WorldWideScience

Sample records for retrans reactivity transients

  1. RETRANS, Reactivity Transients in LWR

    International Nuclear Information System (INIS)

    Kamelander, G.

    1989-01-01

    1 - Description of program or function: RETRANS is appropriate to calculate power excursions in light water reactors initiated by reactivity insertions due to withdrawal of control elements. As in the code TWIGL, the neutron physics model is based on the time-dependent two-group neutron diffusion equations. The equation of state of the coolant is approximated by a table built into the code. RETRANS solves the heat conduction equation and calculates the heat transfer coefficient for representative fuel rods at each time-step. 2 - Method of solution: The time-dependent neutron diffusion equations are modified by an exponential transformation and solved by means of a finite difference method. There is an option accelerating the inner iterations of the difference scheme by a coarse-mesh re-balancing method. The heat balance equations of the thermo- hydraulic model are discretized and converted into a tri-diagonal system of linear equations which is solved recursively. 3 - Restrictions on the complexity of the problem: r-z-geometry, one- phase-flow

  2. Interface of RETRAN/MASTER Code System for APR1400

    International Nuclear Information System (INIS)

    Ku, Keuk Jong; Kang, Sang Hee; Kim, Han Gon

    2008-01-01

    MASTER(Multi-purpose Analyzer for Static and Transient Effects of Reactors), which was developed by KAERI, is a nuclear analysis and design code which can simulate the pressurized water reactor core or boiling water reactor core in 3-dimensional geometry. RETRAN is a best-estimate code for transient analysis of Non-LOCA. RETRAN code generates neutron number density in core using point kinetics model which includes feedback reactivities and converts the neutron number density into reactor power. It is conventional that RETRAN code for power generation is roughly to extrapolate feedback reactivities which are provided by MASTER code only one time before transient analysis. The purpose of this paper is to interface RETRAN code with MASTER code by real-time processing and to supply adequate feedback reactivities to RETRAN code. So, we develop interface code called MATRAN for real-time feedback reactivity processing. And for the application of MATRAN code, we compare the results of real-time MATRAN code with those of conventional RETRAN/MASTER code

  3. Analysis of cofrentes abnormal plant transients with RETRAN-02 and RETRAN-03

    International Nuclear Information System (INIS)

    Mata, P.; Sedano, P.G.; Serra, J.

    1992-01-01

    In this paper the applicability and usefulness of a complete and well-qualified plant transient code and model to support in-depth evaluation of anomalous plant transients are described. The qualified best-estimate RETRAN-02 model for the Cofrentes nuclear power plant (a boiling water reactor with an uprated power of 2952 MW) has been updated for RETRAN-03 using algebraic slip and one-dimensional kinetics. This model has been used in the analysis of recent abnormal plant transients at Cofrentes, including a partial control rod insertion at 92% power, a turbine trip at 67% power with reactor vessel overfill, and reactor instabilities during startup

  4. RETRAN experience with BWR transients at Yankee Atomic Electric Company

    International Nuclear Information System (INIS)

    Ansari, A.A.F.; Cronin, J.T.; Slifer, B.C.

    1981-01-01

    Yankee Atomic Electric Company is actively involved in the development of licensing methods for BWR's. The computer code chosen for analyzing system response under transient conditions is RETRAN. This paper describes the RETRAN model developed for Vermont Yankee, and the results of the RETRAN checkout and qualification that has been achieved at YAEC through comparison of RETRAN predictions to the startup test results performed at the plant as part of the 100% power startup test program. In addition, abnormal operational transients typically analyzed for licensing are also presented

  5. RETRAN sensitivity studies of light water reactor transients. Final report

    International Nuclear Information System (INIS)

    Burrell, N.S.; Gose, G.C.; Harrison, J.F.; Sawtelle, G.R.

    1977-06-01

    This report presents the results of sensitivity studies performed using the RETRAN/RELAP4 transient analysis code to identify critical parameters and models which influence light water reactor transient predictions. Various plant transients for both boiling water reactors and pressurized water reactors are examined. These studies represent the first detailed evaluation of the RETRAN/RELAP4 transient code capability in predicting a variety of plant transient responses. The wide range of transients analyzed in conjunction with the parameter and modeling studies performed identify several sensitive areas as well as areas requiring future study and model development

  6. RETRAN operational transient analysis of the Big Rock Point plant boiling water reactor

    International Nuclear Information System (INIS)

    Sawtelle, G.R.; Atchison, J.D.; Farman, R.F.; VandeWalle, D.J.; Bazydlo, H.G.

    1983-01-01

    Energy Incorporated used the RETRAN computer code to model and calculate nine Consumers Power Company Big Rock Point Nuclear Power Plant transients. RETRAN, a best-estimate, one-dimensional, homogeneous-flow thermal-equilibrium code, is applicable to FSAR Chapter 15 transients for Conditions 1 through IV. The BWR analyses were performed in accordance with USNRC Standard Review Plan criteria and in response to the USNRC Systematic Evaluation Program. The RETRAN Big Rock Point model was verified by comparison to plant startup test data. This paper discusses the unique modeling techniques used in RETRAN to model this steam-drum-type BWR. Transient analyses results are also presented

  7. RETRAN-02: a program for transient thermal-hydraulic analysis of complex fluid-flow systems. Volume 4. Applications

    International Nuclear Information System (INIS)

    Peterson, C.E.; Gose, G.C.; McFadden, J.H.

    1983-01-01

    RETRAN-02 represents a significant achievement in the development of a versatile and reliable computer program for use in best estimate transient thermal-hydraulic analysis of light water reactor systems. The RETRAN-02 computer program is an extension of the RETRAN-01 program designed to provide analysis capabilities for 1) BWR and PWR transients, 2) small break loss of coolant accidents, 3) balance of plant modeling, and 4) anticipated transients without scram, while maintaining the analysis capabilities of the predecessor code. The RETRAN-02 computer code is constructed in a semimodular and dynamic dimensioned form where additions to the code can be easily carried out as new and improved models are developed. This report (the fourth of a five volume computer code manual) describes the verification and validation of RETRAN-02

  8. Improvement of RETRAN-MASTER-TORC transient capability and coupling optimization

    International Nuclear Information System (INIS)

    Cho, J. Y.; Song, J. S.; Joo, H. G.; Seo, K. W.; Whang, D. H.; Lee, C. C.; Zee, S. Q.

    2003-11-01

    This work is to improve MASTER-TORC transient calculation capability by complementing the previously developed consolidated code system RETRAN- MASTER-TORC, and to reduce the computing time by coupling optimization. The coupling soundness and optimization performance of the consolidated code system are evaluated by solving a YGN3 control bank ejection accident and the OECD Main Steam Line Break(MSLB) benchmark problems. The YGN3 control bank ejection accident is analyzed by the MASTER-TORC system. Most of all results including the transient core power, peak power and time are similar with those from the MASTER-COBRA system. In the computing time, the MASTER- TORC system is proved to be same as the MASTER-COBRA system, which means the coupling is sound and well-optimized. In the analysis of the OECD MSLB benchmark problem, the RETRAN-MASTER-TORC system shows the very similar results with the RETRAN-MASTER-COBRA system. However, minor differences due to fuel conductivity and thermal capacity model are noticed. In TORC, these parameters are treated as constants, while they are modeled as temperature dependent functions in COBRA. Therefore, in the future, TORC need to complement the temperature dependent thermal properties for accurate fuel and cladding temperature calculation. In the computing time for this problem, RETRAN-MASTER-TORC system shows a little bit faster than COBRA case

  9. Peach Bottom Turbine Trip Simulations with RETRAN Using INER/TPC BWR Transient Analysis Method

    International Nuclear Information System (INIS)

    Kao Lainsu; Chiang, Show-Chyuan

    2005-01-01

    The work described in this paper is benchmark calculations of pressurization transient turbine trip tests performed at the Peach Bottom boiling water reactor (BWR). It is part of an overall effort in providing qualification basis for the INER/TPC BWR transient analysis method developed for the Kuosheng and Chinshan plants. The method primarily utilizes an advanced system thermal hydraulics code, RETRAN02/MOD5, for transient safety analyses. Since pressurization transients would result in a strong coupling effect between core neutronic and system thermal hydraulics responses, the INER/TPC method employs the one-dimensional kinetic model in RETRAN with a cross-section data library generated by the Studsvik-CMS code package for the transient calculations. The Peach Bottom Turbine Trip (PBTT) tests, including TT1, TT2, and TT3, have been successfully performed in the plant and assigned as standards commonly for licensing method qualifications for years. It is an essential requirement for licensing purposes to verify integral capabilities and accuracies of the codes and models of the INER/TPC method in simulating such pressurization transients. Specific Peach Bottom plant models, including both neutronics and thermal hydraulics, are developed using modeling approaches and experiences generally adopted in the INER/TPC method. Important model assumptions in RETRAN for the PBTT test simulations are described in this paper. Simulation calculations are performed with best-estimated initial and boundary conditions obtained from plant test measurements. The calculation results presented in this paper demonstrate that the INER/TPC method is capable of calculating accurately the core and system transient behaviors of the tests. Excellent agreement, both in trends and magnitudes between the RETRAN calculation results and the PBTT measurements, shows reliable qualifications of the codes/users/models involved in the method. The RETRAN calculated peak neutron fluxes of the PBTT

  10. RETRAN overview

    International Nuclear Information System (INIS)

    Agee, L.J.

    1985-01-01

    The RETRAN code has become the industry standard with respect to NSSS transient analysis. The objective of this paper is to present an overview of important RETRAN-related events since the second International meeting in April of 1982. This paper is divided into three parts. The first part addresses the current status of the code with emphasis on the design review of RETRAN-02 MOD002 and the goal of RETRAN-02 in the Reactor Analysis Support Package (RASP). These activities are being undertaken to simplify the use of RETRAN for safety analysis and reload application which may be part of an NRC submittal. The second part of the paper describes significant applications of RETRAN. In the analysis section, special emphasis is placed on validation analyses which compare the code to actual plant data or experimental facilities. The third section briefly describes the pre-release version of RETRAN and the developmental goals for the next version of RETRAN. One major limitation of all state-of-the-art thermal-hydraulic codes is the determination of the structure of the fluid. A brief description of research needs in this are indicated

  11. One-dimensional reactor kinetics model for RETRAN

    International Nuclear Information System (INIS)

    Gose, G.C.; Peterson, C.E.; Ellis, N.L.; McClure, J.A.

    1981-01-01

    Previous versions of RETRAN have had only a point kinetics model to describe the reactor core behavior during thermal-hydraulic transients. The principal assumption in deriving the point kinetics model is that the neutron flux may be separated into a time-dependent amplitude funtion and a time-independent shape function. Certain types of transients cannot be correctly analyzed under this assumption, since proper definitions for core average quantities such as reactivity or lifetime include the inner product of the adjoint flux with the perturbed flux. A one-dimensional neutronics model has been included in a preliminary version of RETRAN-02. The ability to account for flux shape changes will permit an improved representation of the thermal and hydraulic feedback effects. This paper describes the neutronics model and discusses some of the analyses

  12. Development of a coupled code system based on system transient code, RETRAN, and 3-D neutronics code, MASTER

    International Nuclear Information System (INIS)

    Kim, K. D.; Jung, J. J.; Lee, S. W.; Cho, B. O.; Ji, S. K.; Kim, Y. H.; Seong, C. K.

    2002-01-01

    A coupled code system of RETRAN/MASTER has been developed for best-estimate simulations of interactions between reactor core neutron kinetics and plant thermal-hydraulics by incorporation of a 3-D reactor core kinetics analysis code, MASTER into system transient code, RETRAN. The soundness of the consolidated code system is confirmed by simulating the MSLB benchmark problem developed to verify the performance of a coupled kinetics and system transient codes by OECD/NEA

  13. One-dimensional reactor kinetics model for RETRAN

    International Nuclear Information System (INIS)

    Gose, G.C.; Peterson, C.E.; Ellis, N.L.; McClure, J.A.

    1981-01-01

    This paper describes a one-dimensional spatial neutron kinetics model that was developed for the RETRAN code. The RETRAN -01 code has a point kinetics model to describe the reactor core behavior during thermal-hydraulic transients. A one-dimensional neutronics model has been developed for RETRAN-02. The ability to account for flux shape changes will permit an improved representation of the thermal and hydraulic feedback effects for many operational transients. 19 refs

  14. The RETRAN-03 computer code

    International Nuclear Information System (INIS)

    Paulsen, M.P.; McFadden, J.H.; Peterson, C.E.; McClure, J.A.; Gose, G.C.; Jensen, P.J.

    1991-01-01

    The RETRAN-03 code development effort is designed to overcome the major theoretical and practical limitations associated with the RETRAN-02 computer code. The major objectives of the development program are to extend the range of analyses that can be performed with RETRAN, to make the code more dependable and faster running, and to have a more transportable code. The first two objectives are accomplished by developing new models and adding other models to the RETRAN-02 base code. The major model additions for RETRAN-03 are as follows: implicit solution methods for the steady-state and transient forms of the field equations; additional options for the velocity difference equation; a new steady-state initialization option for computer low-power steam generator initial conditions; models for nonequilibrium thermodynamic conditions; and several special-purpose models. The source code and the environmental library for RETRAN-03 are written in standard FORTRAN 77, which allows the last objective to be fulfilled. Some models in RETRAN-02 have been deleted in RETRAN-03. In this paper the changes between RETRAN-02 and RETRAN-03 are reviewed

  15. RETRAN-02 one-dimensional kinetics model: a review

    International Nuclear Information System (INIS)

    Gose, G.C.; McClure, J.A.

    1986-01-01

    RETRAN-02 is a modular code system that has been designed for one-dimensional, transient thermal-hydraulics analysis. In RETRAN-02, core power behavior may be treated using a one-dimensional reactor kinetics model. This model allows the user to investigate the interaction of time- and space-dependent effects in the reactor core on overall system behavior for specific LWR operational transients. The purpose of this paper is to review the recent analysis and development activities related to the one dimensional kinetics model in RETRAN-02

  16. The limiting events transient analysis by RETRAN02 and VIPRE01 for an ABWR

    International Nuclear Information System (INIS)

    Tsai Chiungwen; Shih Chunkuan; Wang Jongrong; Lin Haotzu; Jin Jiunan; Cheng Suchin

    2009-01-01

    This paper describes the transient analysis of generator load rejection (LR) and One Turbine Control Valve Closure (OTCVC) events for Lungmen nuclear power plant (LMNPP). According to the Critical Power Ratio (CPR) criterion, the Preliminary Safety Analysis Report (PSAR) concluded that LR and OTCVC are the first and second limiting events respectively. In addition, the fuel type is changed from GE12 to GE14 now. It's necessary to re-analyze these two events for safety consideration. In this study, to quantify the impact to reactor, the difference of initial critical power ratio (ICPR) and minimum critical power ratio (MCPR), ie. ΔCPR is calculated. The ΔCPRs of the LR and OTCVC events are calculated with the combination of RETRAN02 and VIPRE01 codes. In RETRAN02 calculation, a thermal-hydraulic model was prepared for the transient analysis. The data including upper plenum pressure, core inlet flow, normalized power, and axial power shapes during transient are furthermore submitted into VIPRE01 for ΔCPR calculation. In VIPRE01 calculation, there was a hot channel model built to simulate the hottest fuel bundle. Based on the thermal-hydraulic data from RETRAN02, the ΔCPRs are calculated by VIPRE01 hot channel model. Additionally, the different TCV control modes are considered to study the influence of different TCV closure curves on transient behavior. Meanwhile, sensitivity studies including different initial system pressure and different initial power/flow conditions are also considered. Based on this analysis, the maximum ΔCPRs for LR and OTCVC are 0.162 and 0.191 respectively. According CPR criterion, the result shows that the impact caused by OTCVC event leads to be larger than LR event. (author)

  17. Physical models and numerical methods of the reactor dynamic computer program RETRAN

    International Nuclear Information System (INIS)

    Kamelander, G.; Woloch, F.; Sdouz, G.; Koinig, H.

    1984-03-01

    This report describes the physical models and the numerical methods of the reactor dynamic code RETRAN simulating reactivity transients in Light-Water-Reactors. The neutron-physical part of RETRAN bases on the two-group-diffusion equations which are solved by discretization similar to the TWIGL-method. An exponential transformation is applied and the inner iterations are accelerated by a coarse-mesh-rebalancing procedure. The thermo-hydraulic model approximates the equation of state by a built-in steam-water-table and disposes of options for the calculation of heat-conduction coefficients and heat transfer coefficients. (Author) [de

  18. Analysis and sensitivity studies with CORETRAN and RETRAN-3D of the NEACRP PWR rod ejection benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Ferroukhi, H.; Coddington, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    2001-07-01

    The OECD/NEA PWR rod ejection benchmark has been analysed using the 3-D nodal spatial-kinetic codes CORETRAN and RETRAN-3D. The following results were obtained. A) The agreement in 3-D solution between CORETRAN and RETRAN-3D was found to be very good both during steady-state and transient conditions. In particular at HZP (hot zero power), an excellent agreement in the initial steady-state 3-D power distribution and with regard to the core power excursion during the super-prompt critical phase of the transient (i.e. when the negative reactivity feedback is still very weak) was found. This illustrates the consistency in the neutronic solution between both codes. B) At both HZP and FP (full power) conditions, the CORETRAN and RETRAN-3D results lie well within the range of the previous benchmark solutions. In particular at HZP, both codes predict a power excursion and an increase in maximum pellet temperature that are among the closest results to those obtained with the benchmark reference solution. It must here be emphasised that these analyses are by no means a validation of the codes. However, the good agreement of both CORETRAN and RETRAN-3D with other 3-D solutions provides confidence in the ability of these codes to analyse LWR (light water reactor) core transients. In addition, it was found appropriate to perform, for this well-defined international benchmark problem, some sensitivity studies in order to assess the impact of modelling options on the CORETRAN and RETRAN-3D results. (authors)

  19. Analysis and sensitivity studies with CORETRAN and RETRAN-3D of the NEACRP PWR rod ejection benchmark

    International Nuclear Information System (INIS)

    Ferroukhi, H.; Coddington, P.

    2001-01-01

    The OECD/NEA PWR rod ejection benchmark has been analysed using the 3-D nodal spatial-kinetic codes CORETRAN and RETRAN-3D. The following results were obtained. A) The agreement in 3-D solution between CORETRAN and RETRAN-3D was found to be very good both during steady-state and transient conditions. In particular at HZP (hot zero power), an excellent agreement in the initial steady-state 3-D power distribution and with regard to the core power excursion during the super-prompt critical phase of the transient (i.e. when the negative reactivity feedback is still very weak) was found. This illustrates the consistency in the neutronic solution between both codes. B) At both HZP and FP (full power) conditions, the CORETRAN and RETRAN-3D results lie well within the range of the previous benchmark solutions. In particular at HZP, both codes predict a power excursion and an increase in maximum pellet temperature that are among the closest results to those obtained with the benchmark reference solution. It must here be emphasised that these analyses are by no means a validation of the codes. However, the good agreement of both CORETRAN and RETRAN-3D with other 3-D solutions provides confidence in the ability of these codes to analyse LWR (light water reactor) core transients. In addition, it was found appropriate to perform, for this well-defined international benchmark problem, some sensitivity studies in order to assess the impact of modelling options on the CORETRAN and RETRAN-3D results. (authors)

  20. RETRAN's role in the development of Northeast Utilities' analytical capabilities

    International Nuclear Information System (INIS)

    Bonaca, M.V.; Gharakhani, A.; Sterner, R.W.

    1983-01-01

    The RETRAN code plays an important role in Northeast Utilities' (NUSCO's) safety analysis capabilities. Its ability to predict plant response to operational transients has been shown by several benchmarking efforts. Additionally, it has been utilized in performing both design-basis and bestestimate analyses for NUSCO's operating plants. The decision to use RETRAN as a major contributor to reload analysis efforts at NUSCO was justified by the results of numerous analyses proving RETRAN's capabilities and credibility

  1. Conceptual Design of GRIG (GUI Based RETRAN Input Generator)

    International Nuclear Information System (INIS)

    Lee, Gyung Jin; Hwang, Su Hyun; Hong, Soon Joon; Lee, Byung Chul; Jang, Chan Su; Um, Kil Sup

    2007-01-01

    For the development of high performance methodology using advanced transient analysis code, it is essential to generate the basic input of transient analysis code by rigorous QA procedures. There are various types of operating NPPs (Nuclear Power Plants) in Korea such as Westinghouse plants, KSNP(Korea Standard Nuclear Power Plant), APR1400 (Advance Power Reactor), etc. So there are some difficulties to generate and manage systematically the input of transient analysis code reflecting the inherent characteristics of various types of NPPs. To minimize the user faults and investment man power and to generate effectively and accurately the basic inputs of transient analysis code for all domestic NPPs, it is needed to develop the program that can automatically generate the basic input, which can be directly applied to the transient analysis, from the NPP design material. ViRRE (Visual RETRAN Running Environment) developed by KEPCO (Korea Electric Power Corporation) and KAERI (Korea Atomic Energy Research Institute) provides convenient working environment for Kori Unit 1/2. ViRRE shows the calculated results through on-line display but its capability is limited on the convenient execution of RETRAN. So it can not be used as input generator. ViSA (Visual System Analyzer) developed by KAERI is a NPA (Nuclear Plant Analyzer) using RETRAN and MARS code as thermal-hydraulic engine. ViSA contains both pre-processing and post-processing functions. In the pre-processing, only the trip data cards and boundary conditions can be changed through GUI mode based on pre-prepared text-input, so the capability of input generation is very limited. SNAP (Symbolic Nuclear Analysis Package) developed by Applied Programming Technology, Inc. and NRC (Nuclear Regulatory Commission) provides efficient working environment for the use of nuclear safety analysis codes such as RELAP5 and TRAC-M codes. SNAP covers wide aspects of thermal-hydraulic analysis from model creation through data analysis

  2. LMR steam generator blowdown with RETRAN

    International Nuclear Information System (INIS)

    Wei, T.Y.C.

    1985-01-01

    One of the transients being considered in the FSAR Chapter 15 analyses of anticipated LMR transients is the fast blowdown of a steam generator upon inadvertent actuation of the liquid metal/water reaction mitigation system. For the blowdown analysis, a stand-alone steam generator model for the IFR plant was constructed using RETRAN

  3. Applications of RETRAN-3D for nuclear power plant transient analyses

    International Nuclear Information System (INIS)

    Paulsen, M.P.; Gose, G.C.; McFadden, J.H.; Agee, L.J.

    1996-01-01

    The RETRAN-3D computer program has been developed to analyze reactor events for which nonequilibrium thermodynamics, multidimensional neutron kinetics, or the presence of noncondensable gases are important items for consideration. This paper summarizes the features of RETRAN-3D and the analyses that have been performed to provide the verification and validation of the program

  4. Kuosheng BWR/6 recirculation pump trip transient analysis with the RETRAN02/MOD5 code

    International Nuclear Information System (INIS)

    Wang, J.R.; Shih, C.

    1992-01-01

    A recirculation pump trip (RPT) event results in a reduction in recirculation flow, which reduces the core coolant flow rate. A reduction in core flow results in an increase in core void fraction and hence a decrease in core power due to negative void reactivity feedback. Although this category of events is less severe than others and generally considered as nonlimiting, core instability still may occur such as that at LaSalle on March 9, 1988. This paper focuses on the RPT transient analysis of Kuosheng Nuclear Power Plant (KNPP), which has two units of General Electric-designed boiling water reactor (BWR)/6 with rated core thermal power of 2894 MW and rated core flow of 10645 kg/s (23472 lb m /s). The approach to investigating the RPT transient of KNPP consists of two steps. The first step is to develop a plant-specific model using the RETRAN02/MOD5 code. In this step, various plant-specific information, including design documentation, drawings, safety analysis reports, and other information supplied by vendors were collected for model development. The RPT startup test at 68% power was used for system model benchmarking to ensure the adequacy of this model and identify several sensitive parameters. The second step is to assess whether similar power oscillation phenomena may occur at KNPP because of an RPT with isolated feedwater heater event. Two transient analyses (with or without reactor scram) of the KNPP RPT with isolated feedwater heater were investigated

  5. RETRAN-02 installation and verification for the CRAY computer

    International Nuclear Information System (INIS)

    1990-03-01

    The RETRAN-02 transient thermal-hydraulic analysis program developed by the Electric Power Research Institute (EPRI) has been selected as a tool for use in assessing the operation and safety of the SP-100 space reactor system being developed at Los Alamos National Laboratory (LANL). The released versions of RETRAN-02 are not operational on CRAY computer systems which are the primary mainframes in use at LANL requiring that the code be converted to the CRAY system. This document describes the code conversion, installation, and validation of the RETRAN-02/MOD004 code on the LANL CRAY computer system

  6. Development of the RETRAN input model for Ulchin 3/4 visual system analyzer

    International Nuclear Information System (INIS)

    Lee, S. W.; Kim, K. D.; Lee, Y. J.; Lee, W. J.; Chung, B. D.; Jeong, J. J.; Hwang, M. K.

    2004-01-01

    As a part of the Long-Term Nuclear R and D program, KAERI has developed the so-called Visual System Analyzer (ViSA) based on best-estimate codes. The MARS and RETRAN codes are used as the best-estimate codes for ViSA. Between these two codes, the RETRAN code is used for realistic analysis of Non-LOCA transients and small-break loss-of-coolant accidents, of which break size is less than 3 inch diameter. So it is necessary to develop the RETRAN input model for Ulchin 3/4 plants (KSNP). In recognition of this, the RETRAN input model for Ulchin 3/4 plants has been developed. This report includes the input model requirements and the calculation note for the input data generation (see the Appendix). In order to confirm the validity of the input data, the calculations are performed for a steady state at 100 % power operation condition, inadvertent reactor trip and RCP trip. The results of the steady-state calculation agree well with the design data. The results of the other transient calculations seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the RETRAN input data can be used as a base input deck for the RETRAN transient analyzer for Ulchin 3/4. Moreover, it is found that Core Protection Calculator (CPC) module, which is modified by Korea Electric Power Research Institute (KEPRI), is well adapted to ViSA

  7. RETRAN nonequilibrium two-phase flow model for operational transient analyses

    International Nuclear Information System (INIS)

    Paulsen, M.P.; Hughes, E.D.

    1982-01-01

    The field balance equations, flow-field models, and equation of state for a nonequilibrium two-phase flow model for RETRAN are given. The differential field balance model equations are: (1) conservation of mixture mass; (2) conservation of vapor mass; (3) balance of mixture momentum; (4) a dynamic-slip model for the velocity difference; and (5) conservation of mixture energy. The equation of state is formulated such that the liquid phase may be subcooled, saturated, or superheated. The vapor phase is constrained to be at the saturation state. The dynamic-slip model includes wall-to-phase and interphase momentum exchanges. A mechanistic vapor generation model is used to describe vapor production under bulk subcooling conditions. The speed of sound for the mixture under nonequilibrium conditions is obtained from the equation of state formulation. The steady-state and transient solution methods are described

  8. Analysis of a 12-Finger Rod Drop using RETRAN/MASTER Code System for APR1400

    International Nuclear Information System (INIS)

    Yu, Keuk Jong; You, Sung Chang; Kim, Han Gon

    2009-01-01

    The Optimized Power Reactor 1000 (OPR1000) has 4-finger and 12-finger Control Element Assemblies (CEAs). When the 12-finger CEA is dropped, Core Protection Calculator System (CPCS) shuts down the reactor to prevent fuel damage that could occur from the sudden reactor power peaking. By contrast, the improved CPCS of Advanced Power Reactor 1400 (APR1400), which has systems similar to those of the OPR1000, decreases reactor power rapidly using its Reactor Power Cutback System (RPCS) to avoid unwanted reactor trips caused by the CPCS during a 12- finger CEA drop event. RETRAN is a best-estimate code for transient analysis of Non-LOCA. The RETRAN control logic, which includes the function of reducing reactor power during a 12-Finger CEA drop, has been developed for the APR1400. A MATRAN program has also been developed. MATRAN is the interface program for realtime processing to connect RETRAN with MASTER code which is a nuclear analysis and design code. MATRAN supplies adequate feedback reactivities from the MASTER code to RETRAN code. The purpose of this study is to analyze the behavior of a nuclear reactor core and its primary system using conventional RETRAN analysis procedure and MATRAN program analysis procedure during a 12- finger CEA drop. In addition, the axial power distribution and Axial Shape Index (ASI) are produced by the MATRAN program and they are confirmed as within operation limits

  9. International RETRAN conference 1998: Proceedings

    International Nuclear Information System (INIS)

    Gose, G.; McFadden, J.

    1998-09-01

    The RETRAN computer code, developed by EPRI through its Contractors, EI International, Inc. (EI) and Computer Simulation and Analysis, Inc. (CSA), is now widely used by the international nuclear community for various types of safety analyses. In order to exchange information concerning the current use of the code by the various organizations, EPRI and CSA sponsored the Ninth International meeting in Monterey, California, on June 7--10, 1998. The opening session featured a panel discussion on Analysis Need for Supporting Nuclear Plants in the 21st Century by representatives of the US Nuclear Industry as well as a review of RETRAN activities since the last International RETRAN Meeting. During the three-day meeting, technical papers were presented by the various participants. The papers generally dealt with the following topics: (1) RETRAN-3D development, verification, and validation; (2) RETRAN-02/RETRAN-3D analysis of PWRs; (3) RETRAN-02/RETRAN-3D analysis of BWRs; and (4) CORETRAN development and analyses activities

  10. RETRAN-3D MOD003 Peach Bottom Turbine Trip 2 Multidimensional Kinetics Analysis Models and Results

    International Nuclear Information System (INIS)

    Mori, Michitsugu; Ogura, Katsunori; Gose, Garry C.; Wu, J.-Y.

    2003-01-01

    An analysis of the Peach Bottom Unit 2 Turbine Trip Test 2 (PB2/TT2) has been performed using RETRAN-3D MOD003. The purpose of the analysis was to investigate the PB2/TT2 overpressurization transient using the RETRAN-3D multidimensional kinetics model

  11. Analysis of steam line break of SMART using RETRAN-3D/INT

    International Nuclear Information System (INIS)

    Kim, Tae-Wan; Kim, Jong-Won; Park, Goon-Cherl

    2003-01-01

    RETRAN-3D has been modified to be suitable to safety analysis for integral type marine reactor with modular helical-coiled steam generator cassettes. The modified RETRAN-3D, RETRAN-3D/INT, has helical coil heat conductor model and heat transfer coefficient models for tube and shell sides of helical-coiled steam generator. In addition, moving models are added to simulate the effect of ship motions such as inclination, heaving, rolling and so on. RETRAN-3D/INT has been verified with natural circulation experiment conducted in Seoul National University and the analysis results for the first Japanese nuclear ship, MUTSU. In this study, the safety analysis for SMART, which has been developed by Korea Atomic Energy Research Institute, is performed to examine the applicability of RETRAN-3D/INT to the safety analysis of SMART. The steam line break is selected as reference case. The break type is assumed to the guillotine break. The loss of offsite power is considered as a coincident event and the failure of single train of passive residual heat removal system is assumed as single failure. From the results, it is found that RETRAN-3D/INT can appropriately simulate the transient of SMART and the improvement of non-condensable gas model is required. (author)

  12. Safety analyses of the nuclear-powered ship Mutsu with RETRAN

    International Nuclear Information System (INIS)

    Naruko, Y.; Ishida, T.; Tanaka, Y.; Futamura, Y.

    1982-01-01

    To provide a quantitative basis for the safety evaluation of the N.S. Mutsu, a number of safety analyses were performed in the course of reexamination. With respect to operational transient analyses, the RETRAN computer code was used to predict plant performances on the basis of postulated transient scenarios. The COBRA-IV computer code was also used to obtain a value of the minimum DNBR for each transient, which is necessary to predict detailed thermal-hydraulic performances in the core region of the reactor. In the present paper, the following three operational transients, which were calculated as a part of the safety analyses, are being dealt with: a complete loss of load without reactor scram; an excessive load increase incident, which is followed by a 30 percent stepwise load increase in the steam dump flow; and an accidental depressurization of the primary system, which is followed by a sudden full opening of the pressurizer spray valve. A Mutsu two-loop RETRAN model and simulation results were described. The results being compared with those of land-based PWRs, the characteristic features of the Mutsu reactor were presented and the safety of the plant under the operational transient conditions was confirmed

  13. RETRAN02/MOD02: an outside perspective

    International Nuclear Information System (INIS)

    Wei, T.Y.C.

    1984-03-01

    ANL recently participated in a review of the RETRAN02/MOD02 code to determine the range of accuracy, the reliability and the reproducibility of results obtained with the code for Chapter 15 non-LOCA system transients for both pressurized water reactors (PWRs) and boiling water reactors (BWRs). This paper summarizes the technical aspects of that review

  14. Development of a GUI-based RETRAN running environment and its application

    International Nuclear Information System (INIS)

    Kim, K.D.; Jeong, J.J.; Mo, S.Y.; Lee, Y.G.; Lee, C.B.

    2001-01-01

    In order to assist RETRAN users in their input preparation, code execution, and output interpretation, a visual interactive RETRAN running environment (ViRRE) has been developed. ViRRE provides dialog boxes and graphical modules for base input data generation and transient initiation on a user-friendly basis, and special graphical displays to provide an in-depth understanding of the major thermal-hydraulic phenomena during normal and accident conditions for nuclear power plants. This paper presents the main features of ViRRE and an example of its application. (authors)

  15. A novel feedwater system for the RETRAN model of the Palo Verde nuclear generating station

    International Nuclear Information System (INIS)

    Secker, P.A.; Webb, J.R.

    1988-01-01

    This paper presents a feedwater system model which supplies realistic boundary conditions to the RETRAN model of a Palo Verde Nuclear Generating Station reactor plant. The RETRAN thermal hydraulic code is used to analyze nuclear reactor system transients through a generalized thermal hydraulic volume/junction network. The feedwater system model is implemented using the control block modeling option available in the RETRAN code. The output of the control block model is coupled to the thermal hydraulic network by a fill junction. A forward Euler integration scheme is used by RETRAN for control block variables. The feedwater system model is formulated to allow implicit integration within the existing code framework. The potential need for small integration time steps is, therefore, alleviated. The model results are compared with test data

  16. Development of a reactivity worth correction scheme for the one-dimensional transient analysis

    International Nuclear Information System (INIS)

    Cho, J. Y.; Song, J. S.; Joo, H. G.; Kim, H. Y.; Kim, K. S.; Lee, C. C.; Zee, S. Q.

    2003-11-01

    This work is to develop a reactivity worth correction scheme for the MASTER one-dimensional (1-D) calculation model. The 1-D cross section variations according to the core state in the MASTER input file, which are produced for 1-D calculation performed by the MASTER code, are incorrect in most of all the core states except for exactly the same core state where the variations are produced. Therefore this scheme performs the reactivity worth correction factor calculations before the main 1-D transient calculation, and generates correction factors for boron worth, Doppler and moderator temperature coefficients, and control rod worth, respectively. These correction factors force the one dimensional calculation to generate the same reactivity worths with the 3-dimensional calculation. This scheme is applied to the control bank withdrawal accident of Yonggwang unit 1 cycle 14, and the performance is examined by comparing the 1-D results with the 3-D results. This problem is analyzed by the RETRAN-MASTER consolidated code system. Most of all results of 1-D calculation including the transient power behavior, the peak power and time are very similar with the 3-D results. In the MASTER neutronics computing time, the 1-D calculation including the correction factor calculation requires the negligible time comparing with the 3-D case. Therefore, the reactivity worth correction scheme is concluded to be very good in that it enables the 1-D calculation to produce the very accurate results in a few computing time

  17. Qualification of RETRAN for simulator applications

    International Nuclear Information System (INIS)

    Harrison, J.F.

    1988-01-01

    The use of full-scope control room replica simulators increased substantially following the accident at Three Mile Island Unit 2. The technical capability required to represent severe events has been included, in varying degrees, in most simulators purchased since the TMI-2 accident. The ability of the instructor to create a large variety of combinations of malfunctions has also greatly expanded. The nuclear industry has developed a standard which establishes the minimum functional requirements for full-scope nuclear control room simulators used for operator training. This standard, ANSI/ANS-3.5, was first issued in 1981 and was reissued in 1985. A method for performing simulator qualification with best estimate analytical data has been proposed in EPRI NP-4243, Analytic Simulator Qualification Methodology. The idea presented there is to choose a set of transients which drive the simulator into all the system conditions (dynamic states) likely to be encountered during operator training. The key observable parameters for each state are compared to analyses performed with the best estimate analytical model The closeness of the comparison determines the fidelity of the simulator. The approach described in EPRI NP-4243 has been adapted for evaluating RETRAN's capability for use in simulator qualification. RETRAN analyses which compare the RETRAN results to plant or test facility data are evaluated with respect to the simulator test matrix documented in EPRI NP-4243

  18. Tenth International RETRAN Conference Overview: RETRAN's Role in Supporting the Nuclear Industry's Vision

    International Nuclear Information System (INIS)

    Agee, Lance J.

    2003-01-01

    The nuclear industry's current 'vision' for 2020 is for growth in U.S. nuclear to a 23% share of generation in 2020. To support this vision, the Electric Power Research Institute's Nuclear Power Division has developed a strategic bridge plan. The major objectives of the plan are discussed. Of key importance is the U.S. Nuclear Regulatory Commission (NRC) staff's proposed framework for risk-informed regulations. RETRAN-3D will undoubtedly be used by the industry to support Risk-Informed Regulation, specifically option 3.The reason that RETRAN-3D is the most logical tool to support Risk-Informed Regulation is that in January 2001 the NRC issued a safety evaluation report (SER) on RETRAN-3D. The significance of the SER to the RETRAN community is described, and a list of the most important SER conditions provided.Next, the new and unique applications of RETRAN-3D are referenced. Finally, discussion of the future direction of safety software indicates what the author feels is needed to adequately support both existing plant upgrades and future plant designs

  19. Three-dimensional space-time kinetic analysis with CORETRAN and RETRAN-3D of the NEACRP PWR rod ejection benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Ferroukhi, H.; Coddington, P

    2001-03-01

    One of the activities within the STARS project, in the Laboratory for Reactor Physics and System Behaviour; is the development of a coupling methodology between the three-dimensional, space-time kinetics codes CORETRAN and RETRAN-3D in order to perform core and plant transient analyses of the Swiss LWRs. The CORETRAN code is a 3-D full-core simulator, intended to be used for core-related analyses, while RETRAN-3D is the three-dimensional kinetics version of the plant system code RETRAN, and can therefore be used for best-estimate analyses of a wide range of transients in both PWRs and BWRs. Because the neutronics solver in both codes is based on the same kinetics model, one important advantage is that the codes can be coupled so that the initial conditions for a RETRAN-3D plant analysis are generated by a detailed-core, steady-state calculation using CORETRAN. As a first step towards using CORETRAN and RETRAN-3D for kinetic applications, the NEACRP PWR rod ejection benchmark has been analyzed with both codes, and is presented in this paper. The first objective is to verify the consistency between the static and kinetic solutions of the two codes, and so gain confidence in the coupling methodology. The second objective is to assess the CORETRAN and RETRAN-3D solutions for a well-defined RIA transient, comparing with previously published results. In parallel, several sensitivity studies have been performed in an attempt to identify models and calculational options important for a correct analysis of an RIA event in a LWR using these two codes. (author)

  20. RETRAN dynamic slip model

    International Nuclear Information System (INIS)

    McFadden, J.H.; Paulsen, M.P.; Gose, G.C.

    1981-01-01

    A time dependent equation for the slip velocity in a two-phase flow condition has been incorporated into a developmental version of the RETRAN computer code. This model addition has been undertaken to remove a limitation in RETRAN-01 associated with the homogeneous equilibrium mixture model. In this paper, the development of the slip model is summarized and the corresponding constitutive equations are discussed. Comparisons of RETRAN analyses with steady-state void fraction data and data from the Semiscale S-02-6 small break test are also presented

  1. RETRAN applications in pressurized thermal shock analysis of turkey point units 3 and 4

    International Nuclear Information System (INIS)

    Arpa, J.; Fatemi, A.S.; Mathavan, S.K.

    1985-01-01

    A methodology to assess the impact of overcooling transients on vessel wall integrity with respect to pressurized thermal shock conditions has been developed at Florida Power and Light Company for the Turkey Point Nuclear Units. Small break loss-of-coolant and small steamline break events have been simulated with the RETRAN code. Highly conservative assumptions, such as engineered safeguards with minimum temperature and maximum flow, have been made to maximize cooldown and thermal stress in the vessel wall. Temperatures, pressures, and flows obtained with RETRAN provide input for stress and fracture mechanics analyses that evaluate reactor vessel integrity. The results of the RETRAN analyses compare well with generic calculations performed by the Westinghouse Owners Group for a similar type of plant

  2. RETRAN safety analyses of the nuclear-powered ship Mutsu

    International Nuclear Information System (INIS)

    Yoshinori, N.; Ishida, T.; Tanaka, Y.; Yoshiaki, F.

    1983-01-01

    A number of operational transient analyses of the nuclear-powered ship Mutsu have been performed in response to Japanese nuclear safety regulatory concerns. The RETRAN and COBRA-IV computer codes were used to provide a quantitative basis for the safety evaluation of the plant. This evaluation includes a complete loss of load without reactor scram, an excessive load increase incident, and an accidental depressurization of the primary system. The minimum departure from nucleate boiling ratio remained in excess of 1.53 for these three transients. Hence, the integrity of the core was shown to be maintained during these transients. Comparing the transient behaviors with those of land-based pressurized water reactors, the characteristic features of the Mutsu reactor were presented and the safety of the plant under the operational transient conditions was confirmed

  3. Development of a model for Retran-3D for pressure losses at T-junctions

    International Nuclear Information System (INIS)

    Barten, W.; Coddington, P.; Sullivan, J.

    2001-01-01

    For Nuclear Power Plants, both for PWRs and BWRs, there are many instances in normal operation, accidents and transients when it is important to know the pressure drop and quality of the flow, at a flow junction. In this paper two-phase pressure drops in a horizontal T-junction with equal areas are assessed in the case of separating flow using the RETRAN-3D code. Therefore applying the RETRAN-3D code first recoverable pressure drops are calculated for different flow rate ratios, inlet qualities and system pressures for steam-water mixtures. These pressure drops are then compared to analytical expressions by Soliman and Ebadian (1994) developed from the analysis of a wide range of two-phase experimental pressure drop data for equal-sided junctions with horizontal inlet and side branches both for steam-water and air-water flow. With these comparisons the experimental pressure loss is separated into a recoverable part (i.e. that calculated by RETRAN-3D) and an irrecoverable. A model for the irrecoverable pressure losses is derived for the RETRAN-3D code by comparing the RETRAN-3D total momentum equation with the expressions generally used for pressure changes at T-junctions. The results of this model are compared to the experimental data through the expressions of Soliman and Ebadian and are shown to produce very good comparisons particularly for the range of conditions consistent with the experimental data. (author)

  4. Development of a model for Retran-3D for pressure losses at T-junctions

    Energy Technology Data Exchange (ETDEWEB)

    Barten, W.; Coddington, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Sullivan, J. [Penn State University, Nuclear Engineering Program (United States)

    2001-07-01

    For Nuclear Power Plants, both for PWRs and BWRs, there are many instances in normal operation, accidents and transients when it is important to know the pressure drop and quality of the flow, at a flow junction. In this paper two-phase pressure drops in a horizontal T-junction with equal areas are assessed in the case of separating flow using the RETRAN-3D code. Therefore applying the RETRAN-3D code first recoverable pressure drops are calculated for different flow rate ratios, inlet qualities and system pressures for steam-water mixtures. These pressure drops are then compared to analytical expressions by Soliman and Ebadian (1994) developed from the analysis of a wide range of two-phase experimental pressure drop data for equal-sided junctions with horizontal inlet and side branches both for steam-water and air-water flow. With these comparisons the experimental pressure loss is separated into a recoverable part (i.e. that calculated by RETRAN-3D) and an irrecoverable. A model for the irrecoverable pressure losses is derived for the RETRAN-3D code by comparing the RETRAN-3D total momentum equation with the expressions generally used for pressure changes at T-junctions. The results of this model are compared to the experimental data through the expressions of Soliman and Ebadian and are shown to produce very good comparisons particularly for the range of conditions consistent with the experimental data. (author)

  5. Retran simulation of Oyster Creek generator trip startup test

    International Nuclear Information System (INIS)

    Alammar, M.A.

    1987-01-01

    RETRAN simulation of Oyster Creek generator trip startup test was carried out as part of Oyster Creek RETRAN model qualification program for reload licensing applications. The objective of the simulation was to qualify the turbine model and its interface with the control valve and bypass systems under severe transients. The test was carried out by opening the main breakers at rated power. The turbine speed governor closed the control valves and the pressure regulator opened the bypass valves within 0.5 sec. The stop valves closed by a no-load turbine trip, before the 10 percent overspeed trip was reached and the reactor scrammed on high APRM neutron flux. The simulation resulted in qualifying a normalized hydraulic torque for the turbine model and a 0.3 sec, delay block for the bypass model to account for the different delays in the hydraulic linkages present in the system. One-dimensional kinetics was used in this simulation

  6. Study on the transient behaviours of MNSR reactor for control rod withdrawal

    International Nuclear Information System (INIS)

    Yang Shunhai

    1995-10-01

    The transient behaviours of Miniature Neutron Source Reactor MNSR are analyzed and calculated with the reactor thermohydraulics RETRAN-02 program and the reactor physics MARIA program. The obtained event sequence and consequence from the calculation are compared with the experiments. The effective resonance integral for study on Doppler effect is taken into account. The reactivity temperature coefficient weighting factors are computed. The transient parameters related to reactor power peaking, coolant inlet temperatures, outlet temperatures and coolant mass flow, etc. are computed and compared with the experimental results. (6 refs., 2 figs., 5 tabs.)

  7. RETRAN dynamic slip model

    International Nuclear Information System (INIS)

    McFadden, J.H.; Paulsen, M.P.; Gose, G.C.

    1981-01-01

    Thermal-hydraulic codes in general use for system calculations are based on extensive analyses of loss-of-coolant accidents following the postulated rupture of a large coolant pipe. In this study, time-dependent equation for the slip velocity in a two-phase flow condition has been incorporated into the RETRAN-02 computer code. This model addition was undertaken to remove a limitation in RETRAN-01 associated with the homogeneous equilibrium mixture model. The dynamic slip equation was derived from a set of two-fluid conservation equations. 18 refs

  8. Natural Circulation High Pressure Loop Dynamics Around Operating Point, Tests and Modelling With Retran 02

    International Nuclear Information System (INIS)

    Masriera, N.A; Doval, A.S; Mazufri, C.M

    2000-01-01

    The Natural Circulation High Pressure Loop (CAPCN) reproduces in scale all the one-dimensional thermal-hydraulic phenomena occurring in the primary loop of CAREM-25 reactor.It plays an important role in the qualification process of calculating computer codes.This facility demanded to develop several technological solutions in order to achieve the measuring and control quality required by that process.This engineering and experimental development allowed completing the first stage of dynamic tests during 1998.The trends of recorded data were systematically evaluated in terms of the deviations of main variables in response to different perturbations.By this analysis a group of eight transients was selected, providing a Minimum Representative Set (MRS) of dynamic tests, allowing the evaluation of all dynamic phenomena.Each of these transients was simulated with RETRAN-02, using a spreadsheet to facilitate the consistent elaboration and modification of input files.Comparing measured data and computer simulations, it may be concluded that it is possible to reproduce the dynamic response of all the transients with a level of approximation quite homogeneous and generally acceptable.It is possible to identify the detailed physical models that fit better the dynamic phenomena, and which of the limitations of RETRAN code are more relevant

  9. RETRAN-3D Analysis Of The OECD/NRC Peach Bottom 2 Turbine Trip Benchmark

    International Nuclear Information System (INIS)

    Barten, W.; Coddington, P.

    2003-01-01

    This paper presents the PSI results on the different Phases of the Peach Bottom BWR Turbine Trip Benchmark using the RETRAN-3D code. In the first part of the paper, the analysis of Phase 1 is presented, in which the system pressure is predicted based on a pre-defined core power distribution. These calculations demonstrate the importance of accurate modelling of the non-equilibrium effects within the steam separator region. In the second part, a selection of the RETRAN-3D results for Phase 2 are given, where the power is predicted using a 3-D core with pre-defined core flow and pressure boundary conditions. A comparison of calculations using the different (Benchmark-specified) boundary conditions illustrates the sensitivity of the power maximum on the various resultant system parameters. In the third part of the paper, the results of the Phase 3 calculation are presented. This phase, which is a combination of the analytical work of Phases 1 and 2, gives good agreement with the measured data. The coupling of the pressure and flow oscillations in the steam line, the mass balance in the core, the (void) reactivity and the core power are all discussed. It is shown that the reactivity effects resulting from the change in the core void can explain the overall behaviour of the transient prior to the reactor scram. The time-dependent, normalized power for different thermal-hydraulic channels in the core is discussed in some detail. Up to the time of reactor scram, the power change was similar in all channels, with differences of the order of only a few percent. The axial shape of the channel powers at the time of maximum (overall) power increased in the core centre (compared with the shape at time zero). These changes occur as a consequence of the relative change in the channel void, which is largest in the region of the onset of boiling, and the influence on the different fuel assemblies of the complex ring pattern of the control rods. (author)

  10. RETRAN-3D Analysis Of The OECD/NRC Peach Bottom 2 Turbine Trip Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Barten, W.; Coddington, P

    2003-03-01

    This paper presents the PSI results on the different Phases of the Peach Bottom BWR Turbine Trip Benchmark using the RETRAN-3D code. In the first part of the paper, the analysis of Phase 1 is presented, in which the system pressure is predicted based on a pre-defined core power distribution. These calculations demonstrate the importance of accurate modelling of the non-equilibrium effects within the steam separator region. In the second part, a selection of the RETRAN-3D results for Phase 2 are given, where the power is predicted using a 3-D core with pre-defined core flow and pressure boundary conditions. A comparison of calculations using the different (Benchmark-specified) boundary conditions illustrates the sensitivity of the power maximum on the various resultant system parameters. In the third part of the paper, the results of the Phase 3 calculation are presented. This phase, which is a combination of the analytical work of Phases 1 and 2, gives good agreement with the measured data. The coupling of the pressure and flow oscillations in the steam line, the mass balance in the core, the (void) reactivity and the core power are all discussed. It is shown that the reactivity effects resulting from the change in the core void can explain the overall behaviour of the transient prior to the reactor scram. The time-dependent, normalized power for different thermal-hydraulic channels in the core is discussed in some detail. Up to the time of reactor scram, the power change was similar in all channels, with differences of the order of only a few percent. The axial shape of the channel powers at the time of maximum (overall) power increased in the core centre (compared with the shape at time zero). These changes occur as a consequence of the relative change in the channel void, which is largest in the region of the onset of boiling, and the influence on the different fuel assemblies of the complex ring pattern of the control rods. (author)

  11. RETRAN code analysis of Tsuruga-2 plant chemical volume control system (CVCS) reactor coolant leakage incident

    International Nuclear Information System (INIS)

    Kawai, H.

    2001-01-01

    JAPC purchased RETRAN, a program for transient thermal hydraulic analysis of complex fluid flow system, from the U.S. Electric Power Research Institute in 1992. Since then, JAPC has been utilizing RETRAN to evaluate safety margins of actual plant operation, in coping with troubles (investigating trouble causes and establishing countermeasures), and supporting reactor operation (reviewing operational procedures etc.). In this paper, a result of plant analysis performed on a CVCS reactor primary coolant leakage incident which occurred at JAPC's Tsuruga-2 plant (4-loop PWR, 3423 MWt, 1160 MW) on July 12 of 1999 and, based on the result, we made a plan to modify our operational procedure for reactor primary coolant leakage events in order to make earlier plant shutdown and this reduced primary coolant leakage. (author)

  12. RETRAN analysis of San Onofre Unit 2 turbine trip from 100% power

    International Nuclear Information System (INIS)

    Ting, Y.P.

    1985-01-01

    During the San Onofre Nuclear Generating Station Unit (SONGS 2) startup test, the plant experienced a turbine trip from 100% power on June 16, 1983. The trip was initiated by the condenser pressure switch malfunctioning. The plant computers were operating and recorded many plant key parameters. The resulting trip behaved as if it has been manually initiated and it was considered equivalent to a preplanned turbine trip test. A RETRAN-02 model was developed to simulate the SONGS 2 June 16 turbine trip event. The RETRAN analysis of the trip is a continuing effort of in-house SONGS 2 RETRAN model development to benchmark the calculations against the plant startup test data. The overall agreement between measured data and the RETRAN calculations was very good, providing confidence in the capability of the model and the RETRAN program. Comparative data are presented

  13. A proof-of-concept transient diagnostic expert system for BWRs [Boiling Water Reactors

    International Nuclear Information System (INIS)

    Yoshida, K.; Naser, J.A.

    1988-05-01

    A proof-of-concept transient diagnostic expert system has been developed to identify the cause and the type of an abnormal transient in a boiling water nuclear power plant. For this expert system development, the calculational results of the simulation code RETRAN were used as the knowledge source. The knowledge extracted from the RETRAN analyses was transformed into IF-THEN rules in the knowledge base for the expert system. An important feature of this expert system is the introduction of certainty factors to allow diagnosis even in the cases where data may be either missing or marked as invalid. To increase the capability of this diagnostic system to distinguish between similiar transients, backward chaining reasoning is used to support the forward chaining reasoning with certainty factors. Through this effort, it has been demonstrated that an expert system can be successfully used to create a transient diagnostic system. It has also successfully demonstrated that RETRAN can be used as the knowledge source for developing the knowledge base of the diagnostic system

  14. Development of a NSSS T/H Module for the YGN 1/2 NPP Simulator Using a Best-Estimate Code, RETRAN

    International Nuclear Information System (INIS)

    Seo, I. Y.; Lee, Y. K.; Jeun, G. D.; Suh, J. S.

    2005-01-01

    KEPRI(Korea Electric Power Research Institute) developed a realistic nuclear steam supply system thermal-hydraulic module, named ARTS code, based on the best-estimate code RETRAN for the improvement of the KNPEC(Korea Nuclear Plant Education Center) unit 2 full-scope simulator. In this work, we make a nuclear steam supply system thermal-hydraulic module for the YGN 1/2 nuclear power plant simulator using a practical application of a experience of ARTS code development. The ARTS code was developed based on RETRAN, which is a best estimate code developed by EPRI(Electric Power Research Institute) for various transient analyses of NPP(Nuclear Power Plants). Robustness and the real time calculation capability have been improved by simplifications, removing of discontinuities of the physical correlations of the RETRAN code and some other modifications. And its scope for the simulation has been extended by supplementation of new calculation modules such as a dedicated pressurizer relief tank model and a backup model. The supplement is developed so that users cannot recognize the model change from the main ARTS module

  15. Development of RETRAN-03/MOV code for thermal-hydraulic analysis of nuclear reactor under moving conditions

    International Nuclear Information System (INIS)

    Kim, Hak Jae; Park, Goon Cherl

    1996-01-01

    Nuclear ship reactors have several; features different from land-based PWR's. Especially, effects of ship motions on reactor thermal-hydraulics and good load following capability for abrupt load changes are essential characteristics of nuclear ship reactors. This study modified the RETRAN-03 to analyze the thermal-hydraulic transients under three-dimensional ship motions, named RETRAN-03/MOV in order to apply to future marine reactors. First Japanese nuclear ship MUTSU reactor have been analyzed under various ship motions to verify this code. Calculations have been performed under rolling,heaving and stationary inclination conditions during normal operation. Also, the natural circulation has been analyzed, which can provide the decay heat removed to ensure the passive safety of marine reactors. As results, typical thermal-hydraulic characteristics of marine reactors such as flow rate oscillations and S/G water level oscillations have been successfully simulated at various conditions. 7 refs., 11 figs. (author)

  16. Implementation of a new interfacial mass and energy transfer model in RETRAN-3D

    International Nuclear Information System (INIS)

    Macian, R.; Cebulh, P.; Coddington, P.; Paulsen, M.

    1999-01-01

    The RETRAN-3D MOD002.0 best estimate code includes a five-equation flow field model developed to deal with situations in which thermodynamic non-equilibrium phenomena are important. Several applications of this model to depressurization and pressurization transients showed serious convergence problems. An analysis of the causes for the numerical instabilities identified the models for interfacial heat and mass transfer as the source of the problems. A new interfacial mass and energy transfer model has thus been developed and implemented in RETRAN-3D. The heat transfer for each phase is equal to the product of the interfacial area density, a heat transfer coefficient and the temperature difference between the interface at saturation and the bulk temperature of the respective phase. However, in the context of RETRAN-3D, the vapor remains saturated in a two-phase volume, and no vapor heat transfer is thus calculated. The values of interfacial area density and heat transfer coefficient are obtained based on correlations appropriate for different flow regimes. A flow regime map, based on the work of Taitel and Dukler, with void fraction and mixture mass flux as map coordinates, is used to identify the flow regime present in a given volume. The new model has performed well when assessed against data from four experimental facilities covering depressurization, condensation and steady state void distribution. The results also demonstrate the viability of the approach followed to develop the new model for a five-equation based code. (author)

  17. Vector models in RETRAN-02 MOD 2

    International Nuclear Information System (INIS)

    Kinnersly, S.R.

    1985-06-01

    The vector momentum model in RETRAN-02 allows momentum flux to be modelled in two dimensions. Vector models in RETRAN-2 are described, including both the actual implementation in the code and the specification given in the code manual. The vector momentum model is described in detail. Other models which use vector quantities include models for volume average flow, volume average slip velocity, volume average phase velocities and fill junction flows. Both code implementations and code manual descriptions are described and inconsistencies noted. The differences between the standard RETRA-02 Mod 2 version and the Winfrith version RETN2204 are noted. (U.K.)

  18. Feasibility study on the rod ejection accident analysis with RETRAN-MASTER code system

    International Nuclear Information System (INIS)

    Kim, Y. H.; Lee, C. S.

    2003-01-01

    KEPRI has been developed the in-house methodology for non-LOCA safety analyses based on the codes and methodologies of vendors and EPRI. Using the methodology, the rod ejection accident, which is classified into the generic accident analysis category of reactivity insertion accident in primary system, has been analyzed with RETRAN-MASTER code system. And the feasibility of the coupled code system has been verified by the review of the results. Furthermore, to assess the important parameters to the accident, the sensitivity analyses have been carried out over some parameters

  19. Summary of transient analysis

    International Nuclear Information System (INIS)

    Saha, P.

    1984-01-01

    This chapter reviews the papers on the pressurized water reactor (PWR) and boiling water reactor (BWR) transient analyses given at the American Nuclear Society Topical Meeting on Anticipated and Abnormal Plant Transients in Light Water Reactors. Most of the papers were based on the systems calculations performed using the TRAC-PWR, RELAP5 and RETRAN codes. The status of the nuclear industry in the code applications area is discussed. It is concluded that even though comprehensive computer codes are available for plant transient analysis, there is still a need to exercise engineering judgment, simpler tools and even hand calculations to supplement these codes

  20. ANO-2 turbine trip transient test analysis using MMS

    International Nuclear Information System (INIS)

    Jain, P.K.; Divakaruni, S.M.

    1984-01-01

    The data from the turbine trip transient tests conducted at the Arkansas Nuclear One-Unit 2 was used as one of the benchmark cases for validating the Modular Modeling System (MMS) Code, developed by the Electric Power Research Institute (EPRI). The data was used first to validate the modules in stand-alone simulation tests and then in a Nuclear Steam Supply system integral tests. This paper presents the results from the MMS simulation effort and compares the code generated results with the plant data as well as RETRAN results. In general, MMS simulation results compare very well with the plant data. The code calculations for the hot and cold leg temperatures, primary system pressure and the pressurizer level are very good compared to RETRAN; however, MMS results for steam generator level compare reasonably well only with RETRAN calculations

  1. APR1400 Locked Rotor Transient Analysis using KNAP

    International Nuclear Information System (INIS)

    Lee, Dong-Hyuk; Kim, Yo-Han; Ha, Sang Jun

    2007-01-01

    KEPRI (Korea Electric Power Research Institute) has developed safety analysis methodology for non-LOCA (Loss Of Coolant Accident) analysis of OPR1000 (Optimized Power Reactor 1000, formerly KSNP). The new methodology, named KNAP (Korea Non-LOCA Analysis Package), uses RETRAN as the main system analysis code for most transients. For locked rotor transient DNBR analysis, UNICORN-TM code is used. UNICORN-TM is the unified code of RETRAN, MASTER and TORC. The UNICORN-TM has 1-D and 3-D neutron kinetics calculation capability. For locked rotor DNBR analysis, 1-D neutron kinetics is used. In this paper, we apply KNAP methodology to APR1400 (Advanced Power Reactor 1400) locked rotor analysis and compare the results with those in the APR1400 SSAR(Standard Safety Analysis Report). The locked rotor transient is one of the 'decrease in reactor coolant system flow rate' events and the results are typically described in the chapter 15.3.3 of SAR (Safety Analysis Report). In this study, to confirm the applicability of the KNAP methodology and code system to APR1400, locked rotor transient is analyzed using UNICORN-TM code and the results are compared with those from APR1400 SSAR

  2. APR1400 Locked Rotor Transient Analysis using KNAP

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Hyuk; Kim, Yo-Han; Ha, Sang Jun [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    KEPRI (Korea Electric Power Research Institute) has developed safety analysis methodology for non-LOCA (Loss Of Coolant Accident) analysis of OPR1000 (Optimized Power Reactor 1000, formerly KSNP). The new methodology, named KNAP (Korea Non-LOCA Analysis Package), uses RETRAN as the main system analysis code for most transients. For locked rotor transient DNBR analysis, UNICORN-TM code is used. UNICORN-TM is the unified code of RETRAN, MASTER and TORC. The UNICORN-TM has 1-D and 3-D neutron kinetics calculation capability. For locked rotor DNBR analysis, 1-D neutron kinetics is used. In this paper, we apply KNAP methodology to APR1400 (Advanced Power Reactor 1400) locked rotor analysis and compare the results with those in the APR1400 SSAR(Standard Safety Analysis Report). The locked rotor transient is one of the 'decrease in reactor coolant system flow rate' events and the results are typically described in the chapter 15.3.3 of SAR (Safety Analysis Report). In this study, to confirm the applicability of the KNAP methodology and code system to APR1400, locked rotor transient is analyzed using UNICORN-TM code and the results are compared with those from APR1400 SSAR.

  3. Level-Swell Prediction With RETRAN-3D And Its Application To A BWR Steam-Line-Break Analysis

    International Nuclear Information System (INIS)

    Aounallah, Y.; Hofer, K.

    2003-01-01

    Level-swell experiments have often been simulated using system codes, such as TRAC and RELAP, but only cursory assessments have been performed with the operational-transient code RETRAN-3D, the main system code used within the STARS project. The present study, initiated in the framework of a BWR Steam-Line-Break (SLB) accident scenario, addresses this lacuna by performing RETRAN simulations of the General Electric Level-Swell experiments, and by investigating their implications on power plant accident analyses. Parameters to which the predicted level swell is sensitive have been identified, and recommendations on code options are made. The SLB analysis objective was to determine the amount of steam and liquid discharged through the break under specified boundary conditions, and to gauge the results against reference values. The impact of the nodalization of the upper part of the reactor pressure vessel was investigated and found to play an important role, whereas the level swell induced from flashing was found not to be the predominant factor for these simulations. (author)

  4. Plant data comparisons for Comanche Peak 1/2 main feedwater pump trip transient

    Energy Technology Data Exchange (ETDEWEB)

    Boatwright, W.J.; Choe, W.G; Hiltbrand, D.W. [TU Electric, Dallas, TX (United States)] [and others

    1995-09-01

    A RETRAN-02 MOD5 model of Comanche Peak Steam Electric Station was developed by TU Electric for the purpose of performing core reload safety analyses. In order to qualify this model, comparisons against plant transient data from a partial loss of main feedwater flow were performed. These comparisons demonstrated that good representations of the plant response could be obtained with RETRAN-02 and the user-developed models of the primary-to-secondary heat transfer and plant control systems.

  5. Reactivity transient calculatios in research reactor

    International Nuclear Information System (INIS)

    Santos, R.S. dos

    1986-01-01

    A digital program for reactivity transient analysis in research reactor and cylindrical geometry was showed quite efficient when compared with methods and programs of the literature, as much in the solution of the neutron kinetics equation as in the thermohydraulic. An improvement in the representation of the feedback reactivity adopted on the program reduced markedly the computation time, with some accuracy. (Author) [pt

  6. The Evaluation of Steam Generator Level Measurement Model for OPR1000 Using RETRAN-3D

    International Nuclear Information System (INIS)

    Doo Yong Lee; Soon Joon Hong; Byung Chul Lee; Heok Soon Lim

    2006-01-01

    Steam generator level measurement is important factor for plant transient analyses using best estimate thermal hydraulic computer codes since the value of steam generator level is used for steam generator level control system and plant protection system. Because steam generator is in the saturation condition which includes steam and liquid together and is the place that heat exchange occurs from primary side to secondary side, computer codes are hard to calculate steam generator level realistically without appropriate level measurement model. In this paper, we prepare the steam generator models using RETRAN-3D that include geometry models, full range feedwater control system and five types of steam generator level measurement model. Five types of steam generator level measurement model consist of level measurement model using elevation difference in downcomer, 1D level measurement model using fluid mass, 1D level measurement model using fluid volume, 2D level measurement model using power and fluid mass, and 2D level measurement model using power and fluid volume. And we perform the evaluation of the capability of each steam generator level measurement model by simulating the real plant transient condition, the title is 'Reactor Trip by The Failure of The Deaerator Level Control Card of Ulchin Unit 3'. The comparison results between real plant data and RETRAN-3D analyses for each steam generator level measurement model show that 2D level measurement model using power and fluid mass or fluid volume has more realistic prediction capability compared with other level measurement models. (authors)

  7. Development and verification of a coupled code system RETRAN-MASTER-TORC

    International Nuclear Information System (INIS)

    Cho, J.Y.; Song, J.S.; Joo, H.G.; Zee, S.Q.

