folding process. SBMs apply the principle of minimal frustration, drawn from energy landscape theory, to construct a funneled folding landscape for a given protein using only information from the native structure. On an energy landscape smoothed by evolution towards minimal frustration, geometrical constraints, imposed by the native structure, control the folding mechanism and shape the native dynamics revealed by the model. Native-state fluctuations can alternatively be estimated directly from the diversity in the set of NMR structures for a protein. Based on this information, we identify a highly flexible loop in the ribosomal protein S6 and modify the contact map in a SBM to accommodate the inferred dynamics. By taking into account the probable native state dynamics, the experimental transition state is recovered in the model, and the correct order of folding events is restored. Our study highlights how the shared energy landscape connects folding and function by showing that a better description of the native basin improves the prediction of the folding mechanism

  6. Analysis of the free-energy surface of proteins from reversible folding simulations.

    Directory of Open Access Journals (Sweden)

    Lucy R Allen

    2009-07-01

    Full Text Available Computer generated trajectories can, in principle, reveal the folding pathways of a protein at atomic resolution and possibly suggest general and simple rules for predicting the folded structure of a given sequence. While such reversible folding trajectories can only be determined ab initio using all-atom transferable force-fields for a few small proteins, they can be determined for a large number of proteins using coarse-grained and structure-based force-fields, in which a known folded structure is by construction the absolute energy and free-energy minimum. Here we use a model of the fast folding helical lambda-repressor protein to generate trajectories in which native and non-native states are in equilibrium and transitions are accurately sampled. Yet, representation of the free-energy surface, which underlies the thermodynamic and dynamic properties of the protein model, from such a trajectory remains a challenge. Projections over one or a small number of arbitrarily chosen progress variables often hide the most important features of such surfaces. The results unequivocally show that an unprojected representation of the free-energy surface provides important and unbiased information and allows a simple and meaningful description of many-dimensional, heterogeneous trajectories, providing new insight into the possible mechanisms of fast-folding proteins.

  7. Vocal fold immobility: a longitudinal analysis of etiology over 20 years.

    Science.gov (United States)

    Rosenthal, Laura H Swibel; Benninger, Michael S; Deeb, Robert H

    2007-10-01

    To determine the current etiology of vocal fold immobility, identify changing trends over the last 20 years, and compare results to historical reports. The present study is a retrospective analysis of all patients seen within a tertiary care institution between 1996 and 2005 with vocal fold immobility. The results were combined with a previous study of patients within the same institution from 1985 through 1995. Results were compared to the literature. The medical records of all patients assigned a primary or additional diagnostic code for vocal cord paralysis were obtained from the electronic database. Eight hundred twenty-seven patients were available for analysis (435 from the most recent cohort), which is substantially larger than any reported series to date. Vocal fold immobility was most commonly associated with a surgical procedure (37%). Nonthyroid surgeries (66%), such as anterior cervical approaches to the spine and carotid endarterectomies, have surpassed thyroid surgery (33%) as the most common iatrogenic causes. These data represent a change from historical figures in which extralaryngeal malignancies were considered the major cause of unilateral immobility. Thyroidectomy continues to cause the majority (80%) of iatrogenic bilateral vocal fold immobility and 30% of all bilateral immobility. This 20-year longitudinal assessment revealed that the etiology of unilateral vocal fold immobility has changed such that there has been a shift from extralaryngeal malignancies to nonthyroid surgical procedures as the major cause. Thyroid surgery remains the most common cause of bilateral vocal fold immobility.

  8. Folds in multilayered rocks of Proterozoic age, Rajasthan, India

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Johnson and Johnson 2002 etc) shows that the fold shape modification may be brought about by buckling and flattening operating simultaneously throughout the development of fold. In the present paper a series of F1 folds devel- oped in slates with interlayered alternations with quartzite of Proterozoic age and unaffected ...

  9. Nomenclature proposal to describe vocal fold motion impairment

    NARCIS (Netherlands)

    Rosen, Clark A.; Mau, Ted; Remacle, Marc; Hess, Markus; Eckel, Hans E.; Young, VyVy N.; Hantzakos, Anastasios; Yung, Katherine C.; Dikkers, Frederik G.

    2016-01-01

    The terms used to describe vocal fold motion impairment are confusing and not standardized. This results in a failure to communicate accurately and to major limitations of interpreting research studies involving vocal fold impairment. We propose standard nomenclature for reporting vocal fold

  10. Nomenclature proposal to describe vocal fold motion impairment

    NARCIS (Netherlands)

    Rosen, Clark A.; Mau, Ted; Remacle, Marc; Hess, Markus; Eckel, Hans E.; Young, VyVy N.; Hantzakos, Anastasios; Yung, Katherine C.; Dikkers, Frederik G.

    The terms used to describe vocal fold motion impairment are confusing and not standardized. This results in a failure to communicate accurately and to major limitations of interpreting research studies involving vocal fold impairment. We propose standard nomenclature for reporting vocal fold

  11. Factors that affect coseismic folds in an overburden layer

    Science.gov (United States)

    Zeng, Shaogang; Cai, Yongen

    2018-03-01

    Coseismic folds induced by blind thrust faults have been observed in many earthquake zones, and they have received widespread attention from geologists and geophysicists. Numerous studies have been conducted regarding fold kinematics; however, few have studied fold dynamics quantitatively. In this paper, we establish a conceptual model with a thrust fault zone and tectonic stress load to study the factors that affect coseismic folds and their formation mechanisms using the finite element method. The numerical results show that the fault dip angle is a key factor that controls folding. The greater the dip angle is, the steeper the fold slope. The second most important factor is the overburden thickness. The thicker the overburden is, the more gradual the fold. In this case, folds are difficult to identify in field surveys. Therefore, if a fold can be easily identified with the naked eye, the overburden is likely shallow. The least important factors are the mechanical parameters of the overburden. The larger the Young's modulus of the overburden is, the smaller the displacement of the fold and the fold slope. Strong horizontal compression and vertical extension in the overburden near the fault zone are the main mechanisms that form coseismic folds.

  12. Technique to achieve the symmetry of the new inframammary fold

    Science.gov (United States)

    Pozzi, Marcello; Zoccali, Giovanni; Buccheri, Ernesto Maria; de Vita, Roy

    2014-01-01

    Summary The literature outlines several surgical techniques to restore inframmammary fold definition, but symmetry of the fold is often left to irreproducible procedures. We report our personal technique to restore the symmetry of the inframmammary fold during multistep breast reconstruction. PMID:25078934

  13. Mathematics revealed

    CERN Document Server

    Berman, Elizabeth

    1979-01-01

    Mathematics Revealed focuses on the principles, processes, operations, and exercises in mathematics.The book first offers information on whole numbers, fractions, and decimals and percents. Discussions focus on measuring length, percent, decimals, numbers as products, addition and subtraction of fractions, mixed numbers and ratios, division of fractions, addition, subtraction, multiplication, and division. The text then examines positive and negative numbers and powers and computation. Topics include division and averages, multiplication, ratios, and measurements, scientific notation and estim

  14. The Structure of a Conserved Domain of TamB Reveals a Hydrophobic β Taco Fold.

    Science.gov (United States)

    Josts, Inokentijs; Stubenrauch, Christopher James; Vadlamani, Grishma; Mosbahi, Khedidja; Walker, Daniel; Lithgow, Trevor; Grinter, Rhys

    2017-12-05

    The translocation and assembly module (TAM) plays a role in the transport and insertion of proteins into the bacterial outer membrane. TamB, a component of this system spans the periplasmic space to engage with its partner protein TamA. Despite efforts to characterize the TAM, the structure and mechanism of action of TamB remained enigmatic. Here we present the crystal structure of TamB amino acids 963-1,138. This region represents half of the conserved DUF490 domain, the defining feature of TamB. TamB 963-1138 consists of a concave, taco-shaped β sheet with a hydrophobic interior. This β taco structure is of dimensions capable of accommodating and shielding the hydrophobic side of an amphipathic β strand, potentially allowing TamB to chaperone nascent membrane proteins from the aqueous environment. In addition, sequence analysis suggests that the structure of TamB 963-1138 is shared by a large portion of TamB. This architecture could allow TamB to act as a conduit for membrane proteins. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Lithium hydride hydrolysis: experimental and kinetic study

    International Nuclear Information System (INIS)

    Charton, S.; Maupoix, C.; Brevet, A.; Delaunay, F.; Heintz, O.; Saviot, L.

    2006-01-01

    In this work has been studied the contribution of various analyses techniques in the framework, on the one hand of revealing the mechanisms implied in lithium hydride hydrolysis, and on the other hand of studying the kinetics of hydrogen production. Among the methods recently investigated, Raman spectroscopy, XPS and SIMS seem to be particularly attractive. (O.M.)

  16. Cenozoic structural evolution, thermal history, and erosion of the Ukrainian Carpathians fold-thrust belt

    Science.gov (United States)

    Nakapelyukh, Mykhaylo; Bubniak, Ihor; Bubniak, Andriy; Jonckheere, Raymond; Ratschbacher, Lothar

    2018-01-01

    The Carpathians are part of the Alpine-Carpathian-Dinaridic orogen surrounding the Pannonian basin. Their Ukrainian part constitutes an ancient subduction-accretion complex that evolved into a foreland fold-thrust belt with a shortening history that was perpendicular to the orogenic strike. Herein, we constrain the evolution of the Ukrainian part of the Carpathian fold-thrust belt by apatite fission-track dating of sedimentary and volcanic samples and cross-section balancing and restoration. The apatite fission-track ages are uniform in the inner―southwestern part of the fold-thrust belt, implying post-shortening erosion since 12-10 Ma. The ages in the leading and trailing edges record provenance, i.e., sources in the Trans-European suture zone and the Inner Carpathians, respectively, and show that these parts of the fold-thrust were not heated to more than 100 °C. Syn-orogenic strata show sediment recycling: in the interior of the fold-thrust belt―the most thickened and most deeply eroded nappes―the apatite ages were reset, eroded, and redeposited in the syn-orogenic strata closer to the fore- and hinterland; the lag times are only a few million years. Two balanced cross sections, one constructed for this study and based on field and subsurface data, reveal an architecture characterized by nappe stacks separated by high-displacement thrusts; they record 340-390 km shortening. A kinematic forward model highlights the fold-thrust belt evolution from the pre-contractional configuration over the intermediate geometries during folding and thrusting and the post-shortening, erosional-unloading configuration at 12-10 Ma to the present-day geometry. Average shortening rates between 32-20 Ma and 20-12 Ma amounted to 13 and 21 km/Ma, respectively, implying a two-phased deformation of the Ukrainian fold-thrust belt.

  17. Delayed Collapse of Wooden Folding Stairs

    Science.gov (United States)

    Krentowski, Janusz; Chyzy, Tadeusz

    2017-10-01

    During operation of folding stairs, a fastener joining the ladder hanger with the frame was torn off. A person using the stairs sustained serious injury. In several dozen other locations similar accidents were observed. As a result of inspections, some threaded parts of the screws were found in the gaps between the wooden elements of the stairs’ flaps. In the construction a hatch made of wooden strips is attached to an external frame by means of metal hangers. Laboratory strength tests were conducted on three samples made of wooden elements identical to the ones used in the damaged stairs. Due to complex load distribution mechanism acting on the base of the structure, a three-dimensional FEM model was created. An original software was used for calculations. Five computational model variants were considered. As a result of the numerical analyses, it was unquestionably shown that faulty connections were the cause of the destruction of the stairs. The weakest link in the load transmission chain were found to have been the screws connecting the hatch board with the hangers.

  18. Folding and unfolding phylogenetic trees and networks.

    Science.gov (United States)

    Huber, Katharina T; Moulton, Vincent; Steel, Mike; Wu, Taoyang

    2016-12-01

    Phylogenetic networks are rooted, labelled directed acyclic graphswhich are commonly used to represent reticulate evolution. There is a close relationship between phylogenetic networks and multi-labelled trees (MUL-trees). Indeed, any phylogenetic network N can be "unfolded" to obtain a MUL-tree U(N) and, conversely, a MUL-tree T can in certain circumstances be "folded" to obtain aphylogenetic network F(T) that exhibits T. In this paper, we study properties of the operations U and F in more detail. In particular, we introduce the class of stable networks, phylogenetic networks N for which F(U(N)) is isomorphic to N, characterise such networks, and show that they are related to the well-known class of tree-sibling networks. We also explore how the concept of displaying a tree in a network N can be related to displaying the tree in the MUL-tree U(N). To do this, we develop aphylogenetic analogue of graph fibrations. This allows us to view U(N) as the analogue of the universal cover of a digraph, and to establish a close connection between displaying trees in U(N) and reconciling phylogenetic trees with networks.

  19. Altered vocal fold kinematics in synthetic self-oscillating models that employ adipose tissue as a lateral boundary condition.

    Science.gov (United States)

    Saidi, Hiba; Erath, Byron D.

    2015-11-01

    The vocal folds play a major role in human communication by initiating voiced sound production. During voiced speech, the vocal folds are set into sustained vibrations. Synthetic self-oscillating vocal fold models are regularly employed to gain insight into flow-structure interactions governing the phonation process. Commonly, a fixed boundary condition is applied to the lateral, anterior, and posterior sides of the synthetic vocal fold models. However, physiological observations reveal the presence of adipose tissue on the lateral surface between the thyroid cartilage and the vocal folds. The goal of this study is to investigate the influence of including this substrate layer of adipose tissue on the dynamics of phonation. For a more realistic representation of the human vocal folds, synthetic multi-layer vocal fold models have been fabricated and tested while including a soft lateral layer representative of adipose tissue. Phonation parameters have been collected and are compared to those of the standard vocal fold models. Results show that vocal fold kinematics are affected by adding the adipose tissue layer as a new boundary condition.

  20. Effects of electrostatic interactions on ligand dissociation kinetics

    Science.gov (United States)

    Erbaş, Aykut; de la Cruz, Monica Olvera; Marko, John F.

    2018-02-01

    We study unbinding of multivalent cationic ligands from oppositely charged polymeric binding sites sparsely grafted on a flat neutral substrate. Our molecular dynamics simulations are suggested by single-molecule studies of protein-DNA interactions. We consider univalent salt concentrations spanning roughly a 1000-fold range, together with various concentrations of excess ligands in solution. To reveal the ionic effects on unbinding kinetics of spontaneous and facilitated dissociation mechanisms, we treat electrostatic interactions both at a Debye-Hückel (DH) (or implicit ions, i.e., use of an electrostatic potential with a prescribed decay length) level and by the more precise approach of considering all ionic species explicitly in the simulations. We find that the DH approach systematically overestimates unbinding rates, relative to the calculations where all ion pairs are present explicitly in solution, although many aspects of the two types of calculation are qualitatively similar. For facilitated dissociation (FD) (acceleration of unbinding by free ligands in solution) explicit-ion simulations lead to unbinding at lower free-ligand concentrations. Our simulations predict a variety of FD regimes as a function of free-ligand and ion concentrations; a particularly interesting regime is at intermediate concentrations of ligands where nonelectrostatic binding strength controls FD. We conclude that explicit-ion electrostatic modeling is an essential component to quantitatively tackle problems in molecular ligand dissociation, including nucleic-acid-binding proteins.

  1. The pathophysiology of the nodular and micronodular small bowel fold

    International Nuclear Information System (INIS)

    Olmsted, W.W.; Ros, P.R.; Moser, R.P.; Shekita, K.M.; Lichtenstein, J.E.

    1986-01-01

    The normal small bowel fold is easily seen on conventional studies of the small intestine, but visualization of the small bowel villus is at the limit of resolution of current roentgenographic technique. When the villi are enlarged, they appear radiographically as an irregularity or micronodularity of the small bowel fold. The anatomy of the fold and the pathophysiology of diseases producing fold nodularity (tumor,inflammatory disease, NLH, mastocytosis) and micronodularity (lymphangiectasia, Waldenstrom macroglobulinemia, Whipple disease) are presented, with an emphasis on radiologic-pathologic correlation. The radiologist should suggest certain diseases or conditions based on the roentgenographic characteristics of the closely analyzed small bowel fold

  2. Pathophysiology of the nodular and micronodular small bowel fold

    International Nuclear Information System (INIS)

    Olmstead, W.W.; Ros, P.R.; Moser, R.P.; Shekitka, K.M.; Lichtenstein, J.E.; Buck, J.L.

    1987-01-01

    The normal small bowel fold is easily seen on conventional studies of the small intestine, but visualization of the small bowel villus is just at the resolution of current roentgenographic technique. When the villi are enlarged, they can be seen radiographically as an irregularity or micronodularity of the small bowel fold. The anatomy of the fold and the pathophysiology of diseases producing fold nodularity (tumor, inflammatory disease, NLH, mastocytosis) and micronodularity (lymphangiectasia, Waldenstrom macroglobulinemia, Whipple disease) are presented, with an emphasis on radiologic-pathologic correlation. The radiologist should suggest certain diseases or conditions based on the roentgenographic characteristics of the closely analyzed small bowel fold

  3. Kinetics of phase transformations

    International Nuclear Information System (INIS)

    Thompson, M.O.; Aziz, M.J.; Stephenson, G.B.

