WorldWideScience

Sample records for response-locked event-related brain

  1. Blind Separation of Event-Related Brain Responses into Independent Components

    National Research Council Canada - National Science Library

    Makeig, Scott

    1996-01-01

    .... We report here a method for the blind separation of event-related brain responses into spatially stationary and temporally independent subcomponents using an Independent Component Analysis algorithm...

  2. Mental fatigue and impaired response processes: event-related brain potentials in a Go/NoGo task.

    Science.gov (United States)

    Kato, Yuichiro; Endo, Hiroshi; Kizuka, Tomohiro

    2009-05-01

    The effects of mental fatigue on the availability of cognitive resources and associated response-related processes were examined using event-related brain potentials. Subjects performed a Go/NoGo task for 60 min. Reaction time, number of errors, and mental fatigue scores all significantly increased with time spent on the task. The NoGo-P3 amplitude significantly decreased with time on task, but the Go-P3 amplitude was not modulated. The amplitude of error-related negativity (Ne/ERN) also decreased with time on task. These results indicate that mental fatigue attenuates resource allocation and error monitoring for NoGo stimuli. The Go- and NoGo-P3 latencies both increased with time on task, indicative of a delay in stimulus evaluation time due to mental fatigue. NoGo-N2 latency increased with time on task, but NoGo-N2 amplitude was not modulated. The amplitude of response-locked lateralized readiness potential (LRP) significantly decreased with time on task. Mental fatigue appears to slows down the time course of response inhibition, and impairs the intensity of response execution.

  3. Tactile event-related potentials in amyotrophic lateral sclerosis (ALS): Implications for brain-computer interface.

    Science.gov (United States)

    Silvoni, S; Konicar, L; Prats-Sedano, M A; Garcia-Cossio, E; Genna, C; Volpato, C; Cavinato, M; Paggiaro, A; Veser, S; De Massari, D; Birbaumer, N

    2016-01-01

    We investigated neurophysiological brain responses elicited by a tactile event-related potential paradigm in a sample of ALS patients. Underlying cognitive processes and neurophysiological signatures for brain-computer interface (BCI) are addressed. We stimulated the palm of the hand in a group of fourteen ALS patients and a control group of ten healthy participants and recorded electroencephalographic signals in eyes-closed condition. Target and non-target brain responses were analyzed and classified offline. Classification errors served as the basis for neurophysiological brain response sub-grouping. A combined behavioral and quantitative neurophysiological analysis of sub-grouped data showed neither significant between-group differences, nor significant correlations between classification performance and the ALS patients' clinical state. Taking sequential effects of stimuli presentation into account, analyses revealed mean classification errors of 19.4% and 24.3% in healthy participants and ALS patients respectively. Neurophysiological correlates of tactile stimuli presentation are not altered by ALS. Tactile event-related potentials can be used to monitor attention level and task performance in ALS and may constitute a viable basis for future BCIs. Implications for brain-computer interface implementation of the proposed method for patients in critical conditions, such as the late stage of ALS and the (completely) locked-in state, are discussed. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Acute low-level alcohol consumption reduces phase locking of event-related oscillations in rodents.

    Science.gov (United States)

    Amodeo, Leslie R; Wills, Derek N; Ehlers, Cindy L

    2017-07-14

    Event-related oscillations (EROs) are rhythmic changes that are evoked by a sensory and/or cognitive stimulus that can influence the dynamics of the EEG. EROs are defined by the decomposition of the EEG signal into magnitude (energy) and phase information and can be elicited in both humans and animals. EROs have been linked to several relevant genes associated with ethanol dependence phenotypes in humans and are altered in selectively bred alcohol-preferring rats. However, pharmacological studies are only beginning to emerge investigating the impact low intoxicating doses of ethanol can have on event-related neural oscillations. The main goal of this study was to investigate the effects of low levels of voluntary consumption of ethanol, in rats, on phase locking of EROs in order to give further insight into the acute intoxicating effects of ethanol on the brain. To this end, we allow rats to self-administer unsweetened 20% ethanol over 15 intermittent sessions. This method results in a stable low-dose consumption of ethanol. Using an auditory event-related potential "oddball" paradigm, we investigated the effects of alcohol on the phase variability of EROs from electrodes implanted into the frontal cortex, dorsal hippocampus, and amygdala. We found that intermittent ethanol self-administration was sufficient to produce a significant reduction in overall intraregional synchrony across all targeted regions. These data suggest that phase locking of EROs within brain regions known to be impacted by alcohol may represent a sensitive biomarker of low levels of alcohol intoxication. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Different event-related patterns of gamma-band power in brain waves of fast- and slow-reacting subjects.

    Science.gov (United States)

    Jokeit, H; Makeig, S

    1994-01-01

    Fast- and slow-reacting subjects exhibit different patterns of gamma-band electroencephalogram (EEG) activity when responding as quickly as possible to auditory stimuli. This result appears to confirm long-standing speculations of Wundt that fast- and slow-reacting subjects produce speeded reactions in different ways and demonstrates that analysis of event-related changes in the amplitude of EEG activity recorded from the human scalp can reveal information about event-related brain processes unavailable using event-related potential measures. Time-varying spectral power in a selected (35- to 43-Hz) gamma frequency band was averaged across trials in two experimental conditions: passive listening and speeded reacting to binaural clicks, forming 40-Hz event-related spectral responses. Factor analysis of between-subject event-related spectral response differences split subjects into two near-equal groups composed of faster- and slower-reacting subjects. In faster-reacting subjects, 40-Hz power peaked near 200 ms and 400 ms poststimulus in the react condition, whereas in slower-reacting subjects, 40-Hz power just before stimulus delivery was larger in the react condition. These group differences were preserved in separate averages of relatively long and short reaction-time epochs for each group. gamma-band (20-60 Hz)-filtered event-related potential response averages did not differ between the two groups or conditions. Because of this and because gamma-band power in the auditory event-related potential is small compared with the EEG, the observed event-related spectral response features must represent gamma-band EEG activity reliably induced by, but not phase-locked to, experimental stimuli or events. PMID:8022783

  6. Brain communication in the locked-in state.

    Science.gov (United States)

    De Massari, Daniele; Ruf, Carolin A; Furdea, Adrian; Matuz, Tamara; van der Heiden, Linda; Halder, Sebastian; Silvoni, Stefano; Birbaumer, Niels

    2013-06-01

    Patients in the completely locked-in state have no means of communication and they represent the target population for brain-computer interface research in the last 15 years. Although different paradigms have been tested and different physiological signals used, to date no sufficiently documented completely locked-in state patient was able to control a brain-computer interface over an extended time period. We introduce Pavlovian semantic conditioning to enable basic communication in completely locked-in state. This novel paradigm is based on semantic conditioning for online classification of neuroelectric or any other physiological signals to discriminate between covert (cognitive) 'yes' and 'no' responses. The paradigm comprised the presentation of affirmative and negative statements used as conditioned stimuli, while the unconditioned stimulus consisted of electrical stimulation of the skin paired with affirmative statements. Three patients with advanced amyotrophic lateral sclerosis participated over an extended time period, one of which was in a completely locked-in state, the other two in the locked-in state. The patients' level of vigilance was assessed through auditory oddball procedures to study the correlation between vigilance level and the classifier's performance. The average online classification accuracies of slow cortical components of electroencephalographic signals were around chance level for all the patients. The use of a non-linear classifier in the offline classification procedure resulted in a substantial improvement of the accuracy in one locked-in state patient achieving 70% correct classification. A reliable level of performance in the completely locked-in state patient was not achieved uniformly throughout the 37 sessions despite intact cognitive processing capacity, but in some sessions communication accuracies up to 70% were achieved. Paradigm modifications are proposed. Rapid drop of vigilance was detected suggesting attentional

  7. Increased reaction time variability in attention-deficit hyperactivity disorder as a response-related phenomenon: evidence from single-trial event-related potentials.

    Science.gov (United States)

    Saville, Christopher W N; Feige, Bernd; Kluckert, Christian; Bender, Stephan; Biscaldi, Monica; Berger, Andrea; Fleischhaker, Christian; Henighausen, Klaus; Klein, Christoph

    2015-07-01

    Increased intra-subject variability (ISV) in reaction times (RTs) is a promising endophenotype for attention-deficit hyperactivity disorder (ADHD) and among the most robust hallmarks of the disorder. ISV has been assumed to represent an attentional deficit, either reflecting lapses in attention or increased neural noise. Here, we use an innovative single-trial event-related potential approach to assess whether the increased ISV associated with ADHD is indeed attributable to attention, or whether it is related to response-related processing. We measured electroencephalographic responses to working memory oddball tasks in patients with ADHD (N = 20, aged 11.3 ± 1.1) and healthy controls (N = 25, aged 11.7 ± 1.1), and analysed these data with a recently developed method of single-trial event-related potential analysis. Estimates of component latency variability were computed for the stimulus-locked and response-locked forms of the P3b and the lateralised readiness potential (LRP). ADHD patients showed significantly increased ISV in behavioural ISV. This increased ISV was paralleled by an increase in variability in response-locked event-related potential latencies, while variability in stimulus-locked latencies was equivalent between groups. This result held across the P3b and LRP. Latency of all components predicted RTs on a single-trial basis, confirming that all were relevant for speed of processing. These data suggest that the increased ISV found in ADHD could be associated with response-end, rather than stimulus-end processes, in contrast to prevailing conceptions about the endophenotype. This mental chronometric approach may also be useful for exploring whether the existing lack of specificity of ISV to particular psychiatric conditions can be improved upon. © 2014 Association for Child and Adolescent Mental Health.

  8. Human event-related brain potentials to auditory periodic noise stimuli.

    Science.gov (United States)

    Kaernbach, C; Schröger, E; Gunter, T C

    1998-02-06

    Periodic noise is perceived as different from ordinary non-repeating noise due to the involvement of echoic memory. Since this stimulus does not contain simple physical cues (such as onsets or spectral shape) that might obscure sensory memory interpretations, it is a valuable tool to study sensory memory functions. We demonstrated for the first time that the processing of periodic noise can be tapped by event-related brain potentials (ERPs). Human subjects received repeating segments of noise embedded in non-repeating noise. They were instructed to detect the periodicity inherent to the stimulation. We observed a central negativity time-locked on the periodic segment that correlated to the subjects behavioral performance in periodicity detection. It is argued that the ERP result indicates an enhancement of sensory-specific processing.

  9. Attention to affective pictures in closed head injury: event-related brain potentials and cardiac responses.

    Science.gov (United States)

    Solbakk, Anne-Kristin; Reinvang, Ivar; Svebak, Sven; Nielsen, Christopher S; Sundet, Kjetil

    2005-02-01

    We examined whether closed head injury patients show altered patterns of selective attention to stimulus categories that naturally evoke differential responses in healthy people. Self-reported rating and electrophysiological (event-related potentials [ERPs], heart rate [HR]) responses to affective pictures were studied in patients with mild head injury (n = 20; CT/MRI negative), in patients with predominantly frontal brain lesions (n = 12; CT/MRI confirmed), and in healthy controls (n = 20). Affective valence similarly modulated HR and ERP responses in all groups, but group differences occurred that were independent of picture valence. The attenuation of P3-slow wave amplitudes in the mild head injury group indicates a reduction in the engagement of attentional resources to the task. In contrast, the general enhancement of ERP amplitudes at occipital sites in the group with primarily frontal brain injury may reflect disinhibition of input at sensory receptive areas, possibly due to a deficit in top-down modulation performed by anterior control systems.

  10. Timely event-related synchronization fading and phase de-locking and their defects in migraine.

    Science.gov (United States)

    Yum, Myung-Kul; Moon, Jin-Hwa; Kang, Joong Koo; Kwon, Oh-Young; Park, Ki-Jong; Shon, Young-Min; Lee, Il Keun; Jung, Ki-Young

    2014-07-01

    To investigate the characteristics of event-related synchronization (ERS) fading and phase de-locking of alpha waves during passive auditory stimulation (PAS) in the migraine patients. The subjects were 16 adult women with migraine and 16 normal controls. Electroencephalographic (EEG) data obtained during PAS with standard (SS) and deviant stimuli (DS) were used. Alpha ERS fading, the phase locking index (PLI) and de-locking index (DLI) were evaluated from the 10 Hz complex Morlet wavelet components at 100 ms (t100) and 300 ms (t300) after PAS. At t100, significant ERS was found with SS and DS in the migraineurs and controls (P=0.000). At t300 in the controls, ERS faded to zero for DS while in the migraineurs there was no fading for DS. In both groups the PLI for SS and DS was significantly reduced, i.e. de-locked, at t300 compared to t100 (P=0.000). In the migraineurs, the DLI for DS was significantly lower than in the controls (P=0.003). The alpha ERS fading and phase de-locking are defective in migraineurs during passive auditory cognitive processing. The defects in timely alpha ERS fading and in de-locking may play a role in the different attention processing in migraine patients. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Predict or classify: The deceptive role of time-locking in brain signal classification

    Science.gov (United States)

    Rusconi, Marco; Valleriani, Angelo

    2016-06-01

    Several experimental studies claim to be able to predict the outcome of simple decisions from brain signals measured before subjects are aware of their decision. Often, these studies use multivariate pattern recognition methods with the underlying assumption that the ability to classify the brain signal is equivalent to predict the decision itself. Here we show instead that it is possible to correctly classify a signal even if it does not contain any predictive information about the decision. We first define a simple stochastic model that mimics the random decision process between two equivalent alternatives, and generate a large number of independent trials that contain no choice-predictive information. The trials are first time-locked to the time point of the final event and then classified using standard machine-learning techniques. The resulting classification accuracy is above chance level long before the time point of time-locking. We then analyze the same trials using information theory. We demonstrate that the high classification accuracy is a consequence of time-locking and that its time behavior is simply related to the large relaxation time of the process. We conclude that when time-locking is a crucial step in the analysis of neural activity patterns, both the emergence and the timing of the classification accuracy are affected by structural properties of the network that generates the signal.

  12. A Comparison of Independent Event-Related Desynchronization Responses in Motor-Related Brain Areas to Movement Execution, Movement Imagery, and Movement Observation.

    Science.gov (United States)

    Duann, Jeng-Ren; Chiou, Jin-Chern

    2016-01-01

    Electroencephalographic (EEG) event-related desynchronization (ERD) induced by movement imagery or by observing biological movements performed by someone else has recently been used extensively for brain-computer interface-based applications, such as applications used in stroke rehabilitation training and motor skill learning. However, the ERD responses induced by the movement imagery and observation might not be as reliable as the ERD responses induced by movement execution. Given that studies on the reliability of the EEG ERD responses induced by these activities are still lacking, here we conducted an EEG experiment with movement imagery, movement observation, and movement execution, performed multiple times each in a pseudorandomized order in the same experimental runs. Then, independent component analysis (ICA) was applied to the EEG data to find the common motor-related EEG source activity shared by the three motor tasks. Finally, conditional EEG ERD responses associated with the three movement conditions were computed and compared. Among the three motor conditions, the EEG ERD responses induced by motor execution revealed the alpha power suppression with highest strengths and longest durations. The ERD responses of the movement imagery and movement observation only partially resembled the ERD pattern of the movement execution condition, with slightly better detectability for the ERD responses associated with the movement imagery and faster ERD responses for movement observation. This may indicate different levels of involvement in the same motor-related brain circuits during different movement conditions. In addition, because the resulting conditional EEG ERD responses from the ICA preprocessing came with minimal contamination from the non-related and/or artifactual noisy components, this result can play a role of the reference for devising a brain-computer interface using the EEG ERD features of movement imagery or observation.

  13. Statistical language learning in neonates revealed by event-related brain potentials

    Directory of Open Access Journals (Sweden)

    Näätänen Risto

    2009-03-01

    Full Text Available Abstract Background Statistical learning is a candidate for one of the basic prerequisites underlying the expeditious acquisition of spoken language. Infants from 8 months of age exhibit this form of learning to segment fluent speech into distinct words. To test the statistical learning skills at birth, we recorded event-related brain responses of sleeping neonates while they were listening to a stream of syllables containing statistical cues to word boundaries. Results We found evidence that sleeping neonates are able to automatically extract statistical properties of the speech input and thus detect the word boundaries in a continuous stream of syllables containing no morphological cues. Syllable-specific event-related brain responses found in two separate studies demonstrated that the neonatal brain treated the syllables differently according to their position within pseudowords. Conclusion These results demonstrate that neonates can efficiently learn transitional probabilities or frequencies of co-occurrence between different syllables, enabling them to detect word boundaries and in this way isolate single words out of fluent natural speech. The ability to adopt statistical structures from speech may play a fundamental role as one of the earliest prerequisites of language acquisition.

  14. Dogs cannot bark: event-related brain responses to true and false negated statements as indicators of higher-order conscious processing.

    Science.gov (United States)

    Herbert, Cornelia; Kübler, Andrea

    2011-01-01

    The present study investigated event-related brain potentials elicited by true and false negated statements to evaluate if discrimination of the truth value of negated information relies on conscious processing and requires higher-order cognitive processing in healthy subjects across different levels of stimulus complexity. The stimulus material consisted of true and false negated sentences (sentence level) and prime-target expressions (word level). Stimuli were presented acoustically and no overt behavioral response of the participants was required. Event-related brain potentials to target words preceded by true and false negated expressions were analyzed both within group and at the single subject level. Across the different processing conditions (word pairs and sentences), target words elicited a frontal negativity and a late positivity in the time window from 600-1000 msec post target word onset. Amplitudes of both brain potentials varied as a function of the truth value of the negated expressions. Results were confirmed at the single-subject level. In sum, our results support recent suggestions according to which evaluation of the truth value of a negated expression is a time- and cognitively demanding process that cannot be solved automatically, and thus requires conscious processing. Our paradigm provides insight into higher-order processing related to language comprehension and reasoning in healthy subjects. Future studies are needed to evaluate if our paradigm also proves sensitive for the detection of consciousness in non-responsive patients.

  15. Dogs cannot bark: event-related brain responses to true and false negated statements as indicators of higher-order conscious processing.

    Directory of Open Access Journals (Sweden)

    Cornelia Herbert

    Full Text Available The present study investigated event-related brain potentials elicited by true and false negated statements to evaluate if discrimination of the truth value of negated information relies on conscious processing and requires higher-order cognitive processing in healthy subjects across different levels of stimulus complexity. The stimulus material consisted of true and false negated sentences (sentence level and prime-target expressions (word level. Stimuli were presented acoustically and no overt behavioral response of the participants was required. Event-related brain potentials to target words preceded by true and false negated expressions were analyzed both within group and at the single subject level. Across the different processing conditions (word pairs and sentences, target words elicited a frontal negativity and a late positivity in the time window from 600-1000 msec post target word onset. Amplitudes of both brain potentials varied as a function of the truth value of the negated expressions. Results were confirmed at the single-subject level. In sum, our results support recent suggestions according to which evaluation of the truth value of a negated expression is a time- and cognitively demanding process that cannot be solved automatically, and thus requires conscious processing. Our paradigm provides insight into higher-order processing related to language comprehension and reasoning in healthy subjects. Future studies are needed to evaluate if our paradigm also proves sensitive for the detection of consciousness in non-responsive patients.

  16. Clinical usefulness and feasibility of time-frequency analysis of chemosensory event-related potentials.

    Science.gov (United States)

    Huart, C; Rombaux, Ph; Hummel, T; Mouraux, A

    2013-09-01

    The clinical usefulness of olfactory event-related brain potentials (OERPs) to assess olfactory function is limited by the relatively low signal-to-noise ratio of the responses identified using conventional time-domain averaging. Recently, it was shown that time-frequency analysis of the obtained EEG signals can markedly improve the signal-to-noise ratio of OERPs in healthy controls, because it enhances both phase-locked and non phase-locked EEG responses. The aim of the present study was to investigate the clinical usefulness of this approach and evaluate its feasibility in a clinical setting. We retrospectively analysed EEG recordings obtained from 45 patients (15 anosmic, 15 hyposmic and 15 normos- mic). The responses to olfactory stimulation were analysed using conventional time-domain analysis and joint time-frequency analysis. The ability of the two methods to discriminate between anosmic, hyposmic and normosmic patients was assessed using a Receiver Operating Characteristic analysis. The discrimination performance of OERPs identified using conventional time-domain averaging was poor. In contrast, the discrimination performance of the EEG response identified in the time-frequency domain was relatively high. Furthermore, we found a significant correlation between the magnitude of this response and the psychophysical olfactory score. Time-frequency analysis of the EEG responses to olfactory stimulation could be used as an effective and reliable diagnostic tool for the objective clinical evaluation of olfactory function in patients.

  17. Brain activity and cognitive transition during childhood: A longitudinal event-related brain potential study.

    NARCIS (Netherlands)

    Stauder, J.E.A.; Molenaar, P.C.M.; van der Molen, M.W.

    1998-01-01

    Examined the relation between brain activation and cognitive development using event-related brain potentials (ERPs) and a longitudinal design. 5 yr old females performed a visual recognition ('oddball') task and an experimental analogue of the Piagetian conservation of liquid quantity task At three

  18. Age, intelligence, and event-related brain potentials during late childhood: A longitudinal study.

    NARCIS (Netherlands)

    Molenaar, P.C.M.; Molen, M.W.; Stauder, J.E.A.

    2003-01-01

    he relation between event-related brain activity, age, and intelligence was studied using a visual oddball task presented longitudinally to girls at 9, 10, and 11 years of age. The event-related brain potential (ERP) components showed typical gradual decrements in latency and amplitude with

  19. Mapping the sequence of brain events in response to disgusting food.

    Science.gov (United States)

    Pujol, Jesus; Blanco-Hinojo, Laura; Coronas, Ramón; Esteba-Castillo, Susanna; Rigla, Mercedes; Martínez-Vilavella, Gerard; Deus, Joan; Novell, Ramón; Caixàs, Assumpta

    2018-01-01

    Warning signals indicating that a food is potentially dangerous may evoke a response that is not limited to the feeling of disgust. We investigated the sequence of brain events in response to visual representations of disgusting food using a dynamic image analysis. Functional MRI was acquired in 30 healthy subjects while they were watching a movie showing disgusting food scenes interspersed with the scenes of appetizing food. Imaging analysis included the identification of the global brain response and the generation of frame-by-frame activation maps at the temporal resolution of 2 s. Robust activations were identified in brain structures conventionally associated with the experience of disgust, but our analysis also captured a variety of other brain elements showing distinct temporal evolutions. The earliest events included transient changes in the orbitofrontal cortex and visual areas, followed by a more durable engagement of the periaqueductal gray, a pivotal element in the mediation of responses to threat. A subsequent core phase was characterized by the activation of subcortical and cortical structures directly concerned not only with the emotional dimension of disgust (e.g., amygdala-hippocampus, insula), but also with the regulation of food intake (e.g., hypothalamus). In a later phase, neural excitement extended to broad cortical areas, the thalamus and cerebellum, and finally to the default mode network that signaled the progressive termination of the evoked response. The response to disgusting food representations is not limited to the emotional domain of disgust, and may sequentially involve a variety of broadly distributed brain networks. Hum Brain Mapp 39:369-380, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Genetic influences on phase synchrony of brain oscillations supporting response inhibition.

    Science.gov (United States)

    Müller, Viktor; Anokhin, Andrey P; Lindenberger, Ulman

    2017-05-01

    Phase synchronization of neuronal oscillations is a fundamental mechanism underlying cognitive processing and behavior, including context-dependent response production and inhibition. Abnormalities in neural synchrony can lead to abnormal information processing and contribute to cognitive and behavioral deficits in neuropsychiatric disorders. However, little is known about genetic and environmental contributions to individual differences in cortical oscillatory dynamics underlying response inhibition. This study examined heritability of event-related phase synchronization of brain oscillations in 302 young female twins including 94 MZ and 57 DZ pairs performing a cued Go/No-Go version of the Continuous Performance Test (CPT). We used the Phase Locking Index (PLI) to assess inter-trial phase clustering (synchrony) in several frequency bands in two time intervals after stimulus onset (0-300 and 301-600ms). Response inhibition (i.e., successful response suppression in No-Go trials) was characterized by a transient increase in phase synchronization of delta- and theta-band oscillations in the fronto-central midline region. Genetic analysis showed significant heritability of the phase locking measures related to response inhibition, with 30 to 49% of inter-individual variability being accounted for by genetic factors. This is the first study providing evidence for heritability of task-related neural synchrony. The present results suggest that PLI can serve as an indicator of genetically transmitted individual differences in neural substrates of response inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Working memory load related modulations of the oscillatory brain activity. N-back ERD/ERS study

    International Nuclear Information System (INIS)

    Nakao, Yoshiaki; Tamura, Toshiyo; Kodabashi, Atsushi; Fujimoto, Toshiro; Yarita, Masaru

    2011-01-01

    In recent cognitive neuroscience, a lot of studies of the human working memory were examined, and electroencephalography (EEG) measurements during n-back task were often used. However, they were almost studied by event related potentials (ERP) analysis. In the ERP study, time-locked components can be elicited, but non time-locked components such as the modulated brain oscillatory activity might be lost by an averaging procedure. To elucidate the contribution of the modulations of the brain oscillatory activity to the human working memory, we examined event related desynchronization (ERD)/event related synchronization (ERS) analysis on the source waveforms during n-back task. Source waveforms were calculated from a source model which was constructed with the sources seeded from fMRI meta-analysis of n-back task and additional sources in the orbitofrontal cortex and the visual cortex estimated with P100 and P360 components in the n-back ERP. Our results suggested the network which included the prefrontal cortex and the parietal lobe had a contribution to human working memory process, and it was mediated by theta oscillatory activity. (author)

  2. Changes in event-related potential functional networks predict traumatic brain injury in piglets.

    Science.gov (United States)

    Atlan, Lorre S; Lan, Ingrid S; Smith, Colin; Margulies, Susan S

    2018-06-01

    Traumatic brain injury is a leading cause of cognitive and behavioral deficits in children in the US each year. None of the current diagnostic tools, such as quantitative cognitive and balance tests, have been validated to identify mild traumatic brain injury in infants, adults and animals. In this preliminary study, we report a novel, quantitative tool that has the potential to quickly and reliably diagnose traumatic brain injury and which can track the state of the brain during recovery across multiple ages and species. Using 32 scalp electrodes, we recorded involuntary auditory event-related potentials from 22 awake four-week-old piglets one day before and one, four, and seven days after two different injury types (diffuse and focal) or sham. From these recordings, we generated event-related potential functional networks and assessed whether the patterns of the observed changes in these networks could distinguish brain-injured piglets from non-injured. Piglet brains exhibited significant changes after injury, as evaluated by five network metrics. The injury prediction algorithm developed from our analysis of the changes in the event-related potentials functional networks ultimately produced a tool with 82% predictive accuracy. This novel approach is the first application of auditory event-related potential functional networks to the prediction of traumatic brain injury. The resulting tool is a robust, objective and predictive method that offers promise for detecting mild traumatic brain injury, in particular because collecting event-related potentials data is noninvasive and inexpensive. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Brain-behavioral adaptability predicts response to cognitive behavioral therapy for emotional disorders: A person-centered event-related potential study.