    2004-01-01

    Recently, coupled thermal-hydraulics (T-H) and three-dimensional kinetics codes have been widely used for the best-estimate simulations such as the main steam line break (MSLB) and locked rotor problems. This work is to develop and verify one of such codes by coupling the system T-H code RETRAN, the 3-D kinetics code MASTER and sub-channel analysis code TORC. The MASTER code has already been applied to such simulations after coupling with the MARS or RETRAN-3D multi-dimensional system T-H codes. The MASTER code contains a sub-channel analysis code COBRA-III C/P, and the coupled systems MARSMASTER-COBRA and RETRAN-MASTER-COBRA had been already developed and verified. With these previous studies, a new coupled system of RETRAN-MASTER-TORC is to be developed and verified for the standard best-estimate simulation code package in Korea. The TORC code has already been applied to the thermal hydraulics design of the several ABB/CE type plants and Korean Standard Nuclear Power Plants (KSNP). This justifies the choice of TORC rather than COBRA. Because the coupling between RETRAN and MASTER codes are already established and verified, this work is simplified to couple the TORC sub-channel T-H code with the MASTER neutronics code. The TORC code is a standalone code that solves the T-H equations for a given core problem from reading the input file and finally printing the converged solutions. However, in the coupled system, because TORC receives the pin power distributions from the neutronics code MASTER and transfers the T-H results to MASTER iteratively, TORC needs to be controlled by the MASTER code and does not need to solve the given problem completely at each iteration step. By this reason, the coupling of the TORC code with the MASTER code requires several modifications in the I/O treatment, flow iteration and calculation logics. The next section of this paper describes the modifications in the TORC code. The TORC control logic of the MASTER code is then followed. The

  8. Model for calculating the boron concentration in PWR type reactors

    International Nuclear Information System (INIS)

    Reis Martins Junior, L.L. dos; Vanni, E.A.

    1986-01-01

    A PWR boron concentration model has been developed for use with RETRAN code. The concentration model calculates the boron mass balance in the primary circuit as the injected boron mixes and is transported through the same circuit. RETRAN control blocks are used to calculate the boron concentration in fluid volumes during steady-state and transient conditions. The boron reactivity worth is obtained from the core concentration and used in RETRAN point kinetics model. A FSAR type analysis of a Steam Line Break Accident in Angra I plant was selected to test the model and the results obtained indicate a sucessfull performance. (Author) [pt

  9. Development of a GUI based RETRAN running environment for Kori NPP units 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Doo

    2000-09-01

    RETRAN was developed by EPRI and introduced for domestic use. RETRAN, which is a best-estimate system code approved by USNRC and used by most utilities in US, can be used in various plant support activities such as licensing calculations for plant design changes, EOP validation, and training. RETRAN, however, has been limited to only a few groups of specialists because of the difficulty involved in its usage. The aim of this project is to develop a graphic user interface (GUI) based code running environment for RETRAN named PRE (RETRAN Running Environment) in order to assist ordinary users in their input preparation, code execution, and output interpretation. TRIP and CONTROL BLOCK and VOLUME/JUNCTION input cards from base input are designed to be able to modify the existing input cards and add a new input cards through dialog boxes for users who have not much expertise in use of RETRAN. The RRE is designed to provide the calculated results though on-line X-Y graphs, plant mimics, indicators, nodalization window for easy interpretation of its output. It also provides the replay function using pre-calculated results saved in files. The RRE was developed for Kori NPP units 1 and 2 using Delphi 4.0 and Visual Fortran 6.0 and it runs on personal computers to increase the accessibility. The RRE developed in this study for Kori units 1 and 2 can be used in various plant support activities which require thermal-hydraulic analysis of the NSSS (Nuclear Steam Supply System) such as licensing calculations for plant design change, validation of EOP improvement, and operator training. The RRE developed can be expanded its application to other nuclear plants with low expense.

  10. Development of a GUI based RETRAN running environment for Kori NPP units 1 and 2

    International Nuclear Information System (INIS)

    Kim, Kyung Doo

    2000-09-01

    RETRAN was developed by EPRI and introduced for domestic use. RETRAN, which is a best-estimate system code approved by USNRC and used by most utilities in US, can be used in various plant support activities such as licensing calculations for plant design changes, EOP validation, and training. RETRAN, however, has been limited to only a few groups of specialists because of the difficulty involved in its usage. The aim of this project is to develop a graphic user interface (GUI) based code running environment for RETRAN named PRE (RETRAN Running Environment) in order to assist ordinary users in their input preparation, code execution, and output interpretation. TRIP and CONTROL BLOCK and VOLUME/JUNCTION input cards from base input are designed to be able to modify the existing input cards and add a new input cards through dialog boxes for users who have not much expertise in use of RETRAN. The RRE is designed to provide the calculated results though on-line X-Y graphs, plant mimics, indicators, nodalization window for easy interpretation of its output. It also provides the replay function using pre-calculated results saved in files. The RRE was developed for Kori NPP units 1 and 2 using Delphi 4.0 and Visual Fortran 6.0 and it runs on personal computers to increase the accessibility. The RRE developed in this study for Kori units 1 and 2 can be used in various plant support activities which require thermal-hydraulic analysis of the NSSS (Nuclear Steam Supply System) such as licensing calculations for plant design change, validation of EOP improvement, and operator training. The RRE developed can be expanded its application to other nuclear plants with low expense

  11. Assessment of void fraction prediction using the RETRAN-3d and CORETRAN-01/VIPRE-02 codes

    International Nuclear Information System (INIS)

    Aounallah, Y.; Coddington, P.; Gantner, U.

    2000-01-01

    A review of wide-range void fraction correlations against an extensive database has been undertaken to identify the correlations best suited for nuclear safety applications. Only those based on the drift-flux model have been considered. The survey confirmed the application range of the Chexal-Lellouche correlation, and the database was also used to obtain new parameters for the Inoue drift-flux correlation, which was also found suitable. A void fraction validation study has also been undertaken for the codes RETRAN-3D and CORETRAN-01/VIPRE-02 at the assembly and sub-assembly levels. The study showed the impact of the RETRAN-03 user options on the predicted void fraction, and the RETRAN-3D limitation at very low fluid velocity. At the sub-assembly level, CORETRAN-01/VIPRE-02 substantially underestimates the void in regions with low power-to-flow ratios. Otherwise, a generally good predictive performance was obtained with both RETRAN-3D and CORETRAN-01/VIPRE-02. (authors)

  12. Assessment of void fraction prediction using the RETRAN-3d and CORETRAN-01/VIPRE-02 codes

    Energy Technology Data Exchange (ETDEWEB)

    Aounallah, Y.; Coddington, P.; Gantner, U

    2000-07-01

    A review of wide-range void fraction correlations against an extensive database has been undertaken to identify the correlations best suited for nuclear safety applications. Only those based on the drift-flux model have been considered. The survey confirmed the application range of the Chexal-Lellouche correlation, and the database was also used to obtain new parameters for the Inoue drift-flux correlation, which was also found suitable. A void fraction validation study has also been undertaken for the codes RETRAN-3D and CORETRAN-01/VIPRE-02 at the assembly and sub-assembly levels. The study showed the impact of the RETRAN-03 user options on the predicted void fraction, and the RETRAN-3D limitation at very low fluid velocity. At the sub-assembly level, CORETRAN-01/VIPRE-02 substantially underestimates the void in regions with low power-to-flow ratios. Otherwise, a generally good predictive performance was obtained with both RETRAN-3D and CORETRAN-01/VIPRE-02. (authors)

  13. AIREKMOD-RR, Reactivity Transients in Nuclear Research Reactors

    International Nuclear Information System (INIS)

    Baggoura, B.; Mazrou, H.

    2001-01-01

    1 - Description of program or function: AIREMOD-RR is a point kinetics code which can simulate fast transients in nuclear research reactor cores. It can also be used for theoretical reactor dynamics studies. It is used for research reactor kinetic analysis and provides a point neutron kinetic capability. The thermal hydraulic behavior is governed by a one-dimensional heat balance equation. The calculations are restricted to a single equivalent unit cell which consists of fuel, clad and coolant. 2 - Method of solution: For transient reactor kinetic calculations a modified Runge Kutta numerical method is used. The external reactivity insertion, specified as a function of time, is converted in dollar ($) unit. The neutron density, energy release and feedback variables are given at each time step. The two types of reactivity feedback considered are: Doppler effect and moderator effect. A new expression for the reactivity dependence on the feedback variables has been introduced in the present version of the code. The feedback reactivities are fitted in power series expression. 3 - Restrictions on the complexity of the problem: The number of delayed neutron groups and the total number of equations are limited only by computer storage capabilities. - Coolant is always in liquid phase. - Void reactivity feedback is not considered

  14. Validation of RETRAN-03 by simulating a peach bottom turbine trip and boiloff at the full integral simulation test facility

    International Nuclear Information System (INIS)

    Westacott, J.L.; Peterson, C.E.

    1992-01-01

    This paper reports that the RETRAN-03 computer code is validated by simulating two tests that were performed at the Full Integral Simulation Test (FIST) facility. The RETRAN-03 results of a turbine trip (test 4PTT1) and failure to maintain water level at decay power (test T1QUV) are compared with the FIST test data. The RETRAN-03 analysis of test 4PTT1 is compared with a previous TRAC-BWR analysis of the test. Sensitivity to various model nodalizations and RETRAN-03 slip options are studied by comparing results of test T1QUV. The predicted thermal-hydraulic responses of both tests agree well with the test data. The pressure response of test 4PTT1 and the boiloff rate for test T1QUV are accurately predicted. Core uncovery time is found to be sensitive to the upper downcomer and upper plenum nodalization. The RETRAN-03 algebraic and dynamic slip options produce similar results for test T1QUV

  15. RETRAN code analysis of Tsuruga-2 plant chemical volume control system (CVCS) reactor coolant leakage incident

    International Nuclear Information System (INIS)

    Kawai, Hiroshi

    2002-01-01

    In the Chemical Volume Control System (CVCS) reactor primary coolant leakage incident, which occurred in Tsuruga-2 (4-loop PWR, 3,423 MWt, 1,160 MWe) on July 12, 1999, it took about 14 hours before the leakage isolation. The delayed leakage isolation and a large amount of leakage have become a social concern. Effective procedure modification was studied. Three betterments were proposed based on a qualitative analysis to reduce the pressure and temperature of the primary loop as fast as possible by the current plant facilities while maintaining enough subcooling of the primary loop. I analyzed the incident with RETRAN code in order to quantitatively evaluate the leakage reduction when these betterments are adopted. This paper is very new because it created a typical analysis method for PWR plant behavior during plant shutdown procedure which conventional RETRAN transient analyses rarely dealt with. Also the event time is very long. To carry out this analysis successfully, I devised new models such as an Residual Heat Removal System (RHR) model etc. and simplified parts of the conventional model. Based on the analysis results, I confirmed that leakage can be reduced by about 30% by adopting these betterments. Then the Japan Atomic Power Company (JAPC) modified the operational procedure for reactor primary coolant leakage events adopting these betterments. (author)

  16. Analysis of a main steam isolation value closure anticipated transient without scram in a boiling water reactor

    International Nuclear Information System (INIS)

    Liaw, T.J.; Pan, C.; Chen, G.S.

    1989-01-01

    Anticipated transient without scram (ATWS) could be a major accident sequence with possible core melt and containment damage in a boiling water reactor (BWR). The behavior of a BWR/6 during a main steam isolation valve closure ATWS is investigated using the best-estimate computer program, RETRAN-02. The effects of both makeup coolant and boron injection on the reactor behavior are studied. It is found that the BWR/6 behaves similarly to the BWR/2 and BWR/4. Without boron injection and makeup coolant, the reactor loses its coolant inventory very quickly and the reactor power drops rapidly to ∼ 16% of rated power due to negative void reactivity. With coolant makeup from the high-pressure core spray and the reactor core isolation cooling systems, the rector reaches a quasi-steady-state condition after an initially rapidly changing transient. The dome pressure, downcomer water level, and core power oscillate around a mean value; the average core power is ∼ 15%, which is approximately equal to the power needed to heat and evaporate the subcooled makeup coolant. Lower boron concentrations in the core tend to complicate reactor behavior due to the combination of two competing phenomena: the negative boron reactivity and the positive reactivity caused by a void collapse

  17. A RETRAN-02 model of the Sizewell B PCSR design - the Winfrith one-loop model, version 3.0

    International Nuclear Information System (INIS)

    Kinnersly, S.R.

    1983-11-01

    A one-loop RETRAN-02 model of the Sizewell B Pre Construction Safety Report (PCSR) design, set up at Winfrith, is described and documented. The model is suitable for symmetrical pressurised transients. Comparison with data from the Sizewell B PCSR shows that the model is a good representation of that design. Known errors, limitations and deficiencies are described. The mode of storage and maintenance at Winfrith using PROMUS (Program Maintenance and Update System) is noted. It is recommended that users modify the standard data by adding replacement cards to the end so as to aid in identification, use and maintenance of local versions. (author)

  18. Characteristics and use of the transient reactivity meter

    International Nuclear Information System (INIS)

    Yarbrough, W.M.

    1982-10-01

    At EG and G Idaho reactor facilities, reactivity measurements - an essential part of experimental reactor physics - are performed on line using an analog device known as the transient reactivity meter (TRM). The TRM has certain features that set it apart from most other instruments of its kind. This document describes these features and presents procedural information valuable to those who set up and use the TRM in a reactor measurement system

  19. Propagation of void fraction uncertainty measures in the RETRAN-3D simulation of the Peach Bottom turbine trip

    International Nuclear Information System (INIS)

    Vinai, Paolo; Macian-Juan, Rafael; Chawla, Rakesh

    2011-01-01

    The paper describes the propagation of void fraction uncertainty, as quantified by employing a novel methodology developed at Paul Scherrer Institut, in the RETRAN-3D simulation of the Peach Bottom turbine trip test. Since the transient considered is characterized by a strong coupling between thermal-hydraulics and neutronics, the accuracy in the void fraction model has a very important influence on the prediction of the power history and, in particular, of the maximum power reached. It has been shown that the objective measures used for the void fraction uncertainty, based on the direct comparison between experimental and predicted values extracted from a database of appropriate separate-effect tests, provides power uncertainty bands that are narrower and more realistic than those based, for example, on expert opinion. The applicability of such an approach to best estimate, nuclear power plant transient analysis has thus been demonstrated.

  20. RETRAN-02 analysis of upper head cooling during controlled natural circulation cooldown of Yankee Nuclear Power Station

    International Nuclear Information System (INIS)

    Fujita, N.; Helrich, R.E.; Bergeron, P.A.

    1982-01-01

    RETRAN-02 is particularly well-suited for investigating the fluid conditions in the upper head during a natural circulation cooldown. The RETRAN input model was developed with four basic objectives: (1) accurate description of the upper head cooling mechanisms; (2) proper simulation of natural circulation; (3) respresentations of operator actions required to proceed from full-power to shutdown-cooling-system conditions using both automatic and manual controls; and (4) reduction of the computer cost of simulating this evolution of approximately 10-hour duration. The response of the upper head fluid temperature calculated by RETRAN was in close agreement with measured data obtained from a natural circulation cooldown experiment performed for the Connecticut Yankee Plant, whose design is very similar to the Yankee Nuclear Power Station

  1. Application of a qualified RETRAN model to plant transient evaluation support

    International Nuclear Information System (INIS)

    Sedano, P.G.; Mata, P.; Alcantud, F.; Serra, J.; Castrillo, F.

    1989-01-01

    This paper presents the applicability and usefulness of a complete and well qualified plant transient code and model to support in depth evaluation of anomalous plant transients. Analyses of several operational and abnormal transients that ocurred during the first three cycles of Cofrentes (BWR-6) NPP are presented. This application demonstrated the need of a very detailed and adjusted simulation of the control systems as well as the convenience of having as complete as possible data adquisition system. (orig.)

  2. Application of a qualified RETRAN model to plant transient evaluation support

    International Nuclear Information System (INIS)

    Sedano, P.G.; Mata, P.; Alcantud, F.; Serra, J.

    1989-01-01

    This paper presents the applicability and usefulness of a complete and well qualified plant transient code and model to support in depth evaluation of anomalous plant transients. Analyses of several operational and abnormal transients occurred during the first three cycles of Cofrentes (BWR-6) NPP are presented. This application remarked the need of a very detailed and adjusted simulation of the control systems as well as the convenience of having an as complete as possible data acquisition system

  3. RELAP5-3D code validation of RBMK-1500 reactor reactivity measurement transients

    International Nuclear Information System (INIS)

    Kaliatka, Algirdas; Bubelis, Evaldas; Uspuras, Eugenijus

    2003-01-01

    This paper deals with the modeling of transients taking place during the measurements of the void and fast power reactivity coefficients performed at Ignalina NPP. The simulation of these transients was performed using RELAP5-3D code model of RBMK-1500 reactor. At the Ignalina NPP void and fast power reactivity coefficients are measured on a regular basis and, based on the total reactor power, reactivity, control and protection system control rods positions and the main circulation circuit parameter changes during the experiments, the actual values of these reactivity coefficients are determined. Following the simulation of the two above mentioned transients with RELAP5-3D code, a conclusion was made that the obtained calculation results demonstrate reasonable agreement with Ignalina NPP measured data. Behaviors of the separate MCC thermal-hydraulic parameters as well as physical processes are predicted reasonably well to the real processes, occurring in the primary circuit of RBMK-1500 reactor. The calculated reactivity and the total reactor core power behavior in time are also in reasonable agreement with the measured plant data. Despite of the small differences, RELAP5-3D code predicts reactivity and the total reactor core power behavior during the transients in a reasonable manner. Reasonable agreement of the measured and the calculated total reactor power change in time demonstrates the correct modeling of the neutronic processes taking place in RBMK-1500 reactor core

  4. RETRAN simulation of Oyster Creek MSIV closure and bypass valve tests

    International Nuclear Information System (INIS)

    Alammar, M.A.

    1987-01-01

    A series of benchmarks against start-up tests have been performed on the Oyster Creek boiling water reactor unit 2 RETRAN model in support of developing an in-house reload capability. The liquid and the pressure regulator models have been benchmarked against level and pressure setpoint changes, where small setpoint perturbations were made at rated power. The purpose of the present benchmark is to check the liquid level behavior during a severe level drop as during void collapse following a scram and to size the bypass valves by benchmarking the valves' contraction coefficient. The main steam isolation valves (MSIVs) closure start-up test was chosen for the former, while the bypass valve test was chosen for the latter. The two benchmarks complete the qualification of the upper downcomer liquid level for small and large level changes and the pressure regulator system for the Oyster Creek RETRAN model

  5. Research of three-dimensional transient reactivity feedback in fast reactor

    International Nuclear Information System (INIS)

    Xu Li; Shi Gong; Ma Dayuan; Yu Hong

    2013-01-01

    To solve the three-dimensional time-spatial kinetics feedback problems in fast reactor, a mathematical model of the direct reactivity feedback was proposed. Based on the NAS code for fast reactor and the reactivity feedback mechanism, a feedback model which combined the direct reactivity feedback and feedback reflected by the cross section variation was provided for the transient calculation. Furthermore, the fast reactor group collapsing system was added to the code, thus the real time group collapsing calculation could be realized. The isothermal elevated temperature test of CEFR was simulated by using the code. By comparing the calculation result with the test result of the temperature reactivity coefficient, the validity of the model and the code is verified. (authors)

  6. Pre- and post-test analyses of a KKL turbine trip test at 109% power using RETRAN-3D

    Energy Technology Data Exchange (ETDEWEB)

    Coddington, P

    2001-03-01

    As part of the PSI/HSK STARS project, pre-test calculations have been performed for a KKL turbine trip test at 109% power using the RETRAN-3D code. In this paper, we first present the results of these calculations, together with a description of the test and a comparison of the results with the measured plant data, and then discuss in more detail the differences between the pre-test results and the plant measurements, including the differences in the initial and boundary conditions, and how these differences influenced the calculated results. Finally, we comment on a series of post-test and sensitivity analyses, which were performed to resolve some of the discrepancies. The results of the pre-test (blind) calculations show good overall agreement with the experimental data, particularly for the maximum in the steam-line mass flow rate following the opening of the turbine bypass valves. This is of critical importance, since the steam-line flow has the least margin to the reactor scram limit. The agreement is especially good since the control rod banks used for the selected rod insertion were changed from those given in the test specification. Following a review of the comparison of the pre-test calculations with the measured data, several deficiencies in the RETRAN-3D model for KKL were identified and corrected as part of the post-test analysis. This allowed for both an improvement in the calculated results, and a deeper understanding of the behaviour of the turbine trip transient. (author)

  7. Pre- and post-test analyses of a KKL turbine trip test at 109% power using RETRAN-3D

    International Nuclear Information System (INIS)

    Coddington, P.

    2001-01-01

    As part of the PSI/HSK STARS project, pre-test calculations have been performed for a KKL turbine trip test at 109% power using the RETRAN-3D code. In this paper, we first present the results of these calculations, together with a description of the test and a comparison of the results with the measured plant data, and then discuss in more detail the differences between the pre-test results and the plant measurements, including the differences in the initial and boundary conditions, and how these differences influenced the calculated results. Finally, we comment on a series of post-test and sensitivity analyses, which were performed to resolve some of the discrepancies. The results of the pre-test (blind) calculations show good overall agreement with the experimental data, particularly for the maximum in the steam-line mass flow rate following the opening of the turbine bypass valves. This is of critical importance, since the steam-line flow has the least margin to the reactor scram limit. The agreement is especially good since the control rod banks used for the selected rod insertion were changed from those given in the test specification. Following a review of the comparison of the pre-test calculations with the measured data, several deficiencies in the RETRAN-3D model for KKL were identified and corrected as part of the post-test analysis. This allowed for both an improvement in the calculated results, and a deeper understanding of the behaviour of the turbine trip transient. (author)

  8. RETRAN analysis of inter-system LOCA within the primary coolant pump

    International Nuclear Information System (INIS)

    Gangadharan, A.; Pratt, G.F.

    1992-01-01

    One example of an inter-system loss of coolant accident is the failure of the tubing within the primary coolant pump (PCP) thermal barrier heat exchanger. Such a failure would result in the entry of primary coolant into the component cooling water (CCW) system. The primary coolant flowrate through the break would rapidly pressurize the CCW system when the relief valves are too small. The piping in the CCW system at Palisades has a low pressure rating. Failures in this system outside the containment boundary could lead to primary coolant release to the atmosphere. RETRAN-02 was used to perform a simulation of the break in the PCP integral heat exchanger. The model included a detailed nodalization of the Byron-Jackson primary coolant pump internals leading up to the CCW system relief valves. Preliminary studies show the need for increased relief capacity in the CCW system. A case was run using a larger relief valve. Critical flow in the system upstream of the relief valves maintains the pressures in those volumes above the CCW design pressure. The pressures downstream from the relief valves and outside containment will be at or below the design pressure. This paper presents the results of the transient analysis

  9. Neutron and thermo - hydraulic model of a reactivity transient in a nuclear power plant fuel element

    International Nuclear Information System (INIS)

    Oliva, Jose de Jesus Rivero

    2012-01-01

    A reactivity transient without reactor scram was modeled and calculated using analytical expressions for the space distributions of the temperature fields, combined with discrete numerical calculations for the time dependences of thermal power and temperatures. The transient analysis covered the time dependencies of reactivity, global thermal power, fuel heat flux and temperatures in fuel, cladding and cooling water. The model was implemented in Microsoft Office Excel, dividing the Excel file in several separated worksheets for input data, initial steady-state calculations, calculation of parameters non-depending on eigenvalues, eigenvalues determination, calculation of parameters depending on eigenvalues, transient calculation and graphical representation of intermediate and final results. The results show how the thermal power reaches a new equilibrium state due to the negative reactivity feedback derived from the fuel temperature increment. Nevertheless, the reactor mean power increases 40% during the first second and, in the hottest channel, the maximum fuel temperature goes to a significantly high value, slightly above 2100 deg C, after 8 seconds of transient. Consequently, the results confirm that certain degree of fuel damage could be expected in case of a reactor scram failure. Once the basic model has being established the scope of accidents for future analyses can be extended, modifying the nuclear power behavior (reactivity) during transient and the boundary conditions for coolant temperature. A more complex model is underway for an annular fuel element. (author)

  10. Thermal-hydraulic transient characteristics of ship-propulsion reactor investigated through safety analysis

    International Nuclear Information System (INIS)

    Fujiki, Kazuo; Asaka, Hideaki; Ishida, Toshihisa

    1986-01-01

    Thermal-hydraulic behaviors in the reactor of Nuclear Ship ''Mutsu'' were investigated through safety evaluation of operational transients by using RETRAN and COBRA-IV codes. The results were compared to the transient behaviors of typical commercial PWR and the characteristics of transient thermal-hydraulic behaviors in ship-loaded reactor were figured out. ''Mutsu'' reactor has larger thermal margin than commercial PWR because it is designed to be used as ship-propulsion power source in the load-following operation mode. This margin makes transient behavior in general milder than in commercial PWR but high opening pressure set point of main-steam safety valves leads poor heat-sink condition after reactor trip. The effects of other small-sized components are also investigated. The findings in the paper will be helpful in the design of future advanced reactor for nuclear ship. (author)

  11. On RELAP5-simulated High Flux Isotope Reactor reactivity transients: Code change and application

    International Nuclear Information System (INIS)

    Freels, J.D.

    1993-01-01

    This paper presents a new and innovative application for the RELAP5 code (hereafter referred to as ''the code''). The code has been used to simulate several transients associated with the (presently) draft version of the High-Flux Isotope Reactor (HFIR) updated safety analysis report (SAR). This paper investigates those thermal-hydraulic transients induced by nuclear reactivity changes. A major goal of the work was to use an existing RELAP5 HFIR model for consistency with other thermal-hydraulic transient analyses of the SAR. To achieve this goal, it was necessary to incorporate a new self-contained point kinetics solver into the code because of a deficiency in the point-kinetics reactivity model of the Mod 2.5 version of the code. The model was benchmarked against previously analyzed (known) transients. Given this new code, four event categories defined by the HFIR probabilistic risk assessment (PRA) were analyzed: (in ascending order of severity) a cold-loop pump start; run-away shim-regulating control cylinder and safety plate withdrawal; control cylinder ejection; and generation of an optimum void in the target region. All transients are discussed. Results of the bounding incredible event transient, the target region optimum void, are shown. Future plans for RELAP5 HFIR applications and recommendations for code improvements are also discussed

  12. A Comparative analysis for control rod drop accident in RETRAN DNB and CETOP DNB Model

    International Nuclear Information System (INIS)

    Yang, Chang Keun; Kim, Yo Han; Ha, Sang Jun

    2009-01-01

    In Korea, the nuclear industries such as fuel manufacturer, the architect engineer and the utility, have been using the methodologies and codes of vendors, such as Westinghouse(WH), Combustion Engineering, for the safety analyses of nuclear power plants. Consequently the industries have kept up the many organizations to operate the methodologies and to maintain the codes for each vendor. It may occur difficulty to improve the safety analyses efficiency and technology related. So, the necessity another of methodologies and code systems applicable to Non- LOCA, beyond design basis accident and performance analyses for all types of pressurized water reactor(PWR) has been raised. Due to the above reason, the Korea Electric Power Research Institute(KEPRI) had decided to develop the new safety analysis code system for Korea Standard Nuclear Power Plants in Korea. As the first requirement, the best-estimate codes were required for applicable wider application area and realistic behavior prediction of power plants with various and sophisticated functions. After the investigation for few candidates, RETRAN-3D has been chosen as a system analysis code. As a part of the feasibility estimation for the methodology and code system, CRD(Control Rod Drop) accident which an event of Non-LOCA accidents for Uljin units 3 and 4 and Yonggwang 1 and 2 was selected to verify the feasibility of the methodology using the RETRAN-3D. In this paper, RETRAN DNB Model and CETOP DNB Model were analyzed by using comparative method

  13. Development of the RETRAN hot spot model for KSNP

    International Nuclear Information System (INIS)

    Kim, Yo Han; Kim, Yong Deog; Lee, Chang Sup

    2004-01-01

    Under the funding of Ministry of Commerce, Industry and Energy, Korea Electric Power Research Institute (KEPRI), the research center of Korea Electric Power Corporation (KEPCO), has been developed the in-house non-loss-of-coolant accident (non-LOCA) analysis methodology for Korea Standard Nuclear Power Plants (KSNP). To develop the methodology, the related documents of EPRI and vendors were examined and the methodologies of some foreign utilities were reviewed also to compensate for lack of capabilities. In fact, one of the major goals of the project is to build the code and methodology systems to replace the restricted codes by U. S. Government mentioned in the Technical Transfer Agreement between KEPCO and ABB-CE. To achieve the goal, KEPRI has developed the methodology based on general-purpose system codes, such as RETRAN, RELAP and MASTER. Despite the efforts, some functional weaks were raised from the users. So, KEPRI has developed the RETRAN hot spot model (HSM) to compensate some functions used for the estimation of the fuel temperature and enthalpy, cladding surface temperature, etc. In current methodology for KSNP, the parameters are calculated with STRIKIN-II code, which is one of the restricted codes. In this paper the development of HSM is described. And to estimate the feasibility of the model, the rod ejection accident (REA) was analyzed and the results were compared with those calculated by STRIKIN-II code. Through the feasibility study, it was concluded that the developed model showed the acceptable results and could be used further works

  14. Development of a Nuclear Steam Supply System Thermal-Hydraulic Module for the Nuclear Power Plant Simulator Using a Best-Estimate Code, RETRAN

    International Nuclear Information System (INIS)

    Suh, Jae Seung

    2004-08-01

    The NSSS (Nuclear Steam Supply System) thermal-hydraulic programs adopted in the domestic full-scope power plant simulators were provided in early 1980s by foreign vendors. Because of limited computational capability at that time, they usually used very simplified physical models for the real-time simulation of Ness thermal-hydraulic transients, which entails inaccurate results and, thus, the possibility of so-called 'negative training', especially for complicated two-phase flows in the reactor coolant system. To resolve the problem, a realistic NSSS thermal-hydraulic program ARTS has been developed, it was based on the RETRAN code for the improvement of the Nuclear Power Plant full-scope simulator. Since ARTS is a generalized code to solve a simultaneous equation system, the smaller time-step size should be used if converged solution could not obtain even in a single volume. Therefore, dedicated models which do not force to reduce the time-step size are sometimes more suitable in terms of a real-time calculation and robustness. The PRT(Pressurizer Relief Tank) is a good example, which requires a dedicated model. The PRT consists of subcooled water in bottom and non-condensable gas in top. The sparger merged under subcooled water enhances condensation. The complicated thermal-hydraulic phenomena such as condensation, phase separation with existence of non-condensable gas makes difficult to simulate. Therefore, the PRT volume may limit the time-step size if it is modeled with a general control volume. To mitigate the time-step size reduction due to convergence failure at this component using RETRAN, the PRT model was developed as a dedicated model. The dedicated model was expected to provide reasonable results without convergence problem in the analysis of the system transients. The ARTS code guarantees the real-time calculations of almost all transients and ensures the robustness of simulations. However, there are some possibilities of calculation failure in the

  15. RETRAN-3D analysis of the base case and the four extreme cases of the OECD/NRC Peach Bottom 2 Turbine Trip benchmark

    International Nuclear Information System (INIS)

    Barten, Werner; Coddington, Paul; Ferroukhi, Hakim

    2006-01-01

    This paper presents the results of RETRAN-3D calculations of the base case and the four extreme cases of phase 3 of the Peach Bottom 2 OECD/NRC Turbine Trip benchmark for coupled thermal-hydraulic and neutronic codes. The PSI-RETRAN-3D model gives good agreement with the measured data of the base case. In addition to the base case, the analysis of the extreme cases provides a further understanding of the reactor behaviour, which is the result of the dynamic coupling of the whole system, i.e., the interaction between the steam line and vessel flows, the pressure, the Doppler, void and control reactivity and power. For the extreme cases without scram the bank of safety relief valves is able to mitigate the effects of the turbine trip for short times. The 3-D nature of the core power distribution has been investigated by analysing the power density of the different thermal-hydraulic channels. In all cases prior to the reactor scram the course of the power is similar in all the channels with differences of the order of a few percent showing that, by and large, the core acts in a coherent manner. At the time of maximum power, the axial power distribution in the different channels is increased at the core centre with respect to the distribution at time zero, by an amount, which is different for the different channels

  16. Analysis of reactivity transient for the DIDO type research reactors using RELAP5

    International Nuclear Information System (INIS)

    Adorni, M.; Bousbia-Salah, A.; D'Auria, F.; Nabbi, R.

    2005-01-01

    Recent availability of high performance computers and computational methods together with the continuing increase in operational experience imposes revising some operational constrains and conservative safety margins. The application of Best-Estimate (BE) method constitutes a real necessity in the safety and design analysis and allows getting more realistic simulation of the processes taking place during the steady state operation and transients. In comparison to the conservative approaches, the application of Best-Estimate methods results in the mitigation of the constraining limits in design and operation. This paper presents the results of the application of the RELAP5/Mod3.3 system thermal-hydraulic code to the German FRJ-2 research reactor for a reactivity transient, which has been analyzed in the past using the verified system code CATHENA [1], [2], [3]. The work mainly aims checking the capability of RELAP5 [4] for research reactor transient analysis by the comparison of the results of the two codes and including modeling basis and analytical approaches. According to the existing references RELAP5 applications are concentrated on the transient analysis of nuclear power systems. The considered case consists of a simulation related to a hypothetical fast reactivity transient, which is assumed to be caused by the failure of one shutdown arm. The case has been chosen due to the importance of the models for the precise description of the complex phenomenon of subcooled boiling and two phase flow taking place during the transient. For this purpose, the fuel element assembly was modeled in detail according to design data. The primary circuit was included in the whole model in order to consider the interaction with individual fuel elements with core. In general the results of the two codes are in agreement and comparable during the initial phase of the transient. After reaching the flow regime with fully developed nucleate boiling and two phase flow RELAP5 exhibits

  17. Effect of automatic recirculation flow control on the transient response for Lungmen ABWR plant

    Energy Technology Data Exchange (ETDEWEB)

    Tzang, Y.-C., E-mail: yctzang@aec.gov.t [National Tsing Hua University, Department of Engineering and System Science, Hsinchu 30013, Taiwan (China); Chiang, R.-F.; Ferng, Y.-M.; Pei, B.-S. [National Tsing Hua University, Department of Engineering and System Science, Hsinchu 30013, Taiwan (China)

    2009-12-15

    In this study the automatic mode of the recirculation flow control system (RFCS) for the Lungmen ABWR plant has been modeled and incorporated into the basic RETRAN-02 system model. The integrated system model is then used to perform the analyses for the two transients in which the automatic RFCS is involved. The two transients selected are: (1) one reactor internal pump (RIP) trip, and (2) loss of feedwater heating. In general, the integrated system model can predict well the response of key system parameters, including neutron flux, steam dome pressure, heat flux, RIP flow, core inlet flow, feedwater flow, steam flow, and reactor water level. The transients are also analyzed for manual RFCS case, between the automatic RFCS and the manual RFCS cases, comparisons of the transient response for the key system parameter show that the difference of transient response can be clearly identified. Also, the results show that the DELTACPR (delta critical power ratio) for the transients analyzed may not be less limiting for the automatic RFCS case under certain combination of control system settings.

  18. Analysis of a main steam isolation valve closure anticipated transient without scram in a boiling water reactor

    International Nuclear Information System (INIS)

    Liaw, T.J.; Pan, C.; Chen, G.S.

    1989-01-01

    Anticipated transient without scram (ATWS) could be a major accident sequence with possible core melt and containment damage in a boiling water reactor (BWR). The behavior of a BWR/6 during a main stream isolation valve closure ATWS is investigated using the best-estimate computer program, RETRAN-02. The effects of both makeup coolant and boron injection on the reactor behavior are studied. It is found that the BWR/6 behaves similarly to the BWR/2 and BWR/4

  19. Proceedings of a specialist meeting on boron reactivity transients

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The CSNI Specialist Meeting on Boron Dilution Reactivity Transients was hosted by the Penn State University in collaboration with the US Nuclear Regulatory Commission and the TRAC Users Group. More than 70 experts from 12 OECD countries, as well as experts from Russia and other non-OECD countries attended the meeting. Thirty papers were presented in five technical sessions. The purpose of the meeting was to bring together experts involved in the different activities related to boron dilution transients. The experts came from all involved parties, including research organizations, regulatory authorities, vendors and utilities. Information was openly shared and discussed on the experimental results, plant and systems analysis, numerical analysis of mixing and probability and consequences of these transients. Regulatory background and licensing implications were also included to provide the proper frame work for the technical discussion. Each of these areas corresponded to a separate session. The meeting focused on the thermal-hydraulic aspects because of the current interest in that subject and the significant amount of new technical information being generated. Three papers of the same conference are already available in INIS as individual reports: Potential for boron dilution during small-break LOCAs in PWRs (Ref. number: 27029412); Analysis of boron dilution in a four-loop PWR (Ref. number: 27051651); Probability and consequences of a rapid boron dilution sequence in a PWR (Ref. number: 27029411)

  20. Taipower's transient analysis methodology for pressurized water reactors

    International Nuclear Information System (INIS)

    Huang, Pinghue

    1998-01-01

    The methodology presented in this paper is a part of the 'Taipower's Reload Design and Transient Analysis Methodologies for Light Water Reactors' developed by the Taiwan Power Company (TPC) and the Institute of Nuclear Energy Research. This methodology utilizes four computer codes developed or sponsored by Electric Power Research institute: system transient analysis code RETRAN-02, core thermal-hydraulic analysis code COBRAIIIC, three-dimensional spatial kinetics code ARROTTA, and fuel rod evaluation code FREY. Each of the computer codes was extensively validated. Analysis methods and modeling techniques were conservatively established for each application using a systematic evaluation with the assistance of sensitivity studies. The qualification results and analysis methods were documented in detail in TPC topical reports. The topical reports for COBRAIIIC, ARROTTA. and FREY have been reviewed and approved by the Atomic Energy Council (ABC). TPC 's in-house transient methodology have been successfully applied to provide valuable support for many operational issues and plant improvements for TPC's Maanshan Units I and 2. Major applications include the removal of the resistance temperature detector bypass system, the relaxation of the hot-full-power moderator temperature coefficient design criteria imposed by the ROCAEC due to a concern on Anticipated Transient Without Scram, the reduction of boron injection tank concentration and the elimination of the heat tracing, and the reduction of' reactor coolant system flow. (author)

  1. Development of the MARS input model for Ulchin 1/2 transient analyzer

    International Nuclear Information System (INIS)

    Jeong, J. J.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Chung, B. D.; Hwang, M.

    2003-03-01

    KAERI has been developing the NSSS transient analyzer based on best-estimate codes for Ulchin 1/2 plants. The MARS and RETRAN code are used as the best-estimate codes for the NSSS transient analyzer. Among the two codes, the MARS code is to be used for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. This report includes the input model requirements and the calculation note for the Ulchin 1/2 MARS input data generation (see the Appendix). In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Ulchin 1/2

  2. Development of the MARS input model for Ulchin 3/4 transient analyzer

    International Nuclear Information System (INIS)

    Jeong, J. J.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Lee, W. J.; Chung, B. D.; Hwang, M. G.

    2003-12-01

    KAERI has been developing the NSSS transient analyzer based on best-estimate codes.The MARS and RETRAN code are adopted as the best-estimate codes for the NSSS transient analyzer. Among these two codes, the MARS code is to be used for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. This report includes the MARS input model requirements and the calculation note for the MARS input data generation (see the Appendix) for Ulchin 3/4 plant analyzer. In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Ulchin 3/4

  3. Transient debris freezing and potential wall melting during a severe reactivity initiated accident experiment

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Moore, R.L.

    1981-01-01

    It is important to light water reactor (LWR) safety analysis to understand the transient freezing of molten core debris on cold structures following a hypothetical core meltdown accident. The purpose of this paper is to (a) present the results of a severe reactivity initiated accident (RIA) in-pile experiment with regard to molten debris distribution and freezing following test fuel rod failure, (b) analyze the transient freezing of molten debris (primarily a mixture of UO/sub 2/ fuel and Zircaloy cladding) deposited on the inner surface of the test shroud wall upon rod failure, and (c) assess the potential for wall melting upon being contacted by the molten debris. 26 refs

  4. Transient voltage control of a DFIG-based wind power plant for suppressing overvoltage using a reactive current reduction loop

    Directory of Open Access Journals (Sweden)

    Geon Park

    2016-01-01

    Full Text Available This paper proposes a transient voltage control scheme of a doubly fed induction generator (DFIG-based wind power plant (WPP using a reactive current reduction loop to suppress the overvoltage at a point of interconnection (POI and DFIG terminal after a fault clearance. The change of terminal voltage of a DFIG is monitored at every predefined time period to detect the fault clearance. If the voltage change exceeds a set value, then the reactive current reduction loop reduces the reactive current reference in the DFIG controller using the step function. The reactive current injection of DFIGs in a WPP is rapidly reduced, and a WPP can rapidly suppress the overvoltage at a fault clearance because the reactive current reference is reduced. Using an electromagnetic transients program–released version (EMTP–RV simulator, the performance of the proposed scheme was validated for a model system comprising 20 units of a 5-MW DFIG considering various scenarios, such as fault and wind conditions. Test results show that the proposed scheme enables a WPP to suppress the overvoltage at the POI and DFIG terminal within a short time under grid fault conditions.

  5. Reactive power generation in high speed induction machines by continuously occurring space-transients

    Science.gov (United States)

    Laithwaite, E. R.; Kuznetsov, S. B.

    1980-09-01

    A new technique of continuously generating reactive power from the stator of a brushless induction machine is conceived and tested on a 10-kw linear machine and on 35 and 150 rotary cage motors. An auxiliary magnetic wave traveling at rotor speed is artificially created by the space-transient attributable to the asymmetrical stator winding. At least two distinct windings of different pole-pitch must be incorporated. This rotor wave drifts in and out of phase repeatedly with the stator MMF wave proper and the resulting modulation of the airgap flux is used to generate reactive VA apart from that required for magnetization or leakage flux. The VAR generation effect increases with machine size, and leading power factor operation of the entire machine is viable for large industrial motors and power system induction generators.

  6. Development of neutronics and thermal hydraulics coupled code – SAC-RIT for plate type fuel and its application to reactivity initiated transient analysis

    International Nuclear Information System (INIS)

    Singh, Tej; Kumar, Jainendra; Mazumdar, Tanay; Raina, V.K.

    2013-01-01

    Highlights: • A point reactor kinetics code coupled with thermal hydraulics of plate type fuel is developed. • This code is applicable for two phase flow of coolant. • Safety analysis of IAEA benchmark reactor core is carried out. • Results agree well with the results available in literature. - Abstract: A point reactor kinetics code SAC-RIT, acronym of Safety Analysis Code for Reactivity Initiated Transient, coupled with thermal hydraulics of two phase coolant flow for plate type fuel, is developed to calculate reactivity initiated transient analysis of nuclear research and test reactors. Point kinetics equations are solved by fourth order Runge Kutta method. Reactivity feedback effect is included into the code. Solution of kinetics equations gives neutronic power and it is then fed into a thermal hydraulic code where mass, momentum and thermal energy conservation equations are solved by explicit finite difference method to find out fuel, clad and coolant temperatures during transients. In this code, all possible flow regimes including laminar flow, transient flow and turbulent flow have been covered. Various heat transfer coefficients suitable for single liquid, sub-cooled boiling, saturation boiling, film boiling and single vapor phases are incorporated in the thermal hydraulic code

  7. A coupled 3-D kinetics/system thermal-hydraulic analysis of main steam line break accident for Optimized Power Reactor 1000

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yung Kwon; Choi, Chul Jin; Kim, Eun Kee; Lee, Sang Yong [Korea Power Engineering Company, Inc, 150 Deokjin-dong, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

    2006-07-01

    This paper presents the results of the coupled 3-D neutronics/thermal-hydraulic analysis of hypothetical main steam line break (MSLB) accident for Optimized Power Reactor 1000. One of the major concerns of this accident is a return-to-power occurrence accompanied with extremely large radial peaking near the stuck Control Element Assembly (CEA). The conventional point kinetics application does not properly account for this kind of asymmetric and local core behavior. Therefore, the current licensing method of point kinetics application introduces some uncertainties and conservatisms in the physics parameters generation, e.g., the static net scram rod worth, moderator cooldown reactivity, Doppler reactivity, and a 3-D peaking factor. The recently developed UNICORN-TM code system is applied for the 3-D coupled calculation, where neutronics code MASTER is coupled with the best-estimate system transient code RETRAN. The 3-D coupled results were assessed in comparison with those by point kinetics application using stand-alone RETRAN application. To quantify the 3-D reactivity benefits over point kinetics, both calculations assumed the accidents to be initiated from the same core state, e.g., end of cycle burnup, fuel and CEA configuration with the same initial moderator and Doppler temperature coefficient, and with initial system thermal-hydraulic condition. The core physics parameters required for point kinetics application were produced using MASTER with the method and procedure consistent with the current licensing application. The occurrence of return-to-power was simulated by intentionally reducing the net CEA worth in order to assess the spatial power distribution and local T-H effect on the dynamic reactivity feedback. The results have demonstrated that the 3-D analysis removes some of the conservatisms inherent in point kinetics analysis mainly caused by the inability to properly account for local reactivity feedback effects during return-to-power transient

  8. A coupled 3-D kinetics/system thermal-hydraulic analysis of main steam line break accident for Optimized Power Reactor 1000

    International Nuclear Information System (INIS)

    Jin, Yung Kwon; Choi, Chul Jin; Kim, Eun Kee; Lee, Sang Yong

    2006-01-01

    This paper presents the results of the coupled 3-D neutronics/thermal-hydraulic analysis of hypothetical main steam line break (MSLB) accident for Optimized Power Reactor 1000. One of the major concerns of this accident is a return-to-power occurrence accompanied with extremely large radial peaking near the stuck Control Element Assembly (CEA). The conventional point kinetics application does not properly account for this kind of asymmetric and local core behavior. Therefore, the current licensing method of point kinetics application introduces some uncertainties and conservatisms in the physics parameters generation, e.g., the static net scram rod worth, moderator cooldown reactivity, Doppler reactivity, and a 3-D peaking factor. The recently developed UNICORN-TM code system is applied for the 3-D coupled calculation, where neutronics code MASTER is coupled with the best-estimate system transient code RETRAN. The 3-D coupled results were assessed in comparison with those by point kinetics application using stand-alone RETRAN application. To quantify the 3-D reactivity benefits over point kinetics, both calculations assumed the accidents to be initiated from the same core state, e.g., end of cycle burnup, fuel and CEA configuration with the same initial moderator and Doppler temperature coefficient, and with initial system thermal-hydraulic condition. The core physics parameters required for point kinetics application were produced using MASTER with the method and procedure consistent with the current licensing application. The occurrence of return-to-power was simulated by intentionally reducing the net CEA worth in order to assess the spatial power distribution and local T-H effect on the dynamic reactivity feedback. The results have demonstrated that the 3-D analysis removes some of the conservatisms inherent in point kinetics analysis mainly caused by the inability to properly account for local reactivity feedback effects during return-to-power transient

  9. Calculations of steady-state and reactivity insertion transients in a research reactor simulating the PWR

    International Nuclear Information System (INIS)

    Mladin, Mirea; Mladin, Daniela; Prodea, Ilie

    2010-01-01

    In 2008, IAEA started a Coordinated Research Project for benchmarking the thermalhydraulic and neutronic computer codes for research reactor analysis against the experimental data. In this framework, for the first year of research contract, the Institute for Nuclear Research engaged in steady-state analysis of SPERT-III reactor and also in the simulation of the reactivity insertion tests performed in this reactor during mid sixties. In the first part, the paper describes a Monte Carlo input model of the oxide core selected for investigation and the results of the steady-state neutronic calculations with respect to hot and cold core reactivity excess and control rods worth. Also, prompt neutron life and reactivity feed-back coefficients were examined. These results were compared with the data provided in the reactor specification document concerning neutronic design calculated data. The second part of the paper is dedicated to calculation of the reactivity insertion transients with RELAP5 and CATHARE2 thermalhydraulic codes, both including point reactor kinetics models, and to comparison with experimental data. (authors)

  10. Anticipated Transient Without SCRAM(ATWS) analysis using the RETRAN code

    International Nuclear Information System (INIS)

    Youn, Bum soo; Lee, Jong beom; Song, Dong soo; Ha, Sang jun

    2014-01-01

    The purpose of this study is to evaluate the Anticipated Transient Without Scram(ATWS) Loss of Load(LOL) and Loss of Normal Feedwater(LOFW) events for the OPR1000 reactor. The analysis calculates the peak RCS and secondary system pressure for the LOL and LOFW ATWS events. The main product of this study is the ATWS evaluation of the OPR1000 reactor LOL and LOFW events. The results include a sequence of events and plots of key output parameters.. This study includes results of Loss of Load and Loss of Feedwater ATWS. The LOL case results in a faster reactor trip than the LOFW since the LOFW does not have the turbine trip at time zero. In addition the LOFW event has the SBCS available and as secondary pressure increase, the steam releases from the SBCS valves provide extra cooling to the secondary system, which also cools the primary system. This additional cooling also delays the DSS trip. For the LOFW event, both the turbine and SBCS are providing additional cooling, hence the primary and secondary system heatups are slower and lower. Thus the RCS and steam generator pressure are higher for the LOL event than the LOFW event. The LOL also has a slower decrease in SG water level than the LOFW event. This is due to loss of condenser vacuum that trips and isolates the turbine and renders the SBCS unavailable for the LOL event. Hence the secondary cooling for the LOL event is due to the steam releases from the MSSVs; whereas the LOFW turbine remains online until a DTT occurs on the DSS. Also the SBCS is available because the condenser is available

  11. Anticipated Transient Without SCRAM(ATWS) analysis using the RETRAN code

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Bum soo; Lee, Jong beom; Song, Dong soo; Ha, Sang jun [KHNP-CRI, Daejeon (Korea, Republic of)

    2014-10-15

    The purpose of this study is to evaluate the Anticipated Transient Without Scram(ATWS) Loss of Load(LOL) and Loss of Normal Feedwater(LOFW) events for the OPR1000 reactor. The analysis calculates the peak RCS and secondary system pressure for the LOL and LOFW ATWS events. The main product of this study is the ATWS evaluation of the OPR1000 reactor LOL and LOFW events. The results include a sequence of events and plots of key output parameters.. This study includes results of Loss of Load and Loss of Feedwater ATWS. The LOL case results in a faster reactor trip than the LOFW since the LOFW does not have the turbine trip at time zero. In addition the LOFW event has the SBCS available and as secondary pressure increase, the steam releases from the SBCS valves provide extra cooling to the secondary system, which also cools the primary system. This additional cooling also delays the DSS trip. For the LOFW event, both the turbine and SBCS are providing additional cooling, hence the primary and secondary system heatups are slower and lower. Thus the RCS and steam generator pressure are higher for the LOL event than the LOFW event. The LOL also has a slower decrease in SG water level than the LOFW event. This is due to loss of condenser vacuum that trips and isolates the turbine and renders the SBCS unavailable for the LOL event. Hence the secondary cooling for the LOL event is due to the steam releases from the MSSVs; whereas the LOFW turbine remains online until a DTT occurs on the DSS. Also the SBCS is available because the condenser is available.

  12. RETRANS - A tool to verify the functional equivalence of automatically generated source code with its specification

    International Nuclear Information System (INIS)

    Miedl, H.

    1998-01-01

    Following the competent technical standards (e.g. IEC 880) it is necessary to verify each step in the development process of safety critical software. This holds also for the verification of automatically generated source code. To avoid human errors during this verification step and to limit the cost effort a tool should be used which is developed independently from the development of the code generator. For this purpose ISTec has developed the tool RETRANS which demonstrates the functional equivalence of automatically generated source code with its underlying specification. (author)

  13. Cerebral vasomotor reactivity: steady-state versus transient changes in carbon dioxide tension.

    Science.gov (United States)

    Brothers, R Matthew; Lucas, Rebekah A I; Zhu, Yong-Sheng; Crandall, Craig G; Zhang, Rong

    2014-11-01

    Cerebral vasomotor reactivity (CVMR) to changes in arterial carbon dioxide tension (P aCO 2) is assessed during steady-state or transient changes in P aCO 2. This study tested the following two hypotheses: (i) that CVMR during steady-state changes differs from that during transient changes in P aCO 2; and (ii) that CVMR during rebreathing-induced hypercapnia would be blunted when preceded by a period of hyperventilation. For each hypothesis, end-tidal carbon dioxide tension (P ET , CO 2) middle cerebral artery blood velocity (CBFV), cerebrovascular conductance index (CVCI; CBFV/mean arterial pressure) and CVMR (slope of the linear regression between changes in CBFV and CVCI versus P ET , CO 2) were assessed in eight individuals. To address the first hypothesis, measurements were made during the following two conditions (randomized): (i) steady-state increases in P ET , CO 2 of 5 and 10 Torr above baseline; and (ii) rebreathing-induced transient breath-by-breath increases in P ET , CO 2. The linear regression for CBFV versus P ET , CO 2 (P = 0.65) and CVCI versus P ET , CO 2 (P = 0.44) was similar between methods; however, individual variability in CBFV or CVCI responses existed among subjects. To address the second hypothesis, the same measurements were made during the following two conditions (randomized): (i) immediately following a brief period of hypocapnia induced by hyperventilation for 1 min followed by rebreathing; and (ii) during rebreathing only. The slope of the linear regression for CBFV versus P ET , CO 2 (P < 0.01) and CVCI versus P ET , CO 2 (P < 0.01) was reduced during hyperventilation plus rebreathing relative to rebreathing only. These results indicate that cerebral vasomotor reactivity to changes in P aCO 2 is similar regardless of the employed methodology to induce changes in P aCO 2 and that hyperventilation-induced hypocapnia attenuates the cerebral vasodilatory responses during a subsequent period of rebreathing

  14. Transient coupled calculations of the Molten Salt Fast Reactor using the Transient Fission Matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Laureau, A., E-mail: laureau.axel@gmail.com; Heuer, D.; Merle-Lucotte, E.; Rubiolo, P.R.; Allibert, M.; Aufiero, M.

    2017-05-15

    Highlights: • Neutronic ‘Transient Fission Matrix’ approach coupled to the CFD OpenFOAM code. • Fission Matrix interpolation model for fast spectrum homogeneous reactors. • Application for coupled calculations of the Molten Salt Fast Reactor. • Load following, over-cooling and reactivity insertion transient studies. • Validation of the reactor intrinsic stability for normal and accidental transients. - Abstract: In this paper we present transient studies of the Molten Salt Fast Reactor (MSFR). This generation IV reactor is characterized by a liquid fuel circulating in the core cavity, requiring specific simulation tools. An innovative neutronic approach called “Transient Fission Matrix” is used to perform spatial kinetic calculations with a reduced computational cost through a pre-calculation of the Monte Carlo spatial and temporal response of the system. Coupled to this neutronic approach, the Computational Fluid Dynamics code OpenFOAM is used to model the complex flow pattern in the core. An accurate interpolation model developed to take into account the thermal hydraulics feedback on the neutronics including reactivity and neutron flux variation is presented. Finally different transient studies of the reactor in normal and accidental operating conditions are detailed such as reactivity insertion and load following capacities. The results of these studies illustrate the excellent behavior of the MSFR during such transients.

  15. Transient coupled calculations of the Molten Salt Fast Reactor using the Transient Fission Matrix approach

    International Nuclear Information System (INIS)

    Laureau, A.; Heuer, D.; Merle-Lucotte, E.; Rubiolo, P.R.; Allibert, M.; Aufiero, M.

    2017-01-01

    Highlights: • Neutronic ‘Transient Fission Matrix’ approach coupled to the CFD OpenFOAM code. • Fission Matrix interpolation model for fast spectrum homogeneous reactors. • Application for coupled calculations of the Molten Salt Fast Reactor. • Load following, over-cooling and reactivity insertion transient studies. • Validation of the reactor intrinsic stability for normal and accidental transients. - Abstract: In this paper we present transient studies of the Molten Salt Fast Reactor (MSFR). This generation IV reactor is characterized by a liquid fuel circulating in the core cavity, requiring specific simulation tools. An innovative neutronic approach called “Transient Fission Matrix” is used to perform spatial kinetic calculations with a reduced computational cost through a pre-calculation of the Monte Carlo spatial and temporal response of the system. Coupled to this neutronic approach, the Computational Fluid Dynamics code OpenFOAM is used to model the complex flow pattern in the core. An accurate interpolation model developed to take into account the thermal hydraulics feedback on the neutronics including reactivity and neutron flux variation is presented. Finally different transient studies of the reactor in normal and accidental operating conditions are detailed such as reactivity insertion and load following capacities. The results of these studies illustrate the excellent behavior of the MSFR during such transients.

  16. Development of the MARS input model for Kori nuclear units 1 transient analyzer

    International Nuclear Information System (INIS)

    Hwang, M.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Lee, W. J.; Chung, B. D.; Jeong, J. J.

    2004-11-01

    KAERI has been developing the 'NSSS transient analyzer' based on best-estimate codes for Kori Nuclear Units 1 plants. The MARS and RETRAN codes have been used as the best-estimate codes for the NSSS transient analyzer. Among these codes, the MARS code is adopted for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. So it is necessary to develop the MARS input model for Kori Nuclear Units 1 plants. This report includes the input model (hydrodynamic component and heat structure models) requirements and the calculation note for the MARS input data generation for Kori Nuclear Units 1 plant analyzer (see the Appendix). In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Kori Nuclear Units 1

  17. Sensitivity analysis of reactive ecological dynamics.

    Science.gov (United States)

    Verdy, Ariane; Caswell, Hal

    2008-08-01

    Ecological systems with asymptotically stable equilibria may exhibit significant transient dynamics following perturbations. In some cases, these transient dynamics include the possibility of excursions away from the equilibrium before the eventual return; systems that exhibit such amplification of perturbations are called reactive. Reactivity is a common property of ecological systems, and the amplification can be large and long-lasting. The transient response of a reactive ecosystem depends on the parameters of the underlying model. To investigate this dependence, we develop sensitivity analyses for indices of transient dynamics (reactivity, the amplification envelope, and the optimal perturbation) in both continuous- and discrete-time models written in matrix form. The sensitivity calculations require expressions, some of them new, for the derivatives of equilibria, eigenvalues, singular values, and singular vectors, obtained using matrix calculus. Sensitivity analysis provides a quantitative framework for investigating the mechanisms leading to transient growth. We apply the methodology to a predator-prey model and a size-structured food web model. The results suggest predator-driven and prey-driven mechanisms for transient amplification resulting from multispecies interactions.

  18. 3-Dimensional Methodology for the Control Rod Ejection Accident Analysis Using UNICORN{sup TM}

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Chan-su; Um, Kil-sup; Ahn, Dawk-hwan [Korea Nuclear Fuel Company, Taejon (Korea, Republic of); Kim, Yo-han; Sung, Chang-kyung [KEPRI, Taejon (Korea, Republic of); Song, Jae-seung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    The control rod ejection accident has been analyzed with STRIKIN-II code using the point kinetics model coupled with conservative factors to address the three dimensional aspects. This may result in a severe transient with very high fuel enthalpy deposition. KNFC, under the support of KEPRI and KAERI, is developing 3-dimensional methodology for the rod ejection accident analysis using UNICORNTM (Unified Code of RETRAN, TORC and MASTER). For this purpose, 3-dimensional MASTER-TORC codes, which have been combined with the dynamic-link library by KAERI, are used in the transient analysis of the core and RETRAN code is used to estimate the enthalpy deposition in the hot rod.

  19. 3-Dimensional Methodology for the Control Rod Ejection Accident Analysis Using UNICORNTM

    International Nuclear Information System (INIS)

    Jang, Chan-su; Um, Kil-sup; Ahn, Dawk-hwan; Kim, Yo-han; Sung, Chang-kyung; Song, Jae-seung

    2006-01-01

    The control rod ejection accident has been analyzed with STRIKIN-II code using the point kinetics model coupled with conservative factors to address the three dimensional aspects. This may result in a severe transient with very high fuel enthalpy deposition. KNFC, under the support of KEPRI and KAERI, is developing 3-dimensional methodology for the rod ejection accident analysis using UNICORNTM (Unified Code of RETRAN, TORC and MASTER). For this purpose, 3-dimensional MASTER-TORC codes, which have been combined with the dynamic-link library by KAERI, are used in the transient analysis of the core and RETRAN code is used to estimate the enthalpy deposition in the hot rod

  20. Analysis of steady state and transient two-phase flows in downwardly inclined lines

    International Nuclear Information System (INIS)

    Crawford, T.J.

    1983-01-01

    A study of steady-state and transient two-phase flows in downwardly inclined lines is described. Steady-state flow patterns maps are presented using Freon-113 as the working fluid to provide new high density vapors. These flow maps with high density vapor serve to significantly extend the investigations of steady-state downward two-phase flow patterns. Physical models developed which successfully predicted the onset or location of various flow pattern transitions. A new simplified criterion that would be useful to designers and experimenters is offered for the onset of dispersed flow. A new empirical holdup correlation and a new bubble diameter/flow rate correlation are also proposed. Flow transients in vertical downward lines were studied to investigate the possible formation of intermediate or spurious flow patterns that would not be seen at steady-state conditions. Void fraction behavior during the transients was modeled by using the dynamic slip equation from the transient analysis code RETRAN. Physical models of interfacial area were developed and compared with models and data from literature. There was satisfactory agreement between the models of the present study and the literature models and data. The concentration parameter of the drift flux model was evaluated for vertical downward flow. These new values of the flow dependent parameter were different from those previously proposed in the literature for use in upward flows, and made the drift flux model suitable for use in upward or downward flow lines

  1. Using Rising Limb Analysis to Estimate Uptake of Reactive Solutes in Advective and Transient Storage Sub-compartments of Stream Ecosystems

    Science.gov (United States)

    Thomas, S. A.; Valett, H.; Webster, J. R.; Mulholland, P. J.; Dahm, C. N.

    2001-12-01

    Identifying the locations and controls governing solute uptake is a recent area of focus in studies of stream biogeochemistry. We introduce a technique, rising limb analysis (RLA), to estimate areal nitrate uptake in the advective and transient storage (TS) zones of streams. RLA is an inverse approach that combines nutrient spiraling and transient storage modeling to calculate total uptake of reactive solutes and the fraction of uptake occurring within the advective sub-compartment of streams. The contribution of the transient storage zones to solute loss is determined by difference. Twelve-hour coinjections of conservative (Cl-) and reactive (15NO3) tracers were conducted seasonally in several headwater streams among which AS/A ranged from 0.01 - 2.0. TS characteristics were determined using an advection-dispersion model modified to include hydrologic exchange with a transient storage compartment. Whole-system uptake was determined by fitting the longitudinal pattern of NO3 to first-order, exponential decay model. Uptake in the advective sub-compartment was determined by collecting a temporal sequence of samples from a single location beginning with the arrival of the solute front and concluding with the onset of plateau conditions (i.e. the rising limb). Across the rising limb, 15NO3:Cl was regressed against the percentage of water that had resided in the transient storage zone (calculated from the TS modeling). The y-intercept thus provides an estimate of the plateau 15NO3:Cl ratio in the absence of NO3 uptake within the transient storage zone. Algebraic expressions were used to calculate the percentage of NO3 uptake occurring in the advective and transient storage sub-compartments. Application of RLA successfully estimated uptake coefficients for NO3 in the subsurface when the physical dimensions of that habitat were substantial (AS/A > 0.2) and when plateau conditions at the sampling location consisted of waters in which at least 25% had resided in the

  2. Determination of optimum pressurizer level for kori unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dong Soo; Lee, Chang Sup; Yong, Lee Jae; Kim, Yo Han; Lee, Dong Hyuk [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    To determine the optimum pressurizer water level during normal operation for Kori unit 1, performance and safety analysis are performed. The methodology is developed by evaluating {sup d}ecrease in secondary heat removal{sup e}vents such as Loss of Normal Feedwater accident. To demonstrate optimum pressurizer level setpoint, RETRAN-03 code is used for performance analysis. Analysis results of RETRAN following reactor trip are compared with the actual plant data to justify RETRAN code modelling. The results of performance and safety analyses show that the newly established level setpoints not only improve the performance of pressurizer during transient including reactor trip but also meet the design bases of the pressurizer volume and pressure. 6 refs., 5 figs. (Author)

  3. Determination of optimum pressurizer level for kori unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dong Soo; Lee, Chang Sup; Lee Jae Yong; Kim, Yo Han; Lee, Dong Hyuk [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    To determine the optimum pressurizer water level during normal operation for Kori unit 1, performance and safety analysis are performed. The methodology is developed by evaluating {sup d}ecrease in secondary heat removal{sup e}vents such as Loss of Normal Feedwater accident. To demonstrate optimum pressurizer level setpoint, RETRAN-03 code is used for performance analysis. Analysis results of RETRAN following reactor trip are compared with the actual plant data to justify RETRAN code modelling. The results of performance and safety analyses show that the newly established level setpoints not only improve the performance of pressurizer during transient including reactor trip but also meet the design bases of the pressurizer volume and pressure. 6 refs., 5 figs. (Author)

  4. Test results of the new NSSS thermal-hydraulics program of the KNPEC-2 simulator

    International Nuclear Information System (INIS)

    Jeong, J. Z.; Kim, K. D.; Lee, M. S.; Hong, J. H.; Lee, Y. K.; Seo, J. S.; Kweon, K. J.; Lee, S. W.

    2001-01-01

    As a part of the KNPEC-2 Simulator Upgrade Project, KEPRI and KAERI have developed a new NSSS thermal-hydraulics program, which is based on the best-estimate system code, RETRAN. The RETRAN code was originally developed for realistic simulation of thermal-hydraulic transient in power plant systems. The capability of 'real-time simulation' and robustness' should be first developed before being implemented in full-scope simulators. For this purpose, we have modified the RETRAN code by (i) eliminating the correlations' discontinuities between flow regime maps, (ii) simplifying physical correlations, (iii) correcting errors in the original program, and (iv) others. This paper briefly presents the test results fo the new NSSS thermal-hydraulics program

  5. Transient analysis models for nuclear power plants

    International Nuclear Information System (INIS)

    Agapito, J.R.

    1981-01-01

    The modelling used for the simulation of the Angra-1 start-up reactor tests, using the RETRAN computer code is presented. Three tests are simulated: a)nuclear power plant trip from 100% of power; b)great power excursions tests and c)'load swing' tests.(E.G.) [pt

  6. Effects of high density dispersion fuel loading on the uncontrolled reactivity insertion transients of a low enriched uranium fueled material test research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Farhan [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan)], E-mail: farhan73@hotmail.com; Majid, Asad [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan)

    2009-08-15

    The effects of using high density low enriched uranium on the uncontrolled reactivity insertion transients of a material test research reactor were studied. For this purpose, the low density LEU fuel of an MTR was replaced with high density U-Mo (9w/o) LEU fuels currently being developed under the RERTR program having uranium densities of 6.57 gU/cm{sup 3}, 7.74 gU/cm{sup 3} and 8.57 gU/cm{sup 3}. Simulations were carried out to determine the reactor performance under reactivity insertion transients with totally failed control rods. Ramp reactivities of 0.25$/0.5 s and 1.35$/0.5 s were inserted with reactor operating at full power level of 10 MW. Nuclear reactor analysis code PARET was employed to carry out these calculations. It was observed that when reactivity insertion was 0.25$/0.5 s, the new power level attained increased by 5.8% as uranium density increases from 6.57 gU/cm{sup 3} to 8.90 gU/cm{sup 3}. This results in increased maximum temperatures of fuel, clad and coolant outlet, achieved at the new power level, by 4.7 K, 4.4 K and 2.4 K, respectively. When reactivity insertion was 1.35$/0.5 s, the feedback reactivities were unable to control the reactor which resulted in the bulk boiling of the coolant; the one with the highest fuel density was the first to reach the boiling point.