    1992-01-01

    This volume contains papers presented at the Materials Research Society symposium on Kinetics of Phase Transformations held in Boston, Massachusetts from November 26-29, 1990. The symposium provided a forum for research results in an exceptionally broad and interdisciplinary field. Presentations covered nearly every major class of transformations including solid-solid, liquid-solid, transport phenomena and kinetics modeling. Papers involving amorphous Si, a dominant topic at the symposium, are collected in the first section followed by sections on four major areas of transformation kinetics. The symposium opened with joint sessions on ion and electron beam induced transformations in conjunction with the Surface Chemistry and Beam-Solid Interactions: symposium. Subsequent sessions focused on the areas of ordering and nonlinear diffusion kinetics, solid state reactions and amorphization, kinetics and defects of amorphous silicon, and kinetics of melting and solidification. Seven internationally recognized invited speakers reviewed many of the important problems and recent results in these areas, including defects in amorphous Si, crystal to glass transformations, ordering kinetics, solid-state amorphization, computer modeling, and liquid/solid transformations

  4. Protein Folding Free Energy Landscape along the Committor - the Optimal Folding Coordinate.

    Science.gov (United States)

    Krivov, Sergei V

    2018-06-06

    Recent advances in simulation and experiment have led to dramatic increases in the quantity and complexity of produced data, which makes the development of automated analysis tools very important. A powerful approach to analyze dynamics contained in such data sets is to describe/approximate it by diffusion on a free energy landscape - free energy as a function of reaction coordinates (RC). For the description to be quantitatively accurate, RCs should be chosen in an optimal way. Recent theoretical results show that such an optimal RC exists; however, determining it for practical systems is a very difficult unsolved problem. Here we describe a solution to this problem. We describe an adaptive nonparametric approach to accurately determine the optimal RC (the committor) for an equilibrium trajectory of a realistic system. In contrast to alternative approaches, which require a functional form with many parameters to approximate an RC and thus extensive expertise with the system, the suggested approach is nonparametric and can approximate any RC with high accuracy without system specific information. To avoid overfitting for a realistically sampled system, the approach performs RC optimization in an adaptive manner by focusing optimization on less optimized spatiotemporal regions of the RC. The power of the approach is illustrated on a long equilibrium atomistic folding simulation of HP35 protein. We have determined the optimal folding RC - the committor, which was confirmed by passing a stringent committor validation test. It allowed us to determine a first quantitatively accurate protein folding free energy landscape. We have confirmed the recent theoretical results that diffusion on such a free energy profile can be used to compute exactly the equilibrium flux, the mean first passage times, and the mean transition path times between any two points on the profile. We have shown that the mean squared displacement along the optimal RC grows linear with time as for

  5. Design and simulation of origami structures with smooth folds.

    Science.gov (United States)

    Peraza Hernandez, E A; Hartl, D J; Lagoudas, D C

    2017-04-01

    Origami has enabled new approaches to the fabrication and functionality of multiple structures. Current methods for origami design are restricted to the idealization of folds as creases of zeroth-order geometric continuity. Such an idealization is not proper for origami structures of non-negligible fold thickness or maximum curvature at the folds restricted by material limitations. For such structures, folds are not properly represented as creases but rather as bent regions of higher-order geometric continuity. Such fold regions of arbitrary order of continuity are termed as smooth folds . This paper presents a method for solving the following origami design problem: given a goal shape represented as a polygonal mesh (termed as the goal mesh ), find the geometry of a single planar sheet, its pattern of smooth folds, and the history of folding motion allowing the sheet to approximate the goal mesh. The parametrization of the planar sheet and the constraints that allow for a valid pattern of smooth folds are presented. The method is tested against various goal meshes having diverse geometries. The results show that every determined sheet approximates its corresponding goal mesh in a known folded configuration having fold angles obtained from the geometry of the goal mesh.

  6. Single-Chain Folding of Synthetic Polymers: A Critical Update.

    Science.gov (United States)

    Altintas, Ozcan; Barner-Kowollik, Christopher

    2015-11-23

    The current contribution serves as a critical update to a previous feature article from us (Macromol. Rapid Commun. 2012, 33, 958-971), and highlights the latest advances in the preparation of single chain polymeric nanoparticles and initial-yet promising-attempts towards mimicking the structure of natural biomacromolecules via single-chain folding of well-defined linear polymers via so-called single chain selective point folding and repeat unit folding. The contribution covers selected examples from the literature published up to ca. September 2015. Our aim is not to provide an exhaustive review but rather highlight a selection of new and exciting examples for single-chain folding based on advanced macromolecular precision chemistry. Initially, the discussion focuses on the synthesis and characterization of single-chain folded structures via selective point folding. The second part of the feature article addresses the folding of well-defined single-chain polymers by means of repeat unit folding. The current state of the art in the field of single-chain folding indicates that repeat unit folding-driven nanoparticle preparation is well-advanced, while initial encouraging steps towards building selective point folding systems have been taken. In addition, a summary of the-in our view-open key questions is provided that may guide future biomimetic design efforts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Irreversible processes kinetic theory

    CERN Document Server

    Brush, Stephen G

    2013-01-01

    Kinetic Theory, Volume 2: Irreversible Processes deals with the kinetic theory of gases and the irreversible processes they undergo. It includes the two papers by James Clerk Maxwell and Ludwig Boltzmann in which the basic equations for transport processes in gases are formulated, together with the first derivation of Boltzmann's ""H-theorem"" and a discussion of this theorem, along with the problem of irreversibility.Comprised of 10 chapters, this volume begins with an introduction to the fundamental nature of heat and of gases, along with Boltzmann's work on the kinetic theory of gases and s

  8. Doc of prophage P1 is inhibited by its antitoxin partner Phd through fold complementation

    DEFF Research Database (Denmark)

    Garcia-Pino, Abel; Christensen-Dalsgaard, Mikkel; Wyns, Lode

    2008-01-01

    Prokaryotic toxin-antitoxin modules are involved in major physiological events set in motion under stress conditions. The toxin Doc (death on curing) from the phd/doc module on phage P1 hosts the C-terminal domain of its antitoxin partner Phd (prevents host death) through fold complementation....... This Phd domain is intrinsically disordered in solution and folds into an alpha-helix upon binding to Doc. The details of the interactions reveal the molecular basis for the inhibitory action of the antitoxin. The complex resembles the Fic (filamentation induced by cAMP) proteins and suggests a possible......-antitoxin locus for its action in vivo....

  9. MODELLING OF KINETICS OF FLUORINE ADSORPTION ONTO MODIFIED DIATOMITE

    Directory of Open Access Journals (Sweden)

    VEACESLAV ZELENTSOV

    2017-03-01

    Full Text Available The paper presents kinetics modelling of adsorption of fluorine onto modified diatomite, its fundamental characteristics and mathematical derivations. Three models of defluoridation kinetics were used to fit the experimental results on adsorption fluorine onto diatomite: the pseudo-first order model Lagergren, the pseudo-second order model G. McKay and H.S. Ho and intraparticle diffusion model of W.J. Weber and J.C. Morris. Kinetics studies revealed that the adsorption of fluorine followed second-order rate model, complimented by intraparticle diffusion kinetics. The adsorption mechanism of fluorine involved three stages – external surface adsorption, intraparticle diffusion and the stage of equilibrium.

  10. Protein folding and protein metallocluster studies using synchrotron small angler X-ray scattering

    International Nuclear Information System (INIS)

    Eliezer, D.

    1994-06-01

    Proteins, biological macromolecules composed of amino-acid building blocks, possess unique three dimensional shapes or conformations which are intimately related to their biological function. All of the information necessary to determine this conformation is stored in a protein's amino acid sequence. The problem of understanding the process by which nature maps protein amino-acid sequences to three-dimensional conformations is known as the protein folding problem, and is one of the central unsolved problems in biophysics today. The possible applications of a solution are broad, ranging from the elucidation of thousands of protein structures to the rational modification and design of protein-based drugs. The scattering of X-rays by matter has long been useful as a tool for the characterization of physical properties of materials, including biological samples. The high photon flux available at synchrotron X-ray sources allows for the measurement of scattering cross-sections of dilute and/or disordered samples. Such measurements do not yield the detailed geometrical information available from crystalline samples, but do allow for lower resolution studies of dynamical processes not observable in the crystalline state. The main focus of the work described here has been the study of the protein folding process using time-resolved small-angle x-ray scattering measurements. The original intention was to observe the decrease in overall size which must accompany the folding of a protein from an extended conformation to its compact native state. Although this process proved too fast for the current time-resolution of the technique, upper bounds were set on the probable compaction times of several small proteins. In addition, an interesting and unexpected process was detected, in which the folding protein passes through an intermediate state which shows a tendency to associate. This state is proposed to be a kinetic molten globule folding intermediate

  11. Enthalpy-Driven RNA Folding: Single-Molecule Thermodynamics of Tetraloop–Receptor Tertiary Interaction†

    Science.gov (United States)

    Fiore, Julie L.; Kraemer, Benedikt; Koberling, Felix; Edmann, Rainer; Nesbitt, David J.

    2010-01-01

    RNA folding thermodynamics are crucial for structure prediction, which requires characterization of both enthalpic and entropic contributions of tertiary motifs to conformational stability. We explore the temperature dependence of RNA folding due to the ubiquitous GAAA tetraloop–receptor docking interaction, exploiting immobilized and freely diffusing single-molecule fluorescence resonance energy transfer (smFRET) methods. The equilibrium constant for intramolecular docking is obtained as a function of temperature (T = 21–47 °C), from which a van’t Hoff analysis yields the enthalpy (ΔH°) and entropy (ΔS°) of docking. Tetraloop–receptor docking is significantly exothermic and entropically unfavorable in 1 mM MgCl2 and 100 mM NaCl, with excellent agreement between immobilized (ΔH° = −17.4 ± 1.6 kcal/mol, and ΔS° = −56.2 ± 5.4 cal mol−1 K−1) and freely diffusing (ΔH° = −17.2 ± 1.6 kcal/mol, and ΔS° = −55.9 ± 5.2 cal mol−1 K−1) species. Kinetic heterogeneity in the tetraloop–receptor construct is unaffected over the temperature range investigated, indicating a large energy barrier for interconversion between the actively docking and nondocking subpopulations. Formation of the tetraloop–receptor interaction can account for ~60% of the ΔH° and ΔS° of P4–P6 domain folding in the Tetrahymena ribozyme, suggesting that it may act as a thermodynamic clamp for the domain. Comparison of the isolated tetraloop–receptor and other tertiary folding thermodynamics supports a theme that enthalpy- versus entropy-driven folding is determined by the number of hydrogen bonding and base stacking interactions. PMID:19186984

  12. SHORT COMMUNICATION CATALYTIC KINETIC ...

    African Journals Online (AJOL)

    IV) catalyzes the discoloring reaction of DBS-arsenazo oxidized by potassium bromate, a new catalytic kinetic spectrophotometric method for the determination of trace titanium (IV) was developed. The linear range of the determination of ...

  13. Identifying Conformational-Selection and Induced-Fit Aspects in the Binding-Induced Folding of PMI from Markov State Modeling of Atomistic Simulations.

    Science.gov (United States)

    Paul, Fabian; Noé, Frank; Weikl, Thomas R

    2018-03-27

    Unstructured proteins and peptides typically fold during binding to ligand proteins. A challenging problem is to identify the mechanism and kinetics of these binding-induced folding processes in experiments and atomistic simulations. In this Article, we present a detailed picture for the folding of the inhibitor peptide PMI into a helix during binding to the oncoprotein fragment 25-109 Mdm2 obtained from atomistic, explicit-water simulations and Markov state modeling. We find that binding-induced folding of PMI is highly parallel and can occur along a multitude of pathways. Some pathways are induced-fit-like with binding occurring prior to PMI helix formation, while other pathways are conformational-selection-like with binding after helix formation. On the majority of pathways, however, binding is intricately coupled to folding, without clear temporal ordering. A central feature of these pathways is PMI motion on the Mdm2 surface, along the binding groove of Mdm2 or over the rim of this groove. The native binding groove of Mdm2 thus appears as an asymmetric funnel for PMI binding. Overall, binding-induced folding of PMI does not fit into the classical picture of induced fit or conformational selection that implies a clear temporal ordering of binding and folding events. We argue that this holds in general for binding-induced folding processes because binding and folding events in these processes likely occur on similar time scales and do exhibit the time-scale separation required for temporal ordering.

  14. Accurately controlled sequential self-folding structures by polystyrene film

    Science.gov (United States)

    Deng, Dongping; Yang, Yang; Chen, Yong; Lan, Xing; Tice, Jesse

    2017-08-01

    Four-dimensional (4D) printing overcomes the traditional fabrication limitations by designing heterogeneous materials to enable the printed structures evolve over time (the fourth dimension) under external stimuli. Here, we present a simple 4D printing of self-folding structures that can be sequentially and accurately folded. When heated above their glass transition temperature pre-strained polystyrene films shrink along the XY plane. In our process silver ink traces printed on the film are used to provide heat stimuli by conducting current to trigger the self-folding behavior. The parameters affecting the folding process are studied and discussed. Sequential folding and accurately controlled folding angles are achieved by using printed ink traces and angle lock design. Theoretical analyses are done to guide the design of the folding processes. Programmable structures such as a lock and a three-dimensional antenna are achieved to test the feasibility and potential applications of this method. These self-folding structures change their shapes after fabrication under controlled stimuli (electric current) and have potential applications in the fields of electronics, consumer devices, and robotics. Our design and fabrication method provides an easy way by using silver ink printed on polystyrene films to 4D print self-folding structures for electrically induced sequential folding with angular control.

  15. Vocal fold paresis - a debilitating and underdiagnosed condition.

    Science.gov (United States)

    Harris, G; O'Meara, C; Pemberton, C; Rough, J; Darveniza, P; Tisch, S; Cole, I

    2017-07-01

    To review the clinical signs of vocal fold paresis on laryngeal videostroboscopy, to quantify its impact on patients' quality of life and to confirm the benefit of laryngeal electromyography in its diagnosis. Twenty-nine vocal fold paresis patients were referred for laryngeal electromyography. Voice Handicap Index 10 results were compared to 43 patients diagnosed with vocal fold paralysis. Laryngeal videostroboscopy analysis was conducted to determine side of paresis. Blinded laryngeal electromyography confirmed vocal fold paresis in 92.6 per cent of cases, with vocal fold lag being the most common diagnostic sign. The laryngology team accurately predicted side of paresis in 76 per cent of cases. Total Voice Handicap Index 10 responses were not significantly different between vocal fold paralysis and vocal fold paresis groups (26.08 ± 0.21 and 22.93 ± 0.17, respectively). Vocal fold paresis has a significant impact on quality of life. This study shows that laryngeal electromyography is an important diagnostic tool. Patients with persisting dysphonia and apparently normal vocal fold movement, who fail to respond to appropriate speech therapy, should be investigated for a diagnosis of vocal fold paresis.

  16. Quantitative electromyographic characteristics of idiopathic unilateral vocal fold paralysis.

    Science.gov (United States)

    Chang, Wei-Han; Fang, Tuan-Jen; Li, Hsueh-Yu; Jaw, Fu-Shan; Wong, Alice M K; Pei, Yu-Cheng

    2016-11-01

    Unilateral vocal fold paralysis with no preceding causes is diagnosed as idiopathic unilateral vocal fold paralysis. However, comprehensive guidelines for evaluating the defining characteristics of idiopathic unilateral vocal fold paralysis are still lacking. In the present study, we hypothesized that idiopathic unilateral vocal fold paralysis may have different clinical and neurologic characteristics from unilateral vocal fold paralysis caused by surgical trauma. Retrospective, case series study. Patients with unilateral vocal fold paralysis were evaluated using quantitative laryngeal electromyography, videolaryngostroboscopy, voice acoustic analysis, the Voice Outcome Survey, and the Short Form-36 Health Survey quality-of-life questionnaire. Patients with idiopathic and iatrogenic vocal fold paralysis were compared. A total of 124 patients were recruited. Of those, 17 with no definite identified causes after evaluation and follow-up were assigned to the idiopathic group. The remaining 107 patients with surgery-induced vocal fold paralysis were assigned to the iatrogenic group. Patients in the idiopathic group had higher recruitment of the thyroarytenoid-lateral cricoarytenoid muscle complex and better quality of life compared with the iatrogenic group. Idiopathic unilateral vocal fold paralysis has a distinct clinical presentation, with relatively minor denervation changes in the involved laryngeal muscles, and less impact on quality of life compared with iatrogenic vocal fold paralysis. 4. Laryngoscope, 126:E362-E368, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  17. Supercritical kinetic analysis in simplified system of fuel debris using integral kinetic model

    International Nuclear Information System (INIS)

    Tuya, Delgersaikhan; Obara, Toru

    2016-01-01

    Highlights: • Kinetic analysis in simplified weakly coupled fuel debris system was performed. • The integral kinetic model was used to simulate criticality accidents. • The fission power and released energy during simulated accident were obtained. • Coupling between debris regions and its effect on the fission power was obtained. - Abstract: Preliminary prompt supercritical kinetic analyses in a simplified coupled system of fuel debris designed to roughly resemble a melted core of a nuclear reactor were performed using an integral kinetic model. The integral kinetic model, which can describe region- and time-dependent fission rate in a coupled system of arbitrary geometry, was used because the fuel debris system is weakly coupled in terms of neutronics. The results revealed some important characteristics of coupled systems, such as the coupling between debris regions and the effect of the coupling on the fission rate and released energy in each debris region during the simulated criticality accident. In brief, this study showed that the integral kinetic model can be applied to supercritical kinetic analysis in fuel debris systems and also that it can be a useful tool for investigating the effect of the coupling on consequences of a supercritical accident.

  18. An optical flow-based state-space model of the vocal folds

    DEFF Research Database (Denmark)

    Granados, Alba; Brunskog, Jonas

    2017-01-01

    High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation. A l...... to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters........ A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able...

  19. An optical flow-based state-space model of the vocal folds.

    Science.gov (United States)

    Granados, Alba; Brunskog, Jonas

    2017-06-01

    High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation. A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters.

  20. Interpreting whether isoclinal folds are antiforms or synforms using FIA succession

    Science.gov (United States)

    Cao, H.