    Science.gov (United States)

    Stange, Jonathan P; MacNamara, Annmarie; Kennedy, Amy E; Hajcak, Greg; Phan, K Luan; Klumpp, Heide

    2017-06-23

    Single-trial-level analyses afford the ability to link neural indices of elaborative attention (such as the late positive potential [LPP], an event-related potential) with downstream markers of attentional processing (such as reaction time [RT]). This approach can provide useful information about individual differences in information processing, such as the ability to adapt behavior based on attentional demands ("brain-behavioral adaptability"). Anxiety and depression are associated with maladaptive information processing implicating aberrant cognition-emotion interactions, but whether brain-behavioral adaptability predicts response to psychotherapy is not known. We used a novel person-centered, trial-level analysis approach to link neural indices of stimulus processing to behavioral responses and to predict treatment outcome. Thirty-nine patients with anxiety and/or depression received 12 weeks of cognitive behavioral therapy (CBT). Prior to treatment, patients performed a speeded reaction-time task involving briefly-presented pairs of aversive and neutral pictures while electroencephalography was recorded. Multilevel modeling demonstrated that larger LPPs predicted slower responses on subsequent trials, suggesting that increased attention to the task-irrelevant nature of pictures interfered with reaction time on subsequent trials. Whereas using LPP and RT averages did not distinguish CBT responders from nonresponders, in trial-level analyses individuals who demonstrated greater ability to benefit behaviorally (i.e., faster RT) from smaller LPPs on the previous trial (greater brain-behavioral adaptability) were more likely to respond to treatment and showed greater improvements in depressive symptoms. These results highlight the utility of trial-level analyses to elucidate variability in within-subjects, brain-behavioral attentional coupling in the context of emotion processing, in predicting response to CBT for emotional disorders. Copyright © 2017 Elsevier Ltd

  4. Source space analysis of event-related dynamic reorganization of brain networks.

    Science.gov (United States)

    Ioannides, Andreas A; Dimitriadis, Stavros I; Saridis, George A; Voultsidou, Marotesa; Poghosyan, Vahe; Liu, Lichan; Laskaris, Nikolaos A

    2012-01-01

    How the brain works is nowadays synonymous with how different parts of the brain work together and the derivation of mathematical descriptions for the functional connectivity patterns that can be objectively derived from data of different neuroimaging techniques. In most cases static networks are studied, often relying on resting state recordings. Here, we present a quantitative study of dynamic reconfiguration of connectivity for event-related experiments. Our motivation is the development of a methodology that can be used for personalized monitoring of brain activity. In line with this motivation, we use data with visual stimuli from a typical subject that participated in different experiments that were previously analyzed with traditional methods. The earlier studies identified well-defined changes in specific brain areas at specific latencies related to attention, properties of stimuli, and tasks demands. Using a recently introduced methodology, we track the event-related changes in network organization, at source space level, thus providing a more global and complete view of the stages of processing associated with the regional changes in activity. The results suggest the time evolving modularity as an additional brain code that is accessible with noninvasive means and hence available for personalized monitoring and clinical applications.

  5. Changing relations between intelligence and brain activity in late childhood: A longitudinal event-related potential study.

    NARCIS (Netherlands)

    Stauder, J.E.A.; van der Molen, M.W.; Molenaar, P.C.M.

    1998-01-01

    In studying the relationship between Raven intelligence and event-related brain potentials to a visual oddball task in the same children, at respectively 9, 10 and 11 years of age, dramatic changes were observed with age. The event-related amplitude data suggest a shift in relation between

  6. Different responses of spontaneous and stimulus-related alpha activity to ambient luminance changes.

    Science.gov (United States)

    Benedetto, Alessandro; Lozano-Soldevilla, Diego; VanRullen, Rufin

    2017-12-04

    Alpha oscillations are particularly important in determining our percepts and have been implicated in fundamental brain functions. Oscillatory activity can be spontaneous or stimulus-related. Furthermore, stimulus-related responses can be phase- or non-phase-locked to the stimulus. Non-phase-locked (induced) activity can be identified as the average amplitude changes in response to a stimulation, while phase-locked activity can be measured via reverse-correlation techniques (echo function). However, the mechanisms and the functional roles of these oscillations are far from clear. Here, we investigated the effect of ambient luminance changes, known to dramatically modulate neural oscillations, on spontaneous and stimulus-related alpha. We investigated the effect of ambient luminance on EEG alpha during spontaneous human brain activity at rest (experiment 1) and during visual stimulation (experiment 2). Results show that spontaneous alpha amplitude increased by decreasing ambient luminance, while alpha frequency remained unaffected. In the second experiment, we found that under low-luminance viewing, the stimulus-related alpha amplitude was lower, and its frequency was slightly faster. These effects were evident in the phase-locked part of the alpha response (echo function), but weaker or absent in the induced (non-phase-locked) alpha responses. Finally, we explored the possible behavioural correlates of these modulations in a monocular critical flicker frequency task (experiment 3), finding that dark adaptation in the left eye decreased the temporal threshold of the right eye. Overall, we found that ambient luminance changes impact differently on spontaneous and stimulus-related alpha expression. We suggest that stimulus-related alpha activity is crucial in determining human temporal segmentation abilities. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Functional definition of the N450 event-related brain potential marker of conflict processing: a numerical stroop study

    OpenAIRE

    Szűcs, Denes; Soltész, F

    2012-01-01

    BACKGROUND: Several conflict processing studies aimed to dissociate neuroimaging phenomena related to stimulus and response conflict processing. However, previous studies typically did not include a paradigm-independent measure of either stimulus or response conflict. Here we have combined electro-myography (EMG) with event-related brain potentials (ERPs) in order to determine whether a particularly robust marker of conflict processing, the N450 ERP effect usually related to the activity of t...

  8. Source Space Analysis of Event-Related Dynamic Reorganization of Brain Networks

    Directory of Open Access Journals (Sweden)

    Andreas A. Ioannides

    2012-01-01

    Full Text Available How the brain works is nowadays synonymous with how different parts of the brain work together and the derivation of mathematical descriptions for the functional connectivity patterns that can be objectively derived from data of different neuroimaging techniques. In most cases static networks are studied, often relying on resting state recordings. Here, we present a quantitative study of dynamic reconfiguration of connectivity for event-related experiments. Our motivation is the development of a methodology that can be used for personalized monitoring of brain activity. In line with this motivation, we use data with visual stimuli from a typical subject that participated in different experiments that were previously analyzed with traditional methods. The earlier studies identified well-defined changes in specific brain areas at specific latencies related to attention, properties of stimuli, and tasks demands. Using a recently introduced methodology, we track the event-related changes in network organization, at source space level, thus providing a more global and complete view of the stages of processing associated with the regional changes in activity. The results suggest the time evolving modularity as an additional brain code that is accessible with noninvasive means and hence available for personalized monitoring and clinical applications.

  9. Emotion and attention : Event-related brain potential studies

    OpenAIRE

    Schupp, Harald Thomas; Flaisch, Tobias; Stockburger, Jessica; Junghöfer, Markus

    2006-01-01

    Emotional pictures guide selective visual attention. A series of event-related brain potential (ERP) studies is reviewed demonstrating the consistent and robust modulation of specific ERP components by emotional images. Specifically, pictures depicting natural pleasant and unpleasant scenes are associated with an increased early posterior negativity, late positive potential, and sustained positive slow wave compared with neutral contents. These modulations are considered to index different st...

  10. Event-related potentials reflect impaired temporal interval learning following haloperidol administration.

    Science.gov (United States)

    Forster, Sarah E; Zirnheld, Patrick; Shekhar, Anantha; Steinhauer, Stuart R; O'Donnell, Brian F; Hetrick, William P

    2017-09-01

    Signals carried by the mesencephalic dopamine system and conveyed to anterior cingulate cortex are critically implicated in probabilistic reward learning and performance monitoring. A common evaluative mechanism purportedly subserves both functions, giving rise to homologous medial frontal negativities in feedback- and response-locked event-related brain potentials (the feedback-related negativity (FRN) and the error-related negativity (ERN), respectively), reflecting dopamine-dependent prediction error signals to unexpectedly negative events. Consistent with this model, the dopamine receptor antagonist, haloperidol, attenuates the ERN, but effects on FRN have not yet been evaluated. ERN and FRN were recorded during a temporal interval learning task (TILT) following randomized, double-blind administration of haloperidol (3 mg; n = 18), diphenhydramine (an active control for haloperidol; 25 mg; n = 20), or placebo (n = 21) to healthy controls. Centroparietal positivities, the Pe and feedback-locked P300, were also measured and correlations between ERP measures and behavioral indices of learning, overall accuracy, and post-error compensatory behavior were evaluated. We hypothesized that haloperidol would reduce ERN and FRN, but that ERN would uniquely track automatic, error-related performance adjustments, while FRN would be associated with learning and overall accuracy. As predicted, ERN was reduced by haloperidol and in those exhibiting less adaptive post-error performance; however, these effects were limited to ERNs following fast timing errors. In contrast, the FRN was not affected by drug condition, although increased FRN amplitude was associated with improved accuracy. Significant drug effects on centroparietal positivities were also absent. Our results support a functional and neurobiological dissociation between the ERN and FRN.

  11. A comparative study of event-related coupling patterns during an auditory oddball task in schizophrenia

    Science.gov (United States)

    Bachiller, Alejandro; Poza, Jesús; Gómez, Carlos; Molina, Vicente; Suazo, Vanessa; Hornero, Roberto

    2015-02-01

    Objective. The aim of this research is to explore the coupling patterns of brain dynamics during an auditory oddball task in schizophrenia (SCH). Approach. Event-related electroencephalographic (ERP) activity was recorded from 20 SCH patients and 20 healthy controls. The coupling changes between auditory response and pre-stimulus baseline were calculated in conventional EEG frequency bands (theta, alpha, beta-1, beta-2 and gamma), using three coupling measures: coherence, phase-locking value and Euclidean distance. Main results. Our results showed a statistically significant increase from baseline to response in theta coupling and a statistically significant decrease in beta-2 coupling in controls. No statistically significant changes were observed in SCH patients. Significance. Our findings support the aberrant salience hypothesis, since SCH patients failed to change their coupling dynamics between stimulus response and baseline when performing an auditory cognitive task. This result may reflect an impaired communication among neural areas, which may be related to abnormal cognitive functions.

  12. Assessing cue-induced brain response as a function of abstinence duration in heroin-dependent individuals: an event-related fMRI study.

    Directory of Open Access Journals (Sweden)

    Qiang Li

    Full Text Available The brain activity induced by heroin-related cues may play a role in the maintenance of heroin dependence. Whether the reinforcement or processing biases construct an everlasting feature of heroin addiction remains to be resolved. We used an event-related fMRI paradigm to measure brain activation in response to heroin cue-related pictures versus neutral pictures as the control condition in heroin-dependent patients undergoing short-term and long-term abstinence. The self-reported craving scores were significantly increased after cue exposure in the short-term abstinent patients (t = 3.000, P = 0.008, but no increase was found in the long-term abstinent patients (t = 1.510, P = 0.149. However, no significant differences in cue-induced craving changes were found between the two groups (t = 1.193, P = 0.850. Comparing between the long-term abstinence and short-term abstinence groups, significant decreases in brain activation were detected in the bilateral anterior cingulated cortex, left medial prefrontal cortex, caudate, middle occipital gyrus, inferior parietal lobule and right precuneus. Among all of the heroin dependent patients, the abstinence duration was negatively correlated with brain activation in the left medial prefrontal cortex and left inferior parietal lobule. These findings suggest that long-term abstinence may be useful for heroin-dependent patients to diminish their saliency value of heroin-related cues and possibly lower the relapse vulnerability to some extent.

  13. Emotional Granularity Effects on Event-Related Brain Potentials during Affective Picture Processing.

    Science.gov (United States)

    Lee, Ja Y; Lindquist, Kristen A; Nam, Chang S

    2017-01-01

    There is debate about whether emotional granularity , the tendency to label emotions in a nuanced and specific manner, is merely a product of labeling abilities, or a systematic difference in the experience of emotion during emotionally evocative events. According to the Conceptual Act Theory of Emotion (CAT) (Barrett, 2006), emotional granularity is due to the latter and is a product of on-going temporal differences in how individuals categorize and thus make meaning of their affective states. To address this question, the present study investigated the effects of individual differences in emotional granularity on electroencephalography-based brain activity during the experience of emotion in response to affective images. Event-related potentials (ERP) and event-related desynchronization and synchronization (ERD/ERS) analysis techniques were used. We found that ERP responses during the very early (60-90 ms), middle (270-300 ms), and later (540-570 ms) moments of stimulus presentation were associated with individuals' level of granularity. We also observed that highly granular individuals, compared to lowly granular individuals, exhibited relatively stable desynchronization of alpha power (8-12 Hz) and synchronization of gamma power (30-50 Hz) during the 3 s of stimulus presentation. Overall, our results suggest that emotional granularity is related to differences in neural processing throughout emotional experiences and that high granularity could be associated with access to executive control resources and a more habitual processing of affective stimuli, or a kind of "emotional complexity." Implications for models of emotion are also discussed.

  14. The effects of foreknowledge and task-set shifting as mirrored in cue- and target-locked event-related potentials.

    Directory of Open Access Journals (Sweden)

    Mareike Finke

    Full Text Available The present study examined the use of foreknowledge in a task-cueing protocol while manipulating sensory updating and executive control in both, informatively and non-informatively pre-cued trials. Foreknowledge, sensory updating (cue switch effects and task-switching were orthogonally manipulated in order to address the question of whether, and to which extent, the sensory processing of cue changes can partly or totally explain the final task switch costs. Participants responded faster when they could prepare for the upcoming task and if no task-set updating was necessary. Sensory cue switches influenced cue-locked ERPs only when they contained conceptual information about the upcoming task: frontal P2 amplitudes were modulated by task-relevant cue changes, mid-parietal P3 amplitudes by the anticipatory updating of stimulus-response mappings, and P3 peak latencies were modulated by task switching. Task preparation was advantageous for efficient stimulus-response re-mapping at target-onset as mirrored in target N2 amplitudes. However, N2 peak latencies indicate that this process is faster for all repeat trials. The results provide evidence to support a very fast detection of task-relevance in sensory (cue changes and argue against the view of task repetition benefits as secondary to purely perceptual repetition priming. Advanced preparation may have a stronger influence on behavioral performance and target-locked brain activity than the local effect of repeating or switching the task-set in the current trial.

  15. Brain activations related to saccadic response conflict are not sensitive to time on task

    Directory of Open Access Journals (Sweden)

    Ewa eBeldzik

    2015-12-01

    Full Text Available Establishing a role of the dorsal medial frontal cortex in the performance monitoring and cognitive control has been a challenge to neuroscientists for the past decade. In light of recent findings, the conflict monitoring hypothesis has been elaborated to an action-outcome predictor theory. One of the findings that led to this re-evaluation was the fMRI study in which conflict-related brain activity was investigated in terms of the so-called time on task effect, i.e. a linear increase of the BOLD signal with longer response times. The aim of this study was to investigate brain regions involved in the processing of saccadic response conflict and to account for the time on task effect. A modified spatial cueing task was implemented in the event-related fMRI study with oculomotor responses. The results revealed several brain regions which show higher activity for incongruent trials in comparison to the congruent ones, including pre-supplementary motor area together with the frontal and parietal regions. Further analysis accounting for the effect of response time provided evidence that these brain activations were not sensitive to time on task but reflected purely the congruency effect.

  16. Brain Activations Related to Saccadic Response Conflict are not Sensitive to Time on Task.

    Science.gov (United States)

    Beldzik, Ewa; Domagalik, Aleksandra; Oginska, Halszka; Marek, Tadeusz; Fafrowicz, Magdalena

    2015-01-01

    Establishing a role of the dorsal medial frontal cortex in the performance monitoring and cognitive control has been a challenge to neuroscientists for the past decade. In light of recent findings, the conflict monitoring hypothesis has been elaborated to an action-outcome predictor theory. One of the findings that led to this re-evaluation was the fMRI study in which conflict-related brain activity was investigated in terms of the so-called time on task effect, i.e., a linear increase of the BOLD signal with longer response times. The aim of this study was to investigate brain regions involved in the processing of saccadic response conflict and to account for the time on task effect. A modified spatial cueing task was implemented in the event-related fMRI study with oculomotor responses. The results revealed several brain regions which show higher activity for incongruent trials in comparison to the congruent ones, including pre-supplementary motor area together with the frontal and parietal regions. Further analysis accounting for the effect of response time provided evidence that these brain activations were not sensitive to time on task but reflected purely the congruency effect.

  17. Does erotic stimulus presentation design affect brain activation patterns? Event-related vs. blocked fMRI designs.

    Science.gov (United States)

    Bühler, Mira; Vollstädt-Klein, Sabine; Klemen, Jane; Smolka, Michael N

    2008-07-22

    Existing brain imaging studies, investigating sexual arousal via the presentation of erotic pictures or film excerpts, have mainly used blocked designs with long stimulus presentation times. To clarify how experimental functional magnetic resonance imaging (fMRI) design affects stimulus-induced brain activity, we compared brief event-related presentation of erotic vs. neutral stimuli with blocked presentation in 10 male volunteers. Brain activation differed depending on design type in only 10% of the voxels showing task related brain activity. Differences between blocked and event-related stimulus presentation were found in occipitotemporal and temporal regions (Brodmann Area (BA) 19, 37, 48), parietal areas (BA 7, 40) and areas in the frontal lobe (BA 6, 44). Our results suggest that event-related designs might be a potential alternative when the core interest is the detection of networks associated with immediate processing of erotic stimuli.Additionally, blocked, compared to event-related, stimulus presentation allows the emergence and detection of non-specific secondary processes, such as sustained attention, motor imagery and inhibition of sexual arousal.

  18. Does erotic stimulus presentation design affect brain activation patterns? Event-related vs. blocked fMRI designs

    Directory of Open Access Journals (Sweden)

    Klemen Jane

    2008-07-01

    Full Text Available Abstract Background Existing brain imaging studies, investigating sexual arousal via the presentation of erotic pictures or film excerpts, have mainly used blocked designs with long stimulus presentation times. Methods To clarify how experimental functional magnetic resonance imaging (fMRI design affects stimulus-induced brain activity, we compared brief event-related presentation of erotic vs. neutral stimuli with blocked presentation in 10 male volunteers. Results Brain activation differed depending on design type in only 10% of the voxels showing task related brain activity. Differences between blocked and event-related stimulus presentation were found in occipitotemporal and temporal regions (Brodmann Area (BA 19, 37, 48, parietal areas (BA 7, 40 and areas in the frontal lobe (BA 6, 44. Conclusion Our results suggest that event-related designs might be a potential alternative when the core interest is the detection of networks associated with immediate processing of erotic stimuli. Additionally, blocked, compared to event-related, stimulus presentation allows the emergence and detection of non-specific secondary processes, such as sustained attention, motor imagery and inhibition of sexual arousal.

  19. Event-related brain responses to emotional words, pictures, and faces - a cross-domain comparison.

    Science.gov (United States)

    Bayer, Mareike; Schacht, Annekathrin

    2014-01-01

    Emotion effects in event-related brain potentials (ERPs) have previously been reported for a range of visual stimuli, including emotional words, pictures, and facial expressions. Still, little is known about the actual comparability of emotion effects across these stimulus classes. The present study aimed to fill this gap by investigating emotion effects in response to words, pictures, and facial expressions using a blocked within-subject design. Furthermore, ratings of stimulus arousal and valence were collected from an independent sample of participants. Modulations of early posterior negativity (EPN) and late positive complex (LPC) were visible for all stimulus domains, but showed clear differences, particularly in valence processing. While emotion effects were limited to positive stimuli for words, they were predominant for negative stimuli in pictures and facial expressions. These findings corroborate the notion of a positivity offset for words and a negativity bias for pictures and facial expressions, which was assumed to be caused by generally lower arousal levels of written language. Interestingly, however, these assumed differences were not confirmed by arousal ratings. Instead, words were rated as overall more positive than pictures and facial expressions. Taken together, the present results point toward systematic differences in the processing of written words and pictorial stimuli of emotional content, not only in terms of a valence bias evident in ERPs, but also concerning their emotional evaluation captured by ratings of stimulus valence and arousal.

  20. Brain Signals of Face Processing as Revealed by Event-Related Potentials

    Directory of Open Access Journals (Sweden)

    Ela I. Olivares

    2015-01-01

    Full Text Available We analyze the functional significance of different event-related potentials (ERPs as electrophysiological indices of face perception and face recognition, according to cognitive and neurofunctional models of face processing. Initially, the processing of faces seems to be supported by early extrastriate occipital cortices and revealed by modulations of the occipital P1. This early response is thought to reflect the detection of certain primary structural aspects indicating the presence grosso modo of a face within the visual field. The posterior-temporal N170 is more sensitive to the detection of faces as complex-structured stimuli and, therefore, to the presence of its distinctive organizational characteristics prior to within-category identification. In turn, the relatively late and probably more rostrally generated N250r and N400-like responses might respectively indicate processes of access and retrieval of face-related information, which is stored in long-term memory (LTM. New methods of analysis of electrophysiological and neuroanatomical data, namely, dynamic causal modeling, single-trial and time-frequency analyses, are highly recommended to advance in the knowledge of those brain mechanisms concerning face processing.

  1. A Fast EEG Forecasting Algorithm for Phase-Locked Transcranial Electrical Stimulation of the Human Brain

    Directory of Open Access Journals (Sweden)

    Farrokh Mansouri

    2017-07-01

    Full Text Available A growing body of research suggests that non-invasive electrical brain stimulation can more effectively modulate neural activity when phase-locked to the underlying brain rhythms. Transcranial alternating current stimulation (tACS can potentially stimulate the brain in-phase to its natural oscillations as recorded by electroencephalography (EEG, but matching these oscillations is a challenging problem due to the complex and time-varying nature of the EEG signals. Here we address this challenge by developing and testing a novel approach intended to deliver tACS phase-locked to the activity of the underlying brain region in real-time. This novel approach extracts phase and frequency from a segment of EEG, then forecasts the signal to control the stimulation. A careful tuning of the EEG segment length and prediction horizon is required and has been investigated here for different EEG frequency bands. The algorithm was tested on EEG data from 5 healthy volunteers. Algorithm performance was quantified in terms of phase-locking values across a variety of EEG frequency bands. Phase-locking performance was found to be consistent across individuals and recording locations. With current parameters, the algorithm performs best when tracking oscillations in the alpha band (8–13 Hz, with a phase-locking value of 0.77 ± 0.08. Performance was maximized when the frequency band of interest had a dominant frequency that was stable over time. The algorithm performs faster, and provides better phase-locked stimulation, compared to other recently published algorithms devised for this purpose. The algorithm is suitable for use in future studies of phase-locked tACS in preclinical and clinical applications.

  2. Scalp topography of event-related brain potentials and cognitive transitions during childhood.

    NARCIS (Netherlands)

    Molenaar, P.C.M.; van der Molen, M.W.; Stauder, J.E.A.

    1993-01-01

    Examined the relation between cognitive development (CGD) and the ontogenesis of event-related brain potentials (ERPs) during childhood among 48 girls (aged 5-7 yrs). The level of CGD was assessed with a standard Piagetian conservation kit. Ss performed a visual selective attention (oddball) task

  3. Adult Attachment Styles Associated with Brain Activity in Response to Infant Faces in Nulliparous Women: An Event-Related Potentials Study.