  7. What makes ecological systems reactive?

    Science.gov (United States)

    Snyder, Robin E

    2010-06-01

    Although perturbations from a stable equilibrium must ultimately vanish, they can grow initially, and the maximum initial growth rate is called reactivity. Reactivity thus identifies systems that may undergo transient population surges or drops in response to perturbations; however, we lack biological and mathematical intuition about what makes a system reactive. This paper presents upper and lower bounds on reactivity for an arbitrary linearized model, explores their strictness, and discusses their biological implications. I find that less stable systems (i.e. systems with long transients) have a smaller possible range of reactivities for which no perturbations grow. Systems with more species have a higher capacity to be reactive, assuming species interactions do not weaken too rapidly as the number of species increases. Finally, I find that in discrete time, reactivity is determined largely by mean interaction strength and neither discrete nor continuous time reactivity are sensitive to food web topology. 2010 Elsevier Inc. All rights reserved.

  8. Comparison of one-dimensional and point kinetics for various light water reactor transients

    International Nuclear Information System (INIS)

    Naser, J.A.; Lin, C.; Gose, G.C.; McClure, J.A.; Matsui, Y.

    1985-01-01

    The object of this paper is to compare the results from the three kinetics options: 1) point kinetics; 2) point kinetics by not changing the shape function; and 3) one-dimensional kinetics for various transients on both BWRs and PWRs. A systematic evaluation of the one-dimensional kinetics calculation and its alternatives is performed to determine the status of these models and to identify additional development work. In addition, for PWRs, the NODEP-2 - NODETRAN and SIMULATE - SIMTRAN paths for calculating kinetics parameters are compared. This type of comparison has not been performed before and is needed to properly evaluate the RASP methodology of which these codes are a part. It should be noted that RASP is in its early pre-release stage and this is the first serious attempt to examine the consistency between these two similar but different methods of generating physics parameters for the RETRAN computer code

  9. Assessment of the TASS 1-D neutronics model for the westinghouse and ABB-CE type PWR reactivity induced transients

    International Nuclear Information System (INIS)

    Choi, J.D.; Yoon, H.Y.; Um, K.S.; Kim, H.C.; Sim, S.K.

    1997-01-01

    Best estimate transient analysis code, TASS, has been developed for the normal and transient simulation of the Westinghouse and ABB-CE type PWRs. TASS thermal hydraulic model is based on the non-homogeneous, non-equilibrium two-phase continuity, energy and mixture momentum equations with constitutive relations for closure. Core neutronics model employs both the point kinetics and one-dimensional neutron diffusion model. Semi-implicit numerical scheme is used to solve the discretized finite difference equations. TASS one dimensional neutronics core model has been assessed through the reactivity induced transient analyses for the KORI-3, three loop Westinghouse PWR, and Younggwang-3 (YGN-3), two-loop ABB-CE PWR, nuclear power plants currently operating in Korea. The assessment showed that the TASS one dimensional neutronics core model can be applied for the Westinghouse and ABB-CE type PWRs to gain thermal margin which is necessary for a potential use of the high fuel burnup, extended fuel cycle, power upgrading and for the plant life extension

  10. Development of refined MCNPX-PARET multi-channel model for transient analysis in research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kalcheva, S.; Koonen, E. [SCK-CEN, BR2 Reactor Dept., Boeretang 200, 2400 Mol (Belgium); Olson, A. P. [RERTR Program, Nuclear Engineering Div., Argonne National Laboratory, Cass Avenue, Argonne, IL 60439 (United States)

    2012-07-01

    Reactivity insertion transients are often analyzed (RELAP, PARET) using a two-channel model, representing the hot assembly with specified power distribution and an average assembly representing the remainder of the core. For the analysis of protected by the reactor safety system transients and zero reactivity feedback coefficients this approximation proves to give adequate results. However, a more refined multi-channel model representing the various assemblies, coupled through the reactivity feedback effects to the whole reactor core is needed for the analysis of unprotected transients with excluded over power and period trips. In the present paper a detailed multi-channel PARET model has been developed which describes the reactor core in different clusters representing typical BR2 fuel assemblies. The distribution of power and reactivity feedback in each cluster of the reactor core is obtained from a best-estimate MCNPX calculation using the whole core geometry model of the BR2 reactor. The sensitivity of the reactor response to power, temperature and energy distributions is studied for protected and unprotected reactivity insertion transients, with zero and non-zero reactivity feedback coefficients. The detailed multi-channel model is compared vs. simplified fewer-channel models. The sensitivities of transient characteristics derived from the different models are tested on a few reactivity insertion transients with reactivity feedback from coolant temperature and density change. (authors)

  11. Chernobyl reactor transient simulation study

    International Nuclear Information System (INIS)

    Gaber, F.A.; El Messiry, A.M.

    1988-01-01

    This paper deals with the Chernobyl nuclear power station transient simulation study. The Chernobyl (RBMK) reactor is a graphite moderated pressure tube type reactor. It is cooled by circulating light water that boils in the upper parts of vertical pressure tubes to produce steam. At equilibrium fuel irradiation, the RBMK reactor has a positive void reactivity coefficient. However, the fuel temperature coefficient is negative and the net effect of a power change depends upon the power level. Under normal operating conditions the net effect (power coefficient) is negative at full power and becomes positive under certain transient conditions. A series of dynamic performance transient analysis for RBMK reactor, pressurized water reactor (PWR) and fast breeder reactor (FBR) have been performed using digital simulator codes, the purpose of this transient study is to show that an accident of Chernobyl's severity does not occur in PWR or FBR nuclear power reactors. This appears from the study of the inherent, stability of RBMK, PWR and FBR under certain transient conditions. This inherent stability is related to the effect of the feed back reactivity. The power distribution stability in the graphite RBMK reactor is difficult to maintain throughout its entire life, so the reactor has an inherent instability. PWR has larger negative temperature coefficient of reactivity, therefore, the PWR by itself has a large amount of natural stability, so PWR is inherently safe. FBR has positive sodium expansion coefficient, therefore it has insufficient stability it has been concluded that PWR has safe operation than FBR and RBMK reactors

  12. Periodic transients linked to a variation in reactivity; Transitoires de periode lies a une variation de reactivite

    Energy Technology Data Exchange (ETDEWEB)

    Furet, J; Weil, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    We study here the influence of the transient, linked to a variation in reactivity, on the measurement of the period, this measurement being made from the logarithmic differential of the power and being defined by 1/T 1/p(dp/dt). We show that the adjustment of the thresholds of period safety is often incompatible with the velocities of liberation of reactivity. A compromise is then necessary between the speed of response of the periodimeter and the speed with which the reactivity is liberated. This makes it necessary to have rapid security devices for the power levels in the piles in which the speeds of liberation of the reactivity are high. (author) [French] On etudie ici l'influence du transitoire lie a une variation de la reactivite sur la mesure de la periode, cette mesure etant faite a partir de la derivee logarithmique de la puissance et etant definie par 1/T 1/p(dp/dt). On montre que le reglage des seuils de securite periode est souvent incompatible avec les vitesses de liberation de reactivite. Il y a alors un compromis a faire entre la vitesse de reponse du periodemetre et la vitesse de liberation de reactivite. Ceci impose de disposer de securites rapides sur les niveaux de puissance, dans les piles ou les vitesses de liberation de reactivite sont importantes. (auteur)

  13. Two-frequency, one-detector reactivity system (TFODRS)

    International Nuclear Information System (INIS)

    Sachs, R.D.; Woodall, D.M.

    1985-01-01

    A two-frequency, one-detector reactivity system (TFODRS) was experimentally verified on the University of New Mexico (UNM) AGN-201M thermal reactor. That system was used to obtain the absolute steady-state reactivity and to demonstrate the feasibility of acquiring the transient reactivity. A detailed description of TFODRS hardware and software is given in this paper. The TFODRS obtains the absolute and net reactivity by computing the frequency spectrum of the reactor neutron-detector signal. The ratio of the high-frequency to the low-frequency components about an empirical break point is used to determine the reactivity. The TFODRS was successfully used to measure a known AGN-201M steady-state reactivity, with a relative error of 18%. TFODRS transient curves as a function of reactivity were shown to be different from the steady-state curves. The transient curves appear to be a function of the rate of reactivity insertion. The authors speculate that a modified TFODRS, using state-of-the-art microprocessors, could be used for fast reactors. The TFODRS is not presently a practicable reactimeter. However, with more research and development, it is felt it could be used in near-term nuclear industry applications, such as monitoring fuel storage pools

  14. Transient analysis for resolving safety issues

    International Nuclear Information System (INIS)

    Chao, J.; Layman, W.

    1987-01-01

    The Nuclear Safety Analysis Center (NSAC) has a Generic Safety Analysis Program to help resolve high priority generic safety issues. This paper describes several high priority safety issues considered at NSAC and how they were resolved by transient analysis using thermal hydraulics and neutronics codes. These issues are pressurized thermal shock (PTS), anticipated transients without scram (ATWS), steam generator tube rupture (SGTR), and reactivity transients in light of the Chernobyl accident

  15. Design criteria of integrated reactors based on transients

    International Nuclear Information System (INIS)

    Zanocco, P.; Gimenez, M.; Delmastro, D.

    1999-01-01

    A new tendency in integrated reactors conceptual design is to include safety criteria through accident analysis. In this work, the effect of design parameters in a Loss of Heat Sink transient using design maps is analyzed. Particularly, geometry related parameters and reactivity coefficients are studied. Also the effect of primary relief/safety valve during the transient is evaluated. A design map for valve area vs. coolant density reactivity coefficient is obtained. A computer code (HUARPE) is developed in order to simulate these transients. Coolant, steam dome, pressure vessel structures and core models are implemented. This code is checked against TRAC with satisfactory results. (author)

  16. Additional 5 kWe thermoelectric system temperature transients

    International Nuclear Information System (INIS)

    Halfen, F.J.

    1972-01-01

    Several additional system transients have been calculated for the 5 kW(e) TE system and are reported in this document. They include a startup transient with a reactivity rate of 0.005 cents/sec, several startup accidents, a step reactivity insertion at full power and a loss of electrical load. These data are intended for input to system design analyses and for possible use in the protected accident section of the safety report. (U.S.)

  17. Simulation of reactivity-initiated accident transients on UO2-M5® fuel rods with ALCYONE V1.4 fuel performance code

    Directory of Open Access Journals (Sweden)

    Isabelle Guénot-Delahaie

    2018-03-01

    Full Text Available The ALCYONE multidimensional fuel performance code codeveloped by the CEA, EDF, and AREVA NP within the PLEIADES software environment models the behavior of fuel rods during irradiation in commercial pressurized water reactors (PWRs, power ramps in experimental reactors, or accidental conditions such as loss of coolant accidents or reactivity-initiated accidents (RIAs. As regards the latter case of transient in particular, ALCYONE is intended to predictively simulate the response of a fuel rod by taking account of mechanisms in a way that models the physics as closely as possible, encompassing all possible stages of the transient as well as various fuel/cladding material types and irradiation conditions of interest. On the way to complying with these objectives, ALCYONE development and validation shall include tests on PWR-UO2 fuel rods with advanced claddings such as M5® under “low pressure–low temperature” or “high pressure–high temperature” water coolant conditions.This article first presents ALCYONE V1.4 RIA-related features and modeling. It especially focuses on recent developments dedicated on the one hand to nonsteady water heat and mass transport and on the other hand to the modeling of grain boundary cracking-induced fission gas release and swelling. This article then compares some simulations of RIA transients performed on UO2-M5® fuel rods in flowing sodium or stagnant water coolant conditions to the relevant experimental results gained from tests performed in either the French CABRI or the Japanese NSRR nuclear transient reactor facilities. It shows in particular to what extent ALCYONE—starting from base irradiation conditions it itself computes—is currently able to handle both the first stage of the transient, namely the pellet-cladding mechanical interaction phase, and the second stage of the transient, should a boiling crisis occur.Areas of improvement are finally discussed with a view to simulating and

  18. Coupling of 3-D core computational codes and a reactor simulation software for the computation of PWR reactivity accidents induced by thermal-hydraulic transients

    International Nuclear Information System (INIS)

    Raymond, P.; Caruge, D.; Paik, H.J.

    1994-01-01

    The French CEA has recently developed a set of new computer codes for reactor physics computations called the Saphir system which includes CRONOS-2, a three-dimensional neutronic code, FLICA-4, a three-dimensional core thermal hydraulic code, and FLICA-S, a primary loops thermal-hydraulic transient computation code, which are coupled and applied to analyze a severe reactivity accident induced by a thermal hydraulic transient: the Steamline Break accident for a pressurized water reactor until soluble boron begins to accumulate in the core. The coupling of these codes has proved to be numerically stable. 15 figs., 7 refs

  19. Calculation Method of Steam Generator Level for swelling and shrinking effects in YGN 1/2 Simulator

    International Nuclear Information System (INIS)

    Hwang, Do Hyun; Seo, In Yong; Park, Weon Seo; Suh, Jae Seung

    2007-01-01

    In August 2006, the development of new simulator for YGN 1/2 Simulator was completed. The NSSS (Nuclear Steam Supply System) T/H(Thermal- Hydraulic) module in this simulator was developed with ARTS code based on RETRAN, which is a best estimate thermal-hydraulic code designed to analyze several operational transients by EPRI(Electric Power Research Institute). RETRAN, however, has some limitations in real-time calculation capability and its robustness to be used in the simulator for some transient conditions. To overcome these limitations, its robustness and real-time calculation capability have been improved with simplifications and removing of discontinuities of the physical correlations of the RETRAN code. And some supplements are also developed to extend its simulation scope of the ARTS code. In comparison to KNPEC(Kori Nuclear Power Education Center) no.2 simulator, the simulator based on Younggwang Unit 1 developed in the year 2001, the ARTS code was upgraded that it extended its calculating region to the steam line and common header before turbine while it had calculated to the steam generator exit before steam line in KNPEC no.2 simulator. Consequently, the number of volume and fill/normal junction in ARTS nodalization increased to 109 and 174 from 62 and 125, respectively

  20. Engineering analysis activities in support of susquehanna unit 1 startup testing and cycle 1 operations

    International Nuclear Information System (INIS)

    Miller, G.D.; Kukielka, C.A.; Olson, L.M.; Refling, J.G.; Roscioli, A.J.; Somma, S.A.

    1985-01-01

    The engineering analysis group is responsible for all nuclear plant systems analysis and reactor analysis activities, excluding fuel management analysis, at Pennsylvania Power and Light Company. These activities include making pretest and posttest predictions of startup tests; analyzing unplanned or unexpected transient events; providing technical training to plant personnel; assisting in the development of emergency drill scenarios; providing engineering evaluations to support design and technical specification changes, and evaluating, assessing, and resolving a number of license conditions. Many of these activities have required the direct use of RETRAN models. Two RETRAN analyses that were completed to support plant operations - a pretest analysis of the turbine trip startup test, and a posttest analysis of the loss of startup transformer event - are investigated. For each case, RETRAN results are compared with available plant data and comparisons are drawn on the acceptability of the performance of the plant systems

  1. Analysis of transients in the SRP test pile

    International Nuclear Information System (INIS)

    Church, J.P.

    1976-11-01

    Analysis of the hypothetical upper limit accident in the Savannah River Test Pile showed that the offsite thyroid dose from fission product release would be -3 of the 10-CFR-100 guideline dose for 95 percent of measured meteorological conditions. Offsite whole body dose would be negligible. The Test Pile was modified to limit the length of test piece that can be charged to the pile. These modifications reduce the potential offsite dose to -5 of the regulatory guidelines. Assessment of Test Pile safety included calculations of transients initiated by a variety of reactivity additions that were either terminated or not terminated by safety systems. Reactivity addition mechanisms considered were abnormally driving control rods out of the pile and charging abnormal test pieces into the pile. The transients were evaluated in the adiabatic approximation in which three-dimensional calculations of static flux shapes and reactivity were superimposed on point reactor kinetics calculations. Negative reactivity feedback effects appropriate for the pile and the temperature dependence of material properties, such as specific heat and thermal conductivity, were included. The results show that, for the worst initiators, safety systems can prevent the temperature rise from exceeding 1 0 C anywhere in the Test Pile. If the safety systems do not function, the pile temperatures will increase until the transient is ended by the inherent negative reactivity effects, including the melting of some fuel

  2. A technique for computing bowing reactivity feedback in LMFBR's

    International Nuclear Information System (INIS)

    Finck, P.J.

    1987-01-01

    During normal or accidental transients occurring in a LMFBR core, the assemblies and their support structure are subjected to important thermal gradients which induce differential thermal expansions of the walls of the hexcans and differential displacement of the assembly support structure. These displacements, combined with the creep and swelling of structural materials, remain quite small, but the resulting reactivity changes constitute a significant component of the reactivity feedback coefficients used in safety analyses. It would be prohibitive to compute the reactivity changes due to all transients. Thus, the usual practice is to generate reactivity gradient tables. The purpose of the work presented here is twofold: develop and validate an efficient and accurate scheme for computing these reactivity tables; and to qualify this scheme

  3. Predictable anomalies of process parameters on failure mode of internal structures in RPV by transient thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Maki, Akira; Mori, Michitsugu; Kanemoto, Shigeru; Konishi, Hideo

    1997-01-01

    A study has been conducted to evaluate how process parameters will exhibit the change in the event of the troubles related to reactor internal by using transient thermal-hydraulic analysis codes (RETRAN3D-MOD002, etc.). In the present study, the following six events are analytically investigated: 1) a leak from the upper plenum; 2) a leak from the middle part of a shroud; 3) a leak from the lower plenum; 4) a leak from the riser pipe for the jet-pump; 5) the blockage of the jet-pump nozzle; and 6) a leak from the jet-pump diffuser. The results by analyses indicated that the leak from the upper plenum resulted in increasing in the inlet temperature of primary loop recirculation (PLR) and in the differential pressure at the core support plate, and decreasing in the neutron flux (reactor power). Similar analyses were made for the five other events to identify the pattern of relevant process parameter variation in each event. (author)

  4. Development of Non-LOCA Safety Analysis Methodology with RETRAN-3D and VIPRE-01/K

    International Nuclear Information System (INIS)

    Kim, Yo-Han; Cheong, Ae-Ju; Yang, Chang-Keun

    2004-01-01

    Korea Electric Power Research Institute has launched a project to develop an in-house non-loss-of-coolant-accident analysis methodology to overcome the hardships caused by the narrow analytical scopes of existing methodologies. Prior to the development, some safety analysis codes were reviewed, and RETRAN-3D and VIPRE-01 were chosen as the base codes. The codes have been modified to improve the analytical capabilities required to analyze the nuclear power plants in Korea. The methodologies of the vendors and the Electric Power Research Institute have been reviewed, and some documents of foreign utilities have been used to compensate for the insufficiencies. For the next step, a draft methodology for pressurized water reactors has been developed and modified to apply to Westinghouse-type plants in Korea. To verify the feasibility of the methodology, some events of Yonggwang Units 1 and 2 have been analyzed from the standpoints of reactor coolant system pressure and the departure from nucleate boiling ratio. The results of the analyses show trends similar to those of the Final Safety Analysis Report

  5. Possibility of a pressurized water reactor concept with highly inherent heat removal following capability

    International Nuclear Information System (INIS)

    Araya, Fumimasa; Murao, Yoshio

    1995-01-01

    If the core power inherently follows change in heat removal rate from the primary coolant system within small thermal expansion of the coolant which can be absorbed in a practical size of pressurizer, reactor systems may have more safety and load following capability. In order to know possibility and necessary conditions of a concept on reactor core and primary coolant system of a pressurized water reactor (PWR) with such 'highly inherent heat removal following capability', transient analyses on an ordinary two-loop PWR have been performed for a transient due to 50% change in heat removal with the RETRAN-02 code. The possibility of a PWR concept with the highly inherent heat removal following capability has been demonstrated under the conditions of the absolute value of ratio of the coolant density reactivity coefficient to the Doppler reactivity coefficient more than 10x10 3 kg·cm 3 which is two to three times larger than that at beginning of cycle (BOC) in an ordinary PWR and realized by elimination of the chemical shim, the 12% lower average linear heat generation rate of 17.9 kW/m, and the 1.5 times larger pressurizer volume than those of the ordinary PWR. (author)

  6. Impact of seasonal forcing on reactive ecological systems.

    Science.gov (United States)

    Vesipa, Riccardo; Ridolfi, Luca

    2017-04-21

    Our focus is on the short-term dynamics of reactive ecological systems which are stable in the long term. In these systems, perturbations can exhibit significant transient amplifications before asymptotically decaying. This peculiar behavior has attracted increasing attention. However, reactive systems have so far been investigated assuming that external environmental characteristics remain constant, although environmental conditions (e.g., temperature, moisture, water availability, etc.) can undergo substantial changes due to seasonal cycles. In order to fill this gap, we propose applying the adjoint non-modal analysis to study the impact of seasonal variations of environmental conditions on reactive systems. This tool allows the transient dynamics of a perturbation affecting non-autonomous ecological systems to be described. To show the potential of this approach, a seasonally forced prey-predator model with a Holling II type functional response is studied as an exemplifying case. We demonstrate that seasonalities can greatly affect the transient dynamics of the system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Visual and intelligent transients and accidents analyzer based on thermal-hydraulic system code

    International Nuclear Information System (INIS)

    Meng Lin; Rui Hu; Yun Su; Ronghua Zhang; Yanhua Yang

    2005-01-01

    Full text of publication follows: Many thermal-hydraulic system codes were developed in the past twenty years, such as RELAP5, RETRAN, ATHLET, etc. Because of their general and advanced features in thermal-hydraulic computation, they are widely used in the world to analyze transients and accidents. But there are following disadvantages for most of these original thermal-hydraulic system codes. Firstly, because models are built through input decks, so the input files are complex and non-figurative, and the style of input decks is various for different users and models. Secondly, results are shown in off-line data file form. It is not convenient for analysts who may pay more attention to dynamic parameters trend and changing. Thirdly, there are few interfaces with other program in these original thermal-hydraulic system codes. This restricts the codes expanding. The subject of this paper is to develop a powerful analyzer based on these thermal-hydraulic system codes to analyze transients and accidents more simply, accurately and fleetly. Firstly, modeling is visual and intelligent. Users build the thermalhydraulic system model using component objects according to their needs, and it is not necessary for them to face bald input decks. The style of input decks created automatically by the analyzer is unified and can be accepted easily by other people. Secondly, parameters concerned by analyst can be dynamically communicated to show or even change. Thirdly, the analyzer provide interface with other programs for the thermal-hydraulic system code. Thus parallel computation between thermal-hydraulic system code and other programs become possible. In conclusion, through visual and intelligent method, the analyzer based on general and advanced thermal-hydraulic system codes can be used to analysis transients and accidents more effectively. The main purpose of this paper is to present developmental activities, assessment and application results of the visual and intelligent

  8. The transient analysis of single turbine control valve closure for Lungmen ABWR

    International Nuclear Information System (INIS)

    Ma Shaoshih; Yuann Yngruey; Shih Chunkuan

    2012-01-01

    Highlights: ► The LRM was used to evaluate the single control valve closure event. ► The purpose is to offer an updated analysis about the MCFL under the partial arc mode instead of FSAR’s result. ► It is concluded that the 112% MCFL setting is the most limiting case. ► The MCFL setting actually used in SBPCS must be kept between 112% to 114% to gain the operational margin. ► The HFF index defined by the normalized heat flux can be used to predict the CPR change. - Abstract: The single control valve closure in fast (SCVCF) event is the most limiting transient in terms of delta critical power ratio (ΔCPR) for the Lungmen Plant, which is a basis to determine the operating limit minimum critical power ratio value. The partial arc mode is adopted in Lungmen Plant to control the position of the turbine control valve. However, the transient analyses presented in the Lungmen Final Safety Analysis Report (FSAR) assume that the TCVs are in the full arc mode. In this study, the Lungmen RETRAM model with partial arc mode is used to analyze the SCVCF event to offer more realistic results than the FSAR. It is concluded that the most limiting maximum combined flow limiter (MCFL) setting in RETRAN analysis is different from that of FSAR. An optimum operating range for the MCFL is suggested to gain the margin against the operating drift. Additionally, a Heat Flux Factor index is defined to appropriately determine the ranking of these cases in terms of ΔCPR.

  9. Evaluation of reactivity and Xe behavior during daily load following operation

    International Nuclear Information System (INIS)

    Sakamoto, Yasunori; Araki, Tsuneyasu; Yamamoto, Fumiaki

    1992-01-01

    A boiling water reactor (BWR) has an excellent load following capability provided by a core flow control, which is used for changing a reactor power level and for compensating the subsequent Xe concentration change. The core characteristics during load following operations are investigated in detail, using our reactor core simulator. Comparisons of changes of the Doppler reactivity, the void reactivity and the Xe reactivity during transients are performed. Also the features of Xe transient during load following operations are shown. It has been shown that the core flow change required to compensate the Xe reactivity change produces much greater change of the void reactivity than that required for power level changes, and that the resulting local power change in the lower part of the core is greater than that in the upper part, because the Xe concentration change in the lower part is hardly compensated by the core flow control. Also the effects of power level changes, cycle patterns, and initial concentration of Xe and I on the Xe transient behavior have been investigated. (author)

  10. KIVA3, Transient Multicomponent 2-D and 3-D Reactive Flows with Fuel Sprays

    International Nuclear Information System (INIS)

    Amsden, A.A.

    2001-01-01

    1 - Description of program or function: KIVA3VRELEASE2 is a computer program for the numerical calculation of transient, two and three-dimensional, chemically reactive flows with sprays. It is a newer version of the earlier KIVA3 (1993) that has now been extended to model vertical of canted valves in the cylinder head of a gasoline or diesel engine. KIVA3, in turn, was based on the earlier KIVA2 (1989) and uses the same numerical solution procedure and solves the same sort of equations. KIVA3VRELEASE2 uses a block-structured mesh with connectivity defined through indirect addressing. The departure from a single rectangular structure in logical space allows complex geometries to be modeled with significantly greater efficiency because large regions of deactivated cells are no longer necessary. Cell-face boundary conditions permit greater flexibility and simplification in the application of boundary conditions. KIVA3VRELEASE2 contains a number of significant changes. New features enhance the robustness, efficiency, and usefulness of the overall program for engine modeling. Automatic restart of the cycle with a reduced time-step in case of iteration limit or temperature overflow will reduce code crashes. A new option provides automatic deactivation of a port region when it is closed from the cylinder and reactivation when it communicates with the cylinder. Corrections in the code improve accuracy; extensions to the particle-based liquid wall film model makes the model more complete and a spli injection option has been added. A new subroutine monitors the liquid and gaseous fuel phases and energy balance data and emissions are monitored and printed. New features have been added to the grid generator K3PREP and the graphics post processor, K3POST. 2 - Method of solution: KIVA3VRELEASE2 solves the unsteady equations of motion of a turbulent, chemically reactive mixture of ideal gases, coupled to the equations for a single-component vaporizing fuel spray. The gas

  11. Fast Flux Test Facility (FFTF) feedback reactivity components

    International Nuclear Information System (INIS)

    Nguyen, D.H.

    1988-04-01

    The static tests conducted during Cycle 8A (1986) of the FFTF have allowed, for the first time, the experimental determination of each of the feedback reactivities caused by the following mechanisms: fuel axial expansion, control rod repositioning, core radial expansion, and subassembly bowing. A semiempirical equation was obtained to describe each of these feedback components that depended only on the relevant reactor temperature (bowing was presented in a tabular form). The Doppler and sodium density reactivities were calculated using existing mechanistic methods. Although they could also be fitted with closed-form equations depending only on temperatures, these equations are not needed in transient analyses using whole core safety computer codes, which use mechanistic methods. The static feedback reactivity model was extended to obtain a dynamic model via the concept of ''time constants.'' Besides being used for transient analyses in the FFTF, these feedback equations constitute a database for the validation and/or calibration of mechanistic feedback reactivity models. 2 refs., 6 tabs

  12. Transient behavior during reactivity insertion in the Moroccan TRIGA Mark II reactor using the PARET/ANL code

    International Nuclear Information System (INIS)

    Boulaich, Y.; Nacir, B.; El Bardouni, T.; Boukhal, H.; Chakir, E.; El Bakkari, B.; El Younoussi, C.

    2015-01-01

    Highlights: • PARET model for the Moroccan TRIGA MARK II reactor has been developed. • Transient behavior under reactivity insertion has been studied based on PARET code. • Power factors required by PARET code have been calculated by using MCNP5 code. • The dependence on time of the main thermal-hydraulic parameters was calculated. • Results are largely far to compromise the thermal design limits. - Abstract: A three dimensional model for the Moroccan 2 MW TRIGA MARK II reactor has been developed for thermal-hydraulic and safety analysis by using the PARET/ANL and MCNP5 codes. This reactor is located at the nuclear studies center of Mâamora (CENM), Morocco. The model has been validated through temperature measurements inside two instrumented fuel elements located near the center of the core, at various power levels, and also through the power and fuel temperature evolution after the reactor shutdown (SCRAM). The axial distributions of power factors required by the PARET code have been calculated in each fuel element rod by using MCNP5 code. Based on this thermal-hydraulic model, a safety analysis under the reactivity insertion phenomenon has been carried out and the dependence on time of the main thermal-hydraulic parameters was calculated. Results were compared to the thermal design limits imposed to maintain the integrity of the clad

  13. An analysis of postulated accident for 49-2 Swimming Pool Reactor

    International Nuclear Information System (INIS)

    Wang Yongqing; Cu Shaochu; Wang Liugui; Zhang Zengqing

    1990-01-01

    The thermal hydrodynamic code RETRAN-02 is used for safety analysis of Swimming Pool Reactor. Accident of partial-loss of flow, loss of offsite electric power and unexpected reactivity insertion are analysed and discussed. These results will be helpful for operation safety of the reactor

  14. Determination of the design excess reactivity for the TREAT Upgrade reactor

    International Nuclear Information System (INIS)

    Bhattacharyya, S.K.; Hanan, N.A.

    1983-01-01

    The excess reactivity designed to be built into a reactor core is a primary determinant of the fissile loadings of the fuel rods in the core. For the TREAT Upgrade (TU) reactor the considerations that enter into the determination of the excess reactivity are different from those of conventional power reactors. The reactor is designed to operate in an adiabatic transient mode for reactor safety in-pile test programs. The primary constituent of the excess reactivity is the calculated reactivity required to perform the most demanding transient experiments. Because of the unavailability of supporting critical experiments for the core design, the uncertainty terms that add on to this basic constituent are rather large. The burnup effects in TU are negligible and no refueling is planned. In this paper the determination of the design excess reactivity of the TREAT Upgrade reactor is discussed

  15. Multivariable robust control of an integrated nuclear power reactor

    Directory of Open Access Journals (Sweden)

    A. Etchepareborda

    2002-12-01

    Full Text Available The design of the main control system of the CAREM nuclear power plant is presented. This plant is an inherently safe low-power nuclear reactor with natural convection on the primary coolant circuit and is self-pressurized with a steam dome on the top of the pressure vessel (PV. It is an integrated reactor as the whole primary coolant circuit is within the PV. The primary circuit transports the heat to the secondary circuit through once-through steam generators (SG. There is a feedwater valve at the inlet of the SG and a turbine valve at the outlet of the SG. The manipulated variables are the aperture of these valves and the reactivity of the control rods. The control target is to regulate the primary and secondary pressures and to monitor steam flow reference ramps on a range of nominal flow from 100% to 40%. The requirements for the control system are robust stability, low-order simple controllers and transient/permanent error bounding. The controller design is based on a detailed RETRAN plant model, from which linear perturbed open-loop dynamic models at different powers are identified. Two low-order nominal models with their associated uncertainties are chosen for two different power ranges. Robust controllers with acceptable performances are designed for each range. Numerical optimization based on the loop-shaping method is used for the controller design. The designed controllers are implemented in the RETRAN model and tested in simulations achieving successful results.

  16. Output of the type 4051 and 4061 period meters during startup transients

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1963-05-01

    The report describes a digital computer programme for the Ferranti Mercury computer. With this programme startup transients for the recently developed period meters Types 4051 and 4061 may be computed. The reactivity disturbances considered are steps and terminated ramps of reactivity. Due allowance is taken of the variable time constant which is a feature of these period meters. The reactor may be critical or subcritical initially as desired and the initial input time constant of the period meter may be zero or finite. Some representative transients obtained with the programme are presented and discussed. (author)

  17. Thermohydraulic calculations of PWR primary circuits

    International Nuclear Information System (INIS)

    Botelho, D.A.

    1984-01-01

    Some mathematical and numerical models from Retran computer codes aiming to simulate reactor transients, are presented. The equations used for calculating one-dimensional flow are integrated using mathematical methods from Flash code, with steam code to correlate the variables from thermodynamic state. The algorithm obtained was used for calculating a PWR reactor. (E.G.) [pt

  18. Void effects on BWR Doppler and void reactivity feedback

    International Nuclear Information System (INIS)

    Hsiang-Shou Cheng; Diamond, D.J.

    1978-01-01

    The significance of steam voids and control rods on the Doppler feedback in a gadolinia shimmed BWR is demonstrated. The importance of bypass voids when determining void feedback is also shown. Calculations were done using a point model, i.e., feedback was expressed in terms of reactivity coefficients which were determined for individual four-bundle configurations and then appropriately combined to yield reactor results. For overpower transients the inclusion of the void effect of control rods is to reduce Doppler feedback. For overpressurization transients the inclusion of the effect of bypass void wil increase the reactivity due to void collapse. (author)

  19. Poison 1 - a programme for calculation of reactivity transients due to fission product poisoning and its application in continuous determination of xenon and samarium poisoning in reactor KS-150

    International Nuclear Information System (INIS)

    Rana, S.B.

    1973-12-01

    The report contains a user's description of the 3-dimensional programme POISON 1 for calculating reactivity transients due to fission-product poisoning during changes of reactor power. The chapter dealing with Xe poisoning contains a description of Xe tables, the method of operational determination of Xe poisoning, use of Xe transients for calibrating control rods and means of shutting down the reactor without being overriden by Xe poisoning. Sm poisoning is determined continuously on the basis of the power diagram of reactor operation. In conclusion a possibility of using the programme in a process computer in combination with self-powered detectors as local power sensors is indicated. (author)

  20. Validation of coupled Relap5-3D code in the analysis of RBMK-1500 specific transients

    International Nuclear Information System (INIS)

    Evaldas, Bubelis; Algirdas, Kaliatka; Eugenijus, Uspuras

    2003-01-01

    This paper deals with the modelling of RBMK-1500 specific transients taking place at Ignalina NPP. These transients include: measurements of void and fast power reactivity coefficients, change of graphite cooling conditions and reactor power reduction transients. The simulation of these transients was performed using RELAP5-3D code model of RBMK-1500 reactor. At the Ignalina NPP void and fast power reactivity coefficients are measured on a regular basis and, based on the total reactor power, reactivity, control and protection system control rods positions and the main circulation circuit parameter changes during the experiments, the actual values of these reactivity coefficients are determined. Graphite temperature reactivity coefficient at the plant is determined by changing graphite cooling conditions in the reactor cavity. This type of transient is very unique and important from the gap between fuel channel and the graphite bricks model validation point of view. The measurement results, obtained during this transient, allowed to determine the thermal conductivity coefficient for this gap and to validate the graphite temperature reactivity feedback model. Reactor power reduction is a regular operation procedure during the entire lifetime of the reactor. In all cases it starts by either a scram or a power reduction signal activation by the reactor control and protection system or by an operator. The obtained calculation results demonstrate reasonable agreement with Ignalina NPP measured data. Behaviours of the separate MCC thermal-hydraulic parameters as well as physical processes are predicted reasonably well to the real processes, occurring in the primary circuit of RBMK-1500 reactor. Reasonable agreement of the measured and the calculated total reactor power change in time demonstrates the correct modelling of the neutronic processes taking place in RBMK- 1500 reactor core. And finally, the performed validation of RELAP5-3D model of Ignalina NPP RBMK-1500

  1. Understanding void fraction in steady state and dynamic environments

    International Nuclear Information System (INIS)

    Chexal, B.; Maulbetsch, J.; Harrison, J.; Petersen, C.; Jensen, P.; Horowitz, J.

    1997-01-01

    Understanding void fraction behavior in steady-state and dynamic environments is important to accurately predict the thermal-hydraulic behavior of two-phase or two-component systems. The Chexal-Lellouche (C-L) void fraction mode described herein covers the full range of pressures, flows, void fractions, and fluid types (steam-water, air-water, and refrigerants). A drift flux model formulation is used which covers the complete range of concurrent and countercurrent flows. The (1996) model revises the earlier C-L void fraction correlation, improves the capability of the model in countercurrent flow based on the incorporation of additional data, and improves the characteristics of the correlation that are important in transient programs. The model has been qualified with data from a number of steady state two-phase and two-component tests, and has been incorporated into the transient analysis code RELAP5 and RETRAN-3D and evaluated with a variety of transient and steady state tests. A 'plug-in' module for the void fraction correlation has been developed and implemented in RELAP5 and RETRAN-3D. The module is available as source code for inclusion into other thermal-hydraulic programs and can be used in any program that utilizes the same interface variables

  2. Transient Stability Enhancement in Power System Using Static VAR Compensator (SVC

    Directory of Open Access Journals (Sweden)

    Youssef MOULOUDI

    2012-12-01

    Full Text Available In this paper, an indirect adaptive fuzzy excitation and static VAR (unit of reactive power, volt-ampere reactive compensator (SVC controller is proposed to enhance transient stability for the power system, which based on input-output linearization technique. A three-bus system, which contains a generator and static VAR compensator (SVC, is considered in this paper, the SVC is located at the midpoint of the transmission lines. Simulation results show that the proposed controller compared with a controller based on tradition linearization technique can enhance the transient stability of the power system under a large sudden fault, which may occur nearly at the generator bus terminal.

  3. Pius, self-protective thermohydraulics transient without safety system intervention

    International Nuclear Information System (INIS)

    Fredell, J.; Bredolt, V.

    1989-01-01

    In this paper, the self-protective thermohydraulic feedback of the PIUS reactor system is illustrated by an in-depth discussion of one typical transient. The selected transient is an undetected total loss of feedwater in the complete absence of conventional safety system intervention. The reactor shuts itself down to residual power in two steps. First, the power decreases due to the strongly negative moderator temperature reactivity coefficient, and then a complete shutdown occurs by ingress of cold, highly borated water from the reactor pool. The transient is terminated without any harm to the fuel or paint systems

  4. Point kinetics improvements to evaluate three-dimensional effects in transients calculation

    International Nuclear Information System (INIS)

    Castellotti, U.

    1987-01-01

    A calculation method, which considers the flux axial perturbations in the parameters related to the reactivity within a point kinetics model, is described. The method considered uses axial factors of consideration which act on the thermohydraulic variables included in the reactivity calculation. The PUMA three-dimensional code as reference model for the comparisons, is used. The limitations inherent to the reactivity balance of the point models used in the transients calculation, are given. (Author)

  5. The development of high performance numerical simulation code for transient groundwater flow and reactive solute transport problems based on local discontinuous Galerkin method

    International Nuclear Information System (INIS)

    Suzuki, Shunichi; Motoshima, Takayuki; Naemura, Yumi; Kubo, Shin; Kanie, Shunji

    2009-01-01

    The authors develop a numerical code based on Local Discontinuous Galerkin Method for transient groundwater flow and reactive solute transport problems in order to make it possible to do three dimensional performance assessment on radioactive waste repositories at the earliest stage possible. Local discontinuous Galerkin Method is one of mixed finite element methods which are more accurate ones than standard finite element methods. In this paper, the developed numerical code is applied to several problems which are provided analytical solutions in order to examine its accuracy and flexibility. The results of the simulations show the new code gives highly accurate numeric solutions. (author)

  6. The influence of the reactivity ramp on the course of the power transient in the MARK 1A core of the SNR 300

    International Nuclear Information System (INIS)

    Froehlich, R.; Schmuck, P.

    1976-01-01

    The course of a hypothetic transient overpower accident caused by the onset of a not further specified reactivity ramp accompanied by the simultaneous failure of both shutdown systems must be analyzed in the SNR 300 Mark 1A core licensing procedure. The present study is limited to the discussion of the starting and shutdown phases of such accidents for the fresh core. Depending on the operational state of the reactor, the core geometry is still intact during the starting phase. In the following shutdown phase (core disassembly phase), large-scale mass transfer leads to the nuclear shutdown of the reactor. (orig./AK) [de

  7. Reactivity balance for a soluble boron-free small modular reactor

    Directory of Open Access Journals (Sweden)

    Lezani van der Merwe

    2018-06-01

    Full Text Available Elimination of soluble boron from reactor design eliminates boron-induced reactivity accidents and leads to a more negative moderator temperature coefficient. However, a large negative moderator temperature coefficient can lead to large reactivity feedback that could allow the reactor to return to power when it cools down from hot full power to cold zero power. In soluble boron-free small modular reactor (SMR design, only control rods are available to control such rapid core transient.The purpose of this study is to investigate whether an SMR would have enough control rod worth to compensate for large reactivity feedback. The investigation begins with classification of reactivity and completes an analysis of the reactivity balance in each reactor state for the SMR model.The control rod worth requirement obtained from the reactivity balance is a minimum control rod worth to maintain the reactor critical during the whole cycle. The minimum available rod worth must be larger than the control rod worth requirement to manipulate the reactor safely in each reactor state. It is found that the SMR does have enough control rod worth available during rapid transient to maintain the SMR at subcritical below k-effectives of 0.99 for both hot zero power and cold zero power. Keywords: Control Rod Worth, Reactivity Balance, Reactivity Feedback, Small Modular Reactor, Soluble Boron Free

  8. Classification of transient processes with a jumplike change in the reactivity

    International Nuclear Information System (INIS)

    Sabaeva, T.A.

    1989-01-01

    The problem of the change in the neutron flux density accompanying a jumplike (instantaneous) change in the reactivity is classical and is studied in most textbooks and monographs devoted to the regulation of nuclear reactors, where in constructing the response only the feedback on delayed neutrons is taken into account. The use of a linear feedback of a general form permits describing reactors of different types. A classification of feedbacks on reactivity was presented by Sabaeva, where a parabolic region in phase space is separated. A peak in the neutron flux corresponds to the image point falling into this region. In this paper the conditions making it possible to find the change in the neutrons flux immediately after an instantaneous change in the reactivity are derived, and the feedbacks are classified based on this

  9. Numerically induced pressure excursions in two-phase-flow calculations. Final report

    International Nuclear Information System (INIS)

    Mahaffy, J.H.; Liles, D.R.

    1983-01-01

    Pressure spikes that cannot be traced to any physical origin sometimes are observed when standard Eulerian finite-difference methods are used to calculate two-phase-flow transients. This problem occurs with varying frequency in nuclear reactor safety codes such as RELAP, RETRAN, COBRA, and TRAC. These spikes usually result from numerical water packing or from interactions between spatial discretization and heat transfer

  10. Code Coupling for Multi-Dimensional Core Transient Analysis

    International Nuclear Information System (INIS)

    Park, Jin-Woo; Park, Guen-Tae; Park, Min-Ho; Ryu, Seok-Hee; Um, Kil-Sup; Lee Jae-Il

    2015-01-01

    After the CEA ejection, the nuclear power of the reactor dramatically increases in an exponential behavior until the Doppler effect becomes important and turns the reactivity balance and power down to lower levels. Although this happens in a very short period of time, only few seconds, the energy generated can be very significant and cause fuel failures. The current safety analysis methodology which is based on overly conservative assumptions with the point kinetics model results in quite adverse consequences. Thus, KEPCO Nuclear Fuel(KNF) is developing the multi-dimensional safety analysis methodology to mitigate the consequences of the single CEA ejection accident. For this purpose, three-dimensional core neutron kinetics code ASTRA, sub-channel analysis code THALES, and fuel performance analysis code FROST, which have transient calculation performance, were coupled using message passing interface (MPI). This paper presents the methodology used for code coupling and the preliminary simulation results with the coupled code system (CHASER). Multi-dimensional core transient analysis code system, CHASER, has been developed and it was applied to simulate a single CEA ejection accident. CHASER gave a good prediction of multi-dimensional core transient behaviors during transient. In the near future, the multi-dimension CEA ejection analysis methodology using CHASER is planning to be developed. CHASER is expected to be a useful tool to gain safety margin for reactivity initiated accidents (RIAs), such as a single CEA ejection accident

  11. Code Coupling for Multi-Dimensional Core Transient Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Woo; Park, Guen-Tae; Park, Min-Ho; Ryu, Seok-Hee; Um, Kil-Sup; Lee Jae-Il [KEPCO NF, Daejeon (Korea, Republic of)

    2015-05-15

    After the CEA ejection, the nuclear power of the reactor dramatically increases in an exponential behavior until the Doppler effect becomes important and turns the reactivity balance and power down to lower levels. Although this happens in a very short period of time, only few seconds, the energy generated can be very significant and cause fuel failures. The current safety analysis methodology which is based on overly conservative assumptions with the point kinetics model results in quite adverse consequences. Thus, KEPCO Nuclear Fuel(KNF) is developing the multi-dimensional safety analysis methodology to mitigate the consequences of the single CEA ejection accident. For this purpose, three-dimensional core neutron kinetics code ASTRA, sub-channel analysis code THALES, and fuel performance analysis code FROST, which have transient calculation performance, were coupled using message passing interface (MPI). This paper presents the methodology used for code coupling and the preliminary simulation results with the coupled code system (CHASER). Multi-dimensional core transient analysis code system, CHASER, has been developed and it was applied to simulate a single CEA ejection accident. CHASER gave a good prediction of multi-dimensional core transient behaviors during transient. In the near future, the multi-dimension CEA ejection analysis methodology using CHASER is planning to be developed. CHASER is expected to be a useful tool to gain safety margin for reactivity initiated accidents (RIAs), such as a single CEA ejection accident.

  12. Assessment of the 3He pressure inside the CABRI transient rods - Development of a surrogate model based on measurements and complementary CFD calculations

    Science.gov (United States)

    Clamens, Olivier; Lecerf, Johann; Hudelot, Jean-Pascal; Duc, Bertrand; Cadiou, Thierry; Blaise, Patrick; Biard, Bruno

    2018-01-01

    CABRI is an experimental pulse reactor, funded by the French Nuclear Safety and Radioprotection Institute (IRSN) and operated by CEA at the Cadarache research center. It is designed to study fuel behavior under RIA conditions. In order to produce the power transients, reactivity is injected by depressurization of a neutron absorber (3He) situated in transient rods inside the reactor core. The shapes of power transients depend on the total amount of reactivity injected and on the injection speed. The injected reactivity can be calculated by conversion of the 3He gas density into units of reactivity. So, it is of upmost importance to properly master gas density evolution in transient rods during a power transient. The 3He depressurization was studied by CFD calculations and completed with measurements using pressure transducers. The CFD calculations show that the density evolution is slower than the pressure drop. Surrogate models were built based on CFD calculations and validated against preliminary tests in the CABRI transient system. Studies also show that it is harder to predict the depressurization during the power transients because of neutron/3He capture reactions that induce a gas heating. This phenomenon can be studied by a multiphysics approach based on reaction rate calculation thanks to Monte Carlo code and study the resulting heating effect with the validated CFD simulation.

  13. Assessment of the 3He pressure inside the CABRI transient rods - Development of a surrogate model based on measurements and complementary CFD calculations

    Directory of Open Access Journals (Sweden)

    Clamens Olivier

    2018-01-01

    Full Text Available CABRI is an experimental pulse reactor, funded by the French Nuclear Safety and Radioprotection Institute (IRSN and operated by CEA at the Cadarache research center. It is designed to study fuel behavior under RIA conditions. In order to produce the power transients, reactivity is injected by depressurization of a neutron absorber (3He situated in transient rods inside the reactor core. The shapes of power transients depend on the total amount of reactivity injected and on the injection speed. The injected reactivity can be calculated by conversion of the 3He gas density into units of reactivity. So, it is of upmost importance to properly master gas density evolution in transient rods during a power transient. The 3He depressurization was studied by CFD calculations and completed with measurements using pressure transducers. The CFD calculations show that the density evolution is slower than the pressure drop. Surrogate models were built based on CFD calculations and validated against preliminary tests in the CABRI transient system. Studies also show that it is harder to predict the depressurization during the power transients because of neutron/3He capture reactions that induce a gas heating. This phenomenon can be studied by a multiphysics approach based on reaction rate calculation thanks to Monte Carlo code and study the resulting heating effect with the validated CFD simulation.

  14. Radial core expansion reactivity feedback in advanced LMRs: uncertainties and their effects on inherent safety

    International Nuclear Information System (INIS)

    Wigeland, R.A.; Moran, T.J.

    1988-01-01

    An analytical model for calculating radial core expansion, based on the thermal and elastic bowing of a single subassembly at the core periphery, is used to quantify the effect of uncertainties on this reactivity feedback mechanism. This model has been verified and validated with experimental and numerical results. The impact of these uncertainties on the safety margins in unprotected transients is investigated with SASSYS/SAS4A, which includes this model for calculating the reactivity feedback from radial core expansion. The magnitudes of these uncertainties are not sufficient to preclude the use of radial core expansion reactivity feedback in transient analysis

  15. Reactivation of BK polyomavirus in patients with multiple sclerosis receiving natalizumab therapy.

    LENUS (Irish Health Repository)

    Lonergan, Roisin M

    2012-02-01

    Natalizumab therapy in multiple sclerosis has been associated with JC polyomavirus-induced progressive multifocal leucoencephalopathy. We hypothesized that natalizumab may also lead to reactivation of BK, a related human polyomavirus capable of causing morbidity in immunosuppressed groups. Patients with relapsing remitting multiple sclerosis treated with natalizumab were prospectively monitored for reactivation of BK virus in blood and urine samples, and for evidence of associated renal dysfunction. In this cohort, JC and BK DNA in blood and urine; cytomegalovirus (CMV) DNA in blood and urine; CD4 and CD8 T-lymphocyte counts and ratios in peripheral blood; and renal function were monitored at regular intervals. BK subtyping and noncoding control region sequencing was performed on samples demonstrating reactivation. Prior to commencement of natalizumab therapy, 3 of 36 patients with multiple sclerosis (8.3%) had BK viruria and BK reactivation occurred in 12 of 54 patients (22.2%). BK viruria was transient in 7, continuous in 2 patients, and persistent viruria was associated with transient viremia. Concomitant JC and CMV viral loads were undetectable. CD4:CD8 ratios fluctuated, but absolute CD4 counts did not fall below normal limits. In four of seven patients with BK virus reactivation, transient reductions in CD4 counts were observed at onset of BK viruria: these resolved in three of four patients on resuppression of BK replication. No renal dysfunction was observed in the cohort. BK virus reactivation can occur during natalizumab therapy; however, the significance in the absence of renal dysfunction is unclear. We propose regular monitoring for BK reactivation or at least for evidence of renal dysfunction in patients receiving natalizumab.

  16. FORE-2, Thermohydraulics and Space-Independent Reactor Kinetics for Transients

    International Nuclear Information System (INIS)

    Fox, J.N.; Lawler, B.E.; Butz, H.R.; Heames, T.J.

    1984-01-01

    1 - Description of problem or function: FORE2 is a coupled thermal hydraulics-point kinetics digital computer code designed to calculate significant reactor parameters under steady-state conditions, or as functions of time during transients. The transients may result from a programmed reactivity insertion or a power change. Variable inlet coolant flow rate and temperature are considered. The code calculates the reactor power, the individual reactivity feedbacks, and the temperature of coolant, cladding, fuel, structure, and additional material for up to seven axial positions in three channel types which represent radial zones of the reactor. The heat of fusion, accompanying fuel melting, the liquid metal voiding reactivity, and the spatial and the time variation of the fuel cladding gap coefficient due to changes in gap size are considered. 2 - Method of solution: FORE2 input consists of property data, geometry, power and flow distribution factors, external time varying functions, experimental coefficients, and termination data. The differential equations for fluid flow, heat transfer, and point neutronics are solved by explicit finite-difference procedures. 3 - Restrictions on the complexity of the problem: Reactor excursions which can be calculated are restricted to those transients in which the reactor is not substantially destroyed. As a general rule, changes in reactor geometry and composition during an excursion are limited to those cases in which the reactivity effects of the changes may be considered as small perturbations of the initial system. Thus, accidents involving large-scale disassembly and bulk meltdown of a core are not covered by FORE2. FORE2 is valid only while the core retains its initial geometry

  17. Experimental validation of Pu-Sm evolution model for CANDU-6 power transients

    International Nuclear Information System (INIS)

    Coutsiers, Eduardo E.; Pomerantz, Marcelo E.; Moreno, Carlos A.

    2000-01-01

    Development of a methodology to evaluate the reactivity produced by Pu-Sm transient, effect displayed after power transients. This methodology allows to predict the behavior of liquid zones with which the fine control of CANDU reactor power is made. With this information, it is easier to foresee the refueling demand after power movements. The comparison with experimental results showed good agreement. (author)

  18. Heat shock and herpes virus: enhanced reactivation without untargeted mutagenesis

    International Nuclear Information System (INIS)

    Lytle, C.D.; Carney, P.G.

    1988-01-01

    Enhanced reactivation of Ultraviolet-irradiated virus has been reported to occur in heat-shocked host cells. Since enhanced virus reactivation is often accompanied by untargeted mutagenesis, we investigated whether such mutagenesis would occur for herpes simplex virus (HSV) in CV-1 monkey kidney cells subjected to heat shock. In addition to expressing enhanced reactivation, the treated cells were transiently more susceptible to infection by unirradiated HSV. No mutagenesis of unirradiated HSV was found whether infection occurred at the time of increased susceptibility to infection or during expression of enhanced viral reactivation

  19. Actinide and Xenon reactivity effects in ATW high flux systems

    International Nuclear Information System (INIS)

    Woosley, M.; Olson, K.; Henderson, D.L.

    1995-01-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides

  20. Actinide and xenon reactivity effects in ATW high flux systems

    International Nuclear Information System (INIS)

    Woosley, M.; Olson, K.; Henderson, D. L.; Sailor, W. C.

    1995-01-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides

  1. Actinide and Xenon reactivity effects in ATW high flux systems

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, M. [Univ. of Virginia, Charlottesville, VA (United States); Olson, K.; Henderson, D.L. [Univ. of Wisconsin, Madison, WI (United States)] [and others

    1995-10-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides.

  2. LMFBR. Off normal, transient test facilities and programs in the USA

    International Nuclear Information System (INIS)

    Herbst, R.J.

    1985-01-01

    The United States fast breeder reactor development program has included operational transient analyses and experiments to verify the predicted performance of core components. Operational transient testing has focused on off-normal operation during Plant Protection System terminated transient-overpower events. In-pile and out-of-pile tests have been used to simulate predicted thermal and mechanical strain cycles and measure component response. The spectrum of reactivity ramp rates investigated in TOP tests has recently been expanded to include rates of less than $0.1/s. These slow ramp rate studies are being done in cooperation with the Japanese. The US has also cooperated with the UK in the transient testing of Prototype Fast Reactor fuel pins

  3. Power and power-to-flow reactivity transfer functions in EBR-II [Experimental Breeder Reactor II] fuel

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1989-01-01

    Reactivity transfer functions are important in determining the reactivity history during a power transient. Overall nodal transfer functions have been calculated for different subassembly types in the Experimental Breeder Reactor II (EBR-II). Steady-state calculations for temperature changes and, hence, reactivities for power changes have been separated into power and power-to-flow-dependent terms. Axial nodal transfer functions separated into power and power-to-flow-dependent components are reported in this paper for a typical EBR-II fuel pin. This provides an improved understanding of the time dependence of these components in transient situations

  4. Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition

    International Nuclear Information System (INIS)

    Zhou, Jianjun; Zhang, Daling; Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei

    2015-01-01

    Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor

  5. Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianjun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China); College of Mechanical and Power Engineering, China Three Gorges University, No 8, Daxue road, Yichang, Hubei 443002 (China); Zhang, Daling, E-mail: dlzhang@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China); Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China)

    2015-02-15

    Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor.

  6. FFTF fuel pin design procedure verification for transient operation

    International Nuclear Information System (INIS)

    Baars, R.E.

    1975-05-01

    The FFTF design procedures for evaluating fuel pin transient performance are briefly reviewed, and data where available are compared with design procedure predictions. Specifically, burst conditions derived from Fuel Cladding Transient Tester (FCTT) tests and from ANL loss-of-flow tests are compared with burst pressures computed using the design procedure upon which the cladding integrity limit was based. Failure times are predicted using the design procedure for evaluation of rapid reactivity insertion accidents, for five unterminated TREAT experiments in which well characterized fuel failures were deliberately incurred. (U.S.)

  7. Proceedings of the OECD/CSNI specialists meeting on boron dilution reactivity transients

    International Nuclear Information System (INIS)

    1997-06-01

    The purpose of the meeting was to bring together experts involved in the different activities related to boron dilution transients. The experts came from all involved parties, including research organizations, regulatory authorities, vendors and utilities. Information was openly shared and discussed on the experimental results, plant and systems analysis, numerical analysis of mixing and probability and consequences of these transients. Regulatory background and licensing implications were also included to provide the proper frame work for the technical discussion. Each of these areas corresponded to a separate session. The meeting focused on the thermal-hydraulic aspects because of the current interest in that subject and the significant amount of new technical information being generated

  8. Modelling of power-reactivity coefficient measurement

    International Nuclear Information System (INIS)

    Strmensky, C.; Petenyi, V.; Jagrik, J.; Minarcin, M.; Hascik, R.; Toth, L.

    2005-01-01

    Report describes results of modeling of power-reactivity coefficient analysis on power-level. In paper we calculate values of discrepancies arisen during transient process. These discrepancies can be arisen as result of experiment evaluation and can be caused by disregard of 3D effects on neutron distribution. The results are critically discussed (Authors)

  9. Rapid and transient stimulation of intracellular reactive oxygen species by melatonin in normal and tumor leukocytes

    International Nuclear Information System (INIS)

    Radogna, Flavia; Paternoster, Laura; De Nicola, Milena; Cerella, Claudia; Ammendola, Sergio; Bedini, Annalida; Tarzia, Giorgio; Aquilano, Katia; Ciriolo, Maria; Ghibelli, Lina

    2009-01-01

    Melatonin is a modified tryptophan with potent biological activity, exerted by stimulation of specific plasma membrane (MT1/MT2) receptors, by lower affinity intracellular enzymatic targets (quinone reductase, calmodulin), or through its strong anti-oxidant ability. Scattered studies also report a perplexing pro-oxidant activity, showing that melatonin is able to stimulate production of intracellular reactive oxygen species (ROS). Here we show that on U937 human monocytes melatonin promotes intracellular ROS in a fast (< 1 min) and transient (up to 5-6 h) way. Melatonin equally elicits its pro-radical effect on a set of normal or tumor leukocytes; intriguingly, ROS production does not lead to oxidative stress, as shown by absence of protein carbonylation, maintenance of free thiols, preservation of viability and regular proliferation rate. ROS production is independent from MT1/MT2 receptor interaction, since a) requires micromolar (as opposed to nanomolar) doses of melatonin; b) is not contrasted by the specific MT1/MT2 antagonist luzindole; c) is not mimicked by a set of MT1/MT2 high affinity melatonin analogues. Instead, chlorpromazine, the calmodulin inhibitor shown to prevent melatonin-calmodulin interaction, also prevents melatonin pro-radical effect, suggesting that the low affinity binding to calmodulin (in the micromolar range) may promote ROS production.

  10. A fast reactor transient analysis methodology for personal computers

    International Nuclear Information System (INIS)

    Ott, K.O.

    1993-01-01

    A simplified model for a liquid-metal-cooled reactor (LMR) transient analysis, in which point kinetics as well as lumped descriptions of the heat transfer equations in all components are applied, is converted from a differential into an integral formulation. All 30 differential balance equations are implicitly solved in terms of convolution integrals. The prompt jump approximation is applied as the strong negative feedback effectively keeps the net reactivity well below prompt critical. After implicit finite differencing of the convolution integrals, the kinetics equation assumes a new form, i.e., the quadratic dynamics equation. In this integral formulation, the initial value problem of typical LMR transients can be solved with large item steps (initially 1 s, later up to 256 s). This then makes transient problems amenable to a treatment on personal computer. The resulting mathematical model forms the basis for the GW-BASIC program LMR transient calculation (LTC) program. The LTC program has also been converted to QuickBASIC. The running time for a 10-h transient overpower transient is then ∼40 to 10 s, depending on the hardware version (286, 386, or 486 with math coprocessors)

  11. Results of LWR core transient benchmarks

    International Nuclear Information System (INIS)

    Finnemann, H.; Bauer, H.; Galati, A.; Martinelli, R.

    1993-10-01

    LWR core transient (LWRCT) benchmarks, based on well defined problems with a complete set of input data, are used to assess the discrepancies between three-dimensional space-time kinetics codes in transient calculations. The PWR problem chosen is the ejection of a control assembly from an initially critical core at hot zero power or at full power, each for three different geometrical configurations. The set of problems offers a variety of reactivity excursions which efficiently test the coupled neutronic/thermal - hydraulic models of the codes. The 63 sets of submitted solutions are analyzed by comparison with a nodal reference solution defined by using a finer spatial and temporal resolution than in standard calculations. The BWR problems considered are reactivity excursions caused by cold water injection and pressurization events. In the present paper, only the cold water injection event is discussed and evaluated in some detail. Lacking a reference solution the evaluation of the 8 sets of BWR contributions relies on a synthetic comparative discussion. The results of this first phase of LWRCT benchmark calculations are quite satisfactory, though there remain some unresolved issues. It is therefore concluded that even more challenging problems can be successfully tackled in a suggested second test phase. (authors). 46 figs., 21 tabs., 3 refs

  12. Assessments of the kinetic and dynamic transient behavior of sub-critical systems (ADS) in comparison to critical reactor systems

    International Nuclear Information System (INIS)

    Schikorr, W.M.

    2001-01-01

    The neutron kinetic and the reactor dynamic behavior of Accelerator Driven Systems (ADS) is significantly different from those of conventional power reactor systems currently in use for the production of power. It is the objective of this study to examine and to demonstrate the intrinsic differences of the kinetic and dynamic behavior of accelerator driven systems to typical plant transient initiators in comparison to the known, kinetic and dynamic behavior of critical thermal and fast reactor systems. It will be shown that in sub-critical assemblies, changes in reactivity or in the external neutron source strength lead to an asymptotic power level essentially described by the instantaneous power change (i.e. prompt jump). Shutdown of ADS operating at high levels of sub-criticality, (i.e. k eff ∼0.99), without the support of reactivity control systems (such as control or safety rods), may be problematic in case the ability of cooling of the core should be impaired (i.e. loss of coolant flow). In addition, the dynamic behavior of sub-critical systems to typical plant transients such as protected or unprotected loss of flow (LOF) or heat sink (LOH) transients are not necessarily substantially different from the plant dynamic behavior of critical systems if the reactivity feedback coefficients of the ADS design are unfavorable. As expected, the state of sub-criticality and the temperature feedback coefficients, such as Doppler and coolant temperature coefficient, play dominant roles in determining the course and direction of plant transients. Should the combination of these safety coefficients be very unfavorable, not much additional margin in safety may be gained by making a critical system only sub-critical (i.e. k eff ∼0.95). A careful optimization procedure between the selected operating level of sub-criticality, the safety reactivity coefficients and the possible need for additional reactivity control systems seems, therefore, advisable during the early

  13. Measurements of fuel temperature coefficient of reactivity on a commercial AGR

    International Nuclear Information System (INIS)

    Telford, A.; Bridge, M.J.

    1978-01-01

    Tests have been carried out on the commercial AGR at Hikley Point to determine the fuel temperature coefficient of reactivity, an important safety related parameter. Reactor neutron flux was measured during transients induced by movement of a bank of control rods from one steady position to another. An inverse kinetics analysis was applied to the measured flux to determine the change which occured in core reactivity as the fuel temperature changed. The variation of mean fuel temperature was deduced from the flux transient by means of a nine-plane thermal hydraulics representation of the AGR fuel channel. Results so far obtained confirm the predicted variation of fuel temperature coefficient with butn-up. (author)

  14. Burst-suppression is reactive to photic stimulation in comatose children with acquired brain injury

    DEFF Research Database (Denmark)

    Nita, Dragos A.; Moldovan, Mihai; Sharma, Roy

    2016-01-01

    reactivity. We quantified reactivity by measuring the change in the burst ratio (fraction of time in burst) following photic stimulation. Results: Photic stimulation evoked bursts in all patients, resulting in a transient increase in the burst ratio, while the mean heart rate remained unchanged......Objective: Burst-suppression is an electroencephalographic pattern observed during coma. In individuals without known brain pathologies undergoing deep general anesthesia, somatosensory stimulation transiently increases the occurrence of bursts. We investigated the reactivity of burst......-suppression in children with acquired brain injury. Methods: Intensive care unit electroencephalographic monitoring recordings containing burst-suppression were obtained from 5 comatose children with acquired brain injury of various etiologies. Intermittent photic stimulation was performed at 1 Hz for 1 min to assess...

  15. Predictive modeling of transient storage and nutrient uptake: Implications for stream restoration

    Science.gov (United States)

    O'Connor, Ben L.; Hondzo, Miki; Harvey, Judson W.

    2010-01-01

    This study examined two key aspects of reactive transport modeling for stream restoration purposes: the accuracy of the nutrient spiraling and transient storage models for quantifying reach-scale nutrient uptake, and the ability to quantify transport parameters using measurements and scaling techniques in order to improve upon traditional conservative tracer fitting methods. Nitrate (NO3–) uptake rates inferred using the nutrient spiraling model underestimated the total NO3– mass loss by 82%, which was attributed to the exclusion of dispersion and transient storage. The transient storage model was more accurate with respect to the NO3– mass loss (±20%) and also demonstrated that uptake in the main channel was more significant than in storage zones. Conservative tracer fitting was unable to produce transport parameter estimates for a riffle-pool transition of the study reach, while forward modeling of solute transport using measured/scaled transport parameters matched conservative tracer breakthrough curves for all reaches. Additionally, solute exchange between the main channel and embayment surface storage zones was quantified using first-order theory. These results demonstrate that it is vital to account for transient storage in quantifying nutrient uptake, and the continued development of measurement/scaling techniques is needed for reactive transport modeling of streams with complex hydraulic and geomorphic conditions.