    2012-12-01

    Using the asymmetries of the overprinting foliations preserved as inclusion trails that define the FIAs to investigate whether an enigmatic isoclinal fold in the region is an antiform or synform. This approach also reveals when the fold first formed during the tectonic history of the region. Multiply deformed and isoclinally folded interlayered high metamorphic grade gneisses and schists can be very difficult rocks for resolving early formed stratigraphic and structural relationships. When such rocks contain porphyroblasts a new approach is possible because of the way in which porphyroblast growth is affected by crenulation versus reactivation of compositional layering (Bell et al., 2003). Isoclinally folded rocks in the Arkansas River region of South Central Colorado contain relics of fold hinges that have been very difficult to ascertain whether they are antiforms or synforms because of younger refolding effects and the locally truncated nature of coarse compositional layering. With the realization that rocks with a schistosity parallel to bedding (S0 parallel S1) have undergone lengthy histories of deformation that predate the obvious first deformation (e.g. Bell et al., 2003; Sayab, 2006; Yeh, 2007) came recognition that large scale regional folds can form early during this process and be preserved throughout orogenesis (e.g., Ham and Bell, 2004; Bell and Newman, 2006. This extensive history is lost within the matrix because of reactivational shear on the compositional layering (Bell et al., 1998, 2003, 2004, 2005; Ham and Bell, 2004). However, it can be extracted by measuring FIAs. Recent work using this approach has revealed that the trends of axial planes of all map scale folds, when plotted on a rose diagram, strikingly reflect the FIA trends (e.g., Sanislav, 2009; Shah, 2009). That is, although it was demonstrated by Bell et al. (2003) that the largest scale regional folds commonly form early in the total history, other folds can form and be preserved from

  1. Revealing Rembrandt

    Directory of Open Access Journals (Sweden)

    Andrew J Parker

    2014-04-01

    Full Text Available The power and significance of artwork in shaping human cognition is self-evident. The starting point for our empirical investigations is the view that the task of neuroscience is to integrate itself with other forms of knowledge, rather than to seek to supplant them. In our recent work, we examined a particular aspect of the appreciation of artwork using present-day functional magnetic resonance imaging (fMRI. Our results emphasised the continuity between viewing artwork and other human cognitive activities. We also showed that appreciation of a particular aspect of artwork, namely authenticity, depends upon the co-ordinated activity between the brain regions involved in multiple decision making and those responsible for processing visual information. The findings about brain function probably have no specific consequences for understanding how people respond to the art of Rembrandt in comparison with their response to other artworks. However, the use of images of Rembrandt’s portraits, his most intimate and personal works, clearly had a significant impact upon our viewers, even though they have been spatially confined to the interior of an MRI scanner at the time of viewing. Neuroscientific studies of humans viewing artwork have the capacity to reveal the diversity of human cognitive responses that may be induced by external advice or context as people view artwork in a variety of frameworks and settings.

  2. Deformation and kinematics of the central Kirthar Fold Belt, Pakistan

    Science.gov (United States)

    Hinsch, Ralph; Hagedorn, Peter; Asmar, Chloé; Nasim, Muhammad; Aamir Rasheed, Muhammad; Kiely, James M.

    2017-04-01

    The Kirthar Fold Belt is part of the lateral mountain belts in Pakistan linking the Himalaya orogeny with the Makran accretionary wedge. This region is deforming very oblique/nearly parallel to the regional plate motion vector. The study area is situated between the prominent Chaman strike-slip fault in the West and the un-deformed foreland (Kirthar Foredeep/Middle Indus Basin) in the East. The Kirthar Fold Belt is subdivided into several crustal blocks/units based on structural orientation and deformation style (e.g. Kallat, Khuzdar, frontal Kirthar). This study uses newly acquired and depth-migrated 2D seismic lines, surface geology observations and Google Earth assessments to construct three balanced cross sections for the frontal part of the fold belt. Further work was done in order to insure the coherency of the built cross-sections by taking a closer look at the regional context inferred from published data, simple analogue modelling, and constructed regional sketch sections. The Khuzdar area and the frontal Kirthar Fold Belt are dominated by folding. Large thrusts with major stratigraphic repetitions are not observed. Furthermore, strike-slip faults in the Khuzdar area are scarce and not observed in the frontal Kirthar Fold Belt. The regional structural elevation rises from the foreland across the Kirthar Fold Belt towards the hinterland (Khuzdar area). These observations indicate that basement-involved deformation is present at depth. The domination of folding indicates a weak decollement below the folds (soft-linked deformation). The fold pattern in the Khuzdar area is complex, whereas the large folds of the central Kirthar Fold Belt trend SSW-NNE to N-S and are best described as large detachment folds that have been slightly uplifted by basement involved transpressive deformation underneath. Towards the foreland, the deformation is apparently more hard-linked and involves fault-propagation folding and a small triangle zone in Cretaceous sediments

  3. Distinct Element Method modelling of fold-related fractures in a multilayer sequence

    Science.gov (United States)

    Kaserer, Klemens; Schöpfer, Martin P. J.; Grasemann, Bernhard

    2017-04-01

    Natural fractures have a significant impact on the performance of hydrocarbon systems/reservoirs. In a multilayer sequence, both the fracture density within the individual layers and the type of fracture intersection with bedding contacts are key parameters controlling fluid pathways. In the present study the influence of layer stacking and interlayer friction on fracture density and connectivity within a folded sequence is systematically investigated using 2D Distinct Element Method modelling. Our numerical approach permits forward modelling of both fracture nucleation/propagation/arrest and (contemporaneous) frictional slip along bedding planes in a robust and mechanically sound manner. Folding of the multilayer sequence is achieved by enforcing constant curvature folding by means of a velocity boundary condition at the model base, while a constant overburden pressure is maintained at the model top. The modelling reveals that with high bedding plane friction the multilayer stack behaves mechanically as a single layer so that the neutral surface develops in centre of the sequence and fracture spacing is controlled by the total thickness of the folded sequence. In contrast, low bedding plane friction leads to decoupling of the individual layers (flexural slip folding) so that a neutral surface develops in the centre of each layer and fracture spacing is controlled by the thickness of the individual layers. The low interfacial friction models illustrate that stepping of fractures across bedding planes is a common process, which can however have two contrasting origins: The mechanical properties of the interface cause fracture stepping during fracture propagation. Originally through-going fractures are later offset by interfacial slip during folding. A combination of these two different origins may lead to (apparently) inconsistent fracture offsets across bedding planes within a flexural slip fold.

  4. Quantification of Drive-Response Relationships Between Residues During Protein Folding.

    Science.gov (United States)

    Qi, Yifei; Im, Wonpil

    2013-08-13

    Mutual correlation and cooperativity are commonly used to describe residue-residue interactions in protein folding/function. However, these metrics do not provide any information on the causality relationships between residues. Such drive-response relationships are poorly studied in protein folding/function and difficult to measure experimentally due to technical limitations. In this study, using the information theory transfer entropy (TE) that provides a direct measurement of causality between two times series, we have quantified the drive-response relationships between residues in the folding/unfolding processes of four small proteins generated by molecular dynamics simulations. Instead of using a time-averaged single TE value, the time-dependent TE is measured with the Q-scores based on residue-residue contacts and with the statistical significance analysis along the folding/unfolding processes. The TE analysis is able to identify the driving and responding residues that are different from the highly correlated residues revealed by the mutual information analysis. In general, the driving residues have more regular secondary structures, are more buried, and show greater effects on the protein stability as well as folding and unfolding rates. In addition, the dominant driving and responding residues from the TE analysis on the whole trajectory agree with those on a single folding event, demonstrating that the drive-response relationships are preserved in the non-equilibrium process. Our study provides detailed insights into the protein folding process and has potential applications in protein engineering and interpretation of time-dependent residue-based experimental observables for protein function.

  5. Evaluation of the Grafted Fascia in the Vocal Fold of Dogs: A Histologic Study.

    Science.gov (United States)

    Carvalho, Eduardo G B; Pauna, Henrique F; Machado, Almiro J; Nicola, Ester M D; Altemani, Albina M A M; Crespo, Agrício N

    2017-09-01

    There is no consensus on the ideal graft for medialization surgery of the vocal folds in the literature. One of the most favorable proposals is the use of autologous fascia, which seems limited by the lack of information regarding the integration of grafted tissue. Our study aims to evaluate the degree of fully engrafted fascia integration in the vocal fold lamina propria of dogs. Fourteen adult mongrel dogs that underwent intravenous general anesthesia were selected and kept under spontaneous ventilation. A fascia lata fragment of 4 cm 2 was obtained from the right leg of each dog. The dogs underwent laryngoscopy; a 3 mm incision was made in the vocal process, next to the vestibular process, and the fascia was grafted into the right vocal fold. The left vocal fold was used as a control. The animals were divided into two groups: group A, evaluated after 2 months of the procedure, and group B, evaluated after 6 months of the procedure. Histologic analysis was made semiquantitatively regarding the presence of inflammatory reaction, fibrosis, and neovascularization. Our final studied group comprised 12 dogs. Microscopic examination of the larynx revealed the absence of any detectable inflammation in the incision site. The lamina propria of the grafted vocal fold showed identifiable compact, thick, and eosinophilic collagen bands. The surrounding tissue showed thin collagen bands with some organization, similar to the contralateral vocal fold. The grafted fascia integrates into the vocal fold lamina propria and seems not to cause inflammatory reaction response. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  6. Cation-induced folding of alginate-bearing bilayer gels: an unusual example of spontaneous folding along the long axis.

    Science.gov (United States)

    Athas, Jasmin C; Nguyen, Catherine P; Kummar, Shailaa; Raghavan, Srinivasa R

    2018-04-04

    The spontaneous folding of flat gel films into tubes is an interesting example of self-assembly. Typically, a rectangular film folds along its short axis when forming a tube; folding along the long axis has been seen only in rare instances when the film is constrained. Here, we report a case where the same free-swelling gel film folds along either its long or short axis depending on the concentration of a solute. Our gels are sandwiches (bilayers) of two layers: a passive layer of cross-linked N,N'-dimethylyacrylamide (DMAA) and an active layer of cross-linked DMAA that also contains chains of the biopolymer alginate. Multivalent cations like Ca2+ and Cu2+ induce these bilayer gels to fold into tubes. The folding occurs instantly when a flat film of the gel is introduced into a solution of these cations. The likely cause for folding is that the active layer stiffens and shrinks (because the alginate chains in it get cross-linked by the cations) whereas the passive layer is unaffected. The resulting mismatch in swelling degree between the two layers creates internal stresses that drive folding. Cations that are incapable of cross-linking alginate, such as Na+ and Mg2+, do not induce gel folding. Moreover, the striking aspect is the direction of folding. When the Ca2+ concentration is high (100 mM or higher), the gels fold along their long axis, whereas when the Ca2+ concentration is low (40 to 80 mM), the gels fold along their short axis. We hypothesize that the folding axis is dictated by the inhomogeneous nature of alginate-cation cross-linking, i.e., that the edges get cross-linked before the faces of the gel. At high Ca2+ concentration, the stiffer edges constrain the folding; in turn, the gel folds such that the longer edges are deformed less, which explains the folding along the long axis. At low Ca2+ concentration, the edges and the faces of the gel are more similar in their degree of cross-linking; therefore, the gel folds along its short axis. An analogy

  7. Patterns of Participation and Motivation in Folding@home: The Contribution of Hardware Enthusiasts and Overclockers

    Directory of Open Access Journals (Sweden)

    Vickie Curtis

    2018-04-01

    Full Text Available Folding@home is a distributed computing project in which participants run protein folding simulations on their computers. Participants complete work units and are awarded points for their contribution. An investigation into motivations to participate and patterns of participation revealed the significant contribution of a sub-community composed of individuals who custom-build computers to maximise their processing power. These individuals, known as “overclockers” or “hardware enthusiasts,” use distributed computing projects such as Folding@home to benchmark their modified computers and to compete with one another to see who can process the greatest number of project work units. Many are initially drawn to the project to learn about computer hardware from other overclockers and to compete for points. However, once they learn more about the scientific outputs of Folding@home, some participants become more motivated by the desire to contribute to scientific research. Overclockers form numerous online communities where members collaborate and help each other maximise their computing output. They invest heavily in their computers and process the majority of Folding@home’s simulations, thus providing an invaluable (and free resource.

  8. Characterization of fold defects in AZ91D and AE42 magnesium alloy permanent mold castings

    International Nuclear Information System (INIS)

    Bichler, L.; Ravindran, C.

    2010-01-01

    Casting premium-quality magnesium alloy components for aerospace and automotive applications poses unique challenges. Magnesium alloys are known to freeze rapidly prior to filling a casting cavity, resulting in misruns and cold shuts. In addition, melt oxidation, solute segregation and turbulent metal flow during casting contribute to the formation of fold defects. In this research, formation of fold defects in AZ91D and AE42 magnesium alloys cast via the permanent mold casting process was investigated. Computer simulations of the casting process predicted the development of a turbulent metal flow in a critical casting region with abrupt geometrical transitions. SEM and light optical microscopy examinations revealed the presence of folds in this region for both alloys. However, each alloy exhibited a unique mechanism responsible for fold formation. In the AZ91D alloy, melt oxidation and velocity gradients in the critical casting region prevented fusion of merging metal front streams. In the AE42 alloy, limited solubility of rare-earth intermetallic compounds in the α-Mg phase resulted in segregation of Al 2 RE particles at the leading edge of a metal front and created microstructural inhomogeneity across the fold.

  9. Structural Insights into DD-Fold Assembly and Caspase-9 Activation by the Apaf-1 Apoptosome.

    Science.gov (United States)

    Su, Tsung-Wei; Yang, Chao-Yu; Kao, Wen-Pin; Kuo, Bai-Jiun; Lin, Shan-Meng; Lin, Jung-Yaw; Lo, Yu-Chih; Lin, Su-Chang

    2017-03-07

    Death domain (DD)-fold assemblies play a crucial role in regulating the signaling to cell survival or death. Here we report the crystal structure of the caspase recruitment domain (CARD)-CARD disk of the human apoptosome. The structure surprisingly reveals that three 1:1 Apaf-1:procaspase-9 CARD protomers form a novel helical DD-fold assembly on the heptameric wheel-like platform of the apoptosome. The small-angle X-ray scattering and multi-angle light scattering data also support that three protomers could form an oligomeric complex similar to the crystal structure. Interestingly, the quasi-equivalent environment of CARDs could generate different quaternary CARD assemblies. We also found that the type II interaction is conserved in all DD-fold complexes, whereas the type I interaction is found only in the helical DD-fold assemblies. This study provides crucial insights into the caspase activation mechanism, which is tightly controlled by a sophisticated and highly evolved CARD assembly on the apoptosome, and also enables better understanding of the intricate DD-fold assembly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The Ventricular-Fold Dynamics in Human Phonation

    OpenAIRE

    Bailly , Lucie; Henrich Bernardoni , Nathalie; Müller , Frank; Rohlfs , Anna-Katharina; Hess , Markus

    2014-01-01

    International audience; Purpose: In this study, the authors aimed (a) to provide a classification of the ventricular-fold dynamics during voicing, (b) to study the aerodynamic impact of these motions on vocal-fold vibrations, and (c) to assess whether ventricularfold oscillations could be sustained by aerodynamic coupling with the vocal folds. Method: A 72-sample database of vocal gestures accompanying different acoustical events comprised highspeed cinematographic, audio, and electroglottogr...

  11. Comparing the Folding and Misfolding Energy Landscapes of Phosphoglycerate Kinase

    OpenAIRE

    Agocs, Gergely; Szabo, Bence T.; Koehler, Gottfried; Osvath, Szabolcs

    2012-01-01

    Partitioning of polypeptides between protein folding and amyloid formation is of outstanding pathophysiological importance. Using yeast phosphoglycerate kinase as model, here we identify the features of the energy landscape that decide the fate of the protein: folding or amyloidogenesis. Structure formation was initiated from the acid-unfolded state, and monitored by fluorescence from 10 ms to 20 days. Solvent conditions were gradually shifted between folding and amyloidogenesis, and the prop...

  12. Iterative Controller Tuning for Process with Fold Bifurcations

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Poulsen, Niels Kjølstad; Jørgensen, Sten Bay

    2007-01-01

    Processes involving fold bifurcation are notoriously difficult to control in the vicinity of the fold where most often optimal productivity is achieved . In cases with limited process insight a model based control synthesis is not possible. This paper uses a data driven approach with an improved...... version of iterative feedback tuning to optimizing a closed loop performance criterion, as a systematic tool for tuning process with fold bifurcations....

  13. Current Understanding and Future Directions for Vocal Fold Mechanobiology

    Science.gov (United States)

    Li, Nicole Y.K.; Heris, Hossein K.; Mongeau, Luc

    2013-01-01

    The vocal folds, which are located in the larynx, are the main organ of voice production for human communication. The vocal folds are under continuous biomechanical stress similar to other mechanically active organs, such as the heart, lungs, tendons and muscles. During speech and singing, the vocal folds oscillate at frequencies ranging from 20 Hz to 3 kHz with amplitudes of a few millimeters. The biomechanical stress associated with accumulated phonation is believed to alter vocal fold cell activity and tissue structure in many ways. Excessive phonatory stress can damage tissue structure and induce a cell-mediated inflammatory response, resulting in a pathological vocal fold lesion. On the other hand, phonatory stress is one major factor in the maturation of the vocal folds into a specialized tri-layer structure. One specific form of vocal fold oscillation, which involves low impact and large amplitude excursion, is prescribed therapeutically for patients with mild vocal fold injuries. Although biomechanical forces affect vocal fold physiology and pathology, there is little understanding of how mechanical forces regulate these processes at the cellular and molecular level. Research into vocal fold mechanobiology has burgeoned over the past several years. Vocal fold bioreactors are being developed in several laboratories to provide a biomimic environment that allows the systematic manipulation of physical and biological factors on the cells of interest in vitro. Computer models have been used to simulate the integrated response of cells and proteins as a function of phonation stress. The purpose of this paper is to review current research on the mechanobiology of the vocal folds as it relates to growth, pathogenesis and treatment as well as to propose specific research directions that will advance our understanding of this subject. PMID:24812638

  14. Chemical Denaturants Smoothen Ruggedness on the Free Energy Landscape of Protein Folding.

    Science.gov (United States)

    Malhotra, Pooja; Jethva, Prashant N; Udgaonkar, Jayant B

    2017-08-08

    To characterize experimentally the ruggedness of the free energy landscape of protein folding is challenging, because the distributed small free energy barriers are usually dominated by one, or a few, large activation free energy barriers. This study delineates changes in the roughness of the free energy landscape by making use of the observation that a decrease in ruggedness is accompanied invariably by an increase in folding cooperativity. Hydrogen exchange (HX) coupled to mass spectrometry was used to detect transient sampling of local energy minima and the global unfolded state on the free energy landscape of the small protein single-chain monellin. Under native conditions, local noncooperative openings result in interconversions between Boltzmann-distributed intermediate states, populated on an extremely rugged "uphill" energy landscape. The cooperativity of these interconversions was increased by selectively destabilizing the native state via mutations, and further by the addition of a chemical denaturant. The perturbation of stability alone resulted in seven backbone amide sites exchanging cooperatively. The size of the cooperatively exchanging and/or unfolding unit did not depend on the extent of protein destabilization. Only upon the addition of a denaturant to a destabilized mutant variant did seven additional backbone amide sites exchange cooperatively. Segmentwise analysis of the HX kinetics of the mutant variants further confirmed that the observed increase in cooperativity was due to the smoothing of the ruggedness of the free energy landscape of folding of the protein by the chemical denaturant.

