WorldWideScience

Sample records for retrograde gas condensate

  1. Gas condensate reservoir performance : part 1 : fluid characterization

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, F.B.; Bennion, D.B. [Hycal Energy Research Laboratories Ltd., Calgary, AB (Canada); Andersen, G. [ChevronTexaco, Calgary, AB (Canada)

    2006-07-01

    Phase behaviour in gas condensate reservoirs is sensitive to changes in pressure and temperature, which can lead to significant errors in fluid characterization. The challenging task of characterizing in situ fluids in gas condensate reservoirs was discussed with reference to the errors that occur as a result of the complex coupling between phase behavior and geology. This paper presented techniques for reservoir sampling and characterization and proposed methods for minimizing errors. Errors are often made in the classification of dew point systems because engineering criteria does not accurately represent the phase behavior of the reservoir. For example, the fluid of a certain condensate yield may be categorized as a wet gas rather than a retrograde condensate fluid. It was noted that the liquid yield does not dictate whether the fluid is condensate or wet gas, but rather where the reservoir temperature is situated in the pressure temperature phase loop. In order to proceed with a viable field development plan and optimization, the reservoir fluid must be understood. Given that gas productivity decreases with liquid drop out in the near wellbore region, capillary pressure plays a significant role in retrograde reservoirs. It was noted that well understood parameters will lead to a better assessment of the amount of hydrocarbon in place, the rate at which the resource can be produced and optimization strategies as the reservoir matures. It was concluded that multi-rate sampling is the best method to use in sampling fluids since the liquid yield changes as a function of rate. Although bottom-hole sampling in gas condensate reservoirs may be problematic, it should always be performed to address any concerns for liquid-solid separation. Produced fluids typically reveal a specific signature that informs the operator of in situ properties. This paper presented examples that pertain to wet versus retrograde condensate behavior and the presence of an oil zone. The

  2. Effect of retrograde gas condensate in low permeability natural gas reservoir; Efeito da condensacao retrograda em reservatorios de gas natural com baixa permeabilidade

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Paulo Lee K.C. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica; Ligero, Eliana L.; Schiozer, Denis J. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo

    2008-07-01

    Most of Brazilian gas fields are low-permeability or tight sandstone reservoirs and some of them should be gas condensate reservoir. In this type of natural gas reservoir, part of the gaseous hydrocarbon mixture is condensate and the liquid hydrocarbon accumulates near the well bore that causes the loss of productivity. The liquid hydrocarbon formation inside the reservoir should be well understood such as the knowledge of the variables that causes the condensate formation and its importance in the natural gas production. This work had as goal to better understanding the effect of condensate accumulation near a producer well. The influence of the porosity and the absolute permeability in the gas production was studied in three distinct gas reservoirs: a dry gas reservoir and two gas condensate reservoirs. The refinement of the simulation grid near the producer well was also investigated. The choice of simulation model was shown to be very important in the simulation of gas condensate reservoirs. The porosity was the little relevance in the gas production and in the liquid hydrocarbon formation; otherwise the permeability was very relevant. (author)

  3. Fluid flow behaviour of gas-condensate and near-miscible fluids at the pore scale

    Energy Technology Data Exchange (ETDEWEB)

    Dawe, Richard A. [Department of Chemical Engineering, University of West Indies, St. Augustine (Trinidad and Tobago); Grattoni, Carlos A. [Department of Earth Science and Engineering, Imperial College, London, SW7 2BP (United Kingdom)

    2007-02-15

    Retrograde condensate reservoir behaviour is complex with much of the detailed mechanisms of the multiphase fluid transport and mass transfer between the phases within the porous matrix still speculative. Visual modelling of selected processes occurring at the pore level under known and controlled boundary conditions can give an insight to fluid displacements at the core scale and help the interpretation of production behaviour at reservoir scale. Visualisation of the pore scale two-phase flow mechanisms has been studied experimentally at low interfacial tensions, < 0.5 mN/m, using a partially miscible fluid system in glass visual micro models. As the interfacial tension decreases the balance between fluid-fluid forces (interfacial, spreading and viscous) and fluid-solid interactions (wettability and viscous interactions) changes. Data measurements in the laboratory, particularly relative permeability, will therefore always be difficult especially for condensate fluids just below their dew point. What is certain is that gas production from a gas-condensate leads to condensate dropout when pressure falls below the dew point, either within the wellbore or, more importantly, in the reservoir. This paper illustrates some pore scale physics, particularly interfacial phenomena at low interfacial tension, which has relevance to appreciating the flow of condensate fluids close to their dew point either near the wellbore (which affects well productivity) or deep inside the reservoir (which affects condensate recovery). (author)

  4. EOS simulation and GRNN modeling of the constant volume depletion behavior of gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Elsharkawy, A.M.; Foda, S.G. [Kuwait University, Safat (Kuwait). Petroleum Engineering Dept.

    1998-03-01

    Currently, two approaches are being used to predict the changes in retrograde gas condensate composition and estimate the pressure depletion behavior of gas condensate reservoirs. The first approach uses the equation of states whereas the second uses empirical correlations. Equations of states (EOS) are poor predictive tools for complex hydrocarbon systems. The EOS needs adjustment against phase behavior data of reservoir fluid of known composition. The empirical correlation does not involve numerous numerical computations but their accuracy is limited. This study presents two general regression neural network (GRNN) models. The first model, GRNNM1, is developed to predict dew point pressure and gas compressibility at dew point using initial composition of numerous samples while the second model, GRNNM2, is developed to predict the changes in well stream effluent composition at any stages of pressure depletion. GRNNM2 can also be used to determine the initial reservoir fluid composition using dew point pressure, gas compressibility at dew point, and reservoir temperature. These models are based on analysis of 142 sample of laboratory studies of constant volume depletion (CVD) for gas condensate systems forming a total of 1082 depletion stages. The database represents a wide range of gas condensate systems obtained worldwide. The performance of the GRNN models has been compared to simulation results of the equation of state. The study shows that the proposed general regression neural network models are accurate, valid, and reliable. These models can be used to forecast CVD data needed for many reservoir engineering calculations in case laboratory data is unavailable. The GRNN models save computer time involved in EOS calculations. The study also show that once these models are properly trained they can be used to cut expenses of frequent sampling and laborious experimental CVD tests required for gas condensate reservoirs. 55 refs., 13 figs., 6 tabs.

  5. Condensate recovery by cycling at declining pressures

    Energy Technology Data Exchange (ETDEWEB)

    Havlena, Z G; Griffith, J D; Pot, R; Kiel, O G

    1967-06-05

    Cycling condensate reservoirs under conditions of declining pressure, rather than constant pressure, is advantageous from both a recovery and an economic standpoint. Wet gas displaced from the swept areas is recovered concurrently with wet gas recovered by gas expansion from the unswept portions of the reservoir. Any liquid condensed in the swept areas is revaporized by dry injection gas and recovered as an enriched gas. By this mode of operation, high condensate recovery is obtained, gas sales may be possible at an earlier stage of depletion, more flexibility in field and plant operations is feasible and reduction of 15% in investment and operating costs is achieved. Injection gas requirements are reduced by 40%. The Windfall reservoir in Canada has been successfully produced in this manner, starting in 1962. It is a typical retrograde type reservoir which in 1965 represented 15% of reservoirs exploited in North America.

  6. Recovery enhancement at the later stage of supercritical condensate gas reservoir development via CO2 injection: A case study on Lian 4 fault block in the Fushan sag, Beibuwan Basin

    Directory of Open Access Journals (Sweden)

    Wenyan Feng

    2016-11-01

    Full Text Available Lian 4 fault block is located in the northwest of Fushan sag, Beibuwan Basin. It is a high-saturated condensate gas reservoir with rich condensate oil held by three faults. In order to seek an enhanced condensate oil recovery technology that is suitable for this condensate gas reservoir at its later development stage, it is necessary to analyze its reserve producing degree and remaining development potential after depletion production, depending on the supercritical fluid phase behavior and depletion production performance characteristics. The supercritical fluid theories and multiple reservoir engineering dynamic analysis methods were adopted comprehensively, such as dynamic reserves, production decline, liquid-carrying capacity of a production well, and remaining development potential analysis. It is shown that, at its early development stage, the condensate in Lian 4 fault block presented the features of supercritical fluid, and the reservoir pressure was lower than the dew point pressure, so retrograde condensate loss was significant. Owing to the retrograde condensate effect and the fast release of elastic energy, the reserve producing degree of depletion production is low in Lian 4 fault block, and 80% of condensate oil still remains in the reservoir. So, the remaining development potential is great. The supercritical condensate in Lian 4 fault block is of high density. Based on the optimization design by numerical simulation of compositional model, it is proposed to inject CO2 at the top and build up pressure by alternating production and injection, so that the secondary gas cap is formed while the gravity-stable miscible displacement is realized. In this way, the recovery factor of condensate reservoirs can be improved by means of the secondary development technology.

  7. Visual Investigation of Retrograde Phenomena and Gas Condensate Flow in Porous Media Étude visuelle des phénomènes rétrogrades et de l'écoulement des gaz de condensat en milieux poreux

    Directory of Open Access Journals (Sweden)

    Danesh A.

    2006-11-01

    Full Text Available The mechanism of retrograde condensation and the flow of gas-condensate in horizontal porous media under simulated reservoir conditions were visually studied. Two-dimensional glass micromodels with homogeneous pore structures, as well as heterogeneous patterns, reproduced from real rock micrographs were employed in this study. Depletion tests were carried out using synthetic multicomponent hydrocarbon gas mixtures and also a North Sea gas condensate. The multiphase flow behaviour of the tested systems, as observed and recorded on video, is presented here along with the measured data. In water-wet pores, condensate was observed to be formed as a continuous thin film on connate water, which was the preferred site for condensation. Pressure reduction below the system cricondenbar resulted in the growth of the condensate almost exclusively on water rings at pore throats and dead end pores. The condensate was observed to flow through thin films even at low saturations, with little contribution to the condensate recovery. The rate of pressure depletion influenced the gas flow shear and was found to strongly affect the condensate propagation. Local instabilities could promote significant condensate movement in pore sections which would only be retarded further downstream by capillary effects diminishing the condensate recovery. Relative permeability-saturation relation-ships for gas-condensate flow should not be expected to take the same form as the oil-gas relative permeability for solution gas or external gas drive. Le mécanisme de la condensation rétrograde et l'écoulement des gaz de condensat en milieu poreux horizontal dans une simulation des conditions naturelles ont fait l'objet d'études visuelles. Des micromodèles en verre bi-dimensionnels à structure poreuse homogène, et des éléments hétérogènes reproduisant des micrographies de roches réelles, ont été utilisés pour cette étude. Des essais d'épuisement ont été effectu

  8. The Effect of Capillary Number on a Condensate Blockage in Gas Condensate Reservoirs

    OpenAIRE

    Saifon DAUNGKAEW; Alain C GRINGARTEN

    2004-01-01

    In the petroleum industry, gas condensate reservoirs are becoming more common as exploration targets. However, there is a lack of knowledge of the reservoir behaviour mainly due to its complexity in the near wellbore region, where two phases, i.e. reservoir gas and condensate coexist when the wellbore pressure drops below the dew point pressure. The condensation process causes a reduction of the gas productivity (1). It has been reported in the literature that there is an increasing gas mobil...

  9. Gas condensate--raw material for producing liquid paraffin hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Aliyeva, R.B.; Alikishi-Zade, G.Yu.; Kuliyev, A.M.; Leonidov, A.N.; Pereverzev, A.N.

    1980-01-01

    The problem of efficient utilization of gas condensates as raw material for removal of a valuable product, liquid paraffins, is examined. A classification of gas condensates is given which is used as raw material for removing these hydrocarbons: gas condensate with high content of n-alkanes (25-40 mass percent), with average content (18-25 mass percent), with low content (12-18 mass percent), light weight fractions compositions, which do not contain fractions up to 200/sup 0/, and also, content ofless than 12% n-alkanes. Gas condensate I-III groups are 30% of the total reserve of gas condensate. Liquid paraffins hydrocarbons, produced from fractions of diesel fuel, which has been removed from Shatlyk gas condensate under conditions which simulate virtual processes of caramide deparaffinization meet all requirements without additional refining.

  10. Modeling the Phase Composition of Gas Condensate in Pipelines

    Science.gov (United States)

    Dudin, S. M.; Zemenkov, Yu D.; Shabarov, A. B.

    2016-10-01

    Gas condensate fields demonstrate a number of thermodynamic characteristics to be considered when they are developed, as well as when gas condensate is transported and processed. A complicated phase behavior of the gas condensate system, as well as the dependence of the extracted raw materials on the phase state of the deposit other conditions being equal, is a key aspect. Therefore, when designing gas condensate lines the crucial task is to select the most appropriate methods of calculating thermophysical properties and phase equilibrium of the transported gas condensate. The paper describes a physical-mathematical model of a gas-liquid flow in the gas condensate line. It was developed based on balance equations of conservation of mass, impulse and energy of the transported medium within the framework of a quasi-1D approach. Constitutive relationships are given separately, and practical recommendations on how to apply the research results are provided as well.

  11. Millstone 3 condensate dissolved gas monitoring

    International Nuclear Information System (INIS)

    Burns, T.F.; Grondahl, E.E.; Snyder, D.T.

    1988-01-01

    Condensate dissolved oxygen problems at Millstone Point Unit 3 (MP3) were investigated using the Dissolved Gas Monitoring System developed by Radiological and Chemical Technology, Inc. under EPRI sponsorship. Argon was injected into the turbine exhaust basket tips to perform a dissolved gas transport analysis and determine steam jet air ejector gas removal efficiency. The operating configuration of the steam jet air ejector system was varied to determine the effect on gas removal efficiency. Following circulating water chlorination, the gas removal efficiency was determined to evaluate the effect of condenser tube fouling on steam jet air ejector performance

  12. Detection of retrograde gas streaming in the SB0 galaxy NGC 4546

    International Nuclear Information System (INIS)

    Galletta, G.

    1987-01-01

    Spectroscopic observations are reported of the almost edge-on SB0 galaxy NGC 4546 which reveal a striking discordance between the derived emission and absorption-line velocities. The gas clouds show velocities that are similar in amplitude but opposite in direction from the stars. This discordance is seen in observations obtained through slits oriented in a wide range of position angles. NGC 4546 is thus, at present, unique as a disk system exhibiting large-scale retrograde motions relative to the stellar component. Orbits elongated both along the bar major axis (prograde, stars) and along the bar intermediate axis (retrograde, gas) are found. The possibility that this material originated from an infall is discussed. 27 references

  13. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir

    Directory of Open Access Journals (Sweden)

    Shams Bilal

    2017-08-01

    Full Text Available Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large amount of condensate in reservoir pores. Trapped condensate often is lost due to condensate accumulation-condensate blockage courtesy of high molecular weight, heavy condensate residue. Recovering lost condensate most economically and optimally has always been a challenging goal. Thus, gas cycling is applied to alleviate such a drastic loss in resources.

  14. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir

    Science.gov (United States)

    Shams, Bilal; Yao, Jun; Zhang, Kai; Zhang, Lei

    2017-08-01

    Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large amount of condensate in reservoir pores. Trapped condensate often is lost due to condensate accumulation-condensate blockage courtesy of high molecular weight, heavy condensate residue. Recovering lost condensate most economically and optimally has always been a challenging goal. Thus, gas cycling is applied to alleviate such a drastic loss in resources. In gas injection, the flooding pattern, injection timing and injection duration are key parameters to study an efficient EOR scenario in order to recover lost condensate. This work contains sensitivity analysis on different parameters to generate an accurate investigation about the effects on performance of different injection scenarios in homogeneous gas condensate system. In this paper, starting time of gas cycling and injection period are the parameters used to influence condensate recovery of a five-spot well pattern which has an injection pressure constraint of 3000 psi and production wells are constraint at 500 psi min. BHP. Starting injection times of 1 month, 4 months and 9 months after natural depletion areapplied in the first study. The second study is conducted by varying injection duration. Three durations are selected: 100 days, 400 days and 900 days. In miscible gas injection, miscibility and vaporization of condensate by injected gas is more efficient mechanism for condensate recovery. From this study, it is proven that the application of gas cycling on five-spot well pattern greatly enhances condensate recovery

  15. Hysteresis phenomenon during operation of gas condensate fields

    Energy Technology Data Exchange (ETDEWEB)

    Sadykh-Zade, E S; Karakashev, V K; Ismailov, D Kh

    1966-01-01

    Hysteresis behavior of gas-condensate mixtures was studied with a PVT apparatus. The study was conducted at 26 and 80/sup 0/C, with recombined samples having gas factors of 3,000, 6,500, and 10,000 cu meters per ton. Pressure on samples was decreased or increased at rates of 0.2; 0.1; 0.05; and 0.025 atm per sec. Composition of gas- condensate is given. It is reported that different amounts of liquid were produced by condensation and evaporation processes, i.e., results depended on whether pressure was being increased or decreased. It is suggested that the effect of hysteresis should be considered in operation of gas-condensate fields.

  16. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir

    OpenAIRE

    Shams Bilal; Yao Jun; Zhang Kai; Zhang Lei

    2017-01-01

    Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large...

  17. Conditions for maximum isolation of stable condensate during separation in gas-condensate systems

    Energy Technology Data Exchange (ETDEWEB)

    Trivus, N.A.; Belkina, N.A.

    1969-02-01

    A thermodynamic analysis is made of the gas-liquid separation process in order to determine the relationship between conditions of maximum stable condensate separation and physico-chemical nature and composition of condensate. The analysis was made by considering the multicomponent gas-condensate fluid produced from Zyrya field as a ternary system, composed of methane, an intermediate component (propane and butane) and a heavy residue, C/sub 6+/. Composition of 5 ternary systems was calculated for a wide variation in separator conditions. At each separator pressure there is maximum condensate production at a certain temperature. This occurs because solubility of condensate components changes with temperature. Results of all calculations are shown graphically. The graphs show conditions of maximum stable condensate separation.

  18. Correcting underestimation of optimal fracture length by modeling proppant conductivity variations in hydraulically fractured gas/condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Akram, A.H.; Samad, A. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Schlumberger, Houston, TX (United States)

    2006-07-01

    A study was conducted in which a newly developed numerical simulator was used to forecast the productivity of a hydraulically fractured well in a retrograde gas-condensate sandstone reservoir. The effect of condensate dropout was modeled in both the reservoir and the proppant pack. The type of proppant and the stress applied to it are among the factors that determine proppant conductivity in a single-phase flow. Other factors include the high velocity of gas and the presence of liquid in the proppant pack. It was concluded that apparent proppant permeability in a gas condensate reservoir varies along the length of the hydraulic fracture and depends on the distance from the wellbore. It will increase towards the tip of the fracture where liquid ratio and velocity are lower. Apparent proppant permeability also changes with time. Forecasting is most accurate when these conditions are considered in the simulation. There are 2 problems associated with the use of a constant proppant permeability in a gas condensate reservoir. The first relates to the fact that it is impossible to obtain a correct single number that will mimic the drawdown of the real fracture at a particular rate without going through the process of determining the proppant permeability profile in a numerical simulator. The second problem relates to the fact that constant proppant permeability yields an optimal fracture length that is too short. Analytical modeling does not account for these complexities. It was determined that the only way to accurately simulate the behaviour of a hydraulic fracture in a high rate well, is by advanced numerical modeling that considers varying apparent proppant permeability in terms of time and distance along the fracture length. 10 refs., 2 tabs., 16 figs., 1 appendix.

  19. Development of a neural fuzzy system for advanced prediction of dew point pressure in gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nowroozi, Saeed; Hashemipour, Hasan; Schaffie, Mahin [Department of Chemical Engineering, Shahid Bahonar University of Kerman (Iran); ERC, Shahid Bahonar University of Kerman (Iran); Ranjbar, Mohammad [Department of Mining Engineering, Shahid Bahonar University of Kerman (Iran); ERC, Shahid Bahonar University of Kerman (Iran)

    2009-03-15

    Dew point pressure is one of the most critical quantities for characterizing a gas condensate reservoir. So, accurate determination of this property has been the main challenge in reservoir development and management. The experimental determination of dew point pressure in PVT cell is often difficult especially in case of lean retrograde gas condensate. Empirical correlations and some equations of state can be used to calculate reservoir fluid properties. Empirical correlations do not have ability to reliable duplicate the temperature behavior of constant composition fluids. Equations of state have convergence problem and need to be tuned against some experimental data. Complexity, non-linearity and vagueness are some reservoir parameter characteristic which can be propagated simply by intelligent system. With the advantage of fuzzy sets in knowledge representation and the high capacity of neural nets (NNs) in learning knowledge expressed in data, in this paper a neural fuzzy system(NFS) is proposed to predict dew point pressure of gas condensate reservoir. The model was developed using 110 measurements of dew point pressure. The performance of the model is compared against performance of some of the most accurate and general correlations for dew point pressure calculation. From the results of this study, it can be pointed out that this novel method is more accurate and reliable with the mean square error of 0.058%, 0.074% and 0.044% for training, validation and test processes, respectively. (author)

  20. Liquid oil production from shale gas condensate reservoirs

    Science.gov (United States)

    Sheng, James J.

    2018-04-03

    A process of producing liquid oil from shale gas condensate reservoirs and, more particularly, to increase liquid oil production by huff-n-puff in shale gas condensate reservoirs. The process includes performing a huff-n-puff gas injection mode and flowing the bottom-hole pressure lower than the dew point pressure.

  1. Off gas condenser performance modelling

    International Nuclear Information System (INIS)

    Cains, P.W.; Hills, K.M.; Waring, S.; Pratchett, A.G.

    1989-12-01

    A suite of three programmes has been developed to model the ruthenium decontamination performance of a vitrification plant off-gas condenser. The stages of the model are: condensation of water vapour, NO x absorption in the condensate, RuO 4 absorption in the condensate. Juxtaposition of these stages gives a package that may be run on an IBM-compatible desktop PC. Experimental work indicates that the criterion [HNO 2 ] > 10 [RuO 4 ] used to determine RuO 4 destruction in solution is probably realistic under condenser conditions. Vapour pressures of RuO 4 over aqueous solutions at 70 o -90 o C are slightly lower than the values given by extrapolating the ln K p vs. T -1 relation derived from lower temperature data. (author)

  2. Compositional simulations of producing oil-gas ratio behaviour in low permeable gas condensate reservoir

    OpenAIRE

    Gundersen, Pål Lee

    2013-01-01

    Master's thesis in Petroleum engineering Gas condensate flow behaviour below the dew point in low permeable formations can make accurate fluid sampling a difficult challenge. The objective of this study was to investigate the producing oil-gas ratio behaviour in the infinite-acting period for a low permeable gas condensate reservoir. Compositional isothermal flow simulations were performed using a single-layer, radial and two-dimensional, gas condensate reservoir model with low permeabili...

  3. Effect on non-condensable gas on steam injector

    International Nuclear Information System (INIS)

    Kawamoto, Y.; Abe, Y.; Iwaki, C.; Narabayashi, T.; Mori, M.; Ohmori, S.

    2004-01-01

    Next-generation reactor systems have been under development aiming at simplified system and improvement of safety and credibility. A steam injector has a function of a passive pump without large motor or turbo-machinery, and has been investigated as one of the most important component of the next-generation reactor. Its performance as a pump depends on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. Although non-condensable gases are well known for reducing heat transfer, the effect of the non-condensable gas on the condensation of supersonic steam on high-speed water jet has not been cleared. The present paper presents an experimental study of condensation of supersonic steam around turbulent water jet with model steam injector made by transparent plastic. The experimental apparatus is described. The visual observation was carried out by using high-speed camera. The non-condensable gas effect on the pump performance and flow characteristics are clarified by the image processing technique for the jet shape and gas-liquid interface behavior. (authors)

  4. Using helical compressors for coke gas condensation

    Energy Technology Data Exchange (ETDEWEB)

    Privalov, V E; Rezunenko, Yu I; Lelyanov, N V; Zarnitzkii, G Eh; Gordienko, A A; Derebenko, I F; Venzhega, A G; Leonov, N P; Gorokhov, N N

    1982-08-01

    Coke oven gas compression is discussed. Presently used multilevel piston compressors are criticized. The paper recommends using helical machines which combine advantages of using volume condensing compressors and compact high-efficiency centrifugal machines. Two kinds of helical compressors are evaluated: dry and oil-filled; their productivities and coke oven gas chemical composition are analyzed. Experiments using helical compressors were undertaken at the Yasinovskii plant. Flowsheet of the installation is shown. Performance results are given in a table. For all operating conditions content of insolubles in oil compounds is found to be lower than the acceptable value (0.08%). Compressor productivity measurements with variable manifold pressure are evaluated. Figures obtained show that efficient condensation of raw coke oven gas is possible. Increasing oil-filled compressor productivity is recommended by decreasing amount of oil injected and simultaneously increasing rotation speed. The dry helical compressor with water seal is found to be most promising for raw coke oven gas condensation. (10 refs.)

  5. A CFD study of wave influence on film steam condensation in the presence of non-condensable gas

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianmao, E-mail: xm-wang11@mails.tsinghua.edu.cn [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Chang, Huajian, E-mail: changhj@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Corradini, Michael, E-mail: corradini@engr.wisc.edu [Department of Engineering Physics, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706 (United States)

    2016-08-15

    Highlights: • A condensation model is incorporated in the ANSYS FLUENT. • Different turbulence models are evaluated for flows over wavy surfaces. • Wavy surfaces with and without moving velocities are used to model the wave. • Various wavy surfaces with different wave heights and wavelengths are selected. • Wave influence on film steam condensation is investigated. - Abstract: Steam condensation plays an important role in removing heat from the containment of a nuclear plant during postulated accidents. However, due to the presence of non-condensable gases such as air and hydrogen in the containment, the condensation rate can decrease dramatically. Under certain conditions, the condensate film on the cold containment walls can affect the overall heat transfer rate. The wavy interface of the condensate film is a factor and is usually believed to enhance the condensation rate, since the waves can both increase the interfacial area and disturb the non-condensable gas boundary layer. However, it is not clear how to properly account for this factor and what is its quantitative influence in experiments. In this work, a CFD approach is applied to study the wave effects on film condensation in the presence of non-condensable gas. Wavy surfaces with and without moving velocities are used to replace the wavy interface of the falling film. A condensation model is incorporated in the ANSYS FLUENT simulation and a realizable k–ε turbulence model is applied. Various wavy surfaces with different wave heights and wavelengths are selected to conduct numerical experiments with a wide range of gas velocities. The results show that the wave structure can enhance condensation rate up to ten percent mainly due to the alteration of local flow structures in the gas phase. The increments of the condensation rate due to the wavy interface can vary with different gas velocities. The investigation shows that a multiplication factor accounts for the wave effects on film

  6. Evaporation and condensation heat transfer with a noncondensable gas present

    International Nuclear Information System (INIS)

    Murase, M.; Kataoka, Y.; Fujii, T.

    1993-01-01

    To evaluate the system pressure of an external water wall type containment vessel, which is one of the passive systems for containment cooling, the evaporation and condensation behavior under a noncondensable gas presence has been experimentally examined. In the system, steam evaporated from the suppression pool surface into the wetwell, filled with noncondensable gas, and condensed on the containment vessel wall. The system pressure was the sum of the noncondensable gas pressure and saturated steam pressure in the wetwell. The wetwell temperature was, however, lower than the suppression pool temperature and depended on the thermal resistance on the suppression pool surface. The evaporation and condensation heat transfer coefficients in the presence of air as noncondensable gas were measured and expressed by functions of steam/air mass ratio. The evaporation heat transfer coefficients were one order higher than the condensation heat transfer coefficients because the local noncondensable gas pressure was much lower on the evaporating pool surface than on the condensing liquid surface. Using logal properties of the heat transfer surfaces, there was a similar trend between evaporation and condensation even with a noncondensable gas present. (orig.)

  7. Importance of water Influx and waterflooding in Gas condensate reservoir

    OpenAIRE

    Ali, Faizan

    2014-01-01

    The possibility of losing valuable liquid and lower gas well deliverability have made gas condensate reservoirs very important and extra emphasizes are made to optimize hydrocarbon recovery from a gas condensate reservoir. Methods like methanol treatments, wettability alteration and hydraulic fracturing are done to restore the well deliverability by removing or by passing the condensate blockage region. The above mentioned methods are applied in the near wellbore region and only improve the w...

  8. Mathematical simulation of the process of condensing natural gas

    OpenAIRE

    Tastandieva G.M.

    2015-01-01

    Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG) storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the...

  9. Gas manufacture, processes for: condensers

    Energy Technology Data Exchange (ETDEWEB)

    Young, W

    1876-11-29

    In the production of illuminating gas from coal, shale, hydrocarbon oil, or other substance used in the production of gas, the volatile products inside the retort are agitated by means of moving pistons or jets of compressed gas, steam, or vapor in order to decompose them into permanent gases, and in some cases to increase the volume of gas by the decomposition of the injected gas, etc. or by blending or carburetting this gas with the decomposition products of the volatile matters. To separate the condensible hydrocarbons from the crude gas it is passed through heated narrow tortuous passages or is caused to impinge on surfaces. If the crude gases are cold these surfaces are heated and vice versa.

  10. Possibility of removing condensate and scattered oil from gas-condensate field during bed flooding

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, N.A.; Yagubov, M.S.

    1984-01-01

    The problem is set of evaluating the possible removal from the bed of scattered oil and condensate during flooding of the bed. For this purpose, an experimental study was made of the displacement by water from the porous medium of the oil and condensate saturating it. The obtained experimental results permit evaluation of the possible removal from the gas-condensate bed of scattered oil and condensate during flooding of the bed.

  11. Mathematical simulation of the process of condensing natural gas

    Science.gov (United States)

    Tastandieva, G. M.

    2015-01-01

    Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG) storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the possibility of regulating the process of "cooling down" liquefied natural gas in terms of its partial evaporation with low cost energy.

  12. Fuzzy logic prediction of dew point pressure of selected Iranian gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nowroozi, Saeed [Shahid Bahonar Univ. of Kerman (Iran); Iranian Offshore Oil Company (I.O.O.C.) (Iran); Ranjbar, Mohammad; Hashemipour, Hassan; Schaffie, Mahin [Shahid Bahonar Univ. of Kerman (Iran)

    2009-12-15

    The experimental determination of dew point pressure in a window PVT cell is often difficult especially in the case of lean retrograde gas condensate. Besides all statistical, graphical and experimental methods, the fuzzy logic method can be useful and more reliable for estimation of reservoir properties. Fuzzy logic can overcome uncertainty existent in many reservoir properties. Complexity, non-linearity and vagueness are some reservoir parameter characteristics, which can be propagated simply by fuzzy logic. The fuzzy logic dew point pressure modeling system used in this study is a multi input single output (MISO) Mamdani system. The model was developed using experimentally constant volume depletion (CVD) measured samples of some Iranian fields. The performance of the model is compared against the performance of some of the most accurate and general correlations for dew point pressure calculation. Results show that this novel method is more accurate and reliable with an average absolute deviation of 1.33% and 2.68% for developing and checking, respectively. (orig.)

  13. Improvement of degradation with non-condensable gas in micro steam injector

    International Nuclear Information System (INIS)

    Saihara, Atsushi; Horiki, Sachiyo; Osakabe, Masahiro; Ohmori, Shuichi

    2007-01-01

    Effect of non-condensable gas on a micro steam injector (MSI) to obtain a vacuum was experimentally studied. When a pure steam was used in the MSI, the high vacuum condition was obtained. However when the mass fraction of air included in the steam was larger than a cartain value, the MSI became unstable and the vacuum condition could not be obtained. It is considered that the malfunction is due to the instability triggered with the uncondensed steam remained at the throat in downstream of the condensing region. The water nozzle was expected to be a key component to mitigate the effect of non-condensable gas. Three kinds of water nozzle whose flow areas were round, star and screw shapes were used in the present experiment. The star-shaped nozzle where the increased surface area could be expected to compensate the degradation of condensation failed to improve the malfunction of MSI with the non-condensable gas. The screw nozzle expected to drive air away outside the condensing surface could mitigate the effect of non-condensable gas. (author)

  14. Mathematical simulation of the process of condensing natural gas

    Directory of Open Access Journals (Sweden)

    Tastandieva G.M.

    2015-01-01

    Full Text Available Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the possibility of regulating the process of “cooling down” liquefied natural gas in terms of its partial evaporation with low cost energy.

  15. Molecular simulation of steady-state evaporation and condensation in the presence of a non-condensable gas

    Science.gov (United States)

    Liang, Zhi; Keblinski, Pawel

    2018-02-01

    Using molecular dynamics simulations, we study evaporation and condensation of fluid Ar in the presence of a non-condensable Ne gas in a nanochannel. The evaporation and condensation are driven by the temperature difference, ΔTL, between the evaporating and condensing liquid surfaces. The steady-state evaporation and condensation fluxes (JMD) are also affected by the Ne concentration, ρNe, and the nanochannel length. We find that across a wide range of ΔTL and ρNe, JMD is in good agreement with the prediction from Stefan's law and from Schrage relationships. Furthermore, for ΔTL less than ˜20% of the absolute average temperature, we find that both steady-state heat and mass fluxes are proportional to ΔTL. This allows us to determine the interfacial resistance to the heat and mass transfer and compare it with the corresponding resistances in the gas phase. In this context, we derive an analytical expression for the effective thermal conductivity of the gas region in the nanochannel and the mass transport interfacial resistance equivalent length, i.e., the length of the nanochannel for which the resistance to the mass flow is the same as the interfacial resistance to the mass flow.

  16. Stepwise Bose-Einstein Condensation in a Spinor Gas.

    Science.gov (United States)

    Frapolli, C; Zibold, T; Invernizzi, A; Jiménez-García, K; Dalibard, J; Gerbier, F

    2017-08-04

    We observe multistep condensation of sodium atoms with spin F=1, where the different Zeeman components m_{F}=0,±1 condense sequentially as the temperature decreases. The precise sequence changes drastically depending on the magnetization m_{z} and on the quadratic Zeeman energy q (QZE) in an applied magnetic field. For large QZE, the overall structure of the phase diagram is the same as for an ideal spin-1 gas, although the precise locations of the phase boundaries are significantly shifted by interactions. For small QZE, antiferromagnetic interactions qualitatively change the phase diagram with respect to the ideal case, leading, for instance, to condensation in m_{F}=±1, a phenomenon that cannot occur for an ideal gas with q>0.

  17. Problems in operation of gas-oil condensate fields

    Energy Technology Data Exchange (ETDEWEB)

    Zheltov, Yu V; Martos, V N

    1966-12-01

    This is a review of various methods used to deplete gas-oil condensate reservoirs. Four depletion techniques are discussed: (1) natural depletion without injection of fluids into the reservoir; (2) depletion accompanied by gas cycling; (3) depletion in which the gas cap is separated from the oil by water injected into the reservoir, a method in which each part of the reservoir is produced essentially independently of the other; and (4) depletion in which reservoir temperature is raised above the cricondentherm point by in-situ combustion, so that gas and oil form a single phase. This method is prospective, and has not been tried in the field. Advantages and disadvantages of each method are discussed. It is concluded that a gas condensate reservoir can be depleted most economically only if some secondary energy is added. (13 refs.)

  18. Study on condensation of biomass pyrolysis gas by spray bio-oil droplets

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Kun; Cheng, Wen-Long [University of Science and Technology of China (China)], email: wlcheng@ustc.edu.cn; Chen, Jing [Anhui Electric Power Design Institute (China); Shi, Wen-Jing [Anhui Heli Co., Ltd (China)

    2011-07-01

    This is a study of bio-oil generated by fast pyrolysis; a biomass feedstock is heated to pyrolyze at a rapid rate, the gas pyrolyzed is then condensed rapidly. The interesting result is a potential alternative fuel oil. An analysis was made of the effects of the initial pyrolysis gas temperatures, the initial bio-oil droplets temperatures and diameters, and the flow ratio of the gas and the liquid droplets on the heat and mass transfer between the gas and the liquid droplets. A few criterion equations were achieved with respect to the spray condenser. This paper established the gas-liquid phase equilibrium of an aqueous multi-composition system and the spray condensation model coupling heat and mass transfer. Model calculation and analysis showed that: spray condensation can effectively cool the high-temperature pyrolysis gas quickly; with gas liquid flowing, mass transfer rate reduces; and the relationship of gas and liquid flow ratio can achieve good accuracy.

  19. Comparative study during condensation of R152 a and R134 a with presence of non-condensable gas inside a vertical tube

    Science.gov (United States)

    Charef, Adil; Feddaoui, M'barek; Najim, Monssif; Meftah, Hicham

    2018-04-01

    A computational study of the liquid film condensation from vapour-gas mixtures of HFC refrigerants inside a vertical tube is performed. The external wall of the tube is subjected to constant temperature. The model uses an implicit finite difference method to solve the governing equations for the liquid film and gas flow together including the boundary and interfacial matching conditions. Parametric computations were realised to examine the effects of inlet Reynolds number, tube length, and inlet temperature of the gas mixtures on the condensation mechanism. A comparative study between the results obtained for studied R152 a and R134 a with presence of non-condensable gas is made. The predicted results indicate that the condensation of R152 a-air corresponds to a higher accumulated condensation m c d and local heat transfer coefficient h T when compared to R134 a-air in the same conditions. Increasing the inlet Reynolds number or the tube length improve the condensation. Additionally, lower non-condensable gas in R152 a - a i r substantially enhances the heat and mass exchanges.

  20. Flue gas condensing with heat pump; Roekgaskondensering med vaermepump

    Energy Technology Data Exchange (ETDEWEB)

    Axby, Fredrik; Pettersson, Camilla [Carl Bro Energikonsult AB, Malmoe (Sweden)

    2004-11-01

    Flue gas condensing is often both a technically and economically efficient method to increase the thermal efficiency in a plant using fuels with high moisture and/or high hydrogen content. The temperature of the return water in district heating systems in Sweden is normally 50 deg C, which gives quite high efficiency for a flue gas condenser. The flue gas after the flue gas condenser still contains energy that to some extent can be recovered by a combustion air humidifier or a heat pump. The object of this project is to technically and economically analyse flue gas condensing with heat pump. The aim is that plant owners get basic data to evaluate if a coupling between a flue gas condenser and a heat pump could be of interest for their plant. With a heat pump the district heating water can be 'sub cooled' to increase the heat recover in the flue gas condenser and thereby increase the total efficiency. The project is set up as a case study of three different plants that represent different types of technologies and sizes; Aabyverket in Oerebro, Amagerforbraending in Copenhagen and Staffanstorp district heating central. In this report a system with a partial flow through the condenser of the heat pump is studied. For each plant one case with the smallest heat pump and a total optimization regarding total efficiency and cost for investment has been calculated. In addition to the optimizations sensitivity analyzes has been done of the following parameters: Moisture in fuel; Type of heat pump; Temperature of the return water in the district heating system; and, Size of plant. The calculations shows that the total efficiency increases with about 6 % by the installation of the heat pump at a temperature of the return water in the district heating system of 50 deg C at Aabyverket. The cost for production of heat is just below 210 kr/MWh and the straight time for pay-off is 5,4 years at 250 kr/MWh in heat credit and at 300 kr/MWh in basic price for electricity. The

  1. The shear viscosity of a trapped Bose-condensed gas

    International Nuclear Information System (INIS)

    Shahzamanian, M.A.; Yavary, H.

    2006-01-01

    By obtaining Kubo formula type and using nonequilibrium Green's functions, we calculate the shear viscosity of a trapped Bose-condensed gas below and above the Bose-Einstein condensation temperature (T BEC ). The contributions of the interactions between condensate and noncondensate atoms and between noncondensate atoms take into account to the viscous relaxation time, by evaluating second order self-energies in Beliaev approximation

  2. Natural gas treatment: Simultaneous water and hydrocarbon-dew point-control

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, T. (Solvay Catalysts GmbH, Hannover (Germany)); Rennemann, D. (Solvay Catalysts GmbH, Hannover (Germany)); Schulz, T. (Solvay Catalysts GmbH, Hannover (Germany))

    1993-10-01

    Natural gas is a multicomponent mixture of hydrocarbons. The condensation behavior of such mixtures is different from single component systems. The so-called retrograde behavior leads to the observations that saturated vapor (dew point curve) and saturated liquid curve (bubble point curve) are not identical. Between both is a region of saturated phases which even can exist above the critical point. Following this behaviour it is possible that condensation might occur at pressure decrease or at temperature increase, respectively. This phenomenon is undesired in natural gas pipeline networks. Selective removal of higher hydrocarbons by the means of adsorption can change the phase behavior in such a way that condensation does not occur at temperatures and pressures specified for gas distribution. (orig.)

  3. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  4. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  5. Condensation in gas transmission pipelines. Phase behavior of mixtures of hydrogen with natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Schouten, J.A.; Michels, J.P.J. [Amsterdam Univ. (Netherlands). Van der Waals-Zeeman Inst.; Rosmalen, R.J. van [Energy, Roden (Netherlands)

    2005-05-01

    Several pressure and temperature reductions occur along gas transmission lines. Since the pressure and temperature conditions of the natural gas in the pipeline are often close to the dew point curve, liquid dropout can occur. Injection of hydrogen into the natural gas will change the phase envelope and thus the liquid dropout. This condensation of the heavy hydrocarbons requires continuous operational attention and a positive effect of hydrogen may affect the decision to introduce hydrogen. In this paper we report on calculations of the amount of condensate in a natural gas and in this natural gas mixed with 16.7% hydrogen. These calculations have been performed at conditions prevailing in gas transport lines. The results will be used to discuss the difference in liquid dropout in a natural gas and in a mixture with hydrogen at pressure reduction stations, at crossings under waterways, at side-branching, and at separators in the pipelines. (author)

  6. Constructing a unique two-phase compressibility factor model for lean gas condensates

    Energy Technology Data Exchange (ETDEWEB)

    Moayyedi, Mahmood; Gharesheikhlou, Aliashghar [Research Institute of Petroleum Industry (RIPI), Tehran (Iran, Islamic Republic of); Azamifard, Arash; Mosaferi, Emadoddin [Amirkabir University of Technology (AUT), Tehran (Iran, Islamic Republic of)

    2015-02-15

    Generating a reliable experimental model for two-phase compressibility factor in lean gas condensate reservoirs has always been demanding, but it was neglected due to lack of required experimental data. This study presents the main results of constructing the first two-phase compressibility factor model that is completely valid for Iranian lean gas condensate reservoirs. Based on a wide range of experimental data bank for Iranian lean gas condensate reservoirs, a unique two-phase compressibility factor model was generated using design of experiments (DOE) method and neural network technique (ANN). Using DOE, a swift cubic response surface model was generated for two-phase compressibility factor as a function of some selected fluid parameters for lean gas condensate fluids. The proposed DOE and ANN models were finally validated using four new independent data series. The results showed that there is a good agreement between experimental data and the proposed models. In the end, a detailed comparison was made between the results of proposed models.

  7. Thermodynamic Characterization of Undefined Petroleum Fractions of Gas Condensate using Group Contribution

    Directory of Open Access Journals (Sweden)

    Uribe-Vargas Veronica

    2016-01-01

    Full Text Available A methodology proposed in a previous paper [Carreón-Calderón et al. (2012 Ind. Eng. Chem. Res. 51, 14188-14198] for thermodynamic characterization of undefined petroleum fractions was applied to gas-condensate fluids. Using this methodology, input parameters of cubic equations of state and their mixing rules, critical properties and chemical pseudostructures are determined for undefined fractions by minimizing their Gibbs free energy. The results show the feasibility of applying this approach to gas-condensate fluids without making use of either cubic equations of state or mixing rules with specific adjusted parameters for petroleum fluids. Besides, it is shown that the phase equilibrium envelopes of gas-condensate fluids are highly dependent on the critical properties assigned to the undefined petroleum fractions of such fluid fractions and less dependent on the equation used for modeling gas-condensate fluids as a whole. The Absolute Average Error (AAE considering the best arrangement is 1.79% in predicting the dew point.

  8. Constructing a unique two-phase compressibility factor model for lean gas condensates

    International Nuclear Information System (INIS)

    Moayyedi, Mahmood; Gharesheikhlou, Aliashghar; Azamifard, Arash; Mosaferi, Emadoddin

    2015-01-01

    Generating a reliable experimental model for two-phase compressibility factor in lean gas condensate reservoirs has always been demanding, but it was neglected due to lack of required experimental data. This study presents the main results of constructing the first two-phase compressibility factor model that is completely valid for Iranian lean gas condensate reservoirs. Based on a wide range of experimental data bank for Iranian lean gas condensate reservoirs, a unique two-phase compressibility factor model was generated using design of experiments (DOE) method and neural network technique (ANN). Using DOE, a swift cubic response surface model was generated for two-phase compressibility factor as a function of some selected fluid parameters for lean gas condensate fluids. The proposed DOE and ANN models were finally validated using four new independent data series. The results showed that there is a good agreement between experimental data and the proposed models. In the end, a detailed comparison was made between the results of proposed models

  9. Experimental investigation of condensation and mixing during venting of a steam / non-condensable gas mixture into a pressure suppression pool

    Energy Technology Data Exchange (ETDEWEB)

    De Walsche, C.; Cachard, F. de

    2000-07-01

    Experiments have been performed in the LINX facility to investigate condensation and mixing phenomena in pressure Suppression Pools (SPs), in the context of the European Simplified Boiling Water Reactor (ESBWR) study. As a contribution to the TEPSS project of the 4th European Framework Programme, eight medium-scale, separate-effect tests were carried out in which constant steam/air flow rates were injected below the surface of a two-metre diameter water pool, maintained at constant pressure, through a large downward vent. The vessel pressure was regulated, the pool temperature rising until equilibrium conditions with the incoming gas were reached. The SP temperature distribution was measured, as well as the inlet and outlet gas flow rates, and the overall condensation rate was estimated using mass and heat balances. The test matrix was based on steam mass floret and air mass fraction of the injected gas, the vent immersion depth, and the vessel pressure. Overall, the condensation was shown to be efficient for all tests performed, even for high non-condensable gas concentrations of the injected gas. Thermal stratification above the vent outlet was shown to be moderate. The tests performed allowed a better understanding to be gained of the mechanisms of condensation and mixing in the SP and Wetwell, and results were incorporated into an ORACLE database, to be used for further model development. (authors)

  10. Evaporation and Condensation Flows of a Vapor-Gas Mixture from or onto the Condensed Phase with an Internal Structure

    National Research Council Canada - National Science Library

    Onishi, Yoshimoto; Yamada, Ken

    2005-01-01

    Transient motions of a vapor-gas mixture due to the evaporation and condensation processes from or onto the plane condensed phase, with a temperature field as its internal structure, have been studied...

  11. Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes

    OpenAIRE

    Lekov, Alex

    2010-01-01

    Residential space and water heating accounts for over 90percent of total residential primary gas consumption in the United States. Condensing space and water heating equipment are 10-30percent more energy-efficient than conventional space and water heating. Currently, condensing gas furnaces represent 40 percent of shipments and are common in the Northern U.S. market. Meanwhile, manufacturers are planning to develop condensing gas storage water heaters to qualify for Energy Star? certificati...

  12. Flue gas condensation in straw fired CHP plants; Roeggaskondensation i halmfyrede kraftvarmeanlaeg

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-15

    The high price of straw and a general demand for increased use of straw in power and heat production are expected to result in an increased need for efficient fuel utilization. The use of flue gas condensation in straw fired CHP plants can contribute to a higher exploitation of energy, and at the same time open of the possibility of utilization of wet (cheaper) fuels without energy loss. Furthermore flue gas condensation can contribute to the flue gas cleaning process through removal of HCl and SO{sub 2} as well as in particle cleaning in wet cleaning processes. With starting point in a straw fired CHP plant the technical and economic consequences of installation of a flue gas condensation system are investigated. Fuel exploitation and power/heat production distribution is included in the investigation. (BA)

  13. Condensation of an ideal gas obeying non-Abelian statistics.

    Science.gov (United States)

    Mirza, Behrouz; Mohammadzadeh, Hosein

    2011-09-01

    We consider the thermodynamic geometry of an ideal non-Abelian gas. We show that, for a certain value of the fractional parameter and at the relevant maximum value of fugacity, the thermodynamic curvature has a singular point. This indicates a condensation such as Bose-Einstein condensation for non-Abelian statistics and we work out the phase transition temperature in various dimensions.

  14. Disposal of aqueous condensate from high efficiency gas boilers

    Energy Technology Data Exchange (ETDEWEB)

    Hardwick, G J; Pattison, J R

    1984-01-01

    If highly efficient gas-fired condensing heating appliances are installed in Britain, the aqueous condensate produced can be conveniently run into existing sewage drains. The part of the drainage system that is most vulnerable to corrosion from the mildly acid condensate is that portion adjacent to the domestic premises. The tests described indicate that this is not at risk and the only precaution that might be considered necessary is to avoid running the condensate over galvanized drain covers in order to prevent unsightly staining. Water authorities in Britain and detailed studies in the US and Holland confirm that the condensate - after dilution by domestic waste, sewage, and rainwater - would be harmless to municipal sewage systems and would not, either in volume or chemical composition, affect the working of existing sewage treatment plants.

  15. Huff 'n puff to revaporize liquid dropout in an Omani gas field

    Energy Technology Data Exchange (ETDEWEB)

    Al-Wadhahi, M.; Boukadi, F.H.; Al-Bemani, A.; Al-Maamari, R.; Al-Hadrami, H. [Department of Petroleum and Chemical Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khod 123 (Oman)

    2007-01-15

    In this study, Huff 'n Puff technique is used as a production mechanism to revaporize liquid dropout in the Saih Rawl retrograde condensate gas field, Oman. During the huff cycle, a number of wells were shut in to achieve revaporization. The same wells were put on stream, during the puff cycle. Liquid dropout induced a mechanical skin around the wellbore and hampered gas production capabilities but has been revaporized through pressurization. The pressure buildup in the rich-gas condensate reservoir was due to a cross flow originating from a deeper highly pressurized lean-gas bearing formation. The pressure communication was taking place through the wellbore during shut-in cycles. A compositional simulation model was used to confirm the theory of condensate revaporization. Simulation results indicated that Huff 'n Puff is a viable production technique. The technique improved gas deliverability and enhanced gas-liquid production by minimizing the skin caused by gas-liquid dropout. (author)

  16. Performance of casting aluminum-silicon alloy condensing heating exchanger for gas-fired boiler

    Science.gov (United States)

    Cao, Weixue; Liu, Fengguo; You, Xue-yi

    2018-01-01

    Condensing gas boilers are widely used due to their high heat efficiency, which comes from their ability to use the recoverable sensible heat and latent heat in flue gas. The condensed water of the boiler exhaust has strong corrosion effect on the heat exchanger, which restricts the further application of the condensing gas boiler. In recent years, a casting aluminum-silicon alloy (CASA), which boasts good anti-corrosion properties, has been introduced to condensing hot water boilers. In this paper, the heat transfer performance, CO and NOx emission concentrations and CASA corrosion resistance of a heat exchanger are studied by an efficiency bench test of the gas-fired boiler. The experimental results are compared with heat exchangers produced by Honeywell and Beka. The results show that the excess air coefficient has a significant effect on the heat efficiency and CO and NOx emission of the CASA water heater. When the excess air coefficient of the CASA gas boiler is 1.3, the CO and NOx emission concentration of the flue gas satisfies the design requirements, and the heat efficiency of water heater is 90.8%. In addition, with the increase of heat load rate, the heat transfer coefficient of the heat exchanger and the heat efficiency of the water heater are increased. However, when the heat load rate is at 90%, the NOx emission in the exhaust gas is the highest. Furthermore, when the temperature of flue gas is below 57 °C, the condensation of water vapor occurs, and the pH of condensed water is in the 2.5 5.5 range. The study shows that CASA water heater has good corrosion resistance and a high heat efficiency of 88%. Compared with the heat exchangers produced by Honeywell and Beka, there is still much work to do in optimizing and improving the water heater.

  17. Gas adsorption and capillary condensation in nanoporous alumina films

    Energy Technology Data Exchange (ETDEWEB)

    Casanova, Felix; Chiang, Casey E; Li, Chang-Peng; Roshchin, Igor V; Schuller, Ivan K [Physics Department, University of California-San Diego, La Jolla, CA 92093 (United States); Ruminski, Anne M; Sailor, Michael J [Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093 (United States)], E-mail: casanova@physics.ucsd.edu

    2008-08-06

    Gas adsorption and capillary condensation of organic vapors are studied by optical interferometry, using anodized nanoporous alumina films with controlled geometry (cylindrical pores with diameters in the range of 10-60 nm). The optical response of the film is optimized with respect to the geometric parameters of the pores, for potential performance as a gas sensor device. The average thickness of the adsorbed film at low relative pressures is not affected by the pore size. Capillary evaporation of the liquid from the nanopores occurs at the liquid-vapor equilibrium described by the classical Kelvin equation with a hemispherical meniscus. Due to the almost complete wetting, we can quantitatively describe the condensation for isopropanol using the Cohan model with a cylindrical meniscus in the Kelvin equation. This model describes the observed hysteresis and allows us to use the adsorption branch of the isotherm to calculate the pore size distribution of the sample in good agreement with independent structural measurements. The condensation for toluene lacks reproducibility due to incomplete surface wetting. This exemplifies the relevant role of the fluid-solid (van der Waals) interactions in the hysteretic behavior of capillary condensation.

  18. Gas adsorption and capillary condensation in nanoporous alumina films

    International Nuclear Information System (INIS)

    Casanova, Felix; Chiang, Casey E; Li, Chang-Peng; Roshchin, Igor V; Schuller, Ivan K; Ruminski, Anne M; Sailor, Michael J

    2008-01-01

    Gas adsorption and capillary condensation of organic vapors are studied by optical interferometry, using anodized nanoporous alumina films with controlled geometry (cylindrical pores with diameters in the range of 10-60 nm). The optical response of the film is optimized with respect to the geometric parameters of the pores, for potential performance as a gas sensor device. The average thickness of the adsorbed film at low relative pressures is not affected by the pore size. Capillary evaporation of the liquid from the nanopores occurs at the liquid-vapor equilibrium described by the classical Kelvin equation with a hemispherical meniscus. Due to the almost complete wetting, we can quantitatively describe the condensation for isopropanol using the Cohan model with a cylindrical meniscus in the Kelvin equation. This model describes the observed hysteresis and allows us to use the adsorption branch of the isotherm to calculate the pore size distribution of the sample in good agreement with independent structural measurements. The condensation for toluene lacks reproducibility due to incomplete surface wetting. This exemplifies the relevant role of the fluid-solid (van der Waals) interactions in the hysteretic behavior of capillary condensation

  19. Gas adsorption and capillary condensation in nanoporous alumina films.

    Science.gov (United States)

    Casanova, Fèlix; Chiang, Casey E; Li, Chang-Peng; Roshchin, Igor V; Ruminski, Anne M; Sailor, Michael J; Schuller, Ivan K

    2008-08-06

    Gas adsorption and capillary condensation of organic vapors are studied by optical interferometry, using anodized nanoporous alumina films with controlled geometry (cylindrical pores with diameters in the range of 10-60 nm). The optical response of the film is optimized with respect to the geometric parameters of the pores, for potential performance as a gas sensor device. The average thickness of the adsorbed film at low relative pressures is not affected by the pore size. Capillary evaporation of the liquid from the nanopores occurs at the liquid-vapor equilibrium described by the classical Kelvin equation with a hemispherical meniscus. Due to the almost complete wetting, we can quantitatively describe the condensation for isopropanol using the Cohan model with a cylindrical meniscus in the Kelvin equation. This model describes the observed hysteresis and allows us to use the adsorption branch of the isotherm to calculate the pore size distribution of the sample in good agreement with independent structural measurements. The condensation for toluene lacks reproducibility due to incomplete surface wetting. This exemplifies the relevant role of the fluid-solid (van der Waals) interactions in the hysteretic behavior of capillary condensation.

  20. TRACE assessment on local condensation heat transfer in presence of non-condensable gas inside a vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Jin; Ahn, Seung Hoon; Kim, Kap; Kim, Hho Jung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2009-07-01

    TRACE assessment was performed to investigate local condensation heat transfer coefficients in the presence of a noncondensable gas inside a vertical tube. The data obtained from pure steam and steam/nitrogen mixture condensation experiments were compared to study the effects of noncondensable nitrogen gas on the annular film condensation phenomena. The condenser tube had a small inner diameter of 13mm (about 1/2-in.) and this experiment had been performed to prove the effectiveness of the a Passive Residual Heat Removal System (PRHRS) of SMART (System-integrated Modular Advanced ReacTor), which is a small modular integral-type pressurized water reactor that is developed for the dual purposes of seawater desalination and small-scaled power generation. In the case of nitrogen presence, TRACE results show the converged results but the prediction is different from experimental data. The candidate reasons can be focused on several models, such as the film thickness calculation, surface area, and condensation heat transfer correlations, etc. In the case of pure steam condensation case, TRACE results shows large oscillations and do not converge. This should be investigated in detail to identify the reason. Until now, the oscillation in thermal hydraulic parameters results from the film thickness calculation and surface area calculation. For future works, the whole sets of the experiment will be assessed and the improvement of TRACE will be performed.

  1. TRACE assessment on local condensation heat transfer in presence of non-condensable gas inside a vertical tube

    International Nuclear Information System (INIS)

    Cho, Yong Jin; Ahn, Seung Hoon; Kim, Kap; Kim, Hho Jung

    2009-01-01

    TRACE assessment was performed to investigate local condensation heat transfer coefficients in the presence of a noncondensable gas inside a vertical tube. The data obtained from pure steam and steam/nitrogen mixture condensation experiments were compared to study the effects of noncondensable nitrogen gas on the annular film condensation phenomena. The condenser tube had a small inner diameter of 13mm (about 1/2-in.) and this experiment had been performed to prove the effectiveness of the a Passive Residual Heat Removal System (PRHRS) of SMART (System-integrated Modular Advanced ReacTor), which is a small modular integral-type pressurized water reactor that is developed for the dual purposes of seawater desalination and small-scaled power generation. In the case of nitrogen presence, TRACE results show the converged results but the prediction is different from experimental data. The candidate reasons can be focused on several models, such as the film thickness calculation, surface area, and condensation heat transfer correlations, etc. In the case of pure steam condensation case, TRACE results shows large oscillations and do not converge. This should be investigated in detail to identify the reason. Until now, the oscillation in thermal hydraulic parameters results from the film thickness calculation and surface area calculation. For future works, the whole sets of the experiment will be assessed and the improvement of TRACE will be performed

  2. On the Bose-Einstein condensation of an ideal gas

    International Nuclear Information System (INIS)

    Landau, L.J.; Wilde, I.F.

    1979-01-01

    A mathematically precise treatment is given of the well-known Bose-Einstein condensation of an ideal gas in the grand canonical ensemble at fixed density. The method works equally well for any of the standard boundary conditions and it is shown that the finite volume activity converges and that in three dimensions condensation occurs for Dirichlet, Neumann, periodic, and repulsive walls. (orig.) 891 HJ/orig. 892 CKA

  3. High-efficiency condenser of steam from a steam-gas mixture

    Science.gov (United States)

    Milman, O. O.; Krylov, V. S.; Ptakhin, A. V.; Kondratev, A. V.; Yankov, G. G.

    2017-12-01

    The design of a module for a high-efficiency condenser of steam with a high content (up to 15%) of noncondensable gases (NCGs) with a nearly constant steam-gas mixture (SGM) velocity during the condensation of steam has been developed. This module provides the possibility to estimate the operational efficiency of six condenser zones during the motion of steam from the inlet to the SGM suction point. Some results of the experimental tests of the pilot high-efficiency condenser module are presented. The dependence of the average heat transfer coefficient k¯ on the volumetric NCG concentration v¯ has been derived. It is shown that the high-efficiency condenser module can provide a moderate decrease in k¯ from 4400-4600 to 2600-2800 W/(m2 K) at v¯ ≈ 0.5-9.0%. The heat transfer coefficient distribution over different module zones at a heat duty close to its nominal value has been obtained. From this distribution, it can be seen that the average heat transfer coefficient decreases to 2600 W/(m2 K) at an NCG concentration v¯ = 7.5%, but the first condenser sections ( 1- 3) retain high values of k¯ at a level of no lower than 3200 W/(m2 K), and the last sections operate less well, having k¯ at a level of 1700 W/(m2 K). The dependence of the average heat transfer coefficient on the water velocity in condenser tubes has been obtained at a nearly nominal duty such that the extrapolation of this dependence to the water velocity of 2 m/s may be expected to give k¯ = 5000 W/(m2 K) for relatively pure steam, but an increase in k¯ at v¯ = 8% will be smaller. The effect of the gas removal device characteristic on the operation of the high-efficiency condenser module is described. The design developed for the steam condenser of a gas-turbine plant with a power of 25 MW, a steam flow rate of 40.2 t/h, and a CO2 concentration of up to 12% with consideration for the results of performed studies is presented.

  4. Study of condensate composition during field processing of gas of the Shatlyk field

    Energy Technology Data Exchange (ETDEWEB)

    Kuldzhayev, B.A.; Annamukhamedov, M.B.; Makarov, V.V.; Serbnenko, S.R.; Talalayev, Ye.I.

    1983-01-01

    Studies were made of the composition and properties of condensates from field separators of the East Shatlyk field. The expediency is shown of separate collection of the condensates into a separate container and used for local needs as the diesel fuel. The condensates from the UNTS separators are used as chemical raw material to produce the lowest olephins by pyrolysis of gas-oil fraction and normal paraffins from kerosene-gas-oil part to obtain the protein-vitamin concentrates.

  5. Measurement and calculation of gas compressibility factor for condensate gas and natural gas under pressure up to 116 MPa

    International Nuclear Information System (INIS)

    Yan, Ke-Le; Liu, Huang; Sun, Chang-Yu; Ma, Qing-Lan; Chen, Guang-Jin; Shen, De-Ji; Xiao, Xiang-Jiao; Wang, Hai-Ying

    2013-01-01

    Highlights: • Volumetric properties of two reservoir fluid samples were measured with pressure up to 116 MPa. • Dew point pressures at four temperatures for condensate gas sample are obtained. • Correlations and thermodynamic model for describing gas compressibility factor under high pressure were compared. • The thermodynamic model recommended is most suitable for fluids produced from reservoirs with a wide pressure range. -- Abstract: The volumetric properties of two reservoir fluid samples collected from one condensate gas well and one natural gas well were measured under four groups of temperatures, respectively, with pressure up to 116 MPa. For the two samples examined, the experimental results show that the gas compressibility factor increases with the increase of pressure. But the influence of the temperature is related to the range of the experimental pressure. It approximately decreases with the increase of temperature when the pressure is larger than (45 to 50) MPa, while there is the opposite trend when the pressure is lower than (45 to 50) MPa. The dew point pressure was also determined for the condensate gas sample, which decreases with the increase of temperature. The capabilities of four empirical correlations and a thermodynamic model based on equation of state for describing gas compressibility factor of reservoir fluids under high pressure were investigated. The comparison results show that the thermodynamic model recommended is the most suitable for fluids whatever produced from high-pressure reservoirs or conventional mild-pressure reservoirs

  6. An analysis of the thermodynamic efficiency for exhaust gas recirculation-condensed water recirculation-waste heat recovery condensing boilers (EGR-CWR-WHR CB)

    International Nuclear Information System (INIS)

    Lee, Chang-Eon; Yu, Byeonghun; Lee, Seungro

    2015-01-01

    This study presents fundamental research on the development of a new boiler that is expected to have a higher efficiency and lower emissions than existing boilers. The thermodynamic efficiency of exhaust gas recirculation-condensed water recirculation-waste heat recovery condensing boilers (EGR-CWR-WHR CB) was calculated using thermodynamic analysis and was compared with other boilers. The results show the possibility of obtaining a high efficiency when the temperature of the exhaust gas is controlled within 50–60 °C because water in the exhaust gas is condensed within this temperature range. In addition, the enthalpy emitted by the exhaust gas for the new boiler is smaller because the amount of condensed water is increased by the high dew-point temperature and the low exhaust gas temperature. Thus, the new boiler can obtain a higher efficiency than can older boilers. The efficiency of the EGR-CWR-WHR CB proposed in this study is 93.91%, which is 7.04% higher than that of existing CB that is currently used frequently. - Highlights: • The study presents the development of a new boiler expected to have a high efficiency. • Thermodynamic efficiency of EGR-CWR-WHR condensing boiler was calculated. • Efficiency of EGR-CWR-WHR CB is 93.91%, which is 7.04% higher than existing CB

  7. Condensation and critical exponents of an ideal non-Abelian gas

    Science.gov (United States)

    Talaei, Zahra; Mirza, Behrouz; Mohammadzadeh, Hosein

    2017-11-01

    We investigate an ideal gas obeying non-Abelian statistics and derive the expressions for some thermodynamic quantities. It is found that thermodynamic quantities are finite at the condensation point where their derivatives diverge and, near this point, they behave as \\vert T-Tc\\vert^{-ρ} in which Tc denotes the condensation temperature and ρ is a critical exponent. The critical exponents related to the heat capacity and compressibility are obtained by fitting numerical results and others are obtained using the scaling law hypothesis for a three-dimensional non-Abelian ideal gas. This set of critical exponents introduces a new universality class.

  8. Control systems for condensing flue-gas coolers related to natural-gas-fired heating plants

    International Nuclear Information System (INIS)

    Krighaar, M.; Paulsen, O.

    1992-01-01

    A theoretical study is made of the enthalpy-efficiency for a water-cooled heat exchanger added to a natural gas-fired boiler. Under varying conditions of both water flow and temperature and flue-gas flow and temperature, both in condensing and non-condensing mode, the efficiency seems to be constant. The result is very useful for comparison between two different working conditions. The efficiency is used to calculate the savings achieved for a district heating plant by using a heat exchanger. The energy economic calculations are also helpful for estimating the most appropriate size of heat exchanger. The annual savings are calculated by means of data regarding heat production, flue gas temperature and water return temperature. The savings achieved by using different connection principles such as bypass, reheating and controlled water temperature are also calculated. (author)

  9. Use of nuclear explosions to create gas condensate storage in the USSR. LLL Treaty Verification Program

    International Nuclear Information System (INIS)

    Borg, I.Y.