  16. Preliminary analysis of typical transients in fusion driven subcritical system (FDS-I)

    International Nuclear Information System (INIS)

    Bai Yunqing; Ke Yan; Wu Yican

    2007-01-01

    The potential safety characteristic is expected as one of the advantages of fusion-driven subcritical system (FDS-I) for the transmutation and incineration of nuclear waste compared with the critical reactor. Transients of the FDS-I may occur due to the perturbation of external neutron source, the failure of functional device, and the occurrence of the uncontrolled event. As typical transient scenarios, the following cases were analyzed: unprotected plasma overpower (UPOP), unprotected loss of flow (ULOF), unprotected transient overpower (UTOP). The transient analyses for the FDS-I were performed with a coupled two-dimensional thermal-hydraulics and neutronics transient analysis code NTC2D. The negative feedback of reactivity is the interesting safety feature of FDS-I as temperature increase, due to the fuel form of the circulating particle. The present simulation results showed that the current FDS-I design has a resistance against severe transient scenarios. (author)

  17. A simple dynamic model and transient simulation of the nuclear power reactor on microcomputers

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yang Gee; Park, Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A simple dynamic model is developed for the transient simulation of the nuclear power reactor. The dynamic model includes the normalized neutron kinetics model with reactivity feedback effects and the core thermal-hydraulics model. The main objective of this paper demonstrates the capability of the developed dynamic model to simulate various important variables of interest for a nuclear power reactor transient. Some representative results of transient simulations show the expected trends in all cases, even though no available data for comparison. In this work transient simulations are performed on a microcomputer using the DESIRE/N96T continuous system simulation language which is applicable to nuclear power reactor transient analysis. 3 refs., 9 figs. (Author)

  18. A simple dynamic model and transient simulation of the nuclear power reactor on microcomputers

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yang Gee; Park, Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    A simple dynamic model is developed for the transient simulation of the nuclear power reactor. The dynamic model includes the normalized neutron kinetics model with reactivity feedback effects and the core thermal-hydraulics model. The main objective of this paper demonstrates the capability of the developed dynamic model to simulate various important variables of interest for a nuclear power reactor transient. Some representative results of transient simulations show the expected trends in all cases, even though no available data for comparison. In this work transient simulations are performed on a microcomputer using the DESIRE/N96T continuous system simulation language which is applicable to nuclear power reactor transient analysis. 3 refs., 9 figs. (Author)

  19. BARS - a heterogeneous code for 3D pin-by-pin LWR steady-state and transient calculation

    International Nuclear Information System (INIS)

    Avvakumov, A.V.; Malofeev, V.M.

    2000-01-01

    A 3D pin-by-pin dynamic model for LWR detailed calculation was developed. The model is based on a coupling of the BARS neutronic code with the RELAP5/MOD3.2 thermal hydraulic code. This model is intended to calculate a fuel cycle, a xenon transient, and a wide range of reactivity initiated accidents in a WWER and a PWR. Galanin-Feinberg heterogeneous method was realized in the BARS code. Some results for a validation of the heterogeneous method are presented for reactivity coefficients, a pin-by-pin power distribution, and a fast pulse transient. (Authors)

  20. Clopidogrel discontinuation and platelet reactivity following coronary stenting

    LENUS (Irish Health Repository)

    2011-01-01

    Summary. Aims: Antiplatelet therapy with aspirin and clopidogrel is recommended for 1 year after drug-eluting stent (DES) implantation or myocardial infarction. However, the discontinuation of antiplatelet therapy has become an important issue as recent studies have suggested a clustering of ischemic events within 90 days of clopidogrel withdrawal. The objective of this investigation was to explore the hypothesis that there is a transient ‘rebound’ increase in platelet reactivity within 3 months of clopidogrel discontinuation. Methods and Results: In this prospective study, platelet function was assessed in patients taking aspirin and clopidogrel for at least 1 year following DES implantation. Platelet aggregation was measured using a modification of light transmission aggregometry in response to multiple concentrations of adenosine diphosphate (ADP), epinephrine, arachidonic acid, thrombin receptor activating peptide and collagen. Clopidogrel was stopped and platelet function was reassessed 1 week, 1 month and 3 months later. Thirty-two patients on dual antiplatelet therapy were recruited. Discontinuation of clopidogrel increased platelet aggregation to all agonists, except arachidonic acid. Platelet aggregation in response to ADP (2.5, 5, 10, and 20 μm) and epinephrine (5 and 20 μm) was significantly increased at 1 month compared with 3 months following clopidogrel withdrawal. Thus, a transient period of increased platelet reactivity to both ADP and epinephrine was observed 1 month after clopidogrel discontinuation. Conclusions: This study demonstrates a transient increase in platelet reactivity 1 month after clopidogrel withdrawal. This phenomenon may, in part, explain the known clustering of thrombotic events observed after clopidogrel discontinuation. This observation requires confirmation in larger populations.

  1. Entropy-based critical reaction time for mixing-controlled reactive transport

    DEFF Research Database (Denmark)

    Chiogna, Gabriele; Rolle, Massimo

    2017-01-01

    Entropy-based metrics, such as the dilution index, have been proposed to quantify dilution and reactive mixing in solute transport problems. In this work, we derive the transient advection dispersion equation for the entropy density of a reactive plume. We restrict our analysis to the case where...... the concentration distribution of the transported species is Gaussian and we observe that, even in case of an instantaneous complete bimolecular reaction, dilution caused by dispersive processes dominates the entropy balance at early times and results in the net increase of the entropy density of a reactive species...

  2. Development of a computer code for Dalat research reactor transient analysis

    International Nuclear Information System (INIS)

    Le Vinh Vinh; Nguyen Thai Sinh; Huynh Ton Nghiem; Luong Ba Vien; Pham Van Lam; Nguyen Kien Cuong

    2003-01-01

    DRSIM (Dalat Reactor SIMulation) computer code has been developed for Dalat reactor transient analysis. It is basically a coupled neutronics-hydrodynamics-heat transfer code employing point kinetics, one dimensional hydrodynamics and one dimensional heat transfer. The work was financed by VAEC and DNRI in the framework of institutional R and D programme. Some transient problems related to reactivity and loss of coolant flow was carried out by DRSIM using temperature and void coefficients calculated by WIMS and HEXNOD2D codes. (author)

  3. Advanced Instrumentation for Transient Reactor Testing

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael L.; Anderson, Mark; Imel, George; Blue, Tom; Roberts, Jeremy; Davis, Kurt

    2018-01-31

    Transient testing involves placing fuel or material into the core of specialized materials test reactors that are capable of simulating a range of design basis accidents, including reactivity insertion accidents, that require the reactor produce short bursts of intense highpower neutron flux and gamma radiation. Testing fuel behavior in a prototypic neutron environment under high-power, accident-simulation conditions is a key step in licensing nuclear fuels for use in existing and future nuclear power plants. Transient testing of nuclear fuels is needed to develop and prove the safety basis for advanced reactors and fuels. In addition, modern fuel development and design increasingly relies on modeling and simulation efforts that must be informed and validated using specially designed material performance separate effects studies. These studies will require experimental facilities that are able to support variable scale, highly instrumented tests providing data that have appropriate spatial and temporal resolution. Finally, there are efforts now underway to develop advanced light water reactor (LWR) fuels with enhanced performance and accident tolerance. These advanced reactor designs will also require new fuel types. These new fuels need to be tested in a controlled environment in order to learn how they respond to accident conditions. For these applications, transient reactor testing is needed to help design fuels with improved performance. In order to maximize the value of transient testing, there is a need for in-situ transient realtime imaging technology (e.g., the neutron detection and imaging system like the hodoscope) to see fuel motion during rapid transient excursions with a higher degree of spatial and temporal resolution and accuracy. There also exists a need for new small, compact local sensors and instrumentation that are capable of collecting data during transients (e.g., local displacements, temperatures, thermal conductivity, neutron flux, etc.).

  4. APR1400 CEA Withdrawal at Power Accident Analysis using KNAP

    International Nuclear Information System (INIS)

    Lee, Dong-Hyuk; Yang, Chang-Keun; Kim, Yo-Han; Sung, Chang-Kyung

    2006-01-01

    KEPRI (Korea Electric Power Research Institute) has been developing safety analysis methodology for non- LOCA (Loss Of Coolant Accident) analysis of OPR1000 (Optimized Power Reactor 1000, formerly KSNP). The new methodology, named KNAP (Korea Non-LOCA Analysis Package), uses RETRAN as the main system analysis code. RETRAN code is a non- LOCA safety analysis code developed by EPRI. The new methodology will replace existing CE (Combustion Engineering) supplied codes and methodologies currently used in non-LOCA analysis of OPR1000. In this paper, we apply KNAP methodology to APR1400 (Advanced Power Reactor 1400). The CEA (Control Element Assembly) withdrawal at power accident is one of the 'reactivity and power distribution anomalies' events and the results are typically described in the chapter 15.4.2 of SAR (Safety Analysis Report). The APR1400 has been designed to generate 1,400MWe of electricity with advanced features for greatly enhanced safety and economic goals. The CEA withdrawal at power analysis in APR1400 SSAR (Standard Safety Analysis Report) is analyzed with CESEC-III computer code. In this study, to confirm the applicability of the KNAP methodology and code system to APR1400, CEA withdrawal at power accident is analyzed using RETRAN code and it is compared with results from APR1400 SSAR

  5. The reactive solid-gas flow of a fluidized bed for UO2 conversion

    International Nuclear Information System (INIS)

    Juanico, L.E.

    1991-01-01

    The reactive solid-gas flow of a fluidized bed for UO 2 conversion was modeled. The sedimentation-reaction process was treated using the drift-flux equations. Also, the associated pressure transient due to the reaction gas release was analyzed. An experiment was carried out to compare the results, and pressure transient was numerically simulated, reaching interesting conclusions. (Author) [es

  6. Various reactivity effects value for assuring fast reactor core inherent safety

    International Nuclear Information System (INIS)

    Belov, S.B.; Vasilyev, B.A.

    1991-01-01

    The paper presents the results of temperature and power reactivity feedback components calculations for fast reactors with different core volume when using oxide, carbide, nitride and metal fuel. Reactor parameters change in loss of flow without scram and transient over power without scram accidents was evaluated. The importance of various reactivity feedback components in restricting the consequences of these accidents has been analyzed. (author)

  7. Parametric study of postulated reactivity transients due to ingress of heavy water from the reflector tank into the converted core of APSARA reactor

    International Nuclear Information System (INIS)

    Sankaranarayanan, S.

    2004-01-01

    Research reactors in the power range 5-10 MW with useable neutron flux values >1.OE+14 n/sqcm/sec can be constructed using LEU fuel with light water for neutron moderation and fuel cooling. In order to obtain a large irradiation volume, a heavy water reflector is used where fairly high neutron flux levels can be obtained. A prototype LEU fuelled 5/10 MW reactor design has been developed in the Bhabha Atomic Research Centre in Trombay. Work is on hand to carry out technology simulation of this reactor design by converting the pool type reactor APSARA in BARC. Presently the Apsara reactor uses MTh type high enriched U-Al alloy plate type fuel loaded in a 7x7 grid with a square lattice pitch of 76.8 mm. The reactor has three control-scram-shut off rods and one regulating control rod. In the first phase of the simulation studies, it is proposed to use the existing high enriched uranium fuel in a modified core with 37 positions arranged with a square lattice pitch of 84.8 mm, surrounded by a 50 cm thick heavy water reflector. Subsequently the converted core will use plate-type low enriched uranium suicide fuel. One of the accident scenarios postulated for the safety evaluation of the modified APSARA reactor is the reactivity transient due to the ingress of heavy water into the core through a small sized rupture in the aluminium wall of the reflector tank. Parametric analyses were done for the safety evaluation of modified Apsara reactor, for postulated leak of heavy water into the core from the reflector tank. A simplified computer code REDYN, based on point model reactor kinetics with one effective group of delayed neutrons is used for the analyses. Results of several parametric cases used in the study show that it is possible to contain the consequences of this type of reactivity transient within acceptable fuel and coolant thermal safety limits

  8. Predictive Modeling of Transient Storage and Nutrient Uptake: Implications for Stream Restoration

    Energy Technology Data Exchange (ETDEWEB)

    O’Connor, Ben L.; Hondzo, Miki; Harvey, Judson W.

    2010-12-01

    This study examined two key aspects of reactive transport modeling for stream restoration purposes: the accuracy of the nutrient spiraling and transient storage models for quantifying reach-scale nutrient uptake, and the ability to quantify transport parameters using measurements and scaling techniques in order to improve upon traditional conservative tracer fitting methods. Nitrate (NO-3)(NO3-) uptake rates inferred using the nutrient spiraling model underestimated the total NO-3NO3- mass loss by 82%, which was attributed to the exclusion of dispersion and transient storage. The transient storage model was more accurate with respect to the NO-3NO3- mass loss (±20%) and also demonstrated that uptake in the main channel was more significant than in storage zones. Conservative tracer fitting was unable to produce transport parameter estimates for a riffle-pool transition of the study reach, while forward modeling of solute transport using measured/scaled transport parameters matched conservative tracer breakthrough curves for all reaches. Additionally, solute exchange between the main channel and embayment surface storage zones was quantified using first-order theory. These results demonstrate that it is vital to account for transient storage in quantifying nutrient uptake, and the continued development of measurement/scaling techniques is needed for reactive transport modeling of streams with complex hydraulic and geomorphic conditions.

  9. Transient plasma cobalamin elevation in patients with pneumonia - two case reports

    DEFF Research Database (Denmark)

    Rahbek, Martin Torp; Scheller, Rudolf; Nybo, Mads

    2018-01-01

    We report two cases of transient significantly elevated plasma cobalamin (B12) in geriatric patients acutely admitted with fever, increased C-reactive protein and X-ray verified pneumonia. Extensive diagnostic workup did not reveal kidney or liver disease, neither any signs of cancer. Furthermore...

  10. Insertion of reactivity (RIA) without scram in the reactor core IEA-R1 using code PARET

    International Nuclear Information System (INIS)

    Alves, Urias F.; Castrillo, Lazara S.; Lima, Fernando A.

    2013-01-01

    The modeling and analysis thermo hydraulics of a research reactor with MTR type fuel elements - Material Testing Reactor - was performed using the code PARET (Program for the Analysis of Reactor Transients) when in the system some external event is introduced that changed the reactivity in the reactor core. Transients of Reactivity Insertion of 0.5 , 1.5 and 2.0$/ 0.7s in the brazilian reactor IEA-R1 will be presented, and will be shown under what conditions it is possible to ensure the safe operation of its nucleus. (author)

  11. Fuel pin response to an overpower transient in an LMFBR

    International Nuclear Information System (INIS)

    Grosberg, A.J.; Head, J.L.

    1979-01-01

    This paper describes a method by which the ability of a whole-core code accurately to predict the time and location of the first fuel pin failures may be tested. The method involves the use of a relatively simple whole-core code to 'drive' a sophisticated fuel pin code, which is far too complex to be used within a whole-core code but which is potentially capable of modelling reliably the response of an individual fuel pin. The method cannot follow accurately the subsequent course of the transient because the simple whole-core code does not model the reactivity effects of events which may follow pin failure. The codes used were the simple whole-core code FUTURE and the fuel pin behaviour code FRUMP. The paper describes an application of the method to analyse a hypothetical LMFBR accident in which the control rods were assumed to be driven from the core at maximum speed, with all trip circuits failed. Taking 0.5% clad strain as a clad failure criterion, failure was predicted to occur at the top of the active core at about 10s into the transient. A repeat analysis, using an alternative clad yield criterion which is thought to be more realistic, indicated failure at the same position but 24s into the transient. This is after the onset of sodium boiling. Pin failure at the top of the core are likely to cause negative reactivity changes. In this hypothetical accident, pin failures are likely, therefore, to have a moderating effect on the course of the transient. (orig.)

  12. Mechanisms of ignition by transient energy deposition: Regimes of combustion wave propagation

    OpenAIRE

    Kiverin, A. D.; Kassoy, D. R.; Ivanov, M. F.; Liberman, M. A.

    2013-01-01

    Regimes of chemical reaction wave propagating in reactive gaseous mixtures, whose chemistry is governed by chain-branching kinetics, are studied depending on the characteristics of a transient thermal energy deposition localized in a finite volume of reactive gas. Different regimes of the reaction wave propagation are initiated depending on the amount of deposited thermal energy, power of the source, and the size of the hot spot. The main parameters which define regimes of the combustion wave...

  13. Preliminary Assessment of Transient of Over Power Accident for DSFR-600

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Andong; Bae, Moohoon; Suh, Namduk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    TRACE code was selected as one of candidates for audit code, so sodium properties and heat transfer model in the code was verified first. On the basis of MARS-LMR code input, DSFR-600 TRACE model was developed and applied to PHTS tube rupture case, one of design base events (DBE) of DSFR-600. In this study, Transients of Over Power (TOP) event is assessed using TRACE code as one another case of DBEs of DSFR-600 for preparation of audit calculation of PGSFR.One of the design base events, transients of over power of Demonstration Sodium cooled Fast Reactor was simulated using TRACE code. Predicted fuel temperature showed that the peak fuel temperature occurs when the reactor scrammed and predicted temperature was similar to the MARS-LMRs assessment by KAERI. In this study, it is found that the second peak of fuel temperature is influenced by the inventory of steam generator and the natural circulation characteristic of the reactor vessel pool. Pre-calculation of the unprotected transients of over power with conservative reactivity assumption showed that this assumption is conservative in design base even assessment. However the method of measurement and applying the core radial, fuel and control rod axial expansion reactivity feedback is crucial in BDBE assessment of SFR.

  14. Power transients of Ghana research reactor-1 using PARET/ANL thermal hydraulic code

    International Nuclear Information System (INIS)

    Ampomah-Amoaka, E.; Akaho, E.H.K.; Anim-Sampong, S.; Nyarko, B.J.B.

    2010-01-01

    PARET/ANL(Version 7.3 of 2007) thermal-hydraulic code was used to perform transient analysis of the Ghana Research Reactor-1.The reactivities inserted were 2.1mk and 4mk.The peak power of 5.81kW was obtained for 2.1 mk insertion whereas the peak power for 4mk insertion of reactivity was 92.32kW.These results compare closely with experiments and theoretical studies conducted previously.

  15. Dynamic modelling for two-phase flow systems

    International Nuclear Information System (INIS)

    Guerra, M.A.

    1991-06-01

    Several models for two-phase flow have been studied, developing a thermal-hydraulic analysis code with one of these models. The program calculates, for one-dimensional cases with variable flow area, the transient behaviour of system process variables, when the boundary conditions (heat flux, flow rate, enthalpy and pressure) are functions of time. The modular structure of the code, eases the program growth. In fact, the present work is the basis for a general purpose accident and transient analysis code in nuclear reactors. Code verification has been made against RETRAN-02 results. Satisfactory results have been achieved with the present version of the code. (Author) [es

  16. Reactivity accident analysis in MTR cores

    International Nuclear Information System (INIS)

    Waldman, R.M.; Vertullo, A.C.

    1987-01-01

    The purpose of the present work is the analysis of reactivity transients in MTR cores with LEU and HEU fuels. The analysis includes the following aspects: the phenomenology of the principal events of the accident that takes place, when a reactivity of more than 1$ is inserted in a critical core in less than 1 second. The description of the accident that happened in the RA-2 critical facility in September 1983. The evaluation of the accident from different points of view: a) Theoretical and qualitative analysis; b) Paret Code calculations; c) Comparison with Spert I and Cabri experiments and with post-accident inspections. Differences between LEU and HEU RA-2 cores. (Author)

  17. SACI - O: A code for the analysis of transients in a pressurized water reactor core

    International Nuclear Information System (INIS)

    Resende Lobo, A.A. de; Soares, P.A.

    1979-03-01

    The SACI-O digital computer code consists basically of a pressurized water reactor core model. It is useful in the analysis of fast reactivity transients shorter than the loop transit time. The program can also be used for evaluating the core behaviour, during other transients, when the inlet coolant conditions are known. SACI-O uses point model neutron kinetics taking into account moderator and fuel reactivity effects, and fission products decay. The neutronic and thermal-hydraulic equations are solved for an average fuel pin described by a single axial node. To perform a more detailed calculation, the modeling of another cooling channel, which can be divided into axial segments, is included in the program. The reactor trip system is also partially simulated. (Author) [pt

  18. Control of ZrH reactor reactivity perturbations during orbital maneuvers

    International Nuclear Information System (INIS)

    Audette, R.F.

    1970-01-01

    Scheduled and inadvertent vehicle maneuvers in manned and unmanned space missions may result in reactivity perturbations to the ZrH reactor due to fuel and control drum motion from acceleration forces. Potential power and outlet coolant temperature excursions could result in interruptions of PCS power generation, or excessive coolant temperatures if uncontrolled. This analysis compares potential uncontrolled reactor transients with allowable transients for uninterrupted electrical power generation from a Brayton system, and presents a control scheme to limit transient reactor outlet temperatures to 1250 0 F for a system designed to operate at a nominal 1200 0 F reactor outlet. Potential uncontrolled transients could result in a reactor outlet temperature swing of +-77 0 F about a nominal 1200 0 F and a reactor power swing of +92 Kwt and -67 Kwt about a nominal 130 Kwt for the Brayton System. (U.S.)

  19. Study of transient rod extraction failure without RBM in a BWR

    International Nuclear Information System (INIS)

    Vallejo Q, J. A.; Martin del Campo M, C.; Fuentes M, L.; Francois L, J. L.

    2015-09-01

    The study and analysis of the operational transients are important for predicting the behavior of a system to short-term events and the impact that would cause this transient. For the nuclear industry these studies are indispensable due to economic, environmental and social impacts that could cause an accident during the operation of a nuclear reactor. In this paper the preparation, simulation and analysis results of the transient rod extraction failure in which not taken into operation the RBM is presented. The study was conducted for a BWR of 2027 MWt, in an intermediate cycle of its useful life and using the computer code Simulate-3K a scenario of anomalies was created in the core reactivity which gave a coherent prediction to the type of presented event. (Author)

  20. Analysis of metallic fuel pin behaviors under transient conditions of liquid metal reactors

    International Nuclear Information System (INIS)

    Nam, Cheol; Kwon, Hyoung Mun; Hwang, Woan

    1999-02-01

    Transient behavior of metallic fuel pins in liquid metal reactor is quite different to that in steady state conditions. Even in transient conditions, the fuel may behave differently depending on its accident situation and/or accident sequence. This report describes and identifies the possible and hypothetical transient events at the aspects of fuel pin behavior. Furthermore, the transient experiments on HT9 clad metallic fuel have been analyzed, and then failure assessments are performed based on accident classes. As a result, the failure mechanism of coolant-related accidents, such as LOF, is mainly due to plenum pressure and cladding thinning caused by eutectic penetration. In the reactivity-related accidents, such as TOP, the reason to cladding failure is believed to be the fuel swelling as well as plenum pressure. The probabilistic Weibull analysis is performed to evaluate the failure behavior of HT9 clad-metallic fuel pin on coolant related accidents.The Weibull failure function is derived as a function of cladding CDF. Using the function, a sample calculation for the ULOF accident of EBR-II fuel is performed, and the results indicate that failure probability is less the 0.3%. Further discussion on failure criteria of accident condition is provided. Finally, it is introduced the state-of-arts for developing computer codes of reactivity-related fuel pin behavior. The development efforts for a simple model to predict transient fuel swelling is described, and the preliminary calculation results compared to hot pressing test results in literature.This model is currently under development, and it is recommended in the future that the transient swelling model will be combined with the cladding model and the additional development for post-failure behavior of fuel pin is required. (Author). 36 refs., 9 tabs., 18 figs

  1. Guanosine radical reactivity explored by pulse radiolysis coupled with transient electrochemistry.

    Science.gov (United States)

    Latus, A; Alam, M S; Mostafavi, M; Marignier, J-L; Maisonhaute, E

    2015-06-04

    We follow the reactivity of a guanosine radical created by a radiolytic electron pulse both by spectroscopic and electrochemical methods. This original approach allows us to demonstrate that there is a competition between oxidation and reduction of these intermediates, an important result to further analyse the degradation or repair pathways of DNA bases.

  2. Transient feedback from fuel motion in metal IFR [Integral Fast Reactor] fuel

    International Nuclear Information System (INIS)

    Rhodes, E.A.; Stanford, G.S.; Regis, J.P.; Bauer, T.H.; Dickerman, C.E.

    1990-01-01

    Results from hodoscope data analyses are presented for TREAT transient-overpower tests M5 through M7 with emphasis on transient feedback mechanisms, including prefailure expansion at the tops of the fuel pins, subsequent dispersive axial fuel motion, and losses in relative worth of the fuel pins during the tests. Tests M5 and M6 were the first TOP tests of margin to cladding branch and prefailure elongation of D9-clad ternary (U-Pu-Zr) IFR-type fuel. Test M7 extended these results to high-burnup fuel and also initiated transient testing of HT9-clad binary (U-Zr) FFTF-driver fuel. Results show significant prefailure negative reactivity feedback and strongly negative feedback from fuel driven to failure. 4 refs., 6 figs

  3. Nuclear data propagation with burnup. Impact on SFR reactivity coefficients

    International Nuclear Information System (INIS)

    Buiron, Laurent; Plisson-Rieunier, Daniele

    2017-01-01

    For the next generation fast reactor design, the Generation IV International Forum (GIF) defined global objectives in terms of safety improvement, sustainability, waste minimization and non-proliferation. Among the possibilities studied at CEA, Sodium cooled Fast Reactor (SFR) are studied as potential industrial tools for next decade's deployment. Many efforts have been made in the last years to obtain advanced industrial core designs that comply with these goals. Concerning safety issues, particular efforts have been made in order to obtain core designs that can be resilient to accidental transients. The 'safety' level of such new designs is often characterized by their 'natural' behavior under unprotected transients such as loss of flow or hypothetical transient over power. Transient analysis needs several accurate neutronic input data such as reactivity coefficient and kinetic parameters. Beside estimation of the level of 'absolute' values, associated uncertainties have also to be evaluated for the whole set of relevant data. These estimations have to be performed for different core state such as end of cycle core for feedback coefficient. This means that uncertainties have to be obtained not only a fixed time but also have to be propagated all through irradiation. To do so, we need to couple Boltzman and Bateman equations at sensitivities level. The coupling process could be done with the help of the perturbation theory which gives adapted framework suited for deterministic calculation codes. This coupling is currently in progress in ERANOS code system. The actual implementation gives access to estimation of sensitivities for both reactivity coefficients and mass balance. After a brief theoretical description of Boltzman/Bateman coupling capabilities in ERANOS, the study presented in this paper focuses on sensitivity and uncertainties estimation for the main feedback coefficients involved in fast reactor transients: the

  4. Cerebral blood flow and CO2 reactivity in transient ischemic attacks: comparison between TIAs due to the ICA occlusion and ICA mild stenosis

    International Nuclear Information System (INIS)

    Tsuda, Y.; Kimura, K.; Yoneda, S.; Etani, H.; Asai, T.; Nakamura, M.; Abe, H.

    1983-01-01

    Hemispheric mean cerebral blood flow (CBF), together with its CO2 reactivity in response to hyperventilation, was investigated in 18 patients with transient ischemic attacks (TIAs) by intraarterial 133Xe injection method in a subacute-chronic stage of the clinical course. In 8 patients, the lesion responsible for symptoms was regarded as unilateral internal carotid artery (ICA) occlusion, and in 10 patients, it was regarded as unilateral ICA mild stenosis (less than 50% stenosis in diameter). Resting flow values were significantly decreased in the affected hemisphere of TIA due to the ICA occlusion as compared with the unaffected hemisphere of the same patient, regarded as the relative control. It was not decreased in the affected hemisphere of TIA due to the ICA mild stenosis as compared with the control. With respect to the responsiveness of CBF to changes in PaCO2, it was preserved in both TIAs, due to the ICA occlusion and ICA mild stenosis. Vasoparalysis was not observed in either types of TIAs in the subacute-chronic stage. However, in the relationship of blood pressure and CO2 reactivity, expressed as delta CBF(%)/delta PaCO2, pressure-dependent CO2 reactivity as a group was observed with significance in 8 cases of TIA due to the ICA occlusion, while no such relationship was noted in 10 cases of TIA due to the ICA mild stenosis. Moreover, clinical features were different between TIAs due to the ICA occlusion and ICA mild stenosis, i.e., more typical, repeatable TIA (6.3 +/- 3.7 times) with shorter duration (less than 30 minutes) was observed in TIAs due to the ICA mild stenosis, while more prolonged, less repeatable TIA (2.4 +/- 1.4 times) was observed in TIAs due to fixed obstruction of the ICA. From these observations, two different possible mechanisms as to the pathogenesis of TIA might be expected

  5. A faster reactor transient analysis methodology for PCs

    International Nuclear Information System (INIS)

    Ott, K.O.

    1991-10-01

    The simplified ANL model for LMR transient analysis, in which point kinetics as well as lumped descriptions of the heat transfer equations in all components are applied, is converted from a differential into an integral formulation. All differential balance equations are implicitly solved in terms of convolution integrals. The prompt jump approximation is applied as the strong negative feedback effectively keeps the net reactivity well below prompt critical. After implicit finite differencing of the convolution integrals, the kinetics equation assumes the form of a quadratic equation, the ''quadratic dynamics equation.'' This model forms the basis for GW-BASIC program, LTC, for LMR Transient Calculation program, which can effectively be run on a PC. The GW-BASIC version of the LTC program is described in detail in Volume 2 of this report

  6. A transient kinetic study of nickel-catalyzed methanation: Final report

    International Nuclear Information System (INIS)

    Hoost, T.E.; Goodwin, J.G. Jr.

    1988-11-01

    The results of this study are in two major parts. In Part I the use of steady-state isotopic transients of multiple elements (C, H, and O) under actual methanation reaction conditions has permitted an assessment of the reactivity of water on a Ni powder catalyst. It was concluded based on the addition of isotopic water that oxygen, once reacted to form water, is able to readsorb even where the surface coverage of CO remains high. At the low relative partial pressures of water used, however, there was no effect of added water on the formation of methane. The surface residence time of water determined from isotopic transients contains the residence time on the surface during the primary formation reaction as well as the time spent during readsorption(s). Part II addressed how a catalyst modifier (in this case Cl) affects methanation in CO hydrogenation using steady-state isotopic transient kinetic analysis (SSITKA) of methanation. The results obtained using silica-supported Ru suggest the structural rearrangements induced by the presence of chlorine, rather than selective site blocking or electronic interactions, may be the primary mechanism of chlorine modification of the catalytic properties of supported metals for CO hydrogenation. SSITKA indicated that the decrease in methanation activity with increasing initial Cl concentration was a function of a decrease in the number of reactive surface intermediates (or sites) and not of a change in site activity. 36 refs., 10 figs., 5 tabs

  7. Techniques for computing reactivity changes caused by fuel axial expansion in LMR's

    International Nuclear Information System (INIS)

    Khalil, H.

    1988-01-01

    An evaluation is made of the accuracy of methods used to compute reactivity changes caused by axial fuel relocation in fast reactors. Results are presented to demonstrate the validity of assumptions commonly made such as linearity of reactivity with fuel elongation, additivity of local reactivity contributions, and the adequacy of standard perturbation techniques. Accurate prediction of the reactivity loss caused by axial swelling of metallic fuel is shown to require proper representation of the burnup dependence of the expansion reactivity. Some accuracy limitations in the methods used in transient analyses, which are based on the use of fuel worth tables, are identified, and efficient ways to improve accuracy are described. Implementation of these corrections produced expansion reactivity estimates within 5% of higher-order method for a metal-fueled FFTF core representation. 18 refs., 3 figs., 3 tabs

  8. Trace analysis of loss of feedwater flow event in Lungmen ABWR

    International Nuclear Information System (INIS)

    Wang Jongrong; Lin Haotzu; Wang Weichen; Yang Shuming; Shih Chunkuan

    2009-01-01

    TRACE (TRAC/RELAP Advanced Computational Engine) model of Lungmen Nuclear Power Plant was used to analyze the Loss of Feedwater Flow transient as defined in Lungmen FSAR Chapter 15. The results were compared with those from FSAR and RETRAN02. Lungmen TRACE model will have two models: In model A, vessel is divided into 11 axial levels, 4 radial rings and 1 azimuthal sectors; In model B, vessel is divided into 11 axial levels, 4 radial rings, and 6 azimuthal sectors. The above models include feedwater control system, narrow range water level control system, and wide range water level control system. The loss of feedwater flow (LOFW) transient began with the trip of two operating feedwater pumps either from the pump mechanical/electric failure, or the operator human error, or high water level signal. Feedwater flow was assumed to descend to 0 in 5 seconds and led to the decrease of reactor water level. At L3 low water level setpoint, the system actuated reactor scram signal and RIP trip signal for RIPs not connected to the M/G set. At L2 low-low water level setpoint, the system would trip the other six RIPs. This paper compares those important thermal parameters at steady state, such as the dome pressure and temperature of reactor vessel, steam flow, feedwater flow, core flow, and RIP flow, etc.. It also compares system parameters under transient conditions, such as core thermal power, core flow, steam flow, feedwater flow, Narrow Range Water Level (NRWL), Wide Range Water Level (WRWL) and RIP flow, etc.. It was concluded that the steady state and transient results of TRACE calculations are in good agreement with those from RETRAN02. In summary, our studies concluded that Lungmen TRACE model is correct and accurate enough for future safety analysis applications. (author)

  9. Impacts of reactivity feedback uncertainties on inherent shutdown in innovative designs

    International Nuclear Information System (INIS)

    Mueller, C.J.

    1986-01-01

    The concept of inherent shutdown is emphasized in the approach to the design of innovative, small pool-type liquid-metal reactors (LMRs). This paper reports an evaluation of reactivity feedback uncertainties used in the analyses of anticipated transients without scram for innovative LMRs, and the associated impacts on safety margins and inherent shutdown success probabilities on unprotected loss-of-flow (LOF) events. It then assesses the ultimate importance of these uncertainties on LOF and transient overpower events in evolving metal and oxide innovative designs

  10. Impacts of reactivity feedback uncertainties on inherent shutdown in innovative designs

    International Nuclear Information System (INIS)

    Mueller, C.J.

    1986-01-01

    The concept of ''inherent shutdown'' is emphasized in the approach to the design of innovative, small pool-type liquid metal reactors (LMRs). This paper reports an evaluation of reactivity feedback uncertainties used in the analyses of anticipated transients without scram (ATWS) for innovative LMRs, and the associated impacts on safety margins and inherent shutdown success probabilities on unprotected loss-of-flow (LOF) events. It then assesses the ultimate importance of these uncertainties on LOF and transient overpower (TOP) events in evolving metal and oxide innovative designs

  11. Reactivity worth measurement of the control blades of the University of Florida training reactor

    International Nuclear Information System (INIS)

    Quintero-Leyva, Barbaro

    1997-01-01

    A series of experiments were carried out in order to measure the reactivity worth of the safety and regulating blades of the University of Florida Training Reactor (UFTR) using the Inverse Kinetics, the Inverse Kinetics-Rod Drop method and the Power Ratio. The reactor's own instrumentation (compensated ion chamber) and an independent counting system (fission chamber) were used. A very smooth exponential decay of the flux was observed after 6s of the beginning of the transients using the reading of the reactor detector. The results of the measurements of the reactivity using both detectors were consistent and in good agreement. The compensated ion chamber showed a very smooth exponential behavior; this suggests that if we could record the power for a small sample time, say 0.1 s from the beginning of the transient, several additional research projects could be accomplished. First, precise intercomparison of the methods could be achieved if the statistics level is acceptable. Second, a precise description of the bouncing of the blades and its effects on the reactivity could be achieved. Finally, the design of a reactivity-meter could be based on such study. (author)

  12. Features of Onset and Clinical Course of Reactive Arthritis in Children

    Directory of Open Access Journals (Sweden)

    I.S. Lebets

    2013-09-01

    Results. Reactive arthritis of chlamydial etiology is characterized by lesion of large and medium-sized joints of the lower limbs, which is often accompanied by short-term morning stiffness and rapid onset of transient hypomyatrophy. Reiter’s disease may develop rarely. Mycoplasma-induced reactive arthritis is characterized by debut with arthritis of knee, ankle, wrist and small joints of the hand, the development of bursitis and hypomyatrophy. Feature of Ureaplasma arthritis is the formation of bursitis in the heel and tendinitis. Reactive arthritis associated with elevated titers to antistreptolysin O differs with polymorphism of articular syndrome manifestations and, to some extent, of similarity with juvenile rheumatoid arthritis. Unspecified reactive arthritis has a number of the general features with others reactive arthritis and it is characterized by rather benign clinical course, long preservation of joints function and low laboratory activity. Relapse rate of reactive arthritis increases with an increase of duration of illness.

  13. Consistency considerations in the use of point kinetics for BWR application

    International Nuclear Information System (INIS)

    Holzer, J.M.; Habert, R.; Pilat, E.E.

    1981-01-01

    The basic question of producing point reactivity parameters for use in RETRAN anaylses is addressed. The technique used in establishing a methodology consists of a stepwise reduction of resolution, in space and time, so as to identify possible areas in which error may be induced and to establish procedures that retain consistency and accuracy. The presented calculational flow plan culminating from this analysis will ultimately be used at Yankee Atomic Electric for design application

  14. Analysis of reactivity feedback effects of void and temperature in the MAPLE-X10 reactor

    International Nuclear Information System (INIS)

    Carlson, P.A.; Heeds, W.; Shim, S.Y.; King, S.G.

    1992-07-01

    The methods used for evaluating the void and temperature reactivity coefficients for the MAPLE-X10 Reactor are described and factors used in estimating their accuracy are discussed. The report presents representative transient analysis results using the CATHENA thermalhydraulics code. The role of the reactivity coefficients and their precision is discussed. The results are reviewed in terms of their safety implications

  15. TRACY transient experiment databook. 2) ramp withdrawal experiment

    International Nuclear Information System (INIS)

    Nakajima, Ken; Yamane, Yuichi; Ogawa, Kazuhiko; Aizawa, Eiju; Yanagisawa, Hiroshi; Miyoshi, Yoshinori

    2002-03-01

    This is a databook of TRACY ''ramp withdrawal'' experiments. TRACY is a reactor to perform supercritical experiments using low-enriched uranyl nitrate aqueous solution. The excess reactivity of TRACY is 3$ at maximum, and it is inserted by feeding the solution to a core tank or by withdrawing a control rod, which is called as the transient rod, from the core. In the ramp withdrawal experiment, the supercritical experiment is initiated by withdrawing the transient rod from the core in a constant speed using a motor drive system. The data in the present databook consist of datasheets and graphs. Experimental conditions and typical values of measured parameters are tabulated in the datasheet. In the graph, power and temperature profiles are plotted. Those data are useful for the investigation of criticality accidents with fissile solutions, and for validation of criticality accident analysis codes. (author)

  16. Transient Control of Synchronous Machine Active and Reactive Power in Micro-grid Power Systems

    Science.gov (United States)

    Weber, Luke G.

    There are two main topics associated with this dissertation. The first is to investigate phase-to-neutral fault current magnitude occurring in generators with multiple zero-sequence current sources. The second is to design, model, and tune a linear control system for operating a micro-grid in the event of a separation from the electric power system. In the former case, detailed generator, AC8B excitation system, and four-wire electric power system models are constructed. Where available, manufacturers data is used to validate the generator and exciter models. A gain-delay with frequency droop control is used to model an internal combustion engine and governor. The four wire system is connected through a transformer impedance to an infinite bus. Phase-to-neutral faults are imposed on the system, and fault magnitudes analyzed against three-phase faults to gauge their severity. In the latter case, a balanced three-phase system is assumed. The model structure from the former case - but using data for a different generator - is incorporated with a model for an energy storage device and a net load model to form a micro-grid. The primary control model for the energy storage device has a high level of detail, as does the energy storage device plant model in describing the LC filter and transformer. A gain-delay battery and inverter model is used at the front end. The net load model is intended to be the difference between renewable energy sources and load within a micro-grid system that has separated from the grid. Given the variability of both renewable generation and load, frequency and voltage stability are not guaranteed. This work is an attempt to model components of a proposed micro-grid system at the University of Wisconsin Milwaukee, and design, model, and tune a linear control system for operation in the event of a separation from the electric power system. The control module is responsible for management of frequency and active power, and voltage and reactive

  17. Transient core characteristics of small molten salt reactor coupling problem between heat transfer/flow and nuclear fission reaction

    International Nuclear Information System (INIS)

    Yamamoto, Takahisa; Mitachi, Koshi

    2004-01-01

    This paper performed the transient core analysis of a small Molten Salt Reactor (MSR). The emphasis is that the numerical model employed in this paper takes into account the interaction among fuel salt flow, nuclear reaction and heat transfer. The model consists of two group diffusion equations for fast and thermal neutron fluexs, balance equations for six-group delayed neutron precursors and energy conservation equations for fuel salt and graphite moderator. The results of transient analysis are that (1) fission reaction (heat generation) rate significantly increases soon after step reactivity insertion, e.g., the peak of fission reaction rate achieves about 2.7 times larger than the rated power 350 MW when the reactivity of 0.15% Δk/k 0 is inserted to the rated state, and (2) the self-control performance of the small MSR effectively works under the step reactivity insertion of 0.56% Δk/k 0 , putting the fission reaction rate back on the rated state. (author)

  18. Development and application of objective uncertainty measures for nuclear power plant transient analysis

    International Nuclear Information System (INIS)

    Vinai, P.

    2007-10-01

    associated to various individual points over the state space. By applying a novel multi-dimensional clustering technique, based on the non-parametric statistical Kruskal-Wallis test, it has been possible to achieve a partitioning of the state space into regions differing in terms of the quality of the physical model's predictions. The second step has been the quantification of the model's uncertainty, for each of the identified state space regions, by applying a probability density function (pdf) estimator. This is a kernel-type estimator, modelled on a universal orthogonal series estimator, such that its behaviour takes advantage of the good features of both estimator types and yields reasonable pdfs, even with samples of small size and not very compact distributions. The pdfs provide a reliable basis for sampling 'error values' for use in Monte-Carlo-type uncertainty propagation studies, aimed at quantifying the impact of the physical model's uncertainty on the code's output variables of interest. The effectiveness of the developed methodology was demonstrated by applying it to the quantification of the uncertainty related to thermal-hydraulic (drift-flux) models implemented in the best-estimate safety analysis code RETRAN-3D. This has been done via the usage of a wide database of void-fraction experiments for saturated and sub-cooled conditions. Appropriate pdfs were generated for quantification of the physical model's uncertainty in a 2-dimensional (pressure/mass-flux) state space, partitioned into 3 separate regions. The impact of the RETRAN-3D drift-flux model uncertainties has been assessed at three different levels of the code's application: (a) Achilles Experiment No. 2, a separate effect experiment not included in the original assessment database; (b) Omega Rod Bundle Test No. 9, an integral experiment simulating a PWR loss-of-coolant accident (LOCA); and (c) the Peach Bottom turbine trip test, a NPP (BWR) plant transient in which the void feedback mechanism plays

  19. Hidden photoinduced reactivity of the blue fluorescent protein mKalama1

    DEFF Research Database (Denmark)

    Vegh, Russell B.; Bloch, Dmitry A.; Bommarius, Andreas S.

    2015-01-01

    , is largely unexplored. Here, by using transient absorption spectroscopy spanning the time scale from picoseconds to seconds, we reveal a hidden reactivity of the bright blue-light emitting protein mKalama1 previously thought to be inert. This protein shows no excited-state proton transfer during its...

  20. Analysis of reactivity insertion accidents in PWR reactors

    International Nuclear Information System (INIS)

    Camargo, C.T.M.

    1978-06-01

    A calculation model to analyze reactivity insertion accidents in a PWR reactor was developed. To analyze the nuclear power transient, the AIREK-III code was used, which simulates the conventional point-kinetic equations with six groups of delayed neutron precursors. Some modifications were made to generalize and to adapt the program to solve the proposed problems. A transient thermal analysis model was developed which simulates the heat transfer process in a cross section of a UO 2 fuel rod with Zircalloy clad, a gap fullfilled with Helium gas and the correspondent coolant channel, using as input the nulcear power transient calculated by AIREK-III. The behavior of ANGRA-i reactor was analized during two types of accidents: - uncontrolled rod withdrawal from subcritical condition; - uncontrolled rod withdrawal at power. The results and conclusions obtained will be used in the license process of the Unit 1 of the Central Nuclear Almirante Alvaro Alberto. (Author) [pt

  1. Advanced methods for BWR transient and stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, A; Wehle, F; Opel, S; Velten, R [AREVA, AREVA NP, Erlangen (Germany)

    2008-07-01

    The design of advanced Boiling Water Reactor (BWR) fuel assemblies and cores is governed by the basic requirement of safe, reliable and flexible reactor operation with optimal fuel utilization. AREVA NP's comprehensive steady state and transient BWR methodology allows the designer to respond quickly and effectively to customer needs. AREVA NP uses S-RELAP5/RAMONA as the appropriate methodology for the representation of the entire plant. The 3D neutron kinetics and thermal-hydraulics code has been developed for the prediction of system, fuel and core behavior and provides additional margins for normal operation and transients. Of major importance is the extensive validation of the methodology. The validation is based on measurements at AREVA NP's test facilities, and comparison of the predictions with a great wealth of measured data gathered from BWR plants during many years of operation. Three of the main fields of interest are stability analysis, operational transients and reactivity initiated accidents (RIAs). The introduced 3D methodology for operational transients shows significant margin regarding the operational limit of critical power ratio, which has been approved by the German licensing authority. Regarding BWR stability a large number of measurements at different plants under various conditions have been performed and successfully post-calculated with RAMONA. This is the basis of reliable pre-calculations of the locations of regional and core-wide stability boundaries. (authors)

  2. Advanced methods for BWR transient and stability analysis

    International Nuclear Information System (INIS)

    Schmidt, A.; Wehle, F.; Opel, S.; Velten, R.

    2008-01-01

    The design of advanced Boiling Water Reactor (BWR) fuel assemblies and cores is governed by the basic requirement of safe, reliable and flexible reactor operation with optimal fuel utilization. AREVA NP's comprehensive steady state and transient BWR methodology allows the designer to respond quickly and effectively to customer needs. AREVA NP uses S-RELAP5/RAMONA as the appropriate methodology for the representation of the entire plant. The 3D neutron kinetics and thermal-hydraulics code has been developed for the prediction of system, fuel and core behavior and provides additional margins for normal operation and transients. Of major importance is the extensive validation of the methodology. The validation is based on measurements at AREVA NP's test facilities, and comparison of the predictions with a great wealth of measured data gathered from BWR plants during many years of operation. Three of the main fields of interest are stability analysis, operational transients and reactivity initiated accidents (RIAs). The introduced 3D methodology for operational transients shows significant margin regarding the operational limit of critical power ratio, which has been approved by the German licensing authority. Regarding BWR stability a large number of measurements at different plants under various conditions have been performed and successfully post-calculated with RAMONA. This is the basis of reliable pre-calculations of the locations of regional and core-wide stability boundaries. (authors)

  3. TRAB, a transient analysis program for BWR. Part 1

    International Nuclear Information System (INIS)

    Rajamaeki, Markku.

    1980-03-01

    TRAB is a transient analysis program for BWR. The present report describes its principles. The program has been developed from TRAWA-program. It models the interior of the pressure vessel and related subsystems of BWR viz. reactor core, recirculation loop including the upper part of the vessel, recirculation pumps, incoming and outgoing flow systems, and control and protection systems. Concerning core phenomena and all flow channel hydraulics the submodels are one-dimensional of main features. The geometry is very flexible. The program has been made particularly to simulate various reactivity transients, but it is applicable more generally to reactor incidents and accidents in which no flow reversal or no emptying of the circuit must occur below the water level. The program is extensively supplied by input and output capabilities. The user can act upon the simulation of a transient by defining external disturbances, scheduled timevariations for any system variable, by modeling new subsystems, which are representable with ordinary linear differential equations, and by defining relations of functional form between system variables. The run of the program can be saved and restarted. (author)

  4. Loss-of-flow transient characterization in carbide-fueled LMFBRs

    International Nuclear Information System (INIS)

    Rothrock, R.B.; Morgan, M.M.; Baars, R.E.; Elson, J.S.; Wray, M.L.

    1985-01-01

    One of the benefits derived from the use of carbide fuel in advanced Liquid Metal Fast Breeder Reactors (LMFBRs) is a decreased vulnerability to certain accidents. This can be achieved through the combination of advanced fuel performance with the enhanced reactivity feedback effects and passive shutdown cooling systems characteristic of the current 'inherently safe' plant concepts. The calculated core response to an unprotected loss of flow (ULOF) accident has frequently been used as a benchmark test of these designs, and the advantages of a high-conductivity fuel in relation to this type of transient have been noted in previous analyses. To evaluate this benefit in carbide-fueled LMFBRs incorporating representative current plant design features, limited calculations have been made of a ULOF transient in a small ('modular') carbide-fueled LMFBR

  5. Excitation of neutron flux waves in reactor core transients

    International Nuclear Information System (INIS)

    Carew, J.F.; Neogy, P.

    1983-01-01

    An analysis of the excitation of neutron flux waves in reactor core transients has been performed. A perturbation theory solution has been developed for the time-dependent thermal diffusion equation in which the absorption cross section undergoes a rapid change, as in a PWR rod ejection accident (REA). In this analysis the unperturbed reactor flux states provide the basis for the spatial representation of the flux solution. Using a simplified space-time representation for the cross section change, the temporal integrations have been carried out and analytic expressions for the modal flux amplitudes determined. The first order modal excitation strength is determined by the spatial overlap between the initial and final flux states, and the cross section perturbation. The flux wave amplitudes are found to be largest for rapid transients involving large reactivity perturbations

  6. Comprehensive Reactive Power Support of DFIG Adapted to Different Depth of Voltage Sags

    Directory of Open Access Journals (Sweden)

    Yangwu Shen

    2017-06-01

    Full Text Available The low voltage ride-through (LVRT capability of the doubly-fed induction generator (DFIG significantly impacts upon the integration of wind power into the power grid. This paper develops a novel comprehensive control strategy to enhance the LVRT and reactive power support capacities of the DFIG by installing the energy storage system (ESS. The ESS is connected to the DC-link capacitor of the DFIG and used to regulate the DC-link voltage during normal or fault operations. The unbalanced power between the captured wind power and the power injected to the grid during the transient process is absorbed or compensated by the ESS. The rotor-side converter (RSC is used to control the maximum power production and the grid-side converter (GSC is used to control the reactive power before participating in the voltage support. When the supply voltage continues to drop, the rotor speed is increased by controlling the RSC to realize the LVRT capability and help the GSC further enhance the reactive power support capability. The capacity of the GSC is dedicated to injecting the reactive power to the grid. An auxiliary transient pitch angle controller is proposed to protect the generator’s over speed. Both RSC and GSC act as reactive power sources to further enhance the voltage support capability with serious voltage sags. Simulations based on a single-machine infinite-bus power system verify the effectiveness of the developed comprehensive control strategy.

  7. Transient Analysis of Generation IV quick reactors; Analisis de Transitorios en Reactores Rapidos de Generacion IV

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M.; Martin-Fuertes, F.

    2013-07-01

    As a complement to the attached code 3D neutron-CIEMAT thermohydraulic added a module to simulate transient. Temporary kinetics is resolved by factoring flow in a spatial part and another storm. MCNP provides the reactivity and updated spatial function and COBRA-IV calculates the temperature distribution. Temporary dependence of amplitude is calculated using time delayed neutron Kinetic equations. As an example of application, examines a transient loss of flow in MYRRHA, a lead-cooled experimental reactor.

  8. Study on the reactive transient α-λ3-iodanyl-acetophenone complex in the iodine(III)/PhI(I) catalytic cycle of iodobenzene-catalyzed α-acetoxylation reaction of acetophenone by electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Wang, Hao-Yang; Zhou, Juan; Guo, Yin-Long

    2012-03-30

    Hypervalent iodine compounds are important and widely used oxidants in organic chemistry. In 2005, Ochiai reported the PhI-catalyzed α-acetoxylation reaction of acetophenone by the oxidation of PhI with m-chloroperbenzoic acid (m-CPBA) in acetic acid. However, until now, the most critical reactive α-λ(3)-iodine alkyl acetophenone intermediate (3) had not been isolated or directly detected. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) was used to intercept and characterize the transient reactive α-λ(3)-iodine alkyl acetophenone intermediate in the reaction solution. The trivalent iodine species was detected when PhI and m-CPBA in acetic acid were mixed, which indicated the facile oxidation of a catalytic amount of PhI(I) to the iodine(III) species by m-CPBA. Most importantly, 3·H(+) was observed at m/z 383 from the reaction solution and this ion gave the protonated α-acetoxylation product 4·H(+) at m/z 179 in MS/MS by an intramolecular reductive elimination of PhI. These ESI-MS/MS studies showed the existence of the reactive α-λ(3)-iodine alkyl acetophenone intermediate 3 in the catalytic cycle. Moreover, the gas-phase reactivity of 3·H(+) was consistent with the proposed solution-phase reactivity of the α-λ(3)-iodine alkyl acetophenone intermediate 3, thus confirming the reaction mechanism proposed by Ochiai. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Analysis of a hot-leg small break loss-of-coolant accident in a three-loop westinghouse pressurized water reactor plant

    International Nuclear Information System (INIS)

    Peterson, C.E.; Chexal, V.K.; Clements, T.B.

    1985-01-01

    The RETRAN-02 computer code was used to perform a best-estimate analysis of a 7.52-cm-diam hotleg break in a three-loop Westinghouse pressurized water reactor. This break size produced a net primary coolant mass depletion through the early portion of the transient. The primary system started to refill only after the accumulator valves opened. As the primary system refilled, there were extreme temperature differentials around the system with cold, denser fluid collecting at the lower elevations and two-phase fluid at higher elevations

  10. Comparison of SAS3A and MELT-III predictions for a transient overpower hypothetical accident

    International Nuclear Information System (INIS)

    Wilburn, N.P.

    1976-01-01

    A comparison is made of the predictions of the two major codes SAS3A and MELT-III for the hypothetical unprotected transient overpower accident in the FFTF. The predictions of temperatures, fuel restructuring, fuel melting, reactivity feedbacks, and core power are compared

  11. Study of the initiation of subcooled boiling during power transients

    International Nuclear Information System (INIS)

    VanVleet, R.J.

    1985-01-01

    An experimental investigation of boiling initiation during power transients has been conducted for horizontal-cylinder heating elements in degassed distilled water. Platinum elements, 0.127 and 0.250 mm in diameter, were internally heated electrically at a controlled superficial heat flux (power applied divided by surface area) increasing linearly with time at rates of 0.035 and 0.35 MW/m 2 s and corresponding test durations of 20 and 2 seconds. Tests were carried out at saturation temperatures from 100 to 195 0 C with bulk fluid subcooling from 0 to 30 K. During the course of a power transient, element temperature and superficial heat flux were measured electrically and the boiling initiation time was determined optically. It was found that the conditions for boiling initiation depended strongly on the pressure-temperature history of the heating element and surround fluid prior to the transient. Boiling initiation times were found to agree qualitatively with predictions of a model based on the contact-angle hysteresis concept. Brief prepressurization prior to a transient was found to increase dramatically the temperature and heat flux required for boiling initiation because of deactivation of boiling initiation sites. However, sites were re-activated during the transient and, in subsequent tests without prepressurization, no elevation in boiling initiation conditions was observed and results were in quantitative agreement with predictions of the model

  12. Reactive solute transport in acidic streams

    Science.gov (United States)

    Broshears, R.E.

    1996-01-01

    Spatial and temporal profiles of Ph and concentrations of toxic metals in streams affected by acid mine drainage are the result of the interplay of physical and biogeochemical processes. This paper describes a reactive solute transport model that provides a physically and thermodynamically quantitative interpretation of these profiles. The model combines a transport module that includes advection-dispersion and transient storage with a geochemical speciation module based on MINTEQA2. Input to the model includes stream hydrologic properties derived from tracer-dilution experiments, headwater and lateral inflow concentrations analyzed in field samples, and a thermodynamic database. Simulations reproduced the general features of steady-state patterns of observed pH and concentrations of aluminum and sulfate in St. Kevin Gulch, an acid mine drainage stream near Leadville, Colorado. These patterns were altered temporarily by injection of sodium carbonate into the stream. A transient simulation reproduced the observed effects of the base injection.

  13. The influence of reactive current on wind farm LVRT behavior

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qing; Zhang, Mei; He, Jing; Qin, Shi-yao [China Electric Power Research Institute, Beijing (China)

    2012-07-01

    The Low voltage ride through (LVRT) capability of the whole wind farm is required in Chinese grid code published in 2011. In order to analyze the influence of reactive current on wind farm during grid fault, a 100 MW wind farm was simulated with the wind turbines which have been tested. Based on the validated wind turbine model, the wind farm was detailed modelled in DigSILENT/PowerFactory. The model of wind turbines, transformers, feeders, main transformers, static var compensator, and transmission lines was considered in the simulation. Under the weak and strong grid conditions, the wind farm was simulated with different wind turbine reactive current behavior during grid fault, respectively. The voltage distribution, active and reactive power transient behavior at the point of interconnection was analyzed. The results show that wind farm LVRT behavior is related to reactive current and LVRT capability of wind turbine, wind farm electrical structure and grid conditions. And it is very important for wind turbine to have a flexible dynamic reactive current control capability. (orig.)

  14. The impact of fuel temperature reactivity coefficient on loss of reactivity control accident

    International Nuclear Information System (INIS)

    Park, J. H.; Ryu, E. H.; Song, Y. M.; Jung, J. Y.

    2012-01-01

    Nuclear reactors experience small power fluctuations or anticipated operational transients during even normal power operation. During normal operation, the reactivity is mainly controlled by liquid zone controllers, adjuster rods, mechanical control absorbers, and moderator poison. Even when the reactor power is increased abruptly and largely from an accident and when reactor control systems cannot be actuated quickly due to a fast transient, the reactor should be controlled and stabilized by its inherent safety parameter, such as a negative PCR (Power Coefficient of Reactivity) feedback. A PWR (Pressurized Water Reactor), it is well designed for the reactor to have a negative PCR so that the reactor can be safely shut down or stabilized whenever an abrupt reactivity insertion into the reactor core occurs or the reactor power is abruptly increased. However, it is known that a CANDU reactor has a small amount of PCR, as either negative or positive, because of the different design basis and safety concepts from a PWR. CNSC's regulatory and safety regime has stated that; The PCR of CANDU reactors does not pose a significant risk. Consistent with Canadian nuclear safety requirements, nuclear power plants must have an appropriate combination of inherent and engineered safety features incorporated into the design of the reactor safety and control systems. A reactor design that has a PCR is quite acceptable provided that the reactor is stable against power fluctuations, and that the probability and consequences of any potential accidents that would be aggravated by a positive reactivity feedback are maintained within CNSCprescribed limits. Recently, it was issued licensing the refurbished Wolsong unit 1 in Korea to be operated continuously after its design lifetime in which the calculated PCR was shown to have a small positive value by applying the recent physics code systems, which are composed of WIMS IST, DRAGON IST, and RFSP IST. These code systems were transferred

  15. Validation of SCALE4.4a for Calculation of Xe-Sm Transients After a Scram of the BR2 Reactor

    International Nuclear Information System (INIS)

    Kalcheva, S.; Ponsard, B.; Koonen, E.

    2007-01-01

    The aim of this report is to validate the computational modules system SCALE4.4a for evaluation of reactivity changes, macroscopic absorption cross sections and calculations of the positions of the Control Rods during their motion in Xe-Sm transient after a scram of the BR-2 reactor. The rapid shutting down of the reactor by inserting of negative reactivity by the Control Rods is known as a reactor scram. Following reactor scram, a large xenon and samarium buildup occur in the reactor, which may appreciably affect the multiplication factor of the core due to enormous neutron absorption. The validation of the calculations of Xe-Sm transients by SCALE4.4a has been performed on the measurements of the positions of the Control Rods during their motion in Xe-Sm transients of the BR-2 reactor and on comparison with the calculations by the standard procedure XESM, developed at the BR-2 reactor. A final conclusion is made that the SCALE4.4a modules system can be used for evaluation of Xe-Sm transients of the BR-2 reactor. The utilization of the code is simple, the computational time takes from few seconds.

  16. Fast Transient And Spatially Non-Homogenous Accident Analysis Of Two-Dimensional Cylindrical Nuclear Reactor

    International Nuclear Information System (INIS)

    Yulianti, Yanti; Su'ud, Zaki; Waris, Abdul; Khotimah, S. N.; Shafii, M. Ali

    2010-01-01

    The research about fast transient and spatially non-homogenous nuclear reactor accident analysis of two-dimensional nuclear reactor has been done. This research is about prediction of reactor behavior is during accident. In the present study, space-time diffusion equation is solved by using direct methods which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference discretization method is solved by using iterative methods ADI (Alternating Direct Implicit). The indication of accident is decreasing macroscopic absorption cross-section that results large external reactivity. The power reactor has a peak value before reactor has new balance condition. Changing of temperature reactor produce a negative Doppler feedback reactivity. The reactivity will reduce excess positive reactivity. Temperature reactor during accident is still in below fuel melting point which is in secure condition.

  17. Generalization of Wilemski-Fixman-Weiss decoupling approximation to the case involving multiple sinks of different sizes, shapes, and reactivities.

    Science.gov (United States)

    Uhm, Jesik; Lee, Jinuk; Eun, Changsun; Lee, Sangyoub

    2006-08-07

    We generalize the Wilemski-Fixman-Weiss decoupling approximation to calculate the transient rate of absorption of point particles into multiple sinks of different sizes, shapes, and reactivities. As an application we consider the case involving two spherical sinks. We obtain a Laplace-transform expression for the transient rate that is in excellent agreement with computer simulations. The long-time steady-state rate has a relatively simple expression, which clearly shows the dependence on the diffusion constant of the particles and on the sizes and reactivities of sinks, and its numerical result is in good agreement with the known exact result that is given in terms of recursion relations.

  18. Adaptive Immunity to Leukemia Is Inhibited by Cross-Reactive Induced Regulatory T Cells.

    Science.gov (United States)

    Manlove, Luke S; Berquam-Vrieze, Katherine E; Pauken, Kristen E; Williams, Richard T; Jenkins, Marc K; Farrar, Michael A

    2015-10-15

    BCR-ABL(+) acute lymphoblastic leukemia patients have transient responses to current therapies. However, the fusion of BCR to ABL generates a potential leukemia-specific Ag that could be a target for immunotherapy. We demonstrate that the immune system can limit BCR-ABL(+) leukemia progression although ultimately this immune response fails. To address how BCR-ABL(+) leukemia escapes immune surveillance, we developed a peptide: MHC class II tetramer that labels endogenous BCR-ABL-specific CD4(+) T cells. Naive mice harbored a small population of BCR-ABL-specific T cells that proliferated modestly upon immunization. The small number of naive BCR-ABL-specific T cells was due to negative selection in the thymus, which depleted BCR-ABL-specific T cells. Consistent with this observation, we saw that BCR-ABL-specific T cells were cross-reactive with an endogenous peptide derived from ABL. Despite this cross-reactivity, the remaining population of BCR-ABL reactive T cells proliferated upon immunization with the BCR-ABL fusion peptide and adjuvant. In response to BCR-ABL(+) leukemia, BCR-ABL-specific T cells proliferated and converted into regulatory T (Treg) cells, a process that was dependent on cross-reactivity with self-antigen, TGF-β1, and MHC class II Ag presentation by leukemic cells. Treg cells were critical for leukemia progression in C57BL/6 mice, as transient Treg cell ablation led to extended survival of leukemic mice. Thus, BCR-ABL(+) leukemia actively suppresses antileukemia immune responses by converting cross-reactive leukemia-specific T cells into Treg cells. Copyright © 2015 by The American Association of Immunologists, Inc.

  19. TRACE/PARCS modelling of rips trip transients for Lungmen ABWR

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C. Y. [Inst. of Nuclear Engineering and Science, National Tsing-Hua Univ., No.101, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Lin, H. T.; Wang, J. R. [Inst. of Nuclear Energy Research, No. 1000, Wenhua Rd., Longtan Township, Taoyuan County 32546, Taiwan (China); Shih, C. [Inst. of Nuclear Engineering and Science, Dept. of Engineering and System Science, National Tsing-Hua Univ., No.101, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)

    2012-07-01

    The objectives of this study are to examine the performances of the steady-state results calculated by the Lungmen TRACE/PARCS model compared to SIMULATE-3 code, as well as to use the analytical results of the final safety analysis report (FSAR) to benchmark the Lungmen TRACE/PARCS model. In this study, three power generation methods in TRACE were utilized to analyze the three reactor internal pumps (RIPs) trip transient for the purpose of validating the TRACE/PARCS model. In general, the comparisons show that the transient responses of key system parameters agree well with the FSAR results, including core power, core inlet flow, reactivity, etc. Further studies will be performed in the future using Lungmen TRACE/PARCS model. After the commercial operation of Lungmen nuclear power plant, TRACE/PARCS model will be verified. (authors)

  20. Development and application of objective uncertainty measures for nuclear power plant transient analysis[Dissertation 3897

    Energy Technology Data Exchange (ETDEWEB)

    Vinai, P

    2007-10-15

    For the development, design and licensing of a nuclear power plant (NPP), a sound safety analysis is necessary to study the diverse physical phenomena involved in the system behaviour under operational and transient conditions. Such studies are based on detailed computer simulations. With the progresses achieved in computer technology and the greater availability of experimental and plant data, the use of best estimate codes for safety evaluations has gained increasing acceptance. The application of best estimate safety analysis has raised new problems that need to be addressed: it has become more crucial to assess as to how reliable code predictions are, especially when they need to be compared against safety limits that must not be crossed. It becomes necessary to identify and quantify the various possible sources of uncertainty that affect the reliability of the results. Currently, such uncertainty evaluations are generally based on experts' opinion. In the present research, a novel methodology based on a non-parametric statistical approach has been developed for objective quantification of best-estimate code uncertainties related to the physical models used in the code. The basis is an evaluation of the accuracy of a given physical model achieved by comparing its predictions with experimental data from an appropriate set of separate-effect tests. The differences between measurements and predictions can be considered stochastically distributed, and thus a statistical approach can be employed. The first step was the development of a procedure for investigating the dependence of a given physical model's accuracy on the experimental conditions. Each separate-effect test effectively provides a random sample of discrepancies between measurements and predictions, corresponding to a location in the state space defined by a certain number of independent system variables. As a consequence, the samples of 'errors', achieved from analysis of the entire

  1. Wind Power Impact to Transient and Voltage Stability of the Power System in Eastern Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Joana; Jørgensen, Preben; Palsson, Magni Thor

    2005-01-01

    Voltage stability, transient stability and reactive power compensation are extremely important issues for largescale integration of wind power in areas distant from the main transmission system in Eastern Denmark. This paper describes the application of a dynamic wind farm model in simulation...... studies for assessments of a large wind power penetration. The simulation results reveal problems with voltage stability due to the characteristic of wind turbine generation as well as the inability of the power system to meet the reactive power demand. Furthermore, the established model is applied...