  15. Atomic force microscopy and force spectroscopy on the assessment of protein folding and functionality.

    Science.gov (United States)

    Carvalho, Filomena A; Martins, Ivo C; Santos, Nuno C

    2013-03-01

    Atomic force microscopy (AFM) applied to biological systems can, besides generating high-quality and well-resolved images, be employed to study protein folding via AFM-based force spectroscopy. This approach allowed remarkable advances in the measurement of inter- and intramolecular interaction forces with piconewton resolution. The detection of specific interaction forces between molecules based on the AFM sensitivity and the manipulation of individual molecules greatly advanced the understanding of intra-protein and protein-ligand interactions. Apart from the academic interest in the resolution of basic scientific questions, this technique has also key importance on the clarification of several biological questions of immediate biomedical relevance. Force spectroscopy is an especially appropriate technique for "mechanical proteins" that can provide crucial information on single protein molecules and/or domains. Importantly, it also has the potential of combining in a single experiment spatial and kinetic measurements. Here, the main principles of this methodology are described, after which the ability to measure interactions at the single-molecule level is discussed, in the context of relevant protein-folding examples. We intend to demonstrate the potential of AFM-based force spectroscopy in the study of protein folding, especially since this technique is able to circumvent some of the difficulties typically encountered in classical thermal/chemical denaturation studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Evolutionary Engineering in Chemostat Cultures for Improved Maltotriose Fermentation Kinetics in Saccharomyces pastorianus Lager Brewing Yeast

    Directory of Open Access Journals (Sweden)

    Anja Brickwedde

    2017-09-01

    Full Text Available The lager brewing yeast Saccharomyces pastorianus, an interspecies hybrid of S. eubayanus and S. cerevisiae, ferments maltotriose, maltose, sucrose, glucose and fructose in wort to ethanol and carbon dioxide. Complete and timely conversion (“attenuation” of maltotriose by industrial S. pastorianus strains is a key requirement for process intensification. This study explores a new evolutionary engineering strategy for improving maltotriose fermentation kinetics. Prolonged carbon-limited, anaerobic chemostat cultivation of the reference strain S. pastorianus CBS1483 on a maltotriose-enriched sugar mixture was used to select for spontaneous mutants with improved affinity for maltotriose. Evolved populations exhibited an up to 5-fold lower residual maltotriose concentration and a higher ethanol concentration than the parental strain. Uptake studies with 14C-labeled sugars revealed an up to 4.75-fold higher transport capacity for maltotriose in evolved strains. In laboratory batch cultures on wort, evolved strains showed improved attenuation and higher ethanol concentrations. These improvements were also observed in pilot fermentations at 1,000-L scale with high-gravity wort. Although the evolved strain exhibited multiple chromosomal copy number changes, analysis of beer made from pilot fermentations showed no negative effects on flavor compound profiles. These results demonstrate the potential of evolutionary engineering for strain improvement of hybrid, alloploid brewing strains.

  17. Role of the Disulfide Bond in Prion Protein Amyloid Formation: A Thermodynamic and Kinetic Analysis.

    Science.gov (United States)

    Honda, Ryo

    2018-02-27

    Prion diseases are associated with the structural conversion of prion protein (PrP) to a β-sheet-rich aggregate, PrP Sc . Previous studies have indicated that a reduction of the disulfide bond linking C179 and C214 of PrP yields an amyloidlike β-rich aggregate in vitro. To gain mechanistic insights into the reduction-induced aggregation, here I characterized how disulfide bond reduction modulates the protein folding/misfolding landscape of PrP, by examining 1) the equilibrium stabilities of the native (N) and aggregated states relative to the unfolded (U) state, 2) the transition barrier separating the U and aggregated states, and 3) the final structure of amyloidlike misfolded aggregates. Kinetic and thermodynamic experiments revealed that disulfide bond reduction decreases the equilibrium stabilities of both the N and aggregated states by ∼3 kcal/mol, without changing either the amyloidlike aggregate structure, at least at the secondary structural level, or the transition barrier of aggregation. Therefore, disulfide bond reduction modulates the protein folding/misfolding landscape by entropically stabilizing disordered states, including the U and transition state of aggregation. This also indicates that the equilibrium stability of the N state, but not the transition barrier of aggregation, is the dominant factor determining the reduction-induced aggregation of PrP. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Rapid kinetics of dehalogenation promoted by iodotyrosine deiodinase from human thyroid.

    Science.gov (United States)

    Bobyk, Kostyantyn D; Ballou, David P; Rokita, Steven E

    2015-07-28

    Reductive dehalogenation such as that catalyzed by iodotyrosine deiodinase (IYD) is highly unusual in aerobic organisms but necessary for iodide salvage from iodotyrosine generated during thyroxine biosynthesis. Equally unusual is the dependence of this process on flavin. Rapid kinetics have now been used to define the basic processes involved in IYD catalysis. Time-dependent quenching of flavin fluorescence was used to monitor halotyrosine association to IYD. The substrates chloro-, bromo-, and iodotyrosine bound with similar rate constants (kon) ranging from 1.3 × 10(6) to 1.9 × 10(6) M(-1) s(-1). Only the inert substrate analogue fluorotyrosine exhibited a significantly (5-fold) slower kon (0.3 × 10(6) M(-1) s(-1)). All data fit a standard two-state model and indicated that no intermediate complex accumulated during closure of the active site lid induced by substrate. Subsequent halide elimination does not appear to limit reactions of bromo- and iodotyrosine since both fully oxidized the reduced enzyme with nearly equivalent second-order rate constants (7.3 × 10(3) and 8.6 × 10(3) M(-1) s(-1), respectively) despite the differing strength of their carbon-halogen bonds. In contrast to these substrates, chlorotyrosine reacted with the reduced enzyme approximately 20-fold more slowly and revealed a spectral intermediate that formed at approximately the same rate as the bromo- and iodotyrosine reactions.

  19. Evolutionary Engineering in Chemostat Cultures for Improved Maltotriose Fermentation Kinetics in Saccharomyces pastorianus Lager Brewing Yeast.

    Science.gov (United States)

    Brickwedde, Anja; van den Broek, Marcel; Geertman, Jan-Maarten A; Magalhães, Frederico; Kuijpers, Niels G A; Gibson, Brian; Pronk, Jack T; Daran, Jean-Marc G

    2017-01-01

    The lager brewing yeast Saccharomyces pastorianus , an interspecies hybrid of S. eubayanus and S. cerevisiae , ferments maltotriose, maltose, sucrose, glucose and fructose in wort to ethanol and carbon dioxide. Complete and timely conversion ("attenuation") of maltotriose by industrial S. pastorianus strains is a key requirement for process intensification. This study explores a new evolutionary engineering strategy for improving maltotriose fermentation kinetics. Prolonged carbon-limited, anaerobic chemostat cultivation of the reference strain S. pastorianus CBS1483 on a maltotriose-enriched sugar mixture was used to select for spontaneous mutants with improved affinity for maltotriose. Evolved populations exhibited an up to 5-fold lower residual maltotriose concentration and a higher ethanol concentration than the parental strain. Uptake studies with 14 C-labeled sugars revealed an up to 4.75-fold higher transport capacity for maltotriose in evolved strains. In laboratory batch cultures on wort, evolved strains showed improved attenuation and higher ethanol concentrations. These improvements were also observed in pilot fermentations at 1,000-L scale with high-gravity wort. Although the evolved strain exhibited multiple chromosomal copy number changes, analysis of beer made from pilot fermentations showed no negative effects on flavor compound profiles. These results demonstrate the potential of evolutionary engineering for strain improvement of hybrid, alloploid brewing strains.

  20. Competition between folding and glycosylation in the endoplasmic reticulum

    DEFF Research Database (Denmark)

    Holst, B; Bruun, A W; Kielland-Brandt, Morten

    1996-01-01

    Using carboxypeptidase Y in Saccharomyces cerevisiae as a model system, the in vivo relationship between protein folding and N-glycosylation was studied. Seven new sites for N-glycosylation were introduced at positions buried in the folded protein structure. The level of glycosylation of such new...... acceptor sites. In some cases, all the newly synthesized mutant protein was modified at the novel site while in others no modification took place. In the most interesting category of mutants, the level of glycosylation was dependent on the conditions for folding. This shows that folding and glycosylation...

  1. Folding System for the Clothes by a Robot and Tools

    OpenAIRE

    大澤, 文明; 関, 啓明; 神谷, 好承

    2004-01-01

    The works of a home robot has the laundering. The purpose of this study is to find a means of folding of the clothes and store the clothes in a drawer by a home robot. Because the shape of cloth tends to change in various ways depending on the situation, it is difficult for robot hands to fold the clothes. In this paper, we propose a realistic folding system for the clothes by a robot and tools. The function of a tool is folding the clothes in half by inserting the clothes using two plates. T...

  2. Thermodynamics of protein folding: a random matrix formulation.

    Science.gov (United States)

    Shukla, Pragya

    2010-10-20

    The process of protein folding from an unfolded state to a biologically active, folded conformation is governed by many parameters, e.g. the sequence of amino acids, intermolecular interactions, the solvent, temperature and chaperon molecules. Our study, based on random matrix modeling of the interactions, shows, however, that the evolution of the statistical measures, e.g. Gibbs free energy, heat capacity, and entropy, is single parametric. The information can explain the selection of specific folding pathways from an infinite number of possible ways as well as other folding characteristics observed in computer simulation studies. © 2010 IOP Publishing Ltd

  3. Specific features of vocal fold paralysis in functional computed tomography

    International Nuclear Information System (INIS)

    Laskowska, K.; Mackiewicz-Nartowicz, H.; Serafin, Z.; Nawrocka, E.

    2008-01-01

    Vocal fold paralysis is usually recognized in laryngological examination, and detailed vocal fold function may be established based on laryngovideostroboscopy. Additional imaging should exclude any morphological causes of the paresis, which should be treated pharmacologically or surgically. The aim of this paper was to analyze the computed tomography (CT) images of the larynx in patients with unilateral vocal fold paralysis. CT examinations of the larynx were performed in 10 patients with clinically defined unilateral vocal fold paralysis. The examinations consisted of unenhanced acquisition and enhanced 3-phased acquisition: during free breathing, Valsalva maneuver, and phonation. The analysis included the following morphologic features of the paresis.the deepened epiglottic vallecula, the deepened piriform recess, the thickened and medially positioned aryepiglottic fold, the widened laryngeal pouch, the anteriorly positioned arytenoid cartilage, the thickened vocal fold, and the filled infraglottic space in frontal CT reconstruction. CT images were compared to laryngovideostroboscopy. The most common symptoms of vocal cord paralysis in CT were the deepened epiglottic vallecula and piriform recess, the widened laryngeal pouch with the filled infraglottic space, and the thickened aryepiglottic fold. Regarding the efficiency of the paralysis determination, the three functional techniques of CT larynx imaging used did not differ significantly, and laryngovideostroboscopy demonstrated its advantage over CT. CT of the larynx is a supplementary examination in the diagnosis of vocal fold paralysis, which may enable topographic analysis of the fold dysfunction. The knowledge of morphological CT features of the paralysis may help to prevent false-positive diagnosis of laryngeal cancer. (author)

  4. Arytenoid and posterior vocal fold surgery for bilateral vocal fold immobility.

    Science.gov (United States)

    Young, VyVy N; Rosen, Clark A

    2011-12-01

    Many procedures exist to address the airway restriction often seen with bilateral vocal fold immobility. We review the most recent studies involving arytenoid and/or posterior vocal fold surgery to provide an update on the issues related to these procedures. Specific focus is placed on selection of the surgical approach and operative side, use of adjunctive therapies, and outcome measures including decannulation rate, revision and complication rate, and postoperative results. Ten studies were identified between 2004 and 2011. Modifications to the orginal transverse cordotomy and medial arytenoidectomy techniques continue to be investigated to seek improvement in dyspnea symptoms with minimal decline in voice and/or swallowing function. Decannulation rates for these approaches are high. Postoperative dysphagia appears to be less commonly observed but requires continued study. The use of mitomycin-C in these procedures has been poorly studied to date. Both transverse cordotomy and medial arytenoidectomy procedures result in high success rates. However, many questions related to these procedures remain unanswered, particularly with respect to preoperative and postoperative evaluations of voice quality, swallowing function, and pulmonary status. There is need for rigorous prospective clinical studies to address these many issues further.

  5. Endo-extralaryngeal Laterofixation of the Vocal Folds in Patients with Bilateral Vocal Fold Immobility.

    Science.gov (United States)

    Wiegand, Susanne; Teymoortash, Afshin; Hanschmann, Holger

    2017-01-01

    Bilateral vocal fold paralysis can result in shortness of breath and severe dyspnea which can be life-threatening. Thirty-five patients with bilateral vocal fold paralysis who underwent endo-extralaryngeal laterofixation according to Lichtenberger were retrospectively analyzed regarding etiology, symptoms, treatment and complications. In 27 patients, laterofixation of the vocal cord alone was performed. Eight patients underwent laterofixation and additional posterior chordectomy of the opposite vocal cord according to Dennis and Kashima. The time of intervention ranged from 1 day to 38 years after the onset of bilateral vocal cord immobility. The intraoperative course was uneventful in all patients. None of the patients had postoperative aspiration. Postoperative voice function was acceptable in all patients. Complications of suture laterofixation were laryngeal edema, formation of fibrin, and malposition of the suture. Laterofixation of the vocal cords according to Lichtenberger is a safe and easy method that can be used as a first-stage treatment of vocal cord paralysis. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. Kinetic and thermodynamic control of butyrate conversion in non-defined methanogenic communities.

    Science.gov (United States)

    Junicke, H; van Loosdrecht, M C M; Kleerebezem, R

    2016-01-01

    Many anaerobic conversions proceed close to thermodynamic equilibrium and the microbial groups involved need to share their low energy budget to survive at the thermodynamic boundary of life. This study aimed to investigate the kinetic and thermodynamic control mechanisms of the electron transfer during syntrophic butyrate conversion in non-defined methanogenic communities. Despite the rather low energy content of butyrate, results demonstrate unequal energy sharing between the butyrate-utilizing species (17 %), the hydrogenotrophic methanogens (9-10 %), and the acetoclastic methanogens (73-74 %). As a key finding, the energy disproportion resulted in different growth strategies of the syntrophic partners. Compared to the butyrate-utilizing partner, the hydrogenotrophic methanogens compensated their lower biomass yield per mole of electrons transferred with a 2-fold higher biomass-specific electron transfer rate. Apart from these thermodynamic control mechanisms, experiments revealed a ten times lower hydrogen inhibition constant on butyrate conversion than proposed by the Anaerobic Digestion Model No. 1, suggesting a much stronger inhibitory effect of hydrogen on anaerobic butyrate conversion. At hydrogen partial pressures exceeding 40 Pa and at bicarbonate limited conditions, a shift from methanogenesis to reduced product formation was observed which indicates an important role of the hydrogen partial pressure in redirecting electron fluxes towards reduced products such as butanol. The findings of this study demonstrate that a careful consideration of thermodynamics and kinetics is required to advance our current understanding of flux regulation in energy-limited syntrophic ecosystems.

  7. Purification, kinetic behavior, and regulation of NAD(P)+ malic enzyme of tumor mitochondria.

    Science.gov (United States)

    Moreadith, R W; Lehninger, A L

    1984-05-25

    The purification and kinetic characterization of an NAD(P)+-malic enzyme from 22aH mouse hepatoma mitochondria are described. The enzyme was purified 328-fold with a final yield of 51% and specific activity of 38.1 units/mg of protein by employing DEAE-cellulose chromatography and an ATP affinity column. Sephadex G-200 chromatography yielded a native Mr = 240,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a major subunit with Mr = 61,000, suggesting a tetrameric structure, and also showed that the preparation contained less than 10% polypeptide impurities. Use of the ATP affinity column required the presence of MnCl2 and fumarate (an allosteric activator) in the elution buffers. In the absence of fumarate, the Michaelis constants for malate, NAD+, and NADP+ were 3.6 mM, 55 microM, and 72 microM, respectively; in the presence of fumarate (2 mM), the constants were 0.34 mM, 9 microM, and 13 microM, respectively. ATP was shown to be an allosteric inhibitor, competitive with malate. However, the inhibition by ATP displayed hyperbolic competitive kinetics with a KI (ATP) of 80 microM (minus fumarate) and 0.5 mM (plus 2 mM fumarate). The allosteric properties of the enzyme are integrated into a rationale for its specific role in the pathways of malate and glutamate oxidation in tumor mitochondria.

  8. Origin of 6-fold coordinated aluminum at (010-type pyrophyllite edges

    Directory of Open Access Journals (Sweden)

    M. Okumura

    2017-05-01

    Full Text Available To better understand the aqueous chemical reactivity of clay mineral edges we explored the relationships between hydration and the structure of (010-type edges of pyrophyllite. In particular, we used density functional theory and the quantum theory of atoms in molecules to evaluate the stability of 6-fold coordinated hydrated aluminum at the edge in terms of the electron density distribution. Geometrical optimization revealed an intra-edge hydrogen bond network between aluminol hydroxyls and water ligands completing the aluminum coordination shell. From the electron density isosurfaces one water ligand is not covalently bonded to aluminum. Bader charge analysis revealed that OH2 ligands have small negative charge. In addition, it is also found that the charge of the 6-fold coordinated aluminum is larger than one of the 5-fold aluminum. From these results, the charging of the OH2 ligands is interpreted as charge transfer originated from the formation of the hydrogen bond network and not from Al-OH2 interaction per se. This suggests that the weakly bound water ligand in question, and more generally 6-fold hydrated edge Al coordination, is stabilized primarily by the hydrogen bond network which in turn leads to weak ionic attraction to the aluminum center itself. The finding highlights the importance of cooperative effects between solvent structure and the coordination of metal cations exposed at clay mineral edges.