    1982-01-01

    The Soviet Union has described industrial use of nuclear explosions to produce underground hydrocarbon storage. To examples are in the giant Orenburg gas condensate field. There is good reason to believe that three additional cavities were created in bedded salt in the yet to be fully developed giant Astrakhan gas condensate field in the region of the lower Volga. Although contrary to usual western practice, the cavities are believed to be used to store H 2 S-rich, unstable gas condensate prior to processing in the main gas plants located tens of kilometers from the producing fields. Detonations at Orenburg and Astrakhan preceded plant construction. The use of nuclear explosions at several sites to create underground storage of highly corrosive liquid hydrocarbons suggests that the Soviets consider this time and cost effective. The possible benefits from such a plan include degasification and stabilization of the condensate before final processing, providing storage of condensate during periods of abnormally high natural gas production or during periods when condensate but not gas processing facilities are undergoing maintenance. Judging from information provided by Soviet specialists, the individual cavities have a maximum capacity on the order of 50,000 m 3

  10. Market diffusion, technological learning, and cost-benefit dynamics of condensing gas boilers in the Netherlands

    International Nuclear Information System (INIS)

    Weiss, Martin; Dittmar, Lars; Junginger, Martin; Patel, Martin K.; Blok, Kornelis

    2009-01-01

    High costs often prevent the market diffusion of novel and efficient energy technologies. Monitoring cost and price decline for these technologies is thus important in order to establish effective energy policy. Here, we present experience curves and cost-benefit analyses for condensing gas boilers produced and sold in the Netherlands between 1981 and 2006. For the most dominant boiler type on the Dutch market, i.e., condensing gas combi boilers, we identify learning rates of 14±1% for the average price and 16±8% for the additional price relative to non-condensing devices. Economies of scale, competitive sourcing of boiler components, and improvements in boiler assembly are among the main drivers behind the observed price decline. The net present value of condensing gas combi boilers shows an overall increasing trend. Purchasing in 2006 a gas boiler of this type instead of a non-condensing device generates a net present value of 970 EUR (Euro) and realizes CO 2 (carbon dioxide) emission savings at negative costs of -120 EUR per tonne CO 2 . We attribute two-thirds of the improvements in the cost-benefit performance of condensing gas combi boilers to technological learning and one-third to a combination of external effects and governmental policies.

  11. Waste heat recovery system including a mechanism for collection, detection and removal of non-condensable gas

    Science.gov (United States)

    Ernst, Timothy C.; Zigan, James A.

    2017-06-20

    The disclosure describes a non-condensable gas collection, detection, and removal system for a WHR system that helps to maintain cycle efficiency of the WHR system across the life of an engine system associated with the WHR system. A storage volume is configured to collect non-condensable gas received from the working fluid circuit, and a release valve is configured to selectively release non-condensable gas contained within the storage volume.

  12. A new algorithm predicts pressure and temperature profiles of gas/gas-condensate transmission pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Mokhatab, Saied [OIEC - Oil Industries' Engineering and Construction Group, Tehran (Iran, Islamic Republic of); Vatani, Ali [University of Tehran (Iran, Islamic Republic of)

    2003-07-01

    The main objective of the present study has been the development of a relatively simple analytical algorithm for predicting flow temperature and pressure profiles along the two-phase, gas/gas-condensate transmission pipelines. Results demonstrate the ability of the method to predict reasonably accurate pressure gradient and temperature gradient profiles under operating conditions. (author)

  13. Natural gas and condensate occurrence in salt, specifically in the salt stock Gorleben-Rambow. Literature study

    International Nuclear Information System (INIS)

    Schneider, Ulrich

    2011-01-01

    The study on the natural gas and condensate occurrence in salt, specifically in the salt stock Gorleben-Rambow covers the topics development of salt deposits, salt stocks, crude oil and natural gas, gas and condensate inclusions in evaporite. Experimental data on crude oil borehole studies in Gorleben, natural gas drill holes in the salt stock Rambow, Luechow Z1 - saltstock Wustrow, gas indications, gas occurrences and gas detection are summarized.

  14. MARS-KS Code Assessment for Condensation Heat Transfer in Horizontal Tube with the Presence of Non-Condensable Gas using Purdue Experiment

    International Nuclear Information System (INIS)

    Jeon, Seong Su; Lee, Byung Chul; Park, Ju Yeop; Seul, Kwang Won

    2011-01-01

    In South Korea, advanced power reactor plus (APR+), as a Korean specific reactor, is currently under development for the export strategy. In order to raise competitiveness of the APR+ in the world market, it is necessary to develop the original technology for the improved technology, economics, and safety features. For this purpose, a passive auxiliary feedwater system (PAFS) was adopted as an improved safety design concept of APR+: and then there have been many efforts to develop the PAFS. According to PAFS design concept, PAFS can completely replace the auxiliary feedwater system. When the design basis accident, in which feedwater is unavailable, occurs, the PAFS can remove the residual heat in the core and then prevent the core damage. In the PAFS with the horizontal type heat exchanger, two-phase natural circulation, condensation heat transfer in tube, boiling heat transfer in pool, natural convection in pool, etc. are considered as very important thermalhydraulic phenomena (see Fig. 1). Compared with the vertical heat exchanger from these phenomena, the major difference of the horizontal heat exchanger is the condensation heat transfer phenomena in the tube side. There have been many efforts to understand the condensation heat transfer with in the presence of NC gas in tube but most researches focused on the condensation heat transfer in vertical tube. Therefore the details of the condensation heat transfer in the presence of NC gas in horizontal condenser tubes are not well understood. In order to develop the safety evaluation system for APR+ PAFS, it is required to evaluate the capability and applicability of the MARS-KS code for modeling the condensation heat transfer in the horizontal tube with NC gas because many heat transfer correlations in MARS-KS are known to have much uncertainty. In particular, there is no reliable model for the condensation phenomena in horizontal tube with NC gas. In order to assess the MARS-KS code results and identify the

  15. Effect of capillary condensation on gas transport properties in porous media

    Science.gov (United States)

    Yoshimoto, Yuta; Hori, Takuma; Kinefuchi, Ikuya; Takagi, Shu

    2017-10-01

    We investigate the effect of capillary condensation on gas diffusivity in porous media composed of randomly packed spheres with moderate wettability. To simulate capillary phenomena at the pore scale while retaining complex pore networks of the porous media, we employ density functional theory (DFT) for coarse-grained lattice gas models. The lattice DFT simulations reveal that capillary condensations preferentially occur at confined pores surrounded by solid walls, leading to the occlusion of narrow pores. Consequently, the characteristic lengths of the partially wet structures are larger than those of the corresponding dry structures with the same porosities. Subsequent gas diffusion simulations exploiting the mean-square displacement method indicate that while the effective diffusion coefficients significantly decrease in the presence of partially condensed liquids, they are larger than those in the dry structures with the same porosities. Moreover, we find that the ratio of the porosity to the tortuosity factor, which is a crucial parameter that determines an effective diffusion coefficient, can be reasonably related to the porosity even for the partially wet porous media.

  16. A condensation experiment in the accumulated conditions of noncondensable gas in a vertical tube

    International Nuclear Information System (INIS)

    Lee, Kwon Yeong; Kim, Moo Hwan

    2005-01-01

    Full text of publication follows: It has been well known that the presence of noncondensable gases in vapors can greatly inhibit the condensation process. Many analytical and experimental studies were conducted to investigate the effect of noncondensable gases on steam condensation for both stagnant and forced-convective situations either over a plate or outside a horizontal tube. Recently, several researches have been performed for the condensation in the presence of noncondensable gases taken place inside the vertical tube in order to give the information to design the passive containment cooling system (PCCS) in Simplified Boiling Water Reactor (SBWR). Generally, the experimental results showed that the heat transfer coefficient depends on inlet noncondensable gas mass fraction, inlet saturated steam temperature related with system pressure and inlet mixture Reynolds number. This research was performed for the System-integrated Modular Advanced ReacTor-Pilot (SMART-P), in which the remaining heat is removed from the core passively by Passive Residual Heat Removal System (PRHRS) condenser in a period of serious accident. The PRHRS is separated from working fluid loop, and pressurized by a nitrogen gas during the normal operation of SMART-P. But when the PRHRS starts operating, the nitrogen gas acts as a noncondensable gas and affects the heat transfer characteristics of the PRHRS. The experimental conditions of this study were almost similar with those of previous researches except the noncondensable gas was accumulated and remained inside the vertical tube. In the previous researches, the noncondensable gas was flowing with constant flow rate. Because of the condensate inside condenser tube, the accumulation of noncondensable gas could be developed inside the vertical tube. At steady-state condition the local temperatures and system pressure were measured to obtain heat transfer characteristics. This study also gave the information about the distribution of the

  17. Optimization of fracture length in gas/condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, J.; Sharma, M.M.; Pope, G.A. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Texas Univ., Austin, TX (United States)

    2006-07-01

    A common practice that improves the productivity of gas-condensate reservoirs is hydraulic fracturing. Two important variables that determine the effectiveness of hydraulic fractures are fracture length and fracture conductivity. Although there are no simple guidelines for the optimization of fracture length and the factors that affect it, it is preferable to have an optimum fracture length for a given proppant volume in order to maximize productivity. An optimization study was presented in which fracture length was estimated at wells where productivity was maximized. An analytical expression that takes into account non-Darcy flow and condensate banking was derived. This paper also reviewed the hydraulic fracturing process and discussed previous simulation studies that investigated the effects of well spacing and fracture length on well productivity in low permeability gas reservoirs. The compositional simulation study and results and discussion were also presented. The analytical expression for optimum fracture length, analytical expression with condensate dropout, and equations for the optimum fracture length with non-Darcy flow in the fracture were included in an appendix. The Computer Modeling Group's GEM simulator, an equation-of-state compositional simulator, was used in this study. It was concluded that for cases with non-Darcy flow, the optimum fracture lengths are lower than those obtained with Darcy flow. 18 refs., 5 tabs., 22 figs., 1 appendix.

  18. The effect of non-condensable gas on direct contact condensation of steam/air mixture

    International Nuclear Information System (INIS)

    Lee, H. C.; Park, S. K.; Kim, M. H.

    1998-01-01

    To investigate the effects of noncondensable gas on the direct contact film condensation of vapor mixture, a series of experiments has been carried out. The rectangular duct inclined 87.deg. to the horizontal plane was used for this experiment. The average heat transfer coefficient of the steam-air mixture was obtained at the atmospheric pressure with four main parameters, air-mass fraction, vapor velocity, film Reynolds number,and the degree of water film subcooling having an influence on the condensation heat transfer coefficient. With the analysis on 88 cases of experiments, a correlation of the average Nusselt number for direct contact film condensation of steam-air mixture at a vertical wall proposed as functions of film Reynolds number, mixture Reynolds number, air mass fraction, and Jacob number. The average heat transfer coefficient for steam-air mixture condensation decreased significantly while air mass fraction increases with the same inlet mixture velocity and inlet film temperature. The average heat transfer coefficients also decreased with the degree of film subcooling increasing and were scarcely affected by film Reynolds number below the mixture Reynolds number about 30,000

  19. Steam condenser

    International Nuclear Information System (INIS)

    Masuda, Fujio

    1980-01-01

    Purpose: To enable safe steam condensation by providing steam condensation blades at the end of a pipe. Constitution: When high temperature high pressure steam flows into a vent pipe having an opening under water in a pool or an exhaust pipe or the like for a main steam eacape safety valve, non-condensable gas filled beforehand in the steam exhaust pipe is compressed, and discharged into the water in the pool. The non-condensable gas thus discharged from the steam exhaust pipe is introduced into the interior of the hollow steam condensing blades, is then suitably expanded, and thereafter exhausted from a number of exhaust holes into the water in the pool. In this manner, the non-condensable gas thus discharged is not directly introduced into the water in the pool, but is suitable expanded in the space of the steam condensing blades to suppress extreme over-compression and over-expansion of the gas so as to prevent unstable pressure vibration. (Yoshihara, H.)

  20. Removing well bore liquid blockage by gas injection

    International Nuclear Information System (INIS)

    Ahmed, Tarek

    2000-01-01

    Gas condensate reservoirs have long presented production problems when the pressure around the well bore drops below the dew point pressure. The formation of the condensate around the well bore can be thought of as an additional 'skin' that causes a reduction in the gas flow rates. Many processes have been used successfully to prevent or reduce the formation of liquids within the entire reservoir, such as pressure maintenance schemes and gas cycling processes. The pressure maintenance scheme is designed to keep the reservoir pressure at or above the dew point pressure while the gas cycling process is intended to reduce the liquid dropout by vaporization.Often times the pressure in the near-well bore region of the reservoir falls below the dew point pressure, while the pressure in the reservoir remains higher than the dew point pressure. As the near-well bore pressure drops below the dew point pressure, retrograde condensation occurs leading to the formation and then the mobilization of the condensate phase towards the producing wells. The liquid phase accumulates in the near Well bore region, forming a ring, which progressively reduces the gas deliverability. This study is designed to provide an insight into the mechanism of gas injection process in reducing gas-well productivity losses due to condensate blocking in the near well bore region. The study also evaluates the effectiveness of lean gas, N 2 , and CO 2 Huff 'n' Puff injection technique in removing the liquid dropout accumulation in and around the well bore. Results of the study show the importance of selecting the optimum injection volume and pressure. (author)

  1. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations

    Science.gov (United States)

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.

    2018-04-01

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s-1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.

  2. Effect of non-condensable gas on heat transfer in steam turbine condenser and modelling of ejector pump system by controlling the gas extraction rate through extraction tubes

    International Nuclear Information System (INIS)

    Strušnik, Dušan; Golob, Marjan; Avsec, Jurij

    2016-01-01

    Graphical abstract: Control of the amount of the pumped gases through extraction tubes. The connecting locations interconnect the extraction tubes for STC gas pumping. The extraction tubes are fitted with 3 control valves to control the amount of the pumped gas depending on the temperature of the pumped gas. The amount of the pumped gas increases through the extraction tubes, where the pumped gases are cooler and decreases, at the same time, through the extraction tubes, where the pumped gases are warmer. As a result, pumping of a larger amount of NCG is ensured and of a smaller amount of CG, given that the NCG concentration is the highest on the colder places. This way, the total amount of the pumped gases from the STC can be reduced, the SEPS operates more efficiently and consumes less energy for its operation. - Highlights: • Impact of non-condensable gas on heat transfer in a steam turbine condenser. • The ejector system is optimised by selecting a Laval nozzle diameter. • Simulation model of the control of the amount of pumped gases through extraction tubes. • Neural network and fuzzy logic systems used to control gas extraction rate. • Simulation model was designed by using real process data from the thermal power plant. - Abstract: The paper describes the impact of non-condensable gas (NCG) on heat transfer in a steam turbine condenser (STC) and modelling of the steam ejector pump system (SEPS) by controlling the gas extraction rate through extraction tubes. The ideal connection points for the NCG extraction from the STC are identified by analysing the impact of the NCG on the heat transfer and measuring the existing system at a thermal power plant in Slovenia. A simulation model is designed using the Matlab software and Simulink, Neural Net Work, Fuzzy Logic and Curve Fitting Toolboxes, to control gas extraction rate through extraction tubes of the gas pumped from the STC, thus optimising the operation of the steam ejector pump system (SEPS). The

  3. Bose-Einstein condensation in an ultra-hot gas of pumped magnons.

    Science.gov (United States)

    Serga, Alexander A; Tiberkevich, Vasil S; Sandweg, Christian W; Vasyuchka, Vitaliy I; Bozhko, Dmytro A; Chumak, Andrii V; Neumann, Timo; Obry, Björn; Melkov, Gennadii A; Slavin, Andrei N; Hillebrands, Burkard

    2014-03-11

    Bose-Einstein condensation of quasi-particles such as excitons, polaritons, magnons and photons is a fascinating quantum mechanical phenomenon. Unlike the Bose-Einstein condensation of real particles (like atoms), these processes do not require low temperatures, since the high densities of low-energy quasi-particles needed for the condensate to form can be produced via external pumping. Here we demonstrate that such a pumping can create remarkably high effective temperatures in a narrow spectral region of the lowest energy states in a magnon gas, resulting in strikingly unexpected transitional dynamics of Bose-Einstein magnon condensate: the density of the condensate increases immediately after the external magnon flow is switched off and initially decreases if it is switched on again. This behaviour finds explanation in a nonlinear 'evaporative supercooling' mechanism that couples the low-energy magnons overheated by pumping with all the other thermal magnons, removing the excess heat, and allowing Bose-Einstein condensate formation.

  4. Field synergy characteristics in condensation heat transfer with non-condensable gas over a horizontal tube

    Directory of Open Access Journals (Sweden)

    Junxia Zhang

    2017-05-01

    Full Text Available Field synergy characteristics in condensation heat transfer with non-condensable gas (NCG over a horizontal tube were numerically simulated. Consequently, synergy angles between velocity and pressure or temperature gradient fields, gas film layer thickness, and induced velocity and shear stress on gas–liquid interface were obtained. Results show that synergy angles between velocity and temperature gradient fields are within 73.2°–88.7° and ascend slightly with the increment in mainstream velocity and that the synergy is poor. However, the synergy angle between velocity and pressure gradient fields decreases intensively with the increase in mainstream velocity at θ ≤ 30°, thereby improving the pressure loss. As NCG mass fraction increases, the gas film layer thickness enlarges and the induced velocity and shear stress on gas–liquid interface decreases. The synergy angles between velocity and temperature gradient fields increase, and the synergy angles between velocity and pressure gradient fields change at θ = 70°, decrease at θ 70°. When the horizontal tube circumference angle increases, the synergy angles between velocity and temperature or pressure gradient fields decrease, the synergy between velocity and pressure fields enhances, and the synergy between velocity and temperature fields degrades.

  5. Experimental substantiation of combined methods for designing processes for the commercial preparation of gas at gas condensate fields

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, G R; Karlinskii, E D; Posypkina, T V

    1977-04-01

    An analysis is made of the possibility of using two analytical methods for studying vapor--liquid equilibrium of hydrocarbon mixtures that are used in designing the separation of natural gas and the stabilization of condensate--the Chao and Sider method, which uses computations by equilibrium constants. A combined computational method is proposed for describing a unified process of natural gas separation and condensate stabilization. The method of preparing the original data for the computation of the separation and stabilization processes can be significantly simplified. 10 references, 1 table.

  6. Study of flue gas condensing for biofuel fired heat and power plants; Studie av roekgaskondensering foer biobraensleeldade kraftvaermeanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Axby, Fredrik; Gustafsson, J O; Nystroem, Johan; Johansson, Kent

    2000-11-01

    This report considers questions regarding flue gas condensing plants connected to bio-fuelled heat and power plants. The report consists of two parts, one where nine existing plants are described regarding technical issues and regarding the experience from the different plants. Part two is a theoretical study where heat balance calculations are made to show the technical and economical performance in different plant configurations and operating conditions. Initially the different parts in the flue gas condensing plant are described. Tube, plate and scrubber condensers are described briefly. The different types of humidifiers are also described, rotor, cross-stream plate heat exchanger and scrubber. Nine flue gas-condensing plants have been visited. The plants where chosen considering it should be bio-fuel fired plant primarily heat and power plants. Furthermore we tried to get a good dissemination considering plant configuration, supplier, geographical position, operating situation and plant size. The description of the different plants focuses on the flue gas condenser and the belonging components. The fuel, flue gas and condensate composition is described as well as which materials are used in the different parts of the plant. The experience from operating the plants and the reasons of why they decided to chose the actual condenser supplier are reported.

  7. Simulation of Flow Behavior of Gas Condensate at Low Interfacial Tension

    DEFF Research Database (Denmark)

    Wang, Peng; Stenby, Erling Halfdan; Pope, Gary A.

    1996-01-01

    A vertical, long-core experiment of natural depletion of a gas condensate that was conducted by Elf Aquitaine is simulated by an equation-of-state (EOS) compositional simulator, UTCOMP. The Peng-Robinson (PR) EOS is used for phase-behavior calculation. Because of low interfactial tension (IFT......) in the measurement, more attention is paid to the influence of IFT on gas/oil flow behavior. Two different types of model are used to compute the relative permeability. Model I is a Corey-type model combined with the capillary number concept. Model II is a modified form of the model proposed by Coats.The simulation...... results indicate that the effect of low IFT on relative permeability can be reasonably described by the two models selected, although the producing gas-oil ratio (GOR) obtained using Model I deviates somewhat from the experimental values in later depletion stages. The condensed liquid can be a mobile...

  8. Fluid flow in gas condensate reservoirs. The interplay of forces and their relative strengths

    Energy Technology Data Exchange (ETDEWEB)

    Ursin, Jann-Rune [Stavanger University College, Department of Petroleum Engineering, PO Box 8002, Stavanger, 4068 (Norway)

    2004-02-01

    Natural production from gas condensate reservoirs is characterized by gas condensation and liquid dropout in the reservoir, first in the near wellbore volume, then as a cylindrical shaped region, dynamically developing into the reservoir volume. The effects of liquid condensation are reduced productivity and loss of production. Successful forecast of well productivity and reservoir production depends on detailed understanding of the effect of various forces acting on fluid flow in time and space. The production form gas condensate reservoirs is thus indirectly related to the interplay of fundamental forces, such as the viscosity, the capillary, the gravitational and the inertial force and their relative strengths, demonstrated by various dimensionless numbers. Dimensionless numbers are defined and calculated for all pressure and space coordinates in a test reservoir. Various regions are identified where certain forces are more important than others. Based on reservoir pressure development, liquid condensation and the numerical representation of dimensionless numbers, a conceptual understanding of a varying reservoir permeability has been reached.The material balance, the reservoir fluid flow and the wellbore flow calculations are performed on a cylindrical reservoir model. The ratios between fundamental forces are calculated and dimensionless numbers defined. The interplay of forces, demonstrated by these numbers, are calculated as function of radial dimension and reservoir pressure.

  9. Removal of fine particles in wet flue gas desulfurization system by heterogeneous condensation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.J.; Bao, J.J.; Yan, J.P.; Liu, J.H.; Song, S.J.; Fan, F.X. [Southeast University, Nanjing (China). School of Energy & Environment

    2010-01-01

    A novel process to remove fine particles with high efficiency by heterogeneous condensation in a wet flue gas desulfurization (WFGD) system is presented. A supersaturated vapor phase, necessary for condensational growth of fine particles, was achieved in the SO{sub 2} absorption zone and at the top of the wet FGD scrubber by adding steam in the gas inlet and above the scrubbing liquid inlet of the scrubber, respectively. The condensational grown droplets were then removed by the scrubbing liquid and a high-efficiency demister. The results show that the effectiveness of the WFGD system for removal of fine particles is related to the SO{sub 2} absorbent employed. When using CaCO{sub 3} and NH{sub 3} {center_dot} H{sub 2}O to remove SO{sub 2} from flue gas, the fine particle removal efficiencies are lower than those for Na2CO{sub 3} and water, and the morphology and elemental composition of fine particles are changed. This effect can be attributed to the formation of aerosol particles in the limestone and ammonia-based FGD processes. The performance of the WFGD system for removal of fine particles can be significantly improved for both steam addition cases, for which the removal efficiency increases with increasing amount of added steam. A high liquid to gas ratio is beneficial for efficient removal of fine particles by heterogeneous condensation of water vapor.

  10. Boiling, condensation, and gas-liquid flow

    International Nuclear Information System (INIS)

    Whalley, P.B.

    1987-01-01

    Heat transfer phenomena involving boiling and condensation are an important aspect of engineering in the power and process industries. This book, aimed at advanced first-degree and graduate students in mechanical and chemical engineering, deals with these phenomena in detail. The first part of the book describes gas-liquid two-phase flow, as a necessary preliminary to the later discussion of heat transfer and change of phase. A detailed section on calculation methods shows how theory can be put to practical use, and there are also descriptions of some of the equipment and plant used in the process and power industries

  11. The influence of surface-active agents in gas mixture on the intensity of jet condensation

    Science.gov (United States)

    Yezhov, YV; Okhotin, VS

    2017-11-01

    The report presents: the methodology of calculation of contact condensation of steam from the steam-gas mixture into the stream of water, taking into account: the mass flow of steam through the boundary phase, particularly the change in turbulent transport properties near the interface and their connection to the interface perturbations due to the surface tension of the mixture; the method of calculation of the surface tension at the interface water - a mixture of fluorocarbon vapor and water, based on the previously established analytical methods we calculate the surface tension for simple one - component liquid-vapor systems. The obtained analytical relation to calculate the surface tension of the mixture is a function of temperature and volume concentration of the fluorocarbon gas in the mixture and is true for all sizes of gas molecules. On the newly created experimental stand is made verification of experimental studies to determine the surface tension of pure substances: water, steam, C3F8 pair C3F8, produced the first experimental data on surface tension at the water - a mixture of water vapor and fluorocarbon C3F8. The obtained experimental data allow us to refine the values of the two constants used in the calculated model of the surface tension of the mixture. Experimental study of jet condensation was carried out with the flow in the zone of condensation of different gases. The condensation process was monitored by measurement of consumption of water flowing from the nozzle, and the formed condensate. When submitting C3F8, there was a noticeable, intensification condensation process compared with the condensation of pure water vapor. The calculation results are in satisfactory agreement with the experimental data on surface tension of the mixture and steam condensation from steam-gas mixture. Analysis of calculation results shows that the presence of surfactants in the condensation zone affects the partial vapor pressure on the interfacial surface, and

  12. The method of predicting the process of condensation of moisture and hydrate formation in the gas pipeline

    OpenAIRE

    Хвостова, Олена Вікторівна

    2014-01-01

    The problem of ensuring the required value of one of the natural gas quality indicators during its transportation to the consumer - moisture content is considered in the paper. The method for predicting possible moisture condensation and hydrate formation processes in gas pipelines considering mixing gas flows with different moisture content was developed.Predicting the moisture condensation and hydrate formation in gas pipelines is an actual task since a timely prevention of these processes ...

  13. Materials in flue gas condensation plants; Materialval vid roekgaskondensering

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Barbara; Nordling Magnus

    2003-02-01

    This project is the first part of a larger project. In the part reported here, materials for flue gas condensers have been investigated by contact with plant owners and suppliers and by a literature review of reported failures. If it is decided to continue with another part of the project, a number of materials will be long term tested on site. The project is complementary to an earlier project, which investigated the operating experiences from flue gas condensers in biomass fired cogeneration plants. In the project materials (steel and polymeric) suitable for long term testing in existing plants are discussed. It is proposed that testing in the second part of the project is made with material coupons in one plant fired with only biomass and one plant where biomass is co fired with other fuels. In the biomass fired plant a number of steel materials should be tested. In the co fired plant, with its harsher operating conditions, the same steel materials plus a number of polymeric materials should be tested. Materials suitable for testing are summarised in the report.

  14. Flue gas condensation in oxyfuel power plants. Heat- and mass transfer measurements and experimental validation of an efficient condensation concept; Rauchgaskondensation in Oxyfuel-Kraftwerken. Waerme- und Stoffuebergangsmessungen sowie experimentelle Validierung eines effizienten Kondensationskonzepts

    Energy Technology Data Exchange (ETDEWEB)

    Raindl, Markus

    2010-12-06

    Condensation of a steam-inert gas mixture in an Oxyfuel condenser differs significantly from condensation of pure steam: condenser pressure and rest gas content increase dramatically, heat- and mass transfer coefficients are lower and oversaturation of the steam-inert gas mixture yields to fog formation. In the context of this thesis, therefore, at first the optimal ranges of working parameters for Oxyfuel processes calculated. In the following some heat flux measurements were carried out on a horizontal, crossflow pipe to validate various heat- and mass transfer theories. Building on these results a new, efficient condensation concept was developed to reduce fog formation. The final results of the measurements with a laboratory model show great performance regarding fog reduction and condensation efficiency. (orig.)

  15. A Simple Approach to Dynamic Material Balance in Gas-Condensate Reservoirs

    Directory of Open Access Journals (Sweden)

    Heidari Sureshjani M.

    2013-02-01

    Full Text Available In traditional material balance calculations, shut-in well pressure data are used to determine average reservoir pressure while recent techniques do not require the well to be shut-in and use instead flowing well pressure-rate data. These methods, which are known as “dynamic” material balance, are developed for single-phase flow (oil or gas in reservoirs. However, utilization of such methods for gas-condensate reservoirs may create significant errors in prediction of average reservoir pressure due to violation of the single-phase assumption in such reservoirs. In a previous work, a method for production data analysis in gas-condensate reservoirs was developed. The method required standard gas production rate, producing gas-oil ratio, flowing well pressure, CVD data and relative permeability curves. This paper presents a new technique which does not need relative permeability curves and flowing well pressure. In this method, the producing oil-gas ratio is interpolated in the vaporized oil in gas phase (Rv versus pressure (p data in the CVD table and the corresponding pressure is located. The parameter pressure/two-phase deviation factor (p/ztp is then evaluated at the determined pressure points and is plotted versus produced moles (np which forms a straight line. The nature of this plot is such that its extrapolation to point where p/ztp = 0 will give initial moles in place. Putting initial pressure/initial two-phase deviation factor (pi/ztp,i (known parameter and estimated initial moles (ni into the material balance equation, average reservoir pressure can be determined. A main assumption behind the method is that the region where both gas and condensate phases are mobile is of negligible size compared to the reservoir. The approach is quite simple and calculations are much easier than the previous work. It provides a practical engineering tool for industry studies as it requires data which are generally available in normal production

  16. Effect of carrier gas pressure on condensation in a supersonic nozzle

    International Nuclear Information System (INIS)

    Wyslouzil, B.E.; Wilemski, G.; Beals, M.G.; Frish, M.B.

    1994-01-01

    Supersonic nozzle experiments were performed with a fixed water or ethanol vapor pressure and varying amounts of nitrogen to test the hypothesis that carrier gas pressure affects the onset of condensation. Such an effect might occur if nonisothermal nucleation were important under conditions of excess carrier gas in the atmospheric pressure range, as has been suggested by Ford and Clement [J. Phys. A 22, 4007 (1989)]. Although a small increase was observed in the condensation onset temperature as the stagnation pressure was reduced from 3 to 0.5 atm, these changes cannot be attributed to any nonisothermal effects. The pulsed nozzle experiments also exhibited two interesting anomalies: (1) the density profiles for the water and ethanol mixtures were shifted in opposite directions from the dry N 2 profile; (2) a long transient period was required before the nozzle showed good pulse-to-pulse repeatability for condensible vapor mixtures. To theoretically simulate the observed onset behavior, calculations of nucleation and droplet growth in the nozzle were performed that took into account two principal effects of varying the carrier gas pressure: (1) the change in nozzle shape due to boundary layer effects and (2) the variation in the heat capacity of the flowing gas. Energy transfer limitations were neglected in calculating the nucleation rates. The trend of the calculated results matched that of the experimental results very well. Thus, heat capacity and boundary layer effects are sufficient to explain the experimental onset behavior without invoking energy transfer limited nucleation. The conclusions about the rate of nucleation are consistent with those obtained recently using an expansion cloud chamber, but are at odds with results from thermal diffusion cloud chamber measurements

  17. State of the Art Report On Condensation Phenomena Within Tubes in the Presence of Noncondensable Gas

    International Nuclear Information System (INIS)

    Polo, J.

    1998-01-01

    Condensation phenomena play an important role in many industrial applications; in particular; the nuclear industry uses such processes in different systems for both operation and safety aspects. Thus most of the engineering safety features in the current Light Water Reactor (LWR) plants as well as in the new advanced/passive type design are based on the condensation phenomena inside tubes to reduce the system pressure and to remove the decay heat released under accidental conditions. Regarding the new advanced/passive plant designs such a systems must ensure their capabilities under severe accident conditions, that means, under the presence of non-condensable gas an even aerosol particles. The presence of even a small quantity of non condensable gas in liquid-vapour has profound influence on the resistance to heat transfer at the liquid-vapour interface leading to reduce in the heat transfer rate. In consequence, the safety analysis of the Simplified Boiling Water Reactor (SBWR) promoted in increase in the modelling, model development and experimental research on the gas mixtures condensing inside vertical tubes. This report summarises the last models developed as well as the experimental findings on such processes. (Author) 51 refs

  18. Advances in SAW gas sensors based on the condensate-adsorption effect.

    Science.gov (United States)

    Liu, Jiuling; Wang, Wen; Li, Shunzhou; Liu, Minghua; He, Shitang

    2011-01-01

    A surface-acoustic-wave (SAW) gas sensor with a low detection limit and fast response for volatile organic compounds (VOCs) based on the condensate-adsorption effect detection is developed. In this sensor a gas chromatography (GC) column acts as the separator element and a dual-resonator oscillator acts as the detector element. Regarding the surface effective permittivity method, the response mechanism analysis, which relates the condensate-adsorption effect, is performed, leading to the sensor performance prediction prior to fabrication. New designs of SAW resonators, which act as feedback of the oscillator, are devised in order to decrease the insertion loss and to achieve single-mode control, resulting in superior frequency stability of the oscillator. Based on the new phase modulation approach, excellent short-term frequency stability (±3 Hz/s) is achieved with the SAW oscillator by using the 500 MHz dual-port resonator as feedback element. In a sensor experiment investigating formaldehyde detection, the implemented SAW gas sensor exhibits an excellent threshold detection limit as low as 0.38 pg.

  19. Theoretical modeling of steam condensation in the presence of a noncondensable gas in horizontal tubes

    International Nuclear Information System (INIS)

    Lee, Kwon-Yeong; Kim, Moo Hwan; Kim, Moo Hwan

    2008-01-01

    A theoretical model was developed to investigate a steam condensation with a noncondensable gas in a horizontal tube. The heat transfer through the vapor/noncondensable gas mixture boundary layer consists of the sensible heat transfer and the latent heat transfer given up by the condensing vapor, and it must equal that from the condensate film to the tube wall. Therefore, the total heat transfer coefficient is given by the film, condensation and sensible heat transfer coefficients. The film heat transfer coefficients of the upper and lower portions of the tube were calculated separately from Rosson and Meyers (1965) correlation. The heat and mass transfer analogy was used to analyze the steam/noncondensable gas mixture boundary layer. Here, the Nusselt and Sherwood numbers in the gas phase were modified to incorporate the effects of condensate film roughness, suction, and developing flow. The predictions of the theoretical model for the experimental heat transfer coefficients at the top and bottom of the tube were reasonable. The calculated heat transfer coefficients at the top of the tube were higher than those at the bottom of it, as experimental results. As the temperature potential at the top of tube was lower than that at the bottom of it, the heat fluxes at the upper and lower portions of the tube were similar to each other. Generally speaking, however, the model predictions showed a good agreement with experimental data. The new empirical correlation proposed by Lee and Kim (2008) for the vertical tube was applied to the condensation of steam/noncondensable mixture in a horizontal tube. Nusselt theory and Chato correlation were used to calculate the heat transfer coefficients at top and bottom of the horizontal tube, respectively. The predictions of the new empirical correlation were good and very similar with the theoretical model. (author)

  20. Numerical Method based on SIMPLE Algorithm for a Two-Phase Flow with Non-condensable Gas

    International Nuclear Information System (INIS)

    Kim, Jong Tae

    2009-08-01

    In this study, a numerical method based on SIMPLE algorithm for a two-phase flow with non-condensable gas has been developed in order to simulate thermal hydraulics in a containment of a nuclear power plant. As governing equations, it adopts a two-fluid three-field model for the two-phase flows. The three fields include gas, drops, and continuous liquid. The gas field can contains vapor and non-condensable gases such as air and hydrogen. In order to resolve mixing phenomena of gas species, gas transport equations for each species base on the gas mass fractions are solved with gas phase governing equations such as mass, momentum and energy equations. Methods to evaluate the properties of the gas species were implemented in the code. They are constant or polynomial function based a user input and a property library from Chemkin and JANAF table for gas specific heat. Properties for the gas mixture which are dependent on mole fractions of the gas species were evaluated by a mix rule

  1. Numerical modeling of condensation from vapor-gas mixtures for forced down flow inside a tube

    International Nuclear Information System (INIS)

    Yuann, R.Y.; Schrock, V.E.; Chen, Xiang, M.

    1995-01-01

    Laminar film condensation is the dominant heat transfer mode inside tubes. In the present paper direct numerical simulation of the detailed transport process within the steam-gas core flow and in the condensate film is carried out. The problem was posed as an axisymmetric two dimensional (r, z) gas phase inside an annular condensate film flow with an assumed smooth interface. The fundamental conservation equations were written for mass, momentum, species concentration and energy in the gaseous phase with effective diffusion parameters characterizing the turbulent region. The low Reynolds number two equation κ-ε model was employed to determine the eddy diffusion coefficients. The liquid film was described by similar formulation without the gas species equation. An empirical correlation was employed to correct for the effect of film waviness on the interfacial shear. A computer code named COAPIT (Condensation Analysis Program Inside Tube) was developed to implement numerical solution of the fundamental equations. The equations were solved by a marching technique working downstream from the entrance of the condensing section. COAPIT was benchmarked against experimental data and overall reasonable agreement was found for the key parameters such as heat transfer coefficient and tube inner wall temperature. The predicted axial development of radial profiles of velocity, composition and temperature and occurrence of metastable vapor add insight to the physical phenomena

  2. Numerical modeling of condensation from vapor-gas mixtures for forced down flow inside a tube

    Energy Technology Data Exchange (ETDEWEB)

    Yuann, R Y [Taiwan Power Company, Taipei (Taiwan, Province of China); Schrock, V E [Univ. of California, Berkeley, CA (United States); Chen, Xiang

    1995-09-01

    Laminar film condensation is the dominant heat transfer mode inside tubes. In the present paper direct numerical simulation of the detailed transport process within the steam-gas core flow and in the condensate film is carried out. The problem was posed as an axisymmetric two dimensional (r, z) gas phase inside an annular condensate film flow with an assumed smooth interface. The fundamental conservation equations were written for mass, momentum, species concentration and energy in the gaseous phase with effective diffusion parameters characterizing the turbulent region. The low Reynolds number two equation {kappa}-{epsilon} model was employed to determine the eddy diffusion coefficients. The liquid film was described by similar formulation without the gas species equation. An empirical correlation was employed to correct for the effect of film waviness on the interfacial shear. A computer code named COAPIT (Condensation Analysis Program Inside Tube) was developed to implement numerical solution of the fundamental equations. The equations were solved by a marching technique working downstream from the entrance of the condensing section. COAPIT was benchmarked against experimental data and overall reasonable agreement was found for the key parameters such as heat transfer coefficient and tube inner wall temperature. The predicted axial development of radial profiles of velocity, composition and temperature and occurrence of metastable vapor add insight to the physical phenomena.

  3. Condensed Fraction of an Atomic Bose Gas Induced by Critical Correlations

    International Nuclear Information System (INIS)

    Smith, Robert P.; Tammuz, Naaman; Campbell, Robert L. D.; Hadzibabic, Zoran; Holzmann, Markus

    2011-01-01

    We study the condensed fraction of a harmonically trapped atomic Bose gas at the critical point predicted by mean-field theory. The nonzero condensed fraction f 0 is induced by critical correlations which increase the transition temperature T c above T c MF . Unlike the T c shift in a trapped gas, f 0 is sensitive only to the critical behavior in the quasiuniform part of the cloud near the trap center. To leading order in the interaction parameter a/λ 0 , where a is the s-wave scattering length and λ 0 the thermal wavelength, we expect a universal scaling f 0 ∝(a/λ 0 ) 4 . We experimentally verify this scaling using a Feshbach resonance to tune a/λ 0 . Further, using the local density approximation, we compare our measurements with the universal result obtained from Monte Carlo simulations for a uniform system, and find excellent quantitative agreement.

  4. Experimental phase behavior study of a five-component model gas condensate

    NARCIS (Netherlands)

    Shariati - Sarabi, A.; Straver, E.J.M.; Florusse, L.J.; Peters, C.J.

    2014-01-01

    In this work, the bubble points and dew points of a multicomponent mixture of methane, butane, heptane, decane and tetradecane as a model mixture representative of a gas condensate, have been measured experimentally. Ten samples with approximately the same composition were prepared and their

  5. Measurement of liquid-liquid equilibria for condensate + glycol and condensate + glycol + water systems

    DEFF Research Database (Denmark)

    Riaz, Muhammad; Kontogeorgis, Georgios; Stenby, Erling Halfdan

    2011-01-01

    ,2-ethanediol (MEG) + condensate and MEG + water + condensate systems at temperatures from (275 to 323) K at atmospheric pressure. The condensate used in this work is a stabilized natural gas condensate from an offshore field in the North Sea. Compositional analysis of the natural gas condensate was carried out...... by gas chromatography, and detailed separation of individual condensate's components has been carried out. Approximately 85 peaks eluting before nonane were identified by their retention time. Peak areas were converted to mass fraction using 1-heptene as an internal standard. The components were divided...... into boiling range groups from hexane to nonane. Paraffinic (P), naphthenic (N), and aromatic (A) distributions were obtained for the boiling point fractions up to nonane. The average molar mass and the overall density of the condensate were measured experimentally. For the mutual solubility of MEG...

  6. Colloidal gas-liquid condensation of polystyrene latex particles with intermediate kappa a values (5 to 160, a > kappa(-1)).

    Science.gov (United States)

    Ishikawa, Masamichi; Kitano, Ryota

    2010-02-16

    Polystyrene latex particles showed gas-liquid condensation under the conditions of large particle radius (a > kappa(-1)) and intermediate kappa a, where kappa is the Debye-Hückel parameter and a is the particle radius. The particles were dissolved in deionized water containing ethanol from 0 to 77 vol %, settled to the bottom of the glass plate within 1 h, and then laterally moved toward the center of a cell over a 20 h period in reaching a state of equilibrium condensation. All of the suspensions that were 1 and 3 microm in diameter and 0.01-0.20 vol % in concentration realized similar gas-liquid condensation with clear gas-liquid boundaries. In 50 vol % ethanol solvent, additional ethanol was added to enhance the sedimentation force so as to restrict the particles in a monoparticle layer thickness. The coexistence of gas-liquid-solid (crystalline solid) was microscopically recognized from the periphery to the center of the condensates. A phase diagram of the gas-liquid condensation was created as a function of KCl concentration at a particle diameter of 3 microm, 0.10 vol % concentration, and 50:50 water/ethanol solvent at room temperature. The miscibility gap was observed in the concentration range from 1 to 250 microM. There was an upper limit of salt concentration where the phase separation disappeared, showing nearly critical behavior of macroscopic density fluctuation from 250 microM to 1 mM. These results add new experimental evidence to the existence of colloidal gas-liquid condensation and specify conditions of like-charge attraction between particles.

  7. Retrograde peri-implantitis

    Directory of Open Access Journals (Sweden)

    Mohamed Jumshad

    2010-01-01

    Full Text Available Retrograde peri-implantitis constitutes an important cause for implant failure. Retrograde peri-implantitis may sometimes prove difficult to identify and hence institution of early treatment may not be possible. This paper presents a report of four cases of (the implant placed developing to retrograde peri-implantitis. Three of these implants were successfully restored to their fully functional state while one was lost due to extensive damage. The paper highlights the importance of recognizing the etiopathogenic mechanisms, preoperative assessment, and a strong postoperative maintenance protocol to avoid retrograde peri-implant inflammation.

  8. Bose-Einstein condensation of a relativistic Bose gas trapped in a general external potential

    International Nuclear Information System (INIS)

    Su Guozhen; Chen Jincan; Chen Lixuan

    2006-01-01

    Bose-Einstein condensation of an ideal relativistic Bose gas trapped in a generic power-law potential is investigated. The analytical expressions for some important parameters such as the critical temperature, ground-state fraction and heat capacity are derived. The general criteria on the occurrence of Bose-Einstein condensation and the discontinuity of heat capacity at the critical temperature are obtained. The results obtained here present a unified description for the Bose-Einstein condensation of a class of ideal Bose systems so that many important conclusions in the literature are included in this paper

  9. The pyrolysis of gas condensate at the Shatlyk field

    Energy Technology Data Exchange (ETDEWEB)

    Magaril, R.Z.; Khankuliyev, K.; Kul' zhayev, B.A.; Sergiyenko, S.R.

    1984-01-01

    The continuing growth in industrial demand for lower olefins for the manufacture of polymer materials has necessitated an expansion in the manufacture of ethylene. Gas condensate may serve as a source of ethylene manufacturing. The influence of the contact temperature and time in the pyrolysis of unseparated condensate from the Shatlyk field on the yield of lower olefins was investigated. It was discovered that the total yield of lower olefins (C2-C4) increases with an increase in the pyrolysis temperature, reaching a maximum of 63 to 67 percent by weight at a temperature of 1098 degrees Kelvin and contact time of .5 to .7 seconds, and at 1123 degrees Kelvin and .3 seconds, the maximum ethylene yield (40 percent) was obtained at 1123 degrees Kelvin, and at all previously noted temperatures with a contact time of .9 seconds.

  10. Bose-Einstein condensation in the relativistic ideal Bose gas.

    Science.gov (United States)

    Grether, M; de Llano, M; Baker, George A

    2007-11-16

    The Bose-Einstein condensation (BEC) critical temperature in a relativistic ideal Bose gas of identical bosons, with and without the antibosons expected to be pair-produced abundantly at sufficiently hot temperatures, is exactly calculated for all boson number densities, all boson point rest masses, and all temperatures. The Helmholtz free energy at the critical BEC temperature is lower with antibosons, thus implying that omitting antibosons always leads to the computation of a metastable state.

  11. Bose-Einstein Condensation in the Relativistic Ideal Bose Gas

    International Nuclear Information System (INIS)

    Grether, M.; Llano, M. de; Baker, George A. Jr.

    2007-01-01

    The Bose-Einstein condensation (BEC) critical temperature in a relativistic ideal Bose gas of identical bosons, with and without the antibosons expected to be pair-produced abundantly at sufficiently hot temperatures, is exactly calculated for all boson number densities, all boson point rest masses, and all temperatures. The Helmholtz free energy at the critical BEC temperature is lower with antibosons, thus implying that omitting antibosons always leads to the computation of a metastable state

  12. Hydrogen condensation products of Turkmenistan gas fields as motor fuel components

    Energy Technology Data Exchange (ETDEWEB)

    Kul-dzhaev, B.A.; Sergienko, S.R.; Tsibrova, E.G.

    1985-07-01

    Technical data are provided in tabular form on the composition of hydrocarbon condensation products obtained from various gas fields in Turkmenia, with an analysis of their usefulness as gasoline and diesel fuels. For example, high-paraffin condensates are characterized by low octane numbers (30-50) of the gasoline fraction (150-180/sup 0/C). However, lowering the temperature at the end of distillation to 120-130/sup 0/C increased the octane number to 73, one point higher than required by State Standards for automobile gasoline A-72. The cetane number of diesel fuels in general exceed the State Standards, especially in the case of fractions 150/sup 0/C and 180/sup 0/C of the high-paraffin condensates obtained from the Shatlyk site. Summarized data are presented on the suitability of the products obtained from the different site for the different types of fuels. 4 references.

  13. RADIATION SAFETY JUSTIFICATION FOR THE LONG-TERM STORAGE OF GAS CONDENSATE IN THE UNDERGROUND RESERVOURS FORMED BY THE NUCLEAR EXPLOSION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    I. K. Romanovich

    2010-01-01

    Full Text Available The paper presents approaches to the safety justification of the gas condensate and brine long-term storage in the underground reservoirs formed by the nuclear explosion technology. Gas condensate and brine are the intermediate level liquid radioactive waste containing isotopes: 3Н, 137Cs and 90Sr, in traces - 239Pu, 235U, 241Am.Safety of the gas condensate and brine long-term storage in the underground reservoirs is assessed on the base of the multi-barrier principle implementation, used during radioactive waste disposal. It is shown that the gas condensate and brine long-term storage in the sealed underground reservoirs formed by nuclear explosion technologies in salt domes does not lead to the surface radioactive contamination and population exposure.

  14. Numerical analyses on the effect of capillary condensation on gas diffusivities in porous media

    Science.gov (United States)

    Yoshimoto, Yuta; Hori, Takuma; Kinefuchi, Ikuya; Takagi, Shu

    2017-11-01

    We investigate the effect of capillary condensation on gas diffusivities in porous media composed of randomly packed spheres with moderate wettability. Lattice density functional theory simulations successfully reproduce realistic adsorption/desorption isotherms and provide fluid density distributions inside the porous media. We find that capillary condensations lead to the occlusion of narrow pores because they preferentially occur at confined spaces surrounded by the solid walls. Consequently, the characteristic lengths of the partially wet structures are larger than those of the corresponding dry structures with the same porosities. Subsequent gas diffusion simulations exploiting the mean-square displacement method indicate that while effective diffusion coefficients significantly decrease in the presence of partially condensed liquids, they are larger than those in the dry structures with the same porosities. Most importantly, we find that the porosity-to-tortuosity ratio, which is a crucial parameter that determines the effective diffusion coefficient, can be reasonably related to the porosity even for the partially wet porous media.

  15. Critical behavior of the ideal-gas Bose-Einstein condensation in the Apollonian network.

    Science.gov (United States)

    de Oliveira, I N; dos Santos, T B; de Moura, F A B F; Lyra, M L; Serva, M

    2013-08-01

    We show that the ideal Boson gas displays a finite-temperature Bose-Einstein condensation transition in the complex Apollonian network exhibiting scale-free, small-world, and hierarchical properties. The single-particle tight-binding Hamiltonian with properly rescaled hopping amplitudes has a fractal-like energy spectrum. The energy spectrum is analytically demonstrated to be generated by a nonlinear mapping transformation. A finite-size scaling analysis over several orders of magnitudes of network sizes is shown to provide precise estimates for the exponents characterizing the condensed fraction, correlation size, and specific heat. The critical exponents, as well as the power-law behavior of the density of states at the bottom of the band, are similar to those of the ideal Boson gas in lattices with spectral dimension d(s)=2ln(3)/ln(9/5)~/=3.74.

  16. Mixed convection heat transfer between a steam/non-condensable gas mixture and an inclined finned tube bundle

    Energy Technology Data Exchange (ETDEWEB)

    De Cachard, F.; Lompersky, S.; Monauni, G.R. [Paul Scherrer Institute, Villigen (Switzerland). Thermal Hydraulic Lab.

    1999-07-01

    An experimental and analytical program was performed at PSI (Paul Scherrer Institute) to study the performance of a finned-tube condenser in the presence of non-condensable gases at low gas mass fluxes. The model developed for this application includes mixed convection heat transfer between the vapour/non-condensable mixture and the finned tubes, heat conduction through the fins and tubes, and evaporative heat transfer inside the tubes. On the gas, heat transfer correlations are used, and the condensation rate is calculated using the heat/mass transfer analogy. A combination of various available correlations for forced convection in staggered finned tube bundles is used, together with a correction accounting for superimposed natural convection. For the condensate heat transfer resistance, the beatty and Katz model for gravity driven liquid films on the tubes is used. The fine efficiency is accounted for using classical iterative calculations. Evaporative heat transfer inside the tubes is predicted using the Chen correlation. The finned tube condenser model has been assessed against data obtained at the PSI LINX facility with two test condensers. For the 62 LINX experiments performed, the model predictions are very good, i.e., less then 10% standard deviation between experimental and predicted results.

  17. Effects of non-condensable gas on the condensation of steam

    International Nuclear Information System (INIS)

    Jackson, J.D.; An, P.; Reinert, A.; Ahmadinejad, M.

    2000-01-01

    The experimental work reported here was undertaken with the aim of extending the database currently available on the condensation of steam in the presence of non-condensable gases and thereby improving the empirical input to thermal-hydraulic codes which might be used for design and safety assessment of advanced water-cooled nuclear reactors. Heat was removed from flowing mixtures of steam and air in a test section by means of a water-cooled condensing plate. The test facility constructed for the study incorporates a degassing unit which supplies water to a boiler. This delivers steam steadily to a mixing chamber where it joins with a flow of preheated air. The mixture of steam and air is supplied to the bottom of a cylindrical test section in which it flows upwards over a double sided condensing plate which can be vertical, inclined or horizontal, The rate at which heat is removed by cooling water flowing through internal passages in the plate can de determined calorimetrically knowing the flow rate of the water and its temperature rise. After commissioning experiments had shown that reliable measurements of condensation heat transfer rate could be made using the test facility, a programme of development work followed in the course of which three different designs of condensing plate were evaluated in turn. The version eventually used in the main programme of experiments which followed was made from copper. However, its surfaces were coated with a thin layer of nickel and then with one of chromium. It was found that such a surface consistently promoted dropwise condensation and showed no signs of deterioration after lengthy periods of use. The rate of heat removal from pure steam and from mixtures of steam and air in varying proportions was measured as a function of plate sub-cooling for a variety of plate orientations. (author)

  18. Investigation into the determination of trimethylarsine in natural gas and its partitioning into gas and condensate phases using (cryotrapping)/gas chromatography coupled to inductively coupled plasma mass spectrometry and liquid/solid sorption techniques

    International Nuclear Information System (INIS)

    Krupp, E.M.; Johnson, C.; Rechsteiner, C.; Moir, M.; Leong, D.; Feldmann, J.

    2007-01-01

    Speciation of trialkylated arsenic compunds in natural gas, pressurized and stable condensate samples from the same gas well was performed using (Cryotrapping) Gas Chromatography-Inductively Coupled Plasma Mass Spectrometry. The major species in all phases investigated was found to be trimethylarsine with a highest concentration of 17.8 ng/L (As) in the gas phase and 33.2 μg/L (As) in the stable condensate phase. The highest amount of trimethylarsine (121 μg/L (As)) was found in the pressurized condensate, along with trace amounts of non-identified higher alkylated arsines. Volatile arsenic species in natural gas and its related products cause concern with regards to environment, safety, occupational health and gas processing. Therefore, interest lies in a fast and simple field method for the determination of volatile arsenicals. Here, we use simple liquid and solid sorption techniques, namely absorption in silver nitrate solution and adsorption on silver nitrate impregnated silica gel tubes followed by total arsenic determination as a promising tool for field monitoring of volatile arsenicals in natural gas and gas condensates. Preliminary results obtained for the sorption-based methods show that around 70% of the arsenic is determined with these methods in comparison to volatile arsenic determination using GC-ICP-MS. Furthermore, an inter-laboratory- and inter-method comparison was performed using silver nitrate impregnated silica tubes on 14 different gas samples with concentrations varying from below 1 to 1000 μg As/m 3 natural gas. The results obtained from the two laboratories differ in a range of 10 to 60%, but agree within the order of magnitude, which is satisfactory for our purposes

  19. Method and apparatus for controlled condensation isotope separation

    International Nuclear Information System (INIS)

    Sullivan, J.A.; Lee, J.T. Jr.; Kim, K.C.

    1981-01-01

    The invention provides a method for producing controlled homogeneous condensation of a molecular feed gas containing several isotopes. The feed gas flows at supersonic rates through an expansion nozzle under conditions at which the gas would normally condense. The gas is irradiated with laser radiation of a wavelength that selectively excites those molecules in the feed gas that contain a particular isotope, thus preventing their condensation. Condensate particles may be aerodynamically separated from the flowing gas stream

  20. Condensing species from flue gas in Puertollano gasification power plant, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Oriol Font; Xavier Querol; Felica Plana; Pilar Coca; Silvia Burgos; Francisco Garcia Pena [Institute of Earth Sciences ' Jaume Almera' , Barcelona (Spain). Environmental Geology

    2006-10-15

    The occurrence and distribution of trace elements (Pb, Zn, As, Ge, Cd, Tl, Bi, Sn, and also Ni, Fe and V) in condensates arising from coal gasification was investigated through the study of samples physically deposited on the gas cooling system from the Puertollano IGCC 335 MW power plant. These highly metal enriched samples are suitable for a comprehensive evaluation of the mode of occurrence of these elements in IGCC fly ash. Pb, Zn, Ge, and Fe sulfides, Ni-Fe arsenides, Ge and V oxides as well as traces of K chloride and Pb, Zn and Fe sulfates were determined as the major bearing phases for these elements. Three condensation zones were differentiated as function of the condensation temperatures and metal content: 1. Pb zone (520-750{sup o}C), characterized by the dominance of galena (70-90% of the main crystalline phases), and by the condensation of pyrrhotite and nickeline. 2. Ge-Zn-Pb zone (520-470{sup o}C), with sphalerite and wurzite being the dominant crystalline phases (over 40%), and Ge compounds, GeS{sub 2} and GeO{sub 2}, reaching 30% of the bulk condensates. 3. Zn zone (300-400{sup o}C), characterized by the dominance of Zn sulfides (over 85% of the main crystalline phases). The results obtained from these highly metalliferous condensates show similar forms of occurrence for the studied elements to those obtained in the bulk Puertollano IGCC fly ash (by using XAFS spectroscopy), where the contents of these elements are much lower. Furthermore, the sequential condensation of sulfides during coal gasification is similar to that from volcanic fumaroles, and may thus promote a better understanding of volcanic deposits. 23 refs., 7 figs., 5 tabs.

  1. Two-step condensation of the ideal Bose gas in highly anisotropic traps

    NARCIS (Netherlands)

    van Druten, N.J.; Ketterle, W.

    1997-01-01

    The ideal Bose gas in a highly anisotropic harmonic potential is studied. It is found that Bose-Einstein condensation occurs in two distinct steps as the temperature is lowered. In the first step the specific heat shows a sharp feature, but the system still occupies many one-dimensional quantum

  2. Half-space problem of unsteady evaporation and condensation of polyatomic gas

    Science.gov (United States)

    Inaba, Masashi; Yano, Takeru

    2016-11-01

    On the basis of polyatomic version of the ellipsoidal-statistical Bhatnager-Gross-Krook (ES-BGK) model, we consider time-periodic gas flows in a semi-infinite expanse of an initially equilibrium polyatomic gas (methanol) bounded by its planar condensed phase. The kinetic boundary condition at the vapor-liquid interface is assumed to be the complete condensation condition with periodically time-varying macroscopic variables (temperature, saturated vapor density and velocity of the interface), and the boundary condition at infinity is the local equilibrium distribution function. The time scale of variation of macroscopic variables is assumed to be much larger than the mean free time of gas molecules, and the variations of those from a reference state are assumed to be sufficiently small. We numerically investigate thus formulated time-dependent half-space problem for the polyatomic version of linearized ES-BGK model equation with the finite difference method for the case of the Strouhal number Sh=0.01 and 0.1. It is shown that the amplitude of the mass flux at the interface is the maximum, and the phase difference in time between the mass flux and v∞ - vℓ (v∞: vapor velocity at infinity, vℓ: velocity of the vapor-liquid interface) is the minimum absolute value, when the phase difference in time between the liquid surface temperature (the saturated vapor density) and the velocity of interface is close to zero.

  3. Condensation heat transfer with noncondensable gas for passive containment cooling of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Leonardi, Tauna [Schlumberger, 14910 Airline Rd., Rosharon, TX 77583 (United States)]. E-mail: Tleonardi@slb.com; Ishii, Mamoru [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States)]. E-mail: Ishii@ecn.purdue.edu

    2006-09-15

    Noncondensable gases that come from the containment and the interaction of cladding and steam during a severe accident deteriorate a passive containment cooling system's performance by degrading the heat transfer capabilities of the condensers in passive containment cooling systems. This work contributes to the area of modeling condensation heat transfer with noncondensable gases in integral facilities. Previously existing correlations and models are for the through-flow of the mixture of steam and the noncondensable gases and this may not be applicable to passive containment cooling systems where there is no clear passage for the steam to escape. This work presents a condensation heat transfer model for the downward cocurrent flow of a steam/air mixture through a condenser tube, taking into account the atypical characteristics of the passive containment cooling system. An empirical model is developed that depends on the inlet conditions, including the mixture Reynolds number and noncondensable gas concentration.

  4. A case study to optimum selection of deliquification method for gas condensate well design: South Pars gas field

    Directory of Open Access Journals (Sweden)

    Ehsan Khamehchi

    2016-06-01

    Today, the most effective liquid-removal devices are pumping, the combination of liquid-diverter with gas lift and velocity string. Considering mentioned complexities, the most efficient method of liquid removal is different from one well to the others. This paper discusses a multi-criteria decision making (MCDM strategy for ranking these methods based on ELECTRE and TOPSIS techniques in a gas condensate reservoir. The most efficient model in this case, regarding its high efficiency and level of reliability is continuous gas lift. These procedures can be extended to other cases easily by changing the comparison matrix and user defined weights.

  5. Mixed convection heat transfer between a steam / non-condensable gas mixture and an inclined finned tube bundle

    Energy Technology Data Exchange (ETDEWEB)

    Cachard, F. de; Lomperski, S.; Monauni, G.R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland). Lab. for Thermal-Hydraulics

    1999-07-01

    An experimental and analytical program was performed at PSI to study the performance of a finned-tube condenser in the presence of non-condensable gases at low gas mass fluxes. The model developed for this application includes mixed convection heat transfer between the vapour/non-condensable mixture and the finned-tubes, heat conduction through the fins and tubes, and evaporative heat transfer inside the tubes. The finned-tubes condenser model has been assessed against data obtained at the PSI LINX facility with two test condensers. For the 62 LINX experiments performed, the model predictions are very good, i.e., less than 10 % standard deviation between experimental and predicted results. (authors)

  6. A Preliminary Study of Transverse Curvature Effects on Condensation Heat Transfer on Vertical Tube in the Presence of Non-condensable Gas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeon Gun; Kim, Sin [Jeju National Univ., Jeju (Korea, Republic of); Jerng, Dong Wook [Chung Ang Univ., Seoul (Korea, Republic of)

    2013-10-15

    In this study, the effect of the transverse curvature on the condensation HTC on a vertical tube in the presence of air is preliminarily investigated by using the analysis of boundary layer for free convective heat transfer. The results indicate that the heat transfer performance can be enhanced as the outer diameter of condenser tubes is small. To confirm this curvature effect, an experimental program to obtain the condensation heat transfer data for various values of tube diameter is indispensable. Currently, by a joint research project of Jeju National University and Chung-Ang University, a condensation test facility is being designed and constructed to acquire the condensation HTC data as shown in Fig. 3. From a series of experiment on a single vertical tube, the effects of not only the tube diameter but the inclination, the existence of fins and the local velocity of a bulk mixture by natural circulation will be evaluated precisely. An empirical correlation for the condensation heat transfer of a steam-air mixture will also be developed for design optimization and performance evaluation of the PCCS. The Passive Containment Cooling System (PCCS) provides passive means to remove the decay heat and protect the integrity of the containment during severe accidents. Korea, in which all the NPPs employ the concrete containment, may adopt a PCCS using internal condensers. In the event of the loss-of-coolant accident (LOCA), steam released from the reactor coolant system is mixed with air inside the containment and condensed on the outer surface of inclined condenser tubes. It is noted that, among previous theoretical and empirical models for condensation on outer wall in the presence of non-condensable gas, no one took into account the effect of a tube diameter. Though the condensation heat transfer coefficient may vary with transverse curvature of condenser tubes, such a curvature effect has not been reported so far. In this study, a preliminary analysis is conducted

  7. A Preliminary Study of Transverse Curvature Effects on Condensation Heat Transfer on Vertical Tube in the Presence of Non-condensable Gas

    International Nuclear Information System (INIS)

    Lee, Yeon Gun; Kim, Sin; Jerng, Dong Wook

    2013-01-01

    In this study, the effect of the transverse curvature on the condensation HTC on a vertical tube in the presence of air is preliminarily investigated by using the analysis of boundary layer for free convective heat transfer. The results indicate that the heat transfer performance can be enhanced as the outer diameter of condenser tubes is small. To confirm this curvature effect, an experimental program to obtain the condensation heat transfer data for various values of tube diameter is indispensable. Currently, by a joint research project of Jeju National University and Chung-Ang University, a condensation test facility is being designed and constructed to acquire the condensation HTC data as shown in Fig. 3. From a series of experiment on a single vertical tube, the effects of not only the tube diameter but the inclination, the existence of fins and the local velocity of a bulk mixture by natural circulation will be evaluated precisely. An empirical correlation for the condensation heat transfer of a steam-air mixture will also be developed for design optimization and performance evaluation of the PCCS. The Passive Containment Cooling System (PCCS) provides passive means to remove the decay heat and protect the integrity of the containment during severe accidents. Korea, in which all the NPPs employ the concrete containment, may adopt a PCCS using internal condensers. In the event of the loss-of-coolant accident (LOCA), steam released from the reactor coolant system is mixed with air inside the containment and condensed on the outer surface of inclined condenser tubes. It is noted that, among previous theoretical and empirical models for condensation on outer wall in the presence of non-condensable gas, no one took into account the effect of a tube diameter. Though the condensation heat transfer coefficient may vary with transverse curvature of condenser tubes, such a curvature effect has not been reported so far. In this study, a preliminary analysis is conducted

  8. Evaluation of non-condensable gas effect during LBLOCA in an OPR1000 Plant

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung Hun; Seul, Kwang-Won; Bang, Young-Seok; Lee, Jun Soo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-05-15

    Gas accumulation in the nuclear power plant may cause diverse safety issues such as water hammer, pump cavitation and inadvertent valve actuation. The Nuclear Regulatory Commission (NRC) has published twenty Information Notices, two Generic Letters, and one NUREG report related to the issue of the gas accumulation. It has been considered that gas accumulation occurred since the beginning of commercial nuclear power plant operation and may occur in the currently operating plants. Gas accumulation in the Emergency Core Cooling System (ECCS) is the condition that did not consider in Accident Analysis of Final Safety Analysis Report or Technical Specification and may finally result in degradation or loss of the safety functions. In this paper, the effect of gas accumulation in the ECCS has been analyzed by modeling non-condensable gas injection during the operation of Safety Injection Tank (SIT) and Low Pressure Safety Injection (LPSI) under the LBLOCA condition. Gas accumulation in the ECCS has been dealt with one of significant safety issues in the operating nuclear power plants. In order to identify the effect of the non-condensable gas in Hanul unit 3 and 4, the sensitivity studies for gas quantity, location or injection time was conducted for high or low pressure condition. At high pressure condition, the injected gas induced the reduced SIT flow rate and the reduced period of SIT injection. The reflood PCT at 5 ft''3 condition was 1150 K which was 49K higher than that at no gas condition. At low pressure condition, the reduced flow rate and the increased reflood PCT were also identified. However, the PCT deviation due to different gas quantity was not large as much as that at high pressure condition. We concluded that it is necessary to evaluate the effect of the accumulated gas with the consideration of plant- specific conditions such as system pressure, accumulated location, gas quantity and injection time.

