WorldWideScience

Sample records for retort process water

  1. Processing of chopped mussel meat in retort pouch

    Directory of Open Access Journals (Sweden)

    Giustino TRIBUZI

    2015-01-01

    Full Text Available Abstract Chopped mussel meat packaged in retort pouches was processed in a laboratory-scale water immersion retort, adapted for processing under overpressure conditions. Retort temperature effects on product yield and on cook value were evaluated by setting the F0 at 7 min. The effects of different pre-treatments (salting and marination on the characteristics of mussels were evaluated after processing at retort temperature of 118 °C and during a whole year of storage at 25 °C. The salted samples showed better yield during storage, while no differences were found for the other physicochemical parameters.

  2. Retort process modelling for Indian traditional foods.

    Science.gov (United States)

    Gokhale, S V; Lele, S S

    2014-11-01

    Indian traditional staple and snack food is typically a heterogeneous recipe that incorporates varieties of vegetables, lentils and other ingredients. Modelling the retorting process of multilayer pouch packed Indian food was achieved using lumped-parameter approach. A unified model is proposed to estimate cold point temperature. Initial process conditions, retort temperature and % solid content were the significantly affecting independent variables. A model was developed using combination of vegetable solids and water, which was then validated using four traditional Indian vegetarian products: Pulav (steamed rice with vegetables), Sambar (south Indian style curry containing mixed vegetables and lentils), Gajar Halawa (carrot based sweet product) and Upama (wheat based snack product). The predicted and experimental values of temperature profile matched with ±10 % error which is a good match considering the food was a multi component system. Thus the model will be useful as a tool to reduce number of trials required to optimize retorting of various Indian traditional vegetarian foods.

  3. Process of gas manufacture: retorts

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, N M

    1883-01-01

    Improvements in the process and apparatus for the destructive distillation of shale, etc., described in Specification No. 1327, A.D. 1873. According to one modification a series of vertical retorts are arranged opposite to each other in two rows, the retorts in each row having flue spaces between them. The retorts have inclined bottoms beneath which are combustion chambers connected by flues to the spaces, and by flues to regenerative chambers, provided with flues, arranged with suitable valves. The fresh air and combustible gas enter at the bottom of one pair of regenerators, and after being heated enter one of the chambers, where they are ignited. The products pass through the adjacent spaces, which are connected at the top, and having heated the retorts pass through the other chamber and through the other pair of regenerators to the chimney. The retorts opposite to each other are connected by a port at the top, and they are charged alternately with fresh material. Each retort is fitted with an outlet pipe leading to a main, and with a steam jet by which air and steam may be forced into the mouth piece. The fresh charge is subjected to a comparatively low temperature at first to distill the oil, and then a higher heat is applied to the partially-spent shale and highly-superheated steam, and air admitted to the retort to decompose the coke and drive off the remaining carbon and ammonia.

  4. Furnace retort for cracking

    Energy Technology Data Exchange (ETDEWEB)

    Nosek, F

    1938-05-24

    A process is described for treating material which is brittle, breakable, or granular, containing liquid substances or gases (natural gas and ether, oils, emulsions, water, etc.), in which the distillation is accomplished without interruption in a system of retorts where the raw materials is introduced mechanically and in controllable amounts into the first element of the system, turned over in the retort, and pushed into the following retort, etc. The dephlegmation of the vapors is carried on inside of the system of retorts.

  5. Process for retorting shale

    Energy Technology Data Exchange (ETDEWEB)

    1952-03-19

    The method of retorting oil shale to recover valuable liquid and gaseous hydrocarbons consists of heating the oil shale in a retorting zone to a temperature sufficient to convert its kerogenic constituents to normally liquid and normally gaseous hydrocarbons by contact with hot gas previously recovered from shale, cooling the gases and vapors effluent from the retorting zone by direct countercurrent contact with fresh shale to condense the normally liquid constituents of the gases and vapors, separating the fixed gas from the liquid product, heating the fixed gas, and returning it to the retorting zone to contact further quantities of shale.

  6. Cyclone oil shale retorting concept. [Use it all retorting process

    Energy Technology Data Exchange (ETDEWEB)

    Harak, A.E.; Little, W.E.; Faulders, C.R.

    1984-04-01

    A new concept for above-ground retorting of oil shale was disclosed by A.E. Harak in US Patent No. 4,340,463, dated July 20, 1982, and assigned to the US Department of Energy. This patent titled System for Utilizing Oil Shale Fines, describes a process wherein oil shale fines of one-half inch diameter and less are pyrolyzed in an entrained-flow reactor using hot gas from a cyclone combustor. Spent shale and supplemental fuel are burned at slagging conditions in this combustor. Because of fines utilization, the designation Use It All Retorting Process (UIARP) has been adopted. A preliminary process engineering design of the UIARP, analytical tests on six samples of raw oil shale, and a preliminary technical and economic evaluation of the process were performed. The results of these investigations are summarized in this report. The patent description is included. It was concluded that such changes as deleting air preheating in the slag quench and replacing the condenser with a quench-oil scrubber are recognized as being essential. The addition of an entrained flow raw shale preheater ahead of the cyclone retort is probably required, but final acceptance is felt to be contingent on some verification that adequate reaction time cannot be obtained with only the cyclone, or possibly some other twin-cyclone configuration. Sufficient raw shale preheating could probably be done more simply in another manner, perhaps in a screw conveyor shale transporting system. Results of the technical and economic evaluations of Jacobs Engineering indicate that further investigation of the UIARP is definitely worthwhile. The projected capital and operating costs are competitive with costs of other processes as long as electric power generation and sales are part of the processing facility.

  7. Method of distillation of shale. [addition of water to vertical retort

    Energy Technology Data Exchange (ETDEWEB)

    Hultman, G H

    1915-09-11

    The method is characterized by adding water, finely distributed, to the warm shale being distilled in a vertical retort. By this procedure steam is generated which will drive out and protect the distilled oil vapors. The adding of finely distributed water, already mentioned, takes place in special chambers under the retort.

  8. Determining Permissible Oxygen and Water Vapor Transmission Rate for Non-Retort Military Ration Packaging

    Science.gov (United States)

    2011-11-01

    OXYGEN AND WATER VAPOR TRANSMISSION RATE FOR NON- RETORT MILITARY RATION PACKAGING by Danielle Froio Alan Wright Nicole Favreau and Sarah...ANSI Std. Z39.18 RETORT STORAGE SHELF LIFE RETORT POUCHES SENSORY ANALYSIS OXYGEN CRACKERS PACKAGING SENSORY... Packaging for MRE. (a) MRE Retort Pouch Quad-Laminate Structure; (b) MRE Non- retort Pouch Tri-Laminate Structure

  9. Scoping of fusion-driven retorting of oil shale

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1979-11-01

    In the time frame beyond 2005, fusion reactors are likely to make their first appearance when the oil shale industry will probably be operating with 20% of the production derived from surface retorts operating on deep mined shale from in situ retorts and 80% from shale retorted within these in situ retorts using relatively fine shale uniformly rubblized by expensive mining methods. A process was developed where fusion reactors supply a 600 0 C mixture of nitrogen, carbon dioxide, and water vapor to both surface and in situ retorts. The in situ production is accomplished by inert gas retorting, without oxygen, avoiding the burning of oil released from the larger shale particles produced in a simpler mining method. These fusion reactor-heated gases retort the oil from four 50x50x200m in-situ rubble beds at high rate of 40m/d and high yield (i.e., 95% F.A.), which provided high return on investment around 20% for the syncrude selling at $20/bbl, or 30% if sold as $30/bbl for heating oil. The bed of 600 0 C retorted shale, or char, left behind was then burned by the admission of ambient air in order to recover all of the possible energy from the shale resource. The hot combustion gases, mostly nitrogen, carbon dioxide and water vapor are then heat-exchanged with fusion reactor blanket coolant flow to be sequentially introduced into the next rubble bed ready for retorting. The advantages of this fusion-driven retorting process concept are a cheaper mining method, high yield and higher production rate system, processing with shale grades down to 50 l/mg (12 gpt), improved resource recovery by complete char utilization and low energy losses by leaving behind a cold, spent bed

  10. Process for oil shale retorting

    Science.gov (United States)

    Jones, John B.; Kunchal, S. Kumar

    1981-10-27

    Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

  11. Coke retorts

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S; MacDonald, J D

    1916-07-15

    To charge vertical coke retorts while preventing escape of gases the coal is fed by a revolving drum to an archimedean screw at the base of the retort, the coke being discharged at the top through a water seal. The feed pockets of the drum which revolves between plates, deliver coal from the hopper to the revolving screw. The coke is forced under the hood to the water seal and is removed by rake conveyor, the gases escaping through the pipe to the main.

  12. Retort for coal, shale, and other carbonaceous material

    Energy Technology Data Exchange (ETDEWEB)

    Moure, K R

    1930-12-15

    A truncated conical retort chamber is described with a water tank or pit below the level of the floor of the retort, an aperture is the base of the retort chamber, a water-sealed chamber is interposed between the aperture at the base of the retort chamber and the water tank or pit, the upper end of the water-sealed chamber is connected to the retort chamber so as to make an air-tight joint therewith. Its lower end is submerged in the water in the tank or pit, an endless chain grate rotatably mounted upon a frame upon the floor of the retort chamber. The chain grate is inclined toward and projecting through the aperture at the base of the retort chamber into the water-sealed chamber for the purpose of conveying the spent material from the retort chamber to the water-sealed chamber through which it will gravitate to the water tank or pit. Means such as a bucket conveyor are provided for raising the spent material from the water tank or pit. Means are provided for rotating the endless chain grate, superimposed cylindrical feed chambers are upon the top of and in axial line with the retort chamber, a coned valve is interposed between the retort chamber and the next adjacent cylindrical chamber, another valve is interposed between the upper and lower cylindrical chambers. Means are provided for opening and closing the valves alternately, a discharge aperature is at or near the top of the retortchamber, and means are provided for feeding the material into the uppermost cylindrical feed chamber.

  13. The mechanisms of edge wicking in retortable paperboard

    OpenAIRE

    Tufvesson, Helena

    2006-01-01

    This thesis reports on an investigation of the mechanisms of edge wicking in retortable paperboard. Retortable board is used for packaging preserved food, a process which requires that the package and its contents be sterilised by exposure to high temperature steam for up to three hours. The board used must thus have higher water repellence than traditional liquid packaging. Water vapour that condenses on the cut edges on the outside of the board causes particular concern. The paperboards stu...

  14. Specific features of kukersite processing in laboratory-scale and commercial retorts

    International Nuclear Information System (INIS)

    Yefimov, V.; Kundel, H.

    1991-01-01

    The yield and properties of shale oil produced by semi coking oil shale in retorts of different design depend to a great extent on the conditions of volatiles evacuation from the high temperature zone. In externally heated laboratory retorts, where oil vapours reside in the reaction zone for a relatively long period undergoing moderate cracking, no maximum oil yields are attained. The higher the organic matter content in the oil shale, the higher is the partial pressure of the oil vapours in the retort and hence the rate of their removal from the retorting zone, resulting in increased shale oil yields and lower specific yield of hydrogen in the retort off-gases. replacing the external heating mode with direct heating by a gaseous heat carrier (carbon dioxide, in particular) leads to a considerable moderation of the volatiles pyrolysis. As a result, the shale oil produced has a higher density and molecular mass, a lower calorific value and a higher content of phenols. The presence of water vapours in the heat carrier gas also has a positive effect upon the yield of shale oil and phenols. The properties of the oil and gas produced by semi coking kukersite in the presence of free calcium oxide are similar to those of cracked products. The presence of free calcium oxide has the same effect as higher temperatures or longer residence time of the volatiles in the retorting zone: it leads to reduced yields of shale oil and phenols, to a lower density of the oil and higher yields of hydrogen and gaseous hydrocarbons. This should be taken into consideration on evaluating the efficiency of semi coking oil shale in the retorts with solid heat carrier, which contains free calcium oxide

  15. Retorts; distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, A C

    1869-11-09

    Relates to retorts for distilling shale or other purposes. Each retort has a mouthpiece, which projects into a water trough, having a curved bottom, and sides rising up to ridges, from which extend shoots. Attached to links is the reciprocating discharge bar, actuated from a steam engine, etc., which, through worm-wheel gearing and a shaft, imparts an intermittent motion to a pawl which propels a ratchet-wheel, which is prevented from turning backward by a catch, and drives a rotary shaft, the motion being transmitted to a bar through a crank and rod. The bar, in rising, pushes the residue from the retort out of the trough, over the ridges, and down the shoots into the truck, etc. The vertical retort is made in two lengths, at the joint between which is held the flange of the shell, joined to, or cast with, the part of the retort and forming a jacket into which steam or other vapor or gas is introduced by a pipe. The steam, etc., circulates through an external spiral rib of the shell and issues from the bottom of the shale among the shale, etc., being distilled.

  16. Retort Racks for Polymeric Trays in 1400 Style Spray Retorts

    National Research Council Canada - National Science Library

    Bruins, Henderikus B

    2003-01-01

    The objective of this project was to design a retort rack that would maximize the retort capacity of a 1400 style spray retort and to select a material that would withstand the harsh retort spray environment...

  17. Hot gas stripping of ammonia and carbon dioxide from simulated and actual in situ retort waters

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, C.L.

    1979-01-01

    This study proved that ammonia and carbon dioxide could be removed from retort water by hot gas stripping and that overall transfer rates were slower than for physical desorption alone. The ammonia in solution complexed with the carbonate species with the result that the CO/sub 2/ transfer rates were linked to the relatively slower desorption of NH/sub 3/ from solution. Ionic reactions in the liquid phase limited the quantity of free NH/sub 3/ and CO/sub 2/, thus decreasing the driving forces for mass transfer. The retort water exhibited foaming tendencies that affected the interfacial area which should be taken into account if a stripping tower is considered on a larger scale. Transfer unit heights were calculated for the process conditions studied and correlated such that scaleup to increased capacities is possible.

  18. Retorts

    Energy Technology Data Exchange (ETDEWEB)

    Bryson, J; Jones, J; Fraser, W

    1894-04-27

    The invention relates to vertical retorts for the distillation of shale and other bituminous substances, or for the calcining of ironstone etc. The retorts are circular in cross-section and have tapering lower ends. For the purpose of effecting a continuous or intermittent movement of the substance under treatment, there is mounted at the base of each retort a supporting disk or table, above which is an arm or scraper capable of being revolved by means of an upright spindle actuated by a ratchet and pawl or other means. The form of the table and scraper may be modified. The discharging hoppers of the two rows of retorts have their openings so arranged as to discharge into a single truck, which runs along a central passage underneath the retorts. Or they may discharge into a trough containing a worm, screw, or endless-band conveyer.

  19. Lethality of Rendang packaged in multilayer retortable pouch with sterilization process

    Science.gov (United States)

    Praharasti, A. S.; Kusumaningrum, A.; Frediansyah, A.; Nurhikmat, A.; Khasanah, Y.; Suprapedi

    2017-01-01

    Retort Pouch had become a choice to preserve foods nowadays, besides the used of the can. Both had their own advantages, and Retort Pouch became more popular for the reason of cheaper and easier to recycle. General Method usually used to estimate the lethality of commercial heat sterilization process. Lethality value wa s used for evaluating the efficacy of the thermal process. This study aimed to find whether different layers of pouch materials affect the lethality value and to find differences lethality in two types of multilayer retort pouch, PET/Aluminum Foil/Nylon/RCPP and PET/Nylon/Modified Aluminum/CPP. The result showed that the different layer arrangement was resulted different Sterilization Value (SV). PET/Nylon/Modified Aluminum/CPP had better heat penetration, implied by the higher value of lethality. PET/Nylon/Modified Aluminum/CPP had the lethality value of 6,24 minutes, whereas the lethality value of PET/Aluminum Foil/Nylon/RCPP was 3,54 minutes.

  20. Anaerobic biological treatment of in-situ retort water

    Energy Technology Data Exchange (ETDEWEB)

    Ossio, E.; Fox, P.

    1980-03-01

    Anaerobic fermentation was successfully used in a laboratory-scale batch digester to remove soluble organics from retort water. Required pretreatment includes reduction of ammonia levels to 360 mg-N/l, pH adjustment to 7.0, sulfide control, and the addition of the nutrients, calcium, magnesium, and phoshorus. If the prescribed pretreatment is used, BOD/sub 5/ and COD removal efficiencies of 89 to 90% and 65 to 70% are achieved, respectively.

  1. Retort furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Pieters, J

    1924-07-23

    Retorts for the distillation of materials such as lignite, peat, or sawdust having a high moisture content are disposed in series in two directions at right angles to each other in a single block of masonry and are separated by longitudinal walls pierced by channels for heating gases and for escape of the distillation products. The oval retorts have between them flues with passages for the escape of the distillation gases which pass to a main. The material is charged into a hopper serving all the retorts and drying the material by the hot burnt gases which pass from a passage through branches to ducts at the base of the drier, these ducts being covered by funnels for filling the vertical chambers. The distillation gases after purification in the by-product recovery plant are burned in burners and combustion spaces, the hot gases circulating in channels before escaping by passage. The temperature in zone A is 400 to 500/sup 0/C and in zone B a higher temperature is attained. The coke is cooled by superheated steam injected through channels, water gas being generated and the material is further cooled by steam circulating in passages.

  2. Gas-retorts

    Energy Technology Data Exchange (ETDEWEB)

    1920-07-10

    A vertical retort for the continuous distillation of coal, peat, shale, lignite, etc., is provided with a perforated gas withdrawal pipe in the upper part. The central part is surrounded by a heating-flue, and the lower part is provided with a conical discharging-screw mounted in a rotary water-pan.

  3. Gas retorts: gas manufacture, process for distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Bell, J

    1874-05-23

    In apparatus for distilling shale, coal, etc. for making oil and gas, tubular retorts are supported horizontally in a chamber by plates from a brick setting and are heated partly by jets of gas from a pipe supplied through a cock from a gas holder, and partly by the waste gases from a furnace, which heats gas retorts placed in a chamber, air being supplied beneath the grate by a fan.

  4. Improvements in retorts

    Energy Technology Data Exchange (ETDEWEB)

    MacLaren, A F

    1922-02-24

    A retort is described for the treatment of carbonaceous material (for example, for the distillation of coal and the like, and/or the cracking of oils) having a plurality of pipes for injecting steam (superheated) thereinto communicating with different zones of the interior of the retort, characterized by the provision of a jacket surrounding the retort and communicating with outlet apertures therein to receive the exhaust steam and the distillates or other products from the retort.

  5. Destructive distillation; retorts

    Energy Technology Data Exchange (ETDEWEB)

    Beilby, G T

    1881-10-03

    For distilling shale and other oil-yielding minerals. Relates to apparatus described in Specification No. 2169 (1881) in which retorts arranged in sets, and mounted loosely in brickwork to allow expansion, are formed preferably of upper iron tubes, fixed by socket rings, to lower fireclay tubes formed with belts which, together with ledges in the sides of the oven, support fireclay slabs. In some cases the lower parts of the retorts may be formed of iron tubes. Each set of four upper tubes is supplied with a four-way hopper, suspended by means of a pair of counter-weighted levers, centered on bearing plates and connected with the hopper by links. A single pipe connected to the hopper serves for leading off the vapors from the four retorts. The retorts are heated by a furnace, the hot gases from which after acting on the retorts are led to ovens in which are placed steam generators and superheaters, from which steam is conveyed to the interior of the retorts to assist the decomposition.

  6. Improvements in retorts for the processing of coal, oil shale and like material

    Energy Technology Data Exchange (ETDEWEB)

    Honyburn, A G; James, G L.D.

    1931-05-28

    Improvements in retorts of the kind described consist of means wherein the material to be retorted is fed through the retort in a continuous manner by means of horizontally revolving star wheels whereby the material is prevented from jambing due to expansion. Coking of the material en masse during the intumescence period is prevented, and the material is maintained in contact with the walls of the retort ensuring uniform heating of the mass.

  7. Process for water-gas generation from degassed combustibles

    Energy Technology Data Exchange (ETDEWEB)

    1906-05-23

    A process for water-gas generation in a continuous operation from degassed combustibles in the lower part of a vertical exterior-heated retort, whose middle part can serve to degas the combustibles, is described. It is characterized in that the water vapor employed is obtained by vaporizing water in the upper part of the retort by means of the waste heat from the heating gases, which had effected the coking of the combustibles before the water-gas recovery or after the latter.

  8. Rotary retort for carbonizing bituminous materials

    Energy Technology Data Exchange (ETDEWEB)

    Meguin, A G; Muller, W

    1920-09-05

    A process of carbonizing bituminous materials, such as coal and oil shale at a low temperature in a rotary retort with simultaneous compressing the material especially of the semicoke formed that is characterized in that the material during the distillation through rapid rotation of the retort is exposed to the action of centrifugal force and thereby it is compressed.

  9. Hoizontal retort for distilling

    Energy Technology Data Exchange (ETDEWEB)

    Archer, F; Papineau, W

    1854-12-15

    Improvements are disclosed in distilling peaty, schistose, bituminous and vegetable matters. These are arranging a retort in a horizontal position or so little inclined as not to permit matters charged at one end of the retort to fall readily to the other by gravity. The retort is heated externally by a fire at one end, near which end the spent products are discharged without opening the retort, which is done by the aid of two valves or slides, one being at all times closed when discharging products. The other end of the retort is provided with a divided hopper with two valves or slides, one of which is kept closed when the other is open, in order to charge the retort. Within is an endless chain carrying rakes so as to move the matters from the feeding to the discharging end. There are outlets for the distilled products furnished with condensers.

  10. A review on technologies for oil shale surface retort

    International Nuclear Information System (INIS)

    Pan, Y.; Zhang, X.; Liu, S.; Yang, S.A.; Ren, N.

    2012-01-01

    In recent years, with the shortage of oil resources and the continuous increase in oil prices, oil shale has seized much more attention. Oil shale is a kind of important unconventional oil and gas resources. Oil shale resources are plentiful according to the proven reserves in places. And shale oil is far richer than crude oil in the world. Technology processing can be divided into two categories: surface retorting and in-situ technology. The process and equipment of surface retorting are more mature, and are still up to now, the main way to produce shale oil from oil shale. According to the variations of the particle size, the surface retorting technologies of oil shale can be notified and classified into two categories such as lump shale process and particulate shale process. The lump shale processes introduced in this article include the Fushun retorting technology, the Kiviter technology and the Petrosix technology; the particulate processes include the Gloter technology, the LR technology, the Tosco-II technology, the ATP (Alberta Taciuk Process) technology and the Enefit-280 technology. After the thorough comparison of these technologies, we can notice that, this article aim is to show off that : the particulate process that is environmentally friendly, with its low cost and high economic returns characteristics, will be the major development trend; Combined technologies of surface retorting technology and other oil producing technology should be developed; the comprehensive utilization of oil shale should be considered during the development of surface retorting technology, meanwhile the process should be harmless to the environment. (author)

  11. Combat Ration Network for Technology Implementation. Retort Racks for Polymeric Trays in 1400 Style Spray Retorts

    National Research Council Canada - National Science Library

    Bruins, Henderikus B; Coburn, John F

    2003-01-01

    The objective of this project was to design a retort rack that would maximize the retort capacity of a 1400 style spray retort and to select a material that would withstand the harsh retort spray environment...

  12. Reduction of Aspergillus spp. and aflatoxins in peanut sauce processing by oil-less frying of chilli powder and retort processing.

    Science.gov (United States)

    Farawahida, A H; Jinap, S; Nor-Khaizura, M A R; Samsudin, N I P

    2017-12-01

    Among the many roles played by small and medium enterprises (SMEs) in the food industry is the production of heritage foods such as peanut sauce. Unfortunately, the safety of peanut sauce is not always assured as the processing line is not controlled. Peanut sauce is usually made of peanuts and chilli, and these commodities are normally contaminated with Aspergillus spp. and aflatoxins (AFs). Hence, the objective of this study was to evaluate the practices related to reduction of AF hazard and the effect of interventions in peanut sauce processing. Peanut samples were collected from each step of peanut sauce processing from a small peanut sauce company according to four designs: (1) control; (2) oil-less frying of chilli powder; (3) addition of retort processing; and (4) combination of oil-less frying of chilli powder and retort processing. Oil-less frying of chilli powder (Design 2) reduced total AFs by 33-41%, retort processing (Design 3) reduced total AFs by 49%, while combination of these two thermal processes (Design 4) significantly reduced total AFs, by 57%. The present work demonstrated that Design 4 yielded the highest reduction of total AFs and is therefore recommended to be employed by SME companies.

  13. Retort

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, E L

    1928-11-22

    A retort is described for gasifying coal, shale, lignite, and other organic substances, wherein the material is supplied from a hopper, as a film past a centrally heated chamber by means of a tier of overlapping rings provided with a spiral or screw edging. The rings are attached to an outer shell to which is given a rotary and a reciprocatory motion. The gas outlets are provided with open liquid seals and the spent material is delivered to a rotary water trough from whence it is removed by means of a scraper baffle.

  14. Vertical retort with arrangements for special heating, etc

    Energy Technology Data Exchange (ETDEWEB)

    Hengstenberg, R

    1922-02-28

    A vertical retort with arrangements for special heating of upper and lower zones and special gas outlets on the highest and lowest parts of the retort is characterized in that the lower gas outlet on the one side serves for feeding the burner for heating both upper zone as well as the lower, and on the other side runs to the collecting line for the gas, which emerges from the upper opening, while on the lower end of the retort is fastened a coke cooler, whose walls can be cooled with air supplied for the drying of the combustibles or with water, which is supplied for the steam generation.

  15. Shale retort

    Energy Technology Data Exchange (ETDEWEB)

    Overton, P C

    1936-07-22

    A vertical distillation retort with an enclosed annular heating chamber has enclosed therein tiered compartments spaced apart by chambers into which burners deliver heating gases which pass via ports to the chamber and thence to the atmosphere. Shale is delivered by means of an air tight chute to the uppermost compartment and is spread therein and passed downwardly from compartment to compartment through ports, finally passing from the retort through an airtight chute, by means of scrapers rotatably mounted on a hollow shaft through which noncondensible gases are delivered to the distilling material via jets. The gaseous products of distillation are educted through ports and a manifold, which is also in communication with the head of the retort through the delivery pipe.

  16. Retorts

    Energy Technology Data Exchange (ETDEWEB)

    Bilbrough, S B

    1917-01-11

    In the process of distilling coal at a temperature of from 800 to 1,200/sup 0/C, a means such as a central perforated tube, which may be a rotary one is employed for withdrawing the gases of distillation in such a way as to prevent them from coming into contact with the walls of the retort. One means of withdrawal comprises a tube tapering downward formed with perforations. Modifications are also shown.

  17. Retort for distilling coal oil

    Energy Technology Data Exchange (ETDEWEB)

    Gibbon, J

    1865-12-20

    The construction of a retort for extracting or distilling coal oil or other products from cannel coal, shale, or schist, and more particularly of small coal or dust technically called slack, consists in applying self-acting feed and discharge apparatus to a revolving cylindrical wrought or cast iron retort, and constructing the inner surface of the cylindrical retort with a projecting ridge which encircles the interior of the retort in a spiral manner, the same as the interior of a female screw, and the ridge may be either cast upon or riveted on the internal surface, and is so arranged to cause the material to be operated upon to advance from one end of the retort to the other, as the retort revolves by following the course of the spiral screw or worm formed by the projecting ridge.

  18. Migration through soil of organic solutes in an oil-shale process water

    Science.gov (United States)

    Leenheer, J.A.; Stuber, H.A.

    1981-01-01

    The migration through soil of organic solutes in an oil-shale process water (retort water) was studied by using soil columns and analyzing leachates for various organic constituents. Retort water extracted significant quantities of organic anions leached from ammonium-saturated-soil organic matter, and a distilled-water rinse, which followed retort-water leaching, released additional organic acids from the soil. After being corrected for organic constitutents extracted from soil by retort water, dissolved-organic-carbon fractionation analyses of effluent fractions showed that the order of increasing affinity of six organic compound classes for the soil was as follows: hydrophilic neutrals nearly equal to hydrophilic acids, followed by the sequence of hydrophobic acids, hydrophilic bases, hydrophobic bases, and hydrophobic neutrals. Liquid-chromatographic analysis of the aromatic amines in the hydrophobic- and hydrophilic-base fractions showed that the relative order of the rates of migration through the soil column was the same as the order of migration on a reversed-phase, octadecylsilica liquid-chromatographic column.

  19. Change in mechanical properties of Antrim oil shale on retorting

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S. P.; Hockings, W. A.; Kim, K.

    1979-01-01

    The decomposition of kerogen in oil shale and subsequent extraction of the decomposition products during the retorting process are known to alter the pore structure, resulting in changes in permeability, deformation and strength properties. Prediction of these changes is of fundamental importance in the design of in-situ retorting processes. This paper summarizes a comprehensive laboratory investigation on the changes in mechanical properties of Antrim oil shale on retorting at 500/sup 0/C. It was observed that kerogen plays an important role in the change of the properties on retorting. When subjected to heat, the degree of deformation, the extent of fracturing and the structural instability of the specimens appeared to be strongly dependent upon kerogen content. The values of elastic modulus, strength, and density decreased whereas maximum strain at failure increased on retorting. Significant increases in permeability and porosity also resulted from retorting. The most pronounced increase was observed in the permeability in the direction parallel to bedding which exceeded in some cases as much as 3 orders of magnitude. Microscopic observations of pore structures provided a qualitative support to data obtained in measurements of porosity and permeability.

  20. Improvements in shale retorts

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, A C

    1915-05-01

    This invention has reference to shale retorts and particularly related to the discharge of the spent material from the bottom of retorts or gas producers for the destructive distillation of shale, coal or other bituminous substances. It consists in the combination of a blade and means for rocking the same, a bottom piece or table, holes or slots in the same, a passage in the front brick-work of the retort, and a hopper with discharge doors.

  1. Energy and process substitution in the frozen-food industry: geothermal energy and the retortable pouch

    Energy Technology Data Exchange (ETDEWEB)

    Stern, M.W.; Hanemann, W.M.; Eckhouse, K.

    1981-12-01

    An assessment is made of the possibilities of using geothermal energy and an aseptic retortable pouch in the food processing industry. The focus of the study is on the production of frozen broccoli in the Imperial Valley, California. Background information on the current status of the frozen food industry, the nature of geothermal energy as a potential substitute for conventional fossil fuels, and the engineering details of the retortable pouch process are covered. The analytical methodology by which the energy and process substitution were evaluated is described. A four-way comparison of the economics of the frozen product versus the pouched product and conventional fossil fuels versus geothermal energy was performed. A sensitivity analysis for the energy substitution was made and results are given. Results are summarized. (MCW)

  2. Investigation of the Geokinetics horizontal in situ oil-shale-retorting process. Fourth annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.L. (ed.)

    1981-03-01

    The Geokinetics in situ shale oil project is a cooperative venture between Geokinetics Inc. and the US Department of Energy. The objective is to develop a true in situ process for recovering shale oil using a fire front moving in a horizontal direction. The project is being conducted at a field site, Kamp Kerogen, located 70 miles south of Vernal, Utah. This Fourth Annual Report covers work completed during the calendar year 1980. During 1980 one full-size retort was blasted. Two retorts, blasted the previous year, were burned. A total of 4891 barrels of oil was produced during the year.

  3. Instrumentation and operational plan for geokinetics retort No. 22

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, R.L.; Hommert, P.J.

    1980-04-01

    This report outlines the general plan for the instrumentation and technical direction of a horizontal in siti retorting experiment to be conducted at the Geokinetics, Inc. field site in Uintah County, Utah. Bed preparation has been accomplished by Geokinetics by blasting the retort zone with explosives emplaced in wells drilled from the surface. Downhole instrumentation will consist of approx. 300 thermocouples and 28 combustion gas sampling ports to monitor the movement of the reaction front during the retorting process. Surface instrumentation will provide measurements of flow rates, gas composition, liquid products and other process parameters to monitor the overall operation of the process. The operational plan includes provision for data interpretation and real time material balance calculations in the field, including an evaluation of the effect on processing rates and oil yield due to the use of recycled combusted off gases and changes in rate of injection of inlet gases.

  4. Feeding device for rotary retorts

    Energy Technology Data Exchange (ETDEWEB)

    Hutchins, T W.S.

    1923-04-25

    A horizontal rotary retort is heated externally with a feeding-worm or the like for distilling coal, oil shale, etc. It is characterized in that the shaft of the feeder moves adjustably lengthwise, so that, under the hopper more or less of the worm comes for action on the feed, so that the hopper is withdrawn through the retort while it projects into the retort and is secured in a position against the rotation.

  5. Retorts for distilling carbonaceous material

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, H E

    1921-09-12

    A retort for distilling carbonaceous material is described in which a mass of such material is retained in a pocket formed between an outer wall and an internal wall which is perforated to permit the free escape of distilled products, the retorts having heating means that directly heat the retort but are so related to the pocket that the material therein is heated indirectly and simultaneously from all sides entirely by heat conducted thereto by the walls.

  6. On possibilities to decrease influence of oxidation processes on oil yield at oil shale retorting

    International Nuclear Information System (INIS)

    Yefimov, V.; Loeoeper, R.; Doilov, S.; Kundel, H.

    1993-01-01

    At the present technical level retorting is carried out so that an increase in specific air consumption results in an increase of oxygen ingress into the semi coking shaft. At the same time a direct relationship between the degree of volatiles pyrolysis and specific air consumption was observed. This regularity enables to assume that within the reaction volume there occurs most likely the thermo oxidative pyrolysis of volatile products, not the oxidation of oil shale as it is considered traditionally. The main source of oxygen ingress ed into the semi coking shaft at processing oil shale in retorts is the process of spent shale. This process is not fully elaborated for utilization in commercial scale and can not be arranged so that the ingress of oxygen into the smacking chamber could be eliminated. In case of a slower semi coke gasification process and reduced specific air consumption for gasification the absolute amount of oxygen ingress ed into the semi coking shaft also decreases. One of the efficient methods to decrease specific air consumption is to build furnaces into the semi coking chamber to obtain additional amount of heat carrier by combusting generator gas. The maximum effect is reached when steam-and-air blow is completely replaced by recycle gas: specific air consumption is reduced whereas recycle gas is deoxygenated in the cooling zone while passing through spent shale bed which has the temperature of about 500 deg C. Another possible source of oxygen to the semi coking shaft with heat carrier is production of flue gases by combusting recycle gas in burners built in retorts. We consider the recycle gas employed upon processing oil shale in retorts hardly to be an appreciable source of the oxygen ingress into the semi coking shaft. Additional amounts of residual oxygen containing in recycle gas fed into both cooling zone and furnaces are practically totally consumed at gas combusting and passing across the bed of semi coke heated up to approximately

  7. Retorts

    Energy Technology Data Exchange (ETDEWEB)

    Frank, F

    1921-11-29

    Materials are heated in a rotary retort by direct action of a flame produced by burning a combustible mixture of gases containing oxygen in certain predetermined amounts so as to distil off volatile constituents and otherwise subject the materials to a heat treatment. By this method coal, peat, lignite, shale, sawdust, roots, leaves and the like may be destructively distilled to recover coke and other byproducts, or coke such as that in the carbonized residues may be treated to produce water gas or producer gas and montan wax and other waxes and fats may be obtained directly from lignite. Oils may be distilled or refined or heated to obtain illuminating gas, and high-boiling asphaltic residues made to yield light hydrocarbons.

  8. Improvements in discharge apparatus for retorts used for the distillation of coal or shale

    Energy Technology Data Exchange (ETDEWEB)

    Overton, P C

    1937-05-20

    The discharge apparatus for retorts used for the distillation of coal or shale is comprised of a casing which is adapted to be horizontally disposed below the discharge for residue material of a retort and closely connected thereto. The casing has a cylindrical chamber therein and inlet and outlet parts, a rotor within said chamber carried by a slowly rotating spindle journaled in bearings in said casing the said rotor having a pair of diametrically oppositely disposed pockets which on rotation of the rotor are respectively adapted to receive a supply of material fed to the inlet port of the said casing from the retort and to discharge same to the outlet port of the said casing. The latter and the said rotor on its periphery has a pair of spaced annular registering grooves whereby water under pressure can be supplied to said grooves and the internal wall of the said casing contiguous said rotor has a channel to which water under pressure can be supplied said channel being disposed centrally between the inlet and outlet ports of the casing and communicating with said grooves. On rotation of the rotor the residue material is carried in the pockets therein and can be served from said channel with water in the said channel with grooves to wet and cool same. The water in said grooves and channels also forms a water seal between said rotor and casing whereby gases from the retort are prohibited from passing through said discharge apparatus during supplies of residue material being made to the rotor from the retort.

  9. Improvements in retorting apparatus for fractional distillation

    Energy Technology Data Exchange (ETDEWEB)

    Cripps, W S

    1933-05-05

    A retort is located within a cylindrical chamber with annular space between them. The products of combustion from a furnace pass into said annular space. A flue pipe carries off gases from said space. A perforated plate located at the bottom of the retort and means are located within the furnace for heating air and superheating steam. Perforated pipes deliver air and steam to the retort and a condenser is provided wherein oil vapour produced in the retort is condensed.

  10. Heavy metal removal from produced water using retorted shale; Remocao de metais pesados em aguas produzidas utilizando xisto retortado

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Patricia M.; Melo, Marcos A.F.; Melo, Dulce M.A.; Silva Junior, Carlos N.; Assuncao, Ary L.C. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Anjos, Marcelino J. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    2004-07-01

    The Production of oil and gas is usually accompanied by the production of large volume of water that can have significant environmental effects if not properly treated. In this work, the use of retort shale was investigated as adsorbent agent to remove heavy metals in produced water. Batch adsorption studies in synthetic solution were performed for several metal ions. The efficiency removal was controlled by solution pH, adsorbent dosage, and initial ion concentration and agitation times. Two simple kinetic models were used, pseudo-first- and second-order, were tested to investigate the adsorption mechanisms. The equilibrium data fitted well with Langmuir and Freundlich models. The produced water samples were treated by retorted shale under optimum adsorption conditions. Synchrotron radiation total reflection X-ray fluorescence was used to analyze the elements present in produced water samples from oil field in Rio Grande do Norte, Brazil. The removal was found to be approximately 20-50% for Co, Ni, Sr and above 80% for Cr, Ba, Hg and Pb. (author)

  11. Retorting of bituminous sands

    Energy Technology Data Exchange (ETDEWEB)

    Chaney, P E; Ince, R W; Mason, C M

    1872-09-26

    This method of recovering oil from mined tar sands involves forming compacted tar sands pieces by special conditioning treatment that provides low internal permeability. The compacted pieces are then retorted in fixed bed form. The conditioning treatment can involve rolling of preformed pellets, compaction in a mold or pressure extrusion. Substantial collapsing of the bed during retorting is avoided. (9 claims) (Abstract only - original article not available from T.U.)

  12. Closed Process of Shale Oil Recovery from Circulating Washing Water by Hydrocyclones

    Directory of Open Access Journals (Sweden)

    Yuan Huang

    2016-12-01

    Full Text Available The conventional oil recovery system in the Fushun oil shale retorting plant has a low oil recovery rate. A large quantity of fresh water is used in the system, thereby consuming a considerable amount of water and energy, as well as polluting the environment. This study aims to develop a closed process of shale oil recovery from the circulating washing water for the Fushun oil shale retorting plant. The process would increase oil yield and result in clean production. In this process, oil/water hydrocyclone groups were applied to decrease the oil content in circulating water and to simultaneously increase oil yield. The oil sludge was removed by the solid/liquid hydrocyclone groups effectively, thereby proving the smooth operation of the devices and pipes. As a result, the oil recovery rate has increased by 5.3 %, which corresponds to 230 tonnes a month.

  13. Hydrogen retorting of oil shales from Eastern Canada

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E. (CANMET, Ottawa, Ontario (Canada)); Synnott, J.; Boorman, R.S.; Salter, R.S.

    1984-04-01

    The liquid production potential of thirty oil shale samples from Eastern Canada was determined by Fischer assay retort and pyrochem retort. For all shales, the presence of hydrogen during pyrochem retorting resulted in a significant increase in oil yields compared to Fischer assay yields. Ten oil shale samples were selected for detailed evaluation in the pyrochem retort in the presence of nitrogen and hydrogen. Besides increasing yields, the presence of hydrogen lowered the specific gravity of liquid products and the content of sulphur but increased the content of nitrogen. This was attributed to the stabilization of precursors to nitrogen compounds which prevented their polymerization. (J.H.K.)

  14. The study of heat penetration of kimchi soup on stationary and rotary retorts.

    Science.gov (United States)

    Cho, Won-Il; Park, Eun-Ji; Cheon, Hee Soon; Chung, Myong-Soo

    2015-03-01

    The aim of this study was to determine the heat-penetration characteristics using stationary and rotary retorts to manufacture Kimchi soup. Both heat-penetration tests and computer simulation based on mathematical modeling were performed. The sterility was measured at five different positions in the pouch. The results revealed only a small deviation of F 0 among the different positions, and the rate of heat transfer was increased by rotation of the retort. The thermal processing of retort-pouched Kimchi soup was analyzed mathematically using a finite-element model, and optimum models for predicting the time course of the temperature and F 0 were developed. The mathematical models could accurately predict the actual heat penetration of retort-pouched Kimchi soup. The average deviation of the temperature between the experimental and mathematical predicted model was 2.46% (R(2)=0.975). The changes in nodal temperature and F 0 caused by microbial inactivation in the finite-element model predicted using the NISA program were very similar to that of the experimental data of for the retorted Kimchi soup during sterilization with rotary retorts. The correlation coefficient between the simulation using the NISA program and the experimental data was very high, at 99%.

  15. The development of an integrated multistaged fluid-bed retorting process. Final report, September 1990--August 1994

    Energy Technology Data Exchange (ETDEWEB)

    Carter, S.D.; Taulbee, D.N.; Stehn, J.L.; Vego, A.; Robl, T.L.

    1995-02-01

    This summarizes the development of the KENTORT II retorting process, which includes integral fluidized bed zones for pyrolysis, gasification, and combustion of oil shale. Purpose was to design and test the process at the 50-lb/hr scale. The program included bench- scale studies of coking and cracking reactions of shale oil vapors over processed shale particles to address issues of scaleup associated with solid-recycle retorting. The bench-scale studies showed that higher amounts of carbon coverage reduce the rate of subsequent carbon deposition by shale oil vapors onto processed shale particles; however carbon-covered materials were also active in terms of cracking and coking. Main focus was the 50-lb/hr KENTORT II PDU. Cold-flow modeling and shakedown were done before the PDU was made ready for operation. Seven mass-balanced, steady-state runs were completed within the window of design operating conditions. Goals were achieved: shale feedrate, run duration (10 hr), shale recirculation rates (4:1 to pyrolyzer and 10:1 to combustor), bed temperatures (pyrolyzer 530{degree}C, gasifier 750{degree}C, combustor 830{degree}C), and general operating stability. Highest oil yields (up to 109% of Fischer assay) were achieved for runs lasting {ge} 10 hours. High C content of the solids used for heat transfer to the pyrolysis zone contributed to the enhanced oil yield achieved.

  16. Development of charcoal retort pilot plant in Zambia. African Energy Programme research report series no. 4

    International Nuclear Information System (INIS)

    Yamba, F.D.

    1988-01-01

    The technical report discusses the theoretical and experimental work which has been undertaken in the design, construction, testing and evaluation of charcoal retort model prototypes. Optimum operating conditions have been established at an initial temperature of 350 deg. C and stabilisation time of 5 hours. From the technical point of view, the project is viable since as per set objectives, charcoal is being produced at a higher conversion efficiency of around 40% and the by-products in the form of pyroligenous liquor and tar are recovered. As expected, the analysis shows that the model is uneconomic since the technological price of the products exceeds that of the selling price of products. However, the increase in the size of the retort chamber by eighteen renders the prototype economically viable. The report also discusses further work such as continuation of the testing of the retort to establish concretely the optimum operating conditions, determination of the reliability and durability of the retort and evaluation of the quality of charcoal produced, which has been recommended. Based on the results from the retort model and preliminary financial analysis, an economic analysis on the value of by-products from wood distillation is undertaken. The analysis shows that there is a reasonable market of by-products, (acetone, methanol and acetic acid) to warrant processing of the pyroligenous liquor, and subsequent setting up of a small scale distillation plant. Using the same results from the retort model, a charcoal retort plant with a 10m 3 retort chamber capacity is designed. In the design of the retort chamber, various considerations are undertaken such as stress calculations of the retort chamber on the support legs, furnace, piping and distribution chamber design, and their associated heat losses. Basing on the amount of heat required to complete the carbonisation process and heat losses from the system, a suitable furnace size and air blower are selected

  17. Response of range grasses to water produced from in situ fossil fuel processing

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Q D; Moore, T S; Sexton, J C

    1984-11-01

    In situ-produced waters collected while retorting oil shale and tar sands to produce oil, and coal to produce gas, were tested for their effects on plant growth. Basin wildrye (Elymus cinereus), western wheatgrass (Agropyron smithii) 'Rosana', alkali sacaton (Sporobolus airoides), bluebunch wheatgrass (Agropyron spicatum) and Nuttall alkaligrass (Puccinellia airoides) were utilized. Root weight, shoot weight, total dry weight, leaf area and root/shoot weight ratios were determined. All experiments were conducted under greenhouse conditions using hydroponic techniques and horticultural grade perlite for plant support. Measurements were collected after a 10-week growth period. Results show that differences in plant growth can be monitored using dry biomass, leaf area and root to shoot ratio measurements when plants are subjected to retort waters. Plant species reaction to a water may be different. Generally, alkali sacaton, basin wildrye and western wheatgrass are least susceptible to toxicity by the majority of retort waters tested. Bluebunch wheatgrass is most susceptible. Waters from different retort procedures vary in toxicity to different plant species.

  18. Quality of ready to serve tilapia fish curry with PUFA in retortable pouches.

    Science.gov (United States)

    Dhanapal, K; Reddy, G V S; Nayak, B B; Basu, S; Shashidhar, K; Venkateshwarlu, G; Chouksey, M K

    2010-09-01

    Studies on the physical, chemical, and microbiological qualities of fresh tilapia meat revealed its suitability for the preparation of ready to eat fish curry packed in retort pouches. Studies on the fatty acid profile of tilapia meat suggest fortification with polyunsaturated fatty acid (PUFA) to increase the nutritional value. Based on the commercial sterility, sensory evaluation, color, and texture profile analysis F(0) value of 6.94 and cook value of 107.24, with a total process time of 50.24 min at 116 °C was satisfactory for the development of tilapia fish curry in retort pouches. Thermally processed ready to eat south Indian type tilapia fish curry fortified with PUFA was developed and its keeping quality studied at ambient temperature. During storage, a slight increase in the fat content of fish meat was observed, with no significant change in the contents of moisture, protein, and ash. The thiobarbituric acid (TBA) values of fish curry significantly increased during storage. Fish curry fortified with 1% cod liver oil and fish curry without fortification (control) did not show any significant difference in the levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), during thermal processing and storage. Sensory analysis revealed that fortification of fish curry with cod liver oil had no impact on the quality. Tilapia fish curry processed at 116 °C and F(0) value of 7.0 (with or without fortification of cod liver oil) was fit for consumption, even after a period of 1-y storage in retort pouch. Tilapia is a lean variety of fish with white flesh and therefore an ideal choice as raw material for the development of ready to serve fish products such as fish curry in retort pouches for both domestic and international markets. Ready to eat thermal processed (116 °C and F(0) value of 7.0) south Indian type tilapia fish curry enriched with PUFA and packed in retort pouch was acceptable for consumption even after a storage period of 1 y at ambient

  19. Nitrogen fixation by legumes in retorted shale

    Energy Technology Data Exchange (ETDEWEB)

    Hersman, L E; Molitoris, E; Klein, D A

    1981-01-01

    Although a soil-shale mixture was employed as the growth medium in this experiment, the results presentd are applicable to the proposed method of disposal mentioned earlier. Under field conditions, when covering the retorted shale with topsoil, some mixing of these materials might occur in the plant root region. In addition, it has been demonstrated that buried shale negatively affects enzyme activities in overburden surface soil. The occurrence of either of those events could affect symbiotic N/sub 2/ fixation in a manner similar to that reported in this paper. Researchers conclude that due to the varied effects of retorted shale on the legumes tested, further evaluation of other legumes may be necessary. Additional research would be required to determine which legumes have potential use for reclamation of retorted shale.

  20. GKI water quality studies. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D L

    1980-01-01

    GKI water quality data collected in 1978 and early 1979 was evaluated with the objective of developing preliminary characterizations of native groundwater and retort water at Kamp Kerogen, Uintah County, Utah. Restrictive analytical definitions were developed to describe native groundwater and GKI retort water in an effort to eliminate from the sample population both groundwater samples affected by retorting and retort water samples diluted by groundwater. Native groundwater and retort water sample analyses were subjected to statistical manipulation and testing to summarize the data to determine the statistical validity of characterizations based on the data available, and to identify probable differences between groundwater and retort water based on available data. An evaluation of GKI water quality data related to developing characterizations of native groundwater and retort water at Kamp Kerogen was conducted. GKI retort water and the local native groundwater both appeared to be of very poor quality. Statistical testing indicated that the data available is generally insufficient for conclusive characterizations of native groundwater and retort water. Statistical testing indicated some probable significant differences between native groundwater and retort water that could be determined with available data. Certain parameters should be added to and others deleted from future laboratory analyses suites of water samples.

  1. Improved mechanical properties of retorted carrots by ultrasonic pre-treatments.

    Science.gov (United States)

    Day, Li; Xu, Mi; Øiseth, Sofia K; Mawson, Raymond

    2012-05-01

    The use of ultrasound pre-processing treatment, compared to blanching, to enhance mechanical properties of non-starchy cell wall materials was investigated using carrot as an example. The mechanical properties of carrot tissues were measured by compression and tensile testing after the pre-processing treatment prior to and after retorting. Carrot samples ultrasound treated for 10 min at 60 °C provided a higher mechanical strength (P<0.05) to the cell wall structure than blanching for the same time period. With the addition of 0.5% CaCl(2) in the pre-treatment solution, both blanching and ultrasound treatment showed synergistic effect on enhancing the mechanical properties of retorted carrot pieces. At a relatively short treatment time (10 min at 60 °C) with the use of 0.5% CaCl(2), ultrasound treatment achieved similar enhancement to the mechanical strength of retorted carrots to blanching for a much longer time period (i.e. 40 min). The mechanism involved appears to be related to the stress responses present in all living plant matter. However, there is a need to clarify the relative importance of the potential stress mechanisms in order to get a better understanding of the processing conditions likely to be most effective. The amount of ultrasound treatment required is likely to involve low treatment intensities and there are indications from the structural characterisation and mechanical property analyses that the plant cell wall tissues were more elastic than that accomplished using low temperature long time blanching. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  2. Scoping of oil shale retorting with nuclear fusion reactors

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1983-01-01

    An engineering scoping study was conducted at the U.S. Department of Energy's request to see if a feasible concept could be developed for using nuclear fusion heat to improve in situ extraction by retorting of underground oil shale. It was found that a fusion heated, oxygen-free inert gas could be used for driving modified, in situ retorts at a higher yield, using lower grade shale and producing less environmental problems than present-day processes. It was also found to be economically attractive with return on investments of 20 to 30%. Fusion blanket technology required was found to be reasonable at hot gas delivery temperatures of about650 0 C (920 K). The scale of a fusion reactor at 2.8 GW(thermal) producing 45 000 Mg/day (335 000 barrel/day) was also found to be reasonable

  3. Retorting conditions affect palatability and physical characteristics of canned cat food

    NARCIS (Netherlands)

    Hagen-Plantinga, E.A.; Orlanes, D.F.; Bosch, G.; Hendriks, W.H.; Poel, van der A.F.B.

    2017-01-01

    The effects of different temperature and time conditions during retorting of canned cat food on physicochemical characteristics and palatability were examined. For this purpose, lacquer cans containing an unprocessed loaf-type commercial cat food were heated in a pressurised retorting system at

  4. Furnaces, retorts, and apparatus for distilling bituminous shale

    Energy Technology Data Exchange (ETDEWEB)

    Germain-Clergault, M

    1857-06-20

    The furnace is a rectangle 4.90 m by 4.80 m; it is divided into two distinct compartments by a partition wall which carries on top a circular arch of 30 cms bend, covering a passage 2 m high under the keystone and 2 m long and carrying also 14 vertical retorts, which are charged on top, and discharged at the bottom into the passage. There are seven (retorts) in each compartment and they are symmetrically arranged. The hearths are parallel to the compartments; and they form four fires, a wall separating them two by two.

  5. Process and apparatus for distilling bituminous minerals

    Energy Technology Data Exchange (ETDEWEB)

    Veyrier, J A

    1922-03-27

    This process of distillation of bituminous minerals and particularly bituminous limestone is characterized by the fact that the minerals are introduced into the retort where they stand only the temperature necessary to distill the water and lighter oils that they contain and then are drawn out into the hearth and serve for heating the retort. The apparatus is characterized by the fact that the retort has a screw conveyor, placed in the flue of the hearth, supplied with a chamber for evacuation below this hearth.

  6. Distillation, destructive: gas retorts

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, G; Buchanan, J

    1872-06-12

    Retorts used in the distillation of coal, cannel, shale, or other minerals are discharged by means of a joint metal bar or a chain inserted prior to or with the charge, and fitted with a plate or series of plates preferably with the back plate the largest. The rod or chain is formed with a hook, loop, or coupling for withdrawal, preferably by a steam windlass running on rails.

  7. Retorting conditions affect palatability and physical characteristics of canned cat food.

    Science.gov (United States)

    Hagen-Plantinga, Esther A; Orlanes, Denmark F; Bosch, Guido; Hendriks, Wouter H; van der Poel, Antonius F B

    2017-01-01

    The effects of different temperature and time conditions during retorting of canned cat food on physicochemical characteristics and palatability were examined. For this purpose, lacquer cans containing an unprocessed loaf-type commercial cat food were heated in a pressurised retorting system at three specified temperature-time profiles (113°C/232 min, 120°C/103 min and 127°C/60 min) to equal a similar lethality ( F 0 value = 30). Physicochemical properties (viscosity, texture, particle size, pH) were determined, and a 10 d three-bowl palatability test was performed with ten European shorthair cats. Retorting at 113°C/232 min resulted in differences in all the physical parameters examined ( particle size). Significant pH differences were observed (6·53, 6·63 and 6·66 for T113/232, 120 and 127°C, respectively). Preference ratios were 0·38, 0·31 and 0·31 for T113/232, 120 and 127°C, respectively ( P  = 0·067). It can be concluded that different retorting temperature-time profiles with equal F 0 value significantly affect physical characteristics and tended to affect palatability of moist cat food.

  8. Brazing retort manifold design concept may minimize air contamination and enhance uniform gas flow

    Science.gov (United States)

    Ruppe, E. P.

    1966-01-01

    Brazing retort manifold minimizes air contamination, prevents gas entrapment during purging, and provides uniform gas flow into the retort bell. The manifold is easily cleaned and turbulence within the bell is minimized because all manifold construction lies outside the main enclosure.

  9. Yield and characteristics of shale oil from the retorting of oil shale and fine oil-shale ash mixtures

    International Nuclear Information System (INIS)

    Niu, Mengting; Wang, Sha; Han, Xiangxin; Jiang, Xiumin

    2013-01-01

    Highlights: • The whole formation process of shale oil might be divided into four stages. • Higher ash/shale mass ratio intensified the cracking and coking of shale oil. • Ash/shale ratio of 1:2 was recommended for oil shale fluidized bed retort with fine oil-shale ash as solid heat carrier. - Abstract: For exploring and optimizing the oil shale fluidized bed retort with fine oil-shale ash as a solid heat carrier, retorting experiments of oil shale and fine oil-shale ash mixtures were conducted in a lab-scale retorting reactor to investigate the effects of fine oil-shale ash on shale oil. Oil shale samples were obtained from Dachengzi Mine, China, and mixed with fine oil-shale ash in the ash/shale mass ratios of 0:1, 1:4, 1:2, 1:1, 2:1 and 4:1. The experimental retorting temperature was enhanced from room temperature to 520 °C and the average heating rate was 12 °C min −1 . It was found that, with the increase of the oil-shale ash fraction, the shale oil yield first increased and then decreased obviously, whereas the gas yield appeared conversely. Shale oil was analyzed for the elemental analysis, presenting its atomic H/C ratio of 1.78–1.87. Further, extraction and simulated distillation of shale oil were also conducted to explore the quality of shale oil. As a result, the ash/shale mixing mass ratio of 1:2 was recommended only for the consideration of increasing the yield and quality of shale oil

  10. Vertical retorts for distilling, carbonizing, roasting, etc

    Energy Technology Data Exchange (ETDEWEB)

    Walker, H R.L.; Bates, W R

    1917-11-17

    In a continuously operated vertical retort for destructive distillation or roasting the combination of an annular internally and externally heated construction with an annular plunger adapted to compress and assist the travel of the charge and to aid in discharging material substantially is described.