  9. Subjective breathing impairment in unilateral vocal fold paralysis.

    Science.gov (United States)

    Brunner, Elke; Friedrich, Gerhard; Kiesler, Karl; Chibidziura-Priesching, Jutta; Gugatschka, Markus

    2011-01-01

    Dysphonia is considered a major symptom of unilateral vocal fold paralysis (UVFP). Besides this, many patients complain of further symptoms such as dysphagia and dyspnea, which might not be expected to such an extent. The aim of this survey was to elucidate these symptoms in a cohort of patients with UVFP. Sixty-three patients (22 men, 41 women) suffering from UVFP were interviewed. Therefore we developed a questionnaire dealing with each of the three symptom categories: voice production, swallowing and breathing. All of the surveyed patients reported voice impairment, almost 60% complained of swallowing problems after the onset of paralysis. Seventy-five percent reported a subjectively impaired breathing sensation, not just phonatory dyspnea but during everyday physical activity as well. Our study revealed a certain discrepancy between objectively assessed laryngoscopic findings and subjective symptoms. A majority of patients suffered from an impairment in each of the three laryngeal functions (dysphonia, dysphagia and dyspnea). The latter two differ from the classic approach to this condition but must be considered as well in clinical diagnostics and therapy. Copyright © 2010 S. Karger AG, Basel.

  10. Transpressional folding and associated cross-fold jointing controlling the geometry of post-orogenic vein-type W-Sn mineralization: examples from Minas da Panasqueira, Portugal

    Science.gov (United States)

    Jacques, Dominique; Vieira, Romeu; Muchez, Philippe; Sintubin, Manuel

    2018-02-01

    The world-class W-Sn Panasqueira deposit consists of an extensive, subhorizontal vein swarm, peripheral to a late-orogenic greisen cupola. The vein swarm consists of hundreds of co-planar quartz veins that are overlapping and connected laterally over large distances. Various segmentation structures, a local zigzag geometry, and the occurrence of straight propagation paths indicate that they exploited a regional joint system. A detailed orientation analysis of the systematic joints reveals a geometrical relationship with the subvertical F2 fold generation, reflecting late-Variscan transpression. The joints are consistently orthogonal to the steeply plunging S0-S2 intersection lineation, both on the regional and the outcrop scale, and are thus defined as cross-fold or ac-joints. The joint system developed during the waning stages of the Variscan orogeny, when already uplifted to an upper-crustal level. Veining reactivated these cross-fold joints under the conditions of hydraulic overpressures and low differential stress. The consistent subperpendicular orientation of the veins relative to the non-cylindrical F2 hinge lines, also when having an inclined attitude, demonstrates that veining did not occur during far-field horizontal compression. Vein orientation is determined by local stress states variable on a meter-scale but with the minimum principal stress consistently subparallel to fold hinge lines. The conspicuous subhorizontal attitude of the Panasqueira vein swarm is thus dictated by the geometry of late-orogenic folds, which developed synchronous with oroclinal buckling of the Ibero-Armorican arc.

  11. Microsecond time-scale kinetics of transient biochemical reactions

    NARCIS (Netherlands)

    Mitic, S.; Strampraad, M.J.F.; Hagen, W.R.; de Vries, S.

    2017-01-01

    To afford mechanistic studies in enzyme kinetics and protein folding in the microsecond time domain we have developed a continuous-flow microsecond time-scale mixing instrument with an unprecedented dead-time of 3.8 ± 0.3 μs. The instrument employs a micro-mixer with a mixing time of 2.7 μs

  12. Incidence of vocal fold immobility in patients with dysphagia.

    Science.gov (United States)

    Leder, Steven B; Ross, Douglas A

    2005-01-01

    This study prospectively investigated the incidence of vocal fold immobility, unilateral and bilateral, and its influence on aspiration status in a referred population of 1452 patients for a dysphagia evaluation from a large, urban, tertiary-care, teaching hospital. Main outcome measures included overall incidence of vocal fold immobility and aspiration status, with specific emphasis on age, etiology, and side of vocal fold immobility, i.e., right, left, or bilateral. Overall incidence of vocal fold immobility was 5.6% (81 of 1452 patients), including 47 males (mean age 55.7 yr) and 34 females (mean age 59.7 yr). In the subgroup of patients with vocal fold immobility, 31% (25 of 81) exhibited unilateral right, 60% (49 of 81) unilateral left, and 9% (7 of 81) bilateral impairment. Overall incidence of aspiration was found to be 29% (426 of 1452) of all patients referred for a swallow evaluation. Aspiration was observed in 44% (36 of 81) of patients presenting with vocal fold immobility, i.e., 44% (11 of 25) unilateral right, 43% (21 of 49) unilateral left, and 57% (4 of 7) bilateral vocal fold immobility. Left vocal fold immobility occurred most frequently due to surgical trauma. A liquid bolus was aspirated more often than a puree bolus. Side of vocal fold immobility and age were not factors that increased incidence of aspiration. In conclusion, vocal fold immobility, with an incidence of 5.6%, is not an uncommon finding in patients referred for a dysphagia evaluation in the acute-care setting, and vocal fold immobility, when present, was associated with a 15% increased incidence of aspiration when compared with a population already being evaluated for dysphagia.

  13. Relativistic Chiral Kinetic Theory

    International Nuclear Information System (INIS)

    Stephanov, Mikhail

    2016-01-01

    This very brief review of the recent progress in chiral kinetic theory is based on the results of Refs. [J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (18) (2014) 182302. doi: (10.1103/PhysRevLett.113.182302); J.-Y. Chen, D. T. Son, M. A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2) (2015) 021601. doi: (10.1103/PhysRevLett.115.021601); M. A. Stephanov, H.-U. Yee, The no-drag frame for anomalous chiral fluid, Phys. Rev. Lett. 116 (12) (2016) 122302. doi: (10.1103/PhysRevLett.116.122302)].

  14. Relativistic Chiral Kinetic Theory

    Energy Technology Data Exchange (ETDEWEB)

    Stephanov, Mikhail

    2016-12-15

    This very brief review of the recent progress in chiral kinetic theory is based on the results of Refs. [J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (18) (2014) 182302. doi: (10.1103/PhysRevLett.113.182302); J.-Y. Chen, D. T. Son, M. A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2) (2015) 021601. doi: (10.1103/PhysRevLett.115.021601); M. A. Stephanov, H.-U. Yee, The no-drag frame for anomalous chiral fluid, Phys. Rev. Lett. 116 (12) (2016) 122302. doi: (10.1103/PhysRevLett.116.122302)].

  15. Erbium hydride decomposition kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  16. Quantification of fold growth of frontal antiforms in the Zagros fold and thrust belt (Kurdistan, NE Iraq)

    Science.gov (United States)

    Bretis, Bernhard; Bartl, Nikolaus; Graseman, Bernhard; Lockhart, Duncan

    2010-05-01

    The Zagros fold and thrust belt is a seismically active orogen, where actual kinematic models based on GPS networks suggest a north-south shortening between Arabian and Eurasian in the order of 1.5-2.5 cm/yr. Most of this deformation is partitioned in south-southwest oriented folding and thrusting with northwest-southeast to north-south trending dextral strike slip faults. The Zagros fold and thrust belt is of great economic interest because it has been estimated that this area contains about 15% of the global recoverable hydrocarbons. Whereas the SE parts of the Zagros have been investigated by detailed geological studies, the NW extent being part of the Republic of Iraq have experienced considerably less attention. In this study we combine field work and remote sensing techniques in order to investigate the interaction of erosion and fold growth in the area NE of Erbil (Kurdistan, Iraq). In particular we focus on the interaction of the transient development of drainage patterns along growing antiforms, which directly reflects the kinematics of progressive fold growth. Detailed geomorphological studies of the Bana Bawi-, Permam- and Safeen fold trains show that these anticlines have not developed from subcylindrical embryonic folds but they have merged from different fold segments that joined laterally during fold amplification. This fold segments with length between 5 and 25 km have been detected by mapping ancient and modern river courses that initially cut the nose of growing folds and eventually got defeated leaving behind a wind gap. Fold segments, propagating in different directions force rivers to join resulting in steep gorges, which dissect the merging fold noses. Along rapidly lateral growing folds (e.g. at the SE end of the Bana Bawi Anticline) we observed "curved wind gaps", a new type of abandoned river course, where form of the wind gap mimics a formed nose of a growing antiform. The inherited curved segments of uplifted curved river courses strongly

  17. Relativistic Kinetic Theory

    Science.gov (United States)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  18. Quantum kinetic theory

    CERN Document Server

    Bonitz, Michael

    2016-01-01

    This book presents quantum kinetic theory in a comprehensive way. The focus is on density operator methods and on non-equilibrium Green functions. The theory allows to rigorously treat nonequilibrium dynamics in quantum many-body systems. Of particular interest are ultrafast processes in plasmas, condensed matter and trapped atoms that are stimulated by rapidly developing experiments with short pulse lasers and free electron lasers. To describe these experiments theoretically, the most powerful approach is given by non-Markovian quantum kinetic equations that are discussed in detail, including computational aspects.

  19. Evidence for close side-chain packing in an early protein folding intermediate previously assumed to be a molten globule.

    Science.gov (United States)

    Rosen, Laura E; Connell, Katelyn B; Marqusee, Susan

    2014-10-14

    The molten globule, a conformational ensemble with significant secondary structure but only loosely packed tertiary structure, has been suggested to be a ubiquitous intermediate in protein folding. However, it is difficult to assess the tertiary packing of transiently populated species to evaluate this hypothesis. Escherichia coli RNase H is known to populate an intermediate before the rate-limiting barrier to folding that has long been thought to be a molten globule. We investigated this hypothesis by making mimics of the intermediate that are the ground-state conformation at equilibrium, using two approaches: a truncation to generate a fragment mimic of the intermediate, and selective destabilization of the native state using point mutations. Spectroscopic characterization and the response of the mimics to further mutation are consistent with studies on the transient kinetic intermediate, indicating that they model the early intermediate. Both mimics fold cooperatively and exhibit NMR spectra indicative of a closely packed conformation, in contrast to the hypothesis of molten tertiary packing. This result is important for understanding the nature of the subsequent rate-limiting barrier to folding and has implications for the assumption that many other proteins populate molten globule folding intermediates.

  20. From the test tube to the cell: exploring the folding and aggregation of a beta-clam protein.

    Science.gov (United States)

    Ignatova, Zoya; Krishnan, Beena; Bombardier, Jeffrey P; Marcelino, Anna Marie C; Hong, Jiang; Gierasch, Lila M

    2007-01-01

    A crucial challenge in present biomedical research is the elucidation of how fundamental processes like protein folding and aggregation occur in the complex environment of the cell. Many new physico-chemical factors like crowding and confinement must be considered, and immense technical hurdles must be overcome in order to explore these processes in vivo. Understanding protein misfolding and aggregation diseases and developing therapeutic strategies to these diseases demand that we gain mechanistic insight into behaviors and misbehaviors of proteins as they fold in vivo. We have developed a fluorescence approach using FlAsH labeling to study the thermodynamics of folding of a model beta-rich protein, cellular retinoic acid binding protein (CRABP) in Escherichia coli cells. The labeling approach has also enabled us to follow aggregation of a modified version of CRABP and chimeras between CRABP and huntingtin exon 1 with its glutamine repeat tract. In this article, we review our recent results using FlAsH labeling to study in-vivo folding and present new observations that hint at fundamental differences between the thermodynamics and kinetics of protein folding in vivo and in vitro.

  1. Status report on the folded tandem ion accelerator at BARC

    Indian Academy of Sciences (India)

    Folded tandem ion accelerator; charged particle beams; voltage stability; Rutherford backscattering; ion optics; beam lines. Abstract. The folded tandem ion accelerator (FOTIA) facility set up at BARC has become operational. At present, it is used for elemental analysis studies using the Rutherford backscattering technique.

  2. The effect of surface electrical stimulation on vocal fold position.

    Science.gov (United States)

    Humbert, Ianessa A; Poletto, Christopher J; Saxon, Keith G; Kearney, Pamela R; Ludlow, Christy L

    2008-01-01

    Closure of the true and false vocal folds is a normal part of airway protection during swallowing. Individuals with reduced or delayed true vocal fold closure can be at risk for aspiration and may benefit from intervention to ameliorate the problem. Surface electrical stimulation is currently used during therapy for dysphagia, despite limited knowledge of its physiological effects. Prospective single effects study. The immediate physiological effect of surface stimulation on true vocal fold angle was examined at rest in 27 healthy adults using 10 different electrode placements on the submental and neck regions. Fiberoptic nasolaryngoscopic recordings during passive inspiration were used to measure change in true vocal fold angle with stimulation. Vocal fold angles changed only to a small extent during two electrode placements (P vocal fold abduction was 2.4 degrees; while horizontal placements of electrodes in the submental region produced a mean adduction of 2.8 degrees (P = .03). Surface electrical stimulation to the submental and neck regions does not produce immediate true vocal fold adduction adequate for airway protection during swallowing, and one position may produce a slight increase in true vocal fold opening.

  3. Vocal Fold Mucus Aggregation in Persons with Voice Disorders

    Science.gov (United States)

    Bonilha, Heather Shaw; White, Lisa; Kuckhahn, Kelsey; Gerlach, Terri Treman; Deliyski, Dimitar D.

    2012-01-01

    Mucus aggregation on the vocal folds is a common finding from laryngeal endoscopy. Patients with voice disorders report the presence of mucus aggregation. Patients also report that mucus aggregation causes them to clear their throat, a behavior believed to be harmful to vocal fold mucosa. Even though clinicians and patients report and discuss…

  4. Surfing the free energy landscape of flavodoxin folding

    NARCIS (Netherlands)

    Bollen, Y.J.M.

    2004-01-01

    The research described in this thesis has been carried out to obtain a better understanding of the fundamental rules describing protein folding. Protein folding is the process in which a linear chain of amino acids contracts to a compact state in which it is active. Flavodoxin from Azotobacter

  5. New variants of known folds: do they bring new biology?

    International Nuclear Information System (INIS)

    Koonin, Eugene V.

    2010-01-01

    New distinct versions of known protein folds provide a powerful means of protein-function prediction that complements sequence and genomic context analysis. New distinct versions of known protein folds provide a powerful means of protein-function prediction that complements sequence and genomic context analysis. These structures do not supplant direct biochemical experiments, but are indispensable for the complete characterization of proteins

  6. Acute vocal fold hemorrhage caught on video during office exam.

    Science.gov (United States)

    Carroll, Thomas L; Smith, Libby J

    2009-03-01

    This article presents a unique video of a laryngeal exam during which a vocal fold hemorrhage occurs. This patient had likely been suffering from intermittent vocal fold hemorrhages for the last decade due to a persistent vascular lesion and an underlying chronic cough.

  7. Protein folding pathology in domestic animals.

    Science.gov (United States)

    Gruys, Erik

    2004-10-01

    Fibrillar proteins form structural elements of cells and the extracellular matrix. Pathological lesions of fibrillar microanatomical structures, or secondary fibrillar changes in globular proteins are well known. A special group concerns histologically amorphous deposits, amyloid. The major characteristics of amyloid are: apple green birefringence after Congo red staining of histological sections, and non-branching 7-10 nm thick fibrils on electron microscopy revealing a high content of cross beta pleated sheets. About 25 different types of amyloid have been characterised. In animals, AA-amyloid is the most frequent type. Other types of amyloid in animals represent: AIAPP (in cats), AApoAI, AApoAII, localised AL-amyloid, amyloid in odontogenic or mammary tumors and amyloid in the brain. In old dogs Abeta and in sheep APrPsc-amyloid can be encountered. AA-amyloidosis is a systemic disorder with a precursor in blood, acute phase serum amyloid A (SAA). In chronic inflammatory processes AA-amyloid can be deposited. A rapid crystallization of SAA to amyloid fibrils on small beta-sheeted fragments, the 'amyloid enhancing factor' (AEF), is known and the AEF has been shown to penetrate the enteric barrier. Amyloid fibrils can aggregate from various precursor proteins in vitro in particular at acidic pH and when proteolytic fragments are formed. Molecular chaperones influence this process. Tissue data point to amyloid fibrillogenesis in lysosomes and near cell surfaces. A comparison can be made of the fibrillogenesis in prion diseases and in enhanced AA-amyloidosis. In the reactive form, acute phase SAA is the supply of the precursor protein, whereas in the prion diseases, cell membrane proteins form a structural source. Abeta-amyloid in brain tissue of aged dogs showing signs of dementia forms a canine counterpart of senile dementia of the Alzheimer type (ccSDAT) in man. Misfolded proteins remain potential food hazards. Developments concerning prevention of amyloidogenesis

  8. Vocal fold varices and risk of hemorrhage.

    Science.gov (United States)

    Tang, Christopher Guan-Zhong; Askin, Gülce; Christos, Paul J; Sulica, Lucian

    2016-05-01

    To establish risk of hemorrhage in patients with varices compared to those without, determine additional risk factors, and make evidence-based treatment recommendations. Retrospective cohort study. Patients who were vocal performers presenting for care during a 24-month period were analyzed to determine incidence of hemorrhage. Patients with varices were compared to those without. Demographic information and examination findings (presence, location, character, and size of varices; presence of mucosal lesions or paresis) were analyzed to determine predictors of hemorrhage. A total of 513 patients (60.4% female, mean age 36.6 years ± 13.95 years) were evaluated; 14 patients presenting with hemorrhage were excluded. One hundred and twelve (22.4%) patients had varices; 387 (77.6%) did not. The rate of hemorrhage in patients with varices was 2.68% at 12 months compared to 0.8% in patients without. Cox proportional hazard regression analysis revealed a hazard ratio of 10.1 for patients with varix developing hemorrhage compared to nonvarix patients (P hemorrhage was 3.3 cases per 1,000 person-months for varix patients compared to 0.5 cases per 1,000 person-months in the nonvarix group. There was no significant difference in the incidence of paresis, mucosal lesions, location of varix (left or right side; medial or lateral), or varix morphology (pinpoint, linear, lake) between patients who hemorrhaged and those that did not. The presence of varices increases the risk of hemorrhage. Varix patients had 10 times the rate of hemorrhage compared to nonvarix patients, although the overall incidence is low. This data may be used to inform treatment of patients with varices. 4. Laryngoscope, 126:1163-1168, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  9. Method of generating ploynucleotides encoding enhanced folding variants

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Andrew M.; Kiss, Csaba; Waldo, Geoffrey S.