    Science.gov (United States)

    Ma, Yuanxiao; Ran, Guangming; Chen, Xu; Ma, Haijing; Hu, Na

    2017-01-01

    Adult attachment style is a key for understanding emotion regulation and feelings of security in human interactions as well as for the construction of the caregiving system. The caregiving system is a group of representations about affiliative behaviors, which is guided by the caregiver's sensitivity and empathy, and is mature in young adulthood. Appropriate perception and interpretation of infant emotions is a crucial component of the formation of a secure attachment relationship between infant and caregiver. As attachment styles influence the ways in which people perceive emotional information, we examined how different attachment styles associated with brain response to the perception of infant facial expressions in nulliparous females with secure, anxious, and avoidant attachment styles. The event-related potentials of 65 nulliparous females were assessed during a facial recognition task with joy, neutral, and crying infant faces. The results showed that anxiously attached females exhibited larger N170 amplitudes than those with avoidant attachment in response to all infant faces. Regarding the P300 component, securely attached females showed larger amplitudes to all infant faces in comparison with avoidantly attached females. Moreover, anxiously attached females exhibited greater amplitudes than avoidantly attached females to only crying infant faces. In conclusion, the current results provide evidence that attachment style differences are associated with brain responses to the perception of infant faces. Furthermore, these findings further separate the psychological mechanisms underlying the caregiving behavior of those with anxious and avoidant attachment from secure attachment.

  4. Adult Attachment Styles Associated with Brain Activity in Response to Infant Faces in Nulliparous Women: An Event-Related Potentials Study

    Directory of Open Access Journals (Sweden)

    Xu Chen

    2017-04-01

    Full Text Available Adult attachment style is a key for understanding emotion regulation and feelings of security in human interactions as well as for the construction of the caregiving system. The caregiving system is a group of representations about affiliative behaviors, which is guided by the caregiver’s sensitivity and empathy, and is mature in young adulthood. Appropriate perception and interpretation of infant emotions is a crucial component of the formation of a secure attachment relationship between infant and caregiver. As attachment styles influence the ways in which people perceive emotional information, we examined how different attachment styles associated with brain response to the perception of infant facial expressions in nulliparous females with secure, anxious, and avoidant attachment styles. The event-related potentials of 65 nulliparous females were assessed during a facial recognition task with joy, neutral, and crying infant faces. The results showed that anxiously attached females exhibited larger N170 amplitudes than those with avoidant attachment in response to all infant faces. Regarding the P300 component, securely attached females showed larger amplitudes to all infant faces in comparison with avoidantly attached females. Moreover, anxiously attached females exhibited greater amplitudes than avoidantly attached females to only crying infant faces. In conclusion, the current results provide evidence that attachment style differences are associated with brain responses to the perception of infant faces. Furthermore, these findings further separate the psychological mechanisms underlying the caregiving behavior of those with anxious and avoidant attachment from secure attachment.

  5. NRC staff review of licensee responses to pressure-locking and thermal-binding issue

    Energy Technology Data Exchange (ETDEWEB)

    Rathbun, H.J.

    1996-12-01

    Commercial nuclear power plant operating experience has indicated that pressure locking and thermal binding represent potential common mode failure mechanisms that can cause safety-related power-operated gate valves to fail in the closed position, thus rendering redundant safety-related systems incapable of performing their safety functions. In Generic Letter (GL) 95-07, {open_quotes}Pressure Locking and Thermal Binding of Safety-Related Power-Operated Gate Valves,{close_quotes} the U.S. Nuclear Regulatory Commission (NRC) staff requested that nuclear power plant licensees take certain actions to ensure that valves susceptible to pressure locking or thermal binding are capable of performing their safety functions within the current licensing bases of the facility. The NRC staff has received summary information from licensees in response to GL 95-07 describing actions they have taken to prevent the occurrence of pressure locking and thermal binding. The NRC staff has developed a systematic process to help ensure uniform and consistent review of licensee submittals in response to GL 95-07.

  6. Wavelet brain angiography suggests arteriovenous pulse wave phase locking.

    Directory of Open Access Journals (Sweden)

    William E Butler

    Full Text Available When a stroke volume of arterial blood arrives to the brain, the total blood volume in the bony cranium must remain constant as the proportions of arterial and venous blood vary, and by the end of the cardiac cycle an equivalent volume of venous blood must have been ejected. I hypothesize the brain to support this process by an extraluminally mediated exchange of information between its arterial and venous circulations. To test this I introduce wavelet angiography methods to resolve single moving vascular pulse waves (PWs in the brain while simultaneously measuring brain pulse motion. The wavelet methods require angiographic data acquired at significantly faster rate than cardiac frequency. I obtained these data in humans from brain surface optical angiograms at craniotomy and in piglets from ultrasound angiograms via cranial window. I exploit angiographic time of flight to resolve arterial from venous circulation. Initial wavelet reconstruction proved unsatisfactory because of angiographic motion alias from brain pulse motion. Testing with numerically simulated cerebral angiograms enabled the development of a vascular PW cine imaging method based on cross-correlated wavelets of mixed high frequency and high temporal resolution respectively to attenuate frequency and motion alias. Applied to the human and piglet data, the method resolves individual arterial and venous PWs and finds them to be phase locked each with separate phase relations to brain pulse motion. This is consistent with arterial and venous PW coordination mediated by pulse motion and points to a testable hypothesis of a function of cerebrospinal fluid in the ventricles of the brain.

  7. Report order and identification of multidimensional stimuli: a study of event-related brain potentials.

    Science.gov (United States)

    Shieh, Kong-King; Shen, I-Hsuan

    2004-06-01

    An experiment was conducted to investigate the effect of order of report on multidimensional stimulus identification. Subjects were required to identify each two-dimensional symbol by pushing corresponding buttons on the keypad on which there were two columns representing the two dimensions. Order of report was manipulated for the dimension represented by the left or right column. Both behavioral data and event-related potentials were recorded from 14 college students. Behavioral data analysis showed that order of report had a significant effect on response times. Such results were consistent with those of previous studies. Analysis of event-related brain potentials showed significant differences in peak amplitude and mean amplitude at time windows of 120-250 msec. at Fz, F3, and F4 and of 350-750 msec. at Fz, F3, F4, Cz, and Pz. Data provided neurophysiological evidence that reporting dimensional values according to natural language habits was appropriate and less cognitively demanding.

  8. A cognitive stressor for event-related potential studies: the Portland arithmetic stress task.

    Science.gov (United States)

    Atchley, Rachel; Ellingson, Roger; Klee, Daniel; Memmott, Tabatha; Oken, Barry

    2017-05-01

    In this experiment, we developed and evaluated the Portland Arithmetic Stress Task (PAST) as a cognitive stressor to evaluate acute and sustained stress reactivity for event-related potential (ERP) studies. The PAST is a titrated arithmetic task adapted from the Montreal Imaging Stress Task (MIST), with added experimental control over presentation parameters, improved and synchronized acoustic feedback and generation of timing markers needed for physiological analyzes of real-time brain activity. Thirty-one older adults (M = 60 years) completed the PAST. EEG was recorded to assess feedback-related negativity (FRN) and the magnitude of the stress response through autonomic nervous system activity and salivary cortisol. Physiological measures other than EEG included heart rate, respiration rate, heart rate variability, blood pressure and salivary cortisol. These measures were collected at several time points throughout the task. Feedback-related negativity evoked-potential responses were elicited and they significantly differed depending on whether positive or negative feedback was received. The PAST also increased systolic blood pressure, heart rate variability and respiration rates compared to a control condition attentional task. These preliminary results suggest that the PAST is an effective cognitive stressor. Successful measurement of the feedback-related negativity suggests that the PAST is conducive to EEG and time-sensitive ERP experiments. Moreover, the physiological findings support the PAST as a potent method for inducing stress in older adult participants. Further research is needed to confirm these results, but the PAST shows promise as a tool for cognitive stress induction for time-locked event-related potential experiments.

  9. Effect anticipation affects perceptual, cognitive, and motor phases of response preparation: evidence from an event-related potential (ERP study

    Directory of Open Access Journals (Sweden)

    Neil Richard Harrison

    2016-01-01

    Full Text Available The anticipation of action effects is a basic process that can be observed even for key-pressing responses in a stimulus-response paradigm. In Ziessler, Nattkemper and Vogt’s (2012 experiments participants first learned arbitrary effects of key-pressing responses. In the test phase an imperative stimulus determined the response, but participants withheld the response until a Go-stimulus appeared. Reaction times were shorter if the Go-stimulus was compatible with the learned response effect. This is strong evidence that effect representations were activated during response planning. Here we repeated the experiment using event-related potentials (ERPs, and we found that Go-stimulus locked ERPs depended on the compatibility relationship between the Go-stimulus and the response effect. In general, this supports the interpretation of the behavioural data. More specifically, differences in the ERPs between compatible and incompatible Go-stimuli were found for the early perceptual P1 component and the later frontal P2 component. P1 differences were found only in the second half of the experiment and for long SOAs between imperative stimulus and Go-stimulus, i.e. when the effect was fully anticipated and the perceptual system was prepared for the effect-compatible Go-stimulus. P2 amplitudes, likely associated with evaluation and conflict detection, were larger when Go-stimulus and effect were incompatible; presumably, incompatibility increased the difficulty of effect anticipation. Onset of response-locked LRPs occurred earlier under incompatible conditions indicating extended motor processing. Together, these results strongly suggest that effect anticipation affects all (i.e. perceptual, cognitive, and motor phases of response preparation.

  10. Toward FRP-Based Brain-Machine Interfaces-Single-Trial Classification of Fixation-Related Potentials.

    Directory of Open Access Journals (Sweden)

    Andrea Finke

    Full Text Available The co-registration of eye tracking and electroencephalography provides a holistic measure of ongoing cognitive processes. Recently, fixation-related potentials have been introduced to quantify the neural activity in such bi-modal recordings. Fixation-related potentials are time-locked to fixation onsets, just like event-related potentials are locked to stimulus onsets. Compared to existing electroencephalography-based brain-machine interfaces that depend on visual stimuli, fixation-related potentials have the advantages that they can be used in free, unconstrained viewing conditions and can also be classified on a single-trial level. Thus, fixation-related potentials have the potential to allow for conceptually different brain-machine interfaces that directly interpret cortical activity related to the visual processing of specific objects. However, existing research has investigated fixation-related potentials only with very restricted and highly unnatural stimuli in simple search tasks while participant's body movements were restricted. We present a study where we relieved many of these restrictions while retaining some control by using a gaze-contingent visual search task. In our study, participants had to find a target object out of 12 complex and everyday objects presented on a screen while the electrical activity of the brain and eye movements were recorded simultaneously. Our results show that our proposed method for the classification of fixation-related potentials can clearly discriminate between fixations on relevant, non-relevant and background areas. Furthermore, we show that our classification approach generalizes not only to different test sets from the same participant, but also across participants. These results promise to open novel avenues for exploiting fixation-related potentials in electroencephalography-based brain-machine interfaces and thus providing a novel means for intuitive human-machine interaction.

  11. Orthographic recognition in late adolescents: an assessment through event-related brain potentials.

    Science.gov (United States)

    González-Garrido, Andrés Antonio; Gómez-Velázquez, Fabiola Reveca; Rodríguez-Santillán, Elizabeth

    2014-04-01

    Reading speed and efficiency are achieved through the automatic recognition of written words. Difficulties in learning and recognizing the orthography of words can arise despite reiterative exposure to texts. This study aimed to investigate, in native Spanish-speaking late adolescents, how different levels of orthographic knowledge might result in behavioral and event-related brain potential differences during the recognition of orthographic errors. Forty-five healthy high school students were selected and divided into 3 equal groups (High, Medium, Low) according to their performance on a 5-test battery of orthographic knowledge. All participants performed an orthographic recognition task consisting of the sequential presentation of a picture (object, fruit, or animal) followed by a correctly, or incorrectly, written word (orthographic mismatch) that named the picture just shown. Electroencephalogram (EEG) recording took place simultaneously. Behavioral results showed that the Low group had a significantly lower number of correct responses and increased reaction times while processing orthographical errors. Tests showed significant positive correlations between higher performance on the experimental task and faster and more accurate reading. The P150 and P450 components showed higher voltages in the High group when processing orthographic errors, whereas N170 seemed less lateralized to the left hemisphere in the lower orthographic performers. Also, trials with orthographic errors elicited a frontal P450 component that was only evident in the High group. The present results show that higher levels of orthographic knowledge correlate with high reading performance, likely because of faster and more accurate perceptual processing, better visual orthographic representations, and top-down supervision, as the event-related brain potential findings seem to suggest.

  12. Event-related brain responses to emotional words, pictures, and faces – a cross-domain comparison

    Science.gov (United States)

    Bayer, Mareike; Schacht, Annekathrin

    2014-01-01

    Emotion effects in event-related brain potentials (ERPs) have previously been reported for a range of visual stimuli, including emotional words, pictures, and facial expressions. Still, little is known about the actual comparability of emotion effects across these stimulus classes. The present study aimed to fill this gap by investigating emotion effects in response to words, pictures, and facial expressions using a blocked within-subject design. Furthermore, ratings of stimulus arousal and valence were collected from an independent sample of participants. Modulations of early posterior negativity (EPN) and late positive complex (LPC) were visible for all stimulus domains, but showed clear differences, particularly in valence processing. While emotion effects were limited to positive stimuli for words, they were predominant for negative stimuli in pictures and facial expressions. These findings corroborate the notion of a positivity offset for words and a negativity bias for pictures and facial expressions, which was assumed to be caused by generally lower arousal levels of written language. Interestingly, however, these assumed differences were not confirmed by arousal ratings. Instead, words were rated as overall more positive than pictures and facial expressions. Taken together, the present results point toward systematic differences in the processing of written words and pictorial stimuli of emotional content, not only in terms of a valence bias evident in ERPs, but also concerning their emotional evaluation captured by ratings of stimulus valence and arousal. PMID:25339927

  13. A comment on Farwell : brain fingerprinting: a comprehensive tutorial review of detection of concealed information with event-related brain potentials

    NARCIS (Netherlands)

    Meijer, E.H.; Ben-Shakhar, G.; Verschuere, B.; Donchin, E.

    2013-01-01

    In a recent issue of Cognitive Neurodynamics Farwell (Cogn Neurodyn 6:115-154, 2012) published a comprehensive tutorial review of the use of Event Related Brain Potentials (ERP) in the detection of concealed information. Farwell’s review covered much of his own work employing his ‘‘brain

  14. The development of control processes supporting source memory discrimination as revealed by event-related potentials.

    Science.gov (United States)

    de Chastelaine, Marianne; Friedman, David; Cycowicz, Yael M

    2007-08-01

    Improvement in source memory performance throughout childhood is thought to be mediated by the development of executive control. As postretrieval control processes may be better time-locked to the recognition response rather than the retrieval cue, the development of processes underlying source memory was investigated with both stimulus- and response-locked event-related potentials (ERPs). These were recorded in children, adolescents, and adults during a recognition memory exclusion task. Green- and red-outlined pictures were studied, but were tested in black outline. The test requirement was to endorse old items shown in one study color ("targets") and to reject new items along with old items shown in the alternative study color ("nontargets"). Source memory improved with age. All age groups retrieved target and nontarget memories as reflected by reliable parietal episodic memory (EM) effects, a stimulus-locked ERP correlate of recollection. Response-locked ERPs to targets and nontargets diverged in all groups prior to the response, although this occurred at an increasingly earlier time point with age. We suggest these findings reflect the implementation of attentional control mechanisms to enhance target memories and facilitate response selection with the greatest and least success, respectively, in adults and children. In adults only, response-locked ERPs revealed an early-onsetting parietal negativity for nontargets, but not for targets. This was suggested to reflect adults' ability to consistently inhibit prepotent target responses for nontargets. The findings support the notion that the development of source memory relies on the maturation of control processes that serve to enhance accurate selection of task-relevant memories.

  15. Event-related potentials in response to emotional words in patients with major depressive disorder and healthy controls.

    Science.gov (United States)

    Liu, Hong; Yin, Hui-fang; Wu, Da-xing; Xu, Shu-jing

    2014-01-01

    Dysfunctional cognitive processing and abnormal brain activation in response to emotional stimuli have long been recognized as core features of the major depressive disorder (MDD). The aim of this study was to examine how Chinese patients with MDD process Chinese emotional words presented to either the left (LH) or right hemisphere (RH). Reaction time (RT) and the late positive component of the event-related potential were measured while subjects judged the valence (positive or negative) of emotional words written in Chinese. Compared to healthy controls, patients with MDD exhibited slower RTs in response to negative words. In all subjects, the RTs in response to negative words were significantly faster than RTs in response to positive words presented to the LH, as well as significantly faster than responses to negative words presented to the RH. Compared to healthy controls, MDD patients exhibited reduced activation of the central and left regions of the brain in response to both negative and positive words. In healthy controls, the posterior brain areas were more active than the anterior brain areas when responding to negative words. All individuals showed faster RTs in response to negative words compared to positive words. In addition, MDD patients showed lateralization of brain activity in response to emotional words, whereas healthy individuals did not show this lateralization. Posterior brain areas appear to play an especially important role in discriminating and experiencing negative emotional words. This study provides further evidence in support of the negative bias hypothesis and the emotional processing theory.

  16. Ultralow-field and spin-locking relaxation dispersion in postmortem pig brain.

    Science.gov (United States)

    Dong, Hui; Hwang, Seong-Min; Wendland, Michael; You, Lixing; Clarke, John; Inglis, Ben

    2017-12-01

    To investigate tissue-specific differences, a quantitative comparison was made between relaxation dispersion in postmortem pig brain measured at ultralow fields (ULF) and spin locking at 7 tesla (T). The goal was to determine whether ULF-MRI has potential advantages for in vivo human brain imaging. Separate specimens of gray matter and white matter were investigated using an ULF-MRI system with superconducting quantum interference device (SQUID) signal detection to measure T1ULF at fields from 58.7 to 235.0 μT and using a commercial MRI scanner to measure T1ρ7T at spin-locking fields from 5.0 to 235.0 μT. At matched field strengths, T1ρ7T is 50 to 100% longer than T1ULF. Furthermore, dispersion in T1ULF is close to linear between 58.7 and 235 µT, whereas dispersion in T1ρ7T is highly nonlinear over the same range. A subtle elbow in the T1ULF dispersion at approximately 140 µT is tentatively attributed to the local dipolar field of macromolecules. It is suggested that different relaxation mechanisms dominate each method and that ULF-MRI has a fundamentally different sensitivity to the macromolecular structure of neural tissue. Ultralow-field MRI may offer distinct, quantitative advantages for human brain imaging, while simultaneously avoiding the severe heating limitation imposed on high-field spin locking. Magn Reson Med 78:2342-2351, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Event-related potentials dissociate perceptual from response-related age effects in visual search

    DEFF Research Database (Denmark)

    Wiegand, Iris; Müller, Hermann J.; Finke, Kathrin

    2013-01-01

    measures with lateralized event-related potentials of younger and older adults performing a compound-search task, in which the target-defining dimension of a pop-out target (color/shape) and the response-critical target feature (vertical/horizontal stripes) varied independently across trials. Slower...... responses in older participants were associated with age differences in all analyzed event-related potentials from perception to response, indicating that behavioral slowing originates from multiple stages within the information-processing stream. Furthermore, analyses of carry-over effects from one trial...

  18. Effect Anticipation Affects Perceptual, Cognitive, and Motor Phases of Response Preparation: Evidence from an Event-Related Potential (ERP) Study

    Science.gov (United States)

    Harrison, Neil R.; Ziessler, Michael

    2016-01-01

    The anticipation of action effects is a basic process that can be observed even for key-pressing responses in a stimulus-response paradigm. In Ziessler et al.’s (2012) experiments participants first learned arbitrary effects of key-pressing responses. In the test phase an imperative stimulus determined the response, but participants withheld the response until a Go-stimulus appeared. Reaction times (RTs) were shorter if the Go-stimulus was compatible with the learned response effect. This is strong evidence that effect representations were activated during response planning. Here, we repeated the experiment using event-related potentials (ERPs), and we found that Go-stimulus locked ERPs depended on the compatibility relationship between the Go-stimulus and the response effect. In general, this supports the interpretation of the behavioral data. More specifically, differences in the ERPs between compatible and incompatible Go-stimuli were found for the early perceptual P1 component and the later frontal P2 component. P1 differences were found only in the second half of the experiment and for long stimulus onset asynchronies (SOAs) between imperative stimulus and Go-stimulus, i.e., when the effect was fully anticipated and the perceptual system was prepared for the effect-compatible Go-stimulus. P2 amplitudes, likely associated with evaluation and conflict detection, were larger when Go-stimulus and effect were incompatible; presumably, incompatibility increased the difficulty of effect anticipation. Onset of response-locked lateralized readiness potentials (R-LRPs) occurred earlier under incompatible conditions indicating extended motor processing. Together, these results strongly suggest that effect anticipation affects all (i.e., perceptual, cognitive, and motor) phases of response preparation. PMID:26858621

  19. Effect Anticipation Affects Perceptual, Cognitive, and Motor Phases of Response Preparation: Evidence from an Event-Related Potential (ERP) Study.

    Science.gov (United States)

    Harrison, Neil R; Ziessler, Michael

    2016-01-01

    The anticipation of action effects is a basic process that can be observed even for key-pressing responses in a stimulus-response paradigm. In Ziessler et al.'s (2012) experiments participants first learned arbitrary effects of key-pressing responses. In the test phase an imperative stimulus determined the response, but participants withheld the response until a Go-stimulus appeared. Reaction times (RTs) were shorter if the Go-stimulus was compatible with the learned response effect. This is strong evidence that effect representations were activated during response planning. Here, we repeated the experiment using event-related potentials (ERPs), and we found that Go-stimulus locked ERPs depended on the compatibility relationship between the Go-stimulus and the response effect. In general, this supports the interpretation of the behavioral data. More specifically, differences in the ERPs between compatible and incompatible Go-stimuli were found for the early perceptual P1 component and the later frontal P2 component. P1 differences were found only in the second half of the experiment and for long stimulus onset asynchronies (SOAs) between imperative stimulus and Go-stimulus, i.e., when the effect was fully anticipated and the perceptual system was prepared for the effect-compatible Go-stimulus. P2 amplitudes, likely associated with evaluation and conflict detection, were larger when Go-stimulus and effect were incompatible; presumably, incompatibility increased the difficulty of effect anticipation. Onset of response-locked lateralized readiness potentials (R-LRPs) occurred earlier under incompatible conditions indicating extended motor processing. Together, these results strongly suggest that effect anticipation affects all (i.e., perceptual, cognitive, and motor) phases of response preparation.

  20. Hidden Markov event sequence models: toward unsupervised functional MRI brain mapping.

    Science.gov (United States)

    Faisan, Sylvain; Thoraval, Laurent; Armspach, Jean-Paul; Foucher, Jack R; Metz-Lutz, Marie-Noëlle; Heitz, Fabrice

    2005-01-01

    Most methods used in functional MRI (fMRI) brain mapping require restrictive assumptions about the shape and timing of the fMRI signal in activated voxels. Consequently, fMRI data may be partially and misleadingly characterized, leading to suboptimal or invalid inference. To limit these assumptions and to capture the broad range of possible activation patterns, a novel statistical fMRI brain mapping method is proposed. It relies on hidden semi-Markov event sequence models (HSMESMs), a special class of hidden Markov models (HMMs) dedicated to the modeling and analysis of event-based random processes. Activation detection is formulated in terms of time coupling between (1) the observed sequence of hemodynamic response onset (HRO) events detected in the voxel's fMRI signal and (2) the "hidden" sequence of task-induced neural activation onset (NAO) events underlying the HROs. Both event sequences are modeled within a single HSMESM. The resulting brain activation model is trained to automatically detect neural activity embedded in the input fMRI data set under analysis. The data sets considered in this article are threefold: synthetic epoch-related, real epoch-related (auditory lexical processing task), and real event-related (oddball detection task) fMRI data sets. Synthetic data: Activation detection results demonstrate the superiority of the HSMESM mapping method with respect to a standard implementation of the statistical parametric mapping (SPM) approach. They are also very close, sometimes equivalent, to those obtained with an "ideal" implementation of SPM in which the activation patterns synthesized are reused for analysis. The HSMESM method appears clearly insensitive to timing variations of the hemodynamic response and exhibits low sensitivity to fluctuations of its shape (unsustained activation during task). Real epoch-related data: HSMESM activation detection results compete with those obtained with SPM, without requiring any prior definition of the expected

  1. The Effect of Emotional State on the Processing of Morphosyntactic and Semantic Reversal Anomalies in Japanese: Evidence from Event-Related Brain Potentials

    Science.gov (United States)

    Yano, Masataka; Suzuki, Yui; Koizumi, Masatoshi

    2018-01-01

    The present study examined the locus responsible for the effect of emotional state on sentence processing in healthy native speakers of Japanese, using event-related brain potentials. The participants were induced into a happy, neutral, or sad mood and then subjected to electroencephalogram recording during which emotionally neutral sentences,…

  2. Early referential context effects in sentence processing: Evidence from event-related brain potentials

    NARCIS (Netherlands)

    Berkum, J.J.A. van; Brown, C.M.; Hagoort, P.