  11. Process for preparing a normal lighting and heating gas etc

    Energy Technology Data Exchange (ETDEWEB)

    Becker, J

    1910-12-11

    A process for preparing a normal lighting and heating gas from Australian bituminous shale by distillation and decomposition in the presence of water vapor is characterized by the fact that the gasification is suitably undertaken with gradual filling of a retort and with simultaneous introduction of water vapor at a temperature not exceeding 1,000/sup 0/ C. The resulting amount of gas is heated in the same or a second heated retort with freshly supplied vapor.

  12. Mercury isotope fractionation during ore retorting in the Almadén mining district, Spain

    Science.gov (United States)

    Gray, John E.; Pribil, Michael J.; Higueras, Pablo L.

    2013-01-01

    Almadén, Spain, is the world's largest mercury (Hg) mining district, which has produced over 250,000 metric tons of Hg representing about 30% of the historical Hg produced worldwide. The objective of this study was to measure Hg isotopic compositions of cinnabar ore, mine waste calcine (retorted ore), elemental Hg (Hg0(L)), and elemental Hg gas (Hg0(g)), to evaluate potential Hg isotopic fractionation. Almadén cinnabar ore δ202Hg varied from − 0.92 to 0.15‰ (mean of − 0.56‰, σ = 0.35‰, n = 7), whereas calcine was isotopically heavier and δ202Hg ranged from − 0.03‰ to 1.01‰ (mean of 0.43‰, σ = 0.44‰, n = 8). The average δ202Hg enrichment of 0.99‰ between cinnabar ore and calcines generated during ore retorting indicated Hg isotopic mass dependent fractionation (MDF). Mass independent fractionation (MIF) was not observed in any of the samples in this study. Laboratory retorting experiments of cinnabar also were carried out to evaluate Hg isotopic fractionation of products generated during retorting such as calcine, Hg0(L), and Hg0(g). Calcine and Hg0(L) generated during these retorting experiments showed an enrichment in δ202Hg of as much as 1.90‰ and 0.67‰, respectively, compared to the original cinnabar ore. The δ202Hg for Hg0(g) generated during the retorting experiments was as much as 1.16‰ isotopically lighter compared to cinnabar, thus, when cinnabar ore was roasted, the resultant calcines formed were isotopically heavier, whereas the Hg0(g) generated was isotopically lighter in Hg isotopes.

  13. Retort

    Energy Technology Data Exchange (ETDEWEB)

    Salerni, P M

    1928-03-28

    A retort is described for the distillation of carbonaceous material, such as coal, oil shale, and the like, for the recovery of hydrocarbon oils, in which the coal is fed on to annular trays which are surrounded by shrouds having projecting rims. The coal is agitated in each of the trays by stirring members which are attached by links and to a rotary structure which is rotated by worm gearing. A gap is provided in each rim through which the material is transferred from each tray to the next succeeding lower tray, and in falling through the gap it drops on to the rim of the shroud of the next succeeding lower tray and the residue finally drops into a trough and a scraper on the rotatable ring directs it into an outlet. Vapors are drawn off through outlets. A central heating space contains a fireclay tube having a combustion chamber with burners at the lower part. The products of combustion pass through openings into the space, and thence through an outlet into a hopper for preheating the coal which is to be supplied to the trays.

  14. Nitrogen fixation by legumes in retorted shale

    Energy Technology Data Exchange (ETDEWEB)

    Hersman, L E; Molitoris, E; Klein, D A

    1981-01-01

    A study was made to determine whether retorted shale additions would significantly affect symbiotic N/sub 2/ fixation. Results indicate that small additions of the shale may stimulate plant growth but with higher concentrations plants are stressed, resulting in a decreased biomass and a compensatory effect of an increased number of nodules and N/sub 2/ fixation potential. (JMT)

  15. Process of distilling bituminous shale

    Energy Technology Data Exchange (ETDEWEB)

    Mayet, M

    1859-05-19

    This new process consists of placing at the end of a tube or the end of one or more retorts, an aspirating pump and compressor or a blower with two valves doing the same work or, better yet, a fan for sucking the vapor from the shale as it is formed in order to prevent its accumulating in the retorts and being decomposed. A second tube, pierced with little holes, placed in series with the pump, blower, or fan, acts as a vessel or receiver for the water. The vapors from the shale are compressed by the aspirator in the receiver for the water and condensed completely, without loss of gas and disinfect themselves for the most part.

  16. Innovative food processing technology using ohmic heating and aseptic packaging for meat.

    Science.gov (United States)

    Ito, Ruri; Fukuoka, Mika; Hamada-Sato, Naoko

    2014-02-01

    Since the Tohoku earthquake, there is much interest in processed foods, which can be stored for long periods at room temperature. Retort heating is one of the main technologies employed for producing it. We developed the innovative food processing technology, which supersede retort, using ohmic heating and aseptic packaging. Electrical heating involves the application of alternating voltage to food. Compared with retort heating, which uses a heat transfer medium, ohmic heating allows for high heating efficiency and rapid heating. In this paper we ohmically heated chicken breast samples and conducted various tests on the heated samples. The measurement results of water content, IMP, and glutamic acid suggest that the quality of the ohmically heated samples was similar or superior to that of the retort-heated samples. Furthermore, based on the monitoring of these samples, it was observed that sample quality did not deteriorate during storage. © 2013. Published by Elsevier Ltd on behalf of The American Meat Science Association. All rights reserved.

  17. Coking processes

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, H K

    1917-11-20

    A gas suitable for use in containers or motor-vehicles, etc., and consisting mainly of methane, is obtained by distilling at a temperature not exceeding 500/sup 0/C bastard cannel coal, lignite, wood, peat, shale, etc., in an horizontal or vertical retort, through which the material is continuously fed in a thin layer or column by means of a screw conveyor or the like. Cracking or dissociation of the gaseous products is prevented by introducing into the retort part of the gas which is the result of the process and which is compressed to a pressure of at least 15 atmospheres and allowed to expand into the retort to cool and carry away the gaseous products produced. These are then passed through condensers for extracting liquid hydrocarbons, and other hydrocarbons are extracted by passage through washing-oils. The gas is then compressed by a water-cooled pump to a pressure of 15 atmospheres, whereby a spirit similar to petrol is formed, and a stable gas left which is mainly methane, part of the gas being used to carry out the process described above.

  18. Double Retort System for Materials Compatibility Testing

    International Nuclear Information System (INIS)

    V. Munne; EV Carelli

    2006-01-01

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the Space Nuclear Power Plant (SNPP) for Project Prometheus (References a and b) there was a need to investigate compatibility between the various materials to be used throughout the SNPP. Of particular interest was the transport of interstitial impurities from the nickel-base superalloys, which were leading candidates for most of the piping and turbine components to the refractory metal alloys planned for use in the reactor core. This kind of contamination has the potential to affect the lifetime of the core materials. This letter provides technical information regarding the assembly and operation of a double retort materials compatibility testing system and initial experimental results. The use of a double retort system to test materials compatibility through the transfer of impurities from a source to a sink material is described here. The system has independent temperature control for both materials and is far less complex than closed loops. The system is described in detail and the results of three experiments are presented

  19. Retort for coking peat, brown coal, bituminous shale, etc

    Energy Technology Data Exchange (ETDEWEB)

    1902-05-14

    The retort leads the gases and vapors into the coking chamber, between the inside heater and the outer heating shaft-wall. Over-lapping, double-faced acting rings are arranged, over which the charge in two or more separate vertical layers is transported.

  20. Process and apparatus for destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    Dalin, D; Hedbaeck, T J

    1951-01-10

    A process of distilling wood, coal, shale, and like materials in an externally heated retort, consists of heating the retort by burning fuel in a combustion chamber completely or partly surrounding the retort and passing a heat-absorbing medium through ducts which are mounted in or adjacent the greater part of the length of the retort walls which are so arranged as to effect a greater degree of heat extraction at one part of the retort than at another part of the retort. The zones of different heat extraction being related to the heat developed in the combustion chamber maintains the most favourable distillation temperature in all parts of the retort.

  1. Stability of 2-Alkylcyclobutanones in irradiated retort pouch Gyudon topping during room temperature storage

    International Nuclear Information System (INIS)

    Kitagawa, Yoko; Okihashi, Masahiro; Takatori, Satoshi; Fukui, Naoki; Kajimura, Keiji; Obana, Hirotaka; Furuta, Masakazu

    2016-01-01

    2-Alkylcyclobutanones (ACBs), such as 2-dodecylcyclobutanone (DCB) and 2-tetradecylcylobutanone (TCB) are specific products in the irradiated liquid. Thus, DCB and TCB are suitable for indicators of the irradiation history of food. We previously reported DCB and TCB concentrations in irradiated retort pouch Gyudon topping (instant Gyudon mixes which were made from a beef, onion and soy sauce and could be preserved for a long term at room temperature) after storage for one year. Here, we have evaluated the stability of ACBs preserved in irradiated retort pouch Gyudon topping at room temperature for three years. Although interfering peaks were detected frequently after the storage at room temperature, it was possible for the detection of the irradiation history and there was no apparent decrease of ACBs concentrations in comparison with the one year storage after irradiation. These results concluded that DCB and TCB formed in retort pouch would be stable at room temperature for three years. (author)

  2. Method for explosive expansion toward horizontal free faces for forming an in situ oil shale retort

    Science.gov (United States)

    Ricketts, Thomas E.

    1980-01-01

    Formation is excavated from within a retort site in formation containing oil shale for forming a plurality of vertically spaced apart voids extending horizontally across different levels of the retort site, leaving a separate zone of unfragmented formation between each pair of adjacent voids. Explosive is placed in each zone, and such explosive is detonated in a single round for forming an in situ retort containing a fragmented permeable mass of formation particles containing oil shale. The same amount of formation is explosively expanded upwardly and downwardly toward each void. A horizontal void excavated at a production level has a smaller horizontal cross-sectional area than a void excavated at a lower level of the retort site immediately above the production level void. Explosive in a first group of vertical blast holes is detonated for explosively expanding formation downwardly toward the lower void, and explosive in a second group of vertical blast holes is detonated in the same round for explosively expanding formation upwardly toward the lower void and downwardly toward the production level void for forming a generally T-shaped bottom of the fragmented mass.

  3. Arrangement of furnaces and retorts for the distillation of shale, etc. [injection of hot air

    Energy Technology Data Exchange (ETDEWEB)

    Lahore, M

    1846-01-31

    The patent is concerned with the distillation of dried materials, the distillation being facilitated by injection of hot air into the retorts. Figures show apparatus for heating the air, consisting of a series of pipes, connected together and placed horizontally in the interior of the furnace on bricks arranged in such a way that the flames and smoke circulate, as shown, around each pipe, touching first all the surface of the large one placed in the center. The air enters this tube, and from it passes into the others which it runs through successively, coming finally into the last pipe, being heated in this journey to a very high temperature. The last tube ends in a bell from which different branches start, each supplied with stop-cocks, to lead this hot air into the different sections of the retort. With the stop-cocks the quantity of air can be regulated at will, in the compartment of the retort, for accelerating the operation more or less.

  4. Environmental control technology for shale oil wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, B.W.; Wakamiya, W.; Bell, N.E.; Mason, M.J.; Spencer, R.R.; English, C.J.; Riley, R.G.

    1982-09-01

    This report summarizes the results of studies conducted at Pacific Northwest Laboratory from 1976 to 1982 on environmental control technology for shale oil wastewaters. Experimental studies conducted during the course of the program were focused largely on the treatment and disposal of retort water, particularly water produced by in situ retorting of oil shale. Alternative methods were evaluated for the treatment and disposal of retort water and minewater. Treatment and disposal processes evaluated for retort water include evaporation for separation of water from both inorganic and organic pollutants; steam stripping for ammonia and volatile organics removal; activated sludge and anaerobic digestion for removal of biodegradable organics and other oxidizable substances; carbon adsorption for removal of nonbiodegradable organics; chemical coagulation for removal of suspended matter and heavy metals; wet air oxidation and solvent extraction for removal of organics; and land disposal and underground injection for disposal of retort water. Methods for the treatment of minewater include chemical processing and ion exchange for fluoride and boron removal. Preliminary cost estimates are given for several retort water treatment processes.

  5. Retortable Laminate/Polymeric Food Tubes for Specialized Feeding

    Science.gov (United States)

    2012-06-01

    Report STP #3010 Results and Accomplishments (June 2010 – June 2012) Report No: FTR 303 CDRL Sequence: A003 June 2012 CORANET CONTRACT #: SP4701-08-D...June 2010 - June 2012 Retortable Laminate/Polymeric Food Tubes for Specialized Feeding - STP # 3010 SP4701-08-D-0004 MANTECH (0708011S) CORANET A003...on commercial off-the-shelf materials and not military unique. A market survey of commercially available laminated tubes revealed that they are all

  6. Stability of 2-Alkylcyclobutanones in irradiated retort pouch Gyudon topping during room temperature storage

    International Nuclear Information System (INIS)

    Kitagawa, Yoko; Okihashi, Masahiro; Takatori, Satoshi; Fukui, Naoki; Kajimura, Keiji; Obana, Hirotaka; Furuta, Masakazu

    2014-01-01

    2-Alkylcyclobutanones (ACBs), such as 2-dodecylcyclobutanone (DCB) and 2-tetradecylcylobutanone (TCB) are specific products from irradiated lipid. Thus, DCB and TCB are suitable for indicators of the irradiation history of food. The purpose of this study was to clarify the stability of ACBs in food, kept at room temperature for a long period. We evaluated DCB and TCB in irradiated retort pouch Gyudon topping (instant Gyudon mixes which were made from a beef, onion and soy sauce), which could be preserved for a long term at room temperature, after storage for one year. DCB and TCB were detected at doses of 0.6-4.5 kGy in irradiated retort pouch Gyudon topping. The peaks of DCB and TCB were separated from other peaks on the chromatogram with GC-MS. The concentration of DCB and TCB were periodically determined till 12 months later of irradiation. The dose-response curves of DCB and TCB were almost identical with those obtained from the samples after the 12 months storage at room temperature. These results concluded that DCB and TCB formed in retort pouch would stable at room temperature at least 12 months. (author)

  7. 77 FR 25206 - Proposed Extension of Existing Information Collection; Underground Retorts

    Science.gov (United States)

    2012-04-27

    ... information in accordance with the Paperwork Reduction Act of 1995. This program helps to ensure that requested data can be provided in the desired format, reporting burden (time and financial resources) is... Information Collection; Underground Retorts AGENCY: Mine Safety and Health Administration, Labor. ACTION...

  8. Decoupled numerical simulation of a solid fuel fired retort boiler

    International Nuclear Information System (INIS)

    Ryfa, Arkadiusz; Buczynski, Rafal; Chabinski, Michal; Szlek, Andrzej; Bialecki, Ryszard A.

    2014-01-01

    The paper deals with numerical simulation of the retort boiler fired with solid fuel. Such constructions are very popular for heating systems and their development is mostly based on the designer experience. The simulations have been done in ANSYS/Fluent package and involved two numerical models. The former deals with a fixed-bed combustion of the solid fuel and free-board gas combustion. Solid fuel combustion is based on the coal kinetic parameters. This model encompasses chemical reactions, radiative heat transfer and turbulence. Coal properties have been defined with user defined functions. The latter model describes flow of water inside a water jacked that surrounds the combustion chamber and flue gas ducts. The novelty of the proposed approach is separating of the combustion simulation from the water flow. Such approach allows for reducing the number of degrees of freedom and thus lowering the necessary numerical effort. Decoupling combustion from water flow requires defining interface boundary condition. As this boundary condition is unknown it is adjusted iteratively. The results of the numerical simulation have been successfully validated against measurement data. - Highlights: • New decoupled modelling of small scale boiler is proposed. • Fixed-bed combustion model based on kinetic parameters is introduced. • Decoupling reduced the complexity of the model and computational time. • Simple and computationally inexpensive coupling algorithm is proposed. • Model is successfully validated against measurements

  9. Quality and shelf life of buffalo meat blocks processed in retort pouches.

    Science.gov (United States)

    Devadason, I Prince; Anjaneyulu, A S R; Mendirtta, S K; Murthy, T R K

    2014-12-01

    The shelf life of buffalo meat blocks processed in 3-ply retort pouches at Fo = 12.13 in a stock sterilizer were evaluated at 15 days interval for physico-chemical, microbiological and sensory attributes for a period of 3 months. The pH of the product was 6.28 at 0 day and a gradual decline was noticed during storage. Texture of the product as indicated by shear force values had decreased slowly. The residual nitrite content had significantly declined from 82.67 ppm at 0 day to 45.00 ppm on 90th day of storage. The TBARS values were 0.24 and 0.67 mg malonaldehyde/kg, respectively at 0 day and 90 days of storage. Tyrosine value had significantly increased from 0.37 mg/100 g at 0 day to 0.58 mg/100 g during storage. Free aminoacid content increased gradually from an initial level of 124.32 to 217.51 at 90(th) day of storage. The SDS-PAGE hydrolysis pattern showed barely discernible 205 KDa protein and presence of subfragments in the molecular range of 63 KDa to 29 KDa protein. The sensory studies indicated that the products were well acceptable up to a period of 90 days. As the storage period increased pH, reidual nitrite, sensory attributes declined significantly and TBARS value, tyrosine value and free aminoacid content significantly increased. Mesophillic aerobes and anerobes were found to be absent. The shelf life study indicated that the products were well acceptable up to a period of 90 days based on the assessment of physico-chemical, microbiological and sensory attributes.

  10. Process for carbonizing coal, shale, wood, etc

    Energy Technology Data Exchange (ETDEWEB)

    Matthaei, K

    1924-05-08

    A process for carbonization of coal, shale, and wood, for recovering low temperature tar and other products in a rotary retort is described. The material to be carbonized is brought directly in contact with the heating medium, that is characterized in that the heating medium streams through the retort crosswise to the longitudinal axis. The temperature of this medium in the single retort segments can be regulated.

  11. Effect of combination processing on the microbial, chemical and sensory quality of ready-to-eat (RTE) vegetable pulav

    International Nuclear Information System (INIS)

    Kumar, R.; George, Johnsy; Rajamanickam, R.; Nataraju, S.; Sabhapathy, S.N.; Bawa, A.S.

    2011-01-01

    Effect of irradiation in combination with retort processing on the shelf life and safety aspects of an ethnic Indian food product like vegetable pulav was investigated. Gamma irradiation of RTE vegetable pulav was carried out at different dosage rates with 60 Co followed by retort processing. The combination processed samples were analysed for microbiological, chemical and sensory characteristics. Microbiological analysis indicated that irradiation in combination with retort processing has significantly reduced the microbial loads whereas the chemical and sensory analysis proved that this combination processing is effective in retaining the properties even after storage for one year at ambient conditions. The results also indicated that a minimum irradiation dosage at 4.0 kGy along with retort processing at an F 0 value of 2.0 is needed to achieve the desired shelf life with improved organoleptic qualities. - Highlights: → A combination processing involving gamma irradiation and retort processing. → Combination processing reduced microbial loads. → Minimum dose of 4.0 kGy together with retort processing at F 0 -2.0 is required to achieve commercial sterility.

  12. Effect of combination processing on the microbial, chemical and sensory quality of ready-to-eat (RTE) vegetable pulav

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R., E-mail: kumardfrl@gmail.com [Defence Food Research Laboratory, Mysore, Karnataka 570011 (India); George, Johnsy; Rajamanickam, R.; Nataraju, S.; Sabhapathy, S.N.; Bawa, A.S. [Defence Food Research Laboratory, Mysore, Karnataka 570011 (India)

    2011-12-15

    Effect of irradiation in combination with retort processing on the shelf life and safety aspects of an ethnic Indian food product like vegetable pulav was investigated. Gamma irradiation of RTE vegetable pulav was carried out at different dosage rates with {sup 60}Co followed by retort processing. The combination processed samples were analysed for microbiological, chemical and sensory characteristics. Microbiological analysis indicated that irradiation in combination with retort processing has significantly reduced the microbial loads whereas the chemical and sensory analysis proved that this combination processing is effective in retaining the properties even after storage for one year at ambient conditions. The results also indicated that a minimum irradiation dosage at 4.0 kGy along with retort processing at an F{sub 0} value of 2.0 is needed to achieve the desired shelf life with improved organoleptic qualities. - Highlights: > A combination processing involving gamma irradiation and retort processing. > Combination processing reduced microbial loads. > Minimum dose of 4.0 kGy together with retort processing at F{sub 0}-2.0 is required to achieve commercial sterility.

  13. Assessment and control of water contamination associated with shale oil extraction and processing. Progress report, October 1, 1979-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, E.J.; Henicksman, A.V.; Fox, J.P.; O' Rourke, J.A.; Wagner, P.

    1982-04-01

    The Los Alamos National Laboratory's research on assessment and control of water contamination associated with oil shale operations is directed toward the identification of potential water contamination problems and the evaluation of alternative control strategies for controlling contaminants released into the surface and underground water systems from oil-shale-related sources. Laboratory assessment activities have focused on the mineralogy, trace element concentrations in solids, and leaching characteristics of raw and spent shales from field operations and laboratory-generated spent shales. This report details the chemical, mineralogic, and solution behavior of major, minor, and trace elements in a variety of shale materials (spent shales from Occidental retort 3E at Logan Wash, raw shale from the Colony mine, and laboratory heat-treated shales generated from Colony mine raw shale). Control technology research activities have focused on the definition of control technology requirements based on assessment activities and the laboratory evaluation of alternative control strategies for mitigation of identified problems. Based on results obtained with Logan Wash materials, it appears that the overall impact of in situ processing on groundwater quality (leaching and aquifer bridging) may be less significant than previously believed. Most elements leached from MIS spent shales are already elevated in most groundwaters. Analysis indicates that solubility controls by major cations and anions will aid in mitigating water quality impacts. The exceptions include the trace elements vanadium, lead, and selenium. With respect to in situ retort leaching, process control and multistaged counterflow leaching are evaluated as alternative control strategies for mitigation of quality impacts. The results of these analyses are presented in this report.

  14. Ignition technique for an in situ oil shale retort

    Science.gov (United States)

    Cha, Chang Y.

    1983-01-01

    A generally flat combustion zone is formed across the entire horizontal cross-section of a fragmented permeable mass of formation particles formed in an in situ oil shale retort. The flat combustion zone is formed by either sequentially igniting regions of the surface of the fragmented permeable mass at successively lower elevations or by igniting the entire surface of the fragmented permeable mass and controlling the rate of advance of various portions of the combustion zone.

  15. Effect of γ-irradiation on commercial polypropylene based mono and multi-layered retortable food packaging materials

    Science.gov (United States)

    George, Johnsy; Kumar, R.; Sajeevkumar, V. A.; Sabapathy, S. N.; Vaijapurkar, S. G.; Kumar, D.; Kchawahha, A.; Bawa, A. S.

    2007-07-01

    Irradiation processing of food in the prepackaged form may affect chemical and physical properties of the plastic packaging materials. The effect of γ-irradiation doses (2.5-10.0 kGy) on polypropylene (PP)-based retortable food packaging materials, were investigated using Fourier transform infrared (FTIR) spectroscopic analysis, which revealed the changes happening to these materials after irradiation. The mechanical properties decreased with irradiation while oxygen transmission rate (OTR) was not affected significantly. Colour measurement indicated that Nylon 6 containing multilayer films became yellowish after irradiation. Thermal characterization revealed the changes in percentage crystallinity.

  16. Effect of γ-irradiation on commercial polypropylene based mono and multi-layered retortable food packaging materials

    International Nuclear Information System (INIS)

    George, Johnsy; Kumar, R.; Sajeevkumar, V.A.; Sabapathy, S.N.; Vaijapurkar, S.G.; Kumar, D.; Kchawahha, A.; Bawa, A.S.

    2007-01-01

    Irradiation processing of food in the prepackaged form may affect chemical and physical properties of the plastic packaging materials. The effect of γ-irradiation doses (2.5-10.0 kGy) on polypropylene (PP)-based retortable food packaging materials, were investigated using Fourier transform infrared (FTIR) spectroscopic analysis, which revealed the changes happening to these materials after irradiation. The mechanical properties decreased with irradiation while oxygen transmission rate (OTR) was not affected significantly. Colour measurement indicated that Nylon 6 containing multilayer films became yellowish after irradiation. Thermal characterization revealed the changes in percentage crystallinity

  17. Effect of {gamma}-irradiation on commercial polypropylene based mono and multi-layered retortable food packaging materials

    Energy Technology Data Exchange (ETDEWEB)

    George, Johnsy [Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka 570011 (India)]. E-mail: g.johnsy@gmail.com; Kumar, R. [Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka 570011 (India); Sajeevkumar, V.A. [Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka 570011 (India); Sabapathy, S.N. [Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka 570011 (India); Vaijapurkar, S.G. [Defence Laboratory, Ratanada Palace, Jodhpur, Rajastan 342011 (India); Kumar, D. [Defence Laboratory, Ratanada Palace, Jodhpur, Rajastan 342011 (India); Kchawahha, A. [Defence Laboratory, Ratanada Palace, Jodhpur, Rajastan 342011 (India); Bawa, A.S. [Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka 570011 (India)

    2007-07-15

    Irradiation processing of food in the prepackaged form may affect chemical and physical properties of the plastic packaging materials. The effect of {gamma}-irradiation doses (2.5-10.0 kGy) on polypropylene (PP)-based retortable food packaging materials, were investigated using Fourier transform infrared (FTIR) spectroscopic analysis, which revealed the changes happening to these materials after irradiation. The mechanical properties decreased with irradiation while oxygen transmission rate (OTR) was not affected significantly. Colour measurement indicated that Nylon 6 containing multilayer films became yellowish after irradiation. Thermal characterization revealed the changes in percentage crystallinity.

  18. Scale up risk of developing oil shale processing units

    International Nuclear Information System (INIS)

    Oepik, I.

    1991-01-01

    The experiences in oil shale processing in three large countries, China, the U.S.A. and the U.S.S.R. have demonstrated, that the relative scale up risk of developing oil shale processing units is related to the scale up factor. On the background of large programmes for developing the oil shale industry branch, i.e. the $30 billion investments in colorado and Utah or 50 million t/year oil shale processing in Estonia and Leningrad Region planned in the late seventies, the absolute scope of the scale up risk of developing single retorting plants, seems to be justified. But under the conditions of low crude oil prices, when the large-scale development of oil shale processing industry is stopped, the absolute scope of the scale up risk is to be divided between a small number of units. Therefore, it is reasonable to build the new commercial oil shale processing plants with a minimum scale up risk. For example, in Estonia a new oil shale processing plant with gas combustion retorts projected to start in the early nineties will be equipped with four units of 1500 t/day enriched oil shale throughput each, designed with scale up factor M=1.5 and with a minimum scale up risk, only r=2.5-4.5%. The oil shale retorting unit for the PAMA plant in Israel [1] is planned to develop in three steps, also with minimum scale up risk: feasibility studies in Colorado with Israel's shale at Paraho 250 t/day retort and other tests, demonstration retort of 700 t/day and M=2.8 in Israel, and commercial retorts in the early nineties with the capacity of about 1000 t/day with M=1.4. The scale up risk of the PAMA project r=2-4% is approximately the same as that in Estonia. the knowledge of the scope of the scale up risk of developing oil shale processing retorts assists on the calculation of production costs in erecting new units. (author). 9 refs., 2 tabs

  19. Process for recovering oil from shale and other bituminous materials

    Energy Technology Data Exchange (ETDEWEB)

    1918-08-23

    A process for recovering oil from shale and other bituminous minerals in rotary retorts heated from outside and flushed with water vapor or other oxygen-free gases is characterized by the fact that all kinds of minerals are carbonized, and that during the carbonization process the temperature of the superheated steam or gases is about 50/sup 0/ C higher than the temperature of the carbonized mineral.

  20. Retort for distilling oil from shales and other fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E C

    1931-04-17

    A retort is constructed in the form of a flat shallow covered conduit through which the fuel in a pulverized form is continuously conveyed on a train of pans so loaded as to completely fill the conduit, heat being applied to an adequate central portion of the conduit to effect the distillation of the fuel. The roof or cover is sufficiently higher for the extent of such heated portion to afford space for and thereby facilitate the offtake of the distillation products while the ends of the conduit remain sealed against the escape of such products.

  1. Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report, January 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, H.L.

    1980-01-04

    This is the third annual progress report for a continuing EPA-DOE jointly funded project to evaluate the effects of aqueous effluents from in situ fossil-fuel processing technologies on aquatic biota. The project is organized into four project tasks: (1) literature review; (2) process water screening; (3) methods development; and (4) recommendations. Our Bibliography of aquatic ecosystem effects, analytical methods and treatment technologies for organic compounds in advanced fossil-fuel processing effluents was submitted to the EPA for publication. The bibliography contains 1314 citations indexed by chemicals, keywords, taxa and authors. We estimate that the second bibliography volume will contain approximately 1500 citations and be completed in February. We compiled results from several laboratories of inorganic characterizations of 19 process waters: 55 simulated in situ oil-shale retort waters; and Hanna-3, Hanna-4B 01W and Lawrence Livermore Hoe Creek underground coal gasification condenser waters. These process waters were then compared to a published summary of the analyses from 18 simulated in situ oil-shale retort waters. We completed this year 96-h flow-through toxicity bioassays with fathead minnows and rainbow trout and 48-h flow-through bioassays with Daphnia pulicaria exposed to 5 oil-shale process waters, 1 tar-sand process water, 2 underground coal gasification condenser waters, 1 post-gasification backflood condenser water, as well as 2 bioassays with fossil-fuel process water constituents. The LC/sub 50/ toxicity values for these respective species when exposed to these waters are given in detail. (LTN)

  2. A feasibility study for high-temperature titanium reduction from TiCl4 using a magnesiothermic process

    Science.gov (United States)

    Ivanov, S. L.; Zablotsky, D.

    2018-05-01

    The current industrial practice for titanium extraction is a complex procedure, which produces a porous reaction mass of sintered titanium particulates fused to a steel retort wall with magnesium and MgCl2 trapped in the interstices. The reactor temperature is limited to approx. 900 °C due to the formation of fusible TiFe eutectic, which corrodes the retort and degrades the quality of titanium sponge. Here we examine the theoretical foundations and technological possibilities to design a shielded retort of niobium-zirconium alloy NbZr(1%), which is resistant to corrosion by titanium at high temperature. We consider the reactor at a temperature of approx. 1150 °C. Supplying stoichiometric quantities of reagents enables the reaction in the gas phase, whereas the exothermic process sustains the combustion of the reaction zone. When the pathway to the condenser is open, vacuum separation and evacuation of vaporized magnesium dichloride and excess magnesium into the water-cooled condenser take place. As both the reaction and the evacuation occur within seconds, the yield of the extraction is improved. We anticipate new possibilities for designing a device combining the retort function to conduct the reduction in the gas phase with fast vacuum separation of the reaction products and distillation of magnesium dichloride.

  3. Process for distilling shales, peats, etc

    Energy Technology Data Exchange (ETDEWEB)

    Felizat, G

    1922-01-09

    The invention has for its object: a process for the distillation of shales, peats, and analogous products characterized by injecting across the substance a very rapid stream of superheated steam under pressure in order to effect a rapid removal of the products of distillation, to lower also the temperature at which it distills, to equalize the temperature throughout the mass, to hydrogenate the heavy hydrocarbons. An apparatus is put into operation characterized by the combination of a retort receiving the material to be distilled with a superheater for the steam, the combustion products which escape from the hearth of the superheater going to encircle the retort while the steam which comes off the superheater traverses this retort, the pressure of the steam being regulated by a convenient regulator; the products of the distillation result from the simultaneous action of the hot gases and steam on the contents of the retort being, on the other hand, separated at the outlet of this retort by means of cooling in a gas separator, a condenser, and part of the gas after being separated serving to heat the mentioned superheater.

  4. Rapid Retort Processing of Eggs

    Science.gov (United States)

    2006-12-04

    cyclodextrin, xanthan gum , ι-carrageenan, λ-carrageenan, κ-carrageenan, guar gum , locust bean gum , xanthan gum and starch. To improve the flavor of the...Cyclodextrin and κ-carrageenan were not effective in preventing synerisis. Guar gum and locust bean gum , and λ-carrageenan resulted in products with a slimy...Laboratory batches were prepared by hydrating the xanthan gum and pregelatinized starch in water which contained the salt and citric acid. The powdered

  5. ADSORPTION OF THE DYE REACTIVE BLUE 5G IN RETORTED SHALE

    OpenAIRE

    Lambrecht, R.; Barros, M. A. S. D. de; Arroyo, P. A.; Borba, C. E.; Silva, E. A. da

    2015-01-01

    Abstract In this study the influence of the volumetric flow rate and feed concentration was investigated for the adsorption of the reactive dye Blue 5G. Experiments were carried out in a bed packed with retorted shale, at 30 ºC. The ranges investigated were flow rate 2 -10 mL/min and the feed concentration 13-105 mg/L. Mathematical models were used to represent the dynamic sorption. The double resistance model considers the effects of the axial dispersion and the mass transfer resistance...

  6. Calderon cokemaking process/demonstration project

    International Nuclear Information System (INIS)

    Albert Calderon

    1996-01-01

    This project which deals with the demonstration of a full size commercial coking retort using Calderon's proprietary technology for making metallurgical coke ran into a commercialization problem by virtue that the designed retort for two (2) tons of coke/hour necessitates thirty-two (32) retorts to produce the 500,000 tons of coke per year for a commercial plant. Bechtel Mining and Metals prepared a cost estimate of the commercial plant which indicated the commercial plant would not be economically feasible. The activity during this reporting period was directed to making changes to the design of the coking retort in order to reduce the number of retorts required for a 500,000 ton/year commercial coke facility. The result of this activity resulted in the drastic reduction of the number of retorts to eight (8) with each retort projected to produce 8.17 tons of coke/hour. Such decrease in number of retorts makes the Calderon technology quite competitive and therefore commercially feasible

  7. Method for establishing a combustion zone in an in situ oil shale retort having a pocket at the top

    Science.gov (United States)

    Cha, Chang Y.

    1980-01-01

    An in situ oil shale retort having a top boundary of unfragmented formation and containing a fragmented permeable mass has a pocket at the top, that is, an open space between a portion of the top of the fragmented mass and the top boundary of unfragmented formation. To establish a combustion zone across the fragmented mass, a combustion zone is established in a portion of the fragmented mass which is proximate to the top boundary. A retort inlet mixture comprising oxygen is introduced to the fragmented mass to propagate the combustion zone across an upper portion of the fragmented mass. Simultaneously, cool fluid is introduced to the pocket to prevent overheating and thermal sloughing of formation from the top boundary into the pocket.

  8. Optimization of thermal processing of canned mussels.

    Science.gov (United States)

    Ansorena, M R; Salvadori, V O

    2011-10-01

    The design and optimization of thermal processing of solid-liquid food mixtures, such as canned mussels, requires the knowledge of the thermal history at the slowest heating point. In general, this point does not coincide with the geometrical center of the can, and the results show that it is located along the axial axis at a height that depends on the brine content. In this study, a mathematical model for the prediction of the temperature at this point was developed using the discrete transfer function approach. Transfer function coefficients were experimentally obtained, and prediction equations fitted to consider other can dimensions and sampling interval. This model was coupled with an optimization routine in order to search for different retort temperature profiles to maximize a quality index. Both constant retort temperature (CRT) and variable retort temperature (VRT; discrete step-wise and exponential) were considered. In the CRT process, the optimal retort temperature was always between 134 °C and 137 °C, and high values of thiamine retention were achieved. A significant improvement in surface quality index was obtained for optimal VRT profiles compared to optimal CRT. The optimization procedure shown in this study produces results that justify its utilization in the industry.

  9. Some problems of oil shale retorting in Estonia

    International Nuclear Information System (INIS)

    Oepik, I.

    1994-01-01

    Oil shale in Estonia will be competitive in the long term as a primary resource for power generating. The price of energy of Estonian oil shale is at present approximately 4 times lower than of coal. The price of electricity is anticipated to grow up to EEK 1.0/kWh in year 2020. The electricity price EEK 0.2/kWh at present in Estonia does not include capital costs needed for refurbishing of Estonian oil-shale-consuming power stations between the years 2000-2010. While all the prices and calculations of the enterprise are presented with no inflation adjustment, the other operation costs of oil shale retorting are anticipated for the prognosed period to remain at the present level: power consumption kWh 280/t crude oils and other operation costs (excluding labour, raw material and power consumption) EEK 100/t of oil

  10. Process for treating oil shale

    Energy Technology Data Exchange (ETDEWEB)

    1920-08-22

    A process for treating oil shale is characterized in that the shale is first finely ground, then heated in the presence of steam in a high-pressure retort at 1 to 50 atmospheres pressure at a temperature of 200/sup 0/ to 450/sup 0/C and then with large amounts of water with or without materials forming emulsions with water or with oil. Solution medium suitable for bitumen or paraffin is beaten up in a rapid hammer mill until all or most all of the oil or bitumen is emulsified. The emulsion is separated by filter-pressing and centrifuging from the solid shale residue and the oil or bitumen is again separated from the emulsion medium by heating, acidulating, standing, or centrifuging, and then in known ways is further separated, refined, and worked up.

  11. Characteristic and antioxidant activity of retorted gelatin hydrolysates from cobia (Rachycentron canadum) skin.

    Science.gov (United States)

    Yang, Jing-Iong; Ho, Hsin-Yi; Chu, Yuh-Jwo; Chow, Chau-Jen

    2008-09-01

    Alkali-pretreated cobia (Rachycentron canadum) skin was extracted in a retort (121°C) for 30min to obtain a retorted skin gelatin hydrolysate (RSGH). The molecular mass distributions and antioxidant activities of cobia RSGH and enzyme-treated RSGHs (ET-RSGHs) derived from bromelain, papain, pancreatin, and trypsin digestion were then characterized. The molecular mass distribution of the RSGH ranged mainly between 20,000 and 700Da and those of ET-RSGHs ranged between 6500 and 700Da. The DPPH (α,α-diphenyl-β-picrylhydrazyl) radical scavenging effects (%) of 10mg/ml of RSGH and 10mg/ml of the four ET-RSGHs were 55% and 51-61%, respectively. The lipid peroxidation inhibition (%) of RSGH and ET-RSGHs (10mg/ml) were 58% and 60-71% on the fifth day in a linoleic acid model system, respectively. The 3Kd-ET-RSGHs, obtained by using a series of centrifugal ultrafiltration filters (molecular weight cut-offs of 10, 5, and 3kDa done sequentially with decreasing pore size), exhibited dramatically improved antioxidant activity, with most of the molecular mass ranging below 700Da. Compared to 10mg/ml of the RSGH, 10mg/ml of 3Kd-ET-RSGHs exhibited 45-65% more scavenging of DPPH radical and 24-38% more inhibition of lipid peroxidation. The peptides with molecular masses below 700Da in the ET-RSGHs or 3Kd-ET-RSGHs significantly affect the antioxidant properties. These peptides are composed of a small number of amino acids or free amino acids and have the potential to be added as antioxidants in foods. Copyright © 2008 Elsevier Ltd. All rights reserved.

  12. Method for separation of water from bituminous shales, etc. [water-free heavy product and water-containing light product

    Energy Technology Data Exchange (ETDEWEB)

    Hellsing, G H

    1908-10-13

    The method is characterized by conducting all the products of distillation, coming from the retorts, into a controllable system of condensation. This system of condensation is so constructed that the products of distillation are cooled to such a temperature that only the water-free heavy distillates are being condensed, and is furthermore so constructed that the other products of distillation, not yet condensed, are being condensed in an ordinary system of coolers. The purpose is to separate the distillates into a water-free heavy product and a water-containing lighter product. The patent includes an additional claim.

  13. Process for producing volatile hydrocarbons from hydrocarbonaceous solids

    Energy Technology Data Exchange (ETDEWEB)

    1949-02-03

    In a process for producing volatile hydrocarbons from hydrocarbonaceous solids, a hydrocarbonaceus solid is passed in subdivided state and in the form of a bed downwardly through an externally unheated distilling retort wherein the evolution of volatiles from the bed is effected while solid material comprising combustible heavy residue is discharged from the lower portion of the bed and retort, combustibles are burned from the discharged solid material. The admixture resultant combustion gases with the vapours evolved in the retort is prevented, and a stream of hydrocarbon fluid is heated by indirect heat exchange with hot combustion gases produced by burning to a high temperature and is introduced into the distilling retort and direct contact with bed, supplying heat to the latter for effecting the evolution of volatiles from the hydrocarbonaceous solid. The improvement consists of subjecting the volatile distillation products evolved and removed from the bed to a fractionation and separating selected relatively light and heavy hydrocarbon fractions from the distillation products, withdrawing at least one of the selected fractions from the prcess as a product heating at least one other of the selected fractions to high temperature by the indirect heat exchange with hot combustion gases, and introducing the thus heated hydrocarbon fraction into direct contact with the bed.

  14. Commercially sterilized mussel meats (Mytilus chilensis): a study on process yield.

    Science.gov (United States)

    Almonacid, S; Bustamante, J; Simpson, R; Urtubia, A; Pinto, M; Teixeira, A

    2012-06-01

    The processing steps most responsible for yield loss in the manufacture of canned mussel meats are the thermal treatments of precooking to remove meats from shells, and thermal processing (retorting) to render the final canned product commercially sterile for long-term shelf stability. The objective of this study was to investigate and evaluate the impact of different combinations of process variables on the ultimate drained weight in the final mussel product (Mytilu chilensis), while verifying that any differences found were statistically and economically significant. The process variables selected for this study were precooking time, brine salt concentration, and retort temperature. Results indicated 2 combinations of process variables producing the widest difference in final drained weight, designated best combination and worst combination with 35% and 29% yield, respectively. Significance of this difference was determined by employing a Bootstrap methodology, which assumes an empirical distribution of statistical error. A difference of nearly 6 percentage points in total yield was found. This represents a 20% increase in annual sales from the same quantity of raw material, in addition to increase in yield, the conditions for the best process included a retort process time 65% shorter than that for the worst process, this difference in yield could have significant economic impact, important to the mussel canning industry. © 2012 Institute of Food Technologists®

  15. Water And Waste Water Processing

    International Nuclear Information System (INIS)

    Yang, Byeong Ju

    1988-04-01

    This book shows US the distribution diagram of water and waste water processing with device of water processing, and device of waste water processing, property of water quality like measurement of pollution of waste water, theoretical Oxygen demand, and chemical Oxygen demand, processing speed like zero-order reactions and enzyme reactions, physical processing of water and waste water, chemical processing of water and waste water like neutralization and buffering effect, biological processing of waste water, ammonia removal, and sludges processing.

  16. 9 CFR 318.308 - Deviations in processing.

    Science.gov (United States)

    2010-01-01

    ...) Deviations in processing (or process deviations) must be handled according to: (1)(i) A HACCP plan for canned...) of this section. (c) [Reserved] (d) Procedures for handling process deviations where the HACCP plan... accordance with the following procedures: (a) Emergency stops. (1) When retort jams or breakdowns occur...

  17. Food processing by high hydrostatic pressure.

    Science.gov (United States)

    Yamamoto, Kazutaka

    2017-04-01

    High hydrostatic pressure (HHP) process, as a nonthermal process, can be used to inactivate microbes while minimizing chemical reactions in food. In this regard, a HHP level of 100 MPa (986.9 atm/1019.7 kgf/cm 2 ) and more is applied to food. Conventional thermal process damages food components relating color, flavor, and nutrition via enhanced chemical reactions. However, HHP process minimizes the damages and inactivates microbes toward processing high quality safe foods. The first commercial HHP-processed foods were launched in 1990 as fruit products such as jams, and then some other products have been commercialized: retort rice products (enhanced water impregnation), cooked hams and sausages (shelf life extension), soy sauce with minimized salt (short-time fermentation owing to enhanced enzymatic reactions), and beverages (shelf life extension). The characteristics of HHP food processing are reviewed from viewpoints of nonthermal process, history, research and development, physical and biochemical changes, and processing equipment.

  18. Conceptual design and techno-economic evaluation of efficient oil shale refinery processes ingratiated with oil and gas products upgradation

    International Nuclear Information System (INIS)

    Yang, Qingchun; Qian, Yu; Zhou, Huairong; Yang, Siyu

    2016-01-01

    Highlights: • Three integrated oil shale refinery processes are proposed. • Techno-economic performance of three proposed processes is conducted and compared. • Competitiveness of the three proposed processes is investigated at different scenarios. • A development direction for oil shale refinery industry is suggested. - Abstract: Compared with the petrochemical industry, oil shale refinery industry is still relatively backward and has many shortcomings, such as poor quality of shale oil, inefficient utilization of retorting gas, and the unsatisfactory economic performance. In the situation of the low oil price, many oil shale refinery plants are forced to stop or cut production. Thus, oil shale industry is facing a severe problem. How to relieve monetary loss or turn it into profits? This paper proposes three integrated oil shale refinery processes: an integrated with hydrogen production from retorting gas, an integrated with hydrogenation of shale oil, and an integrated with hydrogen production and oil hydrogenation. The techno-economic performance of the three different processes is conducted and compared with that of a conventional oil shale process. Results show the exergy destruction ratio of the oil shale process integrated with hydrogen production from retorting gas is the least, 41.6%, followed by the oil shale process integrated with hydrogen production and oil hydrogenation, 45.9%. Furthermore, these two proposed processes have the best economic performance. Especially they can turn losses of the conventional oil shale process into profits at the situation of low oil price. The oil shale process integrated with hydrogen production from retorting gas is recommended to the oil shale plants which use the oil shale with oil content lower than 12.9%, while the plants using oil shale with oil content higher than 12.9% are better to select the oil shale process integrated with hydrogen production and oil hydrogenation.

  19. Destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    Mitting, E K

    1882-08-09

    The broken-up shale is placed in cast-iron retorts, heated externally, having exit tubes placed at a low level. Each retort is provided with a steam-pipe with a regulating-cock outside, the pipe being carried around the walls of the retort in a spiral or zig-zag way to ensure superheating of the steam, perforations being made in the pipe to allow exit for the steam into the retort. The steam, which may if desired be superheated before entrance, is passed into the retort when the latter has attained a temperature of from 210 to 250/sup 0/C and the passage is continued while the temperature rises, as long as distillation goes on. The exit pipe to the retort leads to a condenser of much condensing-surface, provided with a drag obtained by an exhausting steam jet or otherwise. The distilled products consist of tar, oils, wax, ammoniacal water (stated to be in greater proportion through the use of the process), and lighting and heating gas. The latter gas goes through a scrubber to a gasholder. The carbonaceous residue in the retort is discharged when cooled below a red heat, into sheet-iron cylinders, with tightly fitting lids, to avoid as far as possible contact with the atmosphere.

  20. ADSORPTION OF THE DYE REACTIVE BLUE 5G IN RETORTED SHALE

    Directory of Open Access Journals (Sweden)

    R. Lambrecht

    2015-03-01

    Full Text Available Abstract In this study the influence of the volumetric flow rate and feed concentration was investigated for the adsorption of the reactive dye Blue 5G. Experiments were carried out in a bed packed with retorted shale, at 30 ºC. The ranges investigated were flow rate 2 -10 mL/min and the feed concentration 13-105 mg/L. Mathematical models were used to represent the dynamic sorption. The double resistance model considers the effects of the axial dispersion and the mass transfer resistance of the external film and inside the particles. As a result, the mass transfer coefficient of the external film and the internal mass transfer coefficient were estimated. The Thomas model was used to simulate the experimental data. In this model the fitted parameter was the adsorption kinetic constant. The first model provided an acceptable representation of the dynamic uptake of the reactive dye Blue 5G.

  1. Shaft-retort for treating waste materials, like washery waste, bituminous shale, oil-bearing sands and the like

    Energy Technology Data Exchange (ETDEWEB)

    Koppers, H

    1916-10-29

    A shaft-retort for converting waste materials, like washery waste, bituminous shale, oil-bearing sands, brown coal and non-coking mineral coal to oil and tar by supplying heat through the shaft wall formed of an iron-sheet to the material, which is forced through a feeding member perforated for the removal of gases and vapors, and moved downward in a thin layer on the shaft wall; that is characterized by the fact that the iron heating sheet is made rotatable for the purpose of equalizing overheating of itself and the material to be treated.

  2. Process and apparatus for the distillation of shale and other bituminous substances

    Energy Technology Data Exchange (ETDEWEB)

    Aitken, H

    1883-01-14

    The upper part of a vertical retort used for distillation is made of fire-resisting material, and the lower part of iron. The firing is carried out on the grate, so that the gases play over and under the retorts. The distillation products are carried off through a condenser. For raising the heat in the retorts and for increasing the yield of distillation proudcts the lower part of the exhausted shale is removed from the retort and it is filled up again. The exhaust gases serve to warm up the air for combustion.

  3. Process of heat-treating fuels of a bituminous nature, such as shale

    Energy Technology Data Exchange (ETDEWEB)

    Bergh, S V

    1927-11-25

    A process is described of heat treating any kind of material of a bituminous nature usable as fuel, like shale, mineral coal, peat, etc., whereby the fuel undergoes in a retort or the like a distillation for recovering from it the total amount or the greatest part of gaseous or vaporous distillation products. The warm distillation residue is burned, characterized by the retorts, containing the fuel going through, being wholly or partly surrounded by materials to be heated. These materials and the warm distillation residue resulting from the distillation during the burning are moved forward independently one of the other.

  4. 9 CFR 381.308 - Deviations in processing.

    Science.gov (United States)

    2010-01-01

    ...) must be handled according to: (1)(i) A HACCP plan for canned product that addresses hazards associated... (d) of this section. (c) [Reserved] (d) Procedures for handling process deviations where the HACCP... accordance with the following procedures: (a) Emergency stops. (1) When retort jams or breakdowns occur...

  5. Modeling and techno-economic analysis of shale-to-liquid and coal-to-liquid fuels processes

    International Nuclear Information System (INIS)

    Zhou, Huairong; Yang, Siyu; Xiao, Honghua; Yang, Qingchun; Qian, Yu; Gao, Li

    2016-01-01

    To alleviate the conflict between oil supply and demand, Chinese government has accelerated exploration and exploitation of alternative oil productions. STL (Shale-to-liquid) processes and CTL (coal-to-liquid) processes are promising choices to supply oil. However, few analyses have been made on their energy efficiency and economic performance. This paper conducts a detailed analysis of a STL process and a CTL process based on mathematical modeling and simulation. Analysis shows that low efficiency of the STL process is due to low oil yield of the Fushun-type retorting technology. For the CTL process, the utility system provides near to 34% energy consumption of the total. This is because that CTL technologies are in early development and no heat integration between units is implemented. Economic analysis reveals that the total capital investment of the CTL process is higher than that of the STL process. The production cost of the CTL process is right on the same level as that of the STL process. For better techno-economic performance, it is suggested to develop a new retorting technology of high oil yield for the STL process. The remaining retorting gas should be converted to hydrogen and then used for shale oil hydrogenation. For the CTL process, developing an appropriate heat network is an efficient way to apply heat integration. In addition, the CTL process is intended to be integrated with hydrogen rich gas to adjust H_2/CO for better resource utilization. - Highlights: • Aspen Plus software is used for modeling and simulation of a shale-to-liquid (STL) and a coal-to-liquid (CTL) processes. • Techno-economic analysis of STL and CTL processes is conducted. • Suggestions are given for improving energy efficiency and economic performance of STL and CTL processes.

  6. Production of oil from Israeli oil shale

    International Nuclear Information System (INIS)

    Givoni, D.

    1993-01-01

    Oil shale can be utilized in two-ways: direct combustion to generate steam and power or retorting to produce oil or gas. PAMA has been developing both direct combustion and retorting processes. Its main effort is in the combustion. An oil shale fired steam boiler was erected in the Rotem industrial complex for demonstration purposes. PAMA has also been looking into two alternative retorting concepts - slow heating of coarse particles and fast heating of fine particles. The present paper provides operating data of oil shale processing in the following scheme: (a) retorting in moving bed, pilot and bench scale units, and (b) retorting in a fluidized bed, bench scale units. (author)

  7. The role of water in unconventional in situ energy resource extraction technologies: Chapter 7 in Food, energy, and water: The chemistry connection

    Science.gov (United States)

    Gallegos, Tanya J.; Bern, Carleton R.; Birdwell, Justin E.; Haines, Seth; Engle, Mark A.

    2015-01-01

    Global trends toward developing new energy resources from lower grade, larger tonnage deposits that are not generally accessible using “conventional” extraction methods involve variations of subsurface in situ extraction techniques including in situ oil-shale retorting, hydraulic fracturing of petroleum reservoirs, and in situ recovery (ISR) of uranium. Although these methods are economically feasible and perhaps result in a smaller above-ground land-use footprint, there remain uncertainties regarding potential subsurface impacts to groundwater. This chapter provides an overview of the role of water in these technologies and the opportunities and challenges for water reuse and recycling.

  8. Processing needs and methodology for wastewaters from the conversion of coal, oil shale, and biomass to synfuels

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    The workshop identifies needs to be met by processing technology for wastewaters, and evaluates the suitability, approximate costs, and problems associated with current technology. Participation was confined to DOE Environmental Control Technology contractors to pull together and integrate past wastewater-related activities, to assess the status of synfuel wastewater treatability and process options, and to abet technology transfer. Particular attention was paid to probable or possible environmental restrictions which cannot be economically met by present technology. Primary emphasis was focussed upon process-condensate waters from coal-conversion and shale-retorting processes. Due to limited data base and time, the workshop did not deal with transients, upsets, trade-offs and system optimization, or with solids disposal. The report is divided into sections that, respectively, survey the water usage and effluent situation (II); identify the probable and possible water-treatment goals anticipated at the time when large-scale plants will be constructed (III); assess the capabilities, costs and shortcomings of present technology (IV); explore particularly severe environmental-control problems (V); give overall conclusions from the Workshop and recommendations for future research and study (VI); and, finally, present Status Reports of current work from participants in the Workshop (VII).

  9. Paraho environmental data. Part IV. Land reclamation and revegetation. Part V. Biological effects. Part VI. Occupational health and safety. Part VII. End use

    Energy Technology Data Exchange (ETDEWEB)

    Limbach, L.K.

    1982-06-01

    Characteristics of the environment and ecosystems at Anvil Points, reclamation of retorted shale, revegetation of retorted shale, and ecological effects of retorted shale are reported in the first section of this report. Methods used in screening shale oil and retort water for mutagens and carcinogens as well as toxicity studies are reported in the second section of this report. The third section contains information concerning the industrial hygiene and medical studies made at Anvil Points during Paraho research operations. The last section discusses the end uses of shale crude oil and possible health effects associated with end use. (DMC)

  10. Low temperature carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, A A

    1934-01-10

    A process is described in which coal is passed through a distillation chamber in one retort at a comparatively low temperature, then passing the coal through a distillation chamber of a second retort subjected to a higher temperature, thence passing the coal through the distillation chamber of a third retort at a still higher temperature and separately collecting the liquid and vapors produced from each retort.

  11. Integrated oil production and upgrading using molten alkali metal

    Science.gov (United States)

    Gordon, John Howard

    2016-10-04

    A method that combines the oil retorting process (or other process needed to obtain/extract heavy oil or bitumen) with the process for upgrading these materials using sodium or other alkali metals. Specifically, the shale gas or other gases that are obtained from the retorting/extraction process may be introduced into the upgrading reactor and used to upgrade the oil feedstock. Also, the solid materials obtained from the reactor may be used as a fuel source, thereby providing the heat necessary for the retorting/extraction process. Other forms of integration are also disclosed.

  12. Improvements in the construction and operation of coke and other ovens. [Patents

    Energy Technology Data Exchange (ETDEWEB)

    Aitken, H

    1883-01-14

    Into a room above the coke, superheated steam is let in and collects the distillation products throughout the charge into a tube or channel driven into the wall of the retort. The retort walls can be made of a double iron jacket in which water circulates. For emptying the retort, a wedge-shaped plate is used, which is pushed under the coke, thereby the latter is lifted and in large measure moved out of the chamber.

  13. Screening of synfuel processes for HTGR application

    International Nuclear Information System (INIS)

    1981-02-01

    The aim of this study is to select for further study, the several synfuel processes which are the most attractive for application of HTGR heat and energy. In pursuing this objective, the Working Group identified 34 candidate synfuel processes, cut the number of processes to 16 in an initial screening, established 11 prime criteria with weighting factors for use in screening the remaining processes, developed a screening methodology and assumptions, collected process energy requirement information, and performed a comparative rating of the processes. As a result of this, three oil shale retorting processes, two coal liquefaction processes and one coal gasification process were selected as those of most interest for further study at this time

  14. Distillation of carbonaceous material

    Energy Technology Data Exchange (ETDEWEB)

    Ainscow, J W.H.

    1936-10-03

    To recover hydrocarbon products by distillation of carbonaceous material in a plurality of horizontal zones maintained at different temperatures, a retort has a plurality of superimposed (3) retort chambers, the uppermost being in communication at one end with a hopper and at the other end through coupled junction not shown with one end of the next lower chamber, whose opposite end communicates with lowermost chamber, the other end of which has a sealed discharge passage, tank, and conveyor not shown. Each retort chamber has stirring and conveying means consisting of helical blades (2) attached to radial arms on shaft mounted in water cooled bearings and driven through suitably mounted sprocket wheels and chains not shown. Each retort chamber has a gas dome, with pyrometer tube, and off-take connected to a common main opening into a dust eliminator which in turn connects with a plurality of vertical condensation towers of known construction, maintained at different temperatures by means of steam from a superheater not shown situated in one retort chamber. The retort heating gases pass from the furnace via zig-zag, (three) baffles under and around each retort chamber to a flue not shown.