  9. GASCON and MHDGAS: FORTRAN IV computer codes for calculating gas and condensed-phase compositions in the coal-fired open-cycle MHD system

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, P E

    1977-12-01

    Fortran IV computer codes have been written to calculate the equilibrium partial pressures of the gaseous phase and the quantity and composition of the condensed phases in the open-cycle MHD system. The codes are based on temperature-dependent equilibrium constants, mass conservation, the mass action law, and assumed ideal solution of compounds in each of two condensed phases. It is assumed that the phases are an oxide-silicate phase and a sulfate-carbonate-hydroxide phase. Calculations are iterated for gas and condensate concentrations while increasing or decreasing the total moles of elements, but keeping mole ratios constant, to achieve the desired total pressure. During iteration the oxygen partial pressure is incrementally changed. The decision to increase or decrease the oxygen pressure in this process depends on comparison of the oxygen content calculated in the gas and condensate phases with the initial amount of oxygen in the ash, coal, seed, and air. This process, together with a normalization step, allows the elements to converge to their initial quantities. Two versions of the computer code have been written. GASCON calculates the equilibrium gas partial pressures and the quantity and composition of the condensed phases in steps of thirteen temperature and pressure combinations in which the condensate is removed after each step, simulating continuous slag removal from the MHD system. MHDGAS retains the condensate for each step, simulating flow of condensate (and gas) through the MHD system.

  10. Flue gas moisture capacity calculation at the outlet of the condensation heat recovery unit

    Directory of Open Access Journals (Sweden)

    Galashov Nikolay

    2017-01-01

    Full Text Available As a result, study equation has been obtained which determine the flue gas moisture capacity at the outlet of the condensation heat recovery unit with an error of less than 1%. It possible to at the temperature of the flue gas below the dew point and the known air-fuel ratio efficient. The equation can be used to calculate plants operating on products of gas combustion without Use of tables and programs for calculating the water-vapor saturation pressure.

  11. Mn nanoparticles produced by inert gas condensation

    International Nuclear Information System (INIS)

    Ward, M B; Brydson, R; Cochrane, R F

    2006-01-01

    The results from experiments using the inert gas condensation method to produce nanoparticles of manganese are presented. Structural and compositional data have been collected through electron diffraction, EDX (energy dispersive X-ray) and EELS (electron energy loss spectroscopy). Both Mn 3 O 4 and pure Mn particles have been produced. Moisture in untreated helium gas causes the particles to oxidize, whereas running the helium through a liquid nitrogen trap removes the moisture and produces β-Mn particles in a metastable state. The particle sizes and the size distribution have been determined. Particle sizes range from 2nm to above 100 nm, however the majority of particles lie in the range below 20 nm with a modal particle size of 6 nm. As well as the modal particle size of 6 nm, there is another peak in the frequency curve at 16 nm that represents another group particles that lie in the range 12 to 20 nm. The smaller particles are single crystals, but the larger particles appear to have a dense region around their edge with a less dense centre. Determination of their exact nature is ongoing

  12. Thermodynamic characterization of deepwater natural gas mixtures with heavy hydrocarbon content at high pressures

    International Nuclear Information System (INIS)

    Atilhan, Mert; Aparicio, Santiago; Ejaz, Saquib; Zhou, Jingjun; Al-Marri, Mohammed; Holste, James J.; Hall, Kenneth R.

    2015-01-01

    This paper includes high-accuracy density measurements and phase envelopes for deepwater natural gas mixtures. Mixtures primarily consist of (0.88 and 0.94) mole fraction methane and both mixtures includes heavy components (C 6+ ) more than 0.002 mole fraction. Experimental density and phase envelope data for deep and ultra-deep reservoir mixtures are scarce in literature and high accuracy measurements for such parameters for such natural gas-like mixtures are essential to validate the benchmark equations for custody transfer such as AGA8-DC92 and GERG-2008 equation of states (EOS). Thus, in this paper we report density and phase envelope experimental data via compact single-sinker magnetic suspension densimeter and isochoric apparatuses. Such data help gas industry to avoid retrograde condensation in natural gas pipelines

  13. A thermodynamic approach on vapor-condensation of corrosive salts from flue gas on boiler tubes in waste incinerators

    International Nuclear Information System (INIS)

    Otsuka, Nobuo

    2008-01-01

    Thermodynamic equilibrium calculation was conducted to understand the effects of tube wall temperature, flue gas temperature, and waste chemistry on the type and amount of vapor-condensed 'corrosive' salts from flue gas on superheater and waterwall tubes in waste incinerators. The amount of vapor-condensed compounds from flue gases at 650-950 deg. C on tube walls at 350-850 deg. C was calculated, upon combustion of 100 g waste with 1.6 stoichiometry (in terms of the air-fuel ratio). Flue gas temperature, rather than tube wall temperature, influenced the deposit chemistry of boiler tubes significantly. Chlorine, sulfur, sodium, potassium, and calcium contents in waste affected it as well

  14. Deposition of Size-Selected Cu Nanoparticles by Inert Gas Condensation

    Directory of Open Access Journals (Sweden)

    Martínez E

    2009-01-01

    Full Text Available Abstract Nanometer size-selected Cu clusters in the size range of 1–5 nm have been produced by a plasma-gas-condensation-type cluster deposition apparatus, which combines a grow-discharge sputtering with an inert gas condensation technique. With this method, by controlling the experimental conditions, it was possible to produce nanoparticles with a strict control in size. The structure and size of Cu nanoparticles were determined by mass spectroscopy and confirmed by atomic force microscopy (AFM and scanning electron transmission microscopy (STEM measurements. In order to preserve the structural and morphological properties, the energy of cluster impact was controlled; the energy of acceleration of the nanoparticles was in near values at 0.1 ev/atom for being in soft landing regime. From SEM measurements developed in STEM-HAADF mode, we found that nanoparticles are near sized to those values fixed experimentally also confirmed by AFM observations. The results are relevant, since it demonstrates that proper optimization of operation conditions can lead to desired cluster sizes as well as desired cluster size distributions. It was also demonstrated the efficiency of the method to obtain size-selected Cu clusters films, as a random stacking of nanometer-size crystallites assembly. The deposition of size-selected metal clusters represents a novel method of preparing Cu nanostructures, with high potential in optical and catalytic applications.

  15. Water-saturated systems of the largest gas and gas-condensate deposits of the USSR. Vodonapornye sistemy krupneishikh gazovykh i gazokondensatnykh mestorozhdenii sssr

    Energy Technology Data Exchange (ETDEWEB)

    Kortsenshtein, V.N.

    1977-01-01

    A description is given of water-pressure systems in a number of the largest gas and gas-condensate fields of the Soviet Union, whose industrial reserves exceed 500 billion cubic meters. These include fields located in the concluding stage of development with sharply reduced recovery (Shebelinsk), fields that have just begun to operate and are characterized by increasing production (Vuktyl, Medved, Orenburg, Shatlyk, Urengoisk), and fields that are not yet developed (Yamburg and Zapolyar). Problems in the theory and practice of studying water-pressure systems of the largest gas and gas-condensate fields are analyzed primarily in connection with conditions required for their rational development which would provide for a maximum extraction of hydrocarbons from the interior. Importance is also given to the hydrogeological aspects of the formation of large hydrocarbon deposits and their distribution in the earth's crust. The most reliable factual materials on hydrogeology are utilized. The book is designed for personnel in the gas and oil industries, hydrogeologists, and scientists interested in problems of the formation, survey, and development of the largest hydrocarbon deposits. 92 references, 65 figures, 71 tables.

  16. Synthesis of Fe Nanoparticles Functionalized with Oleic Acid Synthesized by Inert Gas Condensation

    Directory of Open Access Journals (Sweden)

    L. G. Silva

    2014-01-01

    Full Text Available In this work, we study the synthesis of monodispersed Fe nanoparticles (Fe-NPs in situ functionalized with oleic acid. The nanoparticles were self-assembled by inert gas condensation (IGC technique by using magnetron-sputtering process. Structural characterization of Fe-NPs was performed by transmission electron microscopy (TEM. Particle size control was carried out through the following parameters: (i condensation zone length, (ii magnetron power, and (iii gas flow (Ar and He. Typically the nanoparticles generated by IGC showed diameters which ranged from ~0.7 to 20 nm. Mass spectroscopy of Fe-NPs in the deposition system allowed the study of in situ nanoparticle formation, through a quadrupole mass filter (QMF that one can use together with a mass filter. When the deposition system works without quadrupole mass filter, the particle diameter distribution is around +/−20%. When the quadrupole is in line, then the distribution can be reduced to around +/−2%.

  17. Effect of disorder on condensation in the lattice gas model on a random graph.

    Science.gov (United States)

    Handford, Thomas P; Dear, Alexander; Pérez-Reche, Francisco J; Taraskin, Sergei N

    2014-07-01

    The lattice gas model of condensation in a heterogeneous pore system, represented by a random graph of cells, is studied using an exact analytical solution. A binary mixture of pore cells with different coordination numbers is shown to exhibit two phase transitions as a function of chemical potential in a certain temperature range. Heterogeneity in interaction strengths is demonstrated to reduce the critical temperature and, for large-enough degreeS of disorder, divides the cells into ones which are either on average occupied or unoccupied. Despite treating the pore space loops in a simplified manner, the random-graph model provides a good description of condensation in porous structures containing loops. This is illustrated by considering capillary condensation in a structural model of mesoporous silica SBA-15.

  18. Water recovery and air humidification by condensing the moisture in the outlet gas of a proton exchange membrane fuel cell stack

    International Nuclear Information System (INIS)

    Wan, Z.M.; Wan, J.H.; Liu, J.; Tu, Z.K.; Pan, M.; Liu, Z.C.; Liu, W.

    2012-01-01

    Humidification is one of the most important factors for the operation of proton exchange membrane fuel cell (PEMFC). To maintain the membrane at hydrated state, plenty of water is needed for the state-of-the-art of PEMFC technology, especially in large power applications or long time operation. A condenser is introduced to separate liquid water from the air outlet for air self-sufficient in water of the stack in this study. The condensed temperature at the outlet of the condenser and water recovered amount for air self-sufficient in water are investigated theoretically and experimentally. It is shown that the condensed temperature for air self-sufficient in water is irrelevant with the working current of the stack. When the condenser outlet temperature was above the theoretical line, recovery water was not sufficient for the air humidification. On the contrary, it is sufficient while the temperature was below the theoretical line. It is also shown that when the moisture is sufficiently cooled, large amount water can be separated from the outlet gas, and it increased almost linearly with the time. With the introduction of the condenser, the recovered amount of water can easily satisfy the air self-sufficient in water by condensing the outlet gas to a proper temperature. - Highlights: ► We introduce a condenser to separate liquid water from the air outlet in the stack. ► The mechanism of air self-sufficient in water by condensing gas is presented. ► The condensed temperature and water recovered amount are investigated. ► An experiment is present to validate simplicity and feasibility of the criterion. ► The criterion for air humidification is used for choosing the condenser.

  19. Investigation of Bose Condensation in Ideal Bose Gas Trapped under Generic Power Law Potential in d Dimension

    Science.gov (United States)

    Mehedi Faruk, Mir; Sazzad Hossain, Md.; Muktadir Rahman, Md.

    2016-02-01

    The changes in characteristics of Bose condensation of ideal Bose gas due to an external generic power law potential U=\\sumi=1dci\\vert xi/ai\\vertni are studied carefully. Detailed calculation of Kim et al. (J. Phys. Condens. Matter 11 (1999) 10269) yielded the hierarchy of condensation transitions with changing fractional dimensionality. In this manuscript, some theorems regarding specific heat at constant volume CV are presented. Careful examination of these theorems reveal the existence of hidden hierarchy of the condensation transition in trapped systems as well.

  20. CO2 capture by Condensed Rotational Separation

    NARCIS (Netherlands)

    Benthum, van R.J.; Kemenade, van H.P.; Brouwers, J.J.H.; Golombok, M.

    2010-01-01

    Condensed Rotational Separation (CRS) technology is a patented method to upgrade gas mixtures. A novel application is thecapture of CO2 from coal-combustion fired power stations: Condensed Contaminant Centrifugal Separation in Coal Combustion(C5sep). CRS involves partial condensation of a gas

  1. Assessment of MELCOR condensation models with the presence of noncondensable gas in natural convection flow regime

    International Nuclear Information System (INIS)

    Yoon, Dhongik S; Jo, HangJin; Corradini, Michael L

    2017-01-01

    Condensation of steam vapor is an important mode of energy removal from the reactor containment. The presence of noncondensable gas complicates the process and makes it difficult to model. MELCOR, one of the more widely used system codes for containment analyses, uses the heat and mass transfer analogy to model condensation heat transfer. To investigate previously reported nodalization-dependence in natural convection flow regime, MELCOR condensation model as well as other models are studied. The nodalization-dependence issue is resolved by using physical length from the actual geometry rather than node size of each control volume as the characteristic length scale for MELCOR containment analyses. At the transition to turbulent natural convection regime, the McAdams correlation for convective heat transfer produces a better prediction compared to the original MELCOR model. The McAdams correlation is implemented in MELCOR and the prediction is validated against a set of experiments on a scaled AP600 containment. The MELCOR with our implemented model produces improved predictions. For steam molar fractions in the gas mixture greater than about 0.58, the predictions are within the uncertainty margin of the measurements. The simulation results still underestimate the heat transfer from the gas-steam mixture, implying that conservative predictions are provided.

  2. Theoretical study on bubble formation and flow condensation in downflow channel with horizontal gas injection

    Science.gov (United States)

    Zhu, Kang; Li, Yanzhong; Wang, Jiaojiao; Ma, Yuan; Wang, Lei; Xie, Fushou

    2018-05-01

    Bubble formation and condensation in liquid pipes occur widely in industrial systems such as cryogenic propellant feeding system. In this paper, an integrated theoretical model is established to give a comprehensive description of the bubble formation, motion and condensation process. The model is validated by numerical simulations and bubble condensation experiments from references, and good agreements are achieved. The bubble departure diameter at the orifice and the flow condensation length in the liquid channel are predicted by the model, and effects of various influencing parameters on bubble behaviors are analyzed. Prediction results indicate that the orifice diameter, the gas feeding rate, and the liquid velocity are the primary influence factors on the bubble departure diameter. The interfacial heat transfer as well as the bubble departure diameter has a direct impact on the bubble flow condensation length, which increases by 2.5 times over a system pressure range of 0.1 0.4 MPa, and decreases by 85% over a liquid subcooling range of 5 30 K. This work could be beneficial to the prediction of bubble formation and flow condensation processes and the design of cryogenic transfer pipes.

  3. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, Duane J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, William R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter

  4. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    International Nuclear Information System (INIS)

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

    2014-01-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter

  5. Characterization of the vadose zone above a shallow aquifer contaminated with gas condensate hydrocarbons

    International Nuclear Information System (INIS)

    Sublette, K.; Duncan, K.; Thoma, G.; Todd, T.

    2002-01-01

    A gas production site in the Denver Basin near Ft. Lupton, Colorado has leaked gas condensate hydrocarbons from an underground concrete tank used to store produced water. The leak has contaminated a shallow aquifer. Although the source of pollution has been removed, a plume of hydrocarbon contamination still remains for nearly 46 m from the original source. An extensive monitoring program was conducted in 1993 of the groundwater and saturated sediments. The objective was to determine if intrinsic aerobic or anaerobic bioremediation of hydrocarbons occurred at the site at a rate that would support remediation. Geochemical indicators of hydrogen biodegradation by microorganisms in the saturated zone included oxygen depletion, increased alkalinity, sulfate depletion, methane production and Fe2+ production associated with hydrogen contamination. The presence of sulfate-reducing bacteria and methanogens was also much higher in the contaminated sediments. Degraded hydrocarbon metabolites were found in contaminated groundwater. An extensive characterization of the vadose zone was conducted in which the vadose zone was sample in increments of 15 cm from the surface to the water table at contaminated and non contaminated sites. The samples were tested for individual C3+ hydrocarbons, methane, CO2, total organic carbon, total inorganic carbon, and total petroleum hydrocarbons. The vadose zone consisted of an active and aerobic bioreactor fueled by condensate hydrocarbons transported into the unsaturated zone by evaporation of hydrocarbons at the water table. It was concluded that the unsaturated zone makes an important contribution to the natural attenuation of gas condensate hydrocarbons in the area. 17 refs., 2 tabs., 28 figs

  6. Studies on the characteristics of the separated heat pipe system with non-condensible gas for the use of the passive decay heat removal in reactor systems

    International Nuclear Information System (INIS)

    Hayashi, Takao; Ishi, Takayuki; Hayakawa, Hitoshi; Ohashi, Kazutaka

    1997-01-01

    Experiments on the separated heat pipe system of variable conductance type, which enclose non-condensible gas, have been carried out with intention of applying such system to passive decay heat removal of the modular reactors such as HTR plant. Basic experiments have been carried out on the experimental apparatus consisting of evaporator, vapor transfer tube, condenser tube and return tube which returns the condensed liquid back to the evaporator. Water and methanol were examined as the working fluids and nitrogen gas was enclosed as the non-condensible gas. The behaviors of the system were examined for the parametric changes of the heat input under the various pressures of nitrogen gas initially enclosed, including the case without enclosing N 2 gas for the comparison. The results of the experiments shows very clear features of self control characteristics. The self control mechanism was made clear, that is, in such system in which the condensing area in the condenser expands automatically in accordance with the increase of the heat input to keep the system temperature nearly constant. The working temperature of the system are clearly dependent on the pressure of the non-condensable gas initially enclosed, with higher system working temperature with higher initial gas pressure enclosed. The analyses were done on water and methanol as the working fluids, which show very good agreement with the experimental results. A lot of attractive applications are expected including the self switching feature with minimum heat loss during normal operation with maintaining the sufficient heat removal at accidents. (author)

  7. Modelling of film condensation in presence of non condensable gases

    International Nuclear Information System (INIS)

    Genevieve Geffraye; Dominique Bestion; Vladimir Kalitvianski

    2005-01-01

    Full text of publication follows: This paper presents recent developments in the modelling of the condensation due to heat removal from a wall with a possible presence of hydrogen, nitrogen, or air. This work is mainly concerned with nuclear reactor safety with particular reference to situations related to new reactor design, cold shutdown state and severe accident analysis. Film condensation of steam in presence of nitrogen and helium in a tube has been investigated in the COTURNE experiment in a rather large range of parameters, pressure (from 0.1 to 7 Mpa), heat flux (0.1 to 6 W/cm 2 ), mass fraction of noncondensable gas (0 to 1) and also in presence of superheated steam. The experiment represents a Steam Generator tube of a Pressurised Water Reactor and can simulate both co-current or countercurrent flow of steam and water.The models are implemented in the CATHARE code used for nuclear reactor thermal-hydraulics. The code uses two mass balance equations for liquid and gas, two momentum balance equations for liquid and gas and two energy balance equations for liquid and gas. Additional mass transport equations can be added for each non condensable gas. Heat transfers from wall to liquid film, from liquid to interface and gas to interface are modelled. The liquid film heat transfer coefficient is first investigated in pure saturated steam conditions in the pressure range from 0.1 to 7 Mpa. The CATHARE film condensation model in pure steam conditions is derived from Chen's correlation. Chen proposes a general correlation for the film condensation, covering the wavy-laminar and the turbulent film regimes and taking into account the interfacial friction effect. A large data base of laminar film regime was used including COTURNE data other available data found in the literature. The analysis of these data base suggests an influence of the liquid Reynolds number, according to the Nusselt theory, and also of the Eoetvoes number, with surface tension effects. A

  8. Gas Condensates onto a LHC Type Cryogenic Vacuum System Subjected to Electron Cloud

    CERN Multimedia

    Baglin, V

    2004-01-01

    In the Large Hadron Collider (LHC), the gas desorbed via photon stimulated molecular desorption or electron stimulated molecular desorption will be physisorbed onto the beam screen held between 5 and 20 K. Studies of the effects of the electron cloud onto a LHC type cryogenic vacuum chamber have been done with the cold bore experiment (COLDEX) installed in the CERN Super Proton Synchrotron (SPS). Experiments performed with gas condensates such as H2, H2O, CO and CO2 are described. Implications for the LHC design and operation are discussed.

  9. Bose condensation in (random traps

    Directory of Open Access Journals (Sweden)

    V.A. Zagrebnov

    2009-01-01

    Full Text Available We study a non-interacting (perfect Bose-gas in random external potentials (traps. It is shown that a generalized Bose-Einstein condensation in the random eigenstates manifests if and only if the same occurs in the one-particle kinetic-energy eigenstates, which corresponds to the generalized condensation of the free Bose-gas. Moreover, we prove that the amounts of both condensate densities are equal. This statement is relevant for justification of the Bogoliubov approximation} in the theory of disordered boson systems.

  10. Operando Spectroscopy of the Gas-Phase Aldol Condensation of Propanal over Solid Base Catalysts

    NARCIS (Netherlands)

    Hernández-giménez, Ana M.; Ruiz-martínez, Javier; Puértolas, Begoña; Pérez-ramírez, Javier; Bruijnincx, Pieter C. A.; Weckhuysen, Bert M.

    2017-01-01

    The gas-phase aldol condensation of propanal, taken as model for the aldehyde components in bio-oils, has been studied with a combined operando set-up allowing to perform FT-IR & UV–Vis diffuse reflectance spectroscopy (DRS) with on-line mass spectrometry (MS). The selected solid base catalysts, a

  11. Bose-Einstein condensation in real space

    International Nuclear Information System (INIS)

    Valencia, J.J.; Llano, M. de; Solis, M.A.

    2004-01-01

    We show how Bose-Einstein condensation (BEC) occurs not only in momentum space but also in coordinate (or real) space. Analogies between the isotherms of a van der Waals classical gas of extended (or finite-diameter) identical atoms and the point (or zero-diameter) particles of an ideal BE gas allow concluding that, in contrast with the classical case, the volume per particle vanishes in the pure BE condensate phase precisely because the boson diameters are zero. Thus a BE condensate forms in real space without exhibiting a liquid branch as does the classical gas. (Author)

  12. Synthesis and morphology of iron-iron oxide core-shell nanoparticles produced by high pressure gas condensation

    NARCIS (Netherlands)

    Xing, Lijuan; ten Brink, Gert H.; Chen, Bin; Schmidt, Franz P.; Haberfehlner, Georg; Hofer, Ferdinand; Kooi, Bart J.; Palasantzas, Georgios

    2016-01-01

    Core-shell structured Fe nanoparticles (NPs) produced by high pressure magnetron sputtering gas condensation were studied using transmission electron microscopy (TEM) techniques, electron diffraction, electron energy-loss spectroscopy (EELS), tomographic reconstruction, and Wulff shape construction

  13. Popliteal versus tibial retrograde access for subintimal arterial flossing with antegrade-retrograde intervention (SAFARI) technique.

    Science.gov (United States)

    Hua, W R; Yi, M Q; Min, T L; Feng, S N; Xuan, L Z; Xing, J

    2013-08-01

    This study aimed to ascertain differences in benefit and effectiveness of popliteal versus tibial retrograde access in subintimal arterial flossing with the antegrade-retrograde intervention (SAFARI) technique. This was a retrospective study of SAFARI-assisted stenting for long chronic total occlusion (CTO) of TASC C and D superficial femoral lesions. 38 cases had superficial femoral artery lesions (23 TASC C and 15 TASC D). All 38 cases underwent SAFARI-assisted stenting. The ipsilateral popliteal artery was retrogradely punctured in 17 patients. A distal posterior tibial (PT) or dorsalis pedis (DP) artery was retrogradely punctured in 21 patients, and 16 of them were punctured after open surgical exposure. SAFARI technical success was achieved in all cases. There was no significant difference in 1-year primary patency (75% vs. 78.9%, p = .86), secondary patency (81.2% vs. 84.2%, p = .91) and access complications (p = 1.00) between popliteal and tibial retrograde access. There was statistical difference in operation time between popliteal (140.1 ± 28.4 min) and tibial retrograde access with PT/DP punctures after surgical vessel exposure (120.4 ± 23.0 min, p = .04). The SAFARI technique is a safe and feasible option for patients with infrainguinal CTO (TASC II C and D). The PT or DP as the retrograde access after surgical vessel exposure is a good choice when using the SAFARI technique. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  14. EVALUATION OF SOLVENTS EFFICIENCY IN CONDENSATE BANKING REMOVAL

    OpenAIRE

    CORREA, TOMAS; TIAB, DJEBBAR; RESTREPO, DORA PATRICIA

    2009-01-01

    This work describes experimental design and tests performed to simulate gas condensate reservoir conditions below dew point in the laboratory using three different compositions of synthetic gas condensate. Methanol, propanol and methylene chloride are the solvents used to remove the condensate banking and improve the gas effective permeability near to the wellbore. Solvents are injected in Berea sandstone rock with similar petrophysical properties in order to compare the efficiency at removin...

  15. Retrograde pulmonary arteriography

    International Nuclear Information System (INIS)

    Calcaterra, G.; Lam, J.; Losekoot, T.G.

    1984-01-01

    The authors performed retrograde pulmonary arteriography by means of a pulmonary venous wedge injection in 10 patients with no demonstrable intrapericardial pulmonary arteries by 'conventional' angiographic techniques. In all cases but one, the procedure demonstrated the feasibility of a further operation. No complications were observed. Retrograde pulmonary arteriography is an important additional method for determining the existence of surgically accessible pulmonary arteries when other techniques have failed. (Auth.)

  16. Temperature Programmed Desorption of Quench-condensed Krypton and Acetone in Air; Selective Concentration of Ultra-trace Gas Components.

    Science.gov (United States)

    Suzuki, Taku T; Sakaguchi, Isao

    2016-01-01

    Selective concentration of ultra-trace components in air-like gases has an important application in analyzing volatile organic compounds in the gas. In the present study, we examined quench-condensation of the sample gas on a ZnO substrate below 50 K followed by temperature programmed desorption (TPD) (low temperature TPD) as a selective gas concentration technique. We studied two specific gases in the normal air; krypton as an inert gas and acetone as a reactive gas. We evaluated the relationship between the operating condition of low temperature TPD and the lowest detection limit. In the case of krypton, we observed the selective concentration by exposing at 6 K followed by thermal desorption at about 60 K. On the other hand, no selectivity appeared for acetone although trace acetone was successfully concentrated. This is likely due to the solvent effect by a major component in the air, which is suggested to be water. We suggest that pre-condensation to remove the water component may improve the selectivity in the trace acetone analysis by low temperature TPD.

  17. Interstellar silicate analogs for grain-surface reaction experiments: Gas-phase condensation and characterization of the silicate dust grains

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, T.; Jäger, C. [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany); Gavilan, L.; Lemaire, J. L.; Vidali, G. [Observatoire de Paris/Université de Cergy-Pontoise, 5 mail Gay Lussac, F-95000 Cergy-Pontoise (France); Mutschke, H. [Laboratory Astrophysics Group of the Astrophysical Institute and University Observatory, Friedrich Schiller University Jena Schillergässchen 3, D-07743 Jena (Germany); Henning, T., E-mail: tolou.sabri@uni-jena.de [Max Planck Institute for Astronomy Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-01-10

    Amorphous, astrophysically relevant silicates were prepared by laser ablation of siliceous targets and subsequent quenching of the evaporated atoms and clusters in a helium/oxygen gas atmosphere. The described gas-phase condensation method can be used to synthesize homogeneous and astrophysically relevant silicates with different compositions ranging from nonstoichiometric magnesium iron silicates to pyroxene- and olivine-type stoichiometry. Analytical tools have been used to characterize the morphology, composition, and spectral properties of the condensates. The nanometer-sized silicate condensates represent a new family of cosmic dust analogs that can generally be used for laboratory studies of cosmic processes related to condensation, processing, and destruction of cosmic dust in different astrophysical environments. The well-characterized silicates comprising amorphous Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4}, as well as the corresponding crystalline silicates forsterite and fayalite, produced by thermal annealing of the amorphous condensates, have been used as real grain surfaces for H{sub 2} formation experiments. A specifically developed ultra-high vacuum apparatus has been used for the investigation of molecule formation experiments. The results of these molecular formation experiments on differently structured Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4} described in this paper will be the topic of the next paper of this series.

  18. Condensate growth in trapped Bose gates

    NARCIS (Netherlands)

    Bijlsma, M.J.; Zaremba, E.; Stoof, H.T.C.

    2000-01-01

    We study the dynamics of condensate fromation in an inhomogeneous trapped Bose gas with a positive interatomic scattering length. We take into account both the nonequilibrium kinetics of the thermal cloud and the Hartree-Fock mean-field efects in the condensed and the noncondensed parts of the gas.

  19. Condensate growth in trapped Bose gases

    NARCIS (Netherlands)

    Bijlsma, M.J.; Zaremba, E.; Stoof, H.T.C.

    2000-01-01

    We study the dynamics of condensate formation in an inhomogeneous trapped Bose gas with a positive interatomic scattering length. We take into account both the nonequilibrium kinetics of the thermal cloud and the Hartree-Fock mean-field effects in the condensed and the noncondensed parts of the gas.

  20. Assessment of natural hydrocarbon bioremediation at two gas condensate production sites

    International Nuclear Information System (INIS)

    Barker, G.W.; Raterman, K.T.; Fisher, J.B.; Corgan, J.M.; Trent, G.L.; Brown, D.R.; Sublette, K.L.

    1995-01-01

    Condensate liquids are present in soil and groundwater at two gas production sites in the Denver-Julesburg Basin operated by Amoco. These sites have been closely monitored since July 1993 to determine whether intrinsic aerobic or anaerobic bioremediation of hydrocarbons occurs at a sufficient rate and to an adequate endpoint to support a no-intervention decision. Groundwater monitoring and analysis of soil cores strongly suggest that intrinsic bioremediation is occurring at these sites by multiple pathways, including aerobic oxidation, Fe(III) reduction, and sulfate reduction

  1. Retrograde curves of solidus and solubility

    International Nuclear Information System (INIS)

    Vasil'ev, M.V.

    1979-01-01

    The investigation was concerned with the constitutional diagrams of the eutectic type with ''retrograde solidus'' and ''retrograde solubility curve'' which must be considered as diagrams with degenerate monotectic transformation. The solidus and the solubility curves form a retrograde curve with a common retrograde point representing the solubility maximum. The two branches of the Aetrograde curve can be described with the aid of two similar equations. Presented are corresponding equations for the Cd-Zn system and shown is the possibility of predicting the run of the solubility curve

  2. Market diffusion, technological learning, and cost-benefit dynamics of condensing gas boilers in the Netherlands

    NARCIS (Netherlands)

    Weiss, M.; Dittmar, L.; Junginger, H.M.; Patel, M.K.; Blok, K.

    2009-01-01

    High costs often prevent the market diffusion of novel and efficient energy technologies. Monitoring cost and price decline for these technologies is thus important in order to establish effective energy policy. Here, we present experience curves and cost-benefit analyses for condensing gas boilers

  3. On the design of residential condensing gas boilers

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, M.

    1997-02-01

    Two main topics are dealt with in this thesis. Firstly, the performance of condensing boilers with finned tube heat exchangers and premix burners is evaluated. Secondly, ways of avoiding condensate formation in the flue system are evaluated. In the first investigation, a transient heat transfer approach is used to predict performance of different boiler configurations connected to different heating systems. The smallest efficiency difference between heat loads and heating systems is obtained when the heat exchanger gives a small temperature difference between flue gases and return water, the heat transfer coefficient is low and the thermostat hysteresis is large. Taking into account heat exchanger size, the best boiler is one with higher heat transfer per unit area which only causes a small efficiency loss. The total heating cost at part load, including gas and electricity, has a maximum at the lowest simulated heat load. The heat supplied by the circulation heat pump is responsible for this. The second investigation evaluates methods of drying the flue gases. Reheating the flue gases in different ways and water removal in an adsorbent bed are evaluated. Reheating is tested in two specially designed boilers. The necessary reheating is calculated to approximately 100-150 deg C if an uninsulated masonry chimney is used. The tested boilers show that it is possible to design a proper boiler. The losses, stand-by and convective/radiative, must be kept at a minimum in order to obtain a high efficiency. 86 refs, 70 figs, 16 tabs

  4. ν-Dimensional ideal quantum q-gas: Bose-Einstein condensation and λ-point transition

    International Nuclear Information System (INIS)

    R-Monteiro, M.; Roditi, I.; Rodrigues, L.M.C.S.

    1994-01-01

    The authors consider an ideal quantum q-gas in ν spatial dimensions and energy spectrum ω i αp α . Departing from the Hamiltonian H = ω[N], the authors study the effect of the deformation on thermodynamic functions and equation of state of that system. The virial expansion is obtained for the high temperature (or low density) regime. The critical temperature is higher than in non-deformed ideal gases. They show that Bose-Einstein condensation always exists (unless when ν/α = 1) for finite q but not for q = ∞. Employing numerical calculations and selecting for ν/α the values 3/2, 2 and 3, the authors show the critical temperature as a function of q, the specific heat C V and the chemical potential μ as functions of T/T c q for q = 1.05 and q= 4.5. C V exhibits a λ-point discontinuity in all cases, instead of the cusp singularity found in the usual ideal gas. The results indicate that physical systems which have quantum symmetries can exhibit Bose-Einstein condensation phenomenon, the critical temperature being favored by the deformation parameter

  5. Study of condensate removal from wells

    Energy Technology Data Exchange (ETDEWEB)

    Gusein-Zade, Z I

    1967-01-01

    A pressure profile of well No. 218 in the Karadag condensate field showed that pressure did not vary linearly with depth. Calculations indicated that at depths of 3,000-3,640 m, produced fluid had a density of 0.29g/ cmU3D, whereas pure condensate gas should have a density of 0.11g/cmU3D. Apparently liquid was accumulating in the well. Other data showed that gas velocity in the well at various depths varied from 6 to 11 m/sec. It was also found that this same range of gas velocities was sufficient to prevent liquid accumulation in other wells. In an effort to solve this problem, the upward flow of gas-water and of gas-condensate mixtures in tubes was studied. Each had a different flow regime. Gas-condsensate formed foam, whereas the gas-water mixture did not. This resolved the problem, since foam is known to aid the removal of liquid by gas. Additional research showed that water was present in, and promoted accumulation of, liquid in well No. 218.

  6. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-11-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  7. Vortices in atomic Bose-Einstein condensates in the large-gas-parameter region

    International Nuclear Information System (INIS)

    Nilsen, J.K.; Mur-Petit, J.; Guilleumas, M.; Polls, A.; Hjorth-Jensen, M.

    2005-01-01

    In this work we compare the results of the Gross-Pitaevskii and modified Gross-Pitaevskii equations with ab initio variational Monte Carlo calculations for Bose-Einstein condensates of atoms in axially symmetric traps. We examine both the ground state and excited states having a vortex line along the z axis at high values of the gas parameter and demonstrate an excellent agreement between the modified Gross-Pitaevskii and ab initio Monte Carlo methods, both for the ground and vortex states

  8. Special features in choosing a development procedure for deep gas condensate fields with small reserves

    Energy Technology Data Exchange (ETDEWEB)

    Rassokhin, G V; Soshnin, N M

    1971-01-01

    In planning the development and production schedule for fields with small gas-condensate reserves, the following factors need to be considered: capital investment per unit of production, value of produced gas, ultimate recovered reserves, geological structure of the field, depth of well, heterogeneity of producing sands, etc. The importance of such factors is discussed and it is shown that for small fields, the parameter of minimum net expense cannot be used as a planning tool. Both geological and economic factors must be included in field development.

  9. Effect of non-condensable gas on startup of a loop thermosyphon

    International Nuclear Information System (INIS)

    He, Jiang; Lin, Guiping; Bai, Lizhan; Miao, Jianyin; Zhang, Hongxing; Wang, Lu

    2013-01-01

    Non-condensable gas (NCG) generated inside two-phase heat transfer devices can adversely affect the thermal performance and limit the lifetime of such devices. In this work, experimental investigation of the effect of NCG on the startup of an ammonia-stainless steel loop thermosyphon was conducted. In the experiment, nitrogen was injected into the loop thermosyphon as NCG. The effect of NCG inventory on the startup behavior was investigated by adjusting the injected amount of nitrogen. The experimental results reveal that NCG prolongs the startup time and increases the startup liquid superheat and temperature overshoot; the more NCG exists in the loop thermosyphon, the higher the liquid superheat and temperature overshoot. When NCG is present in the system, boiling usually occurs in the evaporator before startup, but it does not mean the system will start up instantly, which differs from the conditions without NCG. Under all the conditions, increasing the heat load can effectively shorten the startup time but leads to a large temperature overshoot; forced convection cooling of the condenser has almost no effect on shortening the startup time especially for large NCG inventory situations, but it can effectively limit the temperature overshoot. For large NCG inventory situations, the loop thermosyphon can start up at a small heat load (5 W) or even without a heat load when the condenser is cooled by forced convection of ethanol. No failed start-ups occurred during any of the tests. (authors)

  10. Bose-Einstein condensation of paraxial light

    Science.gov (United States)

    Klaers, J.; Schmitt, J.; Damm, T.; Vewinger, F.; Weitz, M.

    2011-10-01

    Photons, due to the virtually vanishing photon-photon interaction, constitute to very good approximation an ideal Bose gas, but owing to the vanishing chemical potential a (free) photon gas does not show Bose-Einstein condensation. However, this is not necessarily true for a lower-dimensional photon gas. By means of a fluorescence induced thermalization process in an optical microcavity one can achieve a thermal photon gas with freely adjustable chemical potential. Experimentally, we have observed thermalization and subsequently Bose-Einstein condensation of the photon gas at room temperature. In this paper, we give a detailed description of the experiment, which is based on a dye-filled optical microcavity, acting as a white-wall box for photons. Thermalization is achieved in a photon number-conserving way by photon scattering off the dye molecules, and the cavity mirrors both provide an effective photon mass and a confining potential-key prerequisites for the Bose-Einstein condensation of photons. The experimental results are in good agreement with both a statistical and a simple rate equation model, describing the properties of the thermalized photon gas.

  11. Secondary ions produced from condensed rare gas targets under highly charged MeV/amu heavy ion bombardment

    International Nuclear Information System (INIS)

    Tawara, H.; Tonuma, T.; Kumagai, H.; Matsuo, T.

    1994-01-01

    Secondary ions produced from condensed rare gas targets are observed under MeV/amu, highly charged, heavy ion impact. The intensities of the observed cluster ions decrease smoothly as the cluster sizes become large but show some discontinuities at particular sizes of cluster ions. This seems to be closely related to the stabilities of cluster ion structures. It is also noted that very few doubly charged or practically no triply/higher charged ions have been observed, in sharp contrast to that of some condensed molecular targets. (orig.)

  12. A retrograde object near Jupiter's orbit

    Science.gov (United States)

    Connors, M.; Wiegert, P.

    2018-02-01

    Asteroid 2007 VW266 is among the rare objects with a heliocentric retrograde orbit, and its semimajor axis is within a Hill sphere radius of that of Jupiter. This raised the interesting possibility that it could be in co-orbital retrograde resonance with Jupiter, a second "counter-orbital" object in addition to recently discovered 2015 BZ509. We find instead that the object is in 13/14 retrograde mean motion resonance (also referred to as 13/-14). The object is shown to have entered its present orbit about 1700 years ago, and it will leave it in about 8000 years, both through close approach to Jupiter. Entry and exit states both avoid 1:1 retrograde resonance, but the retrograde nature is preserved. The temporary stable state is due to an elliptic orbit with high inclination keeping nodal passages far from the associated planet. We discuss the motion of this unusual object based on modeling and theory, and its observational prospects.

  13. Modelling of steam condensation in the primary flow channel of a gas-heated steam generator

    International Nuclear Information System (INIS)

    Kawamura, H.; Meister, G.

    1982-10-01

    A new simulation code has been developed for the analysis of steam ingress accidents in high temperatures reactors which evaluates the heat transfer in a steam generator headed by a mixture of helium and water steam. Special emphasis is laid on the analysis of steam condensation in the primary circuit of the steam generator. The code takes wall and bulk condensation into account. A new method is proposed to describe the entrainment of water droplets in the primary gas flow. Some typical results are given. Steam condensation in the primary channel may have a significant effect on temperature distributions. The effect on the heat transferred by the steam generator, however, is found to be not so prominent as might be expected. The reason is discussed. A simplified code will also be described, which gives results with reasonable accuracy within much shorter execution times. This code may be used as a program module in a program simulating the total primary circuit of a high temperature reactor. (orig.) [de

  14. Gas scavenging of insoluble vapors: Condensation of methyl salicylate vapor onto evaporating drops of water

    Science.gov (United States)

    Seaver, Mark; Peele, J. R.; Rubel, Glenn O.

    We have observed the evaporation of acoustically levitated water drops at 0 and 32% relative humidity in a moving gas stream which is nearly saturated with methyl salicylate vapor. The initial evaporation rate is characteristic of a pure water drop and gradually slows until the evaporation rate becomes that of pure methyl salicylate. The quantity of condensed methyl salicylate exceeds its Henry's law solubility in water by factors of more than 30-50. This apparent violation of Henry's law agrees with the concentration enhancements in the liquid phase found by glotfelty et al. (1987, Nature235, 602-605) during their field measurements of organophorus pesticides in fog water. Under our conditions, visual evidence demonstrates the presence of two liquid phases, thus invalidating the use of Henry's law. A continuum evaporation-condensation model for an immiscible two-component system which accounts for evaporative self-cooling of the drop correctly predicts the amount of methyl salicylate condensed onto the water drops.

  15. Off-diagonal long-range order, cycle probabilities, and condensate fraction in the ideal Bose gas.

    Science.gov (United States)

    Chevallier, Maguelonne; Krauth, Werner

    2007-11-01

    We discuss the relationship between the cycle probabilities in the path-integral representation of the ideal Bose gas, off-diagonal long-range order, and Bose-Einstein condensation. Starting from the Landsberg recursion relation for the canonic partition function, we use elementary considerations to show that in a box of size L3 the sum of the cycle probabilities of length k>L2 equals the off-diagonal long-range order parameter in the thermodynamic limit. For arbitrary systems of ideal bosons, the integer derivative of the cycle probabilities is related to the probability of condensing k bosons. We use this relation to derive the precise form of the pik in the thermodynamic limit. We also determine the function pik for arbitrary systems. Furthermore, we use the cycle probabilities to compute the probability distribution of the maximum-length cycles both at T=0, where the ideal Bose gas reduces to the study of random permutations, and at finite temperature. We close with comments on the cycle probabilities in interacting Bose gases.

  16. Characterization of condensed phase nitric acid particles formed in the gas phase

    Institute of Scientific and Technical Information of China (English)

    Long Jia; Yongfu Xu

    2011-01-01

    The formation of nitric acid hydrates has been observed in a chamber during the dark reaction of NO2 with O3 in the presence of air.The size of condensed phase nitric acid was measured to be 40-100 nm and 20-65 nm at relative humidity (RH) ≤ 5% and RH = 67% under our experimental conditions, respectively.The nitric acid particles were collected on the glass fiber membrane and their chemical compositions were analyzed by infrared spectrum.The main components of nitric acid hydrates in particles are HNO3·3H2O and NO3-·xH2O (x≥ 4) at low RH, whereas at high RH HNO3·H2O, HNO3·2H2O, HNO3·3H2O and NO3-·xH2O (x≥ 4) all exist in the condensed phase.At high RH HNO3·xH2O (x ≤ 3) collected on the glass fiber membrane is greatly increased, while NO3-·xH2O (x ≥4) decreased, compared with low RH.To the best of our knowledge, this is the first time to report that condensed phase nitric acid can be generated in the gas phase at room temperature.

  17. Arterial blood gas management in retrograde cerebral perfusion: the importance of carbon dioxide.

    Science.gov (United States)

    Ueno, K; Takamoto, S; Miyairi, T; Morota, T; Shibata, K; Murakami, A; Kotsuka, Y

    2001-11-01

    Many interventional physiological assessments for retrograde cerebral perfusion (RCP) have been explored. However, the appropriate arterial gas management of carbon dioxide (CO2) remains controversial. The aim of this study is to determine whether alpha-stat or pH-stat could be used for effective brain protection under RCP in terms of cortical cerebral blood flow (CBF), cerebral metabolic rate for oxygen (CMRO2), and distribution of regional cerebral blood flow. Fifteen anesthetized dogs (25.1+/-1.1 kg) on cardiopulmonary bypass (CPB) were cooled to 18 degrees C under alpha-stat management and had RCP for 90 min under: (1), alpha-stat; (2), pH-stat; or (3), deep hypothermic (18 degrees C) antegrade CPB (antegrade). RCP flow was regulated for a sagittal sinus pressure of around 25 mmHg. CBF was monitored by a laser tissue flowmeter. Serial analyses of blood gas were made. The regional cerebral blood flow was measured with colored microspheres before discontinuation of RCP. CBF and CMRO2 were evaluated as the percentage of the baseline level (%CBF, %CMRO2). The oxygen content of arterial inflow and oxygen extraction was not significantly different between the RCP groups. The %CBF and %CMRO2 were significantly higher for pH-stat RCP than for alpha-stat RCP. The regional cerebral blood flow, measured with colored microspheres, tended to be higher for pH-stat RCP than for alpha-stat RCP, at every site in the brain. Irrespective of CO2 management, regional differences were not significant among any site in the brain. CO2 management is crucial for brain protection under deep hypothermic RCP. This study revealed that pH-stat was considered to be better than alpha-stat in terms of CBF and oxygen metabolism in the brain. The regional blood flow distribution was considered to be unchanged irrespective of CO2 management.

  18. Disrupting the balance of natural fluid systems during the working of gas condensate deposits. Narushenie ravnovesiya prirodnykh flyuidal'nykh sistem pri razrabotke gazovykh i gazokondensatnykh mestorozhdenii

    Energy Technology Data Exchange (ETDEWEB)

    Kortsenshtein, V.N.

    1980-01-01

    Natural processes that occur in the ground as a result of almost complete or partial depletion of large gas and gas-condensate deposits are analyzed. Problems concerned with the disruption of the fluid systems equilibrium are examined as represented by interstitial water and industrial gaseous and gas-condensate accumulations. Observations over a period of 20-25 years were made of the depleted deposits of North-Stavropol', Gazlin, and Shebel, whose initial hydrogeological background that serves as the basis of the reference system, has been studied in detail. Information is also presented on recently exploited water-vapor systems, such as the large Vuktyl', Orenburg, Medvezh', and Shatlyk deposits. The book is intended for a broad spectrum of geologists, hydrogeologists, and engineers interested in geology and the working of gas and gas condensate deposits. 36 references, 27 figures, 35 tables.

  19. Analysis of experiments for vertical out-tube steam condensation in presence of non-condensable gases

    International Nuclear Information System (INIS)

    Su Jiqiang; Sun Zhongning; Fan Guangming; Guo Zixuan

    2014-01-01

    In order to investigate the influence of various parameters in the steam condensation heat transfer process with non-condensable gas, and to get a more suitable empirical correlation, the wall under-cooling, pressure and the content of non-condensable gas were studied outside a vertical tube by experiments. The results showed that: at the same pressure, the relationship between wall sub-cooling and HTC is exponential, and helium stratification does not happen within the experimental range. Based on the analysis of various experimental variables, combined with a large number of experimental data, a wider scope of application of the empirical correlation associated is obtained with the experimental value of the error within ±20%. (authors)

  20. Separation of submicron particles from biofuel combustion with flue gas condensation or wet condensing electrostatic precipitator. Analysis of possibilities; Avskiljning av submikrona partiklar vid biobraenslefoerbraenning med roekgaskondensering eller kondenserande vaata elfilter. Analys av moejligheterna

    Energy Technology Data Exchange (ETDEWEB)

    Roennbaeck, Marie; Gustavsson, Lennart [Swedish National Testing and Research Inst., Boraas (Sweden)

    2006-11-15

    Dust particles in flue gas larger than 1 {mu}m are well separated by conventional techniques, while submicron particles are poorly separated. As the use of biofuels with high ash content is increasing, as well as knowledge about negative health effects from inhalation of submicron particles, the interest for reduction of emissions of submicron particles will probably increase. The aim of this project is to investigate possible techniques for separation of submicron particles during flue gas condensation through modification of conventional technique, or with available techniques not usually used with combustion of biofuels, e.g. a wet electrostatic precipitator. Mechanisms for separation of dust particles are briefly described. Cyclones separates particles larger than about 1 {mu}m. Fabric filters separates all particles sizes, but the efficiency reduces as the size reduces. In flue gas condensers and scrubbers the speed and size of water droplets are important for the reduction efficiency. Dry electrostatic precipitators work for all particle sizes, but with reduced efficiency for sizes between 0.1 and 3 {mu}m. Wet electrostatic precipitators separates submicron particles much better. One reason for this is that the potential between the electrodes can be higher. Among conventional flue gas condensers and scrubbers there are two types that, properly designed, can separate submicron particles, namely 'type venturi scrubbers', i.e. a scrubber where a high flue gas velocity is used to form many, small water droplets by friction forces in a nozzle, and 'type scrubber with nozzles', i.e. a scrubber where nozzles supply droplets to the flue gas. For a scrubber with nozzles, the falling velocity of the droplets must be lower and the size smaller than is common today. Also the wet electrostatic precipitator separates submicron particles with high efficiency. They are used today mainly for problematic particles, e.g. sticky or corrosive ones, or for

  1. Steam blowdown experiments with the condensation pool test rig

    International Nuclear Information System (INIS)

    Purhonen, H.; Puustinen, M.; Laine, J.; Raesaenen, A.; Kyrki-Rajamaeki, R.; Vihavainen, J.

    2005-01-01

    During a possible loss-of-coolant accident (Local) a large amount of non-condensable (nitrogen) and condensable (steam) gas is blown from the upper drywell of the containment to the condensation pool through the blowdown pipes at the boiling water reactors (BWRs). The wet well pool serves as the major heat sink for condensation of steam. The blowdown causes both dynamic and structural loads to the condensation pool. There might also be a risk that the gas discharging to the pool could push its way to the emergency core cooling systems (ECCS) and undermine their performance. (author)

  2. Use of fundamental condensation heat transfer experiments for the development of a sub-grid liquid jet condensation model

    Energy Technology Data Exchange (ETDEWEB)

    Buschman, Francis X., E-mail: Francis.Buschman@unnpp.gov; Aumiller, David L.

    2017-02-15

    Highlights: • Direct contact condensation data on liquid jets up to 1.7 MPa in pure steam and in the presence of noncondensable gas. • Identified a pressure effect on the impact of noncondensables to suppress condensation heat transfer not captured in existing data or correlations. • Pure steam data is used to develop a new correlation for condensation heat transfer on subcooled liquid jets. • Noncondensable data used to develop a modification to the renewal time estimate used in the Young and Bajorek correlation for condensation suppression in the presence of noncondensables. • A jet injection boundary condition, using a sub-grid jet condensation model, is developed for COBRA-IE which provides a more detailed estimate of the condensation rate on the liquid jet and allows the use of jet specific closure relationships. - Abstract: Condensation on liquid jets is an important phenomenon for many different facets of nuclear power plant transients and analyses such as containment spray cooling. An experimental facility constructed at the Pennsylvania State University, the High Pressure Liquid Jet Condensation Heat Transfer facility (HPLJCHT), has been used to perform steady-state condensation heat transfer experiments in which the temperature of the liquid jet is measured at different axial locations allowing the condensation rate to be determined over the jet length. Test data have been obtained in a pure steam environment and with varying concentrations of noncondensable gas. This data extends the available jet condensation data from near atmospheric pressure up to a pressure of 1.7 MPa. An empirical correlation for the liquid side condensation heat transfer coefficient has been developed based on the data obtained in pure steam. The data obtained with noncondensable gas were used to develop a correlation for the renewal time as used in the condensation suppression model developed by Young and Bajorek. This paper describes a new sub-grid liquid jet

  3. Use of fundamental condensation heat transfer experiments for the development of a sub-grid liquid jet condensation model

    International Nuclear Information System (INIS)

    Buschman, Francis X.; Aumiller, David L.

    2017-01-01

    Highlights: • Direct contact condensation data on liquid jets up to 1.7 MPa in pure steam and in the presence of noncondensable gas. • Identified a pressure effect on the impact of noncondensables to suppress condensation heat transfer not captured in existing data or correlations. • Pure steam data is used to develop a new correlation for condensation heat transfer on subcooled liquid jets. • Noncondensable data used to develop a modification to the renewal time estimate used in the Young and Bajorek correlation for condensation suppression in the presence of noncondensables. • A jet injection boundary condition, using a sub-grid jet condensation model, is developed for COBRA-IE which provides a more detailed estimate of the condensation rate on the liquid jet and allows the use of jet specific closure relationships. - Abstract: Condensation on liquid jets is an important phenomenon for many different facets of nuclear power plant transients and analyses such as containment spray cooling. An experimental facility constructed at the Pennsylvania State University, the High Pressure Liquid Jet Condensation Heat Transfer facility (HPLJCHT), has been used to perform steady-state condensation heat transfer experiments in which the temperature of the liquid jet is measured at different axial locations allowing the condensation rate to be determined over the jet length. Test data have been obtained in a pure steam environment and with varying concentrations of noncondensable gas. This data extends the available jet condensation data from near atmospheric pressure up to a pressure of 1.7 MPa. An empirical correlation for the liquid side condensation heat transfer coefficient has been developed based on the data obtained in pure steam. The data obtained with noncondensable gas were used to develop a correlation for the renewal time as used in the condensation suppression model developed by Young and Bajorek. This paper describes a new sub-grid liquid jet

  4. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, William R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-21

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  5. A thermodynamics model for morphology prediction of aluminum nano crystals fabricated by the inert gas condensation method

    Science.gov (United States)

    Wen, Yu; Xia, Dehong

    2018-03-01

    The purpose of this study is to provide scientific guidance for the morphological control of nanoparticle synthesis using the gas phase method. A universal thermodynamics model is developed to predict the morphology of nanoparticles fabricated using the inert gas condensation method. By using this model, the morphologies of aluminum nanocrystals are predicted under various preparation conditions. There are two types of energy that jointly determine the formation of nanoparticle morphology—Gibbs free energy for nanoparticles and energy variation during the process. The results show that energy variation dominates morphology formation when the cooling rate is less than 2 × 1011 K s-1 in the aluminum nanocrystal production process. At the beginning of the nanoparticle growth, the most stable morphology is predicted to be spherical, but the energetically preferred morphology becomes cubic as the particle grows. The turning point in the particle size at which spherical morphology is no longer the most stable morphology is exhibited as a function of pressure in a condensation chamber for different cooling rates. In this paper, we focus on the need for morphology prediction based on preparation conditions. It is concluded that nanoparticles with various morphologies could be obtained by adjusting the cooling rate and pressure in the condensation chamber.

  6. PRODUCTION OF NEAR-EARTH ASTEROIDS ON RETROGRADE ORBITS

    International Nuclear Information System (INIS)

    Greenstreet, S.; Gladman, B.; Ngo, H.; Granvik, M.; Larson, S.

    2012-01-01

    While computing an improved near-Earth object (NEO) steady-state orbital distribution model, we discovered in the numerical integrations the unexpected production of retrograde orbits for asteroids that had originally exited from the accepted main-belt source regions. Our model indicates that ∼0.1% (a factor of two uncertainty) of the steady-state NEO population (perihelion q < 1.3 AU) is on retrograde orbits. These rare outcomes typically happen when asteroid orbits flip to a retrograde configuration while in the 3:1 mean-motion resonance with Jupiter and then live for ∼0.001 to 100 Myr. The model predicts, given the estimated near-Earth asteroid (NEA) population, that a few retrograde 0.1-1 km NEAs should exist. Currently, there are two known MPC NEOs with asteroidal designations on retrograde orbits which we therefore claim could be escaped asteroids instead of devolatilized comets. This retrograde NEA population may also answer a long-standing question in the meteoritical literature regarding the origin of high-strength, high-velocity meteoroids on retrograde orbits.

  7. Preparation of development plan for the gas-condensate pool with the use of a high speed computer (IBM-1620)

    Energy Technology Data Exchange (ETDEWEB)

    Shirkovsky, A I; Kumar, S

    1968-01-01

    The computation of all the technical, technological, and economic figures for a gas supply system by using the High Speed Computer IBM-1620 is presented. The gas supply system consists of a gas-condensate pool (source) and main gas pipeline from the pool to the consumer. All necessary analytical equations for correlating geological, technological, and economic variables have been used. Results of calculations and recommendations for the most profitable variant are given. Effects of geological, technological, and technical factors upon the economic figures are also shown.

  8. Steam condensation on finned tubes, in the presence of non-condensable gases and aerosols: Influence of impaction, diffusiophoresis and settling on aerosol deposition

    International Nuclear Information System (INIS)

    Munoz-Cobo, J.L.; Pena, J.; Herranz, L.E.; Perez-Navarro, A.

    2005-01-01

    This paper presents a mechanistic model to predict the steam condensation on containment finned tube heat exchangers in the presence of non-condensable gases (NC) and aerosols. The total thermal resistance from the bulk gas to the coolant is formulated as a parallel combination of the convective and condensation gas resistances coupled in series to those of condensate layer, the aerosol fouling layer, the wall, and the coolant. The condensate layer thermal resistance is calculated by means of an Adamek-based condensation model. The aerosol fouling layer is computed based on diffusiophoresis, settling and impaction mechanisms. The gas mixture (steam plus NC) thermal resistance is formulated based on a diffusion layer modeling. Finally, this paper presents a Montecarlo method implemented in the FORTRAN code TAEROSOL that is able to compute the amount of aerosol mass that is deposited by impaction on the top of the finned tubes. The model results are compared with the available experimental data of the CONGA European project

  9. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  10. Bose-Einstein condensates in atomic gases: simple theoretical results

    International Nuclear Information System (INIS)

    Castin, Y.

    2001-01-01

    The author presents the theory of the Bose-Einstein condensation along with a discussion of experimental tests. The author deals successively with the following topics: - the ideal Bose gas in a trap (first in a harmonic trap and then in a more general trap), - a model for the atomic interaction, - interacting Bose gas in the Hartree-Fock approximation, - properties of the condensate wavefunction, - the Gross-Pitaevskii equation, - Bogoliubov approach and thermodynamical stability, - phase coherence properties at the Bose-Einstein condensate, and - symmetry-breaking description of condensates. (A.C.)

  11. Relaxation dynamics of a driven two-level system coupled to a Bose-Einstein condensate: application to quantum dot-dipolar exciton gas hybrid systems.

    Science.gov (United States)

    Kovalev, Vadim M; Tse, Wang-Kong

    2017-11-22

    We develop a microscopic theory for the relaxation dynamics of an optically pumped two-level system (TLS) coupled to a bath of weakly interacting Bose gas. Using Keldysh formalism and diagrammatic perturbation theory, expressions for the relaxation times of the TLS Rabi oscillations are derived when the boson bath is in the normal state and the Bose-Einstein condensate (BEC) state. We apply our general theory to consider an irradiated quantum dot coupled with a boson bath consisting of a two-dimensional dipolar exciton gas. When the bath is in the BEC regime, relaxation of the Rabi oscillations is due to both condensate and non-condensate fractions of the bath bosons for weak TLS-light coupling and pre dominantly due to the non-condensate fraction for strong TLS-light coupling. Our theory also shows that a phase transition of the bath from the normal to the BEC state strongly influences the relaxation rate of the TLS Rabi oscillations. The TLS relaxation rate is approximately independent of the pump field frequency and monotonically dependent on the field strength when the bath is in the low-temperature regime of the normal phase. Phase transition of the dipolar exciton gas leads to a non-monotonic dependence of the TLS relaxation rate on both the pump field frequency and field strength, providing a characteristic signature for the detection of BEC phase transition of the coupled dipolar exciton gas.

  12. Application of fluorinated nanofluid for production enhancement of a carbonate gas-condensate reservoir through wettability alteration

    Science.gov (United States)

    Sakhaei, Zahra; Azin, Reza; Naghizadeh, Arefeh; Osfouri, Shahriar; Saboori, Rahmatollah; Vahdani, Hosein

    2018-03-01

    Condensate blockage phenomenon in near-wellbore region decreases gas production rate remarkably. Wettability alteration using fluorinated chemicals is an efficacious way to vanquish this problem. In this study, new synthesized fluorinated silica nanoparticles with an optimized condition and mean diameter of 50 nm is employed to modify carbonate rock surface wettability. Rock characterization tests consisting Field Emission Scanning Electron Microscopy (FE-SEM) and Energy Dispersive x-ray Spectroscopy (EDX) were utilized to assess the nanofluid adsorption on rock surface after treatment. Contact angle, spontaneous imbibition and core flooding experiments were performed to investigate the effect of synthesized nanofluid adsorption on wettability of rock surface and liquid mobility. Results of contact angle experiments revealed that wettability of rock could alter from strongly oil-wetting to the intermediate gas-wetting even at elevated temperature. Imbibition rates of oil and brine were diminished noticeably after treatment. 60% and 30% enhancement in pressure drop of condensate and brine floods after wettability alteration with modified nanofluid were observed which confirm successful field applicability of this chemical.

  13. Studies of retrograde memory: A long-term view

    OpenAIRE

    Warrington, Elizabeth K.

    1996-01-01

    Studies of retrograde amnesia are reviewed. First, the issues of temporal gradients of retrograde amnesia are discussed. Second, the question of the anatomical substrates of this syndrome are considered. Finally, some evidence for fractionation of different classes of memoranda within the retrograde time period are presented.

  14. On the prediction of condenser plate temperatures in a cross-flow condenser

    NARCIS (Netherlands)

    Ganzevles, F.L.A.; Geld, van der C.W.M.

    2002-01-01

    A prediction method is presented for the gas-sided plate temperatures at the inlet and at the outlet of a compact, cross-flow condenser. The method employs measured (or predicted) heat flow rates and temperatures of both coolant and gas, at inlet and outlet. The method is validated using infrared

  15. Condensation coefficient of water in a weak condensation state

    International Nuclear Information System (INIS)

    Kobayashi, Kazumichi; Watanabe, Shunsuke; Yamano, Daigo; Yano, Takeru; Fujikawa, Shigeo

    2008-01-01

    The condensation coefficient of water at a vapor-liquid interface is determined by combining shock tube experiments and numerical simulations of the Gaussian-BGK Boltzmann equation. The time evolution in thickness of a liquid film, which is formed on the shock tube endwall behind the shock wave reflected at the endwall, is measured with an optical interferometer consisting of the physical beam and the reference one. The reference beam is utilized to eliminate systematic noises from the physical beam. The growth rate of the film is evaluated from the measured time evolution and it is incorporated into the kinetic boundary condition for the Boltzmann equation. From a numerical simulation using the boundary condition, the condensation coefficient of water is uniquely deduced. The results show that, in a condition of weak condensation near a vapor-liquid equilibrium state, the condensation coefficient of water is almost equal to the evaporation coefficient estimated by molecular dynamics simulations near a vapor-liquid equilibrium state and it decreases as the system becomes a nonequilibrium state. The condensation coefficient of water is nearly identical with that of methanol [Mikami, S., Kobayashi, K., Ota, T., Fujikawa, S., Yano, T., Ichijo, M., 2006. Molecular gas dynamics approaches to interfacial phenomena accompanied with condensation. Exp. Therm. Fluid Sci. 30, 795-800].

  16. Condensation coefficient of water in a weak condensation state

    Science.gov (United States)

    Kobayashi, Kazumichi; Watanabe, Shunsuke; Yamano, Daigo; Yano, Takeru; Fujikawa, Shigeo

    2008-07-01

    The condensation coefficient of water at a vapor-liquid interface is determined by combining shock tube experiments and numerical simulations of the Gaussian-BGK Boltzmann equation. The time evolution in thickness of a liquid film, which is formed on the shock tube endwall behind the shock wave reflected at the endwall, is measured with an optical interferometer consisting of the physical beam and the reference one. The reference beam is utilized to eliminate systematic noises from the physical beam. The growth rate of the film is evaluated from the measured time evolution and it is incorporated into the kinetic boundary condition for the Boltzmann equation. From a numerical simulation using the boundary condition, the condensation coefficient of water is uniquely deduced. The results show that, in a condition of weak condensation near a vapor-liquid equilibrium state, the condensation coefficient of water is almost equal to the evaporation coefficient estimated by molecular dynamics simulations near a vapor-liquid equilibrium state and it decreases as the system becomes a nonequilibrium state. The condensation coefficient of water is nearly identical with that of methanol [Mikami, S., Kobayashi, K., Ota, T., Fujikawa, S., Yano, T., Ichijo, M., 2006. Molecular gas dynamics approaches to interfacial phenomena accompanied with condensation. Exp. Therm. Fluid Sci. 30, 795-800].

  17. Two-Step Condensation of the Ideal Bose Gas in Highly Anisotropic Traps

    International Nuclear Information System (INIS)

    van Druten, N.J.; Ketterle, W.