    2017-05-02

    The invention provides directed evolution methods for improving the folding, solubility and stability (including thermostability) characteristics of polypeptides. In one aspect, the invention provides a method for generating folding and stability-enhanced variants of proteins, including but not limited to fluorescent proteins, chromophoric proteins and enzymes. In another aspect, the invention provides methods for generating thermostable variants of a target protein or polypeptide via an internal destabilization baiting strategy. Internally destabilization a protein of interest is achieved by inserting a heterologous, folding-destabilizing sequence (folding interference domain) within DNA encoding the protein of interest, evolving the protein sequences adjacent to the heterologous insertion to overcome the destabilization (using any number of mutagenesis methods), thereby creating a library of variants. The variants in the library are expressed, and those with enhanced folding characteristics selected.

  10. Folding propensity of intrinsically disordered proteins by osmotic stress

    International Nuclear Information System (INIS)

    Mansouri, Amanda L.; Grese, Laura N.; Rowe, Erica L.

    2016-01-01

    Proteins imparted with intrinsic disorder conduct a range of essential cellular functions. To better understand the folding and hydration properties of intrinsically disordered proteins (IDPs), we used osmotic stress to induce conformational changes in nuclear co-activator binding domain (NCBD) and activator for thyroid hormone and retinoid receptor (ACTR). Osmotic stress was applied by the addition of small and polymeric osmolytes, where we discovered that water contributions to NCBD folding always exceeded those for ACTR. Both NCBD and ACTR were found to gain a-helical structure with increasing osmotic stress, consistent with their folding upon NCBD/ACTR complex formation. Using small-angle neutron scattering (SANS), we further characterized NCBD structural changes with the osmolyte ethylene glycol. Here a large reduction in overall size initially occurred before substantial secondary structural change. In conclusion, by focusing on folding propensity, and linked hydration changes, we uncover new insights that may be important for how IDP folding contributes to binding.

  11. Single-molecule folding mechanism of an EF-hand neuronal calcium sensor

    DEFF Research Database (Denmark)

    Heiðarsson, Pétur Orri; Otazo, Mariela R.; Bellucci, Luca

    2013-01-01

    EF-hand calcium sensors respond structurally to changes in intracellular Ca2+ concentration, triggering diverse cellular responses and resulting in broad interactomes. Despite impressive advances in decoding their structure-function relationships, the folding mechanism of neuronal calcium sensors...... of the N domain, showing striking interdomain dependence. Molecular dynamics results reveal the atomistic details of the unfolding process and rationalize the different domain stabilities during mechanical unfolding. Through constant-force experiments and hidden Markov model analysis, the free energy...

  12. Vocal fold contact patterns based on normal modes of vibration.

    Science.gov (United States)

    Smith, Simeon L; Titze, Ingo R

    2018-05-17

    The fluid-structure interaction and energy transfer from respiratory airflow to self-sustained vocal fold oscillation continues to be a topic of interest in vocal fold research. Vocal fold vibration is driven by pressures on the vocal fold surface, which are determined by the shape of the glottis and the contact between vocal folds. Characterization of three-dimensional glottal shapes and contact patterns can lead to increased understanding of normal and abnormal physiology of the voice, as well as to development of improved vocal fold models, but a large inventory of shapes has not been directly studied previously. This study aimed to take an initial step toward characterizing vocal fold contact patterns systematically. Vocal fold motion and contact was modeled based on normal mode vibration, as it has been shown that vocal fold vibration can be almost entirely described by only the few lowest order vibrational modes. Symmetric and asymmetric combinations of the four lowest normal modes of vibration were superimposed on left and right vocal fold medial surfaces, for each of three prephonatory glottal configurations, according to a surface wave approach. Contact patterns were generated from the interaction of modal shapes at 16 normalized phases during the vibratory cycle. Eight major contact patterns were identified and characterized by the shape of the flow channel, with the following descriptors assigned: convergent, divergent, convergent-divergent, uniform, split, merged, island, and multichannel. Each of the contact patterns and its variation are described, and future work and applications are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Discrete kinetic models from funneled energy landscape simulations.

    Directory of Open Access Journals (Sweden)

    Nicholas P Schafer

    Full Text Available A general method for facilitating the interpretation of computer simulations of protein folding with minimally frustrated energy landscapes is detailed and applied to a designed ankyrin repeat protein (4ANK. In the method, groups of residues are assigned to foldons and these foldons are used to map the conformational space of the protein onto a set of discrete macrobasins. The free energies of the individual macrobasins are then calculated, informing practical kinetic analysis. Two simple assumptions about the universality of the rate for downhill transitions between macrobasins and the natural local connectivity between macrobasins lead to a scheme for predicting overall folding and unfolding rates, generating chevron plots under varying thermodynamic conditions, and inferring dominant kinetic folding pathways. To illustrate the approach, free energies of macrobasins were calculated from biased simulations of a non-additive structure-based model using two structurally motivated foldon definitions at the full and half ankyrin repeat resolutions. The calculated chevrons have features consistent with those measured in stopped flow chemical denaturation experiments. The dominant inferred folding pathway has an "inside-out", nucleation-propagation like character.

  14. Synchrotron radiation circular dichroism spectroscopy study of recombinant T β4 folding

    Science.gov (United States)

    Huang, Yung-Chin; Chu, Hsueh-Liang; Chen, Peng-Jen; Chang, Chia-Ching

    Thymosin beta 4 (T β4) is a 43-amino acid small peptide, has been demonstrated that it can promote cardiac repair, wound repair, tissue protection, and involve in the proliferation of blood cell precursor stem cells of bone marrow. Moreover, T β4 has been identified as a multifunction intrinsically disordered protein, which is lacking the stable tertiary structure. Owing to the small size and disordered character, the T β4 protein degrades rapidly and the storage condition is critical. Therefore, it is not easy to reveal its folding mechanism of native T β4. However, recombinant T β4 protein (rT β4), which fused with a 5-kDa peptide in its amino-terminal, is stable and possesses identical function of T β4. Therefore, rT β4 can be used to study its folding mechanism. By using over-critical folding process, stable folding intermediates of rT β4 can be obtained. Structure analysis of folding intermediates by synchrotron radiation circular dichroism (SRCD) and fluorescence spectroscopies indicate that rT β4 is a random coli major protein and its hydrophobic region becomes compact gradually. Moreover, the rT β4 folding is a two state transition. Thermal denaturation analysis indicates that rT β4 lacks stable tertiary structure. These results indicated that rT β4, similar to T β4, is an intrinsically disordered protein. Research is supported by MOST, Taiwan. MOST 103-2112-M-009-011-MY3. Corresponding author: Chia-Ching Chang; ccchang01@faculty.nctu.edu.tw.

  15. Multidimensional effects of voice therapy in patients affected by unilateral vocal fold paralysis due to cancer.

    Science.gov (United States)

    Barcelos, Camila Barbosa; Silveira, Paula Angélica Lorenzon; Guedes, Renata Lígia Vieira; Gonçalves, Aline Nogueira; Slobodticov, Luciana Dall'Agnol Siqueira; Angelis, Elisabete Carrara-de

    2017-08-24

    Patients with unilateral vocal fold paralysis may demonstrate different degrees of voice perturbation depending on the position of the paralyzed vocal fold. Understanding the effectiveness of voice therapy in this population may be an important coefficient to define the therapeutic approach. To evaluate the voice therapy effectiveness in the short, medium and long-term in patients with unilateral vocal fold paralysis and determine the risk factors for voice rehabilitation failure. Prospective study with 61 patients affected by unilateral vocal fold paralysis enrolled. Each subject had voice therapy with an experienced speech pathologist twice a week. A multidimensional assessment protocol was used pre-treatment and in three different times after voice treatment initiation: short-term (1-3 months), medium-term (4-6 months) and long-term (12 months); it included videoendoscopy, maximum phonation time, GRBASI scale, acoustic voice analysis and the portuguese version of the voice handicap index. Multiple comparisons for GRBASI scale and VHI revealed statistically significant differences, except between medium and long term (pvocal improvement over time with stabilization results after 6 months (medium term). From the 28 patients with permanent unilateral vocal fold paralysis, 18 (69.2%) reached complete glottal closure following vocal therapy (p=0.001). The logistic regression method indicated that the Jitter entered the final model as a risk factor for partial improvement. For every unit of increased jitter, there was an increase of 0.1% (1.001) of the chance for partial improvement, which means an increase on no full improvement chance during rehabilitation. Vocal rehabilitation improves perceptual and acoustic voice parameters and voice handicap index, besides favor glottal closure in patients with unilateral vocal fold paralysis. The results were also permanent during the period of 1 year. The Jitter value, when elevated, is a risk factor for the voice therapy

  16. Oxidative desulfurization: kinetic modelling.

    Science.gov (United States)

    Dhir, S; Uppaluri, R; Purkait, M K

    2009-01-30

    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H(2)O(2) over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel.

  17. Oxidative desulfurization: Kinetic modelling

    International Nuclear Information System (INIS)

    Dhir, S.; Uppaluri, R.; Purkait, M.K.

    2009-01-01

    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H 2 O 2 over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel

  18. Modeling chemical kinetics graphically

    NARCIS (Netherlands)

    Heck, A.

    2012-01-01

    In literature on chemistry education it has often been suggested that students, at high school level and beyond, can benefit in their studies of chemical kinetics from computer supported activities. Use of system dynamics modeling software is one of the suggested quantitative approaches that could

  19. CATALYTIC KINETIC SPECTROPHOTOMETRIC DETERMINATION ...

    African Journals Online (AJOL)

    Preferred Customer

    acetylchlorophosphonazo(CPApA) by hydrogen peroxide in 0.10 M phosphoric acid. A novel catalytic kinetic-spectrophotometric method is proposed for the determination of copper based on this principle. Copper(II) can be determined spectrophotometrically ...

  20. Kinetic energy budget details

    Indian Academy of Sciences (India)

    Abstract. This paper presents the detailed turbulent kinetic energy budget and higher order statistics of flow behind a surface-mounted rib with and without superimposed acoustic excitation. Pattern recognition technique is used to determine the large-scale structure magnitude. It is observed that most of the turbulence ...

  1. Point kinetics modeling

    International Nuclear Information System (INIS)

    Kimpland, R.H.

    1996-01-01

    A normalized form of the point kinetics equations, a prompt jump approximation, and the Nordheim-Fuchs model are used to model nuclear systems. Reactivity feedback mechanisms considered include volumetric expansion, thermal neutron temperature effect, Doppler effect and void formation. A sample problem of an excursion occurring in a plutonium solution accidentally formed in a glovebox is presented

  2. Adipose-derived mesenchymal stromal cells prevented rat vocal fold scarring.

    Science.gov (United States)

    Morisaki, Tsuyoshi; Kishimoto, Yo; Tateya, Ichiro; Kawai, Yoshitaka; Suzuki, Ryo; Tsuji, Takuya; Hiwatashi, Nao; Nakamura, Tatsuo; Omori, Koichi; Kitano, Hiroya; Takeuchi, Hiromi; Hirano, Shigeru

    2018-01-01

    This study aimed to reveal the effects of adipose-derived mesenchymal stromal cells (ASCs) on prevention of vocal fold scarring by investigating how the immediate ASCs transplantation into the injured rat vocal fold affect the levels of gene transcription and translation. Prospective animal experiments with controls. ASCs harvested from green fluorescent protein transgenic rat (ASCs group) or saline (sham group) were injected into the thyroarytenoid muscle of Sprague-Dawley rats immediately after stripping the vocal fold. For histological examinations, larynges were extirpated at 3, 14, and 56 days after the injection. Quantitative real-time polymerase chain reaction (PCR) analyses were performed at 3 and 14 days after the injection. Transplanted ASCs were detected only in larynges at day 3. At days 14 and 56, histological examination showed significantly higher amounts of hyaluronic acid and lower deposition of collagen in the ASCs group compared to the sham group. Real-time PCR revealed that the ASCs group showed low expression of procollagen (Col)1a1, Col1a3, matrix metalloproteinase (Mmp)1 and Mmp8 in each time points. The ASCs group showed high expression of fibroblast growth factor (Fgf)2 and Hepatocyte growth factor (Hgf) compared to the sham group at day 14. ASCs increased expressions of Fgf2 and Hgf, and suppressed excessive collagen deposition during vocal fold wound healing. Given the fact that ASCs survived no more than 14 days, ASCs were thought to induce upregulations of growth factors' genes in surrounding cells. These results suggested that ASCs have potential to prevent vocal fold scarring. NA. Laryngoscope, 128:E33-E40, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Acute exposure to vibration is an apoptosis-inducing stimulus in the vocal fold epithelium.

    Science.gov (United States)

    Novaleski, Carolyn K; Kimball, Emily E; Mizuta, Masanobu; Rousseau, Bernard

    2016-10-01

    Clinical voice disorders pose significant communication-related challenges to patients. The purpose of this study was to quantify the rate of apoptosis and tumor necrosis factor-alpha (TNF-α) signaling in vocal fold epithelial cells in response to increasing time-doses and cycle-doses of vibration. 20 New Zealand white breeder rabbits were randomized to three groups of time-doses of vibration exposure (30, 60, 120min) or a control group (120min of vocal fold adduction and abduction). Estimated cycle-doses of vocal fold vibration were extrapolated based on mean fundamental frequency. Laryngeal tissue specimens were evaluated for apoptosis and gene transcript and protein levels of TNF-α. Results revealed that terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was significantly higher after 120min of vibration compared to the control. Transmission electron microscopy (TEM) revealed no significant effect of time-dose on the mean area of epithelial cell nuclei. Extrapolated cycle-doses of vibration exposure were closely related to experimental time-dose conditions, although no significant correlations were observed with TUNEL staining or mean area of epithelial cell nuclei. TUNEL staining was positively correlated with TNF-α protein expression. Our findings suggest that apoptosis can be induced in the vocal fold epithelium after 120min of modal intensity phonation. In contrast, shorter durations of vibration exposure do not result in apoptosis signaling. However, morphological features of apoptosis are not observed using TEM. Future studies are necessary to examine the contribution of abnormal apoptosis to vocal fold diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Augmentation surgery on the cartilaginous portion of the vocal fold in a patient with cricoarytenoid joint ankylosis.

    Science.gov (United States)

    Fukahori, Mioko; Chitose, Shun-Ichi; Sato, Kiminori; Kamimura, Hiroyuki; Sato, Kiminobu; On, Ririko; Umeno, Hirohito

    2018-01-04

    Surgical management of cricoarytenoid joint (CAJ) ankylosis is challenging and has the risk of worsening voice quality. In the present case, augmentation surgery was performed on the cartilaginous portion of the vocal fold in a patient with CAJ ankylosis. A 24-year-old man sustained blunt trauma to the anterior neck three years prior to developing severe breathiness. Posterior glottal insufficiency resulting from lateral fixation of the right vocal fold was observed during phonation under laryngoscopy. In addition, electromyography and CT scan revealed severe ankylosis of the right CAJ. Type I thyroplasty performed on the right vocal fold did not improve postoperative vocal function. Therefore, augmentation surgery on the cartilaginous portion of the right vocal fold was performed via endolaryngeal microsurgery under general anesthesia with jet ventilation. A piece of temporalis fascia was autotransplanted into the submucosal space created at the posterior cartilaginous portion of the right vocal fold. This resulted in the narrowing of the posterior glottal gap during phonation, leading to improvement in hoarseness. Microsurgical management with autologous fascia augmentation of the cartilaginous portion of the vocal fold can be effective in patients with lateral vocal fold fixation due to CAJ ankylosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The role of the mesenchyme in cranial neural fold elevation

    International Nuclear Information System (INIS)

    Morris-Wiman, J.A.

    1988-01-01

    It has been previously postulated that the expansion of an hyaluronate-rich extracellular matrix in the fold mesenchyme is responsible for neural fold elevation. In this study we provide evidence that such expansions may play an important role in cranial neural fold elevation by pushing the folds towards the dorsal midline to assist in their elevation. For mesenchymal expansion to result in fold elevation, hyaluronate (HA) and mesenchymal cells must be non-randomly distributed within the mesenchyme. Patterns of mesenchymal cell distribution and cell proliferation were analyzed using the computer-assisted method of smoothed spatial averaging. The distribution of Alcian blue-stained and 3 H-glucosamine-labelled HA was also analyzed during cranial neural fold elevation using established image processing techniques. Analysis of the distribution of 3 H-thymidine-labelled mesenchymal cells indicated that differential mitotic activity was not responsible for decreased mesenchymal cell density. Likewise, analysis of distribution patterns of 3 H-glucosamine-labelled HA indicated that decreased HA concentration was not produced by regional differences in HA synthesis. These results suggest that decreases in mesenchymal cell density and HA concentration that occur during neural fold elevation are produced by mesenchymal expansion

  6. Origami-Inspired Folding of Thick, Rigid Panels

    Science.gov (United States)

    Trease, Brian P.; Thomson, Mark W.; Sigel, Deborah A.; Walkemeyer, Phillip E.; Zirbel, Shannon; Howell, Larry; Lang, Robert

    2014-01-01

    To achieve power of 250 kW or greater, a large compression ratio of stowed-to-deployed area is needed. Origami folding patterns were used to inspire the folding of a solar array to achieve synchronous deployment; however, origami models are generally created for near-zero-thickness material. Panel thickness is one of the main challenges of origami-inspired design. Three origami-inspired folding techniques (flasher, square twist, and map fold) were created with rigid panels and hinges. Hinge components are added to the model to enable folding of thick, rigid materials. Origami models are created assuming zero (or near zero) thickness. When a material with finite thickness is used, the panels are required to bend around an increasingly thick fold as they move away from the center of the model. The two approaches for dealing with material thickness are to use membrane hinges to connect the panels, or to add panel hinges, or hinges of the same thickness, at an appropriate width to enable folding.