  15. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Craig, A

    1863-11-12

    To obtain hydrocarbons, coal, shale, or other bituminous substance is distilled in an annular retort. The outer surface is heated by an arrangement of furnaces and flues, and the inner surface has a number of small openings through which the evolved hydrocarbons pass. The inner chamber is cooled by cold air or water pipes to condense the hydrocarbon which is then run off to purifying-apparatus. In a modification, the retort is heated from the inside, the hydrocarbon being condensed in an outer case. Another form of retort consists of a narrow flat chamber, heated from one side and with a cooled condensing-chamber on the other; or two retorts may be used, with one condensing-chamber between them.

  16. Water processing in power plants

    International Nuclear Information System (INIS)

    Marquardt, K.

    1984-01-01

    Surface water can be treated to a high degree of efficiency by means of new compact processes. The quantity of chemicals to be dosed can easily be adjusted to the raw water composition by intentional energy supply via agitators. In-line coagulations is a new filtration process for reducing organic substances as well as colloids present in surface water. The content of organic substances can be monitored by measuring the plugging index. Advanced ion-exchanger processes (fluidised-bed, compound fluidised-bed and continuously operating ion exchanger plants) allow the required quantity of chemicals as well as the plant's own water consumption to be reduced, thus minimising the adverse effect on the environment. The reverse-osmosis process is becoming more and more significant due to the low adverse effect on the environment and the given possibilities of automation. As not only ionogenic substances but also organic matter are removed by reverse osmosis, this process is particularly suited for treating surface water to be used as boiler feed water. The process of vacuum degassing has become significant for the cold removal of oxygen. (orig.) [de

  17. Occidental vertical modified in situ process for the recovery of oil from oil shale. Phase II. Quarterly progress report, September 1, 1980-November 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The major activities at OOSI's Logan Wash site during the quarter were: mining the voids at all levels for Retorts 7 and 8; blasthole drilling; tracer testing MR4; conducting the start-up and burner tests on MR3; continuing the surface facility construction; and conducting Retorts 7 and 8 related Rock Fragmentation tests. Environmental monitoring continued during the quarter, and the data and analyses are discussed. Sandia National Laboratory and Laramie Energy Technology Center (LETC) personnel were active in the DOE support of the MR3 burner and start-up tests. In the last section of this report the final oil inventory for Retort 6 production is detailed. The total oil produced by Retort 6 was 55,696 barrels.

  18. Distilling shale

    Energy Technology Data Exchange (ETDEWEB)

    Justice, P M

    1917-09-19

    Light paraffin oils and other oils for motors are obtained from shale, and benzene, toluene, and solvent naphtha are obtained from coal by a process in which the coal or shale is preferably powered to pass through a mesh of 64 to the inch and is heated with a mixture of finely ground carbonate or the like which under the action of heat gives off carbonic acid, and with small iron scrap or its equivalent which is adapted to increase the volume of hydrocarbons evolved. The temperature of the retort is maintained between 175 and 800/sup 0/C., and after all the vapors are given off at the higher temperature a fine jet of water may be injected into the retort and the temperature increased. The produced oil is condensed and purified by fractional distillation, and the gas formed is stored after passing it through a tower packed with coke saturated with a non-volatile oil with recovery of an oil of light specific gravity which is condensed in the tower. The residuum from the still in which the produced oil is fractionated may be treated with carbonate and iron, as in the first stage of the process, and the distillate therefrom passed to a second retort containing manganese dioxide and iron scrap preferably in the proportion of one part or two. The mixture, e.g., one containing shale or oil with six to thirteen percent of oxygen, to which is added three to eight per cent of carbonate, and from one and a half to four per cent of scrap iron, is conveyed by belts and an overhead skip to a hopper of a retort in a furnace heated by burners supplied with producer gas. The retort is fitted with a detachable lid and the vapors formed are led by a pipe to a vertical water-cooled condenser with a drain-cock which leads the condensed oils to a tank, from which a pipe leads to a packed tower for removing light oils and from which the gas passes to a holder.

  19. 21 CFR 113.3 - Definitions.

    Science.gov (United States)

    2010-04-01

    ... steam into the closed retort and the time when the retort reaches the required processing temperature..., school, penal, or other organization) processing of food, including pet food. Persons engaged in the... flames to achieve sterilization temperatures. A holding period in a heated section may follow the initial...

  20. Treating bituminous minerals. [use of superheated steam

    Energy Technology Data Exchange (ETDEWEB)

    MacIvor, G

    1880-12-21

    In this new procedure, the superheated steam is the agent by which the heat is directly applied to the rock; the superheated steam is made to pass between the rocks and into the vessel or retort in which the rock is contained and where the extraction of the bitumen or the distillation of the mineral oils is carried out. The temperature of the heating apparatus in which the steam is superheated, is easily regulated at will in accord with the desired result. When one wishes to extract only bitumen, the temperature of the steam is raised to a point sufficiently high to loosen and separate the bitumen without permitting any condensation of water inside the retort. When it is desired to produce a mineral oil, the temperature is increased in such a way that all the volatile products are distilled from the rock and come into the condenser. By means of this process, any temperature up to a full red heat, can be maintained in the retort, making possible many variations in the kind of products obtainable from the rock.

  1. Carbonizing etc. , coal etc

    Energy Technology Data Exchange (ETDEWEB)

    Duckham, A M; Rider, D; Watts, J S

    1924-01-17

    In drying, carbonizing, and distilling coal, shale, etc., by passage through a heated retort, the material is spread in a thin layer over the heating surface by a conveying-screw with a shallow thread. The retort is heated by a bath of molten metal, and the conveyingscrew intermeshes with a scraper screw of smaller diameter, and of a different hand; the screws are mounted on shafts geared together by wheels. The material after passing through the retort is delivered into a chute closed at the bottom by an arc-shaped water seal carried on arms and opened periodically by a lever.

  2. Four dimensional X-ray imaging of deformation modes in organic-rich Green River Shale retorted under uniaxial compression

    Science.gov (United States)

    Kobchenko, M.; Pluymakers, A.; Cordonnier, B.; Tairova, A.; Renard, F.

    2017-12-01

    Time-lapse imaging of fracture network development in organic-rich shales at elevated temperatures while kerogen is retorted allows characterizing the development of microfractures and the onset of primary migration. When the solid organic matter is transformed to hydrocarbons with lower molecular weight, the local pore-pressure increases and drives the propagation of hydro-fractures sub-parallel to the shale lamination. On the scale of samples of several mm size, these fractures can be described as mode I opening, where fracture walls dilate in the direction of minimal compression. However, so far experiments coupled to microtomography in situ imaging have been performed on samples where no load was imposed. Here, an external load was applied perpendicular to the sample laminations and we show that this stress state slows down, but does not stop, the propagation of fracture along bedding. Conversely, microfractures also propagate sub-perpendicular to the shale lamination, creating a percolating network in three dimensions. To monitor this process we have used a uniaxial compaction rig combined with in-situ heating from 50 to 500 deg C, while capturing three-dimensional X-ray microtomography scans at a voxel resolution of 2.2 μm; Data were acquired at beamline ID19 at the European Synchrotron Radiation Facility. In total ten time-resolved experiments were performed at different vertical loading conditions, with and without lateral passive confinement and different heating rates. At high external load the sample fails by symmetric bulging, while at lower external load the reaction-induced fracture network develops with the presence of microfractures both sub-parallel and sub-perpendicular to the bedding direction. In addition, the variation of experimental conditions allows the decoupling of the effects of the hydrocarbon decomposition reaction on the deformation process from the influence of thermal stress heating on the weakening and failure mode of immature

  3. Fuel Gas Demonstration Plant Program. Volume I. Demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The objective of this project is for Babcock Contractors Inc. (BCI) to provide process designs, and gasifier retort design for a fuel gas demonstration plant for Erie Mining Company at Hoyt Lake, Minnesota. The fuel gas produced will be used to supplement natural gas and fuel oil for iron ore pellet induration. The fuel gas demonstration plant will consist of five stirred, two-stage fixed-bed gasifier retorts capable of handling caking and non-caking coals, and provisions for the installation of a sixth retort. The process and unit design has been based on operation with caking coals; however, the retorts have been designed for easy conversion to handle non-caking coals. The demonstration unit has been designed to provide for expansion to a commercial plant (described in Commercial Plant Package) in an economical manner.

  4. Destructive distillation of coals

    Energy Technology Data Exchange (ETDEWEB)

    Rollason, A

    1918-08-23

    To obtain light oils and ammonia from coals having volatile and oxygen contents, the crushed material is mixed with 5 percent of ground amorphous calcium carbonate and distilled slowly in a cast iron retort to remove the water and light oils, the ammonia being synthesized at a later stage. The crushed residue is gasified in a producer by a blast of air and superheated steam at about 950/sup 0/C. The steam and air are passed very slowly at low pressure through the fuel to cause the dissociation of the atmospheric nitrogen molecules into atoms. The gases are then passed to a heater, having a temperature of 500/sup 0/C, and thence to a continuously working externally-heated retort charged with fuel, such as the hard retort residues, maintained below 850/sup 0/C. The water vapor in the gases is dissociated by the incandescent fuel, the oxygen combining with the carbon, and the lime present in the fuel causes the hydrogen to combine with the free nitrogen atoms, thus forming ammonia. The gases after leaving the retort are cooled down to 85 to 95/sup 0/C and the ammonia may be recovered by conversion into ammonium sulphate. The resultant cooled gases may again be charged with superheated steam and utilized again in the heater and retort.

  5. Determination of the uranium concentration in samples of raw, retorted and spent shale from Irati, Parana-Brazil, by the fission track registration technique

    International Nuclear Information System (INIS)

    Cabral, R.G.

    1981-02-01

    The feasibility of the determination of uranium in oil shale, by the fission track registration technique is studied. The wet and dry methods were employed, using a Bayer policarbonate, Makrofol KG, as detector. It was created a new variant of the dry method. The fission track registration technique was used in samples of raw, retorted and spent shale from Irati, Parana in Brazil, 16 μg U/g, 20 μg U/g and 20μg U/g were found, respectively, with a total error ranging from 19% to 20%. Some experimental results were included for illustration and comparison. The feasibility of the determination of uranium in oil shale from Irati was verified. (Author) [pt

  6. Destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    Hislop, G R

    1882-11-03

    Relates to apparatus for the treatment of cannel or common coal, shale, dross, peat, wood, and similar carbonaceous materials and ironstones for the purpose of obtaining gas, ammonia, and oil. A series of horizontal retorts are built into an arched chamber, and are supported by open arches. A series of vertical retorts in a chamber are situated beneath and in front of the retorts, so that the contents of the latter may easily be discharged into them. The carbonaceous material is first subjected to distillation in the retorts, the products passing by pipes to a hydraulic main where the coal tar and mineral oil are collected in the usual way. The gas is passed through oxide of iron and of lime if to be used for illuminating purposes, and through the former only, if to be used solely for heating purposes. The lower ends of the retorts are closed by doors, or may be sealed by water. They are preferably oblong in section and are surrounded by heating-flues, and each preferably contains the spent material from two of the primary retorts. They discharge their contents into a chamber at the bottom, from which they are withdrawn through a door. When the coke has been transferred from the horizontal to the vertical retorts the latter are closed by suitable covers, and the former are recharged with raw material. Superheated steam is introduced into the lower ends of the vertical retorts in order to facilitate the production of ammonia, which, together with the gases generated pass by a pipe to a main.

  7. Treatment of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H L

    1922-07-04

    To distill oil shale in lump form, it is fed as a continuous charge through an axially rotating externally heated retorting chamber, where the exposed surfaces of the lumps are gradually decomposed by destructive distillation, and light physical shocks are continuously administered to them, due to their tumbling-over motion and their contact with the ribs, to knock off the decomposing surfaces and present fresh surfaces for distillation. The vapors are withdrawn through a conduit, and the partially distilled lumps are fed through a shoot into a plurality of rotating externally heated retorts, similar in character to the first retort, from whence the vapors pass through a conduit to condensing apparatus, from which the permanent gases are withdrawn, and used for fuel in the distillation zone, while the residue is discharged into a water well. An auxiliary heating conduit, having a burner discharging into it, may be employed, while in some cases steam may be used if required. In two modifications, different arrangements of the retorts are shown, as well as means within the retorts for breaking up the lumps of shale.

  8. Role of spent shale in oil shale processing and the management of environmental residues. Final technical report, January 1979-May 1980

    Energy Technology Data Exchange (ETDEWEB)

    Hines, A.L.

    1980-08-15

    The adsorption of hydrogen sulfide on retorted oil shale was studied at 10, 25, and 60/sup 0/C using a packed bed method. Equilibrium isotherms were calculated from the adsorption data and were modeled by the Langmuir, Freundlich, and Polanyi equations. The isosteric heat of adsorption was calculated at three adsorbent loadings and was found to increase with increased loading. A calculated heat of adsorption less than the heat of condensation indicated that the adsorption was primarily due to Van der Waals' forces. Adsorption capacities were also found as a function of oil shale retorting temperature with the maximum uptake occurring on shale that was retorted at 750/sup 0/C.

  9. Producing cement

    Energy Technology Data Exchange (ETDEWEB)

    Stone, E G

    1923-09-12

    A process and apparatus are described for producing Portland cement in which pulverized shale is successively heated in a series of inclined rotary retorts having internal stirrers and oil gas outlets, which are connected to condensers. The partially treated shale is removed from the lowermost retort by a conveyor, then fed separately or conjointly into pipes and thence into a number of vertically disposed retorts. Each of these retorts may be fitted interiorly with vertical arranged conveyors which elevate the shale and discharge it over a lip, from whence it falls to the bottom of the retorts. The lower end of each casing is furnished with an adjustable discharge door through which the spent shale is fed to a hopper, thence into separate trucks. The oil gases generated in the retorts are exhausted through pipes to condensers. The spent shale is conveyed to a bin and mixed while hot with ground limestone. The admixed materials are then ground and fed to a rotary kiln which is fired by the incondensible gases derived from the oil gases obtained in the previous retorting of the shale. The calcined materials are then delivered from the rotary kiln to rotary coolers. The waste gases from the kiln are utilized for heating the retorts in which the ground shale is heated for the purpose of extracting therefrom the contained hydrocarbon oils and gases.

  10. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    International Nuclear Information System (INIS)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 x 3.0 x 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models

  11. Distilling carbonaceous material

    Energy Technology Data Exchange (ETDEWEB)

    Karrick, L C

    1926-11-02

    Coal, shale and the like are distilled in a current of superheated steam which is passed into a retort at about midway between its ends a further supply being if necessary introduced at the bottom to generate water-gas, and the coke being dry quenched in a hopper below the retort. Combustion products may also be introduced and the temperature may be varied from 950 to 1725/sup 0/F, oil, gas, resin and a residual coke having good adsorbent value, being obtained. The charge from hoppers and auxiliary hoppers is fed to retorts situated between gas and steam preheaters, the rate of downward movement being controlled by discharge rollers having arms, counterweighted rocking arms allowing the residue to be fed downwards into hoppers. Steam from a pipe is superheated in horizontal passages, and admitted through ports into the retort. Preheated fuel gas is burnt in combustion flues and passes down through vertical flues, across horizontal flues and up flues adjacent the retorts, from which by ports and flues it passes down a chamber having an air or gas preheater each having two independent systems, one discharging into the combustion chamber beneath it and the other into an adjacent chamber. Air or gas enters by pipes and after being heated in pipes is fed by ports to the chamber. The volatiles pass off through outlets leading to a main air cooled condenser and a water-cooled condenser delivering to a separating tank connecting with pipes for quenching the residues and with pipes to preheat the charge in the hoppers and maintain a gas barrier the rein. Superheated steam may also be admitted through ports to generate water-gas and increase the total volume of gases and combustion products may be introduced through ports. The upper part of the retort is made of cast iron, the high temperature parts of silica or carborundum brick, and the lower part of chrome iron or other metal.

  12. Chattanooga shale: uranium recovery by in situ processing

    International Nuclear Information System (INIS)

    Jackson, D.D.

    1977-01-01

    The increasing demand for uranium as reactor fuel requires the addition of sizable new domestic reserves. One of the largest potential sources of low-grade uranium ore is the Chattanooga shale--a formation in Tennessee and neighboring states that has not been mined conventionally because it is expensive and environmentally disadvantageous to do so. An in situ process, on the other hand, might be used to extract uranium from this formation without the attendant problems of conventional mining. We have suggested developing such a process, in which fracturing, retorting, and pressure leaching might be used to extract the uranium. The potential advantages of such a process are that capital investment would be reduced, handling and disposing of the ore would be avoided, and leaching reagents would be self-generated from air and water. If successful, the cost reductions from these factors could make the uranium produced competitive with that from other sources, and substantially increase domestic reserves. A technical program to evaluate the processing problems has been outlined and a conceptual model of the extraction process has been developed. Preliminary cost estimates have been made, although it is recognized that their validity depends on how successfully the various processing steps are carried out. In view of the preliminary nature of this survey (and our growing need for uranium), we have urged a more detailed study on the feasibility of in situ methods for extracting uranium from the Chattanooga shale

  13. Heavy Water - Industrial Separation Processes

    International Nuclear Information System (INIS)

    Peculea, M.

    1984-01-01

    This monograph devoted to the heavy water production mainly presents the Romanian experience in the field which started in early sixties from the laboratory scale production and reached now the level of large scale industrial production at ROMAG-Drobeta, Romania. The book is structured in eleven chapters entitled: Overview, The main physical properties, Sources, Uses, Separation factor and equilibrium constant, Mathematical modelling of the separation process, Thermodynamical considerations on the isotope separation, Selection criteria for heavy water separation processes, Industrial installations for heavy water production, Prospects, Acknowledgements. 200 Figs., 90 Tabs., 135 Refs

  14. Water Supply Treatment Sustainability of Panching Water Supply Treatment Process - Water Footprint Approach

    Science.gov (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Zulkifli, Nabil F.; Hadi, Iqmal H.

    2018-03-01

    In many parts of the world, freshwater is scarce and overexploited. The purpose of this study is to determine the water footprint of Water Supply Treatment Process (WSTP) at Panching Water Treatment Plant (WTP) as well as to identify the sustainability of the Sg. Kuantan as an intake resource due to the effect of land use development. The total water footprint (WF) will be calculated by using WF accounting manual. The results obtained shows that the water intake resource is still available but it is believed that it will not be able to cope with the increasing WF. The increment of water demand percentage by 1.8% from 2015 to 2016 has increased 11 times higher of the water footprint percentage, 19.9%. This result shows that the water consumption during the water supply treatment process is two times higher than the demand thus it shows the inefficient of the water management

  15. Destructive distillation: oils

    Energy Technology Data Exchange (ETDEWEB)

    West, J; Glover, S

    1918-01-31

    Canned and other coals are destructively distilled in continuously operated vertical retorts which at their upper portions are maintained at temperatures suitable for low temperature oil distillation such as about 700/sup 0/C, and at their lower portions the temperature is higher and such as to be suitable for the production of gas, e.g., about 1400/sup 0/C. Superheated steam is introduced into the lower portion of the retort, preferably by means of the arrangement described in Specification 120,458, and this is converted into blue water gas which assists the distillation in the center of the coal charge. The retorts are preferably such as are described in Specifications 2663/07 and 7757/14.

  16. Hydrologic-information needs for oil-shale development, northwestern Colorado. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, O.J. (comp.)

    1982-04-01

    The Piceance basin of northwestern Colorado contains large reserves of oil shale. Expected development of oil shale will affect the regional hydrologic systems because most oil-shale mines will require drainage; industrial requirements for water may be large; and oil-shale mines, wastes, and retorts may affect the quantity and quality of surface water and ground water. In addition, the oil-shale industry may discharge particles and gases to the atmosphere that could alter the quality of high-altitude lakes and surface-water reservoirs. Hydrologic data need to be collected in order to plan for oil-shale development and to estimate the effects of development. Test-well drilling and aquifer testing are needed to provide a better understanding of the local and regional flow system, to furnish additional data for a model that simulates mine drainage, and to explore for water supplies in aquifers of Paleozoic and Mesozoic age. Much of the ground water in the bedrock aquifers discharges through springs, and a systematic study of the springs will help to predict the effects of mine drainage on spring discharge and quality. Surface runoff, dissolved and suspended loads in streams, and the aquatic environment in streams would be highly susceptible to the disruptions in the land surface and will require additional study in order to estimate the effects of development. A water-quality assessment is proposed for the White River basin because it is a possible source of water and a region likely to be affected by development. The effects of emissions to the atmosphere from oil-shale plants require study because these emissions may affect the quality of water in lakes downwind. Spoil piles of retorted oil shale may be very large and require study to anticipate any problems caused by leaching and erosion. Processing wastes resulting from in-situ retorts and other waste materials need to be studied in greater detail. 71 refs., 30 figs., 5 tabs.

  17. Distilling carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Garrow, J R

    1921-04-16

    To obtain an increased yield of by-products such as oils, ammonia, and gas from coal, oil shale, wood, peat, and the like by low and medium temperature processes, the requisite quantity of hot producer gas from a gas producer, is caused to travel, without ignition, through the material as it passes in a continuous manner through the retort so that the sensible heat of the producer gas is utilized to produce distillation of the carbonaceous material, the gases passing to a condenser, absorption apparatus, and an ammonia absorber respectively. In a two-stage method of treatment of materials such as peat or the like, separate supplies of producer gas are utilized for a preliminary drying operation and for the distillation of the material, the drying receptacle and the retort being joined together to render the process continuous. The gas from the drying receptacle may be mixed with the combined producer and retort gas from the retort, after the hydrocarbon oils have deen removed therefrom.

  18. Distillation of shale

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J

    1877-01-05

    The retort consists of a trough fitted with a hood, the edges of which hood dip into a channel of water formed round the sides of the trough, and thereby seal the retort. The shale is introduced at one end of the hood through a double-valved inlet hopper, and is moved along the retort by transverse scrapers or paddles. At the other end it falls through a double-valved outlet upon a set of firebars which carry it along under the retort, where either alone or in admixture with other fuel it is used for heating the vessel. The vapors from the shale pass off through pipes in the hood, or an inverted channel may be formed along the center of the hood for collecting the vapors from different parts of the vessel. The scrapers are worked by rocking shafts supported on bearings in the edges of the trough, and are made to feather when moving in a direction from the discharged end. Levers from the rocking shafts project down into the water channel, where they are connected with horizontal bars made to reciprocate longitudinally by suitable means, thus working the scrapers without using stuffing-boxes. Rotating scrapers may be substituted for the reciprocating ones.

  19. Destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    1914-06-26

    Condensable volatile products are separated from solid carbonaceous material such as coal, shale, or peat by moving such material under non-oxidizing conditions through a retort, the various regions of which are maintained by indirect heating at temperatures increasing from the end at which the material is introduced, and by causing the gases evolved from the various portions of the material to pass into contact with relatively cooled portions of the material in its solid or partly vaporized state, whereby condensed volatile matter is obtained in, and can be removed from, the retort in liquid form. The gases may be conveyed by a gaseous medium, which may be the washed and purified product from the retort. The temperature at the hottest part of the retort meed not be more than about 600/sup 0/C. In the apparatus shown, material supplied from a hopper E through a rotary valve F is caught by scoops A/sup 2/, moved up inclined retorts A by conveyer D/sup 1/, and passes out through a rotary valve H. The conveyer comprises a helical blade and a sleeve formed in sections and mounted on a shaft D, and is driven by pawl levers partly balanced by a weight G/sup 2/ and raised by an hydraulic ram G/sup 1/. The retorts are each enclosed in fire-clay slabs B, an annular space being left which may be filled with broken brick or fire-clay and contains angularly adjustable pipes J conveying air and gas; these pipes have graduated perforations so that the temperature increases from the lower ends of the retorts. The gaseous medium enters at the top of the valve H and conveys the vapour down the retorts, the condensates being withdrawn through an outlet K. Water may be introduced into the retort near its hottest part. Graduated heating may also be applied to the material by using the conveyer as a radiator of heat as described in Specification 15,381/14.

  20. Treatment of waters before use. Processes and applications

    International Nuclear Information System (INIS)

    Mouchet, P.

    2006-01-01

    Some industrial processes require a water without any particulate in suspension and stable with respect to various aspects: no post-precipitations, no interference with storage and distribution equipments (corrosion or fouling), no development of bacterial, algal or other type of fauna (no chemical nutrients) etc. The water preparation process used will be different depending on the origin of the water (surface or underground). This article describes, first, the different type of treatments depending on the origin of the water and on the quality requested (clear and stable water, drinkable water, specific complementary processes, different processing files). Then, in a second part, the application of these processes to some industries are given (beverage, food, textile, paper, steel-making, aerospace and automotive, petroleum, power plants, ultra-pure waters) and in particular the preparation of demineralized water for nuclear power plants is described. (J.S.)

  1. Shale distillation

    Energy Technology Data Exchange (ETDEWEB)

    Jacomini, V V

    1938-06-07

    To produce valuable oils from shale by continuous distillation it is preheated by a heated fluid and introduced into a distilling retort from which the oil vapours and spent material are separately removed and the vapours condensed to recover the oil. The shale is preheated to 400 to 500/sup 0/F in the hopper by combustion gases from a flue and is fed in measured quantities to a surge drum, a loading chamber and surge drum, the latter two being connected to a steam pipe which equalises the pressure thereon. The material passes by two screw conveyors to a retort with deflector bars to scatter the material so that lean hot cycling gas flowing through a pipe is spread out as it makes its way upwardly through the shale and heats the oil so that it is driven off as vapour, collected in the lean gas and carried off through an outlet pipe. A measuring valve is provided at the bottom of a retort and cutter knives cut the spent shale and distribute cooling water thereto. The gases travel through heat exchangers and a condenser to an accumulator where the cycling gas is separated from the vapours, passed to compression, and preheated in a gas exchanger and spiral coils before it is returned to the retort. The oil passes to a storage tank by way of a unit tank in which oil vapours are recovered. Water is collected by a pipe in the tank bottom and returned by shaft to a retort.

  2. MININR: a geochemical computer program for inclusion in water flow models - an application study

    Energy Technology Data Exchange (ETDEWEB)

    Felmy, A.R.; Reisenauer, A.E.; Zachara, J.M.; Gee, G.W.

    1984-02-01

    MININR is a reduced form of the computer program MINTEQ which calculates equilibrium precipitation/dissolution of solid phases, aqueous speciation, adsorption, and gas phase equilibrium. The user-oriented features in MINTEQ were removed to reduce the size and increase the computational speed. MININR closely resembles the MINEQL computer program developed by Westall (1976). The main differences between MININR and MINEQL involve modifications to accept an initial starting mass of solid and necessary changes for linking with a water flow model. MININR in combination with a simple water flow model which considers only dilution was applied to a laboratory column packed with retorted oil shale and percolated with distilled water. Experimental and preliminary model simulation results are presented for the constituents K/sup +/, Na/sup +/, SO/sub 4//sup 2 -/, Mg/sup 2 +/, Ca/sup 2 +/, CO/sub 3//sup 2 -/ and pH.

  3. Water treatment process for nuclear reactors

    International Nuclear Information System (INIS)

    Marwan, M.A.; Khattab, M.S.; Hanna, A.N.

    1992-01-01

    Water treatment for purification is very important in reactor cooling systems as well as in many industrial applications. Since impurities in water are main source of problems, it is necessary to achieve and maintain high purity of water before utilization in reactor cooling systems. The present work investigate water treatment process for nuclear reactor utilization. Analysis of output water chemistry proved that demineralizing process is an appropriate method. Extensive experiments were conducted to determine economical concentration of the regenerates to obtain the optimum quantity of pure water which reached to 15 cubic meter instead of 10 cubic-meter per regeneration. Running cost is consequently decreased by about 30 %. output water chemistry agree with the recommended specifications for reactor utilization. The radionuclides produced in the primary cooling water due to reactor operation are determined. It is found that 70% of radioactive contaminants are retained by purification through resin of reactor filter. Decontamination factor and filter efficiency are also determined.5 fig., 3 tab

  4. Emergy evaluation of water utilization benefits in water-ecological-economic system based on water cycle process

    Science.gov (United States)

    Guo, X.; Wu, Z.; Lv, C.

    2017-12-01

    The water utilization benefits are formed by the material flow, energy flow, information flow and value stream in the whole water cycle process, and reflected along with the material circulation of inner system. But most of traditional water utilization benefits evaluation are based on the macro level, only consider the whole material input and output and energy conversion relation, and lack the characterization of water utilization benefits accompanying with water cycle process from the formation mechanism. In addition, most studies are from the perspective of economics, only pay attention to the whole economic output and sewage treatment economic investment, but neglect the ecological function benefits of water cycle, Therefore, from the perspective of internal material circulation in the whole system, taking water cycle process as the process of material circulation and energy flow, the circulation and flow process of water and other ecological environment, social economic elements were described, and the composition of water utilization positive and negative benefits in water-ecological-economic system was explored, and the performance of each benefit was analyzed. On this basis, the emergy calculation method of each benefit was proposed by emergy quantitative analysis technique, which can realize the unified measurement and evaluation of water utilization benefits in water-ecological-economic system. Then, taking Zhengzhou city as an example, the corresponding benefits of different water cycle links were calculated quantitatively by emergy method, and the results showed that the emergy evaluation method of water utilization benefits can unify the ecosystem and the economic system, achieve uniform quantitative analysis, and measure the true value of natural resources and human economic activities comprehensively.

  5. Production of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Day, D T; Day, R E

    1920-04-27

    A process is disclosed of converting hydro-carbon oils having high boiling points to hydro-carbon oils having low boiling points, which process comprises adding the oil to be treated to a mass of hydro-carbon oil bearing shale, passing the shale with the oil through a conveyor retort and subjecting the material while in the retort to a heat treatment involving a temperature of at least 500/sup 0/F.

  6. Water treatment process for nuclear reactors

    International Nuclear Information System (INIS)

    Marwan, M.A.; Khattab, M.S.; Hanna, A.N.

    1993-01-01

    Water treatment for purification is very important in reactor cooling systems as well as in many industrial applications. Since impurities in water are main source of problems, it is necessary to achieve and maintain high purity of water before utilization in reactor cooling systems. The present work investigates water treatment process for nuclear reactor utilization. Analysis of outwater chemistry proved that demineralizing process is an appropriate method. Extensive experiments were conducted to determine economical concentration of the regenerants to obtain the optimum quantity of pure water which reached to 15 cubic-meter instead of 10 cubic-meter per regeneration. Running cost is consequently decreased by about 30%. Output water chemistry agrees with the recommended specifications for reactor utilization. The radionuclides produced in the primary cooling water due to reactor operation are determined. It is found that 70% of radioactive contaminants are retained by purification through resin of reactor filter. Decontamination factor and filter efficiency are also determined

  7. Some problems on materials tests in high temperature hydrogen base gas mixture

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Tanabe, Tatsuhiko; Fujitsuka, Masakazu; Yoshida, Heitaro; Watanabe, Ryoji

    1980-01-01

    Some problems have been examined on materials tests (creep rupture tests and corrosion tests) in high temperature mixture gas of hydrogen (80%H 2 + 15%CO + 5%CO 2 ) simulating the reducing gas for direct steel making. H 2 , CO, CO 2 and CH 4 in the reducing gas interact with each other at elevated temperature and produce water vapor (H 2 O) and carbon (soot). Carbon deposited on the walls of retorts and the water condensed at pipings of the lower temperature gas outlet causes blocking of gas flow. The gas reactions have been found to be catalyzed by the retort walls, and appropriate selection of the materials for retorts has been found to mitigate the problems caused by water condensation and carbon deposition. Quartz has been recognized to be one of the most promising materials for minimizing the gas reactions. And ceramic coating, namely, BN (born nitride) on the heat resistant superalloy, MO-RE II, has reduced the amounts of water vapor and deposited carbon (sooting) produced by gas reactions and has kept dew points of outlet gas below room temperature. The well known emf (thermo-electromotive force) deterioration of Alumel-Chromel thermocouples in the reducing gases at elevated temperatures has been also found to be prevented by the ceramic (BN) coating. (author)

  8. Composition and Variation of Macronutrients, Immune Proteins, and Human Milk Oligosaccharides in Human Milk From Nonprofit and Commercial Milk Banks.

    Science.gov (United States)

    Meredith-Dennis, Laura; Xu, Gege; Goonatilleke, Elisha; Lebrilla, Carlito B; Underwood, Mark A; Smilowitz, Jennifer T

    2018-02-01

    When human milk is unavailable, banked milk is recommended for feeding premature infants. Milk banks use processes to eliminate pathogens; however, variability among methods exists. Research aim: The aim of this study was to compare the macronutrient (protein, carbohydrate, fat, energy), immune-protective protein, and human milk oligosaccharide (HMO) content of human milk from three independent milk banks that use pasteurization (Holder vs. vat techniques) or retort sterilization. Randomly acquired human milk samples from three different milk banks ( n = 3 from each bank) were analyzed for macronutrient concentrations using a Fourier transform mid-infrared spectroscopy human milk analyzer. The concentrations of IgA, IgM, IgG, lactoferrin, lysozyme, α-lactalbumin, α antitrypsin, casein, and HMO were analyzed by mass spectrometry. The concentrations of protein and fat were significantly ( p < .05) less in the retort sterilized compared with the Holder and vat pasteurized samples, respectively. The concentrations of all immune-modulating proteins were significantly ( p < .05) less in the retort sterilized samples compared with vat and/or Holder pasteurized samples. The total HMO concentration and HMOs containing fucose, sialic acid, and nonfucosylated neutral sugars were significantly ( p < .05) less in retort sterilized compared with Holder pasteurized samples. Random milk samples that had undergone retort sterilization had significantly less immune-protective proteins and total and specific HMOs compared with samples that had undergone Holder and vat pasteurization. These data suggest that further analysis of the effect of retort sterilization on human milk components is needed prior to widespread adoption of this process.

  9. Initial cathode processing experiences and results for the treatment of spent fuel

    International Nuclear Information System (INIS)

    Westphal, B.R.; Laug, D.V.; Brunsvold, A.R.; Roach, P.D.

    1996-01-01

    As part of the spent fuel treatment demonstration at Argonne National Laboratory, a vacuum distillation process is being employed for the recovery of uranium following an electrorefining process. Distillation of a salt electrolyte, primarily consisting of a eutectic mixture of lithium and potassium chlorides, from uranium is achieved by a batch operation termed ''cathode processing.'' Cathode processing is performed in a retort furnace which enables the production of a stable uranium product that can be isotopically diluted and stored. To date, experiments have been performed with two distillation units; one for prototypical testing and the other for actual spent fuel treatment operations. The results and experiences from these initial experiments with both units will be discussed as well as problems encountered and their resolution

  10. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Bell, T

    1862-03-03

    Apparatus for the primary distillation of shale or other bituminous minerals in large quantity is constructed as follows:--An annular retort chamber is heated by two or more furnaces, one of which communicates with a central or internal vertical flue, and the others with external or encircling flues preferably disposed in zig-zag, helical or other tortuous course; or the gases pass up the external flues and down the internal flue or flues. The retort chamber may be divided by partitions, or there may be two or more separate chambers disposed concentrically or otherwise with intermediate flues. A pipe or pipes are provided to carry away volatile matters, and valved hoppers are arranged at the top of the retort chamber. The refuse or waste passes off by discharge tubes between the furnaces, and the mouths of these tubes dip into water tanks. The bottom of the retort chamber is funnel-shaped at the discharging points. The apparatus is preferably cylindrical, but may be triangular, square, or polygonal, and may be inclined or horizontal instead of vertical.

  11. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Craig, A

    1865-10-04

    To prevent oil distilled from coal, shale, or other minerals from being condensed and burnt in the retort, the oil is drawn off from the bottom of the retort. In order that the oil may be drawn off free from dirt and dust, the vertical retort is made of greater diameter at the bottom than at the top, and a vessel containing water is placed at the bottom. Within the retort is a cylinder built up of spaced rings, between which the oil percolates to the interior of the cylinder, whence it is drawn off through a pipe near its lower end. Externally, the rings present a smooth surface which offers no obstruction to the descent of the coal, and the passing of dust and dirt to the interior of the cylinder is prevented by making the lower edge of each ring overlap the upper edge of the ring below it. The cylinder may be replaced by a square, or other casing, and may be cast in one piece.

  12. Process of desulfurizing dephenolating, and cracking raw pitch obtained by dry distilling lignite, shale, etc

    Energy Technology Data Exchange (ETDEWEB)

    1932-12-21

    A process is described of desulfurizing, dephenelating, and cracking the dry pitch obtained by dry distillation of lignite, bituminous shale, asphaltic rocks, and peat and fossil coals, that is characterized by the raw material being distilled in a retort together with calcium oxide, the vapors escaping from the still being compelled to pass through a catalyst tube containing calcium oxide mixed with other metallic oxide, the catalyst being helped by suitable heating to a temperature higher than that of the retort mentioned. For the purpose of lessening the quantity of phenolic groups contained in the raw tar to eliminate a great part of the sulfur belonging to the thiophenols and hydrogen sulfide without removing the organic radical to which they are attached, to accomplish a pyrogenic dissociation at the temperature of distillation of the pitch by means of using bone acid (phosphoric) to obtain a greater yield of light hydrocarbon from heavy hydrocarbons. Another purpose is the elimination of sulfur and thiophene and whatever neutral sulfur is contained in the primary pitch, by means of iron sulfate and copper in the anhydrous state or by means of other sulfates whose metals have the ability to form sulfides with sulfur.

  13. The Impact of Rhizosphere Processes on Water Flow and Root Water Uptake

    Science.gov (United States)

    Schwartz, Nimrod; Kroener, Eva; Carminati, Andrea; Javaux, Mathieu

    2015-04-01

    For many years, the rhizosphere, which is the zone of soil in the vicinity of the roots and which is influenced by the roots, is known as a unique soil environment with different physical, biological and chemical properties than those of the bulk soil. Indeed, in recent studies it has been shown that root exudate and especially mucilage alter the hydraulic properties of the soil, and that drying and wetting cycles of mucilage result in non-equilibrium water dynamics in the rhizosphere. While there are experimental evidences and simplified 1D model for those concepts, an integrated model that considers rhizosphere processes with a detailed model for water and roots flow is absent. Therefore, the objective of this work is to develop a 3D physical model of water flow in the soil-plant continuum that take in consideration root architecture and rhizosphere specific properties. Ultimately, this model will enhance our understanding on the impact of processes occurring in the rhizosphere on water flow and root water uptake. To achieve this objective, we coupled R-SWMS, a detailed 3D model for water flow in soil and root system (Javaux et al 2008), with the rhizosphere model developed by Kroener et al (2014). In the new Rhizo-RSWMS model the rhizosphere hydraulic properties differ from those of the bulk soil, and non-equilibrium dynamics between the rhizosphere water content and pressure head is also considered. We simulated a wetting scenario. The soil was initially dry and it was wetted from the top at a constant flow rate. The model predicts that, after infiltration the water content in the rhizosphere remained lower than in the bulk soil (non-equilibrium), but over time water infiltrated into the rhizosphere and eventually the water content in the rhizosphere became higher than in the bulk soil. These results are in qualitative agreement with the available experimental data on water dynamics in the rhizosphere. Additionally, the results show that rhizosphere processes

  14. Water retention in mushroom during sustainable processing

    NARCIS (Netherlands)

    Paudel, E.

    2015-01-01

    This thesis deals with the understanding of the water holding capacity of mushroom, in the context of a redesign of their industrial processing. For designing food process the retention of food quality is of the utmost importance. Water holding capacity is an important quality aspect of

  15. Distillation of shale and other bituminous substances. [shale granules wetted, mixed with lime, heated; sulfur recovered

    Energy Technology Data Exchange (ETDEWEB)

    Noad, J

    1912-09-23

    A process is described for the treatment of shale and other bituminous substances containing sulfur and recovering desulfurized distillates. The process consists of first grinding the shale and mixing the granules obtained with a convenient liquid. The shale granules coated or covered with liquid and mixed with slacked lime are fed into a retort with a series of steps or their equivalent, made to descend, step by step, in such manner that they are continually agitated and heated. The volatile constituents escape through the coating or sheath of lime and are carried away at the upper part of the retort to a convenient condensing apparatus, the sulfur being retained by the sheath of lime and is discharged at the bottom of the retort with the spent shale and other impurities.

  16. Primary processes during water radiolysis

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1980-01-01

    Briefly reviewed are investigations of primary process mechanism taking place during radiolysis of water and similar systems, executed by direct and indirect methods. A conclusion is made on the important role of the water structure during radiolysis of aqueous solutions of some substances. A necessity to take account of this factor during consideration of radiolysis theoretical models is pointed out

  17. Hydrogen-water isotopic exchange process

    International Nuclear Information System (INIS)

    Cheung, H.

    1983-01-01

    Deuterium is concentrated in a hydrogen-water isotopic exchange process enhanced by the use of catalyst materials in cold and hot tower contacting zones. Water is employed in a closed liquid recirculation loop that includes the cold tower, in which deuterium is concentrated in the water, and the upper portion of the hot tower in which said deuterium is concentrated in the hydrogen stream. Feed water is fed to the lower portion of said hot tower for contact with the circulating hydrogen stream. The feed water does not contact the water in the closed loop. Catalyst employed in the cold tower and the upper portion of the hot tower, preferably higher quality material, is isolated from impurities in the feed water that contacts only the catalyst, preferably of lower quality, in the lower portion of the hot zone. The closed loop water passes from the cold zone to the dehumidification zone, and a portion of said water leaving the upper portion of the hot tower can be passed to the humidification zone and thereafter recycled to said closed loop. Deuterium concentration is enhanced in said catalytic hydrogen-water system while undue retarding of catalyst activity is avoided

  18. Parallel factor analysis PARAFAC of process affected water

    Energy Technology Data Exchange (ETDEWEB)

    Ewanchuk, A.M.; Ulrich, A.C.; Sego, D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering; Alostaz, M. [Thurber Engineering Ltd., Calgary, AB (Canada)

    2010-07-01

    A parallel factor analysis (PARAFAC) of oil sands process-affected water was presented. Naphthenic acids (NA) are traditionally described as monobasic carboxylic acids. Research has indicated that oil sands NA do not fit classical definitions of NA. Oil sands organic acids have toxic and corrosive properties. When analyzed by fluorescence technology, oil sands process-affected water displays a characteristic peak at 290 nm excitation and approximately 346 nm emission. In this study, a parallel factor analysis (PARAFAC) was used to decompose process-affected water multi-way data into components representing analytes, chemical compounds, and groups of compounds. Water samples from various oil sands operations were analyzed in order to obtain EEMs. The EEMs were then arranged into a large matrix in decreasing process-affected water content for PARAFAC. Data were divided into 5 components. A comparison with commercially prepared NA samples suggested that oil sands NA is fundamentally different. Further research is needed to determine what each of the 5 components represent. tabs., figs.

  19. Citrus processing waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hawash, S; Hafez, A J; El-Diwani, G

    1988-02-01

    The process utilizes biological treatment to decompose organic matter and decreases the COD to a value of 230 ppm, using 161 of air per 1 of treated waste water for a contact time of 2.5 h. Ozone is used subsequently for further purification of the waste water by destroying refractory organics. This reduces the COD to a value of 40 ppm, and consequently also lowers the BOD. Ozone also effectively removed the yellow-brown colour due to humic substances in dissolved or colloidal form; their oxidation leaves the water sparkling. Iron and manganese are also eliminated.

  20. Process for recovering water enriched with deuterium

    International Nuclear Information System (INIS)

    Mandel, H.

    1975-01-01

    By the process proposed herewith, enrichment of deuterium in water by cooling water recirculation through series-connection of several cooling ciruits in the form of columns is obtained. With this method, conventional, open-type cooling towers without special installations can be applied, which is an important advantage as compared with a formerly proposed single-stage process with specially designed, complicated cooling towers. Series-connection of the cooling towers is carried out in such a way that the circulating water of a certain cooling circuit, which has a corresponding output value of deuterium enrichment, is conveyed to a succeeding circuit where further enrichment is achieved. The water enriched with deuterium is removed from the last cooling circuit of the series while an amount of fresch water equivalent to the water removed or evaporated altogether is fed to the first circuit of the series. (RB) [de

  1. Multi-methodological characterisation of Costa Rican biochars from small-scale retort and top-lit updraft stoves and inter-methodological comparison

    Directory of Open Access Journals (Sweden)

    Joeri Kaal

    2017-01-01

    Full Text Available We applied common (pH, elemental analysis, thermogravimetry and less-common (infrared spectroscopy, GACS adsorption test, pyrolysis-GC-MS, hydrogen pyrolysis analytical procedures to a set of biochars from Costa Rica (bamboo stalk, cacao chaff, sawmill scrap, coconut husk and orchard prunings feedstocks. The biochars were produced by high temperature combustion in a top-lit updraft stove (TLUD and low temperature anaerobic charring in a retort (RET, the latter of which was heated by the gas that evolved from the TLUD. The RET biochars exhibit a smaller adsorption capacity, higher molecular diversity and larger proportion of thermolabile materials, because of the lower degree of thermochemical alteration (DTA and therefore limited formation of the microporous polycondensed aromatic matrix typical of the TLUD biochars. Multivariate statistics showed that DTA, not feedstock composition, controls biochar organic chemistry. The TLUD biochars might be better candidates for soil amendment because of their adsorption capacities and will probably exert a more prolonged effect because of their chemical stability. The cross-comparison of the methods showed the complementarity of especially elemental analysis, GACS, thermogravimetry, hypy and pyrolysis-GC-MS.

  2. Process of distillation of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Saxton, A L

    1968-08-16

    In an oil-shale distillation apparatus with a single retort, in which separate zones of preheating, distillation, combustion, and cooling are maintained, the operation is conducted at a presssure higher than the atmospheric pressure, preferably at a gage pressure between about 0.35 and 7.0 bars. This permits increasing the capacity of the installation.

  3. Estrogen-related receptor gamma disruption of source water and drinking water treatment processes extracts.

    Science.gov (United States)

    Li, Na; Jiang, Weiwei; Rao, Kaifeng; Ma, Mei; Wang, Zijian; Kumaran, Satyanarayanan Senthik

    2011-01-01

    Environmental chemicals in drinking water can impact human health through nuclear receptors. Additionally, estrogen-related receptors (ERRs) are vulnerable to endocrine-disrupting effects. To date, however, ERR disruption of drinking water potency has not been reported. We used ERRgamma two-hybrid yeast assay to screen ERRgamma disrupting activities in a drinking water treatment plant (DWTP) located in north China and in source water from a reservoir, focusing on agonistic, antagonistic, and inverse agonistic activity to 4-hydroxytamoxifen (4-OHT). Water treatment processes in the DWTP consisted of pre-chlorination, coagulation, coal and sand filtration, activated carbon filtration, and secondary chlorination processes. Samples were extracted by solid phase extraction. Results showed that ERRgamma antagonistic activities were found in all sample extracts, but agonistic and inverse agonistic activity to 4-OHT was not found. When calibrated with the toxic equivalent of 4-OHT, antagonistic effluent effects ranged from 3.4 to 33.1 microg/L. In the treatment processes, secondary chlorination was effective in removing ERRgamma antagonists, but the coagulation process led to significantly increased ERRgamma antagonistic activity. The drinking water treatment processes removed 73.5% of ERRgamma antagonists. To our knowledge, the occurrence of ERRgamma disruption activities on source and drinking water in vitro had not been reported previously. It is vital, therefore, to increase our understanding of ERRy disrupting activities in drinking water.

  4. Integrated water management system - Description and test results. [for Space Station waste water processing

    Science.gov (United States)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  5. Integration of Product, Package, Process, and Environment: A Food System Optimization

    Science.gov (United States)

    Cooper, Maya R.; Douglas, Grace L.

    2015-01-01

    The food systems slated for future NASA missions must meet crew nutritional needs, be acceptable for consumption, and use resources efficiently. Although the current food system of prepackaged, moderately stabilized food items works well for International Space Station (ISS) missions, many of the current space menu items do not maintain acceptability and/or nutritive value beyond 2 years. Longer space missions require that the food system can sustain the crew for 3 to 5 years without replenishment. The task "Integration of Product, Package, Process, and Environment: A Food System Optimization" has the objective of optimizing food-product shelf life for the space-food system through product recipe adjustments, new packaging and processing technologies, and modified storage conditions. Two emergent food processing technologies were examined to identify a pathway to stable, wet-pack foods without the detrimental color and texture effects. Both microwave-assisted thermal sterilization (MATS) and pressure-assisted thermal stabilization (PATS) were evaluated against traditional retort processing to determine if lower heat inputs during processing would produce a product with higher micronutrient quality and longer shelf life. While MATS products did have brighter color and better texture initially, the advantages were not sustained. The non-metallized packaging film used in the process likely provided inadequate oxygen barrier. No difference in vitamin stability was evident between MATS and retort processed foods. Similarly, fruit products produced using PATS showed improved color and texture through 3 years of storage compared to retort fruit, but the vitamin stability was not improved. The final processing study involved freeze drying. Five processing factors were tested in factorial design to assess potential impact of each to the quality of freeze-dried food, including the integrity of the microstructure. The initial freezing rate and primary freeze drying

  6. Process for removing sulfate anions from waste water

    Science.gov (United States)

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  7. 40 CFR 420.08 - Non-process wastewater and storm water.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Non-process wastewater and storm water...-process wastewater and storm water. Permit and pretreatment control authorities may provide for increased loadings for non-process wastewaters defined at § 420.02 and for storm water from the immediate process...

  8. Distilling bituminous materials

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, C N; Hayden, H P

    1926-12-28

    Bituminous materials such as heavy asphaltic residues from petroleum distillation or natural bitumens such as gilsonite, grahamite, etc. are distilled in presence of a carrier consisting of pieces of inert refractory material and by the heat generated by combustion of the coke which remains on the carrier after distillation. A vertical cylindrical retort, in which a wood and coal fire is first made, is charged with an inert refractory substance such as pumice stone, broken firebrick, burnt fire clay, carborundum, ash, etc. mixed with a bituminous substance, which, if fusible, may be melted and added in a rotary drum. The mixture passes downwards through the retort, first through regions in which the hydrocarbons are distilled and cracked and then through a region in which the remaining carbon is burnt by a limited supply of air and steam admitted through a grate. The inert material is discharged through a water seal and used again. Vapors, withdrawn from the retort though an outlet, pass through a heat intercharger and separator and are treated with a spray of sulfuric acid to separate ammonia in a scrubber, with water sprays to condense oil in scrubbers, and with oil in a scrubber.

  9. Water conservation and reuse using the Water Sources Diagram method for batch process: case studies

    Directory of Open Access Journals (Sweden)

    Fernando Luiz Pellegrini Pessoa

    2012-04-01

    Full Text Available The water resources management has been an important factor for the sustainability of industrial processes, since there is a growing need for the development of methodologies aimed at the conservation and rational use of water. The objective of this work was to apply the heuristic-algorithmic method called Water Sources Diagram (WSD, which is used to define the target of minimum water consumption, to batch processes. Scenarios with reuse of streams were generated and evaluated with application of the method from the data of water quantity and concentration of contaminants in the operations. Two case studies aiming to show the reduction of water consumption and wastewater generation, and final treatment costs besides investment in storage tanks, were presented. The scenarios showed great promising, achieving reduction up to 45% in water consumption and wastewater generation, and a reduction of around 37% on cost of storage tanks, without the need to allocate regeneration processes. Thus, the WSD method showed to be a relevant and flexible alternative regarding to systemic tools aimed at minimizing the consumption of water in industrial processes, playing an important role within a program of water resources management.

  10. Monitoring the Water Quality in the Recycling Process

    International Nuclear Information System (INIS)

    Antonyová, A; Antony, P; Soewito, B

    2015-01-01

    Specific water contamination requires the recycling process prior to its discharge into the public sewerage network. Electro-flotation technology was used for cleaning of waste water contaminated with the disperse colorants. Dispersion colorants were used to decorate the boxes, made of corrugated board, in the company for the production of packaging. The objective of this paper is to present a method of optimization to determine the length of the time interval for electro-flotation process. Interval should be set so as to achieve the degree of cleaning the water that is the maximum possible in the process of electro-flotation. The measurement of the light passing through the measuring the translucent tube determines the actual degree of the water purity. The measurement is carried out by means of a photodiode in different wavelengths. The measured values in the measuring tube are compared with the nominal value, which corresponds to pure distilled water. Optimization the time interval to clean the water using electro-flotation was determined for yellow color. The optimum interval for the water contaminated with the yellow color was set to 1800s. (paper)

  11. Suitability of a Freeze Dried Product as a Vehicle for Vitamin Fortification of Military Ration Packs: A Preliminary Study

    Science.gov (United States)

    2011-01-01

    fresh food is not practical. Australian CRP comprise a range of individual food items assembled into packages of sufficient quantity and variety to...stored at 37 °C/12month 100% Fruit grains, Fruit spread ≥ 90% Baked beans, Chocolate ration Ascorbic acid (Vitamin C) ≥ 50% Retort pouched meals...75% Retort pouched meals, Noodles, instant Vitamin E > 50% Chocolate, ration > 30% Cheese, processed, cheddar > 50% Scotch-finger biscuit Vitamin A

  12. Development of the ELEX process for water detritiation

    International Nuclear Information System (INIS)

    Bruggeman, A.; Meynendonckx, L.; Parmentier, C.; Goossens, W.R.A.; Baetsle, L.H.

    1984-01-01

    The ELEX process which appears to be very suitable for the detritiation of CTR cooling water and wastewater, is based on the electrolysis of water and the catalytic exchange of tritium between hydrogen and water. The exchange is carried out in a simple countercurrent packed-bed reactor and it is promoted by a proprietary hydrophobic catalysts. After a study of the single constituent steps with a.o. the development of an appropriate hydrophobic catalyst, the integrated ELEX process was successfully demonstrated by detritiating more than 1000 dm 3 water in a 0.18 dm 3 h -1 bench-scale installation. (author)

  13. Water detritiation processing of JET purified waste water using the TRENTA facility at Tritium Laboratory Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Michling, R., E-mail: robert.michling@kit.edu; Bekris, N.; Cristescu, I.; Lohr, N.; Plusczyk, C.; Welte, S.; Wendel, J.

    2013-10-15

    Highlights: • Operation of a water detritiation facility under optimized conditions for high detritiation performances. • Improvement of operational procedures to process tritiated waste water. • Handling and reduction of tritiated waste water to achieve enriched low volume tritiated water for sufficient storage. • Demonstration of the efficient availability of the TRENTA WDS facility for technical scale operation. -- Abstract: A Water Detritiation System (WDS) is required for any Fusion machine in order to process tritiated waste water, which is accumulated in various subsystems during operation and maintenance. Regarding the European procurement packages for the ITER tritium fuel cycle, the WDS test facility TRENTA applying the Combined Electrolysis Catalytic Exchange (CECE) process was developed, installed and is currently in operation at the Tritium Laboratory Karlsruhe (TLK). Besides the on-going R and D work for the design of ITER WDS, the current status of the TRENTA facility provides the option to utilize the WDS for processing tritiated water. Therefore, in the framework of the EFDA JET Fusion Technology Work Programme 2011, the TLK was able to offer the capability on a representative scale to process tritiated water, which was produced during normal operation at JET. The task should demonstrate the availability of the CECE process to handle and detritiate the water in terms of tritium enrichment and volume reduction. The operational program comprised the processing of purified tritiated water from JET, with a total volume of 180 l and an activity of 74 GBq. The paper will give an introduction to the TRENTA WDS facility and an overview of the operational procedure regarding tritiated water reduction. Data concerning required operation time, decontamination and enrichment performances and different operating procedures will be presented as well. Finally, a preliminary study on a technical implementation of processing the entire stock of JET

  14. Water detritiation processing of JET purified waste water using the TRENTA facility at Tritium Laboratory Karlsruhe

    International Nuclear Information System (INIS)

    Michling, R.; Bekris, N.; Cristescu, I.; Lohr, N.; Plusczyk, C.; Welte, S.; Wendel, J.