    1997-01-01

    The ideal Bose gas in a highly anisotropic harmonic potential is studied. It is found that Bose-Einstein condensation occurs in two distinct steps as the temperature is lowered. In the first step the specific heat shows a sharp feature, but the system still occupies many one-dimensional quantum states. In the second step, at a significantly lower temperature, the ground state becomes macroscopically occupied. It should be possible to verify these predictions using present-day atom traps. The two-step behavior can occur in a rather general class of anisotropic traps, including the box potential. copyright 1997 The American Physical Society

  18. The Effect of Process Parameters on the Synthesis of Ti and TiO2 Nanoparticles Producted by Electromagnetic Levitational Gas Condensation

    Directory of Open Access Journals (Sweden)

    Maryam Moazeni

    2012-10-01

    Full Text Available The nanoparticles of Ti and TiO2 have attracted extensive research interest because of their diverse applications in, for instance, catalysis, energy conversion, pigment and cosmetic manufacturing and biomedical engineering. Through this project, a one-step bulk synthesis method of electromagnetic levitational gas condensation (ELGC was utilized for the synthesis of monodispersed and crystalline Ti and TiO2 nanoparticles. Within the process, the Ti vapours ascending from the high temperature levitated droplet were condensed by an argon gas stream under atmospheric pressure. The TiO2 nanoparticles were produced by simultaneous injection of argon and oxygen into the reactor. The effects of flow rate of the condensing and oxidizing gases on the size and the size distribution of the nanoparticles were investigated. The particles were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD and image analysis. The process parameters for the synthesis of the crystalline Ti and TiO2 nanoparticles were determined.

  19. Experimental studies on condensation of steam mixed with noncondensable gas inside the vertical tube in a pool filled with subcooled water

    International Nuclear Information System (INIS)

    Maheshwari, N.K.; Saha, D.; Sinha, R.K.; Aritomi, M.

    2003-01-01

    A passive containment cooling system with immersed condensers has been proposed as one of the alternatives for the advanced heavy water reactor (AHWR) being designed in India. The system removes residual/decay heat released into the containment through the immersed condensers kept in a pool of water following loss of coolant accident. An important aspect of the immersed condensers is the potential degradation of its performance due to the presence of noncondensable gases. Experiments are performed to obtain reliable data on condensation phenomena in presence of air. These experiments are conducted on full-scale tubes of condensers immersed in a pool of water maintaining similar conditions as in the prototype of AHWR. A method has been proposed for the determination of the local heat transfer rate using correlations given in literature. The parametric effects of air mass fraction, pressure, steam flow, etc. on condensation heat transfer in presence of noncondensable gas have been studied. The experimental results are compared with the correlations given in literature. (orig.)

  20. Retrograde vs. Antegrade Puncture for Infra-Inguinal Angioplasty

    International Nuclear Information System (INIS)

    Nice, C.; Timmons, G.; Bartholemew, P.; Uberoi, R.

    2003-01-01

    This study was done to compare antegrade punctures with a retrograde puncture technique for infrainguinal angioplasty. A group of 100 consecutive patients (71 men, 29 women) were randomized for antegrade puncture or retrograde puncture of the common femoral artery. Following retrograde puncture the guidewire was 'turned' and placed into the superficial femoral artery. The time for gaining access, screening time, radiation dose, patient height, weight and complications were recorded. All patients were reviewed the day after the procedure and within 3 months. Data from 46 patients (34 males and 12 females) in the retrograde group and 44 (28 males and 16 females) in the antegrade group were available for analysis. Mean procedure time,screening time, radiation dose, height and weight were 8.3 minutes(range 3-22), 2.1 minutes (0.3-6.5), 7950 mGy cm -2 (820-71250), 169 cm (149-204) and 79 kg (32-108) for retrograde puncture and 8 min (2-60), 0.7 min (0.0-3.2), 1069 mGycm -2 (0-15400), 169 cm (152-186) and 75 kg (39-125) for antegrade punctures, respectively. An average of 1.2 (1-2) punctures was required for retrograde and 1.75 (1-8) for antegrade. Seven small hematomas occurred with antegrade and three for retrograde puncture.Retrograde puncture is technically easier with a tendency to fewer complications but results in a higher radiation dose. This technique should be used in difficult patients at high risk of haematoma formation

  1. Kelvin Equation for a Non-Ideal Multicomponent Mixture

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1997-01-01

    The Kelvin equation is generalized by application to a case of a multicomponent non-ideal mixture. Such a generalization is necessary in order to describe the two-phase equilibrium in a capillary medium with respect to both normal and retrograde condensation. The equation obtained is applied...... to the equilibrium state of a hydrocarbon mixture ina gas-condensate reservoir....

  2. Reproductive effects of the water-accommodated fraction of a natural gas condensate in the Indo-Pacific reef-building coral Pocillopora damicornis.

    Science.gov (United States)

    Villanueva, R D; Yap, H T; Montaño, M N E

    2011-11-01

    Toxic effects of the water-accommodated fraction (WAF) of a natural gas condensate on the reproduction of the brooding coral Pocillopora damicornis were studied in short-term (24 h) laboratory experiments. Coral fragments were exposed to varying concentrations of condensate WAF during different reproductive phases: gametogenesis, early embryogenesis, and late embryogenesis (when nighttime planulation occurs). During gametogenesis, exposure to condensate WAF did not inhibit subsequent production of larvae. On the other hand, exposure to >25% WAF of gravid corals, at early and late embryogenesis, resulted in abortion and early release of larvae, respectively, with higher percentages of larvae expelled in fragments treated with higher concentrations of condensate WAF at least 3h after onset of exposure. Aborted larvae during early embryogenesis were 'premature', as they are of small size (0.06±0.03 mm³), low metamorphic competency (54%), and white in coloration, with a pale brown oral end (indicating low density of zooxanthellae). Those larvae released at the latter part of embryogenesis are bigger in size (0.22±0.08 mm³), possess 100% metamorphic competency, and are brown in coloration (high density of zooxanthellae). Aside from direct effects on reproduction, fragment mortality index was higher in samples exposed to higher concentrations of condensate WAF (>25%), hence lowering the number of potentially reproducing polyps. Altogether, exposure to >25% natural gas condensate WAF for at least 3h can potentially disrupt the replenishment of coral populations due to negative effects on reproduction and early life processes. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Molecular equilibrium with condensation

    International Nuclear Information System (INIS)

    Sharp, C.M.; Huebner, W.F.

    1990-01-01

    Minimization of the Gibbs energy of formation for species of chemical elements and compounds in their gas and condensed phases determines their relative abundances in a mixture in chemical equilibrium. The procedure is more general and more powerful than previous abundance determinations in multiphase astrophysical mixtures. Some results for astrophysical equations of state are presented, and the effects of condensation on opacity are briefly indicated. 18 refs

  4. Kinetics of mineral condensation in the solar nebula

    International Nuclear Information System (INIS)

    Grove, T.L.

    1987-01-01

    A natural extension of the type of gas-mineral-melt condensation experiments is to study the gas-mineral-melt reaction process by controlling the reaction times of appropriate gas compositions with silicate materials. In a condensing and vaporizing gas-solid system, important processes that could influence the composition of and speciation in the gas phase are the kinetics of vaporization of components from silicate crystals and melts. The high vacuum attainable in the space station would provide an environment for studying these processes at gas pressures much lower than those obtainable in experimental devices operated at terrestrial conditions in which the gas phase and mineral or melt would be allowed to come to exchange equilibrium. Further experiments would be performed at variable gas flow rates to simulate disequilibrium vapor fractionation. In this type of experiment it is desirable to analyze directly the species in the gas phase in equilibrium with the condensed silicate material. This analytical method would provide a direct determination of the species present in the gas phase. Currently, the notion of gas speciation is based on calculations from thermodynamic data. The proposed experiments require similar furnace designs and use similar experimental starting compositions, pressures, and temperatures as those described by Mysen

  5. Developing of two-dimensional model of the corium cooling and behavior with non-condensible gas injection

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; Cho, Jae Seon; Kim, Ju Youl; Kim, Do Hyoung [Seoul National University, Seoul (Korea, Republic of)

    1997-07-01

    The purpose of this study is to understand the effect of the non-condensible gas injection into the molten corium on the heat transfer and dynamic behavior within the melt when molten core-concrete interaction occurs during the hypothetical severe accident. Corium behavior with gas injection effect is two phase fluid pattern in which droplet has dispersed gas phase in continuous liquid phase of corium. To analyze this behavior, two dimensional governing equation using the governing equation, the computer program is accomplished using the finite difference method and SIMPLER algorithm. And benchmarking calculation is performed for the KfK experiment, which consider the gas injection effect. After this pre-calculation, an analyses is performed with typical corium under severe accidents. It is concluded that the heat transfer within corium increases as the metal components of the corium and gas injection velocity increase. 88 refs., 23 tabs., 35 figs. (author)

  6. Condensation heat transfer on natural convection at the high pressure

    International Nuclear Information System (INIS)

    Jong-Won, Kim; Hyoung-Kyoun, Ahn; Goon-Cherl, Park

    2007-01-01

    The Regional Energy Research Institute for the Next Generation is to develop a small scale electric power system driven by an environment-friendly and stable small nuclear reactor. REX-10 has been developed to assure high system safety in order to be placed in densely populated region and island. REX-10 adopts the steam-gas pressurizer to assure the inherent safety. The thermal-hydraulic phenomena in the steam-gas pressurizer are very complex. Especially, the condensation heat transfer with noncondensable gas on the natural convection is important to evaluate the pressurizer behavior. However, there have been few investigations on the condensation in the presence of noncondensable gas at the high pressure. In this study, the theoretical model is developed to estimate the condensation heat transfer at the high pressure using heat and mass transfer analogy. The analysis results show good agreement with correlations and experimental data. It is found that the condensation heat transfer coefficient increases as the total pressure increases or the mass fraction of the non-condensable gas decreases. In addition, the heat transfer coefficient no more increases over the specific pressure

  7. Efimov States of Heavy Impurities in a Bose-Einstein Condensate

    DEFF Research Database (Denmark)

    Zinner, Nikolaj Thomas

    2013-01-01

    We consider the problem of two heavy impurity particles embedded in a gas of weakly-interacting light mass bosonic particles in the condensed state. Using the Bogoliubov approach to describe the bosonic gas and the Born-Oppenheimer approximation for the three-body dynamics, we calculate the modif......We consider the problem of two heavy impurity particles embedded in a gas of weakly-interacting light mass bosonic particles in the condensed state. Using the Bogoliubov approach to describe the bosonic gas and the Born-Oppenheimer approximation for the three-body dynamics, we calculate...... the modification to the heavy-heavy two-body potential due to the presence of the condensate. For the case of resonant interaction between the light bosons and the impurities, we present (semi)-analytical results for the potential in the limit of a large condensate coherence length. In particular, we find...

  8. Condensate from a two-stage gasifier

    DEFF Research Database (Denmark)

    Bentzen, Jens Dall; Henriksen, Ulrik Birk; Hindsgaul, Claus

    2000-01-01

    Condensate, produced when gas from downdraft biomass gasifier is cooled, contains organic compounds that inhibit nitrifiers. Treatment with activated carbon removes most of the organics and makes the condensate far less inhibitory. The condensate from an optimised two-stage gasifier is so clean...... that the organic compounds and the inhibition effect are very low even before treatment with activated carbon. The moderate inhibition effect relates to a high content of ammonia in the condensate. The nitrifiers become tolerant to the condensate after a few weeks of exposure. The level of organic compounds...... and the level of inhibition are so low that condensate from the optimised two-stage gasifier can be led to the public sewer....

  9. Coherent Control of Multiphoton Transitions in the Gas and Condensed Phases with Shaped Ultrashort Pulses

    International Nuclear Information System (INIS)

    Dantus, Marcos

    2008-01-01

    Controlling laser-molecule interactions has become an integral part of developing devices and applications in spectroscopy, microscopy, optical switching, micromachining and photochemistry. Coherent control of multiphoton transitions could bring a significant improvement of these methods. In microscopy, multi-photon transitions are used to activate different contrast agents and suppress background fluorescence; coherent control could generate selective probe excitation. In photochemistry, different dissociative states are accessed through two, three, or more photon transitions; coherent control could be used to select the reaction pathway and therefore the yield-specific products. For micromachining and processing a wide variety of materials, femtosecond lasers are now used routinely. Understanding the interactions between the intense femtosecond pulse and the material could lead to technologically important advances. Pulse shaping could then be used to optimize the desired outcome. The scope of our research program is to develop robust and efficient strategies to control nonlinear laser-matter interactions using ultrashort shaped pulses in gas and condensed phases. Our systematic research has led to significant developments in a number of areas relevant to the AMO Physics group at DOE, among them: generation of ultrashort phase shaped pulses, coherent control and manipulation of quantum mechanical states in gas and condensed phases, behavior of isolated molecules under intense laser fields, behavior of condensed phase matter under intense laser field and implications on micromachining with ultrashort pulses, coherent control of nanoparticles their surface plasmon waves and their nonlinear optical behavior, and observation of coherent Coulomb explosion processes at 10 16 W/cm 2 . In all, the research has resulted in 36 publications (five journal covers) and nine invention disclosures, five of which have continued on to patenting

  10. Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation

    KAUST Repository

    Du, Naiying

    2011-03-11

    Cross-linked polymers of intrinsic microporosity (PIM)s for gas separation membranes, were prepared by a nitrene reaction from a representative PIM in the presence of two different diazide cross-linkers. The reaction temperature was optimized using TGA. The homogenous membranes were cast from THF solutions of different ratios of PIM to azides. The resulting cross-linked structures of the PIMs membranes were formed at 175 °C after 7.5 h and confirmed by TGA, XPS, FT-IR spectroscopy and gel content analysis. These resulting cross-linked polymeric membranes showed excellent gas separation performance and can be used for O 2/N 2 and CO 2/N 2 gas pairs, as well as for condensable gases, such as CO 2/CH 4, propylene/propane separation. Most importantly, and differently from typical gas separation membranes derived from glassy polymers, the crosslinked PIMs showed no obvious CO 2 plasticization up to 20 atm pressure of pure CO 2 and CO 2/CH 4 mixtures. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The Coupling Effect Research of Ash Deposition and Condensation in Low Temperature Flue Gas

    Directory of Open Access Journals (Sweden)

    Lei Ma

    2016-01-01

    Full Text Available Ash deposition is a key factor that deteriorates the heat transfer performance and leads to higher energy consumption of low pressure economizer working in low temperature flue gas. In order to study the ash deposition of heat exchange tubes in low temperature flue gas, two experiments are carried out with different types of heat exchange tubes in different flue gas environments. In this paper, Nusselt Number Nu and fouling factor ε are calculated to describe the heat transfer characteristics so as to study the ash deposition condition. The scanning electron microscope (SEM is used for the analysis of ash samples obtained from the outer wall of heat exchange tubes. The dynamic process of ash deposition is studied under different temperatures of outer wall. The results showed that ash deposition of heat exchanger will achieve a stable state in constant flue gas environment. According to the condition of condensation of acid vapor and water vapor, the process of ash deposition can be distinguished as mere ash deposition, acid-ash coupling deposition, and acid-water-ash coupling deposition.

  12. Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation

    KAUST Repository

    Du, Naiying; Dal-Cin, Mauro M D; Pinnau, Ingo; Nicalek, Andrzej; Robertson, Gilles P.; Guiver, Michael D.

    2011-01-01

    Cross-linked polymers of intrinsic microporosity (PIM)s for gas separation membranes, were prepared by a nitrene reaction from a representative PIM in the presence of two different diazide cross-linkers. The reaction temperature was optimized using TGA. The homogenous membranes were cast from THF solutions of different ratios of PIM to azides. The resulting cross-linked structures of the PIMs membranes were formed at 175 °C after 7.5 h and confirmed by TGA, XPS, FT-IR spectroscopy and gel content analysis. These resulting cross-linked polymeric membranes showed excellent gas separation performance and can be used for O 2/N 2 and CO 2/N 2 gas pairs, as well as for condensable gases, such as CO 2/CH 4, propylene/propane separation. Most importantly, and differently from typical gas separation membranes derived from glassy polymers, the crosslinked PIMs showed no obvious CO 2 plasticization up to 20 atm pressure of pure CO 2 and CO 2/CH 4 mixtures. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Laboratory Optimization Tests of Decontamination of Cs, Sr, and Actinides from Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-06

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also substantially decrease the LAW vitrification mission duration and quantity of glass waste.

  14. Water desalting schemes when using heat gas-vapor mixture in front of contact condenser

    OpenAIRE

    Kuznetsova, Svitlana A.

    2016-01-01

    Ukraine is a country with low quality of fresh water; there are regions with its deficiency. One of the possible solutions to this problem is the desalination of the brackish water from surface and groundwater sources by using heat of the mixture before the contact condenser in gas-steam turbine plants. The plants produce electricity and heat energy for the needs of the industrial, agricultural complexes and the population of Kherson, Nikolaev and Odessa regions. The studies were carried out ...

  15. Condensing gas boilers for energy efficiency and reduction of CO2 and NOx

    International Nuclear Information System (INIS)

    Stewardson, E.

    1994-01-01

    The objectives of the study are: 1) to demonstrate the effectiveness of condensing gas boiler hot water system in reducing energy costs and pollution; 2) to illustrate the importance of marketing this technology to uninformed end users. The development of condensing boilers in the European Community, the materials used, product designs, key performance measures, and the types of applications suited to these products are outlined. Using calculations from a body of work produced by the Chartered Institute of Building Service Engineers in Britain, it is demonstrated how seasonal efficiency differs from combustion efficiency, and how the added capital cost for these boilers may be recovered within an acceptable commercial pay back period from fuel cost savings. Applying current NO x and CO 2 information from a body of the CE Technical Committees, the author show how these products can reduce pollution levels both from CO 2 and NO x . An example of marketing these products to a largely uninformed end user customer market is cited. 2 refs., 3 tabs., 12 figs. (orig.)

  16. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  17. Modeling electric bicycle's lane-changing and retrograde behaviors

    Science.gov (United States)

    Tang, Tie-Qiao; Luo, Xiao-Feng; Zhang, Jian; Chen, Liang

    2018-01-01

    Recently, electric bicycle (EB) has been one important traffic tool due to its own merits. However, EB's motion behaviors (especially at a signalized/non-signalized intersection) are more complex than those of vehicle since it always has lane-changing and retrograde behaviors. In this paper, we propose a model to explore EB's lane-changing and retrograde behaviors on a road with a signalized intersection. The numerical results indicate that the proposed model can qualitatively describe each EB's lane-changing and retrograde behaviors near a signalized intersection, and that lane-changing and retrograde behaviors have prominent impacts on the signalized intersection (i.e., prominent jams and congestions occur). The above results show that EB should be controlled as a vehicle, i.e., lane-changing and retrograde behaviors at a signalized intersection should strictly be prohibited to improve the operational efficiency and traffic safety at the signalized intersection.

  18. Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations

    Science.gov (United States)

    Riipinen, I.; Pierce, J. R.; Yli-Juuti, T.; Nieminen, T.; Häkkinen, S.; Ehn, M.; Junninen, H.; Lehtipalo, K.; Petäjä, T.; Slowik, J.; Chang, R.; Shantz, N. C.; Abbatt, J.; Leaitch, W. R.; Kerminen, V.-M.; Worsnop, D. R.; Pandis, S. N.; Donahue, N. M.; Kulmala, M.

    2011-04-01

    Atmospheric aerosol particles influence global climate as well as impair air quality through their effects on atmospheric visibility and human health. Ultrafine (<100 nm) particles often dominate aerosol numbers, and nucleation of atmospheric vapors is an important source of these particles. To have climatic relevance, however, the freshly nucleated particles need to grow in size. We combine observations from two continental sites (Egbert, Canada and Hyytiälä, Finland) to show that condensation of organic vapors is a crucial factor governing the lifetimes and climatic importance of the smallest atmospheric particles. We model the observed ultrafine aerosol growth with a simplified scheme approximating the condensing species as a mixture of effectively non-volatile and semi-volatile species, demonstrate that state-of-the-art organic gas-particle partitioning models fail to reproduce the observations, and propose a modeling approach that is consistent with the measurements. We find that roughly half of the mass of the condensing mass needs to be distributed proportional to the aerosol surface area (thus implying that the condensation is governed by gas-phase concentration rather than the equilibrium vapour pressure) to explain the observed aerosol growth. We demonstrate the large sensitivity of predicted number concentrations of cloud condensation nuclei (CCN) to these interactions between organic vapors and the smallest atmospheric nanoparticles - highlighting the need for representing this process in global climate models.

  19. Optimisation of condenser design in waste immobilisation plants (WIP`s)

    Energy Technology Data Exchange (ETDEWEB)

    Rajani, G; Ozarde, P D; Gandhi, P M [Waste Management Projects Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    The situation under study is vertical heat exchanger with steam as the condensing vapour and NO{sub x} gases as the non condensible gas. The presence of even a small quantity of non-condensible gas in the condensible vapour has a profound influence on the resistance to heat transfer in the region of liquid-vapour heat transfer. Heat transfer coefficients go on reducing progressively, making condensers prohibitively bulky and hence optimisation of condensers is necessary for carrying out design calculations. The condenser has been divided into segments and for each segment, momentum and energy equations have been established and solved. Finally the average value for overall mass transfer coefficients has been calculated. Parametric studies giving the influence of sub cooling gases, water temperature, exit temperature etc. have been studied. (author). 5 refs., 5 figs., 2 tabs.

  20. Evaluation of the condensation potential of hydrocarbon fluids in the national gas pipeline system; establishing of adequate operational schemes

    International Nuclear Information System (INIS)

    Pineda Gomez, Cesar Augusto; Arenas Mantilla, Oscar Armando; Santos Santos, Nicolas

    2007-01-01

    For transporting industry of natural gas by pipeline systems, it's vital to guarantee the integrity of their lines, in order to decrease operational costs and prevent accidents that may damaging against people's safety, the environment or the infrastructure itself. in this paper it's presented the principal compounds from o technical study about principal net and its distribution branches to municipalities of the National System Transport of Natural Gas pointed by the Colombian Natural Gas Company - ECOGAS, (specifically the Cusiana - Porvenir - La Belleza, La Belleza - Cogua, La Belleza - Vasconia, Vasconia - Neiva and Vasconia - Cali gas lines, (see Figure 1). The principal objective is evaluate the possible condensation of hydrocarbons fluids inside gas lines, due to compositional characteristics of the gas, the different topographical conditions along the gas line route and the actual and future operational conditions to be implemented in the system. The evaluation performed over this gas streams, generates transcendental information in the creation of safe operational limits that minimizing the existence of obstacle problems and damages over pipeline systems and process equipment, due to the presence of liquid hydrocarbons inside these flow lines. This article has been prepared in four sections in order to guarantee easy access to each one of the steps involved in the study. Section one presents the compositional and thermodynamic analysis of feeding gas streams; in section two, its presented the required information for modeling gas lines with definition of the gas pipeline numerical simulation model in stable state; section three presents the sensitivity analysis for gas variation upon loading gas composition at the inlet point of the system, variation of the operational conditions (flow, pressure and gas temperature) and environment temperatures for the different inlet points (branches) with verification of compliance of the Unique Transport Regulation

  1. Condensation: the new deal; Condensation: la nouvelle donne

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    The principle of condensation boilers is based on the recovery of the latent heat of the steam generated by the combustion of natural gas. This technology was introduced in France at the end of the 80's but failed in its promise because of the complexity of the equipments available at that time. Today, constructors' offer is more mature and reliable and the context has changed. This technology can conciliate three goals: a mastery of energy consumptions, the comfort of the user and the respect of environment. This meeting organized by the research center of Gaz de France (Cegibat), was a good opportunity to makes a status of the market of individual condensation systems in France and in Europe, to present the situation of this technology today and the 10 golden rules for the fitting and maintenance of individual condensation boilers, and to present some technical references, examples and results of today's offer. (J.S.)

  2. Condensation Analysis of Steam/Air Mixtures in Horizontal Tubes

    International Nuclear Information System (INIS)

    Lee, Kwon Yeong; Bae, Sung Won; Kim, Moo Hwan

    2008-01-01

    Perhaps the most common flow configuration in which a convective condensation occurs is a flow in a horizontal circular tube. This configuration is encountered in air-conditioning and refrigeration condensers as well as condensers in Rankine power cycles. Although a convective condensation is also sometimes contrived to occur in a co-current vertical downward flow, a horizontal flow is often preferred because the flow can be repeatedly passed through the heat exchanger core in a serpentine fashion without trapping liquid or vapor in the return bends. Many researchers have investigated a in-tube condensation for horizontal heat exchangers. However, almost all of them obtained tube section-averaged data without a noncondensable gas. Recently, Wu and Vierow have experimentally studied the condensation of steam in a horizontal heat exchanger with air present. In order to measure the condenser tube inner surface temperatures and to calculate the local heat fluxes, they developed an innovative thermocouple design that allowed for nonintrusive measurements. Here we developed a theoretical model using the heat and mass analogy to analyze a steam condensation with a noncondensable gas in horizontal tubes

  3. Doppler-guided retrograde catheterization system

    Science.gov (United States)

    Frazin, Leon J.; Vonesh, Michael J.; Chandran, Krishnan B.; Khasho, Fouad; Lanza, George M.; Talano, James V.; McPherson, David D.

    1991-05-01

    The purpose of this study was to investigate a Doppler guided catheterization system as an adjunctive or alternative methodology to overcome the disadvantages of left heart catheterization and angiography. These disadvantages include the biological effects of radiation and the toxic and volume effects of iodine contrast. Doppler retrograde guidance uses a 20 MHz circular pulsed Doppler crystal incorporated into the tip of a triple lumen multipurpose catheter and is advanced retrogradely using the directional flow information provided by the Doppler waveform. The velocity detection limits are either 1 m/second or 4 m/second depending upon the instrumentation. In a physiologic flow model of the human aortic arch, multiple data points revealed a positive wave form when flow was traveling toward the catheter tip indicating proper alignment for retrograde advancement. There was a negative wave form when flow was traveling away from the catheter tip if the catheter was in a branch or bent upon itself indicating improper catheter tip position for retrograde advancement. In a series of six dogs, the catheter was able to be accurately advanced from the femoral artery to the left ventricular chamber under Doppler signal guidance without the use of x-ray. The potential applications of a Doppler guided retrograde catheterization system include decreasing time requirements and allowing safer catheter guidance in patients with atherosclerotic vascular disease and suspected aortic dissection. The Doppler system may allow left ventricular pressure monitoring in the intensive care unit without the need for x-ray and it may allow left sided contrast echocardiography. With pulse velocity detection limits of 4 m/second, this system may allow catheter direction and passage into the aortic root and left ventricle in patients with aortic stenosis. A modification of the Doppler catheter may include transponder technology which would allow precise catheter tip localization once the

  4. Condensation induced non-condensable accumulation in a non-vented horizontal pipe connected with an elbow and a vertical pipe

    International Nuclear Information System (INIS)

    Stevanovic, V.D.; Stosic, Z.V.; Stoll, U.

    2005-01-01

    In this paper the radiolytic gases (hydrogen and oxygen) accumulation is investigated numerically for the pipe geometry consisting of a horizontal pipe closed at one end, and connected via a downward directed elbow with a vertical pipe open at its bottom end. This configuration is a typical part of many pipeline systems or measuring lines. The steam inside the pipes is condensed due to heat losses to the surrounding atmosphere, the condensate is drained and the concentration of the remaining noncondensable radiolytic gases is increased. Three dimensional numerical simulations are performed with the thermal-hydraulic and physico-chemical code HELIO, especially developed for the simulation and analyses of radiolytic gases accumulation in pipelines. The HELIO code model is based on the mass, momentum and energy conservation equations for the gas mixture and wall condensate film flow, as well as on the transport equations for non-condensable diffusion and convection. At the liquid film surface, the phases are coupled through the no-slip velocity condition and the mass transfer due to steam condensation and non-condensable absorption and degassing. Obtained numerical results show the gas mixture and condensate liquid film flow fields. In case of here analyzed geometry, the gas mixture circulates in the elbow and the horizontal pipe due to buoyancy forces induced by concentration and related density differences. The circulation flow prevents the formation of the radiolytic gases concentration front. The non-condensable radiolytic gases are transported from the pipe through the open end by the mechanisms of diffusion and convection. The analyzed geometry is the same as in case of venting pipe mounted on the steam pipeline. The results are of practical importance since they show that radiolytic gases accumulation does not occur in the geometry of the venting pipes. (authors)

  5. Understanding about diagnosis of acute small bowel retrograde intussusception in adults by means of 64-slice-spinal CT

    International Nuclear Information System (INIS)

    Jiang Ruizhou; Chen Jincheng

    2009-01-01

    Objective: To have a further study of the value of MSCT in diagnosing acute small bowel retrograde intussusception in adults by means of 64-slice-spinal CT. Methods: A 46-year-old female patient with the history of abdominal operation was found having acute mechanical small bowel obstruction through plain X-ray radiograph. 64-slice MSCT was performed afterwards (plain scan + 3 stage contrast scans). Hence, evidence is provided for operation. Results: Using the technique of MSCT for the patient can promptly approach the diagnosis of jejuno-jejunal intussusception with severe bowel obstruction; no small bowel tumor or other organic lesion found in this case. With the patient who has the history of abdominal operations, MSCT can predict the reason of adhesion causing bowel intussusception, and provide the evidence for operation; whereas MSCT with contrast media offers a further investigation of the blood supply to the bowels through SMA, and observation of blood circulation through the intussuscepting site, which represents venous congestion of intussusception. This case is a retrograde small bowel intussusception and confirmed with operation evidence. A greater amount of gas and fluid is accumulated between the dilated space of middle-distal portion of intussusceptum and intussuscipiens. Nevertheless, less gas at the proximal portion and that can be an important sign for retrograde intussusception. Conclusion: MSCT is a good choice of examination for diagnosis of adult's intussusception. As the literature mentioned the advantages of MSCT for observing the circulation of intussusceptum and whether the diagnosis is antegrade or retrograde intussusception is also essential. (authors)

  6. Research on How to Remove Efficiently the Condensate Water of Sampling System

    International Nuclear Information System (INIS)

    Cho, SungHwan; Kim, MinSoo; Choi, HoYoung; In, WonHo

    2015-01-01

    Corrosion was caused in the measurement chamber inside the O 2 and H 2 analyzer, and thus measuring the concentration of O 2 and H 2 was not possible. It was confirmed that the cause of the occurrence of condensate water is due to the temperature difference caused during the process of the internal gas of the disposal and degasifier tank being brought into the analyzer. Thus, a heating system was installed inside and outside of the sampling panel for gas to remove generated condensate water in the analyzer and pipe. For the case where condensate water is not removed by the heating system, drain port is also installed in the sampling panel for gas to collect the condensate water of the sampling system. It was verified that there is a great volume of condensate water existing in the pipe line during the purging process after installing manufactured goods. The condensate water was fully removed by the installed heating cable and drain port. The heating cable was operated constantly at a temperature of 80 to 90 .deg. C, which allows the precise measurement of gas concentration and longer maintenance duration by blocking of the condensate water before being produced. To install instruments for measuring the gas, such as an O 2 and H 2 analyzer etc., consideration regarding whether there condensate water is present due to the temperature difference between the measuring system and analyzer is required

  7. Research on How to Remove Efficiently the Condensate Water of Sampling System

    Energy Technology Data Exchange (ETDEWEB)

    Cho, SungHwan; Kim, MinSoo; Choi, HoYoung; In, WonHo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Corrosion was caused in the measurement chamber inside the O{sub 2} and H{sub 2} analyzer, and thus measuring the concentration of O{sub 2} and H{sub 2} was not possible. It was confirmed that the cause of the occurrence of condensate water is due to the temperature difference caused during the process of the internal gas of the disposal and degasifier tank being brought into the analyzer. Thus, a heating system was installed inside and outside of the sampling panel for gas to remove generated condensate water in the analyzer and pipe. For the case where condensate water is not removed by the heating system, drain port is also installed in the sampling panel for gas to collect the condensate water of the sampling system. It was verified that there is a great volume of condensate water existing in the pipe line during the purging process after installing manufactured goods. The condensate water was fully removed by the installed heating cable and drain port. The heating cable was operated constantly at a temperature of 80 to 90 .deg. C, which allows the precise measurement of gas concentration and longer maintenance duration by blocking of the condensate water before being produced. To install instruments for measuring the gas, such as an O{sub 2} and H{sub 2} analyzer etc., consideration regarding whether there condensate water is present due to the temperature difference between the measuring system and analyzer is required.

  8. Competition between Bose-Einstein Condensation and Spin Dynamics.

    Science.gov (United States)

    Naylor, B; Brewczyk, M; Gajda, M; Gorceix, O; Maréchal, E; Vernac, L; Laburthe-Tolra, B

    2016-10-28

    We study the impact of spin-exchange collisions on the dynamics of Bose-Einstein condensation by rapidly cooling a chromium multicomponent Bose gas. Despite relatively strong spin-dependent interactions, the critical temperature for Bose-Einstein condensation is reached before the spin degrees of freedom fully thermalize. The increase in density due to Bose-Einstein condensation then triggers spin dynamics, hampering the formation of condensates in spin-excited states. Small metastable spinor condensates are, nevertheless, produced, and they manifest in strong spin fluctuations.

  9. Determination of Reasons of Obstruction in the Condensate Stabilizer System of Namconson Gas Treatment Terminal by Radioisotope Techniques

    International Nuclear Information System (INIS)

    Bui Quang Tri; Nguyen Huu Quang; Dang Nguyen The Duy; Tran Tri Hai; Tran Thanh Minh

    2008-01-01

    The Condensate Stabilizer System of Namconson Gas Treatment Terminal was designed with operational flow rate of 60 m 3 /h but for unknown reason it ran efficiently below 20 m 3 /h. The Radiotracer in combination with Gamma Scan was used to investigate in understanding the reasons. The results showed the build up at the bottom of Trap out Tray which caused obstruction of condensate flow in the outlet of Trap out Tray. As a results the feed flow rate to Reboiler from Trap out Tray lowered into 1/3 and the remaining 2/3 by passing the Reboiler by overflow to the Sump. (author)

  10. A Study on Condensation Heat Transfer at the Exterior Surface of S.A.M. Coated Titanium Tube Using in Steam Condensers

    Energy Technology Data Exchange (ETDEWEB)

    Im, Sung-Gu; Lee, Sang-Hyup; Ji, Dae-Yun; Park, Hyun-Gyu; Lee, Kwon-Yeong [Handong Global University, Pohang (Korea, Republic of)

    2016-10-15

    Condensation occurs when the temperature of a steam is reduced below its saturation temperature. There exist two forms of condensation on cooling surface: dropwise, and film condensations. Usually, dropwise condensation has a better heat transfer performance than film condensation, but it has limit of short period. Ma et al. executed heat transfer experiment in dropwise condensation with non-condensable gas, and studied how the amount of air and pressure difference affect condensation heat transfer coefficient. The more non-condensable gas exist, the condensation heat transfer coefficient is decreased. As a result, surface modified brass tube and stainless tube showed higher condensation heat transfer coefficient as much as 1.3 and 1.4 times comparing with their bare tubes in 70 kPa vacuum condition respectively. Most of power plants use sea water as coolant, so the surface of metal tubes could be corroded by the coolant. We had researched an experimental study related to condensation heat transfer on surface modified titanium tube. Our experimental facility was designed to show how two kinds of tube's heat transfer performances are different in a same condition. We changed the range of saturation pressure and coolant flow rate to observe tube's performance change. When saturation pressure and coolant flow rate increase, overall heat transfer coefficients were increased. When residue of non-condensable gases was decreased, the overall heat transfer coefficients were increased. S.A.M. coated tube's overall heat transfer coefficients were lower than those of bare tube, because the droplets didn't have a tendency of frequently falling down.

  11. Retrograde amnesia in patients with Alzheimer's disease

    NARCIS (Netherlands)

    Meeter, M.; Eijsackers, E; Mulder, J

    2006-01-01

    Patients with mild to moderate Alzheimer's disease and normal controls were tested on two retrograde memory tests, one based on public events, and the other querying autobiographical memory. On both tests, patients showed strong decrements as compared to normal controls, pointing to retrograde

  12. Integration of gas phase condensed nanoparticles in YBa_2Cu_3O_7_-_δ multilayers

    International Nuclear Information System (INIS)

    Sparing, Maria

    2012-01-01

    The control and targeted variation of nanoparticles properties is a central challenge in research on particle induced defects in YBa_2Cu_3O_7_-_δ. Using a combined Sputter-PLD system with inert gas condensation particle size and density integrated into the YBCO multilayers were varied independently. The cooling process influences the electrical properties of the multilayers. The effect of HfO2 and FePt nanoparticles on the structural and electrical properties was studied.

  13. Determination of the vertical distribution and areal of the composition in volatile oil and/or gas condensate reservoirs

    International Nuclear Information System (INIS)

    Santos Santos, Nicolas; Ortiz Cancino, Olga Patricia; Barrios Ortiz, Wilson

    2005-01-01

    The compositional variation in vertical and areal direction due to gravitational and thermal effects plays an important role in the determination of the original reserves in-situ and in the selection of the operation scheme for volatile oil and/or gas condensate reservoirs. In this work we presented the mathematical formulation of the thermodynamic behavior experienced by compositional fluids, such as volatile oil and/or gas condensate, under the influence of the mentioned effects (gravitational and thermal), which was implemented in a software tool, this tool determine the compositional variation in vertical direction and, in addition, it allows to know the saturation pressure variation in the hydrocarbon column and the location of the gas-oil contact. With the obtained results, product of the use of this tool, was developed a methodology to obtain one first approach of the compositional variation in areal direction to obtain compositional spatial distribution (iso composition maps) in the reservoir, for components like the methane, which experiences the greater variations. These iso composition maps allow to determine the location of the hydrocarbon deposits, in such a way that the production strategies can be selected and be applied to maximize the recovery, such as in fill wells, perforation of new zones, EOR processes, etc

  14. Dynamics of the retrograde 1/1 mean motion resonance

    Science.gov (United States)

    Huang, Yukun; Li, Miao; Li, Junfeng; Gong, Shengping

    2018-04-01

    Mean motion resonances are very common in the solar system. Asteroids in mean motion resonances with giant planets have been studied for centuries. But it was not until recently that asteroids in retrograde mean motion resonances with Jupiter and Saturn were discovered. The newly discovered asteroid, 2015 BZ509 is confirmed to be the first asteroid in retrograde 1:1 mean motion resonance (or retrograde co-orbital resonance) with Jupiter, which gives rise to our interests in its unique resonant dynamics. In this study, we thoroughly investigate the phase-space structure of the retrograde 1:1 resonance within the framework of the circular restricted three-body problem. We begin by constructing a simple integrable approximation for the planar retrograde resonance with the Hamiltonian approach and show that the variables definition of the retrograde resonance is very different to the prograde one. When it comes to the disturbing function, we abandon the classical series expansion approach, whereas numerically carry out the averaging process on the disturbing function in closed form. The phase portrait of the retrograde 1:1 resonance is depicted with the level curves of the averaged Hamiltonian. We find that the topological structure of phase space for the retrograde 1:1 resonance is very different to other resonances, due to the consistent existence of the collision separatrix. And the surprising bifurcation of equilibrium point around 180° (i.e., the apocentric libration center) has never been found in any other mean motion resonances before. We thoroughly analyze the novel apocentric librations and find that close encounter with the planet does not always lead to the disruption of a stable apocentric libration. Afterwards, we examine the Kozai dynamics inside the mean motion resonance with the similar Hamiltonian approach and explain why the exact resonant point does not exist in the 3D retrograde 1:1 resonance model.

  15. Materials in flue gas condensation plants. Stage 2; Materialval vid roekgaskondensering. Etapp 2

    Energy Technology Data Exchange (ETDEWEB)

    Nordling, Magnus; Bergman, Gunnar; Baeck, Gustaf; Jacobsson, Karin; Pahverk, Helen; Roemhild, Stefanie

    2004-12-01

    The corrosion resistance of some metallic and polymeric materials has been investigated in the flue gas scrubbers/condensers in the power plants at Igelsta using waste wood and Brista using bio fuel in the boilers. The materials were exposed inside the inlet part of the condenser and inside the flue gas duct after the condenser. In Brista, the polymeric materials were also exposed to the hot flue gases inside the duct before the condenser. The temperature of the gases before and after the condenser in Brista was 140 deg C and 50-60 deg C, respectively. In Igelsta, the flue gas temperature after the condenser was 45 deg C. The metallic coupons in the condenser were located in the spray-zone, both in Igelsta and Brista. That was true also for the polymeric material in Brista. In both plants, the wash-solution had a pH of 7-8, a temperature of 30 deg C, and a low content of chloride. The metallic materials investigated were stainless steels of the following grades: 17-12-2.5, 2205, SAF2507 and 254SMO. The major part of the polymeric materials investigated consisted of FRP laminates, which were made with different combinations of resin type of surface veil and type of chopped strand mat (CSM). Laminates with a new type of vinyl ester resin, Atlac E-Nova FW 1045, a new type of a stress-corrosion-resistant glass-fibre called Arcotex, and two types of surface reinforcement of carbon fibre have been compared to laminates of common type. Laminates with a special reinforcement of the type 3-D fabric were also included as well as five polypropylene materials (PP) with varying degree of stabilisation, two glass-flake materials applied on carbon steel and a butyl rubber. The corrosion resistance of the materials was evaluated after seven a months exposure at the different positions in the plants. The stainless steel materials were evaluated with respect to uniform corrosion, pitting and crevice attack. The corrosion resistance of the polymeric materials was evaluated with

  16. Retrograde amnesia for semantic information in Alzheimer's disease

    OpenAIRE

    Meeter, M.; Kollen, A.; Scheltens, P.

    2005-01-01

    Patients with mild to moderate Alzheimer's disease and normal controls were tested on a retrograde amnesia test with semantic content (Neologism and Vocabulary Test, or NVT), consisting of neologisms to be defined. Patients showed a decrement as compared to normal controls, pointing to retrograde amnesia within semantic memory. No evidence for a gradient within this amnesia was found, although one was present on an autobiographic test of retrograde amnesia that had a wider time scale. Several...

  17. Mismatch analysis of humeral nailing. Antegrade versus retrograde insertion

    International Nuclear Information System (INIS)

    Mahaisavariya, B.; Jiamwatthanachai, P.; Aroonjarattham, P.; Aroonjarattham, K.; Wongcumchang, M.; Sitthiseripratip, K.

    2011-01-01

    Closed humeral nailing is now considered an alternative treatment for humeral-shaft fracture. The nail can be inserted with either the antegrade or retrograde method. We investigated and compared the problem of geometric mismatch of the humeral nail to the humerus between the two methods of insertion. The study was performed using virtual simulation based on computed tomography (CT) data of 76 Thai cadaveric humeri and the commonly used Russell-Taylor humeral nail 8 mm in diameter and 220 mm long. Mismatch of the nail to the intact humerus was analyzed and compared between the antegrade and retrograde nailing approaches. The results showed: the diameter of the medullary canal averaged 7.9-13.8 mm; the minimal reaming diameter to accommodate virtual nail insertion averaged 8.8-14.8 mm for the antegrade and 8.8-29.3 mm for the retrograde approach; the minimal reaming thickness of the inner cortex averaged 0.1-1.5 mm for the antegrade and 0.1-9.9 mm for the retrograde approach; the percentages of cortical bone removed prior to nail insertion were 3.8-107.1% and 3.8-1,287.6% for the antegrade and retrograde approaches, respectively; the eccentricity of the nail-medullary canal center were 0.4-3.4 and 0.4-10.6 mm for the antegrade and retrograde approaches, respectively. Less mismatching occurred with antegrade nailing than with the retrograde approach. Retrograde nailing requires excessive reaming at the distal part of the humerus to accommodate nail insertion. This may create bone weakness and the risk of supracondylar fracture. (author)

  18. Retrograde prostatic urethroplasty with balloon catheter

    International Nuclear Information System (INIS)

    Castaneda, F.; Reddy, P.; Hulbert, J.; Letourneau, J.G.; Hunter, D.W.; Castaneda-Zuniga, W.R.; Amplatz, K.

    1987-01-01

    The authors performed retrograde prostatic urethroplasty in 18 patients using a 25-mm urethroplasty balloon catheter. The procedure was performed on an outpatient basis under local anesthesia. Voiding cystourethrography, retrograde urethrography, rectal US, and MRE imaging were performed before and immediately after the procedure and at 2 weeks and 3, 6, 12, and 18 months. Long-term results at 18 months and possible clinical implications are discussed

  19. Decoupling damage mechanisms in acid-fractured gas/condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, R.C.; Walters, D.A. [Taurus Reservoir Solutions Ltd., Calgary, AB (Canada); Settari, A. [Calgary Univ., AB (Canada); Rahim, Z.; Ahmed, M.S. [Saudi Aramco, Dhahran (Saudi Arabia)

    2006-07-01

    The Khuff is a gas condensate field located 11,500 feet beneath the producing Ghawar oil field in Saudi Arabia. Wells are mainly acid fracture stimulated following drilling with excellent fracture conductivity and length properties. The wells experience a quick production loss however, after tie-in which eventually stabilizes after two to five months. In order to identify the source of productivity loss, such as near well liquid dropout, fracture conductivity loss, reservoir permeability loss due to increased effective stress, a study of a well in the Khuff field was conducted. The study reviewed basic geomechanical and reservoir properties and identified the mechanisms of production loss. The paper presented the methodology, data and preliminary analysis, relative permeability and results of the history matching. It was concluded that traditional production type curves in cases with changing skin may indicate that transient flow is occurring when boundary effects are felt. In addition, stress dependent fracture conductivity and reservoir permeability can be modeled with simpler pressure dependent functions for relatively low overall loss in reservoir pressure. 30 refs., 25 figs., 1 appendix.

  20. Theory of a condensed charged-Bose, charged Fermi gas and Ginzburg--Landau studies of superfluid 3He

    International Nuclear Information System (INIS)

    Dahl, D.A.

    1976-01-01

    Two independent topics in the field of condensed matter physics are examined: the condensed charged-Bose, charged Fermi gas and superfluid 3 He. Green's function (field theoretic) methods are used to derive the low-temperature properties of a dense, neutral gas of condensed charged bosons and degenerate charged fermions. Restriction is made to the case where the fermion mass is much lighter than the boson mass. Linear response and the density-density correlation function are examined and shown to exhibit two collective modes: a plasmon branch and a phonon branch with speed equal to that of ionic sound in solids. Comparison with a possible astrophysical application (white dwarf stars) is made. The behavior near the superfluid transition temperature (Ginzburg--Landau regime) of 3 He is then studied. Gorkov equations are derived and studied in the weak-coupling limit. In this way the form and order of magnitude estimates of coefficients appearing in the Ginzburg--Landau theory are obtained. Weak-coupling particle and spin currents are derived. Various perturbations break the large degeneracy of the states and have experimental implications. The electric contribution to the Ginzburg--Landau free energy is studied for the proposed A and B phases. Imposition of an electric field orients the axial state, but does not give rise to shifts in the NMR resonances. Shifts and discontinuous jumps in the longitudinal and transverse signals are predicted for the Balian--Werthamer state, the details depending on the relative strengths of the fields, as well as the angle between them

  1. Bench scale experiments for the remediation of Hanford Waste Treatment Plant low activity waste melter off-gas condensate

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-11

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter, so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.

  2. Effect of Channel Geometry and Properties of a Vapor-Gas Mixture on Volume Condensation in a Flow through a Nozzle

    Science.gov (United States)

    Sidorov, A. A.; Yastrebov, A. K.

    2018-01-01

    A method of direct numerical solution of the kinetic equation for the droplet size distribution function was used for the numerical investigation of volume condensation in a supersonic vapor-gas flow. Distributions of temperature for the gas phase and droplets, degree of supersaturation, pressure, fraction of droplets by weight, the number of droplets per unit mass, and of the nucleation rate along the channel were determined. The influence of nozzle geometry, mixture composition, and temperature dependence of the mixture properties on the investigated process was evaluated. It has been found that the nozzle divergence angle determines the vapor-gas mixture expansion rate: an increase in the divergence angle enhances the temperature decrease rate and the supersaturation degree raise rate. With an increase or decrease in the partial pressure of incondensable gas, the droplet temperature approaches the gas phase temperature or the saturation temperature at the partial gas pressure, respectively. A considerable effect of the temperature dependence of the liquid surface tension and properties on gas phase parameters and the integral characteristics of condensation aerosol was revealed. However, the difference in results obtained with or without considering the temperature dependence of evaporation heat is negligible. The predictions are compared with experimental data of other investigations for two mixtures: a mixture of heavy water vapor with nitrogen (incondensable gas) or n-nonane vapor with nitrogen. The predictions agree quite well qualitatively and quantitatively with the experiment. The comparison of the predictions with numerical results from other publications obtained using the method of moments demonstrates the usefulness of the direct numerical solution method and the method of moments in a wide range of input data.

  3. Bose–Einstein condensation in the Rindler space

    Directory of Open Access Journals (Sweden)

    Shingo Takeuchi

    2015-11-01

    Full Text Available Based on the Unruh effect, we calculate the critical acceleration of the Bose–Einstein condensation in a free complex scalar field at finite density in the Rindler space. Our model corresponds to an ideal gas performing constantly accelerating motion in a Minkowski space–time at zero-temperature, where the gas is composed of the complex scalar particles and it can be thought to be in a thermal-bath with the Unruh temperature. In the accelerating frame, the model will be in the Bose–Einstein condensation state at low acceleration; on the other hand, there will be no condensation at high acceleration by the thermal excitation brought into by the Unruh effect. Our critical acceleration is the one at which the Bose–Einstein condensation begins to appear in the accelerating frame when we decrease the acceleration gradually. To carry out the calculation, we assume that the critical acceleration is much larger than the mass of the particle.

  4. Retrograde transurethral balloon dilation of the prostate

    International Nuclear Information System (INIS)

    Castaneda, F.; Reddy, P.; Wasserman, N.F.; Lund, G.; Hulbert, J.; Hunter, D.; Castaneda-Zuniga, W.R.; Amplatz, K.

    1986-01-01

    A series of patients with documented benign prostatic hypertrophy evaluated by urodynamic studies, voiding cystourethrography, retrograde urethrography, and MR imaging underwent dilation performed using a retrograde transurethral approach with 25-mm balloon dilators inflated at a pressure of 3-4 atm for 10 minutes. Immediately after the procedure, retrograde and voiding cystourethrography as well as MR imaging were performed. A Foley catheter was left in place for 24 hours. Complete relief of symptoms has occurred in all of the patients during the follow-up period. No significant complications other than transient hematuria resulted from the procedure. Results of the comparison studies and of MR imaging are discussed

  5. The Dynamics of Aerosols in Condensational Scrubbers

    DEFF Research Database (Denmark)

    Johannessen, Jens Tue; Christensen, Jan A.; Simonsen, Ole

    1997-01-01

    A mathematical model for the simulation of the dynamics of aerosol change in condensational scrubbers and scrubbing condensers is proposed. The model is applicable for packed column gas/liquid contact when plug flow can be assumed. The model is compared with experimental data for particle removal...... for their estimation is proposed. The behaviour of scrubbers and condensers for some important technical applications is demonstrated by model simulations. (C) 1997 Elsevier Science Ltd....

  6. Condensing boiler applications in the process industry

    International Nuclear Information System (INIS)

    Chen, Qun; Finney, Karen; Li, Hanning; Zhang, Xiaohui; Zhou, Jue; Sharifi, Vida; Swithenbank, Jim

    2012-01-01

    Major challenging issues such as climate change, energy prices and fuel security have focussed the attention of process industries on their energy efficiency and opportunities for improvement. The main objective of this research study was to investigate technologies needed to exploit the large amount of low grade heat available from a flue gas condensing system through industrial condensing boilers. The technology and application of industrial condensing boilers in various heating systems were extensively reviewed. As the condensers require site-specific engineering design, a case study was carried out to investigate the feasibility (technically and economically) of applying condensing boilers in a large scale district heating system (40 MW). The study showed that by recovering the latent heat of water vapour in the flue gas through condensing boilers, the whole heating system could achieve significantly higher efficiency levels than conventional boilers. In addition to waste heat recovery, condensing boilers can also be optimised for emission abatement, especially for particle removal. Two technical barriers for the condensing boiler application are corrosion and return water temperatures. Highly corrosion-resistant material is required for condensing boiler manufacture. The thermal design of a 'case study' single pass shell-and-tube condensing heat exchanger/condenser showed that a considerable amount of thermal resistance was on the shell-side. Based on the case study calculations, approximately 4900 m 2 of total heat transfer area was required, if stainless steel was used as a construction material. If the heat transfer area was made of carbon steel, then polypropylene could be used as the corrosion-resistant coating material outside the tubes. The addition of polypropylene coating increased the tube wall thermal resistance, hence the required heat transfer area was approximately 5800 m 2 . Net Present Value (NPV) calculations showed that the choice of a carbon

  7. Dynamic Portrait of the Retrograde 1:1 Mean Motion Resonance

    Science.gov (United States)

    Huang, Yukun; Li, Miao; Li, Junfeng; Gong, Shengping

    2018-06-01

    Asteroids in mean motion resonances with giant planets are common in the solar system, but it was not until recently that several asteroids in retrograde mean motion resonances with Jupiter and Saturn were discovered. A retrograde co-orbital asteroid of Jupiter, 2015 BZ509 is confirmed to be in a long-term stable retrograde 1:1 mean motion resonance with Jupiter, which gives rise to our interests in its unique resonant dynamics. In this paper, we investigate the phase-space structure of the retrograde 1:1 resonance in detail within the framework of the circular restricted three-body problem. We construct a simple integrable approximation for the planar retrograde resonance using canonical contact transformation and numerically employ the averaging procedure in closed form. The phase portrait of the retrograde 1:1 resonance is depicted with the level curves of the averaged Hamiltonian. We thoroughly analyze all possible librations in the co-orbital region and uncover a new apocentric libration for the retrograde 1:1 resonance inside the planet’s orbit. We also observe the significant jumps in orbital elements for outer and inner apocentric librations, which are caused by close encounters with the perturber.

  8. Antegrade or Retrograde Accessory Pathway Conduction: Who Dies First?

    Directory of Open Access Journals (Sweden)

    Claudio Hadid, MD

    2012-05-01

    Full Text Available A 36 year-old man with Wolff Parkinson White syndrome due to a left-sided accessory pathway (AP was referred for catheter ablation. Whether abolition of antegrade and retrograde AP conduction during ablation therapy occurs simultaneously, is unclear. At the ablation procedure, radiofrequency delivery resulted in loss of preexcitation followed by a short run of orthodromic tachycardia with eccentric atrial activation, demonstrating persistence of retrograde conduction over the AP after abolition of its antegrade conduction. During continued radiofrequency delivery at the same position, the fifth non-preexcitated beat failed to conduct retrogradely and the tachycardia ended. In this case, antegrade AP conduction was abolished earlier than retrograde conduction.

  9. Retrograde Renal Cooling to Minimize Ischemia

    Directory of Open Access Journals (Sweden)

    Janet L. Colli

    2013-01-01

    Full Text Available Objective: During partial nephrectomy, renal hypothermia has been shown to decrease ischemia induced renal damage which occurs from renal hilar clamping. In this study we investigate the infusion rate required to safely cool the entire renal unit in a porcine model using retrograde irrigation of iced saline via dual-lumen ureteral catheter. Materials and Methods: Renal cortical, renal medullary, bowel and rectal temperatures during retrograde cooling in a laparoscopic porcine model were monitored in six renal units. Iced normal saline was infused at 300 cc/hour, 600 cc/hour, 1000 cc/hour and gravity (800 cc/hour for 600 seconds with and without hilar clamping. Results: Retrograde cooling with hilar clamping provided rapid medullary renal cooling and significant hypothermia of the medulla and cortex at infusion rates ≥ 600 cc/hour. With hilar clamping, cortical temperatures decreased at -0.9° C/min. reaching a threshold temperature of 26.9° C, and medullary temperatures decreased at -0.90 C/min. reaching a temperature of 26.1° C over 600 seconds on average for combined data at infusion rates ≥ 600 cc/hour. The lowest renal temperatures were achieved with gravity infusion. Without renal hilum clamping, retrograde cooling was minimal at all infusion rates. Conclusions: Significant renal cooling by gravity infusion of iced cold saline via a duel lumen catheter with a clamped renal hilum was achieved in a porcine model. Continuous retrograde irrigation with iced saline via a two way ureteral catheter may be an effective method to induce renal hypothermia in patients undergoing robotic assisted and/or laparoscopic partial nephrectomy.

  10. The inherent catastrophic traps in retrograde CTO PCI.

    Science.gov (United States)

    Wu, Eugene B; Tsuchikane, Etsuo

    2018-05-01

    When we learn to drive, our driving instructor tells us how to check the side mirror and turn your head to check the blind spot before changing lanes. He tells us how to stop at stop signs, how to drive in slippery conditions, the safe stopping distances, and these all make our driving safe. Similarly, when we learn PCI, our mentors teach us to seat the guiding catheter co-axially, to wire the vessel safely, to deliver balloon and stents over the wire, to watch the pressure of the guiding, in order that we perform PCI safely and evade complications. In retrograde CTO PCI, there is no such published teaching. Also many individual mentors have not had the wide experience to see all the possible complications of retrograde CTO PCI and, therefore, may not be able to warn their apprentice. As the number of retrograde procedures increase worldwide, there is a corresponding increase in catastrophic complications, many of which, we as experts, can see are easily avoidable. To breach this gap in knowledge, this article describes 12 commonly met inherent traps in retrograde CTO PCI. They are inherent because by arranging our equipment in the manner to perform retrograde CTO PCI, these complications are either induced directly or happen easily. We hope this work will enhance safety of retrograde CTO PCI and avoid many catastrophic complications for our readers and operators. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Criteria for retrograde rotation of accreting black holes

    Science.gov (United States)

    Mikhailov, A. G.; Piotrovich, M. Yu; Gnedin, Yu N.; Natsvlishvili, T. M.; Buliga, S. D.

    2018-06-01

    Rotating supermassive black holes produce jets and their origin is connected to the magnetic field that is generated by accreting matter flow. There is a point of view that electromagnetic fields around rotating black holes are brought to the hole by accretion. In this situation the prograde accreting discs produce weaker large-scale black hole threading magnetic fields, implying weaker jets than in retrograde regimes. The basic goal of this paper is to find the best candidates for retrograde accreting systems in observed active galactic nuclei. We show that active galactic nuclei with low Eddington ratio are really the best candidates for retrograde systems. This conclusion is obtained for kinetically dominated Fanaroff-Riley class II radio galaxies, flat-spectrum radio-loud narrow-line Seyfert I galaxies and a number of nearby galaxies. Our conclusion is that the best candidates for retrograde systems are the noticeable population of active galactic nuclei in the Universe. This result corresponds to the conclusion that in the merging process the interaction of merging black holes with a retrograde circumbinary disc is considerably more effective for shrinking the binary system.

  12. Aspects of hyperspherical adiabaticity in an atomic-gas Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Kushibe, Daisuke; Mutou, Masaki; Morishita, Toru; Watanabe, Shinichi; Matsuzawa, Michio

    2004-01-01

    Excitation of an atomic-gas Bose-Einstein condensate (BEC) in the zeroth-order ground-state channel is studied with the hyperspherical adiabatic method of Bohn et al. [Bohn et al., Phys. Rev. A 58, 584 (1998)] suitably generalized to accommodate the anisotropic trapping potential. The method exploits the system's size as an adiabatic parameter so that the explicit size dependence is immediately conducive to the virial theorem. The oscillation frequencies associated with the monopole (breathing) and quadrupole modes thus emerge naturally and converge to the well-known Thomas-Fermi limits. Analysis of the single-particle density and the projected excitation wave function shows that the excitation in the single hyperspherical ground-state channel merely represents a progressive increase in occupancy of the first excited single-particle state. The work paves the way for applying the adiabatic picture to other BEC phenomena

  13. Retrograde amnesia after electroconvulsive therapy: a temporary effect?

    NARCIS (Netherlands)

    Meeter, M.; Murre, J.M.J.; Janssen, S.M.J.; Birkenhager, T.; van den Broek, W.W.

    2011-01-01

    Objective: Although electroconvulsive therapy (ECT) is generally considered effective against depression, it remains controversial because of its association with retrograde memory loss. Here, we assessed memory after ECT in circumstances most likely to yield strong retrograde amnesia. Method: A

  14. Intrinsic bioremediation of petroleum hydrocarbons in a gas condensate-contaminated aquifer

    International Nuclear Information System (INIS)

    Gieg, L.M.; McInerney; Tanner, R.S.; Harris, S.H. Jr.; Sublette, K.L.; Suflita, J.M.; Kolhatkar, R.V.

    1999-01-01

    A study was designed to determine if the intrinsic bioremediation of gas condensate hydrocarbons represented an important fate process in a shallow aquifer underlying a natural gas production site. For over 4 yr, changes in the groundwater, sediment, and vadose zone chemistry in the contaminated portion of the aquifer were interpreted relative to a background zone. Changes included decreased dissolved oxygen and sulfate levels and increased alkalinity, Fe(II), and methane concentrations in the contaminated groundwater, suggesting that aerobic heterotrophic respiration depleted oxygen reserves leaving anaerobic conditions in the hydrocarbon-impacted subsurface. Dissolved hydrogen levels in the contaminated groundwater indicated that sulfate reduction and methanogenesis were predominant biological processes, corroborating the geochemical findings. Furthermore, 10--1000-fold higher numbers of sulfate reducers and methanogens were enumerated in the contaminated sediment relative to background. Putative metabolites were also detected in the contaminated groundwater, including methylbenzylsuccinic acid, a signature intermediate of anaerobic xylene decay. Laboratory incubations showed that benzene, toluene, ethylbenzene, and each of the xylene isomers were biodegraded under sulfate-reducing conditions as was toluene under methanogenic conditions. These results coupled with a decrease in hydrocarbon concentrations in contaminated sediment confirm that intrinsic bioremediation contributes to the attenuation of hydrocarbons in this aquifer

  15. Born-Kothari Condensation for Fermions

    Directory of Open Access Journals (Sweden)

    Arnab Ghosh

    2017-09-01

    Full Text Available In the spirit of Bose–Einstein condensation, we present a detailed account of the statistical description of the condensation phenomena for a Fermi–Dirac gas following the works of Born and Kothari. For bosons, while the condensed phase below a certain critical temperature, permits macroscopic occupation at the lowest energy single particle state, for fermions, due to Pauli exclusion principle, the condensed phase occurs only in the form of a single occupancy dense modes at the highest energy state. In spite of these rudimentary differences, our recent findings [Ghosh and Ray, 2017] identify the foregoing phenomenon as condensation-like coherence among fermions in an analogous way to Bose–Einstein condensate which is collectively described by a coherent matter wave. To reach the above conclusion, we employ the close relationship between the statistical methods of bosonic and fermionic fields pioneered by Cahill and Glauber. In addition to our previous results, we described in this mini-review that the highest momentum (energy for individual fermions, prerequisite for the condensation process, can be specified in terms of the natural length and energy scales of the problem. The existence of such condensed phases, which are of obvious significance in the context of elementary particles, have also been scrutinized.

  16. The smoke ion source: A device for the generation of cluster ions via inert gas condensation

    International Nuclear Information System (INIS)

    McHugh, K.M.; Sarkas, H.W.; Eaton, J.G.; Bowen, K.H.; Westgate, C.R.

    1989-01-01

    We report the development of an ion source for generating intense, continuous beams of both positive and negative cluster ions. This device is the result of the marriage of the inert gas condensation method with techniques for injecting electrons directly into expanding jets. In the preliminary studies described here, we have observed cluster ion size distributions ranging from n=1-400 for Pb n + and Pb n - and from n=12-5700 for Li n - . (orig.)

  17. Sn and Cu oxide nanoparticles deposited on TiO{sub 2} nanoflower 3D substrates by Inert Gas Condensation technique

    Energy Technology Data Exchange (ETDEWEB)

    Kusior, A., E-mail: akusior@agh.edu.pl [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Kollbek, K. [Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Kowalski, K. [Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Borysiewicz, M. [Institute of Electron Technology, al. Lotnikow 32/46, 02-668 Warszawa (Poland); Wojciechowski, T. [Institute of Physics Polish Academy of Science, al. Lotnikow 32/46, 02-668 Warszawa (Poland); Adamczyk, A.; Trenczek-Zajac, A.; Radecka, M. [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Zakrzewska, K. [Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland)

    2016-09-01

    Graphical abstract: - Highlights: • Inert Gas Condensation method yields non-agglomerated nanoparticles. • The growth of nanoparticles is controllable at the level of deposition. • Electrical conductivity increases with respect to pure nanostructured TiO{sub 2}. - Abstract: Sn and Cu oxide nanoparticles were deposited by Inert Gas Condensation (IGC) technique combined with dc magnetron sputtering onto nanoflower TiO{sub 2} 3D substrates obtained in the oxidation process of Ti-foil in 30% H{sub 2}O{sub 2}. Sputtering parameters such as insertion length and Ar/He flow rates were optimized taking into account the nanostructure morphology. Comparative studies with hydrothermal method were carried out. Surface properties of the synthesized nanomaterials were studied by Scanning Electron Microscopy, SEM, Atomic Force Microscopy, AFM, and X-ray Photoelectron Spectroscopy, XPS. X-ray diffraction, XRD and Raman spectroscopy were performed in order to determine phase composition. Impedance spectroscopy demonstrated the influence of nanoparticles on the electrical conductivity.

  18. Bose-Einstein condensation of paraxial light

    OpenAIRE

    Klaers, J.; Schmitt, J.; Damm, T.; Vewinger, F.; Weitz, M.

    2011-01-01

    Photons, due to the virtually vanishing photon-photon interaction, constitute to very good approximation an ideal Bose gas, but owing to the vanishing chemical potential a (free) photon gas does not show Bose-Einstein condensation. However, this is not necessarily true for a lower-dimensional photon gas. By means of a fluorescence induced thermalization process in an optical microcavity one can achieve a thermal photon gas with freely adjustable chemical potential. Experimentally, we have obs...