    1999-01-01

    An event-related brain potentials experiment was carried out to examine the interplay of referential and structural factors during sentence processing in discourse. Subjects read (Dutch) sentences beginning like “David told the girl that … ” in short story contexts that had introduced either one or

  3. Identifying the null subject: evidence from event-related brain potentials.

    Science.gov (United States)

    Demestre, J; Meltzer, S; García-Albea, J E; Vigil, A

    1999-05-01

    Event-related brain potentials (ERPs) were recorded during spoken language comprehension to study the on-line effects of gender agreement violations in controlled infinitival complements. Spanish sentences were constructed in which the complement clause contained a predicate adjective marked for syntactic gender. By manipulating the gender of the antecedent (i.e., the controller) of the implicit subject while holding constant the gender of the adjective, pairs of grammatical and ungrammatical sentences were created. The detection of such a gender agreement violation would indicate that the parser had established the coreference relation between the null subject and its antecedent. The results showed a complex biphasic ERP (i.e., an early negativity with prominence at anterior and central sites, followed by a centroparietal positivity) in the violating condition as compared to the non-violating conditions. The brain reacts to NP-adjective gender agreement violations within a few hundred milliseconds of their occurrence. The data imply that the parser has properly coindexed the null subject of an infinitive clause with its antecedent.

  4. Dynamics of brain responses to phobic-related stimulation in specific phobia subtypes.

    Science.gov (United States)

    Caseras, Xavier; Mataix-Cols, David; Trasovares, Maria Victoria; López-Solà, Marina; Ortriz, Hector; Pujol, Jesus; Soriano-Mas, Carles; Giampietro, Vincent; Brammer, Michael J; Torrubia, Rafael

    2010-10-01

    Very few studies have investigated to what extent different subtypes of specific phobia share the same underlying functional neuroanatomy. This study aims to investigate the potential differences in the anatomy and dynamics of the blood oxygen level-dependent (BOLD) responses associated with spider and blood-injection-injury phobias. We used an event-related paradigm in 14 untreated spider phobics, 15 untreated blood-injection-injury phobics and 17 controls. Phobic images successfully induced distress only in phobic participants. Both phobic groups showed a similar pattern of heart rate increase following the presentation of phobic stimuli, this being different from controls. The presentation of phobic images induced activity within the same brain network in all participants, although the intensity of brain responses was significantly higher in phobics. Only blood-injection-injury phobics showed greater activity in the ventral prefrontal cortex compared with controls. This phobia group also presented a lower activity peak in the left amygdala compared with spider phobics. Importantly, looking at the dynamics of BOLD responses, both phobia groups showed a quicker time-to-peak in the right amygdala than controls, but only spider phobics also differed from controls in this parameter within the left amygdala. Considering these and previous findings, both phobia subtypes show very similar responses regarding their immediate reaction to phobia-related images, but critical differences in their sustained responses to these stimuli. These results highlight the importance of considering complex mental processes potentially associated with coping and emotion regulation processes, rather than exclusively focusing on primary neural responses to threat, when investigating fear and phobias. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  5. Event-related potential responses to perceptual reversals are modulated by working memory load.

    Science.gov (United States)

    Intaitė, Monika; Koivisto, Mika; Castelo-Branco, Miguel

    2014-04-01

    While viewing ambiguous figures, such as the Necker cube, the available perceptual interpretations alternate with one another. The role of higher level mechanisms in such reversals remains unclear. We tested whether perceptual reversals of discontinuously presented Necker cube pairs depend on working memory resources by manipulating cognitive load while recording event-related potentials (ERPs). The ERPs showed early enhancements of negativity, which were obtained in response to the first cube approximately 500 ms before perceived reversals. We found that working memory load influenced reversal-related brain responses in response to the second cube over occipital areas at the 150-300 ms post-stimulus and over central areas at P3 time window (300-500 ms), suggesting that it modulates intermediate visual processes. Interestingly, reversal rates remained unchanged by the working memory load. We propose that perceptual reversals in discontinuous presentation of ambiguous stimuli are governed by an early (well preceding pending reversals) mechanism, while the effects of load on the reversal related ERPs may reflect general top-down influences on visual processing, possibly mediated by the prefrontal cortex. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Changes of brain response induced by simulated weightlessness

    Science.gov (United States)

    Wei, Jinhe; Yan, Gongdong; Guan, Zhiqiang

    The characteristics change of brain response was studied during 15° head-down tilt (HDT) comparing with 45° head-up tilt (HUT). The brain responses evaluated included the EEG power spectra change at rest and during mental arithmetic, and the event-related potentials (ERPs) of somatosensory, selective attention and mental arithmetic activities. The prominent feature of brain response change during HDT revealed that the brain function was inhibited to some extent. Such inhibition included that the significant increment of "40Hz" activity during HUT arithmetic almost disappeared during HDT arithmetic, and that the positive-potential effect induced by HDT presented in all kinds of ERPs measured, but the slow negative wave reflecting mental arithmetic and memory process was elongated. These data suggest that the brain function be affected profoundly by the simulated weightlessness, therefore, the brain function change during space flight should be studied systematically.

  7. Time is of the Essence: A Review of Electroencephalography (EEG) and Event-Related Brain Potentials (ERPs) in Language Research.

    Science.gov (United States)

    Beres, Anna M

    2017-12-01

    The discovery of electroencephalography (EEG) over a century ago has changed the way we understand brain structure and function, in terms of both clinical and research applications. This paper starts with a short description of EEG and then focuses on the event-related brain potentials (ERPs), and their use in experimental settings. It describes the typical set-up of an ERP experiment. A description of a number of ERP components typically involved in language research is presented. Finally, the advantages and disadvantages of using ERPs in language research are discussed. EEG has an extensive use in today's world, including medical, psychology, or linguistic research. The excellent temporal resolution of EEG information allows one to track a brain response in milliseconds and therefore makes it uniquely suited to research concerning language processing.

  8. Functional definition of the N450 event-related brain potential marker of conflict processing: a numerical stroop study

    Science.gov (United States)

    2012-01-01

    Background Several conflict processing studies aimed to dissociate neuroimaging phenomena related to stimulus and response conflict processing. However, previous studies typically did not include a paradigm-independent measure of either stimulus or response conflict. Here we have combined electro-myography (EMG) with event-related brain potentials (ERPs) in order to determine whether a particularly robust marker of conflict processing, the N450 ERP effect usually related to the activity of the Anterior Cingulate Cortex (ACC), is related to stimulus- or to response-conflict processing. EMG provided paradigm-independent measure of response conflict. In a numerical Stroop paradigm participants compared pairs of digits and pressed a button on the side where they saw the larger digit. 50% of digit-pairs were preceded by an effective cue which provided accurate information about the required response. 50% of trials were preceded by a neutral cue which did not communicate the side of response. Results EMG showed that response conflict was significantly larger in neutrally than in effectively cued trials. The N450 was similar when response conflict was high and when it was low. Conclusions We conclude that the N450 is related to stimulus or abstract, rather than to response conflict detection/resolution. Findings may enable timing ACC conflict effects. PMID:22452924

  9. Functional definition of the N450 event-related brain potential marker of conflict processing: a numerical stroop study.

    Science.gov (United States)

    Szűcs, Dénes; Soltész, Fruzsina

    2012-03-27

    Several conflict processing studies aimed to dissociate neuroimaging phenomena related to stimulus and response conflict processing. However, previous studies typically did not include a paradigm-independent measure of either stimulus or response conflict. Here we have combined electro-myography (EMG) with event-related brain potentials (ERPs) in order to determine whether a particularly robust marker of conflict processing, the N450 ERP effect usually related to the activity of the Anterior Cingulate Cortex (ACC), is related to stimulus- or to response-conflict processing. EMG provided paradigm-independent measure of response conflict. In a numerical Stroop paradigm participants compared pairs of digits and pressed a button on the side where they saw the larger digit. 50% of digit-pairs were preceded by an effective cue which provided accurate information about the required response. 50% of trials were preceded by a neutral cue which did not communicate the side of response. EMG showed that response conflict was significantly larger in neutrally than in effectively cued trials. The N450 was similar when response conflict was high and when it was low. We conclude that the N450 is related to stimulus or abstract, rather than to response conflict detection/resolution. Findings may enable timing ACC conflict effects.

  10. Attention Modulates TMS-Locked Alpha Oscillations in the Visual Cortex.

    Science.gov (United States)

    Herring, Jim D; Thut, Gregor; Jensen, Ole; Bergmann, Til O

    2015-10-28

    Cortical oscillations, such as 8-12 Hz alpha-band activity, are thought to subserve gating of information processing in the human brain. While most of the supporting evidence is correlational, causal evidence comes from attempts to externally drive ("entrain") these oscillations by transcranial magnetic stimulation (TMS). Indeed, the frequency profile of TMS-evoked potentials (TEPs) closely resembles that of oscillations spontaneously emerging in the same brain region. However, it is unclear whether TMS-locked and spontaneous oscillations are produced by the same neuronal mechanisms. If so, they should react in a similar manner to top-down modulation by endogenous attention. To test this prediction, we assessed the alpha-like EEG response to TMS of the visual cortex during periods of high and low visual attention while participants attended to either the visual or auditory modality in a cross-modal attention task. We observed a TMS-locked local oscillatory alpha response lasting several cycles after TMS (but not after sham stimulation). Importantly, TMS-locked alpha power was suppressed during deployment of visual relative to auditory attention, mirroring spontaneous alpha amplitudes. In addition, the early N40 TEP component, located at the stimulation site, was amplified by visual attention. The extent of attentional modulation for both TMS-locked alpha power and N40 amplitude did depend, with opposite sign, on the individual ability to modulate spontaneous alpha power at the stimulation site. We therefore argue that TMS-locked and spontaneous oscillations are of common neurophysiological origin, whereas the N40 TEP component may serve as an index of current cortical excitability at the time of stimulation. Copyright © 2015 Herring et al.

  11. State of consciousness and ERP (event-related potential measures. Diagnostic and prognostic value of electrophysiology for disorders of consciousness

    Directory of Open Access Journals (Sweden)

    Michela Balconi

    2011-11-01

    Full Text Available Disorders of consciousness were amply studied in the recent years. At this regards new methodologies and technologies were applied to explore the diagnostic and prognostic criteria that may be applied to the patients. Specifically electrophysiological measures were used to verify the degree of awareness and responsiveness in coma, vegetative states (VS, minimal consciousness state (MC, and locked-in syndrome (LI. Recently, ERPs (event-related potentials were adopted to integrate the classical neuroimaging measures. Between the others, MMN (mismatch negativity and P300 deflections were found to represent a consistent index of the present state of consciousness and to be predictive of successive modifications of this state. Also frequency-based EEG measures, such as brain oscillations, were revealed to be relevant marker of consciousness and awareness, able to predict the future evolution of pathology.

  12. Event-related oscillations (EROs) and event-related potentials (ERPs) comparison in facial expression recognition.

    Science.gov (United States)

    Balconi, Michela; Pozzoli, Uberto

    2007-09-01

    The study aims to explore the significance of event-related potentials (ERPs) and event-related brain oscillations (EROs) (delta, theta, alpha, beta, gamma power) in response to emotional (fear, happiness, sadness) when compared with neutral faces during 180-250 post-stimulus time interval. The ERP results demonstrated that the emotional face elicited a negative peak at approximately 230 ms (N2). Moreover, EEG measures showed that motivational significance of face (emotional vs. neutral) could modulate the amplitude of EROs, but only for some frequency bands (i.e. theta and gamma bands). In a second phase, we considered the resemblance of the two EEG measures by a regression analysis. It revealed that theta and gamma oscillations mainly effect as oscillation activity at the N2 latency. Finally, a posterior increased power of theta was found for emotional faces.

  13. Introducing the event related fixed interval area (ERFIA) multilevel technique: a method to analyze the complete epoch of event-related potentials at single trial level

    NARCIS (Netherlands)

    Vossen, C.J.; Vossen, H.G.M.; Marcus, M.A.E.; van Os, J.; Lousberg, R.

    2013-01-01

    In analyzing time-locked event-related potentials (ERPs), many studies have focused on specific peaks and their differences between experimental conditions. In theory, each latency point after a stimulus contains potentially meaningful information, regardless of whether it is peak-related. Based on

  14. C-fiber-related EEG-oscillations induced by laser radiant heat stimulation of capsaicin-treated skin

    Science.gov (United States)

    Domnick, Claudia; Hauck, Michael; Casey, Kenneth L; Engel, Andreas K; Lorenz, Jürgen

    2009-01-01

    Nociceptive input reaches the brain via two different types of nerve fibers, moderately fast A-delta and slowly conducting C-fibers, respectively. To explore their distinct roles in normal and inflammatory pain we used laser stimulation of normal and capsaicin treated skin at proximal and distal arm sites in combination with time frequency transformation of electroencephalography (EEG) data. Comparison of phase-locked (evoked) and non-phase-locked (total) EEG to laser stimuli revealed three significant pain-related oscillatory responses. First, an evoked response in the delta-theta band, mediated by A-fibers, was reduced by topical capsaicin treatment. Second, a decrease of total power in the alpha-to-gamma band reflected both an A- and C-nociceptor-mediated response with only the latter being reduced by capsaicin treatment. Finally, an enhancement of total power in the upper beta band was mediated exclusively by C-nociceptors and appeared strongly augmented by capsaicin treatment. These findings suggest that phase-locking of brain activity to stimulus onset is a critical feature of A-delta nociceptive input, allowing rapid orientation to salient and potentially threatening events. In contrast, the subsequent C-nociceptive input exhibits clearly less phase coupling to the stimulus. It may primarily signal the tissue status allowing more long-term behavioral adaptations during ongoing inflammatory events that accompany tissue damage. PMID:21197293

  15. Temporal Dynamics of Late Second Language Acquisition: Evidence from Event-Related Brain Potentials

    Science.gov (United States)

    Steinhauer, Karsten; White, Erin J.; Drury, John E.

    2009-01-01

    The ways in which age of acquisition (AoA) may affect (morpho)syntax in second language acquisition (SLA) are discussed. We suggest that event-related brain potentials (ERPs) provide an appropriate online measure to test some such effects. ERP findings of the past decade are reviewed with a focus on recent and ongoing research. It is concluded…

  16. An event-related brain potential study of visual selective attention to conjunctions of color and shape

    NARCIS (Netherlands)

    Smid, HGOM; Jakob, A; Heinze, HJ

    What cognitive processes underlie event-related brain potential (ERP) effects related to visual multidimensional selective attention and how are these processes organized? We recorded ERPs when participants attended to one conjunction of color, global shape and local shape and ignored other

  17. Available processing resources influence encoding-related brain activity before an event

    OpenAIRE

    Galli, Giulia; Gebert, A. Dorothea; Otten, Leun J.

    2013-01-01

    Effective cognitive functioning not only relies on brain activity elicited by an event, but also on activity that precedes it. This has been demonstrated in a number of cognitive domains, including memory. Here, we show that brain activity that precedes the effective encoding of a word into long-term memory depends on the availability of sufficient processing resources. We recorded electrical brain activity from the scalps of healthy adult men and women while they memorized intermixed visual ...

  18. Alpha-Band Rhythms in Visual Task Performance: Phase-Locking by Rhythmic Sensory Stimulation

    Science.gov (United States)

    de Graaf, Tom A.; Gross, Joachim; Paterson, Gavin; Rusch, Tessa; Sack, Alexander T.; Thut, Gregor

    2013-01-01

    Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour, such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality. These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may be closely linked to brain oscillations. We here investigated this link for a prominent rhythm of the visual system (the alpha-rhythm, 8–12 Hz) by applying rhythmic visual stimulation at alpha-frequency (10.6 Hz), known to lead to a resonance response in visual areas, and testing its effects on subsequent visual target discrimination. Our data show that rhythmic visual stimulation at 10.6 Hz: 1) has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz, 7.1 Hz, 14.2 Hz), and 2) leads to alpha-band oscillations in visual performance measures, that 3) correlate in precise frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious explanation for these three findings is entrainment (phase-locking) of ongoing perceptually relevant alpha-band brain oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal influences of these rhythms on task performance to study their functional roles. PMID:23555873

  19. Blind Source Separation of Event-Related EEG/MEG.

    Science.gov (United States)

    Metsomaa, Johanna; Sarvas, Jukka; Ilmoniemi, Risto Juhani

    2017-09-01

    Blind source separation (BSS) can be used to decompose complex electroencephalography (EEG) or magnetoencephalography data into simpler components based on statistical assumptions without using a physical model. Applications include brain-computer interfaces, artifact removal, and identifying parallel neural processes. We wish to address the issue of applying BSS to event-related responses, which is challenging because of nonstationary data. We introduce a new BSS approach called momentary-uncorrelated component analysis (MUCA), which is tailored for event-related multitrial data. The method is based on approximate joint diagonalization of multiple covariance matrices estimated from the data at separate latencies. We further show how to extend the methodology for autocovariance matrices and how to apply BSS methods suitable for piecewise stationary data to event-related responses. We compared several BSS approaches by using simulated EEG as well as measured somatosensory and transcranial magnetic stimulation (TMS) evoked EEG. Among the compared methods, MUCA was the most tolerant one to noise, TMS artifacts, and other challenges in the data. With measured somatosensory data, over half of the estimated components were found to be similar by MUCA and independent component analysis. MUCA was also stable when tested with several input datasets. MUCA is based on simple assumptions, and the results suggest that MUCA is robust with nonideal data. Event-related responses and BSS are valuable and popular tools in neuroscience. Correctly designed BSS is an efficient way of identifying artifactual and neural processes from nonstationary event-related data.

  20. From perception to action: phase-locked gamma oscillations correlate with reaction times in a speeded response task

    Directory of Open Access Journals (Sweden)

    Körner Ursula

    2007-04-01

    Full Text Available Abstract Background Phase-locked gamma oscillations have so far mainly been described in relation to perceptual processes such as sensation, attention or memory matching. Due to its very short latency (≈90 ms such oscillations are a plausible candidate for very rapid integration of sensory and motor processes. Results We measured EEG in 13 healthy participants in a speeded reaction task. Participants had to press a button as fast as possible whenever a visual stimulus was presented. The stimulus was always identical and did not have to be discriminated from other possible stimuli. In trials in which the participants showed a fast response, a slow negative potential over central electrodes starting approximately 800 ms before the response and highly phase-locked gamma oscillations over central and posterior electrodes between 90 and 140 ms after the stimulus were observed. In trials in which the participants showed a slow response, no slow negative potential was observed and phase-locked gamma oscillations were significantly reduced. Furthermore, for slow response trials the phase-locked gamma oscillations were significantly delayed with respect to fast response trials. Conclusion These results indicate the relevance of phase-locked gamma oscillations for very fast (not necessarily detailed integration processes.

  1. Effects of Grammatical Categories on Children's Visual Language Processing: Evidence from Event-Related Brain Potentials

    Science.gov (United States)

    Weber-Fox, Christine; Hart, Laura J.; Spruill, John E., III

    2006-01-01

    This study examined how school-aged children process different grammatical categories. Event-related brain potentials elicited by words in visually presented sentences were analyzed according to seven grammatical categories with naturally varying characteristics of linguistic functions, semantic features, and quantitative attributes of length and…

  2. Using Event-Related Potentials to Study Perinatal Nutrition and Brain Development in Infants of Diabetic Mothers

    OpenAIRE

    deRegnier, Raye-Ann; Long, Jeffrey D.; Georgieff, Michael K.; Nelson, Charles A.

    2007-01-01

    Proper prenatal and postnatal nutrition is essential for optimal brain development and function. The early use of event-related potentials enables neuroscientists to study the development of cognitive function from birth and to evaluate the role of specific nutrients in development. Perinatal iron deficiency occurs in severely affected infants of diabetic mothers. In animal models, severe perinatal iron deficiency targets the explicit memory system of the brain. Cross-sectional ERP studies ha...

  3. Emotion and attention: event-related brain potential studies.

    Science.gov (United States)

    Schupp, Harald T; Flaisch, Tobias; Stockburger, Jessica; Junghöfer, Markus

    2006-01-01

    Emotional pictures guide selective visual attention. A series of event-related brain potential (ERP) studies is reviewed demonstrating the consistent and robust modulation of specific ERP components by emotional images. Specifically, pictures depicting natural pleasant and unpleasant scenes are associated with an increased early posterior negativity, late positive potential, and sustained positive slow wave compared with neutral contents. These modulations are considered to index different stages of stimulus processing including perceptual encoding, stimulus representation in working memory, and elaborate stimulus evaluation. Furthermore, the review includes a discussion of studies exploring the interaction of motivated attention with passive and active forms of attentional control. Recent research is reviewed exploring the selective processing of emotional cues as a function of stimulus novelty, emotional prime pictures, learned stimulus significance, and in the context of explicit attention tasks. It is concluded that ERP measures are useful to assess the emotion-attention interface at the level of distinct processing stages. Results are discussed within the context of two-stage models of stimulus perception brought out by studies of attention, orienting, and learning.

  4. Taurolidine lock is superior to heparin lock in the prevention of catheter related bloodstream infections and occlusions.

    Directory of Open Access Journals (Sweden)

    Evelyn D Olthof

    Full Text Available Patients on home parenteral nutrition (HPN are at risk for catheter-related complications; mainly infections and occlusions. We have previously shown in HPN patients presenting with catheter sepsis that catheter locking with taurolidine dramatically reduced re-infections when compared with heparin. Our HPN population therefore switched from heparin to taurolidine in 2008. The aim of the present study was to compare long-term effects of this catheter lock strategy on the occurrence of catheter-related bloodstream infections and occlusions in HPN patients.Data of catheter-related complications were retrospectively collected from 212 patients who received HPN between January 2000 and November 2011, comprising 545 and 200 catheters during catheter lock therapy with heparin and taurolidine, respectively. We evaluated catheter-related bloodstream infection and occlusion incidence rates using Poisson-normal regression analysis. Incidence rate ratios were calculated by dividing incidence rates of heparin by those of taurolidine, adjusting for underlying disease, use of anticoagulants or immune suppressives, frequency of HPN/fluid administration, composition of infusion fluids, and duration of HPN/fluid use before catheter creation.Bloodstream infection incidence rates were 1.1/year for heparin and 0.2/year for taurolidine locked catheters. Occlusion incidence rates were 0.2/year for heparin and 0.1/year for taurolidine locked catheters. Adjusted incidence ratios of heparin compared to taurolidine were 5.9 (95% confidence interval, 3.9-8.7 for bloodstream infections and 1.9 (95% confidence interval, 1.1-3.1 for occlusions.Given that no other procedural changes than the catheter lock strategy were implemented during the observation period, these data strongly suggest that taurolidine decreases catheter-related bloodstream infections and occlusions in HPN patients compared with heparin.

  5. Testing ultrafast mode-locking at microhertz relative optical linewidth.

    Science.gov (United States)

    Martin, Michael J; Foreman, Seth M; Schibli, T R; Ye, Jun

    2009-01-19

    We report new limits on the phase coherence of the ultrafast mode-locking process in an octave-spanning Ti:sapphire comb.We find that the mode-locking mechanism correlates optical phase across a full optical octave with less than 2.5 microHZ relative linewidth. This result is at least two orders of magnitude below recent predictions for quantum-limited individual comb-mode linewidths, verifying that the mode-locking mechanism strongly correlates quantum noise across the comb spectrum.

  6. Testing ultrafast mode-locking at microhertz relative optical linewidth

    OpenAIRE

    Martin, Michael J.; Foreman, Seth M.; Schibli, T. R.; Ye, Jun

    2008-01-01

    We report new limits on the phase coherence of the ultrafast mode-locking process in an octave-spanning Ti:sapphire comb. We find that the mode-locking mechanism correlates optical phase across a full optical octave with less than 2.5 micro Hz relative linewidth. This result is at least two orders of magnitude below recent predictions for quantum-limited individual comb-mode linewidths, verifying that the mode-locking mechanism strongly correlates quantum noise across the comb spectrum.

  7. Externalizing psychopathology and gain-loss feedback in a simulated gambling task: dissociable components of brain response revealed by time-frequency analysis.

    Science.gov (United States)

    Bernat, Edward M; Nelson, Lindsay D; Steele, Vaughn R; Gehring, William J; Patrick, Christopher J

    2011-05-01

    Externalizing is a broad construct that reflects propensity toward a variety of impulse control problems, including antisocial personality disorder and substance use disorders. Two event-related potential responses known to be reduced among individuals high in externalizing proneness are the P300, which reflects postperceptual processing of a stimulus, and the error-related negativity (ERN), which indexes performance monitoring based on endogenous representations. In the current study, the authors used a simulated gambling task to examine the relation between externalizing proneness and the feedback-related negativity (FRN), a brain response that indexes performance monitoring related to exogenous cues, which is thought to be highly related to the ERN. Time-frequency (TF) analysis was used to disentangle the FRN from the accompanying P300 response to feedback cues by parsing the overall feedback-locked potential into distinctive theta (4-7 Hz) and delta (<3 Hz) TF components. Whereas delta-P300 amplitude was reduced among individuals high in externalizing proneness, theta-FRN response was unrelated to externalizing. These findings suggest that in contrast with previously reported deficits in endogenously based performance monitoring (as indexed by the ERN), individuals prone to externalizing problems show intact monitoring of exogenous cues (as indexed by the FRN). The results also contribute to a growing body of evidence indicating that the P300 is attenuated across a broad range of task conditions in high-externalizing individuals.