    2013-01-01

    Highlights: • Operation of a water detritiation facility under optimized conditions for high detritiation performances. • Improvement of operational procedures to process tritiated waste water. • Handling and reduction of tritiated waste water to achieve enriched low volume tritiated water for sufficient storage. • Demonstration of the efficient availability of the TRENTA WDS facility for technical scale operation. -- Abstract: A Water Detritiation System (WDS) is required for any Fusion machine in order to process tritiated waste water, which is accumulated in various subsystems during operation and maintenance. Regarding the European procurement packages for the ITER tritium fuel cycle, the WDS test facility TRENTA applying the Combined Electrolysis Catalytic Exchange (CECE) process was developed, installed and is currently in operation at the Tritium Laboratory Karlsruhe (TLK). Besides the on-going R and D work for the design of ITER WDS, the current status of the TRENTA facility provides the option to utilize the WDS for processing tritiated water. Therefore, in the framework of the EFDA JET Fusion Technology Work Programme 2011, the TLK was able to offer the capability on a representative scale to process tritiated water, which was produced during normal operation at JET. The task should demonstrate the availability of the CECE process to handle and detritiate the water in terms of tritium enrichment and volume reduction. The operational program comprised the processing of purified tritiated water from JET, with a total volume of 180 l and an activity of 74 GBq. The paper will give an introduction to the TRENTA WDS facility and an overview of the operational procedure regarding tritiated water reduction. Data concerning required operation time, decontamination and enrichment performances and different operating procedures will be presented as well. Finally, a preliminary study on a technical implementation of processing the entire stock of JET

  15. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Brinjes, J F

    1866-03-13

    Continuous distillation of shale, boghead coal, or other noncaking bituminous material is effected in one or more rotating or oscillating horizontal retorts constructed to advance the charge. In the former case, internal spiral ribs or projections are provided. In the latter case, the retort is subdivided by annular flanges provided each with an opening, and a series of double inclined projections is disposed opposite the openings. An apparatus is shown in which the material is fed continuously from a hopper, and is advanced through upper and lower oscillating retorts, provided with annular flanges, double inclined projections, and longitudinal ribs or ledges. The retorts are supported on antifriction rollers. The retort is oscillated by means of a mangle wheel and a pinion on a shaft connected by a universal joint to a driving-shaft. The retort is oscillated from the retort by means of a chain connection. The retort is situated in a chamber separated by perforated brickwork from the actual furnace chamber, so that it is subjected to a lower temperature than the retort. The hopper delivers to crushing-rollers in a lower hopper which delivers to a shoot controlled by a sliding door. A hook on the retort is connected by a pipe to the retort, and a pipe leads from the hood to a condenser. A hood at the delivery end of the retort is connected by a pipe to an airtight cooler for the residue, which is discharged through doors into a truck of other receiver.

  16. Electrolytic process for upgrading heavy water (Preprint No. PD-16)

    International Nuclear Information System (INIS)

    Rammohan, K.; Sadhukhan, H.K.

    1989-04-01

    In the reactor system the heavy water gets depleted in concentration due to leakages, intermixing and vapour collection in boiler vault system etc. Electrolysis of water was used as a secondary plant to enrich the dilute heavy water produced in the primery plant by hydrogen-sulfide-water exchange process. The studies made in the development of this process for the upgrading of downgra ded heavy water by setting up a full size Electrolyser Test Assembly are discussed a nd complete design of a heavy water upgrading plant based on electrolytic process for MAPS and NAPP is described. (author). 7 refs., 5 figs

  17. Hydrogen-water isotopic exchange process

    International Nuclear Information System (INIS)

    Cheung, H.

    1984-01-01

    The objects of this invention are achieved by a dual temperature isotopic exchange process employing hydrogen-water exchange with water passing in a closed recirculation loop between a catalyst-containing cold tower and the upper portion of a catalyst-containing hot tower, with feed water being introduced to the lower portion of the hot tower and being maintained out of contact with the water recirculating in the closed loop. Undue retarding of catalyst activity during deuterium concentration can thus be avoided. The cold tower and the upper portion of the hot tower can be operated with relatively expensive catalyst material of higher catalyst activity, while the lower portion of the hot tower can be operated with a relatively less expensive, more rugged catalyst material of lesser catalyst activity. The feed water stream, being restricted solely to the lower portion of the hot tower, requires minimal pretreatment for the removal of potential catalyst contaminants. The catalyst materials are desirably coated with a hydrophobic treating material so as to be substantially inaccessible to liquid water, thereby retarding catalyst fouling while being accessible to the gas for enhancing isotopic exchange between hydrogen gas and water vapor. A portion of the water of the closed loop can be passed to a humidification zone to heat and humidify the circulating hydrogen gas and then returned to the closed loop

  18. Process for the preparation of ammonia and heavy water

    International Nuclear Information System (INIS)

    Mandrin, C.

    1980-01-01

    A process for the production of ammonia and heavy water comprises the steps of enriching a flow of water with deuterium in a monothermal isotropic process; supplying a first portion of the deuterium-enriched water to a heavy water preparation plant to produce heavy water and hydrogen; storing a second portion of the deuterium-enriched water substantially without interruption during the colder half of a year; electrolytically dissociating the stored deuterium-enriched water substantially without interruption during the wamer half of a year to form hydrogen; storing a portion of the electrolytically-produced hydrogen during said warmer half of a year while supplying the remainder to a synthesis circuit of a synthesizing plant and subsequently supplying the stored hydrogen to the synthesis circuit during said colder half of a year; removing some of the synthesis gas mixture from the synthesis circuit of the synthesizing plant; burning the removed synthesis gas mixture with air to produce a mixture consisting mainly of water and nitrogen; thereafter condensing and separating the water from the mixture of water and nitrogen; supplying the nitrogen of the mixture of water and nitrogen, the hydrogen from the heavy water preparation plant and the electrolytically-produced hydrogen to the synthesis circuit of the synthesizing plant to produce ammonia; and collecting deuterium-depleted water resulting from said burning step and feeding the collected deuterium-depleted water into the monothermal process

  19. TECHNOLOGICAL PROCESS ASSESSMENT OF THE DRINKING WATER TREATMENT AT TARGU-MURES WATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    CORNELIA DIANA HERTIA

    2011-03-01

    Full Text Available This paper intends to assess the technological process of obtaining drinking water at Targu-Mures water treatment plant. The assessment was performed before changing the technological process and four months were chosen to be analized during 2008: January, April, July and October for its efficiency analysis on treatment steps. Mures River is the water source for the water treatment plant, being characterized by unsteady flow and quality parameters with possible important variability in a very short period of time. The treatment technological process is the classic one, represented by coagulation, sedimentation, filtration and disinfection, but also prechlorination was constantly applied as additional treatment during 2008. Results showed that for the measured parameters, raw water at the water treatment plant fits into class A3 for surface waters, framing dictated by the bacterial load. The treatment processes efficiency is based on the performance calculation for sedimentation, filtration, global and for disinfection, a better conformation degree of technological steps standing out in January in comparison to the other three analyzed months. A variable non-compliance of turbidity and residual chlorine levels in the disinfected water was observed constantly. Previous treatment steps managed to maintain a low level of oxidisability, chlorine consumption and residual chlorine levels being also low. 12% samples were found inconsistent with the national legislation in terms of bacteriological quality. Measures for the water treatment plant retechnologization are taken primarily for hyperchlorination elimination, which currently constitutes a discomfort factor (taste, smell, and a generating factor of chlorination by-products.

  20. Membrane-based processes for sustainable power generation using water

    KAUST Repository

    Logan, Bruce E.; Elimelech, Menachem

    2012-01-01

    Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters. Two processes are emerging as sustainable methods for capturing energy from sea water: pressure-retarded osmosis and reverse electrodialysis. These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solutions, such as thermolytic salts. A further source of energy comes from organic matter in waste waters, which can be harnessed using microbial fuel-cell technology, allowing both wastewater treatment and power production. © 2012 Macmillan Publishers Limited. All rights reserved.

  1. Membrane-based processes for sustainable power generation using water

    KAUST Repository

    Logan, Bruce E.

    2012-08-15

    Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters. Two processes are emerging as sustainable methods for capturing energy from sea water: pressure-retarded osmosis and reverse electrodialysis. These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solutions, such as thermolytic salts. A further source of energy comes from organic matter in waste waters, which can be harnessed using microbial fuel-cell technology, allowing both wastewater treatment and power production. © 2012 Macmillan Publishers Limited. All rights reserved.

  2. Effect of processing conditions on quality of green beans subjected to reciprocating agitation thermal processing.

    Science.gov (United States)

    Singh, Anika; Singh, Anubhav Pratap; Ramaswamy, Hosahalli S

    2015-12-01

    The effect of reciprocating agitation thermal processing (RA-TP) on quality of canned beans was evaluated in a lab-scale reciprocating retort. Green beans were selected due to their soft texture and sensitive color. Green beans (2.5cm length×0.8cm diameter) were filled into 307×409 cans with carboxylmethylcellulose (0-2%) solutions and processed at different temperatures (110-130°C) and reciprocation frequency (1-3Hz) for predetermined heating times to achieve a process lethality (F o ) of 10min. Products processed at higher temperatures and higher reciprocation frequencies resulted in better retention of chlorophyll and antioxidant activity. However, high reciprocation frequency also resulted in texture losses, with higher breakage of beans, increased turbidity and higher leaching. There was total loss of product quality at the highest agitation speed, especially with low viscosity covering solutions. Results suggest that reciprocating agitation frequency needs to be adequately moderated to get the best quality. For getting best quality, particularly for canned liquid particulate foods with soft particulates and those susceptible to high impact agitation, a gentle reciprocating motion (~1Hz) would be a good compromise. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Roll-to-roll processed polymer tandem solar cells partially processed from water

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod; Andersen, Thomas Rieks; Andreasen, Birgitta

    2012-01-01

    Large area polymer tandem solar cells completely processed using roll-to-roll (R2R) coating and printing techniques are demonstrated. A stable tandem structure was achieved by the use of orthogonal ink solvents for the coating of all layers, including both active layers. Processing solvents...... included water, alcohols and chlorobenzene. Open-circuit voltages close to the expected sum of sub cell voltages were achieved, while the overall efficiency of the tandem cells was found to be limited by the low yielding back cell, which was processed from water based ink. Many of the challenges associated...

  4. Effect of different binders on the physico-chemical, textural, histological, and sensory qualities of retort pouched buffalo meat nuggets.

    Science.gov (United States)

    Devadason, I Prince; Anjaneyulu, A S R; Babji, Y

    2010-01-01

    The functional properties of 4 binders, namely corn starch, wheat semolina, wheat flour, and tapioca starches, were evaluated to improve the quality of buffalo meat nuggets processed in retort pouches at F(0) 12.13. Incorporation of corn starch in buffalo meat nuggets produced more stable emulsion than other binders used. Product yield, drip loss, and pH did not vary significantly between the products with different binders. Shear force value was significantly higher for product with corn starch (0.42 +/- 0.0 Kg/cm(3)) followed by refined wheat flour (0.36 +/- 0.010 Kg/cm(3)), tapioca starch (0.32 +/- 0.010 Kg/cm(3)), and wheat semolina (0.32 +/- 0.010 Kg/cm(3)). Type of binder used had no significant effect on frying loss, moisture, and protein content of the product. However, fat content was higher in products with corn starch when compared to products with other binders. Texture profile indicated that products made with corn starch (22.17 +/- 2.55 N) and refined wheat flour (21.50 +/- 0.75 N) contributed firmer texture to the product. Corn starch contributed greater chewiness (83.8 +/- 12.51) to the products resulting in higher sensory scores for texture and overall acceptability. Products containing corn starch showed higher sensory scores for all attributes in comparison to products with other binders. Panelists preferred products containing different binders in the order of corn starch (7.23 +/- 0.09) > refined wheat flour (6.48 +/- 0.13) > tapioca starch (6.45 +/- 0.14) > wheat semolina (6.35 +/- 0.13) based on sensory scores. Histological studies indicated that products with corn starch showed dense protein matrix, uniform fat globules, and less number of vacuoles when compared to products made with other binders. The results indicated that corn flour is the better cereal binder for developing buffalo meat nuggets when compared to all other binders based on physico-chemical and sensory attributes.

  5. Water-integrated scheduling of batch process plants

    NARCIS (Netherlands)

    Pulluru, Sai Jishna; Akkerman, Renzo

    2018-01-01

    Efficient water management is becoming increasingly important in production systems, but companies often do not have any concrete strategies to implement. While there are numerous technological options for improving water efficiency in process plants, there is a lack of effective decision support to

  6. Water-integrated scheduling of batch process plants

    NARCIS (Netherlands)

    Pulluru, Sai Jishna; Akkerman, Renzo

    2017-01-01

    Efficient water management is becoming increasingly important in production systems, but companies often do not have any concrete strategies to implement. While there are numerous technological options for improving water efficiency in process plants, there is a lack of effective decision support to

  7. Water Supply Treatment Sustainability of Semambu Water Supply Treatment Process - Water Footprint Approach

    Science.gov (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Hadi, Iqmal H.; Zulkifli, Nabil F.

    2018-03-01

    In this study, the assessment by using Water Footprint (WF) approach was conducted to assess water consumption within the water supply treatment process (WSTP) services of Semambu Water Treatment Plant (WTP). Identification of the type of WF at each stage of WSTP was carried out and later the WF accounting for the period 2010 – 2016 was calculated. Several factors that might influence the accounting such as population, and land use. The increasing value of total WF per year was due to the increasing water demand from population and land use activities. However, the pattern of rainfall intensity from the monsoonal changes was not majorly affected the total amount of WF per year. As a conclusion, if the value of WF per year keeps increasing due to unregulated development in addition to the occurrences of climate changing, the intake river water will be insufficient and may lead to water scarcity. The findings in this study suggest actions to reduce the WF will likely have a great impact on freshwater resources availability and sustainability.

  8. Improvements in or relating to the distillation of coal, shale, peat, wood and other fragmentary solid materials

    Energy Technology Data Exchange (ETDEWEB)

    Moore, S

    1932-04-28

    The procedure consists of delivering the material to be treated into each of a plurality of stationary horizontal retorts, conveying the material through each retort in a series of separate charges and in contact with the floor thereof by means of an individual conveyor of push plate type extending through and operating in the retort. Simultaneously, all of said retort is externally heated by admitting a suitable gaseous heating medium into the hollow interior of a common heating jacket or chamber surrounding the retorts through a plurality of inlets which are so spaced and controlled as to provide for desired temperature regulation of each retort throughout the heated portions thereof.

  9. Gas manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, G P

    1913-02-22

    Carbonaceous matter, such as coal, shale, lignite, bitumen, bituminous earth, peat, wood, bark, nutshells, and oil nuts, is distilled and gasified in apparatus comprising an upper retort section having imperforate walls, and a lower generator section; part of the generator gases pass around the retort to heat it, and the remainder pass up through the fuel in the retort; the retort is arranged relatively to the generator so that the whole weight of the fuel in the retort does not act upon that in the generator, and an outlet is provided at the lower end of the retort so that a portion of the coke may be withdrawn when desired.

  10. Investigation of the instability and low water kefir grain growth during an industrial water kefir fermentation process.

    Science.gov (United States)

    Laureys, David; Van Jean, Amandine; Dumont, Jean; De Vuyst, Luc

    2017-04-01

    A poorly performing industrial water kefir production process consisting of a first fermentation process, a rest period at low temperature, and a second fermentation process was characterized to elucidate the causes of its low water kefir grain growth and instability. The frozen-stored water kefir grain inoculum was thawed and reactivated during three consecutive prefermentations before the water kefir production process was started. Freezing and thawing damaged the water kefir grains irreversibly, as their structure did not restore during the prefermentations nor the production process. The viable counts of the lactic acid bacteria and yeasts on the water kefir grains and in the liquors were as expected, whereas those of the acetic acid bacteria were high, due to the aerobic fermentation conditions. Nevertheless, the fermentations progressed slowly, which was caused by excessive substrate concentrations resulting in a high osmotic stress. Lactobacillus nagelii, Lactobacillus paracasei, Lactobacillus hilgardii, Leuconostoc mesenteroides, Bifidobacterium aquikefiri, Gluconobacter roseus/oxydans, Gluconobacter cerinus, Saccharomyces cerevisiae, and Zygotorulaspora florentina were the most prevalent microorganisms. Lb. hilgardii, the microorganism thought to be responsible for water kefir grain growth, was not found culture-dependently, which could explain the low water kefir grain growth of this industrial process.

  11. Characterization of oil shale, isolated kerogen, and post-pyrolysis residues using advanced 13 solid-state nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Cao, Xiaoyan; Birdwell, Justin E.; Chappell, Mark A.; Li, Yuan; Pignatello, Joseph J.; Mao, Jingdong

    2013-01-01

    Characterization of oil shale kerogen and organic residues remaining in postpyrolysis spent shale is critical to the understanding of the oil generation process and approaches to dealing with issues related to spent shale. The chemical structure of organic matter in raw oil shale and spent shale samples was examined in this study using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Oil shale was collected from Mahogany zone outcrops in the Piceance Basin. Five samples were analyzed: (1) raw oil shale, (2) isolated kerogen, (3) oil shale extracted with chloroform, (4) oil shale retorted in an open system at 500°C to mimic surface retorting, and (5) oil shale retorted in a closed system at 360°C to simulate in-situ retorting. The NMR methods applied included quantitative direct polarization with magic-angle spinning at 13 kHz, cross polarization with total sideband suppression, dipolar dephasing, CHn selection, 13C chemical shift anisotropy filtering, and 1H-13C long-range recoupled dipolar dephasing. The NMR results showed that, relative to the raw oil shale, (1) bitumen extraction and kerogen isolation by demineralization removed some oxygen-containing and alkyl moieties; (2) unpyrolyzed samples had low aromatic condensation; (3) oil shale pyrolysis removed aliphatic moieties, leaving behind residues enriched in aromatic carbon; and (4) oil shale retorted in an open system at 500°C contained larger aromatic clusters and more protonated aromatic moieties than oil shale retorted in a closed system at 360°C, which contained more total aromatic carbon with a wide range of cluster sizes.

  12. Life Support Systems: Wastewater Processing and Water Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Exploration Systems (AES) Life Support Systems project Wastewater Processing and Water Management task: Within an integrated life support system, water...

  13. Destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    Young, W

    1881-04-12

    Destructive distillation of shale for the manufacture of mineral oil and ammonia is described. The retorts are arranged in benches, each retort being placed over its own combustion chamber into which the spent shale is discharged and consumed in heating the next charge as described in Specification No. 1578, A. D. 1880. Two forms of retorts are shown, each consisting of two retorts placed above and communicating with one another, the upper being employed to distill the oil at a low red heat, and the lower to eliminate the nitrogen in the form of ammonia at a much higher temperature. The retorts are divided by a sliding damper and have an outlet for the passage of the products placed at the junction. The retorts have an outlet at the top for the escape of the products. Each retort has an opening closed by a cover for charging and a door for discharging. The products of combustion from the combustion chambers pass through ports to a chamber surrounding the lower retorts and thence through ports in the division wall controlled by dampers into the chamber surrounding the upper retorts, whence they pass through flues to the chimney. Around the bottom of each retort are openings communicating with a chamber to which steam is admitted through a valve from a pipe preferably placed in a coil in the flue.

  14. THE WATER FROM NATURE AND THE EROSION PROCESS

    Directory of Open Access Journals (Sweden)

    G. PANDI

    2015-03-01

    Full Text Available The water from nature and the erosion process. Studying earth's surface erosion process is necessary for practical reasons. The theoretical approach requires knowledge of the alluvial system’s structure and operation as the cascade sequence of fluvial system’s mass and energy. Geosystem research methodology requires that the water energy and the role of adjacent surface must be expressed. The expression of water power can be grouped according to the shape of movement and action in the basin. A particular, important case is the energy variation in a basin-slope. An important role in energy expressions is considering the existence in nature of biphasic fluid - water as dispersion phase and solid particles as dispersed phase. The role of the adjacent surface is taken into account by using the erosion resistance indicator, which is calculated using the indicator of geological resistance and the indicator of plant protection. The evolution of natural systems, therefore of river basins too, leads to energy diminishing, thus affecting their dynamic balance. This can be expressed using the concept of entropy. Although erosion processes are usual natural phenomena for the evolution of river basins, they induce significant risks in certain circumstances. Depending on the circulated water energies, water basins can be ranked in terms of potential risks.

  15. Evaluation of the bottom water reservoir VAPEX process

    Energy Technology Data Exchange (ETDEWEB)

    Frauenfeld, T.W.J.; Jossy, C.; Kissel, G.A. [Alberta Research Council, Devon, AB (Canada); Rispler, K. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    2004-07-01

    The mobilization of viscous heavy oil requires the dissolution of solvent vapour into the oil as well as the diffusion of the dissolved solvent into the virgin oil. Vapour extraction (VAPEX) is an enhanced oil recovery (EOR) process which involves injecting a solvent into the reservoir to reduce the viscosity of hydrocarbons. This paper describes the contribution of the Alberta Research Council to solvent-assisted oil recovery technology. The bottom water process was also modelled to determine its feasibility for a field-scale oil recovery scheme. Several experiments were conducted in an acrylic visual model in which Pujol and Boberg scaling were used to produce a lab model scaling a field process. The model simulated a slice of a 30 metre thick reservoir, with a 10 metre thick bottom water zone, containing two horizontal wells (25 metres apart) at the oil water interface. The experimental rates were found to be negatively affected by continuous low permeability layers and by oil with an initial gas content. In order to achieve commercial oil recovery rates, the bottom water process must be used to increase the surface area exposed to solvents. A large oil water interface between the wells provides contact for solvent when injecting gas at the interface. High production rates are therefore possible with appropriate well spacing. 11 refs., 4 tabs., 16 figs.

  16. Space Station Water Processor Process Pump

    Science.gov (United States)

    Parker, David

    1995-01-01

    This report presents the results of the development program conducted under contract NAS8-38250-12 related to the International Space Station (ISS) Water Processor (WP) Process Pump. The results of the Process Pumps evaluation conducted on this program indicates that further development is required in order to achieve the performance and life requirements for the ISSWP.

  17. Recovering oil from shale

    Energy Technology Data Exchange (ETDEWEB)

    Leahey, T; Wilson, H

    1920-11-13

    To recover oil free from inorganic impurities and water, and utilize the oil vapor and tarry matter for the production of heat, shale is heated in a retort at a temperature of not less than 120/sup 0/C. The vapors pass by a pipe into a water jacketed condenser from which the condensate and gas pass through a pipe into a chamber and then by a pipe to a setting chamber from where the light oils are decanted through a pipe into a tank. The heavy oil is siphoned through a pipe into a tank, while the gas passes through a pipe into a scrubber and then into a drier, exhauster and pipe to the flue and ports, above the fire-bars, into the retort. Air is introduced through a pipe, flue, and ports.

  18. Effects of thermal processing on the enzyme-linked immunosorbent assay (ELISA) detection of milk residues in a model food matrix.

    Science.gov (United States)

    Downs, Melanie L; Taylor, Steve L

    2010-09-22

    Food products and ingredients are frequently tested for the presence of undeclared allergenic food residues (including milk) using commercial enzyme-linked immunosorbent assays (ELISAs). However, little is understood about the efficacy of these kits with thermally processed foods. This study evaluated the performance of three milk ELISA kits with a model food processed by several methods. A model food (pastry dough squares) was spiked with nonfat dry milk at several concentrations. The pastry squares were processed by boiling (100 °C for 2 min), baking (190 °C for 30 min), frying (190 °C for 2 min), and retorting (121 °C for 20 min with 17 psi overpressure). Samples were analyzed with three commercial ELISA kits: Neogen Veratox Total Milk, ELISA Systems β-lactoglobulin, and ELISA Systems casein. The detection of milk residues depended upon the type of processing applied to the food and the specific milk analyte targeted by the ELISA kit. Poor recoveries were obtained in all processed samples (2-10% of expected values) using the β-lactoglobulin kit. Better recoveries were obtained in boiled samples (44 and 59%, respectively) using the total milk and casein kits. However, these kits performed poorly with baked (9 and 21%) and fried (7 and 18%) samples. Moderate recoveries were observed in retorted samples (23 and 28%). The decreased detection in processed samples is likely due to protein modifications, including aggregation and Maillard reactions, which affect the solubility and immunoreactivity of the antigens detected by the ELISA methods. The observed decreases in ELISA detection of milk are dramatic enough to affect risk-assessment decisions. However, a lower detection of milk residues does not necessarily indicate decreased allergenicity. These ELISA kits are not acceptable for all applications, and users should understand the strengths and limitations of each method.

  19. Leader completes installation of process water evaporation system

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-11-01

    The installation of a patent-pending evaporation system at a facility in northeast British Columbia was discussed. The system captures excess waste exhaust heat from natural gas-fired compressor engines and is used to evaporate process water. The disposal of process water is a major cost in the production of natural gas and is usually hauled and disposed at water disposal wells located off-site. The cost to truck and dispose of the water at the facility was estimated at between $30 to $40 per cubic metre. The evaporation system can evaporate 4 to 8 cubic metres of process water every 24 hours and has an estimated useful life of 20 years. The evaporator relies on heat that would otherwise be expelled directly into the atmosphere, and the systems are expected to provide substantial savings. A wide-ranging manufacturing and marketing strategy was expected to commence by the end of 2005. With rising energy prices, operators of facilities are seeking more efficient ways of managing energy needs. The system was created by Leader Energy Services Ltd., a company that provides essential field services for oil and gas well stimulation in Alberta.

  20. Removal of antibiotics from surface and distilled water in conventional water treatment processes

    Science.gov (United States)

    Adams, C.; Wang, Y.; Loftin, K.; Meyer, M.

    2002-01-01

    Conventional drinking water treatment processes were evaluated under typical water treatment plant conditions to determine their effectiveness in the removal of seven common antibiotics: carbadox, sulfachlorpyridazine, sulfadimethoxine, sulfamerazine, sulfamethazine, sulfathiazole, and trimethoprim. Experiments were conducted using synthetic solutions prepared by spiking both distilled/ deionized water and Missouri River water with the studied compounds. Sorption on Calgon WPH powdered activated carbon, reverse osmosis, and oxidation with chlorine and ozone under typical plant conditions were all shown to be effective in removing the studied antibiotics. Conversely, coagulation/flocculation/sedimentation with alum and iron salts, excess lime/soda ash softening, ultraviolet irradiation at disinfection dosages, and ion exchange were all relatively ineffective methods of antibiotic removal. This study shows that the studied antibiotics could be effectively removed using processes already in use many water treatment plants. Additional work is needed on by-product formation and the removal of other classes of antibiotics.

  1. Method of distillation of alum shale

    Energy Technology Data Exchange (ETDEWEB)

    Hultman, G H

    1920-02-03

    A method is given of distilling alum shale by means of preheated gases obtained from the process of distillation in which the gases are circulating within a system consisting of the retort, the condensation apparatus, and generator, each separate. It is characterized by leading the gases produced during the distillation through a condensation apparatus for separation of the condensable products, such as oil, benzene, ammonia, and sulfur, and the noncondensable gases are conveyed through one or more heated generators that have been charged with residue from the process of distillation (any superfluous amount of gas formed during the process being released). The heated gases are thereupon passed to the retort for completion of the distillation process.

  2. The function of advanced treatment process in a drinking water treatment plant with organic matter-polluted source water.

    Science.gov (United States)

    Lin, Huirong; Zhang, Shuting; Zhang, Shenghua; Lin, Wenfang; Yu, Xin

    2017-04-01

    To understand the relationship between chemical and microbial treatment at each treatment step, as well as the relationship between microbial community structure in biofilms in biofilters and their ecological functions, a drinking water plant with severe organic matter-polluted source water was investigated. The bacterial community dynamics of two drinking water supply systems (traditional and advanced treatment processes) in this plant were studied from the source to the product water. Analysis by 454 pyrosequencing was conducted to characterize the bacterial diversity in each step of the treatment processes. The bacterial communities in these two treatment processes were highly diverse. Proteobacteria, which mainly consisted of beta-proteobacteria, was the dominant phylum. The two treatment processes used in the plant could effectively remove organic pollutants and microbial polution, especially the advanced treatment process. Significant differences in the detection of the major groups were observed in the product water samples in the treatment processes. The treatment processes, particularly the biological pretreatment and O 3 -biological activated carbon in the advanced treatment process, highly influenced the microbial community composition and the water quality. Some opportunistic pathogens were found in the water. Nitrogen-relative microorganisms found in the biofilm of filters may perform an important function on the microbial community composition and water quality improvement.

  3. The water kefir grain inoculum determines the characteristics of the resulting water kefir fermentation process.

    Science.gov (United States)

    Laureys, D; De Vuyst, L

    2017-03-01

    To investigate the influence of the water kefir grain inoculum on the characteristics of the water kefir fermentation process. Three water kefir fermentation processes were started with different water kefir grain inocula and followed as a function of time regarding microbial species diversity, community dynamics, substrate consumption profile and metabolite production course. The inoculum determined the water kefir grain growth, the viable counts on the grains, the time until total carbohydrate exhaustion, the final metabolite concentrations and the microbial species diversity. There were always 2-10 lactic acid bacterial cells for every yeast cell and the majority of these micro-organisms was always present on the grains. Lactobacillus paracasei, Lactobacillus hilgardii, Lactobacillus nagelii and Saccharomyces cerevisiae were always present and may be the key micro-organisms during water kefir fermentation. Low water kefir grain growth was associated with small grains with high viable counts of micro-organisms, fast fermentation and low pH values, and was not caused by the absence of exopolysaccharide-producing lactic acid bacteria. The water kefir grain inoculum influences the microbial species diversity and characteristics of the fermentation process. A select group of key micro-organisms was always present during fermentation. This study allows a rational selection of a water kefir grain inoculum. © 2016 The Society for Applied Microbiology.

  4. Oil shale research related to proposed nuclear projects

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, H C; Sohns, H W; Dinneen, G U [Laramie Petroleum Research Center, Bureau of Mines, Department of the Interior, Laramie, WY (United States)

    1970-05-15

    The Bureau of Mines is conducting research to develop data pertinent to in situ retorting of oil shale fractured by a nuclear explosion or other means. Maximum utilization of the Green River oil shale found in Colorado, Utah, and Wyoming, at depths ranging from outcrops to several thousand feet, requires development of several methods of processing. Early research was devoted to developing processes for application to oil shale occurring at depths suitable for mining. In present research, the emphasis is on in situ retorting and recovery processes that would be more satisfactory for oil shales occurring at greater depths. Development of an in situ process depends upon finding or establishing sufficient permeability in the oil shale beds for the passage of fluids which serve as a heat carrier in bringing the oil shale to retorting temperature. Use of a nuclear explosive seems to offer the best chance for successfully fracturing the thicker and more deeply buried portions of the deposit to give the required permeability. Processing the very large quantity of broken and fractured oil shale that would be produced presents many problems which require new background data for their solution. This paper describes research the Bureau of Mines is conducting to develop pertinent data. Primarily this research involves laboratory determination of properties of oil shale, pilot scale investigation of retorting characteristics of ungraded broken shale, and underground combustion of shale fractured by pressure and chemical explosives. Application of the research results should aid in designing the oil recovery phase and provide an estimate of the quantity of oil that may be obtained in a nuclear experiment in oil shale. (author)

  5. Oil shale research related to proposed nuclear projects

    International Nuclear Information System (INIS)

    Carpenter, H.C.; Sohns, H.W.; Dinneen, G.U.

    1970-01-01

    The Bureau of Mines is conducting research to develop data pertinent to in situ retorting of oil shale fractured by a nuclear explosion or other means. Maximum utilization of the Green River oil shale found in Colorado, Utah, and Wyoming, at depths ranging from outcrops to several thousand feet, requires development of several methods of processing. Early research was devoted to developing processes for application to oil shale occurring at depths suitable for mining. In present research, the emphasis is on in situ retorting and recovery processes that would be more satisfactory for oil shales occurring at greater depths. Development of an in situ process depends upon finding or establishing sufficient permeability in the oil shale beds for the passage of fluids which serve as a heat carrier in bringing the oil shale to retorting temperature. Use of a nuclear explosive seems to offer the best chance for successfully fracturing the thicker and more deeply buried portions of the deposit to give the required permeability. Processing the very large quantity of broken and fractured oil shale that would be produced presents many problems which require new background data for their solution. This paper describes research the Bureau of Mines is conducting to develop pertinent data. Primarily this research involves laboratory determination of properties of oil shale, pilot scale investigation of retorting characteristics of ungraded broken shale, and underground combustion of shale fractured by pressure and chemical explosives. Application of the research results should aid in designing the oil recovery phase and provide an estimate of the quantity of oil that may be obtained in a nuclear experiment in oil shale. (author)

  6. Process for the biological purification of waste water

    DEFF Research Database (Denmark)

    1992-01-01

    Process for the biological purification of waste water by the activated sludge method, the waste water being mixed with recirculated sludge and being subjected to an anaerobic treatment, before the waste water thus treated is alternately subjected to anoxic and aerobic treatments and the waste...... water thus treated is led into a clarification zone for settling sludge, which sludge is recirculated in order to be mixed with the crude waste water. As a result, a simultaneous reduction of the content both of nitrogen and phosphorus of the waste water is achieved....

  7. Making equipment to process paddy water for providing drinking water by using Ozone-UVC& Ultrafiltration

    Science.gov (United States)

    Styani, E.; Dja'var, N.; Irawan, C.; Hanafi

    2018-01-01

    This study focuses on making equipment which is useful to process paddy water to be consumable as drinking water by using ozone-UVC and ultrafiltration. The equipment which is made by the process of ozone-UVC and ultrafiltration or reverse osmosis is driven by electric power generated from solar panels. In the experiment, reverse osmosis system with ozone-UVC reactor proves to be good enough in producing high quality drinking water.

  8. Closed-cycle process of coke-cooling water in delayed coking unit

    International Nuclear Information System (INIS)

    Zhou, P.; Bai, Z.S.; Yang, Q.; Ma, J.; Wang, H.L.

    2008-01-01

    Synthesized processes are commonly used to treat coke-cooling wastewater. These include cold coke-cut water, diluting coke-cooling water, adding chemical deodorization into oily water, high-speed centrifugal separation, de-oiling and deodorization by coke adsorption, and open nature cooling. However, because of water and volatile evaporation loss, it is not suitable to process high-sulphur heavy oil using open treatments. This paper proposed a closed-cycling process in order to solve the wastewater treatment problem. The process is based on the characteristics of coke-cooling water, such as rapid parametric variation, oil-water-coke emulsification and steam-water mixing. The paper discussed the material characteristics and general idea of the study. The process of closed-cycle separation and utilization process of coke-cooling water was presented along with a process flow diagram. Several applications were presented, including a picture of hydrocyclones for pollution separation and a picture of equipments of pollution separation and components regeneration. The results showed good effect had been achieved since the coke-cooling water system was put into production in 2004. The recycling ratios for the components of the coke-cooling water were 100 per cent, and air quality in the operating area reached the requirements of the national operating site circumstance and the health standards. Calibration results of the demonstration unit were presented. It was concluded that since the devices went into operation, the function of production has been normal and stable. The operation was simple, flexible, adjustable and reliable, with significant economic efficiency and environmental benefits. 10 refs., 2 tabs., 3 figs

  9. Improvements in the distillation of shale, etc

    Energy Technology Data Exchange (ETDEWEB)

    Noad, J

    1912-09-20

    A process for treating shale and other bituminous substances containing sulfur and obtaining desulfurized products of distillation consisting in the consecutive steps of crushing the shale, mixing a suitable liquid with the shale granules, mixing slaked lime with the liquid coated shale granules, and gradually feeding the lime coated shale granules into a retort presenting a series of ledges or the like and working the shale granules down from ledge to ledge so that they are continuously agitated while being heated, the volatile constituents escaping through the lime coating and being conducted away from the upper part of the retort to suitable condensing apparatus, and the sulfur being arrested by the lime coating and together with the exhausted shale and other impurities being discharged from the lower part of the retort.

  10. Research progress of novel adsorption processes in water purification:A review

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    As an effective, efficient, and economic approach for water purification, adsorbents and adsorption processes have been widely studied and applied in different aspects for a long time. In the recent years, a lot of novel adsorption processes have been developed for enhancing the efficiency of removing the organic and inorganic contaminants from water. This article reviews some new adsorbents and advanced adsorption methods that specialize in their compositions, structures, functions, and characteristics used in water treatment. The review emphasizes adsorption/catalytic oxidation process, adsorption/catalytic reduction process, adsorption coupled with redox process, biomimetic sorbent and its sorption behaviors of POPs, and modified adsorbents and their water purification efficiency.

  11. Novel water-air circulation quenching process for AISI 4140 steel

    Science.gov (United States)

    Zheng, Liyun; Zheng, Dawei; Zhao, Lixin; Wang, Lihui; Zhang, Kai

    2013-11-01

    AISI 4140 steel is usually used after quenching and tempering. During the heat treatment process in industry production, there are some problems, such as quenching cracks, related to water-cooling and low hardness due to oil quenching. A water-air circulation quenching process can solve the problems of quenching cracks with water and the high cost quenching with oil, which is flammable, unsafe and not enough to obtain the required hardness. The control of the water-cooling and air-cooling time is a key factor in the process. This paper focuses on the quenching temperature, water-air cycle time and cycle index to prevent cracking for AISI 4140 steel. The optimum heat treatment parameters to achieve a good match of the strength and toughness of AISI 4140 steel were obtained by repeated adjustment of the water-air circulation quenching process parameters. The tensile strength, Charpy impact energy at -10 °C and hardness of the heat treated AISI 4140 steel after quenching and tempering were approximately 1098 MPa, 67.5 J and 316 HB, respectively.

  12. Determination of total solutes in synfuel wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, J.R.; Bonomo, F.S.

    1984-03-01

    Efforts to investigate both lyophilization and the measurement of colligative properties as an indication of total solute content are described. The objective of the work described is to develop a method for measuring total dissolved material in retort wastewaters which is simple and rugged enough to be performed in a field laboratory in support of pollution control tests. The analysis should also be rapid enough to provide timely and pertinent data to the pollution control plant operator. To be of most value, the technique developed also should be applicable to other synfuel wastewaters, most of which contain similar major components as oil shale retort waters. 4 references, 1 table.

  13. Cooling tower make-up water processing for nuclear power plants: a comparison

    Energy Technology Data Exchange (ETDEWEB)

    Andres, O; Flunkert, F; Hampel, G; Schiffers, A [Rheinisch-Westfaelisches Elektrizitaetswerk A.G., Essen (Germany, F.R.)

    1977-01-01

    In water-cooled nuclear power plants, 1 to 2% of the total investment costs go to cooling tower make-up water processing. The crude water taken from rivers or stationary waters for cooling must be sufficiently purified regarding its content of solids, carbonate hardness and corrosive components so as to guarantee an operation free of disturbances. At the same time, the processing methods must be selected for operational-economic reasons in such a manner that waste water and waste problems are kept small regarding environmental protection. The various parameters described have a decisive influence on the processing methods of the crude water, individual processes (filtration, sedimentation, decarbonization) are described, circuit possibilities for cooling water systems are compared and the various processes are analyzed and compared with regard to profitableness and environmental compatability.

  14. Processing device for discharged water from radioactive material handling facility

    International Nuclear Information System (INIS)

    Kono, Takao; Kono, Hiroyuki; Yasui, Katsuaki; Kataiki, Koichi.

    1995-01-01

    The device of the present invention comprises a mechanical floating material-removing means for removing floating materials in discharged water, an ultrafiltration device for separating processed water discharged from the removing means by membranes, a reverse osmotic filtration device for separating the permeated water and a condensing means for evaporating condensed water. Since processed water after mechanically removing floating materials is supplied to the ultrafiltration device, the load applied on the filtering membrane is reduced, to simplify the operation control as a total. In addition, since the amount of resultant condensed water is reduced, and the devolumed condensed water is condensed and dried, the condensing device is made compact and the amount of resultant wastes is reduced. (T.M.)

  15. Synthesis and Design of Integrated Process and Water Networks

    DEFF Research Database (Denmark)

    Handani, Zainatul B.; Quaglia, Alberto; Gani, Rafiqul

    2015-01-01

    This work presents the development of a systematic framework for a simultaneous synthesis and design of process and water networks using the superstructure-based optimization approach. In this framework, a new superstructure combining both networks is developed by attempting to consider all...... possible options with respect to the topology of the process and water networks, leading to Mixed Integer Non Linear Programming (MINLP) problem. A solution strategy to solve the multi-network problem accounts explicitly the interactions between the networks by selecting suitable technologies in order...... to transform raw materials into products and produce clean water to be reused in the process at the early stage of design. Since the connection between the process network and the wastewater treatment network is not a straight forward connection, a new converter interval is introduced in order to convert...

  16. Destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    Tennent, R B

    1886-12-02

    The invention has reference to an improved construction or mode of building, arranging, and combining the parts of gas-heated retorts for the distillation of shale and other minerals, which by the improved mode and means comprised therein of heating the retorts by the gases, combined with highly heated air and the use of superheated steam in the retorts, and the utilization of the heat of the escaping waste gases for the superheating of the steam, and the raising of steam in boilers for motive power and other purposes. The retorts are erected in transverse pairs, each retort having its surrounding flame flues heating the air for each pair and with steam superheating chambers and pipes between for each pair heated by the escaping gases from the retorts.

  17. Dispersion of C(60) in natural water and removal by conventional drinking water treatment processes.

    Science.gov (United States)

    Hyung, Hoon; Kim, Jae-Hong

    2009-05-01

    The first objective of this study is to examine the fate of C(60) under two disposal scenarios through which pristine C(60) is introduced to water containing natural organic matter (NOM). A method based on liquid-liquid extraction and HPLC to quantify nC(60) in water containing NOM was also developed. When pristine C(60) was added to water either in the form of dry C(60) or in organic solvent, it formed water stable aggregates with characteristics similar to nC(60) prepared by other methods reported in the literature. The second objective of this study is to examine the fate of the nC(60) in water treatment processes, which are the first line of defense against ingestion from potable water -- a potential route for direct human consumption. Results obtained from jar tests suggested that these colloidal aggregates of C(60) were efficiently removed by a series of alum coagulation, flocculation, sedimentation and filtration processes, while the efficiency of removal dependent on various parameters such as pH, alkalinity, NOM contents and coagulant dosage. Colloidal aggregates of functionalized C(60) could be well removed by the conventional water treatment processes but with lesser efficiency compared to those made of pristine C(60).

  18. Food selectivity and processing by the cold-water coral

    NARCIS (Netherlands)

    Van Oevelen, D.; Mueller, C.E.; Lundälv, T.; Middelburg, J.J.

    2016-01-01

    Cold-water corals form prominent reef ecosystemsalong ocean margins that depend on suspended resourcesproduced in surface waters. In this study, we investigatedfood processing of 13C and 15N labelled bacteria and algaeby the cold-water coral Lophelia pertusa. Coral respiration,tissue incorporation

  19. Geochemical study of water-rock interaction processes on geothermal systems of alkaline water in granitic massif

    International Nuclear Information System (INIS)

    Buil gutierrez, B.; Garcia Sanz, S.; Lago San Jose, M.; Arranz Yague, E.; Auque Sanz, L.

    2002-01-01

    The study of geothermal systems developed within granitic massifs (with alkaline waters and reducing ORP values) is a topic of increasing scientific interest. These systems are a perfect natural laboratory for studying the water-rock interaction processes as they are defined by three main features: 1) long residence time of water within the system, 2) temperature in the reservoir high enough to favour reaction kinetics and finally, 3) the comparison of the chemistry of the incoming and outgoing waters of the system allows for the evaluation of the processes that have modified the water chemistry and its signature, The four geothermal systems considered in this paper are developed within granitic massifs of the Spanish Central Pyrenes; these systems were studied from a geochemical point of view, defining the major, trace and REE chemistry of both waters and host rocks and then characterizing the composition and geochemical evolution of the different waters. Bicarbonate-chloride-sodic and bicarbonate-sodic compositions are the most representative of the water chemistry in the deep geothermal system, as they are not affected by secondary processes (mixing, conductive cooling, etc). (Author)

  20. Technical and environmental performance of 10 kW understocker boiler during combustion of biomass and conventional fuels

    OpenAIRE

    Junga Robert; Wzorek Małgorzata; Kaszubska Mirosława

    2017-01-01

    This paper treats about the impact fuels from biomass wastes and coal combustion on a small boiler operation and the emission of pollutants in this process. Tests were performed in laboratory conditions on a water boiler with retort furnace and the capacity of 10 kW. Fuels from sewage sludge and agriculture wastes (PBZ fuel) and a blend of coal with laying hens mature (CLHM) were taken into account. The results in emission changes of NOx, CO2, CO and SO2 and operating parameters of the tested...

  1. OPTIMIZATION OF FLOCCULATION PROCESS BY MICROBIAL COAGULANT IN RIVER WATER

    Directory of Open Access Journals (Sweden)

    Fatin Nabilah Murad

    2017-12-01

    Full Text Available The existing process of coagulation and flocculation are using chemicals that known as cationic coagulant such as alum, ferric sulfate, calcium oxide, and organic polymers.  Thus, this study concentrates on optimizing of flocculation process by microbial coagulant in river water. Turbidity and suspended solids are the main constraints of river water quality in Malaysia. Hence, a study is proposed to produce microbial coagulants isolated locally for river water treatment. The chosen microbe used as the bioflocculant producer is Aspergillus niger. The parameters to optimization in the flocculation process were pH, bioflocculant dosage and effluent concentration. The research was done in the jar test process and the process parameters for maximum turbidity removal was validated. The highest flocculating activity was obtained on day seven of cultivation in the supernatant. The optimum pH and bioflocculant dosage for an optimize sedimentation process were between 4-5 and 2-3 mL for 0.3 g/L of effluent concentration respectively. The model was validated by using a river water sample from Sg. Pusu and the result showed that the model was acceptable to evaluate the bioflocculation process.

  2. Essentials of water systems design in the oil, gas, and chemical processing industries

    CERN Document Server

    Bahadori, Alireza; Boyd, Bill

    2013-01-01

    Essentials of Water Systems Design in the Oil, Gas and Chemical Processing Industries provides valuable insight for decision makers by outlining key technical considerations and requirements of four critical systems in industrial processing plants—water treatment systems, raw water and plant water systems, cooling water distribution and return systems, and fire water distribution and storage facilities. The authors identify the key technical issues and minimum requirements related to the process design and selection of various water supply systems used in the oil, gas, and chemical processing industries. This book is an ideal, multidisciplinary work for mechanical engineers, environmental scientists, and oil and gas process engineers.

  3. [Study on rapid analysis method of pesticide contamination in processed foods by GC-MS and GC-FPD].

    Science.gov (United States)

    Kobayashi, Maki; Otsuka, Kenji; Tamura, Yasuhiro; Tomizawa, Sanae; Kamijo, Kyoko; Iwakoshi, Keiko; Sato, Chizuko; Nagayama, Toshihiro; Takano, Ichiro

    2011-01-01

    A simple and rapid method using GC-MS and GC-FPD for the determination of pesticide contamination in processed food has been developed. Pesticides were extracted from a sample with ethyl acetate in the presence of anhydrous sodium sulfate, then cleaned up with a combination of mini-columns, such as macroporous diatomaceous earth, C18, GCB (graphite carbon black) and PSA. Recovery tests of 57 pesticides (known to be toxic or harmful) from ten kinds of processed foods (butter, cheese, corned beef, dried shrimp, frozen Chinese dumplings, grilled eels, instant noodles, kimchi, retort-packed curry and wine) were performed, and the recovery rates were mostly between 70% and 120%. This method can be used to judge whether or not processed foods are contaminated with pesticides at potentially harmful levels.

  4. The Interaction of Spacecraft Cabin Atmospheric Quality and Water Processing System Performance

    Science.gov (United States)

    Perry, Jay L.; Croomes, Scott D. (Technical Monitor)

    2002-01-01

    Although designed to remove organic contaminants from a variety of waste water streams, the planned U.S.- and present Russian-provided water processing systems onboard the International Space Station (ISS) have capacity limits for some of the more common volatile cleaning solvents used for housekeeping purposes. Using large quantities of volatile cleaning solvents during the ground processing and in-flight operational phases of a crewed spacecraft such as the ISS can lead to significant challenges to the water processing systems. To understand the challenges facing the management of water processing capacity, the relationship between cabin atmospheric quality and humidity condensate loading is presented. This relationship is developed as a tool to determine the cabin atmospheric loading that may compromise water processing system performance. A comparison of cabin atmospheric loading with volatile cleaning solvents from ISS, Mir, and Shuttle are presented to predict acceptable limits to maintain optimal water processing system performance.

  5. Measures for waste water management from recovery processing of Zhushanxia uranium deposit

    International Nuclear Information System (INIS)

    Liu Yaochi; Xu Lechang

    2000-01-01

    Measures for waste water management from recovery processing of Zhushanxia uranium deposit of Wengyuan Mine is analyzed, which include improving process flow, recycling process water used in uranium mill as much as possible and choosing a suitable disposing system. All these can decrease the amount of waste water, and also reduce costs of disposing waste water and harm to environment

  6. Water in the Mendoza, Argentina, food processing industry: water requirements and reuse potential of industrial effluents in agriculture

    Directory of Open Access Journals (Sweden)

    Alicia Elena Duek

    2016-04-01

    Full Text Available This paper estimates the volume of water used by the Mendoza food processing industry considering different water efficiency scenarios. The potential for using food processing industry effluents for irrigation is also assessed. The methodology relies upon information collected from interviews with qualified informants from different organizations and food-processing plants in Mendoza selected from a targeted sample. Scenarios were developed using local and international secondary information sources. The results show that food processing plants in Mendoza use 19.65 hm3 of water per year; efficient water management practices would make it possible to reduce water use by 64%, i.e., to 7.11 hm3. At present, 70% of the water is used by the fruit and vegetable processing industry, 16% by wineries, 8% by mineral water bottling plants, and the remaining 6% by olive oil, beer and soft drink plants. The volume of effluents from the food processing plants in Mendoza has been estimated at 16.27 hm3 per year. Despite the seasonal variations of these effluents, and the high sodium concentration and electrical conductivity of some of them, it is possible to use them for irrigation purposes. However, because of these variables and their environmental impact, land treatment is required.

  7. Novel Americium Treatment Process for Surface Water and Dust Suppression Water

    International Nuclear Information System (INIS)

    Tiepel, E.W.; Pigeon, P.; Nesta, S.; Anderson, J.

    2006-01-01

    The Rocky Flats Environmental Technology Site (RFETS), a former nuclear weapons production plant, has been remediated under CERCLA and decommissioned to become a National Wildlife Refuge. The site conducted this cleanup effort under the Rocky Flats Cleanup Agreement (RFCA) that established limits for the discharge of surface and process waters from the site. At the end of 2004, while a number of process buildings were undergoing decommissioning, routine monitoring of a discharge pond (Pond A-4) containing approximately 28 million gallons of water was discovered to have been contaminated with a trace amount of Americium-241 (Am-241). While the amount of Am-241 in the pond waters was very low (0.5 - 0.7 pCi/l), it was above the established Colorado stream standard of 0.15 pCi/l for release to off site drainage waters. The rapid successful treatment of these waters to the regulatory limit was important to the site for two reasons. The first was that the pond was approaching its hold-up limit. Without rapid treatment and release of the Pond A-4 water, typical spring run-off would require water management actions to other drainages onsite or a mass shuttling of water for disposal. The second reason was that this type of contaminated water had not been treated to the stringent stream standard at Rocky Flats before. Technical challenges in treatment could translate to impacts on water and secondary waste management, and ultimately, cost impacts. All of the technical challenges and specific site criteria led to the conclusion that a different approach to the treatment of this problem was necessary and a crash treatability program to identify applicable treatment techniques was undertaken. The goal of this program was to develop treatment options that could be implemented very quickly and would result in the generation of no high volume secondary waste that would be costly to dispose. A novel chemical treatment system was developed and implemented at the RFETS to treat Am

  8. The primary processes by impact of ionizing radiations with water

    International Nuclear Information System (INIS)

    Znamirovschi, V.; Mastan, I.; Cozar, O.

    1976-01-01

    The problem concerning primary processes in radiolysis of water is discussed. The results on the excitation and ionization of water molecule, dissociation of the parent-molecular ion of water and dissociation of excited molecule of water are presented. (author)

  9. Process for the extraction of tritium from heavy water

    International Nuclear Information System (INIS)

    Dombra, A.H.

    1984-01-01

    The object of the invention is achieved by a process for the extraction of tritium from a liquid heavy water stream comprising: contacting the heavy water with a countercurrent gaseous deuterium stream in a column packed with a water-repellent catalyst such that tritium is transferred by isotopic exchange from the liquid heavy water stream to the gaseous deuterium stream

  10. Process for the production of hydrogen from water

    Science.gov (United States)

    Miller, William E [Naperville, IL; Maroni, Victor A [Naperville, IL; Willit, James L [Batavia, IL

    2010-05-25

    A method and device for the production of hydrogen from water and electricity using an active metal alloy. The active metal alloy reacts with water producing hydrogen and a metal hydroxide. The metal hydroxide is consumed, restoring the active metal alloy, by applying a voltage between the active metal alloy and the metal hydroxide. As the process is sustainable, only water and electricity is required to sustain the reaction generating hydrogen.

  11. Distillation of shale and the like. [quartz catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Copp, E R

    1937-03-25

    To recover vapourizable contents from materials by low temperature distillation, the material is passed slowly through an externally heated retort containing natural quartz as a catalyzing agent and gas preheated to its critical temperature is supplied into the retort, the evolved vapours being educted and condensed. A longitudinal retort enlarging upwardly from its inlet to its outlet and containing natural quartz on supporting shelves suspended at requisite heights by means of hangers, has a furnace mounted on girders within a tank which forms a liquid seal for the retort chamber. A heating space is supplied with heating gas through pipes to externally heat the retort chamber which is heated internally by means of preheated gas admitted through branch pipes. Material is fed by screw conveyor through passage and spreader plate on to endless conveyor moving slowly along the retort floor, and is discharged through a chamber and conveyor. The vapours evolved in the retort chamber, after passing in contact with a catalyst are educted through an exit port to a condenser.

  12. Yields from pyrolysis of refinery residue using a batch process

    Directory of Open Access Journals (Sweden)

    S. Prithiraj

    2017-12-01

    Full Text Available Batch pyrolysis was a valuable process of assessing the potential of recovering and characterising products from hazardous waste materials. This research explored the pyrolysis of hydrocarbon-rich refinery residue, from crude oil processes, in a 1200 L electrically-heated batch retort. Furthermore, the off-gases produced were easily processed in compliance with existing regulatory emission standards. The methodology offers a novel, cost-effective and environmentally compliant method of assessing recovery potential of valuable products. The pyrolysis experiments yielded significant oil (70% with high calorific value (40 MJ/kg, char (14% with carbon content over 80% and non-condensable gas (6% with significant calorific value (240 kJ/mol. The final gas stream was subjected to an oxidative clean-up process with continuous on-line monitoring demonstrating compliance with South African emission standards. The gas treatment was overall economically optimal as only a smaller portion of the original residue was subjected to emission-controlling steps. Keywords: Batch pyrolysis, Volatiles, Oil yields, Char, Emissions, Oil recovery

  13. Cracking hydrocarbons. [British patent

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, E

    1926-03-09

    In distilling crude mineral, shale, or tar oils, coal, lignite, shale, etc. to obtain a greater yield of light oils or motor spirit as described in Specification 254,011, the materials in the still or retort as well as the vapors are treated with purifying or converting materials, and the heavy fractions are also treated for conversion. As purifying or converting materials, lime mixed with zinc oxide or chloride, magnesium or calcium chloride, common salt, or metallic sodium, the aluminum silicates known as montmorillonite, marialite or bentonite, bauxite or aluminum chloride may be used. Carbonaccous material is heated in a retort to temperatures up to about 700/sup 0/F. Light vapors are drawn off by an exhauster through pipes and are passed through a heated converter, and through condensors, to a collecting tank. The condensate may be washed with acid, water and caustic soda, and fractionally distilled, the vapors being treated with bauxite. The heavy vapors from the retort pass by pipes at the base through a separate converter.

  14. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Bennie, G

    1875-11-12

    For distilling shale, or other oil-yielding minerals, two or more, preferably four, vertical retorts are mounted in a brickwork oven and are heated in the first place by coal, coke or other fuel on a grate. The spent material from the retorts is discharged from one or more in turn on to the grate and is used, together with additional fuel if necessary, to maintain the heat of the retorts. The retorts are charged by means of hoppers and lids and are discharged by means of movable bottoms actuated by rods and levers acting in combination with outlet valves. The retorts are tapered from the bottom upwards.

  15. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Bell, T

    1863-09-14

    Shales and other bituminous minerals are distilled in horizontal retorts arranged side by side and with furnaces beneath their front ends. The furnace gases pass, preferably through a brickwork grating, into spaces between the retorts and beneath a horizontal partition towards the back ends. They return above the partition to the front of the retorts, and finally enter a horizontal flue leading to a chimney. The front end of each retort is fitted with a hopper for charging and with a door for discharging. The products of distillation pass through perforated partitions inside the retorts and are conveyed away by pipes at the back.

  16. In-situ water vaporization improves bitumen production during electrothermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J. [Calgary Univ., AB (Canada); McGee, B. [E-T Energy, Calgary, AB (Canada); Kantzas, A. [Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory

    2008-10-15

    Electro-thermal processes are now being considered as an alternative or complementary process to steam injection processes. This study used an in situ vaporized water process to optimize electrothermal processes for steam injection enhanced oil recovery (EOR). A simulation tool was used to model electro-thermal processes in an Athabasca oil sands reservoir. Incremental oil recovery was estimated based on a 3-block conceptual model. A field scale model was then used to investigate the effects of electrode spacing, water injection rates, and electrical heating rates on bitumen recovery. Results of the simulation studies were then analyzed using a statistical tool in order to determine optimal conditions for maximizing bitumen production. Results of the study showed that incremental recovery using the water vaporization technique resulted in oil recovery rates of 25 per cent original oil in place (OOIP). Sensitivity analyses showed that medium electrical heating rates, low water injection rates, and small spacings between electrodes maximized bitumen production rates. It was concluded that the technique can be used alone or combined with other methods to economically produce bitumens. 2 refs., 7 tabs., 9 figs.

  17. Process for treating waters and sludges and device for developing this process

    International Nuclear Information System (INIS)

    Levaillant, Claude.