  19. Retrograde amnesia for semantic information in Alzheimer's disease

    NARCIS (Netherlands)

    Meeter, M.; Kollen, A.; Scheltens, P.

    2005-01-01

    Patients with mild to moderate Alzheimer's disease and normal controls were tested on a retrograde amnesia test with semantic content (Neologism and Vocabulary Test, or NVT), consisting of neologisms to be defined. Patients showed a decrement as compared to normal controls, pointing to retrograde

  20. Disrupting circadian rhythms in rats induces retrograde amnesia

    NARCIS (Netherlands)

    Fekete, Mátyás; Ree, J.M. van; Niesink, Raymond J.M.; Wied, D. de

    1985-01-01

    Disrupting circadian organization in rats by phase-shifting the illumination cycle or by exposure to a reversed day/night cycle or to continuous light, resulted in retrograde amnesia for passive avoidance behavior. This retrograde amnesia induced by phase-shifting lasted at least 2 days, and

  1. Continuous condensation in nanogrooves

    Science.gov (United States)

    Malijevský, Alexandr

    2018-05-01

    We consider condensation in a capillary groove of width L and depth D , formed by walls that are completely wet (contact angle θ =0 ), which is in a contact with a gas reservoir of the chemical potential μ . On a mesoscopic level, the condensation process can be described in terms of the midpoint height ℓ of a meniscus formed at the liquid-gas interface. For macroscopically deep grooves (D →∞ ), and in the presence of long-range (dispersion) forces, the condensation corresponds to a second-order phase transition, such that ℓ ˜(μcc-μ ) -1 /4 as μ →μcc - where μc c is the chemical potential pertinent to capillary condensation in a slit pore of width L . For finite values of D , the transition becomes rounded and the groove becomes filled with liquid at a chemical potential higher than μc c with a difference of the order of D-3. For sufficiently deep grooves, the meniscus growth initially follows the power law ℓ ˜(μcc-μ ) -1 /4 , but this behavior eventually crosses over to ℓ ˜D -(μ-μc c) -1 /3 above μc c, with a gap between the two regimes shown to be δ ¯μ ˜D-3 . Right at μ =μc c , when the groove is only partially filled with liquid, the height of the meniscus scales as ℓ*˜(D3L) 1 /4 . Moreover, the chemical potential (or pressure) at which the groove is half-filled with liquid exhibits a nonmonotonic dependence on D with a maximum at D ≈3 L /2 and coincides with μc c when L ≈D . Finally, we show that condensation in finite grooves can be mapped on the condensation in capillary slits formed by two asymmetric (competing) walls a distance D apart with potential strengths depending on L . All these predictions, based on mesoscopic arguments, are confirmed by fully microscopic Rosenfeld's density functional theory with a reasonable agreement down to surprisingly small values of both L and D .

  2. SOLGASMIX-PV, Chemical System Equilibrium of Gaseous and Condensed Phase Mixtures

    International Nuclear Information System (INIS)

    Besmann, T.M.

    1986-01-01

    1 - Description of program or function: SOLGASMIX-PV, which is based on the earlier SOLGAS and SOLGASMIX codes, calculates equilibrium relationships in complex chemical systems. Chemical equilibrium calculations involve finding the system composition, within certain constraints, which contains the minimum free energy. The constraints are the preservation of the masses of each element present and either constant pressure or volume. SOLGASMIX-PV can calculate equilibria in systems containing a gaseous phase, condensed phase solutions, and condensed phases of invariant and variable stoichiometry. Either a constant total gas volume or a constant total pressure can be assumed. Unit activities for condensed phases and ideality for solutions are assumed, although nonideal systems can be handled provided activity coefficient relationships are available. 2 - Restrictions on the complexity of the problem: The program is designed to handle a maximum of 20 elements, 99 substances, and 10 mixtures, where the gas phase is considered a mixture. Each substance is either a gas or condensed phase species, or a member of a condensed phase mixture

  3. Effect of non-condensable gas on steady-state operation of a loop thermosyphon

    International Nuclear Information System (INIS)

    He, Jiang; Lin, Guiping; Bai, Lizhan; Miao, Jianyin; Zhang, Hongxing; Wang, Lu

    2014-01-01

    Non-condensable gas (NCG) generated inside two-phase heat transfer devices can adversely affect the thermal performance and limit the lifetime of such devices. In this work, extensive experimental investigation of the effect of NCG on the steady-state operation of an ammonia-stainless steel loop thermosyphon was conducted. In the experiments, nitrogen was injected into the loop thermosyphon as NCG, and the thermal performance of the loop thermosyphon was tested at different NCG inventories, heat loads applied to the evaporator and condenser cooling conditions, i.e. natural air cooling or circulating ethanol cooling. Experimental results reveal that NCG elevates the steady-state operating temperature of the evaporator, especially when the loop thermosyphon is operating in the low temperature range; meanwhile, the more NCG exists in the loop thermosyphon, the higher the operating temperature of the evaporator, and the lower the reservoir temperature. In addition, the existence of NCG results in the decrease of the overall thermal conductance of the loop thermosyphon, and the overall thermal conductance under the ethanol cooling condition may be even lower than that under the air cooling condition when the heat load is smaller than a certain value. Finally, the experimental results are theoretically analysed and explained. (authors)

  4. Coexistence of photonic and atomic Bose-Einstein condensates in ideal atomic gases

    Directory of Open Access Journals (Sweden)

    N. Boichenko

    2015-12-01

    Full Text Available We have studied conditions of photon Bose-Einstein condensate formation that is in thermodynamic equilibrium with ideal gas of two-level Bose atoms below the degeneracy temperature. Equations describing thermodynamic equilibrium in the system were formulated; critical temperatures and densities of photonic and atomic gas subsystems were obtained analytically. Coexistence conditions of these photonic and atomic Bose-Einstein condensates were found. There was predicted the possibility of an abrupt type of photon condensation in the presence of Bose condensate of ground-state atoms: it was shown that the slightest decrease of the temperature could cause a significant gathering of photons in the condensate. This case could be treated as a simple model of the situation known as "stopped light" in cold atomic gas. We also showed how population inversion of atomic levels can be created by lowering the temperature. The latter situation looks promising for light accumulation in atomic vapor at very low temperatures.

  5. Integral Reactor Containment Condensation Model and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiao [Oregon State Univ., Corvallis, OR (United States); Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States)

    2016-05-02

    ranging from 4 to 21 bar with three different static inventories of non-condensable gas. Condensation and heat transfer rates were evaluated employing several methods, notably from measured temperature gradients in the HTP as well as measured condensate formation rates. A detailed mass and energy accounting was used to assess the various measurement methods and to support simplifying assumptions required for the analysis. Condensation heat fluxes and heat transfer coefficients are calculated and presented as a function of pressure to satisfy the objectives of this investigation. The major conclusions for those tests are summarized below: (1) In the steam blow-down tests, the initial condensation heat transfer process involves the heating-up of the containment heat transfer plate. An inverse heat conduction model was developed to capture the rapid transient transfer characteristics, and the analysis method is applicable to SMR safety analysis. (2) The average condensation heat transfer coefficients for different pressure conditions and non-condensable gas mass fractions were obtained from the integral test facility, through the measurements of the heat conduction rate across the containment heat transfer plate, and from the water condensation rates measurement based on the total energy balance equation. 15 (3) The test results using the measured HTP wall temperatures are considerably lower than popular condensation models would predict mainly due to the side wall conduction effects in the existing MASLWR integral test facility. The data revealed the detailed heat transfer characteristics of the model containment, important to the SMR safety analysis and the validation of associated evaluation model. However this approach, unlike separate effect tests, cannot isolate the condensation heat transfer coefficient over the containment wall, and therefore is not suitable for the assessment of the condensation heat transfer coefficient against system pressure and noncondensable

  6. Bose condensates make quantum leaps and bounds

    International Nuclear Information System (INIS)

    Castin, Y.; Dum, R.; Sinatra, A.

    1999-01-01

    Since the first observation in 1995 of Bose-Einstein condensation in dilute atomic gases, atomic physicists have made extraordinary progress in understanding this unusual quantum state of matter. BOSE-EINSTEIN condensation is a macroscopic quantum phenomenon that was first predicted by Albert Einstein in the 1920s, at a time when quantum theory was still developing and was being applied to microscopic systems, such as individual particles and atoms. Einstein applied the new concept of Bose statistics to an ideal gas of identical atoms that were at thermal equilibrium and trapped in a box. He predicted that at sufficiently low temperatures the particles would accumulate in the lowest quantum state in the box, giving rise to a new state of matter with many unusual properties. The crucial point of Einstein's model is the absence of interactions between the particles in the box. However, this makes his prediction difficult to test in practice. In most real systems the complicating effect of particle interactions causes the gas to solidify well before the temperature for Bose-Einstein condensation is reached. But techniques developed in the past four years have allowed physicists to form Bose-Einstein condensates for a wide range of elements. In this article the authors describe the latest advances in Bose-Einstein condensation. (UK)

  7. Functional Outcomes of the Knee after Retrograde and Antegrade ...

    African Journals Online (AJOL)

    of femur shaft fractures although retrograde technique is gaining acceptance. Although ... Antegrade group, while the rate of knee stiffness was higher in the retrograde .... reaching direct and indirect social economic effect within the society.

  8. Bose-Einstein condensation in atomic alkali gases

    Science.gov (United States)

    Dodd, Robert J.

    1998-05-01

    I present a review of the time-independent Gross-Pitaevskii (GP), Bogoliubov, and finite-temperature Hartree-Fock-Bogoliubov (HFB) mean-field theories used to study trapped, Bose-Einstein condensed alkali gases. Numerical solutions of the (zero-temperature) GP equation are presented for attractive (negative scattering length) and repulsive (positive scattering length) interactions. Comparison is made with the Thomas-Fermi and (variational) trial wavefunction appr oximations that are used in the literature to study condensed gases. Numerical calculations of the (zero-temperature) Bogoliubov quasi-particle excitation frequencies are found to be in excellent agreement with the experimental results. The finite-temperature properties of condensed gases are examined using the Popov approximation (of the HFB theory) and a simple two-gas model. Specific, quantitative comparisons are made with experimental results for finite-temperature excitation frequencies. Qualitative comparisons are made between the results of the Popov approximation, two-gas model, and other published models for condensate fraction and thermal density distribution. The time-independent mean-field theories are found to be in excellent agreement with experimental results at relatively low temperatures (high condensate fractions). However, at higher temperatures (and condensate fractions of less than 50%) there are significant discrepancies between experimental data and theoretical calculations. This work was undertaken at the University of Maryland at College Park and was supported in part by the National Science Foundation (PHY-9601261) and the U.S. Office of Naval Research.

  9. Study on UF6 condensing receiving system improvement

    International Nuclear Information System (INIS)

    Zhang Zhenxing; Li Yingfeng; Li Zhenfeng; He Ping; Wang Yanping; Tian Yushan

    2012-01-01

    In order to improve receiving capacity of UF 6 condensing system, the pressure release mode is changed through modifying gas phase inlet of the first-grade condenser, thus pressure release time is reduced from 13.1 h to 8.1 h. Be- cause of improvement of utility condensers of the two product lines, both the flexibility of feeding nitrogen and the emergency capacity of condensers are improved greatly. And modification of fluid transferring and sampling system make the remains in system transfer flexibly. The practise shows that metal direct recovery rises to the extent, and capacity of the first-grade condensing receiving system improves 8.4%, which strongly guarantees fluorination production safely, continuously and stably run. (authors)

  10. Increasing the efficiency of the condensing boiler

    Science.gov (United States)

    Zaytsev, ON; Lapina, EA

    2017-11-01

    Analysis of existing designs of boilers with low power consumption showed that the low efficiency of the latter is due to the fact that they work in most cases when the heating period in the power range is significantly less than the nominal power. At the same time, condensing boilers do not work in the most optimal mode (in condensing mode) in the central part of Russia, a significant part of their total operating time during the heating season. This is due to existing methods of equipment selection and joint operation with heating systems with quantitative control of the coolant. It was also revealed that for the efficient operation of the heating system, it is necessary to reduce the inertia of the heat generating equipment. Theoretical patterns of thermal processes in the furnace during combustion gas at different radiating surfaces location schemes considering the influence of the very furnace configuration, characterized in that to reduce the work condensing boiler in conventional gas boiler operation is necessary to maintain a higher temperature in the furnace (in the part where spiral heat exchangers are disposed), which is possible when redistributing heat flow - increase the proportion of radiant heat from the secondary burner emitter allow Perey For the operation of the condensing boiler in the design (condensation) mode practically the entire heating period.

  11. A Local Condensation Analysis Representing Two-phase Annular Flow in Condenser/radiator Capillary Tubes

    Science.gov (United States)

    Karimi, Amir

    1991-01-01

    NASA's effort for the thermal environmental control of the Space Station Freedom is directed towards the design, analysis, and development of an Active Thermal Control System (ATCS). A two phase, flow through condenser/radiator concept was baselined, as a part of the ATCS, for the radiation of space station thermal load into space. The proposed condenser rejects heat through direct condensation of ATCS working fluid (ammonia) in the small diameter radiator tubes. Analysis of the condensation process and design of condenser tubes are based on the available two phase flow models for the prediction of flow regimes, heat transfer, and pressure drops. The prediction formulas use the existing empirical relationships of friction factor at gas-liquid interface. An attempt is made to study the stability of interfacial waves in two phase annular flow. The formulation is presented of a stability problem in cylindrical coordinates. The contribution of fluid viscosity, surface tension, and transverse radius of curvature to the interfacial surface is included. A solution is obtained for Kelvin-Helmholtz instability problem which can be used to determine the critical and most dangerous wavelengths for interfacial waves.

  12. Independent predictors of retrograde failure in CTO-PCI after successful collateral channel crossing.

    Science.gov (United States)

    Suzuki, Yoriyasu; Muto, Makoto; Yamane, Masahisa; Muramatsu, Toshiya; Okamura, Atsunori; Igarashi, Yasumi; Fujita, Tsutomu; Nakamura, Shigeru; Oida, Akitsugu; Tsuchikane, Etsuo

    2017-07-01

    To evaluate factors for predicting retrograde CTO-PCI failure after successful collateral channel crossing. Successful guidewire/catheter collateral channel crossing is important for the retrograde approach in percutaneous coronary intervention (PCI) for chronic total occlusion (CTO). A total of 5984 CTO-PCI procedures performed in 45 centers in Japan from 2009 to 2012 were studied. The retrograde approach was used in 1656 CTO-PCIs (27.7%). We investigated these retrograde procedures to evaluate factors for predicting retrograde CTO-PCI failure even after successful collateral channel crossing. Successful guidewire/catheter collateral crossing was achieved in 77.1% (n = 1,276) of 1656 retrograde CTO-PCI procedures. Retrograde procedural success after successful collateral crossing was achieved in 89.4% (n = 1,141). Univariate analysis showed that the predictors for retrograde CTO-PCI failure were in-stent occlusion (OR = 1.9829, 95%CI = 1.1783 - 3.3370 P = 0.0088), calcified lesions (OR = 1.9233, 95%CI = 1.2463 - 2.9679, P = 0.0027), and lesion tortuosity (OR = 1.5244, 95%CI = 1.0618 - 2.1883, P = 0.0216). On multivariate analysis, lesion calcification was an independent predictor of retrograde CTO-PCI failure after successful collateral channel crossing (OR = 1.3472, 95%CI = 1.0614 - 1.7169, P = 0.0141). The success rate of retrograde CTO-PCI following successful guidewire/catheter collateral channel crossing was high in this registry. Lesion calcification was an independent predictor of retrograde CTO-PCI failure after successful collateral channel crossing. Devices and techniques to overcome complex CTO lesion morphology, such as lesion calcification, are required to further improve the retrograde CTO-PCI success rate. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Condensation Mechanism of Hydrocarbon Field Formation.

    Science.gov (United States)

    Batalin, Oleg; Vafina, Nailya

    2017-08-31

    Petroleum geology explains how hydrocarbon fluids are generated, but there is a lack of understanding regarding how oil is expelled from source rocks and migrates to a reservoir. To clarify the process, the multi-layer Urengoy field in Western Siberia was investigated. Based on this example, we have identified an alternative mechanism of hydrocarbon field formation, in which oil and gas accumulations result from the phase separation of an upward hydrocarbon flow. There is evidence that the flow is generated by the gases released by secondary kerogen destruction. This study demonstrates that oil components are carried by the gas flow and that when the flow reaches a low-pressure zone, it condenses into a liquid with real oil properties. The transportation of oil components in the gas flow provides a natural explanation for the unresolved issues of petroleum geology concerning the migration process. The condensation mechanism can be considered as the main process of oil field formation.

  14. Fluegas condensation of domestic fuels. Kotimaisten polttoaineiden savukaasulauhdutus

    Energy Technology Data Exchange (ETDEWEB)

    Kankkunen, A; Fagerholm, N E

    1988-01-01

    The suitability of domestic fuel for condensation heat recovery was studied. With the developed computer program, enthalpies of flue gas as function of temperature were computed and also the theoretical advandages aquired by condensation were compared with different fuels. The maximal advantages of condensation were 39 % with wooden chips and 31 % with peat. The domestic fuels were found to be useful for condensation heat recovery because of the high water content and the high dewpoint of flu egas. Condensation was found to have a purifying effect on flue gases. It was found experimentaly that 30 % the sulfur of the peat dissolved to the condensed liquid. The composition of condensed liquid of peat- and wooden chip flue gases was studied to find out the corrosion and enviromental effects. The risk of corrosion to metallic heat exhanger was concluded from the compositio of peat condensat. Chip condensate was found to be almost neutral. Normally the condensate liquids were fit for sewering without aftertreatment. Heat transfer coefficient from flue gases to the wall of the condenser was measured to be 150-170 W/Km{sup 2}. Heat transfer coefficients were three times higher compared to condensing heat transfer.

  15. To the generalization of experimental data on heat and mass transfer in evaporation and condensation

    International Nuclear Information System (INIS)

    Berman, L.D.

    1980-01-01

    Similarity equations for heat-and-mass transfer in binary gas or steam-gas layers in the processes of liquid evaporation, condensation and desublimation of vapours, desorption and absorption and porous body cooling are considered. It is accepted that steam-gas components obey to the equation of ideal gas state and that evaporation and condensation condititons permit to neglect the influence of compressability of gas (steam-gas) mixture, non-isothermality of boundary layer and interphase kinetic resistance to mass transfer onto the interfaces. It is concluded that the results of considered experimental and theoretical investigations of the above processes are in a satisfactory agreement and show insignificance of the effect of hydrodynamic conditions determining the regime of main steam-gas mixture flow on relative heat-and-mass transfer coefficients. According to the theoretical calculation results with increase of the factor of M steam-gas mixture non-uniformity mass transfer intensity in evaporation decreases, while in condensation it grows, but M effect on the mass transfer coefficient is rather small and sowhat increases in the case of a turbulent boundary layer evaporation. In condensation it is less than in evaporation

  16. Retrograde amnesia for semantic information in Alzheimer’s disease

    NARCIS (Netherlands)

    Meeter, M.; Knollen, A.; Scheltens, P.

    2005-01-01

    Patients with mild to moderate Alzheimer's disease and normal controls were tested on a retrograde amnesia test with semantic content (Neologism and Vocabulary Test, or NVT), consisting of neologisms to be defined. Patients showed a decrement as compared to normal controls, pointing to retrograde

  17. Mercury Retrograde Effect in Capital Markets: Truth or Illusion?

    Directory of Open Access Journals (Sweden)

    Murgea Aurora

    2016-06-01

    Full Text Available From the most ancient times, the astrological beliefs have played an important role in human history, thinking, world-views, language and other elements of social culture. The practice of relating the movement of celestial bodies to events in financial markets is relatively newer but despite the inconsistency between financial astrology and standard economic or financial theory, it seems to be largely spread among capital market traders. This paper evaluates one of the astrological effects on the capital market, more precisely the Mercury retrograde effect on US capital market. Despite the fact that it is just an optical illusion the astrological tradition says that Mercury retrograde periods are characterized by confusion and miscommunications. The trades could be less effective, the individuals more prone to make mistakes so there is a long-held belief that it is better to avoid set plans during Mercury retrograde, signing contracts, starting new ventures or open new stock market positions. The main findings of this study are lower return’s volatilities in the Mercury retrograde periods, inconsistent with the astrologic theories assumptions but consistent with the idea that trader’s beliefs in Mercury retrograde effect could change the market volatility exactly in the opposite sense than the predicted one.

  18. THE MODEL FOR POWER EFFICIENCY ASSESSMENT OF CONDENSATION HEATING INSTALLATIONS

    Directory of Open Access Journals (Sweden)

    D. Kovalchuk

    2017-11-01

    Full Text Available The main part of heating systems and domestic hot water systems are based on the natural gas boilers. Forincreasing the overall performance of such heating system the condensation gas boilers was developed and are used. Howevereven such type of boilers don't use all energy which is released from a fuel combustion. The main factors influencing thelowering of overall performance of condensation gas boilers in case of operation in real conditions are considered. Thestructure of the developed mathematical model allowing estimating the overall performance of condensation gas boilers(CGB in the conditions of real operation is considered. Performace evaluation computer experiments of such CGB during aheating season for real weather conditions of two regions of Ukraine was made. Graphic dependences of temperatureconditions and heating system effectiveness change throughout a heating season are given. It was proved that normal CGBdoes not completely use all calorific value of fuel, thus, it isn't effective. It was also proved that the efficiency of such boilerssignificantly changes during a heating season depending on weather conditions and doesn't reach the greatest possible value.The possibility of increasing the efficiency of CGB due to hydraulic division of heating and condensation sections and use ofthe vapor-compression heat pump for deeper cooling of combustion gases and removing of the highest possible amount ofthermal energy from them are considered. The scheme of heat pump connection to the heating system with a convenient gasboiler and the separate condensation economizer allowing to cool combustion gases deeply below a dew point and to warm upthe return heat carrier before a boiler input is provided. The technological diagram of the year-round use of the heat pump forhot water heating after the end of heating season, without gas use is offered.

  19. Increased sinusoidal volume and solute extraction during retrograde liver perfusion

    International Nuclear Information System (INIS)

    Bass, N.M.; Manning, J.A.; Weisiger, R.A.

    1989-01-01

    Retrograde isolated liver perfusion has been used to probe acinar functional heterogeneity, but the hemodynamic effects of backward flow have not been characterized. In this study, extraction of a long-chain fatty acid derivative, 12-N-methyl-7-nitrobenzo-2-oxa-1,3-diazol-amino stearate (12-NBDS), was greater during retrograde than during anterograde perfusion of isolated rat liver. To determine whether hemodynamic differences between anterograde and retrograde perfused livers could account for this finding, the hepatic extracellular space was measured for both directions of flow by means of [ 14 C]sucrose washout during perfusion as well as by direct measurement of [ 14 C]sucrose entrapped during perfusion. A three- to fourfold enlargement of the total hepatic extracellular space was found during retrograde perfusion by both approaches. Examination of perfusion-fixed livers by light microscopy and morphometry revealed that marked distension of the sinusoids occurred during retrograde perfusion and that this accounts for the observed increase in the [ 14 C]sucrose space. These findings support the hypothesis that maximum resistance to perfusate flow in the isolated perfused rat liver is located at the presinusoidal level. In addition, increased transit time of perfusate through the liver and greater sinusoidal surface area resulting from sinusoidal distension may account for the higher extraction of 12-NBDS and possibly other compounds by retrograde perfused liver

  20. Kinematics of turnaround and retrograde axonal transport

    International Nuclear Information System (INIS)

    Snyder, R.E.

    1986-01-01

    Rapid axonal transport of a pulse of 35 S-methionine-labelled material was studied in vitro in the sensory neurons of amphibian sciatic nerve using a position-sensitive detector. For 10 nerves studied at 23.0 +/- 0.2 degrees C it was found that a pulse moved in the anterograde direction characterized by front edge, peak, and trailing edge transport rates of (mm/d) 180.8 +/- 2.2 (+/- SEM), 176.6 +/- 2.3, and 153.7 +/- 3.0, respectively. Following its arrival at a distal ligature, a smaller pulse was observed to move in the retrograde direction characterized by front edge and peak transport rates of 158.0 +/- 7.3 and 110.3 +/- 3.5, respectively, indicating that retrograde transport proceeds at a rate of 0.88 +/- 0.04 that of anterograde. The retrograde pulse was observed to disperse at a rate greater than the anterograde. Reversal of radiolabel at the distal ligature began 1.49 +/- 0.15 h following arrival of the first radiolabel. Considerable variation was seen between preparations in the way radiolabel accumulated in the end (ligature) regions of the nerve. Although a retrograde pulse was seen in all preparations, in 7 of 10 preparations there was no evidence of this pulse accumulating within less than 2-3 mm of a proximal ligature; however, accumulation was observed within less than 5 mm in all preparations

  1. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery

    Science.gov (United States)

    Hu, H. W.; Tang, G. H.; Niu, D.

    2016-06-01

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.

  2. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery.

    Science.gov (United States)

    Hu, H W; Tang, G H; Niu, D

    2016-06-07

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.

  3. Experimental investigation of CO{sub 2} condensation process using cryogen

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheonkyu; Yoo, Junghyun; Lee, Jisung; Park, Hana; Jeong, Sangkwon [Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

    2014-01-29

    Carbon dioxide (CO{sub 2}) is one of the dominant gas molecules that causes greenhouse effect, i.e. global warming. Numerous studies have been carried out to regulate the emission of CO{sub 2} to reduce greenhouse gas. The liquid CO{sub 2} is a convenient form of transportation compared to high-pressurized gaseous CO{sub 2}. Therefore, the direct liquefaction mechanism of CO{sub 2} at low temperature draws technical attention recently. In particular, cold thermal energy of Liquefied Natural Gas (LNG) could be a candidate to condense gaseous CO{sub 2}, especially in the LNG powered ship. In this paper, the detailed direct condensation process of CO{sub 2} using LN{sub 2} with intermittent solidification is investigated. Pressurized CO{sub 2} at 600 kPa is directly liquefied in a vessel by liquid nitrogen which is supplied into the coiled tube heat exchanger inside the CO{sub 2} vessel. The heat exchanger temperature is controlled from 130 K to 205 K to regulate the solidification and sublimation of CO{sub 2} by duty control with cryogenic solenoid valve. The characteristics of CO{sub 2} condensation process with cryogen are analyzed from the measurement results. The results show that the solidification causes the significant degradation of CO{sub 2} condensation heat transfer. Finally, the condensation rate with and without solidification is compared.

  4. Non-condensible gas fraction predictions using wet and dry bulb temperature measurements

    International Nuclear Information System (INIS)

    Bowman, J.; Griffith, P.

    1983-03-01

    A technique is presented whereby non-condensible gas mass fractions in a closed system can be determined using wet bulb and dry bulb temperature and system pressure measurements. This technique would have application in situations where sampling techniques could not be used. Using an energy balance about the wet bulb wick, and expression is obtained which relates the vapor concentration difference between the wet bulb wick and the free stream to the wet and dry bulb temperature difference and a heat to mass transfer coefficient ratio. This coefficient ratio was examined for forced and natural convection flows. This analysis was verified with forced and natural convection tests over the range of pressure and temperature from 50 to 557 psig and 415 to 576 0 F. All the data could best be fit by the natural convection analysis. This is useful when no information about the flow field is known

  5. Emergency condensator for BWR type reactor

    International Nuclear Information System (INIS)

    Ubakai, Yoichi; Narumi, Yuichi; Sakata, Yuji.

    1992-01-01

    An emergency condensator is constituted with heat transfer pipes, a steam chamber, an upper pipe plate, a lower pipe plate and a condensate chamber. The upper pipe plate is secured by supports, and a steam pipe is connected to the upper pipe plate. A condensate pipeline and a incondensible gas vent pipe are disposed to the condensate chamber. Taking thermal expansion of the steam pipes and thermal expansion of the heat transfer pipes into consideration, the heat transfer pipe is made as an L-shaped pipe having a vertical portion and a horizontal portion so as to absorb each of the thermal expansion smoothly. The L-shaped heat transfer pipes are constituted as a bundle of pipes having the end portions thereof secured to the upper pipe plate and the lower pipe plate. The emergency condensator is disposed in a emergency condensator pool chamber. Cooling water in contact with the outer side of the L-shaped heat transfer pipes is the pool water in the pool chamber, and the condensator chamber is disposed in concrete walls of the pool chamber. With such a constitution, stress due to thermal expansion of the heat transfer pipes is mitigated, and heat transfer performance, earth quake resistance and maintenancability are improved. (I.N.)

  6. A retrograde co-orbital asteroid of Jupiter.

    Science.gov (United States)

    Wiegert, Paul; Connors, Martin; Veillet, Christian

    2017-03-29

    Recent theoretical work in celestial mechanics has revealed that an asteroid may orbit stably in the same region as a planet, despite revolving around the Sun in the sense opposite to that of the planet itself. Asteroid 2015 BZ 509 was discovered in 2015, but with too much uncertainty in its measured orbit to establish whether it was such a retrograde co-orbital body. Here we report observations and analysis that demonstrates that asteroid 2015 BZ 509 is indeed a retrograde co-orbital asteroid of the planet Jupiter. We find that 2015 BZ 509 has long-term stability, having been in its current, resonant state for around a million years. This is long enough to preclude precise calculation of the time or mechanism of its injection to its present state, but it may be a Halley-family comet that entered the resonance through an interaction with Saturn. Retrograde co-orbital asteroids of Jupiter and other planets may be more common than previously expected.

  7. UTILIZATION OF AQUEOUS-TAR CONDENSATES FORMED DURING GASIFICATION

    Directory of Open Access Journals (Sweden)

    Anna Kwiecińska

    2016-11-01

    Full Text Available Gasification of solid fuels is an alternative process for energy production using conventional and renewable fuels. Apart from desired compounds, i.e. carbon oxide, hydrogen and methane, the produced gas contains complex organic (tars and inorganic (carbonizate, ammonia contaminants. Those substances, together with water vapor, condensate during cooling of the process gas, what results in the formation of aqueous-tar condensate, which requires proper methods of utilization. The management of this stream is crucial for commercialization and application of the gasification technology. In the paper the treatment of aqueous-tar condensates formed during biomass gasification process is discussed. The removal of tars from the stream was based on their spontaneous separation. The aqueous stream was subjected to ultrafiltration operated at different pressures. Such a treatment configuration enabled to obtain highly concentrated retentate, which could be recycled to the gasifier, and filtrate, which could be subjected to further treatment.

  8. Strengthening power generation efficiency utilizing liquefied natural gas cold energy by a novel two-stage condensation Rankine cycle (TCRC) system

    International Nuclear Information System (INIS)

    Bao, Junjiang; Lin, Yan; Zhang, Ruixiang; Zhang, Ning; He, Gaohong

    2017-01-01

    Highlights: • A two-stage condensation Rankine cycle (TCRC) system is proposed. • Net power output and thermal efficiency increases by 45.27% and 42.91%. • The effects of the condensation temperatures are analyzed. • 14 working fluids (such as propane, butane etc.) are compared. - Abstract: For the low efficiency of the traditional power generation system with liquefied natural gas (LNG) cold energy utilization, by improving the heat transfer characteristic between the working fluid and LNG, this paper has proposed a two-stage condensation Rankine cycle (TCRC) system. Using propane as working fluid, compared with the combined cycle in the conventional LNG cold energy power generation method, the net power output, thermal efficiency and exergy efficiency of the TCRC system are respectively increased by 45.27%, 42.91% and 52.31%. Meanwhile, the effects of the first-stage and second-stage condensation temperature and LNG vaporization pressure on the performance and cost index of the TCRC system (net power output, thermal efficiency, exergy efficiency and UA) are analyzed. Finally, using the net power output as the objective function, with 14 organic fluids (such as propane, butane etc.) as working fluids, the first-stage and second-stage condensation temperature at different LNG vaporization pressures are optimized. The results show that there exists a first-stage and second-stage condensation temperature making the performance of the TCRC system optimal. When LNG vaporization pressure is supercritical pressure, R116 has the best economy among all the investigated working fluids, and while R150 and R23 are better when the vaporization pressure of LNG is subcritical.

  9. US crude oil, natural gas, and natural gas liquids reserves

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1991, as well as production volumes for the United States, and selected States and State subdivisions for the year 1991. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1991 is also presented

  10. Investigation of condensation implosion by changing configurations of water and steam inlets

    International Nuclear Information System (INIS)

    Seporaitis, Marijus; Pabarcius, Raimondas; Almenas, Kazys

    2003-01-01

    A previous paper (Seporaitis, 2002) presented experimental results, which showed that it is possible to induce condensation implosion events in a horizontal cylindrical pulser solely by varying the introduction rate of sub-cooled liquid. Interface disruption is triggered when an increasing liquid-vapor inter-face generates a growing condensation rate that leads to larger vapor flows. Vapor flow and condensation induced shear initiate surface waves and when these exceed a 'critical' growth rate complete interface disruption leading to a rapid condensation pulse. Although initial experimental success-generation of condensation implosion events in a controlled manner-was achieved it was determined that the range of the liquid introduction rate is fairly narrow. To avoid a high liquid heat up (negative factor for initiation of condensation implosion events) during it inducing into pulser and to expend range of the controlling variable the internal flow configurations in the further tests were used. The experimental studies presented in this paper have shown that trace amount of non-condensable gas have a larger effect on the initiation of a controlled condensation implosion event then was initially assumed. The influence of non-condensable gas is shown to be of an equivalent importance as the liquid side turbulence that is modulated by the rate of liquid introduction. (author)

  11. Development and preliminary assessment of the wall condensation heat transfer models for the SPACE code

    International Nuclear Information System (INIS)

    Park, Hyun Sik; Choi, Ki Yong; Moon, Sang Ki; Kim, Jung Woo; Kim, Kyung Doo

    2009-01-01

    The wall condensation heat transfer models are developed for the SPACE code and are assessed for various condensation conditions. Both default and alternative models were selected through an extensive literature survey. For a pure steam condensation, a maximum value among the Nusselt, Chato, and Shah's correlations is used in order to consider the geometric and turbulent effects. In the presence of non-condensable gases, the Colburn-Hougen's diffusion model was used as a default model and a non-iterative condensation model proposed by No and Park was selected as an alternative model. The wall condensation heat transfer models were assessed preliminarily by using arbitrary test conditions. Both wall condensation models could simulate the heat transfer coefficients and heat fluxes in the vertical, horizontal and turbulent conditions quite reasonably for a pure steam condensation. Both the default and alternative wall condensation models were also verified for the condensation heat transfer coefficient and heat flux in the presence of noncondensable gas. However, some improvements and further detailed verification are necessary for the condensation phenomena in the presence of noncondensable gas

  12. The loss of episodic memories in retrograde amnesia: single-case and group studies.

    OpenAIRE

    Kopelman, M D; Kapur, N

    2001-01-01

    Retrograde amnesia in neurological disorders is a perplexing and fascinating research topic. The severity of retrograde amnesia is not well correlated with that of anterograde amnesia, and there can be disproportionate impairments of either. Within retrograde amnesia, there are various dissociations which have been claimed-for example, between the more autobiographical (episodic) and more semantic components of memory. However, the associations of different types of retrograde amnesia are als...

  13. Coexistence of hyperon and π condensation in neutron stars

    International Nuclear Information System (INIS)

    Isshiki, Akinori

    2000-01-01

    We consider the coexistence of hyperon and π condensation in neutron stars. The coexistence phase may occur because of the strong ΛΣπ coupling. Hyperon can appear under π condensation, because short range repulsion reduce the π-baryon p wave attraction. The system approaches the Fermi gas because of this reduction. (author)

  14. Radioactive gas waste processing device

    International Nuclear Information System (INIS)

    Soma, Koichi.

    1996-01-01

    The present invention concerns a radioactive gas waste processing device which extracts exhaust gases from a turbine condensator in a BWR type reactor and releases them after decaying radioactivity thereof during temporary storage. The turbine condensator is connected with an extracting ejector, a preheater, a recombiner for converting hydrogen gas into steams, an off gas condensator for removing water content, a flow rate control valve, a dehumidifier, a hold up device for removing radiation contaminated materials, a vacuum pump for sucking radiation decayed-off gases, a circulation water tank for final purification and an exhaustion cylinder by way of connection pipelines in this order. An exhaust gas circulation pipeline is disposed to circulate exhaust gases from an exhaust gas exit pipeline of the recycling water tank to an exhaust gas exit pipeline of the exhaust gas condensator, and a pressure control valve is disposed to the exhaust gas circulation pipeline. This enable to perform a system test for the dehumidification device under a test condition approximate to the load of the dehumidification device under actual operation state, and stabilize both of system flow rate and pressure. (T.M.)

  15. Retrograde Transvenous Ethanol Embolization of High-flow Peripheral Arteriovenous Malformations

    International Nuclear Information System (INIS)

    Linden, Edwin van der; Baalen, Jary M. van; Pattynama, Peter M. T.

    2012-01-01

    Purpose: To report the clinical efficiency and complications in patients treated with retrograde transvenous ethanol embolization of high-flow peripheral arteriovenous malformations (AVMs). Retrograde transvenous ethanol embolization of high-flow AVMs is a technique that can be used to treat AVMs with a dominant outflow vein whenever conventional interventional procedures have proved insufficient. Methods: This is a retrospective study of the clinical effectiveness and complications of retrograde embolization in five patients who had previously undergone multiple arterial embolization procedures without clinical success. Results: Clinical outcomes were good in all patients but were achieved at the cost of serious, although transient, complications in three patients. Conclusion: Retrograde transvenous ethanol embolization is a highly effective therapy for high-flow AVMs. However, because of the high complication rate, it should be reserved as a last resort, to be used after conventional treatment options have failed.

  16. Drainage control and diffusion resistance in dropwise condensation in a compact heat exchanger

    NARCIS (Netherlands)

    Grooten, M.H.M.

    2011-01-01

    Condensation of a vapor in the presence of non-condensable gas occurs frequently in process industry. For example in compact condensers for heat recovery, in extraction of toxic components from exhaust gases, in cooling systems of nuclear power plants, seawater desalination systems, air conditioning

  17. The “SAFARI” Technique Using Retrograde Access Via Peroneal Artery Access

    International Nuclear Information System (INIS)

    Zhuang, Kun Da; Tan, Seck Guan; Tay, Kiang Hiong

    2012-01-01

    The “SAFARI” technique or subintimal arterial flossing with antegrade–retrograde intervention is a method for recanalisation of chronic total occlusions (CTOs) when subintimal angioplasty fails. Retrograde access is usually obtained via the popliteal, distal anterior tibial artery (ATA)/dorsalis pedis (DP), or distal posterior tibial artery (PTA). Distal access via the peroneal artery has not been described and has a risk of continued bleeding, leading to compartment syndrome due to its deep location. We describe our experience in two patients with retrograde access via the peroneal artery and the use of balloon-assisted hemostasis for these retrograde punctures. This approach may potentially give more options for endovascular interventions in lower limb CTOs.

  18. Vapor condensation device

    International Nuclear Information System (INIS)

    Sakurai, Manabu; Hirayama, Fumio; Kurosawa, Setsumi; Yoshikawa, Jun; Hosaka, Seiichi.

    1992-01-01

    The present invention enables to separate and remove 14 C as CO 3 - ions without condensation in a vapor condensation can of a nuclear facility. That is, the vapor condensation device of the nuclear facility comprises (1) a spray pipe for spraying an acidic aqueous solution to the evaporation surface of an evaporation section, (2) a spray pump for sending the acidic aqueous solution to the spray pipe, (3) a tank for storing the acidic aqueous solution, (4) a pH sensor for detecting pH of the evaporation section, (5) a pH control section for controlling the spray pump, depending on the result of the detection of the pH sensor. With such a constitution, the pH of liquid wastes on the vaporization surface is controlled to 7 by spraying an aqueous solution of dilute sulfuric acid to the evaporation surface, thereby enabling to increase the transfer rate of 14 C to condensates to 60 to 70%. If 14 C is separated and removed as a CO 2 gas from the evaporation surface, the pH of the liquid wastes returns to the alkaline range of 9 to 10 and the liquid wastes are returned to a heating section. The amount of spraying the aqueous solution of dilute sulfuric acid can be controlled till the pH is reduced to 5. (I.S.)

  19. Analytical study of condensation heat transfer on titanium tube with super-hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Dae Yun; Park, Hyun Gyu; Lee, Kwon Yeong [Handong Global University, Pohang (Korea, Republic of)

    2016-05-15

    There are many nuclear or fossil power plants which occupy more than 85% among entire power plants in the world. These plants release heat through condenser into nature. The condenser is an important component for cooling the working fluid after the turbine. Its performance is related with material and size of its tubes. To have good performance or to reduce condenser size, it is important to increase condensation heat transfer coefficient on condenser tubes. Ma et al. executed heat transfer experiment in dropwise condensation with non-condensable gas, and studied how the amount of air and pressure difference affect condensation heat transfer coefficient. The more non-condensable gas existed, the condensation heat transfer coefficient was decreased. Shen et al. studied condensation heat transfer at horizontal bundle tubes. Several variables such as coolant velocity, saturated pressure, and surface conditions were studied. As a result, surface modified brass tube and stainless tube showed higher condensation heat transfer coefficient as much as 1.3 and 1.4 times comparing with their bare tubes, in 70 kPa vacuum condition respectively. Rausch et al. studied dropwise condensation on ion-implanted titanium surface. Experimental study is performed to evaluate the performance of surface modified titanium tube in vacuum state. SAM coating is used to make super-hydrophobic surface of titanium tube. Preliminary analysis were performed considering filmwise and dropwise condensations, respectively. Experiment facility is almost prepared and the test result will be shown soon.

  20. Intermolecular interactions in the condensed phase

    DEFF Research Database (Denmark)

    Christensen, Anders S.; Kromann, Jimmy Charnley; Jensen, Jan Halborg

    2017-01-01

    To facilitate further development of approximate quantum mechanical methods for condensed phase applications, we present a new benchmark dataset of intermolecular interaction energies in the solution phase for a set of 15 dimers, each containing one charged monomer. The reference interaction energy...... and solution phases. As most approximate QM methods are parametrized and evaluated using data measured or calculated in the gas phase, the dataset represents an important first step toward calibrating QM based methods for application in the condensed phase where polarization and exchange repulsion need...

  1. Characteristic aspects of pion-condensed phases

    International Nuclear Information System (INIS)

    Takatsuka, Tatsuyuki; Tamagaki, Ryozo; Tatsumi, Toshitaka.

    1993-01-01

    Characteristic aspects of pion-condensed phases are described in a simple model, for the system involving only nucleons and pions which interact through the π-N P-wave interaction. We consider one typical version in each of three kinds of pion condensation; the one of neutral pions (π 0 ), the one of charged pions (π C ) and the combined one in which both the π 0 and π C condensations are coexistent. Emphasis is put on the description to clarify the novel structures of the nucleon system which are realized in the pion-condensed phases. At first, it is shown that the π 0 condensation is equivalent to the particular nucleonic phase realized by a structure change of the nucleon system, where the attractive first-order effect of the one-pion-exchange (OPE) tensor force is brought about coherently. The aspects of this phase are characterized by the layered structure with a specific spin-isospin order with one-dimensional localization (named the ALS structure in short), which provides the source function for the condensed π 0 field. We utilize both descriptions with use of fields and potentials for the π 0 condensation. Next, the π C condensation realized in neutron-rich matter is described by adopting a version of the traveling condensed wave. In this phase, the nucleonic structure becomes the Fermi gas consisting of quasi-neutrons described by a superposition of neutron and proton. In this sense the structure change of the nucleon system for the π C condensation is moderate, and the field description is suitable. Finally, we describe a coexistent pion condensation, in which both the π 0 and π C condensations coexist without interference in such a manner that the π C condensation develops in the ALS structure. The model adopted here provides us with the characteristic aspects of the pion-condensed phases persisting in the realistic situation, where other ingredients affecting the pion condensation are taken into account. (author)

  2. Opportunities for sub-laser-cycle spectroscopy in condensed phase

    International Nuclear Information System (INIS)

    Ivanov, Misha; Smirnova, Olga

    2013-01-01

    Highlights: ► We discuss how sub-cycle attosecond spectroscopy can be extended from gas to condensed phase. ► We show that attosecond streaking measurements can be applied to bound electrons. ► We discuss time-resolving the formation of band structure in laser fields. - Abstract: To a large extent, progress of attosecond spectroscopy in the gas phase has been driven by designing approaches where time-resolution is not limited by the pulse duration. Instead, the time resolution comes from exploiting the sensitivity of electronic response to the oscillations of the electric field in the laser pulse and attosecond control over these oscillations. This paper discusses perspectives and opportunities for transporting the ideas of sub-cycle spectroscopy from gas to condensed phase

  3. Condensate fluctuations of interacting Bose gases within a microcanonical ensemble.

    Science.gov (United States)

    Wang, Jianhui; He, Jizhou; Ma, Yongli

    2011-05-01

    Based on counting statistics and Bogoliubov theory, we present a recurrence relation for the microcanonical partition function for a weakly interacting Bose gas with a finite number of particles in a cubic box. According to this microcanonical partition function, we calculate numerically the distribution function, condensate fraction, and condensate fluctuations for a finite and isolated Bose-Einstein condensate. For ideal and weakly interacting Bose gases, we compare the condensate fluctuations with those in the canonical ensemble. The present approach yields an accurate account of the condensate fluctuations for temperatures close to the critical region. We emphasize that the interactions between excited atoms turn out to be important for moderate temperatures.

  4. Numerical Analysis of Solitary Wave Influence on the Film-wise Condensation in Presence of Non-Condensable Gases

    International Nuclear Information System (INIS)

    Krzysztof Karkoszka; Henryk Anglart

    2006-01-01

    This paper is dealing with the analysis of condensation in presence of non-condensable gas on a laminar liquid film falling down on a vertical smooth surface. Particular interest is focused on the influence of solitary waves on the condensation process. Solutions to the pressure, velocity, temperature and additional scalar variable fields are obtained numerically by solving two -- dimensional Navier - Stokes equations formulated in a general coordinate system and applying the artificial compressibility method. The whole system of equations together with adequate boundary conditions is implemented using the finite difference method and solved in the Matlab R code. Both implicit Crank - Nicolson and Euler schemes for the time derivatives are initially used and the latter one is chosen as a more stable. All computations are carried out with prescribed geometry for a film and gas domains and a special attention is focused mainly on the modelling of the influence of the interfacial boundary conditions on the heat transfer process between gaseous mixture and liquid phases. Description of the physical, mathematical and numerical models and several examples of the solutions are presented. Conclusions on the wave hydrodynamics influence on the heat transfer during phase change process are drawn. (authors)

  5. Thermodynamic entanglement of magnonic condensates

    Science.gov (United States)

    Yuan, H. Y.; Yung, Man-Hong

    2018-02-01

    Over the past decade, significant progress has been achieved to create Bose-Einstein condensates (BECs) of magnetic excitations, i.e., magnons, at room temperature, which is a novel quantum many-body system with a strong spin-spin correlation, and contains potential applications in magnonic spintronics. For quantum information science, the magnonic condensates can become an attractive source of quantum entanglement, which plays a central role in most of the quantum information processing tasks. Here we theoretically study the entanglement properties of a magnon gas above and below the condensation temperature. We show that the thermodynamic entanglement of the spins is a manifestation of the off-diagonal long-range order; the entanglement of the condensate does not vanish, even if the spins are separated by an infinitely long distance, which is fundamentally distinct from the normal magnetic ordering below the Curie temperature. In addition, the phase-transition point occurs when the derivative of the entanglement changes abruptly. These results provide a theoretical foundation for a future investigation of the magnon BEC in terms of quantum entanglement.

  6. Brown dwarfs in retrogradely precessing cataclysmic variables?

    Directory of Open Access Journals (Sweden)

    Martin E.L.

    2011-07-01

    Full Text Available We compare Smoothed Particle Hydrodynamic simulations of retrogradely precessing accretion disks that have a white dwarf primary and a main sequence secondary with observational data and with theory on retrograde precession via tidal torques like those by the Moon and the Sun on the Earth [1, 2]. Assuming the primary does not accrete much of the mass lost from the secondary, we identify the theoretical low mass star/brown dwarf boundary. We find no observational candidates in our study that could qualify as brown dwarfs.

  7. Gravitationally Driven Wicking for Enhanced Condensation Heat Transfer.

    Science.gov (United States)

    Preston, Daniel J; Wilke, Kyle L; Lu, Zhengmao; Cruz, Samuel S; Zhao, Yajing; Becerra, Laura L; Wang, Evelyn N

    2018-04-17

    Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Filmwise condensation is prevalent in typical industrial-scale systems, where the condensed fluid forms a thin liquid film due to the high surface energy associated with many industrial materials. Conversely, dropwise condensation, where the condensate forms discrete liquid droplets which grow, coalesce, and shed, results in an improvement in heat transfer performance of an order of magnitude compared to filmwise condensation. However, current state-of-the-art dropwise technology relies on functional hydrophobic coatings, for example, long chain fatty acids or polymers, which are often not robust and therefore undesirable in industrial conditions. In addition, low surface tension fluid condensates, such as hydrocarbons, pose a unique challenge because common hydrophobic condenser coatings used to shed water (with a surface tension of 73 mN/m) often do not repel fluids with lower surface tensions (condensation heat transfer using gravitationally driven flow through a porous metal wick, which takes advantage of the condensate's affinity to wet the surface and also eliminates the need for condensate-phobic coatings. The condensate-filled wick has a lower thermal resistance than the fluid film observed during filmwise condensation, resulting in an improved heat transfer coefficient of up to an order of magnitude and comparable to that observed during dropwise condensation. The improved heat transfer realized by this design presents the opportunity for significant energy savings in natural gas processing, thermal management, heating and cooling, and power generation.

  8. Grand canonical Monte Carlo simulation study of capillary condensation between nanoparticles.

    Science.gov (United States)

    Kim, Seonmin; Ehrman, Sheryl H

    2007-10-07

    Capillary condensation at the nanoscale differs from condensation in the bulk phase, because it is a strong function of surface geometry and gas-surface interactions. Here, the effects of geometry on the thermodynamics of capillary condensation at the neck region between nanoparticles are investigated via a grand canonical Monte Carlo simulation using a two-dimensional lattice gas model. The microscopic details of the meniscus formation on various surface geometries are examined and compared with results of classical macromolecular theory, the Kelvin equation. We assume that the system is composed of a lattice gas and the surfaces of two particles are approximated by various shapes. The system is modeled on the basis of the molecular properties of the particle surface and lattice gas in our system corresponding to titania nanoparticles and tetraethoxy orthosilicate molecules, respectively. This system was chosen in order to reasonably emulate our previous experimental results for capillary condensation on nanoparticle surfaces. Qualitatively, our simulation results show that the specific geometry in the capillary zone, the surface-surface distance, and the saturation ratio are important for determining the onset and broadening of the liquid meniscus. The meniscus height increases continuously as the saturation ratio increases and the meniscus broadens faster above the saturation ratio of 0.90. The change of the radius of curvature of the particle surface affects the dimensions of the capillary zone, which drives more condensation in narrow zones and less condensation in wide zones. The increase of surface-surface distance results in the decrease of the meniscus height or even the disappearance of the meniscus entirely at lower saturation ratios. These effects are significant at the nanoscale and must be carefully considered in order to develop predictive relationships for meniscus height as a function of saturation conditions.

  9. Conversion of straight-run gas-condensate benzenes into high- octane gasolines based on modified ZSM-5 zeolites

    International Nuclear Information System (INIS)

    Erofeev, V; Reschetilowski, V; Khomajakov, I; Egorova, L; Volgina, T; Tatarkina, A

    2014-01-01

    This paper describes the conversion of straight-run benzene of gas condensate into high-octane gasoline based on zeolite catalyst ZSM-5, modified in binary system oxide- based Sn (III) and Bi (III). It was defined that the introduction of the binary system oxide-based Sn(III) and Bi (III) into the basic zeolite results in the 2-fold increase of its catalytic activity.High-octane gasoline converted from straight-run benzene is characterized by a low benzol content in comparison to the high-octane benzenes produced during the catalytic reforming

  10. Fluoroscopically guided pyeloureteral interventions using a retrograde perurethral approach

    International Nuclear Information System (INIS)

    Amendola, M.A.; Banner, M.P.; Pollack, H.M.; Gordon, R.L.; Van Arsdalen, K.N.

    1987-01-01

    Employing standard interventional equipment, fluoroscopy, and partially or completely inserted ureteral catheters for access, the authors performed 168 perurethral interventional procedures since 1985. Procedures have included insertion of double (n = 42) or single pigtail stents (n = 47), advancement of retrograde ureteral catheters with or without displacement of a ureteral stone to the renal pelvis (n = 42), urothelial biopsy (n = 30), balloon dilation of ureteral structures (n = 3), ureteral stone extraction (n = 1), and conversion of retrograde to antegrade catheters for balloon dilation of ureteropelvic junction strictures (n = 3). This retrograde approach often obviates the need for antegrade interventional procedures (including percutaneous nephrostomy and ureteral stenting), ureteroscopy, or surgery. Indications, techniques, pitfalls, and complications are illustrated

  11. Prostatic urethra malformation associated with retrograde ejaculation: a case report.

    Science.gov (United States)

    Zhao, Kai; Zhang, Jianzhong; Xu, Aiming; Zhang, Cheng; Wang, Zengjun

    2016-12-21

    Retrograde ejaculation can have anatomical, neurogenic, or pharmacological causes. Among these factors, malformation of the prostatic urethra is an uncommon cause. We describe a 29-year-old Han Chinese man with absence of his verumontanum combined with ejaculatory duct cysts, and no other cause for ejaculatory dysfunction. His verumontanum was replaced by a deep groove adjacent to his bladder neck, which could significantly influence bladder neck contraction. In addition, the large cysts in the ejaculatory duct could obstruct the anterior outlet of his prostatic urethra and prevent seminal fluid flow in an anterograde direction. There are few reports of retrograde ejaculation associated with congenital malformations of the posterior urethra. Malformations associated with bladder neck laxity and increased tone of the prostatic urethral outlet can contribute to retrograde ejaculation. Malformation of the prostatic urethra is an uncommon cause of retrograde ejaculation, and can be difficult to treat.

  12. Retrograde Melting and Internal Liquid Gettering in Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hudelson, Steve; Newman, Bonna K.; Bernardis, Sarah; Fenning, David P.; Bertoni, Mariana I.; Marcus, Matthew A.; Fakra, Sirine C.; Lai, Barry; Buonassisi, Tonio

    2011-07-01

    Retrograde melting (melting upon cooling) is observed in silicon doped with 3d transition metals, via synchrotron-based temperature-dependent X-ray microprobe measurements. Liquid metal-silicon droplets formed via retrograde melting act as efficient sinks for metal impurities dissolved within the silicon matrix. Cooling results in decomposition of the homogeneous liquid phase into solid multiple-metal alloy precipitates. These phenomena represent a novel pathway for engineering impurities in semiconductor-based systems.

  13. Dynein is the motor for retrograde axonal transport of organelles

    International Nuclear Information System (INIS)

    Schnapp, B.J.; Reese, T.S.

    1989-01-01

    Vesicular organelles in axons of nerve cells are transported along microtubules either toward their plus ends (fast anterograde transport) or toward their minus ends (retrograde transport). Two microtubule-based motors were previously identified by examining plastic beads induced to move along microtubules by cytosol fractions from the squid giant axon: (i) an anterograde motor, kinesin, and (ii) a retrograde motor, which is characterized here. The retrograde motor, a cytosolic protein previously termed HMW1, was purified from optic lobes and extruded axoplasm by nucleotide-dependent microtubule affinity and release; microtubule gliding was used as the assay of motor activity. The following properties of the retrograde motor suggest that it is cytoplasmic dynein: (i) sedimentation at 20-22 S with a heavy chain of Mr greater than 200,000 that coelectrophoreses with the alpha and beta subunits of axonemal dynein, (ii) cleavage by UV irradiation in the presence of ATP and vanadate, and (iii) a molecular structure resembling two-headed dynein from axonemes. Furthermore, bead movement toward the minus end of microtubules was blocked when axoplasmic supernatants were treated with UV/vanadate. Treatment of axoplasmic supernatant with UV/vanadate also blocks the retrograde movement of purified organelles in vitro without changing the number of anterograde moving organelles, indicating that dynein interacts specifically with a subgroup of organelles programmed to move toward the cell body. However, purified optic lobe dynein, like purified kinesin, does not by itself promote the movement of purified organelles along microtubules, suggesting that additional axoplasmic factors are necessary for retrograde as well as anterograde transport

  14. Methods of Thermal Calculations for a Condensing Waste-Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Rączka Paweł

    2014-12-01

    Full Text Available The paper presents the algorithms for a flue gas/water waste-heat exchanger with and without condensation of water vapour contained in flue gas with experimental validation of theoretical results. The algorithms were used for calculations of the area of a heat exchanger using waste heat from a pulverised brown coal fired steam boiler operating in a power unit with a capacity of 900 MWe. In calculation of the condensing part, the calculation results obtained with two algorithms were compared (Colburn-Hobler and VDI algorithms. The VDI algorithm allowed to take into account the condensation of water vapour for flue gas temperatures above the temperature of the water dew point. Thanks to this, it was possible to calculate more accurately the required heat transfer area, which resulted in its reduction by 19 %. In addition, the influence of the mass transfer on the heat transfer area was taken into account, which contributed to a further reduction in the calculated size of the heat exchanger - in total by 28% as compared with the Colburn-Hobler algorithm. The presented VDI algorithm was used to design a 312 kW pilot-scale condensing heat exchanger installed in PGE Belchatow power plant. Obtained experimental results are in a good agreement with calculated values.

  15. The formation of retrograde planetary orbits by close stellar encounters

    Directory of Open Access Journals (Sweden)

    Ford E. B.

    2011-02-01

    Full Text Available We consider the growing number of observations of the RossiterMcLaughlin effect in transiting planets, which seem to suggest that ~30% of transiting planets are in highly inclined or retrograde orbits. We consider the dense cluster environment in which stars are born and investigate whether perturbations from passing stars can drive planetary systems into retrograde configurations. We find that fly-bys can result in significantly more inclination excitation than might naively be expected from impulse approximations, leading to several percent of stellar systems possessing planets in retrograde orbits.

  16. Using Kinesthetic Activities to Teach Ptolemaic and Copernican Retrograde Motion

    Science.gov (United States)

    Richards, Ted

    2012-06-01

    This paper describes a method for teaching planetary retrograde motion, and the Ptolemaic and Copernican accounts of retrograde motion, by means of a series kinesthetic learning activities (KLAs). In the KLAs described, the students literally walk through the motions of the planets in both systems. A retrospective statistical analysis shows that students who participated in these activities performed better on examination questions pertaining to retrograde motion than students who did not. Potential explanations for this result, including the breaking of classroom routine, the effect of body movement on conceptual memory, and egocentric spatial proprioception, are considered.

  17. Conceptual design of the test facility for the two-phase critical flow with non-condensable gas

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Seok Kyu; Chung, Chang Hwan

    2000-12-01

    The two-phase critical flow test with non-condensible gas is for the simulation of the critical flow phenomena which can be occurred during SB-LOCA on SMART reactor. The requirements of the critical flow test are 7{approx}20mm pipe break dia., 7{approx}12MPa stagnation pressure, 0{approx}60 deg C subcooling degree and 0{approx}0.5kg/s N2 gas flow rate. For the satisfaction of these requirements on the test facility, critical flow rates were calculated with various models. With the selected reference pressure vessel(1.3m{sup 3}), the conceptual design of the test facility was performed. The important components of the test facility are the pressure vessel which has main circulation line, the test section attached to the bottom of the pressure vessel, suppression tank, the N2 gas supply tanks for maintaining the system pressure and N2 gas flow rate at test section and the auxiliary N2 gas converting system. For the measurements of the critical flow rate, flowmeter and level gauge is installed at the upstream of the test section and the pressure vessel, respectively. The realtime pressure control system is installed at the entrance of the pressure vessel for maintaining the system pressure and the N2 gas flow regulating system is also installed at the upstream of the test section. The design of the control and monitoring system for the operation of the test facility and the DAS for acquiring the test data were also performed. The conceptual operating process of the test facility was determined.

  18. Conceptual design of the test facility for the two-phase critical flow with non-condensable gas

    International Nuclear Information System (INIS)

    Chang, Seok Kyu; Chung, Chang Hwan

    2000-12-01

    The two-phase critical flow test with non-condensible gas is for the simulation of the critical flow phenomena which can be occurred during SB-LOCA on SMART reactor. The requirements of the critical flow test are 7∼20mm pipe break dia., 7∼12MPa stagnation pressure, 0∼60 deg C subcooling degree and 0∼0.5kg/s N2 gas flow rate. For the satisfaction of these requirements on the test facility, critical flow rates were calculated with various models. With the selected reference pressure vessel(1.3m 3 ), the conceptual design of the test facility was performed. The important components of the test facility are the pressure vessel which has main circulation line, the test section attached to the bottom of the pressure vessel, suppression tank, the N2 gas supply tanks for maintaining the system pressure and N2 gas flow rate at test section and the auxiliary N2 gas converting system. For the measurements of the critical flow rate, flowmeter and level gauge is installed at the upstream of the test section and the pressure vessel, respectively. The realtime pressure control system is installed at the entrance of the pressure vessel for maintaining the system pressure and the N2 gas flow regulating system is also installed at the upstream of the test section. The design of the control and monitoring system for the operation of the test facility and the DAS for acquiring the test data were also performed. The conceptual operating process of the test facility was determined

  19. Polariton condensation with localized excitons and propagating photons

    International Nuclear Information System (INIS)

    Keeling, Jonathan; Eastham, P.R.; Szymanska, M.H.; Littlewood, P.B.

    2004-01-01

    We estimate the condensation temperature for microcavity polaritons, allowing for their internal structure. We consider polaritons formed from localized excitons in a planar microcavity, using a generalized Dicke model. At low densities, we find a condensation temperature T c ∝ρ, as expected for a gas of structureless polaritons. However, as T c becomes of the order of the Rabi splitting, the structure of the polaritons becomes relevant, and the condensation temperature is that of a BCS-like mean-field theory. We also calculate the excitation spectrum, which is related to observable quantities such as the luminescence and absorption spectra

  20. Numerical investigation of convective condensation with the presence of non-condensable gases in a vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Wen [Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Li, Xiaowei, E-mail: lixiaowei@tsinghua.edu.cn [Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Wu, Xinxin [Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Corradini, Michael L. [Department of Engineering Physics, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706 (United States)

    2016-02-15

    Highlights: • Gas mixture convective condensation in vertical tubes were simulated using FLUENT code. • The simulation results matched well with experimental data. • The detailed velocity field and species distribution were investigated. • The suction factors predicted by CFD models were compared with the classical correlations. • The effects of air and helium on steam condensation were compared. - Abstract: Steam condensation is degraded when non-condensable gases are present. Convective condensation of steam–air mixture and steam–helium mixture in vertical tubes were simulated using the CFD code FLUENT. The condensation process was modeled by defining source terms for the mass, momentum, species and energy conservation equations. Several cases with various steam mass fractions were simulated, the results matched well with the experimental data. Detailed velocity field and species distribution were investigated. The radial velocity was clearly represented, and the suction effect was modeled, which needs to be accounted for when using the heat and mass transfer analogy theory. The Nusselt and Sherwood numbers predicted by CFD models were compared with the classical correlations, and the suction effects were analyzed. The suction effect is proportional to steam mass fraction, while the suction factor is little affected by the Reynolds number. For forced convection flow in this work, the buoyant force can be neglected, so the larger diffusion coefficient of steam–helium mixture would improve the steam condensation compared to steam–air mixture. The condensation mass fluxes of steam–helium mixture and steam–air mixture are almost the same at relatively high steam inlet molar fraction (≥90%).

  1. Study of Hydrogen Pumping through Condensed Argon in Cryogenic pump

    International Nuclear Information System (INIS)

    Jadeja, K A; Bhatt, S B

    2012-01-01

    In ultra high vacuum (UHV) range, hydrogen is a dominant residual gas in vacuum chamber. Hydrogen, being light gas, pumping of hydrogen in this vacuum range is limited with widely used UHV pumps, viz. turbo molecular pump and cryogenic pump. Pre condensed argon layers in cryogenic pump create porous structure on the surface of the pump, which traps hydrogen gas at a temperature less than 20° K. Additional argon gas injection in the cryogenic pump, at lowest temperature, generates multiple layers of condensed argon as a porous frost with 10 to 100 A° diameters pores, which increase the pumping capacity of hydrogen gas. This pumping mechanism of hydrogen is more effective, to pump more hydrogen gas in UHV range applicable in accelerator, space simulation etc. and where hydrogen is used as fuel gas like tokamak. For this experiment, the cryogenic pump with a closed loop refrigerator using helium gas is used to produce the minimum cryogenic temperature as ∼ 14° K. In this paper, effect of cryosorption of hydrogen is presented with different levels of argon gas and hydrogen gas in cryogenic pump chamber.

  2. Colonic perforation following endoscopic retrograde ...

    African Journals Online (AJOL)

    We highlight a potentially lethal complication of acute severe pancreatitis that may not be suspected in severely ill patients. A 41-year-old woman developed acute severe pancreatitis following endoscopic retrograde cholangiopancreatography (ERCP) for suspected choledocholithiasis. When her condition deteriorated ...

  3. Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces.

    Science.gov (United States)

    Spezia, Riccardo; Martínez-Nuñez, Emilio; Vazquez, Saulo; Hase, William L

    2017-04-28

    In this Introduction, we show the basic problems of non-statistical and non-equilibrium phenomena related to the papers collected in this themed issue. Over the past few years, significant advances in both computing power and development of theories have allowed the study of larger systems, increasing the time length of simulations and improving the quality of potential energy surfaces. In particular, the possibility of using quantum chemistry to calculate energies and forces 'on the fly' has paved the way to directly study chemical reactions. This has provided a valuable tool to explore molecular mechanisms at given temperatures and energies and to see whether these reactive trajectories follow statistical laws and/or minimum energy pathways. This themed issue collects different aspects of the problem and gives an overview of recent works and developments in different contexts, from the gas phase to the condensed phase to excited states.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'. © 2017 The Author(s).