  2. Transient Analysis of a Gas-cooled Fast Reactor for Single Control Assembly Withdrawal

    International Nuclear Information System (INIS)

    Choi, Hangbok

    2014-01-01

    The Energy Multiplier Module (EMZ) system response has been evaluated for control assembly withdrawal transients. Currently the EM2 core is equipped with six cylindrical drum-type control assemblies in the reflector zone for excess reactivity control and power maneuvering during the operating core life. This study investigates the system response to the control assembly withdrawal accident with various rotational speeds and reactivity worth to determine feasible control assembly design requirements from the physics viewpoint. The simulations have been conducted for single control assembly withdrawal transients without scram by a gas-cooled reactor plant simulator, which is based on a simplified plant nodal model, including the point reactor kinetics, single channel core thermal-fluid model, and a turbo-machinery performance model. Simulations were conducted for the middle-of- cycle core, when the excess reactivity of the core is the highest. Control assembly withdrawal times were varied from 1 (runaway) to 180 sec and reactivity worth was varied from 100 to 400 pcm. For a single control assembly withdrawal, the simulation has shown that the peak fuel temperature is expected to be ~1820°C when the assembly worth is 200 pcm and the runaway time is 1 sec per 180 degree rotation. The peak temperature could be reduced to ~1780°C if the assembly is rotated out in a moderate speed such as 1 degree/sec. These peak temperatures give a thermal margin of 22 to 24% to the melting point of uranium carbide fuel. The results also indicate that the current design with a single control assembly worth of 314 pcm may need adjustments in the future design. (author)

  3. Transient Simulation of the Multi-SERTTA Experiment with MAMMOTH

    Energy Technology Data Exchange (ETDEWEB)

    Ortensi, Javier [Idaho National Lab. (INL), Idaho Falls, ID (United States); Baker, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Yaqi [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schunert, Sebastian [Idaho National Lab. (INL), Idaho Falls, ID (United States); deHart, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-11

    This work details the MAMMOTH reactor physics simulations of the Static Environment Rodlet Transient Test Apparatus (SERTTA) conducted at Idaho National Laboratory in FY-2017. TREAT static-environment experiment vehicles are being developed to enable transient testing of Pressurized Water Reactor (PWR) type fuel specimens, including fuel concepts with enhanced accident tolerance (Accident Tolerant Fuels, ATF). The MAMMOTH simulations include point reactor kinetics as well as spatial dynamics for a temperature-limited transient. The strongly coupled multi-physics solutions of the neutron flux and temperature fields are second order accurate both in the spatial and temporal domains. MAMMOTH produces pellet stack powers that are within 1.5% of the Monte Carlo reference solutions. Some discrepancies between the MCNP model used in the design of the flux collars and the Serpent/MAMMOTH models lead to higher power and energy deposition values in Multi-SERTTA unit 1. The TREAT core results compare well with the safety case computed with point reactor kinetics in RELAP5-3D. The reactor period is 44 msec, which corresponds to a reactivity insertion of 2.685% delta k/k$. The peak core power in the spatial dynamics simulation is 431 MW, which the point kinetics model over-predicts by 12%. The pulse width at half the maximum power is 0.177 sec. Subtle transient effects are apparent at the beginning insertion in the experimental samples due to the control rod removal. Additional difference due to transient effects are observed in the sample powers and enthalpy. The time dependence of the power coupling factor (PCF) is calculated for the various fuel stacks of the Multi-SERTTA vehicle. Sample temperatures in excess of 3100 K, the melting point UO$_2$, are computed with the adiabatic heat transfer model. The planned shaped-transient might introduce additional effects that cannot be predicted with PRK models. Future modeling will be focused on the shaped-transient by improving the

  4. Transient Simulation of the Multi-SERTTA Experiment with MAMMOTH

    International Nuclear Information System (INIS)

    Ortensi, Javier; Baker, Benjamin; Wang, Yaqi; Schunert, Sebastian; DeHart, Mark

    2017-01-01

    This work details the MAMMOTH reactor physics simulations of the Static Environment Rodlet Transient Test Apparatus (SERTTA) conducted at Idaho National Laboratory in FY-2017. TREAT static-environment experiment vehicles are being developed to enable transient testing of Pressurized Water Reactor (PWR) type fuel specimens, including fuel concepts with enhanced accident tolerance (Accident Tolerant Fuels, ATF). The MAMMOTH simulations include point reactor kinetics as well as spatial dynamics for a temperature-limited transient. The strongly coupled multi-physics solutions of the neutron flux and temperature fields are second order accurate both in the spatial and temporal domains. MAMMOTH produces pellet stack powers that are within 1.5% of the Monte Carlo reference solutions. Some discrepancies between the MCNP model used in the design of the flux collars and the Serpent/MAMMOTH models lead to higher power and energy deposition values in Multi-SERTTA unit 1. The TREAT core results compare well with the safety case computed with point reactor kinetics in RELAP5-3D. The reactor period is 44 msec, which corresponds to a reactivity insertion of 2.685% delta k/k$. The peak core power in the spatial dynamics simulation is 431 MW, which the point kinetics model over-predicts by 12%. The pulse width at half the maximum power is 0.177 sec. Subtle transient effects are apparent at the beginning insertion in the experimental samples due to the control rod removal. Additional difference due to transient effects are observed in the sample powers and enthalpy. The time dependence of the power coupling factor (PCF) is calculated for the various fuel stacks of the Multi-SERTTA vehicle. Sample temperatures in excess of 3100 K, the melting point UO$ 2 $, are computed with the adiabatic heat transfer model. The planned shaped-transient might introduce additional effects that cannot be predicted with PRK models. Future modeling will be focused on the shaped-transient by improving the

  5. Monte Carlo simulation of nonlinear reactive contaminant transport in unsaturated porous media

    International Nuclear Information System (INIS)

    Giacobbo, F.; Patelli, E.

    2007-01-01

    In the current proposed solutions of radioactive waste repositories, the protective function against the radionuclide water-driven transport back to the biosphere is to be provided by an integrated system of engineered and natural geologic barriers. The occurrence of several nonlinear interactions during the radionuclide migration process may render burdensome the classical analytical-numerical approaches. Moreover, the heterogeneity of the barriers' media forces approximations to the classical analytical-numerical models, thus reducing their fidelity to reality. In an attempt to overcome these difficulties, in the present paper we adopt a Monte Carlo simulation approach, previously developed on the basis of the Kolmogorov-Dmitriev theory of branching stochastic processes. The approach is here extended for describing transport through unsaturated porous media under transient flow conditions and in presence of nonlinear interchange phenomena between the liquid and solid phases. This generalization entails the determination of the functional dependence of the parameters of the proposed transport model from the water content and from the contaminant concentration, which change in space and time during the water infiltration process. The corresponding Monte Carlo simulation approach is verified with respect to a case of nonreactive transport under transient unsaturated flow and to a case of nonlinear reactive transport under stationary saturated flow. Numerical applications regarding linear and nonlinear reactive transport under transient unsaturated flow are reported

  6. Reactivity feedback models for SSC-K

    Energy Technology Data Exchange (ETDEWEB)

    Han, Do Hee; Kwon, Young Min; Kim, Kyung Du; Chang, Won Pyo [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-06-01

    Safety of KALIMER is assured by the inherent safety of the core and passive safety of the safety-related systems. For the safety analysis of a new reactor design such as KALIMER, analysis models, which are consistent with the design, have to be developed for a plant-wide transient and safety analysis code. Efforts for the development of reactivity feedback models for SSC-K, which is now being developed for the safety analysis of KALIMER, is described in this report. Models for Doppler, sodium density/void, fuel axial expansion, core radial expansion, and CRDL expansion have been developed. Test runs have been performed for the unprotected accident for the verification of the models. Use of KALIMER reactivity coefficients and future development of models for GEM and PSDRS would make it possible to analyze the response of KALIMER under TOP as well as LOF and LOHS accident conditions using SSC-K. (author). 5 refs., 64 figs., 2 tabs.

  7. Review of Transient Fuel Test Results at Sandia National Laboratories and the Potential for Future Fast Reactor Fuel Transient Testing in the Annular Core Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A.; Pickard, Paul S.; Parma, Edward J.; Vernon, Milton E.; Kelly, John; Tikare, Veena [Sandia National Laboratories, Org 6872 MS-1146, PO Box 5800 Albuquerque, New Mexico 87185 (United States)

    2009-06-15

    Reactor driven transient tests of fast reactor fuels may be required to support the development and certification of new fuels for Fast Reactors. The results of the transient fuel tests will likely be needed to support licensing and to provide validation data to support the safety case for a variety of proposed fast fuel types and reactors. In general reactor driven transient tests are used to identify basic phenomenology during reactor transients and to determine the fuel performance limits and margins to failure during design basis accidents such as loss of flow, loss of heat sink, and reactivity insertion accidents. This paper provides a summary description of the previous Sandia Fuel Disruption and Transient Axial Relocation tests that were performed in the Annular Core Research Reactor (ACRR) for the U.S. Nuclear Regulatory Commission almost 25 years ago. These tests consisted of a number of capsule tests and flowing gas tests that used fission heating to disrupt fresh and irradiated MOX fuel. The behavior of the fuel disruption, the generation of aerosols and the melting and relocation of fuel and cladding was recorded on high speed cinematography. This paper will present videos of the fuel disruption that was observed in these tests which reveal stark differences in fuel behavior between fresh and irradiated fuel. Even though these tests were performed over 25 years ago, their results are still relevant to today's reactor designs. These types of transient tests are again being considered by the Advanced Fuel Cycle Initiative to support the Global Nuclear Energy Partnership because of the need to perform tests on metal fuels and transuranic fuels. Because the Annular Core Research Reactor is the only transient test facility available within the US, a brief summary of Sandia's continued capability to perform these tests in the ACRR will also be provided. (authors)

  8. Feedback control systems for non-linear simulation of operational transients in LMFBRs

    International Nuclear Information System (INIS)

    Khatib-Rahbar, M.; Agrawal, A.K.; Srinivasan, E.S.

    1979-01-01

    Feedback control systems for non-linear simulation of operational transients in LMFBRs are developed. The models include (1) the reactor power control and rod drive mechanism, (2) sodium flow control and pump drive system, (3) steam generator flow control and valve actuator dynamics, and (4) the supervisory control. These models have been incorporated into the SSC code using a flexible approach, in order to accommodate some design dependent variations. The impact of system nonlinearity on the control dynamics is shown to be significant for severe perturbations. Representative result for a 10 cent and 25 cent step insertion of reactivity and a 10% ramp change in load in 40 seconds demonstrate the suitability of this model for study of operational transients without scram in LMFBRs

  9. Unified Behavior Framework for Reactive Robot Control in Real-Time Systems

    Science.gov (United States)

    2007-03-01

    maintain coherent operation in concurrent programs by employing standard communication and synchronization patterns. Some typical ones are: semaphores ...through the semaphore . Signals, whether persistent or transient, are used to communicate between threads as a means of synchronizing their progress...tasks to be decomposed into collections of low-level primitive behaviors, Figure 2.b. This approach takes on the self- contradictory term, reactive

  10. Quadratic reactivity fuel cycle model

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1985-01-01

    For educational purposes it is highly desirable to provide simple yet realistic models for fuel cycle and fuel economy. In particular, a lumped model without recourse to detailed spatial calculations would be very helpful in providing the student with a proper understanding of the purposes of fuel cycle calculations. A teaching model for fuel cycle studies based on a lumped model assuming the summability of partial reactivities with a linear dependence of reactivity usefully illustrates fuel utilization concepts. The linear burnup model does not satisfactorily represent natural enrichment reactors. A better model, showing the trend of initial plutonium production before subsequent fuel burnup and fission product generation, is a quadratic fit. The study of M-batch cycles, reloading 1/Mth of the core at end of cycle, is now complicated by nonlinear equations. A complete account of the asymptotic cycle for any order of M-batch refueling can be given and compared with the linear model. A complete account of the transient cycle can be obtained readily in the two-batch model and this exact solution would be useful in verifying numerical marching models. It is convenient to treat the parabolic fit rho = 1 - tau 2 as a special case of the general quadratic fit rho = 1 - C/sub tau/ - (1 - C)tau 2 in suitably normalized reactivity and cycle time units. The parabolic results are given in this paper

  11. Reactors Dynamic analysis Due to Reactivity of The RSG-Gas at One Line Cooling Mode

    International Nuclear Information System (INIS)

    Hastuti, Endiah Puji

    2003-01-01

    In the frame of minimizing the operation-cost, operation mode using one line cooling system is being evaluated. Maximum reactor power has been determined and steady state and LOFA transient analysis have also been done. To complete those analyses, the reactivity analysis was done by means of a core dynamic and thermal hydraulic code, PARET-ANL. Accident simulation was done. by a ramp reactivity accident due to control rod withdrawal. Reactivity analysis was carried out at two power range i.e. low and high power level, by imposing one line mode reactor protection limits. The results show that technically, the RSG-Gas can be operated safely using one line mode

  12. SCANAIR: A transient fuel performance code

    International Nuclear Information System (INIS)

    Moal, Alain; Georgenthum, Vincent; Marchand, Olivier

    2014-01-01

    Highlights: • Since the early 1990s, the code SCANAIR is developed at IRSN. • The software focuses on studying fast transients such as RIA in light water reactors. • The fuel rod modelling is based on a 1.5D approach. • Thermal and thermal-hydraulics, mechanical and gas behaviour resolutions are coupled. • The code is used for safety assessment and integral tests analysis. - Abstract: Since the early 1990s, the French “Institut de Radioprotection et de Sûreté Nucléaire” (IRSN) has developed the SCANAIR computer code with the view to analysing pressurised water reactor (PWR) safety. This software specifically focuses on studying fast transients such as reactivity-initiated accidents (RIA) caused by possible ejection of control rods. The code aims at improving the global understanding of the physical mechanisms governing the thermal-mechanical behaviour of a single rod. It is currently used to analyse integral tests performed in CABRI and NSRR experimental reactors. The resulting validated code is used to carry out studies required to evaluate margins in relation to criteria for different types of fuel rods used in nuclear power plants. Because phenomena occurring during fast power transients are complex, the simulation in SCANAIR is based on a close coupling between several modules aimed at modelling thermal, thermal-hydraulics, mechanical and gas behaviour. During the first stage of fast power transients, clad deformation is mainly governed by the pellet–clad mechanical interaction (PCMI). At the later stage, heat transfers from pellet to clad bring the cladding material to such high temperatures that the boiling crisis might occurs. The significant over-pressurisation of the rod and the fact of maintaining the cladding material at elevated temperatures during a fairly long period can lead to ballooning and possible clad failure. A brief introduction describes the context, the historical background and recalls the main phenomena involved under

  13. SCANAIR: A transient fuel performance code

    Energy Technology Data Exchange (ETDEWEB)

    Moal, Alain, E-mail: alain.moal@irsn.fr; Georgenthum, Vincent; Marchand, Olivier

    2014-12-15

    Highlights: • Since the early 1990s, the code SCANAIR is developed at IRSN. • The software focuses on studying fast transients such as RIA in light water reactors. • The fuel rod modelling is based on a 1.5D approach. • Thermal and thermal-hydraulics, mechanical and gas behaviour resolutions are coupled. • The code is used for safety assessment and integral tests analysis. - Abstract: Since the early 1990s, the French “Institut de Radioprotection et de Sûreté Nucléaire” (IRSN) has developed the SCANAIR computer code with the view to analysing pressurised water reactor (PWR) safety. This software specifically focuses on studying fast transients such as reactivity-initiated accidents (RIA) caused by possible ejection of control rods. The code aims at improving the global understanding of the physical mechanisms governing the thermal-mechanical behaviour of a single rod. It is currently used to analyse integral tests performed in CABRI and NSRR experimental reactors. The resulting validated code is used to carry out studies required to evaluate margins in relation to criteria for different types of fuel rods used in nuclear power plants. Because phenomena occurring during fast power transients are complex, the simulation in SCANAIR is based on a close coupling between several modules aimed at modelling thermal, thermal-hydraulics, mechanical and gas behaviour. During the first stage of fast power transients, clad deformation is mainly governed by the pellet–clad mechanical interaction (PCMI). At the later stage, heat transfers from pellet to clad bring the cladding material to such high temperatures that the boiling crisis might occurs. The significant over-pressurisation of the rod and the fact of maintaining the cladding material at elevated temperatures during a fairly long period can lead to ballooning and possible clad failure. A brief introduction describes the context, the historical background and recalls the main phenomena involved under

  14. Development of a Two-dimensional Thermohydraulic Hot Pool Model and ITS Effects on Reactivity Feedback during a UTOP in Liquid Metal Reactors

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Jeong, Hae Yong; Cho, Chung Ho; Kwon, Young Min; Ha, Kwi Seok; Chang, Won Pyo; Suk, Soo Dong; Hahn, Do Hee

    2009-01-01

    The existence of a large sodium pool in the KALIMER, a pool-type LMR developed by the Korea Atomic Energy Research Institute, plays an important role in reactor safety and operability because it determines the grace time for operators to cope with an abnormal event and to terminate a transient before reactor enters into an accident condition. A two-dimensional hot pool model has been developed and implemented in the SSC-K code, and has been successfully applied for the assessment of safety issues in the conceptual design of KALIMER and for the analysis of anticipated system transients. The other important models of the SSC-K code include a three-dimensional core thermal-hydraulic model, a reactivity model, a passive decay heat removal system model, and an intermediate heat transport system and steam generation system model. The capability of the developed two-dimensional hot pool model was evaluated with a comparison of the temperature distribution calculated with the CFX code. The predicted hot pool coolant temperature distributions obtained with the two-dimensional hot pool model agreed well with those predicted with the CFX code. Variations in the temperature distribution of the hot pool affect the reactivity feedback due to an expansion of the control rod drive line (CRDL) immersed in the pool. The existing CRDL reactivity model of the SSC-K code has been modified based on the detailed hot pool temperature distribution obtained with the two-dimensional pool model. An analysis of an unprotected transient over power with the modified reactivity model showed an improved negative reactivity feedback effect

  15. Experimental study and modelling of transient boiling

    International Nuclear Information System (INIS)

    Baudin, Nicolas

    2015-01-01

    A failure in the control system of the power of a nuclear reactor can lead to a Reactivity Initiated Accident in a nuclear power plant. Then, a power peak occurs in some fuel rods, high enough to lead to the coolant film boiling. It leads to an important increase of the temperature of the rod. The possible risk of the clad failure is a matter of interest for the Institut de Radioprotection et de Securite Nucleaire. The transient boiling heat transfer is not yet understood and modelled. An experimental set-up has been built at the Institut de Mecanique des Fluides de Toulouse (IMFT). Subcooled HFE-7000 flows vertically upward in a semi annulus test section. The inner half cylinder simulates the clad and is made of a stainless steel foil, heated by Joule effect. Its temperature is measured by an infrared camera, coupled with a high speed camera for the visualization of the flow topology. The whole boiling curve is studied in steady state and transient regimes: convection, onset of boiling, nucleate boiling, critical heat flux, film boiling and rewetting. The steady state heat transfers are well modelled by literature correlations. Models are suggested for the transient heat flux: the convection and nucleate boiling evolutions are self-similar during a power step. This observation allows to model more complex evolutions, as temperature ramps. The transient Hsu model well represents the onset of nucleate boiling. When the intensity of the power step increases, the film boiling begins at the same temperature but with an increasing heat flux. For power ramps, the critical heat flux decreases while the corresponding temperature increases with the heating rate. When the wall is heated, the film boiling heat transfer is higher than in steady state but it is not understood. A two-fluid model well simulates the cooling film boiling and the rewetting. (author)

  16. Simulation of LOCA power transients of CANDU6 by SCAN/RELAP-CANDU coupled code system

    International Nuclear Information System (INIS)

    Hong, In Seob; Kim, Chang Hyo; Hwang, Su Hyun; Kim, Man Woong; Chung, Bub Dong

    2004-01-01

    As can be seen in the standalone application of RELAP-CANDU for LOCA analysis of CANDU-PHWR, the system thermal-hydraulic code alone cannot predict the transient behavior accurately. Therefore, best estimate neutronics and system thermal-hydraulic coupled code system is necessary to describe the transient behavior with higher accuracy and reliability. The purpose of this research is to develop and test a coupled neutronics and thermal-hydraulics analysis code, SCAN (SNU CANDU-PHWR Neutronics) and RELAP-CANDU, for transient analysis of CANDU-PHWR's. For this purpose, a spatial kinetics calculation module of SCAN, a 3-D CANDU-PHWR neutronics design and analysis code, is dynamically coupled with RELAP-CANDU, the system thermal-hydraulic code for CANDU-PHWR. The performance of the coupled code system is examined by simulation of reactor power transients caused by a hypothetical Loss Of Coolant Accident (LOCA) in Wolsong units, which involves the insertion of positive void reactivity into the core in the course of transients. Specifically, a 40% Reactor Inlet Header (RIH) break LOCA was assumed for the test of the SCAN/RELAP-CANDU coupled code system analysis

  17. Physical modelling of a rapid boron dilution transient

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, N.G.; Hemstroem, B.; Karlsson, R. [Vattenfall Utveckling AB, Aelvkarleby (Sweden); Jacobson, S. [Vattenfall AB, Ringhals, Vaeroebacka (Sweden)

    1995-09-01

    The analysis of boron dilution accidents in pressurised water reactors has traditionally assumed that mixing is instantaneous and complete everywhere, eliminating in this way the possibility of concentration inhomogeneities. Situations can nevertheless arise where a volume of coolant with a low boron concentration may eventually enter the core and generate a severe reactivity transient. The work presented in this paper deals with a category of Rapid Boron Dilution Events characterised by a rapid start of a Reactor Coolant Pump (RCP) with a plug of relatively unborated water present in the RCS pipe. Model tests have been made at Vattenfall Utveckling AB in a simplified 1:5 scale model of a Westinghouse PWR. Conductivity measurements are used to determine dimensionless boron concentration. The main purpose of this experimental work is to define an experimental benchmark against which a mathematical model can be tested. The final goal is to be able to numerically predict Boron Dilution Transients. This work has been performed as a part of a Co-operative Agreement with Electricite` de France (EDF).

  18. RELAP5/MOD2 calculation of OECD LOFT test LP-FW-01

    International Nuclear Information System (INIS)

    Croxfod, M.G.; Harwood, C.; Hall, P.C.

    1992-04-01

    RELAP5/MOD2 is being used by GDCD for calculation of certain small break loss-of-coolant accidents and pressurized transients in the Sizewell ''B'' PWR. To test the ability of RELAP5/MOD2 to model the primary feed-and-bleed recovery procedure following a complete loss- of-feedwater event, post test calculations have been carried out of OECD LOFT test LP-FW-01. This report describes the comparison between the code calculations and the test data. It is found that although the standard version of RELAP5/MOD2 gives a reasonable prediction of the experimental transient, the long term pressure history is better calculated with a modified code version containing a revised horizontal stratification entrainment model. The latter allows an improved calculation of entrainment of liquid from the hot leg into the surge line. RELAP5/MOD2 is found to give a more accurate simulation of the experimental transient than was achieved in previous UK studies using RETRAN-02/MOD2

  19. A model of Altio Lazio boiling water reactor using the LEGO code nuclear steam supply system simulation

    International Nuclear Information System (INIS)

    Garbossa, G.B.; Spelta, S.; Cori, R.; Mosca, R.; Cento, P.

    1989-01-01

    An extensive effort has been made at the Italian National Electricity Board (ENEL) to construct and validate a LEGO model capable of simulating the operational transients of the Alto Lazio Nuclear Station, a two-twin units site with BWR/6 class reactors, rated at 2894 MWt and with Mark III containment. The desired end-product of this effort is an overall plant model consisting of the Nuclear Steam Supply System model, described in this paper, and the Balance of Plant model, capable of simulating the transient response of Alto Lazio Station. The models utilize the in-house developed LEGO code, which is a modular package oriented to power plant modeling and suitable to perform transient analyses to assist during power plant design, control system design and operating procedure verification. The ability of the NSSS model to predict correctly the plant response is demonstrated through comparison with results calculated by the vendor, using REDY code, and by an in-house RETRAN-02 model

  20. RAP-2A Computer code for transients analysis in fast reactors

    International Nuclear Information System (INIS)

    Iftode, I.; Popescu, C.; Turcu, I.; Biro, L.

    1975-10-01

    The RAP-2A computer code is designed for analyzing thermohydraulic transients and/or steady state problems for large LMFBR cores. Physical and mathematical models, main input-output data, the flow chart of the code and a sample problem are given. RAP-2A calculates the power and the thermoydraulic transients initiated by a flow or reactivity changes, from a normal operating state of the reactor up to core disassembly. In this analysis a representative fuel pin is considered: a one-group space-independent (point) kinetics model to describe the neutron kinetics and a one-dimensional model describing the heat transfer (radial in the fuel and axial in the coolant) are used. Mechanical deformations due to temperature gradient, pressure losses, fuel melting, etc., are also calculated. The code is written in FORTRAN-4 language and is running on a IBM-370/135 computer

  1. Investigations of anticipated transients without scram (ATWS) for the high temperature reactor

    International Nuclear Information System (INIS)

    Heckhoff, H.D.

    1981-10-01

    In this study anticipated transients without scram (ATWS) are investigated for the high temperature reactor, especially for the thorium high temperature reactor (THTR) 300 MWe as an example. It is shown that the two ATWS 'feedwater flow reduction from full power' and 'positive reactivity insertion of 1 mNile/s from 40 per cent power' are the most important transients for the THTR. The additional load caused by the ATWS can be reduced sufficiently by some small modifications of the afterheat removal system. Supplementary precautions are not necessary. In the last part of this study some possibilities to improve the behaviour of the power plant are shown with regard to high temperature reactors of the future, the partial scram as well as some modifications of heating and cooling of the steam generator. (orig.) [de

  2. Development and verification of an efficient spatial neutron kinetics method for reactivity-initiated event analyses

    International Nuclear Information System (INIS)

    Ikeda, Hideaki; Takeda, Toshikazu

    2001-01-01

    A space/time nodal diffusion code based on the nodal expansion method (NEM), EPISODE, was developed in order to evaluate transient neutron behavior in light water reactor cores. The present code employs the improved quasistatic (IQS) method for spatial neutron kinetics, and neutron flux distribution is numerically obtained by solving the neutron diffusion equation with the nonlinear iteration scheme to achieve fast computation. A predictor-corrector (PC) method developed in the present study enabled to apply a coarse time mesh to the transient spatial neutron calculation than that applicable in the conventional IQS model, which improved computational efficiency further. Its computational advantage was demonstrated by applying to the numerical benchmark problems that simulate reactivity-initiated events, showing reduction of computational times up to a factor of three than the conventional IQS. The thermohydraulics model was also incorporated in EPISODE, and the capability of realistic reactivity event analyses was verified using the SPERT-III/E-Core experimental data. (author)

  3. Use of reactivity constraints for the automatic control of reactor power

    International Nuclear Information System (INIS)

    Bernard, J.A.; Lanning, D.D.; Ray, A.

    1985-01-01

    A theoretical framework for the automatic control of reactor power has been developed and experimentally evaluated on the 5 MWt Research Reactor that is operated by the Massachusetts Institute of Technology. The controller functions by restricting the net reactivity so that it is always possible to make the reactor period infinite at the desired termination point of a transient by reversing the direction of motion of whatever control mechanism is associated with the controller. This capability is formally designated as ''feasibility of control''. It has been shown experimentally that maintenance of feasibility of control is a sufficient condition for the automatic control of reactor power. This research should be of value in the design of closed-loop controllers, in the creation of reactivity displays, in the provision of guidance to operators regarding the timing of reactivity changes, and as an experimental envelope within which alternate control strategies can be evaluated

  4. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood

    NARCIS (Netherlands)

    Steenbergen, L.; Sellaro, R.; van Hemert, S.; Bosch, J.A.; Colzato, L.S.

    2015-01-01

    Background: Recent insights into the role of the human microbiota in cognitive and affective functioning have led to the hypothesis that probiotic supplementation may act as an adjuvant strategy to ameliorate or prevent depression. Objective: Heightened cognitive reactivity to normal, transient

  5. The effect of core configuration on temperature coefficient of reactivity in IRR-1

    Energy Technology Data Exchange (ETDEWEB)

    Bettan, M.; Silverman, I.; Shapira, M.; Nagler, A. [Soreq Nuclear Research Center, Yavne (Israel)

    1997-08-01

    Experiments designed to measure the effect of coolant moderator temperature on core reactivity in an HEU swimming pool type reactor were performed. The moderator temperature coefficient of reactivity ({alpha}{sub {omega}}) was obtained and found to be different in two core loadings. The measured {alpha}{sub {omega}} of one core loading was {minus}13 pcm/{degrees}C at the temperature range of 23-30{degrees}C. This value of {alpha}{sub {omega}} is comparable to the data published by the IAEA. The {alpha}{sub {omega}} measured in the second core loading was found to be {minus}8 pcm/{degrees}C at the same temperature range. Another phenomenon considered in this study is core behavior during reactivity insertion transient. The results were compared to a core simulation using the Dynamic Simulator for Nuclear Power Plants. It was found that in the second core loading factors other than the moderator temperature influence the core reactivity more than expected. These effects proved to be extremely dependent on core configuration and may in certain core loadings render the reactor`s reactivity coefficient undesirable.

  6. Modeling and analysis of thermal-hydraulic response of uranium-aluminum reactor fuel plates under transient heatup conditions

    Energy Technology Data Exchange (ETDEWEB)

    Navarro-Valenti, S.; Kim, S.H.; Georgevich, V. [Oak Ridge National Lab., TN (United States)] [and others

    1995-09-01

    The purpose of this paper is to describe the analysis performed to predict the thermal behavior of fuel miniplates under rapid transient heatup conditions. The possibility of explosive boiling was considered, and it was concluded that the heating rates are not large enough for explosive boiling to occur. However, transient boiling effects were pronounced. Because of the complexity of transient pool boiling and the unavailability of experimental data for the situations studied, an approximation was made that predicted the data very well within the uncertainties present. If pool boiling from the miniplates had been assumed to be steady during the heating pulse, the experimental data would have been greatly overestimated. This fact demonstrates the importance of considering the transient nature of heat transfer in the analysis of reactivity excursion accidents. An additional contribution of the present work is that it provided data on highly subcooled steady nulceate boiling from the cooling portion of the thermocouple traces.

  7. Status on development and verification of reactivity initiated accident analysis code for PWR (NODAL3)

    International Nuclear Information System (INIS)

    Peng Hong Liem; Surian Pinem; Tagor Malem Sembiring; Tran Hoai Nam

    2015-01-01

    A coupled neutronics thermal-hydraulics code NODAL3 has been developed based on the nodal few-group neutron diffusion theory in 3-dimensional Cartesian geometry for a typical pressurized water reactor (PWR) static and transient analyses, especially for reactivity initiated accidents (RIA). The spatial variables are treated by using a polynomial nodal method (PNM) while for the neutron dynamic solver the adiabatic and improved quasi-static methods are adopted. A simple single channel thermal-hydraulics module and its steam table is implemented into the code. Verification works on static and transient benchmarks are being conducting to assess the accuracy of the code. For the static benchmark verification, the IAEA-2D, IAEA-3D, BIBLIS and KOEBERG light water reactor (LWR) benchmark problems were selected, while for the transient benchmark verification, the OECD NEACRP 3-D LWR Core Transient Benchmark and NEA-NSC 3-D/1-D PWR Core Transient Benchmark (Uncontrolled Withdrawal of Control Rods at Zero Power). Excellent agreement of the NODAL3 results with the reference solutions and other validated nodal codes was confirmed. (author)

  8. Positive void reactivity

    International Nuclear Information System (INIS)

    Diamond, D.J.

    1992-09-01

    This report is a review of some of the important aspects of the analysis of large loss-of-coolant accidents (LOCAs). One important aspect is the calculation of positive void reactivity. To study this subject the lattice physics codes used for void worth calculations and the coupled neutronic and thermal-hydraulic codes used for the transient analysis are reviewed. Also reviewed are the measurements used to help validate the codes. The application of these codes to large LOCAs is studied with attention focused on the uncertainty factor for the void worth used to bias the results. Another aspect of the subject dealt with in the report is the acceptance criteria that are applied. This includes the criterion for peak fuel enthalpy and the question of whether prompt criticality should also be a criterion. To study the former, fuel behavior measurements and calculations are reviewed. (Author) (49 refs., 2 figs., tab.)

  9. Transients in reactors for power systems compensation

    Science.gov (United States)

    Abdul Hamid, Haziah

    This thesis describes new models and investigations into switching transient phenomena related to the shunt reactors and the Mechanically Switched Capacitor with Damping Network (MSCDN) operations used for reactive power control in the transmission system. Shunt reactors and MSCDN are similar in that they have reactors. A shunt reactor is connected parallel to the compensated lines to absorb the leading current, whereas the MSCDN is a version of a capacitor bank designed as a C-type filter for use in the harmonic-rich environment. In this work, models have been developed and transient overvoltages due to shunt reactor deenergisation were estimated analytically using MathCad, a mathematical program. Computer simulations used the ATP/EMTP program to reproduce both single-phase and three-phase shunt reactor switching at 275 kV operational substations. The effect of the reactor switching on the circuit breaker grading capacitor was also examined by considering various switching conditions.. The main original achievement of this thesis is the clarification of failure mechanisms occurring in the air-core filter reactor due to MSCDN switching operations. The simulation of the MSCDN energisation was conducted using the ATP/EMTP program in the presence of surge arresters. The outcome of this simulation shows that extremely fast transients were established across the air-core filter reactor. This identified transient event has led to the development of a detailed air-core reactor model, which accounts for the inter-turn RLC parameters as well as the stray capacitances-to-ground. These parameters are incorporated into the transient simulation circuit, from which the current and voltage distribution across the winding were derived using electric field and equivalent circuit modelling. Analysis of the results has revealed that there are substantial dielectric stresses imposed on the winding insulation that can be attributed to a combination of three factors. (i) First, the

  10. Performance of neutron kinetics models for ADS transient analyses

    International Nuclear Information System (INIS)

    Rineiski, A.; Maschek, W.; Rimpault, G.

    2002-01-01

    can also apply this approach for estimating errors of point-kinetics simulations or for ameliorating the employed point-kinetics models. Though the performance of the point-kinetics model can be insufficient in the subcritical case, the quasi-static approach is still valid if the shape steps are chosen properly. It is worthwhile to mention that in combination with properly computed correction factor tables, one can use the reactivity and power distributions obtained for 'critical' reactor models; this approach can simplify ADS-related application of conventional accident analyses codes (developed in the past for transient analyses of critical reactors). However, for analyzing severe transients in ADSs, which involve gross core material configuration changes, one can hardly avoid using of space-time kinetics methods, this holds similarly for critical reactor systems. (authors)

  11. Transcriptome wide annotation of eukaryotic RNase III reactivity and degradation signals.

    Directory of Open Access Journals (Sweden)

    Jules Gagnon

    2015-02-01

    Full Text Available Detection and validation of the RNA degradation signals controlling transcriptome stability are essential steps for understanding how cells regulate gene expression. Here we present complete genomic and biochemical annotations of the signals required for RNA degradation by the dsRNA specific ribonuclease III (Rnt1p and examine its impact on transcriptome expression. Rnt1p cleavage signals are randomly distributed in the yeast genome, and encompass a wide variety of sequences, indicating that transcriptome stability is not determined by the recurrence of a fixed cleavage motif. Instead, RNA reactivity is defined by the sequence and structural context in which the cleavage sites are located. Reactive signals are often associated with transiently expressed genes, and their impact on RNA expression is linked to growth conditions. Together, the data suggest that Rnt1p reactivity is triggered by malleable RNA degradation signals that permit dynamic response to changes in growth conditions.

  12. Transcriptome Wide Annotation of Eukaryotic RNase III Reactivity and Degradation Signals

    Science.gov (United States)

    Gagnon, Jules; Lavoie, Mathieu; Catala, Mathieu; Malenfant, Francis; Elela, Sherif Abou

    2015-01-01

    Detection and validation of the RNA degradation signals controlling transcriptome stability are essential steps for understanding how cells regulate gene expression. Here we present complete genomic and biochemical annotations of the signals required for RNA degradation by the dsRNA specific ribonuclease III (Rnt1p) and examine its impact on transcriptome expression. Rnt1p cleavage signals are randomly distributed in the yeast genome, and encompass a wide variety of sequences, indicating that transcriptome stability is not determined by the recurrence of a fixed cleavage motif. Instead, RNA reactivity is defined by the sequence and structural context in which the cleavage sites are located. Reactive signals are often associated with transiently expressed genes, and their impact on RNA expression is linked to growth conditions. Together, the data suggest that Rnt1p reactivity is triggered by malleable RNA degradation signals that permit dynamic response to changes in growth conditions. PMID:25680180

  13. Beam transient analyses of Accelerator Driven Subcritical Reactors based on neutron transport method

    Energy Technology Data Exchange (ETDEWEB)

    He, Mingtao; Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Wang, Kunpeng [Nuclear and Radiation Safety Center, PO Box 8088, Beijing 100082 (China); Li, Xunzhao; Zhou, Shengcheng [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China)

    2015-12-15

    Highlights: • A transport-based kinetics code for Accelerator Driven Subcritical Reactors is developed. • The performance of different kinetics methods adapted to the ADSR is investigated. • The impacts of neutronic parameters deteriorating with fuel depletion are investigated. - Abstract: The Accelerator Driven Subcritical Reactor (ADSR) is almost external source dominated since there is no additional reactivity control mechanism in most designs. This paper focuses on beam-induced transients with an in-house developed dynamic analysis code. The performance of different kinetics methods adapted to the ADSR is investigated, including the point kinetics approximation and space–time kinetics methods. Then, the transient responds of beam trip and beam overpower are calculated and analyzed for an ADSR design dedicated for minor actinides transmutation. The impacts of some safety-related neutronics parameters deteriorating with fuel depletion are also investigated. The results show that the power distribution varying with burnup leads to large differences in temperature responds during transients, while the impacts of kinetic parameters and feedback coefficients are not very obvious. Classification: Core physic.

  14. Study on a computerized compact simulator of NHR-200

    International Nuclear Information System (INIS)

    Gao Zuying; Dong Yujie

    1997-01-01

    A fully computerized compact simulator is studied in accordance with the engineering practical need of NHR-200. A SUN SPARC 2 stand-alone workstation is selected as its computer system and multi-task structure of software is employed. Simulation program is derived from the RETRAN-02 code. The standard I/O devices are used as its interface equipment and the man-machine interface graphic program is coded on the basis of X Window System. Shared memory and semaphores are used for inter-task communication and a timer is used in real-time control of tasks. Its accuracy and simulation speed are verified by using several typical accident transients. The accuracy and speed are perfectly able to meet the requirements of engineering simulation. It is useful for normal and accident transient analysis, engineering study and design, reactor operation support and personnel training

  15. Investigation of natural circulation instability and transients in passively safe novel modular reactor

    Science.gov (United States)

    Shi, Shanbin

    -hydraulic and nuclear coupled startup transients are performed to investigate the flow instabilities at low pressure and low power conditions. Two different power ramps are chosen to study the effect of power density on the flow instability. The experimental startup transient tests show the existence of three different flow instability mechanisms during the low pressure startup transients, i.e., flashing instability, condensation induced instability, and density wave oscillations. Flashing instability in the chimney section of the test loop and density wave oscillation are the main flow instabilities observed when the system pressure is below 0.5 MPa. They show completely different type of oscillations, i.e., intermittent oscillation and sinusoidal oscillation, in void fraction profile during the startup transients. In order to perform nuclear-coupled startup transients with void reactivity feedback, the Point Kinetics model is utilized to calculate the transient power during the startup transients. In addition, the differences between the electric resistance heaters and typical fuel element are taken into account. The reactor power calculated shows some oscillations due to flashing instability during the transients. However, the void reactivity feedback does not have significant influence on the flow instability during the startup procedure for the NMR-50. Further investigation of very small power ramp on the startup transients is carried out for the thermal-hydraulic startup transients. It is found that very small power density can eliminate the flashing oscillation in the single phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. Furthermore, initially pressurized startup procedure is investigated to eliminate the main flow instabilities. The results show that the pressurized startup procedure can suppress the flashing instability at low pressure and low power conditions. In order to have a deep understanding of natural

  16. Application of a combined superconducting fault current limiter and STATCOM to enhancement of power system transient stability

    Energy Technology Data Exchange (ETDEWEB)

    Mahdad, Belkacem, E-mail: bemahdad@mselab.org; Srairi, K.

    2013-12-15

    Highlights: •A simple interactive model SFCL–STATCOM Controller is proposed to enhance the transient stability. •The STATCOM controller is integrated in coordination with the SFCL to support the excessive reactive power during fault. •Voltage stability index based continuation power flow is used to locate the STATCOM and the SFCL. •The clearing time improved compared to other cases (with only SFCL, with only STATCOM). •The choice of the STATCOM parameters is very important to exploit efficiently the integration of STATCOM Controller. -- Abstract: Stable and reliable operation of the power system network is dependent on the dynamic equilibrium between energy production and power demand under large disturbance such as short circuit or important line tripping. This paper investigates the use of combined model based superconducting fault current limiter (SFCL) and shunt FACTS Controller (STATCOM) for assessing the transient stability of a power system considering the automatic voltage regulator. The combined model located at a specified branch based on voltage stability index using continuation power flow. The main role of the proposed combined model is to achieve simultaneously a flexible control of reactive power using STATCOM Controller and to reduce fault current using superconducting technology based SFCL. The proposed combined model has been successfully adapted within the transient stability program and applied to enhance the transient power system stability of the WSCC9-Bus system. Critical clearing time (CCT) has been used as an index to evaluate and validate the contribution of the proposed coordinated Controller. Simulation results confirm the effectiveness and perspective of this combined Controller to enhance the dynamic power system performances.

  17. The PARET code and the analysis of the SPERT I transients

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, William L [Argonne National Laboratory, Argonne (United States)

    1983-09-01

    The PARET code has been adapted for the testing of methods and models and for subsequent use in the analysis of transient behavior in research reactors. Comparisons with the experimental results from the SPERT-I transients are provided. The code has also been applied to the analysis of the IAEA 10 MW benchmark cores for protected and unprotected transients. The PARET code was originally developed for the analysis of the SPERT-III experiments for temperatures and pressures typical of power reactors. This code has now been modified to include a selection of flow instability, departure from nucleate boiling (DNB), single and two-phase heat transfer correlations, and a properties library considered more applicable to the low pressures, temperatures, and flow rates encountered in research reactors. The PARET code provides a coupled thermal, hydraulic, and point kinetics capability with continuous reactivity feedback, and an optional voiding model which estimates the voiding produced by subcooled boiling. The present version of the PARET code provides a convenient means of assessing the various models and correlations proposed for use in the analysis of research reactor behavior. For comparison with experiments the SPERT-I cores B-24/32, B-12/64, and D-12/25 were chosen. The B-24/32 core is similar in design to many plate type research reactors in current operation, and the D-12/25 core is of interest because the test included both nondestructive and destructive transients.

  18. The PARET code and the analysis of the SPERT I transients

    International Nuclear Information System (INIS)

    Woodruff, William L.

    1983-01-01

    The PARET code has been adapted for the testing of methods and models and for subsequent use in the analysis of transient behavior in research reactors. Comparisons with the experimental results from the SPERT-I transients are provided. The code has also been applied to the analysis of the IAEA 10 MW benchmark cores for protected and unprotected transients. The PARET code was originally developed for the analysis of the SPERT-III experiments for temperatures and pressures typical of power reactors. This code has now been modified to include a selection of flow instability, departure from nucleate boiling (DNB), single and two-phase heat transfer correlations, and a properties library considered more applicable to the low pressures, temperatures, and flow rates encountered in research reactors. The PARET code provides a coupled thermal, hydraulic, and point kinetics capability with continuous reactivity feedback, and an optional voiding model which estimates the voiding produced by subcooled boiling. The present version of the PARET code provides a convenient means of assessing the various models and correlations proposed for use in the analysis of research reactor behavior. For comparison with experiments the SPERT-I cores B-24/32, B-12/64, and D-12/25 were chosen. The B-24/32 core is similar in design to many plate type research reactors in current operation, and the D-12/25 core is of interest because the test included both nondestructive and destructive transients

  19. Thermal-Hydraulic Analyses of Transients in an Actinide-Burner Reactor Cooled by Forced Convection of Lead Bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Cliff Bybee

    2003-09-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) and the Massachusetts Institute of Technology (MIT) are investigating the suitability of lead or lead–bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The current analysis evaluated a pool type design that relies on forced circulation of the primary coolant, a conventional steam power conversion system, and a passive decay heat removal system. The ATHENA computer code was used to simulate various transients without reactor scram, including a primary coolant pump trip, a station blackout, and a step reactivity insertion. The reactor design successfully met identified temperature limits for each of the transients analyzed.

  20. Platelet activation, function, and reactivity in atherosclerotic carotid artery stenosis: a systematic review of the literature.

    LENUS (Irish Health Repository)

    Kinsella, J A

    2012-09-27

    An important proportion of transient ischemic attack or ischemic stroke is attributable to moderate or severe (50-99%) atherosclerotic carotid stenosis or occlusion. Platelet biomarkers have the potential to improve our understanding of the pathogenesis of vascular events in this patient population. A detailed systematic review was performed to collate all available data on ex vivo platelet activation and platelet function\\/reactivity in patients with carotid stenosis. Two hundred thirteen potentially relevant articles were initially identified; 26 manuscripts met criteria for inclusion in this systematic review. There was no consistent evidence of clinically informative data from urinary or soluble blood markers of platelet activation in patients with symptomatic moderate or severe carotid stenosis who might be considered suitable for carotid intervention. Data from flow cytometry studies revealed evidence of excessive platelet activation in patients in the early, sub-acute, or late phases after transient ischemic attack or stroke in association with moderate or severe carotid stenosis and in asymptomatic moderate or severe carotid stenosis compared with controls. Furthermore, pilot data suggest that platelet activation may be increased in recently symptomatic than in asymptomatic severe carotid stenosis. Excessive platelet activation and platelet hyperreactivity may play a role in the pathogenesis of first or subsequent transient ischemic attack or stroke in patients with moderate or severe carotid stenosis. Larger longitudinal studies assessing platelet activation status with flow cytometry and platelet function\\/reactivity in symptomatic vs. asymptomatic carotid stenosis are warranted to improve our understanding of the mechanisms responsible for transient ischemic attack or stroke.

  1. Preemptive, but not reactive, spinal cord stimulation mitigates transient ischemia-induced myocardial infarction via cardiac adrenergic neurons

    NARCIS (Netherlands)

    Southerland, E. M.; Milhorn, D. M.; Foreman, R. D.; Linderoth, B.; DeJongste, M. J. L.; Armour, J. A.; Subramanian, V.; Singh, M.; Singh, K.; Ardell, J. L.

    2007-01-01

    Our objective was to determine whether electrical neuromodulation using spinal cord stimulation ( SCS) mitigates transient ischemia-induced ventricular infarction and, if so, whether adrenergic neurons are involved in such cardioprotection. The hearts of anesthetized rabbits, subjected to 30 min of

  2. Transient Go: A Mobile App for Transient Astronomy Outreach

    Science.gov (United States)

    Crichton, D.; Mahabal, A.; Djorgovski, S. G.; Drake, A.; Early, J.; Ivezic, Z.; Jacoby, S.; Kanbur, S.

    2016-12-01

    Augmented Reality (AR) is set to revolutionize human interaction with the real world as demonstrated by the phenomenal success of `Pokemon Go'. That very technology can be used to rekindle the interest in science at the school level. We are in the process of developing a prototype app based on sky maps that will use AR to introduce different classes of astronomical transients to students as they are discovered i.e. in real-time. This will involve transient streams from surveys such as the Catalina Real-time Transient Survey (CRTS) today and the Large Synoptic Survey Telescope (LSST) in the near future. The transient streams will be combined with archival and latest image cut-outs and other auxiliary data as well as historical and statistical perspectives on each of the transient types being served. Such an app could easily be adapted to work with various NASA missions and NSF projects to enrich the student experience.

  3. Future Transient Testing of Advanced Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jon Carmack

    2009-09-01

    The transient in-reactor fuels testing workshop was held on May 4–5, 2009 at Idaho National Laboratory. The purpose of this meeting was to provide a forum where technical experts in transient testing of nuclear fuels could meet directly with technical instrumentation experts and nuclear fuel modeling and simulation experts to discuss needed advancements in transient testing to support a basic understanding of nuclear fuel behavior under off-normal conditions. The workshop was attended by representatives from Commissariat à l'Énergie Atomique CEA, Japanese Atomic Energy Agency (JAEA), Department of Energy (DOE), AREVA, General Electric – Global Nuclear Fuels (GE-GNF), Westinghouse, Electric Power Research Institute (EPRI), universities, and several DOE national laboratories. Transient testing of fuels and materials generates information required for advanced fuels in future nuclear power plants. Future nuclear power plants will rely heavily on advanced computer modeling and simulation that describes fuel behavior under off-normal conditions. TREAT is an ideal facility for this testing because of its flexibility, proven operation and material condition. The opportunity exists to develop advanced instrumentation and data collection that can support modeling and simulation needs much better than was possible in the past. In order to take advantage of these opportunities, test programs must be carefully designed to yield basic information to support modeling before conducting integral performance tests. An early start of TREAT and operation at low power would provide significant dividends in training, development of instrumentation, and checkout of reactor systems. Early start of TREAT (2015) is needed to support the requirements of potential users of TREAT and include the testing of full length fuel irradiated in the FFTF reactor. The capabilities provided by TREAT are needed for the development of nuclear power and the following benefits will be realized by

  4. Future Transient Testing of Advanced Fuels

    International Nuclear Information System (INIS)

    Carmack, Jon

    2009-01-01

    The transient in-reactor fuels testing workshop was held on May 4-5, 2009 at Idaho National Laboratory. The purpose of this meeting was to provide a forum where technical experts in transient testing of nuclear fuels could meet directly with technical instrumentation experts and nuclear fuel modeling and simulation experts to discuss needed advancements in transient testing to support a basic understanding of nuclear fuel behavior under off-normal conditions. The workshop was attended by representatives from Commissariat energie Atomique CEA, Japanese Atomic Energy Agency (JAEA), Department of Energy (DOE), AREVA, General Electric - Global Nuclear Fuels (GE-GNF), Westinghouse, Electric Power Research Institute (EPRI), universities, and several DOE national laboratories. Transient testing of fuels and materials generates information required for advanced fuels in future nuclear power plants. Future nuclear power plants will rely heavily on advanced computer modeling and simulation that describes fuel behavior under off-normal conditions. TREAT is an ideal facility for this testing because of its flexibility, proven operation and material condition. The opportunity exists to develop advanced instrumentation and data collection that can support modeling and simulation needs much better than was possible in the past. In order to take advantage of these opportunities, test programs must be carefully designed to yield basic information to support modeling before conducting integral performance tests. An early start of TREAT and operation at low power would provide significant dividends in training, development of instrumentation, and checkout of reactor systems. Early start of TREAT (2015) is needed to support the requirements of potential users of TREAT and include the testing of full length fuel irradiated in the FFTF reactor. The capabilities provided by TREAT are needed for the development of nuclear power and the following benefits will be realized by the

  5. Transient analyses for accelerator driven system PDS-XADS using the extended SIMMER-III code

    International Nuclear Information System (INIS)

    Suzuki, Tohru; Chen, Xue-Nong; Rineiski, Andrei; Maschek, Werner

    2005-01-01

    Transient analyses for Preliminary Design Studies of an Experimental Accelerator Driven System (PDS-XADS) were performed with the reactor safety analysis code SIMMER-III, which was originally developed for the safety assessment of sodium-cooled fast reactors and recently extended by the authors so as to describe the XADS specifics such as subcritical core, strong external neutron source and lead-bismuth-eutectic (LBE) coolant. As transient scenarios, the following cases were analyzed in accordance with the PDS-XADS program: spurious beam trip (BT), unprotected beam overpower (UBOP), unprotected transient overpower (UTOP), unprotected loss of flow (ULOF) and unprotected blockage (UBL) in a single fuel assembly. In addition, to cover some core-melt situations and investigate the potential for recriticalities, so-called snap-shot analyses with ad hoc postulated severe blockage conditions were also investigated. The simulation results for BT and UBOP showed that immediate fuel damage might not take place under short-time beam interruption or a 100% increase of the external neutron source. Concerning UTOP, it was found that a reactivity jump of 1 $ would not lead to damage of the fuel and the cladding. The ULOF simulation showed that the remaining natural convection of the coolant would prevent the cladding from disruptions. In the simulation of UBL in a single fuel assembly, it was shown that no cladding failure might be expected, due to the radial heat transfer and the coolant flow in the hexcan gap. Under an artificial suppression of the radial heat transfer for this UBL case, a pin failure occurred in the simulation but subsequent fuel sweep-out into the upper plenum region would bring a reactivity reduction and no power excursion. The severe accident simulations starting from postulated blockage above an already disrupted core showed that a severe recriticality could be avoided by the fuel sweep-out into the dummy-assembly or hexcan gap regions. The present

  6. Enhanced Severe Transient Analysis for Prevention Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Gougar, Hans [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This document outlines the development of a high fidelity, best estimate nuclear power plant severe transient simulation capability that will complement or enhance the integral system codes historically used for licensing and analysis of severe accidents. As with other tools in the Risk Informed Safety Margin Characterization (RISMC) Toolkit, the ultimate user of Enhanced Severe Transient Analysis and Prevention (ESTAP) capability is the plant decision-maker; the deliverable to that customer is a modern, simulation-based safety analysis capability, applicable to a much broader class of safety issues than is traditional Light Water Reactor (LWR) licensing analysis. Currently, the RISMC pathway’s major emphasis is placed on developing RELAP-7, a next-generation safety analysis code, and on showing how to use RELAP-7 to analyze margin from a modern point of view: that is, by characterizing margin in terms of the probabilistic spectra of the “loads” applied to systems, structures, and components (SSCs), and the “capacity” of those SSCs to resist those loads without failing. The first objective of the ESTAP task, and the focus of one task of this effort, is to augment RELAP-7 analyses with user-selected multi-dimensional, multi-phase models of specific plant components to simulate complex phenomena that may lead to, or exacerbate, severe transients and core damage. Such phenomena include: coolant crossflow between PWR assemblies during a severe reactivity transient, stratified single or two-phase coolant flow in primary coolant piping, inhomogeneous mixing of emergency coolant water or boric acid with hot primary coolant, and water hammer. These are well-documented phenomena associated with plant transients but that are generally not captured in system codes. They are, however, generally limited to specific components, structures, and operating conditions. The second ESTAP task is to similarly augment a severe (post-core damage) accident integral analyses code

  7. Some safety related characteristics of Phenix, a 250 MWe fast reactor -1989 and 1990 negative reactivity trip investigations

    International Nuclear Information System (INIS)

    Chaumont, J.M.; Goux, D.; Martin, L.

    1993-01-01

    The main characteristics of the Phenix core control are summarized. The current state of the investigations related to the 1989 and 1990 negative reactivity transients are presented with emphasis on the results of the very low power tests recently performed. (authors). 5 figs., 2 refs

  8. Preliminary investigation of actinide and xenon reactivity effects in accelerator transmutation of waste high-flux systems

    International Nuclear Information System (INIS)

    Olson, K.R.; Henderson, D.L.

    1995-01-01

    The possibility of an unstable positive reactivity growth in an accelerator transmutation of waste (ATW)-type high-flux system is investigated. While it has always been clear that xenon is an important actor in the reactivity response of a system to flux changes, it has been suggested that in very high thermal flux transuranic burning systems, a positive, unstable reactivity growth could be caused by the actinides alone. Initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately. The maximum change in reactivity after a flux change caused by the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or startup. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response caused by the actinides. The capabilities and applications of both the current actinide model and the xenon model are discussed. Finally, the need for a complete dynamic model for the high-flux fluid-fueled ATW system is addressed

  9. Assessment of the turbine trip transient in Cofrentes NPP with TRAC-BF1

    International Nuclear Information System (INIS)

    Castrillo, F.; Gomez, A.; Gallego, I.

    1993-06-01

    This report presents the results of the assessment of TRAC-BF1 (G1-J1) code with the model of C. N. Cofrentes for simulation of the transient originated by the manual trip of the main turbine. C. N. Cofrentes is a General Electric designed BWR/6 plant, with a nominal core thermal power of 2894 Mwt, in commercial operation since 1985, owned and operated by Hidroelectrica Espanola, S. A. The plant incorporates all the characteristics of BWR/6 reactors, with two turbine driven FW pumps. As a result of this assessment a model of C. N. Cofrentes has been developed for TRAC-BF1 that fairly reproduces operational transient behavior of the plant. A special purpose code was generated to obtain reactivity coefficients, as required by TRAC-BF1, from the 3D simulator

  10. Sensitivity of reactivity feedback due to core bowing in a metallic-fueled core

    International Nuclear Information System (INIS)

    Nakagawa, Masatoshi; Kawashima, Masatoshi; Endo, Hiroshi; Nishimura, Tomohiro

    1991-01-01

    A sensitivity study has been carried out on negative reactivity feedback caused by core bowing to assess the potential effectiveness of FBR passive safety features in regard to withstanding an anticipated transient without scram (ATWS). In the present study, an analysis has been carried to obtain the best material and geometrical conditions concerning the core restraint system out for several power to flow rates (P/F), up to 2.0 for a 300 MWe metallic-fueled core. From this study, it was clarified that the pad stiffness at an above core loading pads (ACLP) needs to be large enough to ensure negative reactivity feedback against ATWS. It was also clarified that there is an upper limit for the clearances between ducts at ACLP. A new concept, in regard to increasing the absolute value for negative reactivity feedback due to core bowing at ATWS, is proposed and discussed. (author)

  11. Light-water-reactor coupled neutronic and thermal-hydraulic codes

    International Nuclear Information System (INIS)

    Diamond, D.J.

    1982-01-01

    An overview is presented of computer codes that model light water reactor cores with coupled neutronics and thermal-hydraulics. This includes codes for transient analysis and codes for steady state analysis which include fuel depletion and fission product buildup. Applications in nuclear design, reactor operations and safety analysis are given and the major codes in use in the USA are identified. The neutronic and thermal-hydraulic methodologies and other code features are outlined for three steady state codes (PDQ7, NODE-P/B and SIMULATE) and four dynamic codes (BNL-TWIGL, MEKIN, RAMONA-3B, RETRAN-02). Speculation as to future trends with such codes is also presented

  12. The OECD/NEA/NSC PBMR coupled neutronics/thermal hydraulics transient benchmark: The PBMR-400 core design

    International Nuclear Information System (INIS)

    Reitsma, F.; Ivanov, K.; Downar, T.; De Haas, H.; Gougar, H. D.

    2006-01-01

    The Pebble Bed Modular Reactor (PBMR) is a High-Temperature Gas-cooled Reactor (HTGR) concept to be built in South Africa. As part of the verification and validation program the definition and execution of code-to-code benchmark exercises are important. The Nuclear Energy Agency (NEA) of the Organisation for Economic Cooperation and Development (OECD) has accepted, through the Nuclear Science Committee (NSC), the inclusion of the Pebble-Bed Modular Reactor (PBMR) coupled neutronics/thermal hydraulics transient benchmark problem in its program. The OECD benchmark defines steady-state and transients cases, including reactivity insertion transients. It makes use of a common set of cross sections (to eliminate uncertainties between different codes) and includes specific simplifications to the design to limit the need for participants to introduce approximations in their models. In this paper the detailed specification is explained, including the test cases to be calculated and the results required from participants. (authors)

  13. Insights into the reactivation of cobalamin-dependent methionine synthase

    Energy Technology Data Exchange (ETDEWEB)

    Koutmos, Markos; Datta, Supratim; Pattridge, Katherine A.; Smith, Janet L.; Matthews, Rowena G.; (Michigan)

    2009-12-10

    Cobalamin-dependent methionine synthase (MetH) is a modular protein that catalyzes the transfer of a methyl group from methyltetrahydrofolate to homocysteine to produce methionine and tetrahydrofolate. The cobalamin cofactor, which serves as both acceptor and donor of the methyl group, is oxidized once every {approx}2,000 catalytic cycles and must be reactivated by the uptake of an electron from reduced flavodoxin and a methyl group from S-adenosyl-L-methionine (AdoMet). Previous structures of a C-terminal fragment of MetH (MetH{sup CT}) revealed a reactivation conformation that juxtaposes the cobalamin- and AdoMet-binding domains. Here we describe 2 structures of a disulfide stabilized MetH{sup CT} ({sub s-s}MetH{sup CT}) that offer further insight into the reactivation of MetH. The structure of {sub s-s}MetH{sup CT} with cob(II)alamin and S-adenosyl-L-homocysteine represents the enzyme in the reactivation step preceding electron transfer from flavodoxin. The structure supports earlier suggestions that the enzyme acts to lower the reduction potential of the Co(II)/Co(I) couple by elongating the bond between the cobalt and its upper axial water ligand, effectively making the cobalt 4-coordinate, and illuminates the role of Tyr-1139 in the stabilization of this 4-coordinate state. The structure of {sub s-s}MetH{sub CT} with aquocobalamin may represent a transient state at the end of reactivation as the newly remethylated 5-coordinate methylcobalamin returns to the 6-coordinate state, triggering the rearrangement to a catalytic conformation.

  14. 5-Azacytidine mediated reactivation of silenced transgenes in potato (Solanum tuberosum) at the whole plant level.

    Science.gov (United States)

    Tyč, Dimitrij; Nocarová, Eva; Sikorová, Lenka; Fischer, Lukáš

    2017-08-01

    Transient 5-azacytidine treatment of leaf explants from potato plants with transcriptionally silenced transgenes allows de novo regeneration of plants with restored transgene expression at the whole plant level. Transgenes introduced into plant genomes frequently become silenced either at the transcriptional or the posttranscriptional level. Transcriptional silencing is usually associated with DNA methylation in the promoter region. Treatments with inhibitors of maintenance DNA methylation were previously shown to allow reactivation of transcriptionally silenced transgenes in single cells or tissues, but not at the whole plant level. Here we analyzed the effect of DNA methylation inhibitor 5-azacytidine (AzaC) on the expression of two silenced reporter genes encoding green fluorescent protein (GFP) and neomycin phosphotransferase (NPTII) in potato plants. Whereas no obvious reactivation was observed in AzaC-treated stem cuttings, transient treatment of leaf segments with 10 μM AzaC and subsequent de novo regeneration of shoots on the selective medium with kanamycin resulted in the production of whole plants with clearly reactivated expression of previously silenced transgenes. Reactivation of nptII expression was accompanied by a decrease in cytosine methylation in the promoter region of the gene. Using the plants with reactivated GFP expression, we found that re-silencing of this transgene can be accidentally triggered by de novo regeneration. Thus, testing the incidence of transgene silencing during de novo regeneration could be a suitable procedure for negative selection of transgenic lines (insertion events) which have an inclination to be silenced. Based on our analysis of non-specific inhibitory effects of AzaC on growth of potato shoots in vitro, we estimated that AzaC half-life in the culture media is approximately 2 days.

  15. Control-rod, pressure and flow-induced accident and transient analysis of a direct-cycle, supercritical-pressure, light-water-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Kitoh, Kazuaki; Koshizuka, Seiichi; Oka, Yoshiaki

    1996-01-01

    The features of the direct-cycle, supercritical-pressure, light-water-cooled fast breeder reactor (SCFBR) are high thermal efficiency and simple reactor system. The safety principle is basically the same as that of an LWR since it is a water-cooled reactor. Maintaining the core flow is the basic safety requirement of the reactor, since its coolant system is the one through type. The transient behaviors at control rod, pressure and flow-induced abnormalities are analyzed and presented in this paper. The results of flow-induced transients of SCFBR were reported at ICONE-3, though pressure change was neglected. The change of fuel temperature distribution is also considered for the analysis of the rapid reactivity-induced transients such as control rod withdrawal. Total loss of flow and pump seizure are analyzed as the accidents. Loss of load, control rod withdrawal from the normal operation, loss of feedwater heating, inadvertent start of an auxiliary feedwater pump, partial loss of coolant flow and loss of external power are analyzed as the transients. The behavior of the flow-induced transients is not so much different from the analyses assuming constant pressure. Fly wheels should be equipped with the feedwater pumps to prolong the coast-down time more than 10s and to cope with the total loss of flow accident. The coolant density coefficient of the SCFBR is less than one tenth of a BWR in which the recirculation flow is used for the power control. The over pressurization transients at the loss of load is not so severe as that of a BWR. The power reaches 120%. The minimum deterioration heat flux ratio (MDHFR) and the maximum pressure are sufficiently lower than the criteria; MDHFR above 1.0 and pressure ratio below 1.10 of 27.5 MPa, maximum pressure for operation. Among the reactivity abnormalities, the control rod withdrawal transient from the normal operation is analyzed

  16. The influence of spatial effects on the measurement results of reactivity in 'fast disturbances' of core parameters

    International Nuclear Information System (INIS)

    Tsyganov, S.V.; Shishkov, L.K.

    2001-01-01

    The analysis of methods for the determination of reactivity revealed an essential influence of spatial effect on the measurement precision. Using of reverse point kinetic equation for reactivity meter is assumed that the average neutron flux weigh with the importance function is known at every moment of the transient. In fact, reactivity meter represent behaviour of the neutron flux only of the part of the core, so measured value of reactivity can differ from really reactivity. Three-dimensional dynamic model of the core allow to evaluate such difference. It is supposed to evaluate correction factor for the neutron flux measured at the place where ion chamber situated with the three-dimensional model NOSTRA of the WWER core. On the basis of such algorithm we propose to build module allowing the influence of spatial effects on the results of the reactivity meter to be eliminated at real time regime. This code will be incorporated into the core monitoring system 'BLOK' (SCORPIO type) which is being developed for the Kola and Rostov NPP. The report illustrates utilization of such algorithm (Authors)

  17. Rap1 signaling is required for suppression of Ras-generated reactive oxygen species and protection against oxidative stress in T lymphocytes

    NARCIS (Netherlands)

    Remans, Philip H. J.; Gringhuis, Sonja I.; van Laar, Jacob M.; Sanders, Marjolein E.; Papendrecht-van der Voort, Ellen A. M.; Zwartkruis, Fried J. T.; Levarht, E. W. Nivine; Rosas, Marcela; Coffer, Paul J.; Breedveld, Ferdinand C.; Bos, Johannes L.; Tak, Paul P.; Verweij, Cornelis L.; Reedquist, Kris A.