  8. No effect of anodal transcranial direct current stimulation over the motor cortex on response-related ERPs during a conflict task.

    Directory of Open Access Journals (Sweden)

    Alexander Christian Conley

    2016-08-01

    Full Text Available Anodal transcranial direct current stimulation (tDCS over the motor cortex is considered a potential treatment for motor rehabilitation following stroke and other neurological pathologies. However, both the context under which this stimulation is effective and the underlying mechanisms remain to be determined. In this study, we examined the mechanisms by which anodal tDCS may affect motor performance by recording event-related potentials (ERPs during a cued go/nogo task after anodal tDCS over dominant M1 in young adults (Experiment 1 and both dominant and non-dominant M1 in old adults (Experiment 2. In both experiments, anodal tDCS had no effect on either response time or response-related ERPs, including the cue-locked contingent negative variation (CNV and both target-locked and response-locked lateralised readiness potentials (LRP. Bayesian model selection analyses showed that, for all measures, the null effects model was stronger than a model including anodal tDCS vs. sham. We conclude that anodal tDCS has no effect on response time or response-related ERPs during a cued go/nogo task in either young or old adults.

  9. [Progress on neuropsychology and event-related potentials in patients with brain trauma].

    Science.gov (United States)

    Dong, Ri-xia; Cai, Wei-xiong; Tang, Tao; Huang, Fu-yin

    2010-02-01

    With the development of information technology, as one of the research frontiers in neurophysiology, event-related potentials (ERP) is concerned increasingly by international scholars, which provides a feasible and objective method for exploring cognitive function. There are many advances in neuropsychology due to new assessment tool for the last years. The basic theories in the field of ERP and neuropsychology were reviewed in this article. The research and development in evaluating cognitive function of patients with syndrome after brain trauma were focused in this review, and the perspectives for the future research of ERP was also explored.

  10. Chemical exchange-sensitive spin-lock MRI of glucose analog 3-O-methyl-d-glucose in normal and ischemic brain.

    Science.gov (United States)

    Jin, Tao; Mehrens, Hunter; Wang, Ping; Kim, Seong-Gi

    2018-05-01

    Glucose transport is important for understanding brain glucose metabolism. We studied glucose transport with a presumably non-toxic and non-metabolizable glucose analog, 3-O-methyl-d-glucose, using a chemical exchange-sensitive spin-lock MRI technique at 9.4 Tesla. 3-O-methyl-d-glucose showed comparable chemical exchange properties with d-glucose and 2-deoxy-d-glucose in phantoms, and higher and lower chemical exchange-sensitive spin-lock sensitivity than Glc and 2-deoxy-d-glucose in in vivo experiments, respectively. The changes of the spin-lattice relaxation rate in the rotating frame (Δ R 1 ρ) in normal rat brain peaked at ∼15 min after the intravenous injection of 1 g/kg 3-O-methyl-d-glucose and almost maintained a plateau for >1 h. Doses up to 4 g/kg 3-O-methyl-d-glucose were linearly correlated with Δ R 1 ρ. In rats with focal ischemic stroke, chemical exchange-sensitive spin-lock with 3-O-methyl-d-glucose injection at 1 h after stroke onset showed reduced Δ R 1 ρ in the ischemic core but higher Δ R 1 ρ in the peri-core region compared to normal tissue, which progressed into the ischemic core at 3 h after stroke onset. This suggests that the hyper-chemical exchange-sensitive spin-lock region observed at 1 h is the ischemic penumbra at-risk of infarct. In summary, 3-O-methyl-d-glucose-chemical exchange-sensitive spin-lock can be a sensitive MRI technique to probe the glucose transport in normal and ischemic brains.

  11. Event-related brain potentials that distinguish false memory for events that occurred only seconds in the past.

    Science.gov (United States)

    Chen, Hong; Voss, Joel L; Guo, Chunyan

    2012-07-30

    False memory often involves retrieving events from the distant past that did not actually happen. However, recent evidence obtained using the Deese/Roediger-McDermott (DRM) paradigm for eliciting false memory experiences suggests that individuals can falsely believe that events occurred mere seconds in the past when they in fact did not. Subjects in these experiments endorsed unstudied critical lure words as having been studied, despite the fact that word lists were studied just moments before. We identified event-related brain potential (ERP) correlates of this experience, and included a repetition priming manipulation to better assess the functional significance of these ERPs. Behavioral and ERP data were collected from 21 Capital Normal University students using a short-term DRM task. Two categories of effects were identified that distinguished true from false short-term memory: (1) early semantic priming effects from 300 to 500 ms and (2) later retrieval and retrieval-monitoring effects after 500 ms. The repetition priming manipulation had distinct influences on these effects, consistent with their differential associations with semantic priming versus episodic retrieval. Characterization of ERPs related to semantic priming and episodic retrieval provides important information regarding the mechanisms of short-term false memory. In contrast, most studies examining false memory in standard long-delay DRM paradigms identify ERP effects related only to retrieval monitoring. These findings highlight the neural processing involved in illusions of memory after very brief delays and highlight the role of semantic processing in short-term false memory.

  12. Event-related brain responses while listening to entire pieces of music

    DEFF Research Database (Denmark)

    Poikonen, H; Alluri, V; Brattico, E

    2016-01-01

    ERPs in human elicited by continuous music. The ERPs were recorded during listening to a Tango Nuevo piece, a deep techno track and an acoustic lullaby. Acoustic features related to timbre, harmony, and dynamics of the audio signal were computationally extracted from the musical pieces. Negative...... deflation occurring around 100 milliseconds after the stimulus onset (N100) and positive deflation occurring around 200 milliseconds after the stimulus onset (P200) ERP responses to peak changes in the acoustic features were distinguishable and were often largest for Tango Nuevo. In addition to large...... changes in these musical features, long phases of low values that precede a rapid increase – and that we will call Preceding Low-Feature Phases – followed by a rapid increase enhanced the amplitudes of N100 and P200 responses. These ERP responses resembled those to simpler sounds, making it possible...

  13. Event-related brain potentials reflect traces of echoic memory in humans.

    Science.gov (United States)

    Winkler, I; Reinikainen, K; Näätänen, R

    1993-04-01

    In sequences of identical auditory stimuli, infrequent deviant stimuli elicit an event-related brain potential component called mismatch negativity (MMN). MMN is presumed to reflect the existence of a memory trace of the frequent stimulus at the moment of presentation of the infrequent stimulus. This hypothesis was tested by applying the recognition-masking paradigm of cognitive psychology. In this paradigm, a masking sound presented shortly before or after a test stimulus diminishes the recognition memory of this stimulus, the more so the shorter the interval between the test and masking stimuli. This interval was varied in the present study. It was found that the MMN amplitude strongly correlated with the subject's ability to discriminate between frequent and infrequent stimuli. This result strongly suggests that MMN provides a measure for a trace of sensory memory, and further, that with MMN, this memory can be studied without performance-related distortions.

  14. Additive effects of affective arousal and top-down attention on the event-related brain responses to human bodies.

    Science.gov (United States)

    Hietanen, Jari K; Kirjavainen, Ilkka; Nummenmaa, Lauri

    2014-12-01

    The early visual event-related 'N170 response' is sensitive to human body configuration and it is enhanced to nude versus clothed bodies. We tested whether the N170 response as well as later EPN and P3/LPP responses to nude bodies reflect the effect of increased arousal elicited by these stimuli, or top-down allocation of object-based attention to the nude bodies. Participants saw pictures of clothed and nude bodies and faces. In each block, participants were asked to direct their attention towards stimuli from a specified target category while ignoring others. Object-based attention did not modulate the N170 amplitudes towards attended stimuli; instead N170 response was larger to nude bodies compared to stimuli from other categories. Top-down attention and affective arousal had additive effects on the EPN and P3/LPP responses reflecting later processing stages. We conclude that nude human bodies have a privileged status in the visual processing system due to the affective arousal they trigger. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Event-related brain potentials that distinguish false memory for events that occurred only seconds in the past

    Directory of Open Access Journals (Sweden)

    Chen Hong

    2012-07-01

    Full Text Available Abstract Background False memory often involves retrieving events from the distant past that did not actually happen. However, recent evidence obtained using the Deese/Roediger-McDermott (DRM paradigm for eliciting false memory experiences suggests that individuals can falsely believe that events occurred mere seconds in the past when they in fact did not. Subjects in these experiments endorsed unstudied critical lure words as having been studied, despite the fact that word lists were studied just moments before. We identified event-related brain potential (ERP correlates of this experience, and included a repetition priming manipulation to better assess the functional significance of these ERPs. Methods Behavioral and ERP data were collected from 21 Capital Normal University students using a short-term DRM task. Results Two categories of effects were identified that distinguished true from false short-term memory: (1 early semantic priming effects from 300 to 500 ms and (2 later retrieval and retrieval-monitoring effects after 500 ms. The repetition priming manipulation had distinct influences on these effects, consistent with their differential associations with semantic priming versus episodic retrieval. Conclusion Characterization of ERPs related to semantic priming and episodic retrieval provides important information regarding the mechanisms of short-term false memory. In contrast, most studies examining false memory in standard long-delay DRM paradigms identify ERP effects related only to retrieval monitoring. These findings highlight the neural processing involved in illusions of memory after very brief delays and highlight the role of semantic processing in short-term false memory.

  16. Diminished social reward anticipation in the broad autism phenotype as revealed by event-related brain potentials.

    Science.gov (United States)

    Cox, Anthony; Kohls, Gregor; Naples, Adam J; Mukerji, Cora E; Coffman, Marika C; Rutherford, Helena J V; Mayes, Linda C; McPartland, James C

    2015-10-01

    Diminished responsivity to reward incentives is a key contributor to the social-communication problems seen in autism spectrum disorders (ASDs). Social motivation theories suggest that individuals with ASD do not experience social interactions as rewarding, leading to negative consequences for the development of brain circuitry subserving social information. In this study, we examined neural responses to social and non-social reward anticipation in 35 typically developing young adults, examining modulation of reward sensitivity by level of autistic traits. Using an Event-related potential incentive-delay task incorporating novel, more ecologically valid forms of reward, higher expression of autistic traits was associated with an attenuated P3 response to the anticipation of social (simulated real-time video feedback from an observer), but not non-social (candy), rewards. Exploratory analyses revealed that this was unrelated to mentalizing ability. The P3 component reflects motivated attention to reward signals, suggesting attenuated motivation allocation specific to social incentives. The study extends prior findings of atypical reward anticipation in ASD, demonstrating that attenuated social reward responsiveness extends to autistic traits in the range of typical functioning. Results support the development of innovative paradigms for investigating social and non-social reward responsiveness. Insight into vulnerabilities in reward processing is critical for understanding social function in ASD. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. On the characterization of single-event related brain activity from functional Magnetic Resonance Imaging (fMRI) measurements

    KAUST Repository

    Khoram, Nafiseh

    2014-08-01

    We propose an efficient numerical technique for calibrating the mathematical model that describes the singleevent related brain response when fMRI measurements are given. This method employs a regularized Newton technique in conjunction with a Kalman filtering procedure. We have applied this method to estimate the biophysiological parameters of the Balloon model that describes the hemodynamic brain responses. Illustrative results obtained with both synthetic and real fMRI measurements are presented. © 2014 IEEE.

  18. Differential Diagnosis and Management of Incomplete Locked-In Syndrome after Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Lauren Surdyke

    2017-01-01

    Full Text Available Locked-in syndrome (LIS is a rare diagnosis in which patients present with quadriplegia, lower cranial nerve paralysis, and mutism. It is clinically difficult to differentiate from other similarly presenting diagnoses with no standard approach for assessing such poorly responsive patients. The purpose of this case is to highlight the clinical differential diagnosis process and outcomes of a patient with LIS during acute inpatient rehabilitation. A 32-year-old female was admitted following traumatic brain injury. She presented with quadriplegia and mutism but was awake and aroused based on eye gaze communication. The rehabilitation team was able to diagnose incomplete LIS based on knowledge of neuroanatomy and clinical reasoning. Establishing this diagnosis allowed for an individualized treatment plan that focused on communication, coping, family training, and discharge planning. The patient was ultimately able to discharge home with a single caregiver, improving her quality of life. Continued evidence highlights the benefits of intensive comprehensive therapy for those with acquired brain injury such as LIS, but access is still limited for those with a seemingly poor prognosis. Access to a multidisciplinary, specialized team provides opportunity for continued assessment and individualized treatment as the patient attains more medical stability, improving long-term management.

  19. Pressure locking and thermal binding of gate valves

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, E.M.

    1996-12-01

    Pressure locking and thermal binding represent potential common mode failure mechanisms that can cause safety-related power-operated gate valves to fail in the closed position, thus rendering redundant safety-related systems incapable of performing their safety functions. Supplement 6 to Generic Letter 89-10, {open_quotes}Safety-Related Motor-Operated Gate Valve Testing and Surveillance,{close_quotes} provided an acceptable approach to addressing pressure locking and thermal binding of gate valves. More recently, the NRC has issued Generic Letter 95-07, {open_quotes}Pressure Locking and Thermal Binding of Safety-Related Power-Operated Gate Valves,{close_quotes} to request that licensees take certain actions to ensure that safety-related power-operated gate valves that are susceptible to pressure locking or thermal binding are capable of performing their safety functions within the current licensing bases. Over the past two years, several plants in Region I determined that valves in certain systems were potentially susceptible to pressure locking and thermal binding, and have taken various corrective actions. The NRC Region I Systems Engineering Branch has been actively involved in the inspection of licensee actions in response to the pressure locking and thermal binding issue. Region I continues to maintain an active involvement in this area, including participation with the Office of Nuclear Reactor Regulation in reviewing licensee responses to Generic Letter 95-07.

  20. The effects of age, sex, and hormones on emotional conflict-related brain response during adolescence

    Science.gov (United States)

    Cservenka, Anita; Stroup, Madison L.; Etkin, Amit; Nagel, Bonnie J.

    2015-01-01

    While cognitive and emotional systems both undergo development during adolescence, few studies have explored top-down inhibitory control brain activity in the context of affective processing, critical to informing adolescent psychopathology. In this study, we used functional magnetic resonance imaging to examine brain response during an Emotional Conflict (EmC) Task across 10–15-year-old youth. During the EmC Task, participants indicated the emotion of facial expressions, while disregarding emotion-congruent and incongruent words printed across the faces. We examined the relationships of age, sex, and gonadal hormones with brain activity on Incongruent vs. Congruent trials. Age was negatively associated with middle frontal gyrus activity, controlling for performance and movement confounds. Sex differences were present in occipital and parietal cortices, and were driven by activation in females, and deactivation in males to Congruent trials. Testosterone was negatively related with frontal and striatal brain response in males, and cerebellar and precuneus response in females. Estradiol was negatively related with fronto-cerebellar, cingulate, and precuneus brain activity in males, and positively related with occipital response in females. To our knowledge, this is the first study reporting the effects of age, sex, and sex steroids during an emotion-cognition task in adolescents. Further research is needed to examine longitudinal development of emotion-cognition interactions and deviations in psychiatric disorders in adolescence. PMID:26175008

  1. An Event-related Brain Potential Study of English Morphosyntactic Processing in Japanese Learners of English

    OpenAIRE

    Tatsuta, Natsuko

    2014-01-01

    This dissertation investigated the neural mechanisms underlying English morphosyntactic processing in Case, subject-verb agreement, and past tense inflection in Japanese learners of English (JLEs) using event-related brain potentials (ERPs) in terms of the effects of the age of second language (L2) acquisition (the age of learning English), L2 proficiency level (the English proficiency level), and native/first language (L1) transfer. Researchers have debated for a number of years the question...

  2. Pitch Discrimination without Awareness in Congenital Amusia: Evidence from Event-Related Potentials

    Science.gov (United States)

    Moreau, Patricia; Jolicoeur, Pierre; Peretz, Isabelle

    2013-01-01

    Congenital amusia is a lifelong disorder characterized by a difficulty in perceiving and producing music despite normal intelligence and hearing. Behavioral data have indicated that it originates from a deficit in fine-grained pitch discrimination, and is expressed by the absence of a P3b event-related brain response for pitch differences smaller…

  3. Structural similarities between brain and linguistic data provide evidence of semantic relations in the brain.

    Directory of Open Access Journals (Sweden)

    Colleen E Crangle

    Full Text Available This paper presents a new method of analysis by which structural similarities between brain data and linguistic data can be assessed at the semantic level. It shows how to measure the strength of these structural similarities and so determine the relatively better fit of the brain data with one semantic model over another. The first model is derived from WordNet, a lexical database of English compiled by language experts. The second is given by the corpus-based statistical technique of latent semantic analysis (LSA, which detects relations between words that are latent or hidden in text. The brain data are drawn from experiments in which statements about the geography of Europe were presented auditorily to participants who were asked to determine their truth or falsity while electroencephalographic (EEG recordings were made. The theoretical framework for the analysis of the brain and semantic data derives from axiomatizations of theories such as the theory of differences in utility preference. Using brain-data samples from individual trials time-locked to the presentation of each word, ordinal relations of similarity differences are computed for the brain data and for the linguistic data. In each case those relations that are invariant with respect to the brain and linguistic data, and are correlated with sufficient statistical strength, amount to structural similarities between the brain and linguistic data. Results show that many more statistically significant structural similarities can be found between the brain data and the WordNet-derived data than the LSA-derived data. The work reported here is placed within the context of other recent studies of semantics and the brain. The main contribution of this paper is the new method it presents for the study of semantics and the brain and the focus it permits on networks of relations detected in brain data and represented by a semantic model.

  4. Neural Temporal Dynamics of Social Exclusion Elicited by Averted Gaze: An Event-Related Potentials Study

    Directory of Open Access Journals (Sweden)

    Yue Leng

    2018-02-01

    Full Text Available Eye gaze plays a fundamental role in social communication. The averted eye gaze during social interaction, as the most common form of silent treatment, conveys a signal of social exclusion. In the present study, we examined the time course of brain response to social exclusion by using a modified version of Eye-gaze paradigm. The event-related potentials (ERPs data and the subjective rating data showed that the frontocentral P200 was positively correlated with negative mood of excluded events, whereas, the centroparietal late positive potential (LPP was positively correlated with the perceived ostracism intensity. Both the P200 and LPP were more positive-going for excluded events than for included events. These findings suggest that brain responses sensitive to social exclusion can be divided into the early affective processing stage, linking to the early pre-cognitive warning system; and the late higher-order processes stage, demanding attentional resources for elaborate stimuli evaluation and categorization generally not under specific situation.

  5. A new method to detect event-related potentials based on Pearson's correlation.

    Science.gov (United States)

    Giroldini, William; Pederzoli, Luciano; Bilucaglia, Marco; Melloni, Simone; Tressoldi, Patrizio

    2016-12-01

    Event-related potentials (ERPs) are widely used in brain-computer interface applications and in neuroscience.  Normal EEG activity is rich in background noise, and therefore, in order to detect ERPs, it is usually necessary to take the average from multiple trials to reduce the effects of this noise.  The noise produced by EEG activity itself is not correlated with the ERP waveform and so, by calculating the average, the noise is decreased by a factor inversely proportional to the square root of N , where N is the number of averaged epochs. This is the easiest strategy currently used to detect ERPs, which is based on calculating the average of all ERP's waveform, these waveforms being time- and phase-locked.  In this paper, a new method called GW6 is proposed, which calculates the ERP using a mathematical method based only on Pearson's correlation. The result is a graph with the same time resolution as the classical ERP and which shows only positive peaks representing the increase-in consonance with the stimuli-in EEG signal correlation over all channels.  This new method is also useful for selectively identifying and highlighting some hidden components of the ERP response that are not phase-locked, and that are usually hidden in the standard and simple method based on the averaging of all the epochs.  These hidden components seem to be caused by variations (between each successive stimulus) of the ERP's inherent phase latency period (jitter), although the same stimulus across all EEG channels produces a reasonably constant phase. For this reason, this new method could be very helpful to investigate these hidden components of the ERP response and to develop applications for scientific and medical purposes. Moreover, this new method is more resistant to EEG artifacts than the standard calculations of the average and could be very useful in research and neurology.  The method we are proposing can be directly used in the form of a process written in the well

  6. Altered processing of visual emotional stimuli in posttraumatic stress disorder: an event-related potential study.

    Science.gov (United States)

    Saar-Ashkenazy, Rotem; Shalev, Hadar; Kanthak, Magdalena K; Guez, Jonathan; Friedman, Alon; Cohen, Jonathan E

    2015-08-30

    Patients with posttraumatic stress disorder (PTSD) display abnormal emotional processing and bias towards emotional content. Most neurophysiological studies in PTSD found higher amplitudes of event-related potentials (ERPs) in response to trauma-related visual content. Here we aimed to characterize brain electrical activity in PTSD subjects in response to non-trauma-related emotion-laden pictures (positive, neutral and negative). A combined behavioral-ERP study was conducted in 14 severe PTSD patients and 14 controls. Response time in PTSD patients was slower compared with that in controls, irrespective to emotional valence. In both PTSD and controls, response time to negative pictures was slower compared with that to neutral or positive pictures. Upon ranking, both control and PTSD subjects similarly discriminated between pictures with different emotional valences. ERP analysis revealed three distinctive components (at ~300, ~600 and ~1000 ms post-stimulus onset) for emotional valence in control subjects. In contrast, PTSD patients displayed a similar brain response across all emotional categories, resembling the response of controls to negative stimuli. We interpret these findings as a brain-circuit response tendency towards negative overgeneralization in PTSD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Available processing resources influence encoding-related brain activity before an event.

    Science.gov (United States)

    Galli, Giulia; Gebert, A Dorothea; Otten, Leun J

    2013-09-01

    Effective cognitive functioning not only relies on brain activity elicited by an event, but also on activity that precedes it. This has been demonstrated in a number of cognitive domains, including memory. Here, we show that brain activity that precedes the effective encoding of a word into long-term memory depends on the availability of sufficient processing resources. We recorded electrical brain activity from the scalps of healthy adult men and women while they memorized intermixed visual and auditory words for later recall. Each word was preceded by a cue that indicated the modality of the upcoming word. The degree to which processing resources were available before word onset was manipulated by asking participants to make an easy or difficult perceptual discrimination on the cue. Brain activity before word onset predicted later recall of the word, but only in the easy discrimination condition. These findings indicate that anticipatory influences on long-term memory are limited in capacity and sensitive to the degree to which attention is divided between tasks. Prestimulus activity that affects later encoding can only be engaged when the necessary cognitive resources can be allocated to the encoding process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Processing of visual semantic information to concrete words : temporal dynamics and neural mechanisms indicated by event-related brain potentials

    NARCIS (Netherlands)

    van Schie, Hein T.; Wijers, Albertus A.; Mars, Rogier B.; Benjamins, Jeroen S.; Stowe, Laurie A.

    2005-01-01

    Event-related brain potentials were used to study the retrieval of visual semantic information to concrete words, and to investigate possible structural overlap between visual object working memory and concreteness effects in word processing. Subjects performed an object working memory task that

  9. Processing of visual semantic information to concrete words: temporal dynamics and neural mechanisms indicated by event-related brain potentials

    NARCIS (Netherlands)

    Schie, H.T. van; Wijers, A.A.; Mars, R.B.; Benjamins, J.S.; Stowe, L.A.

    2005-01-01

    Event-related brain potentials were used to study the retrieval of visual semantic information to concrete words, and to investigate possible structural overlap between visual object working memory and concreteness effects in word processing. Subjects performed an object working memory task that

  10. Automatic temporal expectancy: a high-density event-related potential study.

    Directory of Open Access Journals (Sweden)

    Giovanni Mento

    Full Text Available How we compute time is not fully understood. Questions include whether an automatic brain mechanism is engaged in temporally regular environmental structure in order to anticipate events, and whether this can be dissociated from task-related processes, including response preparation, selection and execution. To investigate these issues, a passive temporal oddball task requiring neither time-based motor response nor explicit decision was specifically designed and delivered to participants during high-density, event-related potentials recording. Participants were presented with pairs of audiovisual stimuli (S1 and S2 interspersed with an Inter-Stimulus Interval (ISI that was manipulated according to an oddball probabilistic distribution. In the standard condition (70% of trials, the ISI lasted 1,500 ms, while in the two alternative, deviant conditions (15% each, it lasted 2,500 and 3,000 ms. The passive over-exposition to the standard ISI drove participants to automatically and progressively create an implicit temporal expectation of S2 onset, reflected by the time course of the Contingent Negative Variation response, which always peaked in correspondence to the point of S2 maximum expectation and afterwards inverted in polarity towards the baseline. Brain source analysis of S1- and ISI-related ERP activity revealed activation of sensorial cortical areas and the supplementary motor area (SMA, respectively. In particular, since the SMA time course synchronised with standard ISI, we suggest that this area is the major cortical generator of the temporal CNV reflecting an automatic, action-independent mechanism underlying temporal expectancy.

  11. Mode-locking behavior of Izhikevich neurons under periodic external forcing

    Science.gov (United States)

    Farokhniaee, AmirAli; Large, Edward W.