  4. Numerical Analysis on Transient of Steam-gas Pressurizer

    International Nuclear Information System (INIS)

    Kim, Jong-Won; Lee, Yeon-Gun; Park, Goon-Cherl

    2008-01-01

    In nuclear reactors, various pressurizers are adopted to satisfy their characteristics and uses. The additional active systems such as heater, pressurizer cooler, spray and insulator are essential for a steam or a gas pressurizer. With a steam-gas pressurizer, additional systems are not required due to the use of steam and non-condensable gas as pressure-buffering materials. The steam-gas pressurizer in integrated small reactors experiences very complicated thermal-hydraulic phenomena. To ensure the integrity of this pressurizer type, the analysis on the transient behavior of the steam-gas pressure is indispensable. For this purpose, the steam-gas pressurizer model is introduced to predict the accurate system pressure. The proposed model includes bulk flashing, rainout, inter-region heat and mass transfer and wall condensation with non-condensable gas. However, the ideal gas law is not applied because of significant interaction at high pressure between steam and non-condensable gas. The results obtained from this proposed model agree with those from pressurizer tests. (authors)

  5. Condensation of steam on the underside of a horizontal surface in the presence of air and helium

    International Nuclear Information System (INIS)

    Stein, R.P.; Cho, D.H.; Lambert, G.A.

    1987-01-01

    Experiments and data analysis for the condensation of steam on the underside of a horizontal surface in a closed vessel are described. Previously reported results for film condensation with air as a noncondensable gas are reviewed and compared with new data with helium as the noncondensable in the same apparatus. Observations, including photographs of the condensate configurations, related to the occurrence of dropwise condensation are also discussed. It is noted that data reproducibility over long periods of time were possible only with film condensation and that with dropwise condensation condensing surface temperatures exhibited large nonuniformities and random fluctuations with time. The well known mass transfer calculational model for accounting for the presence of noncondensable gases had been shown previously to be successful with air. The same model when applied to the helium data was not successful except for small gas contents. It appears that the suppression of convection that would be expected to occur with the less dense gas is counteracted by convection induced by fog or mist formation

  6. Basic design of the test facility for the two-phase critical flow with non-condensable gas

    International Nuclear Information System (INIS)

    Chang, Seok Kyu; Kim, Chang Hwe; Chung, Chang Hwan

    2000-12-01

    The two-phase critical flow test with non-condensible gas is for the simulation of the critical flow phenomena which can be occurred during SB-LOCA on SMART reactor. The basic design of the test facility for the actual installation is performed from the basis of the previous conceptual design according to the test requirements. The 1.3m 3 pressure vessel has the circulation pipeline which contains pump(5m 3 /hr), main heater(150KW) and cooler for heating the working fluid to the test temperature within 6 hours. The N2 gas, water supply line are attached to the upper part and test section, flowmeter and various sensors are installed at the lower part of the pressure vessel. The suppression tank is for the storage and cooling of the discharged water. The N2 gas storage tank provides the system pressure to the pressure vessel during the test. The 0.7m 3 N2 gas injection tank supplies the required N2 gas to the entrance of the test section. Since these N2 supply systems require much amount of gas during short period, multistage valve systems and optimal control logics are needed and applied. For the filling of the N2 gas to the N2 storage tank, 5m 3 LN2 tank and related gas converting system were designed. The operating mode of the test facility can be classified to the starting, steady, main test and cooling modes and the proper monitoring and control logics are developed for each operating mode. The operation of the test facility is performed through the PLC and the acquisition of the test data is done with DAS

  7. Endoscopic retrograde cholangiopancreatography and endoscopic ...

    African Journals Online (AJOL)

    An approach to suspected gallstone pancreatitis'based on endoscopic retrograde cholangiopancreatography (ERCP) and endoscopic sphincterotomy (ES) was adopted in 1976 and was followed in 29 patients. ERCp became the routine method of early biliary tract assessment when gallstone pancreatitis was suspected on ...

  8. Fundamental research on the cooling characteristic of PCCS with dropwise condensation

    International Nuclear Information System (INIS)

    Masahiro Kawakubo; Mitsuo Matsuzaki; Hiroshige Kikura; Masanori Aritomi; Toshihiro Komeno

    2005-01-01

    Safety system consists of many active systems in recent years. However, there are always probabilities of failures of these active safety systems' due to faulty operation by human-error overlaps causing a severe accident as happened in Chernobyl and Three Mile Island cases. Passive Containment Cooling System (PCCS) is one of the cooling safety systems, which prevents nuclear reactor containment from over-pressurizing and breaking in case of the loss of coolant accident. A conventional PCCS is installed in the upper part of nuclear reactor containment, and the containment pressure decreases by the steam condensation. However, for a country with frequent earthquakes, it is not suitable for installing PCCS because the system requires earthquake-proof design and the water capacity in the tank is restricted. The concept of PCCS with vertical heat transfer pipe considering above challenges, which equipped vertical long heat transfer pipe inside, has been proposed by Aritomi et al. The objective of this study is to clarify the heat transfer characteristics of PCCS with vertical pipe to experimentally investigate the influence of non-condensable gas on condensation. Furthermore, a digital video camera is used to measure the behavior of condensation drops. The experimental apparatus consists of a tank, a cooling water supply system and a heat exchanger. The tank is made of a stainless steel and simulated the nuclear reactor containment during an accident. The cooling pipe installed in the tank is made of stainless steel tube. Cooling water at a constant temperature is poured in the test part of heat transfer pipe perpendicularly installed in the tank by forced circulation, and then condensation is induced at the heat transfer surface. At that time, the temperature of the cooling water between inlet and outlet of the pipe has been measured to calculation the over-all heat transfer coefficient between the cooling water and atmosphere in the tank. Thus, the heat transfer

  9. Importance of variants in cerebrovascular anatomy for potential retrograde embolization in cryptogenic stroke

    International Nuclear Information System (INIS)

    Markl, Michael; Semaan, Edouard; Carr, James; Collins, Jeremy; Stromberg, LeRoy; Prabhakaran, Shyam

    2017-01-01

    To test the hypothesis that variants in cerebrovascular anatomy will affect the number of patients demonstrating a plausible retrograde embolization mechanism from plaques in the descending aorta (DAo). Thirty-five patients (aged 63 ± 17 years) with cryptogenic stroke underwent 4D flow MRI for the assessment of aortic 3D blood flow and MR angiography for the evaluation of circle of Willis, posterior circulation, and aortic arch architecture. In patients with proven DAo plaque, retrograde embolization was considered a potential mechanism if retrograde flow extended from the DAo to a supra-aortic vessel supplying the cerebral infarct territory. Retrograde embolization with matching cerebral infarct territory was detected in six (17%) patients. Circle of Willis and aortic arch variant anatomy was found in 60% of patients, leading to reclassification of retrograde embolization risk as present in three (9%) additional patients, for a total 26% of cryptogenic stroke patients. 4D flow MRI demonstrated 26% concordance with infarct location on imaging with retrograde diastolic flow into the feeding vessels of the affected cerebral area, identifying a potential etiology for cryptogenic stroke. Our findings further demonstrate the importance of cerebrovascular anatomy when determining concordance of retrograde flow pathways with vascular stroke territory from DAo plaques. (orig.)

  10. Importance of variants in cerebrovascular anatomy for potential retrograde embolization in cryptogenic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Northwestern University, Department of Biomedical Engineering, McCormick School of Engineering, Chicago, IL (United States); Semaan, Edouard; Carr, James; Collins, Jeremy [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Stromberg, LeRoy [Northwestern University, Department of Neurology, Feinberg School of Medicine, Chicago, IL (United States); Edward Hospital, Department of Radiology, Naperville, IL (United States); Prabhakaran, Shyam [Northwestern University, Department of Neurology, Feinberg School of Medicine, Chicago, IL (United States)

    2017-10-15

    To test the hypothesis that variants in cerebrovascular anatomy will affect the number of patients demonstrating a plausible retrograde embolization mechanism from plaques in the descending aorta (DAo). Thirty-five patients (aged 63 ± 17 years) with cryptogenic stroke underwent 4D flow MRI for the assessment of aortic 3D blood flow and MR angiography for the evaluation of circle of Willis, posterior circulation, and aortic arch architecture. In patients with proven DAo plaque, retrograde embolization was considered a potential mechanism if retrograde flow extended from the DAo to a supra-aortic vessel supplying the cerebral infarct territory. Retrograde embolization with matching cerebral infarct territory was detected in six (17%) patients. Circle of Willis and aortic arch variant anatomy was found in 60% of patients, leading to reclassification of retrograde embolization risk as present in three (9%) additional patients, for a total 26% of cryptogenic stroke patients. 4D flow MRI demonstrated 26% concordance with infarct location on imaging with retrograde diastolic flow into the feeding vessels of the affected cerebral area, identifying a potential etiology for cryptogenic stroke. Our findings further demonstrate the importance of cerebrovascular anatomy when determining concordance of retrograde flow pathways with vascular stroke territory from DAo plaques. (orig.)

  11. Selective retrograde labeling of cholinergic neurons with [3H]choline

    International Nuclear Information System (INIS)

    Bagnoli, P.; Beaudet, A.; Stella, M.; Cuenod, M.

    1981-01-01

    Evidence is presented which is consistent with a specific retrograde labeling of cholinergic neurons following [ 3 H]choline application in their zone of termination. [ 3 H]Choline injection in the rat hippocampus leads to perikaryal retrograde labeling in the ipsilateral medial septal nuclease and nucleus of the diagonal band, thus delineating an established cholinergic pathway, while only diffuse presumably anterograde labeling was observed in the lateral septum, the entorhinal cortex, and the opposite hippocampus. After [ 3 H]choline injection in the pigeon visual Wulst, only the ipsilateral thalamic relay, of all inputs, showed similar perikaryal retrograde labeling, an observation supporting the suggestion that at least some thalamo-Wulst neurons are cholinergic

  12. Using Kinesthetic Activities to Teach Ptolemaic and Copernican Retrograde Motion

    Science.gov (United States)

    Richards, Ted

    2012-01-01

    This paper describes a method for teaching planetary retrograde motion, and the Ptolemaic and Copernican accounts of retrograde motion, by means of a series kinesthetic learning activities (KLAs). In the KLAs described, the students literally walk through the motions of the planets in both systems. A retrospective statistical analysis shows that…

  13. A Healthy Live Birth Following ICSI with Retrograde Ejaculated Sperm

    African Journals Online (AJOL)

    AJRH Managing Editor

    Retrograde ejaculation, sometimes called dry orgasm, refers to the medical condition when semen enters the urinary bladder. (retrograde) instead of emerging through the penis after orgasm (antegrade). In some instances, a very minute quantity of antegrade semen appears in the ejaculate and may or may not be devoid of ...

  14. Application of Evaporative Cooling for the Condensation of Water Vapors from a Flue Gas Waste Heat Boilers CCP

    Directory of Open Access Journals (Sweden)

    Galashov Nikolay

    2016-01-01

    Full Text Available The object of the study are boilers that burn organic fuel and the recovery boilers (RB of the combined cycle plant (CCP, which are al-so working on the products of the combustion of hydrocarbon fuels. The purpose of research is to find technologies that increase efficiency of the thermal power plant (TPP and technologies that reduce the environmental impact on the environment by burning fossil fuels. The paper deals with the technology of the boilers burning hydrocarbon fuel with condensation of water vapor from the exhaust flue gases. Considered the problems caused by using of this technology. Research shows that the main problem of this technology in the boilers is the lack of reliable methods of calculation of heat exchangers, condensers. Particular attention is paid to the application of this technology in the recovery boilers combined-cycle plants, which are currently gaining increasing use in the generation of electricity from the combustion of gas in power plants. It is shown that the application of technology of condensation of water vapor in RB CCP, the temperature decreases of exhaust gases from 100 to 40 °С, allows increasing the effi-ciency of the RB with 86.2 % to 99.5 %, i.e. at 12.3 %, and increase the ef-ficiency of the CCP at 2.8 %.

  15. The 'SAFARI' Technique Using Retrograde Access Via Peroneal Artery Access

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Kun Da, E-mail: zkunda@gmail.com [Singapore General Hospital, Interventional Radiology Centre (Singapore); Tan, Seck Guan [Singapore General Hospital, Department of General Surgery (Singapore); Tay, Kiang Hiong [Singapore General Hospital, Interventional Radiology Centre (Singapore)

    2012-08-15

    The 'SAFARI' technique or subintimal arterial flossing with antegrade-retrograde intervention is a method for recanalisation of chronic total occlusions (CTOs) when subintimal angioplasty fails. Retrograde access is usually obtained via the popliteal, distal anterior tibial artery (ATA)/dorsalis pedis (DP), or distal posterior tibial artery (PTA). Distal access via the peroneal artery has not been described and has a risk of continued bleeding, leading to compartment syndrome due to its deep location. We describe our experience in two patients with retrograde access via the peroneal artery and the use of balloon-assisted hemostasis for these retrograde punctures. This approach may potentially give more options for endovascular interventions in lower limb CTOs.

  16. Condensation on a cooled plane upright wall

    International Nuclear Information System (INIS)

    Fortier, Andre.

    1975-01-01

    The vapor condensation along a cooled upright plane wall was studied. The theoretical and experimental results obtained in the simple case, give the essential characteristics of the phenomenon of condensation along a cold wall that keeps the vapor apart from the coolant inside a surface condenser. The phenomenon presents two different appearances according as the wall is wetted or not by the liquid. In the first case a continuous liquid film runs down the wall and a conventional Nusselt calculation gives the film thickness and the heat exchange coefficient between a pure saturated vapor and the cold wall. The calculation is developed in detail and the effect of a vapor flow along the film is discussed as well as that of the presence of a noncondensable gas inside the vapor. In the second case, separated liquid drops are formed on the wall, the phenomenon is called ''dropwise condensation'' and the heat exchange coefficients obtained are much higher than with film condensation. The theoretical aspects of the problem are discussed with some experimental results [fr

  17. Development of gas and gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    In the study of gas reservoir development, the first year topics are restricted on reservoir characterization. There are two types of reservoir characterization. One is the reservoir formation characterization and the other is the reservoir fluid characterization. For the reservoir formation characterization, calculation of conditional simulation was compared with that of unconditional simulation. The results of conditional simulation has higher confidence level than the unconditional simulation because conditional simulation considers the sample location as well as distance correlation. In the reservoir fluid characterization, phase behavior calculations revealed that the component grouping is more important than the increase of number of components. From the liquid volume fraction with pressure drop, the phase behavior of reservoir fluid can be estimated. The calculation results of fluid recombination, constant composition expansion, and constant volume depletion are matched very well with the experimental data. In swelling test of the reservoir fluid with lean gas, the accuracy of dew point pressure forecast depends on the component characterization. (author). 28 figs., 10 tabs.

  18. Analysis of hydrodynamic regimes of operation of a gas pipeline from the Samotlor field to the Nizhnevartovsk gas refinery

    Energy Technology Data Exchange (ETDEWEB)

    Al' tshular, S A; Bragunov, N I; Ivanov, V N; Izmaylov, I Ye; Koroleva, L N

    1979-01-01

    Results are presented from studying the hydraulic losses of a gas-transport system. Oil gas in the first stage of separation of the Samotlor field according to the plan is transported on two gas pipelines to the Nizhnevartovsk and Belozersk gas refinery. On the route of the first gas pipeline in order to remove the released condensate, 12 gas-separator and condensate-settling tanks are installed. The second gas pipeline in the beginning, middle and end has asemblies for additional separation (separation (separator, drop-separator, condensate-collector). The studied material is presented in the form of the dependence of actual calculatedcoefficients of hydraulic resistance on the rate of gas supply in the range 80,000-230,000 m/sup 3//h (Re-(0.82.0) X 10/sup -6/. It has been established that with Re=1.6 X 10/sup -6/ the calculated and actual coeffic-ients of resistance become the same, while with smaller values of Re, the actual values exceed the calculated by 20-40%. In the opinion of the authors this difference is due to the effect of the liquid phase with low velocities of gas and the formation of stable foam. As a result of transillumination it was also established that the regime of flow on the ascending part is dispersion-ring and dispersion-semiring, and on the descending part stratified. Analysis of the transport of the gas-condensate stream with ring regime of flow permitted the authors to hypothesize transporting of gas without removal of the condensate. A certain increase in the coefficients of resistance for the case where the condensate is not removed from the gas pipeline is noted with experimental realization of the proposed variant. It is explained by the low velocities of gas in the beginning of the gas pipeline. It is stressed that the actual and calculated pressure differentials are distinguished less than the calculated and actual coefficients of resistance and that this indicates the practical preservation of the throughput of the gas pipeline.

  19. Capillary condensation in porous alumina observed by positronium lifetime spectroscopy

    International Nuclear Information System (INIS)

    Ivanov, Eugeniu; Vata, Ion; Toderian, Stefan; Dudu, Dorin; Rusen, Ion; Stefan, Nitisor

    2008-01-01

    The PALS method based on time distribution measurements has been used to study capillary condensation of different gases adsorbed in microporous alumina powder. The isotherms exhibit features which are associated with a shifted gas-liquid transition. The sorption and desorption processes are irreversible presenting a hysteresis effect. Suggestions on some new aspects of the capillary condensation dynamics are made

  20. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-18

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

  1. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    International Nuclear Information System (INIS)

    1993-01-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided

  2. Retrograde amnesia after electroconvulsive therapy: a temporary effect?

    Science.gov (United States)

    Meeter, Martijn; Murre, Jaap M J; Janssen, Steve M J; Birkenhager, Tom; van den Broek, W W

    2011-07-01

    Although electroconvulsive therapy (ECT) is generally considered effective against depression, it remains controversial because of its association with retrograde memory loss. Here, we assessed memory after ECT in circumstances most likely to yield strong retrograde amnesia. A cohort of patients undergoing ECT for major depression was tested before and after ECT, and again at 3-months follow-up. Included were 21 patients scheduled to undergo bilateral ECT for severe major depression and 135 controls matched for gender, age, education, and media consumption. Two memory tests were used: a verbal learning test to assess anterograde memory function, and a remote memory test that assessed memory for news during the course of one year. Before ECT the patients' scores were lower than those of controls. They were lower again after treatment, suggesting retrograde amnesia. At follow-up, however, memory for events before treatment had returned to the pre-ECT level. Memory for events in the months after treatment was as good as that of controls. The sample size in this study was not large. Moreover, memory impairment did not correlate with level of depression, which may be due to restriction of range. Our results are consistent with the possibility that ECT as currently practiced does not cause significant lasting retrograde amnesia, but that amnesia is mostly temporary and related to the period of impairment immediately following ECT. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Applications of UT results to confirm defects findings by utilization of relevant metallurgical investigations techniques on gas/condensate pipeline working in wet sour gas environment

    Science.gov (United States)

    El-Azhari, O. A.; Gajam, S. Y.

    2015-03-01

    The gas/condensate pipe line under investigation is a 12 inch diameter, 48 km ASTM, A106 steel pipeline, carrying hydrocarbons containing wet CO2 and H2S.The pipe line had exploded in a region 100m distance from its terminal; after 24 years of service. Hydrogen induced cracking (HIC) and sour gas corrosion were expected due to the presence of wet H2S in the gas analysis. In other areas of pipe line ultrasonic testing was performed to determine whether the pipeline can be re-operated. The results have shown presence of internal planner defects, this was attributed to the existence of either laminations, type II inclusions or some service defects such as HIC and step wise cracking (SWC).Metallurgical investigations were conducted on fractured samples as per NACE standard (TM-0284-84). The obtained results had shown macroscopic cracks in the form of SWC, microstructure of steel had MnS inclusions. Crack sensitivity analyses were calculated and the microhardness testing was conducted. These results had confirmed that the line material was suffering from sour gas deteriorations. This paper correlates the field UT inspection findings with those methods investigated in the laboratory. Based on the results obtained a new HIC resistance material pipeline needs to be selected.

  4. Method of processing radioactive gas

    International Nuclear Information System (INIS)

    Saito, Masayuki.

    1978-01-01

    Purpose: To reduce the quantity of radioactive gas discharged at the time of starting a nuclear power plant. Method: After the stoppage of a nuclear power plant air containing a radioactive gas is extracted from a main condenser by operating an air extractor. The air is sent into a gaseous waste disposal device, and then introduced into the activated carbon adsorptive tower of a rare gas holdup device where xenon and krypton are trapped. Thereafter, the air passes through pipelines and returned to the main condenser. In this manner, the radioactive gas contained in air within the main condenser is removed during the stoppage of the operation of the nuclear power plant. After the plant has been started, when it enters the normal operation, a flow control valve is closed and another valve is opened, and a purified gas exhausted from the rare gas holdup device is discharged into the atmosphere through an exhaust cylinder. (Aizawa, K.)

  5. Bose-Einstein condensation of light: general theory.

    Science.gov (United States)

    Sob'yanin, Denis Nikolaevich

    2013-08-01

    A theory of Bose-Einstein condensation of light in a dye-filled optical microcavity is presented. The theory is based on the hierarchical maximum entropy principle and allows one to investigate the fluctuating behavior of the photon gas in the microcavity for all numbers of photons, dye molecules, and excitations at all temperatures, including the whole critical region. The master equation describing the interaction between photons and dye molecules in the microcavity is derived and the equivalence between the hierarchical maximum entropy principle and the master equation approach is shown. The cases of a fixed mean total photon number and a fixed total excitation number are considered, and a much sharper, nonparabolic onset of a macroscopic Bose-Einstein condensation of light in the latter case is demonstrated. The theory does not use the grand canonical approximation, takes into account the photon polarization degeneracy, and exactly describes the microscopic, mesoscopic, and macroscopic Bose-Einstein condensation of light. Under certain conditions, it predicts sub-Poissonian statistics of the photon condensate and the polarized photon condensate, and a universal relation takes place between the degrees of second-order coherence for these condensates. In the macroscopic case, there appear a sharp jump in the degrees of second-order coherence, a sharp jump and kink in the reduced standard deviations of the fluctuating numbers of photons in the polarized and whole condensates, and a sharp peak, a cusp, of the Mandel parameter for the whole condensate in the critical region. The possibility of nonclassical light generation in the microcavity with the photon Bose-Einstein condensate is predicted.

  6. Condensation model for the ESBWR passive condensers

    International Nuclear Information System (INIS)

    Revankar, S. T.; Zhou, W.; Wolf, B.; Oh, S.

    2012-01-01

    In the General Electric's Economic simplified boiling water reactor (GE-ESBWR) the passive containment cooling system (PCCS) plays a major role in containment pressure control in case of an loss of coolant accident. The PCCS condenser must be able to remove sufficient energy from the reactor containment to prevent containment from exceeding its design pressure following a design basis accident. There are three PCCS condensation modes depending on the containment pressurization due to coolant discharge; complete condensation, cyclic venting and flow through mode. The present work reviews the models and presents model predictive capability along with comparison with existing data from separate effects test. The condensation models in thermal hydraulics code RELAP5 are also assessed to examine its application to various flow modes of condensation. The default model in the code predicts complete condensation well, and basically is Nusselt solution. The UCB model predicts through flow well. None of condensation model in RELAP5 predict complete condensation, cyclic venting, and through flow condensation consistently. New condensation correlations are given that accurately predict all three modes of PCCS condensation. (authors)

  7. Optimal Timing for Laparoscopic Cholecystectomy After Endoscopic Retrograde Cholangiopancreatography: A Systematic Review.

    Science.gov (United States)

    Friis, C; Rothman, J P; Burcharth, J; Rosenberg, J

    2018-06-01

    Endoscopic retrograde cholangiopancreatography followed by laparoscopic cholecystectomy is often used as definitive treatment for common bile duct stones. The aim of this study was to investigate the optimal time interval between endoscopic retrograde cholangiopancreatography and laparoscopic cholecystectomy. PubMed and Embase were searched for studies comparing different time delays between endoscopic retrograde cholangiopancreatography and laparoscopic cholecystectomy. Observational studies and randomized controlled trials were included. Primary outcome was conversion rate from laparoscopic to open cholecystectomy and secondary outcomes were complications, mortality, operating time, and length of stay. A total of 14 studies with a total of 1930 patients were included. The pooled estimate revealed an increase from a 4.2% conversion rate when laparoscopic cholecystectomy was performed within 24 h of endoscopic retrograde cholangiopancreatography to 7.6% for 24-72 h delay to 12.3% when performed within 2 weeks, to 12.3% for 2-6 weeks, and to a 14% conversion rate when operation was delayed more than 6 weeks. According to this systematic review, it is preferable to perform cholecystectomy within 24 h of endoscopic retrograde cholangiopancreatography to reduce conversion rate. Early laparoscopic cholecystectomy does not increase mortality, perioperative complications, or length of stay and on the contrary it reduces the risk of reoccurrence and progression of disease in the delay between endoscopic retrograde cholangiopancreatography and laparoscopic cholecystectomy.

  8. Post-Golgi anterograde transport requires GARP-dependent endosome-to-TGN retrograde transport

    Science.gov (United States)

    Hirata, Tetsuya; Fujita, Morihisa; Nakamura, Shota; Gotoh, Kazuyoshi; Motooka, Daisuke; Murakami, Yoshiko; Maeda, Yusuke; Kinoshita, Taroh

    2015-01-01

    The importance of endosome-to–trans-Golgi network (TGN) retrograde transport in the anterograde transport of proteins is unclear. In this study, genome-wide screening of the factors necessary for efficient anterograde protein transport in human haploid cells identified subunits of the Golgi-associated retrograde protein (GARP) complex, a tethering factor involved in endosome-to-TGN transport. Knockout (KO) of each of the four GARP subunits, VPS51–VPS54, in HEK293 cells caused severely defective anterograde transport of both glycosylphosphatidylinositol (GPI)-anchored and transmembrane proteins from the TGN. Overexpression of VAMP4, v-SNARE, in VPS54-KO cells partially restored not only endosome-to-TGN retrograde transport, but also anterograde transport of both GPI-anchored and transmembrane proteins. Further screening for genes whose overexpression normalized the VPS54-KO phenotype identified TMEM87A, encoding an uncharacterized Golgi-resident membrane protein. Overexpression of TMEM87A or its close homologue TMEM87B in VPS54-KO cells partially restored endosome-to-TGN retrograde transport and anterograde transport. Therefore GARP- and VAMP4-dependent endosome-to-TGN retrograde transport is required for recycling of molecules critical for efficient post-Golgi anterograde transport of cell-surface integral membrane proteins. In addition, TMEM87A and TMEM87B are involved in endosome-to-TGN retrograde transport. PMID:26157166

  9. Retrograde contrast radiography of the distal portions of the intestinal tract in foals

    International Nuclear Information System (INIS)

    Fischer, A.T.; Yarbrough, T.Y.

    1995-01-01

    A technique for retrograde contrast radiography of the distal portions of the intestinal tract of foals was developed and then performed in 25 foals (1 to 30 days old) with colic. Retrograde contrast radiography was shown to be sensitive (100%) and specific (100%) for evaluating obstruction of the small colon or transverse colon. It was slightly less sensitive (86%) and specific (83%) for evaluation of the entire large colon, particularly in older foals. Retrograde contrast radiography provided increased diagnostic capability, compared with that for noncontrast radiography. Retrograde contrast radiography can provide valuable information when evaluating foals with colic and should be part of the diagnostic evaluation

  10. A novel fluorescent retrograde neural tracer: cholera toxin B conjugated carbon dots

    Science.gov (United States)

    Zhou, Nan; Hao, Zeyu; Zhao, Xiaohuan; Maharjan, Suraj; Zhu, Shoujun; Song, Yubin; Yang, Bai; Lu, Laijin

    2015-09-01

    The retrograde neuroanatomical tracing method is a key technique to study the complex interconnections of the nervous system. Traditional tracers have several drawbacks, including time-consuming immunohistochemical or immunofluorescent staining procedures, rapid fluorescence quenching and low fluorescence intensity. Carbon dots (CDs) have been widely used as a fluorescent bio-probe due to their ultrasmall size, excellent optical properties, chemical stability, biocompatibility and low toxicity. Herein, we develop a novel fluorescent neural tracer: cholera toxin B-carbon dot conjugates (CTB-CDs). It can be taken up and retrogradely transported by neurons in the peripheral nervous system of rats. Our results show that CTB-CDs possess high photoluminescence intensity, good optical stability, a long shelf-life and non-toxicity. Tracing with CTB-CDs is a direct and more economical way of performing retrograde labelling experiments. Therefore, CTB-CDs are reliable fluorescent retrograde tracers.The retrograde neuroanatomical tracing method is a key technique to study the complex interconnections of the nervous system. Traditional tracers have several drawbacks, including time-consuming immunohistochemical or immunofluorescent staining procedures, rapid fluorescence quenching and low fluorescence intensity. Carbon dots (CDs) have been widely used as a fluorescent bio-probe due to their ultrasmall size, excellent optical properties, chemical stability, biocompatibility and low toxicity. Herein, we develop a novel fluorescent neural tracer: cholera toxin B-carbon dot conjugates (CTB-CDs). It can be taken up and retrogradely transported by neurons in the peripheral nervous system of rats. Our results show that CTB-CDs possess high photoluminescence intensity, good optical stability, a long shelf-life and non-toxicity. Tracing with CTB-CDs is a direct and more economical way of performing retrograde labelling experiments. Therefore, CTB-CDs are reliable fluorescent retrograde

  11. Nucleation and condensation in the primitive solar nebula

    International Nuclear Information System (INIS)

    Cameron, A.G.W.; Fegley, M.B.

    1982-01-01

    It is pointed out that the primitive solar nebula may be modeled using the frictionally induced transport theory of Lynden-Bell and Pringle (1974) if the principal frictional mechanism within the nebula is turbulent viscosity. The present investigation is concerned with the construction of a model of a section of the primitive solar nebula as a basis for the study of nucleation and condensation processes within this section. The construction involves a relatively simple application of the Lynden-Bell and Pringle theory subject to steady mass flow conditions. The calculations which are conducted in connection with the investigation indicate that by the time the gas in the primitive solar nebula has become sufficiently supercooled to nucleate condensation centers, several different compounds, including the magnesium silicates forsterite and enstatite (MgSiO 3 ), will probably be able to condense on the growing condensation center

  12. Avalanches in a Bose-Einstein condensate

    NARCIS (Netherlands)

    Schuster, J.; Marte, A.; Amtage, S.; Sang, B.; Rempe, G.; Beijerinck, H.C.W.

    2001-01-01

    Collisional avalanches are identified to be responsible for an 8-fold increase of the initial loss rate of a large 87Rb condensate. We show that the collisional opacity of an ultracold gas exhibits a critical value. When exceeded, losses due to inelastic collisions are substantially enhanced. Under

  13. The Yeast Retrograde Response as a Model of Intracellular Signaling of Mitochondrial Dysfunction

    Directory of Open Access Journals (Sweden)

    S. Michal eJazwinski

    2012-05-01

    Full Text Available Mitochondrial dysfunction activates intracellular signaling pathways that impact yeast longevity, and the best known of these pathways is the retrograde response. More recently, similar responses have been discerned in other systems, from invertebrates to human cells. However, the identity of the signal transducers is either unknown or apparently diverse, contrasting with the well-established signaling module of the yeast retrograde response. On the other hand, it has become equally clear that several other pathways and processes interact with the retrograde response, embedding it in a network responsive to a variety of cellular states. An examination of this network supports the notion that the master regulator NFkB aggregated a variety of mitochondria-related cellular responses at some point in evolution and has become the retrograde transcription factor. This has significant consequences for how we view some of the deficits associated with aging, such as inflammation. The support for NFkB as the retrograde response transcription factor is not only based on functional analyses. It is bolstered by the fact that NFkB can regulate Myc-Max, which is activated in human cells with dysfunctional mitochondria and impacts cellular metabolism. Myc-Max is homologous to the yeast retrograde response transcription factor Rtg1-Rtg3. Further research will be needed to disentangle the pro-aging from the anti-aging effects of NFkB. Interestingly, this is also a challenge for the complete understanding of the yeast retrograde response.

  14. Condensers

    International Nuclear Information System (INIS)

    Andrieux, M.B.

    1984-01-01

    Characteristics of the condenser cooling waters of various French 900 MW nuclear power plants. Design and description of various types of condensers: condensers feeded directly with river water, condensers feeded by cooling towers, condensers feeded with sea water of brackish water. Presentation of the main problems encountered with the brass bundles (ammoniacal corrosion, erosion of the peripheral tubes, vibrations of the tubes), with the titanium bundles, with the tubular plates, the tubes-tubular plates assemblies, the coatings of the condenser water chamber (sea water), the vapor by-pass and with the air inlet. Analysis of the in service performances such as condensation pressure, oxygen content and availability [fr

  15. Effects of inulin with different degree of polymerization on gelatinization and retrogradation of wheat starch.

    Science.gov (United States)

    Luo, Denglin; Li, Yun; Xu, Baocheng; Ren, Guangyue; Li, Peiyan; Li, Xuan; Han, Sihai; Liu, Jianxue

    2017-08-15

    The effects of three types of inulin, including FS (DP≤10), FI (DP of 2-60) and FXL (DP≥23), on the gelatinization and retrogradation characteristics of wheat starch were investigated. As the concentration of inulin added into starch increased, the gelatinization temperature increased whereas the breakdown value decreased, and the value of setback first decreased and then increased slightly. The three types of inulin with lower concentrations (inulin showed a significant suppression of starch retrogradation in the addition range of 5-7.5%. They can all inhibit amylose retrogradation, but accelerate amylopectin retrogradation. Inulin with lower DP has stronger effects on the starch retrogradation. Generally, the three types of inulin can all retard the retrogradation performance of wheat starch to some extent in the long-term storage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. More accurate theory for Bose-Einstein condensation fraction

    International Nuclear Information System (INIS)

    Biswas, Shyamal

    2008-01-01

    Bose-Einstein statistics is derived in the thermodynamic limit when the ratio of system size to thermal de Broglie wavelength goes to infinity. However, according to the experimental setup of Bose-Einstein condensation of harmonically trapped Bose gas of alkali atoms, the ratio near the condensation temperature (T o ) is 30-50. And, at ultralow temperatures well below T o , this ratio becomes comparable to 1. We argue that finite size as well as the ultralow temperature induces corrections to Bose-Einstein statistics. From the corrected statistics we plot condensation fraction versus temperature graph. This theoretical plot satisfies well with the experimental plot [A. Griesmaier et al., Phys. Rev. Lett. 94 (2005) 160401

  17. Analysis of heat and mass transfer to determine heat loss and the rate of condensation of the MVSTs off-gas ducts

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Yang, G.; Bigzadeh, E.; Walker, J.F.; Abraham, T.J.

    1992-01-01

    Reduction of the existing nuclear waste in the Melton Valley Storage Tanks (MVSTs) at the Oak Ridge National Laboratory (ORNL) is of utmost concern to the scientists at this facility. This paper provides proof that a combination of vault heating, sparged air heating, and prevention of condensation is the best alternative to achieve this goal. Therefore, in this study a general system of mathematical equations has been developed taking into account all of the parameters affecting evaporation and condensation. This evaporation process has been analyzed by the careful modeling of a bubble chain through the extremely viscous, radioactive liquid contained in the storage tanks. This paper discusses in detail the evaporation procedure using bubble formation, air velocity, and determining the rate at which this liquid waste can be removed from the MVSTs by evaporation under different conditons of the sparging air. An additional objective is to study the heating/cooling of the condensation process of the off-gas piping inside the vault. A laboratory scale model has also been assembled for this purpose at ORNL to verify the accuracy of the mathematical modeling. A comparison of the experimental findings with the mathematical modeling shows excellent agreement. (orig.)

  18. Transneuronal retrograde dual viral labelling of central autonomic circuitry : possibilities and pitfalls

    NARCIS (Netherlands)

    Ter Horst, GJ

    2000-01-01

    Viral retrograde transneuronal labelling has become an important neuroanatomical tract-tracing tool for characterization of Limbic neuronal networks. Recently, dual viral retrograde transneuronal labelling has been introduced; a method employing differential transgene expression of two genetically

  19. The specifics of operating minor deposits (as given by the examples of gas condensate deposits of the Northern Caucasus

    Directory of Open Access Journals (Sweden)

    Р. А. Гасумов

    2016-08-01

    Full Text Available One of the most important directions in upgrading well productivity in the process of mining hydrocarbons consists in fighting with salt formation and salt deposition. Solving that problem becomes especially actual when operating deposits that are in their final stage of exploitation in complex mining and geological conditions accompanied by deposition of salts in the well foot area of oil bed and their sedimentation on the sub-surface and surface equipment. It provokes a drop in well productivity and results in off-schedule repair works. Specifics are considered of exploiting minor gas condensate deposits of the Northern Caucasus that are operated under complicated mining and geological conditions of anomalously high bed pressures, high temperatures, strong depressions on the beds and inflow of mineralized water from water saturated seams.Processes are studied of salt deposition from heavy hydrocarbons in the well foot and the bed area surrounding it. Water sample analyses data from different wells have demonstrated that the main salts carrier is the associated water, and the principal sedimenting agents are corrosion products, as confirmed by the results of microscopic studies. The dynamics is presented of salt deposition in the “well foot – wellhead – separator” system retrieved from the results of studies of reaction products in the well foot zone of oil bed.It is demonstrated that the efficiency of struggling with salt deposition in the course of mining hydrocarbons depends on comprehensive approach to the problem, the principal thrust lying with prevention of such deposition.Possible ways are considered to prevent precipitation of ferric compounds in the course of operating gas condensate wells, a way is suggested to intensify gas inflow.

  20. Retrograde or antegrade double-pigtail stent placement for malignant ureteric obstruction?

    International Nuclear Information System (INIS)

    Uthappa, M.C.; Cowan, N.C.

    2005-01-01

    AIM: To determine the optimum approach for double-pigtail stent placement in malignant ureteric obstruction. PATIENTS AND METHODS: Retrograde stent placement was attempted in a consecutive series of patients presenting with malignant ureteric obstruction. If retrograde stent placement was unsuccessful, percutaneous nephrostomy was performed immediately followed by elective antegrade stent placement. Identical digital C-arm fluoroscopy for image-guidance and conditions for anaesthesia and analgesia were employed for both retrograde and antegrade procedures. Identical 8 Fr (20-26 cm) double-pigtail hydrophilic coated stents were used for each approach. RESULTS: Retrograde placement was attempted in 50 ureters in 30 patients {19 male, 11 female, average age 61.4 yr (range 29-90 yr)} over a 24-month period. The success rate for retrograde ureteric stent placement was 50% (n=25/50). Technical failures were due to failure to identify the ureteric orifice (n=22), failure to cross the stricture (n=1), failure to pass the stent (n=1) and failure to pass a 4 Fr catheter (n=1). Antegrade placement was attempted in 25 ureters with a success rate of 96% (n=24/25). Failure in the one case was due to inability to cross an upper third stricture secondary to pyeloureteritis cystica. CONCLUSION: It is suggested that retrograde route should be the initial approach if imaging shows no involvement of ureteric orifice (UO), when nephrostomy is technically very difficult or in cases of solitary kidney. The antegrade route is preferred if imaging shows tumour occlusion of the UO or if there is a tight stricture very close to the uretero-vesical junction (UVJ) making purchase within the ureter difficult for crossing the stricture

  1. Effects of low molecular sugars on the retrogradation of tapioca starch gels during storage.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Zhang

    Full Text Available The effects of low molecular sugars (sucrose, glucose and trehalose on the retrogradation of tapioca starch (TS gels stored at 4°C for different periods were examined with different methods. Decrease in melting enthalpy (ΔHmelt were obtained through differential scanning calorimetry analysis. Analysis of decrease in crystallization rate constant (k and increase in semi-crystallization time (τ1/2 results obtained from retrogradation kinetics indicated that low molecular sugars could retard the retrogradation of TS gels and further revealed trehalose as the best inhibitor among the sugars used in this study. Fourier transform infrared (FTIR analysis indicated that the intensity ratio of 1047 to 1022 cm-1 was increased with the addition of sugars in the order of trehalose > sucrose > glucose. Decrease in hardness parameters and increase in springiness parameters obtained from texture profile analysis (TPA analysis also indicated that low molecular sugars could retard the retrogradation of TS gels. The results of FTIR and TPA showed a consistent sugar effect on starch retrogradation with those of DSC and retrogradation kinetics analysis.

  2. Complications of bladder distension during retrograde urethrography.

    Science.gov (United States)

    Barsanti, J A; Crowell, W; Losonsky, J; Talkington, F D

    1981-05-01

    A severe, ulcerative cystitis that resulted in macroscopic hematuria occurred in 8 of 20 healthy dogs undergoing a series of diagnostic tests. Four of the remaining 12 dogs had mild bladder lesions consisting of submucosal edema and hemorrhage. Nine of the 20 dogs developed urinary tract infection after the procedures. These complications seemed associated with the radiographic technique of retrograde urethrography performed when the urinary bladder was distended. To test this hypothesis, retrograde urethrography was performed on 5 additional dogs. With the bladder undistended, no complications occurred. However, distention of these same dogs' bladders for 1 minute or less with sterile lactated Ringer's solution administered through a Foley catheter in the penile urethra resulted in a macroscopic hematuria in all 5 dogs which persisted for 24 hours. A microscopic hematuria continued for 5 days. One dog developed a bacterial urinary tract infection. A severe fibrinopurulent cystitis was present at necropsy of 2 dogs 2 days after distention. The morphologic changes in the bladder gradually diminished over 7 days, but mild submucosal edema and hemorrhage were still present when 2 dogs were necropsied, 7 days after distention. These studies indicated that retrograde urethrography in dogs may be complicated by hemorrhagic cystitis and urinary tract infection if performed with urinary bladder distention.

  3. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  4. Development of a condenser for the dual catalyst water recovery system

    Science.gov (United States)

    Budinikas, P.; Rasouli, F.; Rabadi, N.

    1983-01-01

    Conceptual evaporation/condensation systems suitable for integration with the catalytic water recovery method were evaluated. The primary requirements for each concept were its capability to operate under zero-gravity conditions, condense recovered water from a vapor-noncondensable gas mixture, and integrate with the catalytic system. Specific energy requirements were estimated for concepts meeting the primary requirements, and the concept most suitable for integration with the catalytic system was proposed. A three-man rate condenser capable of integration with the proposed system, condensing water vapor in presence of noncondensables and transferring the heat of condensation to feed urine was designed, fabricated, and tested. It was treated with steam/air mixtures at atmospheric and elevated pressures and integrated with an actual catalytic water recovery system. The condenser has a condensation efficiency exceeding 90% and heat transfer rate of approximately 85% of theoretical value at coolant temperature ranging from 7 to 80 deg C.

  5. Water inventory management in condenser pool of boiling water reactor

    International Nuclear Information System (INIS)

    Gluntz, D.M.

    1996-01-01

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs

  6. CONVECTION IN CONDENSIBLE-RICH ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Ding, F. [Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States); Pierrehumbert, R. T., E-mail: fding@uchicago.edu [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom)

    2016-05-01

    Condensible substances are nearly ubiquitous in planetary atmospheres. For the most familiar case—water vapor in Earth’s present climate—the condensible gas is dilute, in the sense that its concentration is everywhere small relative to the noncondensible background gases. A wide variety of important planetary climate problems involve nondilute condensible substances. These include planets near or undergoing a water vapor runaway and planets near the outer edge of the conventional habitable zone, for which CO{sub 2} is the condensible. Standard representations of convection in climate models rely on several approximations appropriate only to the dilute limit, while nondilute convection differs in fundamental ways from dilute convection. In this paper, a simple parameterization of convection valid in the nondilute as well as dilute limits is derived and used to discuss the basic character of nondilute convection. The energy conservation properties of the scheme are discussed in detail and are verified in radiative-convective simulations. As a further illustration of the behavior of the scheme, results for a runaway greenhouse atmosphere for both steady instellation and seasonally varying instellation corresponding to a highly eccentric orbit are presented. The latter case illustrates that the high thermal inertia associated with latent heat in nondilute atmospheres can damp out the effects of even extreme seasonal forcing.

  7. Charge collection control using retrograde well tested by proton microprobe irradiation

    International Nuclear Information System (INIS)

    Sayama, Hirokazu; Takai, Mikio; Kimura, Hiroshi; Ohno, Yoshikazu; Satoh, Shinichi; Sonoda, Kenichirou; Katani, Norihiko.

    1993-01-01

    Soft error reduction by high-energy ion-implanted layers has been investigated by novel evaluation techniques using high-energy proton microprobes. A retrograde well formed by 160 and 700 keV boron ion implantation could completely suppress soft errors induced by the proton microprobes at 400 keV. The proton-induced current revealed the charge collection efficiency for the retrograde well structure. The collected charge for the retrograde well in the soft-error mapping was proved to be lower than the critical charge of the measured DRAMs(dynamic random-access memories). Complementary use of soft-error mapping and ion-induced-current measurement could clarify well structures immune against soft errors. (author)

  8. Energy condensed packaged systems. Composition, production, properties

    Directory of Open Access Journals (Sweden)

    Igor L. Kovalenko

    2015-03-01

    Full Text Available In this paper it is presented the substantiation of choice of fuel phase composition and optimal technology of emulsion production on the basis of binary solution of ammonium and calcium nitrates, which provide the obtaining of energy condensed packaged systems with specified properties. The thermal decomposition of energy condensed systems on the basis of ammonium nitrate is investigated. It is shown that the fuel phase of emulsion systems should be based on esters of polyunsaturated acids or on combinations thereof with petroleum products. And ceresin or petroleum wax can be used as the structuring additive. The influence of the technology of energy condensed systems production on the physicochemical and detonation parameters of emulsion explosives is considered. It is shown the possibility of obtaining of emulsion systems with dispersion of 1.3...1.8 microns and viscosity higher than 103 Pa∙s in the apparatus of original design. The sensitizing effect of chlorinated paraffin CP-470 on the thermolysis of energy condensed emulsion system is shown. The composition and production technology of energy condensed packaged emulsion systems of mark Ukrainit-P for underground mining in mines not dangerous on gas and dust are developed.

  9. Gas chromatographic determination of residual hydrazine and morpholine in boiler feed water and steam condensates

    International Nuclear Information System (INIS)

    Vatsala, S.; Bansal, V.; Tuli, D.K.; Rai, M.M.; Jain, S.K.; Srivastava, S.P.; Bhatnagar, A.K.

    1994-01-01

    Hydrazine, an oxygen scavenger in boiler water, was derivatised to the corresponding acetone azine and determined at the ng ml -1 level by gas chromatography. Morpholine, a corrosion inhibitor used in steam boilers, was estimated either directly (if >2.0 μg ml -1 ) or by quantitative preconcentration (0.1 ng-2.0 μg ml -1 ). To obtain symmetrical peaks for these amines, the column packing was coated with KOH. Use of a nitrogen-specific detector improved accuracy of estimation of hydrazine and morpholine, giving a RSD of 1.9-3.6%. Chromatographic analysis of these amines in boiler feed water and steam condensate samples collected from boilers servicing a pertroleum refinery is described. Environmental safety regulations calls for monitoring of hydrazine and the methods developed can easily be adapted for this purpose. (orig.)

  10. Fatal air embolism during endoscopic retrograde cholangiopancreatography (ERCP): An 'impossible' diagnosis for the forensic pathologist.

    Science.gov (United States)

    Marchesi, Matteo; Battistini, Alessio; Pellegrinelli, Moira; Gentile, Guendalina; Zoja, Riccardo

    2016-01-01

    Fatal air embolism related to endoscopic retrograde cholangiopancreatography is a very rare phenomenon. The authors describe the case of a 51-year-old female patient who developed this mortal complication; a computed tomography (CT) examination was performed in articulo mortis by the physicians. Autopsy was unreliable because of bizarre post-mortem changes (reabsorption of intra-cardiac gas vs. conservation of intra-cranial gas) and a lack of strong diagnostic value of histological findings. The right diagnosis was possible thanks only to the CT examination that permitted the assumption of this possible cause of death before the autopsy and to prepare the necessary procedures to recognise and probe air embolism. This case exemplifies how early post-mortem imaging can be crucial to avoid a wrong diagnosis. © The Author(s) 2015.

  11. Kinetic theory of collective exitations and damping in Bose-Einstein condensed gases

    NARCIS (Netherlands)

    Al Khawaja, U.; Stoof, H.T.C.

    2000-01-01

    We calculate the frequencies and damping rates of the low-lying collective modes of a Bose-Einstein condensed gas at nonzero temperature. We use a complex nonlinear Schrödinger equation to determine the dynamics of the condensate atoms. In this manner we take into account both collisions between

  12. Kinetic theory of collective excitations and damping in Bose-Einstein condensed gases

    NARCIS (Netherlands)

    Al Khawaja, U.; Stoof, H.T.C.

    2000-01-01

    We calculate the frequencies and damping rates of the low-lying collective modes of a Bose-Einstein condensed gas at nonzero temperature. We use a complex nonlinear Schrödinger equation to determine the dynamics of the condensate atoms, and couple it to a Boltzmann equation for the noncondensate

  13. Numerical Study of Condensation Heat Exchanger Design in a Cooling jacket: Correlation Investigation

    International Nuclear Information System (INIS)

    Kim, Myoung Jun; Lee, Hee Joon; Kang, Han Ok; Lee, Tae Ho; Park, Cheon Tae

    2013-01-01

    In this study, condensing heat transfer correlation of TSCON is evaluated with the existing experimental data set to design condensation heat exchanger without noncondensable gas effect (pure steam condensation) in a cooling jacket. From the investigation of the existing condensation heat transfer correlation to the existing experimental data, the improved Shah's correlation showed most satisfactory result for the condensation heat transfer coefficient with experimental data of Khun in a cooling jacket, whereas the Shah's correlation with experimental data of Lee. Lee et al. reported the improved Shah correlation gave us the best predictor for the condensation heat transfer data of Kim and Henderson in a subcooled and saturated water pool. They suggested the improved Shah correlation should be adopted as condensation heat transfer module in TSCON(Thermal Sizing of CONdenser) to design condensation heat exchanger in secondary passive cooling system of nuclear plant

  14. Aerobic microbial metabolism of condensed thiophenes found in petroleum

    International Nuclear Information System (INIS)

    Kropp, K. G.

    1997-01-01

    The aerobic microbial degradation of 21 condensed thiophenes found in petroleum or synthetic fuels have been studied, motivated by recent research which showed that resistance to biodegradation increases with increasing methyl-substitution. The specific objective was to identify metabolites in pure cultures of aromatic hydrocarbon-degrading Pseudomonas spp. incubated in mineral medium in the presence of an aromatic growth substrate and a condensed thiophene. Over 80 metabolites of the condensed thiophenes were identified using gas chromatography analysis with an atomic emission detector. Among the metabolites identified were sulfoxides, sulfones, hydroxy- and carboxyl-substituted benzothiophenes, hydroxy-substituted dibenzothiophenes, substituted benzothiophene-2,3-diones, and 3-hydroxy-2-formylbenzothiophenes

  15. Analysis of the test results for the two-phase critical flow with non-condensible gas

    International Nuclear Information System (INIS)

    Chang, S. K.; Chung, C. H.; Park, H. S.; Min, K. H.; Choi, N. H.; Kim, C. H.; Lee, S. H.; Kim, H. C.; Chang, M. H.

    2002-07-01

    The two-phase critical flow test was performed for simulating the pipe break accident of SMART reactor. The requirements of the critical flow test are 7∼20mm pipe break dia., 7∼12MPa stagnation pressure, 0∼60 .deg. C subcooling degree and 0∼0.5kg/s N 2 gas flow rate. The test section is sharp edged pipe type which has the dimension of I.D.=20, L=300mm and I.D.=10.9, L=1000mm. The test conditions are 4, 7, 10 MPa at stagnation pressure, 0, 20, 50 .deg. C of subcooling degree and 0.028∼0.39 kg/s of N 2 injection gas flowrate. The measured data at test section and other components in terms of pressure, temperature and flowrate were collected in DAS computer with maintaining the steady state conditions at least 60 seconds. From the test results, the critical characteristics of the break pipe were analysed and verified the capacity of the test facility. For the verification of the Modified Henry-Fauske model which can predict the two-phase critical flow with non-condensible gas, the code simulation using MARS which contains the option of the Modified Henry -Fauske model was performed. The simulation results of steady-state two-phase critical flow experiments show that they agree with the measured critical flow rates within 6% root-mean-square error

  16. Investigation of the Usability of Retrograded Flour in Meatball Production as A Structure Enhancer.

    Science.gov (United States)

    Dinçer, Elif Aykin; Büyükkurt, Özlem Kiliç; Candal, Cihadiye; Bilgiç, Büşra Fatma; Erbaş, Mustafa

    2018-02-01

    This study aimed to research the possibilities of using retrograded flour produced in the laboratory environment in meatballs and the characteristics of these meatballs. In the use of retrograded flour to produce meatballs, it was ensured that the meatball properties, with respect to chemical, physical and sensorial aspects, were comparable to those of meatballs produced with bread (traditional) and rusk flour (commercial). The cooking loss of meatballs produced with using retrograded flour was similar to that of commercial meatballs. Doses of retrograded flour from 5% to 20% led to a significant decrease in cooking loss, from 21.95% to 6.19%, and in the diameter of meatballs, from 18.60% to 12.74%, but to an increase in the thickness of meatballs, from 28.82% to 41.39% compared to the control. The increase of a * and b * values was shown in that the meatballs were browned on cooking with increasing retrograded flour doses because of non-enzymatic reactions. The springiness of the traditional meatballs was significantly higher than that of the other meatballs. This might have been due to the bread crumbs having a naturally springy structure. Moreover, the addition of retrograded flour in the meatballs significantly ( p meatballs with respect to textural properties. Accordingly, it is considered that the use of 10% retrograded flour is ideal to improve the sensorial values of meatballs and the properties of their structure.

  17. An indigenous economic technique of positive pressure retrograde urethrography in female patients

    Directory of Open Access Journals (Sweden)

    H Singh

    2001-01-01

    Full Text Available Usually double balloon catheter is required forpositive pressure retrograde urethrography in females. We describe a technique of positive pressure retrograde urethrography using Foley catheter and rubber stopper, inexpensive and could be adopted in any hospital or radiological suite.

  18. Deterioration of cholestasis after endoscopic retrograde cholangiography in advanced primary sclerosing cholangitis

    NARCIS (Netherlands)

    Beuers, U.; Spengler, U.; Sackmann, M.; Paumgartner, G.; Sauerbruch, T.

    1992-01-01

    Complications of endoscopic retrograde cholangiography specific to patients with primary sclerosing cholangitis have not yet been reported. We observed transient rises of serum bilirubin after diagnostic endoscopic retrograde cholangiography in five of 15 patients and persistent rises in three of 15

  19. OPTIMAL SYSNTHESIS PROCESSES OF LOW-TEMPERATURE CONDENSATION ASSOCIATED OIL GAS PLANT REFRIGERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    O. Ostapenko

    2015-10-01

    Full Text Available Design of modern high-efficient systems is a key priority for the Energy Sector of Ukraine. The cooling technological streams of gas and oil refineries, including air coolers, water cooling and refrigeration systems for specific refrigerants are the objectives of the present study. Improvement of the refrigeration unit with refrigerant separation into fractions is mandatory in order to increase cooling capacity, lowering the boiling point of coolant and increasing the coefficient of target hydrocarbons extraction from the associated gas flow. In this paper it is shown that cooling temperature plays significant role in low-temperature condensation process. Two operation modes for refrigeration unit were proposed: permanent, in which the concentration of the refrigerant mixture does not change and dynamic, in which the concentration of refrigerant mixtures depends on the ambient temperature. Based on the analysis of exergy losses the optimal concentration of refrigerant mixtures propane/ethane for both modes of operation of the refrigeration unit has been determined. On the basis of the conducted pinch-analysis the modification of refrigeration unit with refrigerant separation into fractions was developed. Additional recuperative heat exchangers for utilization heat were added to the scheme. Several important measures to increase the mass flow rate of refrigerant through the second section of the refrigeration centrifugal compressor from 22.5 to 25 kg/s without violating the agreed operational mode of the compressor sections were implemented.

  20. Condensation During Nuclear Reactor Loca

    International Nuclear Information System (INIS)

    Rihan, Y.; Teamah, M.; Sorour, M.; Soliman, S.

    2008-01-01

    Two-phase channel flow with condensation is a common phenomenon occurs in a number of nuclear reactor accident scenarios. It also plays an important role during the operation of the safety coolant injection systems in advanced nuclear reactors. Semiempirical correlations and simple models based on the analogy between heat and mass transfer processes have been previously applied. Rigorous models, compatible with the state-of-the-art numerical algorithms used in thermal-hydraulic computer codes, are scare, and are of great interest. The objective of this research is to develop a method for modeling condensation, with noncondensable gases, compatible with the state-of-the-art numerical methods for the solution of multi-phase field equations. A methodology for modeling condensation, based on the stagnant film theory, and compatible with the reviewed numerical algorithms, is developed. The model treats the coupling between the heat and mass transfer processes, and allows for an implicit treatment of the mass and momentum exchange terms as the gas-liquid interphase, without iterations. The developed model was used in the application of loss of coolant in pressurized water reactor accidents

  1. Bose-Einstein condensation of a charged relativistic ideal gas in a general homogeneous magnetic field

    International Nuclear Information System (INIS)

    Toms, D.J.

    1994-01-01

    It is shown how the effective action formalism and ζ-function regularization can be used to study Bose-Einstein condensation for a relativistic charged scalar field in a general homogeneous magnetic field in a spacetime of arbitrary dimension. In the special case where the magnetic field has only one component, Bose-Einstein condensation occurs at high temperature only for D≥5 where D is the spatial dimension. When Bose-Einstein condensation does occur the ground-state expectation value of the scalar field is not constant and we determine its value. If the magnetic field has p independent nonzero components we show that the condition for Bose-Einstein condensation is D≥3+2p. In particular, Bose-Einstein condensation can never occur if the magnetic field has all of its independent components nonzero. The problem of Bose-Einstein condensation in a cylindrical box in D spatial dimensions with a uniform magnetic field directed along the axis of the cylinder is also discussed

  2. Formation and migration of Natural Gases: gas composition and isotopes as monitors between source, reservoir and seep

    Science.gov (United States)

    Schoell, M.; Etiope, G.

    2015-12-01

    Natural gases form in tight source rocks at temperatures between 120ºC up to 200ºC over a time of 40 to 50my depending on the heating rate of the gas kitchen. Inferring from pyrolysis experiments, gases after primary migration, a pressure driven process, are rich in C2+ hydrocarbons (C2 to C5). This is consistent with gas compositions of oil-associated gases such as in the Bakken Shale which occur in immediate vicinity of the source with little migration distances. However, migration of gases along porous rocks over long distances (up to 200km in the case of the Troll field offshore Norway) changes the gas composition drastically as C2+ hydrocarbons tend to be retained/sequestered during migration of gas as case histories from Virginia and the North Sea will demonstrate. Similar "molecular fractionation" is observed between reservoirs and surface seeps. In contrast to gas composition, stable isotopes in gases are, in general, not affected by the migration process suggesting that gas migration is a steady state process. Changes in isotopic composition, from source to reservoir to surface seeps, is often the result of mixing of gases of different origins. Examples from various gas provinces will support this notion. Natural gas basins provide little opportunity of tracking and identifying gas phase separation. Future research on experimental phase separation and monitoring of gas composition and gas ratio changes e.g. various C2+ compound ratios over C1 or isomer ratios such as iso/n ratios in butane and pentane may be an avenue to develop tracers for phase separation that could possibly be applied to natural systems of retrograde natural condensate fields.

  3. Retrograde Tibiopedal Access as a Bail-Out Procedure for Endovascular Intervention Complications

    Directory of Open Access Journals (Sweden)

    Ahmed Amro

    2016-01-01

    Full Text Available Introduction. Retrograde pedal access has been well described in the literature as a secondary approach for limb salvage in critical limb ischemia (CLI patients. In this manuscript we are presenting a case where retrograde tibiopedal access has been used as a bail-out procedure for the management of superficial femoral artery (SFA intervention complications. Procedure/Technique. After development of a perforation while trying to cross the totally occluded mid SFA using the conventional CFA access, we were able to cross the mid SFA lesion after accessing the posterior tibial artery in a retrograde fashion and delivered a self-expanding stent which created a flap that sealed the perforation without the need for covered stent. Conclusion. Retrograde tibiopedal access is a safe and effective approach for delivery of stents from the distal approach and so can be used as a bail-out technique for SFA perforation.

  4. Condensing Unit with a Scroll Compressor (UB series)

    Energy Technology Data Exchange (ETDEWEB)

    Editor, [Korea Energy Management Corporation, Yongin (Korea)

    2002-05-01

    Condensing unit, which is selected as a heat reservoir of grocery store or refrigerating warehouse, has increased its electricity consumption due to high annual operating ratio and large-sized stores. As the requirement of temperature management on freezing and storage has become strict for maintenance of food quality, the number of companies that import HACCP has increased for a few years. Accordingly, the requirement of high performance and reliability on a condensing unit has also risen more than it did. To meet the requirement, Mitsubishi Electric developed and sold condensing unit UB series, which has high reliability in energy saving. The company also has a plan to sell UPB series for the substitute refrigerant gas from fall of 2001. 5 figs., 2 tabs.

  5. Wet gas sampling

    Energy Technology Data Exchange (ETDEWEB)

    Welker, T.F.

    1997-07-01

    The quality of gas has changed drastically in the past few years. Most gas is wet with hydrocarbons, water, and heavier contaminants that tend to condense if not handled properly. If a gas stream is contaminated with condensables, the sampling of that stream must be done in a manner that will ensure all of the components in the stream are introduced into the sample container as the composite. The sampling and handling of wet gas is extremely difficult under ideal conditions. There are no ideal conditions in the real world. The problems related to offshore operations and other wet gas systems, as well as the transportation of the sample, are additional problems that must be overcome if the analysis is to mean anything to the producer and gatherer. The sampling of wet gas systems is decidedly more difficult than sampling conventional dry gas systems. Wet gas systems were generally going to result in the measurement of one heating value at the inlet of the pipe and a drastic reduction in the heating value of the gas at the outlet end of the system. This is caused by the fallout or accumulation of the heavier products that, at the inlet, may be in the vapor state in the pipeline; hence, the high gravity and high BTU. But, in fact, because of pressure and temperature variances, these liquids condense and form a liquid that is actually running down the pipe as a stream or is accumulated in drips to be blown from the system. (author)

  6. Coherent decay of positronium bose condensate

    International Nuclear Information System (INIS)

    Vanyashin, V.S.

    1992-07-01

    The rate of self-stimulated emission of photon pairs by pseudoscalar particles from Bose condensate is calculated. Growing with density this rate exceeds the density independent rate of spontaneous two photon decay at plausible density values of positronium gas, thus opening in principle, the way to the annihilation gamma ray laser realization. (author). 2 refs

  7. Numerical Study of Condensation Heat Exchanger Design in a Cooling jacket: Correlation Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung Jun; Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of); Kang, Han Ok; Lee, Tae Ho; Park, Cheon Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In this study, condensing heat transfer correlation of TSCON is evaluated with the existing experimental data set to design condensation heat exchanger without noncondensable gas effect (pure steam condensation) in a cooling jacket. From the investigation of the existing condensation heat transfer correlation to the existing experimental data, the improved Shah's correlation showed most satisfactory result for the condensation heat transfer coefficient with experimental data of Khun in a cooling jacket, whereas the Shah's correlation with experimental data of Lee. Lee et al. reported the improved Shah correlation gave us the best predictor for the condensation heat transfer data of Kim and Henderson in a subcooled and saturated water pool. They suggested the improved Shah correlation should be adopted as condensation heat transfer module in TSCON(Thermal Sizing of CONdenser) to design condensation heat exchanger in secondary passive cooling system of nuclear plant.

  8. Analysis for a PRHRS Condensation Heat Exchanger of the SMART-P Plant

    International Nuclear Information System (INIS)

    Lee, Kwon-Yeong; Kim, Moo Hwan

    2007-01-01

    When an emergency such as the unavailability of feedwater or the loss of off-site power arises with SMART-P, the PRHRS passively removes the core decay heat via natural convection. The system is connected to the feedwater and steam pipes and consists of a heat exchanger submerged in a refueling water tank, a compensation tank, and check and isolation valves. The heat exchanger removes the heat from the reactor coolant system through a steam generator via condensation heat transfer to water in the refueling water tank. The compensating tank is pressurized using a nitrogen gas to make up the water volume change in the PRHRS. Before PRHRS operation, nitrogen may be dissolved in the cooling water of the PRHRS. Therefore, during PRHRS operation, nitrogen gas might be generated due to evaporation in the steam generator, which will act as a noncondensable gas in the condensation heat exchanger. The main objective of the present study was to assess the design of a PRHRS condensation heat exchanger (PRHRS HX) by investigating its heat transfer characteristics

  9. On the electrodynamic explanation of the retrograde motion of the electric arc

    International Nuclear Information System (INIS)

    Hong, J.S.; Allen, J.E.