    2004-01-01

    Transient production of reactive oxygen species (ROS) plays an important role in optimizing transcriptional and proliferative responses to TCR signaling in T lymphocytes. Conversely, chronic oxidative stress leads to decreased proliferative responses and enhanced transcription of inflammatory gene

  18. Analysis of transients for NPP with VVER-440 using the code SiTAP

    International Nuclear Information System (INIS)

    Kalinenko, V.

    1994-06-01

    The report contains analysis of transients ''Loop connection'' and ''Steam generator tube rupture'' for nuclear power plants (NPP) with VVER-440. To obtain more detailed information about NPP's dynamic characteristics, various variants of initial and boundary conditions are considerd. Calculation of these transients was performed using the SiTAP code developed at the Nuclear Safety Institute of the Russian Research Centre ''Kurchatov Institute''. SiTAP code is a multifunctional computer tool for fast analysis of transient and accidental processes of VVER type reactors for engineers working in the field of NPP dynamics. SiTAP can be used form comparative analysis of several variants of accident scenarios to find out the conditions leading to most serious consequences from a safety point of view. In such cases, additional analyses using best-estimate codes should be carried out. The results of SiTAP for a faulty loop connection leading to a boron dilution accident are intended to be used as boundary conditions for a more detailed anlaysis with the aid of the three-dimensional reactor core model DYN3D, developed in the Research Centre Rossendorf for the simulation of reactivity initiated accidents. (orig.)

  19. Experimental evaluation of reactivity constraints for the closed-loop control of reactor power

    International Nuclear Information System (INIS)

    Bernard, J.A.; Lanning, D.D.; Ray, A.

    1984-01-01

    General principles for the closed-loop, digital control of reactor power have been identified, quantitatively enumerated, and experimentally demonstrated on the 5 MWt Research Reactor, MITR-II. The basic concept is to restrict the net reactivity so that it is always possible to make the reactor period infinite at the desired termination point of a transient by reversing the direction of motion of whatever control mechanism is associated with the controller. This capability is formally referred to as ''feasibility of control''. A series of ten experiments have been conducted over a period of eighteen months to demonstrate the efficacy of this property for the automatic control of reactor power. It has been shown that a controller which possesses this property is capable of both raising and lowering power in a safe, efficient manner while using a control rod of varying differential worth, that the reactivity constraints are a sufficient condition for the automatic control of reactor power, and that the use of a controller based on reactivity constraints can prevent overshoots either due to attempts to control a transient with a control rod of insufficient differential worth or due to failure to properly estimate when to commence rod insertion. Details of several of the more significant tests are presented together with a discussion of the rationale for the development of closed-loop control in large commercial power systems. Specific consideration is given to the motivation for designing a controller based on feasibility of control and the associated licensing issues

  20. Indian Point 2 steam generator tube rupture analyses

    International Nuclear Information System (INIS)

    Dayan, A.

    1985-01-01

    Analyses were conducted with RETRAN-02 to study consequences of steam generator tube rupture (SGTR) events. The Indian Point, Unit 2, power plant (IP2, PWR) was modeled as a two asymmetric loops, consisting of 27 volumes and 37 junctions. The break section was modeled once, conservatively, as a 150% flow area opening at the wall of the steam generator cold leg plenum, and once as a 200% double-ended tube break. Results revealed 60% overprediction of breakflow rates by the traditional conservative model. Two SGTR transients were studied, one with low-pressure reactor trip and one with an earlier reactor trip via over temperature ΔT. The former is more typical to a plant with low reactor average temperature such as IP2. Transient analyses for a single tube break event over 500 seconds indicated continued primary subcooling and no need for steam line pressure relief. In addition, SGTR transients with reactor trip while the pressurizer still contains water were found to favorably reduce depressurization rates. Comparison of the conservative results with independent LOFTRAN predictions showed good agreement

  1. Current interruption transients calculation

    CERN Document Server

    Peelo, David F

    2014-01-01

    Provides an original, detailed and practical description of current interruption transients, origins, and the circuits involved, and how they can be calculated Current Interruption Transients Calculationis a comprehensive resource for the understanding, calculation and analysis of the transient recovery voltages (TRVs) and related re-ignition or re-striking transients associated with fault current interruption and the switching of inductive and capacitive load currents in circuits. This book provides an original, detailed and practical description of current interruption transients, origins,

  2. Parametric study of a reactivity accident in a pressurized water reactor: control rod cluster ejection

    International Nuclear Information System (INIS)

    Chesnel, A.

    1985-01-01

    This research thesis concerns a class 4 accident in a PWR: the ejection of a control rod cluster from the reactor core. It aims at defining, for such an accident, the envelope values which relate the reactivity to the hot spot factor within the frame of a mode A control. The report describes the physical phenomena and their modelling during the considered transient. It presents a simple mathematical solution of the accident which shows that the main neutron parameters are the released reactivity, the delayed neutron fraction, the Doppler coefficient, and the hot spot factor. It reports a temperature sensitivity study, and discusses three-dimensional calculations of irradiation distributions

  3. Reactivation of chromosomally integrated human herpesvirus-6 by telomeric circle formation.

    Directory of Open Access Journals (Sweden)

    Bhupesh K Prusty

    Full Text Available More than 95% of the human population is infected with human herpesvirus-6 (HHV-6 during early childhood and maintains latent HHV-6 genomes either in an extra-chromosomal form or as a chromosomally integrated HHV-6 (ciHHV-6. In addition, approximately 1% of humans are born with an inheritable form of ciHHV-6 integrated into the telomeres of chromosomes. Immunosuppression and stress conditions can reactivate latent HHV-6 replication, which is associated with clinical complications and even death. We have previously shown that Chlamydia trachomatis infection reactivates ciHHV-6 and induces the formation of extra-chromosomal viral DNA in ciHHV-6 cells. Here, we propose a model and provide experimental evidence for the mechanism of ciHHV-6 reactivation. Infection with Chlamydia induced a transient shortening of telomeric ends, which subsequently led to increased telomeric circle (t-circle formation and incomplete reconstitution of circular viral genomes containing single viral direct repeat (DR. Correspondingly, short t-circles containing parts of the HHV-6 DR were detected in cells from individuals with genetically inherited ciHHV-6. Furthermore, telomere shortening induced in the absence of Chlamydia infection also caused circularization of ciHHV-6, supporting a t-circle based mechanism for ciHHV-6 reactivation.

  4. Establishment of HSV1 latency in immunodeficient mice facilitates efficient in vivo reactivation.

    Directory of Open Access Journals (Sweden)

    Chandran Ramakrishna

    2015-03-01

    Full Text Available The establishment of latent infections in sensory neurons is a remarkably effective immune evasion strategy that accounts for the widespread dissemination of life long Herpes Simplex Virus type 1 (HSV1 infections in humans. Periodic reactivation of latent virus results in asymptomatic shedding and transmission of HSV1 or recurrent disease that is usually mild but can be severe. An in-depth understanding of the mechanisms regulating the maintenance of latency and reactivation are essential for developing new approaches to block reactivation. However, the lack of a reliable mouse model that supports efficient in vivo reactivation (IVR resulting in production of infectious HSV1 and/or disease has hampered progress. Since HSV1 reactivation is enhanced in immunosuppressed hosts, we exploited the antiviral and immunomodulatory activities of IVIG (intravenous immunoglobulins to promote survival of latently infected immunodeficient Rag mice. Latently infected Rag mice derived by high dose (HD, but not low dose (LD, HSV1 inoculation exhibited spontaneous reactivation. Following hyperthermia stress (HS, the majority of HD inoculated mice developed HSV1 encephalitis (HSE rapidly and synchronously, whereas for LD inoculated mice reactivated HSV1 persisted only transiently in trigeminal ganglia (Tg. T cells, but not B cells, were required to suppress spontaneous reactivation in HD inoculated latently infected mice. Transfer of HSV1 memory but not OVA specific or naïve T cells prior to HS blocked IVR, revealing the utility of this powerful Rag latency model for studying immune mechanisms involved in control of reactivation. Crossing Rag mice to various knockout strains and infecting them with wild type or mutant HSV1 strains is expected to provide novel insights into the role of specific cellular and viral genes in reactivation, thereby facilitating identification of new targets with the potential to block reactivation.

  5. Reactivity feedback evaluation of material relocations in the CABRI-1 experiments with fuel worth distributions from SNR-300

    International Nuclear Information System (INIS)

    Royl, P.; Pfrang, W.; Struwe, D.

    1991-01-01

    The fuel relocations from the CABRI-1 experiments with irradiated fuel that had been evaluated from the hodoscope measurements were used together with fuel reactivity worth distributions from the SNR-300 to estimate the reactivity effect which these motions would have if they occurred in SNR-300 at the same relative distance to the peak power as in CABRI. The procedure for the reactivity evaluation is outlined including the assumptions made for fuel mass conservation. The results show that the initial fuel motion yields always negative reactivities. They also document the mechanism for a temporary reactivity increase by in-pin fuel flow in some transient overpower tests. This mechanism, however, never dominates, because material accumulates always sufficiently above the peak power point. Thus, the late autocatalytic amplifications of voiding induced power excursions by compactive in-pin fuel flow, that had been simulated in bounding loss of flow analyses for SNR-300, have no basis at all when considering the results from the CABRI-1 experiments

  6. Experimental and numerical investigation of the coolant mixing during fast deboration transients

    International Nuclear Information System (INIS)

    Hoehne, T.; Rohde, U.; Weiss, F.P.

    1999-01-01

    For the analysis of boron dilution transients and main steam line break scenarios the modeling of the coolant mixing inside the reactor vessel is important, because the reactivity insertion strongly depends on boron acid concentration or the coolant temperature distribution. Calculations for steady state flow conditions for the VVER-440 were performed with a CFD code (CFX-4). The comparison with experimental data and an analytical mixing model which is implemented in the neutron-kinetic code DYN3D showed a good agreement for near-nominal conditions. First experiments at the Rossendorf Mixing Test Facility ROCOM were performed simulating the start-up of the first main coolant pump. The reference reactor for the geometrically 1:5 scaled Plexiglas model is the German Konvoi type PWR. After demonstrating the capability of the CFD code to simulate these complicated flow transients, calculations were performed for the start-up of the first pump in a VVER-440 type reactor. These calculations are a first step of understanding the coolant mixing in the RPV of a VVER-440 type reactor under transient conditions. The results of the calculation show a very complex flow in the downcomer. A high downcomer of VVER-440 and the existence of the lower control rod chamber support coolant mixing is concluded. (author)

  7. Transient ischemic attack presenting in an elderly patient with transient ophthalmic manifestations

    Directory of Open Access Journals (Sweden)

    Sparshi Jain

    2016-01-01

    Full Text Available Transient ischemic attack (TIA is a transient neurological deficit of cerebrovascular origin without infarction which may last only for a short period and can have varying presentations. We report a case of 58-year-old male with presenting features of sudden onset transient vertical diplopia and transient rotatory nystagmus which self-resolved within 12 h. Patient had no history of any systemic illness. On investigating, hematological investigations and neuroimaging could not explain these sudden and transient findings. A TIA could possibly explain these sudden and transient ocular findings in our patient. This case report aims to highlight the importance of TIA for ophthalmologists. We must not ignore these findings as these could be warning signs of an impending stroke which may or may not be detected on neuroimaging. Thus, early recognition, primary prevention strategies, and timely intervention are needed.

  8. Transient behaviour study program of research reactors fuel elements at the Hydra Pulse Reactor

    International Nuclear Information System (INIS)

    Khvostionov, V.E.; Egorenkov, P.M.; Malankin, P.V.

    2004-01-01

    Program on behavior study of research reactor Fuel Elements (FE) under transient regimes initiated by excessive reactivity insertion is being presented. Program would be realized at HYDRA pulse reactor at Russian Research Center 'Kurchatov Institute' (RRC 'K1'). HYDRA uses aqueous solution of uranyl sulfate (UO 2 SO 4 ) as a fuel. Up to 30 MJ of energy can be released inside the core during the single pulse, effective power pulse width varying from 2 to 10 ms. Reactor facility allows to investigate behaviour of FE consisting of different types of fuel composition, being developed according to Russian RERTR. First part of program is aimed at transient behaviour studying of FE MR, IRT-3M, WWR-M5 types containing meats based on dioxide uranium in aluminum matrix. Mentioned FEs use 90% and 36% enriched uranium. (author)

  9. SPLOSH III. A code for calculating reactivity and flow transients in CSGHWR

    International Nuclear Information System (INIS)

    Halsall, M.J.; Course, A.F.; Sidell, J.

    1979-09-01

    SPLOSH is a time dependent, one dimensional, finite difference (in time and space) coupled neutron kinetics and thermal hydraulics code for studying pressurised faults and control transients in water reactor systems. An axial single channel model with equally spaced mesh intervals is used to represent the neutronics of the reactor core. A radial finite difference model is used for heat conduction through the fuel pin, gas gap and can. Appropriate convective, boiling or post-dryout heat transfer correlations are used at the can-coolant interface. The hydraulics model includes the important features of the SGHWR primary loop including 'slave' channels in parallel with the 'mean' channel. Standard mass, energy and momentum equations are solved explicitly. Circuit features modelled include pumps, spray cooling and the SGHWR steam drum. Perturbations to almost any feature of the circuit model may be specified by the user although blowdown calculations resulting in critical or reversed flows are not permitted. Automatic reactor trips may be defined and the ensuing actions of moderator dumping and rod firing can be specified. (UK)

  10. Transient analyzer

    International Nuclear Information System (INIS)

    Muir, M.D.

    1975-01-01

    The design and design philosophy of a high performance, extremely versatile transient analyzer is described. This sub-system was designed to be controlled through the data acquisition computer system which allows hands off operation. Thus it may be placed on the experiment side of the high voltage safety break between the experimental device and the control room. This analyzer provides control features which are extremely useful for data acquisition from PPPL diagnostics. These include dynamic sample rate changing, which may be intermixed with multiple post trigger operations with variable length blocks using normal, peak to peak or integrate modes. Included in the discussion are general remarks on the advantages of adding intelligence to transient analyzers, a detailed description of the characteristics of the PPPL transient analyzer, a description of the hardware, firmware, control language and operation of the PPPL transient analyzer, and general remarks on future trends in this type of instrumentation both at PPPL and in general

  11. Staphyloxanthin photobleaching sensitizes methicillin-resistant Staphylococcus aureus to reactive oxygen species attack

    Science.gov (United States)

    Dong, Pu-Ting; Mohammad, Haroon; Hui, Jie; Wang, Xiaoyu; Li, Junjie; Liang, Lijia; Seleem, Mohamed N.; Cheng, Ji-Xin

    2018-02-01

    Given that the dearth of new antibiotic development loads an existential burden on successful infectious disease therapy, health organizations are calling for alternative approaches to combat methicillin-resistant Staphylococcus aureus (MRSA) infections. Here, we report a drug-free photonic approach to eliminate MRSA through photobleaching of staphyloxanthin, an indispensable membrane-bound antioxidant of S. aureus. The photobleaching process, uncovered through a transient absorption imaging study and quantitated by absorption spectroscopy and mass spectrometry, decomposes staphyloxanthin, and sensitizes MRSA to reactive oxygen species attack. Consequently, staphyloxanthin bleaching by low-level blue light eradicates MRSA synergistically with external or internal reactive oxygen species. The effectiveness of this synergistic therapy is validated in MRSA culture, MRSAinfected macrophage cells. Collectively, these findings highlight broad applications of staphyloxanthin photobleaching for treatment of MRSA infections.

  12. Transient drainage summary report

    International Nuclear Information System (INIS)

    1996-09-01

    This report summarizes the history of transient drainage issues on the Uranium Mill Tailings Remedial Action (UMTRA) Project. It defines and describes the UMTRA Project disposal cell transient drainage process and chronicles UMTRA Project treatment of the transient drainage phenomenon. Section 4.0 includes a conceptual cross section of each UMTRA Project disposal site and summarizes design and construction information, the ground water protection strategy, and the potential for transient drainage

  13. TRANSIENT ELECTRONICS CATEGORIZATION

    Science.gov (United States)

    2017-08-24

    AFRL-RY-WP-TR-2017-0169 TRANSIENT ELECTRONICS CATEGORIZATION Dr. Burhan Bayraktaroglu Devices for Sensing Branch Aerospace Components & Subsystems...SUBTITLE TRANSIENT ELECTRONICS CATEGORIZATION 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S) Dr. Burhan...88ABW-2017-3747, Clearance Date 31 July 2017. Paper contains color. 14. ABSTRACT Transient electronics is an emerging technology area that lacks proper

  14. A novel transient rotor current control scheme of a doubly-fed induction generator equipped with superconducting magnetic energy storage for voltage and frequency support

    Science.gov (United States)

    Shen, Yang-Wu; Ke, De-Ping; Sun, Yuan-Zhang; Daniel, Kirschen; Wang, Yi-Shen; Hu, Yuan-Chao

    2015-07-01

    A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator (DFIG) equipped with a superconducting magnetic energy storage (SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter (GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter (RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive (priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method. Project supported by the National Natural Science Foundation of China (Grant No. 51307124) and the Major Program of the National Natural Science Foundation of China (Grant No. 51190105).

  15. Application of the visual system analyzer (ViSA): simulation of the steam generator tube rupture event at Ulchin unit 4

    International Nuclear Information System (INIS)

    Lee, S.W.; Kim, K.D.; Hwang, M.K.; Jeong, J.J.

    2004-01-01

    Korea Atomic Energy Research Institute (KAERI) has developed the Visual System Analyzer (ViSA) based on the best-estimate (B-E) codes, MARS and RETRAN-3D. The key features of ViSA are: (1) The use of the same input and the same level of accuracy as the original codes is guaranteed (2) Users can design their own plant mimic by a drag-and-drop from the provided indicators (3) The on-line interactive control enables users to simulate the operator's actions (4) The nodalization window is designed to display the transient temperature and void distributions. ViSA is composed of two parts; the B-E code with plant input and the Graphic User Interface (GUI) that includes the plant mimic and an interactive control function, etc. The calculation results of the B-E code are transferred to a user via the GUI and a user can apply the operator action to the B-E code using an interactive control function. Therefore, it is not necessary to prepare complex control input data to simulate the various manual operations which may occur during the plant transient. In this study, the Steam Generator Tube Rupture (SGTR) Accident, which occurred at Ulchin Unit 4 in April 2002, has been simulated using ViSA and the simulation results are compared with the measured plant data. The RETRAN-3D plant input data used in this simulation is a genetic input deck prepared for the simulation from a normal operation condition to a Small-Break LOCA. From the results of the SGTR simulation, we found that the GUI functions of ViSA and the input data for Ulchin Unit 4 have enough effectiveness and soundness. (author)

  16. Calculation of the fuel temperature coefficient of reactivity considering non-uniform radial temperature distribution in the fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Pazirandeh, Ali [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Science and Research Branch; Hooshyar Mobaraki, Almas

    2017-07-15

    The safe operation of a reactor is based on feedback models. In this paper we attempted to discuss the influence of a non-uniform radial temperature distribution on the fuel rod temperature coefficient of reactivity. The paper demonstrates that the neutron properties of a reactor core is based on effective temperature of the fuel to obtain the correct fuel temperature feedback. The value of volume-averaged temperature being used in the calculations of neutron physics with feedbacks would result in underestimating the probable event. In the calculation it is necessary to use the effective temperature of the fuel in order to provide correct accounting of the fuel temperature feedback. Fuel temperature changes in different zones of the core and consequently reactivity coefficient change are an important parameter for analysis of transient conditions. The restricting factor that compensates the inserted reactivity is the temperature reactivity coefficient and effective delayed neutron fraction.

  17. Intra-individual variability in cerebrovascular and respiratory chemosensitivity: Can we characterize a chemoreflex "reactivity profile"?

    Science.gov (United States)

    Borle, Kennedy J; Pfoh, Jamie R; Boulet, Lindsey M; Abrosimova, Maria; Tymko, Michael M; Skow, Rachel J; Varner, Amy; Day, Trevor A

    2017-08-01

    Intra-individual variability in the magnitude of human cerebrovascular and respiratory chemoreflex responses is largely unexplored. By comparing response magnitudes of cerebrovascular CO 2 reactivity (CVR; middle and posterior cerebral arteries; MCA, PCA), central (CCR; CO 2 ) and peripheral respiratory chemoreflexes (PCR; CO 2 and O 2 ), we tested the hypothesis that a within-individual reactivity magnitude profile could be characterized. The magnitudes of CVR and CCR were tested with hyperoxic rebreathing and PCR magnitudes were tested through transient respiratory tests (TT-CO 2 , hypercapnia; TT-N 2 , hypoxia). No significant intra-individual relationships were found between CCR vs. CVR (MCA and PCA), CCR vs. PCR (TT-N 2 or TT-CO 2 ) (r0.3) response magnitudes. Statistically significant relationships were found between MCA vs. PCA reactivity (r=0.45, Pvariability that exists in human cerebrovascular and respiratory chemoreflexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. PSH Transient Simulation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-21

    PSH Transient Simulation Modeling presentation from the WPTO FY14 - FY16 Peer Review. Transient effects are an important consideration when designing a PSH system, yet numerical techniques for hydraulic transient analysis still need improvements for adjustable-speed (AS) reversible pump-turbine applications.

  19. Improvement of the dynamic response of the ITER Reactive Power Compensation system

    International Nuclear Information System (INIS)

    Finotti, Claudio; Gaio, Elena; Song, Inho; Tao, Jun; Benfatto, Ivone

    2015-01-01

    Highlights: • The slow response reasons of the classic ITER Reactive Power Compensation (RPC) control are explained. • The dynamic behaviors of the ac/dc converter and of the RPC are characterized. • New control concept to speed up the RPC response is developed. • Good performance of the new RPC control is verified even during fast transient conditions. - Abstract: The ITER ac/dc conversion system can absorb a total active and reactive power up to 500 MW and 950 Mvar, respectively. The Reactive Power Compensation (RPC) system is rated for a nominal power of 750 Mvar necessary to comply with the allowable reactive power limit value from the grid of 200 Mvar. This system is currently under construction and is based on Static Var Compensation technology with Thyristor Controlled Reactor (TCR) and Tuned Filters. The RPC has to minimize the demand of reactive power from the grid; its control is based on a feed-forward method, where the corrective input is the measurement of the reactive power consumption of the ac/dc converters, derived from the 50 Hz component of the Fast Fourier Transform (FFT) of the three-phase voltages and currents. The delay introduced by the FFT calculation and the slow response of the TCR could make the response speed of the RPC not sufficient to face fast variations of the reactive power demand and therefore in this paper a new controller of the RPC able to overcome this shortcoming is proposed and evaluated. It is based on the calculation of the predicted consumption of the reactive power by using the voltage reference signals coming from the Plasma Control System and the measurements of the dc current of the ac/dc converters and of the 66 kV busbar voltage, and on the speed up of the RPC control by introducing a lead–lag transfer function.

  20. Improvement of the dynamic response of the ITER Reactive Power Compensation system

    Energy Technology Data Exchange (ETDEWEB)

    Finotti, Claudio, E-mail: claudio.finotti@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Gaio, Elena [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Song, Inho; Tao, Jun; Benfatto, Ivone [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • The slow response reasons of the classic ITER Reactive Power Compensation (RPC) control are explained. • The dynamic behaviors of the ac/dc converter and of the RPC are characterized. • New control concept to speed up the RPC response is developed. • Good performance of the new RPC control is verified even during fast transient conditions. - Abstract: The ITER ac/dc conversion system can absorb a total active and reactive power up to 500 MW and 950 Mvar, respectively. The Reactive Power Compensation (RPC) system is rated for a nominal power of 750 Mvar necessary to comply with the allowable reactive power limit value from the grid of 200 Mvar. This system is currently under construction and is based on Static Var Compensation technology with Thyristor Controlled Reactor (TCR) and Tuned Filters. The RPC has to minimize the demand of reactive power from the grid; its control is based on a feed-forward method, where the corrective input is the measurement of the reactive power consumption of the ac/dc converters, derived from the 50 Hz component of the Fast Fourier Transform (FFT) of the three-phase voltages and currents. The delay introduced by the FFT calculation and the slow response of the TCR could make the response speed of the RPC not sufficient to face fast variations of the reactive power demand and therefore in this paper a new controller of the RPC able to overcome this shortcoming is proposed and evaluated. It is based on the calculation of the predicted consumption of the reactive power by using the voltage reference signals coming from the Plasma Control System and the measurements of the dc current of the ac/dc converters and of the 66 kV busbar voltage, and on the speed up of the RPC control by introducing a lead–lag transfer function.

  1. Investigation into the impacts of distributed inlet temperature on thermal limit during LFWH event in Chinshan plant

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Shao-Shih; Hsu, Keng-Hsien; Chen, Bo-Yan; Hsu, Shi-Sen [Institute of Nuclear Energy Research, Taoyuan City (China)

    2017-12-15

    The Condensate and Feedwater System of the Chinshan BWR units is used to provide reliable and high-quality water to maintain the reactor water level during operation. If a Loss of Feedwater Heating (LFWH) event occurs, the core inlet subcooling increases and then induces corresponding power excursion and the reactor pressure rise. In the Chinshan Final Safety Analysis Report (FSAR), a loss of the feedwater temperature of 55.6 C (100 F) is conservatively assumed in the event. This study analyzes the integral reactor system response with RETRAN. Furthermore, a partial vessel model (PVM) of CFD is used to acquire the conditions of the fuel channel inlet to compensate the weakness of the RETRAN system model to generate detailed thermal-hydraulic conditions. The evaluation shows that the feedwater temperature drop is about 40 C which is lower than the FSAR value. In addition, the sensitivity study shows that the hot channel method underestimates the ΔCPR about 0.025, and there is no direct relation between ΔCPR and either of inlet subcooling or power fraction in transient, which is quite different from the conclusion of the hot channel method. Finally, the sensitivity study also proves the ΔT of 55.6 C (100 F) used in FSAR analysis conservative enough to cover the worst channel with a margin of 0.015 in ΔCPR.

  2. Macroscopic balance equations for two-phase flow models

    International Nuclear Information System (INIS)

    Hughes, E.D.

    1979-01-01

    The macroscopic, or overall, balance equations of mass, momentum, and energy are derived for a two-fluid model of two-phase flows in complex geometries. These equations provide a base for investigating methods of incorporating improved analysis methods into computer programs, such as RETRAN, which are used for transient and steady-state thermal-hydraulic analyses of nuclear steam supply systems. The equations are derived in a very general manner so that three-dimensional, compressible flows can be analysed. The equations obtained supplement the various partial differential equation two-fluid models of two-phase flow which have recently appeared in the literature. The primary objective of the investigation is the macroscopic balance equations. (Auth.)

  3. Description and characterization of the ACRR's programmable transient rod withdrawal mode

    International Nuclear Information System (INIS)

    Boldt, K.R.; Sullivan, W.H.; Kefauver, H.L.

    1980-01-01

    To satisfy experiment needs for Sandia's Advanced Reactor Safety Program, a programmable Transient Rod Withdrawal (TRW) mode has been developed for the Annular Core Research Reactor (ACRR). The programmable mode is a modification of the existing continuous-withdrawal TRW mode and permits speed and direction changes during the pulse sequence. Basically, a TRW operation is similar to a routine pulse operation except that transient rods are mechanically withdrawn rather than pneumatically fired. Being a pulse-type operation, the TRW mode complies with pulse-mode safety system settings. Control system interlocks prevent the pneumatic firing of rods in the TRW mode. The hardware for the programmable TRW mode includes three ACRR transient rods, the ACRR timer, two rod programmers, a minicomputer and a summing circuit for position indication. Each ACRR transient rod is mechanically driven by a stepping motor (rated torque at 4.24 joules) and is capable of a maximum TRW speed of 26.7 centimeters/ second. The maximum reactivity insertion rate is $2.45/second with a transient rod bank worth of $3.00 and $3.47/second with a bank worth of $4.25, which is expected to be installed soon. The ACRR timer is a multifunctional timer used in all operating modes of the reactor. In the programmable TRW mode, the timer starts the rod programmers and drops regulating rods to terminate the operation. Programmed withdrawal capability is provided by one of two rod programmers (a hardwire-based unit and a microprocessor-based unit). The hardwire unit has eight intervals in which speed, direction and distance are selected by switches on the front panel. The microprocessor-based unit has the capability of 64 intervals in which speed, direction, and distance or time can be specified. Programming this unit is accomplished from the front panel or by inputting data from an HP-9845. minicomputer via a digital I/O interface. Self-test programs in the software provide a continual check of an operating

  4. Reactivity Accidents in CAREM-25 Core with and Without Safety Systems Actuation

    International Nuclear Information System (INIS)

    Gimenez, Marcelo; Vertullo, Alicia; Schlamp, Miguel

    2000-01-01

    A reactivity accident in CAREM core can be provoked by different initiating events, a cold water injection in pressure vessel, a secondary side steam line breakage and a failure in the absorbing rods drive system.The present work analyses inadverted control rod withdraws transients.Maximum worth control rod (2.5 $) at normal velocity (1 cm/s) is adopted for the simulations (Reactivity ramp of 0.018 $/s).Different scenarios considering actuation of first shutdown system (FSS), second shutdown system (SSS) and selflimiting conditions were modeled.Results of the accident with actuation of FSS show that safety margins are well above critical values (DNBR and CPR).In the cases with failure of the FSS and success of SSS or selflimited, safety margins are below critical values, however, the SSS provides a reduction of elapsed time under advised margins

  5. Transient bowing of core assemblies in advanced liquid metal fast reactors

    International Nuclear Information System (INIS)

    Kamal, S.A.; Orechwa, Y.

    1986-01-01

    Two alternative core restraint concepts are considered for a conceptual design of a 900 MWth liquid metal fast reactor core with a heterogeneous layout. The two concepts, known as limited free bowing and free flowering, are evaluated based on core bowing criteria that emphasize the enhancement of inherent reactor safety. The core reactivity change during a postulated loss of flow transient is calculated in terms of the lateral displacements and displacement-reactivity-worths of the individual assemblies. The NUBOW-3D computer code is utilized to determine the assembly deformations and interassembly forces that arise when the assemblies are subjected to temperature gradients and irradiation induced creep and swelling during the reactor operation. The assembly ducts are made of the ferritic steel HT-9 and remain in the reactor core for four-years at full power condition. Whereas both restraint systems meet the bowing criteria, a properly designed limited free bowing system appears to be more advantageous than a free flowering system from the point of view of enhancing the reactor inherent safety

  6. Transient analysis on the SMART-P anticipated transients without scram

    International Nuclear Information System (INIS)

    Yang, S. H.; Bae, K. H.; Kim, H. C.; Zee, S. Q.

    2005-01-01

    Anticipated transients without scram (ATWS) are anticipated operational occurrences accompanied by a failure of an automatic reactor trip when required. Although the occurrence probability of the ATWS events is considerably low, these events can result in unacceptable consequences, i.e. the pressurization of the reactor coolant system (RCS) up to an unacceptable range and a core-melting situation. Therefore, the regulatory body requests the installation of a protection system against the ATWS events. According to the request, a diverse protection system (DPS) is installed in the SMART-P (System-integrated Modular Advanced ReacTor-Pilot). This paper presents the results of the transient analysis performed to identify the performance of the SMART-P against the ATWS. In the analysis, the TASS/SMR (Transients And Setpoint Simulation/Small and Medium Reactor) code is applied to identify the thermal hydraulic response of the RCS during the transients

  7. Performance of high burned PWR fuel during transient

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Fujishiro, Toshio

    1992-01-01

    In a majority of Japanese light water type commercial powder reactors (LWRs), UO 2 pellet sheathed by zircaloy cladding is used. Licensed discharged burn-up of the PWR fuel rod is going to be increased from 39 MWd/kgU to 48 MWd/kgU. This requests the increased reliability of cladding material as a strong barrier against fission product (FP). A long time usage in the neutron field and in the high temperature coolant will cause the zircaloy hardening and embrittlement. The cladding material is also degraded by waterside corrosion. These degradations are enhanced much by increased burn-up. A increased magnitude of the pellet-cladding mechanical interaction (PCMI) is of importance for increasing the stress of cladding material. In addition, aggressive FPs released from the fuel tends to attack the cladding material to cause stress corrosion cracking (SCC). At the Nuclear Safety Research Reactor (NSRR) in JAERI, 14 x 14 PWR type fuel rods preirradiation up to 42 MWd/kgU was prepared for the transient pulse irradiation under the simulated reactivity initiated accident (RIA) conditions. This will cause a prompt increase of the fuel temperature and stress on the highly burned cladding material. In the present paper, steady-state and transient behavior observed from the tested PWR fuel rod and calculational results obtained from the computer code FPRETAIN will be described. (author)

  8. The role of grain boundary fission gases in high burn-up fuel under reactivity initiated accident conditions

    International Nuclear Information System (INIS)

    Lemoine, F.; Papin, J.; Frizonnet, J.M.; Cazalis, B.; Rigat, H.

    2002-01-01

    In the frame of reactivity-initiated accidents (RIA) studies, the CABRI REP-Na programme is currently performed, focused on high burn-up UO 2 and MOX fuel behaviour. From 1993 to 1998, seven tests were performed with UO 2 fuel and three with MOX fuel. In all these tests, particular attention has been devoted to the role of fission gases in transient fuel behaviour and in clad loading mechanisms. From the analysis of experimental results, some basic phenomena were identified and a better understanding of the transient fission gas behaviour was obtained in relation to the fuel and clad thermo-mechanical evolution in RIA, but also to the initial state of the fuel before the transient. A high burn-up effect linked to the increasing part of grain boundary gases is clearly evidenced in the final gas release, which would also significantly contribute to the clad loading mechanisms. (authors)

  9. Development of essential system technologies for advanced reactor - Development of natural circulation analysis code for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Goon Cherl; Park, Ik Gyu; Kim, Jae Hak; Lee, Sang Min; Kim, Tae Wan [Seoul National University, Seoul (Korea)

    1999-04-01

    The objective of this study is to understand the natural circulation characteristics of integral type reactors and to develope the natural circulation analysis code for integral type reactors. This study is focused on the asymmetric 3-dimensional flow during natural circulation such as 1/4 steam generator section isolation and the inclination of the reactor systems. Natural circulation experiments were done using small-scale facilities of integral reactor SMART (System-Integrated Modular Advanced ReacTor). CFX4 code was used to investigate the flow patterns and thermal mixing phenomena in upper pressure header and downcomer. Differences between normal operation of all steam generators and the 1/4 section isolation conditions were observed and the results were used as the data 1/4 section isolation conditions were observed and the results were used as the data for RETRAN-03/INT code validation. RETRAN-03 code was modified for the development of natural circulation analysis code for integral type reactors, which was development of natural circulation analysis code for integral type reactors, which was named as RETRAN-03/INT. 3-dimensional analysis models for asymmetric flow in integral type reactors were developed using vector momentum equations in RETRAN-03. Analysis results using RETRAN-03/INT were compared with experimental and CFX4 analysis results and showed good agreements. The natural circulation characteristics obtained in this study will provide the important and fundamental design features for the future small and medium integral reactors. (author). 29 refs., 75 figs., 18 tabs.

  10. Nuclear Fuel Behaviour during Reactivity Initiated Accidents. Workshop Proceedings

    International Nuclear Information System (INIS)

    2010-01-01

    A reactivity initiated accident (RIA) is a nuclear reactor accident that involves an unwanted increase in fission rate and reactor power. The power increase may damage the reactor core. The main objective of the workshop was to review the current status of the experimental and analytical studies of the fuel behavior during the RIA transients in PWR and BWR reactors and the acceptance criteria for RIA in use and under consideration. The workshop was organized in an opening session and 5 technical sessions: 1) Recent experimental results and experimental techniques used; 2) Modelling and Data Interpretation; 3) Code Assessment; 4) RIA Core Analysis and 5) Revision and application of safety criteria

  11. Inherent safety that the reactivity effect of core bending in fast reactors brings about

    International Nuclear Information System (INIS)

    Nakagawa, Masatoshi; Yagawa, Genki.

    1994-01-01

    FBRs have the merit on safety by low operation pressure and the large heat capacity of coolant, in addition, due to the core temperature rise at the time of accidents and the thermal expansion of core structures, the negative feedback of reactivity can be expected. Recently, attention has been paid to the negative feedback of reactivity due to core bending. It can be expected also in the core of limited free bow type. Bending is caused by the difference of thermal expansion on six surfaces of hexagonal wrapper tubes. The bending changes core reactivity and exerts effects to fuel exchange force and operation, insertion of control rods and the structural soundness of fuel assemblies. for the purpose of limiting the effect that core bending exerts to core characteristics to allowable range, core constraint mechanism is installed. The behavior of core bending at the time of anticipated transient without scram is explained. The example of the analysis of PRISM reactor is shown. The experiment that confirmed the negative feedback of reactivity due to core bending under the condition of ULOF was that at the fast flux test facility. (K.I.)

  12. Development of advanced BWR fuel bundle with spectral shift rod (3) -transient analysis of ABWR core with SSR

    International Nuclear Information System (INIS)

    Ikegawa, T.; Chaki, M.; Ohga, Y.; Abe, M.

    2010-01-01

    The spectral shift rod (SSR) is a new type of water rod, utilized instead of the conventional water rod, in which a water level develops during core operation. The water level can be changed according to the fuel channel flow rate. In this study, ABWR plant performance with SSR fuel bundles under transient conditions has been evaluated using the TRACG code. The TRACG code, which can treat three-dimensional hydrodynamic calculations in a reactor pressure vessel, is well suited for evaluating the reactor transient performance with the SSR fuel bundles because it can calculate the water levels in the SSR at each channel grouping and therefore evaluate the core reactivity according to the water level changes in the SSR. 'Generator load rejection with total turbine bypass failure' and 'Recirculation flow control failure with increasing flow' were selected as cases which may increase the reactivity with the increasing water level in the SSR. It was found that the absolute value of the void reactivity coefficient in the SSR core was larger than that in the conventional water rod core because the core averaged void fraction in the SSR core, which has the vapor region above the water level in the SSR, was larger than that in the conventional water rod core. Therefore, AMCPR for the SSR core was a little larger than that for the conventional water rod core; however, the difference was smaller than 0.02 because the inlet of the SSR ascending path was designed to be small enough to prevent the rapid water level increase in the SSR. (authors)

  13. Transient flow combustion

    Science.gov (United States)

    Tacina, R. R.

    1984-01-01

    Non-steady combustion problems can result from engine sources such as accelerations, decelerations, nozzle adjustments, augmentor ignition, and air perturbations into and out of the compressor. Also non-steady combustion can be generated internally from combustion instability or self-induced oscillations. A premixed-prevaporized combustor would be particularly sensitive to flow transients because of its susceptability to flashback-autoignition and blowout. An experimental program, the Transient Flow Combustion Study is in progress to study the effects of air and fuel flow transients on a premixed-prevaporized combustor. Preliminary tests performed at an inlet air temperature of 600 K, a reference velocity of 30 m/s, and a pressure of 700 kPa. The airflow was reduced to 1/3 of its original value in a 40 ms ramp before flashback occurred. Ramping the airflow up has shown that blowout is more sensitive than flashback to flow transients. Blowout occurred with a 25 percent increase in airflow (at a constant fuel-air ratio) in a 20 ms ramp. Combustion resonance was found at some conditions and may be important in determining the effects of flow transients.

  14. Impact of PSS and SVC on the Power System Transient Stability

    Directory of Open Access Journals (Sweden)

    Mohammed Omar Benaissa

    2017-06-01

    Full Text Available The Static Var Compensator (SVC is used to improve the stability of the power system because of its role in injecting or absorbing the reactive power in the electrical transmission lines. The Power System Stabilizer (PSS is also a control device which ensures maximum power transfer and thus the stability of the power system enhancement. The PSS has been widely used to damp electromechanical oscillations occur in power systems. If no adequate damping is available, the oscillations will increase leading to instability. The present work is an original contribution to the problem of transient stability in the electrical power system, the authors have made some efforts to illustrate the flexibility and the importance of inserting the SVC alone or with the PSS the fact that maintain the characteristics of the system within acceptable limits in a very short time. The results show that the system has been developed successfully in terms of transient stability in a bi-machine transmission system only with the presence of PSS when a single-phase fault has been occurred, while the presence of SVC is more than essential when a three-phase fault is occurred.

  15. Fracture Characterization in Reactive Fluid-Fractured Rock Systems Using Tracer Transport Data

    Science.gov (United States)

    Mukhopadhyay, S.

    2014-12-01

    Fractures, whether natural or engineered, exert significant controls over resource exploitation from contemporary energy sources including enhanced geothermal systems and unconventional oil and gas reserves. Consequently, fracture characterization, i.e., estimating the permeability, connectivity, and spacing of the fractures is of critical importance for determining the viability of any energy recovery program. While some progress has recently been made towards estimating these critical fracture parameters, significant uncertainties still remain. A review of tracer technology, which has a long history in fracture characterization, reveals that uncertainties exist in the estimated parameters not only because of paucity of scale-specific data but also because of knowledge gaps in the interpretation methods, particularly in interpretation of tracer data in reactive fluid-rock systems. We have recently demonstrated that the transient tracer evolution signatures in reactive fluid-rock systems are significantly different from those in non-reactive systems (Mukhopadhyay et al., 2013, 2014). For example, the tracer breakthrough curves in reactive fluid-fractured rock systems are expected to exhibit a long pseudo-state condition, during which tracer concentration does not change by any appreciable amount with passage of time. Such a pseudo-steady state condition is not observed in a non-reactive system. In this paper, we show that the presence of this pseudo-steady state condition in tracer breakthrough patterns in reactive fluid-rock systems can have important connotations for fracture characterization. We show that the time of onset of the pseudo-steady state condition and the value of tracer concentration in the pseudo-state condition can be used to reliably estimate fracture spacing and fracture-matrix interface areas.

  16. Study of transient rod extraction failure without RBM in a BWR; Estudio del transitorio error de extraccion de barra sin RBM en un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Vallejo Q, J. A.; Martin del Campo M, C.; Fuentes M, L.; Francois L, J. L., E-mail: amhed_jvq@hotmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico)

    2015-09-15

    The study and analysis of the operational transients are important for predicting the behavior of a system to short-term events and the impact that would cause this transient. For the nuclear industry these studies are indispensable due to economic, environmental and social impacts that could cause an accident during the operation of a nuclear reactor. In this paper the preparation, simulation and analysis results of the transient rod extraction failure in which not taken into operation the RBM is presented. The study was conducted for a BWR of 2027 MWt, in an intermediate cycle of its useful life and using the computer code Simulate-3K a scenario of anomalies was created in the core reactivity which gave a coherent prediction to the type of presented event. (Author)

  17. Reactivity to patch tests with nickel sulfate and fragrance mix in infants

    DEFF Research Database (Denmark)

    Jøhnke, H; Norberg, L A; Vach, W

    2004-01-01

    sulfate in 3 concentrations, 200, 66 and 22 microg/cm(2), and fragrance mix 430 microg/cm(2) were used. A likely case of nickel sensitivity was defined as a reproducible positive reaction with at least homogeneous erythema and palpable infiltration occurring at least 2x and present at both the 12 and 18......The pattern of patch test reactivity to nickel sulfate and fragrance mix was studied with respect to patch test performance, reproducibility and clinical relevance in a population of unselected infants followed prospectively from birth to 18 months of age. TRUE Testtrade mark patches with nickel...... sensitivity was found in only 1 child. No reproducible positive reaction to fragrance mix was found. The high proportion of transient patch test reactivity to nickel sulfate 200 microg/cm(2) indicates that this standard concentration used for adults cannot be applied to infants. The interpretation of a single...

  18. The reactivity meter and core reactivity

    International Nuclear Information System (INIS)

    Siltanen, P.

    1999-01-01

    This paper discussed in depth the point kinetic equations and the characteristics of the point kinetic reactivity meter, particularly for large negative reactivities. From a given input signal representing the neutron flux seen by a detector, the meter computes a value of reactivity in dollars (ρ/β), based on inverse point kinetics. The prompt jump point of view is emphasised. (Author)

  19. Transient safety performance of the PRISM innovative liquid metal reactor

    International Nuclear Information System (INIS)

    Magee, P.M.; Dubberley, A.E.; Rhow, S.K.; Wu, T.

    1988-01-01

    The PRISM sodium-cooled reactor concept utilizes passive safety characteristics and modularity to increase performance margins, improve licensability, reduce owner's risk and reduce costs. The relatively small size of each reactor module (471 MWt) facilitates the use of passive self-shutdown and shutdown heat removal features, which permit design simplification and reduction of safety-related systems. Key to the transient performance is the inherent negative reactivity feedback characteristics of the core design resulting from the use of metal (U-Pu-Zr) swing, and very low control rod runout worth. Selected beyond design basis events relying only on these core design features are analyzed and the design margins summarized to demonstrate the advancement in reactor safety achieved with the PRISM design concept

  20. Assessment of SFR reactor safety issues: Part II: Analysis results of ULOF transients imposed on a variety of different innovative core designs with SAS-SFR

    Energy Technology Data Exchange (ETDEWEB)

    Kruessmann, R., E-mail: regina.kruessmann@kit.edu [Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Ponomarev, A.; Pfrang, W.; Struwe, D. [Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Champigny, J.; Carluec, B. [AREVA, 10, rue J. Récamier, 69456 Lyon Cedex 06 (France); Schmitt, D.; Verwaerde, D. [EDF R& D, 1 avenue du général de Gaulle, 92140 Clamart (France)

    2015-04-15

    Highlights: • Comparison of different core designs for a sodium-cooled fast reactor. • Safety assessment with the code system SAS-SFR. • Unprotected Loss of Flow (ULOF) scenario. • Sodium boiling and core melting cannot be avoided. • A net negative Na void effect provides more grace time prior to local SA destruction. - Abstract: In the framework of cooperation agreements between KIT-INR and AREVA SAS NP as well as between KIT-INR and EDF R&D in the years 2008–2013, the evaluation of severe transient behavior in sodium-cooled fast reactors (SFRs) was investigated. In Part I of this contribution, the efficiency of newly conceived prevention and mitigation measures was investigated for unprotected loss-of-flow (ULOF), unprotected loss-of-heat-sink (ULOHS) and the unprotected transient-overpower (UTOP) transients. In this second part, consequence analyses were performed for the initiation phase of different unprotected loss-of-flow (ULOF) scenarios imposed on a variety of different core design options of SFRs. The code system SAS-SFR was used for this purpose. Results of analyses for cases postulating unavailability of prevention measures as shut-down systems, passive and/or active additional devices show that entering into an energetic power excursion as a consequence of the initiation phase of a ULOF cannot be avoided for those core designs with a cumulative void reactivity feedback larger than zero. However, even for core designs aiming at values of the void reactivity less than zero it is difficult to find system design characteristics which prevent the transient entering into partial core destruction. Further studies of the transient core and system behavior would require codes dedicated to specific aspects of transition phase analyses and of in-vessel material relocation analyses.

  1. Analytical model for the design of in situ horizontal permeable reactive barriers (HPRBs) for the mitigation of chlorinated solvent vapors in the unsaturated zone

    NARCIS (Netherlands)

    Verginelli, Iason; Capobianco, Oriana; Hartog, Niels; Baciocchi, Renato

    In this work we introduce a 1-D analytical solution that can be used for the design of horizontal permeable reactive barriers (HPRBs) as a vapor mitigation system at sites contaminated by chlorinated solvents. The developed model incorporates a transient diffusion-dominated transport with a

  2. Transients: The regulator's view

    International Nuclear Information System (INIS)

    Sheron, B.W.; Speis, T.P.

    1984-01-01

    This chapter attempts to clarify the basis for the regulator's concerns for transient events. Transients are defined as both anticipated operational occurrences and postulated accidents. Recent operational experience, supplemented by improved probabilistic risk analysis methods, has demonstrated that non-LOCA transient events can be significant contributors to overall risk. Topics considered include lessons learned from events and issues, the regulations governing plant transients, multiple failures, different failure frequencies, operator errors, and public pressure. It is concluded that the formation of Owners Groups and Regulatory Response Groups within the owners groups are positive signs of the industry's concern for safety and responsible dealing with the issues affecting both the US NRC and the industry

  3. Models for transient analyses in advanced test reactors

    International Nuclear Information System (INIS)

    Gabrielli, Fabrizio

    2011-01-01

    Several strategies are developed worldwide to respond to the world's increasing demand for electricity. Modern nuclear facilities are under construction or in the planning phase. In parallel, advanced nuclear reactor concepts are being developed to achieve sustainability, minimize waste, and ensure uranium resources. To optimize the performance of components (fuels and structures) of these systems, significant efforts are under way to design new Material Test Reactors facilities in Europe which employ water as a coolant. Safety provisions and the analyses of severe accidents are key points in the determination of sound designs. In this frame, the SIMMER multiphysics code systems is a very attractive tool as it can simulate transients and phenomena within and beyond the design basis in a tightly coupled way. This thesis is primarily focused upon the extension of the SIMMER multigroup cross-sections processing scheme (based on the Bondarenko method) for a proper heterogeneity treatment in the analyses of water-cooled thermal neutron systems. Since the SIMMER code was originally developed for liquid metal-cooled fast reactors analyses, the effect of heterogeneity had been neglected. As a result, the application of the code to water-cooled systems leads to a significant overestimation of the reactivity feedbacks and in turn to non-conservative results. To treat the heterogeneity, the multigroup cross-sections should be computed by properly taking account of the resonance self-shielding effects and the fine intra-cell flux distribution in space group-wise. In this thesis, significant improvements of the SIMMER cross-section processing scheme are described. A new formulation of the background cross-section, based on the Bell and Wigner correlations, is introduced and pre-calculated reduction factors (Effective Mean Chord Lengths) are used to take proper account of the resonance self-shielding effects of non-fuel isotopes. Moreover, pre-calculated parameters are applied

  4. Trends vs. reactor size of passive reactivity shutdown and control performance

    International Nuclear Information System (INIS)

    Wade, D.C.; Fujita, E.K.

    1987-01-01

    For LMR concepts, the goal of passive reactivity shutdown has been approached in the US by designing the reactors for favorable relationships among the power, power/flow, and inlet temperature coefficients of reactivity, for high internal conversion ratio (yielding small burnup control swing), and for a primary pump coastdown time appropriately matched to the delayed neutron hold back of power decay upon negative reactivity input. The use of sodium bonded metallic fuel pins has facilitated the achievement of the massive shutdown design goals as a consequence of their high thermal conductivity and high effective heavy metal density. Alternately, core designs based on derated oxide pins may be able to achieve the passive shutdown features at the cost of larger core volume and increased initial fissile inventory. For LMR concepts, the passive decay heat removal goal of inherent safety has been approached in US designs by use of pool layouts, larger surface to volume ratio of the reactor vessel with natural draft air cooling of the vessel surface, elevations and redans which promote natural circulation through the core, and thermal mass of the pool contents sufficient to absorb that initial transient decay heat which exceeds the natural draft air cooling capacity. This paper describes current US ''inherently safe'' reactor design

  5. Applying the min-projection strategy to improve the transient performance of the three-phase grid-connected inverter.

    Science.gov (United States)

    Baygi, Mahdi Oloumi; Ghazi, Reza; Monfared, Mohammad

    2014-07-01

    Applying the min-projection strategy (MPS) to a three-phase grid-connected inverter to improve its transient performance is the main objective of this paper. For this purpose, the inverter is first modeled as a switched linear system. Then, the feasibility of the MPS technique is investigated and the stability criterion is derived. Hereafter, the fundamental equations of the MPS for the control of the inverter are obtained. The proposed scheme is simulated in PSCAD/EMTDC environment. The validity of the MPS approach is confirmed by comparing the obtained results with those of VOC method. The results demonstrate that the proposed method despite its simplicity provides an excellent transient performance, fully decoupled control of active and reactive powers, acceptable THD level and a reasonable switching frequency. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  6. A method for on-line reactivity monitoring in nuclear reactors

    International Nuclear Information System (INIS)

    Dulla, S.; Nervo, M.; Ravetto, P.

    2014-01-01

    the space–time dependent neutron kinetic equations in the diffusion model. Also in this case the method proves to be quite effective in providing good estimates of the system reactivity, except at very short times after the introduction of a perturbation inducing a spatial transient. At last, the effect of the experimental noise is investigated, proving that the consequences in the accuracy of the reactivity prediction can be mitigated by using an adequate differentiation algorithm

  7. Prevalence of Ex Vivo High On-treatment Platelet Reactivity on Antiplatelet Therapy after Transient Ischemic Attack or Ischemic Stroke on the PFA-100(®) and VerifyNow(®).

    LENUS (Irish Health Repository)

    Kinsella, Justin A

    2012-09-12

    BACKGROUND: The prevalence of ex vivo high on-treatment platelet reactivity (HTPR) to commonly prescribed antiplatelet regimens after transient ischemic attack (TIA) or ischemic stroke is uncertain. METHODS: Platelet function inhibition was simultaneously assessed with modified light transmission aggregometry (VerifyNow; Accumetrics Inc, San Diego, CA) and with a moderately high shear stress platelet function analyzer (PFA-100; Siemens Medical Solutions USA, Inc, Malvern, PA) in a pilot, cross-sectional study of TIA or ischemic stroke patients. Patients were assessed on aspirin-dipyridamole combination therapy (n = 51) or clopidogrel monotherapy (n = 25). RESULTS: On the VerifyNow, HTPR on aspirin was identified in 4 of 51 patients (8%) on aspirin-dipyridamole combination therapy (≥550 aspirin reaction units on the aspirin cartridge). Eleven of 25 (44%) patients had HTPR on clopidogrel (≥194 P2Y12 reaction units on the P2Y12 cartridge). On the PFA-100, 21 of 51 patients (41%) on aspirin-dipyridamole combination therapy had HTPR on the collagen-epinephrine (C-EPI) cartridge. Twenty-three of 25 patients (92%) on clopidogrel had HTPR on the collagen-adenosine diphosphate (C-ADP) cartridge. The proportion of patients with antiplatelet HTPR was lower on the VerifyNow than PFA-100 in patients on both regimens (P < .001). CONCLUSIONS: The prevalence of ex vivo antiplatelet HTPR after TIA or ischemic stroke is markedly influenced by the method used to assess platelet reactivity. The PFA-100 C-ADP cartridge is not sensitive at detecting the antiplatelet effects of clopidogrel ex vivo. Larger prospective studies with the VerifyNow and with the PFA-100 C-EPI and recently released Innovance PFA P2Y cartridges (Siemens Medical Solutions USA, Inc) in addition to newer tests of platelet function are warranted to assess whether platelet function monitoring predicts clinical outcome in ischemic cerebrovascular disease.

  8. Evaluating advanced LMR [liquid metal reactor] reactivity feedbacks using SSC

    International Nuclear Information System (INIS)

    Slovik, G.C.; Van Tuyle, G.J.; Kennett, R.J.; Cheng, H.S.

    1988-01-01

    Analyses of the PRISM and SAFR Liquid Metal Reactors with SSC are discussed from a safety and licensing perspective. The PRISM and SAFR reactors with metal fuel are designed for inherent shutdown responses to loss-of-flow and loss-of-heat-sink events. The demonstration of this technology was performed by EBR-II during experiments in April 1986 by ANL (Planchon, et al.). Response to postulated TOPs (control rod withdrawal) are made acceptable largely by reducing reactivity swings, and therefore minimizing the size of possible ractivity insertions. Analyses by DOE and the contractors GE, RI, and ANL take credit for several reactivity feedback mechanisms during transient calculations. These feedbacks include Doppler, sodium density, and thermal expansion of the grid plates, the load pads, the fuel (axial) and the control rod which are now factored into the BNL SSC analyses. The bowing feedback mechanism is not presently modeled in the SSC due to its complexity and subsequent large uncertainty. The analysis is conservative by not taking credit for this negative feedback mechanism. Comparisons of BNL predictions with DOE contractors are provided

  9. Experimental study on transient boiling heat transfer

    International Nuclear Information System (INIS)

    Visentini, R.

    2012-01-01

    Boiling phenomena can be found in the everyday life, thus a lot of studies are devoted to them, especially in steady state conditions. Transient boiling is less known but still interesting as it is involved in the nuclear safety prevention. In this context, the present work was supported by the French Institute of Nuclear Safety (IRSN). In fact, the IRSN wanted to clarify what happens during a Reactivity-initiated Accident (RIA). This accident occurs when the bars that control the nuclear reactions break down and a high power peak is passed from the nuclear fuel bar to the surrounding fluid. The temperature of the nuclear fuel bar wall increases and the fluid vaporises instantaneously. Previous studies on a fuel bar or on a metal tube heated by Joule effect were done in the past in order to understand the rapid boiling phenomena during a RIA. However, the measurements were not really accurate because the measurement techniques were not able to follow rapid phenomena. The main goal of this work was to create an experimental facility able to simulate the RIA boiling conditions but at small scale in order to better understand the boiling characteristics when the heated-wall temperature increases rapidly. Moreover, the experimental set-up was meant to be able to produce less-rapid transients as well, in order to give information on transient boiling in general. The facility was built at the Fluid-Mechanics Institute of Toulouse. The core consists of a metal half-cylinder heated by Joule effect, placed in a half-annulus section. The inner half cylinder is made of a 50 microns thick stainless steel foil. Its diameter is 8 mm, and its length 200 mm. The outer part is a 34 mm internal diameter glass half cylinder. The semi-annular section is filled with a coolant, named HFE7000. The configuration allows to work in similarity conditions. The heated part can be place inside a loop in order to study the flow effect. The fluid temperature influence is taken into account as

  10. TRACY transient experiment databook. 3) Ramp feed experiment

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Ken; Yamane, Yuichi; Ogawa, Kazuhiko; Aizawa, Eiju; Yanagisawa, Hiroshi; Miyoshi, Yoshinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-03-01

    This is a databook of TRACY ''ramp feed'' experiments. TRACY is a reactor to perform supercritical experiments using low-enriched uranyl nitrate aqueous solution. The excess reactivity of TRACY is 3$ at maximum, and it is inserted by feeding the solution to a core tank or by withdrawing a control rod, which is called as the transient rod, from the core. In the ramp feed experiment, the supercritical experiment is initiated by feeding the fuel solution to the core tank in a constant feed rate. The data in the present databook consist of datasheets and graphs. Experimental conditions and typical values of measured parameters are tabulated in the datasheet. In the graph, power and temperature profiles are plotted. Those data are useful for the investigation of criticality accidents with fissile solutions, and for validation of criticality accident analysis codes. (author)

  11. Simulation of reactive nanolaminates using reduced models: II. Normal propagation

    Energy Technology Data Exchange (ETDEWEB)

    Salloum, Maher; Knio, Omar M. [Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218-2686 (United States)

    2010-03-15

    Transient normal flame propagation in reactive Ni/Al multilayers is analyzed computationally. Two approaches are implemented, based on generalization of earlier methodology developed for axial propagation, and on extension of the model reduction formalism introduced in Part I. In both cases, the formulation accommodates non-uniform layering as well as the presence of inert layers. The equations of motion for the reactive system are integrated using a specially-tailored integration scheme, that combines extended-stability, Runge-Kutta-Chebychev (RKC) integration of diffusion terms with exact treatment of the chemical source term. The detailed and reduced models are first applied to the analysis of self-propagating fronts in uniformly-layered materials. Results indicate that both the front velocities and the ignition threshold are comparable for normal and axial propagation. Attention is then focused on analyzing the effect of a gap composed of inert material on reaction propagation. In particular, the impacts of gap width and thermal conductivity are briefly addressed. Finally, an example is considered illustrating reaction propagation in reactive composites combining regions corresponding to two bilayer widths. This setup is used to analyze the effect of the layering frequency on the velocity of the corresponding reaction fronts. In all cases considered, good agreement is observed between the predictions of the detailed model and the reduced model, which provides further support for adoption of the latter. (author)

  12. Modelling Reactivity-Initiated-Accident Experiments With Falcon And SCANAIR: A Comparison Exercise

    International Nuclear Information System (INIS)

    Romano, A.; Wallin, H.; Zimmermann, M.A.

    2005-01-01

    A critical assessment is made of the state-of-the-art fuel performance code FALCON in the context of selected Reactivity Initiated Accident (RIA) experiments from the CABRI REP Na series, and contrasts its predictions against those of the extensively benchmarked SCANAIR (Version 3.2) code. The thermal fields in the fuel and cladding, the clad mechanical deformation, and the Fission Gas Release (FGR) are adopted as 'Figures of Merit' by which to judge code performance. Particular attention is paid to the importance of fission-gas-induced clad deformation (which is modelled in SCANAIR, but not in FALCON), relative to that driven by the fuel thermal expansion (which is modelled by both codes). The thermal fields calculated by the codes are in good agreement with each other, especially during the initial stages of the transients --- the adiabatic phase. Larger discrepancies are observed at later times, and are due to the different models applied to calculate the gap conductance. FALCON predicts clad permanent deformations at the end of the transients with a maximum deviation from the experimental measurements of about 20%. Generally, the code always tends to underpredict the measurements. SCANAIR performs similarly, but grossly overpredicts the permanent clad strain for the case involving a very energetic pulse. The fission-gas-driven clad deformation is only relevant for very fast pulse energy injection cases, which are not prototypical of the RIA transients expected in PWRs. The FGR models in FALCON do not capture the mechanism of 'burst-release' in the RIA transients, having been developed for steady-state irradiation conditions. This also explains why they performed poorly when applied to the fast-transient cases analyzed here. In contrast, the FGR results from SCANAIR are in satisfactory agreement with the experimental results. (author)

  13. Development of Advanced Non-LOCA Analysis Methodology for Licensing

    International Nuclear Information System (INIS)

    Jang, Chansu; Um, Kilsup; Choi, Jaedon

    2008-01-01

    KNF is developing a new design methodology on the Non-LOCA analysis for the licensing purpose. The code chosen is the best-estimate transient analysis code RETRAN and the OPR1000 is aimed as a target plant. For this purpose, KNF prepared a simple nodal scheme appropriate to the licensing analyses and developed the designer-friendly analysis tool ASSIST (Automatic Steady-State Initialization and Safety analysis Tool). To check the validity of the newly developed methodology, the single CEA withdrawal and the locked rotor accidents are analyzed by using a new methodology and are compared with current design results. Comparison results show a good agreement and it is concluded that the new design methodology can be applied to the licensing calculations for OPR1000 Non-LOCA

  14. Searching for MHz Transients with the VLA Low-band Ionosphere and Transient Experiment (VLITE)

    Science.gov (United States)

    Polisensky, Emil; Peters, Wendy; Giacintucci, Simona; Clarke, Tracy; Kassim, Namir E.; hyman, Scott D.; van der Horst, Alexander; Linford, Justin; Waldron, Zach; Frail, Dale

    2018-01-01

    NRL and NRAO have expanded the low frequency capabilities of the VLA through the VLA Low-band Ionosphere and Transient Experiment (VLITE, http://vlite.nrao.edu/ ), effectively making the instrument two telescopes in one. VLITE is a commensal observing system that harvests data from the prime focus in parallel with normal Cassegrain focus observing on a subset of VLA antennas. VLITE provides over 6000 observing hours per year in a > 5 square degree field-of-view using 64 MHz bandwidth centered on 352 MHz. By operating in parallel, VLITE offers invaluable low frequency data to targeted observations of transient sources detected at higher frequencies. With arcsec resolution and mJy sensitivity, VLITE additionally offers great potential for blind searches of rarer radio-selected transients. We use catalog matching software on the imaging products from the daily astrophysics pipeline and the LOFAR Transients Pipeline (TraP) on repeated observations of the same fields to search for coherent and incoherent astronomical transients on timescales of a few seconds to years. We present the current status of the VLITE transient science program from its initial deployment on 10 antennas in November 2014 through its expansion to 16 antennas in the summer of 2017. Transient limits from VLITE’s first year of operation (Polisensky et al. 2016) are updated per the most recent analysis.

  15. Transient analysis and thermal hydraulic margins of GHARR-1 using the PARET/NAL code

    International Nuclear Information System (INIS)

    Adoo, N.A.

    2009-06-01

    The PARET code has been adapted by the IAEA for testing transient behaviour in research reactors. The PARET code provides a coupled thermal hydrodynamic and point kinetics capability with a continuous reactivity feedback and an optional voiding model that estimates the voiding produced by the subcooled boiling. The present version of the PARET/ANL 73 code provides a convenient means of assessing the various models and correlations proposed for the use in the analysis of research reactor behaviour. The Monte Carlo N-Particle code (MCNP) has been used to obtain power peaking profile for a two channel PARET/ANL model. A PARET model with the corresponding neutronics and thermal hydraulic characteristics for the miniature neutron source reactor (MNSR) has been used to simulate reactivity accidents for the Ghana Research Reactor - 1(GHARR-1) under the MNSR operation conditions of natural circulation, normal operation and reactivity insertion accidents. The simulation results via the insertion of large reactivity demonstrated the high inherent safety features of the MNSR for which the high negative reactivity feedback of moderator temperature limits power excursion and avoids consequently the escalation of clad temperature to the level of onset of sub-cooled void formation. The hot channel peaking factors for both radial and axial were found to be 1.17 and 1.44 respectively. Thermal hydraulic performance characteristics were investigated and the safety margins determined. The peak clad and coolant temperatures ranged from 59.18 0 C to 106.75 0 C and 42.95 0 C to 178.44 0 C respectively at which nucleate boiling will occur within the flow channels of the core. (au)

  16. Modelling and transient simulation of water flow in pipelines using WANDA Transient software

    Directory of Open Access Journals (Sweden)

    P.U. Akpan

    2017-09-01

    Full Text Available Pressure transients in conduits such as pipelines are unsteady flow conditions caused by a sudden change in the flow velocity. These conditions might cause damage to the pipelines and its fittings if the extreme pressure (high or low is experienced within the pipeline. In order to avoid this occurrence, engineers usually carry out pressure transient analysis in the hydraulic design phase of pipeline network systems. Modelling and simulation of transients in pipelines is an acceptable and cost effective method of assessing this problem and finding technical solutions. This research predicts the pressure surge for different flow conditions in two different pipeline systems using WANDA Transient simulation software. Computer models were set-up in WANDA Transient for two different systems namely; the Graze experiment (miniature system and a simple main water riser system based on some initial laboratory data and system parameters. The initial laboratory data and system parameters were used for all the simulations. Results obtained from the computer model simulations compared favourably with the experimental results at Polytropic index of 1.2.

  17. RFI flagging implications for short-duration transients

    Science.gov (United States)

    Cendes, Y.; Prasad, P.; Rowlinson, A.; Wijers, R. A. M. J.; Swinbank, J. D.; Law, C. J.; van der Horst, A. J.; Carbone, D.; Broderick, J. W.; Staley, T. D.; Stewart, A. J.; Huizinga, F.; Molenaar, G.; Alexov, A.; Bell, M. E.; Coenen, T.; Corbel, S.; Eislöffel, J.; Fender, R.; Grießmeier, J.-M.; Jonker, P.; Kramer, M.; Kuniyoshi, M.; Pietka, M.; Stappers, B.; Wise, M.; Zarka, P.