    2017-06-01

    Many neurons in the auditory system of the brain must encode periodic signals. These neurons under periodic stimulation display rich dynamical states including mode locking and chaotic responses. Periodic stimuli such as sinusoidal waves and amplitude modulated sounds can lead to various forms of n :m mode-locked states, in which a neuron fires n action potentials per m cycles of the stimulus. Here, we study mode-locking in the Izhikevich neurons, a reduced model of the Hodgkin-Huxley neurons. The Izhikevich model is much simpler in terms of the dimension of the coupled nonlinear differential equations compared with other existing models, but excellent for generating the complex spiking patterns observed in real neurons. We obtained the regions of existence of the various mode-locked states on the frequency-amplitude plane, called Arnold tongues, for the Izhikevich neurons. Arnold tongue analysis provides useful insight into the organization of mode-locking behavior of neurons under periodic forcing. We find these tongues for both class-1 and class-2 excitable neurons in both deterministic and noisy regimes.

  12. 49 CFR 236.330 - Locking dog of switch-and-lock movement.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locking dog of switch-and-lock movement. 236.330 Section 236.330 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Rules and Instructions § 236.330 Locking dog of switch-and-lock movement. Locking dog of switch-and-lock...

  13. Coherence explored between emotion components: evidence from event-related potentials and facial electromyography.

    Science.gov (United States)

    Gentsch, Kornelia; Grandjean, Didier; Scherer, Klaus R

    2014-04-01

    Componential theories assume that emotion episodes consist of emergent and dynamic response changes to relevant events in different components, such as appraisal, physiology, motivation, expression, and subjective feeling. In particular, Scherer's Component Process Model hypothesizes that subjective feeling emerges when the synchronization (or coherence) of appraisal-driven changes between emotion components has reached a critical threshold. We examined the prerequisite of this synchronization hypothesis for appraisal-driven response changes in facial expression. The appraisal process was manipulated by using feedback stimuli, presented in a gambling task. Participants' responses to the feedback were investigated in concurrently recorded brain activity related to appraisal (event-related potentials, ERP) and facial muscle activity (electromyography, EMG). Using principal component analysis, the prediction of appraisal-driven response changes in facial EMG was examined. Results support this prediction: early cognitive processes (related to the feedback-related negativity) seem to primarily affect the upper face, whereas processes that modulate P300 amplitudes tend to predominantly drive cheek region responses. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. The effect of repetition of infrequent familiar and unfamiliar visual patterns on components of the event-related brain potential.

    NARCIS (Netherlands)

    Kok, A.; de Looren de Jong, H.

    1980-01-01

    Examined changes in the waveforms of the event-related brain potential (ERP) during repeated presentations of infrequent-familiar and infrequent-unfamiliar visual patterns; Ss were 12 male university students. The EEG waveforms were averaged separately for each presentation of the 2 types of stimuli

  15. Evolution of brain region volumes during artificial selection for relative brain size.

    Science.gov (United States)

    Kotrschal, Alexander; Zeng, Hong-Li; van der Bijl, Wouter; Öhman-Mägi, Caroline; Kotrschal, Kurt; Pelckmans, Kristiaan; Kolm, Niclas

    2017-12-01

    The vertebrate brain shows an extremely conserved layout across taxa. Still, the relative sizes of separate brain regions vary markedly between species. One interesting pattern is that larger brains seem associated with increased relative sizes only of certain brain regions, for instance telencephalon and cerebellum. Till now, the evolutionary association between separate brain regions and overall brain size is based on comparative evidence and remains experimentally untested. Here, we test the evolutionary response of brain regions to directional selection on brain size in guppies (Poecilia reticulata) selected for large and small relative brain size. In these animals, artificial selection led to a fast response in relative brain size, while body size remained unchanged. We use microcomputer tomography to investigate how the volumes of 11 main brain regions respond to selection for larger versus smaller brains. We found no differences in relative brain region volumes between large- and small-brained animals and only minor sex-specific variation. Also, selection did not change allometric scaling between brain and brain region sizes. Our results suggest that brain regions respond similarly to strong directional selection on relative brain size, which indicates that brain anatomy variation in contemporary species most likely stem from direct selection on key regions. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  16. C-fiber-related EEG-oscillations induced by laser radiant heat stimulation of capsaicin-treated skin

    Directory of Open Access Journals (Sweden)

    Claudia Domnick

    2009-03-01

    Full Text Available Claudia Domnick1, Michael Hauck1,2,3, Kenneth L Casey3, Andreas K Engel1, Jürgen Lorenz1,3,41Department of Neurophysiology and Pathophysiology; 2Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; 3Department of Neurology, University of Michigan, Ann Arbor, MI, USA; 4Faculty of Life Sciences, Hamburg University of Applied Sciences, Hamburg, GermanyAbstract: Nociceptive input reaches the brain via two different types of nerve fibers, moderately fast A-delta and slowly conducting C-fibers, respectively. To explore their distinct roles in normal and inflammatory pain we used laser stimulation of normal and capsaicin treated skin at proximal and distal arm sites in combination with time frequency transformation of electroencephalography (EEG data. Comparison of phase-locked (evoked and non-phase-locked (total EEG to laser stimuli revealed three significant pain-related oscillatory responses. First, an evoked response in the delta-theta band, mediated by A-fibers, was reduced by topical capsaicin treatment. Second, a decrease of total power in the alpha-to-gamma band reflected both an A- and C-nociceptor-mediated response with only the latter being reduced by capsaicin treatment. Finally, an enhancement of total power in the upper beta band was mediated exclusively by C-nociceptors and appeared strongly augmented by capsaicin treatment. These findings suggest that phase-locking of brain activity to stimulus onset is a critical feature of A-delta nociceptive input, allowing rapid orientation to salient and potentially threatening events. In contrast, the subsequent C-nociceptive input exhibits clearly less phase coupling to the stimulus. It may primarily signal the tissue status allowing more long-term behavioral adaptations during ongoing inflammatory events that accompany tissue damage.Keywords: C-fibers, oscillations, EEG, laser, capsaicin, inflammatory pain

  17. An emergency call system for patients in locked-in state using an SSVEP-based brain switch.

    Science.gov (United States)

    Lim, Jeong-Hwan; Kim, Yong-Wook; Lee, Jun-Hak; An, Kwang-Ok; Hwang, Han-Jeong; Cha, Ho-Seung; Han, Chang-Hee; Im, Chang-Hwan

    2017-11-01

    Patients in a locked-in state (LIS) due to severe neurological disorders such as amyotrophic lateral sclerosis (ALS) require seamless emergency care by their caregivers or guardians. However, it is a difficult job for the guardians to continuously monitor the patients' state, especially when direct communication is not possible. In the present study, we developed an emergency call system for such patients using a steady-state visual evoked potential (SSVEP)-based brain switch. Although there have been previous studies to implement SSVEP-based brain switch system, they have not been applied to patients in LIS, and thus their clinical value has not been validated. In this study, we verified whether the SSVEP-based brain switch system can be practically used as an emergency call system for patients in LIS. The brain switch used for our system adopted a chromatic visual stimulus, which proved to be visually less stimulating than conventional checkerboard-type stimuli but could generate SSVEP responses strong enough to be used for brain-computer interface (BCI) applications. To verify the feasibility of our emergency call system, 14 healthy participants and 3 patients with severe ALS took part in online experiments. All three ALS patients successfully called their guardians to their bedsides in about 6.56 seconds. Furthermore, additional experiments with one of these patients demonstrated that our emergency call system maintains fairly good performance even up to 4 weeks after the first experiment without renewing initial calibration data. Our results suggest that our SSVEP-based emergency call system might be successfully used in practical scenarios. © 2017 Society for Psychophysiological Research.

  18. Brain-responsive neurostimulation in patients with medically intractable mesial temporal lobe epilepsy.

    Science.gov (United States)

    Geller, Eric B; Skarpaas, Tara L; Gross, Robert E; Goodman, Robert R; Barkley, Gregory L; Bazil, Carl W; Berg, Michael J; Bergey, Gregory K; Cash, Sydney S; Cole, Andrew J; Duckrow, Robert B; Edwards, Jonathan C; Eisenschenk, Stephan; Fessler, James; Fountain, Nathan B; Goldman, Alicia M; Gwinn, Ryder P; Heck, Christianne; Herekar, Aamar; Hirsch, Lawrence J; Jobst, Barbara C; King-Stephens, David; Labar, Douglas R; Leiphart, James W; Marsh, W Richard; Meador, Kimford J; Mizrahi, Eli M; Murro, Anthony M; Nair, Dileep R; Noe, Katherine H; Park, Yong D; Rutecki, Paul A; Salanova, Vicenta; Sheth, Raj D; Shields, Donald C; Skidmore, Christopher; Smith, Michael C; Spencer, David C; Srinivasan, Shraddha; Tatum, William; Van Ness, Paul C; Vossler, David G; Wharen, Robert E; Worrell, Gregory A; Yoshor, Daniel; Zimmerman, Richard S; Cicora, Kathy; Sun, Felice T; Morrell, Martha J

    2017-06-01

    Evaluate the seizure-reduction response and safety of mesial temporal lobe (MTL) brain-responsive stimulation in adults with medically intractable partial-onset seizures of mesial temporal lobe origin. Subjects with mesial temporal lobe epilepsy (MTLE) were identified from prospective clinical trials of a brain-responsive neurostimulator (RNS System, NeuroPace). The seizure reduction over years 2-6 postimplantation was calculated by assessing the seizure frequency compared to a preimplantation baseline. Safety was assessed based on reported adverse events. There were 111 subjects with MTLE; 72% of subjects had bilateral MTL onsets and 28% had unilateral onsets. Subjects had one to four leads placed; only two leads could be connected to the device. Seventy-six subjects had depth leads only, 29 had both depth and strip leads, and 6 had only strip leads. The mean follow-up was 6.1 ± (standard deviation) 2.2 years. The median percent seizure reduction was 70% (last observation carried forward). Twenty-nine percent of subjects experienced at least one seizure-free period of 6 months or longer, and 15% experienced at least one seizure-free period of 1 year or longer. There was no difference in seizure reduction in subjects with and without mesial temporal sclerosis (MTS), bilateral MTL onsets, prior resection, prior intracranial monitoring, and prior vagus nerve stimulation. In addition, seizure reduction was not dependent on the location of depth leads relative to the hippocampus. The most frequent serious device-related adverse event was soft tissue implant-site infection (overall rate, including events categorized as device-related, uncertain, or not device-related: 0.03 per implant year, which is not greater than with other neurostimulation devices). Brain-responsive stimulation represents a safe and effective treatment option for patients with medically intractable epilepsy, including patients with unilateral or bilateral MTLE who are not candidates for

  19. Aerobic Fitness and Cognitive Development: Event-Related Brain Potential and Task Performance Indices of Executive Control in Preadolescent Children

    Science.gov (United States)

    Hillman, Charles H.; Buck, Sarah M.; Themanson, Jason R.; Pontifex, Matthew B.; Castelli, Darla M.

    2009-01-01

    The relationship between aerobic fitness and executive control was assessed in 38 higher- and lower-fit children (M[subscript age] = 9.4 years), grouped according to their performance on a field test of aerobic capacity. Participants performed a flanker task requiring variable amounts of executive control while event-related brain potential…

  20. On the characterization of single-event related brain activity from functional Magnetic Resonance Imaging (fMRI) measurements

    KAUST Repository

    Khoram, Nafiseh; Zayane, Chadia; Laleg-Kirati, Taous-Meriem; Djellouli, Rabia

    2014-01-01

    We propose an efficient numerical technique for calibrating the mathematical model that describes the singleevent related brain response when fMRI measurements are given. This method employs a regularized Newton technique in conjunction with a

  1. Arousal and attention re-orienting in autism spectrum disorders: evidence from auditory event-related potentials

    Directory of Open Access Journals (Sweden)

    Elena V Orekhova

    2014-02-01

    Full Text Available The extended phenotype of autism spectrum disorders (ASD includes a combination of arousal regulation problems, sensory modulation difficulties, and attention re-orienting deficit. A slow and inefficient re-orienting to stimuli that appear outside of the attended sensory stream is thought to be especially detrimental for social functioning. Event-related potentials (ERPs and magnetic fields (ERFs may help to reveal which processing stages underlying brain response to unattended but salient sensory event are affected in individuals with ASD. Previous research focusing on two sequential stages of the brain response - automatic detection of physical changes in auditory stream, indexed by mismatch negativity (MMN, and evaluation of stimulus novelty, indexed by P3a component, - found in individuals with ASD either increased, decreased or normal processing of deviance and novelty. The review examines these apparently conflicting results, notes gaps in previous findings, and suggests a potentially unifying hypothesis relating the dampened responses to unattended sensory events to the deficit in rapid arousal process. Specifically, ‘sensory gating’ studies focused on pre-attentive arousal consistently demonstrated that brain response to unattended and temporally novel sound in ASD is already affected at around 100 ms after stimulus onset. We hypothesize that abnormalities in nicotinic cholinergic arousal pathways, previously reported in individuals with ASD, may contribute to these ERP/ERF aberrations and result in attention re-orienting deficit. Such cholinergic dysfunction may be present in individuals with ASD early in life and can influence both sensory processing and attention re-orienting behavior. Identification of early neurophysiological biomarkers for cholinergic deficit would help to detect infants at risk who can potentially benefit from particular types of therapies or interventions.

  2. A noninvasive brain computer interface using visually-induced near-infrared spectroscopy responses.

    Science.gov (United States)

    Chen, Cheng-Hsuan; Ho, Ming-Shan; Shyu, Kuo-Kai; Hsu, Kou-Cheng; Wang, Kuo-Wei; Lee, Po-Lei

    2014-09-19

    Visually-induced near-infrared spectroscopy (NIRS) response was utilized to design a brain computer interface (BCI) system. Four circular checkerboards driven by distinct flickering sequences were displayed on a LCD screen as visual stimuli to induce subjects' NIRS responses. Each flickering sequence was a concatenated sequence of alternative flickering segments and resting segments. The flickering segment was designed with fixed duration of 3s whereas the resting segment was chosen randomly within 15-20s to create the mutual independencies among different flickering sequences. Six subjects were recruited in this study and subjects were requested to gaze at the four visual stimuli one-after-one in a random order. Since visual responses in human brain are time-locked to the onsets of visual stimuli and the flicker sequences of distinct visual stimuli were designed mutually independent, the NIRS responses induced by user's gazed targets can be discerned from non-gazed targets by applying a simple averaging process. The accuracies for the six subjects were higher than 90% after 10 or more epochs being averaged. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Sensation Seeking Predicts Brain Responses in the Old-New Task: Converging Multimodal Neuroimaging Evidence

    OpenAIRE

    Lawson, Adam L.; Liu, Xun; Joseph, Jane; Vagnini, Victoria L.; Kelly, Thomas H.; Jiang, Yang

    2012-01-01

    Novel images and message content enhance visual attention and memory for high sensation seekers, but the neural mechanisms associated with this effect are unclear. To investigate the individual differences in brain responses to new and old (studied) visual stimuli, we utilized Event-related Potentials (ERP) and functional Magnetic Resonance Imaging (fMRI) measures to examine brain reactivity among high and low sensation seekers during a classic old-new memory recognition task. Twenty low and ...

  4. Cognitive processes facilitated by contextual cueing: evidence from event-related brain potentials.

    Science.gov (United States)

    Schankin, Andrea; Schubö, Anna

    2009-05-01

    Finding a target in repeated search displays is faster than finding the same target in novel ones (contextual cueing). It is assumed that the visual context (the arrangement of the distracting objects) is used to guide attention efficiently to the target location. Alternatively, other factors, e.g., facilitation in early visual processing or in response selection, may play a role as well. In a contextual cueing experiment, participant's electrophysiological brain activity was recorded. Participants identified the target faster and more accurately in repeatedly presented displays. In this condition, the N2pc, a component reflecting the allocation of visual-spatial attention, was enhanced, indicating that attention was allocated more efficiently to those targets. However, also response-related processes, reflected by the LRP, were facilitated, indicating that guidance of attention cannot account for the entire contextual cueing benefit.

  5. Correction: Cecotti, H. and Rivet, B. Subject Combination and Electrode Selection in Cooperative Brain-Computer Interface Based on Event Related Potentials. Brain Sci. 2014, 4, 335–355

    Directory of Open Access Journals (Sweden)

    Hubert Cecotti

    2014-09-01

    Full Text Available The authors wish to make the following correction to this paper (Cecotti, H.; Rivet, B. Subject Combination and Electrode Selection in Cooperative Brain-Computer Interface Based on Event Related Potentials. Brain Sci. 2014, 4, 335–355: Due to an internal error, the reference numbers in the original published paper were not shown, and the error was not due to the authors. The former main text should be replaced as below.

  6. Decoding the auditory brain with canonical component analysis

    DEFF Research Database (Denmark)

    de Cheveigné, Alain; Wong, Daniel D E; Di Liberto, Giovanni M

    2018-01-01

    The relation between a stimulus and the evoked brain response can shed light on perceptual processes within the brain. Signals derived from this relation can also be harnessed to control external devices for Brain Computer Interface (BCI) applications. While the classic event-related potential (ERP...... higher classification scores. CCA strips the brain response of variance unrelated to the stimulus, and the stimulus representation of variance that does not affect the response, and thus improves observations of the relation between stimulus and response....

  7. The shopping brain: math anxiety modulates brain responses to buying decisions.

    Science.gov (United States)

    Jones, William J; Childers, Terry L; Jiang, Yang

    2012-01-01

    Metacognitive theories propose that consumers track fluency feelings when buying, which may have biological underpinnings. We explored this using event-related potential (ERP) measures as twenty high-math anxiety (High MA) and nineteen low-math anxiety (Low MA) consumers made buying decisions for promoted (e.g., 15% discount) and non-promoted products. When evaluating prices, ERP correlates of higher perceptual and conceptual fluency were associated with buys, however only for High MA females under no promotions. In contrast, High MA females and Low MA males demonstrated greater FN400 amplitude, associated with enhanced conceptual processing, to prices of buys relative to non-buys under promotions. Concurrent late positive component (LPC) differences under no promotions suggest discrepant retrieval processes during price evaluations between consumer groups. When making decisions to buy or not, larger (smaller) P3, sensitive to outcome responses in the brain, was associated with buying for High MA females (Low MA females) under promotions, an effect also present for males under no promotions. Thus, P3 indexed decisions to buy differently between anxiety groups, but only for promoted items among females and for no promotions among males. Our findings indicate that perceptual and conceptual processes interact with anxiety and gender to modulate brain responses during consumer choices. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Early disrupted neurovascular coupling and changed event level hemodynamic response function in type 2 diabetes: an fMRI study.

    Science.gov (United States)

    Duarte, João V; Pereira, João M S; Quendera, Bruno; Raimundo, Miguel; Moreno, Carolina; Gomes, Leonor; Carrilho, Francisco; Castelo-Branco, Miguel

    2015-10-01

    Type 2 diabetes (T2DM) patients develop vascular complications and have increased risk for neurophysiological impairment. Vascular pathophysiology may alter the blood flow regulation in cerebral microvasculature, affecting neurovascular coupling. Reduced fMRI signal can result from decreased neuronal activation or disrupted neurovascular coupling. The uncertainty about pathophysiological mechanisms (neurodegenerative, vascular, or both) underlying brain function impairments remains. In this cross-sectional study, we investigated if the hemodynamic response function (HRF) in lesion-free brains of patients is altered by measuring BOLD (Blood Oxygenation Level-Dependent) response to visual motion stimuli. We used a standard block design to examine the BOLD response and an event-related deconvolution approach. Importantly, the latter allowed for the first time to directly extract the true shape of HRF without any assumption and probe neurovascular coupling, using performance-matched stimuli. We discovered a change in HRF in early stages of diabetes. T2DM patients show significantly different fMRI response profiles. Our visual paradigm therefore demonstrated impaired neurovascular coupling in intact brain tissue. This implies that functional studies in T2DM require the definition of HRF, only achievable with deconvolution in event-related experiments. Further investigation of the mechanisms underlying impaired neurovascular coupling is needed to understand and potentially prevent the progression of brain function decrements in diabetes.

  9. Fast joint detection-estimation of evoked brain activity in event-related FMRI using a variational approach

    Science.gov (United States)

    Chaari, Lotfi; Vincent, Thomas; Forbes, Florence; Dojat, Michel; Ciuciu, Philippe

    2013-01-01

    In standard within-subject analyses of event-related fMRI data, two steps are usually performed separately: detection of brain activity and estimation of the hemodynamic response. Because these two steps are inherently linked, we adopt the so-called region-based Joint Detection-Estimation (JDE) framework that addresses this joint issue using a multivariate inference for detection and estimation. JDE is built by making use of a regional bilinear generative model of the BOLD response and constraining the parameter estimation by physiological priors using temporal and spatial information in a Markovian model. In contrast to previous works that use Markov Chain Monte Carlo (MCMC) techniques to sample the resulting intractable posterior distribution, we recast the JDE into a missing data framework and derive a Variational Expectation-Maximization (VEM) algorithm for its inference. A variational approximation is used to approximate the Markovian model in the unsupervised spatially adaptive JDE inference, which allows automatic fine-tuning of spatial regularization parameters. It provides a new algorithm that exhibits interesting properties in terms of estimation error and computational cost compared to the previously used MCMC-based approach. Experiments on artificial and real data show that VEM-JDE is robust to model mis-specification and provides computational gain while maintaining good performance in terms of activation detection and hemodynamic shape recovery. PMID:23096056

  10. Inducing task-relevant responses to speech in the sleeping brain.

    Science.gov (United States)

    Kouider, Sid; Andrillon, Thomas; Barbosa, Leonardo S; Goupil, Louise; Bekinschtein, Tristan A

    2014-09-22

    Falling asleep leads to a loss of sensory awareness and to the inability to interact with the environment [1]. While this was traditionally thought as a consequence of the brain shutting down to external inputs, it is now acknowledged that incoming stimuli can still be processed, at least to some extent, during sleep [2]. For instance, sleeping participants can create novel sensory associations between tones and odors [3] or reactivate existing semantic associations, as evidenced by event-related potentials [4-7]. Yet, the extent to which the brain continues to process external stimuli remains largely unknown. In particular, it remains unclear whether sensory information can be processed in a flexible and task-dependent manner by the sleeping brain, all the way up to the preparation of relevant actions. Here, using semantic categorization and lexical decision tasks, we studied task-relevant responses triggered by spoken stimuli in the sleeping brain. Awake participants classified words as either animals or objects (experiment 1) or as either words or pseudowords (experiment 2) by pressing a button with their right or left hand, while transitioning toward sleep. The lateralized readiness potential (LRP), an electrophysiological index of response preparation, revealed that task-specific preparatory responses are preserved during sleep. These findings demonstrate that despite the absence of awareness and behavioral responsiveness, sleepers can still extract task-relevant information from external stimuli and covertly prepare for appropriate motor responses. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Self-esteem modulates automatic attentional responses to self-relevant stimuli: evidence from event-related brain potentials

    OpenAIRE

    Chen, Jie; Shui, Qing; Zhong, Yiping

    2015-01-01

    Previous studies have widely shown that self-esteem modulates the attention bias towards social rejection or emotion-related information. However, little is known about the influences of self-esteem on attention bias towards self-relevant stimuli. We aimed to investigate neural correlates that underlie the modulation effect of self-esteem on self-relevant processing. Event-related potentials (ERP) were recorded for subjects’ own names and close others’ names (the names of their friends) while...

  12. Subliminal Emotional Words Impact Syntactic Processing: Evidence from Performance and Event-Related Brain Potentials

    Directory of Open Access Journals (Sweden)

    Laura Jiménez-Ortega

    2017-04-01

    Full Text Available Recent studies demonstrate that syntactic processing can be affected by emotional information and that subliminal emotional information can also affect cognitive processes. In this study, we explore whether unconscious emotional information may also impact syntactic processing. In an Event-Related brain Potential (ERP study, positive, neutral and negative subliminal adjectives were inserted within neutral sentences, just before the presentation of the supraliminal adjective. They could either be correct (50% or contain a morphosyntactic violation (number or gender disagreements. Larger error rates were observed for incorrect sentences than for correct ones, in contrast to most studies using supraliminal information. Strikingly, emotional adjectives affected the conscious syntactic processing of sentences containing morphosyntactic anomalies. The neutral condition elicited left anterior negativity (LAN followed by a P600 component. However, a lack of anterior negativity and an early P600 onset for the negative condition were found, probably as a result of the negative subliminal correct adjective capturing early syntactic resources. Positive masked adjectives in turn prompted an N400 component in response to morphosyntactic violations, probably reflecting the induction of a heuristic processing mode involving access to lexico-semantic information to solve agreement anomalies. Our results add to recent evidence on the impact of emotional information on syntactic processing, while showing that this can occur even when the reader is unaware of the emotional stimuli.