    1977-01-01

    The description is given of a process for treating waters and sludge by means of a ionizing radiation beam, featuring the following stages: settlement of primary waters and sludge, centrifugation of the settled waters and sludge in order to separate the waste waters, the sludge formed of organic compounds charged with heavy metals and the sludge formed of mineral compounds, irradiation, by ionizing radiation beam, of the sludge formed of organic compounds, containing heavy metals, and which are transformed into less toxic and denser recoverable mineral compounds, centrifugation of the irradiated sludge making it possible to obtain clarified waters treated by irradiation, sludge composed of organic compounds freed of their heavy metals and sludge formed of mineral compounds containing heavy metals and which will be easily separated owing to their high density [fr

  18. A new water treatment scheme for thermal development : the SIBE process

    Energy Technology Data Exchange (ETDEWEB)

    Pedenaud, P.; Dang, F. [Total, Paris (France)

    2008-10-15

    The production of extra heavy oil or bitumen through thermal methods such as steam assisted gravity drainage (SAGD) involves the generation and injection into the reservoir of large quantities of steam which is recirculated with the produced bitumen. It is expected that maximizing the recycling of the produced water into steam will be mandatory, because of the need to minimize fresh water consumption and the possibility of increasingly stringent environmental regulations. The SAGD water treatment scheme is complex. It depends on the water characteristics, the steam generator type selected, and the decision to completely eliminate waste water disposal or use other waste handling and disposal methods. Other challenges such as the high silica content in the produced water, are encountered with SAGD water treatment. This paper presented an overview of the current water treatment process options for SAGD, as well as a new patented process called silica inhibition and blowdown evaporation (SIBE). The paper also presented an estimate of the economic benefit of the new SIBE process relative to conventional process schemes. Treatment objectives and water characteristics and the steps involved in conventional water treatment were first outlined. It was concluded that the silica and hardness removal scheme combined with the boiler blowdown evaporator were less economical because of higher investment cost due to the evaporation unit. 1 ref., 3 tabs., 4 figs.

  19. Experience with remediating radiostrontium-contaminated ground water and surface water with versions of AECL's CHEMIC process

    International Nuclear Information System (INIS)

    Vijayan, S.

    2006-01-01

    Numerous approaches have been developed for the remediation of radiostrontium ( 90 Sr) contaminated ground water and surface water. Several strontium-removal technologies have been assessed and applied at AECL's (Atomic Energy of Canada Limited) Chalk River Laboratories. These include simple ion exchange (based on non-selective natural zeolites or selective synthetic inorganic media), and precipitation and filtration with or without ion exchange as a final polishing step. AECL's CHEMIC process is based on precipitation-microfiltration and ion-exchange steps. This paper presents data related to radiostrontium removal performance and other operational experiences including troubleshooting with two round-the-clock, pilot-scale water remediation plants based on AECL's CHEMIC process at the Chalk River Laboratories site. These plants began operation in the early 1990s. Through optimization of process chemistry and operation, high values for system capability and system availability factors, and low concentrations of 90 Sr in the discharge water approaching drinking water standard can be achieved. (author)

  20. Process for exchanging tritium between gaseous hydrogen and water

    International Nuclear Information System (INIS)

    Hindin, S.G.; Roberts, G.W.

    1981-01-01

    An improved method of exchanging and concentrating the radioactive isotope of hydrogen from water or hydrogen gas is described. This heavy water enrichment system involves a low pressure, dual temperature process. (U.K.)

  1. An Excel Workbook for Identifying Redox Processes in Ground Water

    Science.gov (United States)

    Jurgens, Bryant C.; McMahon, Peter B.; Chapelle, Francis H.; Eberts, Sandra M.

    2009-01-01

    The reduction/oxidation (redox) condition of ground water affects the concentration, transport, and fate of many anthropogenic and natural contaminants. The redox state of a ground-water sample is defined by the dominant type of reduction/oxidation reaction, or redox process, occurring in the sample, as inferred from water-quality data. However, because of the difficulty in defining and applying a systematic redox framework to samples from diverse hydrogeologic settings, many regional water-quality investigations do not attempt to determine the predominant redox process in ground water. Recently, McMahon and Chapelle (2008) devised a redox framework that was applied to a large number of samples from 15 principal aquifer systems in the United States to examine the effect of redox processes on water quality. This framework was expanded by Chapelle and others (in press) to use measured sulfide data to differentiate between iron(III)- and sulfate-reducing conditions. These investigations showed that a systematic approach to characterize redox conditions in ground water could be applied to datasets from diverse hydrogeologic settings using water-quality data routinely collected in regional water-quality investigations. This report describes the Microsoft Excel workbook, RedoxAssignment_McMahon&Chapelle.xls, that assigns the predominant redox process to samples using the framework created by McMahon and Chapelle (2008) and expanded by Chapelle and others (in press). Assignment of redox conditions is based on concentrations of dissolved oxygen (O2), nitrate (NO3-), manganese (Mn2+), iron (Fe2+), sulfate (SO42-), and sulfide (sum of dihydrogen sulfide [aqueous H2S], hydrogen sulfide [HS-], and sulfide [S2-]). The logical arguments for assigning the predominant redox process to each sample are performed by a program written in Microsoft Visual Basic for Applications (VBA). The program is called from buttons on the main worksheet. The number of samples that can be analyzed

  2. High purity heavy water production: need for total organic carbon determination in process water streams

    International Nuclear Information System (INIS)

    Ayushi; Kumar, Sangita D.; Reddy, A.V.R.; Vithal, G.K.

    2009-01-01

    In recent times, demand for high purity heavy water (99.98% pure) in industries and laboratories has grown by manifold. Its application started in nuclear industry with the design of CANDU reactor, which uses natural uranium as fuel. In this reactor the purest grade of heavy water is used as the moderator and the primary coolant. Diverse industrial applications like fibre optics, medicine, semiconductors etc. use high purity heavy water extensively to achieve better performance of the specific material. In all these applications there is a stringent requirement that the total organic carbon content (TOC) of high purity heavy water should be very low. This is because the presence of TOC can lead to adverse interactions in different applications. To minimize the TOC content in the final product there is a need to monitor and control the TOC content at each and every stage of heavy water production. Hence a simple, rapid and accurate method was developed for the determination of TOC content in process water samples. The paper summarizes the results obtained for the TOC content in the water samples collected from process streams of heavy water production plant. (author)

  3. How processing digital elevation models can affect simulated water budgets

    Science.gov (United States)

    Kuniansky, E.L.; Lowery, M.A.; Campbell, B.G.

    2009-01-01

    For regional models, the shallow water table surface is often used as a source/sink boundary condition, as model grid scale precludes simulation of the water table aquifer. This approach is appropriate when the water table surface is relatively stationary. Since water table surface maps are not readily available, the elevation of the water table used in model cells is estimated via a two-step process. First, a regression equation is developed using existing land and water table elevations from wells in the area. This equation is then used to predict the water table surface for each model cell using land surface elevation available from digital elevation models (DEM). Two methods of processing DEM for estimating the land surface for each cell are commonly used (value nearest the cell centroid or mean value in the cell). This article demonstrates how these two methods of DEM processing can affect the simulated water budget. For the example presented, approximately 20% more total flow through the aquifer system is simulated if the centroid value rather than the mean value is used. This is due to the one-third greater average ground water gradients associated with the centroid value than the mean value. The results will vary depending on the particular model area topography and cell size. The use of the mean DEM value in each model cell will result in a more conservative water budget and is more appropriate because the model cell water table value should be representative of the entire cell area, not the centroid of the model cell.

  4. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Brinjes, J F

    1867-03-12

    The invention relates to means for conveying the material through rotary retorts for distilling shale or the like. The retort is fitted with longitudinal ribs which lift the material and allow it to fall again as the retort rotates. Inclined deflecting plates attached to a fixed shaft cause the material as it falls to be gradually fed towards the discharge end of the retort. By means of the handle, which can be fixed in angular position by a pin entering holes in a quadrant, the angle of the plates may be adjusted and the rate of feed may be thus regulated. Or the plates may be hinged on the shaft or to the inside of the retort, and the angle is then adjusted by a longitudinal rod moved by a handwheel and nut. A similar arrangement may be applied to retorts with an oscillating motion.

  5. Process for treating waste water containing hydrazine from power stations

    International Nuclear Information System (INIS)

    Hoffmann, W.

    1982-01-01

    A process for treating waste water containing hydrazine from nuclear power stations is proposed, characterized by the fact that the water is taken continuously through a water decomposition cell. If the water does not have sufficient conductivity itself, a substance raising the electrical conductivity is added to the water to be treated. The electrolysis is situated in the waste water tank. (orig./RB) [de

  6. Water Transfer Characteristics during Methane Hydrate Formation Processes in Layered Media

    Directory of Open Access Journals (Sweden)

    Yousheng Deng

    2011-08-01

    Full Text Available Gas hydrate formation processes in porous media are always accompanied by water transfer. To study the transfer characteristics comprehensively, two kinds of layered media consisting of coarse sand and loess were used to form methane hydrate in them. An apparatus with three PF-meter sensors detecting water content and temperature changes in media during the formation processes was applied to study the water transfer characteristics. It was experimentally observed that the hydrate formation configurations in different layered media were similar; however, the water transfer characteristics and water conversion ratios were different.

  7. Process of transforming into light oils heavy oils from carbonization of lignites, coals, etc

    Energy Technology Data Exchange (ETDEWEB)

    Mony, H

    1926-12-20

    A process is described for transforming into light oils the heavy oils coming from the carbonization of lignites, peats, coals, and shales, and heavy oils from original minerals and vegetables, consisting of heating the heavy oils or tars in the presence of one or more solid or liquid substances conveniently chosen, with a veiw to effect distillation of the oils under atmospheric pressure at an appropriate temperature, the solids or liquid substances favoring the formation of light products under the influence of heat, being preferably added to the oil before admitting it to the retort and heating, so that the light oils are obtained from the heavy oils in a single operation.

  8. WAG (water-alternating-gas) process design: an update review

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, M.K. [University of Engineering and Technology, Lahore (Pakistan). Dept. of Petroleum and Gas Engineering], e-mail: mkzahoor@uet.edu.pk; Derahman, M.N.; Yunan, M.H. [Universiti Teknologi Malaysia, Johor (Malaysia). Dept. of Petroleum Engineering

    2011-04-15

    The design and implementation of water-alternating-gas (WAG) process in an improved and cost-effective way are still under process. Due to the complexities involved in implementing the process and the lack of information regarding fluid and reservoir properties, the water-alternating-gas process has not yet been as successful as initially expected. This situation can be overcome by better understanding the fluid distribution and flow behavior within the reservoir. The ultimate purpose can be achieved with improved knowledge on wettability and its influence on fluid distribution, capillary pressure, relative permeability, and other design parameters. This paper gives an insight on the WAG process design and the recently developed correlations which are helpful in incorporating the effects of wettability variations on fluid dynamics within the reservoir. (author)

  9. Integration of drinking water treatment plant process models and emulated process automation software

    NARCIS (Netherlands)

    Worm, G.I.M.

    2012-01-01

    The objective of this research is to limit the risks of fully automated operation of drinking water treatment plants and to improve their operation by using an integrated system of process models and emulated process automation software. This thesis contains the design of such an integrated system.

  10. Application of TIE's in assessing toxicity associated with oil sands process waters

    International Nuclear Information System (INIS)

    MacKinnon, M.

    1998-01-01

    The hot water digestion process which separates bitumen from oil sands produces large volumes of process-affected waters which are extremely toxic to aquatic organisms. At Syncrude Canada's northeastern Alberta plant, the toxic waters are contained on the site and none are discharged. Organic acids, hydrocarbons and salts are leached into the tailings waters. A toxicity identification evaluation (TIE) test was used to confirm the main contributors to the acute toxicity in these waters. A battery bioassay approach as well as field and laboratory testing was used to understand the source, pathway and duration of the toxicity. Bioassays helped in developing ways in which to mitigate toxicity issues in both reclamation and operational waters. It was demonstrated that natural bioremediation of process-affected waters can reduce acute and chronic toxicity. The long term reclamation impacts of these waters has yet to be determined

  11. Process water treatment at the Ranger uranium mine, Northern Australia.

    Science.gov (United States)

    Topp, H; Russell, H; Davidson, J; Jones, D; Levy, V; Gilderdale, M; Davis, S; Ring, R; Conway, G; Macintosh, P; Sertorio, L

    2003-01-01

    The conceptual development and piloting of an innovative water treatment system for process water produced by a uranium mine mill is described. The process incorporates lime/CO2 softening (Stage 1), reverse osmosis (Stage 2) and biopolishing (Stage 3) to produce water of quality suitable for release to the receiving environment. Comprehensive performance data are presented for each stage. The unique features of the proposed process are: recycling of the lime/CO2 softening sludge to the uranium mill as a neutralant, the use of power station off-gas for carbonation, the use of residual ammonia as the pH buffer in carbonation; and the recovery and recycling of ammonia from the RO reject stream.

  12. Multiphase simulation of mine waters and aqueous leaching processes

    Directory of Open Access Journals (Sweden)

    Pajarre Risto

    2016-01-01

    Full Text Available Managing of large amounts of water in mining and mineral processing sites remains a concern in both actively operated and closed mining areas. When the mining site with its metal or concentrate producing units is operational, the challenge is to find either ways for economical processing with maximum yields, while minimizing the environmental impact of the water usage and waste salt treatments. For safe closure of the site, the environmental control of possible drainage will be needed. For both challenges, the present-day multiphase process simulations tools can be used to provide improved accuracy and better economy in controlling the smooth and environmentally sound operation of the plant. One of the pioneering studies in using the multiphase thermodynamic software in simulation of hydrometallurgical processes was that of Koukkari et al. [1]. The study covered the use of Solgasmix equilibrium software for a number of practical acid digesters. The models were made for sulfuric acid treatments in titania pigment production and in NPK fertilizer manufacturing. During the past two decades the extensive data assessment has taken place particularly in geochemistry and a new versions of geochemical multiphase equilibrium software has been developed. On the other hand, there has been some progress in development of the process simulation software in all the aforementioned fields. Thus, the thermodynamic simulation has become a tool of great importance in development of hydrometallurgical processes. The presentation will cover three example cases of either true pilot or industrial systems including a South African acid mine water drainage treatment, hydrometallurgical extraction of rare earths from uranium leachate in Russia and a multistage process simulation of a Finnish heap leaching mine with its subsequent water treatment system.

  13. Analysis of paper machine process waters; Paperikoneen prosessivesianalytiikka - MPKT 09

    Energy Technology Data Exchange (ETDEWEB)

    Knuutinen, J.; Alen, R.; Harjula, P.; Kilpinen, J.; Pallonen, R.; Jurvela, V.

    1998-12-31

    The closure of paper machine circuits demands a better knowledge of the chemical structures and behaviour of organic compounds in pulp mill process waters. Nonionic or negatively charged detrimental substances (anionic trash) which will eventually cause runnability. Paper quality problems are of special interest. The main purpose of the project was to develop routine `fingerprint` analytical procedures to study various process waters. Our major interest was focused on low molecular weight carboxylic acids, carbohydrates and lignin based material. The `fingerprints` (chromatograms and electropherograms) can be used to differentiate various process waters or to find out changes between the composition of organic compounds in various stages of the papermaking process. Until now the most characteristic `fingerprints` were obtained by capillary zone electrophoresis (CZE) and by pyrolysis - gas chromatography - mass spectrometry (Py-GC/MS). Examples of using these techniques are briefly discussed. (orig.)

  14. Analysis of paper machine process waters; Paperikoneen prosessivesianalytiikka - MPKT 09

    Energy Technology Data Exchange (ETDEWEB)

    Knuutinen, J; Alen, R; Harjula, P; Kilpinen, J; Pallonen, R; Jurvela, V

    1999-12-31

    The closure of paper machine circuits demands a better knowledge of the chemical structures and behaviour of organic compounds in pulp mill process waters. Nonionic or negatively charged detrimental substances (anionic trash) which will eventually cause runnability. Paper quality problems are of special interest. The main purpose of the project was to develop routine `fingerprint` analytical procedures to study various process waters. Our major interest was focused on low molecular weight carboxylic acids, carbohydrates and lignin based material. The `fingerprints` (chromatograms and electropherograms) can be used to differentiate various process waters or to find out changes between the composition of organic compounds in various stages of the papermaking process. Until now the most characteristic `fingerprints` were obtained by capillary zone electrophoresis (CZE) and by pyrolysis - gas chromatography - mass spectrometry (Py-GC/MS). Examples of using these techniques are briefly discussed. (orig.)

  15. 2.4.2. Water processing of cake

    International Nuclear Information System (INIS)

    Nazarov, Sh.B.; Safiev, Kh.S.; Mirsaidov, U.

    2008-01-01

    The cake water processing carried out with the purpose of extraction ofalkali components, in particular calcium chlorides and sodium, formed atbaking of raw materials with calcium chloride and by acid processingextracted the aluminium and iron compounds

  16. Reactor materials program process water component failure probability

    International Nuclear Information System (INIS)

    Daugherty, W. L.

    1988-01-01

    The maximum rate loss of coolant accident for the Savannah River Production Reactors is presently specified as the abrupt double-ended guillotine break (DEGB) of a large process water pipe. This accident is not considered credible in light of the low applied stresses and the inherent ductility of the piping materials. The Reactor Materials Program was initiated to provide the technical basis for an alternate, credible maximum rate LOCA. The major thrust of this program is to develop an alternate worst case accident scenario by deterministic means. In addition, the probability of a DEGB is also being determined; to show that in addition to being mechanistically incredible, it is also highly improbable. The probability of a DEGB of the process water piping is evaluated in two parts: failure by direct means, and indirectly-induced failure. These two areas have been discussed in other reports. In addition, the frequency of a large bread (equivalent to a DEGB) in other process water system components is assessed. This report reviews the large break frequency for each component as well as the overall large break frequency for the reactor system

  17. Processing of baby food using pressure-assisted thermal sterilization (PATS) and comparison with thermal treatment

    Science.gov (United States)

    Wang, Yubin; Ismail, Marliya; Farid, Mohammed

    2017-10-01

    Currently baby food is sterilized using retort processing that gives an extended shelf life. However, this type of heat processing leads to reduction of organoleptic and nutrition value. Alternatively, the combination of pressure and heat could be used to achieve sterilization at reduced temperatures. This study investigates the potential of pressure-assisted thermal sterilization (PATS) technology for baby food sterilization. Here, baby food (apple puree), inoculated with Bacillus subtilis spores was treated using PATS at different operating temperatures, pressures and times and was compared with thermal only treatment. The results revealed that the decimal reduction time of B. subtilis in PATS treatment was lower than that of thermal only treatment. At a similar spore inactivation, the retention of ascorbic acid of PATS-treated sample was higher than that of thermally treated sample. The results indicated that PATS could be a potential technology for baby food processing while minimizing quality deterioration.

  18. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Walton, G

    1865-05-16

    A retort for the destructive distillation of coal, shale, whereby hydrocarbons are produced, is described. The vertical retort is provided with a charging door, a discharging door, an outlet leading to the condensing plant, an inclined bottom, and a perforated cage to facilitate the escape of the vapor and to regulate the amount of materials operated upon in the retort. The upper part of the cage is conical to deflect the materials fed in by the door and the lower part is also slightly conical to facilitate emptying the retort. The bottom may incline from both back and front, and also from the sides to the center. The apparatus is heated from below, and the flues pass all round the lower part of the retort.

  19. Charcoal as an alternative energy carrier. Pt. 2: Conversion of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Holstad, A

    1978-12-01

    Terrestrial biomass, residues from forestry, agriculture and farming can be converted by biochemical or thermochemical techniques to fuels. The charcoal yield depends on the raw materials, moisture contents, the temperature of carbonisation and the processing equipment. The yield is reduced by 2 - 3% when using softwood and furthermore with higher temperature of carbonisation. Generally charcoal contains 80 - 90% carbon, 0,5 - 10% ash and 7 - 30% volatile matter. Theoretically the following products are obtained when pyrolising wood: 34,7% Charcoal, 24,9% H/sub 2/O, 10,9% CO/sub 2/, 4,15 CO, 1,6% Methanol, 5,9% Acetic Acid and 17,9% Tar. Units for production of charcoal are large and small kilns, transportable Thomas retorts and Cornell retorts with a production of 1,3 - 6 tons charcoal/day, and the large Lambiotte retort, multiple-hearth furnaces and fluidized-bed reactors. Interesting is also the new equipment of Skogens Kol in Sweden. These large units have a production capacity of 16 - 80 tons charcoal/day. Important production parameters include charcoal yield, labour requirements, air pollution and cost. Based on these parameters the Cornell retort is considered the best unit for production of small quantities of charcoal and Skogens Kol seems to be the most interesting large unit. 17 drawings, 14 tables.

  20. Process for prevention of water build-up in cryogenic distillation column

    International Nuclear Information System (INIS)

    Hopewell, R.B.

    1988-01-01

    In a process for the separation of a hydrocarbon and acid gas containing feed stream in a cryogenic distillation column, a zone of the column which is operated at a temperature of 60 0 F or less, wherein free water accumulates or forms hydrates in the column from water vapor in the feed stream during the cryogenic process, and which process comprises separating the feed stream in the column into an overhead stream and a bottom stream, this patent describes the improvement which comprises: withdrawing a hydrocarbon and acid gas vapor stream which stream is enriched in water vapor with respect to the feed stream, thereby preventing the excess accumulation of free water or the formation of hydrates in the cryogenic column

  1. Co-engineering Participatory Water Management Processes: Theory and Insights from Australian and Bulgarian Interventions

    Directory of Open Access Journals (Sweden)

    Katherine A. Daniell

    2010-12-01

    Full Text Available Broad-scale, multi-governance level, participatory water management processes intended to aid collective decision making and learning are rarely initiated, designed, implemented, and managed by one person. These processes mostly emerge from some form of collective planning and organization activities because of the stakes, time, and budgets involved in their implementation. Despite the potential importance of these collective processes for managing complex water-related social-ecological systems, little research focusing on the project teams that design and organize participatory water management processes has ever been undertaken. We have begun to fill this gap by introducing and outlining the concept of a co-engineering process and examining how it impacts the processes and outcomes of participatory water management. We used a hybrid form of intervention research in two broad-scale, multi-governance level, participatory water management processes in Australia and Bulgaria to build insights into these co-engineering processes. We examined how divergent objectives and conflict in the project teams were negotiated, and the impacts of this co-engineering on the participatory water management processes. These investigations showed: (1 that language barriers may aid, rather than hinder, the process of stakeholder appropriation, collective learning and skills transferal related to the design and implementation of participatory water management processes; and (2 that diversity in co-engineering groups, if managed positively through collaborative work and integrative negotiations, can present opportunities and not just challenges for achieving a range of desired outcomes for participatory water management processes. A number of areas for future research on co-engineering participatory water management processes are also highlighted.

  2. The research of new type stratified water injection process intelligent measurement technology

    Science.gov (United States)

    Zhao, Xin

    2017-10-01

    To meet the needs of injection and development of Daqing Oilfield, the injection of oil from the early stage of general water injection to the subdivision of water is the purpose of improving the utilization degree and the qualified rate of water injection, improving the performance of water injection column and the matching process. Sets of suitable for high water content of the effective water injection technology supporting technology. New layered water injection technology intelligent measurement technology will be more information testing and flow control combined into a unified whole, long-term automatic monitoring of the work of the various sections, in the custom The process has the characteristics of "multi-layer synchronous measurement, continuous monitoring of process parameters, centralized admission data", which can meet the requirement of subdivision water injection, but also realize the automatic synchronization measurement of each interval, greatly improve the efficiency of tiered injection wells to provide a new means for the remaining oil potential.

  3. [The toxicity variation of organic extracts in drinking water treatment processes].

    Science.gov (United States)

    Mei, M; Wei, S; Zijian, W; Wenhua, W; Baohua, Z; Suxia, Z

    2001-01-01

    Source water samples and outlet water samples from different treatment processes of the Beijing Ninth Water Works were concentrated in situ with XAD-2 filled columns. GC-MS analysis and toxic assessment including acute toxicity evaluation by luminescent bacterium bioassay(Q67 strains) and mutagenicity assessment by Ames test(TA98 and TA100 strains with and without S9 addition) were conducted on these samples. The results showed that prechlorination caused the direct and indirect frame shift mutagenicity as well as indirect base pair substitute mutagenicity. Addition of coagulant may increase the base pair substitute mutagenic effects greatly. Sand and coal filtration and granular activated carbon filtration could effectively remove most of the formed mutagens. The rechlorination do not obviously increase the mutagenic effects. No mutagenic effect was observed in tap water. Acute toxicity showed the same variation with that of mutagenicity during the treatment processes. Sample from flocculation treatment process was found to be the most toxic sample. Results of GC-MS analysis showed that water in this plant was not contaminated by PCB. Concentrations of toluene, naphthalene and phenol increased in flocculation treatment process and in tap water. However, the concentrations of these substances were at the level of microgram/L, therefore, were not high enough to cause mutagenicity.

  4. The Optimization-Based Design and Synthesis of Water Network for Water Management in an Industrial Process: Refinery Effluent Treatment Plant

    DEFF Research Database (Denmark)

    Sueviriyapan, Natthapong; Siemanond, Kitipat; Quaglia, Alberto

    2014-01-01

    The increasing awareness of the sustainability of water resources has become an important issue. Many process industries contribute to high water consumption and wastewater generation. Problems in industrial water management include the processing of complex contaminants in wastewater, selection...... of wastewater treatment technologies, as well as water allocation, limited reuse, and recycling strategies. Therefore, a water and wastewater treatment network design requires the integration of both economic and environmental perspectives. The aim of this work was to modify and develop a generic model......-based synthesis process for a water/wastewater treatment network design problem utilizing the framework of Quaglia et al. (2013) in order to effectively design, synthesize, and optimize an industrial water management problem using different scenarios (both existing and retrofit system design). The model...

  5. Method and means for cracking oils

    Energy Technology Data Exchange (ETDEWEB)

    Crozier, R H

    1928-05-18

    In a retort for the distillation of coal, shale or the like utilizing the heat in vapors drawn off at different stages from the retort to distill off oils of lower boiling point, the arrangement at the lower end of the retort of a flue or a series of flues acting as bracing members and providing for the introduction of a gas burner or gas burners adapted to be supplied with gas from the gas mains of the like or the retort whereby the gas produced may be utilized to the greatest advantage.

  6. Microbial fuel cell treatment of ethanol fermentation process water

    Science.gov (United States)

    Borole, Abhijeet P [Knoxville, TN

    2012-06-05

    The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.

  7. Processing method for cleaning water waste from cement kneader

    International Nuclear Information System (INIS)

    Soda, Kenzo; Fujita, Hisao; Nakajima, Tadashi.

    1990-01-01

    The present invention concerns a method of processing cleaning water wastes from a cement kneader in a case of processing liquid wastes containing radioactive wastes or deleterious materials such as heavy metals by means of cement solidification. Cleaning waste wastes from the kneader are sent to a cleaning water waste tank, in which gentle stirring is applied near the bottom and sludges are retained so as not to be coagulated. Sludges retained at the bottom of the cleaning water waste tank are sent after elapse of a predetermined time and then kneaded with cements. Thus, since the sludges in the cleaning water are solidified with cement, inhomogenous solidification products consisting only of cleaning sludges with low strength are not formed. The resultant solidification product is homogenous and the compression strength thereof reaches such a level as capable of satisfying marine disposal standards required for the solidification products of radioactive wastes. (I.N.)

  8. Process Control for Precipitation Prevention in Space Water Recovery Systems

    Science.gov (United States)

    Sargusingh, Miriam; Callahan, Michael R.; Muirhead, Dean

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, rotary distillation systems have been actively pursued by NASA as one of the technologies for water recovery from wastewater primarily comprised of human urine. A specific area of interest is the prevention of the formation of solids that could clog fluid lines and damage rotating equipment. To mitigate the formation of solids, operational constraints are in place that limits such that the concentration of key precipitating ions in the wastewater brine are below the theoretical threshold. This control in effected by limiting the amount of water recovered such that the risk of reaching the precipitation threshold is within acceptable limits. The water recovery limit is based on an empirically derived worst case wastewater composition. During the batch process, water recovery is estimated by monitoring the throughput of the system. NASA Johnson Space Center is working on means of enhancing the process controls to increase water recovery. Options include more precise prediction of the precipitation threshold. To this end, JSC is developing a means of more accurately measuring the constituent of the brine and/or wastewater. Another means would be to more accurately monitor the throughput of the system. In spring of 2015, testing will be performed to test strategies for optimizing water recovery without increasing the risk of solids formation in the brine.

  9. EUTROPHICATION OF WATER RESERVOIRS AND ROLE OF MACROPHYTES IN THIS PROCESS

    Directory of Open Access Journals (Sweden)

    Joanna Jadwiga Sender

    2017-06-01

    Full Text Available The paper presents the problem related with the process of eutrophication, with special emphasis on dam reservoirs. Eutrophication is a global process, threatening the water ecosystem on every continent. It often leads to their degradation. Particularly vulnerable to eutrophication are artificial reservoirs which are dam reservoirs. This paper describes the mechanisms of eutrophication. We also pointed to the importance of aquatic plants in the process of water purification, as well as the possibility of multilateral use. Recently, in the world and in Poland there is a tendency to pay attention to the natural or semi-natural method of water purification (including constructed wetland. On the one hand, the presence of macrophytes in water bodies is a guarantor of good ecological status, on the other hand, the undeniable aesthetic value.

  10. UMTRA Ground Water Project management action process document

    International Nuclear Information System (INIS)

    1996-03-01

    A critical U.S. Department of Energy (DOE) mission is to plan, implement, and complete DOE Environmental Restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC). These facilities include the 24 inactive processing sites the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.) identified as Title I sites, which had operated from the late 1940s through the 1970s. In UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings and directed the DOE to stabilize, dispose of, and control the tailings in a safe and environmentally sound manner. The UMTRA Surface Project deals with buildings, tailings, and contaminated soils at the processing sites and any associated vicinity properties (VP). Surface remediation at the processing sites will be completed in 1997 when the Naturita, Colorado, site is scheduled to be finished. The UMTRA Ground Water Project was authorized in an amendment to the UMTRCA (42 USC Section 7922(a)), when Congress directed DOE to comply with U.S. Environmental Protection Agency (EPA) ground water standards. The UMTRA Ground Water Project addresses any contamination derived from the milling operation that is determined to be present at levels above the EPA standards

  11. Arsenic in industrial waste water from copper production technological process

    OpenAIRE

    Biljana Jovanović; Milana Popović

    2013-01-01

    Investigation of arsenic in industrial waste water is of a great importance for environment. Discharge of untreated waste water from a copper production process results in serious pollution of surface water, which directly affects flora and fauna, as well as humans. There is a need for efficient and environmentally acceptable treament of waste waters containing heavy metals and arsenic. The paper presents an analyisis of the waste water from The Copper Smelter which is discharged into the Bor...

  12. Waste heat and water recovery opportunities in California tomato paste processing

    International Nuclear Information System (INIS)

    Amón, Ricardo; Maulhardt, Mike; Wong, Tony; Kazama, Don; Simmons, Christopher W.

    2015-01-01

    Water and energy efficiency are important for the vitality of the food processing industry as demand for these limited resources continues to increase. Tomato processing, which is dominated by paste production, is a major industry in California – where the majority of tomatoes are processed in the United States. Paste processing generates large amounts of condensate as moisture is removed from the fruit. Recovery of the waste heat in this condensate and reuse of the water may provide avenues to decrease net energy and water use at processing facilities. However, new processing methods are needed to create demand for the condensate waste heat. In this study, the potential to recover condensate waste heat and apply it to the tomato enzyme thermal inactivation processing step (the hot break) is assessed as a novel application. A modeling framework is established to predict heat transfer to tomatoes during the hot break. Heat recovery and reuse of the condensate water are related to energy and monetary savings gained through decreased use of steam, groundwater pumping, cooling towers, and wastewater processing. This analysis is informed by water and energy usage data from relevant unit operations at a commercial paste production facility. The case study indicates potential facility seasonal energy and monetary savings of 7.3 GWh and $166,000, respectively, with most savings gained through reduced natural gas use. The sensitivity of heat recovery to various process variables associated with heat exchanger design and processing conditions is presented to identify factors that affect waste heat recovery. - Highlights: • The potential to recovery waste heat in tomato paste processing is examined. • Heat transfer from evaporator condensate to tomatoes in the hot break is modeled. • Processing facility data is used in model to predict heat recovery energy savings. • The primary benefit of heat recovery is reduced use of natural gas in boilers. • Reusing

  13. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Young, W; Neilson, A; Young, A

    1876-10-09

    The invention relates to modifications of the retort apparatus, described in Specification No. 2487, A.D. 1872, for the destructive distillation of shale and other bituminous substances. The retorts instead of being worked continuously are completely filled and completely discharged in turn. They are made oblong in cross-section in order to present the material in thin layers and cause it to be acted upon more rapidly and economically. The retorts can thus be heated solely by the combustion of the carbonaceus matter contained in the discharged residues or with a small amount of coal in addition. Each retort is contracted at the bottom and is fitted with a box or chest having a hole in it corresponding to the opening in the retort and a sliding plate of iron, firebrick, or other suitable material, which can be operated by a rod passing through the front of the box, for opening or closing the retort. Underneath the box and over the combustion chamber are placed fireclay blocks leaving an opening, which can be closed by another plate of firebrick or the like. When distillation commences, the gases and vapors in the retort are drawn off through a pipe and a main by an exhauster. In order to prevent air from entering the retort or hydrocarbon vapor from being puffed back by the action of the wind, the gas which remains after the condensation of the oils is forced back into the box between the plates and part of it enters the retort and part the combustion chamber. In order to avoid the liability of the oil being carried past the condensers by the action of the gas, steam may be used as a substitute for the gas or mixed with it in large proportions, a steam jet being used to force the gas into the main supplying the boxes.

  14. Ozone/electron beam process for water treatment: design, limitations and economic considerations

    International Nuclear Information System (INIS)

    Gehringer, P.; Eschweiler, H.

    1996-01-01

    Electron beam irradiation of water is the easiest way to generate OH free radicals but the efficiency of the irradiation process as advanced oxidation process (AOP) is deteriorated by reducing species formed simultaneously with the OH free radicals. Addition of ozone to the water before or during irradiation improves the efficiency essentially by converting the reducing species into OH free radicals and turning by that the irradiation process into a full AOP. The main reaction pathways of the primary species formed by the action of ionizing radiation on water in a natural groundwater with and without the presence of ozone are reviewed. Based on these data an explanation of both the dose rate effect and the ozone effect is attempted. New data is presented which illustrates the effect of alkalinity on the way in which ozone is introduced into the water, and the impact of both water matrix and chemical structure of the pollutants to the efficacy of the ozone/electron beam process. (author)

  15. Occupational radon expositions during cleaning processes of water reservoirs

    International Nuclear Information System (INIS)

    Hingmann, H.; Ehret, V.; Hegenbart, L.; Krieg, K.

    2002-01-01

    According to the new German ''Strahlenschutzverordnung'' (Radiation Protection Directive) the annual dose due to the exposition to radon has to be estimated for employees of water works. This includes employees of service companies. While the job of employees of water works usually covers a broad spectrum of different activities, employees of service companies may spend a considerable amount of time of their total working hours cleaning water reservoirs. This investigation is concerned with this type of employees. The radon exposition of one or more cleaning processes were determined by passive dosimeters. The mean radon concentration was calculated for the duration of the cleaning process. In some cases, members of the project team accompanied cleaning processes and performed stationary radon measurements on site. Sometimes, parallel to the passive dosimeters, electronic dosimeters were used to measure personal exposure. The results - and results from additional laboratory reference measurements - are compared. All results until January 2002 are considered. The project still goes on and will end in summer of 2002. Experiences made during this investigation are described in the end of this report. (orig.)

  16. Performance of a Water Recirculation Loop Maintenance Device and Process for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Rector, Tony; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2012-01-01

    A water loop maintenance device and process to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been undergoing a performance evaluation. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the water recirculation maintenance device and process is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance process further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware. This

  17. Note On The Ross Sea Shelf Water Downflow Processes (antarctica)

    Science.gov (United States)

    Bergamasco, A.; Defendi, V.; Spezie, G.; Budillon, G.; Carniel, S.

    In the framework of the CLIMA Project of the Italian National Program for Research in Antarctica, three different experimental data sets were acquired along the continental shelf break; two of them (in 1997 and 2001) close to Cape Adare, the 1998 one in the middle of the Ross Sea (i.e. 75 S, 177 W). The investigations were chosen in order to explore the downslope flow of the bottom waters produced in the Ross Sea, namely the High Salinity Shelf Water (HSSW, the densest water mass of the southern ocean coming from its formation site in the polynya region in Terra Nova bay), and the Ice Shelf Water (ISW, originated below the Ross Ice Shelf and outflowing northward). Both bottom waters spill over the shelf edge and mix with the Circumpolar Deep Water (CDW) contributing to the formation of the Antarctic Bottom Waters (AABW). Interpreting temperature, salinity and density maps in terms of cascading processes, both HSSW and ISW overflows are evidenced during, respectively, 1997 and 1998. During the 2001 acquisition there is no presence of HSSW along the shelf break, nevertheless distribution captures the evidence of a downslope flow process.

  18. Applicability of MIEX(®)DOC process for organics removal from NOM laden water.

    Science.gov (United States)

    Karpinska, Anna M; Boaventura, Rui A R; Vilar, Vítor J P; Bilyk, Andrzej; Molczan, Marek

    2013-06-01

    The aim of this study was to evaluate applicability of ion exchange process for organics removal from Douro River surface water at the intake of Lever water treatment plant using magnetized ion exchange resin MIEX®. Qualitative analysis of the natural organic matter present in the surface water and prediction of its amenability to removal in conventional coagulation process were assessed. Results obtained in MIEX®DOC process kinetic batch experiments allowed determination of ion exchange efficiency in dissolved organic carbon (DOC), UV absorbing organics, and true color removal. The data were compared with the efficiencies of the conventional unit processes for organics removal at Lever WTP. MIEX®DOC process revealed to be more efficient in DOC removal than conventional treatment achieving the efficiencies in the range of 61-91 %, lowering disinfection by-products formation potential of the water. DOC removal efficiency at Lever WTP depends largely on the raw water quality and ranges from 28 % for water of moderated quality to 89 % of significantly deteriorated quality. In this work, MIEX®DOC process was also used as a reference method for the determination of contribution of anionic fraction to dissolved organic matter and selectivity of the unit processes at Lever WTP for its removal.

  19. Plasma processes in water under effect of short duration pulse discharges

    Science.gov (United States)

    Gurbanov, Elchin

    2013-09-01

    It is very important to get a clear water without any impurities and bacteria by methods, that don't change the physical and chemical indicators of water now. In this article the plasma processes during the water treatment by strong electric fields and short duration pulse discharges are considered. The crown discharge around an electrode with a small radius of curvature consists of plasma leader channels with a high conductivity, where the thermo ionization processes and UV-radiation are taken place. Simultaneously the partial discharges around potential electrode lead to formation of atomic oxygen and ozone. The spark discharge arises, when plasma leader channels cross the all interelectrode gap, where the temperature and pressure are strongly grown. As a result the shock waves and dispersing liquid streams in all discharge gap are formed. The plasma channels extend, pressure inside it becomes less than hydrostatic one and the collapse and UV-radiation processes are started. The considered physical processes can be successfully used as a basis for development of pilot-industrial installations for conditioning of drinking water and to disinfecting of sewage.

  20. Evaluation of Effectiveness Technological Process of Water Purification Exemplified on Modernized Water Treatment Plant at Otoczna

    Directory of Open Access Journals (Sweden)

    Jordanowska Joanna

    2014-12-01

    Full Text Available The article presents the work of the Water Treatment Plant in the town of Otoczna, located in the Wielkopolska province, before and after the modernization of the technological line. It includes the quality characteristics of the raw water and treated water with particular emphasis on changes in the quality indicators in the period 2002 -2012 in relation to the physicochemical parameters: the content of total iron and total manganese, the ammonium ion as well as organoleptic parameters(colour and turbidity. The efficiency of technological processes was analysed, including the processes of bed start up with chalcedonic sand to remove total iron and manganese and ammonium ion. Based on the survey, it was found that the applied modernization helped solve the problem of water quality, especially the removal of excessive concentrations of iron, manganese and ammonium nitrogen from groundwater.

  1. Application of radiation to processing of raw water and waste water

    International Nuclear Information System (INIS)

    Takeda, Atsuhiko

    1988-01-01

    Some studies and its results on irradiation of water are outlined. Ten precursory substances for trihalomethane, humic acid, resorcinol, methylglyoxal, phloroglucinol, pyruvic acid, 4-methoxyphenol, hydroquinone, n,n-diethylaniline and p-quinone, are separately dissolved in refined water and irradiated with cobalt-60 and gamma rays. Data on the dose required to reduce the total organic carbon by 50 percent are tabulated. An investigation is made on the effects of irradiation on the separation of fumic acid in liquid chromatography. The four peaks originally found in the spectrum decrease in peak area while two new peaks appear as the dose increases. The average molecular weight shows a maximum, indicating that irradiation seems to cause crosslinking. Capillary gas chromatography is performed to determine the effects of irradiation on the odor of water. For trichloroethylene, tetrachloroethylene and trichloroethane (inital concentration 90 ppb), which represent the major 'high-tech contaminants', 7.5 x 10 2 rad is required to meet the regulations. A study on the sterilization effects of irradiation is also outlined. Further studies are required to develop a practical process that uses irradiation to decompose organic substances in heavily contaminated waste water. (Nogami, K.)

  2. Delocalized organic pollutant destruction through a self-sustaining supercritical water oxidation process

    International Nuclear Information System (INIS)

    Lavric, E.D.; Weyten, H.; Ruyck, J. de; Plesu, V.; Lavric, V.

    2005-01-01

    Supercritical water oxidation (SCWO) is a recent development aiming at the destruction of organic pollutants present with low concentrations in waste waters. The present paper focuses on the process simulation of SCWO with emphasis on the proper modelling of supercritical thermodynamic conditions and on the possibility to make the SCWO process self-sufficient from the energetic viewpoint. Self-sufficiency may be of interest to encourage more delocalization of waste water treatment. The process of SCWO for dilute waste water (no more than 5 wt.%) is modelled through the ASPEN Plus copyright process simulator. Studies were made to search for energetic self-sufficiency conditions using various technologies for power production from the heat of reaction, like supercritical water expansion in a turbine, use of a closed Brayton cycle (CBC) and use of an organic Rankine cycle (ORC). The results obtained showed that the process is energetically self-sufficient using either a small supercritical turbine, or an ORC. In less restrictive conditions regarding the component efficiencies, the CBC, in theory, also leads to self-sufficiency, but from the analysis, it appears that this solution is less realistic

  3. Arsenic in industrial waste water from copper production technological process

    Directory of Open Access Journals (Sweden)

    Biljana Jovanović

    2013-12-01

    Full Text Available Investigation of arsenic in industrial waste water is of a great importance for environment. Discharge of untreated waste water from a copper production process results in serious pollution of surface water, which directly affects flora and fauna, as well as humans. There is a need for efficient and environmentally acceptable treament of waste waters containing heavy metals and arsenic. The paper presents an analyisis of the waste water from The Copper Smelter which is discharged into the Bor river. The expected arsenic content in treated waste water after using HDS procedure is also presented.

  4. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    International Nuclear Information System (INIS)

    Hindin, S. G.; Roberts, G. W.

    1980-01-01

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst

  5. Improvement for waste water treatment process of a uranium deposite and its effect

    International Nuclear Information System (INIS)

    Huang Jimao

    2013-01-01

    Uranium was recovered from alkaline uranium ores by heap leaching and traditional agitation leaching methods at a uranium mine, and the waste water (including waste water produced in hydrometallurgy process and mine drainage) was treated by using chemical precipitation method and chemical precipitation loading method. It was found that the removal rate of uranium by the waste water treatment process was not satisfactory after one year's run. So, the waste water treatment process was improved. After the improvement, removal rate of CO 3 2- ,HCO 3 - , U and Ra was enhanced and the treated waste water reached the standard of discharge. (author)

  6. Radiation influence on heterogenous processes in stainless steel contact with sea-water

    International Nuclear Information System (INIS)

    Agayev, T.N.; Garibov, A.A.; Velibekova, G.Z.; Aliyev, A.Q.; Aliyev, S.M.

    2005-01-01

    Full text: Austenitic stainless steel (s.s.) with Cr content 16 %, Ni - 15 % is widely used in nuclear reactors as construction material, for fuel cladding production and also is used in oil and gas production and transportation. They possess comparatively large section of slow neutron capture and as a result high corrosion resistance. In real exploitation condition of nuclear reactors s.s. are exposed to ionizing radiation influence in contact of different media. That's why during their corrosion and destruction processes the surface defect formation processes and further heterogenous processes with their participation are of great importance. The research results of mechanism during radiation-heterogenous processes in nuclear reactor stainless steel contact with sea-water under the influence of γ-radiation in temperature interval 300-1074 K are represented in the given work. Radiolytic processes in water are comprehensively studied and therefore it was taken as model system for dating the surface defects and secondary electrons emitted from metal. The same model system was applied also in sea-water radiolysis processes. It's been established that radiation processes in s.s. lead to molecular hydrogen yield increase and at T=300 K up to 6.5 molec./100 eV. With the temperature increase molecular hydrogen yield increase up to 25.3 molec./100 eV at T≤773 K. During the further temperature increase up to 1073 K radiation constituent of radiation-thermal process in comparison with thermal becomes unnoticeable and W T (H 2 )≅W p (H 2 ). The kinetics of oxide phase formation of investigated sample surface in the result of thermal and radiation-thermal processes in their contact with sea-water has been studied. At that it's been shown that radiation leads to protective oxidation process rate increase and promotes the beginning of stainless steel destruction oxidation in contact with sea-water. At T≥573 K insoluble oxide phase is formed on metal surface that promotes

  7. Water-Exit Process Modeling and Added-Mass Calculation of the Submarine-Launched Missile

    Directory of Open Access Journals (Sweden)

    Yang Jian

    2017-11-01

    Full Text Available In the process that the submarine-launched missile exits the water, there is the complex fluid solid coupling phenomenon. Therefore, it is difficult to establish the accurate water-exit dynamic model. In the paper, according to the characteristics of the water-exit motion, based on the traditional method of added mass, considering the added mass changing rate, the water-exit dynamic model is established. And with help of the CFX fluid simulation software, a new calculation method of the added mass that is suit for submarine-launched missile is proposed, which can effectively solve the problem of fluid solid coupling in modeling process. Then by the new calculation method, the change law of the added mass in water-exit process of the missile is obtained. In simulated analysis, for the water-exit process of the missile, by comparing the results of the numerical simulation and the calculation of theoretical model, the effectiveness of the new added mass calculation method and the accuracy of the water-exit dynamic model that considers the added mass changing rate are verified.

  8. Optimizing the air flotation water treatment process. Final report, May 1997

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, B.

    1998-09-01

    The injection water for the Nelson Project is a combination of produced and make-up water, typical of many Eastern Kansas operations. The make-up water is a low-salinity salt water from the Arbuckle Formation and contains dissolved minerals and sulfides. The produced water contains suspended oil, suspended clay and silt particles, along with a combination of other dissolved minerals. The combination of the two waters causes several undesirable reactions. The suspended solids load contained in the combined waters would plug a 75-micron plant bag filter within one day. Wellhead filters of 75-micron size were also being used on the injection wells. The poor water quality resulted in severe loss of injectivity and frequent wellbore cleaning of the injection wells. Various mechanical and graded-bed filtration methods were considered for cleaning the water. These methods were rejected due to the lack of field equipment and service availability. A number of vendors did not even respond to the author`s request. The air flotation process was selected as offering the best hope for a long-term solution. The objective of this work is to: increase the cost effectiveness of the process through optimizing process design factors and operational parameters. A vastly modified air flotation system is the principal tool for accomplishing the project objective. The air flotation unit, as received from manufacturer Separation Specialist, was primarily designed to remove oil from produced water. The additional requirement for solids removal necessitated major physical changes in the unit. Problems encountered with the air flotation unit and specific modifications are detailed in the body of the report.

  9. Mesophilic and thermophilic activated sludge post-treatment of paper mill process water

    NARCIS (Netherlands)

    Vogelaar, J.C.T.; Bouwhuis, E.; Klapwijk, A.; Spanjers, H.; Lier, van J.B.

    2002-01-01

    Increasing system closure in paper mills and higher process water temperatures make the applicability of thermophilic treatment systems increasingly important. The use of activated sludge as a suitable thermophilic post-treatment system for anaerobically pre-treated paper process water from a paper

  10. Osmotically-driven membrane processes for water reuse and energy recovery

    Science.gov (United States)

    Achilli, Andrea

    Osmotically-driven membrane processes are an emerging class of membrane separation processes that utilize concentrated brines to separate liquid streams. Their versatility of application make them an attractive alternative for water reuse and energy production/recovery. This work focused on innovative applications of osmotically-driven membrane processes. The novel osmotic membrane bioreactor (OMBR) system for water reuse was presented. Experimental results demonstrated high sustainable flux and relatively low reverse diffusion of solutes from the draw solution into the mixed liquor. Membrane fouling was minimal and controlled with osmotic backwashing. The OMBR system was found to remove greater than 99% of organic carbon and ammonium-nitrogen. Forward osmosis (FO) can employ different draw solution in its process. More than 500 inorganic compounds were screened as draw solution candidates, the desktop screening process resulted in 14 draw solutions suitable for FO applications. The 14 draw solutions were then tested in the laboratory to evaluate water flux and reverse salt diffusion through the membrane. Results indicated a wide range of water flux and reverse salt diffusion depending on the draw solution utilized. Internal concentration polarization was found to lower both water flux and reverse salt diffusion by reducing the draw solution concentration at the interface between the support and dense layer of the membrane. A small group of draw solutions was found to be most suitable for FO processes with currently available FO membranes. Another application of osmotically-driven membrane processes is pressure retarded osmosis (PRO). PRO was investigated as a viable source of renewable energy. A PRO model was developed to predict water flux and power density under specific experimental conditions. The predictive model was tested using experimental results from a bench-scale PRO system. Previous investigations of PRO were unable to verify model predictions due to

  11. Device and method to enrich and process heavy water

    International Nuclear Information System (INIS)

    Hammerli, M.M.; Butler, J.P.

    1979-01-01

    A device to process and enrich heavy water is proposed which is based on a combined electrolysis catalyst exchange system in which a D 2 O enrichment of more than 99.8% is achieved in the end stage. Water partly enriched with D 2 -containing hydrogen gas from an electrolysis cell is brought into contact in a catalyst column. The water is further enriched here with deuterium. It is then fed to the electrolysis cell. Details of the apparatus are closely described. (UWI) [de

  12. Co-occurrence of Photochemical and Microbiological Transformation Processes in Open-Water Unit Process Wetlands.

    Science.gov (United States)

    Prasse, Carsten; Wenk, Jannis; Jasper, Justin T; Ternes, Thomas A; Sedlak, David L

    2015-12-15

    The fate of anthropogenic trace organic contaminants in surface waters can be complex due to the occurrence of multiple parallel and consecutive transformation processes. In this study, the removal of five antiviral drugs (abacavir, acyclovir, emtricitabine, lamivudine and zidovudine) via both bio- and phototransformation processes, was investigated in laboratory microcosm experiments simulating an open-water unit process wetland receiving municipal wastewater effluent. Phototransformation was the main removal mechanism for abacavir, zidovudine, and emtricitabine, with half-lives (t1/2,photo) in wetland water of 1.6, 7.6, and 25 h, respectively. In contrast, removal of acyclovir and lamivudine was mainly attributable to slower microbial processes (t1/2,bio = 74 and 120 h, respectively). Identification of transformation products revealed that bio- and phototransformation reactions took place at different moieties. For abacavir and zidovudine, rapid transformation was attributable to high reactivity of the cyclopropylamine and azido moieties, respectively. Despite substantial differences in kinetics of different antiviral drugs, biotransformation reactions mainly involved oxidation of hydroxyl groups to the corresponding carboxylic acids. Phototransformation rates of parent antiviral drugs and their biotransformation products were similar, indicating that prior exposure to microorganisms (e.g., in a wastewater treatment plant or a vegetated wetland) would not affect the rate of transformation of the part of the molecule susceptible to phototransformation. However, phototransformation strongly affected the rates of biotransformation of the hydroxyl groups, which in some cases resulted in greater persistence of phototransformation products.

  13. Loss of Water to Space from Mars: Processes and Implications

    Science.gov (United States)

    Kass, D. M.

    2001-12-01

    One of the major sinks for water on Mars is the loss to space. This occurs via a complex series of processes that transport the individual atoms to the upper atmosphere, where several escape mechanisms remove them. Hydrogen and deuterium are lost primarily by Jeans escape. Non-thermal processes also remove H and D, but are only important in determining D loss at solar minimum under modern conditions. The present H loss rate is equivalent to the loss of 10-3~pr-\\micron~yr-1 of water. The loss of oxygen is more complicated. The three main processes are indirect (or ionospheric) sputtering, solar wind pickup of O+, and O2+ dissociative recombination. Their relative importance has varied over the history of Mars. The combined effect of the O loss processes is to remove a ~ 50~m global layer of water over the last 3.5 Gyr. Based on photochemical modeling, the loss of oxygen and hydrogen are balanced (over geological timescales) by a feedback process. During the early history of Mars, impact erosion and hydrodynamic blow-off may have removed significant water. But, it is difficult to estimate their quantitative effects. The transport of individual H, D and O atoms to the exosphere where they can escape is not completely understood. It occurs primarily via intermediate species, H2, HD, O2 and CO2. The H2 and HD are formed by photolysis of water and the odd hydrogen photochemistry. One open issue is the mechanism regulating the partitioning of D between HDO and HD (which controls the supply of D available for escape from the exosphere). The various loss processes isotopically enrich Martian water since the exospheric escape source region is depleted. Jeans escape and the transport from the lower atmosphere further fractionate hydrogen, the most useful isotopic system. Based on recent observations, the D/H fractionation factor, F ~ 0.02. Measurements of atmospheric water vapor indicate it is enriched in deuterium, with a D/H ratio ~ 5 times the terrestrial value. Since

  14. Food selectivity and processing by the cold-water Coral Lophelia pertusa

    NARCIS (Netherlands)

    van Oevelen, Dick; Mueller, Christina E.; Lundälv, Tomas; Middelburg, Jack J.

    2016-01-01

    Cold-water corals form prominent reef ecosystems along ocean margins that depend on suspended resources produced in surface waters. In this study, we investigated food processing of 13C and 15N labelled bacteria and algae by the cold-water coral Lophelia pertusa. Coral respiration, tissue

  15. Policies lost in translation? Unravelling water reform processes in African waterscapes

    NARCIS (Netherlands)

    Kemerink-Seyoum, J.S.

    2015-01-01

    Since the 1980s a major change took place in public policies for water resources management. The role of governments shifted under this reform process from an emphasis on investment in the development, operation and maintenance of water infrastructure to a focus on managing water resources systems

  16. Criticality safety evaluation report for the Cold Vacuum Drying Facility's process water handling system

    International Nuclear Information System (INIS)

    Roblyer, S.D.

    1998-01-01

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility (CVDF). The controls and limitations on equipment design and operations to control potential criticality occurrences are identified. The effectiveness of equipment design and operation controls in preventing criticality occurrences during normal and abnormal conditions is evaluated and documented in this report. Spent nuclear fuel (SNF) is removed from existing canisters in both the K East and K West Basins and loaded into a multicanister overpack (MCO) in the K Basin pool. The MCO is housed in a shipping cask surrounded by clean water in the annulus between the exterior of the MCO and the interior of the shipping cask. The fuel consists of spent N Reactor and some single pass reactor fuel. The MCO is transported to the CVDF near the K Basins to remove process water from the MCO interior and from the shipping cask annulus. After the bulk water is removed from the MCO, any remaining free liquid is removed by drawing a vacuum on the MCO's interior. After cold vacuum drying is completed, the MCO is filled with an inert cover gas, the lid is replaced on the shipping cask, and the MCO is transported to the Canister Storage Building. The process water removed from the MCO contains fissionable materials from metallic uranium corrosion. The process water from the MCO is first collected in a geometrically safe process water conditioning receiver tank. The process water in the process water conditioning receiver tank is tested, then filtered, demineralized, and collected in the storage tank. The process water is finally removed from the storage tank and transported from the CVDF by truck

  17. Process and system for treating waste water

    Science.gov (United States)

    Olesen, Douglas E.; Shuckrow, Alan J.

    1978-01-01

    A process of treating raw or primary waste water using a powdered, activated carbon/aerated biological treatment system is disclosed. Effluent turbidities less than 2 JTU (Jackson turbidity units), zero TOC (total organic carbon) and in the range of 10 mg/l COD (chemical oxygen demand) can be obtained. An influent stream of raw or primary waste water is contacted with an acidified, powdered, activated carbon/alum mixture. Lime is then added to the slurry to raise the pH to about 7.0. A polyelectrolyte flocculant is added to the slurry followed by a flocculation period -- then sedimentation and filtration. The separated solids (sludge) are aerated in a stabilization sludge basin and a portion thereof recycled to an aerated contact basin for mixing with the influent waste water stream prior to or after contact of the influent stream with the powdered, activated carbon/alum mixture.