  7. Unraveling metamaterial properties in zigzag-base folded sheets.

    Science.gov (United States)

    Eidini, Maryam; Paulino, Glaucio H

    2015-09-01

    Creating complex spatial objects from a flat sheet of material using origami folding techniques has attracted attention in science and engineering. In the present work, we use the geometric properties of partially folded zigzag strips to better describe the kinematics of known zigzag/herringbone-base folded sheet metamaterials such as Miura-ori. Inspired by the kinematics of a one-degree of freedom zigzag strip, we introduce a class of cellular folded mechanical metamaterials comprising different scales of zigzag strips. This class of patterns combines origami folding techniques with kirigami. Using analytical and numerical models, we study the key mechanical properties of the folded materials. We show that our class of patterns, by expanding on the design space of Miura-ori, is appropriate for a wide range of applications from mechanical metamaterials to deployable structures at small and large scales. We further show that, depending on the geometry, these materials exhibit either negative or positive in-plane Poisson's ratios. By introducing a class of zigzag-base materials in the current study, we unify the concept of in-plane Poisson's ratio for similar materials in the literature and extend it to the class of zigzag-base folded sheet materials.

  8. Fluorescence of Alexa fluor dye tracks protein folding.

    Directory of Open Access Journals (Sweden)

    Simon Lindhoud

    Full Text Available Fluorescence spectroscopy is an important tool for the characterization of protein folding. Often, a protein is labeled with appropriate fluorescent donor and acceptor probes and folding-induced changes in Förster Resonance Energy Transfer (FRET are monitored. However, conformational changes of the protein potentially affect fluorescence properties of both probes, thereby profoundly complicating interpretation of FRET data. In this study, we assess the effects protein folding has on fluorescence properties of Alexa Fluor 488 (A488, which is commonly used as FRET donor. Here, A488 is covalently attached to Cys69 of apoflavodoxin from Azotobacter vinelandii. Although coupling of A488 slightly destabilizes apoflavodoxin, the three-state folding of this protein, which involves a molten globule intermediate, is unaffected. Upon folding of apoflavodoxin, fluorescence emission intensity of A488 changes significantly. To illuminate the molecular sources of this alteration, we applied steady state and time-resolved fluorescence techniques. The results obtained show that tryptophans cause folding-induced changes in quenching of Alexa dye. Compared to unfolded protein, static quenching of A488 is increased in the molten globule. Upon populating the native state both static and dynamic quenching of A488 decrease considerably. We show that fluorescence quenching of Alexa Fluor dyes is a sensitive reporter of conformational changes during protein folding.

  9. The impact of intraglottal vortices on vocal fold dynamics

    Science.gov (United States)

    Erath, Byron; Pirnia, Alireza; Peterson, Sean

    2016-11-01

    During voiced speech a critical pressure is produced in the lungs that separates the vocal folds and creates a passage (the glottis) for airflow. As air passes through the vocal folds the resulting aerodynamic loading, coupled with the tissue properties of the vocal folds, produces self-sustained oscillations. Throughout each cycle a complex flow field develops, characterized by a plethora of viscous flow phenomena. Air passing through the glottis creates a jet, with periodically-shed vortices developing due to flow separation and the Kelvin-Helmholtz instability in the shear layer. These vortices have been hypothesized to be a crucial mechanism for producing vocal fold vibrations. In this study the effect of vortices on the vocal fold dynamics is investigated experimentally by passing a vortex ring over a flexible beam with the same non-dimensional mechanical properties as the vocal folds. Synchronized particle image velocimetry data are acquired in tandem with the beam dynamics. The resulting impact of the vortex ring loading on vocal fold dynamics is discussed in detail. This work was supported by the National Science Foundation Grant CBET #1511761.

  10. Idiopathic unilateral vocal-fold paralysis in the adult.

    Science.gov (United States)

    Rubin, F; Villeneuve, A; Alciato, L; Slaïm, L; Bonfils, P; Laccourreye, O

    2018-02-02

    To analyze the characteristics of adult idiopathic unilateral vocal-fold paralysis. Retrospective study of diagnostic problems, clinical data and recovery in an inception cohort of 100 adult patients with idiopathic unilateral vocal-fold paralysis (Group A) and comparison with a cohort of 211 patients with isolated non-idiopathic non-traumatic unilateral vocal-fold paralysis (Group B). Diagnostic problems were noted in 24% of cases in Group A: eight patients with concomitant common upper aerodigestive tract infection, five patients with a concomitant condition liable to induce immunodepression and 11 patients in whom a malignant tumor occurred along the path of the ipsilateral vagus and inferior laryngeal nerves or in the ipsilateral paralyzed larynx. There was no recovery of vocal-fold motion beyond 51 months after onset of paralysis. The 5-year actuarial estimate for recovery differed significantly (Pvocal-fold paralysis. In non-traumatic vocal-fold paralysis in adult patients, without recovery of vocal-fold motion, a minimum three years' regular follow-up is recommended. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Endoscopic Anatomy of the Tensor Fold and Anterior Attic.

    Science.gov (United States)

    Li, Bin; Doan, Phi; Gruhl, Robert R; Rubini, Alessia; Marchioni, Daniele; Fina, Manuela

    2018-02-01

    Objectives The objectives of the study were to (1) study the anatomical variations of the tensor fold and its anatomic relation with transverse crest, supratubal recess, and anterior epitympanic space and (2) explore the most appropriate endoscopic surgical approach to each type of the tensor fold variants. Study Design Cadaver dissection study. Setting Temporal bone dissection laboratory. Subjects and Methods Twenty-eight human temporal bones (26 preserved and 2 fresh) were dissected through an endoscopic transcanal approach between September 2016 and June 2017. The anatomical variations of the tensor fold, transverse crest, supratubal recess, and anterior epitympanic space were studied before and after removing ossicles. Results Three different tensor fold orientations were observed: vertical (type A, 11/28, 39.3%) with attachment to the transverse crest, oblique (type B, 13/28, 46.4%) with attachment to the anterior tegmen tympani, and horizontal (type C, 4/28, 14.3%) with attachment to the tensor tympani canal. The tensor fold was a complete membrane in 20 of 28 (71.4%) specimens, preventing direct ventilation between the supratubal recess and anterior epitympanic space. We identified 3 surgical endoscopic approaches, which allowed visualization of the tensor fold without removing the ossicles. Conclusions The orientation of the tensor fold is the determining structure that dictates the conformation and limits of the epitympanic space. We propose a classification of the tensor fold based on 3 anatomical variants. We also describe 3 different minimally invasive endoscopic approaches to identify the orientation of the tensor fold while maintaining ossicular chain continuity.

  12. A nomenclature paradigm for benign midmembranous vocal fold lesions.

    Science.gov (United States)

    Rosen, Clark A; Gartner-Schmidt, Jackie; Hathaway, Bridget; Simpson, C Blake; Postma, Gregory N; Courey, Mark; Sataloff, Robert T

    2012-06-01

    There is a significant lack of uniform agreement regarding nomenclature for benign vocal fold lesions (BVFLs). This confusion results in difficulty for clinicians communicating with their patients and with each other. In addition, BVFL research and comparison of treatment methods are hampered by the lack of a detailed and uniform BVFL nomenclature. Clinical consensus conferences were held to develop an initial BVFL nomenclature paradigm. Perceptual video analysis was performed to validate the stroboscopy component of the paradigm. The culmination of the consensus conferences and the video-perceptual analysis was used to evaluate the BVFL nomenclature paradigm using a retrospective review of patients with BVFL. An initial BVFL nomenclature paradigm was proposed utilizing detailed definitions relating to vocal fold lesion morphology, stroboscopy, response to voice therapy and intraoperative findings. Video-perceptual analysis of stroboscopy demonstrated that the proposed binary stroboscopy system used in the BVFL nomenclature paradigm was valid and widely applicable. Retrospective review of 45 patients with BVFL followed to the conclusion of treatment demonstrated that slight modifications of the initial BVFL nomenclature paradigm were required. With the modified BVFL nomenclature paradigm, 96% of the patients fit into the predicted pattern and definitions of the BVFL nomenclature system. This study has validated a multidimensional BVFL nomenclature paradigm. This vocal fold nomenclature paradigm includes nine distinct vocal fold lesions: vocal fold nodules, vocal fold polyp, pseudocyst, vocal fold cyst (subepithelial or ligament), nonspecific vocal fold lesion, vocal fold fibrous mass (subepithelial or ligament), and reactive lesion. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  13. Radiation Fibrosis of the Vocal Fold: From Man to Mouse

    Science.gov (United States)

    Johns, Michael M.; Kolachala, Vasantha; Berg, Eric; Muller, Susan; Creighton, Frances X.; Branski, Ryan C.

    2013-01-01

    Objectives To characterize fundamental late tissue effects in the human vocal fold following radiation therapy. To develop a murine model of radiation fibrosis to ultimately develop both treatment and prevention paradigms. Design Translational study using archived human and fresh murine irradiated vocal fold tissue. Methods 1) Irradiated vocal fold tissue from patients undergoing laryngectomy for loss of function from radiation fibrosis were identified from pathology archives. Histomorphometry, immunohistochemistry, and whole-genome microarray as well as real-time transcriptional analyses was performed. 2) Focused radiation to the head and neck was delivered to mice in a survival fashion. One month following radiation, vocal fold tissue was analyzed with histomorphometry, immunohistochemistry, and real-time PCR transcriptional analysis for selected markers of fibrosis. Results Human irradiated vocal folds demonstrated increased collagen transcription with increased deposition and disorganization of collagen in both the thyroarytenoid muscle and the superficial lamina propria. Fibronectin were increased in the superficial lamina propria. Laminin decreased in the thyroarytenoid muscle. Whole genome microarray analysis demonstrated increased transcription of markers for fibrosis, oxidative stress, inflammation, glycosaminoglycan production and apoptosis. Irradiated murine vocal folds demonstrated increases in collagen and fibronectin transcription and deposition in the lamina propria. Transforming growth factor (TGF)-β increased in the lamina propria. Conclusion Human irradiated vocal folds demonstrate molecular changes leading to fibrosis that underlie loss of vocal fold pliability that occurs in patients following laryngeal irradiation. Irradiated murine tissue demonstrates similar findings, and this mouse model may have utility in creating prevention and treatment strategies for vocal fold radiation fibrosis. PMID:23242839

  14. Borosilicate nuclear waste glass alteration kinetics theoretical basis for the kinetic law of nuclear glass alteration

    International Nuclear Information System (INIS)

    Jegou, Ch.; Gin, St.; Advocat, Th.; Vernaz, E.

    1997-01-01

    Work carried out since the early 1980's to predict the long-term behavior of nuclear containment glasses has revealed the inadequacy of existing models, notably in accounting for the fundamental mechanisms involved in some complex systems (e.g. glass-water-clay), inciting us to examine and discuss the theoretical basis for the hypotheses generally assumed in our models. This paper discusses the theoretical basis for the Aagaard-Helgeson law and its application to nuclear glasses. The contribution of other types of kinetic laws is also considered to describe the alteration kinetics of nuclear glasses. (authors)

  15. Selected mode of dendritic growth with n-fold symmetry in the presence of a forced flow

    Science.gov (United States)

    Alexandrov, D. V.; Galenko, P. K.

    2017-07-01

    The effect of n-fold crystal symmetry is investigated for a two-dimensional stable dendritic growth in the presence of a forced convective flow. We consider dendritic growth in a one-component undercooled liquid. The theory is developed for the parabolic solid-liquid surface of dendrite growing at arbitrary growth Péclet numbers keeping in mind small anisotropies of surface energy and growth kinetics. The selection criterion determining the stable growth velocity of the dendritic tip and its stable tip diameter is found on the basis of solvability analysis. The obtained criterion includes previously developed theories of thermally and kinetically controlled dendritic growth with convection for the case of four-fold crystal symmetry. The obtained nonlinear system of equations (representing the selection criterion and undercooling balance) for the determination of dendrite tip velocity and dendrite tip diameter is analytically solved in a parametric form. These exact solutions clearly demonstrate a transition between thermally and kinetically controlled growth regimes. In addition, we show that the dendrites with larger crystal symmetry grow faster than those with smaller symmetry.

  16. Recoverable and Programmable Collapse from Folding Pressurized Origami Cellular Solids.

    Science.gov (United States)

    Li, S; Fang, H; Wang, K W

    2016-09-09

    We report a unique collapse mechanism by exploiting the negative stiffness observed in the folding of an origami solid, which consists of pressurized cells made by stacking origami sheets. Such a collapse mechanism is recoverable, since it only involves rigid folding of the origami sheets and it is programmable by pressure control and the custom design of the crease pattern. The collapse mechanism features many attractive characteristics for applications such as energy absorption. The reported results also suggest a new branch of origami study focused on its nonlinear mechanics associated with folding.

  17. Water dynamics clue to key residues in protein folding

    International Nuclear Information System (INIS)

    Gao, Meng; Zhu, Huaiqiu; Yao, Xin-Qiu; She, Zhen-Su

    2010-01-01

    A computational method independent of experimental protein structure information is proposed to recognize key residues in protein folding, from the study of hydration water dynamics. Based on all-atom molecular dynamics simulation, two key residues are recognized with distinct water dynamical behavior in a folding process of the Trp-cage protein. The identified key residues are shown to play an essential role in both 3D structure and hydrophobic-induced collapse. With observations on hydration water dynamics around key residues, a dynamical pathway of folding can be interpreted.

  18. Protein folding and the organization of the protein topology universe

    DEFF Research Database (Denmark)

    Lindorff-Larsen,, Kresten; Røgen, Peter; Paci, Emanuele

    2005-01-01

    residues and, in addition, that the topology of the transition state is closer to that of the native state than to that of any other fold in the protein universe. Here, we review the evidence for these conclusions and suggest a molecular mechanism that rationalizes these findings by presenting a view...... of protein folds that is based on the topological features of the polypeptide backbone, rather than the conventional view that depends on the arrangement of different types of secondary-structure elements. By linking the folding process to the organization of the protein structure universe, we propose...

  19. Adjustable thermal resistor by reversibly folding a graphene sheet.

    Science.gov (United States)

    Song, Qichen; An, Meng; Chen, Xiandong; Peng, Zhan; Zang, Jianfeng; Yang, Nuo

    2016-08-11

    Phononic (thermal) devices such as thermal diodes, thermal transistors, thermal logic gates, and thermal memories have been studied intensively. However, tunable thermal resistors have not been demonstrated yet. Here, we propose an instantaneously adjustable thermal resistor based on folded graphene. Through theoretical analysis and molecular dynamics simulations, we study the phonon-folding scattering effect and the dependence of thermal resistivity on the length between two folds and the overall length. Furthermore, we discuss the possibility of realizing instantaneously adjustable thermal resistors in experiment. Our studies bring new insights into designing thermal resistors and understanding the thermal modulation of 2D materials by adjusting basic structure parameters.

  20. Sex Hormone Receptor Expression in the Human Vocal Fold Subunits.

    Science.gov (United States)

    Kirgezen, Tolga; Sunter, Ahmet Volkan; Yigit, Ozgur; Huq, Gulben Erdem

    2017-07-01

    The study aimed to evaluate the existence of sex hormone receptors in the subunits of vocal fold. This is a cadaver study. The androgen, estrogen, and progesterone receptors were examined in the epithelium (EP), superficial layer of the lamina propria (SLP), vocal ligament (VL), and macula flava (MF) of the vocal folds from 42 human cadavers (21 male, 21 female) by immunohistochemical methods. Their staining ratios were scored and statistically compared. The androgen receptor score was significantly higher for the MF than for the EP and SLP (P vocal fold, mostly in the MF and VLs. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  1. Miniaturization of Multiple-Layer Folded Patch Antennas

    DEFF Research Database (Denmark)

    Zhang, Jiaying; Breinbjerg, Olav

    2009-01-01

    A new folded patch antenna with multiple layers was developed in this paper, by folding the patch in a proper way, and a highly miniaturized antenna can be realized. The multiple layer patch with 4-layer and 6-layer are designed and evaluated at 2.4 GHz, 915 MHz, and 415 MHz respectively. Then a 4...... layer patch is fabricated and measured to validate the design method. The theoretical analysis, design and simulations, fabrications, as well as the measurements are presented in this paper. All the results show that the folded patch antenna is a good candidate in making a highly miniaturized compact...

  2. Endoscopic vocal fold injection using a 25-gauge butterfly needle.

    Science.gov (United States)

    Buchanan, M A; Riffat, F; Palme, C E

    2016-04-01

    To describe a useful technique for infiltrating a bulking agent using a butterfly needle, as part of a transoral endoscopic vocal fold medialisation procedure. This paper describes the procedure of grasping the needle with phonosurgery forceps and administering the injectate to the vocal fold through careful application of the syringe plunger via a length of rubber tubing from outside the mouth. This procedure is performed routinely in our institution without complication. The advantages of this technique are discussed. This is a safe and easy method of injecting into a vocal fold.

  3. LLNL Chemical Kinetics Modeling Group

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

    2008-09-24

    The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

  4. Structure and activity of the Pseudomonas aeruginosa hotdog-fold thioesterases PA5202 and PA2801.

    Science.gov (United States)

    Gonzalez, Claudio F; Tchigvintsev, Anatoli; Brown, Greg; Flick, Robert; Evdokimova, Elena; Xu, Xiaohui; Osipiuk, Jerzy; Cuff, Marianne E; Lynch, Susan; Joachimiak, Andrzej; Savchenko, Alexei; Yakunin, Alexander F

    2012-06-15

    The hotdog fold is one of the basic protein folds widely present in bacteria, archaea and eukaryotes. Many of these proteins exhibit thioesterase activity against fatty acyl-CoAs and play important roles in lipid metabolism, cellular signalling and degradation of xenobiotics. The genome of the opportunistic pathogen Pseudomonas aeruginosa contains over 20 genes encoding predicted hotdog-fold proteins, none of which have been experimentally characterized. We have found that two P. aeruginosa hotdog proteins display high thioesterase activity against 3-hydroxy-3-methylglutaryl-CoA and glutaryl-CoA (PA5202), and octanoyl-CoA (PA2801). Crystal structures of these proteins were solved (at 1.70 and 1.75 Å for PA5202 and PA2801 respectively) and revealed a hotdog fold with a potential catalytic carboxylate residue located on the long α-helix (Asp(57) in PA5202 and Glu(35) in PA2801). Alanine residue replacement mutagenesis of PA5202 identified four residues (Asn(42), Arg(43), Asp(57) and Thr(76)) that are critical for its activity and are located in the active site. A P. aeruginosa PA5202 deletion strain showed an increased secretion of the antimicrobial pigment pyocyanine and an increased expression of genes involved in pyocyanin biosynthesis, suggesting a functional link between PA5202 activity and pyocyanin production. Thus the P. aeruginosa hotdog thioesterases PA5202 and PA2801 have similar structures, but exhibit different substrate preferences and functions.