  13. Event-related theta synchronization predicts deficit in facial affect recognition in schizophrenia.

    Science.gov (United States)

    Csukly, Gábor; Stefanics, Gábor; Komlósi, Sarolta; Czigler, István; Czobor, Pál

    2014-02-01

    Growing evidence suggests that abnormalities in the synchronized oscillatory activity of neurons in schizophrenia may lead to impaired neural activation and temporal coding and thus lead to neurocognitive dysfunctions, such as deficits in facial affect recognition. To gain an insight into the neurobiological processes linked to facial affect recognition, we investigated both induced and evoked oscillatory activity by calculating the Event Related Spectral Perturbation (ERSP) and the Inter Trial Coherence (ITC) during facial affect recognition. Fearful and neutral faces as well as nonface patches were presented to 24 patients with schizophrenia and 24 matched healthy controls while EEG was recorded. The participants' task was to recognize facial expressions. Because previous findings with healthy controls showed that facial feature decoding was associated primarily with oscillatory activity in the theta band, we analyzed ERSP and ITC in this frequency band in the time interval of 140-200 ms, which corresponds to the N170 component. Event-related theta activity and phase-locking to facial expressions, but not to nonface patches, predicted emotion recognition performance in both controls and patients. Event-related changes in theta amplitude and phase-locking were found to be significantly weaker in patients compared with healthy controls, which is in line with previous investigations showing decreased neural synchronization in the low frequency bands in patients with schizophrenia. Neural synchrony is thought to underlie distributed information processing. Our results indicate a less effective functioning in the recognition process of facial features, which may contribute to a less effective social cognition in schizophrenia. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  14. Echoic memory of a single pure tone indexed by change-related brain activity.

    Science.gov (United States)

    Inui, Koji; Urakawa, Tomokazu; Yamashiro, Koya; Otsuru, Naofumi; Takeshima, Yasuyuki; Nishihara, Makoto; Motomura, Eishi; Kida, Tetsuo; Kakigi, Ryusuke

    2010-10-20

    The rapid detection of sensory change is important to survival. The process should relate closely to memory since it requires that the brain separate a new stimulus from an ongoing background or past event. Given that sensory memory monitors current sensory status and works to pick-up changes in real-time, any change detected by this system should evoke a change-related cortical response. To test this hypothesis, we examined whether the single presentation of a sound is enough to elicit a change-related cortical response, and therefore, shape a memory trace enough to separate a subsequent stimulus. Under a paradigm where two pure sounds 300 ms in duration and 800 or 840 Hz in frequency were presented in a specific order at an even probability, cortical responses to each sound were measured with magnetoencephalograms. Sounds were grouped to five events regardless of their frequency, 1D, 2D, and 3D (a sound preceded by one, two, or three different sounds), and 1S and 2S (a sound preceded by one or two same sounds). Whereas activation in the planum temporale did not differ among events, activation in the superior temporal gyrus (STG) was clearly greater for the different events (1D, 2D, 3D) than the same event (1S and 2S). One presentation of a sound is enough to shape a memory trace for comparison with a subsequent physically different sound and elicits change-related cortical responses in the STG. The STG works as a real-time sensory gate open to a new event.

  15. The characteristic and changes of the event-related potentials (ERP and brain topographic maps before and after treatment with rTMS in subjective tinnitus patients.

    Directory of Open Access Journals (Sweden)

    Haidi Yang

    Full Text Available OBJECTIVES: To compare the event-related potentials (ERPs and brain topographic maps characteristic and change in normal controls and subjective tinnitus patients before and after repetitive transcranial magnetic stimulation (rTMS treatment. METHODS AND PARTICIPANTS: The ERPs and brain topographic maps elicited by target stimulus were compared before and after 1-week treatment with rTMS in 20 subjective tinnitus patients and 16 healthy controls. RESULTS: Before rTMS, target stimulus elicited a larger N1 component than the standard stimuli (repeating soundsin control group but not in tinnitus patients. Instead, the tinnitus group pre-treatment exhibited larger amplitude of N1 in response to standard stimuli than to deviant stimuli. Furthermore tinnitus patients had smaller mismatch negativity (MMN and late discriminative negativity (LDNcomponent at Fz compared with the control group. After rTMS treatment, tinnitus patients showed increased N1 response to deviant stimuli and larger MMN and LDN compared with pre-treatment. The topographic maps for the tinnitus group before rTMS -treatment demonstrated global asymmetry between the left and right cerebral hemispheres with more negative activities in left side and more positive activities in right side. In contrast, the brain topographic maps for patients after rTMS-treatment and controls seem roughly symmetrical. The ERP amplitudes and brain topographic maps in post-treatment patient group showed no significant difference with those in controls. CONCLUSIONS: The characterical changes in ERP and brain topographic maps in tinnitus patients maybe related with the electrophysiological mechanism of tinnitus induction and development. It can be used as an objective biomarker for the evaluation of auditory central in subjective tinnitus patients. These findings support the notion that rTMS treatment in tinnitus patients may exert a beneficial effect.

  16. The characteristic and changes of the event-related potentials (ERP) and brain topographic maps before and after treatment with rTMS in subjective tinnitus patients.

    Science.gov (United States)

    Yang, Haidi; Xiong, Hao; Yu, Rongjun; Wang, Changming; Zheng, Yiqing; Zhang, Xueyuan

    2013-01-01

    To compare the event-related potentials (ERPs) and brain topographic maps characteristic and change in normal controls and subjective tinnitus patients before and after repetitive transcranial magnetic stimulation (rTMS) treatment. The ERPs and brain topographic maps elicited by target stimulus were compared before and after 1-week treatment with rTMS in 20 subjective tinnitus patients and 16 healthy controls. Before rTMS, target stimulus elicited a larger N1 component than the standard stimuli (repeating sounds)in control group but not in tinnitus patients. Instead, the tinnitus group pre-treatment exhibited larger amplitude of N1 in response to standard stimuli than to deviant stimuli. Furthermore tinnitus patients had smaller mismatch negativity (MMN) and late discriminative negativity (LDN)component at Fz compared with the control group. After rTMS treatment, tinnitus patients showed increased N1 response to deviant stimuli and larger MMN and LDN compared with pre-treatment. The topographic maps for the tinnitus group before rTMS -treatment demonstrated global asymmetry between the left and right cerebral hemispheres with more negative activities in left side and more positive activities in right side. In contrast, the brain topographic maps for patients after rTMS-treatment and controls seem roughly symmetrical. The ERP amplitudes and brain topographic maps in post-treatment patient group showed no significant difference with those in controls. The characterical changes in ERP and brain topographic maps in tinnitus patients maybe related with the electrophysiological mechanism of tinnitus induction and development. It can be used as an objective biomarker for the evaluation of auditory central in subjective tinnitus patients. These findings support the notion that rTMS treatment in tinnitus patients may exert a beneficial effect.

  17. The Asilomar Survey: Stakeholders' Opinions on Ethical Issues Related to Brain-Computer Interfacing.

    Science.gov (United States)

    Nijboer, Femke; Clausen, Jens; Allison, Brendan Z; Haselager, Pim

    2013-01-01

    Brain-Computer Interface (BCI) research and (future) applications raise important ethical issues that need to be addressed to promote societal acceptance and adequate policies. Here we report on a survey we conducted among 145 BCI researchers at the 4 th International BCI conference, which took place in May-June 2010 in Asilomar, California. We assessed respondents' opinions about a number of topics. First, we investigated preferences for terminology and definitions relating to BCIs. Second, we assessed respondents' expectations on the marketability of different BCI applications (BCIs for healthy people, BCIs for assistive technology, BCIs-controlled neuroprostheses and BCIs as therapy tools). Third, we investigated opinions about ethical issues related to BCI research for the development of assistive technology: informed consent process with locked-in patients, risk-benefit analyses, team responsibility, consequences of BCI on patients' and families' lives, liability and personal identity and interaction with the media. Finally, we asked respondents which issues are urgent in BCI research.

  18. Event-related brain potential correlates of words' emotional valence irrespective of arousal and type of task.

    Science.gov (United States)

    Espuny, Javier; Jiménez-Ortega, Laura; Casado, Pilar; Fondevila, Sabela; Muñoz, Francisco; Hernández-Gutiérrez, David; Martín-Loeches, Manuel

    2018-03-23

    Many Event-Related brain Potential (ERP) experiments have explored how the two main dimensions of emotion, arousal and valence, affect linguistic processing. However, the heterogeneity of experimental paradigms and materials has led to mixed results. In the present study, we aim to clarify words' emotional valence effects on ERP when arousal is controlled, and determine whether these effects may vary as a function of the type of task performed. For these purposes, we designed an ERP experiment with the valence of words manipulated, and arousal equated across valences. The participants performed two types of task: in one, they had to read aloud each word, written in black on a white background; in the other, they had to name the color of the ink in which each word was written. The results showed the main effects of valence irrespective of task, and no interaction between valence and task. The most marked effects of valence were in response to negative words, which elicited an Early Posterior Negativity (EPN) and a Late Positive Complex (LPC). Our results suggest that, when arousal is controlled, the cognitive information in negative words triggers a 'negativity bias', these being the only words able to elicit emotion-related ERP modulations. Moreover, these modulations are largely unaffected by the types of task explored here. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Iconic gestures prime related concepts: an ERP study.

    Science.gov (United States)

    Wu, Ying Croon; Coulson, Seana

    2007-02-01

    To assess priming by iconic gestures, we recorded EEG (at 29 scalp sites) in two experiments while adults watched short, soundless videos of spontaneously produced, cospeech iconic gestures followed by related or unrelated probe words. In Experiment 1, participants classified the relatedness between gestures and words. In Experiment 2, they attended to stimuli, and performed an incidental recognition memory test on words presented during the EEG recording session. Event-related potentials (ERPs) time-locked to the onset of probe words were measured, along with response latencies and word recognition rates. Although word relatedness did not affect reaction times or recognition rates, contextually related probe words elicited less-negative ERPs than did unrelated ones between 300 and 500 msec after stimulus onset (N400) in both experiments. These findings demonstrate sensitivity to semantic relations between iconic gestures and words in brain activity engendered during word comprehension.

  20. Pressure locking test results

    Energy Technology Data Exchange (ETDEWEB)

    DeWall, K.G.; Watkins, J.C.; McKellar, M.G.; Bramwell, D. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [and others

    1996-12-01

    The U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, is funding the Idaho National Engineering Laboratory (INEL) in performing research to provide technical input for their use in evaluating responses to Generic Letter 95-07, {open_quotes}Pressure Locking and Thermal Binding of Safety-Related Power-Operated Gate Valves.{close_quotes} Pressure locking and thermal binding are phenomena that make a closed gate valve difficult to open. This paper discusses only the pressure locking phenomenon in a flexible-wedge gate valve; the authors will publish the results of their thermal binding research at a later date. Pressure locking can occur when operating sequences or temperature changes cause the pressure of the fluid in the bonnet (and, in most valves, between the discs) to be higher than the pressure on the upstream and downstream sides of the disc assembly. This high fluid pressure presses the discs against both seats, making the disc assembly harder to unseat than anticipated by the typical design calculations, which generally consider friction at only one of the two disc/seat interfaces. The high pressure of the bonnet fluid also changes the pressure distribution around the disc in a way that can further contribute to the unseating load. If the combined loads associated with pressure locking are very high, the actuator might not have the capacity to open the valve. The results of the NRC/INEL research discussed in this paper show that the relationship between bonnet pressure and pressure locking stem loads appears linear. The results also show that for this valve, seat leakage affects the bonnet pressurization rate when the valve is subjected to thermally induced pressure locking conditions.

  1. Pressure locking test results

    International Nuclear Information System (INIS)

    DeWall, K.G.; Watkins, J.C.; McKellar, M.G.; Bramwell, D.

    1996-01-01

    The U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, is funding the Idaho National Engineering Laboratory (INEL) in performing research to provide technical input for their use in evaluating responses to Generic Letter 95-07, open-quotes Pressure Locking and Thermal Binding of Safety-Related Power-Operated Gate Valves.close quotes Pressure locking and thermal binding are phenomena that make a closed gate valve difficult to open. This paper discusses only the pressure locking phenomenon in a flexible-wedge gate valve; we will publish the results of our thermal binding research at a later date. Pressure locking can occur when operating sequences or temperature changes cause the pressure of the fluid in the bonnet (and, in most valves, between the discs) to be higher than the pressure on the upstream and downstream sides of the disc assembly. This high fluid pressure presses the discs against both seats, making the disc assembly harder to unseat than anticipated by the typical design calculations, which generally consider friction at only one of the two disc/seat interfaces. The high pressure of the bonnet fluid also changes the pressure distribution around the disc in a way that can further contribute to the unseating load. If the combined loads associated with pressure locking are very high, the actuator might not have the capacity to open the valve. The results of the NRC/INEL research discussed in this paper show that the relationship between bonnet pressure and pressure locking stem loads appears linear. The results also show that for this valve, seat leakage affects the bonnet pressurization rate when the valve is subjected to thermally induced pressure locking conditions

  2. Selective attention to sound location or pitch studied with event-related brain potentials and magnetic fields.

    Science.gov (United States)

    Degerman, Alexander; Rinne, Teemu; Särkkä, Anna-Kaisa; Salmi, Juha; Alho, Kimmo

    2008-06-01

    Event-related brain potentials (ERPs) and magnetic fields (ERFs) were used to compare brain activity associated with selective attention to sound location or pitch in humans. Sixteen healthy adults participated in the ERP experiment, and 11 adults in the ERF experiment. In different conditions, the participants focused their attention on a designated sound location or pitch, or pictures presented on a screen, in order to detect target sounds or pictures among the attended stimuli. In the Attend Location condition, the location of sounds varied randomly (left or right), while their pitch (high or low) was kept constant. In the Attend Pitch condition, sounds of varying pitch (high or low) were presented at a constant location (left or right). Consistent with previous ERP results, selective attention to either sound feature produced a negative difference (Nd) between ERPs to attended and unattended sounds. In addition, ERPs showed a more posterior scalp distribution for the location-related Nd than for the pitch-related Nd, suggesting partially different generators for these Nds. The ERF source analyses found no source distribution differences between the pitch-related Ndm (the magnetic counterpart of the Nd) and location-related Ndm in the superior temporal cortex (STC), where the main sources of the Ndm effects are thought to be located. Thus, the ERP scalp distribution differences between the location-related and pitch-related Nd effects may have been caused by activity of areas outside the STC, perhaps in the inferior parietal regions.

  3. Double pass locking and spatial mode locking for gravitational wave detectors

    CERN Document Server

    Cusack, B J; Slagmolen, B; Vine, G D; Gray, M B; McClelland, D E

    2002-01-01

    We present novel techniques for overcoming problems relating to the use of high-power lasers in mode cleaner cavities for second generation laser interferometric gravitational wave detectors. Rearranging the optical components into a double pass locking regime can help to protect locking detectors from damage. Modulator thermal lensing can be avoided by using a modulation-free technique such as tilt locking, or its recently developed cousin, flip locking.

  4. Do event-related potentials reveal the mechanism of the auditory sensory memory in the human brain?

    Science.gov (United States)

    Näätänen, R; Paavilainen, P; Alho, K; Reinikainen, K; Sams, M

    1989-03-27

    Event-related brain potentials (ERP) to task-irrelevant tone pips presented at short intervals were recorded from the scalp of normal human subjects. Infrequent decrements in stimulus intensity elicited the mismatch negativity (MMN) which was larger in amplitude and shorter in latency the softer the deviant stimulus was. The results obtained imply memory representations which develop automatically and accurately represent the physical features of the repetitive stimulus. These memory traces appear to be those of the acoustic sensory memory, the 'echoic' memory. When an input does not match with such a trace the MMN is generated.

  5. Functional Dissociation of Latency-Variable, Stimulus- and Response-Locked Target P3 Sub-components in Task-Switching.

    Science.gov (United States)

    Brydges, Christopher R; Barceló, Francisco

    2018-01-01

    Cognitive control warrants efficient task performance in dynamic and changing environments through adjustments in executive attention, stimulus and response selection. The well-known P300 component of the human event-related potential (ERP) has long been proposed to index "context-updating"-critical for cognitive control-in simple target detection tasks. However, task switching ERP studies have revealed both target P3 (300-350 ms) and later sustained P3-like potentials (400-1,200 ms) to first targets ensuing transition cues, although it remains unclear whether these target P3-like potentials also reflect context updating operations. To address this question, we applied novel single-trial EEG analyses-residue iteration decomposition (RIDE)-in order to disentangle target P3 sub-components in a sample of 22 young adults while they either repeated or switched (updated) task rules. The rationale was to revise the context updating hypothesis of P300 elicitation in the light of new evidence suggesting that "the context" consists of not only the sensory units of stimulation, but also associated motor units, and intermediate low- and high-order sensorimotor units, all of which may need to be dynamically updated on a trial by trial basis. The results showed functionally distinct target P3-like potentials in stimulus-locked, response-locked, and intermediate RIDE component clusters overlying parietal and frontal regions, implying multiple functionally distinct, though temporarily overlapping context updating operations. These findings support a reformulated version of the context updating hypothesis, and reveal a rich family of distinct target P3-like sub-components during the reactive control of target detection in task-switching, plausibly indexing the complex and dynamic workings of frontoparietal cortical networks subserving cognitive control.

  6. Violence: heightened brain attentional network response is selectively muted in Down syndrome.

    Science.gov (United States)

    Anderson, Jeffrey S; Treiman, Scott M; Ferguson, Michael A; Nielsen, Jared A; Edgin, Jamie O; Dai, Li; Gerig, Guido; Korenberg, Julie R

    2015-01-01

    The ability to recognize and respond appropriately to threat is critical to survival, and the neural substrates subserving attention to threat may be probed using depictions of media violence. Whether neural responses to potential threat differ in Down syndrome is not known. We performed functional MRI scans of 15 adolescent and adult Down syndrome and 14 typically developing individuals, group matched by age and gender, during 50 min of passive cartoon viewing. Brain activation to auditory and visual features, violence, and presence of the protagonist and antagonist were compared across cartoon segments. fMRI signal from the brain's dorsal attention network was compared to thematic and violent events within the cartoons between Down syndrome and control samples. We found that in typical development, the brain's dorsal attention network was most active during violent scenes in the cartoons and that this was significantly and specifically reduced in Down syndrome. When the antagonist was on screen, there was significantly less activation in the left medial temporal lobe of individuals with Down syndrome. As scenes represented greater relative threat, the disparity between attentional brain activation in Down syndrome and control individuals increased. There was a reduction in the temporal autocorrelation of the dorsal attention network, consistent with a shortened attention span in Down syndrome. Individuals with Down syndrome exhibited significantly reduced activation in primary sensory cortices, and such perceptual impairments may constrain their ability to respond to more complex social cues such as violence. These findings may indicate a relative deficit in emotive perception of violence in Down syndrome, possibly mediated by impaired sensory perception and hypoactivation of medial temporal structures in response to threats, with relative preservation of activity in pro-social brain regions. These findings indicate that specific genetic differences associated

  7. Physical activity and trial-by-trial adjustments of response conflict.

    Science.gov (United States)

    Kamijo, Keita; Takeda, Yuji

    2013-08-01

    The relationship of physical activity to trial-by-trial adjustments of response conflict was assessed using behavioral task performance, the N2 event-related brain potential component, and phase-locking values (PLVs) in a lower gamma band during a perceptual conflict task. Nineteen physically active and 19 inactive young adults (mean age = 21.3 years) performed a Navon task, using a global letter made up of local letters of either the same kind (congruent trials) or a different kind (incongruent trials). Findings revealed that active individuals exhibited smaller N2 amplitudes and greater PLVs on incongruent trials that were preceded by incongruent trials compared with those preceded by congruent trials. Such phenomena were not observed for inactive individuals. These results suggest that greater physical activity is associated with larger trial-by-trial adjustments of response conflict, which we attribute to upregulation of top-down cognitive control and reductions in response conflict.

  8. Echoic memory of a single pure tone indexed by change-related brain activity

    Directory of Open Access Journals (Sweden)

    Motomura Eishi

    2010-10-01

    Full Text Available Abstract Background The rapid detection of sensory change is important to survival. The process should relate closely to memory since it requires that the brain separate a new stimulus from an ongoing background or past event. Given that sensory memory monitors current sensory status and works to pick-up changes in real-time, any change detected by this system should evoke a change-related cortical response. To test this hypothesis, we examined whether the single presentation of a sound is enough to elicit a change-related cortical response, and therefore, shape a memory trace enough to separate a subsequent stimulus. Results Under a paradigm where two pure sounds 300 ms in duration and 800 or 840 Hz in frequency were presented in a specific order at an even probability, cortical responses to each sound were measured with magnetoencephalograms. Sounds were grouped to five events regardless of their frequency, 1D, 2D, and 3D (a sound preceded by one, two, or three different sounds, and 1S and 2S (a sound preceded by one or two same sounds. Whereas activation in the planum temporale did not differ among events, activation in the superior temporal gyrus (STG was clearly greater for the different events (1D, 2D, 3D than the same event (1S and 2S. Conclusions One presentation of a sound is enough to shape a memory trace for comparison with a subsequent physically different sound and elicits change-related cortical responses in the STG. The STG works as a real-time sensory gate open to a new event.

  9. Modulations of 'late' event-related brain potentials in humans by dynamic audiovisual speech stimuli.

    Science.gov (United States)

    Lebib, Riadh; Papo, David; Douiri, Abdel; de Bode, Stella; Gillon Dowens, Margaret; Baudonnière, Pierre-Marie

    2004-11-30

    Lipreading reliably improve speech perception during face-to-face conversation. Within the range of good dubbing, however, adults tolerate some audiovisual (AV) discrepancies and lipreading, then, can give rise to confusion. We used event-related brain potentials (ERPs) to study the perceptual strategies governing the intermodal processing of dynamic and bimodal speech stimuli, either congruently dubbed or not. Electrophysiological analyses revealed that non-coherent audiovisual dubbings modulated in amplitude an endogenous ERP component, the N300, we compared to a 'N400-like effect' reflecting the difficulty to integrate these conflicting pieces of information. This result adds further support for the existence of a cerebral system underlying 'integrative processes' lato sensu. Further studies should take advantage of this 'N400-like effect' with AV speech stimuli to open new perspectives in the domain of psycholinguistics.

  10. Prediction of human errors by maladaptive changes in event-related brain networks

    NARCIS (Netherlands)

    Eichele, T.; Debener, S.; Calhoun, V.D.; Specht, K.; Engel, A.K.; Hugdahl, K.; Cramon, D.Y. von; Ullsperger, M.

    2008-01-01

    Humans engaged in monotonous tasks are susceptible to occasional errors that may lead to serious consequences, but little is known about brain activity patterns preceding errors. Using functional Mill and applying independent component analysis followed by deconvolution of hemodynamic responses, we

  11. Event-related brain potentials to emotional images and gonadal steroid hormone levels in patients with schizophrenia and paired controls

    Directory of Open Access Journals (Sweden)

    Julie eChampagne

    2014-06-01

    Full Text Available Prominent disturbances in the experience, expression, and emotion recognition in patients with schizophrenia have been relatively well documented over the last few years. Furthermore, sex differences in behavior and brain activity, associated with the processing of various emotions, have been reported in the general population and in schizophrenia patients. Others proposed that sex differences should be rather attributed to testosterone, which may play a role in the etiology of schizophrenia. Also, it had been suggested that estradiol may play a protective role in schizophrenia. Surprisingly, few studies investigating this pathology have focused on both brain substrates and gonadal steroid hormone levels, in emotional processing. In the present study, we investigated electrocortical responses related to emotional valence and arousal as well as gonadal steroid hormone levels in patients with schizophrenia. Event-Related Potentials (ERP were recorded during exposition to emotional pictures in 18 patients with schizophrenia and in 24 control participants paired on intelligence, manual dominance and socioeconomic status. Given their previous sensitivity to emotional and attention processes, the P200, N200 and the P300 were selected for analysis. More precisely, emotional valence generally affects early components (N200, which reflect early process of selective attention, whereas emotional arousal and valence both influences the P300 component, which is related to memory context updating, and stimulus categorization. Results showed that, in the control group, the amplitude of the N200 was significantly more lateralized over the right hemisphere, while there was no such lateralization in patients with schizophrenia. In patients with schizophrenia, significantly smaller anterior P300 amplitude was observed to the unpleasant, compared to the pleasant. That anterior P300 reduction was also correlated with negative symptoms.

  12. Right mesial temporal lobe epilepsy impairs empathy-related brain responses to dynamic fearful faces.

    Science.gov (United States)

    Toller, Gianina; Adhimoolam, Babu; Grunwald, Thomas; Huppertz, Hans-Jürgen; Kurthen, Martin; Rankin, Katherine P; Jokeit, Hennric

    2015-03-01

    Unilateral mesial temporal lobe epilepsy (MTLE) has been associated with reduced amygdala responsiveness to fearful faces. However, the effect of unilateral MTLE on empathy-related brain responses in extra-amygdalar regions has not been investigated. Using functional magnetic resonance imaging, we measured empathy-related brain responses to dynamic fearful faces in 34 patients with unilateral MTLE (18 right sided), in an epilepsy (extra-MTLE; n = 16) and in a healthy control group (n = 30). The primary finding was that right MTLE (RMTLE) was associated with decreased activity predominantly in the right amygdala and also in bilateral periaqueductal gray (PAG) but normal activity in the right anterior insula. The results of the extra-MTLE group demonstrate that these reduced amygdala and PAG responses go beyond the attenuation caused by antiepileptic and antidepressant medication. These findings clearly indicate that RMTLE affects the function of mesial temporal and midbrain structures that mediate basic interoceptive input necessary for the emotional awareness of empathic experiences of fear. Together with the decreased empathic concern found in the RMTLE group, this study provides neurobehavioral evidence that patients with RMTLE are at increased risk for reduced empathy towards others' internal states and sheds new light on the nature of social-cognitive impairments frequently accompanying MTLE.