    2018-04-01

    With their wide fields of view and often relatively long coverage of any position in the sky in imaging survey mode, modern radio telescopes provide a data stream that is naturally suited to searching for rare transients. However, Radio Frequency Interference (RFI) can show up in the data stream in similar ways to such transients, and thus the normal pre-treatment of filtering RFI (flagging) may also remove astrophysical transients from the data stream before imaging. In this paper we investigate how standard flagging affects the detectability of such transients by examining the case of transient detection in an observing mode used for Low Frequency Array (LOFAR; van Haarlem et al., 2013) surveys. We quantify the fluence range of transients that would be detected, and the reduction of their SNR due to partial flagging. We find that transients with a duration close to the integration sampling time, as well as bright transients with durations on the order of tens of seconds, are completely flagged. For longer transients on the order of several tens of seconds to minutes, the flagging effects are not as severe, although part of the signal is lost. For these transients, we present a modified flagging strategy which mitigates the effect of flagging on transient signals. We also present a script which uses the differences between the two strategies, and known differences between transient RFI and astrophysical transients, to notify the observer when a potential transient is in the data stream.

  18. Analysis of neutronics and dynamic characteristics with reactivity injection in LBE cooled sub-critical reactor

    International Nuclear Information System (INIS)

    Chen Sen; Wu Yican; Jin Ming; Chen Zhibin; Bai Yunqing; Zhao Zhumin

    2014-01-01

    Accelerator Driven Sub-critical System (ADS) has particular neutronics behaviors compared with the critical system. Prompt jump approximation point reactor kinetics equations taken external source into account have been deduced using an approach of prompt jump approximation. And the relationship between injection reactivity and power ampliation has been achieved. In addition, based on the RELAP5 code the prolong development of point reactor kinetics code used into assessing sub-critical system have been promoted. Different sub-criticality (k eff = 0.90, 0.95, 0.97, 0.98 and 0.99) have been assessed in preliminary design of a type of natural circulation cooling sub-critical reactor under conditions of reactivity injection +1 β in one second. It shows that the external source prompt transient approximation method has an accurate solution after injecting reactivity around short time and has a capacity to solve the dynamic equation, and the sub-critical system has an inner stability while the deeper sub-criticality the less impact on the sub-critical system. (authors)

  19. LLL transient-electromagnetics-measurement facility

    International Nuclear Information System (INIS)

    Deadrick, F.J.; Miller, E.K.; Hudson, H.G.

    1975-01-01

    The operation and hardware of the Lawrence Livermore Laboratory's transient-electromagnetics (EM)-measurement facility are described. The transient-EM range is useful for determining the time-domain transient responses of structures to incident EM pulses. To illustrate the accuracy and utility of the EM-measurement facility, actual experimental measurements are compared to numerically computed values

  20. Dynamic remedial action scheme using online transient stability analysis

    Science.gov (United States)

    Shrestha, Arun

    Economic pressure and environmental factors have forced the modern power systems to operate closer to their stability limits. However, maintaining transient stability is a fundamental requirement for the operation of interconnected power systems. In North America, power systems are planned and operated to withstand the loss of any single or multiple elements without violating North American Electric Reliability Corporation (NERC) system performance criteria. For a contingency resulting in the loss of multiple elements (Category C), emergency transient stability controls may be necessary to stabilize the power system. Emergency control is designed to sense abnormal conditions and subsequently take pre-determined remedial actions to prevent instability. Commonly known as either Remedial Action Schemes (RAS) or as Special/System Protection Schemes (SPS), these emergency control approaches have been extensively adopted by utilities. RAS are designed to address specific problems, e.g. to increase power transfer, to provide reactive support, to address generator instability, to limit thermal overloads, etc. Possible remedial actions include generator tripping, load shedding, capacitor and reactor switching, static VAR control, etc. Among various RAS types, generation shedding is the most effective and widely used emergency control means for maintaining system stability. In this dissertation, an optimal power flow (OPF)-based generation-shedding RAS is proposed. This scheme uses online transient stability calculation and generator cost function to determine appropriate remedial actions. For transient stability calculation, SIngle Machine Equivalent (SIME) technique is used, which reduces the multimachine power system model to a One-Machine Infinite Bus (OMIB) equivalent and identifies critical machines. Unlike conventional RAS, which are designed using offline simulations, online stability calculations make the proposed RAS dynamic and adapting to any power system

  1. Development of the NSSS thermal-hydraulic program for YGN unit 1 simulator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Doo; Jeong, Jae Jun; Lee, Won Jae; Chung, Bub Dong; Ha, Kwi Seok; Kang, Kyung Ho

    2000-09-01

    The NSSS thermal-hydraulic programs installed in the domestic full-scope power plant simulators were provided in early 1980s by foreign vendors. Because of limited computational capability at that time, they usually adopt very simplified physical models for a real-time simulation of NSSS thermal-hydraulic phenomena, which entails inaccurate results and the possibility of so-called 'negative training', especially for complicated two-phase flows in the reactor coolant system. To resolve the problem, we developed a realistic NSSS T/H program (named 'ARTS' code) for use in YongGwang Nuclear Unit 1 full-scope simulator. The best-estimate code RETRAN03, developed by EPRI and approved by USNRC, was selected as a reference code of ARTS. For the development of ARTS, the followings have been performed: -Improvement of the robustness of RETRAN - Improvement of the real-time simulation capability of RETRAN - Optimum input data generation for the NSSS simulation - New model development that cannot be efficiently modeled by RETRAN - Assessment of the ARTS code. The systematic assessment of ARTS has been conducted in both personal computers (Windows 98, Visual fortran) and the simulator development environment (Windows NT, GSE simulator development tool). The results were resonable in terms of accuracy, real-time simulation and robustness.

  2. Development of the NSSS thermal-hydraulic program for YGN unit 1 simulator

    International Nuclear Information System (INIS)

    Kim, Kyung Doo; Jeong, Jae Jun; Lee, Won Jae; Chung, Bub Dong; Ha, Kwi Seok; Kang, Kyung Ho

    2000-09-01

    The NSSS thermal-hydraulic programs installed in the domestic full-scope power plant simulators were provided in early 1980s by foreign vendors. Because of limited computational capability at that time, they usually adopt very simplified physical models for a real-time simulation of NSSS thermal-hydraulic phenomena, which entails inaccurate results and the possibility of so-called 'negative training', especially for complicated two-phase flows in the reactor coolant system. To resolve the problem, we developed a realistic NSSS T/H program (named 'ARTS' code) for use in YongGwang Nuclear Unit 1 full-scope simulator. The best-estimate code RETRAN03, developed by EPRI and approved by USNRC, was selected as a reference code of ARTS. For the development of ARTS, the followings have been performed: -Improvement of the robustness of RETRAN - Improvement of the real-time simulation capability of RETRAN - Optimum input data generation for the NSSS simulation - New model development that cannot be efficiently modeled by RETRAN - Assessment of the ARTS code. The systematic assessment of ARTS has been conducted in both personal computers (Windows 98, Visual fortran) and the simulator development environment (Windows NT, GSE simulator development tool). The results were resonable in terms of accuracy, real-time simulation and robustness

  3. Development and application of an entrainment model for the PWR U-tube steam generators for main steam line break analysis

    International Nuclear Information System (INIS)

    Song, Dong-Soo; Park, Young-Chan

    2004-01-01

    The purpose of this paper is to present the analyses that were performed to develop and use an entrainment model for pressurized water reactor U-tube steam generators (SG) for main steam line break (MSLB) analyses. The entrainment model was developed using the RETRAN-3D computer program, and the model was benchmarked against experimental data of moisture carryover during a simulated MSLB accident. The application methodology was also developed to incorporate into the MSLB mass and energy release calculations for Kori Unit 1. This methodology utilizes LOFTRAN and RETRAN-3D codes in an iterative sequence of cases in which the LOFTRAN nuclear steam supply system model provides boundary conditions for the RETRAN-3D broken loop steam generator model, and the RETRAN-3D model provides the entrainment data that is input back into the LOFTRAN model. FORTRAN programs were developed to facilitate the sequencing of these iterative calculations. As a result of applying the entrainment model to Kori Unit 1, the temperature calculated inside Containment during MSLB accident using the CONTEMP-LT computer program decreased by about 25degC. Consequently this entrainment model provides a significant benefit by decreasing the temperature envelop for environment qualification as well as decreasing the peak Containment pressure. (author)

  4. Volume 1. Base technology FSAR support document: prefailure transient behavior and failure threshold. Status report, January 1975

    International Nuclear Information System (INIS)

    Baars, R.E.; Culley, G.E.; Davis, R.T.; Henderson, R.G.; Scott, J.H.

    1975-11-01

    A comprehensive compilation of the current (January 1975) state-of-the-art understanding of fuel pin response to reactivity insertion events up to and including failure threshold is presented. All mixed oxide fuel, transient overpower tests conducted to date are described and the data collected therein are presented. Current understanding of fuel pin cladding failure mechanisms is discussed, and interpretations of fuel pin cladding failure thresholds are presented as revealed by individual tests and by the several tests collectively. Plans for future tests are discussed

  5. Equivalent modeling of PMSG-based wind power plants considering LVRT capabilities: electromechanical transients in power systems.

    Science.gov (United States)

    Ding, Ming; Zhu, Qianlong

    2016-01-01

    Hardware protection and control action are two kinds of low voltage ride-through technical proposals widely used in a permanent magnet synchronous generator (PMSG). This paper proposes an innovative clustering concept for the equivalent modeling of a PMSG-based wind power plant (WPP), in which the impacts of both the chopper protection and the coordinated control of active and reactive powers are taken into account. First, the post-fault DC link voltage is selected as a concentrated expression of unit parameters, incoming wind and electrical distance to a fault point to reflect the transient characteristics of PMSGs. Next, we provide an effective method for calculating the post-fault DC link voltage based on the pre-fault wind energy and the terminal voltage dip. Third, PMSGs are divided into groups by analyzing the calculated DC link voltages without any clustering algorithm. Finally, PMSGs of the same group are equivalent as one rescaled PMSG to realize the transient equivalent modeling of the PMSG-based WPP. Using the DIgSILENT PowerFactory simulation platform, the efficiency and accuracy of the proposed equivalent model are tested against the traditional equivalent WPP and the detailed WPP. The simulation results show the proposed equivalent model can be used to analyze the offline electromechanical transients in power systems.

  6. A Comparative Study on Controllers for Improving Transient Stability of DFIG Wind Turbines During Large Disturbances

    Directory of Open Access Journals (Sweden)

    Minh Quan Duong

    2018-02-01

    Full Text Available Under power system short-circuits, the Doubly-Fed Induction Generator (DFIG Wind Turbines (WT are required to be equipped with crowbar protections to preserve the lifetime of power electronics devices. When the crowbar is switched on, the rotor windings are short-circuited. In this case, the DFIG behaves like a squirrel-cage induction generator (SCIG and can adsorb reactive power, which can affect the power system. A DFIG based-fault-ride through (FRT scheme with crowbar, rotor-side and grid-side converters has recently been proposed for improving the transient stability: in particular, a hybrid cascade Fuzzy-PI-based controlling technique has been demonstrated to be able to control the Insulated Gate Bipolar Transistor (IGBT based frequency converter in order to enhance the transient stability. The performance of this hybrid control scheme is analyzed here and compared to other techniques, under a three-phase fault condition on a single machine connected to the grid. In particular, the transient operation of the system is investigated by comparing the performance of the hybrid system with conventional proportional-integral and fuzzy logic controller, respectively. The system validation is carried out in Simulink, confirming the effectiveness of the coordinated advanced fuzzy logic control.

  7. CYLFUX, Fast Reactor Reactivity Transients Simulation in LWR by 2-D 2 Group Diffusion

    International Nuclear Information System (INIS)

    Schmidt, A.

    1973-01-01

    1 - Nature of physical problem solved: A 2-dimensional calculation of the 2-group, space-dependent neutron diffusion equations is performed in r-z geometry using an arbitrary number of groups of delayed neutron precursors. The program is designed to simulate fast reactivity excursions in light water reactors taking into account Doppler feedback via adiabatic heatup of fuel. Axial motions of control rods may be considered including scram action on option. 2 - Method of solution: The differential equations are solved at each time step by an explicit finite difference method using two time levels. The stationary distributions are obtained by using the same algorithm. 3 - Restrictions on the complexity of the problem: No restriction to the number of space points and delayed neutron energy groups besides the computer size

  8. MHD aspects of coronal transients

    International Nuclear Information System (INIS)

    Anzer, U.

    1979-10-01

    If one defines coronal transients as events which occur in the solar corona on rapid time scales (< approx. several hours) then one would have to include a large variety of solar phenomena: flares, sprays, erupting prominences, X-ray transients, white light transients, etc. Here we shall focus our attention on the latter two phenomena. (orig.) 891 WL/orig. 892 RDG

  9. Methodology used to calculate moderator-system heat load at full power and during reactor transients in CANDU reactors

    International Nuclear Information System (INIS)

    Aydogdu, K.

    1998-01-01

    Nine components determine the moderator-system heat load during full-power operation and during a reactor power transient in a CANDU reactor. The components that contribute to the total moderator-system heat load at any time consist of the heat generated in the calandria tubes, guide tubes and reactivity mechanisms, moderator and reflector; the heat transferred from calandria shell, the inner tubesheets and the fuel channels; and the heat gained from moderator pumps and heat lost from piping. The contributions from each of these components will vary with time during a reactor transient. The sources of heat that arise from the deposition of nuclear energy can be divided into two categories, viz., a) the neutronic component (which is directly proportional to neutronic power), which includes neutron energy absorption, prompt-fission gamma absorption and capture gamma absorption; and b) the fission-product decay-gamma component, which also varies with time after initiation of the transient. An equation was derived to calculate transient heat loads to the moderator. The equation includes two independent variables that are the neutronic power and fission-product decay-gamma power fractions during the transient and a constant term that represents the heat gained from moderator pumps and heat lost from piping. The calculated heat load in the moderator during steady-state full-power operation for a CANDU 6 reactor was compared with available measurements from the Point Lepreau, Wolsong 1 and Gentilly-2 nuclear generating stations. The calculated and measured values were in reasonably good agreement. (author)

  10. An approach of SFR safety study through the most penalizing sodium void reactivity - 105

    International Nuclear Information System (INIS)

    Tiberi, V.; Ivanov, E.; Pignet, S.

    2010-01-01

    Sodium void reactivity effects can affect the plant safety significantly during accidental transients. Accordingly, they have to be accurately investigated for any new sodium cooled fast reactor concept, even if a fuel with a melting point lower than the sodium boiling temperature is adopted. Thus all new reactor concepts should be compared to each - others adopting the value of the maximal possible sodium void reactivity as a discrimination parameter. However, taking into account that the sodium void worth is spatially depended, it is not evident which volume could be voided in order to obtain the maximal reactivity increase. Typically the complete active core voiding (zones initially loaded with 235 U or 239 Pu) is taken into account. This paper summarizes the extensive work carried-out in the IRSN to investigate the sodium-void reactivity spatial profiles of a fast sodium-cooled reactor core in the aim of defining a methodology to search for the area where the void contribution to the reactivity is strictly positive. Perturbation theory design approach available in the ERANOS 2.1 code has been adopted to evaluate the 'area of positive void worth'. To do that, the code has been previously validated against experimental based benchmarks (IRPhEP) and reference calculations. The evaluation of the absolute values of reactivity profiles can be improved later-on adopting more sophisticated methodologies to perform more accurate calculations of the sample with the voided area determined adopting the rough procedure described here. It has been demonstrated that even the non-reference way of ERANOS calculations could be used to provide the basis for different core concepts inter-comparison. (authors)

  11. Transient-Switch-Signal Suppressor

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-01-01

    Circuit delays transmission of switch-opening or switch-closing signal until after preset suppression time. Used to prevent transmission of undesired momentary switch signal. Basic mode of operation simple. Beginning of switch signal initiates timing sequence. If switch signal persists after preset suppression time, circuit transmits switch signal to external circuitry. If switch signal no longer present after suppression time, switch signal deemed transient, and circuit does not pass signal on to external circuitry, as though no transient switch signal. Suppression time preset at value large enough to allow for damping of underlying pressure wave or other mechanical transient.

  12. Experience with transients in German NPPs

    International Nuclear Information System (INIS)

    Lindauer, E.

    1984-01-01

    This chapter examines reactor accidents in the Federal Republic of Germany based on the formal reporting system for licensee event reports (LERs) and a special investigation on all unplanned power variations in 3 PWRs. The significant transients experienced by BWR type reactors are analyzed. The main goal is to find weak points which caused the transient or influenced its course in an unfavorable way in order to improve the affected plant and others. The complete survey of all transients, with normally little or no safety relevance, allows statistical evaluations and the analysis of trends. It is concluded that significant transients were mainly experienced at older plants, whereas plants of an advanced design produced very few significant transients. The most frequent human errors which lead to transients are failure search in electronic systems and errors during design and commissioning

  13. Nuclear power plant transients: where are we

    International Nuclear Information System (INIS)

    Majumdar, D.

    1984-05-01

    This document is in part a postconference review and summary of the American Nuclear Society sponsored Anticipated and Abnormal Plant Transients in Light Water Reactors Conference held in Jackson, Wyoming, September 26-29, 1983, and in part a reflection upon the issues of plant transients and their impact on the viability of nuclear power. This document discusses state-of-the-art knowledge, deficiencies, and future directions in the plant transients area as seen through this conference. It describes briefly what was reported in this conference, emphasizes areas where it is felt there is confidence in the nuclear industry, and also discusses where the experts did not have a consensus. Areas covered in the document include major issues in operational transients, transient management, transient events experience base, the status of the analytical tools and their capabilities, probabilistic risk assessment applications in operational transients, and human factors impact on plant transients management

  14. PWR systems transient analysis

    International Nuclear Information System (INIS)

    Kennedy, M.F.; Peeler, G.B.; Abramson, P.B.

    1985-01-01

    Analysis of transients in pressurized water reactor (PWR) systems involves the assessment of the response of the total plant, including primary and secondary coolant systems, steam piping and turbine (possibly including the complete feedwater train), and various control and safety systems. Transient analysis is performed as part of the plant safety analysis to insure the adequacy of the reactor design and operating procedures and to verify the applicable plant emergency guidelines. Event sequences which must be examined are developed by considering possible failures or maloperations of plant components. These vary in severity (and calculational difficulty) from a series of normal operational transients, such as minor load changes, reactor trips, valve and pump malfunctions, up to the double-ended guillotine rupture of a primary reactor coolant system pipe known as a Large Break Loss of Coolant Accident (LBLOCA). The focus of this paper is the analysis of all those transients and accidents except loss of coolant accidents

  15. Investigation of Natural Circulation Instability and Transients in Passively Safe Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Mamoru [Purdue Univ., West Lafayette, IN (United State

    2016-11-30

    The NEUP funded project, NEUP-3496, aims to experimentally investigate two-phase natural circulation flow instability that could occur in Small Modular Reactors (SMRs), especially for natural circulation SMRs. The objective has been achieved by systematically performing tests to study the general natural circulation instability characteristics and the natural circulation behavior under start-up or design basis accident conditions. Experimental data sets highlighting the effect of void reactivity feedback as well as the effect of power ramp-up rate and system pressure have been used to develop a comprehensive stability map. The safety analysis code, RELAP5, has been used to evaluate experimental results and models. Improvements to the constitutive relations for flashing have been made in order to develop a reliable analysis tool. This research has been focusing on two generic SMR designs, i.e. a small modular Simplified Boiling Water Reactor (SBWR) like design and a small integral Pressurized Water Reactor (PWR) like design. A BWR-type natural circulation test facility was firstly built based on the three-level scaling analysis of the Purdue Novel Modular Reactor (NMR) with an electric output of 50 MWe, namely NMR-50, which represents a BWR-type SMR with a significantly reduced reactor pressure vessel (RPV) height. The experimental facility was installed with various equipment to measure thermalhydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests were performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The control system and data acquisition system were programmed with LabVIEW to realize the realtime control and data storage. The thermal-hydraulic and nuclear coupled startup transients were performed to investigate the flow instabilities at low pressure and low power conditions for NMR-50. Two different power ramps were chosen to study the effect of startup

  16. Transient osteoporosis of the hip

    International Nuclear Information System (INIS)

    McWalter, Patricia; Hassan Ahmed

    2007-01-01

    Transient osteoporosis of the hip is an uncommon cause of hip pain, mostly affecting healthy middle-aged men and also women in the third trimester of pregnancy. We present a case of transient osteoporosis of the hip in a 33-year-old non-pregnant female patient. This case highlights the importance of considering a diagnosis of transient osteoporosis of the hip in patients who present with hip pain. (author)

  17. Study of reactivity feedbacks in a sodium-cooled fast reactor: new methodology based on perturbation theory for evaluating neutronic uncertainties

    International Nuclear Information System (INIS)

    Bouret, Cyrille

    2014-01-01

    Fast reactors (FR) can give value to the plutonium produced by the existing light water reactors and allow the transmutation of a significant part of the final nuclear waste. These features offer industrial prospects for this technology and new projects are currently studied in the world such as ASTRID prototype in France. Future FRs will have also to satisfy new requirements in terms of competitiveness, safety and reliability. In this context, the new core concept envisaged for ASTRID incorporate innovative features that improve the safety of the reactor in case of accident. The proposed design achieves a sodium voiding effect close to zero: it includes a fertile plate in the middle of the core and a sodium plenum in the upper part in order to increase the neutron leakage in case of sodium voiding. This heterogeneous design represents a challenge for the calculation tools and methods used so far to evaluate the neutronic parameters in traditional homogeneous cores. These methods have been improved over the thesis to rigorously treat the neutron streaming, especially at the mediums interfaces. These enhancements have consisted in the development of a specific analysis methodology based on perturbation theory and using a modern three dimensional Sn transport solver. This work has allowed on the one hand, to reduce the bias on static neutronic parameters in comparison with Monte Carlo methods, and, on the other hand, to obtain more accurate spatial distributions of neutronic effects including the reactivity feedback coefficients used for transient analysis. The analysis of the core behavior during transients has also allowed estimating the impact of reactivity feedback coefficients assessment improvements. In conjunction with this work, innovative methods based on the evaluation of local sensitivities coefficients have been proposed to assess the uncertainties associated to local reactivity effects. These uncertainties include the correlations between the different

  18. A COMETHE version with transient capability

    International Nuclear Information System (INIS)

    Vliet, J. van; Lebon, G.; Mathieu, P.

    1980-01-01

    A version of the COMETHE code is under development to simulate transient situations. This paper focuses on some aspects of the transient heat transfer models. Initially the coupling between transient heat transfer and other thermomechanical models is discussed. An estimation of the thermal characteristic times shows that the cladding temperatures are often in quasi-steady state. In order to reduce the computing time, calculations are therefore switched from a transient to a quasi-static numerical procedure as soon as such a quasi-equilibrium is detected. The temperature calculation is performed by use of the Lebon-Lambermont restricted variational principle, with piecewise polynoms as trial functions. The method has been checked by comparison with some exact results and yields good agreement for transient as well as for quasi-static situations. This method therefore provides a valuable tool for the simulation of the transient behaviour of nuclear reactor fuel rods. (orig.)

  19. Facial nerve palsy after reactivation of herpes simplex virus type 1 in diabetic mice.

    Science.gov (United States)

    Esaki, Shinichi; Yamano, Koji; Katsumi, Sachiyo; Minakata, Toshiya; Murakami, Shingo

    2015-04-01

    Bell's palsy is highly associated with diabetes mellitus (DM). Either the reactivation of herpes simplex virus type 1 (HSV-1) or diabetic mononeuropathy has been proposed to cause the facial paralysis observed in DM patients. However, distinguishing whether the facial palsy is caused by herpetic neuritis or diabetic mononeuropathy is difficult. We previously reported that facial paralysis was aggravated in DM mice after HSV-1 inoculation of the murine auricle. In the current study, we induced HSV-1 reactivation by an auricular scratch following DM induction with streptozotocin (STZ). Controlled animal study. Diabetes mellitus was induced with streptozotocin injection in only mice that developed transient facial nerve paralysis with HSV-1. Recurrent facial palsy was induced after HSV-1 reactivation by auricular scratch. After DM induction, the number of cluster of differentiation 3 (CD3)(+) T cells decreased by 70% in the DM mice, and facial nerve palsy recurred in 13% of the DM mice. Herpes simplex virus type 1 deoxyribonucleic acid (DNA) was detected in the facial nerve of all of the DM mice with palsy, and HSV-1 capsids were found in the geniculate ganglion using electron microscopy. Herpes simplex virus type 1 DNA was also found in some of the DM mice without palsy, which suggested the subclinical reactivation of HSV-1. These results suggested that HSV-1 reactivation in the geniculate ganglion may be the main causative factor of the increased incidence of facial paralysis in DM patients. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  20. Transient performance and design aspects of low boron PWR cores with increased utilization of burnable absorbers

    International Nuclear Information System (INIS)

    Papukchiev, Angel; Schaefer, Anselm

    2008-01-01

    In conventional pressurized water reactor (PWR) designs, soluble boron is used for reactivity control over core fuel cycle. As high boron concentrations have significant impact on reactivity feedback properties and core transient behaviour, design changes to reduce boron concentration in the reactor coolant are of general interest in view of improving PWR inherent safety. In order to assess the potential advantages of such strategies in current PWRs, two low boron core configurations based on fuel with increased utilization of gadolinium and erbium burnable absorbers have been developed. The new PWR designs permit to reduce the natural boron concentration in reactor coolant at begin of cycle to 518 (Gd) and 805 (Er) ppm. An innovative low boron core design methodology was implemented combining a simplified reactivity balance search procedure with a core design approach based on detailed 3D diffusion calculations. Fuel cross sections needed for nuclear libraries were generated using the 2D lattice code HELIOS [2] and full core configurations were modelled with the 3D diffusion code QUABOX/CUBBOX [3]. For dynamic 3D calculations, the coupled code system ATHLET - QUABOX/CUBBOX was used [4]. The new cores meet German acceptance criteria regarding stuck rod, departure from nucleate boiling ratio (DNBR), shutdown margin, and maximal linear power. For the assessment of potential safety advantages of the new cores, comparative analyses were performed for three PWR core designs: the already mentioned two low boron designs and a standard design. The improved safety performance of the low boron cores in anticipated transients without scram (ATWS), boron dilution scenarios and beyond design basis accidents (BDBA) has already been reported in [1, 2 and 3]. This paper gives a short reminder on the results obtained. Moreover, it deals not only with the potential advantages, but also addresses the drawbacks of the new PWR configurations - complex core design, increased power

  1. Profound regulation of Na/K pump activity by transient elevations of cytoplasmic calcium in murine cardiac myocytes.

    Science.gov (United States)

    Lu, Fang-Min; Deisl, Christine; Hilgemann, Donald W

    2016-09-14

    Small changes of Na/K pump activity regulate internal Ca release in cardiac myocytes via Na/Ca exchange. We now show conversely that transient elevations of cytoplasmic Ca strongly regulate cardiac Na/K pumps. When cytoplasmic Na is submaximal, Na/K pump currents decay rapidly during extracellular K application and multiple results suggest that an inactivation mechanism is involved. Brief activation of Ca influx by reverse Na/Ca exchange enhances pump currents and attenuates current decay, while repeated Ca elevations suppress pump currents. Pump current enhancement reverses over 3 min, and results are similar in myocytes lacking the regulatory protein, phospholemman. Classical signaling mechanisms, including Ca-activated protein kinases and reactive oxygen, are evidently not involved. Electrogenic signals mediated by intramembrane movement of hydrophobic ions, such as hexyltriphenylphosphonium (C6TPP), increase and decrease in parallel with pump currents. Thus, transient Ca elevation and Na/K pump inactivation cause opposing sarcolemma changes that may affect diverse membrane processes.

  2. Reactive Kripke semantics

    CERN Document Server

    Gabbay, Dov M

    2013-01-01

    This text offers an extension to the traditional Kripke semantics for non-classical logics by adding the notion of reactivity. Reactive Kripke models change their accessibility relation as we progress in the evaluation process of formulas in the model. This feature makes the reactive Kripke semantics strictly stronger and more applicable than the traditional one. Here we investigate the properties and axiomatisations of this new and most effective semantics, and we offer a wide landscape of applications of the idea of reactivity. Applied topics include reactive automata, reactive grammars, rea

  3. EXCURS: a computing programme for analysis of core transient behaviour in a sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Saito, Shinzo

    1977-09-01

    In the code EXCURS developed for core transient behaviour calculation of a sodium-cooled fast reactor, a one-channel model is used to represent thermal behaviour of the reactor core. Calculations are made for three different channels; i.e. average, hot and hottest. In the average channel the power density and coolant velocity are equal to the mean values of the whole core. In the hot channel, a maximum power density of the core and a specific coolant velocity are introduced. In the hottest channel, engineering hot channel factors are considered to the hot channel. A one-point neutron kinetics equation with six delayed neutron groups is used to calculate the time-dependent power behaviour. Externally introduced reactivity effect and control rod movement in the case of a scram are taken into account. In the feedback effects evaluated on the basis of the average channel temperatures are considered Doppler effect, fuel axial expansion, cladding expansion, coolant expansion and structure expansion. The decay heat after reactor scram is also considered. Heat balance is taken in each cross section, neglecting the axial heat transfer except for the coolant region. Temperature dependence of the physical properties of materials is considered by second-order polynomials approximation, and also the fuel melting process. Each channel can be divided into a maximum of 20 regions in both radially and axially. The reactor core transient behaviour due to reactivity insertion or loss-of-coolant flow can be studied by EXCURS. The calculated results are plotted optionally by connected code EXPLOT. (auth.)

  4. Assessment of RELAP5/Mod3 system thermal hydraulic code using power test data of a BWR6 reactor

    International Nuclear Information System (INIS)

    Lee, M.; Chiang, C.S.

    1997-01-01

    The power test data of Kuosheng Nuclear Power Plant were used to assess RELAP5/Mod3 system thermal hydraulic analysis code. The plant employed a General Electric designed Boiling Water Reactor (BWR6) with rated power of 2894 MWth. The purpose of the assessment is to verify the validity of the plant specific RELAP5/Mod3 input deck for transient analysis. The power tests considered in the assessment were 100% power generator load rejection, the closure of main steam isolation valves (MSIVs) at 96% power, and the trip of recirculation pumps at 68% power. The major parameters compared in the assessment were steam dome pressure, steam flow rate, core flow rate, and downcomer water level. The comparisons of the system responses predicted by the code and the power test data were reasonable which demonstrated the capabilities of the code and the validity of the input deck. However, it was also identified that the separator model of the code may cause energy imbalance problem in the transient calculation. In the assessment, the steam separators were modeled using time-dependent junctions. In the approach, a complete separation of steam and water was predicted. The system responses predicted by RELAP5/Mod3 code were also compared with those from the calculations of RETRAN code. When these results were compared with the power test data, the predictions of the RETRAN code were better than those of RELAP5/Mod3. In the simulation of 100% power generator load rejection, it was believed that the difference in the steam separator model of these two codes was one of the reason of the difference in the prediction of power test data. The predictions of RELAP/Mod3 code can also be improved by the incorporation of one-dimensional kinetic model. There was also some margin for the improvement of the input related to the feedwater control system. (author)

  5. Research of the transient management in TQNPC

    International Nuclear Information System (INIS)

    Guo Longzhang; Lin Chuanqing

    2008-01-01

    Transient management is the basic technical subject in nuclear power plant. Since the Third Qinshan nuclear power company (TQNPC) successful completes the commissioning in 2003, the transient management work start at the transient management item selection and the flow definition. Now TQNPC have a complete transient management system and the management flow. In the last two years, TNQPC have finished the historic transient data collection for two units, and confirmed that the plant's key systems and equipments are at safe state. The development of the transient management subject would build a reliable foundation for the plant safe operation, plant lifetime management and periodic safety review. (author)

  6. Compressive Transient Imaging

    KAUST Repository

    Sun, Qilin

    2017-04-01

    High resolution transient/3D imaging technology is of high interest in both scientific research and commercial application. Nowadays, all of the transient imaging methods suffer from low resolution or time consuming mechanical scanning. We proposed a new method based on TCSPC and Compressive Sensing to achieve a high resolution transient imaging with a several seconds capturing process. Picosecond laser sends a serious of equal interval pulse while synchronized SPAD camera\\'s detecting gate window has a precise phase delay at each cycle. After capturing enough points, we are able to make up a whole signal. By inserting a DMD device into the system, we are able to modulate all the frames of data using binary random patterns to reconstruct a super resolution transient/3D image later. Because the low fill factor of SPAD sensor will make a compressive sensing scenario ill-conditioned, We designed and fabricated a diffractive microlens array. We proposed a new CS reconstruction algorithm which is able to denoise at the same time for the measurements suffering from Poisson noise. Instead of a single SPAD senor, we chose a SPAD array because it can drastically reduce the requirement for the number of measurements and its reconstruction time. Further more, it not easy to reconstruct a high resolution image with only one single sensor while for an array, it just needs to reconstruct small patches and a few measurements. In this thesis, we evaluated the reconstruction methods using both clean measurements and the version corrupted by Poisson noise. The results show how the integration over the layers influence the image quality and our algorithm works well while the measurements suffer from non-trival Poisson noise. It\\'s a breakthrough in the areas of both transient imaging and compressive sensing.

  7. Self-Propagating Reactive Fronts in Compacts of Multilayered Particles

    International Nuclear Information System (INIS)

    Sraj, I.; Vohra, M.; Alawieh, L.; Weihs, T.P.; Knio, O.M.

    2013-01-01

    Reactive multilayered foils in the form of thin films have gained interest in various applications such as joining, welding, and ignition. Typically, thin film multilayers support self-propagating reaction fronts with speeds ranging from 1 to 20 m/s. In some applications, however, reaction fronts with much smaller velocities are required. This recently motivated Fritz et al. (2011) to fabricate compacts of regular sized/shaped multilayered particles and demonstrate self-sustained reaction fronts having much smaller velocities than thin films with similar layering. In this work, we develop a simplified numerical model to simulate the self-propagation of reactive fronts in an idealized compact, comprising identical Ni/Al multilayered particles in thermal contact. The evolution of the reaction in the compact is simulated using a two-dimensional transient model, based on a reduced description of mixing, heat release, and thermal transport. Computed results reveal that an advancing reaction front can be substantially delayed as it crosses from one particle to a neighboring particle, which results in a reduced mean propagation velocity. A quantitative analysis is thus conducted on the dependence of these phenomena on the contact area between the particles, the thermal contact resistance, and the arrangement of the multilayered particles.

  8. Self-Propagating Reactive Fronts in Compacts of Multilayered Particles

    Directory of Open Access Journals (Sweden)

    Ihab Sraj

    2013-01-01

    Full Text Available Reactive multilayered foils in the form of thin films have gained interest in various applications such as joining, welding, and ignition. Typically, thin film multilayers support self-propagating reaction fronts with speeds ranging from 1 to 20 m/s. In some applications, however, reaction fronts with much smaller velocities are required. This recently motivated Fritz et al. (2011 to fabricate compacts of regular sized/shaped multilayered particles and demonstrate self-sustained reaction fronts having much smaller velocities than thin films with similar layering. In this work, we develop a simplified numerical model to simulate the self-propagation of reactive fronts in an idealized compact, comprising identical Ni/Al multilayered particles in thermal contact. The evolution of the reaction in the compact is simulated using a two-dimensional transient model, based on a reduced description of mixing, heat release, and thermal transport. Computed results reveal that an advancing reaction front can be substantially delayed as it crosses from one particle to a neighboring particle, which results in a reduced mean propagation velocity. A quantitative analysis is thus conducted on the dependence of these phenomena on the contact area between the particles, the thermal contact resistance, and the arrangement of the multilayered particles.

  9. Tako-tsubo cardiomyopathy observed in a patient with sepsis and transient hyperthyroidism.

    Science.gov (United States)

    Sarullo, Filippo M; Americo, Luigi; Accardo, Salvatore; Cicero, Sergio; Schicchi, Rossella; Schirò, Maria; Castello, Antonio

    2009-03-01

    A 55-years-old woman, with a history of hypertension and ischemic stroke with residual left hemiparesis, was admitted to our hospital because of dyspnoea with clinical evidence of acute pulmonary edema. She was found to have a sinus tachycardia with ST-elevation in leads D1, aVL and V1-V4 in the electrocardiogram, and akinesis of the left ventricular apex with overall left ventricular systolic function being severely impaired and an ejection fraction of 28% on echocardiography. Orotracheal intubation was performed and mechanical ventilation was immediately started. Emergency cardiac catheterization was performed 2 h after the symptom onset. Coronary angiography showed no significant coronary artery disease. Blood analysis revealed an increase in the creatine kinase MB fraction, a significant positive detection in troponin T, a white blood cell count of 35000 per microliter, C-reactive protein of 59,9 mg/dl, and transient elevation in the concentration of free triiodothyronine, free thyroxine, thyroid globulin antibody, and thyroid peroxidase antibody. The symptoms improved during the next days, and follow-up echocardiography 18 days later showed complete resolution of the left ventricular dysfunction. These data suggest that tako-tsubo cardiomyopathy may be induced in patients with sepsis and transient hyperthyroidism.

  10. Magnitude and reactivity consequences of moisture ingress into the modular High-Temperature Gas-Cooled Reactor core

    International Nuclear Information System (INIS)

    Smith, O.L.

    1992-12-01

    Inadvertent admission of moisture into the primary system of a modular high-temperature gas-cooled reactor has been identified in US Department of Energy-sponsored studies as an important safety concern. The work described here develops an analytical methodology to quantify the pressure and reactivity consequences of steam-generator tube rupture and other moisture-ingress-related incidents. Important neutronic and thermohydraulic processes are coupled with reactivity feedback and safety and control system responses. The rate and magnitude of steam buildup are found to be dominated by major system features such as break size compared with safety valve capacity and reliability and less sensitive to factors such as heat transfer coefficients. The results indicate that ingress transients progress at a slower pace than previously predicted by bounding analyses, with milder power overshoots and more time for operator or automatic corrective actions

  11. A transient absorption study of allophycocyanin

    Indian Academy of Sciences (India)

    Transient dynamics of allophycocyanin trimers and monomers are observed by using the pump-probe, transient absorption technique. The origin of spectral components of the transient absorption spectra is discussed in terms of both kinetics and spectroscopy. We find that the energy gap between the ground and excited ...

  12. The joy of transient chaos

    Energy Technology Data Exchange (ETDEWEB)

    Tél, Tamás [Institute for Theoretical Physics, Eötvös University, and MTA-ELTE Theoretical Physics Research Group, Pázmány P. s. 1/A, Budapest H-1117 (Hungary)

    2015-09-15

    We intend to show that transient chaos is a very appealing, but still not widely appreciated, subfield of nonlinear dynamics. Besides flashing its basic properties and giving a brief overview of the many applications, a few recent transient-chaos-related subjects are introduced in some detail. These include the dynamics of decision making, dispersion, and sedimentation of volcanic ash, doubly transient chaos of undriven autonomous mechanical systems, and a dynamical systems approach to energy absorption or explosion.

  13. The joy of transient chaos.

    Science.gov (United States)

    Tél, Tamás

    2015-09-01

    We intend to show that transient chaos is a very appealing, but still not widely appreciated, subfield of nonlinear dynamics. Besides flashing its basic properties and giving a brief overview of the many applications, a few recent transient-chaos-related subjects are introduced in some detail. These include the dynamics of decision making, dispersion, and sedimentation of volcanic ash, doubly transient chaos of undriven autonomous mechanical systems, and a dynamical systems approach to energy absorption or explosion.

  14. The ZTF Bright Transient Survey

    Science.gov (United States)

    Fremling, C.; Sharma, Y.; Kulkarni, S. R.; Miller, A. A.; Taggart, K.; Perley, D. A.; Gooba, A.

    2018-06-01

    As a supplement to the Zwicky Transient Facility (ZTF; ATel #11266) public alerts (ATel #11685) we plan to report (following ATel #11615) bright probable supernovae identified in the raw alert stream from the ZTF Northern Sky Survey ("Celestial Cinematography"; see Bellm & Kulkarni, 2017, Nature Astronomy 1, 71) to the Transient Name Server (https://wis-tns.weizmann.ac.il) on a daily basis; the ZTF Bright Transient Survey (BTS; see Kulkarni et al., 2018; arXiv:1710.04223).

  15. Operational experience with reactive power control methods optimized for tokamak power supplies

    International Nuclear Information System (INIS)

    Sihler, C.; Huart, M.; Kaesemann, C.-P.; Streibl, B.

    2003-01-01

    The power and energy of the ASDEX Upgrade (AUG) tokamak are provided by two separate 10.5 kV, 110-85 Hz networks based on the flywheel generators EZ3-EZ4 in addition to the generator EZ2 dedicated to the toroidal field coil. The 10.5 kV networks supply the thyristor converters allowing fast control of the DC currents in the AUG poloidal field coils. Two methods for improving the load power factor in the present experimental campaign of AUG have been investigated, namely the control of the phase-to-neutral voltage in thyristor converters fitted with neutral thyristors, such as the new 145 MVA modular thyristor converter system (Group 6), and reactive power control achieved by means of static VAr compensators (SVC). The paper shows that reliable compensation up to 90 MVAr was regularly achieved and that electrical transients in SVC modules can be kept at an acceptable level. The paper will discuss the results from the reactive power reduction by SVC and neutral thyristor control and draw a comparative conclusion

  16. Explosive and radio-selected Transients: Transient Astronomy with ...

    Indian Academy of Sciences (India)

    40

    sitive measurements will lead to very accurate mass loss estimation in these supernovae. .... transients are powerful probes of intervening media owing to dispersion ...... A., & Chandra, P. 2011, Nature Communications,. 2, 175. Chakraborti, S.

  17. Development of new NSSS thermal-hydraulic model for Korean standard nuclear power plant(UCN-3/4) simulator

    International Nuclear Information System (INIS)

    Kim, Kyung Doo; Jeong, Jae Jun

    2001-09-01

    The NSSS thermal-hydraulic programs installed in the domestic full-scope power plant simulators were provided in early 1980s by foreign vendors. Because of limited computational capability at that time, they usually adopt very simplified physical models for a real-time simulation of NSSS thermal-hydraulic phenomena, which entails inaccurate results and the possibility of so-called 'negative training', especially for complicated two-phase flows in the reactor coolant system. To resolve the problem, we developed a realistic NSSS T/H program (named 'ARTS-UCN' code) for the improvement of the Korean Standard Nuclear Power Plant full-scope simulator. ARTS Code, developed as an NSSS T/H model for the KNPEC no. 2 simulator using the RETRAN03 code, was selected as a reference code for ARTS-UCN code development. For the development of ARTS, the followings have been performed: - Improvement of the robustness of RETRAN - Improvement of the real-time simulation capability of RETRAN - Optimum input data generation for the NSSS simulation - New model development that cannot be efficiently modeled by RETRAN - Assessment of the ARTS code. The systematic assessment of ARTS has been conducted in both personal computers (Windows 98, Visual fortran) and the simulator development environment (Windows NT, GSE simulator development tool). The results were resonable in terms of accuracy, real-time simulation and robustness

  18. Lifetimes and reactivities of some 1,2-didehydroazepines commonly used in photoaffinity labeling experiments in aqueous solutions.

    Science.gov (United States)

    Rizk, Mary S; Shi, Xiaofeng; Platz, Matthew S

    2006-01-17

    The reactive 1,2-didehydroazepine (cyclic ketenimine) intermediates produced upon photolysis of phenyl azide, 3-hydroxyphenyl azide, 3-methoxyphenyl azide, and 3-nitrophenyl azide in water and in HEPES buffer were studied by laser flash photolysis techniques with UV-vis detection of the transient intermediates. The lifetimes of the 1,2-didehydroazepines were obtained along with the absolute rate constants of their reactions with typical amino acids, nucleosides, and other simple reagents present in a biochemical milieu. The nitro substituent greatly accelerates the bimolecular reactions of the cyclic ketenimines, and the 3-methoxy group greatly decelerates the absolute reactivity of 1,2-didehydroazepines. The intermediate produced by photolysis of 3-hydroxyphenyl azide is much more reactive than the intermediate produced by photolysis of 3-methoxyphenyl azide. We propose that the hydroxyl-substituted 1,2-didehydoazepines rapidly (ketenimines undergo hydrolysis. Azepinones react more rapidly with nucleophiles than do methoxy-substituted 1,2-didehydroazepines and are the active species present upon the photolysis of 3-hydroxyphenyl azide in aqueous solution.

  19. Influence of void effects on reactivity of coupled fast-thermal system HERBE

    International Nuclear Information System (INIS)

    Ljubenov, V.; Milovanovic, S.; Milovanovic, T.; Cuknic, O.

    1997-01-01

    Coupled fast-thermal system HERBE at the experimental zero power heavy water reactor RB is a system with the significant effects of the neutron leakage and neutron absorption. Presence of a coolant void introduces a new structure in an extremely heterogeneous core. In those conditions satisfactory results of the calculation are acquired only using specified space-energy homogenization procedure. In order to analyze transient appearances and accidental cases of the reactor systems, a procedure for modeling of influence of moderator and coolant loss on reactivity ('void effect') is developed. Reduction of the moderator volume fraction in some fuel channels due to air gaps or steam generation during the accidental moderator boiling, restricts validity of the diffusion approximation in the reactor calculations. In cases of high neutron flux gradients, which are consequence of high neutron absorption, application of diffusion approximation is questionable too. The problem may be solved using transport or Monte Carlo methods, but they are not acceptable in the routine applications. Applying new techniques based on space-energy core homogenization, such as the SPH method or the discontinuity factor method, diffusion calculations become acceptable. Calculations based on the described model show that loss of part of moderator medium introduce negative reactivity in the HERBE system. Calculated local void reactivity coefficients are used in safety analysis of hypothetical accidents

  20. Ultrafast triggered transient energy storage by atomic layer deposition into porous silicon for integrated transient electronics

    Science.gov (United States)

    Douglas, Anna; Muralidharan, Nitin; Carter, Rachel; Share, Keith; Pint, Cary L.

    2016-03-01

    Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics.Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics. Electronic supplementary information (ESI) available: (i) Experimental details for ALD and material fabrication, ellipsometry film thickness, preparation of gel electrolyte and separator, details for electrochemical measurements, HRTEM image of VOx coated porous silicon, Raman spectroscopy for VOx as-deposited as well as annealed in air for 1 hour at 450 °C, SEM and transient behavior dissolution tests of uniformly coated VOx on

  1. Electromagnetic transients in power cables

    CERN Document Server

    da Silva, Filipe Faria

    2013-01-01

    From the more basic concepts to the most advanced ones where long and laborious simulation models are required, Electromagnetic Transients in Power Cables provides a thorough insight into the study of electromagnetic transients and underground power cables. Explanations and demonstrations of different electromagnetic transient phenomena are provided, from simple lumped-parameter circuits to complex cable-based high voltage networks, as well as instructions on how to model the cables.Supported throughout by illustrations, circuit diagrams and simulation results, each chapter contains exercises,

  2. Spectroscopic classification of transients

    DEFF Research Database (Denmark)

    Stritzinger, M. D.; Fraser, M.; Hummelmose, N. N.

    2017-01-01

    We report the spectroscopic classification of several transients based on observations taken with the Nordic Optical Telescope (NOT) equipped with ALFOSC, over the nights 23-25 August 2017.......We report the spectroscopic classification of several transients based on observations taken with the Nordic Optical Telescope (NOT) equipped with ALFOSC, over the nights 23-25 August 2017....

  3. Total Monte-Carlo method applied to the assessment of uncertainties in a reactivity-initiated accident

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, D.F. da; Rochman, D.; Koning, A.J. [Nuclear Research and Consultancy Group NRG, Petten (Netherlands)

    2014-07-01

    The Total Monte-Carlo (TMC) method has been applied extensively since 2008 to propagate the uncertainties in nuclear data for reactor parameters and fuel inventory, and for several types of advanced nuclear systems. The analyses have been performed considering different levels of complexity, ranging from a single fuel rod to a full 3-D reactor core at steady-state. The current work applies the TMC method for a full 3-D pressurized water reactor core model under steady-state and transient conditions, considering thermal-hydraulic feedback. As a transient scenario the study focused on a reactivity-initiated accident, namely a control rod ejection accident initiated by a mechanical failure of the control rod drive mechanism. The uncertainties on the main reactor parameters due to variations in nuclear data for the isotopes {sup 235},{sup 238}U, {sup 239}Pu and thermal scattering data for {sup 1}H in water were quantified. (author)

  4. Transient or permanent fisheye views

    DEFF Research Database (Denmark)

    Jakobsen, Mikkel Rønne; Hornbæk, Kasper

    2012-01-01

    Transient use of information visualization may support specific tasks without permanently changing the user interface. Transient visualizations provide immediate and transient use of information visualization close to and in the context of the user’s focus of attention. Little is known, however......, about the benefits and limitations of transient visualizations. We describe an experiment that compares the usability of a fisheye view that participants could call up temporarily, a permanent fisheye view, and a linear view: all interfaces gave access to source code in the editor of a widespread...... programming environment. Fourteen participants performed varied tasks involving navigation and understanding of source code. Participants used the three interfaces for between four and six hours in all. Time and accuracy measures were inconclusive, but subjective data showed a preference for the permanent...

  5. Studies on an Electromagnetic Transient Model of Offshore Wind Turbines and Lightning Transient Overvoltage Considering Lightning Channel Wave Impedance

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2017-12-01

    Full Text Available In recent years, with the rapid development of offshore wind turbines (WTs, the problem of lightning strikes has become more and more prominent. In order to reduce the failure rate caused by the transient overvoltage of lightning struck offshore WTs, the influencing factors and the response rules of transient overvoltage are analyzed. In this paper, a new integrated electromagnetic transient model of offshore WTs is established by using the numerical calculation method of the electromagnetic field first. Then, based on the lightning model and considering the impedance of the lightning channel, the transient overvoltage of lightning is analyzed. Last, the electromagnetic transient model of offshore WTs is simulated and analyzed by using the alternative transients program electro-magnetic transient program (ATP-EMTP software. The influence factors of lightning transient overvoltage are studied. The main influencing factors include the sea depth, the blade length, the tower height, the lightning flow parameters, the lightning strike point, and the blade rotation position. The simulation results show that the influencing factors mentioned above have different effects on the lightning transient overvoltage. The results of the study have some guiding significance for the design of the lightning protection of the engine room.

  6. Digital reactivity meter

    International Nuclear Information System (INIS)

    Akkus, B.; Anac, H.; Alsan, S.; Erk, S.

    1991-01-01

    Nowadays, various digital methods making use of microcomputers for neutron detector signals and determining the reactivity by numerical calculations are used in reactor control systems in place of classical reactivity meters. In this work, a calculation based on the ''The Time Dependent Transport Equation'' has been developed for determining the reactivity numerically. The reactivity values have been obtained utilizing a computer-based data acquisition and control system and compared with the analog reactivity meter values as well as the values calculated from the ''Inhour Equation''

  7. Quantification of metabolically active transient storage (MATS) in two reaches with contrasting transient storage and ecosystem respiration

    Science.gov (United States)

    Alba Argerich; Roy Haggerty; Eugènia Martí; Francesc Sabater; Jay. Zarnetske

    2011-01-01

    Water transient storage zones are hotspots for metabolic activity in streams although the contribution of different types of transient storage zones to the whole�]reach metabolic activity is difficult to quantify. In this study we present a method to measure the fraction of the transient storage that is metabolically active (MATS) in two consecutive reaches...

  8. Transient magnetoviscosity of dilute ferrofluids

    International Nuclear Information System (INIS)

    Soto-Aquino, Denisse; Rinaldi, Carlos

    2011-01-01

    The magnetic field induced change in the viscosity of a ferrofluid, commonly known as the magnetoviscous effect and parameterized through the magnetoviscosity, is one of the most interesting and practically relevant aspects of ferrofluid phenomena. Although the steady state behavior of ferrofluids under conditions of applied constant magnetic fields has received considerable attention, comparatively little attention has been given to the transient response of the magnetoviscosity to changes in the applied magnetic field or rate of shear deformation. Such transient response can provide further insight into the dynamics of ferrofluids and find practical application in the design of devices that take advantage of the magnetoviscous effect and inevitably must deal with changes in the applied magnetic field and deformation. In this contribution Brownian dynamics simulations and a simple model based on the ferrohydrodynamics equations are applied to explore the dependence of the transient magnetoviscosity for two cases: (I) a ferrofluid in a constant shear flow wherein the magnetic field is suddenly turned on, and (II) a ferrofluid in a constant magnetic field wherein the shear flow is suddenly started. Both simulations and analysis show that the transient approach to a steady state magnetoviscosity can be either monotonic or oscillatory depending on the relative magnitudes of the applied magnetic field and shear rate. - Research Highlights: →Rotational Brownian dynamics simulations were used to study the transient behavior of the magnetoviscosity of ferrofluids. →Damped and oscillatory approach to steady state magnetoviscosity was observed for step changes in shear rate and magnetic field. →A model based on the ferrohydrodynamics equations qualitatively captured the damped and oscillatory features of the transient response →The transient behavior is due to the interplay of hydrodynamic, magnetic, and Brownian torques on the suspended particles.

  9. Disruption of the blood-brain interface in neonatal rat neocortex induces a transient expression of metallothionein in reactive astrocytes

    DEFF Research Database (Denmark)

    Penkowa, M; Moos, T

    1995-01-01

    rats were subjected to a localized freeze lesion of the neocortex of the right temporal cortex. This lesion results in a disrupted blood-brain interface, leading to extravasation of plasma proteins. From 16 h, reactive astrocytosis, defined as an increase in the number and size of cells expressing GFAP...

  10. On-line prediction of BWR transients in support of plant operation and safety analyses

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Lekach, S.V.; Mallen, A.N.

    1983-01-01

    A combination of advanced modeling techniques and modern, special-purpose peripheral minicomputer technology is presented which affords realistic predictions of plant transient and severe off-normal events in LWR power plants through on-line simulations at a speed ten times greater than actual process speeds. Results are shown for a BWR plant simulation. The mathematical models account for nonequilibrium, nonhomogeneous two-phase flow effects in the coolant, for acoustical effects in the steam line and for the dynamics of the recirculation loop and feed-water train. Point kinetics incorporate reactivity feedback for void fraction, for fuel temperature, and for coolant temperature. Control systems and trip logic are simulated for the nuclear steam supply system

  11. Impact Study of PMSG-Based Wind Power Penetration on Power System Transient Stability Using EEAC Theory

    Directory of Open Access Journals (Sweden)

    Zhongyi Liu

    2015-11-01

    Full Text Available Wind turbines with direct-driven permanent magnet synchronous generators (PMSGs are widely used in wind power generation. According to the dynamic characteristics of PMSGs, an impact analysis of PMSG-based wind power penetration on the transient stability of multi-machine power systems is carried out in this paper based on the theory of extended equal area criterion (EEAC. Considering the most severe PMSG integration situation, the changes in the system’s equivalent power-angle relationships after integrating PMSGs are studied in detail. The system’s equivalent mechanical input power and the fault period electrical output power curves are found to be mainly affected. The analysis demonstrates that the integration of PMSGs can cause either detrimental or beneficial effects on the system transient stability. It is determined by several factors, including the selection of the synchronous generators used to balance wind power, the reactive power control mode of PMSGs and the wind power penetration level. Two different simulation systems are also adopted to verify the analysis results.

  12. Pressure transients across HEPA filters

    International Nuclear Information System (INIS)

    Gregory, W.; Reynolds, G.; Ricketts, C.; Smith, P.R.

    1977-01-01

    Nuclear fuel cycle facilities require ventilation for health and safety reasons. High efficiency particulate air (HEPA) filters are located within ventilation systems to trap radioactive dust released in reprocessing and fabrication operations. Pressure transients within the air cleaning systems may be such that the effectiveness of the filtration system is questioned under certain accident conditions. These pressure transients can result from both natural and man-caused phenomena: atmospheric pressure drop caused by a tornado or explosions and nuclear excursions initiate pressure pulses that could create undesirable conditions across HEPA filters. Tornado depressurization is a relatively slow transient as compared to pressure pulses that result from combustible hydrogen-air mixtures. Experimental investigation of these pressure transients across air cleaning equipment has been undertaken by Los Alamos Scientific Laboratory and New Mexico State University. An experimental apparatus has been constructed to impose pressure pulses across HEPA filters. The experimental equipment is described as well as preliminary results using variable pressurization rates. Two modes of filtration of an aerosol injected upstream of the filter is examined. A laser instrumentation for measuring the aerosol release, during the transient, is described

  13. Recent development of transient electronics

    Directory of Open Access Journals (Sweden)

    Huanyu Cheng

    2016-01-01

    Full Text Available Transient electronics are an emerging class of electronics with the unique characteristic to completely dissolve within a programmed period of time. Since no harmful byproducts are released, these electronics can be used in the human body as a diagnostic tool, for instance, or they can be used as environmentally friendly alternatives to existing electronics which disintegrate when exposed to water. Thus, the most crucial aspect of transient electronics is their ability to disintegrate in a practical manner and a review of the literature on this topic is essential for understanding the current capabilities of transient electronics and areas of future research. In the past, only partial dissolution of transient electronics was possible, however, total dissolution has been achieved with a recent discovery that silicon nanomembrane undergoes hydrolysis. The use of single- and multi-layered structures has also been explored as a way to extend the lifetime of the electronics. Analytical models have been developed to study the dissolution of various functional materials as well as the devices constructed from this set of functional materials and these models prove to be useful in the design of the transient electronics.

  14. Magnitude and reactivity consequences of accidental moisture ingress into the Modular High-Temperature Gas-Cooled Reactor core

    International Nuclear Information System (INIS)

    Smith, O.L.

    1992-01-01

    Accidental admission of moisture into the primary system of a Modular High-Temperature Gas-Cooled Reactor (MHTGR) has been identified in US Department of Energy-sponsored studies as an important safety concern. The work described here develops an analytical methodology to quantify the pressure and reactivity consequences of steam-generator tube rupture and other moistureingress-related incidents. Important neutronic and thermohydraulic processes are coupled with reactivity feedback and safety and control system responses. Rate and magnitude of steam buildup are found to be dominated by major system features such as break size in comparison with safety valve capacity and reliability, while being less sensitive to factors such as heat transfer coefficients. The results indicate that ingress transients progress at a slower pace than previously predicted by bounding analyses, with milder power overshoots and more time for operator or automatic corrective actions

  15. C-reactive protein predicts further ischemic events in first-ever transient ischemic attack or stroke patients with intracranial large-artery occlusive disease.

    Science.gov (United States)

    Arenillas, Juan F; Alvarez-Sabín, José; Molina, Carlos A; Chacón, Pilar; Montaner, Joan; Rovira, Alex; Ibarra, Bernardo; Quintana, Manuel

    2003-10-01

    The role of inflammation in intracranial large-artery occlusive disease is unclear. We sought to investigate the relationship between high-sensitivity C-reactive protein (CRP) levels and the risk of further ischemic events in first-ever transient ischemic attack (TIA) or stroke patients with intracranial large-artery occlusive disease. Of a total of 127 consecutive first-ever TIA or ischemic stroke patients with intracranial stenoses detected by transcranial Doppler ultrasonography, 71 fulfilled all inclusion criteria, which included angiographic confirmation. Serum high-sensitivity CRP level was determined a minimum of 3 months after the qualifying event. Patients were followed up during 1 year after blood sampling. Thirteen patients (18.3%) with intracranial large-artery occlusive disease experienced an end point event: 9 cerebral ischemic events, 7 of which were attributable to intracranial large-artery occlusive disease, and 4 myocardial infarctions. Patients in the highest quintile of high-sensitivity CRP level had a significantly higher adjusted odds ratio for new events compared with those in the first quintile (odds ratio, 8.66; 95% CI, 1.39 to 53.84; P=0.01). A high-sensitivity CRP level above the receiver operating characteristic curve cutoff value of 1.41 mg/dL emerged as an independent predictor of new end point events (hazard ratio, 7.14; 95% CI, 1.77 to 28.73; P=0.005) and of further intracranial large-artery occlusive disease-related ischemic events (hazard ratio, 30.67; 95% CI, 3.6 to 255.5; P=0.0015), after adjustment for age, sex, and risk factors. Kaplan-Meier curves showed that a significantly lower proportion of patients with a high-sensitivity CRP >1.41 mg/dL remained free of a new ischemic event (P<0.0001). High-sensitivity CRP serum level predicts further intracranial large-artery occlusive disease-related and any major ischemic events in patients with first-ever TIA or stroke with intracranial large-artery occlusive disease. These findings

  16. Activation of Transient Receptor Potential Melastatin Subtype 8 Attenuates Cold-Induced Hypertension Through Ameliorating Vascular Mitochondrial Dysfunction.

    Science.gov (United States)

    Xiong, Shiqiang; Wang, Bin; Lin, Shaoyang; Zhang, Hexuan; Li, Yingsha; Wei, Xing; Cui, Yuanting; Wei, Xiao; Lu, Zongshi; Gao, Peng; Li, Li; Zhao, Zhigang; Liu, Daoyan; Zhu, Zhiming

    2017-08-02

    Environmental cold-induced hypertension is common, but how to treat cold-induced hypertension remains an obstacle. Transient receptor potential melastatin subtype 8 (TRPM8) is a mild cold-sensing nonselective cation channel that is activated by menthol. Little is known about the effect of TRPM8 activation by menthol on mitochondrial Ca 2+ homeostasis and the vascular function in cold-induced hypertension. Primary vascular smooth muscle cells from wild-type or Trpm8 -/- mice were cultured. In vitro, we confirmed that sarcoplasmic reticulum-resident TRPM8 participated in the regulation of cellular and mitochondrial Ca 2+ homeostasis in the vascular smooth muscle cells. TRPM8 activation by menthol antagonized angiotensin II induced mitochondrial respiratory dysfunction and excess reactive oxygen species generation by preserving pyruvate dehydrogenase activity, which hindered reactive oxygen species-triggered Ca 2+ influx and the activation of RhoA/Rho kinase pathway. In vivo, long-term noxious cold stimulation dramatically increased vasoconstriction and blood pressure. The activation of TRPM8 by dietary menthol inhibited vascular reactive oxygen species generation, vasoconstriction, and lowered blood pressure through attenuating excessive mitochondrial reactive oxygen species mediated the activation of RhoA/Rho kinase in a TRPM8-dependent manner. These effects of menthol were further validated in angiotensin II-induced hypertensive mice. Long-term dietary menthol treatment targeting and preserving mitochondrial function may represent a nonpharmaceutical measure for environmental noxious cold-induced hypertension. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  17. Plutonium rock-like fuel LWR nuclear characteristics and transient behavior in accidents

    Energy Technology Data Exchange (ETDEWEB)

    Akie, Hiroshi; Anoda, Yoshinari; Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yamaguchi, Chouichi; Sugo, Yukihiro

    1998-03-01

    For the disposition of excess plutonium, rock-like oxide (ROX) fuel systems based on zirconia (ZrO{sub 2}) or thoria (ThO{sub 2}) have been studied. Safety analysis of ROX fueled PWR showed it is necessary to increase Doppler reactivity coefficient and to reduce power peaking factor of zirconia type ROX (Zr-ROX) fueled core. For these improvements, Zr-ROX fuel composition was modified by considering additives of ThO{sub 2}, UO{sub 2} or Er{sub 2}O{sub 3}, and reducing Gd{sub 2}O{sub 3} content. As a result of the modification, comparable, transient behavior to UO{sub 2} fuel PWR was obtained with UO{sub 2}-Er{sub 2}O{sub 3} added Zr-ROX fuel, while the plutonium transmutation capability is slightly reduced. (author)

  18. Experimental and numerical investigation of the coolant mixing during fast deboration transients

    International Nuclear Information System (INIS)

    Hoehne, T.; Rohde, U.; Weiss, F.P.

    1999-01-01

    For the analysis of boron dilution transients and main steam line break scenarios the modeling of the coolant mixing inside the reactor vessel is important, because the reactivity insertion strongly depends on boron acid concentration or the coolant temperature distribution. Calculations for steady state flow conditions for the WWER-440 were performed with a CFD code (CFX-4). For this calculation the RPV from the cold legs inlet through the downcomer, the lower plenum and the lower core support plate was nodulized in detail. The comparison with experimental data and analytical mixing model which is implemented in the neutron kinetic code DYN3D showed a good agreement for near-nominal conditions (all MCPs are running). The comparison between the CFD-results and the analytical model revealed differences for MSLB conditions[1]. (Authors)

  19. Nuclear reactors transients identification and classification system; Sistema de identificacao e classificacao de transientes em reatores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Paulo Henrique

    2008-07-01

    This work describes the study and test of a system capable to identify and classify transients in thermo-hydraulic systems, using a neural network technique of the self-organizing maps (SOM) type, with the objective of implanting it on the new generations of nuclear reactors. The technique developed in this work consists on the use of multiple networks to do the classification and identification of the transient states, being each network a specialist at one respective transient of the system, that compete with each other using the quantization error, that is a measure given by this type of neural network. This technique showed very promising characteristics that allow the development of new functionalities in future projects. One of these characteristics consists on the potential of each network, besides responding what transient is in course, could give additional information about that transient. (author)

  20. Ultrafast Carrier Relaxation in InN Nanowires Grown by Reactive Vapor Transport

    Directory of Open Access Journals (Sweden)

    Zervos Matthew

    2008-01-01

    Full Text Available Abstract We have studied femtosecond carrier dynamics in InN nanowires grown by reactive vapor transport. Transient differential absorption measurements have been employed to investigate the relaxation dynamics of photogenerated carriers near and above the optical absorption edge of InN NWs where an interplay of state filling, photoinduced absorption, and band-gap renormalization have been observed. The interface between states filled by free carriers intrinsic to the InN NWs and empty states has been determined to be at 1.35 eV using CW optical transmission measurements. Transient absorption measurements determined the absorption edge at higher energy due to the additional injected photogenerated carriers following femtosecond pulse excitation. The non-degenerate white light pump-probe measurements revealed that relaxation of the photogenerated carriers occurs on a single picosecond timescale which appears to be carrier density dependent. This fast relaxation is attributed to the capture of the photogenerated carriers by defect/surface related states. Furthermore, intensity dependent measurements revealed fast energy transfer from the hot photogenerated carriers to the lattice with the onset of increased temperature occurring at approximately 2 ps after pulse excitation.

  1. Transient performance of EBR-II driver fuel

    International Nuclear Information System (INIS)

    Buzzell, J.A.; Hudman, G.D.; Porter, D.L.