  5. Quality of the voice after injection of hyaluronic acid into the vocal fold.

    Science.gov (United States)

    Szkiełkowska, Agata; Miaśkiewicz, Beata; Remacle, Marc; Krasnodębska, Paulina; Skarżyński, Henryk

    2013-04-17

    Voice disorders resulting from glottic insufficiency are a significant clinical problem in everyday phoniatric practice. One method of treatment is injection laryngoplasty. Our study aimed to assess the voice quality of patients treated with hyaluronic acid injection into the vocal fold. We studied 25 patients suffering from dysphonia, conducting laryngological and phoniatric examination, including videostroboscopy and acoustic voice analysis, before the operation and 1, 3, and 6 months later. In all cases there was complete or almost complete glottic closure after the operation. One month after the procedure, videostroboscopic examination revealed reappearance of vocal fold vibration in 8 cases; after 3 months this had risen to 15 cases. Perceptual voice quality (as assessed by the GRBAS scale) in patients with glottic insufficiency was improved. The most significant improvement was obtained 1 month after surgery (p=0.0002), and within the next months further statistically significant improvements (p=0.000002) were noted. Multidimensional voice analysis showed statistically significant and rapid improvement in frequency parameters, especially vFo. Other parameters were also improved 3 and 6 months after surgery. Injection of hyaluronic acid into the vocal fold improves phonatory functions of the larynx and the quality of voice in patients with glottic insufficiency. It may be a safe and conservative method for treatment of voice disorders. Hyaluronic acid injection to the vocal fold is an easy, effective, and fast method for restoration of good voice quality.

  6. Earthworm Lumbricus rubellus MT-2: Metal Binding and Protein Folding of a True Cadmium-MT

    Directory of Open Access Journals (Sweden)

    Gregory R. Kowald

    2016-01-01

    Full Text Available Earthworms express, as most animals, metallothioneins (MTs—small, cysteine-rich proteins that bind d10 metal ions (Zn(II, Cd(II, or Cu(I in clusters. Three MT homologues are known for Lumbricus rubellus, the common red earthworm, one of which, wMT-2, is strongly induced by exposure of worms to cadmium. This study concerns composition, metal binding affinity and metal-dependent protein folding of wMT-2 expressed recombinantly and purified in the presence of Cd(II and Zn(II. Crucially, whilst a single Cd7wMT-2 species was isolated from wMT-2-expressing E. coli cultures supplemented with Cd(II, expressions in the presence of Zn(II yielded mixtures. The average affinities of wMT-2 determined for either Cd(II or Zn(II are both within normal ranges for MTs; hence, differential behaviour cannot be explained on the basis of overall affinity. Therefore, the protein folding properties of Cd- and Zn-wMT-2 were compared by 1H NMR spectroscopy. This comparison revealed that the protein fold is better defined in the presence of cadmium than in the presence of zinc. These differences in folding and dynamics may be at the root of the differential behaviour of the cadmium- and zinc-bound protein in vitro, and may ultimately also help in distinguishing zinc and cadmium in the earthworm in vivo.

  7. Clinical Significance of Contralateral Reactive Lesion in Vocal Fold Polyp and Cyst.

    Science.gov (United States)

    Cho, Jung-Hae; Choi, Yong-Sug; Joo, Young-Hoon; Park, Young-Hak; Sun, Dong-Il

    2018-01-01

    We investigated the clinical significance of contralateral reactive lesions in patients undergoing laryngeal microsurgery for benign vocal fold lesions such as vocal polyps and cysts. This was a retrospective, single institution cohort study. Patient medical records were reviewed for demographic characteristics; acoustic, aerodynamic, and perceptual analyses; and Voice Handicap Index score before and after laryngeal microsurgery. Definitive diagnoses were made via intraoperative microlaryngoscopic evaluations. Clinical parameters were assessed to identify risk factors for contralateral reactive lesions. We evaluated surgical outcome using voice analysis. We enrolled 268 patients (109 men and 159 women) with benign vocal fold lesions. A total of 195 (72.8%) had a contralateral reactive vocal fold lesion. A multivariable analysis revealed that being a never smoker and having a hoarseness duration ≥6 months, vocal polyps, and small primary lesions were independent risk factors for contralateral reactive lesions (P vocal fold lesions are frequently detected in patients with vocal polyp and cyst. The reactive lesions had an adverse effect on voice quality. Simultaneous excision of primary and contralateral reactive lesions may be an alternative treatment for better voice outcome. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  8. Mapping of near surface fold structures with GPR and ERT near Steinbrunn (Northern Burgenland, Austria)

    Science.gov (United States)

    Kreutzer, Ingrid; Chwatal, Werner; Häusler, Hermann; Scheibz, Jürgen; Steirer, Fritz

    2014-05-01

    In the transition zone between the southern Vienna Basin and the Eisenstadt basin, close to Wr. Neustadt, spectacular fold structures are exposed in the former sand pit of Steinbrunn. The succession of Upper Pannonian age consists of decimetre to meter thick sandy, silty and clayey beds, which are overlain by sandstone beds (Grundtner et al., 2009). The anticline and syncline structures were interpreted as of gravitational origin by Exner et al. (2009), and reinterpreted as of tectonic origin by Häusler (2012a). In order to gain a more detailed insight to the three dimensional distribution and orientation of the folds high resolution geophysics such as electrical resistivity tomography (ERT), ground penetrating radar (GPR) and electromagnetics (EM) were applied to map the surroundings of the sandpit. The ERT- and EM-profiles show that the uppermost layer is more clayey northwest and sandier southeast of the sandpit. This is important for the GPR because clay attenuates the radar signals and therefore no clear layering of the subsurface could be mapped in these areas. In order to directly compare ERT and GPR results with the lithology of the fold structures observed in the sandpit, a reference profile on top of the 140 m long wall of the sandpit was performed. Both methods clearly reveal fold structures paralleling the folded Pannonian strata of the outcrop. While the GPR data displays boundaries and their geometry in the succession, the resistivities in the ERT portrays a more smoothened image of the observed fold structure. In almost all GPR profiles wavelike structures are visible with axes in northern direction and dome-shaped structures with axes in eastern direction, deepening towards the west. In conclusion this pattern is comparable to sections of rounded buckle folds. Although there are clayey areas wave-like and dome-like reflections can be followed in the GPR profiles over a distance of several hundred meters. This is confirmed by the ERT profiles

  9. Kinetics of matching.

    Science.gov (United States)

    Mark, T A; Gallistel, C R

    1994-01-01

    Rats responded on concurrent variable interval schedules of brain stimulation reward in 2-trial sessions. Between trials, there was a 16-fold reversal in the relative rate of reward. In successive, narrow time windows, the authors compared the ratio of the times spent on the 2 levers to the ratio of the rewards received. Time-allocation ratios tracked wide, random fluctuations in the reward ratio. The adjustment to the midsession reversal in relative rate of reward was largely completed within 1 interreward interval on the leaner schedule. Both results were unaffected by a 16-fold change in the combined rates of reward. The large, rapid, scale-invariant shifts in time-allocation ratios that underlie matching behavior imply that the subjective relative rate of reward can be determined by a very few of the most recent interreward intervals and that this estimate can directly determine the ratio of the expected stay durations.

  10. 100-fold but not 50-fold dystrophin overexpression aggravates electrocardiographic defects in the mdx model of Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Yongping Yue

    2016-01-01

    Full Text Available Dystrophin gene replacement holds the promise of treating Duchenne muscular dystrophy. Supraphysiological expression is a concern for all gene therapy studies. In the case of Duchenne muscular dystrophy, Chamberlain and colleagues found that 50-fold overexpression did not cause deleterious side effect in skeletal muscle. To determine whether excessive dystrophin expression in the heart is safe, we studied two lines of transgenic mdx mice that selectively expressed a therapeutic minidystrophin gene in the heart at 50-fold and 100-fold of the normal levels. In the line with 50-fold overexpression, minidystrophin showed sarcolemmal localization and electrocardiogram abnormalities were corrected. However, in the line with 100-fold overexpression, we not only detected sarcolemmal minidystrophin expression but also observed accumulation of minidystrophin vesicles in the sarcoplasm. Excessive minidystrophin expression did not correct tachycardia, a characteristic feature of Duchenne muscular dystrophy. Importantly, several electrocardiogram parameters (QT interval, QRS duration and the cardiomyopathy index became worse than that of mdx mice. Our data suggests that the mouse heart can tolerate 50-fold minidystrophin overexpression, but 100-fold overexpression leads to cardiac toxicity.

  11. Adipose-Derived Mesenchymal Stem Cells in the Regeneration of Vocal Folds: A Study on a Chronic Vocal Fold Scar

    Directory of Open Access Journals (Sweden)

    Angelou Valerie

    2016-01-01

    Full Text Available Background. The aim of the study was to assess the histological effects of autologous infusion of adipose-derived stem cells (ADSC on a chronic vocal fold scar in a rabbit model as compared to an untreated scar as well as in injection of hyaluronic acid. Study Design. Animal experiment. Method. We used 74 New Zealand rabbits. Sixteen of them were used as control/normal group. We created a bilateral vocal fold wound in the remaining 58 rabbits. After 18 months we separated our population into three groups. The first group served as control/scarred group. The second one was injected with hyaluronic acid in the vocal folds, and the third received an autologous adipose-derived stem cell infusion in the scarred vocal folds (ADSC group. We measured the variation of thickness of the lamina propria of the vocal folds and analyzed histopathologic changes in each group after three months. Results. The thickness of the lamina propria was significantly reduced in the group that received the ADSC injection, as compared to the normal/scarred group. The collagen deposition, the hyaluronic acid, the elastin levels, and the organization of elastic fibers tend to return to normal after the injection of ADSC. Conclusions. Autologous injection of adipose-derived stem cells on a vocal fold chronic scar enhanced the healing of the vocal folds and the reduction of the scar tissue, even when compared to other treatments.

  12. Adipose-Derived Mesenchymal Stem Cells in the Regeneration of Vocal Folds: A Study on a Chronic Vocal Fold Scar

    Science.gov (United States)

    Vassiliki, Kalodimou; Irini, Messini; Nikolaos, Psychalakis; Karampela, Eleftheria; Apostolos, Papalois

    2016-01-01

    Background. The aim of the study was to assess the histological effects of autologous infusion of adipose-derived stem cells (ADSC) on a chronic vocal fold scar in a rabbit model as compared to an untreated scar as well as in injection of hyaluronic acid. Study Design. Animal experiment. Method. We used 74 New Zealand rabbits. Sixteen of them were used as control/normal group. We created a bilateral vocal fold wound in the remaining 58 rabbits. After 18 months we separated our population into three groups. The first group served as control/scarred group. The second one was injected with hyaluronic acid in the vocal folds, and the third received an autologous adipose-derived stem cell infusion in the scarred vocal folds (ADSC group). We measured the variation of thickness of the lamina propria of the vocal folds and analyzed histopathologic changes in each group after three months. Results. The thickness of the lamina propria was significantly reduced in the group that received the ADSC injection, as compared to the normal/scarred group. The collagen deposition, the hyaluronic acid, the elastin levels, and the organization of elastic fibers tend to return to normal after the injection of ADSC. Conclusions. Autologous injection of adipose-derived stem cells on a vocal fold chronic scar enhanced the healing of the vocal folds and the reduction of the scar tissue, even when compared to other treatments. PMID:26933440

  13. RNAslider: a faster engine for consecutive windows folding and its application to the analysis of genomic folding asymmetry.

    Science.gov (United States)

    Horesh, Yair; Wexler, Ydo; Lebenthal, Ilana; Ziv-Ukelson, Michal; Unger, Ron

    2009-03-04

    Scanning large genomes with a sliding window in search of locally stable RNA structures is a well motivated problem in bioinformatics. Given a predefined window size L and an RNA sequence S of size N (L free energy (MFE) for the folding of each of the L-sized substrings of S. The consecutive windows folding problem can be naively solved in O(NL3) by applying any of the classical cubic-time RNA folding algorithms to each of the N-L windows of size L. Recently an O(NL2) solution for this problem has been described. Here, we describe and implement an O(NLpsi(L)) engine for the consecutive windows folding problem, where psi(L) is shown to converge to O(1) under the assumption of a standard probabilistic polymer folding model, yielding an O(L) speedup which is experimentally confirmed. Using this tool, we note an intriguing directionality (5'-3' vs. 3'-5') folding bias, i.e. that the minimal free energy (MFE) of folding is higher in the native direction of the DNA than in the reverse direction of various genomic regions in several organisms including regions of the genomes that do not encode proteins or ncRNA. This bias largely emerges from the genomic dinucleotide bias which affects the MFE, however we see some variations in the folding bias in the different genomic regions when normalized to the dinucleotide bias. We also present results from calculating the MFE landscape of a mouse chromosome 1, characterizing the MFE of the long ncRNA molecules that reside in this chromosome. The efficient consecutive windows folding engine described in this paper allows for genome wide scans for ncRNA molecules as well as large-scale statistics. This is implemented here as a software tool, called RNAslider, and applied to the scanning of long chromosomes, leading to the observation of features that are visible only on a large scale.

  14. Kinetic synergistic transitions in the Ostwald ripening processes

    Science.gov (United States)

    Sachkov, I. N.; Turygina, V. F.; Dolganov, A. N.

    2018-01-01

    There is proposed approach to mathematical description of the kinetic transitions in Ostwald ripening processes of volatile substance in nonuniformly heated porous materials. It is based upon the finite element method. There are implemented computer software. The main feature of the software is to calculate evaporation and condensation fluxes on the walls of a nonuniformly heated cylindrical capillary. Kinetic transitions are detected for three modes of volatile substances migration which are different by condensation zones location. There are controlling dimensionless parameters of the kinetic transition which are revealed during research. There is phase diagram of the Ostwald ripening process modes realization.

  15. Botulinum toxin in the treatment of vocal fold nodules.

    Science.gov (United States)

    Allen, Jacqui E; Belafsky, Peter C

    2009-12-01

    Promising new techniques in the management of vocal fold nodules have been developed in the past 2 years. Simultaneously, the therapeutic use of botulinum toxin has rapidly expanded. This review explores the use of botulinum toxin in treatment of vocal nodules and summarizes current therapeutic concepts. New microsurgical instruments and techniques, refinements in laser technology, radiosurgical excision and steroid intralesional injections are all promising new techniques in the management of vocal nodules. Botulinum toxin-induced 'voice rest' is a new technique we have employed in patients with recalcitrant nodules. Successful resolution of nodules is possible with this technique, without the risk of vocal fold scarring inherent in dissection/excision techniques. Botulinum toxin usage is exponentially increasing, and large-scale, long-term studies demonstrate its safety profile. Targeted vocal fold temporary paralysis induced by botulinum toxin injection is a new, well tolerated and efficacious treatment in patients with persistent vocal fold nodules.

  16. New Analysis and Theory of Deployable Folded Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A recently developed mathematical folding theory has great value for deployable space structures and in situ manufacture of large beams, panels and cylinders. The...

  17. RNA inverse folding using Monte Carlo tree search.

    Science.gov (United States)

    Yang, Xiufeng; Yoshizoe, Kazuki; Taneda, Akito; Tsuda, Koji

    2017-11-06

    Artificially synthesized RNA molecules provide important ways for creating a variety of novel functional molecules. State-of-the-art RNA inverse folding algorithms can design simple and short RNA sequences of specific GC content, that fold into the target RNA structure. However, their performance is not satisfactory in complicated cases. We present a new inverse folding algorithm called MCTS-RNA, which uses Monte Carlo tree search (MCTS), a technique that has shown exceptional performance in Computer Go recently, to represent and discover the essential part of the sequence space. To obtain high accuracy, initial sequences generated by MCTS are further improved by a series of local updates. Our algorithm has an ability to control the GC content precisely and can deal with pseudoknot structures. Using common benchmark datasets for evaluation, MCTS-RNA showed a lot of promise as a standard method of RNA inverse folding. MCTS-RNA is available at https://github.com/tsudalab/MCTS-RNA .

  18. Folding two dimensional crystals by swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ochedowski, Oliver; Bukowska, Hanna [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Freire Soler, Victor M. [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Departament de Fisica Aplicada i Optica, Universitat de Barcelona, E08028 Barcelona (Spain); Brökers, Lara [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Ban-d' Etat, Brigitte; Lebius, Henning [CIMAP (CEA-CNRS-ENSICAEN-UCBN), 14070 Caen Cedex 5 (France); Schleberger, Marika, E-mail: marika.schleberger@uni-due.de [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany)

    2014-12-01

    Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS{sub 2} and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS{sub 2} does not.

  19. Folding two dimensional crystals by swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Ochedowski, Oliver; Bukowska, Hanna; Freire Soler, Victor M.; Brökers, Lara; Ban-d'Etat, Brigitte; Lebius, Henning; Schleberger, Marika

    2014-01-01

    Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS 2 and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS 2 does not

  20. Evidence for multiphase folding of the central Indian Ocean lithosphere

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Bull, J.M.; Scrutton, R.A.

    Long-wavelength (100-300 km) folding in the central Indian Ocean associated with the diffuse plate boundary separating the Indian, Australian, and Capricorn plates is Earth's most convincing example of organized large-scale lithospheric deformation...