  18. COCONUT WATER VINEGAR: NEW ALTERNATIVE WITH IMPROVED PROCESSING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    MUHAMMAD ANAS OTHAMAN

    2014-06-01

    Full Text Available Vinegar is a condiment made from various sugary and starchy materials by alcoholic and subsequent acetic fermentation. Vinegar can be produced via different methods and from various types of raw material. A new alternative substrate for vinegar production namely mature coconut water has been tested and was compared with 2 common substrates which were coconut sap and pineapple juice. Substrates such as sap and juices have been found to have high amount of total soluble solids which corresponding to high sugar content in the substrates which is more than 14oBrix. Therefore, both substrates could be directly used for vinegar production without requirement of other carbon sources. However, coconut water which showed low Brix value need to be adjusted to 14oBrix by adding sucrose prior to the fermentation process. Substrates fermented with Saccharomyces cerevisiae have yielded 7-8% of alcohol within 7-10 days aerobic incubation at room temperature. The alcoholic medium were then used as a seed broth for acetic fermentation with Acetobactor aceti as inoculums and fermented for approximately 2 months to obtain at least 4% of acetic acid. Investigation on the effect of inoculum sizes and implementation of back-slopping technique were performed to improve the processing method for coconut water vinegar production. The results show that 10% of inoculum size was the best for acetic acid fermentation and the back-slopping technique has helped to reduce the process time of coconut water vinegar production.

  19. Distilling shale

    Energy Technology Data Exchange (ETDEWEB)

    Armour, J; Armour, H

    1889-05-07

    The invention relates to retorts and accessory apparatus for distilling shale or other oil-yielding minerals. A series of long vertical retorts, composed of fire-brick or similar refractory material, are arranged in two rows in a bench, being divided into groups of four by transverse vertical partitions. The retorts are surmounted by metal casings or hoppers into which the fresh mineral is charged, and from which the distillate passes off through lateral pipes. Any uncondensed gases from the retorts may be passed into the flues surrounding them by the pipe and burned. The products of combustion from a furnace pass through a series of horizontal flues, being compelled to pass completely round each retort before entering the flue above. The products from two or more sets pass from the upper flues into flues running along the top of the bench, and return through a central flue to the chimney.

  20. Quantification of water usage at a South African platinum processing ...

    African Journals Online (AJOL)

    The mining industry utilises 3% of the total water withdrawn in South Africa and is one of the industries responsible for the deterioration of ..... be installed to make it easier to notice if there is a leak, or if a process .... water supply industry, 2010.

  1. Enzymatic treatment of paper mill process waters; Entsyymit paperitehtaan kiertoveden kaesittelyssae - EKT 06

    Energy Technology Data Exchange (ETDEWEB)

    Mustranta, A.; Buchert, J. [VTT Biotechnology and Food Research, Espoo (Finland); Ekman, R.; Spetz, P. [Aabo Akademi, Turku (Finland). Lab. of Forest Products Chemistry; Luukko, K. [Helsinki Univ. of Technology, Otaniemi (Finland). Paper Technology

    1998-12-31

    Dissolved and colloidal substances (DCS) are dispersed into the process waters during different stages of pulp and paper production. These are lipophilic extractives (pitch), hydrophilic extractives (lignan) and carbohydrates, mainly hemicelluloses. These dissolved and colloidal substances accumulate during water circulation and results in impaired paper machine runnability. DCS can also interfere with wet-end process chemicals. In this project the chemical composition of the process waters of spruce TMP pulping have been characterized. Simultaneously, potential enzymes for modification of DCS has been produced and purified. The enzymatic treatments have been started with lipase acting on triglycerides present in extractives. The effect of enzymatic treatment on the properties of process waters and technical properties of the pulp have been evaluated. (orig.)

  2. Enzymatic treatment of paper mill process waters; Entsyymit paperitehtaan kiertoveden kaesittelyssae - EKT 06

    Energy Technology Data Exchange (ETDEWEB)

    Mustranta, A; Buchert, J [VTT Biotechnology and Food Research, Espoo (Finland); Ekman, R; Spetz, P [Aabo Akademi, Turku (Finland). Lab. of Forest Products Chemistry; Luukko, K [Helsinki Univ. of Technology, Otaniemi (Finland). Paper Technology

    1999-12-31

    Dissolved and colloidal substances (DCS) are dispersed into the process waters during different stages of pulp and paper production. These are lipophilic extractives (pitch), hydrophilic extractives (lignan) and carbohydrates, mainly hemicelluloses. These dissolved and colloidal substances accumulate during water circulation and results in impaired paper machine runnability. DCS can also interfere with wet-end process chemicals. In this project the chemical composition of the process waters of spruce TMP pulping have been characterized. Simultaneously, potential enzymes for modification of DCS has been produced and purified. The enzymatic treatments have been started with lipase acting on triglycerides present in extractives. The effect of enzymatic treatment on the properties of process waters and technical properties of the pulp have been evaluated. (orig.)

  3. Development and Validation of an Acid Mine Drainage Treatment Process for Source Water

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Ann [Battelle Memorial Institute, Columbus, OH (United States)

    2016-03-01

    Throughout Northern Appalachia and surrounding regions, hundreds of abandoned mine sites exist which frequently are the source of Acid Mine Drainage (AMD). AMD typically contains metal ions in solution with sulfate ions which have been leached from the mine. These large volumes of water, if treated to a minimum standard, may be of use in Hydraulic Fracturing (HF) or other industrial processes. This project’s focus is to evaluate an AMD water treatment technology for the purpose of providing treated AMD as an alternative source of water for HF operations. The HydroFlex™ technology allows the conversion of a previous environmental liability into an asset while reducing stress on potable water sources. The technology achieves greater than 95% water recovery, while removing sulfate to concentrations below 100 mg/L and common metals (e.g., iron and aluminum) below 1 mg/L. The project is intended to demonstrate the capability of the process to provide AMD as alternative source water for HF operations. The second budget period of the project has been completed during which Battelle conducted two individual test campaigns in the field. The first test campaign demonstrated the ability of the HydroFlex system to remove sulfate to levels below 100 mg/L, meeting the requirements indicated by industry stakeholders for use of the treated AMD as source water. The second test campaign consisted of a series of focused confirmatory tests aimed at gathering additional data to refine the economic projections for the process. Throughout the project, regular communications were held with a group of project stakeholders to ensure alignment of the project objectives with industry requirements. Finally, the process byproduct generated by the HydroFlex process was evaluated for the treatment of produced water against commercial treatment chemicals. It was found that the process byproduct achieved similar results for produced water treatment as the chemicals currently in use. Further

  4. Coal distillation plant

    Energy Technology Data Exchange (ETDEWEB)

    Overton, P C

    1937-05-20

    To fractionally condense the vapours derived from the distillation of coal or shale, an apparatus comprises a low temperature carbonisation retort having a plurality of differently heating zones therein which connect with a manifold in which said gas oil vapours can expand. A dephlegmator, cold water jacketted and centrally air heated, causes the heavier matters of the vapours to settle out and the lighter oil gas vapours are conveyed to the bottom of an electrically operated fractionating apparatus comprising a column furnished with a plurality of compartments each heated by electrical elements connected to source of current by lead wires. Annular launders in the compartments collect the derived liquids at the various levels and deliver same by pipes to separate sump while pipe at head of column draws off incondensible gases for return to retort.

  5. Distillation of bituminous shale

    Energy Technology Data Exchange (ETDEWEB)

    Seguin, M

    1875-02-16

    The retort with its accessories constitutes a distillation apparatus for shale composed of a cylindrical, vertical, fixed, tubular, and of ring form metal retort. Also it is comprised of a special hearth of large dimensions in the form of a circular pocket receiving from the retort as heating agent the distilled shale and emitting by radiation the heat that makes the distillation apparatus for the shale act.

  6. Industrial water and effluent management in the milk processing industry

    CSIR Research Space (South Africa)

    Funke, JW

    1970-01-01

    Full Text Available One of the most important commodities used in any food-processing industry is water which must be of the right quality. Water which comes into direct contact with milk or milk products must meet standards which are even stricter than those for a...

  7. Processing of combined domestic bath and laundry waste waters for reuse as commode flushing water

    Science.gov (United States)

    Hypes, W. D.; Batten, C. E.; Wilkins, J. R.

    1975-01-01

    An experimental investigation of processes and system configurations for reclaiming combined bath and laundry waste waters for reuse as commode flush water was conducted. A 90-min recycle flow was effective in removing particulates and in improving other physical characteristics to the extent that the filtered water was subjectively acceptable for reuse. The addition of a charcoal filter resulted in noticeable improvements in color, turbidity, and suds elimination. Heating and chlorination of the waste waters were investigated for reducing total organism counts and eliminating coliform organisms. A temperature of 335.9 K (145 F) for 30 min and chlorine concentrations of 20 mg/l in the collection tank followed by 10 mg/l in the storage tank were determined to be adequate for this purpose. Water volume relationships and energy-use rates for the waste water reuse systems are also discussed.

  8. Standard practice for visible penetrant testing using the Water-Washable process

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice describes procedures for visible liquid penetrant examination utilizing the water-washable process. It is a nondestructive practice for detecting discontinuities that are open to the surface such as cracks, seams, laps, cold shuts, laminations, isolated porosity, through leaks or lack of fusion and is applicable to in-process, final, and maintenance examination. This practice can be effectively used in the examination of nonporous, metallic materials, both ferrous and nonferrous, and of nonmetallic materials such as glazed or fully densified ceramics, and certain nonporous plastics, and glass. 1.2 This practice also provides the following references: 1.2.1 A reference by which visible penetrant examination procedures using the water-washable process can be reviewed to ascertain their applicability and completeness. 1.2.2 For use in the preparation of process specifications dealing with the visible, water-washable liquid penetrant examination of materials and parts. Agreement between the user...

  9. Radiation processing applications in the Czechoslovak water treatment technologies

    Science.gov (United States)

    Vacek, K.; Pastuszek, F.; Sedláček, M.

    The regeneration of biologically clogged water wells by radiation proved to be a successful and economically beneficial process among other promising applications of ionizing radiation in the water supply technology. The application conditions and experience are mentioned. The potential pathogenic Mycobacteria occuring in the warm washing and bathing water are resistant against usual chlorine and ozone concentrations. The radiation sensitivity of Mycobacteria allowed to suggest a device for their destroying by radiation. Some toxic substances in the underground water can be efficiently degraded by gamma radiation directly in the wells drilled as a hydraulic barrier surrounding the contaminated land area. Substantial decrease of CN - concentration and C.O.D. value was observed in water pumped from such well equipped with cobalt sources and charcoal. The removing of pathogenic contamination remains to be the main goal of radiation processing in the water purification technologies. The decrease of liquid sludge specific filter resistance and sedimentation acceleration by irradiation have a minor technological importance. The hygienization of sludge cake from the mechanical belt filter press by electron beam appears to be the optimum application in the Czechoslovak conditions. The potatoes and barley crop yields from experimental plots treated with sludge were higher in comparison with using the manure. Biological sludge from the municipal and food industry water purification plants contains nutritive components. The proper hygienization is a necessary condition for using them as a livestock feed supplement. Feeding experiments with broilers and pigs confirmed the possibility of partial (e.g. 50%) replacement of soya-, bone- or fish flour in feed mixtures by dried sludge hygienized either by heat or by the irradiation.

  10. Radiation processing applications in the Czechoslovak water treatment technologies

    International Nuclear Information System (INIS)

    Vacek, K.; Pastuszek, F.; Sedlacek, M.

    1986-01-01

    The regeneration of biologically clogged water wells by radiation proved to be a successful and economically beneficial process among other promising applications of ionizing radiation in the water supply technology. The application conditions and experience are mentioned. The potential pathogenic Mycobacteria occuring in the warm washing and bathing water are resistant against usual chlorine and ozone concentrations. The radiation sensitivity of Mycobacteria allowed to suggest a device for their destroying by radiation. Some toxic substances in the underground water can be efficiently degraded by gamma radiation directly in the wells drilled as a hydraulic barrier surrounding the contaminated land area. Substantial decrease of CN - concentration and C.O.D. value was observed in water pumped from such well equipped with cobalt sources and charcoal. The removing of pathogenic contamination remains to be the main goal of radiation processing in the water purification technologies. The decrease of liquid sludge specific filter resistance and sedimentation acceleration by irradiation have a minor technological importance. The hygienization of sludge cake from the mechanical belt filter press by electron beam appears to be the optimum application in the Czechoslovak conditions. The potatoes and barley crop yields from experimental plots treated with sludge were higher in comparison with using the manure. Biological sludge from the municipal and food industry water purification plants contains nutritive components. The proper hygienization is a necessary condition for using them as a livestock feed supplement. Feeding experiments with broilers and pigs confirmed the possibility of partial (e.g. 50%) replacement of soya-, bone, or fish flour in feed mixtures by dried sludge hygienized either by heat or by the irradiation. (author)

  11. Post-treatment of reclaimed waste water based on an electrochemical advanced oxidation process

    Science.gov (United States)

    Verostko, Charles E.; Murphy, Oliver J.; Hitchens, G. D.; Salinas, Carlos E.; Rogers, Tom D.

    1992-01-01

    The purification of reclaimed water is essential to water reclamation technology life-support systems in lunar/Mars habitats. An electrochemical UV reactor is being developed which generates oxidants, operates at low temperatures, and requires no chemical expendables. The reactor is the basis for an advanced oxidation process in which electrochemically generated ozone and hydrogen peroxide are used in combination with ultraviolet light irradiation to produce hydroxyl radicals. Results from this process are presented which demonstrate concept feasibility for removal of organic impurities and disinfection of water for potable and hygiene reuse. Power, size requirements, Faradaic efficiency, and process reaction kinetics are discussed. At the completion of this development effort the reactor system will be installed in JSC's regenerative water recovery test facility for evaluation to compare this technique with other candidate processes.

  12. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    1983-10-01

    Three review articles are presented. The first describes the Lawrence Livermore Laboratory role in the research and development of oil-shale retorting technology through its studies of the relevant chemical and physical processes, mathematical models, and new retorting concepts. Second is a discussion of investigation of properties of dense molecular fluids at high pressures and temperatures to improve understanding of high-explosive behavior, giant-planet structure, and hydrodynamic shock interactions. Third, by totally computerizing the triple-quadrupole mass spectrometer system, the laboratory has produced a general-purpose instrument of unrivaled speed, selectivity, and adaptability for the analysis and identification of trace organic constituents in complex chemical mixtures. (GHT)

  13. Energy and technology review

    International Nuclear Information System (INIS)

    1983-10-01

    Three review articles are presented. The first describes the Lawrence Livermore Laboratory role in the research and development of oil-shale retorting technology through its studies of the relevant chemical and physical processes, mathematical models, and new retorting concepts. Second is a discussion of investigation of properties of dense molecular fluids at high pressures and temperatures to improve understanding of high-explosive behavior, giant-planet structure, and hydrodynamic shock interactions. Third, by totally computerizing the triple-quadrupole mass spectrometer system, the laboratory has produced a general-purpose instrument of unrivaled speed, selectivity, and adaptability for the analysis and identification of trace organic constituents in complex chemical mixtures

  14. Intended process water management concept for the mechanical biological treatment of municipal solid waste

    Institute of Scientific and Technical Information of China (English)

    D. Weichgrebe; S. Maerker; T. Boning; H. Stegemann

    2008-01-01

    Accumulating operational experience in both aerobic and anaerobic mechanical biological waste treatment (MBT) makes it increasingly obvious that controlled water management would substantially reduce the cost of MBT and also enhance resource recovery of the organic and inorganic fraction. The MBT plant at Gescher, Germany, is used as an example in order to determine the quantity and composition of process water and leachates from intensive and subsequent rotting, pressing water from anaerobic digestion and scrubber water from acid exhaust air treatment, and hence prepare an MBT water balance. The potential of, requirements for and limits to internal process water reuse as well as the possibilities of resource recovery from scrubber water are also examined. Finally, an assimilated process water management concept with the purpose of an extensive reduction of wastewater quantity and freshwater demand is presented.

  15. Treatment of tailings water from uranium ore processing by reverse osmosis

    International Nuclear Information System (INIS)

    Georgescu, D.P.; Andrei, L.

    2000-01-01

    Mining and metallurgical waste waters are considered to be the major sources of heavy metal contamination. The need of economic and effective methods for metals removal have resulted in the development of new separation technologies. Precipitation, ion exchange, electrochemical processes, filtration and flotation are commonly applied for industrial effluents treatment. Occasionally, the application of such processes is limited because of technical or economical constraints. The search for new technologies regarding the recovery and removal of toxic metals from waste waters has directed attention to membrane processes. These processes are developed in the recent years due to the availability of many new types of membranes. This paper presents the laboratory test results for liquid radioactive effluent treatment from alkaline uranium ore processing by reverse osmosis. (author)

  16. Revised ground-water monitoring compliance plan for the 300 area process trenches

    Energy Technology Data Exchange (ETDEWEB)

    Schalla, R.; Aaberg, R.L.; Bates, D.J.; Carlile, J.V.M.; Freshley, M.D.; Liikala, T.L.; Mitchell, P.J.; Olsen, K.B.; Rieger, J.T.

    1988-09-01

    This document contains ground-water monitoring plans for process-water disposal trenches located on the Hanford Site. These trenches, designated the 300 Area Process Trenches, have been used since 1973 for disposal of water that contains small quantities of both chemicals and radionuclides. The ground-water monitoring plans contained herein represent revision and expansion of an effort initiated in June 1985. At that time, a facility-specific monitoring program was implemented at the 300 Area Process Trenches as part of a regulatory compliance effort for hazardous chemicals being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interim-status facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The applicable monitoring requirements are described in the Resource Conservation and Recovery Act (RCRA), 40 CFR 265.90 of the federal regulations, and in WAC 173-303-400 of Washington State's regulations (Washington State Department of Ecology 1986). The program implemented for the process trenches was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. The plans for the program, contained in a document prepared by the US Department of Energy (USDOE) in 1985, called for monthly sampling of 14 of the 37 existing monitoring wells at the 300 Area plus the installation and sampling of 2 new wells. 27 refs., 25 figs., 15 tabs.

  17. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    International Nuclear Information System (INIS)

    Turner, J.P.; Hasfurther, V.

    1992-01-01

    The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 x 3.0 x 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells

  18. Process Design and Techno-economic Analysis for Materials to Treat Produced Waters.

    Energy Technology Data Exchange (ETDEWEB)

    Heimer, Brandon Walter [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Paap, Scott M [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sasan, Koroush [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Significant quantities of water are produced during enhanced oil recovery making these “produced water” streams attractive candidates for treatment and reuse. However, high concentrations of dissolved silica raise the propensity for fouling. In this paper, we report the design and economic analysis for a new ion exchange process using calcined hydrotalcite (HTC) to remove silica from water. This process improves upon known technologies by minimizing sludge product, reducing process fouling, and lowering energy use. Process modeling outputs included raw material requirements, energy use, and the minimum water treatment price (MWTP). Monte Carlo simulations quantified the impact of uncertainty and variability in process inputs on MWTP. These analyses showed that cost can be significantly reduced if the HTC materials are optimized. Specifically, R&D improving HTC reusability, silica binding capacity, and raw material price can reduce MWTP by 40%, 13%, and 20%, respectively. Optimizing geographic deployment further improves cost competitiveness.

  19. Large break frequency for the SRS (Savannah River Site) production reactor process water system

    International Nuclear Information System (INIS)

    Daugherty, W.L.; Awadalla, N.G.; Sindelar, R.L.; Bush, S.H.

    1989-01-01

    The objective of this paper is to present the results and conclusions of an evaluation of the large break frequency for the process water system (primary coolant system), including the piping, reactor tank, heat exchangers, expansion joints and other process water system components. This evaluation was performed to support the ongoing PRA effort and to complement deterministic analyses addressing the credibility of a double-ended guillotine break. This evaluation encompasses three specific areas: the failure probability of large process water piping directly from imposed loads, the indirect failure probability of piping caused by the seismic-induced failure of surrounding structures, and the failure of all other process water components. The first two of these areas are discussed in detail in other papers. This paper primarily addresses the failure frequency of components other than piping, and includes the other two areas as contributions to the overall process water system break frequency

  20. Ozone pretreatment of process waste water generated in course of fluoroquinolone production.

    Science.gov (United States)

    Daoud, Fares; Pelzer, David; Zuehlke, Sebastian; Spiteller, Michael; Kayser, Oliver

    2017-10-01

    During production of active pharmaceutical ingredients, process waste water is generated at several stages of manufacturing. Whenever possible, the resulting waste water will be processed by conventional waste water treatment plants. Currently, incineration of the process waste water is the method to eliminate compounds with high biological activity. Thus, ozone treatment followed by biological waste water treatment was tested as an alternative method. Two prominent representatives of the large group of fluoroquinolone antibiotics (ciprofloxacin and moxifloxacin) were investigated, focussing on waste water of the bulk production. Elimination of the target compounds and generation of their main transformation products were determined by liquid chromatography - high resolution mass spectrometry (LC-HRMS). The obtained results demonstrated, that the concentration of moxifloxacin and its metabolites can be effectively reduced (>99.7%) prior entering the receiving water. On the contrary, the concentration of ciprofloxacin and its metabolites remained too high for safe discharge, necessitating application of prolonged ozonation for its further degradation. The required ozonation time can be estimated based on the determined kinetics. To assure a low biological activity the ecotoxicity of the ozonated waste water was investigated using three trophic levels. By means of multiple-stage mass spectrometry (MS n ) experiments several new transformation products of the fluoroquinolones were identified. Thus, previously published proposed structures could be corrected or confirmed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Quantification of biomolecules in herring (Clupea harengus) industry processing waters and their recovery using electroflocculation and ultrafiltration

    DEFF Research Database (Denmark)

    Osman, Ali; Gringer, Nina; Svendsen, Tore

    2015-01-01

    Four types of herring industry processing waters; refrigerated sea water (RSW), storage water (SW), processing water from cutting (PW) and pre-salting brines (SB) were subjected to chemical characterization and biomolecule recovery using electroflocculation (EF) and ultrafiltration (UF). The high......Four types of herring industry processing waters; refrigerated sea water (RSW), storage water (SW), processing water from cutting (PW) and pre-salting brines (SB) were subjected to chemical characterization and biomolecule recovery using electroflocculation (EF) and ultrafiltration (UF...

  2. Water and processes of degradation in the Martian landscape

    Science.gov (United States)

    Milton, D. J.

    1973-01-01

    It is shown that erosion has been active on Mars so that many of the surface landforms are products of degradation. Unlike earth, erosion has not been a universal process, but one areally restricted and intermittently active so that a landscape is the product of one or two cycles of erosion and large areas of essentially undisturbed primitive terrain; running water has been the principal agent of degradation. Many features on Mars are most easily explained by assuming running surface water at some time in the past; for a few features, running water is the only possible explanation.

  3. Chemical and ecotoxicological assessments of water samples before and after being processed by a Water Treatment Plant

    Directory of Open Access Journals (Sweden)

    Regina Teresa Rosim Monteiro

    2014-01-01

    Full Text Available Physicochemical and ecotoxicological measurements were employed to appraise the water quality of the Corumbataí River raw water (RW intake, and that of its filtered (FW and treated (TW waters, processed by the Water Treatment Plant (WTP of Piracicaba (SP, Brazil during 2010. Some herbicides: ametrine, atrazine, simazine and tebuthiuron, were measured, with levels ranging from 0.01 to 10.3 µg L-1 . These were lower than those required to produce ecotoxicological effects to aquatic life based on published literature. Similarly, trihalomethanes, such as chloroform and bromodichloromethane produced as a result of the WTP process were also shown to be present in concentrations that would neither harm environmental nor human health. Elevated free chlorine concentrations found in FW and TW were credibly responsible for toxicity effects observed in algae and daphnids. (Pseudokirchneriella subcapitata and Daphnia magna. In contrast, results of toxicity testing conducted with Hydra attenuata suggested that this organism is resistant to free chorine and could be used for drinking water evaluations. Coupling bioassays with chemical analyses proved valuable to uncover putative cause-effect relationships existing between physical, chemical and toxic results, as well as in optimizing data interpretation of water quality.

  4. Adsorption of pesticides onto granular activated carbon in water treatment process

    OpenAIRE

    Kopecká, Ivana

    2010-01-01

    The diploma thesis is aimed at adsorption processes during the removal of pesticides onto granular activated carbon (GAC) in the process of drinking water treatment. Adsorption onto GAC represents an efficient method for pesticides removal. High adsorption efficiency can be significantly reduced due to the occurrence of natural organic matter (NOM) in raw water, which involves AOM (Algal Organic Matter) produced by phytoplankton. Analogous to NOM, AOM probably affects adsorption of pesticides...

  5. Plan and justification for a Proof-of-Concept oil shale facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The technology being evaluated is the Modified In-Situ (MIS) retorting process for raw shale oil production, combined with a Circulating Fluidized Bed Combustor (CFBC), for the recovery of energy from the mined shale. (VC)

  6. Plan and justification for a Proof-of-Concept oil shale facility

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The technology being evaluated is the Modified In-Situ (MIS) retorting process for raw shale oil production, combined with a Circulating Fluidized Bed Combustor (CFBC), for the recovery of energy from the mined shale. (VC)

  7. Numerical simulation of the electrodeionization (EDI) process accounting for water dissociation

    International Nuclear Information System (INIS)

    Lu Jun; Wang Yuxin; Zhu Jia

    2010-01-01

    The electrodeionization process (EDI) is usually operated at overlimiting current density, and is thus characterized by water dissociation and concentration polarization. We attempt to study the useful and harmful effects of water dissociation on the EDI process. A numerical steady state model was established to simulate the process of EDI, accounting for the effects of water dissociation. The differences in concentration polarization of membranes were investigated to study the effects of water dissociation on cation and anion membranes. Protons produced by water dissociation caused the resin to transform into the H-form. The H-form resin, which has high conductivity and high transport number, depletes protons in the interstitial solution. This explains the experimentally detected phenomenon that at high current densities, the pH value of the effluency of the dilute compartment (DC) stops decreasing when current increases. We suggest that the useful role of water dissociation in EDI is due to the H-form resin bringing more salt cations of the interstitial solution into the resin phase, thus producing a high conductivity channel for the electro-migration of the salt cations. This mechanism avoids the decrease in salt ion conductivity brought about by concentration polarization. The disadvantageous effect of concentration polarization on the transportation of salt ions in interstitial solution is thus lessened. An intermediate point between the useful and harmful effects of water dissociation was determined by the dependence of current efficiency and removal rate for both cations and anions as a function of current density.

  8. Process for purification of waste water produced by a Kraft process pulp and paper mill

    Science.gov (United States)

    Humphrey, M. F. (Inventor)

    1979-01-01

    The water from paper and pulp wastes obtained from a mill using the Kraft process is purified by precipitating lignins and lignin derivatives from the waste stream with quaternary ammonium compounds, removing other impurities by activated carbon produced from the cellulosic components of the water, and then separating the water from the precipitate and solids. The activated carbon also acts as an aid to the separation of the water and solids. If recovery of lignins is also desired, then the precipitate containing the lignins and quaternary ammonium compounds is dissolved in methanol. Upon acidification, the lignin is precipitated from the solution. The methanol and quaternary ammonium compound are recovered for reuse from the remainder.

  9. Destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, A; Renfrewshire, I; Black, W

    1889-06-14

    The invention relates to a method of, and apparatus for, distilling shale, coal, or other oil or tar-yielding minerals, to obtain gases, liquids, or other products. The distillation is effected in vertical retorts by the combustion of the partially spent material in the lower part of the retorts, to which steam and air are admitted. The retorts are built of firebrick, and provided with iron casings. They are fed through hoppers and discharged through the openings. The discharging is facilitated by a cone, or its equivalent, in the base of each retort. Steam and air are admitted through the pipes. The interior may be viewed through holes. The products are taken off from the space around the hopper.

  10. Introducing the concept of critical Fo in batch heat processing Introduzindo o conceito de Fo crítico no processamento térmico em batelada

    Directory of Open Access Journals (Sweden)

    Homero Ferracini Gumerato

    2009-12-01

    Full Text Available The determination of the sterilization value for low acid foods in retorts includes a critical evaluation of the factory's facilities and utilities, validation of the heat processing equipment (by heat distribution assays, and finally heat penetration assays with the product. The intensity of the heat process applied to the food can be expressed by the Fo value (sterilization value, in minutes, at a reference temperature of 121.1 °C, and a thermal index, z, of 10 °C, for Clostridium botulinum spores. For safety reasons, the lowest value for Fo is frequently adopted, being obtained in heat penetration assays as indicative of the minimum process intensity applied. This lowest Fo value should always be higher than the minimum Fo recommended for the food in question. However, the use of the Fo value for the coldest can fail to statistically explain all the practical occurrences in food heat treatment processes. Thus, as a result of intense experimental work, we aimed to develop a new focus to determine the lowest Fo value, which we renamed the critical Fo. The critical Fo is based on a statistical model for the interpretation of the results of heat penetration assays in packages, and it depends not only on the Fo values found at the coldest point of the package and the coldest point of the equipment, but also on the size of the batch of packages processed in the retort, the total processing time in the retort, and the time between CIPs of the retort. In the present study, we tried to explore the results of physical measurements used in the validation of food heat processes. Three examples of calculations were prepared to illustrate the methodology developed and to introduce the concept of critical Fo for the processing of canned food.A determinação do valor de esterilização de alimentos de baixa acidez em autoclaves compreende uma minuciosa avaliação das instalações e utilidades da fábrica, uma validação do equipamento de processo t

  11. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    Science.gov (United States)

    Allada, Rama Kumar; Lange, Kevin; Anderson, Molly

    2011-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA) that were developed using the Aspen Custom Modeler and Aspen Plus process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  12. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    Science.gov (United States)

    Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.

    2012-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA). These dynamic models were developed using the Aspen Custom Modeler (Registered TradeMark) and Aspen Plus(Registered TradeMark) process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  13. Waste water processing technology for Space Station Freedom - Comparative test data analysis

    Science.gov (United States)

    Miernik, Janie H.; Shah, Burt H.; Mcgriff, Cindy F.

    1991-01-01

    Comparative tests were conducted to choose the optimum technology for waste water processing on SSF. A thermoelectric integrated membrane evaporation (TIMES) subsystem and a vapor compression distillation subsystem (VCD) were built and tested to compare urine processing capability. Water quality, performance, and specific energy were compared for conceptual designs intended to function as part of the water recovery and management system of SSF. The VCD is considered the most mature and efficient technology and was selected to replace the TIMES as the baseline urine processor for SSF.

  14. An alternative process to treat boiler feed water for reuse.

    Science.gov (United States)

    Guirgis, Adel; Ghosh, Jyoti P; Achari, Gopal; Langford, Cooper H; Banerjee, Daliya

    2012-09-01

    A bench-scale process to treat boiler feed water for reuse in steam generation was developed. Industrial water samples from a steam-assisted gravity drainage plant in northern Alberta, Canada, were obtained and samples characterized. The technology, which consists of coagulation-settling to remove oil/grease and particulates followed by an advanced oxidative treatment, led to clean water samples with negligible organic carbon. Coagulation followed by settling removed most particulates and some insoluble organics. The advanced oxidative treatment removed any remaining color in the samples, decreased the organic content to near-zero, and provided water ready for reuse.

  15. Hydrological balance and water transport processes of partially sealed soils

    Science.gov (United States)

    Timm, Anne; Wessolek, Gerd

    2017-04-01

    With increased urbanisation, soil sealing and its drastic effects on hydrological processes have received a lot of attention. Based on safety concerns, there has been a clear focus on urban drainage and prevention of urban floods caused by storm water events. For this reason, any kind of sealing is often seen as impermeable runoff generator that prevents infiltration and evaporation. While many hydrological models, especially storm water models, have been developed, there are only a handful of empirical studies actually measuring the hydrological balance of (partially) sealed surfaces. These challenge the general assumption of negligible infiltration and evaporation and show that these processes take place even for severe sealing such as asphalt. Depending on the material, infiltration from partially sealed surfaces can be equal to that of vegetated ones. Therefore, more detailed knowledge is needed to improve our understanding and models. In Berlin, two partially sealed weighable lysimeters were equipped with multiple temperature and soil moisture sensors in order to study their hydrological balance, as well as water and heat transport processes within the soil profile. This combination of methods affirms previous observations and offers new insights into altered hydrological processes of partially sealed surfaces at a small temporal scale. It could be verified that not all precipitation is transformed into runoff. Even for a relatively high sealing degree of concrete slabs with narrow seams, evaporation and infiltration may exceed runoff. Due to the lack of plant roots, the hydrological balance is mostly governed by precipitation events and evaporation generally occurs directly after rainfall. However, both surfaces allow for upward water transport from the upper underlying soil layers, sometimes resulting in relatively low evaporation rates on days without precipitation. The individual response of the surfaces differs considerably, which illustrates how

  16. Technology advancement of the static feed water electrolysis process

    Science.gov (United States)

    Schubert, F. H.; Wynveen, R. A.

    1977-01-01

    A program to advance the technology of oxygen- and hydrogen-generating subsystems based on water electrolysis was studied. Major emphasis was placed on static feed water electrolysis, a concept characterized by low power consumption and high intrinsic reliability. The static feed based oxygen generation subsystem consists basically of three subassemblies: (1) a combined water electrolysis and product gas dehumidifier module; (2) a product gas pressure controller and; (3) a cyclically filled water feed tank. Development activities were completed at the subsystem as well as at the component level. An extensive test program including single cell, subsystem and integrated system testing was completed with the required test support accessories designed, fabricated, and assembled. Mini-product assurance activities were included throughout all phases of program activities. An extensive number of supporting technology studies were conducted to advance the technology base of the static feed water electrolysis process and to resolve problems.

  17. THE SEQUENTIAL WATER TREATMENT CONTAINING MYCOESTROGENS IN PHOTOCATALYSIS AND NANOFILTRATION PROCESSES

    Directory of Open Access Journals (Sweden)

    Mariusz Dudziak

    2014-10-01

    Full Text Available The results of the study focused on the impact of membrane on the performance of the integrated system photocatalysis/nanofiltration applied to remove mycoestrogens from water are discussed in the paper. The results were compared with ones obtained during single step photocatalysis and nanofiltration processes. The subject of the study were simulated waters containing difference concentration of humic acids to which mycoestrogens were added to the concentration level 500 μg/dm3. It was shown, that the application of integrated system improved the efficiency of mycoestrogens removal in comparison with single step photocatalysis process. In case of nanofiltration, the efficiency of the treatment was comparable in both, integrated and single nanofiltration processes regardless of the membrane type applied. However, it was found that investigated membranes differ in the affinity to fouling and removal rate of inorganic compounds, what should be considered during water treatment technology development.

  18. Characterizing natural organic matter in drinking water treatment processes and trains

    NARCIS (Netherlands)

    Baghoth, S.A.

    2012-01-01

    Natural organic matter (NOM) generally influences water treatment processes such as coagulation, oxidation, adsorption, and membrane filtration. NOM contributes colour, taste and odour in drinking water, fouls membranes, serves as a precursor for disinfection by-products, increases the exhaustion

  19. Study of the Use of Oxygen-Absorbing Packaging Material to Prolong Shelf-Life of Rations

    Science.gov (United States)

    2010-05-28

    ingress reducing the quality of packaged products containing high oil content, including MRE hot fill non- retort items such as cheese spread, and mayonnaise...problem of oxygen ingress reducing the quality of packaged products containing high oil content, including MRE hot fill non- retort items such as cheese...for the use of the new oxygen absorber technology to all combat ration packages that have head spacing issues, including retort MRE pouches. It was

  20. Gas manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Fell, J W

    1915-05-03

    Retorts for the distillation of shale or coal for the production of oil or illuminating-gas are heated by gas from a generator or a gas-holder, and a portion of the gas from the flue leading to the heating-flues is forced by a steam jet through a by-pass and is injected into the bottom of the retorts. If the gas to be admitted to the retort is cold, it is first heated.

  1. Desulfurized gas production from vertical kiln pyrolysis

    Science.gov (United States)

    Harris, Harry A.; Jones, Jr., John B.

    1978-05-30

    A gas, formed as a product of a pyrolysis of oil shale, is passed through hot, retorted shale (containing at least partially decomposed calcium or magnesium carbonate) to essentially eliminate sulfur contaminants in the gas. Specifically, a single chambered pyrolysis vessel, having a pyrolysis zone and a retorted shale gas into the bottom of the retorted shale zone and cleaned product gas is withdrawn as hot product gas near the top of such zone.

  2. Heavy water GS process R and D achievements

    International Nuclear Information System (INIS)

    Bancroft, A.R.

    1978-10-01

    R and D support of Canadian heavy water production plants during the past five years has involved mainly AECL and Ontario Hydro, and their contractors. Testing has been done in the production plants, in two pilot plants and in research laboratories on topics that include sieve tray design, in-plant behaviour of oil and sulfur and choice of antifoam agent to control excessive foaming. The benefits are increased production through higher plant flows and higher extraction of deuterium from the feed, less down time because of process problems and lower cost for materials used to control water chemistry. (author)

  3. Process for treating waste water having low concentrations of metallic contaminants

    Science.gov (United States)

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L; Payne, William L

    2014-12-16

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  4. Water saving in IC wafer washing process; IC wafer senjo deno sessui taisaku

    Energy Technology Data Exchange (ETDEWEB)

    Harada, H. [Mitsubishi Corp., Tokyo (Japan); Araki, M.; Nakazawa, T.

    1997-11-30

    This paper reports features of a wafer washing technology, a new IC wafer washing process, its pure water saving effect, and a `QC washing` which has pure water saving effect in the wafer washing. Wafer washing processes generally include the SC1 process (using ammonia + hydrogen peroxide aqueous solution) purposed for removing contamination due to ultrafine particles, the SC2 process (using hydrochloric acid + hydrogen peroxide aqueous solution) purposed for removing contamination due to heavy metals, the piranha washing process (using hot sulfuric acid + hydrogen peroxide aqueous solution) purposed for removing contamination due to organic matters, and the DHF (using dilute hydrofluoric acid) purposed for removing natural oxide films. Natural oxide films are now remained as surface protection films, by which surface contamination has been reduced remarkably. A high-temperature washing chemical circulating and filtering technology developed in Japan has brought about a reform in wafer washing processes having been used previously. Spin washing is used as a water saving measure, in which washing chemicals or pure water are sprayed onto one each of wafers which is spin-rotated, allowing washing and rinsing to be made with small amount of washing chemicals and pure water. The QC washing is a method to replace tank interior with pure was as quick as possible in order to increase the rinsing effect. 7 refs., 5 figs.

  5. Water recovery and solid waste processing for aerospace and domestic applications. Volume 1: Final report

    Science.gov (United States)

    Murray, R. W.

    1973-01-01

    A comprehensive study of advanced water recovery and solid waste processing techniques employed in both aerospace and domestic or commercial applications is reported. A systems approach was used to synthesize a prototype system design of an advanced water treatment/waste processing system. Household water use characteristics were studied and modified through the use of low water use devices and a limited amount of water reuse. This modified household system was then used as a baseline system for development of several water treatment waste processing systems employing advanced techniques. A hybrid of these systems was next developed and a preliminary design was generated to define system and hardware functions.

  6. IMPROVEMENT OF COAGULATION PROCESS FOR THE PRUT RIVER WATER TREATMENT USING ALUMINUM SULPHATE

    Directory of Open Access Journals (Sweden)

    Larisa Postolachi

    2015-06-01

    Full Text Available The aim of presented research was to optimize the treatment process of the Prut River water. In order to realize the proposed goal, there were studied the following factors which can improve the process of coagulation: (i the influence of stirring speed during coagulation and (ii the influence of the concentration of the coagulant solution added in the process of coagulation. The optimal conditions of coagulation were established using the Jar-test method. Application of the recommended procedure contribute to the reduction of the coagulant dose, the contact time, the aluminum concentration in water and the expenses for water treatment.

  7. The water vapor nitrogen process for removing sodium from LMFBR components

    Energy Technology Data Exchange (ETDEWEB)

    Crippen, M D; Funk, C W; Lutton, J M [Hanford Engineering Development Laboratory, Richland (United States)

    1978-08-01

    Application and operation of the Water Vapor-Nitrogen Process for removing sodium from LMFBR components is reviewed. Emphasis is placed on recent efforts to verify the technological bases of the process, to refine the values of process parameters and to ensure the utility of the process for cleaning and requalifying components. (author)

  8. Use of a water treatment sludge in a sewage sludge dewatering process

    Science.gov (United States)

    Górka, Justyna; Cimochowicz-Rybicka, Małgorzata; Kryłów, Małgorzata

    2018-02-01

    The objective of the research study was to determine whether a sewage sludge conditioning had any impact on sludge dewaterability. As a conditioning agent a water treatment sludge was used, which was mixed with a sewage sludge before a digestion process. The capillary suction time (CST) and the specific filtration resistance (SRF) were the measures used to determine the effects of a water sludge addition on a dewatering process. Based on the CST curves the water sludge dose of 0.3 g total volatile solids (TVS) per 1.0 g TVS of a sewage sludge was selected. Once the water treatment sludge dose was accepted, disintegration of the water treatment sludge was performed and its dewaterability was determined. The studies have shown that sludge dewaterability was much better after its conditioning with a water sludge as well as after disintegration and conditioning, if comparing to sludge with no conditioning. Nevertheless, these findings are of preliminary nature and future studies will be needed to investigate this topic.

  9. Water-Energy Correlations: Analysis of Water Technologies, Processes and Systems in Rural and Urban India

    Science.gov (United States)

    Murumkar, A. R.; Gupta, S.; Kaurwar, A.; Satankar, R. K.; Mounish, N. K.; Pitta, D. S.; Virat, J.; Kumar, G.; Hatte, S.; Tripathi, R. S.; Shedekar, V.; George, K. J.; Plappally, A. K.

    2015-12-01

    In India, the present value of water, both potable and not potable, bears no relation to the energy of water production. However, electrical energy spent on ground water extraction alone is equivalent to the nation's hydroelectric capacity of 40.1 GWh. Likewise, desalinating 1m3 water of the Bay of Bengal would save three times the energy for potable ground water extraction along the coast of the Bay. It is estimated that every second woman in rural India expends 0.98 kWhe/m3/d for bringing water for household needs. Yet, the water-energy nexus remains to be a topic which is gravely ignored. This is largely caused by factors such as lack of awareness, defective public policies, and intrusive cultural practices. Furthermore, there are instances of unceasing dereliction towards water management and maintenance of the sparsely distributed water and waste water treatment plants across the country. This pollutes the local water across India apart from other geogenic impurities. Additionally, product aesthetics and deceptive advertisements take advantage of the abulia generated by users' ignorance of technical specifications of water technologies and processes in mismanagement of water use. Accordingly, urban residents are tempted to expend on energy intensive water technologies at end use. This worsens the water-energy equation at urban households. Cooking procedures play a significant role in determining the energy expended on water at households. The paper also evaluates total energy expense involved in cultivating some major Kharif and Rabi crops. Manual and traditional agricultural practices are more prominent than mechanized and novel agricultural techniques. The specific energy consumption estimate for different water technologies will help optimize energy expended on water in its life cycles. The implication of the present study of water-energy correlation will help plan and extend water management infrastructure at different locations across India.

  10. Application of forward osmosis membrane technology for oil sands process-affected water desalination.

    Science.gov (United States)

    Jiang, Yaxin; Liang, Jiaming; Liu, Yang

    2016-01-01

    The extraction process used to obtain bitumen from the oil sands produces large volumes of oil sands process-affected water (OSPW). As a newly emerging desalination technology, forward osmosis (FO) has shown great promise in saving electrical power requirements, increasing water recovery, and minimizing brine discharge. With the support of this funding, a FO system was constructed using a cellulose triacetate FO membrane to test the feasibility of OSPW desalination and contaminant removal. The FO systems were optimized using different types and concentrations of draw solution. The FO system using 4 M NH4HCO3 as a draw solution achieved 85% water recovery from OSPW, and 80 to 100% contaminant rejection for most metals and ions. A water backwash cleaning method was applied to clean the fouled membrane, and the cleaned membrane achieved 77% water recovery, a performance comparable to that of new FO membranes. This suggests that the membrane fouling was reversible. The FO system developed in this project provides a novel and energy efficient strategy to remediate the tailings waters generated by oil sands bitumen extraction and processing.

  11. Evaluation of different treatment processes with respect to mutagenic activity in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Kool, H J; Hrubec, J; van Kreijl, C F; Piet, G J

    1985-12-01

    Treatment processes which are applied in The Netherlands during the preparation of drinking water have been evaluated with regard to introduction and removal of organic mutagens as well as halogenated organics. It appeared that the most efficient processes in reducing mutagenic activity were activated carbon filtration and artificial dune recharge. In general these processes were also the most efficient in removing halogenated organics. Using low doses of chlorine dioxide (less than 1 mg C1O2/l) for safety disinfection of drinking water, no change or substantial less mutagenic activity than by chlorination (1 mg Cl/l) was found. This counts too for the formation of halogenated organics. Transport chlorination of stored river Meuse water was able to introduce or activate mutagenic nitro organics which have not been found previously. Ozone treatment under field conditions showed mostly a tendency to decrease the activity of organic mutagens. It was also shown that dependent on the water quality and treatment conditions a slight increase of mutagenic activity occurred, but this activity would be reduced by increasing the ozone dose. It seems possible to optimize the ozone treatment conditions regarding the level of ozone dose and the contact time to avoid an increase of mutagenic activity. Furthermore it was shown that when a mutagenic raw water source was used a proper combination of treatment processes is able to produce drinking water in which no mutagenic activity could be detected under the test conditions. Finally it is stated that before far-reaching decisions with respect to use mutagenicity data for a selection of water sources or treatment processes will be made, more information on the relation mutagenic activity from drinking water and effects on human health should become available.

  12. Optimization of desalting process with centrifugation for condensation process of uranium from sea water

    International Nuclear Information System (INIS)

    Yamamoto, Tatsuya; Takase, Hisao; Fukuoka, Fumio

    1984-01-01

    Optimization of desalting of the slurry on the condensation process by the deposited slurry method for the recovery of uranium from sea water was studied. We have already published that the uranium rich deposit containing seven ppm uranium could be made on the sea bottom by the deposited slurry method. Uranium can be transferred to the anion exchange resin from titanic acid in the slurry. But in this case Cl - ions obstruct the adsorption of uranium on the anion exchange resin, so the slurry must be desalted before RIP method. It is considered that the cost of desalting of the slurry stage would be a large portion of the capital cost for the recovery of uranium from sea water. The cost of water required is comparable to the cost of energy so that the objective function consists of the cost of energy and the quantity of water. The consumption of energy and water required for desalting of the slurry with the multi-stage centrifugation were oprimized based on dynamic programming. (author)

  13. Process water treatment in Canada's oil sands industry : 2 : a review of emerging technologies

    International Nuclear Information System (INIS)

    Allen, E.W.

    2008-01-01

    This review was conducted to identify candidate treatment technologies for treating oil sands process water. The oil sands industry in Canada uses large volumes of fresh water in order to extract bitumen deposits. The development of process water treatment technologies has become a critical issue for the industry, particularly as oil sand production is expected to triple in the next decade. However, treatment technologies must be adapted to consider the fouling potential of bitumens and fine clays as well as the effect of alkaline process water on treatment performance. The review included developments in chemical modifications to membranes and adsorbents designed to improve pollutant removal and reduce fouling; hybridization technologies designed to enhance the biological treatment of toxic feedwaters; recent advances in photocatalytic oxidation technologies for organic compounds; and new designs for large-scale treatment wetlands for polluted waste waters. It was concluded that major knowledge gaps must be optimized and preliminary studies must be conducted in order to understand how the treatment technologies will be affected by the chemical and physical characteristics of oil sands process water. 188 refs., 8 tabs

  14. Distillation of solid carbonaceous material

    Energy Technology Data Exchange (ETDEWEB)

    Burney, C D

    1918-08-31

    A method of distilling carbonaceous material at low or moderate temperatures is described in which the main supply of gases for heating the material under treatment is generated in a combustion chamber located externally of the retort chamber from which combustion chamber the gases are withdrawn and passed under control through hollow elements located within the retort chamber in such manner as to insure the production of the desired temperature gradient along the length of the retort, the said elements being so constructed that they serve to bring the heating gases into indirect contact with the material undergoing treatment while also moving the material progressively through the retort in the opposite direction to that in which the heating gases flow.

  15. Evaluation of Effectiveness Technological Process of Water Purification Exemplified on Modernized Water Treatment Plant at Otoczna

    Science.gov (United States)

    Jordanowska, Joanna; Jakubus, Monika

    2014-12-01

    The article presents the work of the Water Treatment Plant in the town of Otoczna, located in the Wielkopolska province, before and after the modernization of the technological line. It includes the quality characteristics of the raw water and treated water with particular emphasis on changes in the quality indicators in the period 2002 -2012 in relation to the physicochemical parameters: the content of total iron and total manganese, the ammonium ion as well as organoleptic parameters(colour and turbidity). The efficiency of technological processes was analysed, including the processes of bed start up with chalcedonic sand to remove total iron and manganese and ammonium ion. Based on the survey, it was found that the applied modernization helped solve the problem of water quality, especially the removal of excessive concentrations of iron, manganese and ammonium nitrogen from groundwater. It has been shown that one year after modernization of the technological line there was a high reduction degree of most parameters, respectively for the general iron content -99%, general manganese - 93% ammonia - 93%, turbidity - 94%. It has been proved, that chalcedonic turned out to be better filter material than quartz sand previously used till 2008. The studies have confirmed that the stage of modernization was soon followed by bed start-up for removing general iron from the groundwater. The stage of manganese removal required more time, about eight months for bed start-up. Furthermore, the technological modernization contributed to the improvement of the efficiency of the nitrification process.

  16. Process for the production of furfural from pentoses and/or water soluble pentosans

    NARCIS (Netherlands)

    De Jong, W.; Marcotullio, G.

    2012-01-01

    The invention is directed to a process for the production of furfural from pentoses and/or water soluble pentosans, said process comprising converting the said pentoses and/or water soluble pentosans in aqueous solution in a first step to furfural and in a second step feeding the aqueous solution

  17. development of an automated batch-process solar water disinfection

    African Journals Online (AJOL)

    user

    This work presents the development of an automated batch-process water disinfection system ... Locally sourced materials in addition to an Arduinomicro processor were used to control ..... As already mentioned in section 3.1.1, a statistical.

  18. The effect of process water salinity on flotation of copper ore from Lubin mining region (SW Poland

    Directory of Open Access Journals (Sweden)

    Bakalarz Alicja

    2017-01-01

    Full Text Available The process water used for the flotation of sedimentary copper ore in ore concentration plants in KGHM Polska Miedz S.A. were characterized. The process water used in the flotation circuits is heavily saline. It contains between 25 and 45 g/dm3 of soluble components, and the main constituent, in about 75%, is NaCl. Process water used for flotation consists of reclaimed water from the tailing dam and mine water. The effect of process water salinity on the processes of copper flotation from the Lubin mine area was described. The results of laboratory flotation experiments conducted in tap water and in water of different salinity levels were compared. The effect of the salinity of water within specified concentration limits was generally found to be beneficial for upgrading of the examined ore.

  19. The rSPA Processes of River Water-quality Analysis System for Critical Contaminate Detection, Classification Multiple-water-quality-parameter Values and Real-time Notification

    OpenAIRE

    Chalisa VEESOMMAI; Yasushi KIYOKI

    2016-01-01

    The water quality analysis is one of the most important aspects of designing environmental systems. It is necessary to realize detection and classification processes and systems for water quality analysis. The important direction is to lead to uncomplicated understanding for public utilization. This paper presents the river Sensing Processing Actuation processes (rSPA) for determination and classification of multiple-water- parameters in Chaophraya river. According to rSPA processes of multip...

  20. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    International Nuclear Information System (INIS)

    Hindin, S.G.; Roberts, G.W.

    1977-01-01

    A process is described for exchanging isotopes (particularly tritium) between water and gaseous hydrogen. Isotope depleted gaseous hydrogen and water containing a hydrogen isotope are introduced into the vapour phase in a first reaction area. The steam and gaseous hydrogen are brought into contact with a supported metal catalyst in this area in a parallel flow at a temperature range of around 225 and 300 0 C. An effluent flow comprising a mixture of isotope enriched gaseous hydrogen and depleted steam is evacuated from this area and the steam condensed into liquid water [fr

  1. Low temperature distillation

    Energy Technology Data Exchange (ETDEWEB)

    Vandegrift, J N; Postel, C

    1929-04-09

    To recover gas, oil tars, and coked residues by low temperature distillation from bituminous coals, lignites, oil shales, and the like, the raw material is fed from a hopper into a rotary retort which is zonally heated, the temperature being greatest at the discharge end. The material is heated first to a relatively low temperature, thereby removing the moisture and lighter volatiles which are withdrawn through a pipe by the suction of a pump, while the higher boiling point volatiles and fixed gases are withdrawn by suction through an outlet from the higher temperature zone. The vapors withdrawn from the opposite ends of the retort pass through separate vapor lines and condensers, and the suction in each end of the retort, caused by the pumps, is controlled by valves, which also control the location of the neutral point in the retort formed by said suction. Air and inert gas may be introduced into the retort from pipe and stack respectively through a pipe, and steam may be admitted into the high temperature zone through a pipe.

  2. Destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    Young, W

    1877-03-29

    The method consists in agitating or circulating the distillation products inside the retort by means of jets of gas, steam, or vapor, or by means of reciprocating pistons; condensing certain of the heavy hydrocarbons; sealing or luting the doors of retorts or distilling-vessels; and conducting the distillation for the manufacture of oil so that the charging or discharging doors may be fitted with self-sealing lids. Several arrangements are shown and described; a single horizontal retort is divided into two compartments by a perforated plate which supports the coal, shale, or other bituminous substance, beneath which a piston is reciprocated or a jet of steam, gas, or vapor injected; a vertical retort is fitted with a central tube into which steam, gas, or vapor is injected, or it may be divided into two compartments and the jet injected into one of these; a pair of vertical retorts are connected by a horizontal passage at the top and bottom, and into the upper one steam, gas, or vapor is injected, or the lower one is fitted with a piston.

  3. Integrating Process and Factor Understanding of Environmental Innovation by Water Utilities

    NARCIS (Netherlands)

    Spiller, Marc; McIntosh, Brian S.; Seaton, Roger A.F.; Jeffrey, Paul J.

    2015-01-01

    Innovations in technology and organisations are central to enabling the water sector to adapt to major environmental changes such as climate change, land degradation or drinking water pollution. While there are literatures on innovation as a process and on the factors that influence it, there is

  4. Effects of water treatment processes used at waterworks on natural radionuclide concentrations

    International Nuclear Information System (INIS)

    Haemaelaeinen, K.; Vesterbacka, P.; Maekelaeinen, I.; Arvela, H.

    2004-08-01

    The occurrence of uranium and other natural radionuclides in waters of waterworks and the effects of the conventional water treatment processes on radionuclide concentrations were investigated. Water samples were collected from 17 waterworks. Radionuclide concentrations of the collected samples were compared to the currently valid concentrations according to the Finnish regulation, ST guide 12.3. Similarly the measured concentrations were compared to the values presented in the 98/83/EC directive and in the Commission recommendation, 2001/928/Euratom. The guidelines based on chemical toxicity of uranium were also considered. This report presents a summary of the radionuclide concentrations in waters distributed by waterworks. Short-term and logn-term temporal variation of radionuclide levels in raw water were also investigated. Waterworks selected to this study used different kinds of raw water sources and a variety of water treatment processes. Water samples were collected from 46 water catchments which used groundwater in soil, artificial groundwater or groundwater in bedrock as a source of raw water. The most common water treatment used in these catchments was alkalization. Other treatment processes used were various types of filtrations (sand, anthracite, slow sand and membrane filtration) and aeration. Four of the catchments distributed water without treatment. Sampling was carried out in co-operation with local health inspectors and waterworks staff in spring 2002. Later that autumn, monitoring samples were collected from eight catchments. The maximum value for radon, presented in ST guide 12.3, was exceeded in three water catchments that used groundwater in bedrock as a source of raw water. No exceedings were found in those water catchments that use groundwater in soil or artificial groundwater. The limits of uranium and radium calculated from the total indicative dose (98/83/EC) were not exceeded but the guidelines for lead and polonium, given in the

  5. 40 CFR 63.11433 - What definitions apply to this subpart?

    Science.gov (United States)

    2010-07-01

    ... vessel, usually a retort, and the application of pneumatic or hydrostatic pressure to expedite the... in 40 CFR 70.2. Retort means an airtight pressure vessel, typically a long horizontal cylinder, used...

  6. Effectiveness of Water Desalination by Membrane Distillation Process

    Directory of Open Access Journals (Sweden)

    Marek Gryta

    2012-07-01

    Full Text Available The membrane distillation process constitutes one of the possibilities for a new method for water desalination. Four kinds of polypropylene membranes with different diameters of capillaries and pores, as well as wall thicknesses were used in studied. The morphology of the membrane used and the operating parameters significantly influenced process efficiency. It was found that the membranes with lower wall thickness and a larger pore size resulted in the higher yields. Increasing both feed flow rate and temperature increases the permeate flux and simultaneously the process efficiency. However, the use of higher flow rates also enhanced heat losses by conduction, which decreases the thermal efficiency. This efficiency also decreases when the salt concentration in the feed was enhanced. The influence of fouling on the process efficiency was considered.