    1992-01-01

    The retrograde motion of the cathode spot in a transverse magnetic field is one of the more intriguing phenomena of the electric arc. Although the phenomenon has been known for nearly ninety years since its discovery by Stark and has stimulated numerous investigations which result in many models giving explanation from different points of view, there is still no theory that can account both qualitatively and quantitatively for all the observations. Most of the explanations of the retrograde motion involve the study of cathode processes to give the preferential formation of new cathode spots along the retrograde direction. One line of explanation, which is rather different from the others, is based on electrodynamics. In this approach the retrograde motion is treated as an electrodynamic event. The present paper develops the theory suggested by Robson and von Engel. A more complete model is proposed and studied in detail by means of electromagnetic field theory. The results obtained not only show that the retrograde motion can be explained by the electrodynamics, but also confirm that the average current density on the cathode spot must be around the order of 10 12 A/m 2 . Recent studies of spot current density have shown values of this order. (author) 22 refs., 4 figs., 1 tab

  10. TRANSIT TIMING VARIATIONS FOR INCLINED AND RETROGRADE EXOPLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Payne, Matthew J.; Ford, Eric B.; Veras, Dimitri

    2010-01-01

    We perform numerical calculations of the expected transit timing variations (TTVs) induced on a hot-Jupiter by an Earth-mass perturber. Motivated by the recent discoveries of retrograde transiting planets, we concentrate on an investigation of the effect of varying relative planetary inclinations, up to and including completely retrograde systems. We find that planets in low-order (e.g., 2:1) mean-motion resonances (MMRs) retain approximately constant TTV amplitudes for 0 deg. 170 deg. Systems in higher order MMRs (e.g., 5:1) increase in TTV amplitude as inclinations increase toward 45 deg., becoming approximately constant for 45 deg. 135 deg. Planets away from resonance slowly decrease in TTV amplitude as inclinations increase from 0 deg. to 180 deg., whereas planets adjacent to resonances can exhibit a huge range of variability in TTV amplitude as a function of both eccentricity and inclination. For highly retrograde systems (135 deg. < i ≤ 180 deg.), TTV signals will be undetectable across almost the entirety of parameter space, with the exceptions occurring when the perturber has high eccentricity or is very close to an MMR. This high inclination decrease in TTV amplitude (on and away from resonance) is important for the analysis of the known retrograde and multi-planet transiting systems, as inclination effects need to be considered if TTVs are to be used to exclude the presence of any putative planetary companions: absence of evidence is not evidence of absence.

  11. Treatment of lower extremity arterial occlusive through retrograde access

    International Nuclear Information System (INIS)

    Liu Xueqiang; Guo Pingfan; Zhang Jinchi; Cai Fanggang

    2012-01-01

    Objective: To explore the clinical significance of retrograde access for the interventional treatment of lower extremity arterial occlusive diseases when the occluded segment of lower extremity artery could not be reached through antegrade access. Methods: Twenty-seven cases (male 17, female 10; age range 32-89 years) were retrospectively investigated, including 18 with lower limb arteriosclerosis obliterans, 7 with diabetic foot and 2 with thromboangiitis obliterans. According to the Fontaine staging, 6 cases were classified as Fontaine Ⅱ, 11 were classified as Fontaine Ⅲ and 10 were classified as Fontaine Ⅳ. All cases underwent endovascular operation through antegrade access first with an attempt to cross the occlusive segment, but in vain. So retrograde access was tried via puncture of pedis dorsalis or posterior tibial artery or exposure of lateral branches of posterior tibial artery, peroneal artery or dorsal artery by open surgery,which followed by Percutaneous transluminal angiography and (or) stenting. Results: The operation through retrograde access was successful in all cases with obvious improvement of ischemic symptoms. Hematoma at the puncture site occurred in 3 patients, and paresthesia of toes occurred in 1 after dorsalis pedis arteriotomy. No severe perioperative complication occurred. The average ankle brachial index increased from 0.37 ± 0.11 preoperatively to 0.85 ± 0.12 postoperatively. Conclusions: Retrograde access could be used as an alternative strategy in lower extremity arterial occlusive diseases when the occluded segment could not reach through antegrade access. (authors)

  12. An investigation of condensation from steam-gas mixtures flowing downward inside a vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, S.Z.; Schrock, V.E.; Peterson, P.F. [Univ. of California, Berkeley, CA (United States)

    1995-09-01

    Previous experiments have been carried out by Vierow, Ogg, Kageyama and Siddique for condensation from steam/gas mixtures in vertical tubes. In each case the data scatter relative to the correlation was large and there was not close agreement among the three investigations. A new apparatus has been designed and built using the lessons learned from the earlier studies. Using the new apparatus, an extensive new data base has been obtained for pure steam, steam-air mixtures and steam-helium mixtures. Three different correlations, one implementing the degradation method initially proposed by Vierow and Schrock, a second diffusion layer theory initially proposed by Peterson, and third mass transfer conductance model are presented in this paper. The correlation using the simple degradation factor method has been shown, with some modification, to give satisfactory engineering accuracy when applied to the new data. However, this method is based on very simplified arguments that do not fully represent the complex physical phenomena involved. Better representation of the data has been found possible using modifications of the more complex and phenomenologically based method which treats the heat transfer conductance of the liquid film in series with the conductance on the vapor-gas side with the latter comprised of mass transfer and sensible heat transfer conductance acting in parallel. The mechanistic models, based on the modified diffusion layer theory or classical mass transfer theory for mass transfer conductance with transpiration successfully correlate the data for the heat transfer of vapor-gas side. Combined with the heat transfer of liquid film model proposed by Blangetti, the overall heat transfer coefficients predicted by the correlations from mechanistic models are in close agreement with experimental values.

  13. A reduced theoretical model for estimating condensation effects in combustion-heated hypersonic tunnel

    Science.gov (United States)

    Lin, L.; Luo, X.; Qin, F.; Yang, J.

    2018-03-01

    As one of the combustion products of hydrocarbon fuels in a combustion-heated wind tunnel, water vapor may condense during the rapid expansion process, which will lead to a complex two-phase flow inside the wind tunnel and even change the design flow conditions at the nozzle exit. The coupling of the phase transition and the compressible flow makes the estimation of the condensation effects in such wind tunnels very difficult and time-consuming. In this work, a reduced theoretical model is developed to approximately compute the nozzle-exit conditions of a flow including real-gas and homogeneous condensation effects. Specifically, the conservation equations of the axisymmetric flow are first approximated in the quasi-one-dimensional way. Then, the complex process is split into two steps, i.e., a real-gas nozzle flow but excluding condensation, resulting in supersaturated nozzle-exit conditions, and a discontinuous jump at the end of the nozzle from the supersaturated state to a saturated state. Compared with two-dimensional numerical simulations implemented with a detailed condensation model, the reduced model predicts the flow parameters with good accuracy except for some deviations caused by the two-dimensional effect. Therefore, this reduced theoretical model can provide a fast, simple but also accurate estimation of the condensation effect in combustion-heated hypersonic tunnels.

  14. A Robust, Gravity-Insensitive, High-Temperature Condenser for Water Recovery

    Science.gov (United States)

    Chen, Weibo; Conboy, Thomas; Ewert, Michael

    2016-01-01

    Regenerative life support systems are vital for NASA's future long-duration human space exploration missions. A Heat Melt Compactor (HMC) system is being developed by NASA to dry and compress trash generated during space missions. The resulting water vapor is recovered and separated from the process gas flow by a gravity-insensitive condenser. Creare is developing a high-temperature condenser for this application. The entire condenser is constructed from metals that have excellent resistance to chemical attack from contaminants and is suitable for high-temperature operation. The metal construction and design configuration also offer greatest flexibility for potential coating and regeneration processes to reduce biofilm growth and thus enhancing the reliability of the condenser. The proposed condenser builds on the gravity-insensitive phase separator technology Creare developed for aircraft and spacecraft applications. This paper will first discuss the design requirements for the condenser in an HMC system that will be demonstrated on the International Space Station (ISS). Then, it will present the overall design of the condenser and the preliminary thermal test results of a subscale condenser. Finally, this paper will discuss the predicted performance of the full-size condenser and the development plan to mature the technology and enhance its long-term reliability for a flight system.

  15. Molecular fossils in Cretaceous condensate from western India

    Science.gov (United States)

    Bhattacharya, Sharmila; Dutta, Suryendu; Dutta, Ratul

    2014-06-01

    The present study reports the biomarker distribution of condensate belonging to the early Cretaceous time frame using gas chromatography-mass spectrometry (GC-MS). The early Cretaceous palaeoenvironment was inscribed into these molecular fossils which reflected the source and conditions of deposition of the condensate. The saturate fraction of the condensate is characterized by normal alkanes ranging from n-C9 to n-C29 (CPI-1.13), cycloalkanes and C14 and C15 sesquiterpanes. The aromatic fraction comprises of naphthalene, phenanthrene, their methylated derivatives and cyclohexylbenzenes. Isohexylalkylnaphthalenes, a product of rearrangement process of terpenoids, is detected in the condensate. Several aromatic sesquiterpenoids and diterpenoids have been recorded. Dihydro- ar-curcumene, cadalene and ionene form the assemblage of sesquiterpenoids which are indicative of higher plant input. Aromatic diterpenoid fraction comprises of simonellite and retene. These compounds are also indicative of higher plants, particularly conifer source which had been a predominant flora during the Cretaceous time.

  16. Retrograde Jejuno-Jejunal Intussusception after Total Gastrectomy

    Directory of Open Access Journals (Sweden)

    Akira Yoneda

    2008-08-01

    Full Text Available An eighty-year-old female was transferred to the hospital after experiencing abdominal pain and nausea. She had had a history of total gastrectomy for gastric cancer 14 years previously. Abdominal X-ray revealed a localized expansion of the small bowel. Computed tomography revealed a mass with a lamellar structure in a concentric circle. With a tentative diagnosis of small bowel obstruction due to intussusception, she underwent emergency operation. Laparotomy revealed a retrograde jejuno-jejunal intussusception. Bowel resection was performed due to the severe ischemic damage. All reported intussusception cases after total gastrectomy displayed retrograde characteristics and could occur both during the early and late period after surgery. It is important to consider the possibility of intussusception for patients presenting with acute abdomen who have previously undergone gastric resection.

  17. Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments

    International Nuclear Information System (INIS)

    Cornell, E.A.; Wieman, C.E.

    2002-01-01

    Bose-Einstein condensation, or BEC, has a long and rich history dating from the early 1920s. In this article we will trace briefly over this history and some of the developments in physics that made possible our successful pursuit of BEC in a gas. We will then discuss what was involved in this quest. In this discussion we will go beyond the usual technical description to try and address certain questions that we now hear frequently, but are not covered in our past research papers. These are questions along the lines of: How did you get the idea and decide to pursue it? Did you know it was going to work? How long did it take you and why? We will review some our favorites from among the experiments we have carried out with BEC. There will then be a brief encore on why we are optimistic that BEC can be created with nearly any species of magnetically trappable atom. Throughout this article we will try to explain what makes BEC in a dilute gas so interesting, unique, and experimentally challenging

  18. Low Cost Polymer heat Exchangers for Condensing Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Thomas [Brookhaven National Lab. (BNL), Upton, NY (United States); Trojanowski, Rebecca [Brookhaven National Lab. (BNL), Upton, NY (United States); Wei, George [Brookhaven National Lab. (BNL), Upton, NY (United States); Worek, Michael [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-30

    Work in this project sought to develop a suitable design for a low cost, corrosion resistant heat exchanger as part of a high efficiency condensing boiler. Based upon the design parameters and cost analysis several geometries and material options were explored. The project also quantified and demonstrated the durability of the selected polymer/filler composite under expected operating conditions. The core material idea included a polymer matrix with fillers for thermal conductivity improvement. While the work focused on conventional heating oil, this concept could also be applicable to natural gas, low sulfur heating oil, and biodiesel- although these are considered to be less challenging environments. An extruded polymer composite heat exchanger was designed, built, and tested during this project, demonstrating technical feasibility of this corrosion-resistant material approach. In such flue gas-to-air heat exchangers, the controlling resistance to heat transfer is in the gas-side convective layer and not in the tube material. For this reason, the lower thermal conductivity polymer composite heat exchanger can achieve overall heat transfer performance comparable to a metal heat exchanger. However, with the polymer composite, the surface temperature on the gas side will be higher, leading to a lower water vapor condensation rate.

  19. Antifoam Degradation Products in Off Gas and Condensate of Sludge Batch 9 Simulant Nitric-Formic Flowsheet Testing for the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-14

    Ten chemical processing cell (CPC) experiments were performed using simulant to evaluate Sludge Batch 9 for sludge-only and coupled processing using the nitric-formic flowsheet in the Defense Waste Processing Facility (DWPF). Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on eight of the ten. The other two were SRAT cycles only. Samples of the condensate, sludge, and off gas were taken to monitor the chemistry of the CPC experiments. The Savannah River National Laboratory (SRNL) has previously shown antifoam decomposes to form flammable organic products, (hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), and propanal), that are present in the vapor phase and condensate of the CPC vessels. To minimize antifoam degradation product formation, a new antifoam addition strategy was implemented at SRNL and DWPF to add antifoam undiluted.

  20. Vortices in trapped Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Jackson, B.

    2000-09-01

    In this thesis we solve the Gross-Pitaevskii equation numerically in order to model the response of trapped Bose-Einstein condensed gases to perturbations by electromagnetic fields. First, we simulate output coupling of pulses from the condensate and compare our results to experiments. The excitation and separation of eigenmodes on flow through a constriction is also studied. We then move on to the main theme of this thesis: the important subject of quantised vortices in Bose condensates, and the relation between Bose-Einstein condensation and superfluidity. We propose methods of producing vortex pairs and rings by controlled motion of objects. Full three-dimensional simulations under realistic experimental conditions are performed in order to test the validity of these ideas. We link vortex formation to drag forces on the object, which in turn is connected with energy transfer to the condensate. We therefore argue that vortex formation by moving objects is intimately related to the onset of dissipation in superfluids. We discuss this idea in the context of a recent experiment, using simulations to provide evidence of vortex formation in the experimental scenario. Superfluidity is also manifest in the property of persistent currents, which is linked to vortex stability and dynamics. We simulate vortex line and ring motion, and find in both cases precessional motion and thermodynamic instability to dissipation. Strictly speaking, the Gross-Pitaevskii equation is valid only for temperatures far below the BEC transition. We end the thesis by describing a simple finite-temperature model to describe mean-field coupling between condensed and non-condensed components of the gas. We show that our hybrid Monte-Carlo/FFT technique can describe damping of the lowest energy excitations of the system. Extensions to this model and future research directions are discussed in the conclusion. (author)

  1. Focal retrograde amnesia: voxel-based morphometry findings in a case without MRI lesions.

    Directory of Open Access Journals (Sweden)

    Bernhard Sehm

    Full Text Available Focal retrograde amnesia (FRA is a rare neurocognitive disorder presenting with an isolated loss of retrograde memory. In the absence of detectable brain lesions, a differentiation of FRA from psychogenic causes is difficult. Here we report a case study of persisting FRA after an epileptic seizure. A thorough neuropsychological assessment confirmed severe retrograde memory deficits while anterograde memory abilities were completely normal. Neurological and psychiatric examination were unremarkable and high-resolution MRI showed no neuroradiologically apparent lesion. However, voxel-based morphometry (VBM-comparing the MRI to an education-, age-and sex-matched control group (n = 20 disclosed distinct gray matter decreases in left temporopolar cortex and a region between right posterior parahippocampal and lingual cortex. Although the results of VBM-based comparisons between a single case and a healthy control group are generally susceptible to differences unrelated to the specific symptoms of the case, we believe that our data suggest a causal role of the cortical areas detected since the retrograde memory deficit is the preeminent neuropsychological difference between patient and controls. This was paralleled by grey matter differences in central nodes of the retrograde memory network. We therefore suggest that these subtle alterations represent structural correlates of the focal retrograde amnesia in our patient. Beyond the implications for the diagnosis and etiology of FRA, our results advocate the use of VBM in conditions that do not show abnormalities in clinical radiological assessment, but show distinct neuropsychological deficits.

  2. Experimental and theoretical study of reflux condensation

    Energy Technology Data Exchange (ETDEWEB)

    Bakke, Knut

    1997-12-31

    This thesis studies the separation of gas mixtures in a reflux condenser. also called a dephlegmator. Reflux condensation is separation of a gas mixture, in reflux flow with condensing liquid, under continuous heat removal. A numerical model of a dephlegmator for binary mixtures was developed. The model may readily be extended to multi-component mixtures, as the solution method is based on a matrix solver. Separation of a binary mixture in a reflux condenser test rig is demonstrated. The test facility contains a single-tube test section that was designed and built as part of the project. Test mixtures of propane and n-butane were used, and a total of 15 experiments are reported. Limited degree of separation was achieved due to limited heat transfer area and narrow boiling point range of the test mixture. The numerical model reproduces the experimental data within reasonable accuracy. Deviation between calculated and measured properties is less than 6% of the measured temperature and less than 5% of the measured flow rate. The model is based on mechanistic models of physical processes and is not calibrated or tuned to fit the experimental data. The numerical model is applied to a number of separation processes. These case studies show that the required heat transfer area increases rapidly with increments in top product composition (light component). Flooding limits the amount of reflux liquid. The dephlegmator is suitable for separation of feed mixtures that are rich in light components. The gliding temperature in the dephlegmation process enables utilization of top product as refrigerant, with subsequent energy saving as a result. 61 refs., 50 figs., 34 tabs.

  3. Study of flue gas condensers with reference to corrosion risks, biofuel quality, techniques and choice of material; Kartlaeggning av roekgaskondenseringsanlaeggningar med avseende paa korrosionsrisker, biobraenslekvaliteter, teknik och materialval

    Energy Technology Data Exchange (ETDEWEB)

    Stenqvist, Per-Aake

    2012-02-15

    Corrosion in flue gas appliances installed in small and medium sized biomass fired boiler plants has become a problem in an increasing number of sites around Sweden. A trend seems to be that the problems are greater in those plants that use so called terminal chips than those that utilize more homogeneous fuels. In pace with the increasing number of biomass power plants in the country, the demand for cheaper fuel is increased. Through the increasing number of fuel terminals the market is provided even with biofuel mixes in the form of traditional wood chips mixed with bark, forest residue, sawdust, willow, returned wood, etc. Both users and suppliers of boiler and flue gas systems, and fuel suppliers have currently no clear rules or guidelines for relationships between different chemical properties of fuels, technologies, operating data and material. In this report has experience in the form of questionnaires completed by field visits, interviews of operational personnel and literature studies been compiled from a number of plants using different types of flue gas condensers for increased energy output from various types of bio fuels. The purpose of this assignment is to survey the flue gas condensation plant in biomass fired boiler plants for the presence of corrosion damage made in relation to the use of technologies and fuel qualities. A milestone is that the report will be able to be used to support the selection of materials and appropriate techniques for both new facilities and for the repair and improvement of existing ones. Another objective is to compile existing experience and assessment criteria which are reported in the literature. This report describes some typical construction techniques, whenever applicable harmful images and links to various substances present in fuels, ash and condensate

  4. Oils; gas

    Energy Technology Data Exchange (ETDEWEB)

    Day, D T

    1922-09-18

    Oils and gas are obtained from shale or oil-bearing sand by immersing the shale in and passing it through a bath of liquid oil, cracking the oil-soaked shale, and condensing the vapor and using the condensate to replenish the bath, preferably by passing the gases and vapors direct into the oil-bath container. Shale is fed continuously from a hopper to a bath of oil in an inclined chamber, is carried to the outlet by a conveyer, and through cracking tubes to an outlet pipe by conveyers. The gases and vapors escape by the pipe, a part condensing in the chamber and a run-back pipe and replenishing the bath, and the remainder passing through a condensing tower and condenser connected to reservoirs; the gas is further passed through a scrubber and a pipe to the burner of the retort. The oil condensed in the chamber overflows to the reservoir through a pipe provided with an open pipe to prevent siphoning. The conveyers and a valve on the pipe are operated by gearing. The operation may be conducted at reduced, normal, or increased pressure, e.g., 70 lbs. The temperature of the retort should be about 900 to 1400/sup 0/F, that of the inside of the tubes about 550 to 700/sup 0/F, and that of the chamber about 300/sup 0/F. The chamber and pipe may be insulated or artificially cooled.

  5. Galaxy formation-a condensation process just after recombination

    International Nuclear Information System (INIS)

    Lessner, G.

    1998-01-01

    A scenario of galaxy formation is put forward which is a process of sudden condensation just after recombination. It is essentially based on the fact that the cosmic-matter gas after recombination is a general relativistic Boltzmann gas which runs within a few 10 6 years into a tate very close to collision-dominated equilibrium. The mass spectrum of axially symmetric condensation 'drops' extends from the lower limit M ≅ 10 5 M to the upper limit M ≅ 10 12 M. The lower-limit masses are spheres whereas the upper-limit masses are thin pancakes. These pancakes contract within a time of about 2.5 · 10 9 y to rotating spiral galaxies with ordinary proportions. In this final state they have a redshift z ≅ 3. At an earlier time during their contraction they are highly active and are observed with a redshift z ≅ 5

  6. Repulsive Casimir force in Bose–Einstein Condensate

    Science.gov (United States)

    Mehedi Faruk, Mir; Biswas, Shovon

    2018-04-01

    We study the Casimir effect for a three dimensional system of ideal free massive Bose gas in a slab geometry with Zaremba and anti-periodic boundary conditions. It is found that for these type of boundary conditions the resulting Casimir force is repulsive in nature, in contrast with usual periodic, Dirichlet or Neumann boundary condition where the Casimir force is attractive (Martin and Zagrebnov 2006 Europhys. Lett. 73 15). Casimir forces in these boundary conditions also maintain a power law decay function below condensation temperature and exponential decay function above the condensation temperature albeit with a positive sign, identifying the repulsive nature of the force.

  7. Steam condensation heat transfer in the presence of noncondensables in a vertical tube of passive containment cooling system

    International Nuclear Information System (INIS)

    Park, Hyun Sik

    1999-02-01

    A database for laminar condensation heat transfer is constructed from the previous experimental data at various condensation conditions. Based on the database, the condensation models in the standard RELAP5/MOD3.2 code are assessed and improved. Two wall film condensation models, the default and the alternative, are used in RELAP5/MOD3.2. The default model of the laminar film condensation in RELAP5/MOD3.2 does not give any reliable predictions, and its alternative model always predicts higher values than the experimental data. Therefore, it is needed to develop a new correlation based on the experimental data of various operating ranges. A set of condensation experiments in the presence of noncondensable gas in a vertical tube of the passive containment cooling system of the CP-1300 are performed. The experimental results show that the heat transfer coefficients (HTCs) increase as the inlet air mass fraction decreases and the inlet saturated steam temperature decreases. However, the dependence of the inlet mixture Reynolds number on the HTC is small for the operating range. An empirical correlation is developed, and its predictions are compared with experimental data to show good agreement with the standard deviation of 22.3%. The experimental HTCs are also compared with the predictions from the default and the alternative models used in RELAP5/MOD3.2. The experimental apparatus is modeled with two wall-film condensation models in RELAP5/MOD3.2 and the empirical correlation, and simulations are performed for several subtests to be compared with the experimental results. Overall, the simulation results show that the default model of RELAP5/MOD3.2 underpredicts the HTCs, and the alternative model overpredicts them, while the empirical correlation predicts them well throughout the condensing tube. Both the nodalization study and the sensitivity study are also performed. The nodalization study shows that the variation of the node number does not change both modeling

  8. Finite temperature effects in Bose-Einstein condensed dark matter halos

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Madarassy, Enikö J.M.

    2012-01-01

    Once the critical temperature of a cosmological boson gas is less than the critical temperature, a Bose-Einstein Condensation process can always take place during the cosmic history of the universe. Zero temperature condensed dark matter can be described as a non-relativistic, Newtonian gravitational condensate, whose density and pressure are related by a barotropic equation of state, with barotropic index equal to one. In the present paper we analyze the effects of the finite dark matter temperature on the properties of the dark matter halos. We formulate the basic equations describing the finite temperature condensate, representing a generalized Gross-Pitaevskii equation that takes into account the presence of the thermal cloud. The static condensate and thermal cloud in thermodynamic equilibrium is analyzed in detail, by using the Hartree-Fock-Bogoliubov and Thomas-Fermi approximations. The condensed dark matter and thermal cloud density and mass profiles at finite temperatures are explicitly obtained. Our results show that when the temperature of the condensate and of the thermal cloud are much smaller than the critical Bose-Einstein transition temperature, the zero temperature density and mass profiles give an excellent description of the dark matter halos. However, finite temperature effects may play an important role in the early stages of the cosmological evolution of the dark matter condensates

  9. Heat Transfer Enhancement During Water and Hydrocarbon Condensation on Lubricant Infused Surfaces.

    Science.gov (United States)

    Preston, Daniel J; Lu, Zhengmao; Song, Youngsup; Zhao, Yajing; Wilke, Kyle L; Antao, Dion S; Louis, Marcel; Wang, Evelyn N

    2018-01-11

    Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Dropwise condensation, where discrete droplets form on the condenser surface, offers a potential improvement in heat transfer of up to an order of magnitude compared to filmwise condensation, where a liquid film covers the surface. Low surface tension fluid condensates such as hydrocarbons pose a unique challenge since typical hydrophobic condenser coatings used to promote dropwise condensation of water often do not repel fluids with lower surface tensions. Recent work has shown that lubricant infused surfaces (LIS) can promote droplet formation of hydrocarbons. In this work, we confirm the effectiveness of LIS in promoting dropwise condensation by providing experimental measurements of heat transfer performance during hydrocarbon condensation on a LIS, which enhances heat transfer by ≈450% compared to an uncoated surface. We also explored improvement through removal of noncondensable gases and highlighted a failure mechanism whereby shedding droplets depleted the lubricant over time. Enhanced condensation heat transfer for low surface tension fluids on LIS presents the opportunity for significant energy savings in natural gas processing as well as improvements in thermal management, heating and cooling, and power generation.

  10. Effect of non-condensation gas on pressure oscillation of submerged steam jet condensation

    International Nuclear Information System (INIS)

    Zhao, Quanbin; Cong, Yuelei; Wang, Yingchun; Chen, Weixiong; Chong, Daotong; Yan, Junjie

    2016-01-01

    Highlights: • Oscillation intensity of steam–air jet increases with rise of water temperature. • Oscillation intensity reduces obviously when air is mixed. • Both first and second dominant frequencies decrease with rise of air mass fraction. • Air has little effect on power of 1st & 2nd frequency bands under low temperature. • The maximum oscillation power occurs under case of A = 1% and T ⩾ 50 °C. - Abstract: The effect of air with low mass fraction on the oscillation intensity and oscillation frequency of a submerged steam jet condensation is investigated under stable condensation region. With air mixing in steam, an obvious dynamic pressure peak appears along the jet direction. The intensity peak increases monotonously with the rise of steam mass flux and water temperature. Peak position moves downstream with the rise of air mass fraction. Moreover, when compared with that of pure steam jet, the oscillation intensity clearly decreases as air is mixed. However, when water temperature is lower than approximately 45 °C, oscillation intensity increases slightly with the rise of air mass fraction, and when water temperature is higher than 55 °C, the oscillation intensity decreases greatly with the rise of air mass fraction. Both the first and second dominant frequencies decrease with rise of air mass fraction. Finally, effect of air mass fractions on the oscillation power of the first and second dominant frequency bands shows similar trends. Under low water temperature, the mixed air has little effect on the oscillation power of both first and second frequency bands. However, when water temperature is high, the oscillation power of both first and second frequency bands appears an obvious peak when air mass fraction is about 1%. With further rise of air mass fraction, the oscillation power decreases gradually.

  11. Bose-Einstein condensation of excitons in Cu2O

    International Nuclear Information System (INIS)

    Snoke, D.W.

    1990-01-01

    Free excitons provide the only experimental system other than helium in which the behavior of particles with mass is known to follow Bose-Einstein statistics. Experimental observations are presented of the kinetic energy distribution of excitons in the direct-gap semiconductor Cu 2 O, both the triplet orthoexciton state and the singlet paraexciton state. The density and temperature of the exciton gas closely follow the phase boundary for Bose-Einstein condensation. At the highest densities, the lower-lying paraexcitons take on an anomalous energy distribution with a sharp, high-energy edge. This odd distribution of particle energies may be associated with Bose-Einstein condensation into a state with nonzero momentum. Indeed, the excitons leave the region of their creation at supersonic velocities. In addition to the experimental observations, theoretical models are presented for several aspects of this nonequilibrium system. The equilibration of a nearly-ideal boson gas is modeled, finding that a significant time is required for the approach to condensation. The temperature and density of the excitons in steady state are modeled based on known classical kinetic effects in semiconductors, and the effects of Bose-Einstein statistics on these processes estimated

  12. Plant-wide control of coupled distillation columns with partial condensers

    International Nuclear Information System (INIS)

    Ebrahimzadeh, Edris; Baxter, Larry L.

    2016-01-01

    Highlights: • Extractive distillation system for CO_2–ethane azeotrope separation. • Control of distillation column systems that have interconnected partial condenser and total condenser columns. • Single-end temperature control of distillation columns. • Aspen Dynamics tools applied for rigorous steady-state and dynamic simulations. - Abstract: Conventional distillation control processes use vapor distillate flowrate to control column pressure and condenser heat removal to control the reflux drum level. These intuitive control systems work well for isolated columns or columns with total condensers. However, these controls are not effective when columns with partial condensers occur in series. The pressure and reflux drum level interact in such systems in ways that defeat conventional control systems, rendering them unable to maintain product purities in the presence of large feed flowrate and composition disturbances. This investigation documents a plant-wide control structure that can address this issue by controlling pressure through reflux heat removal rate and reflux drum level by reflux flow rate. This control system demonstrates its capability to handle large disturbances in throughput and feed composition through a series of Aspen simulations. This alternative system is no more complicated than the conventional system and should work on distillation columns of nearly all designs, not just the coupled partial condenser designs for which it is essential. Common natural gas processing provides a specific example of this alternative control system. Natural gas commonly includes high concentrations of CO_2 that must be removed prior to pipeline or LNG distribution. The existence of a minimum-boiling temperature azeotrope between ethane, virtually always present in natural gas, and carbon dioxide complicates the separation of CO_2 from the hydrocarbons. This separation commonly employs extractive distillation with high-molecular-weight hydrocarbons. Our

  13. Drilling of gas and condensed gas wells

    Energy Technology Data Exchange (ETDEWEB)

    Geranin, M P; Chao, P L; Lomonosov, V V

    1981-01-01

    Cementing of boreholes drilled into underground gas fields and the requirements imposed on the grouting mortar are reviewed. Results are set forth from a study of the insulation capacity of cementing mortar used to increase the quality of reinforcements of boreholes at PKhG. Data are presented on the properties of different grouting mortars for boreholes at PKhG, including those that may be used at low temperatures. Information is also provided on the use of light mortar containing a CaCl/sub 2/ additive, grouting mortar with furfuryl alcohol added, and expanding grouting mortars.

  14. Retrograde cholangiopancreatography in the diagnosis of biliary and pancreatic duct diseases

    International Nuclear Information System (INIS)

    Vasil'ev, Yu.D.; Sedletskaya, T.N.

    1980-01-01

    Results of retrograde cannulation with the aid of flexible fibroduodenoscopes with subsequent introduction of a contrast substance into biliary and pancreatic ducts are presented. The investigation is carried out on 120 patients with different diseases of hepatopancreatoduodenal zone. The standard technique of X-ray examination has been applied permitting to obtain the most exhaustive information. Using retrograde cholangiopancreatography revealed have been choledocholithiasis, deformation of biliary ducts after surgical intervention, pancreatic cyst, tumor of the main pancreatic duct etc. Results of investigation of biliary and pancreatic ducts using retrograde cannulation are reaffirmed with the data of operations on biliary tract in 72 patients. Intraoperational cholangiography has been carried out on 36 of them during operation. An attempt to cannulate big duodenal papilla in 12 patients proved to be ineffective. No complications have been observed during examination

  15. A new retrograde transillumination technique for videolaryngoscopic tracheal intubation

    DEFF Research Database (Denmark)

    Biro, P; Fried, E; Schlaepfer, M

    2018-01-01

    This single-centre, prospective trial was designed to assess the efficacy of a new retrograde transillumination device called the 'Infrared Red Intubation System' (IRRIS) to aid videolaryngoscopic tracheal intubation. We included 40 adult patients, who were undergoing elective urological surgery......-10])), credibility (10 (8-10 [5-10])) and ease of use (10 (9-10 [8-10])). Tracheal intubation with the system lasted 26 (16-32 [6-89]) s. No alternative technique of securing the airway was necessary. The lowest SpO2 during intubation was 98 (97-99 [91-100])%. We conclude that this method of retrograde...

  16. Density functional study of condensation in capped capillaries.

    Science.gov (United States)

    Yatsyshin, P; Savva, N; Kalliadasis, S

    2015-07-15

    We study liquid adsorption in narrow rectangular capped capillaries formed by capping two parallel planar walls (a slit pore) with a third wall orthogonal to the two planar walls. The most important transition in confined fluids is arguably condensation, where the pore becomes filled with the liquid phase which is metastable in the bulk. Depending on the temperature T, the condensation in capped capillaries can be first-order (at T≤Tcw) or continuous (at T>Tcw), where Tcw is the capillary wetting temperature. At T>Tcw, the capping wall can adsorb mesoscopic amounts of metastable under-condensed liquid. The onset of condensation is then manifested by the continuous unbinding of the interface between the liquid adsorbed on the capping wall and the gas filling the rest of the capillary volume. In wide capped capillaries there may be a remnant of wedge filling transition, which is manifested by the adsorption of liquid drops in the corners. Our classical statistical mechanical treatment predicts a possibility of three-phase coexistence between gas, corner drops and liquid slabs adsorbed on the capping wall. In sufficiently wide capillaries we find that thick prewetting films of finite length may be nucleated at the capping wall below the boundary of the prewetting transition. Prewetting then proceeds in a continuous manner manifested by the unbinding interface between the thick and thin films adsorbed on the side walls. Our analysis is based on a detailed numerical investigation of the density functional theory for the fluid equilibria for a number of illustrative case studies.

  17. Proton mixing in -condensed phase of neutron star matter

    Energy Technology Data Exchange (ETDEWEB)

    Takatsuka, Tatsuyuki

    1984-08-01

    The mixing of protons in neutron star matter under the occurrence of condensation is studied in the framework of the ALS (Alternating Layer Spin) model and with the effective interaction approach. It is found that protons are likely to mix under the situation and cause a remarkable energy gain from neutron matter as the density increases. The extent of proton mixing becomes larger by about a factor (1.5-2.5) according to the density rho asymptotically equals (2-5)rho0, rho0 being the nuclear density, as compared with that for the case without pion condensation. The reason can be attributed to the two-dimensional nature of the Fermi gas state characteristic of the nucleon system under condensation.

  18. Analysis study of the condensation heat transfer coefficient in the presence of noncondensable on PCCS vertical condenser tube using MARS-KS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Dong jae; Jang, Yeong jun; Lee, Yeon-Gun [Jeju National University, Jeju (Korea, Republic of); Kim, Sin [Chung-Ang University, Seoul (Korea, Republic of)

    2015-10-15

    The Passive Containment Cooling System (PCCS) to be introduced in advanced LWRs removes released energy to an external heat sink by a naturally driven flow. Containment through the condensation heat transfer phenomenon in the event of the loss of coolant accident (LOCA) or main steam line break (MSLB). As the released steam pressurizes the containment, the PCCS will activate to transport the decay heat In this study, a numerical analysis of the condensation heat transfer coefficients on the PCCS condenser tube is conducted using the MARS-KS code. The condensation heat transfer coefficients are obtained from JNU condensation tests performed on a 1000 long and 40 mm O.D. tube. The analysis condition covers 2 and 4 bar for the air mass fraction ranging from 0.1 to 0.8. The JNU single vertical condensation experimental results, Uchida's and Dehbi's correlation compared with the MARS-KS code's results at 2 and 4 bar. Experimental results and MARS-KS predicted heat transfer coefficient is different from the thermal resistances and Wall subcooling. An average relative error is 18.8% and 15% at 2 and 4 bar, respectively. Uchida's correlation is considered the noncondensable gas mass fraction only. Therefore, that is lower than MARS-KS results at 4 bar. Dehbi's correlation affected by ratio of the height-to-diameter, so its results are higher condensation heat transfer coefficient than MARS-KS predicted results.

  19. Brachial Artery Flow-mediated Dilation Following Exercise with Augmented Oscillatory and Retrograde Shear Rate

    Directory of Open Access Journals (Sweden)

    Johnson Blair D

    2012-08-01

    Full Text Available Abstract Background Acute doses of elevated retrograde shear rate (SR appear to be detrimental to endothelial function in resting humans. However, retrograde shear increases during moderate intensity exercise which also enhances post-exercise endothelial function. Since SR patterns differ with the modality of exercise, it is important to determine if augmented retrograde SR during exercise influences post-exercise endothelial function. This study tested the hypothesis that (1 increased doses of retrograde SR in the brachial artery during lower body supine cycle ergometer exercise would attenuate post-exercise flow-mediated dilation (FMD in a dose-dependent manner, and (2 antioxidant vitamin C supplementation would prevent the attenuated post-exercise FMD response. Methods Twelve men participated in four randomized exercise sessions (90 W for 20 minutes on separate days. During three of the sessions, one arm was subjected to increased oscillatory and retrograde SR using three different forearm cuff pressures (20, 40, 60 mmHg (contralateral arm served as the control and subjects ingested placebo capsules prior to exercise. A fourth session with 60 mmHg cuff pressure was performed with 1 g of vitamin C ingested prior to the session. Results Post-exercise FMD following the placebo conditions were lower in the cuffed arm versus the control arm (arm main effect: P P > 0.05. Following vitamin C treatment, post-exercise FMD in the cuffed and control arm increased from baseline (P P > 0.05. Conclusions These results indicate that augmented oscillatory and retrograde SR in non-working limbs during lower body exercise attenuates post-exercise FMD without an evident dose–response in the range of cuff pressures evaluated. Vitamin C supplementation prevented the attenuation of FMD following exercise with augmented oscillatory and retrograde SR suggesting that oxidative stress contributes to the adverse effects of oscillatory and

  20. UV and condensation technology for applications in the UOG for removal of air contaminants

    Energy Technology Data Exchange (ETDEWEB)

    De Visscher, A.; Langford, C.H. [Calgary Univ., AB (Canada)

    2008-07-01

    Canadian emissions of volatile organic compounds (VOC) are significant. In 2006, the upstream oil and gas (UOG) industry in Canada emitted over 500,000 tonnes of volatile organic compounds per year. 2002 benzene emissions from glycol dehydration units in Canada were estimated at 1,988 tonnes. These emissions are from a large number of sources typically emitting a few tonnes per year. Although condensation systems can reduce emissions, they leave residual emissions. New technologies to reduce emissions would have to be fairly inexpensive and simple given the large number of sources. This presentation addressed two research questions, notably how to predict condensation unit efficiency; and the feasibility of photolysis in UOG waste gas treatment, including glycol dehydration emissions. The presentation discussed the objectives of the study, which were to develop capability to predict efficiencies of condensation units; to develop proof-of-concept of effective ultraviolet technology for treating benzene and other VOCs from upstream oil and gas; and to test the technique for hydrogen sulphide. The presentation discussed the prediction of benzene condensation including the problem, hypothesis, and proposed approach. An introduction to photolysis was also provided. Some chemical reactions of benzene photolysis were demonstrated. Several illustrations were used to show a benzene photolysis reactor; a photocatalytic alternative; and a radiation field simulation model. It was concluded that a predictive model for efficiency of condensation for benzene emission reduction from glycol dehydration units will be developed accounting for non-steady behaviour. 4 figs.

  1. Middle East gas: utilization, development and policies

    Energy Technology Data Exchange (ETDEWEB)

    Mabro, R [Oxford Inst. for Energy Studies (United Kingdom)

    1997-06-01

    The relationships between gas and liquid hydrocarbon fuels are interesting.Gas can be and being used to boost oil production and recovery factors in oil fields. This is proper use of gas. Gas displaces oil as a fuel in energy markets but yields a low net back. If all gas and oil producers formed a single cartel they will produce oil first and delay gas. But they are not. As a result the drive for gas harms oil and there is therefore an opportunity cost which gas producers who, in many instances, are also oil exporters, should consider. The economics of gas often depend on the condensates. In some instance gas is the economics by-product of condensates and not the other way round. Thus more gas means also more oil supplies in international markets.

  2. Middle East gas: utilization, development and policies

    International Nuclear Information System (INIS)

    Mabro, R.

    1997-01-01

    The relationships between gas and liquid hydrocarbon fuels are interesting.Gas can be and being used to boost oil production and recovery factors in oil fields. This is proper use of gas. Gas displaces oil as a fuel in energy markets but yields a low net back. If all gas and oil producers formed a single cartel they will produce oil first and delay gas. But they are not. As a result the drive for gas harms oil and there is therefore an opportunity cost which gas producers who, in many instances, are also oil exporters, should consider. The economics of gas often depend on the condensates. In some instance gas is the economics by-product of condensates and not the other way round. Thus more gas means also more oil supplies in international markets

  3. Antegrade Ureteral Stenting is a Good Alternative for the Retrograde Approach.

    Science.gov (United States)

    van der Meer, Rutger W; Weltings, Saskia; van Erkel, Arian R; Roshani, Hossain; Elzevier, Henk W; van Dijk, Lukas C; van Overhagen, Hans

    2017-07-01

    Double J (JJ) stents for treating obstructive ureteral pathology are generally inserted through a retrograde route with cystoscopic guidance. Antegrade percutaneous insertion using fluoroscopy can be performed alternatively but is less known. Indications, success rate and complications of antegrade ureteral stenting were evaluated. Data of consecutive patients in which antegrade ureteral stenting was performed were retrospectively analysed using the radiology information system and patient records. Patient characteristics, details of the antegrade JJ stent insertion procedure and registered complications were collected. Furthermore, it was investigated if prior to the antegrade procedure a retrograde attempt for JJ stent insertion was performed. Total 130 attempts for antegrade JJ stent insertion were performed in 100 patients. A percutaneous nephrostomy catheter had already been placed in the majority of kidneys (n = 109) for initial treatment of hydronephrosis. Most prevelant indication for a JJ stent was obstructive ureteral pathology due to malignancy (n = 63). A JJ stent was successfully inserted in 125 of 130 procedures. In 21 cases, previous retrograde ureteral stenting had failed but, subsequent antegrade ureteral stenting was successful. There were 8 procedure related complications; 6 infections, 1 false tract and 1 malposition. Antegrade percutaneous insertion of a JJ stent is a good alternative for retrograde insertion.

  4. Radiation therapy with concurrent retrograde superselective intra-arterial chemotherapy for gingival carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Mukai, Y.; Hata, M.; Koike, I.; Inoue, T. [Yokohama City University Graduate School of Medicine, Department of Radiology, Kanazawa-ku, Yokohama, Kanagawa (Japan); Mitsudo, K.; Koizumi, T.; Oguri, S.; Kioi, M.; Tohnai, I. [Yokohama City University Graduate School of Medicine, Department of Oral and Maxillofacial Surgery, Yokohama, Kanagawa (Japan); Omura, M. [Shonankamakura General Hospital, Department of Radiation Oncology, Kamakura, Kanagawa (Japan)

    2014-02-15

    The aim of this study was to review the efficacy and toxicity of radiation therapy with concurrent retrograde superselective intra-arterial chemotherapy in the treatment of gingival carcinoma. In all, 34 patients (21 men and 13 women) with squamous cell carcinoma of the gingiva underwent radiation therapy with concurrent retrograde superselective intra-arterial chemotherapy. Treatment consisted of daily external irradiation and concurrent retrograde superselective intra-arterial infusion with cisplatin and docetaxel. A median total dose of 60 Gy in 30 fractions was delivered to tumors. Of the 34 patients, 29 (85 %) achieved a complete response (CR) and 5 had residual tumors. Of the 29 patients with a CR, 2 had local recurrences and 1 had distant metastasis 1-15 months after treatment. Twenty-six of the 36 patients had survived at a median follow-up time of 36 months (range 12-79 months); 4 died of cancer and 4 died of non-cancer-related causes. At both 3 and 5 years after treatment, the overall survival rates were 79 % and the cause-specific survival rates were 85 %. Osteoradionecrosis of the mandibular bone only developed in 1 patient after treatment. Radiation therapy with concurrent retrograde superselective intra-arterial chemotherapy was effective and safe in the treatment of gingival carcinoma. This treatment may be a promising curative and organ-preserving treatment option for gingival carcinoma. (orig.) [German] Das Ziel dieser Studie war die Ueberpruefung der Effizienz und Toxizitaet einer Strahlenbehandlung des Gingivakarzinoms mit gleichzeitiger retrograder, superselektiver intraarterieller Chemotherapie. Insgesamt 34 Patienten (21 Maenner und 13 Frauen) mit Zahnfleischplattenzellkarzinom erhielten eine Strahlenbehandlung mit gleichzeitiger retrograder, superselektiver intraarterieller Chemotherapie. Die Behandlung umfasste eine taegliche externe Bestrahlung mit gleichzeitiger retrograder, superselektiver intraarterieller Infusion von Cisplatin und

  5. Quark-antiquark condensates in the hadronic phase

    International Nuclear Information System (INIS)

    Tawfik, A.; Toublan, D.

    2005-01-01

    We use a hadron resonance gas model to calculate the quark-antiquark condensates for light (up and down) and strange quark flavors at finite temperatures and chemical potentials. At zero chemical potentials, we find that at the temperature where the light quark-antiquark condensates entirely vanish the strange quark-antiquark condensate still keeps a relatively large fraction of its value in the vacuum. This is in agreement with results obtained in lattice simulations and in chiral perturbation theory at finite temperature and zero chemical potentials. Furthermore, we find that this effect slowly disappears at larger baryon chemical potential. These results might have significant consequences for our understanding of QCD at finite temperatures and chemical potentials. Concretely, our results imply that there might be a domain of temperatures where chiral symmetry is restored for light quarks, but still broken for strange quark that persists at small chemical potentials. This might have practical consequences for heavy ion collision experiments

  6. Electrical insulation design and evaluation of 60 kV prototype condenser cone bushing for the superconducting equipment

    International Nuclear Information System (INIS)

    Shin, Woo-Ju; Lee, Jong-Geon; Hwang, Jae-Sang; Seong, Jae-Kyu; Lee, Bang-Wook

    2013-01-01

    Highlights: •The optimum design of condenser cone cryogenic bushing was investigated. •Multi-layer aluminum foils in the bushing insulation body was designed and analyzed. •The optimum electric field distribution was selected by simulation. •The 60 kV FRP condenser cone cryogenic bushing was fabricated and tested. •BIL test corresponding to IEC 60137 was successfully performed for the bushing. -- Abstract: A cryogenic bushing is an essential component to be developed for commercial applications of high voltage (HV) superconducting devices. Due to the steep temperature gradient of the ambient of cryogenic bushing, general gas bushing adopting SF6 gas as an insulating media could not be directly used due to the freezing of SF6 gas. Therefore, condenser type bushing with special material considering cryogenic environment would be better choice for superconducting equipment. Considering these circumstance, we focused on the design of condenser bushing made of fiber reinforced plastic (FRP). In case of the design of the condenser bushing, it is very important to reduce the electric field intensification on the mounted flange part of the cryostat, which is the most vulnerable part of bushings. In this paper, design factors of cryogenic bushing were analyzed, and finally 60 kV condenser bushing was fabricated and tested. In order to achieve optimal electric field configuration, the configuration of condenser cone was determined using 2D electric field simulation results. Based on the experimental and the analytical works, 60 kV FRP condenser bushing was fabricated. Finally, the fabricated condenser bushing has been tested by applying lightning impulse and AC overvoltage test. From the test results, it was possible to get satisfactory results which confirm the design of cryogenic bushing in cryogenic environment

  7. Electrical insulation design and evaluation of 60 kV prototype condenser cone bushing for the superconducting equipment

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Woo-Ju, E-mail: shinwooju@hanyang.ac.kr; Lee, Jong-Geon; Hwang, Jae-Sang; Seong, Jae-Kyu; Lee, Bang-Wook, E-mail: bangwook@hanyang.ac.kr

    2013-11-15

    Highlights: •The optimum design of condenser cone cryogenic bushing was investigated. •Multi-layer aluminum foils in the bushing insulation body was designed and analyzed. •The optimum electric field distribution was selected by simulation. •The 60 kV FRP condenser cone cryogenic bushing was fabricated and tested. •BIL test corresponding to IEC 60137 was successfully performed for the bushing. -- Abstract: A cryogenic bushing is an essential component to be developed for commercial applications of high voltage (HV) superconducting devices. Due to the steep temperature gradient of the ambient of cryogenic bushing, general gas bushing adopting SF6 gas as an insulating media could not be directly used due to the freezing of SF6 gas. Therefore, condenser type bushing with special material considering cryogenic environment would be better choice for superconducting equipment. Considering these circumstance, we focused on the design of condenser bushing made of fiber reinforced plastic (FRP). In case of the design of the condenser bushing, it is very important to reduce the electric field intensification on the mounted flange part of the cryostat, which is the most vulnerable part of bushings. In this paper, design factors of cryogenic bushing were analyzed, and finally 60 kV condenser bushing was fabricated and tested. In order to achieve optimal electric field configuration, the configuration of condenser cone was determined using 2D electric field simulation results. Based on the experimental and the analytical works, 60 kV FRP condenser bushing was fabricated. Finally, the fabricated condenser bushing has been tested by applying lightning impulse and AC overvoltage test. From the test results, it was possible to get satisfactory results which confirm the design of cryogenic bushing in cryogenic environment.

  8. Retrograde Signals: Integrators of Interorganellar Communication and Orchestrators of Plant Development.

    Science.gov (United States)

    de Souza, Amancio; Wang, Jin-Zheng; Dehesh, Katayoon

    2017-04-28

    Interorganellar cooperation maintained via exquisitely controlled retrograde-signaling pathways is an evolutionary necessity for maintenance of cellular homeostasis. This signaling feature has therefore attracted much research attention aimed at improving understanding of the nature of these communication signals, how the signals are sensed, and ultimately the mechanism by which they integrate targeted processes that collectively culminate in organellar cooperativity. The answers to these questions will provide insight into how retrograde-signal-mediated regulatory mechanisms are recruited and which biological processes are targeted, and will advance our understanding of how organisms balance metabolic investments in growth against adaptation to environmental stress. This review summarizes the present understanding of the nature and the functional complexity of retrograde signals as integrators of interorganellar communication and orchestrators of plant development, and offers a perspective on the future of this critical and dynamic area of research.

  9. Experimental investigation on improving the removal effect of WFGD system on fine particles by heterogeneous condensation

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Jingjing; Yang, Linjun; Yan, Jinpei; Xiong, Guilong; Shen, Xianglin [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    Heterogeneous condensation of water vapor as a preconditioning technique for the removal of fine particles from flue gas was investigated experimentally in a wet flue gas desulfurization (WFGD) system. A supersaturated vapor phase, necessary for condensational growth of fine particles, was achieved in the SO{sub 2} absorption zone and at the top of the wet FGD scrubber by adding steam in the gas inlet and above the scrubbing liquid inlet of the scrubber, respectively. The condensational grown droplets were then removed by the scrubbing liquid and a high-efficiency demister. The results show that the effectiveness of the WFGD system for removal of fine particles is related to the SO{sub 2} absorbent and the types of scrubber employed. Despite a little better effectiveness for the removal of fine particles in the rotating-stream-tray scrubber at the same liquid-to-gas ratio, The similar trends are obtained between the spray scrubber and rotating-stream-tray scrubber. Due to the formation of aerosol particles in the limestone and ammonia-based FGD processes, the fine particle removal efficiencies are lower than those for Na{sub 2}CO{sub 3} and water. The performance of the WFGD system for removal of fine particles can be significantly improved for both steam addition cases, for which the removal efficiency increases with increasing amount of added steam. A high liquid to gas ratio is beneficial for efficient removal of fine particles by heterogeneous condensation of water vapor.

  10. Condensation of exciton polaritons

    International Nuclear Information System (INIS)

    Kasprzak, J.

    2006-10-01

    Because of their unique property of bringing pure quantum effects into the real world scale, phase transitions towards condensed phases - like Bose-Einstein condensation (BEC), superfluidity, and superconductivity - have always fascinated scientists. The BEC, appearing upon cooling a gas of bosons below a critical temperature, has been given a striking demonstration in dilute atomic gases of rubidium atoms at temperatures below 200 nK. By confining photons in a semiconductor micro-cavity, and strongly coupling them to electronic excitations, one may create polaritons. These bosonic quasi-particles are 10 9 times lighter than rubidium atoms, thus theoretically allowing a BEC at standard cryogenic temperatures. Here we detail a comprehensive set of experiments giving compelling evidence for a BEC of polaritons. Above a critical density, we observe massive occupation of the ground state, developing from a thermalized and saturated distribution of the polariton population at (16-20) K. We demonstrate as well the existence of a critical temperature for this transition. The spontaneous onset of a coherent state is manifested by the increase of temporal coherence, the build-up of long-range spatial coherence and the reduction of the thermal noise observed in second order coherence experiments. The marked linear polarization of the emission from the condensate is also measured. All of these findings indicate the spontaneous onset of a macroscopic quantum phase. (author)

  11. Real-time visualization and quantification of retrograde cardioplegia delivery using near infrared fluorescent imaging.

    Science.gov (United States)

    Rangaraj, Aravind T; Ghanta, Ravi K; Umakanthan, Ramanan; Soltesz, Edward G; Laurence, Rita G; Fox, John; Cohn, Lawrence H; Bolman, R M; Frangioni, John V; Chen, Frederick Y

    2008-01-01

    Homogeneous delivery of cardioplegia is essential for myocardial protection during cardiac surgery. Presently, there exist no established methods to quantitatively assess cardioplegia distribution intraoperatively and determine when retrograde cardioplegia is required. In this study, we evaluate the feasibility of near infrared (NIR) imaging for real-time visualization of cardioplegia distribution in a porcine model. A portable, intraoperative, real-time NIR imaging system was utilized. NIR fluorescent cardioplegia solution was developed by incorporating indocyanine green (ICG) into crystalloid cardioplegia solution. Real-time NIR imaging was performed while the fluorescent cardioplegia solution was infused via the retrograde route in five ex vivo normal porcine hearts and in five ex vivo porcine hearts status post left anterior descending (LAD) coronary artery ligation. Horizontal cross-sections of the hearts were obtained at proximal, middle, and distal LAD levels. Videodensitometry was performed to quantify distribution of fluorophore content. The progressive distribution of cardioplegia was clearly visualized with NIR imaging. Complete visualization of retrograde distribution occurred within 4 minutes of infusion. Videodensitometry revealed retrograde cardioplegia, primarily distributed to the left ventricle (LV) and anterior septum. In hearts with LAD ligation, antegrade cardioplegia did not distribute to the anterior LV. This deficiency was compensated for with retrograde cardioplegia supplementation. Incorporation of ICG into cardioplegia allows real-time visualization of cardioplegia delivery via NIR imaging. This technology may prove useful in guiding intraoperative decisions pertaining to when retrograde cardioplegia is mandated.

  12. Effective Purification of Biogas by Condensing-Liquid Membrane

    Czech Academy of Sciences Publication Activity Database

    Poloncarzová, Magda; Vejražka, Jiří; Veselý, Václav; Izák, Pavel

    2010-01-01

    Roč. 50, č. 3 (2010), s. 669-671 ISSN 1433-7851 R&D Projects: GA MPO FR-TI1/245 Institutional research plan: CEZ:AV0Z40720504 Keywords : biogas purification * condensing liquid * gas permeation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 12.730, year: 2010

  13. Right retrograde brachial cerebral angiography with simultaneous compression of the left carotid artery

    International Nuclear Information System (INIS)

    Ericson, K.; Mosskin, M.

    1981-01-01

    Right retrograde brachial angiography with simultaneous compression of the left common carotid artery was performed in 12 patients, invariably resulting in filling of the right vertebral and the basilar artery. In all but one patient, the right carotid artery and its branches were also filled. Retrograde filling of the left internal carotid artery occurred in 8 patients. Furthermore, retrograde filling of the intracranial part of the left vertebral artery was obtained in 5 of 12 patients. A complete four-vessel cranial angiography was thus obtained in one third of the patients. The method may be considered as a safe and valuable adjunct to other angiographic techniques. (Auth.)

  14. Determination of heat transfer coefficient with vapor condensation inside the tubes diesel’s radiator sections

    Directory of Open Access Journals (Sweden)

    Y.K.Sklifus

    2012-12-01

    Full Text Available The article presents the calculation of heat transfer coefficient during condensation of steam, the mathematical model of temperature distribution in the gas and liquid phases of the coolant and the model of the formation of the condensate film on the walls of the tubes.

  15. Profound loss of general knowledge in retrograde amnesia: Evidence from an amnesic artist

    Directory of Open Access Journals (Sweden)

    Emma eGregory

    2014-05-01

    Full Text Available Studies of retrograde amnesia have focused on autobiographical memory, with fewer studies examining how non-autobiographical memory is affected. Those that have done so have focused primarily on memory for famous people and public events—relatively limited aspects of memory that are tied to learning during specific times of life and do not deeply tap into the rich and extensive knowledge structures that are developed over a lifetime. To assess whether retrograde amnesia can also cause impairments to other forms of general world knowledge, we explored losses across a broad range of knowledge domains in a newly-identified amnesic. LSJ is a professional artist, amateur musician and history buff with extensive bilateral medial temporal and left anterior temporal damage. We examined LSJ's knowledge across a range of everyday domains (e.g., sports and domains for which she had premorbid expertise (e.g., famous paintings. Across all domains tested, LSJ showed losses of knowledge at a level of breadth and depth never before documented in retrograde amnesia. These results show that retrograde amnesia can involve broad and deep deficits across a range of general world knowledge domains. Thus, losses that have already been well-documented (famous people and public events may severely underestimate the nature of human knowledge impairment that can occur in retrograde amnesia.

  16. ANALYTIC APPROXIMATION OF CARBON CONDENSATION ISSUES IN TYPE II SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Donald D., E-mail: claydonald@gmail.com [Department of Physics and Astronomy, Clemson University, Clemson, SC (United States)

    2013-01-01

    I present analytic approximations for some issues related to condensation of graphite, TiC, and silicon carbide in oxygen-rich cores of supernovae of Type II. Increased understanding, which mathematical analysis can support, renders researchers more receptive to condensation in O-rich supernova gases. Taking SN 1987A as typical, my first analysis shows why the abundance of CO molecules reaches an early maximum in which free carbon remains more abundant than CO. This analysis clarifies why O-rich gas cannot oxidize C if {sup 56}Co radioactivity is as strong as in SN 1987A. My next analysis shows that the CO abundance could be regarded as being in chemical equilibrium if the CO molecule is given an effective binding energy rather than its laboratory dissociation energy. The effective binding energy makes the thermal dissociation rate of CO equal to its radioactive dissociation rate. This preserves possible relevance for the concept of chemical equilibrium. My next analysis shows that the observed abundances of CO and SiO molecules in SN 1987A rule out frequent suggestions that equilibrium condensation of SUNOCONs has occurred following atomic mixing of the He-burning shell with more central zones in such a way as to reproduce roughly the observed spectrum of isotopes in SUNOCONs while preserving C/O > 1. He atoms admixed along with the excess carbon would destroy CO and SiO molecules, leaving their observed abundances unexplained. The final analysis argues that a chemical quasiequilibrium among grains (but not gas) may exist approximately during condensation, so that its computational use is partially justified as a guide to which mineral phases would be stable against reactions with gas. I illustrate this point with quasiequilibrium calculations by Ebel and Grossman that have shown that graphite is stable even when O/C >1 if prominent molecules are justifiably excluded from the calculation of chemical equilibrium.

  17. Effective Removal of Oil-mist and Odorous Component By Using Photocatalyst with Condensation

    Science.gov (United States)

    Inoue, Teruo; Noguchi, Hirofumi; Onishi, Hajime; Tada, Yukio; Takimoto, Akira

    The air cleaning is one of the social problems from the view of the living environment and the health recently. A commercial kitchen and food factory generate the exhaust gas including the odorous components and the oil-mist, but it is difficult to clean this gas without frequent maintenance for disposal of oil. Various ideas have been suggested and used for it, but the decisive solution has not been found yet. This paper is concerning of proposal of the photocatalyst method which used the condensation together to clean the gas including oil-mist and odorous component, and it was clarified experimentally about the influence of operation condition and surface shape of the condensation side for the removal of oil-mist and the odorous components of formaldehyde, amine and ammonia.

  18. Synchronous Retrograde and Micturating Cysto Urethrography A ...

    African Journals Online (AJOL)

    Background: Retrograde Urethrography (RUG) combined with Micturating cystourethrography (MCUG) is imaging method of choice for studying the urethra and its 1-9 abnormalities . Though there are many modern imaging modalities that are also useful but these are not available in most developing countries. Even the ...

  19. Retrograde prostatic urethroplasty with a balloon catheter

    International Nuclear Information System (INIS)

    Castaneda, F.; Reddy, P.; Hulbert, J.; Letourneau, J.G.; Hunter, D.W.; Castaneda-Zuniga, W.R.; Amplatz, K.

    1987-01-01

    Twenty-five patients with prostatism and documented BPH who were candidates for transurethral resection of the prostate were dilated for 10 minutes with 25-mm urethroplasty balloons using a retrograde transurethral approach. The procedure was performed under local anesthesia using 2% viscous lidocaine on an outpatient basis. A mild discomfort was experienced by all patients with a moderate urgency sensation. Mild transient hematuria was present in all, which cleared in 4 to 6 hours. Dysuria usually lasted for 72 hours. Significant improvement has been seen in the relief of symptoms in patients without middle-lobe hypertrophy as documented by uroflow studies, voiding cystourethrograms, and retrograde urethrograms. In patients with middle-lobe hypertrophy, moderate improvement in uroflow studies was observed, which correlated well with symptomatic improvement. Rectal US and MR studies have shown no evidence of intraprostatic or periprostatic abnormalities. No complications have been encountered so far. The longest current follow-up is 20 months, with a mean of 10 months

  20. Retrograde flow in the dural sinuses detected by three-dimensional time-of-flight MR angiography

    International Nuclear Information System (INIS)

    Uchino, Akira; Nomiyama, Keita; Takase, Yukinori; Nakazono, Takahiko; Tominaga, Yukiko; Imaizumi, Takeshi; Kudo, Sho

    2007-01-01

    Retrograde flow in the left dural sinuses is sometimes detected by three-dimensional time-of-flight (3D-TOF) magnetic resonance (MR) angiography. The purpose of this study was to evaluate the incidence of this phenomenon and its characteristic features on 3D-TOF MR angiograms. We retrospectively reviewed cranial MR angiography images of 1,078 patients examined at our institution. All images were obtained by the 3D-TOF technique with one of two 1.5-T scanners. Maximum intensity projection (MIP) images in the horizontal rotation view were displayed stereoscopically. We reviewed the source images, inferosuperior MIP images, and horizontal MIP images and identified retrograde flow in the dural sinuses. We found retrograde flow in the dural sinuses of 67 patients on the source images from 3D-TOF MR angiography; the incidence was 6.2%. In 47 of the 67 patients, retrograde flow was identified in the left inferior petrosal sinus, in 13, it was seen in the left sigmoid sinus, and in 6, it was seen in the left inferior petrosal and left sigmoid sinuses. The remaining patient had retrograde flow in the left inferior petrosal and left and right sigmoid sinuses. The mean age of the patients with retrograde flow was slightly greater than that of the patients without this phenomenon (70 years vs 63 years). Retrograde flow in the dural sinuses frequently occurs on the left side in middle-aged and elderly patients during 3D-TOF MR angiography performed with the patient in the supine position. This phenomenon should not be misdiagnosed as a dural arteriovenous fistula. (orig.)

  1. Transport According to GARP: Receiving Retrograde Cargo at the Trans-Golgi Network

    Science.gov (United States)

    Bonifacino, Juan S.; Hierro, Aitor

    2010-01-01

    Tethering factors are large protein complexes that capture transport vesicles and enable their fusion with acceptor organelles at different stages of the endomembrane system. Recent studies have shed new light on the structure and function of a heterotetrameric tethering factor named Golgi-associated retrograde protein (GARP), which promotes fusion of endosome-derived, retrograde transport carriers to the trans-Golgi network (TGN). X-ray crystallography of the Vps53 and Vps54 subunits of GARP has revealed that this complex is structurally related to other tethering factors such as the exocyst, COG and Dsl1, indicating that they all might work by a similar mechanism. Loss of GARP function compromises the growth, fertility and/or viability of the defective organisms, underscoring the essential nature of GARP-mediated retrograde transport. PMID:21183348

  2. CONDENSATION OF WATER VAPOR IN A VERTICAL TUBE CONDENSER

    Directory of Open Access Journals (Sweden)

    Jan Havlík

    2015-10-01

    Full Text Available This paper presents an analysis of heat transfer in the process of condensation of water vapor in a vertical shell-and-tube condenser. We analyze the use of the Nusselt model for calculating the condensation heat transfer coefficient (HTC inside a vertical tube and the Kern, Bell-Delaware and Stream-flow analysis methods for calculating the shell-side HTC from tubes to cooling water. These methods are experimentally verified for a specific condenser of waste process vapor containing air. The operating conditions of the condenser may be different from the assumptions adopted in the basic Nusselt theory. Modifications to the Nusselt condensation model are theoretically analyzed.

  3. Biomechanical Strength of Retrograde Fixation in Proximal Third Scaphoid Fractures.

    Science.gov (United States)

    Daly, Charles A; Boden, Allison L; Hutton, William C; Gottschalk, Michael B

    2018-04-01

    Current techniques for fixation of proximal pole scaphoid fractures utilize antegrade fixation via a dorsal approach endangering the delicate vascular supply of the dorsal scaphoid. Volar and dorsal approaches demonstrate equivalent clinical outcomes in scaphoid wrist fractures, but no study has evaluated the biomechanical strength for fractures of the proximal pole. This study compares biomechanical strength of antegrade and retrograde fixation for fractures of the proximal pole of the scaphoid. A simulated proximal pole scaphoid fracture was produced in 22 matched cadaveric scaphoids, which were then assigned randomly to either antegrade or retrograde fixation with a cannulated headless compression screw. Cyclic loading and load to failure testing were performed and screw length, number of cycles, and maximum load sustained were recorded. There were no significant differences in average screw length (25.5 mm vs 25.6 mm, P = .934), average number of cyclic loading cycles (3738 vs 3847, P = .552), average load to failure (348 N vs 371 N, P = .357), and number of catastrophic failures observed between the antegrade and retrograde fixation groups (3 in each). Practical equivalence between the 2 groups was calculated and the 2 groups were demonstrated to be practically equivalent (upper threshold P = .010). For this model of proximal pole scaphoid wrist fractures, antegrade and retrograde screw configuration have been proven to be equivalent in terms of biomechanical strength. With further clinical study, we hope surgeons will be able to make their decision for fixation technique based on approaches to bone grafting, concern for tenuous blood supply, and surgeon preference without fear of poor biomechanical properties.