    1981-01-01

    The first phases of qualification of the EBR-II driver fuel for repeated transient overpower operation have recently been completed. The accomplishments include prediction of the transient fuel and cladding performance through ex-core testing and fuel-element modeling studies, localized in-core power testing during steady-state operation, and whole-core multiple transient testing. The metallic driver fuel successfully survived 56 transients, spaced over a 45-day period, with power increases of approx. 160% at rates of approx. 1%/s with a 720-second hold at full power. The performance results obtained from both ex-core and n-core tests indicate that the fuel is capable of repeated transient operation

  2. Some local dilution transient in a pressurized water reactor

    International Nuclear Information System (INIS)

    Jacobson, S.

    1989-01-01

    Reactivity accidents are important in the safety analysis of a pressurized water reactor. In this anlysis ejected control rod, steam line break, start of in-active loop and boron dilution accidents are usually dealt with. However, in the analysis is not included what reactivity excursions might happen when a zone,depleted of boron passes the reactor core. This thesis investigates during what operation and emergency conditions diluted zones might exist in a pressurized water reactor and what should be the maximum volumes for then. The limiting transport means are also established in terms of reactivty addition, for the depleted zones. In order to describe the complicated mixing process in the reactor vessel during such a transportation, a typical 3-loop reactor vessel has been modulated by means of TRAC-PF1's VESSEL component. Three cases have been analysed. In the first case the reactor is in a cold condition and the ractor coolant has boron concentration of 2000 ppm. To the reactor vessel is injected an clean water colume of 14 m 3 . In the two other cases the reactor is close to hot shutdown and borated to 850 ppm. To the reactor vessel is added 41 and 13 m 3 clean water, respectively. In the thesis is shown what spatial distribution the depleted zone gets when passing through the reactor vessel in the three cases. The boron concentration in the first case did not decrease the values which would bring the reactor to critical condition. For case two was shown by means of TRAC's point kinetics model that the reactor reaches prompt criticality after 16.03 seconds after starting of the reactor coolant pump. Another prompt criticality occured two seconds later. The total energy developed during the two power escalations were about 55 GJ. A comparision with the criteria used to evaluate the ejected control rod reactivity transient showed that none of these criteria were exceeded. (64 figs.)

  3. The OECD/NEA/NSC PBMR 400 MW coupled neutronics thermal hydraulics transient benchmark: transient results - 290

    International Nuclear Information System (INIS)

    Strydom, G.; Reitsma, F.; Ngeleka, P.T.; Ivanov, K.N.

    2010-01-01

    The PBMR is a High-Temperature Gas-cooled Reactor (HTGR) concept developed to be built in South Africa. The analysis tools used for core neutronic design and core safety analysis need to be verified and validated, and code-to-code comparisons are an essential part of the V and V plans. As part of this plan the PBMR 400 MWth design and a representative set of transient exercises are defined as an OECD benchmark. The scope of the benchmark is to establish a series of well defined multi-dimensional computational benchmark problems with a common given set of cross sections, to compare methods and tools in coupled neutronics and thermal hydraulics analysis with a specific focus on transient events. This paper describes the current status of the benchmark project and shows the results for the six transient exercises, consisting of three Loss of Cooling Accidents, two Control Rod Withdrawal transients, a power load-follow transient, and a Helium over-cooling Accident. The participants' results are compared using a statistical method and possible areas of future code improvement are identified. (authors)

  4. Irradiation creep transients in Ni-4 at.% Si

    International Nuclear Information System (INIS)

    Nagakawa, J.

    1983-01-01

    In the course of irradiation creep experiments on Ni-4 at.% Si alloy, two types of creep transients were observed on the termination of irradiation. The short term transient was completed within one minute while the long term transient persisted for nearly ten hours. A change in the temperature distribution was excluded from the possible causes, partly because the stress dependence of the observed transient strains was not linear, and partly because the strain increase expected from the temperature change was much smaller than the observed value. Transient behavior of point defects was examined in conjunction with the climb-glide mechanism and the steady-state irradiation creep data. Calculated creep transient due to excess vacancy flux to dislocations was in good agreement with the observed short term transient. The long term transient appears to be a result of dislocation microstructure change. The present results suggest an enhanced irradiation creep under cyclic irradiation conditions which will be encountered in the early generations of fusion reactors. (orig.)

  5. Wide Field Radio Transient Surveys

    Science.gov (United States)

    Bower, Geoffrey

    2011-04-01

    The time domain of the radio wavelength sky has been only sparsely explored. Nevertheless, serendipitous discovery and results from limited surveys indicate that there is much to be found on timescales from nanoseconds to years and at wavelengths from meters to millimeters. These observations have revealed unexpected phenomena such as rotating radio transients and coherent pulses from brown dwarfs. Additionally, archival studies have revealed an unknown class of radio transients without radio, optical, or high-energy hosts. The new generation of centimeter-wave radio telescopes such as the Allen Telescope Array (ATA) will exploit wide fields of view and flexible digital signal processing to systematically explore radio transient parameter space, as well as lay the scientific and technical foundation for the Square Kilometer Array. Known unknowns that will be the target of future transient surveys include orphan gamma-ray burst afterglows, radio supernovae, tidally-disrupted stars, flare stars, and magnetars. While probing the variable sky, these surveys will also provide unprecedented information on the static radio sky. I will present results from three large ATA surveys (the Fly's Eye survey, the ATA Twenty CM Survey (ATATS), and the Pi GHz Survey (PiGSS)) and several small ATA transient searches. Finally, I will discuss the landscape and opportunities for future instruments at centimeter wavelengths.

  6. OECD/DOE/CEA VVER-1000 Coolant Transient Benchmark. Summary Record of the Third Workshop (V1000-CT3)

    International Nuclear Information System (INIS)

    2005-01-01

    The overall objective of the VVER-1000 coolant transient (V1000CT) benchmark is to assess computer codes used in the safety analysis of VVER power plants, specifically for their use in analysis of reactivity transients in a VVER-1000. The V1000CT benchmark consists of two phases: V1000CT-1 is a simulation of the switching on of one main coolant pump (MCP) when the other three MCPs are in operation, and V1000CT-2 concerns calculation of coolant mixing tests and main steam line break (MSLB) scenarios. Each of the two phases contains three exercises. The reference problem chosen for simulation in Phase 1 is a MCP switching on when the other three main coolant pumps are in operation in a VVER-1000. This event is characterized by rapid increase in the flow through the core resulting in a coolant temperature decrease, which is spatially dependent. This leads to insertion of spatially distributed positive reactivity due to the modelled feedback mechanisms and non-symmetric power distribution. Simulation of the transient requires evaluation of core response from a multi-dimensional perspective (coupled three-dimensional neutronics/core thermal-hydraulics) supplemented by a one-dimensional simulation of the remainder of the reactor coolant system. Three exercises are defined in the framework of Phase 1: a) Exercise 1 - Point kinetics plant simulation; b) Exercise 2 - Coupled 3-D neutronics/core thermal-hydraulics response evaluation; c) Exercise 3 - Best-estimate coupled 3-D core/plant system transient modelling. In addition to the measured (experiment) scenario, extreme calculation scenarios were defined in the frame of Exercise 3 for better testing 3-D neutronics/thermal-hydraulics techniques. The proposals concerned: rod ejection simulations with scram set points at two different power levels. The technical topics presented at this workshop were: Review of the benchmark activities after the 2. Workshop; - Discussion of participant's feedback and introduced modifications

  7. Transient multivariable sensor evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Vilim, Richard B.; Heifetz, Alexander

    2017-02-21

    A method and system for performing transient multivariable sensor evaluation. The method and system includes a computer system for identifying a model form, providing training measurement data, generating a basis vector, monitoring system data from sensor, loading the system data in a non-transient memory, performing an estimation to provide desired data and comparing the system data to the desired data and outputting an alarm for a defective sensor.

  8. Positron deep-level transient spectroscopy in semi-insulating-GaAs using the positron velocity transient method

    International Nuclear Information System (INIS)

    Tsia, M.; Fung, S.; Beling, C.D.

    2001-01-01

    Recently a new semiconductor defect spectroscopy, namely positron deep level transient spectroscopy (PDLTS) has been proposed that combines the energy selectivity of deep level transient spectroscopy with the structural sensitivity of positron annihilation spectroscopy. This paper focuses on one variant of PDLTS, namely positron velocity PDLTS, which has no sensitivity towards vacancy defects but nevertheless is useful in studying deep levels in semi-insulators. In the present study the electric field within the depletion region of semi-insulating GaAs is monitored through the measurement of the small Doppler shift in the annihilation radiation that comes from this region as a result of positron drift. The drift is the result of an increasing electric field produced by space charge building up from ionizing deep level defects. Doppler shift transients are measured between 50-300 K. The EL2 level emission transients are clearly seen at temperatures around 300 K that yield E C -0.78±0.08eV for the energy of EL2. The EL2 electron capture rate is found to have an activation energy of 0.61±0.08eV which most probably arises from freeze out of conduction electrons. We find the surprising result that emission and capture transients can be seen at temperatures below 200 K. Possible reasons for these transients are discussed. (orig.)

  9. Pressure transients in pipeline systems

    DEFF Research Database (Denmark)

    Voigt, Kristian

    1998-01-01

    This text is to give an overview of the necessary background to do investigation of pressure transients via simulations. It will describe briefly the Method of Characteristics which is the defacto standard for simulating pressure transients. Much of the text has been adopted from the book Pressur...

  10. Modeling of oxygen gas diffusion and consumption during the oxic transient in a disposal cell of radioactive waste

    International Nuclear Information System (INIS)

    De Windt, Laurent; Marsal, François; Corvisier, Jérôme; Pellegrini, Delphine

    2014-01-01

    Highlights: • This paper deals with the geochemistry of underground HLW disposals. • The oxic transient is a key issue in performance assessment (e.g. corrosion, redox). • A reactive transport model is explicitly coupled to gas diffusion and reactivity. • Application to in situ experiment (Tournemire laboratory) and HLW disposal cell. • Extent of the oxidizing/reducing front is investigated by sensitivity analysis. - Abstract: The oxic transient in geological radioactive waste disposals is a key issue for the performance of metallic components that may undergo high corrosion rates under such conditions. A previous study carried out in situ in the argillite formation of Tournemire (France) has suggested that oxic conditions could have lasted several years. In this study, a multiphase reactive transport model is performed with the code HYTEC to analyze the balance between the kinetics of pyrite oxidative dissolution, the kinetics of carbon steel corrosion and oxygen gas diffusion when carbon steel components are emplaced in the geological medium. Two cases were modeled: firstly, the observations made in situ have been reproduced, and the model established was then applied to a disposal cell for high-level waste (HLW) in an argillaceous formation, taking into account carbon steel components and excavated damaged zones (EDZ). In a closed system, modeling leads to a complete and fast consumption of oxygen in both cases. Modeling results are more consistent with the in situ test while considering residual voids between materials and/or a water unsaturated state allowing for oxygen gas diffusion (open conditions). Under similar open conditions and considering ventilation of the handling drifts, a redox contrast occurs between reducing conditions at the back of the disposal cell (with anoxic corrosion of steel and H 2 production) and oxidizing conditions at the front of the cell (with oxic corrosion of steel). The extent of the oxidizing/reducing front in the

  11. Investigation of Reactivity Feedback Mechanism of Axial and Radial Expansion Effect of Metal-Fueled Sodium-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Seong, Seung-Hwan; Choi, Chi-Woong; Jeong, Tae-Kyung; Ha, Gi-Seok

    2015-01-01

    The major inherent reactivity feedback models for a ceramic fuel used in a conventional light water reactor are Doppler feedback and moderator feedback. The metal fuel has these two reactivity feedback mechanisms previously mentioned. In addition, the metal fuel has two more reactivity feedback models related to the thermal expansion phenomena of the metal fuel. Since the metal fuel has a good capability to expand according to the temperature changes of the core, two more feedback mechanisms exist. These additional two feedback mechanism are important to the inherent safety of metal fuel and can make metal-fueled SFR safer than oxide-fueled SFR. These phenomena have already been applied to safety analysis on design extended condition. In this study, the effect of these characteristics on power control capability was examined through a simple load change operation. The axial expansion mechanism is induced from the change of the fuel temperature according to the change of the power level of PGSFR. When the power increases, the fuel temperatures in the metal fuel will increase and then the reactivity will decrease due to the axial elongation of the metal fuel. To evaluate the expansion effect, 2 cases were simulated with the same scenario by using MMS-LMR code developed at KAERI. The first simulation was to analyze the change of the reactor power according to the change of BOP power without the reactivity feedback model of the axial and radial expansion of the core during the power transient event. That is to say, the core had only two reactivity feedback mechanism of Doppler and coolant temperature

  12. Flow transients experiments with refrigerant-12

    International Nuclear Information System (INIS)

    Celata, G.P.; D'Annibale, F.; Farello, G.E.; Setaro, T.

    1986-01-01

    Flow transients have been investigated in a wide range of thermal-hydraulics situations with Refrigerannt-12. Six pressures (including the reference to PWR and BWR characteristic liquid to vapour densities ratios), several periods of the flowrate transients coastdown during the simulated flow decays, and different specific mass flowrate have been studied emploiyng a circular duct test section (Dsub(i)=7,5 mm). Two heated lengths of the test section have been considered (L = 2300 and 1180 mm). Experimental data have shown the complete inadequacy of steady-state critical heat flux correlations in predicting the onset of boiling crisis during fast flow transients (half-flow decay time, tsub(h)lt5.0-6.0 s). The flow transient does not show dependence, in terms of DNB conditions ,upon the length of the test section: the ratio between transient and steady-state critical mass flowrate is not dependent on the tested geometry. The time interval from the start of the flowrate transient to the onset of DNB (time to crisis), has been experimentally determined for all the runs. Data analysis for a better theoretical prediction of the phenomenon has been accomplished, and a design correlation for DNB conditons and time to crisis prediction has been proposed

  13. State of the art of CATHARE model for transient safety analysis of ASTRID SFR

    International Nuclear Information System (INIS)

    Lavastre, R.; Conti, A.; Marsault, Ph.; Chenaud, M.S.; Tosello, A.

    2014-01-01

    Within the framework of the ASTRID project (Advanced Sodium Technological Reactor for Industrial Demonstration), the conceptual design studies are being conducted in accordance with the GEN IV reactor objectives, particularly in terms of improving safety. This involves enhancing the general design in order to : - increase the safety margins for all unprotected-loss-of-flow (ULOF) and unprotected-loss-of-heat-sink (ULOHS) transients, - identify the need for additional safety devices that would complement core natural behavior so that temperature criteria on coolant, core and primary circuit structures can remain under the safety criteria. For this purpose, the use of CATHARE system code has been very important from the early stage of design in order to ensure a feedback for design teams to improve behavior during unprotected transients. Until 2012, CATHARE ULOxx transient calculations have been used mainly to compare different core designs. They contributed to lead to the choice of CFV core (axially heterogeneous core with an upper sodium plenum employed to achieve a negative sodium void reactivity worth). Meanwhile, models for an accurate core description and transients have been developed in CATHARE to improve the calculations towards best estimate calculations for safety analysis. This paper therefore presents these main developments in core modeling achieved for the 2 past years. For instance, we will focus on the way of dealing with fuel assemblies that have to be grouped together in the CATHARE code to form a channel with similar neutronic physics and thermal-hydraulics characteristics. We will also explain the way we deal with heterogeneity of fuel pin to obtain the accurate fuel temperature along the axis and to take into account pellet-cladding gap state. These two points have a great importance on feedback effects linked to the fuel, mainly the Doppler effect. The paper will finally introduce the upcoming improvements that are under development nowadays

  14. Trace analysis of auxiliary feedwater capacity for Maanshan PWR loss-of-normal-feedwater transient

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Che-Hao; Shih, Chunkuan [National Tsing Hua Univ., Taiwan (China). Inst. of Nuclear Engineering and Science; Wang, Jong-Rong; Lin, Hao-Tzu [Atomic Energy Council, Taiwan (China). Inst. of Nuclear Energy Research

    2013-07-01

    Maanshan nuclear power plant is a Westinghouse PWR of Taiwan Power Company (Taipower, TPC). A few years ago, TPC has made many assessments in order to uprate the power of Maanshan NPP. The assessments include NSSS (Nuclear Steam Supply System) parameters calculation, uncertainty acceptance, integrity of pressure vessel, reliability of auxiliary systems, and transient analyses, etc. Since the Fukushima Daiichi accident happened, it is necessary to consider transients with multiple-failure. Base on the analysis, we further study the auxiliary feedwater capability for Loss-of-Normal-Feedwater (LONF) transient. LONF is the limiting transient of non-turbine trip initiated event for ATWS (Anticipated Transient Without Scram) which results in a reduction in capability of the secondary system to remove the heat generated in the reactor core. If the turbine fails to trip immediately, the secondary water inventory will decrease significantly before the actuation of auxiliary feedwater (AFW) system. The heat removal from the primary side decreases, and this leads to increases of primary coolant temperature and pressure. The water level of pressurizer also increases subsequently. The heat removal through the relief valves and the auxiliary feedwater is not sufficient to fully cope with the heat generation from primary side. The pressurizer will be filled with water finally, and the RCS pressure might rise above the set point of relief valves for water discharge. RCS pressure depends on steam generator inventory, primary coolant temperature, negative reactivity feedback, and core power, etc. The RCS pressure may reach its peak after core power reduction. According to ASME Code Level C service limit criteria, the Reactor Coolant System (RCS) pressure must be under 22.06 MPa. The USNRC is developing an advanced thermal hydraulic code named TRACE for nuclear power plant safety analysis. The development of TRACE is based on TRAC and integrating with RELAP5 and other programs. SNAP

  15. Trace analysis of auxiliary feedwater capacity for Maanshan PWR loss-of-normal-feedwater transient

    International Nuclear Information System (INIS)

    Chen, Che-Hao; Shih, Chunkuan; Wang, Jong-Rong; Lin, Hao-Tzu

    2013-01-01

    Maanshan nuclear power plant is a Westinghouse PWR of Taiwan Power Company (Taipower, TPC). A few years ago, TPC has made many assessments in order to uprate the power of Maanshan NPP. The assessments include NSSS (Nuclear Steam Supply System) parameters calculation, uncertainty acceptance, integrity of pressure vessel, reliability of auxiliary systems, and transient analyses, etc. Since the Fukushima Daiichi accident happened, it is necessary to consider transients with multiple-failure. Base on the analysis, we further study the auxiliary feedwater capability for Loss-of-Normal-Feedwater (LONF) transient. LONF is the limiting transient of non-turbine trip initiated event for ATWS (Anticipated Transient Without Scram) which results in a reduction in capability of the secondary system to remove the heat generated in the reactor core. If the turbine fails to trip immediately, the secondary water inventory will decrease significantly before the actuation of auxiliary feedwater (AFW) system. The heat removal from the primary side decreases, and this leads to increases of primary coolant temperature and pressure. The water level of pressurizer also increases subsequently. The heat removal through the relief valves and the auxiliary feedwater is not sufficient to fully cope with the heat generation from primary side. The pressurizer will be filled with water finally, and the RCS pressure might rise above the set point of relief valves for water discharge. RCS pressure depends on steam generator inventory, primary coolant temperature, negative reactivity feedback, and core power, etc. The RCS pressure may reach its peak after core power reduction. According to ASME Code Level C service limit criteria, the Reactor Coolant System (RCS) pressure must be under 22.06 MPa. The USNRC is developing an advanced thermal hydraulic code named TRACE for nuclear power plant safety analysis. The development of TRACE is based on TRAC and integrating with RELAP5 and other programs. SNAP

  16. Transient two-phase flow

    International Nuclear Information System (INIS)

    Hsu, Y.Y.

    1974-01-01

    The following papers related to two-phase flow are summarized: current assumptions made in two-phase flow modeling; two-phase unsteady blowdown from pipes, flow pattern in Laval nozzle and two-phase flow dynamics; dependence of radial heat and momentum diffusion; transient behavior of the liquid film around the expanding gas slug in a vertical tube; flooding phenomena in BWR fuel bundles; and transient effects in bubble two-phase flow. (U.S.)

  17. Analytical Solution to the Pneumatic Transient Rod System at ACRR

    Energy Technology Data Exchange (ETDEWEB)

    Fehr, Brandon Michael [Georgia Inst. of Technology, Atlanta, GA (United States)

    2016-01-08

    The ACRR pulse is pneumatically driven by nitrogen in a system of pipes, valves and hoses up to the connection of the pneumatic system and mechanical linkages of the transient rod (TR). The main components of the TR pneumatic system are the regulator, accumulator, solenoid valve and piston-cylinder assembly. The purpose of this analysis is to analyze the flow of nitrogen through the TR pneumatic system in order to develop a motion profile of the piston during the pulse and be able to predict the pressure distributions inside both the cylinder and accumulators. The predicted pressure distributions will be validated against pressure transducer data, while the motion profile will be compared to proximity switch data. By predicting the motion of the piston, pulse timing will be determined and provided to the engineers/operators for verification. The motion profile will provide an acceleration distribution to be used in Razorback to more accurately predict reactivity insertion into the system.

  18. Analytical Solution to the Pneumatic Transient Rod System at ACRR

    International Nuclear Information System (INIS)

    Fehr, Brandon Michael

    2016-01-01

    The ACRR pulse is pneumatically driven by nitrogen in a system of pipes, valves and hoses up to the connection of the pneumatic system and mechanical linkages of the transient rod (TR). The main components of the TR pneumatic system are the regulator, accumulator, solenoid valve and piston-cylinder assembly. The purpose of this analysis is to analyze the flow of nitrogen through the TR pneumatic system in order to develop a motion profile of the piston during the pulse and be able to predict the pressure distributions inside both the cylinder and accumulators. The predicted pressure distributions will be validated against pressure transducer data, while the motion profile will be compared to proximity switch data. By predicting the motion of the piston, pulse timing will be determined and provided to the engineers/operators for verification. The motion profile will provide an acceleration distribution to be used in Razorback to more accurately predict reactivity insertion into the system.

  19. A follow-up of transients. Stage 1

    International Nuclear Information System (INIS)

    Enekull, Aa.; Wallner, B.

    1981-09-01

    A follow-up of the transients of temperature and pressure in the primary pressurized system of a nuclear power plant has been completed for the Barsebaeck-1 reactor. The investigation consists of the following steps:- the collation of transients - drawing up load data based on transients-analyses of stress - recommendations for future programs. It was found that the lifetime of the system will exceed 40 years excluding some of the pipes for feed water. The appendices give a detailed description of the transients.(G.B.)

  20. Characterizing transient noise in the LIGO detectors

    Science.gov (United States)

    Nuttall, L. K.

    2018-05-01

    Data from the LIGO detectors typically contain many non-Gaussian noise transients which arise due to instrumental and environmental conditions. These non-Gaussian transients can be an issue for the modelled and unmodelled transient gravitational-wave searches, as they can mask or mimic a true signal. Data quality can change quite rapidly, making it imperative to track and find new sources of transient noise so that data are minimally contaminated. Several examples of transient noise and the tools used to track them are presented. These instances serve to highlight the diverse range of noise sources present at the LIGO detectors during their second observing run. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  1. Analyses of criticality and reactivity for TRACY experiments based on JENDL-3.3 data library

    International Nuclear Information System (INIS)

    Sono, Hiroki; Miyoshi, Yoshinori; Nakajima, Ken

    2003-01-01

    The parameters on criticality and reactivity employed for computational simulations of the TRACY supercritical experiments were analyzed using a recently revised nuclear data library, JENDL-3.3. The parameters based on the JENDL-3.3 library were compared to those based on two former-used libraries, JENDL-3.2 and ENDF/B-VI. In the analyses computational codes, MVP, MCNP version 4C and TWOTRAN, were used. The following conclusions were obtained from the analyses: (1) The computational biases of the effective neutron multiplication factor attributable to the nuclear data libraries and to the computational codes do not depend the TRACY experimental conditions such as fuel conditions. (2) The fractional discrepancies in the kinetic parameters and coefficients of reactivity are within ∼5% between the three libraries. By comparison between calculations and measurements of the parameters, the JENDL-3.3 library is expected to give closer values to the measurements than the JENDL-3.2 and ENDF/B-VI libraries. (3) While the reactivity worth of transient rods expressed in the $ unit shows ∼5% discrepancy between the three libraries according to their respective β eff values, there is little discrepancy in that expressed in the Δk/k unit. (author)

  2. Nodalization Preparation for the Transient Simulation of Cooling System for One Line Mode of RSG-GAS

    International Nuclear Information System (INIS)

    Sukmanto Dibyo; Susyadi; Tagor MS; Darwis Isnaeni

    2004-01-01

    Cooling system is important component in RSG-GAS. To carry out the transient simulation of one line-cooling mode, the model of RSG-GAS has been prepared. To illustrate the transient condition, the RELAP5.MOD3 computer code the existing input files were used. This Input consist of kinetic, thermal, hydraulic and geometries data. Modification and decrement of number of nodalization has been done to simplification as well as running time. The reasonable result of model is arranged to determine the initial condition of input data therefore steady state condition have agreement to the analysis result of one line cooling mode of RSG-GAS. Parameter investigated are transient temperatures of cooling system after decreasing of secondary cooling system occur as function of time. These parameters can be requested using input of Minor Edit Request Simulation is conducted at the reactor power of 15 MW steady-state for one-line cooling mode in which the primary and secondary cooling of 430 kg/sec and 550 kg/sec respectively. Decreasing of secondary cooling flow is caused by pump trip. As a consequence, the control rod drop due to reactor protection system. The negative reactivity of control rod causes decreasing of reactor power. Change of pattern for the primary and secondary cooling system can be known. After that simulation depicts that increasing of temperatures occur at the certain moment since initiation temperature conditions, due to reactor shut down, curve inclined move going down. (author)

  3. Visual investigation of transient fuel behavior under a rapid heating condition

    International Nuclear Information System (INIS)

    Saito, Shinzo

    1981-10-01

    An in-reactor experimental research on fuel behavior under reactivity initiated accident (RIA) conditions is being conducted in the Nuclear Safety Research Reactor (NSRR). The optical system in which a non-browning lens periscope is directly installed in the test section was successfully developed for photographing transient fuel behavior. Several phenomena which had never been revealed before were observed in the slow motion pictures taken in the NSRR experiments which were performed in the water and air environments. As for incipient failure mechanism for an unirradiated fuel rod under RIA conditions, brittle fracture of the cladding during quenching is dominant. However, a split cracking possibly occurs during even red hot state of the cladding. It is considered that the crack is generated by the local internal pressure increase at the specified region blocked up due to the melting of the cladding inner surface. The film boiling is unexpectablly violent specially in the early stage of the transient, and film thickness becomes 5 -- 6 mm at maximum. The observed thick vapor film can not be explained by the conventional theory, but the effect of hydrogen which is produced by Zircaloy-water reaction is reasonably explained to form thick film in the report. The molten fuel was expelled from the cladding in the experiment which was performed in an air environment. The expelled fuel fragmented due to possibly initial motion effect, not mechanical collision effect, because Weber number is smaller than the critical value. (author)

  4. BN600 reactivity definition

    International Nuclear Information System (INIS)

    Zheltyshev, V.; Ivanov, A.

    2000-01-01

    Since 1980, the fast BN600 reactor with sodium coolant has been operated at Beloyarsk Nuclear Power Plant. The periodic monitoring of the reactivity modifications should be implemented in compliance with the standards and regulations applied in nuclear power engineering. The reactivity measurements are carried out in order to confirm the basic neutronic features of a BN600 reactor. The reactivity measurements are aimed to justify that nuclear safety is provided in course of the in-reactor installation of the experimental core components. Two reactivity meters are to be used on BN600 operation: 1. Digital on-line reactivity calculated under stationary reactor operation on power (approximation of the point-wise kinetics is applied). 2. Second reactivity meter used to define the reactor control rod operating components efficiency under reactor startup and take account of the changing efficiency of the sensor, however, this is more time-consumptive than the on-line reactivity meter. The application of two reactivity meters allows for the monitoring of the reactor reactivity under every operating mode. (authors)

  5. Chlorpyrifos- and chlorpyrifos oxon-induced neurite retraction in pre-differentiated N2a cells is associated with transient hyperphosphorylation of neurofilament heavy chain and ERK 1/2

    International Nuclear Information System (INIS)

    Sindi, Ramya A.; Harris, Wayne; Arnott, Gordon; Flaskos, John; Lloyd Mills, Chris; Hargreaves, Alan J.

    2016-01-01

    Chlorpyrifos (CPF) and CPF-oxon (CPO) are known to inhibit neurite outgrowth but little is known about their ability to induce neurite retraction in differentiating neuronal cells. The aims of this study were to determine the ability of these compounds to destabilize neurites and to identify the key molecular events involved. N2a cells were induced to differentiate for 20 h before exposure to CPF or CPO for 2–8 h. Fixed cell monolayers labeled with carboxyfluorescein succinimidyl ester or immunofluorescently stained with antibodies to tubulin (B512) or phosphorylated neurofilament heavy chain (Ta51) showed time- and concentration-dependent reductions in numbers and length of axon-like processes compared to the control, respectively, retraction of neurites being observed within 2 h of exposure by live cell imaging. Neurofilament disruption was also observed in treated cells stained by indirect immunofluorescence with anti-phosphorylated neurofilament heavy chain (NFH) monoclonal antibody SMI34, while the microtubule network was unaffected. Western blotting analysis revealed transiently increased levels of reactivity of Ta51 after 2 h exposure and reduced levels of reactivity of the same antibody following 8 h treatment with both compounds, whereas reactivity with antibodies to anti-total NFH or anti-tubulin was not affected. The alteration in NFH phosphorylation at 2 h exposure was associated with increased activation of extracellular signal-regulated protein kinase ERK 1/2. However, increased levels of phosphatase activity were observed following 8 h exposure. These findings suggest for the first time that organophosphorothionate pesticide-induced neurite retraction in N2a cells is associated with transient increases in NFH phosphorylation and ERK1/2 activation. - Highlights: • Chlorpyrifos and chlorpyrifos oxon induced rapid neurite retraction in N2a cells. • This occurred following transient hyperphosphorylation of ERK 1/2. • It was concomitant with

  6. Chlorpyrifos- and chlorpyrifos oxon-induced neurite retraction in pre-differentiated N2a cells is associated with transient hyperphosphorylation of neurofilament heavy chain and ERK 1/2

    Energy Technology Data Exchange (ETDEWEB)

    Sindi, Ramya A., E-mail: ramya.sindi2010@my.ntu.ac.uk [Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS (United Kingdom); School of Applied Medical Sciences, Umm Al-Qura University, Makkah (Saudi Arabia); Harris, Wayne [Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS (United Kingdom); Arnott, Gordon [School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS (United Kingdom); Flaskos, John [Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Lloyd Mills, Chris [School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS (United Kingdom); Hargreaves, Alan J., E-mail: alan.hargreaves@ntu.ac.uk [Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS (United Kingdom)

    2016-10-01

    Chlorpyrifos (CPF) and CPF-oxon (CPO) are known to inhibit neurite outgrowth but little is known about their ability to induce neurite retraction in differentiating neuronal cells. The aims of this study were to determine the ability of these compounds to destabilize neurites and to identify the key molecular events involved. N2a cells were induced to differentiate for 20 h before exposure to CPF or CPO for 2–8 h. Fixed cell monolayers labeled with carboxyfluorescein succinimidyl ester or immunofluorescently stained with antibodies to tubulin (B512) or phosphorylated neurofilament heavy chain (Ta51) showed time- and concentration-dependent reductions in numbers and length of axon-like processes compared to the control, respectively, retraction of neurites being observed within 2 h of exposure by live cell imaging. Neurofilament disruption was also observed in treated cells stained by indirect immunofluorescence with anti-phosphorylated neurofilament heavy chain (NFH) monoclonal antibody SMI34, while the microtubule network was unaffected. Western blotting analysis revealed transiently increased levels of reactivity of Ta51 after 2 h exposure and reduced levels of reactivity of the same antibody following 8 h treatment with both compounds, whereas reactivity with antibodies to anti-total NFH or anti-tubulin was not affected. The alteration in NFH phosphorylation at 2 h exposure was associated with increased activation of extracellular signal-regulated protein kinase ERK 1/2. However, increased levels of phosphatase activity were observed following 8 h exposure. These findings suggest for the first time that organophosphorothionate pesticide-induced neurite retraction in N2a cells is associated with transient increases in NFH phosphorylation and ERK1/2 activation. - Highlights: • Chlorpyrifos and chlorpyrifos oxon induced rapid neurite retraction in N2a cells. • This occurred following transient hyperphosphorylation of ERK 1/2. • It was concomitant with

  7. Plant analyzer for high-speed interactive simulation of BWR plant transients

    International Nuclear Information System (INIS)

    Cheng, H.S.; Lekach, S.V.; Mallen, A.N.; Wulff, W.; Cerbone, R.J.

    1984-01-01

    A combination of advanced modeling techniques and modern, special-purpose peripheral minicomputer technology was utilized to develop a plant analyzer which affords realistic predictions of plant transients and severe off-normal events in LWR power plants through on-line simulations at speeds up to 10 times faster than actual process speeds. The mathematical models account for nonequilibrium, nonhomogeneous two-phase flow effects in the coolant, for acoustical effects in the steam line and for the dynamics of the entire balance of the plant. Reactor core models include point kinetics with reactivity feedback due to void fraction, fuel temperature, coolant temperature, and boron concentration as well as a conduction model for predicting fuel and clad temperatures. Control systems and trip logic for plant protection systems are also simulated. The AD10 of Applied Dynamics International, a special-purpose peripheral processor, is used as the principal hardware of the plant analyzer

  8. Transient Analysis and Dosimetry of the Tokaimura Criticality Incident

    International Nuclear Information System (INIS)

    Pain, Christopher C.; Oliveira, Cassiano R.E. de; Goddard, Antony J. H.; Eaton, Matthew D.; Gundry, Sarah; Umpleby, Adrian P.

    2003-01-01

    This paper describes research on the application of the finite element transient criticality (FETCH) code to modeling and neutron dosimetry of the Tokaimura criticality incident. FETCH has been developed to model criticality transients in single and multiphase media and is applied here to fissile solution transient criticality. Since the initial transient behavior has different time scales and physics to the longer transient behavior, the transient modeling is divided into two parts: modeling the initial transient over a time scale of seconds in which radiolytic gases and free-surface sloshing play an important role in the transient - this provides information about the dose to workers; and modeling the long-term transient behavior following the initial transient that has a time scale over hours.The neutron dosimetry of worker A who received the largest dose during the Tokaimura criticality incident is also investigated here. This dose was received mainly in the first few seconds of the ensuing nuclear criticality transient. In addition to the multiorgan dosimetry of worker A, this work provides a method of helping to evaluate the yield in the initial phase of the criticality incident; it also shows how kinetic simulations can be calibrated so that they can be applied to investigate the physics behind the incident

  9. A Personal Computer-Based Simulator for Nuclear-Heating Reactors

    International Nuclear Information System (INIS)

    Liu Jie; Zhang Zuoyi; Lu Dongsen; Shi Zhengang; Chen Xiaoming; Dong Yujie

    2000-01-01

    A personal computer (PC)-based simulator for nuclear-heating reactors (NHRs), PC-NHR, has been developed to provide an educational tool for understanding the design and operational characteristics of an NHR system. A general description of the reactor system as well as the technical basis for the design and operation of the heating reactor is provided. The basic models and equations for the NHR simulation are then given, which include models of the reactor core, the reactor coolant system, the containment, and the control system. The graphical user interface is described in detail to provide a manual for the user to operate the simulator properly. Steady state and several transients have been simulated. The results of PC-NHR are in good agreement with design data and the results of RETRAN-02. The real-time capability is also confirmed

  10. An approach of raising the low power reactor trip block (P-7) in Maanshan Power Plant

    International Nuclear Information System (INIS)

    Wang, L.C.

    1984-01-01

    The technical specification for the Maanshan Nuclear Power Station (FSAR Table 16.2.2-3) requires that with an increasing reactor power level above the setpoint of low power reactor trip block (P-7), a turbine trip shall initiate a reactor trip. This anticipatory reactor trip on turbine trip prevents the pressurizer PORV from openning during turbine trip event. In order to reduce unnecessary reactor trip due to turbine trip on low reactor power level during Maanshan start-up stage, Taiwan Power Company performed a transient analysis for turbine trip event by using RETRAN code. The highest reactor power level at which a turbine trip will not open the pressurizer PORV is searched. The results demonstrated that this power level can be increased from the original value-10% of the rated thermal power-to about 48% of the rated thermal power

  11. Malignant Multivessel Coronary Spasm Complicated by Myocardial Infarction, Transient Complete Heart Block, Ventricular Fibrillation, Cardiogenic Shock and Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Viji S. Thomson

    2014-07-01

    Full Text Available Multivessel coronary spasm resulting to cardiogenic shock and malignant ventricular arrhythmias though rare has been reported in the literature. The disease seems to be more prevalent in Asians. There have been isolated reports of coronary spasm in patients with reactive airway disease. We report the first case of spontaneous multivessel spasm in a male patient with bronchial asthma of Arab ethnicity resulting in acute myocardial infarction complicated by cardiogenic shock, recurrent ventricular arrhythmias, and transient complete heart block. Literature review of similar cases suggests a strong association with bronchial asthma and a more malignant course in patients with reactive airway disease. The role of intracoronary nitroglycerin in proving the diagnosis even in patients in shock on maximal inotropic supports and intra-aortic balloon pump is highlighted and the importance of considering multivessel coronary spasm as a cause for acute coronary syndrome even in patients with conventional risk factors for atherosclerotic coronary artery disease is reinforced in the discussion of this case.

  12. HEDL experimental transient overpower program

    International Nuclear Information System (INIS)

    Hikido, T.; Culley, G.E.

    1976-01-01

    HEDL is conducting a series of experiments to evaluate the performance of Fast Flux Test Facility (FFTF) prototypic fuel pins up to the point of cladding breach. A primary objective of the program is to demonstrate the adequacy of fuel pin and Plant Protective System (PPS) designs for terminated transients. Transient tests of prototypic FFTF fuel pins previously irradiated in the Experimental Breeder Reactor-II (EBR-II) have demonstrated the adequacy of the PPS and fuel pin designs and indicate that a very substantial margin exists between PPS-terminated transients and that required to produce fuel pin cladding failure. Additional experiments are planned to extend the data base to high burnup, high fluence fuel pin specimens

  13. Learning from anticipated and abnormal plant transients

    International Nuclear Information System (INIS)

    Varnado, B.

    1983-01-01

    A report is given of the American Nuclear Society topical meeting on Anticipated and Abnormal Transients in Light Water Reactors held in Jackson, Wyoming in September 1983. Industry involvement in the evaluation of operating experience, human error contributions, transient management, thermal hydraulic modelling, the role of probabilistic risk assessment and the cost of transient incidents are discussed. (U.K.)

  14. Single-event transients (SET) in analog circuits

    International Nuclear Information System (INIS)

    Chen Panxun; Zhou Kaiming

    2006-01-01

    A new phenomenon of single- event upset is introduced. The transient signal is produced in the output of analog circuits after a heavy ion strikes. The transient upset can influence the circuit connected with the output of analog circuits. For example, the output of operational amplifier can be connected with the input of a digital counter, and the pulse of sufficiently high transient output induced by an ion can increase counts of the counter. On the other hand, the transient voltage signal at the output of analog circuits can change the stage of other circuits. (authors)

  15. Transient phenomena in electrical power systems

    CERN Document Server

    Venikov, V A; Higinbotham, W

    1964-01-01

    Electronics and Instrumentation, Volume 24: Transient Phenomena in Electrical Power Systems presents the methods for calculating the stability and the transient behavior of systems with forced excitation control. This book provides information pertinent to the analysis of transient phenomena in electro-mechanical systems.Organized into five chapters, this volume begins with an overview of the principal requirements in an excitation system. This text then explains the electromagnetic and electro-mechanical phenomena, taking into account the mutual action between the components of the system. Ot

  16. Transient burnout in flow reduction condition

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Kuroyanagi, Toshiyuki

    1981-01-01

    A transient flow reduction burnout experiment was conducted with water in a uniformly heated, vertically oriented tube. Test pressures ranged from 0.5 to 3.9 MPa. An analytical method was developed to obtain transient burnout conditions at the exit. A simple correlation to predict the deviation of the transient burnout mass velocity at the tube exit from the steady state mass velocity obtained as a function of steam-water density ratio and flow reduction rate. The correlation was also compared with the other data. (author)

  17. Characterizing SI Engine Transient Fuel Consumption in ALPHA

    Science.gov (United States)

    Examine typical transient engine operation encountered over the EPA's vehicle and engine testing drive cycles to characterize that transient fuel usage, and then describe the changes made to ALPHA to better model transient engine operation.

  18. Nuclear reactors transients identification and classification system

    International Nuclear Information System (INIS)

    Bianchi, Paulo Henrique

    2008-01-01

    This work describes the study and test of a system capable to identify and classify transients in thermo-hydraulic systems, using a neural network technique of the self-organizing maps (SOM) type, with the objective of implanting it on the new generations of nuclear reactors. The technique developed in this work consists on the use of multiple networks to do the classification and identification of the transient states, being each network a specialist at one respective transient of the system, that compete with each other using the quantization error, that is a measure given by this type of neural network. This technique showed very promising characteristics that allow the development of new functionalities in future projects. One of these characteristics consists on the potential of each network, besides responding what transient is in course, could give additional information about that transient. (author)

  19. Method of controlling reactivity

    International Nuclear Information System (INIS)

    Tochihara, Hiroshi.

    1982-01-01

    Purpose: To improve the reactivity controlling characteristics by artificially controlling the leakage of neutron from a reactor and providing a controller for controlling the reactivity. Method: A reactor core is divided into several water gaps to increase the leakage of neutron, its reactivity is reduced, a gas-filled control rod or a fuel assembly is inserted into the gap as required, the entire core is coupled in a system to reduce the leakage of the neutron, and the reactivity is increased. The reactor shutdown is conducted by the conventional control rod, and to maintain critical state, boron density varying system is used together. Futher, a control rod drive is used with that similar to the conventional one, thereby enabling fast reactivity variation, and the positive reactivity can be obtained by the insertion, thereby improving the reactivity controlling characteristics. (Yoshihara, H.)

  20. Reactor thermal behaviors under kinetics parameters variations in fast reactivity insertion

    Energy Technology Data Exchange (ETDEWEB)

    Abou-El-Maaty, Talal [Reactors Department, Atomic Energy Authority, Cairo 13759 (Egypt)], E-mail: talal22969@yahoo.com; Abdelhady, Amr [Reactors Department, Atomic Energy Authority, Cairo 13759 (Egypt)

    2009-03-15

    The influences of variations in some of the kinetics parameters affecting the reactivity insertion are considered in this study, it has been accomplished in order to acquire knowledge about the role that kinetic parameters play in prompt critical transients from the safety point of view. The kinetics parameters variations are limited to the effective delayed neutron fraction ({beta}{sub eff}) and the prompt neutron generation time ({lambda}). The reactor thermal behaviors under the variations in effective delayed neutron fraction and prompt neutron generation time included, the reactor power, maximum fuel temperature, maximum clad temperature, maximum coolant temperature and the mass flux variations at the hot channel. The analysis is done for a typical swimming pool, plate type research reactor with low enriched uranium. The scram system is disabled during the accidents simulations. Calculations were done using PARET code. As a result of simulations, it is concluded that, the reactor (ETRR2) thermal behavior is considerably more sensitive to the variation in the effective delayed neutron fraction than to the variation in prompt neutron generation time and the fast reactivity insertion in both cases causes a flow expansion and contraction at the hot channel exit. The amplitude of the oscillated flow is a qualitatively increases with the decrease in both {beta}{sub eff} and {lambda}.

  1. Reactive Arthritis

    Directory of Open Access Journals (Sweden)

    Eren Erken

    2013-06-01

    Full Text Available Reactive arthritis is an acute, sterile, non-suppurative and inflammatory arthropaty which has occured as a result of an infectious processes, mostly after gastrointestinal and genitourinary tract infections. Reiter syndrome is a frequent type of reactive arthritis. Both reactive arthritis and Reiter syndrome belong to the group of seronegative spondyloarthropathies, associated with HLA-B27 positivity and characterized by ongoing inflammation after an infectious episode. The classical triad of Reiter syndrome is defined as arthritis, conjuctivitis and urethritis and is seen only in one third of patients with Reiter syndrome. Recently, seronegative asymmetric arthritis and typical extraarticular involvement are thought to be adequate for the diagnosis. However, there is no established criteria for the diagnosis of reactive arthritis and the number of randomized and controlled studies about the therapy is not enough. [Archives Medical Review Journal 2013; 22(3.000: 283-299

  2. The analysis with the code TANK of a postulated reactivity-insertion transient in a 10-MW MAPLE research reactor

    International Nuclear Information System (INIS)

    Ellis, R.J.

    1990-10-01

    This report discusses the analysis of a postulated loss-of-regulation (LOR) accident in a metal-fuelled MAPLE Research Reactor. The selected transient scenario involves a slow LOR from low reactor power; the control rods are assumed to withdraw slowly until a trip at 12 MW halts the withdrawal. The simulation was performed using the space-time reactor kinetics computer code TANK, and modelling the reactor in detail in two dimensions and in two neutron-energy groups. Emphasis in this report is placed on the modelling techniques used in TANK and the physics considerations of the analysis

  3. Monoclonal antibodies reactive with common tumor antigens on UV-induced tumors also react with hyperplastic UV-irradiated skin

    International Nuclear Information System (INIS)

    Spellman, C.W.; Beauchamp, D.A.

    1986-01-01

    Most murine skin tumors induced by ultraviolet light (UVB, 280-340 nm) can be successfully transplanted only into syngeneic hosts that have received subcarcinogenic doses of UVB. The tumor susceptible state is long-lived and mediated by T suppressor cells that control effector responses against common antigens on UV-induced tumors. Because antigen specific suppression arises prior to the appearance of a tumor, questions arise about the source of the original antigen. They have previously reported transplantation studies indicating that UV-irradiated skin is antigenically cross-reactive with UV-induced tumors. They now report on flow cytometry analyses showing that a series of MoAb reactive with common antigens expressed by UV-induced tumors are also reactive on cells from UV-irradiated skin. Various antigens appear at different times in the UV irradiation scheme, and some persist while others are transient. They speculate that the common antigens detected may be the ones to which functional suppression is directed. If true, these results suggest that successful tumors need not escape host defenses to emerge. Rather, tumors may arise and grow progressively if they express antigens that cross-react with specificities to which the host has previously mounted a suppressive response

  4. A review of experiments and results from the transient reactor test (TREAT) facility

    International Nuclear Information System (INIS)

    Deitrich, L. W.

    1998-01-01

    The TREAT Facility was designed and built in the late 1950s at Argonne National Laboratory to provide a transient reactor for safety experiments on samples of reactor fuels. It first operated in 1959. Throughout its history, experiments conducted in TREAT have been important in establishing the behavior of a wide variety of reactor fuel elements under conditions predicted to occur in reactor accidents ranging from mild off normal transients to hypothetical core disruptive accidents. For much of its history, TREAT was used primarily to test liquid-metal reactor fuel elements, initially for the Experimental Breeder Reactor-II (EBR-II), then for the Fast Flux Test Facility (FFTF), the Clinch River Breeder Reactor Plant (CRBRP), the British Prototype Fast Reactor (PFR), and finally, for the Integral Fast Reactor (IFR). Both oxide and metal elements were tested in dry capsules and in flowing sodium loops. The data obtained were instrumental in establishing the behavior of the fuel under off-normal and accident conditions, a necessary part of the safety analysis of the various reactors. In addition, TREAT was used to test light-water reactor (LWR) elements in a steam environment to obtain fission-product release data under meltdown conditions. Studies are now under way on applications of TREAT to testing of the behavior of high-burnup LWR elements under reactivity-initiated accident (RIA) conditions using a high-pressure water loop

  5. Transient survivability of LMR oxide fuel pins

    International Nuclear Information System (INIS)

    Weber, E.T.; Pitner, A.L.; Bard, F.E.; Culley, G.E.; Hunter, C.W.

    1986-01-01

    Fuel pin integrity during transient events must be assessed for both the core design and safety analysis phases of a reactor project. A significant increase in the experience related to limits of integrity for oxide fuel pins in transient overpower events has been realized from testing of fuel pins irradiated in FFTF and PFR. Fourteen FFTF irradiated fuel pins were tested in TREAT, representing a range of burnups, overpower ramp rates and maximum overpower conditions. Results of these tests along with similar testing in the PFR/TREAT program, provide a demonstration of significant safety margins for oxide fuel pins. Useful information applied in analytical extrapolation of fuel pin test data have been developed from laboratory transient tests on irradiated fuel cladding (FCTT) and on unirradiated fuel pellet deformation. These refinements in oxide fuel transient performance are being applied in assessment of transient capabilities of long lifetime fuel designs using ferritic cladding

  6. Reactive Strength Index: A Poor Indicator of Reactive Strength?

    Science.gov (United States)

    Healy, Robin; Kenny, Ian; Harrison, Drew

    2017-11-28

    The primary aim was to assess the relationships between reactive strength measures and associated kinematic and kinetic performance variables achieved during drop jumps. A secondary aim was to highlight issues with the use of reactive strength measures as performance indicators. Twenty eight national and international level sprinters, consisting of fourteen men and women, participated in this cross-sectional analysis. Athletes performed drop jumps from a 0.3 m box onto a force platform with dependent variables contact time (CT), landing time (TLand), push-off time (TPush), flight time (FT), jump height (JH), reactive strength index (RSI, calculated as JH / CT), reactive strength ratio (RSR, calculated as FT / CT) and vertical leg spring stiffness (Kvert) recorded. Pearson's correlation test found very high to near perfect relationships between RSI and RSR (r = 0.91 to 0.97), with mixed relationships found between RSI, RSR and the key performance variables, (Men: r = -0.86 to -0.71 between RSI/RSR and CT, r = 0.80 to 0.92 between RSI/RSR and JH; Women: r = -0.85 to -0.56 between RSR and CT, r = 0.71 between RSI and JH). This study demonstrates that the method of assessing reactive strength (RSI versus RSR) may be influenced by the performance strategies adopted i.e. whether an athlete achieves their best reactive strength scores via low CTs, high JHs or a combination. Coaches are advised to limit the variability in performance strategies by implementing upper and / or lower CT thresholds to accurately compare performances between individuals.

  7. Nitrenes, carbenes, diradicals, and ylides. Interconversions of reactive intermediates.

    Science.gov (United States)

    Wentrup, Curt

    2011-06-21

    Rearrangements of aromatic and heteroaromatic nitrenes and carbenes can be initiated with either heat or light. The thermal reaction is typically induced by flash vacuum thermolysis, with isolation of the products at low temperatures. Photochemical experiments are conducted either under matrix isolation conditions or in solution at ambient temperature. These rearrangements are usually initiated by ring expansion of the nitrene or carbene to a seven-membered ring ketenimine, carbodiimide, or allene (that is, a cycloheptatetraene or an azacycloheptatetraene when a nitrogen is involved). Over the last few years, we have found that two types of ring opening take place as well. Type I is an ylidic ring opening that yields nitrile ylides or diazo compounds as transient intermediates. Type II ring opening produces either dienylnitrenes (for example, from 2-pyridylnitrenes) or 1,7-(1,5)-diradicals (such as those formed from 2-quinoxalinylnitrenes), depending on which of these species is better stabilized by resonance. In this Account, we describe our achievements in elucidating the nature of the ring-opened species and unraveling the connections between the various reactive intermediates. Both of these ring-opening reactions are found, at least in some cases, to dominate the subsequent chemistry. Examples include the formation of ring-opened ketenimines and carbodiimides, as well as the ring contraction reactions that form five-membered ring nitriles (such as 2- and 3-cyanopyrroles from pyridylnitrenes, N-cyanoimidazoles from 2-pyrazinyl and 4-pyrimidinylnitrenes, N-cyanopyrazoles from 2-pyrimidinylnitrenes and 3-pyridazinylnitrenes, and so forth). The mechanisms of formation of the open-chain and ring-contraction products were unknown at the onset of this study. In the course of our investigation, several reactions with three or more consecutive reactive intermediates have been unraveled, such as nitrene, seven-membered cyclic carbodiimide, and open-chain nitrile ylide

  8. Energy transfer in reactive and non-reactive H2 + OH collisions

    International Nuclear Information System (INIS)

    Rashed, O.; Brown, N.J.

    1985-04-01

    We have used the methods of quasi-classical dynamics to compute energy transfer properties of non-reactive and reactive H 2 + OH collisions. Energy transfer has been investigated as function of translational temperature, reagent rotational energy, and reagent vibrational energy. The energy transfer mechanism is complex with ten types of energy transfer possible, and evidence was found for all types. There is much more exchange between the translational degree of freedom and the H 2 vibrational degree of freedom than there is between translation and OH vibration. Translational energy is transferred to the rotational degrees of freedom of each molecule. There is a greater propensity for the transfer of translation to OH rotation than H 2 rotation. In reactive collisions, increases in reagent translational temperature predominantly appear as vibrational energy in the water molecule. Energy transfer in non-reactive and reactive collisions does not depend strongly on the initial angular momentum in either molecule. In non-reactive collisions, vibrational energy is transferred to translation, to the rotational degree of freedom of the same molecule, and to the rotational and vibrational degrees of freedom of the other molecule. In reactive collisions, the major effect of increasing the vibrational energy in reagent molecules is that, on the average, the vibrational energy of the reagents appears as product vibrational energy. 18 refs., 16 figs., 6 tabs

  9. Reaction-based small-molecule fluorescent probes for dynamic detection of ROS and transient redox changes in living cells and small animals.

    Science.gov (United States)

    Lü, Rui

    2017-09-01

    Dynamic detection of transient redox changes in living cells and animals has broad implications for human health and disease diagnosis, because intracellular redox homeostasis regulated by reactive oxygen species (ROS) plays important role in cell functions, normal physiological functions and some serious human diseases (e.g., cancer, Alzheimer's disease, diabetes, etc.) usually have close relationship with the intracellular redox status. Small-molecule ROS-responsive fluorescent probes can act as powerful tools for dynamic detection of ROS and redox changes in living cells and animals through fluorescence imaging techniques; and great advances have been achieved recently in the design and synthesis of small-molecule ROS-responsive fluorescent probes. This article highlights up-to-date achievements in designing and using the reaction-based small-molecule fluorescent probes (with high sensitivity and selectivity to ROS and redox cycles) in the dynamic detection of ROS and transient redox changes in living cells and animals through fluorescence imaging. Copyright © 2017. Published by Elsevier Ltd.

  10. Fission gas behavior during fast thermal transients

    International Nuclear Information System (INIS)

    Esteves, R.G.

    1976-01-01

    The behavior of non-equilibrium fission in fuel elements undergoing fast thermal transients is analyzed. To facilitate the analysis, a new variable, the equilibrium variable (EV) is defined. This variable, together with bubble radius, completely specifies a bubble with respect to its size and equilibrium condition. The analysis is coded using a two-variable (radius and EV) multigroup numerical approximation that accepts as input the time-temperature history, the time-fission rate history, and the time-thermal gradient history of the fuel element. Studies were performed to test the code for convergence with respect to the time interval and the number of groups chosen. For a series of transient simulation studies, the measurements obtained at HEDL (microscopic examination of intragranular porosity in oxide fuel transient-tested in TREAT) are used. Two different transient histories were selected; the first, a high-temperature transient (HTT) with a peak at 2477 0 K and the second, a low-temperature transient (LTT) with a peak-temperature at 2000 0 K. The LTT was simulated for three different conditions: Bubbles were allowed to move via (a) only biased migration, (b) via random migration, and (c) via both mechanisms. The HTT was also run for both mechanisms. The agreement with HEDL microscopic observations was fair for bubbles smaller than 964 A in diameter, and poor for larger bubbles. Bubbles that grew during the heat-up part of the transient were frozen at a larger size during the cool down

  11. Reactive sites influence in PMMA oligomers reactivity: a DFT study

    Science.gov (United States)

    Paz, C. V.; Vásquez, S. R.; Flores, N.; García, L.; Rico, J. L.

    2018-01-01

    In this work, we present a theoretical study of methyl methacrylate (MMA) living anionic polymerization. The study was addressed to understanding two important experimental observations made for Michael Szwarc in 1956. The unexpected effect of reactive sites concentration in the propagation rate, and the self-killer behavior of MMA (deactivating of living anionic polymerization). The theoretical calculations were performed by density functional theory (DFT) to obtain the frontier molecular orbitals values. These values were used to calculate and analyze the chemical interaction descriptors in DFT-Koopmans’ theorem. As a result, it was observed that the longest chain-length species (related with low concentration of reactive sites) exhibit the highest reactivity (behavior associated with the increase of the propagation rate). The improvement in this reactivity was attributed to the crosslinking produced in the polymethyl methacrylate chains. Meanwhile, the self-killer behavior was associated with the intermolecular forces present in the reactive sites. This behavior was associated to an obstruction in solvation, since the active sites remained active through all propagation species. The theoretical results were in good agreement with the Szwarc experiments.

  12. The economic impact of reactor transients

    International Nuclear Information System (INIS)

    Rossin, A.D.; Vine, G.L.

    1984-01-01

    This chapter discusses the cost estimation of transients and the causal relationship between transients and accidents. It is suggested that the calculation of the actual cost of a transient that has occurred is impossible without computerized records. Six months of operating experience reports, based on a survey of pressurized water reactors (PWRs) and boiling water reactors (BWRs) conducted by the Nuclear Safety Analysis Center (NSAC), are analyzed. The significant costs of a reactor transient are the repair costs resulting from severe damage to plant equipment, the cost of scrams (the actions the system is designed to take to avoid safety risks), US NRC fines, negative publicity, utility rates and revenues. It is estimated that the Three Mile Island-2 accident cost the US over $100 billion in nuclear plant delays and cancellations, more expensive fuel, oil imports, backfits, bureaucratic, administrative and legal costs, and lost productivity

  13. Three-dimensional coupled kinetics/thermal- hydraulic benchmark TRIGA experiments

    International Nuclear Information System (INIS)

    Feltus, Madeline Anne; Miller, William Scott

    2000-01-01

    This research project provides separate effects tests in order to benchmark neutron kinetics models coupled with thermal-hydraulic (T/H) models used in best-estimate codes such as the Nuclear Regulatory Commission's (NRC) RELAP and TRAC code series and industrial codes such as RETRAN. Before this research project was initiated, no adequate experimental data existed for reactivity initiated transients that could be used to assess coupled three-dimensional (3D) kinetics and 3D T/H codes which have been, or are being developed around the world. Using various Test Reactor Isotope General Atomic (TRIGA) reactor core configurations at the Penn State Breazeale Reactor (PSBR), it is possible to determine the level of neutronics modeling required to describe kinetics and T/H feedback interactions. This research demonstrates that the small compact PSBR TRIGA core does not necessarily behave as a point kinetics reactor, but that this TRIGA can provide actual test results for 3D kinetics code benchmark efforts. This research focused on developing in-reactor tests that exhibited 3D neutronics effects coupled with 3D T/H feedback. A variety of pulses were used to evaluate the level of kinetics modeling needed for prompt temperature feedback in the fuel. Ramps and square waves were used to evaluate the detail of modeling needed for the delayed T/H feedback of the coolant. A stepped ramp was performed to evaluate and verify the derived thermal constants for the specific PSBR TRIGA core loading pattern. As part of the analytical benchmark research, the STAR 3D kinetics code (, STAR: Space and time analysis of reactors, Version 5, Level 3, Users Guide, Yankee Atomic Electric Company, YEAC 1758, Bolton, MA) was used to model the transient experiments. The STAR models were coupled with the one-dimensional (1D) WIGL and LRA and 3D COBRA (, COBRA IIIC: A digital computer program for steady-state and transient thermal-hydraulic analysis of rod bundle nuclear fuel elements, Battelle

  14. Synchronizing noisy nonidentical oscillators by transient uncoupling

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, Aditya, E-mail: adityat@iitk.ac.in; Mannattil, Manu, E-mail: mmanu@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 (India); Schröder, Malte, E-mail: malte@nld.ds.mpg.de [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Timme, Marc, E-mail: timme@nld.ds.mpg.de [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Department of Physics, Technical University of Darmstadt, 64289 Darmstadt (Germany); Chakraborty, Sagar, E-mail: sagarc@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 (India); Mechanics and Applied Mathematics Group, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 (India)

    2016-09-15

    Synchronization is the process of achieving identical dynamics among coupled identical units. If the units are different from each other, their dynamics cannot become identical; yet, after transients, there may emerge a functional relationship between them—a phenomenon termed “generalized synchronization.” Here, we show that the concept of transient uncoupling, recently introduced for synchronizing identical units, also supports generalized synchronization among nonidentical chaotic units. Generalized synchronization can be achieved by transient uncoupling even when it is impossible by regular coupling. We furthermore demonstrate that transient uncoupling stabilizes synchronization in the presence of common noise. Transient uncoupling works best if the units stay uncoupled whenever the driven orbit visits regions that are locally diverging in its phase space. Thus, to select a favorable uncoupling region, we propose an intuitive method that measures the local divergence at the phase points of the driven unit's trajectory by linearizing the flow and subsequently suppresses the divergence by uncoupling.

  15. Analysis of transient signals by Wavelet transform

    International Nuclear Information System (INIS)

    Penha, Rosani Libardi da; Silva, Aucyone A. da; Ting, Daniel K.S.; Oliveira Neto, Jose Messias de

    2000-01-01

    The objective of this work is to apply the Wavelet Transform in transient signals. The Wavelet technique can outline the short time events that are not easily detected using traditional techniques. In this work, the Wavelet Transform is compared with Fourier Transform, by using simulated data and rotor rig data. This data contain known transients. The wavelet could follow all the transients, what do not happen to the Fourier techniques. (author)

  16. Study on transient stability of asynchronous wind turbine based on series dynamic braking resistor%基于串联动态制动电阻的异步风电机组暂态稳定性研究

    Institute of Scientific and Technical Information of China (English)

    肖兰; 赵斌; 李建; 范镇南

    2011-01-01

    以并网笼型异步风电机组为例,分析了利用串联动态制动电阻提高并网异步风电机组在电网故障下暂态稳定性的作用机理以及效果.建立了并网异步风电机组的数学模型,基于Matlab/Simulink仿真平台,对比分析了采用串联动态制动电阻、并联动态制动电阻以及无功补偿装置的作用效果.仿真结果表明,采用串联动态制动电阻可以有效改善并网异步风力发电机组的暂态稳定性;同时,采用串联动态制动电阻和无功补偿装置,可显著提高机组的暂态稳定性,减少对无功补偿的需求,降低风电场的运行成本.%Take the squirrel-cage type asynchronous wind turbine as example, the mechanism and efficiency of the improvement on the transient stability of wind turbine with grid-connected used by series dynamic braking resistor under the power grid fault is analyzed, the mathematical model of asynchronous wind turbine.with grid-connected is established, the transient behaviors of the wind turbine generator system using series dynamic breaking resistor, parallel dynamic breaking resistor and reactive compensation device are analyzed and compared based on Matlab/Simulink,. The simulation results have shown that the series dynamic breaking resistor can effectively improve the transient stability of asynchronous wind turbine system. Using series dynamic breaking resistor and reactive compensation device simultaneously can improve the transient stability of wind turbine generator system significantly , which reducing the reactive compensation requirement and cost of wind farm.

  17. Pressurizer and steam-generator behavior under PWR transient conditions

    International Nuclear Information System (INIS)

    Wahba, A.B.; Berta, V.T.; Pointner, W.

    1983-01-01

    Experiments have been conducted in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR), at the Idaho National Engineering Laboratory, in which transient phenomena arising from accident events with and without reactor scram were studied. The main purpose of the LOFT facility is to provide data for the development of computer codes for PWR transient analyses. Significant thermal-hydraulic differences have been observed between the measured and calculated results for those transients in which the pressurizer and steam generator strongly influence the dominant transient phenomena. Pressurizer and steam generator phenomena that occurred during four specific PWR transients in the LOFT facility are discussed. Two transients were accompanied by pressurizer inflow and a reduction of the heat transfer in the steam generator to a very small value. The other two transients were accompanied by pressurizer outflow while the steam generator behavior was controlled

  18. Surface photovoltage studies of p-type AlGaN layers after reactive-ion etching

    Science.gov (United States)

    McNamara, J. D.; Phumisithikul, K. L.; Baski, A. A.; Marini, J.; Shahedipour-Sandvik, F.; Das, S.; Reshchikov, M. A.

    2016-10-01

    The surface photovoltage (SPV) technique was used to study the surface and electrical properties of Mg-doped, p-type AlxGa1-xN (0.06 GaN:Mg thin films and from the predictions of a thermionic model for the SPV behavior. In particular, the SPV of the p-AlGaN:Mg layers exhibited slower-than-expected transients under ultraviolet illumination and delayed restoration to the initial dark value. The slow transients and delayed restorations can be attributed to a defective surface region which interferes with normal thermionic processes. The top 45 nm of the p-AlGaN:Mg layer was etched using a reactive-ion etch which caused the SPV behavior to be substantially different. From this study, it can be concluded that a defective, near-surface region is inhibiting the change in positive surface charge by allowing tunneling or hopping conductivity of holes from the bulk to the surface, or by the trapping of electrons traveling to the surface by a high concentration of defects in the near-surface region. Etching removes the defective layer and reveals a region of presumably higher quality, as evidenced by substantial changes in the SPV behavior.

  19. Transient analysis capabilities at ABB-CE

    International Nuclear Information System (INIS)

    Kling, C.L.

    1992-01-01

    The transient capabilities at ABB-Combustion Engineering (ABB-CE) Nuclear Power are a function of the computer hardware and related network used, the computer software that has evolved over the years, and the commercial technical exchange agreements with other related organizations and customers. ABB-CEA is changing from a mainframe/personal computer network to a distributed workstation/personal computer local area network. The paper discusses computer hardware, mainframe computing, personal computers, mainframe/personal computer networks, workstations, transient analysis computer software, design/operation transient analysis codes, safety (licensed) analysis codes, cooperation with ABB-Atom, and customer support

  20. Transient Analyses for a Molten Salt Transmutation Reactor Using the Extended SIMMER-III Code

    International Nuclear Information System (INIS)

    Wang, Shisheng; Rineiski, Andrei; Maschek, Werner; Ignatiev, Victor

    2006-01-01

    Recent developments extending the capabilities of the SIMMER-III code for the dealing with transient and accidents in Molten Salt Reactors (MSRs) are presented. These extensions refer to the movable precursor modeling within the space-time dependent neutronics framework of SIMMER-III, to the molten salt flow modeling, and to new equations of state for various salts. An important new SIMMER-III feature is that the space-time distribution of the various precursor families with different decay constants can be computed and took into account in neutron/reactivity balance calculations and, if necessary, visualized. The system is coded and tested for a molten salt transmuter. This new feature is also of interest in core disruptive accidents of fast reactors when the core melts and the molten fuel is redistributed. (authors)