  7. Automated processing for proton spectroscopic imaging using water reference deconvolution.

    Science.gov (United States)

    Maudsley, A A; Wu, Z; Meyerhoff, D J; Weiner, M W

    1994-06-01

    Automated formation of MR spectroscopic images (MRSI) is necessary before routine application of these methods is possible for in vivo studies; however, this task is complicated by the presence of spatially dependent instrumental distortions and the complex nature of the MR spectrum. A data processing method is presented for completely automated formation of in vivo proton spectroscopic images, and applied for analysis of human brain metabolites. This procedure uses the water reference deconvolution method (G. A. Morris, J. Magn. Reson. 80, 547(1988)) to correct for line shape distortions caused by instrumental and sample characteristics, followed by parametric spectral analysis. Results for automated image formation were found to compare favorably with operator dependent spectral integration methods. While the water reference deconvolution processing was found to provide good correction of spatially dependent resonance frequency shifts, it was found to be susceptible to errors for correction of line shape distortions. These occur due to differences between the water reference and the metabolite distributions.

  8. REMOVAL OF ARSENIC FROM DRINKING WATER SUPPLIES BY IRON REMOVAL PROCESS

    Science.gov (United States)

    This design manual is an in-depth presentation of the steps required to design and operate a water treatment plant for removal of arsenic in the As (V) form from drinking water using an iron removal process. The manual also discusses the capital and operating costs including many...

  9. Water treatment process in the JEN-1 Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Urgel, M; Perez-Bustamante, J A; Batuecas, T

    1965-07-01

    The main characteristics and requirements which must be met with by waters to be used for nuclear reactors were studied paying attention separately both to those used in primary and secondary circuits as well as to the purification systems to be employed in each case. The experiments carried out for the initial pretreatment of water and the ion-exchange de ionization processes including a number of systems consisting of separated and mixed beds loaded with a variety of different commercially available resins are described. (Author) 24 refs.

  10. Water treatment process in the JEN-1 Research Reactors

    International Nuclear Information System (INIS)

    Urgel, M.; Perez-Bustamante, J. A.; Batuecas, T.

    1965-01-01

    The main characteristics and requirements which must be met with by waters to be used for nuclear reactors were studied paying attention separately both to those used in primary and secondary circuits as well as to the purification systems to be employed in each case. The experiments carried out for the initial pretreatment of water and the ion-exchange de ionization processes including a number of systems consisting of separated and mixed beds loaded with a variety of different commercially available resins are described. (Author) 24 refs

  11. Ukrainian brown-coal tars recovered at low-temperature carbonization with solid heating medium

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, V I; Govorova, R P; Fadeicheva, A G; Kigel, T B; Chernykh, M K

    1955-01-01

    Three samples of tar were recovered in the laboratory from brown coals carbonized at 375/sup 0/ to 456/sup 0/ +- 25/sup 0/ in a retort with inner heating by solid circulating medium, namely, semicoke (ratio: 4 or 3:1) first heated to 700/sup 0/. One comparative (parallel) experiment was carried out in a retort with inner heating by inert gases entering the retort at 580/sup 0/ to 600/sup 0/ and leaving it at 115/sup 0/ to 120/sup 0/. The tars that were recovered from the retort with the solid heating medium contained a high percentage of coal dust and moisture, which were separated from the tars in supercentrifuges (15,000 rpm). Four samples of cleaned tars were fractionated in a Cu flask with a 2-ball fractional column. The tars from the retort with the solid-heating medium are characterized by increased yield of the petroleum-ether fraction (16.3 or 19.3%) and decreased yield of the paraffin fraction (15.1 to 21.2%) in comparison with those of tar from the retort with gas heating (5.9% of the petroleum ether fraction and 36.5% of paraffin fraction). The yield of paraffin from the paraffin fraction also decreased from 90.6% to 62.6-74.3%. This result shows that in the first case the carbonized products were cracked to a higher degree than those from the retort with gas heating. In raw phenols recovered from fractions of investigated tars, the yield of the phenol-cresol fraction (182/sup 0/ to 204/sup 0/) decreased from 25.9% to 13.0-18.9%.

  12. Low cost and conformal microwave water-cut sensor for optimizing oil production process

    KAUST Repository

    Karimi, Muhammad Akram

    2015-01-01

    Efficient oil production and refining processes require the precise measurement of water content in oil (i.e., water-cut) which is extracted out of a production well as a byproduct. Traditional water-cut (WC) laboratory measurements are precise

  13. Respiratory symptoms among industrial workers exposed to water aerosol. A pilot study of process water and air microbial quality

    Directory of Open Access Journals (Sweden)

    Bożena Krogulska

    2013-02-01

    Full Text Available Background: The frequency of respiratory symptoms in workers exposed to water aerosol was evaluated along with the preliminary assessment of microbiological contamination of air and water used in glass processing plants. Material and Methods: A questionnaire survey was conducted in 131 workers from 9 glass processing plants. Questions focused on working conditions, respiratory symptoms and smoking habits. A pilot study of air and water microbiological contamination in one glass processing plant was performed. Water samples were tested for Legionella in accordance with EN ISO 11731-2:2008 and for total colony count according to PN-EN ISO 6222:2004. Air samples were tested for total numbers of molds and mildews. Results: During the year preceding the survey acute respiratory symptoms occurred in 28.2% of participants, while chronic symptoms were reported by 29% of respondents. Increased risks of cough and acute symptoms suggestive of pneumonia were found among the respondents working at a distance up to 20 m from the source of water aerosol compared to other workers (OR = 2.7, with no difference in the frequency of other symptoms. A microbiological analysis of water samples from selected glass plant revealed the presence of L. pneumophila, exceeding 1000 cfu/100 ml. The number of bacteria and fungi detected in air samples (above 1000 cfu/m3 suggested that water aerosol at workplaces can be one of the sources of the air microbial contamination. Conclusions: The questionnaire survey revealed an increased risk of cough and acute symptoms suggestive of pneumonia in the group working at a shortest distance form the source of water aerosol. Med Pr 2013;64(1:47–55

  14. Ammonia-water exchange front end process for ammonia-hydrogen heavy water plants (Preprint No. PD-1)

    International Nuclear Information System (INIS)

    Sadhukhan, H.K.; Varadarajan, T.G.; Nair, N.K.; Das, S.K.; Nath, G.K.

    1989-04-01

    The ammonia-hydrogen exchange process, which utilizes the deutrium exchange between liquid ammonia and gaseous hydrogen is a parasitic process and the heavy water plants (HWP) based on this process has to be linked with the fertilizer plant (FP) for its enormous requirements of hydrogen (synthesis gas, N 2 +3H 2 ). This dependence of HWP on FP gives rise to certain constraints which are listed. These deficiencies of the ammonia-hydrogen process can be overcome to a great extent by delinking the HWP from FP by incorporating NH 3 -H 2 O exchange as the front end step. In addition to the elimination of the above limitations, by employing water as the ultimate feed for the HWP, the plant capacity can be increased substantially and this would go a long way in achieving economies of the large capacity plants. A schematic diagram of this integrated plant is given. Some of the results of developmental efforts and feasibility studies of this NH 3 -H 2 O exchange are briefly reviewed. (author). 4 figs

  15. Distillation of carbonaceous substances

    Energy Technology Data Exchange (ETDEWEB)

    Mulliner, H H; Kent, A T

    1918-03-21

    In carbonizing in a vertical retort of the continuous or semi-continuous type, the material is fed at the top and superheated steam or gas is supplied at the bottom of the retort, the vapors and coal gas being drawn off at the top. The charge is maintained at a temperature of at least 500/sup 0/C at the bottom and the temperature at the top is maintained sufficiently high to prevent condensation of steam and vapors within the retort.

  16. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    Science.gov (United States)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  17. Culture of microalgae biomass for valorization of table olive processing water

    International Nuclear Information System (INIS)

    Contreras, C.G.; Serrano, A.; Ruiz-Filippi, G.; Borja, R.; Fermoso, F.G.

    2016-01-01

    Table olive processing water (TOPW) contains many complex substances, such as phenols, which could be valorized as a substrate for microalgae biomass culture. The aim of this study was to assess the capability of Nannochloropsis gaditana to grow in TOPW at different concentrations (10- 80%) in order to valorize this processing water. Within this range, the highest increment of biomass was determined at percentage of 40% of TOPW, reaching an increment of 0.36 ± 0.05 mg volatile suspended solids (VSS)/L. Components of algal biomass were similar for the experiments at 10-40% of TOPW, where proteins were the major compounds (56-74%). Total phenols were retained in the microalgae biomass (0.020 ± 0.002 g of total phenols/g VSS). Experiments for 80% of TOPW resulted in a low production of microalgae biomass. High organic matter, nitrogen, phosphorus and phenol removal were achieved in all TOPW concentrations. Although high-value products, such as proteins, were obtained and high removal efficiencies of nutrients were determined, microalgae biomass culture should be enhanced to become a suitable integral processing water treatment. [es

  18. Understanding the Role of Water on Electron-Initiated Processes and Radical Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Bruce C [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colson, Steven D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Laufer, Allan H [US Department of Energy Office of Science Office of Basic Energy Sciences; Ray, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2003-06-10

    On September 26–28, 2002, a workshop entitled “Understanding the Role of Water on Electron-Initiated Processes and Radical Chemistry” was held to assess new research opportunities in electron-driven processes and radical chemistry in aqueous systems. Of particular interest was the unique and complex role that the structure of water plays in influencing these processes. Novel experimental and theoretical approaches to solving long-standing problems in the field were explored. A broad selection of participants from universities and the national laboratories contributed to the workshop, which included scientific and technical presentations and parallel sessions for discussions and report writing.

  19. Gas stripping and recirculation process in heavy water separation plant

    International Nuclear Information System (INIS)

    Nazzer, D.B.; Thayer, V.R.

    1976-01-01

    Hydrogen sulfide is stripped from hot effluent, in a heavy water separation plant of the dual temperature isotope separation type, by taking liquid effluent from the hot tower before passage through the humidifier, passing the liquid through one or more throttle devices to flash-off the H 2 S gas content, and feeding the gas into an absorption tower containing incoming feed water, for recycling of the gas through the process

  20. A novel eco-friendly technique for efficient control of lime water softening process.

    Science.gov (United States)

    Ostovar, Mohamad; Amiri, Mohamad

    2013-12-01

    Lime softening is an established type of water treatment used for water softening. The performance of this process is highly dependent on lime dosage. Currently, lime dosage is adjusted manually based on chemical tests, aimed at maintaining the phenolphthalein (P) and total (M) alkalinities within a certain range (2 P - M > or = 5). In this paper, a critical study of the softening process has been presented. It has been shown that the current method is frequently incorrect. Furthermore, electrical conductivity (EC) has been introduced as a novel indicator for effectively characterizing the lime softening process.This novel technique has several advantages over the current alkalinities method. Because no chemical reagents are needed for titration, which is a simple test, there is a considerable reduction in test costs. Additionally, there is a reduction in the treated water hardness and generated sludge during the lime softening process. Therefore, it is highly eco-friendly, and is a very cost effective alternative technique for efficient control of the lime softening process.

  1. Impact of fog processing on water soluble organic aerosols.

    Science.gov (United States)

    Tripathi, S. N.; Chakraborty, A.; Gupta, T.

    2017-12-01

    Fog is a natural meteorological phenomenon that occurs all around the world, and contains a substantial quantity of liquid water. Fog is generally seen as a natural cleansing agent but can also form secondary organic aerosols (SOA) via aqueous processing of ambient organics. Few field studies have reported elevated O/C ratio and SOA mass during or after fog events. However, mechanism behind aqueous SOA formation and its contribution to total organic aerosols (OA) still remains unclear. In this study we have tried to explore the impact of fog/aqueous processing on the characteristics of water soluble organic aerosols (WSOC), which to our knowledge has not been studied before. To assess this, both online (using HR-ToF-AMS) and offline (using a medium volume PM2.5 sampler and quartz filter) aerosol sampling were carried out at Kanpur, India from 15 December 2014 - 10 February 2015. Further, offline analysis of the aqueous extracts of the collected filters were carried out by AMS to characterize the water soluble OA (WSOA). Several (17) fog events occurred during the campaign and high concentrations of OA (151 ± 68 µg/m3) and WSOA (47 ± 19 µg/m3) were observed. WSOA/OA ratios were similar during fog (0.36 ± 0.14) and nofog (0.34 ± 0.15) periods. WSOA concentrations were also similar (slightly higher) during foggy (49 ± 18 µg/m3) and non-foggy periods (46 ± 20 µg/m3), in spite of fog scavenging. However, WSOA was more oxidized during foggy period (average O/C = 0.81) than non foggy periods (average O/C = 0.70). Like WSOA, OA was also more oxidized during foggy periods (average O/C = 0.64) than non foggy periods (average O/C = 0.53). During fog, WSOA to WIOA (water insoluble OA) ratios were higher (0.65 ± 0.16) compared to non foggy periods (0.56 ± 0.15). These observations clearly showed that WSOA become more dominant and processed during fog events, possibly due to the presence of fog droplets. This study highlights that fog processing of soluble organics

  2. A system of automated processing of deep water hydrological information

    Science.gov (United States)

    Romantsov, V. A.; Dyubkin, I. A.; Klyukbin, L. N.

    1974-01-01

    An automated system for primary and scientific analysis of deep water hydrological information is presented. Primary processing of the data in this system is carried out on a drifting station, which also calculates the parameters of vertical stability of the sea layers, as well as their depths and altitudes. Methods of processing the raw data are described.

  3. Application of volume-retarded osmosis and low-pressure membrane hybrid process for water reclamation.

    Science.gov (United States)

    Im, Sung-Ju; Choi, Jungwon; Lee, Jung-Gil; Jeong, Sanghyun; Jang, Am

    2018-03-01

    A new concept of volume-retarded osmosis and low-pressure membrane (VRO-LPM) hybrid process was developed and evaluated for the first time in this study. Commercially available forward osmosis (FO) and ultrafiltration (UF) membranes were employed in a VRO-LPM hybrid process to overcome energy limitations of draw solution (DS) regeneration and production of permeate in the FO process. To evaluate its feasibility as a water reclamation process, and to optimize the operational conditions, cross-flow FO and dead-end mode UF processes were individually evaluated. For the FO process, a DS concentration of 0.15 g mL -1 of polysulfonate styrene (PSS) was determined to be optimal, having a high flux with a low reverse salt flux. The UF membrane with a molecular weight cut-off of 1 kDa was chosen for its high PSS rejection in the LPM process. As a single process, UF (LPM) exhibited a higher flux than FO, but this could be controlled by adjusting the effective membrane area of the FO and UF membranes in the VRO-LPM system. The VRO-LPM hybrid process only required a circulation pump for the FO process. This led to a decrease in the specific energy consumption of the VRO-LPM process for potable water production, that was similar to the single FO process. Therefore, the newly developed VRO-LPM hybrid process, with an appropriate DS selection, can be used as an energy efficient water production method, and can outperform conventional water reclamation processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Application of volume-retarded osmosis and low-pressure membrane hybrid process for water reclamation

    KAUST Repository

    Im, Sung-Ju; Choi, Jungwon; Lee, Jung Gil; Jeong, Sanghyun; Jang, Am

    2017-01-01

    A new concept of volume-retarded osmosis and low-pressure membrane (VRO-LPM) hybrid process was developed and evaluated for the first time in this study. Commercially available forward osmosis (FO) and ultrafiltration (UF) membranes were employed in a VRO-LPM hybrid process to overcome energy limitations of draw solution (DS) regeneration and production of permeate in the FO process. To evaluate its feasibility as a water reclamation process, and to optimize the operational conditions, cross-flow FO and dead-end mode UF processes were individually evaluated. For the FO process, a DS concentration of 0.15 g mL−1 of polysulfonate styrene (PSS) was determined to be optimal, having a high flux with a low reverse salt flux. The UF membrane with a molecular weight cut-off of 1 kDa was chosen for its high PSS rejection in the LPM process. As a single process, UF (LPM) exhibited a higher flux than FO, but this could be controlled by adjusting the effective membrane area of the FO and UF membranes in the VRO-LPM system. The VRO-LPM hybrid process only required a circulation pump for the FO process. This led to a decrease in the specific energy consumption of the VRO-LPM process for potable water production, that was similar to the single FO process. Therefore, the newly developed VRO-LPM hybrid process, with an appropriate DS selection, can be used as an energy efficient water production method, and can outperform conventional water reclamation processes.

  5. Application of volume-retarded osmosis and low-pressure membrane hybrid process for water reclamation

    KAUST Repository

    Im, Sung-Ju

    2017-11-15

    A new concept of volume-retarded osmosis and low-pressure membrane (VRO-LPM) hybrid process was developed and evaluated for the first time in this study. Commercially available forward osmosis (FO) and ultrafiltration (UF) membranes were employed in a VRO-LPM hybrid process to overcome energy limitations of draw solution (DS) regeneration and production of permeate in the FO process. To evaluate its feasibility as a water reclamation process, and to optimize the operational conditions, cross-flow FO and dead-end mode UF processes were individually evaluated. For the FO process, a DS concentration of 0.15 g mL−1 of polysulfonate styrene (PSS) was determined to be optimal, having a high flux with a low reverse salt flux. The UF membrane with a molecular weight cut-off of 1 kDa was chosen for its high PSS rejection in the LPM process. As a single process, UF (LPM) exhibited a higher flux than FO, but this could be controlled by adjusting the effective membrane area of the FO and UF membranes in the VRO-LPM system. The VRO-LPM hybrid process only required a circulation pump for the FO process. This led to a decrease in the specific energy consumption of the VRO-LPM process for potable water production, that was similar to the single FO process. Therefore, the newly developed VRO-LPM hybrid process, with an appropriate DS selection, can be used as an energy efficient water production method, and can outperform conventional water reclamation processes.

  6. Characterisation and treatment of VOCs in process water from upgrading facilities for compressed biogas (CBG).

    Science.gov (United States)

    Nilsson Påledal, S; Arrhenius, K; Moestedt, J; Engelbrektsson, J; Stensen, K

    2016-02-01

    Compression and upgrading of biogas to vehicle fuel generates process water, which to varying degrees contains volatile organic compounds (VOCs) originating from the biogas. The compostion of this process water has not yet been studied and scientifically published and there is currently an uncertainty regarding content of VOCs and how the process water should be managed to minimise the impact on health and the environment. The aim of the study was to give an overview about general levels of VOCs in the process water. Characterisation of process water from amine and water scrubbers at plants digesting waste, sewage sludge or agricultural residues showed that both the average concentration and composition of particular VOCs varied depending on the substrate used at the biogas plant, but the divergence was high and the differences for total concentrations from the different substrate groups were only significant for samples from plants using waste compared to residues from agriculture. The characterisation also showed that the content of VOCs varied greatly between different sampling points for same main substrate and between sampling occasions at the same sampling point, indicating that site-specific conditions are important for the results which also indicates that a number of analyses at different times are required in order to make an more exact characterisation with low uncertainty. Inhibition of VOCs in the anaerobic digestion (AD) process was studied in biomethane potential tests, but no inhibition was observed during addition of synthetic process water at concentrations of 11.6 mg and 238 mg VOC/L. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Gas manufacture, processes for: condensers

    Energy Technology Data Exchange (ETDEWEB)

    Young, W

    1876-11-29

    In the production of illuminating gas from coal, shale, hydrocarbon oil, or other substance used in the production of gas, the volatile products inside the retort are agitated by means of moving pistons or jets of compressed gas, steam, or vapor in order to decompose them into permanent gases, and in some cases to increase the volume of gas by the decomposition of the injected gas, etc. or by blending or carburetting this gas with the decomposition products of the volatile matters. To separate the condensible hydrocarbons from the crude gas it is passed through heated narrow tortuous passages or is caused to impinge on surfaces. If the crude gases are cold these surfaces are heated and vice versa.

  8. Ab Initio Density Functional Theory Investigation of the Interaction between Carbon Nanotubes and Water Molecules during Water Desalination Process

    Directory of Open Access Journals (Sweden)

    Loay A. Elalfy

    2013-01-01

    Full Text Available Density functional theory calculations using B3LYP/3-21G level of theory have been implemented on 6 carbon nanotubes (CNTs structures (3 zigzag and 3 armchair CNTs to study the energetics of the reverse osmosis during water desalination process. Calculations of the band gap, interaction energy, highest occupied molecular orbital, lowest unoccupied molecular orbital, electronegativity, hardness, and pressure of the system are discussed. The calculations showed that the water molecule that exists inside the CNT is about 2-3 Å away from its wall. The calculations have proven that the zigzag CNTs are more efficient for reverse osmosis water desalination process than armchair CNTs as the reverse osmosis process requires pressure of approximately 200 MPa for armchair CNTs, which is consistent with the values used in molecular dynamics simulations, while that needed when using zigzag CNTs was in the order of 60 MPa.

  9. Superfund Record of Decision (EPA Region 3): Southern Maryland Wood Treating Site, Hollywood, Maryland (first remedial action) June 1988. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-29

    The Southern Maryland Wood Treating (SMWT) site is located in Hollywood, St. Mary's County, Maryland. The site is situated within a wetland area in a drainage divide such that runoff from the site discharges into Brooks Run and McIntosh Run tributaries, which flow into the Potomac River. The area surrounding the site is predominantly used for agricultural and residential purposes. Currently, part of the site is being used as a retail outlet for pretreated lumber and crab traps. The waste generated at the site included retort and cylinder sludges, process wastes, and material spillage. These wastes were in six onsite unlined lagoons. The primary contaminants of concern affecting the onsite ground water, soil, surface water, sediments, and debris include: VOCs, PNA, and base/neutral acid extractables. The selected remedial action for the site is included.

  10. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    Science.gov (United States)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Padolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Mahoney, Michael J.; Richard, Erik

    2002-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE III-Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999/2000 winter season. Aircraft-based water vapor, carbon monoxide, and ozone measurements were analyzed so as to establish how deeply tropospheric air mixes into the Arctic lowermost stratosphere and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to-stratosphere exchange extends into the Arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases with altitude most rapidly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of above 5ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20% of the parcels which have ozone values of 300-350 ppbv experiencing ice saturation in a given 10 day period. Third, during early spring, temperatures at the troposphere are cold enough so that 5-10% of parcels experience relative humidities above 100%, even if the water content is as low as 5 ppmv. The implication is that during this period, dynamical processes near the Arctic tropopause can dehydrate air and keep the Arctic tropopause region very dry during early spring.

  11. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    International Nuclear Information System (INIS)

    Turner, J.P.; Reeves, T.L.; Skinner, Q.D.; Hasfurther, V.

    1992-11-01

    The scope of the original research program and of its continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large-scale testing sufficient to describe commercial-scale embankment behavior. The large-scale testing was accomplished by constructing five lysimeters, each 7.3x3.0x3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process (Schmalfield 1975). Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin near Rifle, Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was placed in the lysimeter cells. This report discusses and summarizes results from scientific efforts conducted between October 1991 and September 1992 for Fiscal Year 1992

  12. Characterization of Irreversible Fouling after Ultrafiltration of Thermomechanical Pulp Mill Process Water

    DEFF Research Database (Denmark)

    Thuvander, Johan; Zarebska, Agata; Hélix-Nielsen, Claus

    2018-01-01

    process streams is fouling of the membranes. Fouling not only increases operating costs but also reduces the operating time of the membrane plant. When optimizing the membrane cleaning method, it is important to know which compounds cause the fouling. In this work fouling of an ultrafiltration membrane...... was studied. The fouling propensity of untreated process water and microfiltrated process water was compared. Fouled membranes were analyzed using scanning electron microscopy and attenuated total reflection Fourier transform infrared spectrometry. Acid hydrolysis of membranes exposed to untreated process......Large volumes of wastewater with dissolved wood components are treated in wastewater treatment plants at thermomechanical pulp mills. It has been shown previously that hemicelluloses in these wastewater streams can be recovered by membrane filtration. A serious obstacle when treating lignocellulose...

  13. Relating tropical ocean clouds to moist processes using water vapor isotope measurements

    Directory of Open Access Journals (Sweden)

    J. Lee

    2011-01-01

    Full Text Available We examine the co-variations of tropospheric water vapor, its isotopic composition and cloud types and relate these distributions to tropospheric mixing and distillation models using satellite observations from the Aura Tropospheric Emission Spectrometer (TES over the summertime tropical ocean. Interpretation of these process distributions must take into account the sensitivity of the TES isotope and water vapor measurements to variations in cloud, water, and temperature amount. Consequently, comparisons are made between cloud-types based on the International Satellite Cloud Climatology Project (ISSCP classification; these are clear sky, non-precipitating (e.g., cumulus, boundary layer (e.g., stratocumulus, and precipitating clouds (e.g. regions of deep convection. In general, we find that the free tropospheric vapor over tropical oceans does not strictly follow a Rayleigh model in which air parcels become dry and isotopically depleted through condensation. Instead, mixing processes related to convection as well as subsidence, and re-evaporation of rainfall associated with organized deep convection all play significant roles in controlling the water vapor distribution. The relative role of these moisture processes are examined for different tropical oceanic regions.

  14. Treatment of oilfield produced water by anaerobic process coupled with micro-electrolysis.

    Science.gov (United States)

    Li, Gang; Guo, Shuhai; Li, Fengmei

    2010-01-01

    Treatment of oilfield produced water was investigated using an anaerobic process coupled with micro-electrolysis (ME), focusing on changes in chemical oxygen demand (COD) and biodegradability. Results showed that COD exhibited an abnormal change in the single anaerobic system in which it increased within the first 168 hr, but then decreased to 222 mg/L after 360 hr. The biological oxygen demand (five-day) (BODs)/COD ratio of the water increased from 0.05 to 0.15. Hydrocarbons in the wastewater, such as pectin, degraded to small molecules during the hydrolytic acidification process. Comparatively, the effect of ME was also investigated. The COD underwent a slight decrease and the BOD5/COD ratio of the water improved from 0.05 to 0.17 after ME. Removal of COD was 38.3% under the idealized ME conditions (pH 6.0), using iron and active carbon (80 and 40 g/L, respectively). Coupling the anaerobic process with ME accelerated the COD removal ratio (average removal was 53.3%). Gas chromatography/mass spectrometry was used to analyze organic species conversion. This integrated system appeared to be a useful option for the treatment of water produced in oilfields.

  15. Photochemical oxidation processes for the elimination of phenyl-urea herbicides in waters

    International Nuclear Information System (INIS)

    Benitez, F. Javier; Real, Francisco J.; Acero, Juan L.; Garcia, Carolina

    2006-01-01

    Four phenyl-urea herbicides (linuron, chlorotoluron, diuron, and isoproturon) were individually photooxidized by monochromatic UV radiation in ultra-pure aqueous solutions. The influence of pH and temperature on the photodegradation process was established, and the first-order rate constants and quantum yields were evaluated. The sequence of photodecomposition rates was: linuron > chlorotoluron > diuron > isoproturon. The simultaneous photooxidation of mixtures of the selected herbicides in several types of waters was then performed by means of UV radiation alone, and by UV radiation combined with hydrogen peroxide. The types of waters used were: ultra-pure water, a commercial mineral water, a groundwater, and a lake water. The influence of the independent variables in these processes - the presence or absence of tert-butyl alcohol, types of herbicide and waters, and concentration of hydrogen peroxide - were established and discussed. A kinetic study was performed using a competitive kinetic model that allowed various rate constants to be evaluated for each herbicide. This kinetic model allows one to predict the elimination of these phenyl-urea herbicides in contaminated waters by the oxidation systems used (UV alone and combined UV/H 2 O 2 ). The herbicide concentrations predicted by this model agree well with the experimental results that were obtained

  16. Photochemical oxidation processes for the elimination of phenyl-urea herbicides in waters

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, F. Javier [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, 06071 Badajoz (Spain)]. E-mail: javben@unex.es; Real, Francisco J. [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, 06071 Badajoz (Spain); Acero, Juan L. [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, 06071 Badajoz (Spain); Garcia, Carolina [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, 06071 Badajoz (Spain)

    2006-11-16

    Four phenyl-urea herbicides (linuron, chlorotoluron, diuron, and isoproturon) were individually photooxidized by monochromatic UV radiation in ultra-pure aqueous solutions. The influence of pH and temperature on the photodegradation process was established, and the first-order rate constants and quantum yields were evaluated. The sequence of photodecomposition rates was: linuron > chlorotoluron > diuron > isoproturon. The simultaneous photooxidation of mixtures of the selected herbicides in several types of waters was then performed by means of UV radiation alone, and by UV radiation combined with hydrogen peroxide. The types of waters used were: ultra-pure water, a commercial mineral water, a groundwater, and a lake water. The influence of the independent variables in these processes - the presence or absence of tert-butyl alcohol, types of herbicide and waters, and concentration of hydrogen peroxide - were established and discussed. A kinetic study was performed using a competitive kinetic model that allowed various rate constants to be evaluated for each herbicide. This kinetic model allows one to predict the elimination of these phenyl-urea herbicides in contaminated waters by the oxidation systems used (UV alone and combined UV/H{sub 2}O{sub 2}). The herbicide concentrations predicted by this model agree well with the experimental results that were obtained.

  17. Oil shale activities in China

    International Nuclear Information System (INIS)

    Peng, D.; Jialin, Q.

    1991-01-01

    China has abundant oil shale resources, of the Early Silurian to Neogene age, the most important being the Tertiary period. The proved oil shale reserves in Fushun amount to 3.6 billion t, in Maoming 4.1 billion t. In Fushun, oil shale is produced by open-pit mining as a byproduct of coal, in Maoming it is also mined in open pits, but without coal. In China, scale oil has been produced from oil shale for 60 years. Annual production of crude shale oil amounts to about 200 000 t. The production costs of shale oil are lower than the price of crude petroleum on the world market. China has accumulated the experience and technologies of oil shale retorting. The Fushun type retort has been elaborated, in which the latent and sensible heat of shale coke is well utilized. But the capacity of such retort is relatively small, therefore it is suitable for use in small or medium oil plants. China has a policy of steadily developing shale oil industry. China is conducting oil shale research and developing oil shale processing technology. Much attention is being pay ed to the comprehensive utilization of oil shale, shale oil, and to environmental problems. In China, oil shale is mostly used for producing shale by retorting, attention will also be paid to direct combustion for power generation. Great achievements in oil shale research have been made in the eighties, and there will be a further development in the nineties. (author), 12 refs., 3 tabs

  18. Characterization of napthenic acids in oil sands process-affected waters using fluorescence technology

    International Nuclear Information System (INIS)

    Brown, L.; Alostaz, M.; Ulrich, A.

    2009-01-01

    Process-affected water from oil sands production plants presents a major environmental challenge to oil sands operators due to its toxicity to different organisms as well as its corrosiveness in refinery units. This abstract investigated the use of fluorescence excitation-emission matrices to detect and characterize changes in naphthenic acid in oil sands process-affected waters. Samples from oil sands production plants and storage ponds were tested. The study showed that oil sands naphthenic acids show characteristic fluorescence signatures when excited by ultraviolet light in the range of 260 to 350 mm. The signal was a unique attribute of the naphthenic acid molecule. Changes in the fluorescence signature can be used to determine chemical changes such as degradation or aging. It was concluded that the technology can be used as a non-invasive continuous water quality monitoring tool to increase process control in oil sands processing plants

  19. Comparison of microbial community shifts in two parallel multi-step drinking water treatment processes.

    Science.gov (United States)

    Xu, Jiajiong; Tang, Wei; Ma, Jun; Wang, Hong

    2017-07-01

    Drinking water treatment processes remove undesirable chemicals and microorganisms from source water, which is vital to public health protection. The purpose of this study was to investigate the effects of treatment processes and configuration on the microbiome by comparing microbial community shifts in two series of different treatment processes operated in parallel within a full-scale drinking water treatment plant (DWTP) in Southeast China. Illumina sequencing of 16S rRNA genes of water samples demonstrated little effect of coagulation/sedimentation and pre-oxidation steps on bacterial communities, in contrast to dramatic and concurrent microbial community shifts during ozonation, granular activated carbon treatment, sand filtration, and disinfection for both series. A large number of unique operational taxonomic units (OTUs) at these four treatment steps further illustrated their strong shaping power towards the drinking water microbial communities. Interestingly, multidimensional scaling analysis revealed tight clustering of biofilm samples collected from different treatment steps, with Nitrospira, the nitrite-oxidizing bacteria, noted at higher relative abundances in biofilm compared to water samples. Overall, this study provides a snapshot of step-to-step microbial evolvement in multi-step drinking water treatment systems, and the results provide insight to control and manipulation of the drinking water microbiome via optimization of DWTP design and operation.

  20. Method of distilling solid materials, such as shale

    Energy Technology Data Exchange (ETDEWEB)

    Ramen, A

    1917-09-04

    A method of distilling compact materials, such as shales, containing volatile matter, is characterized by heating the material in an oven or other apparatus or in a section or zone of same in the presence of some condensable gas (such as steam) which is indifferent to the vapors distillated during the heating of the material. The gas together with these products is conducted through a condensation apparatus, containing water or some other liquid, where the volatile matters are condensed. The steam which is produced in the gas regenerator is, after preheating, forced through the hot remaining residue from the distillation either in the same retort or in another retort in order to heat further this residue for the purpose of making it possible for the steam, by being forced through freshly charged material in the first oven or apparatus to bring about its distillation. The patent contains ten additional claims.

  1. Minimization of water consumption under uncertainty for PC process

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, J.; Diwekar, U.; Zitney, S.

    2009-01-01

    Integrated gasification combined cycle (IGCC) technology is becoming increasingly important for the development of advanced power generation systems. As an emerging technology different process configurations have been heuristically proposed for IGCC processes. One of these schemes combines water-gas shift reaction and chemical-looping combustion for the CO2 removal prior the fuel gas is fed to the gas turbine reducing its size (improving economic performance) and producing sequestration-ready CO2 (improving its cleanness potential). However, these schemes have not been energetically integrated and process synthesis techniques can be used to obtain optimal flowsheets and designs. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). For the alternative designs, large differences in the performance parameters (for instance, the utility requirements) predictions from AEA and AP were observed, suggesting the necessity of solving the HENS problem within the AP simulation environment and avoiding the AEA simplifications. A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case.

  2. Image processing developments and applications for water quality monitoring and trophic state determination

    International Nuclear Information System (INIS)

    Blackwell, R.J.

    1982-03-01

    Remote sensing data analysis of water quality monitoring is evaluated. Data anaysis and image processing techniques are applied to LANDSAT remote sensing data to produce an effective operational tool for lake water quality surveying and monitoring. Digital image processing and analysis techniques were designed, developed, tested, and applied to LANDSAT multispectral scanner (MSS) data and conventional surface acquired data. Utilization of these techniques facilitates the surveying and monitoring of large numbers of lakes in an operational manner. Supervised multispectral classification, when used in conjunction with surface acquired water quality indicators, is used to characterize water body trophic status. Unsupervised multispectral classification, when interpreted by lake scientists familiar with a specific water body, yields classifications of equal validity with supervised methods and in a more cost effective manner. Image data base technology is used to great advantage in characterizing other contributing effects to water quality. These effects include drainage basin configuration, terrain slope, soil, precipitation and land cover characteristics

  3. Radiological environmental risk associated with different water management systems in amang processing in Malaysia

    International Nuclear Information System (INIS)

    Ismail, B.; Yasir, M.S.; Redzuwan, Y.; Amran, A.M.

    2003-01-01

    The processing of amang (tin-tailing) for its valuable minerals have shown that it technologically enhanced naturally occurring radioactive materials, and has a potential of impacting the environment. Large volume of water is used to extract these valuable minerals from amang. Three types of water management systems are used by amang plants, i.e. Open Water System (OWS), Close Water System Man-made (CWS mm) and Close Water System Natural (CWSn). A study was carried out to determine the radiological environmental risk associated with these different water management systems in amang processing in Malaysia. The parameters studied were pH of water, Water Quality Indices, and uranium ad thorium concentrations in water and sediments. Three different sampling locations were selected for each water management system, i.e. the source, the receiver and related reference water bodies. Results obtained showed that amang reduces the pH and contaminates the water. However, OWS appears have the least radiological environmental impact. On the contrary both CWS (man-made and natural) pose a potential environmental risk if great care are not given to the treatment of accumulated sediment and contaminated water before discharge into the environment

  4. 9 CFR 318.300 - Definitions.

    Science.gov (United States)

    2010-01-01

    ... emitted from the retort throughout the entire thermal process. (d) Canned product. A meat food product... Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND...

  5. Documentation of the Surface-Water Routing (SWR1) Process for modeling surface-water flow with the U.S. Geological Survey Modular Ground-Water Model (MODFLOW-2005)

    Science.gov (United States)

    Hughes, Joseph D.; Langevin, Christian D.; Chartier, Kevin L.; White, Jeremy T.

    2012-01-01

    A flexible Surface-Water Routing (SWR1) Process that solves the continuity equation for one-dimensional and two-dimensional surface-water flow routing has been developed for the U.S. Geological Survey three-dimensional groundwater model, MODFLOW-2005. Simple level- and tilted-pool reservoir routing and a diffusive-wave approximation of the Saint-Venant equations have been implemented. Both methods can be implemented in the same model and the solution method can be simplified to represent constant-stage elements that are functionally equivalent to the standard MODFLOW River or Drain Package boundary conditions. A generic approach has been used to represent surface-water features (reaches) and allows implementation of a variety of geometric forms. One-dimensional geometric forms include rectangular, trapezoidal, and irregular cross section reaches to simulate one-dimensional surface-water features, such as canals and streams. Two-dimensional geometric forms include reaches defined using specified stage-volume-area-perimeter (SVAP) tables and reaches covering entire finite-difference grid cells to simulate two-dimensional surface-water features, such as wetlands and lakes. Specified SVAP tables can be used to represent reaches that are smaller than the finite-difference grid cell (for example, isolated lakes), or reaches that cannot be represented accurately using the defined top of the model. Specified lateral flows (which can represent point and distributed flows) and stage-dependent rainfall and evaporation can be applied to each reach. The SWR1 Process can be used with the MODFLOW Unsaturated Zone Flow (UZF1) Package to permit dynamic simulation of runoff from the land surface to specified reaches. Surface-water/groundwater interactions in the SWR1 Process are mathematically defined to be a function of the difference between simulated stages and groundwater levels, and the specific form of the reach conductance equation used in each reach. Conductance can be

  6. Oil shale technology

    International Nuclear Information System (INIS)

    Lee, S.

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail

  7. Water Use in the United States Energy System: A National Assessment and Unit Process Inventory of Water Consumption and Withdrawals.

    Science.gov (United States)

    Grubert, Emily; Sanders, Kelly T

    2018-06-05

    The United States (US) energy system is a large water user, but the nature of that use is poorly understood. To support resource comanagement and fill this noted gap in the literature, this work presents detailed estimates for US-based water consumption and withdrawals for the US energy system as of 2014, including both intensity values and the first known estimate of total water consumption and withdrawal by the US energy system. We address 126 unit processes, many of which are new additions to the literature, differentiated among 17 fuel cycles, five life cycle stages, three water source categories, and four levels of water quality. Overall coverage is about 99% of commercially traded US primary energy consumption with detailed energy flows by unit process. Energy-related water consumption, or water removed from its source and not directly returned, accounts for about 10% of both total and freshwater US water consumption. Major consumers include biofuels (via irrigation), oil (via deep well injection, usually of nonfreshwater), and hydropower (via evaporation and seepage). The US energy system also accounts for about 40% of both total and freshwater US water withdrawals, i.e., water removed from its source regardless of fate. About 70% of withdrawals are associated with the once-through cooling systems of approximately 300 steam cycle power plants that produce about 25% of US electricity.

  8. Standard practice for fluorescent liquid penetrant testing using the Water-Washable process

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for water-washable fluorescent penetrant examination of materials. It is a nondestructive testing method for detecting discontinuities that are open to the surface such as cracks, seams, laps, cold shuts, laminations, isolated porosity, through leaks, or lack of porosity and is applicable to in-process, final, and maintenance examination. It can be effectively used in the examination of nonporous, metallic materials, both ferrous and nonferrous, and of nonmetallic materials such as glazed or fully densified ceramics and certain nonporous plastics and glass. 1.2 This practice also provides a reference: 1.2.1 By which a fluorescent penetrant examination method using the water-washable process recommended or required by individual organizations can be reviewed to ascertain its applicability and completeness. 1.2.2 For use in the preparation of process specifications dealing with the water-washable fluorescent penetrant examination of materials and parts. Agreement by the purch...

  9. Recycle attuned catalytic exchange (RACE) for reliable and low inventory processing of highly tritiated water

    International Nuclear Information System (INIS)

    Iseli, M.; Schaub, M.; Ulrich, D.

    1992-01-01

    The detritiation of highly tritiated water by liquid phase catalytic exchange needs dilution of the feed with water to tritium concentrations suitable for catalyst and safety rules and to assure flow rates large enough for wetting the catalyst. Dilution by recycling detritiated water from within the exchange process has three advantages: the amount and concentration of the water for dilution is controlled within the exchange process, there is no additional water load to processes located downstream RACE, and the ratio of gas to liquid flow rates in the exchange column could be adjusted by using several recycles differing in amount and concentration to avoid an excessively large number of theoretical separation stages. In this paper, the flexibility of the recycle attuned catalytic exchange (RACE) and its effect on the cryogenic distillation are demonstrated for the detritiation of the highly tritiated water from a tritium breeding blanket

  10. Ethanol fermentation characteristics of recycled water by Saccharomyces cerevisiae in an integrated ethanol-methane fermentation process.

    Science.gov (United States)

    Yang, Xinchao; Wang, Ke; Wang, Huijun; Zhang, Jianhua; Mao, Zhonggui

    2016-11-01

    An process of integrated ethanol-methane fermentation with improved economics has been studied extensively in recent years, where the process water used for a subsequent fermentation of carbohydrate biomass is recycled. This paper presents a systematic study of the ethanol fermentation characteristics of recycled process water. Compared with tap water, fermentation time was shortened by 40% when mixed water was employed. However, while the maximal ethanol production rate increased from 1.07g/L/h to 2.01g/L/h, ethanol production was not enhanced. Cell number rose from 0.6×10(8) per mL in tap water to 1.6×10(8) per mL in mixed water but although biomass increased, cell morphology was not affected. Furthermore, the use of mixed water increased the glycerol yield but decreased that of acetic acid, and the final pH with mixed water was higher than when using tap water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Processes Driving Natural Acidification of Western Pacific Coral Reef Waters

    Science.gov (United States)

    Shamberger, K. E.; Cohen, A. L.; Golbuu, Y.; McCorkle, D. C.; Lentz, S. J.; Barkley, H. C.

    2013-12-01

    Rising levels of atmospheric carbon dioxide (CO2) are acidifying the oceans, reducing seawater pH, aragonite saturation state (Ωar) and the availability of carbonate ions (CO32-) that calcifying organisms use to build coral reefs. Today's most extensive reef ecosystems are located where open ocean CO32- concentration ([CO32-]) and Ωar exceed 200 μmol kg-1 and 3.3, respectively. However, high rates of biogeochemical cycling and long residence times of water can result in carbonate chemistry conditions within coral reef systems that differ greatly from those of nearby open ocean waters. In the Palauan archipelago, water moving across the reef platform is altered by both biological and hydrographic processes that combine to produce seawater pH, Ωar, [CO32-] significantly lower than that of open ocean source water. Just inshore of the barrier reefs, average Ωar values are 0.2 to 0.3 and pH values are 0.02 to 0.03 lower than they are offshore, declining further as water moves across the back reef, lagoon and into the meandering bays and inlets that characterize the Rock Islands. In the Rock Island bays, coral communities inhabit seawater with average Ωar values of 2.7 or less, and as low as 1.9. Levels of Ωar as low as these are not predicted to occur in the western tropical Pacific open ocean until near the end of the century. Calcification by coral reef organisms is the principal biological process responsible for lowering Ωar and pH, accounting for 68 - 99 % of the difference in Ωar between offshore source water and reef water at our sites. However, in the Rock Island bays where Ωar is lowest, CO2 production by net respiration contributes between 17 - 30 % of the difference in Ωar between offshore source water and reef water. Furthermore, the residence time of seawater in the Rock Island bays is much longer than at the well flushed exposed sites, enabling calcification and respiration to drive Ωar to very low levels despite lower net ecosystem

  12. Distribution flow: a general process in the top layer of water repellent soils

    NARCIS (Netherlands)

    Ritsema, C.J.; Dekker, L.W.

    1995-01-01

    Distribution flow is the process of water and solute flowing in a lateral direction over and through the very first millimetre or centimetre of the soil profile. A potassium bromide tracer was applied in two water-repellent sandy soils to follow the actual flow paths of water and solutes in the

  13. Processing method for drained water containing ethanol amine

    International Nuclear Information System (INIS)

    Wakuta, Kuniharu; Ogawa, Naoki; Sagawa, Hiroshi; Kamiyoshi, Hideki; Fukunaga, Kazuo; Iwamoto, Ken; Miki, Tsuyoshi; Hirata, Toshio

    1998-01-01

    Drained water containing ethanol amine is processed with microorganisms such as hydrazine resistant denitrification bacteria in a biodegrading vessel (A) in the coexistence of nitrous ions and/or nitric ions under an anaerobic condition, and then it is processed with microorganisms such as nitrification bacteria in another biotic oxidation vessel (B) under an aerobic condition to generate the coexistent nitrate ion and/or nitric ion, and returned to the biodegrading vessel (A). Further, they are exposed to air or incorporated with an oxidant and optionally a copper compound such as copper sulfate as a catalyst is added in a step of removing hydrazine. (T.M.)

  14. INTEC CPP-603 Basin Water Treatment System Closure: Process Design

    Energy Technology Data Exchange (ETDEWEB)

    Kimmitt, Raymond Rodney; Faultersack, Wendell Gale; Foster, Jonathan Kay; Berry, Stephen Michael

    2002-09-01

    This document describes the engineering activities that have been completed in support of the closure plan for the Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603 Basin Water Treatment System. This effort includes detailed assessments of methods and equipment for performing work in four areas: 1. A cold (nonradioactive) mockup system for testing equipment and procedures for vessel cleanout and vessel demolition. 2. Cleanout of process vessels to meet standards identified in the closure plan. 3. Dismantlement and removal of vessels, should it not be possible to clean them to required standards in the closure plan. 4. Cleanout or removal of pipelines and pumps associated with the CPP-603 basin water treatment system. Cleanout standards for the pipes will be the same as those used for the process vessels.

  15. Process for cooling waste water

    Energy Technology Data Exchange (ETDEWEB)

    Rohner, P

    1976-12-16

    The process for avoiding thermal pollution of waters described rests on the principle of the heat conduction tube, by which heat is conducted from the liquid space into the atmosphere at a lower temperature above it. Such a tube, here called a cooling tube, consists in its simplest form of a heat conducting corrugated tube, made, for example, of copper or a copper alloy or of precious metals, which is sealed to be airtight at both ends, and after evacuation, is partially filled with a medium of low boiling point. The longer leg of the tube, which is bent at right angles, lies close below the surface of the water to be cooled and parallel to it; the shorter leg projects vertically into the atmosphere. The liquid inside the cooling tube fills the horizontal part of the tube to about halfway. A certain part of the liquid is always evaporated in this part. The vapor rising in the vertical part of the tube condenses on the internal wall cooled by the air outside, and gives off its heat to the atmosphere. The condensed medium flows back down the vertical internal wall into the initial position in a continuous cycle. A further development contains a smooth plastic inner tube in an outer corrugated tube, which is shorter than the outer tube; it ends at a distance from the caps sealing the outer tube at both ends. In this design the angle between the vertical and horizontal leg is less than 90/sup 0/. The shorter leg projects vertically from the water surface, below which the longer leg rises slightly from the knee of tube. The quantity of the liquid is gauged as a type of siphon, so that the space between the outer and inner tube at the knee of the tube remains closed by the liquid medium. The medium evaporated from the surface in the long leg of the tube therefore flows over the inner tube, which starts above the level of the medium. Thus evaporation and condensation paths are separated.

  16. Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process

    Energy Technology Data Exchange (ETDEWEB)

    Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

    2011-10-16

    Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

  17. Development of a novel processing system for efficient sour water stripping

    International Nuclear Information System (INIS)

    Kazemi, Abolghasem; Mehrabani-Zeinabad, Arjomand; Beheshti, Masoud

    2017-01-01

    Application of vapor recompression systems can result in enhanced energy efficiency and reduced energy requirements of distillation systems. In vapor recompression systems, temperature and dew point temperature of the top product of the column are increased through compression. By transferring heat from top to bottoms product, required boil up and reflux streams for the column are provided. In this paper, a new system is proposed for efficient stripping of sour water based on vapor recompression. Ammonia and H 2 S are the contaminants of sour water. Initially, based on a certain specifications of products, a sour water stripping system is implemented. A novel processing system is then developed and simulated to reduce utility requirements. The two processing systems are economically evaluated by Aspen Economic Evaluation software. There are 89.0% and 83.7% reduction of hot and cold utility requirements for the proposed system in comparison to the base processing system. However, the new processing system requires new equipment such as compressor and corresponding mechanical work that increases its capital and operating costs in comparison to the base case. However, the results indicate that the proposed system results in reduction of 11.4% of total annual costs and 14.9% of operating costs. - Highlights: • A novel system was developed for enhancement of performance of a distillation system based on vapor recompression. • In this system, utility streams are used for providing thermal energy. • A parametric study is carried out on the proposed processing system. • Applying the proposed system resulted in reduction of energy and utility requirements and costs of the separation process. • Environmental performance of the model was investigated.

  18. Basic processes and mechanisms of the water-rock system evolution

    OpenAIRE

    Shvartsev, Stepan Lvovich

    2007-01-01

    A new conception of progressive evolution and self-organizing presence in dead matter is developed; inner mechanisms and processes, realizing this development, are revealed. It is proven that the water-rock system satisfy these requirements

  19. The use of process simulation models in virtual commissioning of process automation software in drinking water treatment plants

    NARCIS (Netherlands)

    Worm, G.I.M.; Kelderman, J.P.; Lapikas, T.; Van der Helm, A.W.C.; Van Schagen, K.M.; Rietveld, L.C.

    2012-01-01

    This research deals with the contribution of process simulation models to the factory acceptance test (FAT) of process automation (PA) software of drinking water treatment plants. Two test teams tested the same piece of modified PA-software. One team used an advanced virtual commissioning (AVC)

  20. Fabrication of amine-functionalized magnetite nanoparticles for water treatment processes

    International Nuclear Information System (INIS)

    Chan, Candace C. P.; Gallard, Hervé; Majewski, Peter

    2012-01-01

    Amine-functionalized magnetite nanoparticles are synthesized by a one pot water based process using N-[3-(trimethoxysilyl)propyl]diethylenetriamine (TRIS) as surfactant. The prepared functionalised nanoparticles are characterised by BET surface area measurements, X-ray diffraction, zeta potential measurement, and X-ray photoelectron spectrometry (XPS). The results clearly show the presence of TRIS on the surface of the nanoparticles. XPS analysis indicates the presence of very small amounts of maghemite on the surface of the magnetite nanoparticles. Water treatment test shows that the prepared nanoparticles are capable to remove natural organic matter (NOM) from natural water samples. The removal of NOM by the prepared particles is characterized by analysing the dissolved organic carbon (DOC) content and UV absorbance at 254 nm (UV 254 ) after the treatment of the water samples at various doses and treatment times.

  1. Fabrication of amine-functionalized magnetite nanoparticles for water treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Candace C. P. [University of South Australia, Ian Wark Research Institute (Australia); Gallard, Herve [Universite de Poitiers, Laboratoire de Chimie et Microbiologie de l' Eau (LCME)-UMR CNRS 6008 (France); Majewski, Peter, E-mail: peter.majewski@unisa.edu.au [Mawson Institute, University of South Australia, School of Advanced Manufacturing and Mechanical Engineering (Australia)

    2012-03-15

    Amine-functionalized magnetite nanoparticles are synthesized by a one pot water based process using N-[3-(trimethoxysilyl)propyl]diethylenetriamine (TRIS) as surfactant. The prepared functionalised nanoparticles are characterised by BET surface area measurements, X-ray diffraction, zeta potential measurement, and X-ray photoelectron spectrometry (XPS). The results clearly show the presence of TRIS on the surface of the nanoparticles. XPS analysis indicates the presence of very small amounts of maghemite on the surface of the magnetite nanoparticles. Water treatment test shows that the prepared nanoparticles are capable to remove natural organic matter (NOM) from natural water samples. The removal of NOM by the prepared particles is characterized by analysing the dissolved organic carbon (DOC) content and UV absorbance at 254 nm (UV{sub 254}) after the treatment of the water samples at various doses and treatment times.

  2. Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Postigo, Cristina [Institute for Environmental Assessment and Water Research (IDAEA)—Spanish National Research Council (CID-CSIC), Barcelona (Spain); Richardson, Susan D., E-mail: richardson.susan@sc.edu [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC (United States)

    2014-08-30

    Graphical abstract: - Highlights: • Review of transformation pathways of pharmaceuticals during disinfection processes. • DBPs are formed with chlorine, chloramine, ozone, chlorine dioxide, UV, or UV/H{sub 2}O{sub 2}. • Chlorine reacts with amine and reduced sulfur groups and activated aromatic systems. • Chlorine dioxide and ozone react with electron-rich functional groups. • Potential health effects are noted for some pharmacuetical DBPs when available. - Abstract: Pharmaceuticals are emerging contaminants of concern and are widespread in the environment. While the levels of these substances in finished drinking waters are generally considered too low for human health concern, there are now concerns about their disinfection by-products (DBPs) that can form during drinking water treatment, which in some cases have been proven to be more toxic than the parent compounds. The present manuscript reviews the transformation products of pharmaceuticals generated in water during different disinfection processes, i.e. chlorination, ozonation, chloramination, chlorine dioxide, UV, and UV/hydrogen peroxide, and the main reaction pathways taking place. Most of the findings considered for this review come from controlled laboratory studies involving reactions of pharmaceuticals with these oxidants used in drinking water treatment.

  3. Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment

    International Nuclear Information System (INIS)

    Postigo, Cristina; Richardson, Susan D.

    2014-01-01

    Graphical abstract: - Highlights: • Review of transformation pathways of pharmaceuticals during disinfection processes. • DBPs are formed with chlorine, chloramine, ozone, chlorine dioxide, UV, or UV/H 2 O 2 . • Chlorine reacts with amine and reduced sulfur groups and activated aromatic systems. • Chlorine dioxide and ozone react with electron-rich functional groups. • Potential health effects are noted for some pharmacuetical DBPs when available. - Abstract: Pharmaceuticals are emerging contaminants of concern and are widespread in the environment. While the levels of these substances in finished drinking waters are generally considered too low for human health concern, there are now concerns about their disinfection by-products (DBPs) that can form during drinking water treatment, which in some cases have been proven to be more toxic than the parent compounds. The present manuscript reviews the transformation products of pharmaceuticals generated in water during different disinfection processes, i.e. chlorination, ozonation, chloramination, chlorine dioxide, UV, and UV/hydrogen peroxide, and the main reaction pathways taking place. Most of the findings considered for this review come from controlled laboratory studies involving reactions of pharmaceuticals with these oxidants used in drinking water treatment

  4. Effect of Briquetting Process Variables on Hygroscopic Property of Water Hyacinth Briquettes

    Directory of Open Access Journals (Sweden)

    R. M. Davies

    2013-01-01

    Full Text Available The knowledge of water resistance capacity of briquettes is important in order to determine how sensitive the produced briquettes are to moisture change during storage. The relative changes in length and diameter of briquettes during immersion in water for 6 hours were investigated. This was conducted to determine hygroscopic property of produced briquettes under process variables levels of binder (10, 20, 30, 40, and 50% by weight of residue, compaction pressure (3.0, 5.0, 7.0, and 9.0 MPa and particle size (0.5, 1.6, and 4 mm of dried and ground water hyacinth. Data was statistically analysed using Analysis of Variance, the Duncan Multiple Range Test, and descriptive statistics. The relative change in length of briquettes with process variables ranged significantly from % to % (binder, % to % (compaction pressure, and % to % (particle size (. Furthermore, the relative change in diameter of briquettes with binder, compaction pressure, and particle size varied significantly from % to %, % to %, and % to %, respectively (. This study suggests optimum process variables required to produce briquettes of high water resistance capacity for humid environments like the Niger Delta, Nigeria, as 50% (binder proportion, 9 MPa (compaction pressure, and 0.5 mm (particle size.

  5. Carbonated water flooding : Process overview in the frame of co2 flooding

    NARCIS (Netherlands)

    Peksa, A.E.