  4. Wave function of a microwave-driven Bose-Einstein magnon condensate

    International Nuclear Information System (INIS)

    Rezende, Sergio M.

    2010-01-01

    It has been observed experimentally that a magnon gas in a film of yttrium-iron garnet at room temperature driven by a microwave field exhibits Bose-Einstein condensation (BEC) when the driving power exceeds a critical value. In a previous paper we presented a model for the dynamics of the magnon system in wave-vector space that provides firm theoretical support for the formation of the BEC. Here we show that the wave function of the magnon condensate in configuration space satisfies a Gross-Pitaevskii equation similarly to other BEC systems. The theory is consistent with the previous model in wave-vector space, and its results are in qualitative agreement with recent measurements of the spatial distribution of the magnon condensate driven by a nonuniform microwave field.

  5. Management of Endovascular Aortic Aneurysm Complications via Retrograde Catheterization Through the Distal Stent-Graft Landing Zone.

    Science.gov (United States)

    Zhang, Xicheng; Sun, Yuan; Chen, Zhaolei; Jing, Yuanhu; Xu, Miao

    2017-08-01

    A retrograde technique through the gap between the distal stent landing zone and the iliac artery wall has been applied to treat type II endoleak after endovascular aortic aneurysm repair (EVAR). In this study, we tried to investigate its efficacy in the management of type III endoleak and intraoperative accidental events. We reported 2 complications of EVAR that were difficult to treat with conventional methods. One patient had a sustained type III endoleak after EVAR, and the right renal artery was accidentally sealed by a graft stent in the other patient during the operation. Both complications were managed by the retrograde technique from the distal stent landing zone. In the first case, the endoleak was easily embolized by the retrograde catheterization technique, and in the second case, a stent was implanted in the right renal artery using the retrograde technique to restore blood flow. In some EVAR cases, the technique of retrograde catheterization through the distal stent-graft landing zone is feasible, safe, and easy to perform.

  6. Excitations of Bose-Einstein condensates at finite temperatures

    International Nuclear Information System (INIS)

    Rusch, M.

    2000-01-01

    Recent experimental observations of collective excitations of Bose condensed atomic vapours have stimulated interest in the microscopic description of the dynamics of a Bose-Einstein condensate confined in an external potential. We present a finite temperature field theory for collective excitations of trapped Bose-Einstein condensates and use a finite-temperature linear response formalism, which goes beyond the simple mean-field approximation of the Gross-Pitaevskii equation. The effect of the non-condensed thermal atoms we include using perturbation theory in a quasiparticle basis. This presents a simple scheme to understand the interaction between condensate and non-condensed atoms and enables us to include the effect the condensate has on collision dynamics. At first we limit our treatment to the case of a spatially homogeneous Bose gas. We include the effect of pair and triplet anomalous averages and thus obtain a gapless theory for the excitations of a weakly interacting system, which we can link to well known results for Landau and Beliaev damping rates. A gapless theory for trapped systems with a static thermal component follows straightforwardly. We then investigate finite temperature excitations of a condensate in a spherically symmetric harmonic trap. We avoid approximations to the density of states and thus emphasise finite size aspects of the problem. We show that excitations couple strongly to a restricted number of modes, giving rise to resonance structure in their frequency spectra. Where possible we derive energy shifts and lifetimes of excitations. For one particular mode, the breathing mode, the effects of the discreteness of the system are sufficiently pronounced that the simple picture of an energy shift and width fails. Experiments in spherical traps have recently become feasible and should be able to test our detailed quantitative predictions. (author)

  7. Free convective condensation in a vertical enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Fox, R.J.; Peterson, P.F. [Univ. of California, Berkeley, CA (United States); Corradini, M.L.; Pernsteiner, A.P. [Univ. of Wisconsin, Madison, WI (United States)

    1995-09-01

    Free convective condensation in a vertical enclosure was studied numerically and the results were compared with experiments. In both the numerical and experimental investigations, mist formation was observed to occur near the cooling wall, with significant droplet concentrations in the bulk. Large recirculation cells near the end of the condensing section were generated as the heavy noncondensing gas collecting near the cooling wall was accelerated downward. Near the top of the enclosure the recirculation cells became weaker and smaller than those below, ultimately disappearing near the top of the condenser. In the experiment the mist density was seen to be highest near the wall and at the bottom of the condensing section, whereas the numerical model predicted a much more uniform distribution. The model used to describe the formation of mist was based on a Modified Critical Saturation Model (MCSM), which allows mist to be generated once the vapor pressure exceeds a critical value. Equilibrium, nonequilibrium, and MCSM calculations were preformed, showing the experimental results to lie somewhere in between the equilibrium and nonequilibrium predictions of the numerical model. A single adjustable constant (indicating the degree to which equilibrium is achieved) is used in the model in order to match the experimental results.

  8. Retrograde CTO-PCI of Native Coronary Arteries Via Left Internal Mammary Artery Grafts: Insights From a Multicenter U.S. Registry.

    Science.gov (United States)

    Tajti, Peter; Karatasakis, Aris; Karmpaliotis, Dimitri; Alaswad, Khaldoon; Jaffer, Farouc A; Yeh, Robert W; Patel, Mitul; Mahmud, Ehtisham; Choi, James W; Doing, Anthony H; Toma, Catalin; Uretsky, Barry; Garcia, Santiago; Moses, Jeffrey W; Parikh, Manish; Kirtane, Ajay; Ali, Ziad A; Hatem, Raja; Karacsonyi, Judit; Danek, Barbara A; Rangan, Bavana V; Banerjee, Subhash; Ungi, Imre; Brilakis, Emmanouil S

    2018-03-01

    Retrograde percutaneous coronary intervention (PCI) of native coronary artery chronic total occlusion (CTO) via left internal mammary artery (LIMA) graft has received limited study. We compared the clinical and procedural characteristics and outcomes of retrograde CTO-PCI through LIMA grafts vs other conduits in a contemporary multicenter CTO registry. The LIMA was used as the collateral channel in 20 of 990 retrograde CTO-PCIs (2.02%) performed at 18 United States centers. The mean age of the study patients was 69 ± 7 years and 95% were men. The most common CTO target vessel was the right coronary artery (55%). The mean J-CTO score in the LIMA group was high (3.45 ± 0.76). The technical success rates were 70% for retrograde PCI via LIMA graft vs 81.05% for retrograde via other conduits (P=.25), while procedural success rates were 70% for retrograde PCI via LIMA graft and 78.19% for retrograde via other conduits (P=.41). The incidence of major in-hospital complications was also similar between the LIMA and non-LIMA retrograde groups (5% vs 6%; P>.99). Use of guide-catheter extensions (40% vs 28%; P=.22), intravascular ultrasound (45% vs 31%; P=.20), and left ventricular assist devices (24% vs 10%; P=.08) was numerically higher in retrograde CTO-PCIs via LIMA grafts. Retrograde CTO-PCI is infrequently performed via LIMA grafts and is associated with similar success and major in-hospital complication rates as retrograde CTO-PCI performed via other conduits.

  9. Impact of Emulsifiers Addition on the Retrogradation of Rice Gels during Low-Temperature Storage

    Directory of Open Access Journals (Sweden)

    Zhe Yang

    2017-01-01

    Full Text Available Rice and its products are widely consumed in Asian countries; however, starch retrogradation decreases the quality and shortens the shelf-life of rice foods particularly at low temperature. In this study sucrose ester (SE, glycerol monostearate (GMS, and sodium stearoyl lactylate (SSL were added to rice flour and corresponding rice gels. Then, gelatinization properties, retrogradation characteristics, texture, and water content of these rice gels were investigated at 4°C and −20°C storage, respectively. The results demonstrated that the rice gels with 0.2% GMS had the lowest retrogradation index (ΔHr/ΔHg (11.84% and hardness (1359 g at 4°C for a 10 d period, which was significantly lower in comparison to control and the other two emulsifiers (P<0.05. Adhesiveness and water content were increased compared to the other samples. Furthermore, the retrogradation of rice gels stored at 4°C was comparatively rapid compared to gels stored at −20°C. Gel samples stored at −20°C were still acceptable for more than 15 days. Thus it was revealed that GMS has the potential to retard starch retrogradation and produce high-quality rice products in preservation.

  10. Irrelevant, Incidental and Core Features in the Retrograde Amnesia Associated with Korsakoff’s Psychosis: A Review

    Directory of Open Access Journals (Sweden)

    P. R. Meudell

    1992-01-01

    Full Text Available A brief review of the literature on retrograde amnesia in Korsakoff's syndrome is presented. Various explanations of the phenomenon are discussed including the notions that it results from the effects of “state-dependency”, that it occurs as a result of a progressive learning problem and that it arises through a failure in contextual processing. None of these hypotheses can satisfactorily account for the length and temporal gradient of alcoholic amnesics retrograde amnesia. Although some evidence points towards the hypothesis that anterograde and retrograde amnesia might result from separate and independent impairments, this view is presently unproven and leaves open what causes the form and duration of Korsakoffs retrograde amnesia.

  11. Modeling of gas condensates properties using continuous distribution functions for the characterization of the plus fraction; Modelisation des proprietes thermodynamiques des gaz a condensat par representation de la fraction lourde a l`aide de fonctions de distribution

    Energy Technology Data Exchange (ETDEWEB)

    Sportisse, M.

    1996-12-20

    The modeling of thermodynamic behaviour for gas condensates is not yet satisfactory and it involves an adjustment of thermodynamic models. We propose here a fitting based on the characterization of the plus fraction using three continuous distribution functions associated to the following families: n-alkanes, n-alkylbenzenes and poly-aromatics. No continuous thermodynamic model is used and PVT calculations are made with the Peng-Robinson equation of state. For poly-aromatics, a simple correlation of {l_brace} T{sub c}, P{sub c}, {omega} {r_brace} is given. The parameters of the distributions are fitted in order to improve the accuracy of the liquid deposit curve calculation. A continuous minimization by simulated annealing has been used to avoid local minima. Good results on fitting PVT properties have been obtained with more than twenty gas condensates from different areas. Moreover, the prediction of tank liquid and heavy-plus fraction densities are given with an average deviation of 1.2 % and 3.6 %. Tests on temperature extrapolation show that our modeling yields a good representation of pressure and temperature influence on gas condensates behaviour. (author) 89 refs.

  12. Advanced treatment of flue gas condensate; Avancerad rening av roekgaskondensat

    Energy Technology Data Exchange (ETDEWEB)

    Axby, Fredrik [Carl Bro Energikonsult AB, Malmoe (Sweden); Ekengren, Oesten; Bjurhem, Jan Erik [IVL Swedish Environmental Research Inst. (Sweden)

    2004-11-01

    The aim of the project is to study different techniques to recover water to the process and to reduce emission of ammonia to water and air. Membrane technology (ultra- (UF) and nanofiltration (NF) and reverse osmosis (RO)) and a stripper have been studied for ammonia separation. The use of bio-fuel in energy production is increasing. The off-gases are often condensed to increase energy yield and to decrease emissions to air. Since the concentration of nitrogen (ammonium) is high in condensates from units with SNCR for NO{sub x}-reduction (selective non-catalytic reduction) this water has to be treated further. Another aim of the project is to replace a great part of the tap water used in the process. This can be accomplished with membrane technology. Laboratory tests revealed a certain degree of membrane fouling. However, both NF and RO worked well in the full-scale unit, in spite of problems in the condensate treatment that resulted in tar products in the water. There was no obvious negative effect on these membranes. Analyses of PAH have shown a low base concentration that may lead to fouling after a long time. UF removes most of these PAH and thus protects the following NF- or RO-membranes. NF gave about 3 times higher filtration capacity (flux) than RO for the condensate at 30 bars. This can save a lot of money, since the membrane area can be reduced to a third. High temperature also increases the flux. The results are of high interest but ought to be certified during long run tests. Fouling was low in both NF and RO, and initial flux was retained after cleaning. The reason is probably the good pre-treatment (UF). The concentration could proceed very far, which make it possibly to reuse the concentrate to the system. Simulations of an ammonia stripper showed some parameters to be critical in certain ranges, while others didn't affect the result. Airflow is a critical parameter during stable conditions within the design data. Simulated data were verified

  13. On the observed excess of retrograde orbits among long-period comets

    International Nuclear Information System (INIS)

    Fernandez, J.A.

    1981-01-01

    The distribution of orbital inclinations of the observed long-period comets is analysed. An excess of retrograde orbits is found which increases with the perihelion distance, except for the range 1.1 10 3 A U) has the same behaviour as the total sample. It is thus suggested that the excess of retrograde orbits among long-period comets is related to an already existent excess among the incoming new comets (i.e. comets driven into the planetary region by stellar perturbations). Using theoretical considerations and a numerical model it is proposed that an important fraction of the so-called new comets are actually repeating passages through the planetary region. Nearly a half of the new comets with q > 2 A U may be repeating passages. An important consequence of the presence of comets repeating passages among the new ones is the production of an excess of retrograde orbits in the whole sample. (author)

  14. Effect of precursor supply on structural and morphological characteristics of fe nanomaterials synthesized via chemical vapor condensation method.

    Science.gov (United States)

    Ha, Jong-Keun; Ahn, Hyo-Jun; Kim, Ki-Won; Nam, Tae-Hyun; Cho, Kwon-Koo

    2012-01-01

    Various physical, chemical and mechanical methods, such as inert gas condensation, chemical vapor condensation, sol-gel, pulsed wire evaporation, evaporation technique, and mechanical alloying, have been used to synthesize nanoparticles. Among them, chemical vapor condensation (CVC) has the benefit of its applicability to almost all materials because a wide range of precursors are available for large-scale production with a non-agglomerated state. In this work, Fe nanoparticles and nanowires were synthesized by chemical vapor condensation method using iron pentacarbonyl (Fe(CO)5) as the precursor. The effect of processing parameters on the microstructure, size and morphology of Fe nanoparticles and nanowires were studied. In particular, we investigated close correlation of size and morphology of Fe nanoparticles and nanowires with atomic quantity of inflow precursor into the electric furnace as the quantitative analysis. The atomic quantity was calculated by Boyle's ideal gas law. The Fe nanoparticles and nanowires with various diameter and morphology have successfully been synthesized by the chemical vapor condensation method.

  15. Capillary condensation in one-dimensional irregular confinement.

    Science.gov (United States)

    Handford, Thomas P; Pérez-Reche, Francisco J; Taraskin, Sergei N

    2013-07-01

    A lattice-gas model with heterogeneity is developed for the description of fluid condensation in finite sized one-dimensional pores of arbitrary shape. Mapping to the random-field Ising model allows an exact solution of the model to be obtained at zero-temperature, reproducing the experimentally observed dependence of the amount of fluid adsorbed in the pore on external pressure. It is demonstrated that the disorder controls the sorption for long pores and can result in H2-type hysteresis. Finite-temperature Metropolis dynamics simulations support analytical findings in the limit of low temperatures. The proposed framework is viewed as a fundamental building block of the theory of capillary condensation necessary for reliable structural analysis of complex porous media from adsorption-desorption data.

  16. Investigation of the Bose–Einstein condensation based on fractality using fractional mathematics

    International Nuclear Information System (INIS)

    Şirin, Hüseyin; Ertik, Hüseyin; Büyükkiliç, Fevzi; Demirhan, Doğan

    2010-01-01

    Although atomic Bose gases are investigated in the dilute gas regime, the physical properties of the Bose–Einstein condensates are affected by interparticle interactions and the fractal nature of the space where the Bose systems are evolving. Theoretical predictions of the traditional Bose–Einstein thermostatistics do not account for the deviations from the experimental results, which are related to internal energy, specific heat, transition temperature, etc. On the other hand, in this study, fractional calculus is introduced where effects of the fractality of space are taken into account. Meanwhile, the order of the fractional derivative α is handled as a measure of the fractality of space. In this content, some improvements which take into account the effects of the fractal nature of the system are made in the standard physical results of the Bose–Einstein condensation phenomena. As an example, for the dilute atomic gas 7 Li, the measured transition temperature of Bose–Einstein condensation could be obtained for the value of α ≈ 0.976, and one could predict that the interparticle interactions have a weak attractive nature consistent with experiment (Bradley et al 1995 Phys. Rev. Lett. 75 1687). Thus, a fractional mathematical theory is established in coherence with experimental results of Bose–Einstein condensation

  17. Psychogenic amnesia: syndromes, outcome, and patterns of retrograde amnesia.

    Science.gov (United States)

    Harrison, Neil A; Johnston, Kate; Corno, Federica; Casey, Sarah J; Friedner, Kimberley; Humphreys, Kate; Jaldow, Eli J; Pitkanen, Mervi; Kopelman, Michael D

    2017-09-01

    There are very few case series of patients with acute psychogenic memory loss (also known as dissociative/functional amnesia), and still fewer studies of outcome, or comparisons with neurological memory-disordered patients. Consequently, the literature on psychogenic amnesia is somewhat fragmented and offers little prognostic value for individual patients. In the present study, we reviewed the case records and neuropsychological findings in 53 psychogenic amnesia cases (ratio of 3:1, males:females), in comparison with 21 consecutively recruited neurological memory-disordered patients and 14 healthy control subjects. In particular, we examined the pattern of retrograde amnesia on an assessment of autobiographical memory (the Autobiographical Memory Interview). We found that our patients with psychogenic memory loss fell into four distinct groups, which we categorized as: (i) fugue state; (ii) fugue-to-focal retrograde amnesia; (iii) psychogenic focal retrograde amnesia following a minor neurological episode; and (iv) patients with gaps in their memories. While neurological cases were characterized by relevant neurological symptoms, a history of a past head injury was actually more common in our psychogenic cases (P = 0.012), perhaps reflecting a 'learning episode' predisposing to later psychological amnesia. As anticipated, loss of the sense of personal identity was confined to the psychogenic group. However, clinical depression, family/relationship problems, financial/employment problems, and failure to recognize the family were also statistically more common in that group. The pattern of autobiographical memory loss differed between the psychogenic groups: fugue cases showed a severe and uniform loss of memories for both facts and events across all time periods, whereas the two focal retrograde amnesia groups showed a 'reversed' temporal gradient with relative sparing of recent memories. After 3-6 months, the fugue patients had improved to normal scores for facts

  18. Geysers advanced direct contact condenser research

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, J.; Bahning, T.; Bharathan, D.

    1997-12-31

    The first geothermal application of the Advanced Direct Contact Condenser (ADCC) technology developed by the National Renewable Energy Laboratory (NREL) is now operational and is being tested at The Geysers Power Plant Unit 11. This major research effort is being supported through the combined efforts of NREL, The Department of Energy (DOE), and Pacific Gas and Electric (PG&E). NREL and PG&E have entered into a Cooperative Research And Development Agreement (CRADA) for a project to improve the direct-contact condenser performance at The Geysers Power Plant. This project is the first geothermal adaptation of an advanced condenser design developed for the Ocean Thermal Energy Conversion (OTEC) systems. PG&E expects this technology to improve power plant performance and to help extend the life of the steam field by using steam more efficiently. In accordance with the CRADA, no money is transferred between the contracting parties. In this case the Department of Energy is funding NREL for their efforts in this project and PG&E is contributing funds in kind. Successful application of this technology at The Geysers will provide a basis for NREL to continue to develop this technology for other geothermal and fossil power plant systems.

  19. Reconsidering the nature and mode of action of metabolite retrograde signals from the chloroplast

    Directory of Open Access Journals (Sweden)

    Gonzalo Martín Estavillo

    2013-01-01

    Full Text Available Plant organelles produce retrograde signals to alter nuclear gene expression in order to coordinate their biogenesis, maintain homeostasis or optimize their performance under adverse conditions. Many signals of different chemical nature have been described in the past decades, including chlorophyll intermediates, reactive oxygen species and adenosine derivatives. While the effects of retrograde signalling on gene expression are well understood, the initiation and transport of the signals and their mode of action have either not been resolved, or are a matter of speculation. Moreover, retrograde signalling should be consider as part of a broader cellular network, instead of as separate pathways, required to adjust to changing physiologically relevant conditions. Here we summarize current plastid retrograde signalling models in plants, with a focus on new signalling pathways, SAL1-PAP, MEcPP and β- cyclocitral, and outline missing links or future areas of research that we believe need to be addressed to have a better understanding of plant intracellular signalling networks.

  20. US crude oil, natural gas, and natural gas liquids reserves 1996 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

  1. Sonourethrography compared to retrograde urethrography

    International Nuclear Information System (INIS)

    Kim, Jong Chul; Chang, Nam Sik; Park, Cheong Hee; Rhee, Byung Chul; Kong, Jae Chul; Park, Jong Yoon

    1989-01-01

    A total of 15 patients with suspected urethral stricture or fistula underwent conventional retrograde urethrography and following sonourethrography with saline infusion or voiding against Eschmann penile clamp, in Gyeongsang and Chungnam National University Hospital from July, 1989 to June, 1989. The sonographic findings were as diagnostic as the roentgen findings in 12 patients. When the length of the strictures assessed by each imaging modality was compared to measurement at open urothroplasty of 2 patients, sonourethrography was consistently more accurate. Urethroscopy was done in all cases. Sonourethrography using distension technique of the urethra enabled classification of the degree of spongiofibrosis, thus provided the guidance of direct vision internal urethrotomy in 9 patients. In 2 patients, the sonourethrogram identified periurethral tumor and urethral polyp which were not definitely analysed on the retrograde urethrogram. In the patient of posttraumatic postoperative urethrorectal fistula, residual fistuous tract was seen on both examinations. In 1 patient of stricture with severe periurethral scar, urethral stricture recurred after graft. No patient reported significant discomfort during the sonourethrogram. The sonourethrogram provided valuable, dynamic. 3 dimensional information about the luminal and extraluminal anatomy and pathology of the anterior urethra. The new method of sonourethrogram allows for the appropriate decision to be made easier for optimal treatment of urethal stricture, etc, and can be used as a follow up study

  2. Echangeurs à condensation sur fumées corrosives Condensation Heat Exchangers of Corrosive Fumes

    Directory of Open Access Journals (Sweden)

    Grehier A.

    2006-11-01

    Full Text Available Les échangeurs gaz-liquide et gaz-gaz respectivement développés par la Société Nationale Elf Aquitaine (SNEA et l'institut Français du Pétrole (IFP dans le cadre d'un contrat AFME d'aide à l'innovation permettent, grâce au recours à des matériaux plastiques, de s'affranchir du seuil de condensation sulfurique, 180°C, en deçà duquel apparaissent les problèmes de corrosion sur les récupérateurs classiques. Il en résulte un accroissement de chaleurs sensible et latente récupérées permettant, en moyenne, de doubler l'économie habituellement réalisée. Ces travaux ont démontré la faisabilité technique des solutions proposées dont la pénétration sur le marché doit être favorisée par leur faible coût d'insertion dans les installations existantes et leur temps de retour voisin de 2 ans. The gas-liquid and gas-gas heat exchangers developed respectively by the Société Nationale Elf Aquitaine (SNEA and the Institut Français du Pétrole (IFP, within the framework of an AFME contract to promote innovation, make use of plastics to overcome the sulfuric condensation threshold of 180°C. Beyond this threshold, corrosion problems appear for conventional heat recovery processes. This results in an increase in the recovery of sensible and latent heat, so that the saving normally achieved can be doubled, on the average. This research has shown the technical feasibility of the solution proposed. The market penetration of these solutions should be enhanced by their low cost of insertion in existing installations and their payout time of about two years.

  3. Preventing freezing of condensate inside tubes of air cooled condenser

    International Nuclear Information System (INIS)

    Joo, Jeong A; Hwang, In Hwan; Lee, Dong Hwan; Cho, Young Il

    2012-01-01

    An air cooled condenser is a device that is used for converting steam into condensate by using ambient air. The air cooled condenser is prone to suffer from a serious explosion when the condensate inside the tubes of a heat exchanger is frozen; in particular, tubes can break during winter. This is primarily due to the structural problem of the tube outlet of an existing conventional air cooled condenser system, which causes the backflow of residual steam and noncondensable gases. To solve the backflow problem in such condensers, such a system was simulated and a new system was designed and evaluated in this study. The experimental results using the simulated condenser showed the occurrence of freezing because of the backflow inside the tube. On the other hand, no backflow and freezing occurred in the advanced new condenser, and efficient heat exchange occurred

  4. Condensate subcooling near tube exit during horizontal in-tube condensation

    International Nuclear Information System (INIS)

    Hashizume, K.; Abe, N.; Ozeki, T.

    1992-01-01

    In-tube condensation is encountered in various applications for heat exchangers, such as domestic air-conditioning equipment, industrial air-cooled condensers, and moisture separator reheaters (MSRs) for nuclear power pants. Numerous research work has been conducted to predict the condensation heat transfer coefficient, and we have now enough information for thermal design of heat exchangers with horizontal in-tube condensation. Most of the research is analytical and/or experimental work in the annular or stratified flow regime, or experimental work on bulk condensation, i.e., from saturated vapor to complete condensation. On the other hand, there exist few data about the heat transfer phenomena in the very lower-quality region near the tube exit. The purpose of this paper is to clarify the condensation heat transfer phenomena near the tube exit experimentally and analytically, and to predict the degree of condensate subcooling

  5. Detection of Dust Condensations in the Orion Bar Photon-dominated Region

    Science.gov (United States)

    Qiu, Keping; Xie, Zeqiang; Zhang, Qizhou

    2018-03-01

    We report Submillimeter Array dust continuum and molecular spectral line observations toward the Orion Bar photon-dominated region (PDR). The 1.2 mm continuum map reveals, for the first time, a total of nine compact (r < 0.01 pc) dust condensations located within a distance of ∼0.03 pc from the dissociation front of the PDR. Part of the dust condensations are also seen in spectral line emissions of CS (5–4) and H2CS (71,7–61,6), though the CS map also reveals dense gas further away from the dissociation front. We also detect compact emissions in H2CS (60,6–50,5), (62,4–52,3) and C34S, C33S (4–3) toward bright dust condensations. The line ratio of H2CS (60,6–50,5)/(62,4–52,3) suggests a temperature of 73 ± 58 K. A nonthermal velocity dispersion of ∼0.25–0.50 km s‑1 is derived from the high spectral resolution C34S data and indicates a subsonic to transonic turbulence in the condensations. The masses of the condensations are estimated from the dust emission, and range from 0.03 to 0.3 M ⊙, all significantly lower than any critical mass that is required for self-gravity to play a crucial role. Thus the condensations are not gravitationally bound, and could not collapse to form stars. In cooperating with recent high-resolution observations of the compressed surface layers of the molecular cloud in the Bar, we speculate that the condensations are produced as a high-pressure wave induced by the expansion of the H II region compresses and enters the cloud. A velocity gradient along a direction perpendicular to the major axis of the Bar is seen in H2CS (71,7–61,6), and is consistent with the scenario that the molecular gas behind the dissociation front is being compressed.

  6. The modelling of wall condensation with noncondensable gases for the containment codes

    Energy Technology Data Exchange (ETDEWEB)

    Leduc, C.; Coste, P.; Barthel, V.; Deslandes, H. [Commissariat a l`Energi Atomique, Grenoble (France)

    1995-09-01

    This paper presents several approaches in the modelling of wall condensation in the presence of noncondensable gases for containment codes. The lumped-parameter modelling and the local modelling by 3-D codes are discussed. Containment analysis codes should be able to predict the spatial distributions of steam, air, and hydrogen as well as the efficiency of cooling by wall condensation in both natural convection and forced convection situations. 3-D calculations with a turbulent diffusion modelling are necessary since the diffusion controls the local condensation whereas the wall condensation may redistribute the air and hydrogen mass in the containment. A fine mesh modelling of film condensation in forced convection has been in the developed taking into account the influence of the suction velocity at the liquid-gas interface. It is associated with the 3-D model of the TRIO code for the gas mixture where a k-{xi} turbulence model is used. The predictions are compared to the Huhtiniemi`s experimental data. The modelling of condensation in natural convection or mixed convection is more complex. As no universal velocity and temperature profile exist for such boundary layers, a very fine nodalization is necessary. More simple models integrate equations over the boundary layer thickness, using the heat and mass transfer analogy. The model predictions are compared with a MIT experiment. For the containment compartments a two node model is proposed using the lumped parameter approach. Heat and mass transfer coefficients are tested on separate effect tests and containment experiments. The CATHARE code has been adapted to perform such calculations and shows a reasonable agreement with data.

  7. Liver parenchumography following endoscopic retrograde cholangiopancreatography (ERCP)

    International Nuclear Information System (INIS)

    Revert, A.; Arana, E.; Pertejo, V.; Berenguer, M.; Masip, M.J.

    1998-01-01

    Focal liver opacification during endoscopic retrograde cholangiography (ERCP) is an uncommon complication caused by excessive pressure during contrast injection. In this situation, ERCP must be interrupted and the position of the cannula checked. We recommend that these images be excluded from the diagnosis of tumor or cystic cavities. 4 refs

  8. Acute ecotoxicology of natural oil and gas condensate to coral reef larvae.

    Science.gov (United States)

    Negri, Andrew P; Brinkman, Diane L; Flores, Florita; Botté, Emmanuelle S; Jones, Ross J; Webster, Nicole S

    2016-02-19

    Risks posed by oil spills to coral reefs are difficult to evaluate, partially due to the absence of studies that adequately assess toxicity to relevant coral reef species. Here we experimentally tested the acute toxicity of condensate, representing a fraction of light crude oil, to coral (Acropora tenuis) and sponge (Rhopaloeides odorabile) larvae. The metamorphosis of coral larvae was inhibited at total petroleum aromatic hydrocarbon (TPAH) concentrations of water accommodated fractions (WAF) as low as 103 μg l(-1), similar to concentrations detected in seawater following large spills. The sensitivity of coral larvae increased by 40% when co-exposed to UV light that they might encounter in shallow reefal systems. Condensate WAF was more toxic to coral larvae than predicted by summing the toxicity of its main components (benzene, toluene, p-xylene and napthalene). In contrast, the sensitivity of sponge larvae to condensate WAF (>10,000 μg l(-1) TPAH) was far less than coral in the presence and absence of UV, but similar to that of other marine invertebrates. While these results highlight the relative sensitivity of coral larvae to oil, further research is needed to better understand and predict the impacts and risks posed by hydrocarbons to tropical reef systems.

  9. Experimental study of condensate subcooling with the use of a model of an air-cooled condenser

    Science.gov (United States)

    Sukhanov, V. A.; Bezukhov, A. P.; Bogov, I. A.; Dontsov, N. Y.; Volkovitsky, I. D.; Tolmachev, V. V.

    2016-01-01

    Water-supply deficit is now felt in many regions of the world. This hampers the construction of new steam-turbine and combined steam-and-gas thermal power plants. The use of dry cooling systems and, specifically, steam-turbine air-cooled condensers (ACCs) expands the choice of sites for the construction of such power plants. The significance of condensate subcooling Δ t as a parameter that negatively affects the engineering and economic performance of steam-turbine plants is thereby increased. The operation and design factors that influence the condensate subcooling in ACCs are revealed, and the research objective is, thus, formulated properly. The indicated research was conducted through physical modeling with the use of the Steam-Turbine Air-Cooled Condenser Unit specialized, multipurpose, laboratory bench. The design and the combined schematic and measurement diagram of this test bench are discussed. The experimental results are presented in the form of graphic dependences of the condensate subcooling value on cooling ratio m and relative weight content ɛ' of air in steam at the ACC inlet at different temperatures of cooling air t ca ' . The typical ranges of condensate subcooling variation (4 ≤ Δ t ≤ 6°C, 2 ≤ Δ t ≤ 4°C, and 0 ≤ Δ t ≤ 2°C) are identified based on the results of analysis of the attained Δ t levels in the ACC and numerous Δ t reduction estimates. The corresponding ranges of cooling ratio variation at different temperatures of cooling air at the ACC inlet are specified. The guidelines for choosing the adjusted ranges of cooling ratio variation with account of the results of experimental studies of the dependences of the absolute pressure of the steam-air mixture in the top header of the ACC and the heat flux density on the cooling ratio at different temperatures of cooling air at the ACC inlet are given.

  10. Method and apparatus for maintaining condensable constituents of a gas in a vapor phase during sample transport

    Science.gov (United States)

    Felix, Larry Gordon; Farthing, William Earl; Irvin, James Hodges; Snyder, Todd Robert

    2010-05-18

    A system for fluid transport at elevated temperatures having a conduit having a fluid inlet end and a fluid outlet end and at least one heating element disposed within the conduit providing direct heating of a fluid flowing through the conduit. The system is particularly suited for preventing condensable constituents of a high temperature fluid from condensing out of the fluid prior to analysis of the fluid. In addition, operation of the system so as to prevent the condensable constituents from condensing out of the fluid surprisingly does not alter the composition of the fluid.

  11. The once-through mode of steam generator reflux condensation in loss of coolant accident scenarios

    International Nuclear Information System (INIS)

    Liao, Y.; Guentay, S.; Suckow, D.

    2009-01-01

    The once-through mode of steam generator reflux condensation in the presence of noncondensable gases and/or aerosols for LOCA scenarios is introduced. This phenomenon is planned to be investigated at Paul Scherrer Institute in the ARTIST/RFLX experimental program. The plausible accident scenarios associated with the once-through reflux condensation are analyzed with MELCOR to study the safety significance and the boundary conditions of this phenomenon. This work presents the recent PSI experimental and analytical work on reflux condensation: the progress of modification to the ARTIST test facility for the purpose to study reflux condensation, and the analytical model for the once-through reflux condensation in the presence of noncondensable gas using the heat and mass transfer analogy approach. Future experimental and analytical work on reflux condensation is also outlined. (author)

  12. Retrograde cystography US. A new ultrasound technique for the diagnosis and staging of vesicoureteral reflux

    International Nuclear Information System (INIS)

    Farina, R.; Arena, C.; Pennisi, F.; Di Benedetto, V.; Politi, G.; Di Benedetto, A.

    1999-01-01

    The authors investigated the accuracy of a new US (ultrasound) investigation technique, called retrograde cystography US, in the early diagnosis and staging of vesicoureteral reflux. 5 patients, aged 3 months to 10 years, suffering from hydronephrosis and/or pyelonephritis, were examined using retrograde cystography US followed by conventional retrograde cystography. Retrograde cystography US consists in the transcatheter introduction of a contrast agent into the bladder and a subsequent color Doppler examination to show or exclude the presence of reflux. Superpubic scanning of bladder, ureters and pyelocaliceal cavity was performed after echo contrast agent introduction to assess the reflux grade. US was performed with an Esaote AU 590 asynchronous scanner with a 3.5 MHz convex probe. The total agreement of conventional and US findings seems to confirm the importance of the US method for the diagnosis and staging of vesicoureteral reflux [it

  13. Dating of retrograde metamorphism in Western Carpathians by K-Ar analysis of muscovites

    International Nuclear Information System (INIS)

    Cambel, B.; Korikovskij, S.P.; Krasivskaya, I.S.; Arakelyants, M.M.

    1986-01-01

    Using the K-Ar isotope dating method of muscovites it was found that many retrogradely metamorphosed rocks are the results of Variscan retrograde metamorphism and are not pre-Cambrian or Alpine metamorphites (diaphthorites). Samples for dating were taken from the Western Carpathian crystalline formation. The content of radiogenic argon was determined by mass spectrometry using the method of isotope dilution. (M.D.)

  14. The research activities on in-tube condensation in the presence of noncondensables for passive cooling applications

    Energy Technology Data Exchange (ETDEWEB)

    Tanrikut, A [Turkish Atomic Energy Authority, Ankara (Turkey)

    1996-12-01

    The introduction of nuclear power becomes an attractive solution to the problem of increasing demand for electricity power capacity in Turkey. Thus, Turkey is willing to follow the technological development trends in advanced reactor systems and to participate in joint research studies. The primary objectives of the passive design features are to simplify the design, which assures the minimized demand on operator, and to improve plant safety. To accomplish these features the operating principles of passive safety systems should be well understood by an experimental validation program. Such a validation program is also important for the assessment of advanced computer codes which are currently used for design and licensing procedures. The condensation mode of heat transfer plays an important role for the passive heat removal applications in the current nuclear power plants (e.g. decay heat removal via steam generators in case of loss of heat removal system) and advanced water-cooled reactor systems. But is well established that the presence of noncondensable gases can greatly inhibit the condensation process due to the build-up of noncondensable gas concentration at the liquid/gas interface. The isolation condenser of passive containment cooling system of the simplified boiling water reactors is a typical application area of in-tube condensation in the presence of noncondensable. This paper describes the research activities at the Turkish Atomic Energy Authority concerning condensation in the presence of air, as a noncondensable gas. (author). 9 refs, 6 figs.

  15. The research activities on in-tube condensation in the presence of noncondensables for passive cooling applications

    International Nuclear Information System (INIS)

    Tanrikut, A.

    1996-01-01

    The introduction of nuclear power becomes an attractive solution to the problem of increasing demand for electricity power capacity in Turkey. Thus, Turkey is willing to follow the technological development trends in advanced reactor systems and to participate in joint research studies. The primary objectives of the passive design features are to simplify the design, which assures the minimized demand on operator, and to improve plant safety. To accomplish these features the operating principles of passive safety systems should be well understood by an experimental validation program. Such a validation program is also important for the assessment of advanced computer codes which are currently used for design and licensing procedures. The condensation mode of heat transfer plays an important role for the passive heat removal applications in the current nuclear power plants (e.g. decay heat removal via steam generators in case of loss of heat removal system) and advanced water-cooled reactor systems. But is well established that the presence of noncondensable gases can greatly inhibit the condensation process due to the build-up of noncondensable gas concentration at the liquid/gas interface. The isolation condenser of passive containment cooling system of the simplified boiling water reactors is a typical application area of in-tube condensation in the presence of noncondensable. This paper describes the research activities at the Turkish Atomic Energy Authority concerning condensation in the presence of air, as a noncondensable gas. (author). 9 refs, 6 figs

  16. Endoskopisk ultralydvejledt rendezvouskolangiografi ved mislykket endoskopisk retrograd kolangiopankreatikografi

    DEFF Research Database (Denmark)

    Boman, Pia Snedker; Perdawid, Sharafaden Karim; Lykkegaard, John

    2012-01-01

    In this case report we describe an alternative method of cholangiography. Endoscopic retrograde cholangiopancreatography (ERCP) was not successful in a patient with choledocolithiasis. A combined endoscopic ultrasound (EUS) and ERCP procedure was performed and a stent was inserted in the common...

  17. Investigation of Interfacial Phenomena During Condensation of Humid Air on a Horizontal Substrate

    Directory of Open Access Journals (Sweden)

    Tiwari Akhilesh

    2013-12-01

    Full Text Available The condensation phenomenon of humid air on solid substrates can occur in many applications, and it is known as one of the most difficult problem to deal with for the improvement of the quality of air in a closed environment. The present study was motivated by the investigation of the coupling between ventilation and condensation inside controlled ecological life support systems (CELSS, as it has an important role for higher plants growth in greenhouses and living conditions in manned spacecraft cabins, particularly in long duration space flights or in future space bases. It is well known that the enhancement of the gas exchange with leaves and the growth of plants are dependent on the organoleptic and/or the surrounding thermo-physical factors. Insufficient air movement around plants and condensation on plant leaves generally limit their growth by suppressing the gas diffusion in the leaf boundary-layer thereby decreasing photosynthetic and transpiration rates. Thus, the optimization of a CELSS will require the control of the airflow and concomitant gas/liquid transfer at the plant surfaces. The experimental and theoretical modeling of CELSS requires a comprehensive understanding of the micro to the macro levels of liquid gas phase transfer. Hence, an experimental set-up was developed at 1-g to evaluate the mass transfer coefficients due to condensation of humid air on specific geometries in well controlled environmental conditions. The goal was to establish correlations between the fluxes of mass and heat, the relative humidity and the mean flow for the development of theoretical models based on local transfer coefficients. The experiments were performed at ambient temperature, with a relative humidity between 35-70% and for a velocity range of 1.0-3.0 m.s−1.

  18. Conceptual Design of a Condensing Heat Exchanger for Space Systems Using Porous Media

    Science.gov (United States)

    Hasan, Mohammad M.; Khan, Lutful I.; Nayagam, Vedha; Balasubramaniam, Ramaswamy

    2006-01-01

    Condensing heat exchangers are used in many space applications in the thermal and humidity control systems. In the International Space Station (ISS), humidity control is achieved by using a water cooled fin surface over which the moist air condenses, followed by "slurper bars" that take in both the condensate and air into a rotary separator and separates the water from air. The use of a cooled porous substrate as the condensing surface provides and attractive alternative that combines both heat removal as well as liquid/gas separation into a single unit. By selecting the pore sizes of the porous substrate a gravity independent operation may also be possible with this concept. Condensation of vapor into and on the porous surface from the flowing air and the removal of condensate from the porous substrate are the critical processes involved in the proposed concept. This paper describes some preliminary results of the proposed condensate withdrawal process and discusses the on-going design and development work of a porous media based condensing heat exchanger at the NASA Glenn Research Center in collaboration with NASA Johnson Space Center.

  19. Diffusion layer modeling for condensation with multi-component noncondensable gases

    International Nuclear Information System (INIS)

    Peterson, P.F.

    1999-01-01

    Many condensation problems involving noncondensable gases have multiple noncondensable species, for example air (with nitrogen, oxygen, and other gases); and other problems where light gases like hydrogen may mix with heavier gases like nitrogen. Particularly when the binary mass diffusion coefficients of the noncondensable species are substantially different, the noncondensable species tend to segregate in the condensation boundary layer. This paper presents a fundamental analysis of the mass transport with multiple noncondensable species, identifying a simple method to calculate an effective mass diffusion coefficient that can be used with the simple diffusion layer model, and discusses in detail the effects of using mass and mole based quantities, and various simplifying approximations, on predicted condensation rates. The results are illustrated with quantitative examples to demonstrate the potential importance of multi-component noncondensable gas effects

  20. On nitrogen condensation in hypersonic nozzle flows: Numerical method and parametric study

    KAUST Repository

    Lin, Longyuan

    2013-12-17

    A numerical method for calculating two-dimensional planar and axisymmetric hypersonic nozzle flows with nitrogen condensation is developed. The classical nucleation theory with an empirical correction function and the modified Gyarmathy model are used to describe the nucleation rate and the droplet growth, respectively. The conservation of the liquid phase is described by a finite number of moments of the size distribution function. The moment equations are then combined with the Euler equations and are solved by the finite-volume method. The numerical method is first validated by comparing its prediction with experimental results from the literature. The effects of nitrogen condensation on hypersonic nozzle flows are then numerically examined. The parameters at the nozzle exit under the conditions of condensation and no-condensation are evaluated. For the condensation case, the static pressure, the static temperature, and the amount of condensed fluid at the nozzle exit decrease with the increase of the total temperature. Compared with the no-condensation case, both the static pressure and temperature at the nozzle exit increase, and the Mach number decreases due to the nitrogen condensation. It is also indicated that preheating the nitrogen gas is necessary to avoid the nitrogen condensation even for a hypersonic nozzle with a Mach number of 5 operating at room temperatures. © 2013 Springer-Verlag Berlin Heidelberg.

  1. Design Of The Canal System Of KLA-60 Condensation Produce

    International Nuclear Information System (INIS)

    Sriawan; Wiranto, Slamet

    2000-01-01

    The RSG-GAS reactor pool ventilation system (KLA-60) which be used to avoid circulation of contamination air in the reactor hall, flow the 60% air from the pool surface to stack through the various filters. In case the isolation building the air from the pool surface is flooded back to the operation hall after exceed the heat exchanger, cooler and the various filters. One of the weakness of this system and must be solved by RSG is handing of the condensation water because in the canal system of the KLA-60 condensation produce is to be found some soiled like algae and to go the reactor pool. To solve this problem should be carried out research about the canal system of KLA-60 condensation produce and design the new canal system to find the good function. At the first design is carried out study about the function of the old of canal system of KLA-60 condensation produce. Base on this study have been carried out design of the canal system KLA-60 condensation produce, with can prevent the soiled to go to the reactor pool

  2. Coherent magnon optics in a ferromagnetic spinor Bose-Einstein condensate.

    Science.gov (United States)

    Marti, G Edward; MacRae, Andrew; Olf, Ryan; Lourette, Sean; Fang, Fang; Stamper-Kurn, Dan M

    2014-10-10

    We measure the dispersion relation, gap, and magnetic moment of a magnon in the ferromagnetic F = 1 spinor Bose-Einstein condensate of (87)Rb. From the dispersion relation we measure an average effective mass 1.033(2)(stat)(10)(sys) times the atomic mass, as determined by interfering standing and running coherent magnon waves within the dense and trapped condensed gas. The measured mass is higher than theoretical predictions of mean-field and beyond-mean-field Beliaev theory for a bulk spinor Bose gas with s-wave contact interactions. We observe a magnon energy gap of h × 2.5(1)(stat)(2)(sys) Hz, which is consistent with the predicted effect of magnetic dipole-dipole interactions. These dipolar interactions may also account for the high magnon mass. The effective magnetic moment of -1.04(2)(stat)(8)(sys) times the atomic magnetic moment is consistent with mean-field theory.

  3. Multi-column adsorption systems with condenser for tritiated water vapor removal

    International Nuclear Information System (INIS)

    Kotoh, Kenji; Kudo, Kazuhiko

    1996-01-01

    Two types of multi-column adsorption system are proposed as the system for removal of tritiated moisture from tritium process gases or/and handling room atmospheres. The types are of recycle use of adsorption columns, and are composed of twin or triplet columns and one condenser which is used for collecting the adsorbed moisture from columns in desorption process. The systems utilize the dry gas from a working column as the purge gas for regenerating a saturated column and appropriate an active column for recovery of the tritiated moisture passing through the condenser. Each column hence needs the additional amount of adsorbent for collecting the moisture from the condenser. In the modeling and design of an adsorption column, it is primary to estimate the necessary amount of a candidate adsorbent for its packed-bed. The performance of the proposed systems is examined here by analyzing the dependence of the necessary amount of adsorbent for their columns on process operational conditions and adsorbent moisture-adsorption characteristics. The result shows that the necessary amount is sensitive to the types of adsorption isotherm, and suggests that these systems should employ adsorbents which exhibit the Langmuir-type isotherms. (author)

  4. Bose-Einstein condensation of photons in a 'white-wall' photon box

    International Nuclear Information System (INIS)

    Klaers, Jan; Schmitt, Julian; Vewinger, Frank; Weitz, Martin

    2011-01-01

    Bose-Einstein condensation, the macroscopic ground state occupation of a system of bosonic particles below a critical temperature, has been observed in cold atomic gases and solid-state physics quasiparticles. In contrast, photons do not show this phase transition usually, because in Planck's blackbody radiation the particle number is not conserved and at low temperature the photons disappear in the walls of the system. Here we report on the realization of a photon Bose-Einstein condensate in a dye-filled optical microcavity, which acts as a 'white-wall' photon box. The cavity mirrors provide a trapping potential and a non-vanishing effective photon mass, making the system formally equivalent to a two-dimensional gas of trapped massive bosons. Thermalization of the photon gas is reached in a number conserving way by multiple scattering off the dye molecules. Signatures for a BEC upon increased photon density are: a spectral distribution that shows Bose-Einstein distributed photon energies with a macroscopically populated peak on top of a broad thermal wing, the observed threshold of the phase transition showing the predicted absolute value and scaling with resonator geometry, and condensation appearing at the trap centre even for a spatially displaced pump spot.

  5. Bose-Einstein condensation of photons in a 'white-wall' photon box

    Science.gov (United States)

    Klärs, Jan; Schmitt, Julian; Vewinger, Frank; Weitz, Martin

    2011-01-01

    Bose-Einstein condensation, the macroscopic ground state occupation of a system of bosonic particles below a critical temperature, has been observed in cold atomic gases and solid-state physics quasiparticles. In contrast, photons do not show this phase transition usually, because in Planck's blackbody radiation the particle number is not conserved and at low temperature the photons disappear in the walls of the system. Here we report on the realization of a photon Bose-Einstein condensate in a dye-filled optical microcavity, which acts as a "white-wall" photon box. The cavity mirrors provide a trapping potential and a non-vanishing effective photon mass, making the system formally equivalent to a two-dimensional gas of trapped massive bosons. Thermalization of the photon gas is reached in a number conserving way by multiple scattering off the dye molecules. Signatures for a BEC upon increased photon density are: a spectral distribution that shows Bose-Einstein distributed photon energies with a macroscopically populated peak on top of a broad thermal wing, the observed threshold of the phase transition showing the predicted absolute value and scaling with resonator geometry, and condensation appearing at the trap centre even for a spatially displaced pump spot.

  6. Coherent tunneling of atoms from Bose-condensed gases at finite temperatures

    International Nuclear Information System (INIS)

    Luxat, David L.; Griffin, Allan

    2002-01-01

    Tunneling of atoms between two trapped Bose-condensed gases at finite temperatures is explored using a many-body linear-response tunneling formalism similar to that used in superconductors. To lowest order, the tunneling currents can be expressed quite generally in terms of the single-particle Green's functions of isolated Bose gases. A coherent first-order tunneling Josephson current between two atomic Bose-Einstein condensates is found, in addition to coherent and dissipative contributions from second-order condensate-noncondensate and noncondensate-noncondensate tunneling. Our work is a generalization of Meier and Zwerger, who recently treated tunneling between uniform atomic Bose gases. We apply our formalism to the analysis of an out-coupling experiment induced by light wave fields, using a simple Bogoliubov-Popov quasiparticle approximation for the trapped Bose gas. For tunneling into the vacuum, we recover the results of Japha, Choi, Burnett, and Band, who recently pointed out the usefulness of studying the spectrum of out-coupled atoms. In particular, we show that the small tunneling current of noncondensate atoms from a trapped Bose gas has a broad spectrum of energies, with a characteristic structure associated with the Bogoliubov quasiparticle u 2 and v 2 amplitudes

  7. U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

  8. Endoscopic retrograde cholangiopancreatography causes reduced myocardial blood flow

    DEFF Research Database (Denmark)

    Christensen, M; Hendel, H W; Rasmussen, V

    2002-01-01

    BACKGROUND AND STUDY AIMS: Previous studies have shown that up to 50% of healthy patients may develop ST-segment changes during upper gastrointestinal endoscopy. The aim of the study was to evaluate myocardial blood flow in patients during endoscopic retrograde cholangiopancreatography (ERCP...

  9. Cardioplegia retrógrada seqüencial Sequencial retrograde cardioplegy

    Directory of Open Access Journals (Sweden)

    Otoni M Gomes

    1996-09-01

    extracorporeal circulation established. The following routes were employed for cardioplegic perfusion: 1 Antegrade - through ascending aortic canullation bellow the aortic occlusion clamp;2 Selective retrograde - through coronary synus (Co.S - 25 mmHg using a self-inflating ballooned cannula; 3 Total retrograde, (Co.S - 40 mmHg - through a cannula inserted in the right atrium (RA; 4 Sequencial retrograde, Co.S-RA - with the CS flowing first through the coronary synus lowering the interventricular septal temperature to 16 ºC and after through the RA cannula as in the total retrograde technique with the pulmonary artery occluded and;5 Sequencial retrograde, Co.S-RV - the RV chamber being directly cannulated through the tricuspid valve and perfused, instead of the RA in the latter technique. The temperature variation of the myocardium in the left ventricule (LV, RVt RA and sinus node region (SN was controlled employing an Omega needle termistor and thermometer. With the antegrade technique (70 mmHg pressure the most uniform myocardial cooling, the lowest CS volume and perfusion time duration was observed, followed In excelence by the Co.S-RA Sequencial retrograde technique and the Co.S-RV sequencial technique. The present data indicate that sequencial retrograde cardioplegic perfusion techinique is significantly better than the usual Co.S or RA total retrograde technique alone for myocardial protection when compared with the aortic root antegrade perfusion technique.

  10. Investigation of variable compositions on the removal of technetium from Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, John M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-29

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the offgas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter, so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.

  11. All-optical spinor Bose-Einstein condensation and the spinor dynamics-driven atom laser

    Science.gov (United States)

    Lundblad, Nathan Eric

    Optical trapping as a viable means of exploring the physics of ultracold dilute atomic gases has revealed a new spectrum of physical phenomena. In particular, macroscopic and sudden occupation of the ground state below a critical temperature---a phenomenon known as Bose-Einstein condensation---has become an even richer system for the study of quantum mechanics, ultracold collisions, and many-body physics in general. Optical trapping liberates the spin degree of the BEC, making the order parameter vectorial ('spinor BEC'), as opposed to the scalar order of traditional magnetically trapped condensates. The work described within is divided into two main efforts. The first encompasses the all-optical creation of a Bose-Einstein condensate in rubidium vapor. An all-optical path to spinor BEC (as opposed to transfer to an optical trap from a magnetic trap condensate) was desired both for the simplicity of the experimental setup and also for the potential gains in speed of creation; evaporative cooling, the only known path to dilute-gas condensation, works only as efficiently as the rate of elastic collisions in the gas, a rate that starts out much higher in optical traps. The first all-optical BEC was formed elsewhere in 2001; the years following saw many groups worldwide seeking to create their own version. Our own all-optical spinor BEC, made with a single-beam dipole trap formed by a focused CO2 laser, is described here, with particular attention paid to trap loading, measurement of trap parameters, and the use of a novel 780 nm high-power laser system. The second part describes initial experiments performed with the nascent condensate. The spinor properties of the condensate are documented, and a measurement is made of the density-dependent rate of spin mixing in the condensate. In addition, we demonstrate a novel dual-beam atom laser formed by outcoupling oppositely polarized components of the condensate, whose populations have been coherently evolved through spin

  12. The truncated Wigner method for Bose-condensed gases: limits of validity and applications

    International Nuclear Information System (INIS)

    Sinatra, Alice; Lobo, Carlos; Castin, Yvan

    2002-01-01

    We study the truncated Wigner method applied to a weakly interacting spinless Bose-condensed gas which is perturbed away from thermal equilibrium by a time-dependent external potential. The principle of the method is to generate an ensemble of classical fields ψ(r) which samples the Wigner quasi-distribution function of the initial thermal equilibrium density operator of the gas, and then to evolve each classical field with the Gross-Pitaevskii equation. In the first part of the paper we improve the sampling technique over our previous work (Sinatra et al 2000 J. Mod. Opt. 47 2629-44) and we test its accuracy against the exactly solvable model of the ideal Bose gas. In the second part of the paper we investigate the conditions of validity of the truncated Wigner method. For short evolution times it is known that the time-dependent Bogoliubov approximation is valid for almost pure condensates. The requirement that the truncated Wigner method reproduces the Bogoliubov prediction leads to the constraint that the number of field modes in the Wigner simulation must be smaller than the number of particles in the gas. For longer evolution times the nonlinear dynamics of the noncondensed modes of the field plays an important role. To demonstrate this we analyse the case of a three-dimensional spatially homogeneous Bose-condensed gas and we test the ability of the truncated Wigner method to correctly reproduce the Beliaev-Landau damping of an excitation of the condensate. We have identified the mechanism which limits the validity of the truncated Wigner method: the initial ensemble of classical fields, driven by the time-dependent Gross-Pitaevskii equation, thermalizes to a classical field distribution at a temperature T class which is larger than the initial temperature T of the quantum gas. When T class significantly exceeds T a spurious damping is observed in the Wigner simulation. This leads to the second validity condition for the truncated Wigner method, T class - T

  13. Multiple-indicator dilution technique for characterization of normal and retrograde flow in once-through rat liver perfusions

    International Nuclear Information System (INIS)

    St-Pierre, M.V.; Schwab, A.J.; Goresky, C.A.; Lee, W.F.; Pang, K.S.

    1989-01-01

    The technique of normal and retrograde rat liver perfusion has been widely used to probe zonal differences in drug-metabolizing activities. The validity of this approach mandates the same tissue spaces being accessed by substrates during both normal and retrograde perfusions. Using the multiple-indicator dilution technique, we presently examine the extent to which retrograde perfusion alters the spaces accessible to noneliminated references. A bolus dose of 51Cr-labeled red blood cells, 125I-albumin, 14C-sucrose and 3H2O was injected into the portal (normal) or hepatic (retrograde) vein of rat livers perfused at 10 ml per min per liver. The outflow perfusate was serially collected over 220 sec to characterize the transit times and the distribution spaces of the labels. During retrograde perfusion, red blood cells, albumin and sucrose profiles peaked later and lower than during normal perfusion, whereas the water curves were similar. The transit times of red blood cells, albumin and sucrose were longer (p less than 0.005), whereas those for water did not change. Consequently, retrograde flow resulted in significantly larger sinusoidal blood volumes (45%), albumin Disse space (42%) and sucrose Disse space (25%) than during normal flow, whereas the distribution spaces for total and intracellular water remained unaltered. The distension of the vascular tree was confirmed by electron microscopy, by which occasional isolated foci of widened intercellular recesses and spaces of Disse were observed. Cellular ultrastructure was otherwise unchanged, and there was no difference found between normal and retrograde perfusion for bile flow rates, AST release, perfusion pressure, oxygen consumption and metabolic removal of ethanol, a substrate with flow-limited distribution, which equilibrates rapidly with cell water (hepatic extraction ratios were virtually identical: normal vs. retrograde, 0.50 vs. 0.48 at 6 to 7.4 mM input concentration)

  14. Light propagation in disordered media: From Maxwell equations to a spherical p-spin model and light condensation effects

    KAUST Repository

    Toth, Laszlo Daniel

    2013-05-01

    The well-known phenomenon of the formation of a Bose-Einstein condensate (BEC), a striking consequence of the Bose-Einstein statistics, has been traditionally linked to an ensemble of ultra-cold gas molecules. However, classical systems can also exhibit condensation effects; in the field of photonics, for example, signatures of this condensation in the mode dynamics (\\'light condensation\\', LC) have been theoretically investigated and experimentally observed in various types of multimode lasers [1,2 and ref. therein]. © 2013 IEEE.

  15. Twelve months follow-up after retrograde recanalization of superficial femoral artery chronic total occlusion

    Directory of Open Access Journals (Sweden)

    Joanna Wojtasik-Bakalarz

    2017-03-01

    Full Text Available Introduction : Fifty percent of cases of peripheral artery disease are caused by chronic total occlusion (CTO of the superficial femoral artery (SFA. Ten–fifteen percent of percutaneous SFA recanalization procedures are unsuccessful. In those cases the retrograde technique can increase the success rate of the procedure, but the long-term follow-up of such procedures is still unknown. Aim : To assess the efficacy and clinical outcomes during long-term follow-up after retrograde recanalization of the SFA. Material and methods: We included patients after at least one unsuccessful percutaneous antegrade recanalization of the SFA. Patients were evaluated for the procedural and clinical follow-up of mean time 13.9 months. Results: The study included 17 patients (7 females, 10 males who underwent percutaneous retrograde recanalization of the SFA from June 2011 to June 2015. The mean age of patients was 63 ±7 years. Retrograde puncture of the distal SFA was successful in all cases. A retrograde procedure was performed immediately after antegrade failure in 4 (23.5% patients and after a previously failed attempt in 13 (76.5% patients. The procedure was successful in 15 (88.2% patients, and unsuccessful in 2 (11.8% patients. Periprocedural complications included 1 peripheral distal embolization (successfully treated with aspiration thrombectomy, 1 bleeding event from the puncture site and 7 puncture site hematomas. During follow-up the all-cause mortality rate was 5.8% (1 patient, non-cardiac death. The primary patency rate at 12 months was 88.2% and secondary patency 100%. Conclusions : The retrograde SFA puncture seems to be a safe and successful technique for CTO recanalization and is associated with a low rate of perioperative and long-term follow-up complications.

  16. Monitoring of trace chloride ions at different stages of the gas production process

    Directory of Open Access Journals (Sweden)

    A.Y. El Naggar

    2015-01-01

    Full Text Available Fifty gas and liquid samples at different stages of Obaiyed gas plant in Egypt were selected and subjected for determining chloride ion and hydrocarbon compositions. The trace levels of chloride in the water extracted from natural gas, condensate, Benfield and glycol samples were achieved using ion chromatograph (IC, electrical, conductivity and potentiometric methods, respectively. The hydrocarbon compositions were analyzed and evaluated using capillary gas chromatography. The chloride ions in natural gas and condensate are a function of water content and their concentration mainly depends on the separation efficiency. Variability in natural gas and condensate compositions seasonally is not an uncommon occurrence. Our aim is monitoring of chloride ion to select and optimize the conditions of sweetening and dehydration regenerators in order to follow and prevent their gradient in gas plant.

  17. Method of separation of gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, M.A.; Potapov, V.F.; Potapova, M.S.

    1980-04-05

    Gas mixtures are separated in a rectification tower by repeated counterflow contact of the heated gas flow and cool condensate as the pressure drops in each stage of separation (StR) and when condensate is added from StR with lower pressure to the StR with higher pressure. In order to reduce energy consumption noncondensing gas in amounts of 5-15 percent by weight of the amount of incoming gases are added. Hydrocarbon or carbon dioxide gas can be used as the latter. Example. To separate natural gas of the Shatlyk deposit of composition, percent by mo1: C1 -- 94.960; C2 -- 4.260; C3 -- 0.200; C4 -- 0.08; C4+B -- 0.51. It is enriched with carbon dioxide gas in an amount of 10 percent by weight. Upon rectification of the enriched hydrocarbon mixture separation is achieved at lower pressures of the gas mixture and less cold. This leads to reduction of energy consumption by 10-12 percent.

  18. Preserved memory in retrograde amnesia: sparing of a recently acquired skill.

    Science.gov (United States)

    Squire, L R; Cohen, N J; Zouzounis, J A

    1984-01-01

    Recent work with amnesic patients has revealed a preserved capacity for acquiring and retaining new skills despite otherwise profound anterograde impairment. In addition to their anterograde impairment, amnesic patients also have retrograde memory loss for some information acquired prior to the amnesic event. The present experiment addresses for the first time the question of whether preservation of memory for skills is also a feature memory impairment. To determine the susceptibility of a recently learned skill to retrograde amnesia, we taught patients to read mirror-reversed words before and during the early part of a prescribed course of electroconvulsive therapy (ECT) and then tested retention of the skill after the course of treatment had been completed. Patients prescribed bilateral or right unilateral ECT and depressed patients not receiving ECT acquired the mirror-reading skill at the same rate and then retained it at the same level. For the patients prescribed ECT, intact learning and retention of the skill occurred despite retrograde amnesia for the previous testing sessions and for the words that they had read previously.

  19. Radiation therapy with concurrent retrograde superselective intra-arterial chemotherapy for gingival carcinoma

    International Nuclear Information System (INIS)

    Mukai, Y.; Hata, M.; Koike, I.; Inoue, T.; Mitsudo, K.; Koizumi, T.; Oguri, S.; Kioi, M.; Tohnai, I.; Omura, M.

    2014-01-01

    The aim of this study was to review the efficacy and toxicity of radiation therapy with concurrent retrograde superselective intra-arterial chemotherapy in the treatment of gingival carcinoma. In all, 34 patients (21 men and 13 women) with squamous cell carcinoma of the gingiva underwent radiation therapy with concurrent retrograde superselective intra-arterial chemotherapy. Treatment consisted of daily external irradiation and concurrent retrograde superselective intra-arterial infusion with cisplatin and docetaxel. A median total dose of 60 Gy in 30 fractions was delivered to tumors. Of the 34 patients, 29 (85 %) achieved a complete response (CR) and 5 had residual tumors. Of the 29 patients with a CR, 2 had local recurrences and 1 had distant metastasis 1-15 months after treatment. Twenty-six of the 36 patients had survived at a median follow-up time of 36 months (range 12-79 months); 4 died of cancer and 4 died of non-cancer-related causes. At both 3 and 5 years after treatment, the overall survival rates were 79 % and the cause-specific survival rates were 85 %. Osteoradionecrosis of the mandibular bone only developed in 1 patient after treatment. Radiation therapy with concurrent retrograde superselective intra-arterial chemotherapy was effective and safe in the treatment of gingival carcinoma. This treatment may be a promising curative and organ-preserving treatment option for gingival carcinoma. (orig.) [de

  20. The therapeutic effect of crocin on ketamine-induced retrograde amnesia in rats

    Directory of Open Access Journals (Sweden)

    Namdar Yousefvand

    2016-09-01

    Full Text Available Introduction: The glutamatergic system plays an important role in learning and memory. Administration of crocus sativus (Saffron or its constituent, crocin, facilitates the formation of memory. This research investigated the effect of crocin on antagonizing retrograde amnesia induced by ketamine, a glutamatergic receptor antagonist, in rats by shuttle box. Methods: Male Wistar rats were tested to measure their learning behavior in the passive avoidance task. All animals were trained by a 1 mA shock. The drugs were injected immediately after the training was successfully performed. The animals were tested 24h after training to measure Step Through Latency (STL. Results: On the test day, administration of ketamine (12 mg/kg, ip impaired the memory after training. Different doses of crocin (2, 5 or 10 mg/kg, ip were injected 30 min after ketamine, but only 2 mg/kg crocin could improve retrograde amnesia and 5 and 10 mg/kg doses did not have any significant effect on retrograde amnesia. Moreover, administration of crocin (2, 5 or 10 mg/kg, ip after training had no significant impact on passive avoidance memory by itself. Conclusion: Considering the therapeutic effect of post-training administration of crocin on ketamine-induced retrograde amnesia, it can be argued that crocin has an interaction with glutamatergic system in formation of passive avoidance memory in rats.