    2017-01-01

    The main scope of the work related to the physical and dynamical processes associated with the injection of carbonated water in porous media. Carbonated water flooding is an alternative for traditional CO2 flooding. Both methods have the potential to recover any oil left behind after primary and

  6. Evaluation of trace organic contaminants in ultra-pure water production processes by measuring total organic halogen formation potential

    International Nuclear Information System (INIS)

    Urano, Kohei; Iwase, Yoko

    1984-01-01

    A new procedure for the determination of organic substances in water with high accuracy and high sensitivity was proposed, in which a hypochlorite is added to water, and the resultant total amount of organic halogen compounds (TOX formation potential) was measured, and it was applied to the evaluation of trace organic contaminants in ultra-pure water production process. In this investigation, the TOX formation potential of the raw water which was to be used for the ultra-pure water production process, intermediately treated water and ultra-pure water was measured to clarify the behavior of organic substances in the ultra-pure water production process and to demonstrate the usefulness of this procedure to evaluate trace organic contaminants in water. The measurement of TOX formation potential requires no specific technical skill, and only a short time, and gives accurate results, therefore, it is expected that the water quality control in the ultra-pure water production process can be performed more exactly by applying this procedure. (Yoshitake, I.)

  7. Processes of water rock interaction in the Turonian aquifer of Oum Er-Rabia Basin, Morocco

    Science.gov (United States)

    Ettazarini, Said

    2005-12-01

    Possible water rock interaction processes, in the Moroccan basin of Oum Er-Rabia, were discussed by a geochemical study of groundwater from the Turonian limestone aquifer, the most important water resource in the region. Different types of water according to the classification of Piper were defined. Waters have shown an evolution from dominant CHO3 Ca Mg type through mixed to SO4 Cl Ca Mg type. The use of geochemical diagrams and chemical speciation modeling method has shown that water rock interaction is mainly controlled by carbonate and anhydrite dissolution, ion exchange and reverse ion exchange processes. Water rock equilibrium conditions are favorable for the precipitation of calcite, dolomite, kaolinite and magnesian smectite.

  8. A Novel Energy-Efficient Pyrolysis Process: Self-pyrolysis of Oil Shale Triggered by Topochemical Heat in a Horizontal Fixed Bed

    Science.gov (United States)

    Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang

    2015-02-01

    This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250-300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis. The propagation of fronts formed in this process, the temperature evolution, and the reaction mechanism of oil shale pyrolysis in porous media are discussed and compared with those in a traditional oxygen-free process. The results show that the self-pyrolysis of oil shale can be achieved with the proposed method without any need for external heat. The results also verify that fractured oil shale may be more suitable for underground retorting. Moreover, the gas and liquid products from this method were characterised, and a highly instrumented experimental device designed specifically for this process is described. This study can serve as a reference for new ideas on oil shale in situ pyrolysis processes.

  9. Treatment of tanneries waste water by ultrasound assisted electrolysis process

    International Nuclear Information System (INIS)

    Farooq, R.; Ahmed, Z.; Gilani, M. A.; Durrani, M.; Mahmood, Q.; Shaukat, S. F.; Choima, N.

    2013-01-01

    The leather industry is a major producer of wastewater and solid waste containing potential water and soil contaminants. Considering the large amount and variety of chemical agents used in skin processing, the wastewaters generated by tanneries are very complex. Therefore, the development of treatment methods for these effluents is extremely necessary. In this work the electrochemical treatment of a tannery wastewater by ultrasound assisted electrochemical process, using stainless steel and lead cathode and titanium anodes was studied. Effect of ultrasound irradiation at various ultrasonic intensities 0, 40, 60 and 80% on electrochemical removal of chromium was investigated. Experiments were conducted at two pH conditions of pH 3 and 9. Significant removal of chromium was found at pH 3 and it was also noticed that by increasing ultrasonic intensities, percentage removal of chromium and sulfate also increases. The optimum removal of chromium and sulfate ions was observed at 80% ultrasonic intensity. The technique of electrolysis assisted with ultrasonic waves can be further improved and can be the future waste water treatment process for industries. (author)

  10. Water column velocimeter for NSRR experiment. Characteristics and data processing procedure

    International Nuclear Information System (INIS)

    Sugiyama, Tomoyuki; Fuketa, Toyoshi

    2000-11-01

    In order to clarify fuel behavior under reactivity initiated accident (RIA) conditions, pulse irradiation experiments on fuel rods are carried out in the Nuclear Safety Research Reactor (NSRR). One of concerns at fuel failure is mechanical energy generation in the reactor vessel. The mechanical energy is generated by a water hammer or a pressure impact occurred at fuel failure, and has possibility to damage reactor structures. Thus, the amount of generated mechanical energy is critical information for the safety evaluation of power reactor. In the NSRR experiments, the mechanical energy due to the water hammer is evaluated as the kinetic energy of the jumping water column at fuel failure, and the velocity of the water column is measured by the float type water column velocimeter. This report presents characteristics of the water column velocimeter and the procedure of data processing in the NSRR experiments. (author)

  11. Development of an advanced spacecraft water and waste materials processing system

    Science.gov (United States)

    Murray, R. W.; Schelkopf, J. D.; Middleton, R. L.

    1975-01-01

    An Integrated Waste Management-Water System (WM-WS) which uses radioisotopes for thermal energy is described and results of its trial in a 4-man, 180 day simulated space mission are presented. It collects urine, feces, trash, and wash water in zero gravity, processes the wastes to a common evaporator, distills and catalytically purifies the water, and separates and incinerates the solid residues using little oxygen and no chemical additives or expendable filters. Technical details on all subsystems are given along with performance specifications. Data on recovered water and heat loss obtained in test trials are presented. The closed loop incinerator and other projects underway to increase system efficiency and capacity are discussed.

  12. A Simulation of Pre-Arcing Plasma Discharge Processes in Water Purification

    International Nuclear Information System (INIS)

    Rodriguez-Mendez, B. G.; Piedad-Beneitez, A. de la; Lopez-Callejas, R.; Godoy-Cabrera, O. G.; Benitez-Read, J. S.; Pacheco-Sotelo, J. O.; Pena-Eguiluz, R.; Mercado-Cabrera, A.; Valencia-A, R.; Barocio, S. R.

    2006-01-01

    The simulation of a water purification system within a coaxial cylinder reactor operated by 1 kHz frequency plasma discharges in pre-arcing regimes is presented. In contrast with precedent works, this computational model considers three mechanisms of the system operation: (a) the relevant physical characteristics of water (b) the ionisation and expansion processes in the spark channel including the near-breakdown electric current generated by the rate of change of the effective capacitance and resistance in the discharge, and (c) the energy associated with this initial spark in the water. The outcome of the model seems to meet all main requirements to allow the design and construction of specific water purification technology devices

  13. High performance biological process for waste water treatment proven in operation

    International Nuclear Information System (INIS)

    Timm, C.; Wienands, H.; Brauch, G.; Schlaeger, M.

    1993-01-01

    A BIOMEMBRAT plant has been in operation for over one year at the Thor Chemie GmbH facility at Speyer, Germany. The process is particularly suitable for waste water with a high organic content and with degradation-resistant components or high nitrogen contents. This article presents the operating results obtained so far with the waste water treatment plant and the operator's experience. (orig.) [de

  14. Processes at Water Intake from Mountain Rivers into Hydropower and Irrigation Systems

    OpenAIRE

    Vatin Nikolai; Lavrov Nikolai; Loginov Gennadi

    2016-01-01

    In paper, researches of riverbed and hydraulic processes at the water intake from mountain rivers are observed. Classification of designs of the mountain water intake structures, based on continuity signs is offered. Perfecting of base designs of water intake structures of a mountain-foothill zone and means of their hydraulic automation is carried out. The technological, theoretical and experimental substantiation of parameters of basic elements of these designs with a glance of hydromorphome...

  15. Example process hazard analysis of a Department of Energy water chlorination process

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    On February 24, 1992, the Occupational Safety and Health Administration (OSHA) released a revised version of Section 29 Code of Federal Regulations CFR Part 1910 that added Section 1910.119, entitled ``Process Safety Management of Highly Hazardous Chemicals`` (the PSM Rule). Because US Department of Energy (DOE) Orders 5480.4 and 5483.1A prescribe OSHA 29 CFR 1910 as a standard in DOE, the PSM Rule is mandatory in the DOE complex. A major element in the PSM Rule is the process hazard analysis (PrHA), which is required for all chemical processes covered by the PSM Rule. The PrHA element of the PSM Rule requires the selection and application of appropriate hazard analysis methods to systematically identify hazards and potential accident scenarios associated with processes involving highly hazardous chemicals (HHCs). The analysis in this report is an example PrHA performed to meet the requirements of the PSM Rule. The PrHA method used in this example is the hazard and operability (HAZOP) study, and the process studied is the new Hanford 300-Area Water Treatment Facility chlorination process, which is currently in the design stage. The HAZOP study was conducted on May 18--21, 1993, by a team from the Westinghouse Hanford Company (WHC), Battelle-Columbus, the DOE, and Pacific Northwest Laboratory (PNL). The chlorination process was chosen as the example process because it is common to many DOE sites, and because quantities of chlorine at those sites generally exceed the OSHA threshold quantities (TQs).

  16. A Facile All-Solution-Processed Surface with High Water Contact Angle and High Water Adhesive Force.

    Science.gov (United States)

    Chen, Mei; Hu, Wei; Liang, Xiao; Zou, Cheng; Li, Fasheng; Zhang, Lanying; Chen, Feiwu; Yang, Huai

    2017-07-12

    A series of sticky superhydrophobicity surfaces with high water contact angle and high water adhesive force is facilely prepared via an all-solution-processed method based on polymerization-induced phase separation between liquid crystals (LCs) and epoxy resin, which produces layers of epoxy microspheres (EMSs) with nanofolds on the surface of a substrate. The morphologies and size distributions of EMSs are confirmed by scanning electron microscopy. Results reveal that the obtained EMS coated-surface exhibits high apparent contact angle of 152.0° and high water adhesive force up to 117.6 μN. By varying the composition of the sample or preparing conditions, the sizes of the produced EMSs can be artificially regulated and, thus, control the wetting properties and water adhesive behaviors. Also, the sticky superhydrophobic surface exhibits excellent chemical stability, as well as long-term durability. Water droplet transportation experiments further prove that the as-made surface can be effectively used as a mechanical hand for water transportation applications. Based on this, it is believed that the simple method proposed in this paper will pave a new way for producing a sticky superhydrophobic surface and obtain a wide range of use.

  17. Process Integration Design Methods for Water Conservation and Wastewater Reduction in Industry

    DEFF Research Database (Denmark)

    Overcash, Michael; Russell, Dunn; Wenzel, Henrik

    2002-01-01

    This paper addresses operational techniques for applying mass integration design in industry with special focus on water conservation and wastewater reduction. This paper presents a design technique for any number of wastewater streams containing multiple contaminants. The technique comprises...... a single non-linear optimization program to minimize the wastewater discharged (or maximize the amount of recycled wastewater). This program is developed based on general water allocation principles and uses the transshipment model theory to allow the “shipment” of wastewater (referred to as “sources......” or “warehouses”) to process water users (referred to as “sinks”, “demands” or “customers”). A detailed case study of industrial significance, highlighting land treatment technology, is included to illustrate the proposed methodology and various process scenarios are evaluated within this case study...

  18. Deep water overflow in the Faroe Bank Channel; modelling, processes, and impact

    DEFF Research Database (Denmark)

    Rullyanto, Arief

    , creating new water masses with distinct temperature, salinity and density characteristics. The change of water mass characteristics not only affects the local environment, but also far distant regions. The Faroe Bank Channel, which is located in the southern part of Faroe Islands, is one of the most...... under different circumstances. The focus is on the Faroe Bank Channel, a relatively small region, which has a significant impact on the global ocean circulation and marine organisms that live in its environment....... or tides, but also deep beneath the surface, where deep-water currents circulate waters throughout the world’s oceans. In certain very-localized regions, the flow of the deep-water has to travel over a sill in a narrow submarine channel. This overflow process mixes the deep water with overlying waters...

  19. Selection of the process for the heavy water production using isotopic exchange amonia-hydrogen

    International Nuclear Information System (INIS)

    Guzman R, G.H.

    1980-01-01

    The utilization of the Petroleos Mexicanos ammonia plants for heavy water production by the isotopic exchange NH 3 -H 2 process is presented, in addition a description of the other heavy water production processes was presented. In the ammonia hydrogen process exist two possible alternatives for the operation of the system, one of them is to carry out the enrichment to the same temperature, the second consists in making the enrichment at two different temperatures (dual temperature process), an analysis was made to select the best alternative. The conclusion was that the best operation is the dual temperature process, which presents higher advantages according to the thermodynamics and engineering of the process. (author)

  20. Gill histopathology of goldfish exposed to oil sands processed-waters

    International Nuclear Information System (INIS)

    Nero, V.; Farwell, A.J.; Dixon, D.G.; Lee, L.E.J.

    2002-01-01

    Large volumes of processed wastewater are generated through the oil extraction process at Alberta's Athabasca oil sand deposit. These wastewaters are very toxic to aquatic biota because they are high in salinity and consist of napthenic acids and polycyclic aromatic hydrocarbons (PAH). In this study, goldfish were caged in 3 different experimental ponds in order to evaluate the biological effects of aquatic reclamation alternatives for process-affected waters. The first pond was a control pond, while the other 2 ponds consisted of known and varying chemicals. The fish were exposed to the ponds for 19 days. Those in the pond with elevated levels of napthenic acids and high salinity exhibited severe gill histopathological changes. Alterations included epithelial hyperplasia resulting in severe lamellar fusion, chloride cell hyperplasia, and lamellar edema, all of which were believed to be defense responses of the fish. Additional severe gill alterations were also observed that may indicate the direct negative effects of oil sands processed-water on fish. Exposed goldfish also showed signs of necrosis and degenerative changes resulting in desquamation of the epithelial surfaces of the gill, which are symptoms seen in free-range exposure of yellow perch, a native fish species, at the same sites and exposure times

  1. Gill histopathology of goldfish exposed to oil sands processed-waters

    Energy Technology Data Exchange (ETDEWEB)

    Nero, V.; Farwell, A.J.; Dixon, D.G. [Waterloo Univ., ON (Canada). Dept. of Biology; Lister, A.; Van Der Kraak, G.J. [Guelph Univ., ON (Canada); Lee, L.E.J. [Wilfred Laurier Univ., Waterloo, ON (Canada). Dept. of Biology

    2002-07-01

    Large volumes of processed wastewater are generated through the oil extraction process at Alberta's Athabasca oil sand deposit. These wastewaters are very toxic to aquatic biota because they are high in salinity and consist of napthenic acids and polycyclic aromatic hydrocarbons (PAH). In this study, goldfish were caged in 3 different experimental ponds in order to evaluate the biological effects of aquatic reclamation alternatives for process-affected waters. The first pond was a control pond, while the other 2 ponds consisted of known and varying chemicals. The fish were exposed to the ponds for 19 days. Those in the pond with elevated levels of napthenic acids and high salinity exhibited severe gill histopathological changes. Alterations included epithelial hyperplasia resulting in severe lamellar fusion, chloride cell hyperplasia, and lamellar edema, all of which were believed to be defense responses of the fish. Additional severe gill alterations were also observed that may indicate the direct negative effects of oil sands processed-water on fish. Exposed goldfish also showed signs of necrosis and degenerative changes resulting in desquamation of the epithelial surfaces of the gill, which are symptoms seen in free-range exposure of yellow perch, a native fish species, at the same sites and exposure times.

  2. An innovative carbonate coprecipitation process for the removal of zinc and manganese from mining impacted waters

    Science.gov (United States)

    Sibrell, P.L.; Chambers, M.A.; Deaguero, A.L.; Wildeman, T.R.; Reisman, D.J.

    2007-01-01

    Although mine drainage is usually thought of as acidic, there are many cases where the water is of neutral pH, but still contains metal species that can be harmful to human or aquatic animal health, such as manganese (Mn) and zinc (Zn). Typical treatment of mine drainage waters involves pH adjustment, but this often results in excessive sludge formation and removal of nontoxic species such as magnesium and calcium. Theoretical consideration of the stability of metal carbonate species suggests that the target metals could be removed from solution by coprecipitation with calcium carbonate. The U.S. Geological Survey has developed a limestone-based process for remediation of acid mine drainage that increases calcium carbonate saturation. This treatment could then be coupled with carbonate coprecipitation as an innovative method for removal of toxic metals from circumneutral mine drainage waters. The new process was termed the carbonate coprecipitation (CCP) process. The CCP process was tested at the laboratory scale using a synthetic mine water containing 50 mg/L each of Mn and Zn. Best results showed over 95% removal of both Mn and Zn in less than 2 h of contact in a limestone channel. The process was then tested on a sample of water from the Palmerton zinc superfund site, near Palmerton, Pennsylvania, containing over 300 mg/L Zn and 60 mg/L Mn. Treatment of this water resulted in removal of over 95% of the Zn and 40% of the Mn in the limestone channel configuration. Because of the potential economic advantages of the CCP process, further research is recommended for refinement of the process for the Palmerton water and for application to other mining impacted waters as well. ?? Mary Ann Liebert, Inc.

  3. Progress in the development of the reverse osmosis process for spacecraft wash water recovery.

    Science.gov (United States)

    Pecoraro, J. N.; Podall, H. E.; Spurlock, J. M.

    1972-01-01

    Research work on ambient- and pasteurization-temperature reverse osmosis processes for wash water recovery in a spacecraft environment is reviewed, and the advantages and drawbacks of each are noted. A key requirement in each case is to provide a membrane of appropriate stability and semipermeability. Reverse osmosis systems intended for such use must also take into account the specific limitations and requirements imposed by the small volume of water to be processed and the high water recovery desired. The incorporation of advanced high-temperature membranes into specially designed modules is discussed.

  4. REDUCING ARSENIC LEVELS IN DRINKING WATER DURING IRON REMOVAL PROCESSES

    Science.gov (United States)

    The presentation provides an overview of iron removal technology for the removal of arsenic from drinking water. The presentation is divided into several topic topics: Arsenic Chemistry, Treatment Selection, Treatment Options, Case Studies and Iron Removal Processes. Each topic i...

  5. Removal of the cyanotoxin anatoxin-a by drinking water treatment processes: a review.

    Science.gov (United States)

    Vlad, Silvia; Anderson, William B; Peldszus, Sigrid; Huck, Peter M

    2014-12-01

    Anatoxin-a (ANTX-a) is a potent alkaloid neurotoxin, produced by several species of cyanobacteria and detected throughout the world. The presence of cyanotoxins, including ANTX-a, in drinking water sources is a potential risk to public health. This article presents a thorough examination of the cumulative body of research on the use of drinking water treatment technologies for extracellular ANTX-a removal, focusing on providing an analysis of the specific operating parameters required for effective treatment and on compiling a series of best-practice recommendations for owners and operators of systems impacted by this cyanotoxin. Of the oxidants used in drinking water treatment, chlorine-based processes (chlorine, chloramines and chlorine dioxide) have been shown to be ineffective for ANTX-a treatment, while ozone, advanced oxidation processes and permanganate can be successful. High-pressure membrane filtration (nanofiltration and reverse osmosis) is likely effective, while adsorption and biofiltration may be effective but further investigation into the implementation of these processes is necessary. Given the lack of full-scale verification, a multiple-barrier approach is recommended, employing a combination of chemical and non-chemical processes.

  6. Process water treatment in Canada's oil sands industry : 1 : target pollutants and treatment objectives

    International Nuclear Information System (INIS)

    Allen, E.W.

    2008-01-01

    The continuous recycling of tailings pond water in the oil sands industry has contributed to an overall decline in water quality used for bitumen recovery, general water consumption, and remedial activities. This paper reviewed process water quality and toxicity data from 2 long-term oil sands operations. The aim of the study was to determine potential roles for water treatment and provide benchmarks for the selection of candidate water treatment technologies in the oil sands region of Alberta. An overview of the oil sands industry was provided as well as details of bitumen recovery processes. The study examined target pollutants and exceedances identified in environmental and industrial water quality guidelines. The study demonstrated that the salinity of tailings pond water increased at a rate of 75 mg per litre per year between 1980 and 2001. Increases in hardness, chloride, ammonia, and sulphates were also noted. Naphthenic acids released during bitumen extraction activities were determined as the primary cause of tailings pond water toxicity. A summary of recent studies on experimental reclamation ponds and treatment wetlands in the oil sands region was included. 19 refs., 4 tabs., 11 figs

  7. Advanced Signal Processing for High Temperatures Health Monitoring of Condensed Water Height in Steam Pipes

    Science.gov (United States)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Takano, Nobuyuki; Bao, Xiaoqi

    2013-01-01

    An advanced signal processing methodology is being developed to monitor the height of condensed water thru the wall of a steel pipe while operating at temperatures as high as 250deg. Using existing techniques, previous study indicated that, when the water height is low or there is disturbance in the environment, the predicted water height may not be accurate. In recent years, the use of the autocorrelation and envelope techniques in the signal processing has been demonstrated to be a very useful tool for practical applications. In this paper, various signal processing techniques including the auto correlation, Hilbert transform, and the Shannon Energy Envelope methods were studied and implemented to determine the water height in the steam pipe. The results have shown that the developed method provides a good capability for monitoring the height in the regular conditions. An alternative solution for shallow water or no water conditions based on a developed hybrid method based on Hilbert transform (HT) with a high pass filter and using the optimized windowing technique is suggested. Further development of the reported methods would provide a powerful tool for the identification of the disturbances of water height inside the pipe.

  8. Study on underground-water restoration of acid in-situ leaching process with electrodialytic desalination

    International Nuclear Information System (INIS)

    Huang Chongyuan; Meng Jin; Li Weicai

    2003-01-01

    The study focus undergrounder water restoration of acid in-situ leaching process with electrodialysis desalination in Yining Uranium Mine. It is shown in field test that electrodialysis desalination is an effective method for underground water restoration of acid in-situ leaching process. When TDS of underground-water at the decommissioning scope is 10-12 g/L, and TDS will be less than 1 g/L after the desalination process, the desalination rate is more than 90%, freshwater recovery 60%-70%, power consumption for freshwater recovery 5 kW·h/m 3 , the distance of the desalination flow 12-13 m, current efficiency 80%, and the throughput of the twin membrane 0.22-0.24 m 3 /(m 2 ·d)

  9. Experimental Application of an Advanced Separation Process for NOM Removal from Surface Drinking Water Supply

    Directory of Open Access Journals (Sweden)

    Arianna Callegari

    2017-10-01

    Full Text Available Natural organic matter (NOM in drinking water supplies significantly impacts on water supply quality and treatment, due to observed reactivity with many dissolved and particulate species. Several technologies are used nowadays to remove NOM from the water supply. The evolution of water-related directives, and progressively more restrictive standards for drinking water, however, call for the investigation of advanced, more efficient, and cost-effective water treatment processes. This paper contains a brief overview on the state-of-the-art methods for NOM removal from supply waters, and describes the experimental application of an advanced technology, tested and validated at the pilot scale on the water supply source of a town in Poland. The process allowed significant removal of natural organic matter (about 50% as Dissolved Organic Carbon and turbidity (from 50% to 90%, however, these results requested significant additions of powdered activated carbon. The key to success of this type of process is a correct setup with the identification of optimal types and dosages of reagents. Based on the results of the tests conducted it is foreseeable that this technology could be used onsite, not only for removal of NOM, but also of other hard-to-tackle pollutants potentially contained in the freshwater supply and not presently considered.

  10. The impacts of indoor Amang processing to the quality of water and locally sediments

    International Nuclear Information System (INIS)

    Muhammad Samudi Yasir; Redzuwan Yahaya; Ismail Bahari; Wong, Siew Kim

    2007-01-01

    The impact of amang industry to the environment and community health has long been studied since the industry uses a large amount of water as well the accumulation of TENORM. A study was carried out to measure the water quality as well as the contents of radioactive substances and selected heavy metals in the water and sediments in the vicinity of an amang processing plant in Kampar, Perak, which is using a close water system. The sampling locations selected are; the natural pond, closed to the plant which supply the water for the processing (L1), a recycling concrete pond outside the plant (L2) and an affluent discharge point inside the plant (L3). The techniques of analysis used included in-situ measurement and laboratory analysis of water quality, direct counting of radioactivity ( 238 U and 232 Th) and chemical extraction for atomic absorption spectroscopy of heavy metals (zinc, lead, copper). Chemical extraction was carried out using potassium nitrate, sodium hydroxide, disodium ethylene-diamine tetra-acetic acid (Na 2 EDTA) and concentrated nitric acid solutions. the results show that the water quality indices for the natural pond are much better than at the effluent discharge point or the recycling concrete pond. The average 238 U and 232 Th concentrations were the highest in sediment samples at L3 (1110.5 ± 7.3 Bq/ Kg and 1966.6 ± 4.7 Bq/ kg respectively). For the water samples, the radioactivity was highest in the water sample collected at concrete pond (L2), which is 35.42 ± 1.63 Bq/ L ( 238 U) and 36.16 ± 1.02 Bq/ L ( 232 Th). The average value of extracted Pb (194.13 μg/ g) and Cu (9.71 μg/ g) was highest in the sediment from L3, while for Zn in sediment taken from L1 (38.78 μg/ g). In general, the water quality indices of L1 are better than L2 and L3. The closed water recycling system currently practiced by the amang processing plant has successfully contained the contamination to the environment caused by amang processing activities. (author)

  11. Selective oxidation of organic compounds in waste water by ozone-based oxidation processes

    NARCIS (Netherlands)

    Boncz, M.A.

    2002-01-01

    For many different types of waste water, treatment systems have been implemented in the past decades. Waste water treatment is usually performed by biological processes, either aerobic or anaerobic, complemented with physical / chemical post treatment techniques.

  12. Drying of water based foundry coatings: Innovative test, process design and optimization methods

    DEFF Research Database (Denmark)

    Di Muoio, Giovanni Luca; Johansen, Bjørn Budolph

    on real industrial cases. These tools have been developed in order to simulate and optimize the drying process and reduce drying time and power consumption as well as production process design time and cost of expensive drying equipment. Results show that test methods from other industries can be used...... capacity goals there is a need to understand how to design, control and optimize drying processes. The main focus of this project was on the critical parameters and properties to be controlled in production in order to achieve a stable and predictable drying process. We propose for each of these parameters...... of Denmark with the overall aim to optimize the drying process of water based foundry coatings. Drying of foundry coatings is a relatively new process in the foundry industry that followed the introduction of water as a solvent. In order to avoid moisture related quality problems and reach production...

  13. Isotopic fractionation of soil water during the evaporation process in the presence of a phreatic water table

    International Nuclear Information System (INIS)

    Leopoldo, P.R.; Stolf, R.

    1979-01-01

    This experiment was conducted with columns of soil, constitued by alluvion sediment keeping a phreatic watertable at a depth of 40 cm and constant water supply, and its objective was to check the water behaviour as to its deuterium and oxigen content when moving from the lower layers to the upper layers, and consequent loss to the atmosphere through evaporation. It was noted that the existing D and 18 O content in the water forming the phreativ watertable practivally does not vary with this process. In addition to the observations on soil columns, soil water from the Brasilian northeastern region was collected and analysed. The phreatic watertable at the collecting site lay at a depth of about 40-50 cm. Preliminarily, it was noted that these results apparently indicate an excess evaporation, and are also consistent with those obtained by other investigators, who proposed the use of stable isotopes to study problems related to salinization of water in this region. (Author) [pt

  14. Modelling of destructive ability of water-ice-jet while machine processing of machine elements

    Directory of Open Access Journals (Sweden)

    Burnashov Mikhail

    2017-01-01

    Full Text Available This paper represents the classification of the most common contaminants, appearing on the surfaces of machine elements after a long-term service.The existing well-known surface cleaning methods are described and analyzed in the framework of this paper. The article is intended to provide the reader with an understanding of the process of cleaning and removing contamination from machine elements surface by means of water-ice-jet with preprepared beforehand particles, as well as the process of water-ice-jet formation. The paper deals with the description of such advantages of this method as low costs, wastelessness, high quality of the surface, undergoing processing, minimization of harmful impact upon environment and eco-friendliness, which makes it differ radically from formerly known methods. The scheme of interection between the surface and ice particle is represented. A thermo-physical model of destruction of contaminants by means of a water-ice-jet cleaning technology was developed on its basis. The thermo-physical model allows us to make setting of processing mode and the parameters of water-ice-jet scientifically substantiated and well-grounded.

  15. Study on the Forming Process and Exploration of Concept of Human-Water Harmonization of Sustainable Development

    Science.gov (United States)

    Liu, Fang; Si, Liqi

    2018-05-01

    According to Maslow's hierarchy of needs, the process of human development and utilization of water resources can be divided into three stages: engineering water conservancy, resource water conservancy and harmonious coexistence between man and water. These three stages reflect the transformation of the idea of human development and utilization of water resources and eventually reach the state of harmony between human being and water. At the same time, this article draws on the experiences of water management under the thinking of sustainable development in the United States, Western Europe, Northern Europe and Africa. Finally, this paper points out that we need to realize the harmonious coexistence between man and water and sustainable development of water resources in the process of development and utilization of water resources, which is the inevitable requirement of the economic and social development.

  16. Statistical relation between particle contaminations in ultra pure water and defects generated by process tools

    NARCIS (Netherlands)

    Wali, F.; Knotter, D. Martin; Wortelboer, Ronald; Mud, Auke

    2007-01-01

    Ultra pure water supplied inside the Fab is used in different tools at different stages of processing. Data of the particles measured in ultra pure water was compared with the defect density on wafers processed on these tools and a statistical relation is found Keywords— Yield, defect density,

  17. Emergy Evaluation of a Production and Utilization Process of Irrigation Water in China

    Directory of Open Access Journals (Sweden)

    Dan Chen

    2013-01-01

    Full Text Available Sustainability evaluation of the process of water abstraction, distribution, and use for irrigation can contribute to the policy of decision making in irrigation development. Emergy theory and method are used to evaluate a pumping irrigation district in China. A corresponding framework for its emergy evaluation is proposed. Its emergy evaluation shows that water is the major component of inputs into the irrigation water production and utilization systems (24.7% and 47.9% of the total inputs, resp. and that the transformities of irrigation water and rice as the systems’ products (1.72E+05 sej/J and 1.42E+05 sej/J, resp.; sej/J = solar emjoules per joule represent their different emergy efficiencies. The irrigated agriculture production subsystem has a higher sustainability than the irrigation water production subsystem and the integrated production system, according to several emergy indices: renewability ratio (%R, emergy yield ratio (EYR, emergy investment ratio (EIR, environmental load ratio (ELR, and environmental sustainability index (ESI. The results show that the performance of this irrigation district could be further improved by increasing the utilization efficiencies of the main inputs in both the production and utilization process of irrigation water.

  18. Emergy evaluation of a production and utilization process of irrigation water in China.

    Science.gov (United States)

    Chen, Dan; Luo, Zhao-Hui; Chen, Jing; Kong, Jun; She, Dong-Li

    2013-01-01

    Sustainability evaluation of the process of water abstraction, distribution, and use for irrigation can contribute to the policy of decision making in irrigation development. Emergy theory and method are used to evaluate a pumping irrigation district in China. A corresponding framework for its emergy evaluation is proposed. Its emergy evaluation shows that water is the major component of inputs into the irrigation water production and utilization systems (24.7% and 47.9% of the total inputs, resp.) and that the transformities of irrigation water and rice as the systems' products (1.72E + 05 sej/J and 1.42E + 05 sej/J, resp.; sej/J = solar emjoules per joule) represent their different emergy efficiencies. The irrigated agriculture production subsystem has a higher sustainability than the irrigation water production subsystem and the integrated production system, according to several emergy indices: renewability ratio (%R), emergy yield ratio (EYR), emergy investment ratio (EIR), environmental load ratio (ELR), and environmental sustainability index (ESI). The results show that the performance of this irrigation district could be further improved by increasing the utilization efficiencies of the main inputs in both the production and utilization process of irrigation water.

  19. Coupling biophysical processes and water rights to simulate spatially distributed water use in an intensively managed hydrologic system

    Science.gov (United States)

    Han, Bangshuai; Benner, Shawn G.; Bolte, John P.; Vache, Kellie B.; Flores, Alejandro N.

    2017-07-01

    Humans have significantly altered the redistribution of water in intensively managed hydrologic systems, shifting the spatiotemporal patterns of surface water. Evaluating water availability requires integration of hydrologic processes and associated human influences. In this study, we summarize the development and evaluation of an extensible hydrologic model that explicitly integrates water rights to spatially distribute irrigation waters in a semi-arid agricultural region in the western US, using the Envision integrated modeling platform. The model captures both human and biophysical systems, particularly the diversion of water from the Boise River, which is the main water source that supports irrigated agriculture in this region. In agricultural areas, water demand is estimated as a function of crop type and local environmental conditions. Surface water to meet crop demand is diverted from the stream reaches, constrained by the amount of water available in the stream, the water-rights-appropriated amount, and the priority dates associated with particular places of use. Results, measured by flow rates at gaged stream and canal locations within the study area, suggest that the impacts of irrigation activities on the magnitude and timing of flows through this intensively managed system are well captured. The multi-year averaged diverted water from the Boise River matches observations well, reflecting the appropriation of water according to the water rights database. Because of the spatially explicit implementation of surface water diversion, the model can help diagnose places and times where water resources are likely insufficient to meet agricultural water demands, and inform future water management decisions.

  20. Optimal Control of the Valve Based on Traveling Wave Method in the Water Hammer Process

    Science.gov (United States)

    Cao, H. Z.; Wang, F.; Feng, J. L.; Tan, H. P.

    2011-09-01

    Valve regulation is an effective method for process control during the water hammer. The principle of d'Alembert traveling wave theory was used in this paper to construct the exact analytical solution of the water hammer, and the optimal speed law of the valve that can reduce the water hammer pressure in the maximum extent was obtained. Combining this law with the valve characteristic curve, the principle corresponding to the valve opening changing with time was obtained, which can be used to guide the process of valve closing and to reduce the water hammer pressure in the maximum extent.

  1. Guidelines for inclusion: Ensuring Indigenous peoples' involvement in water planning processes across South Eastern Australia

    Science.gov (United States)

    Saenz Quitian, Alejandra; Rodríguez, Gloria Amparo

    2016-11-01

    Indigenous peoples within the Murray-Darling Basin have traditionally struggled for the recognition of their cultural, social, environmental, spiritual, commercial and economic connection to the waters that they have traditionally used, as well as their right to engage in all stages of water planning processes. Despite Australian national and federal frameworks providing for the inclusion of Indigenous Australians' objectives in planning frameworks, water plans have rarely addressed these objectives in water, or the strategies to achieve them. Indeed, insufficient resources, a lack of institutional capacity in both Indigenous communities and agencies and an inadequate understanding of Indigenous people's objectives in water management have limited the extent to which Indigenous objectives are addressed in water plans within the Murray-Darling Basin. In this context, the adoption of specific guidelines to meet Indigenous requirements in relation to basin water resources is crucial to support Indigenous engagement in water planning processes. Using insights from participatory planning methods and human rights frameworks, this article outlines a set of alternative and collaborative guidelines to improve Indigenous involvement in water planning and to promote sustainable and just water allocations.

  2. Alternative Processes for Water Reclamation and Solid Waste Processing in a Physical/chemical Bioregenerative Life Support System

    Science.gov (United States)

    Rogers, Tom D.

    1990-01-01

    Viewgraphs on alternative processes for water reclamation and solid waste processing in a physical/chemical-bioregenerative life support system are presented. The main objective is to focus attention on emerging influences of secondary factors (i.e., waste composition, type and level of chemical contaminants, and effects of microorganisms, primarily bacteria) and to constructively address these issues by discussing approaches which attack them in a direct manner.

  3. Evaporation phase change processes of water/methanol mixtures on superhydrophobic nanostructured surfaces

    Science.gov (United States)

    Chiang, Cheng-Kun; Lu, Yen-Wen

    2011-07-01

    Evaporation phenomena are a critical and frequently seen phase change process in many heat transfer applications. In this paper, we study the evaporation process of a sessile droplet on two topologically different surfaces, including smooth and nanostructured surfaces. The nanostructured surface has an array of high-aspect-ratio nanowires (height/diameter ~ 125) and is implemented by using a simple template-based nanofabrication method. It possesses superhydrophobicity (>140°) and low contact angle hysteresis (1.2-2.1°), allowing the liquid droplets to remain in the 'fakir' state throughout the evaporation processes. Sessile droplets of deionized (DI) water and water/methanol binary mixture test liquids with their contact angles and base diameters are monitored. The results show that the nanostructures play a critical role in the droplet dynamics during evaporation.

  4. Evaporation phase change processes of water/methanol mixtures on superhydrophobic nanostructured surfaces

    International Nuclear Information System (INIS)

    Chiang, Cheng-Kun; Lu, Yen-Wen

    2011-01-01

    Evaporation phenomena are a critical and frequently seen phase change process in many heat transfer applications. In this paper, we study the evaporation process of a sessile droplet on two topologically different surfaces, including smooth and nanostructured surfaces. The nanostructured surface has an array of high-aspect-ratio nanowires (height/diameter ∼ 125) and is implemented by using a simple template-based nanofabrication method. It possesses superhydrophobicity (>140°) and low contact angle hysteresis (1.2–2.1°), allowing the liquid droplets to remain in the 'fakir' state throughout the evaporation processes. Sessile droplets of deionized (DI) water and water/methanol binary mixture test liquids with their contact angles and base diameters are monitored. The results show that the nanostructures play a critical role in the droplet dynamics during evaporation

  5. Archival processes of the water stable isotope signal in East Antarctic ice cores

    Science.gov (United States)

    Casado, Mathieu; Landais, Amaelle; Picard, Ghislain; Münch, Thomas; Laepple, Thomas; Stenni, Barbara; Dreossi, Giuliano; Ekaykin, Alexey; Arnaud, Laurent; Genthon, Christophe; Touzeau, Alexandra; Masson-Delmotte, Valerie; Jouzel, Jean

    2018-05-01

    The oldest ice core records are obtained from the East Antarctic Plateau. Water isotopes are key proxies to reconstructing past climatic conditions over the ice sheet and at the evaporation source. The accuracy of climate reconstructions depends on knowledge of all processes affecting water vapour, precipitation and snow isotopic compositions. Fractionation processes are well understood and can be integrated in trajectory-based Rayleigh distillation and isotope-enabled climate models. However, a quantitative understanding of processes potentially altering snow isotopic composition after deposition is still missing. In low-accumulation sites, such as those found in East Antarctica, these poorly constrained processes are likely to play a significant role and limit the interpretability of an ice core's isotopic composition. By combining observations of isotopic composition in vapour, precipitation, surface snow and buried snow from Dome C, a deep ice core site on the East Antarctic Plateau, we found indications of a seasonal impact of metamorphism on the surface snow isotopic signal when compared to the initial precipitation. Particularly in summer, exchanges of water molecules between vapour and snow are driven by the diurnal sublimation-condensation cycles. Overall, we observe in between precipitation events modification of the surface snow isotopic composition. Using high-resolution water isotopic composition profiles from snow pits at five Antarctic sites with different accumulation rates, we identified common patterns which cannot be attributed to the seasonal variability of precipitation. These differences in the precipitation, surface snow and buried snow isotopic composition provide evidence of post-deposition processes affecting ice core records in low-accumulation areas.

  6. Photochemical Transformation Processes in Sunlit Surface Waters

    Science.gov (United States)

    Vione, D.

    2012-12-01

    Photochemical reactions are major processes in the transformation of hardly biodegradable xenobiotics in surface waters. They are usually classified into direct photolysis and indirect or sensitised degradation. Direct photolysis requires xenobiotic compounds to absorb sunlight, and to get transformed as a consequence. Sensitised transformation involves reaction with transient species (e.g. °OH, CO3-°, 1O2 and triplet states of chromophoric dissolved organic matter, 3CDOM*), photogenerated by so-called photosensitisers (nitrate, nitrite and CDOM). CDOM is a major photosensitiser: is it on average the main source of °OH (and of CO3-° as a consequence, which is mainly produced upon oxidation by °OH of carbonate and bicarbonate) and the only important source of 1O2 and 3CDOM* [1, 2]. CDOM origin plays a key role in sensitised processes: allochthonous CDOM derived from soil runoff and rich in fulvic and humic substances is usually more photoactive than autochthonous CDOM (produced by in-water biological processes and mainly consisting of protein-like material) or of CDOM derived from atmospheric deposition. An interesting gradual evolution of CDOM origin and photochemistry can be found in mountain lakes across the treeline, which afford a gradual transition of allochthonous- autochtonous - atmopheric CDOM when passing from trees to alpine meadows to exposed rocks [3]. Another important issue is the sites of reactive species photoproduction in CDOM. While there is evidence that smaller molecular weight fractions are more photoactive, some studies have reported considerable 1O2 reactivity in CDOM hydrophobic sites and inside particles [4]. We have recently addressed the problem and found that dissolved species in standard humic acids (hydrodynamic diameter pollutants to be assessed and modelled. For instance, it is possible to predict pollutant half-life times by knowing absorption spectrum, direct photolysis quantum yield and reaction rate constants with °OH, CO3

  7. [Variation of water DOC during the process of pre-pressure and coagulation sedimentation treatment].

    Science.gov (United States)

    Chen, Wen-Jing; Cong, Hai-Bing; Xu, Ya-Jun; Wang, Wei; Jiang, Xin-Yue; Liu, Yu-Jiao

    2014-07-01

    The aim of the study was to explore whether the pre-pressure and coagulation sedimentation process would result in algal cell disruption, leading to increased dissolved organic carbon (DOC) in water, based on which, the pressure application mode would be optimized and safe and efficient pre-pressure algae removal process would be obtained. The changes in DOC during the process of pre-pressure and preoxidation treatment, the distribution of molecular weight in water as well as the removal efficiency of algae, turbidity and DOC after coagulation and sedimentation were investigated. The results showed that the DOC in water did not increase but decreased, and the molecular weight decreased after treated with 0.5-0.8 MPa pressure. While KMnO4 and NaClO pre-oxidation both increased the DOC, in the meanwhile, the distribution of molecular weight showed no obvious change. After the pre-pressure coagulation and sedimentation process, the removal rate of algae was 96.23% and that of DOC was 29. 11%, which was by 10% - 30% higher than the rate of pre-oxidation coagulation and sedimentation process.

  8. Sodium removal from CSRDM lower part by water vapour - CO2 process

    International Nuclear Information System (INIS)

    Sundar Raj, S.I.; Sreedhar, B.K.; Gurumoorthy, K.; Rajan, K.K.; Kalyanasundaram, P.; Rajan, M.; Vaidyanathan, G.

    2006-01-01

    Sodium is the primary and secondary coolant in fast reactors. Primary and secondary circuits components like Control and Safety Rod Drive Mechanism (CSRDM), pumps, heat exchangers etc. handle liquid sodium. Sodium has good affinity to oxygen and reacts vigorously with water. Hence sodium cleaning is the first and important activity in the maintenance of the components. In reactor components this cleaning process also helps in removing a major part of radioactive contaminants after which they are subjected to chemical decontamination. There are several methods available for removing sodium from components. Out of these, the water vapour-CO 2 process is selected for large components such as pumps, heat exchangers etc. while steam cleaning is used for the core sub assemblies. The cleaning processes are to be closely monitored to ensure safety because the release of hydrogen is to be kept below 4 % during the process. This paper discusses the in house facility and the experience in the successful use of the process in the cleaning of CSRDM. (author)

  9. Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment.

    Science.gov (United States)

    Postigo, Cristina; Richardson, Susan D

    2014-08-30

    Pharmaceuticals are emerging contaminants of concern and are widespread in the environment. While the levels of these substances in finished drinking waters are generally considered too low for human health concern, there are now concerns about their disinfection by-products (DBPs) that can form during drinking water treatment, which in some cases have been proven to be more toxic than the parent compounds. The present manuscript reviews the transformation products of pharmaceuticals generated in water during different disinfection processes, i.e. chlorination, ozonation, chloramination, chlorine dioxide, UV, and UV/hydrogen peroxide, and the main reaction pathways taking place. Most of the findings considered for this review come from controlled laboratory studies involving reactions of pharmaceuticals with these oxidants used in drinking water treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Preliminary review of fisheries conservation gains within BC Hydro's water use planning process

    International Nuclear Information System (INIS)

    Orr, C.; Clayton, G.; Lewis, R.; Louie, R.; McAdam, S.; McFarlane, S.; Munro, J.; Ptolemy, R.; Werring, J.; Wightman, C.

    2004-05-01

    In 1998, the Government of British Columbia requested that BC Hydro review the water use and operating conditions of its power generation facilities. A water use plan (WUP) was to be produced for each of the facilities. As a supporter of processes that improve water management, Watershed Watch has been actively involved in British Columbia's WUP process. In the past 4 years, it has participated in the Coquitlam-Buntzen WUP consultative committee, the Coquitlam fish technical committee, the First Nations WUP committee, the fisheries advisory team on WUP, and the green hydro working group. Watershed Watch commissioned Quadra Planning Consultants to prepare this first independent assessment of the largest water restoration project undertaken in British Columbia. This report is an overview level analysis of the results thus far, of the WUP process from a fisheries conservation perspective, including First Nations expectations and interests related to fisheries. It focuses on the fish conservation gains that result from the WUP initiative. The report also examines how successfully the WUP incorporate First Nations' traditional ecological knowledge. An environmental lawyer examined whether the WUP process satisfies the expectations of the North American Free Trade Agreement (NAFTA). This report indicates that the WUP has improved the knowledge base and better defined the flow requirements for fish conservation at BC Hydro facilities. The outcomes for fish conservation have been mostly positive. The following 7 operating alternatives were recommended: reduced flows; rapid flow fluctuation; adequate flushing flows; altered water quality; entrainment of fish; flow diversion; and, reservoir drawdown. An ongoing monitoring program was also recommended. 11 refs., 16 tabs., 1 appendix

  11. Tool for assessment of process importance at the groundwater/surface water interface.

    Science.gov (United States)

    Palakodeti, Ravi C; LeBoeuf, Eugene J; Clarke, James H

    2009-10-01

    The groundwater/surface water interface (GWSWI) represents an important transition zone between groundwater and surface water environments that potentially changes the nature and flux of contaminants exchanged between the two systems. Identifying dominant and rate-limiting contaminant transformation processes is critically important for estimating contaminant fluxes and compositional changes across the GWSWI. A new, user-friendly, spreadsheet- and Visual Basic-based analytical screening tool that assists in evaluating the dominance of controlling kinetic processes across the GWSWI is presented. Based on contaminant properties, first-order processes that may play a significant role in solute transport/transformation are evaluated in terms of a ratio of process importance (P(i)) that relates the process rate to the rate of fluid transfer. Besides possessing several useful compilations of contaminant and process data, the screening tool also includes 1-D analytical models that assist users in evaluating contaminant transport across the GWSWI. The tool currently applies to 29 organics and 10 inorganics of interest within the context of the GWSWI. Application of the new screening tool is demonstrated through an evaluation of natural attenuation at a site with trichloroethylene and 1,1,2,2-tetrachloroethane contaminated groundwater discharging into wetlands.

  12. Carbonizing

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, H

    1919-08-09

    Coal, shale, etc., to be distilled at low temperature are finely ground and concentrated by a metallurgical process to remove pyrites. The distillation is preferably carried out in a retort through which the material is conveyed while being heated gradually to a temperature of about 500/sup 0/C.

  13. Effect of process water chemistry and particulate mineralogy on model oilsands separation using a warm slurry extraction process simulation

    Energy Technology Data Exchange (ETDEWEB)

    S. Wik; B.D. Sparks; S. Ng; Y. Tu; Z. Li; K.H. Chung; L.S. Kotlyar [Syncrude Canada Ltd., Edmonton, AB (Canada). Edmonton Research Center

    2008-06-15

    Variability in ore composition and process parameters is known to affect bitumen recovery from natural oilsands. In this work, we extend our earlier investigations with model oilsands systems (MOS) to determine the effects of calcium, magnesium and bicarbonate ion concentrations in the process water and their interactions with 'active' solids such as: kaolinite, montmorillonite and ultra-fine silica. Our results demonstrate that solids mineralogy and decreasing particle size produce negative outcomes on bitumen recovery related to concomitant effects on bitumen droplet size during flotation. In some cases, certain process water chemistries were found to restore recovery, but clay concentration was the key factor. Naturally acidic oilsands are known to give poor bitumen recoveries. An MOS prepared with connate water at pH 2 responded in the same way. Comparison with a typical oilsands showed no significant differences in middlings pH and the large, negative effect on bitumen recovery was not reversed by higher caustic loading during separation. This result may be caused by irreversible co-flocculation of bitumen and mineral particles during preparation of the MOS and may reflect similar behavior in comparable natural samples. 29 refs., 20 figs., 1 tab.

  14. Biological processes for concentrating trace elements from uranium mine waters. Technical completion report

    International Nuclear Information System (INIS)

    Brierley, C.L.; Brierley, J.A.

    1981-12-01

    Waste water from uranium mines in the Ambrosia Lake district near Grants, New Mexico, USA, contains uranium, selenium, radium and molybdenum. The Kerr-McGee Corporation has a novel treatment process for waters from two mines to reduce the concentrations of the trace contaminants. Particulates are settled by ponding, and the waters are passed through an ion exchange resin to remove uranium; barium chloride is added to precipitate sulfate and radium from the mine waters. The mine waters are subsequently passed through three consecutive algae ponds prior to discharge. Water, sediment and biological samples were collected over a 4-year period and analyzed to assess the role of biological agents in removal of inorganic trace contaminants from the mine waters. Some of the conclusions derived from this study are: (1) The concentrations of soluble uranium, selenium and molybdenum were not diminished in the mine waters by passage through the series of impoundments which constituted the mine water treatment facility. Uranium concentrations were reduced but this was due to passage of the water through an ion exchange column. (2) The particulate concentrations of the mine water were reduced at least ten-fold by passage of the waters through the impoundments. (3) The sediments were anoxic and enriched in uranium, molybdenum and selenium. The deposition of particulates and the formation of insoluble compounds were proposed as mechanisms for sediment enrichment. (4) The predominant algae of the treatment ponds were the filamentous Spirogyra and Oscillatoria, and the benthic alga, Chara. (5) Adsorptive processes resulted in the accumulation of metals in the algae cells. (6) Stimulation of sulfate reduction by the bacteria resulted in retention of molybdenum, selenium, and uranium in sediments. 1 figure, 16 tables

  15. Radiation-heterogeneous processes on the surface of stainless steel in contact with water

    International Nuclear Information System (INIS)

    Garibov, A.; Agayev, T.N.; Velibekova, G.Z.; Ismayilov, Sh.S.; Aliyev, A.G.

    2003-01-01

    Full text: Stainless steels are one of prevailing materials of nuclear power engineering. Under operating conditions in real systems they are exposed to influence of ionizing radiation in contact with various environments. Therefore in the processes of corrosion and destruction of stainless steels special significance takes on surface processes and subsequent heterogeneous processes with their participation. In this report the results of research of nuclear-heterogeneous processes regularities in contact with stainless steel of nuclear reactors with water under influence of γ-quanta in the temperature range 300-573 K are given. Radiolytic processes in water are investigated comprehensively and therefore it was taken as modelling system for titration of surface defects and secondary electrons, emitted from metal. It was determined, that radiation processes in stainless steel give rise to the increasing of energy output of molecular hydrogen at water radiolysis from 0.45 molecule/100 eV at pure water radiolysis at 296 K up to 3.4 molecule/100 eV at the presence of stainless steel at 300 K. With increase of temperature the output of molecular hydrogen increases up to 8.2 molecule/100 eV at 573 K. Processes of lattice damage in samples of stainless steel under influence of γ-rays were investigated by electrophysical method. Influence of γ-radiation on stainless steel in contact with water at temperatures T ≤ 423 K and initial values of radiation dose D ≤ 200 kGy given rise to the reduction of electrical resistivity of samples. At doses D≥200 kGy electrical resistivity is increased. Increase of temperature from 333 K up to 423 K lead to the reduction of dose value, at which the transition to resistance increase, from 200 kGy up to 100 kGy occurs. At T≥523 K insoluble oxide phase is formed on a surface of metal which give rise to the increase of electrical resistivity of stainless steel samples. Surface oxide film formed in contact of stainless steel + H 2 O

  16. Processing Tritiated Water at the Savannah River Site: A Production-Scale Demonstration of a palladium membrane reactor

    International Nuclear Information System (INIS)

    Sessions, K

    2004-01-01

    The Palladium Membrane Reactor (PMR) process was installed in the Tritium Facilities at the Savannah River Site to perform a production-scale demonstration for the recovery of tritium from tritiated water adsorbed on molecular sieve (zeolite). Unlike the current recovery process that utilizes magnesium, the PMR offers a means to process tritiated water in a more cost effective and environmentally friendly manner. The design and installation of the large-scale PMR process was part of a collaborative effort between the Savannah River Site and Los Alamos National Laboratory. The PMR process operated at the Savannah River Site between May 2001 and April 2003. During the initial phase of operation the PMR processed thirty-four kilograms of tritiated water from the Princeton Plasma Physics Laboratory. The water was processed in fifteen separate batches to yield approximately 34,400 liters (STP) of hydrogen isotopes. Each batch consisted of round-the-clock operations for approximately nine days. In April 2003 the reactor's palladium-silver membrane ruptured resulting in the shutdown of the PMR process. Reactor performance, process performance and operating experiences have been evaluated and documented. A performance comparison between PMR and current magnesium process is also documented

  17. Rapid removal of fine particles from mine water using sequential processes of coagulation and flocculation.

    Science.gov (United States)

    Jang, Min; Lee, Hyun-Ju; Shim, Yonsik

    2010-04-01

    The processes of coagulation and flocculation using high molecular weight long-chain polymers were applied to treat mine water having fine flocs of which about 93% of the total mass was less than 3.02 microm, representing the size distribution of fine particles. Six different combinations of acryl-type anionic flocculants and polyamine-type cationic coagulants were selected to conduct kinetic tests on turbidity removal in mine water. Optimization studies on the types and concentrations of the coagulant and flocculant showed that the highest rate of turbidity removal was obtained with 10 mg L(-1) FL-2949 (coagulant) and 12 mg L(-1) A333E (flocculant), which was about 14.4 and 866.7 times higher than that obtained with A333E alone and that obtained through natural precipitation by gravity, respectively. With this optimized condition, the turbidity of mine water was reduced to 0 NTU within 20 min. Zeta potential measurements were conducted to elucidate the removal mechanism of the fine particles, and they revealed that there was a strong linear relationship between the removal rate of each pair of coagulant and flocculant application and the zeta potential differences that were obtained by subtracting the zeta potential of flocculant-treated mine water from the zeta potential of coagulant-treated mine water. Accordingly, through an optimization process, coagulation-flocculation by use of polymers could be advantageous to mine water treatment, because the process rapidly removes fine particles in mine water and only requires a small-scale plant for set-up purposes owing to the short retention time in the process.

  18. Some analytic diagnostic models for transport processes in estuarine and coastal waters

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2001-03-01

    Advection and dispersion processes in estuarine and coastal waters are briefly reviewed. Beginning from the basic macroscopic equations of transport for a substance diluted or suspended in the considered body of water,several levels of filtering in time and space are described and applied to obtain suitable diagnostic mathematical models both with scale effects and gaussian.The solutions of the aforementioned models,for initial distributions and boundary conditions with enough symmetry,are discussed, as well as their applications to a parameter characterization of the transport properties of the receiving body of water

  19. Using Coagulation Process in Optimizing Natural Organic Matter Removal from Low Turbidity Waters

    Directory of Open Access Journals (Sweden)

    Alireza Mesdaghinia

    2006-03-01

    Full Text Available Optimization of coagulation process  for efficient removal of Natural Organic Matters (NOM has gained a lot of focus over the last years to meet the requirements of enhanced coagulation. NOM comprises both particulate and soluble components which the latter usually comprises the main portion. Removal of soluble NOM from low turbidity waters by coagulation is not a successful process unless enough attention is paid to stages of formation and development of both micro and macro-flocs. This study, which presents experimental results from pilot scale research studies aimed at optimizing coagulation process applied to synthetic raw waters supplemented by adding commercial humic acid with low turbidity levels, explains how pH and turbidity can be controlled to maximize soluble NOM removal. The removal of NOM at various coagulant doses and coagulation pHs has been assessed through raw and treated (coagulated-settled water measurements of total organic carbon (TOC. For low turbidity waters, essential floc nucleation sites can be provided by creating synthetic turbidities, for example by adding clay. Adjusting the initial pH at 5.5 or adding clay before coagulant addition allows the formation of micro-flocs as well as formation of the insoluble flocs at low coagulant doses.

  20. The deuterium depleted water effects on germination, growth and respiration processes in Zea Mays culture

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Fleancu, Monica; Giosanu, Daniela; Iorga-Siman, Ion

    2002-01-01

    The aim of this paper is to study the influence of deuterium depleted water (DDW) on the germination, growth and respiration processes in Zea Mays culture. The DDW is produced by the Institute of Cryogenics and Isotope Separation, Rm. Valcea (Romania). We used moist seeds in three experimental lots: L-1 (control), using distillated water (because the quality of DDW, excepting the deuterium content, is similar to that of distillated water); L-2, using a mixture of DDW and H 2 O in 1:1 proportion; L-3, germination in light water (DDW). Reported to the control lot, the germinative energy was higher in L-2 and L-3, but it was no significant difference between faculty of germination of variants. The length of main root was higher in L-2 and L-3 as compared to control lot. The intensity process of respiration was stimulated when DDW was used in both cases (L-2 or L-3). So, we can remark a favorable influence of light water on some biological processes in Zea mays plants (authors)