  13. Differential modulation of the N2 and P3 event-related potentials by response conflict and inhibition.

    Science.gov (United States)

    Groom, Madeleine J; Cragg, Lucy

    2015-07-01

    Developing reliable and specific neural markers of cognitive processes is essential to improve understanding of healthy and atypical brain function. Despite extensive research there remains uncertainty as to whether two electrophysiological markers of cognitive control, the N2 and P3, are better conceptualised as markers of response inhibition or response conflict. The present study aimed to directly compare the effects of response inhibition and response conflict on the N2 and P3 event-related potentials, within-subjects. A novel hybrid go/no-go flanker task was performed by 19 healthy adults aged 18-25 years while EEG data were collected. The response congruence of a central target stimulus and 4 flanking stimuli was manipulated between trials to vary the degree of response conflict. Response inhibition was required on a proportion of trials. N2 amplitude was measured at two frontal electrode sites; P3 amplitude was measured at 4 midline electrode sites. N2 amplitude was greater on incongruent than congruent trials but was not enhanced by response inhibition when the stimulus array was congruent. P3 amplitude was greater on trials requiring response inhibition; this effect was more pronounced at frontal electrodes. P3 amplitude was also enhanced on incongruent compared with congruent trials. The findings support a role for N2 amplitude as a marker of response conflict and for the frontal shift of the P3 as a marker of response inhibition. This paradigm could be applied to clinical groups to help clarify the precise nature of impaired action control in disorders such as attention deficit/hyperactivity disorders (ADHD). Copyright © 2015 Elsevier Inc. All rights reserved.

  14. 49 CFR 236.338 - Mechanical locking required in accordance with locking sheet and dog chart.

    Science.gov (United States)

    2010-10-01

    ... locking sheet and dog chart. 236.338 Section 236.338 Transportation Other Regulations Relating to... in accordance with locking sheet and dog chart. Mechanical locking shall be in accordance with locking sheet and dog chart currently in effect. ...

  15. Timing of the brain events underlying access to consciousness during the attentional blink.

    Science.gov (United States)

    Sergent, Claire; Baillet, Sylvain; Dehaene, Stanislas

    2005-10-01

    In the phenomenon of attentional blink, identical visual stimuli are sometimes fully perceived and sometimes not detected at all. This phenomenon thus provides an optimal situation to study the fate of stimuli not consciously perceived and the differences between conscious and nonconscious processing. We correlated behavioral visibility ratings and recordings of event-related potentials to study the temporal dynamics of access to consciousness. Intact early potentials (P1 and N1) were evoked by unseen words, suggesting that these brain events are not the primary correlates of conscious perception. However, we observed a rapid divergence around 270 ms, after which several brain events were evoked solely by seen words. Thus, we suggest that the transition toward access to consciousness relates to the optional triggering of a late wave of activation that spreads through a distributed network of cortical association areas.

  16. Cortical excitability correlates with the event-related desynchronization during brain-computer interface control

    Science.gov (United States)

    Daly, Ian; Blanchard, Caroline; Holmes, Nicholas P.

    2018-04-01

    Objective. Brain-computer interfaces (BCIs) based on motor control have been suggested as tools for stroke rehabilitation. Some initial successes have been achieved with this approach, however the mechanism by which they work is not yet fully understood. One possible part of this mechanism is a, previously suggested, relationship between the strength of the event-related desynchronization (ERD), a neural correlate of motor imagination and execution, and corticospinal excitability. Additionally, a key component of BCIs used in neurorehabilitation is the provision of visual feedback to positively reinforce attempts at motor control. However, the ability of visual feedback of the ERD to modulate the activity in the motor system has not been fully explored. Approach. We investigate these relationships via transcranial magnetic stimulation delivered at different moments in the ongoing ERD related to hand contraction and relaxation during BCI control of a visual feedback bar. Main results. We identify a significant relationship between ERD strength and corticospinal excitability, and find that our visual feedback does not affect corticospinal excitability. Significance. Our results imply that efforts to promote functional recovery in stroke by targeting increases in corticospinal excitability may be aided by accounting for the time course of the ERD.

  17. Response-related potentials during semantic priming: the effect of a speeded button response task on ERPs.

    Directory of Open Access Journals (Sweden)

    Marijn van Vliet

    Full Text Available This study examines the influence of a button response task on the event-related potential (ERP in a semantic priming experiment. Of particular interest is the N400 component. In many semantic priming studies, subjects are asked to respond to a stimulus as fast and accurately as possible by pressing a button. Response time (RT is recorded in parallel with an electroencephalogram (EEG for ERP analysis. In this case, the response occurs in the time window used for ERP analysis and response-related components may overlap with stimulus-locked ones such as the N400. This has led to a recommendation against such a design, although the issue has not been explored in depth. Since studies keep being published that disregard this issue, a more detailed examination of influence of response-related potentials on the ERP is needed. Two experiments were performed in which subjects pressed one of two buttons with their dominant hand in response to word-pairs with varying association strength (AS, indicating a personal judgement of association between the two words. In the first experiment, subjects were instructed to respond as fast and accurately as possible. In the second experiment, subjects delayed their button response to enforce a one second interval between the onset of the target word and the button response. Results show that in the first experiment a P3 component and motor-related potentials (MRPs overlap with the N400 component, which can cause a misinterpretation of the latter. In order to study the N400 component, the button response should be delayed to avoid contamination of the ERP with response-related components.

  18. Bilateral theta-burst magnetic stimulation influence on event-related brain potentials.

    Science.gov (United States)

    Pinto, Nuno; Duarte, Marta; Gonçalves, Helena; Silva, Ricardo; Gama, Jorge; Pato, Maria Vaz

    2018-01-01

    Theta-burst stimulation (TBS) can be a non-invasive technique to modulate cognitive functions, with promising therapeutic potential, but with some contradictory results. Event related potentials are used as a marker of brain deterioration and can be used to evaluate TBS-related cognitive performance, but its use remains scant. This study aimed to study bilateral inhibitory and excitatory TBS effects upon neurocognitive performance of young healthy volunteers, using the auditory P300' results. Using a double-blind sham-controlled study, 51 healthy volunteers were randomly assigned to five different groups, two submitted to either excitatory (iTBS) or inhibitory (cTBS) stimulation over the left dorsolateral pre-frontal cortex (DLPFC), two other actively stimulated the right DLPFC and finally a sham stimulation group. An oddball based auditory P300 was performed just before a single session of iTBS, cTBS or sham stimulation and repeated immediately after. P300 mean latency comparison between the pre- and post-TBS stimulation stages revealed significantly faster post stimulation latencies only when iTBS was performed on the left hemisphere (p = 0.003). Right and left hemisphere cTBS significantly delayed P300 latency (right p = 0.026; left p = 0.000). Multiple comparisons for N200 showed slower latencies after iTBS over the right hemisphere. No significant difference was found in amplitude variation. TBS appears to effectively influence neural networking involved in P300 formation, but effects seem distinct for iTBS vs cTBS and for the right or the left hemisphere. P300 evoked potentials can be an effective and practical tool to evaluate transcranial magnetic stimulation related outcomes.

  19. Echoic memory of a single pure tone indexed by change-related brain activity

    OpenAIRE

    Inui, Koji; Urakawa, Tomokazu; Yamashiro, Koya; Otsuru, Naofumi; Takeshima, Yasuyuki; Nishihara, Makoto; Motomura, Eishi; Kida, Tetsuo; Kakigi, Ryusuke

    2010-01-01

    Abstract Background The rapid detection of sensory change is important to survival. The process should relate closely to memory since it requires that the brain separate a new stimulus from an ongoing background or past event. Given that sensory memory monitors current sensory status and works to pick-up changes in real-time, any change detected by this system should evoke a change-related cortical response. To test this hypothesis, we examined whether the single presentation of a sound is en...

  20. Brain responses differ to faces of mothers and fathers.

    Science.gov (United States)

    Arsalidou, Marie; Barbeau, Emmanuel J; Bayless, Sarah J; Taylor, Margot J

    2010-10-01

    We encounter many faces each day but relatively few are personally familiar. Once faces are familiar, they evoke semantic and social information known about the person. Neuroimaging studies demonstrate differential brain activity to familiar and non-familiar faces; however, brain responses related to personally familiar faces have been more rarely studied. We examined brain activity with fMRI in adults in response to faces of their mothers and fathers compared to faces of celebrities and strangers. Overall, faces of mothers elicited more activity in core and extended brain regions associated with face processing, compared to fathers, celebrity or stranger faces. Fathers' faces elicited activity in the caudate, a deep brain structure associated with feelings of love. These new findings of differential brain responses elicited by faces of mothers and fathers are consistent with psychological research on attachment, evident even during adulthood. 2010 Elsevier Inc. All rights reserved.

  1. Predictive coding of music--brain responses to rhythmic incongruity.

    Science.gov (United States)

    Vuust, Peter; Ostergaard, Leif; Pallesen, Karen Johanne; Bailey, Christopher; Roepstorff, Andreas

    2009-01-01

    During the last decades, models of music processing in the brain have mainly discussed the specificity of brain modules involved in processing different musical components. We argue that predictive coding offers an explanatory framework for functional integration in musical processing. Further, we provide empirical evidence for such a network in the analysis of event-related MEG-components to rhythmic incongruence in the context of strong metric anticipation. This is seen in a mismatch negativity (MMNm) and a subsequent P3am component, which have the properties of an error term and a subsequent evaluation in a predictive coding framework. There were both quantitative and qualitative differences in the evoked responses in expert jazz musicians compared with rhythmically unskilled non-musicians. We propose that these differences trace a functional adaptation and/or a genetic pre-disposition in experts which allows for a more precise rhythmic prediction.

  2. A step into the anarchist's mind: examining political attitudes and ideology through event-related brain potentials.

    Science.gov (United States)

    Dhont, Kristof; Van Hiel, Alain; Pattyn, Sven; Onraet, Emma; Severens, Els

    2012-03-01

    The present study investigates patterns of event-related brain potentials following the presentation of attitudinal stimuli among political moderates (N=12) and anarchists (N=11). We used a modified oddball paradigm to investigate the evaluative inconsistency effect elicited by stimuli embedded in a sequence of contextual stimuli with an opposite valence. Increased late positive potentials (LPPs) of extreme political attitudes were observed. Moreover, this LPP enhancement was larger among anarchists than among moderates, indicating that an extreme political attitude of a moderate differs from an extreme political attitude of an anarchist. The discussion elaborates on the meaning of attitude extremity for moderates and extremists. © The Author (2011). Published by Oxford University Press.

  3. Frequency-Locked Detector Threshold Setting Criteria Based on Mean-Time-To-Lose-Lock (MTLL) for GPS Receivers.

    Science.gov (United States)

    Jin, Tian; Yuan, Heliang; Zhao, Na; Qin, Honglei; Sun, Kewen; Ji, Yuanfa

    2017-12-04

    Frequency-locked detector (FLD) has been widely utilized in tracking loops of Global Positioning System (GPS) receivers to indicate their locking status. The relation between FLD and lock status has been seldom discussed. The traditional PLL experience is not suitable for FLL. In this paper, the threshold setting criteria for frequency-locked detector in the GPS receiver has been proposed by analyzing statistical characteristic of FLD output. The approximate probability distribution of frequency-locked detector is theoretically derived by using a statistical approach, which reveals the relationship between probabilities of frequency-locked detector and the carrier-to-noise ratio ( C / N ₀) of the received GPS signal. The relationship among mean-time-to-lose-lock (MTLL), detection threshold and lock probability related to C / N ₀ can be further discovered by utilizing this probability. Therefore, a theoretical basis for threshold setting criteria in frequency locked loops for GPS receivers is provided based on mean-time-to-lose-lock analysis.

  4. SWITCHED REFERENCE PHASE LOCK LOOP (SRPLL)

    International Nuclear Information System (INIS)

    KERNER, T.

    2001-01-01

    The Brookhaven National Laboratory Relativistic Heavy Ion Collider (RHIC) has two beam synchronous event links (BSL), one for each ring, which use the 28 MHz ring low level rf to distribute event codes synchronously with a precise phase relationship to the beam. During a cogging reset just before injection, the low level rf sine wave is interrupted which causes the BSL receivers to lose lock. Lock loss in turn causes false triggers and other undesirable-effects on the beam position monitors (BPM), ionization profile monitors (IPM), the tune meter and various experiments which use the BSLs. To rectify these problems, a SRPLL has been inserted between the beam synchronous master and the low level rf source. The SRPLL inserts a frequency and phase continuous splice over the dead-band gap in the rf source created during a cogging reset. The splice removes the gap and prevents the distributed BSL receivers from losing lock

  5. Comparison of tactile, auditory and visual modality for brain-computer interface use: A case study with a patient in the locked-in state

    Directory of Open Access Journals (Sweden)

    Tobias eKaufmann

    2013-07-01

    Full Text Available This paper describes a case study with a patient in the classic locked-in state, who currently has no means of independent communication. Following a user-centered approach, we investigated event-related potentials elicited in different modalities for use in brain-computer interface systems. Such systems could provide her with an alternative communication channel. To investigate the most viable modality for achieving BCI based communication, classic oddball paradigms (1 rare and 1 frequent stimulus, ratio 1:5 in the visual, auditory and tactile modality were conducted (2 runs per modality. Classifiers were built on one run and tested offline on another run (and vice versa. In these paradigms, the tactile modality was clearly superior to other modalities, displaying high offline accuracy even when classification was performed on single trials only. Consequently, we tested the tactile paradigm online and the patient successfully selected targets without any error. Furthermore, we investigated use of the visual or tactile modality for different BCI systems with more than two selection options. In the visual modality, several BCI paradigms were tested offline. Neither matrix-based nor so-called gaze-independent paradigms constituted a means of control. These results may thus question the gaze-independence of current gaze-independent approaches to BCI. A tactile four-choice BCI resulted in high offline classification accuracies. Yet, online use raised various issues. Although performance was clearly above chance, practical daily life use appeared unlikely when compared to other communication approaches (e.g. partner scanning. Our results emphasize the need for user-centered design in BCI development including identification of the best stimulus modality for a particular user. Finally, the paper discusses feasibility of EEG-based BCI systems for patients in classic locked-in state and compares BCI to other AT solutions that we also tested during the

  6. Comparison of tactile, auditory, and visual modality for brain-computer interface use: a case study with a patient in the locked-in state.

    Science.gov (United States)

    Kaufmann, Tobias; Holz, Elisa M; Kübler, Andrea

    2013-01-01

    This paper describes a case study with a patient in the classic locked-in state, who currently has no means of independent communication. Following a user-centered approach, we investigated event-related potentials (ERP) elicited in different modalities for use in brain-computer interface (BCI) systems. Such systems could provide her with an alternative communication channel. To investigate the most viable modality for achieving BCI based communication, classic oddball paradigms (1 rare and 1 frequent stimulus, ratio 1:5) in the visual, auditory and tactile modality were conducted (2 runs per modality). Classifiers were built on one run and tested offline on another run (and vice versa). In these paradigms, the tactile modality was clearly superior to other modalities, displaying high offline accuracy even when classification was performed on single trials only. Consequently, we tested the tactile paradigm online and the patient successfully selected targets without any error. Furthermore, we investigated use of the visual or tactile modality for different BCI systems with more than two selection options. In the visual modality, several BCI paradigms were tested offline. Neither matrix-based nor so-called gaze-independent paradigms constituted a means of control. These results may thus question the gaze-independence of current gaze-independent approaches to BCI. A tactile four-choice BCI resulted in high offline classification accuracies. Yet, online use raised various issues. Although performance was clearly above chance, practical daily life use appeared unlikely when compared to other communication approaches (e.g., partner scanning). Our results emphasize the need for user-centered design in BCI development including identification of the best stimulus modality for a particular user. Finally, the paper discusses feasibility of EEG-based BCI systems for patients in classic locked-in state and compares BCI to other AT solutions that we also tested during the

  7. Age-related reduction of adaptive brain response during semantic integration is associated with gray matter reduction.

    Directory of Open Access Journals (Sweden)

    Zude Zhu

    Full Text Available While aging is associated with increased knowledge, it is also associated with decreased semantic integration. To investigate brain activation changes during semantic integration, a sample of forty-eight 25-75 year-old adults read sentences with high cloze (HC and low cloze (LC probability while functional magnetic resonance imaging was conducted. Significant age-related reduction of cloze effect (LC vs. HC was found in several regions, especially the left middle frontal gyrus (MFG and right inferior frontal gyrus (IFG, which play an important role in semantic integration. Moreover, when accounting for global gray matter volume reduction, the age-cloze correlation in the left MFG and right IFG was absent. The results suggest that brain structural atrophy may disrupt brain response in aging brains, which then show less brain engagement in semantic integration.

  8. Convolutional neural networks for event-related potential detection: impact of the architecture.

    Science.gov (United States)

    Cecotti, H

    2017-07-01

    The detection of brain responses at the single-trial level in the electroencephalogram (EEG) such as event-related potentials (ERPs) is a difficult problem that requires different processing steps to extract relevant discriminant features. While most of the signal and classification techniques for the detection of brain responses are based on linear algebra, different pattern recognition techniques such as convolutional neural network (CNN), as a type of deep learning technique, have shown some interests as they are able to process the signal after limited pre-processing. In this study, we propose to investigate the performance of CNNs in relation of their architecture and in relation to how they are evaluated: a single system for each subject, or a system for all the subjects. More particularly, we want to address the change of performance that can be observed between specifying a neural network to a subject, or by considering a neural network for a group of subjects, taking advantage of a larger number of trials from different subjects. The results support the conclusion that a convolutional neural network trained on different subjects can lead to an AUC above 0.9 by using an appropriate architecture using spatial filtering and shift invariant layers.

  9. From cognitive motor preparation to visual processing: The benefits of childhood fitness to brain health.

    Science.gov (United States)

    Berchicci, M; Pontifex, M B; Drollette, E S; Pesce, C; Hillman, C H; Di Russo, F

    2015-07-09

    The association between a fit body and a fit brain in children has led to a rise of behavioral and neuroscientific research. Yet, the relation of cardiorespiratory fitness on premotor neurocognitive preparation with early visual processing has received little attention. Here, 41 healthy, lower and higher fit preadolescent children were administered a modified version of the Eriksen flanker task while electroencephalography (EEG) and behavioral measures were recorded. Event-related potentials (ERPs) locked to the stimulus onset with an earlier than usual baseline (-900/-800 ms) allowed investigation of both the usual post-stimulus (i.e., the P1, N1 and P2) as well as the pre-stimulus ERP components, such as the Bereitschaftspotential (BP) and the prefrontal negativity (pN component). At the behavioral level, aerobic fitness was associated response accuracy, with higher fit children being more accurate than lower fit children. Fitness-related differences selectively emerged at prefrontal brain regions during response preparation, with larger pN amplitude for higher than lower fit children, and at early perceptual stages after stimulus onset, with larger P1 and N1 amplitudes in higher relative to lower fit children. Collectively, the results suggest that the benefits of being aerobically fit appear at the stage of cognitive preparation prior to stimulus presentation and the behavioral response during the performance of a task that challenges cognitive control. Further, it is likely that enhanced activity in prefrontal brain areas may improve cognitive control of visuo-motor tasks, allowing for stronger proactive inhibition and larger early allocation of selective attention resources on relevant external stimuli. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Epidural electrocorticography for monitoring of arousal in locked-in state

    Directory of Open Access Journals (Sweden)

    Alireza eGharabaghi

    2014-10-01

    Full Text Available Electroencephalography often fails to assess both the level (i.e. arousal and the content (i.e. awareness of pathologically altered consciousness in patients without motor responsiveness. This might be related to a decline of awareness, to episodes of low arousal and disturbed sleep patterns, and/or to distorting and attenuating effects of the skull and intermediate tissue on the recorded brain signals. Novel approaches are required to overcome these limitations.We introduced epidural electrocorticography (ECoG for monitoring of cortical physiology in a late-stage amytrophic lateral sclerosis patient in completely locked-in state. Despite long-term application for a period of six months, no implant-related complications occurred. Recordings from the left frontal cortex were sufficient to identify three arousal states. Spectral analysis of the intrinsic oscillatory activity enabled us to extract state-dependent dominant frequencies at < 4, ~ 7 and ~ 20 Hz, representing sleep-like periods, and phases of low and elevated arousal, respectively. In the absence of other biomarkers, ECoG proved to be a reliable tool for monitoring circadian rhythmicity, i.e. avoiding interference with the patient when he was sleeping and exploiting time windows of responsiveness. Moreover, the effects of interventions addressing the patient’s arousal, e.g. amantadine medication, could be evaluated objectively on the basis of physiological markers, even in the absence of behavioral parameters.Epidural ECoG constitutes a feasible trade-off between surgical risk and quality of recorded brain signals to gain information on the patient’s present level of arousal. This approach enables us to optimize the timing of interactions and medical interventions, all of which should take place when the patient is in a phase of high arousal. Furthermore, avoiding low-responsiveness periods will facilitate measures to implement alternative communication pathways involving brain

  11. Work first then play: Prior task difficulty increases motivation-related brain responses in a risk game.

    Science.gov (United States)

    Schmidt, Barbara; Mussel, Patrick; Osinsky, Roman; Rasch, Björn; Debener, Stefan; Hewig, Johannes

    2017-05-01

    Task motivation depends on what we did before. A recent theory differentiates between tasks that we want to do and tasks that we have to do. After a have-to task, motivation shifts towards a want-to task. We measured this shift of motivation via brain responses to monetary feedback in a risk game that was used as want-to task in our study. We tested 20 healthy participants that were about 28 years old in a within-subjects design. Participants worked on a Stroop task (have-to task) or an easier version of the Stroop task as a control condition and played a risk game afterwards (want-to task). After the Stroop task, brain responses to monetary feedback in the risk game were larger compared to the easier control task, especially for feedback indicating higher monetary rewards. We conclude that higher amplitudes of feedback-related brain responses in the risk game reflect the shift of motivation after a have-to task towards a want-to task. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Distinct patterns of brain activity characterise lexical activation and competition in spoken word production.

    Directory of Open Access Journals (Sweden)

    Vitória Piai

    Full Text Available According to a prominent theory of language production, concepts activate multiple associated words in memory, which enter into competition for selection. However, only a few electrophysiological studies have identified brain responses reflecting competition. Here, we report a magnetoencephalography study in which the activation of competing words was manipulated by presenting pictures (e.g., dog with distractor words. The distractor and picture name were semantically related (cat, unrelated (pin, or identical (dog. Related distractors are stronger competitors to the picture name because they receive additional activation from the picture relative to other distractors. Picture naming times were longer with related than unrelated and identical distractors. Phase-locked and non-phase-locked activity were distinct but temporally related. Phase-locked activity in left temporal cortex, peaking at 400 ms, was larger on unrelated than related and identical trials, suggesting differential activation of alternative words by the picture-word stimuli. Non-phase-locked activity between roughly 350-650 ms (4-10 Hz in left superior frontal gyrus was larger on related than unrelated and identical trials, suggesting differential resolution of the competition among the alternatives, as reflected in the naming times. These findings characterise distinct patterns of activity associated with lexical activation and competition, supporting the theory that words are selected by competition.

  13. Using event-related potentials to study perinatal nutrition and brain development in infants of diabetic mothers.

    Science.gov (United States)

    deRegnier, Raye-Ann; Long, Jeffrey D; Georgieff, Michael K; Nelson, Charles A

    2007-01-01

    Proper prenatal and postnatal nutrition is essential for optimal brain development and function. The early use of event-related potentials enables neuroscientists to study the development of cognitive function from birth and to evaluate the role of specific nutrients in development. Perinatal iron deficiency occurs in severely affected infants of diabetic mothers. In animal models, severe perinatal iron deficiency targets the explicit memory system of the brain. Cross-sectional ERP studies have shown that infants of diabetic mothers have impairments in recognition memory from birth through 8 months of age. The purpose of this study was to evaluate longitudinal development of recognition memory using ERPs in infants of diabetic mothers compared with control infants. Infants of diabetic mothers were divided into high and low risk status based upon their birth weights and iron status and compared with healthy control infants. Infants were tested in the newborn period for auditory recognition memory, at 6 months for visual recognition memory and at 8 months for cross modal memory. ERPs were evaluated for developmental changes in the slow waves that are thought to reflect memory and the Nc component that is thought to reflect attention. The results of the study showed differences in development between the IDMs and control infants in the development of the slow waves over the left anterior temporal leads and age-related patterns of development in the NC component. These results are consistent with animal models showing that perinatal iron deficiency affects the development of the memory networks of the brain. This study highlights the value of using ERPs to translate basic science information obtained from animal models to the development of the human infant.

  14. Automatic locking radioisotope camera lock

    International Nuclear Information System (INIS)

    Rosauer, P.J.

    1978-01-01

    The lock of the present invention secures the isotope source in a stored shielded condition in the camera until a positive effort has been made to open the lock and take the source outside of the camera and prevents disconnection of the source pigtail unless the source is locked in a shielded condition in the camera. It also gives a visual indication of the locked or possible exposed condition of the isotope source and prevents the source pigtail from being completely pushed out of the camera, even when the lock is released. (author)

  15. A step into the anarchist’s mind: examining political attitudes and ideology through event-related brain potentials

    Science.gov (United States)

    Van Hiel, Alain; Pattyn, Sven; Onraet, Emma; Severens, Els

    2012-01-01

    The present study investigates patterns of event-related brain potentials following the presentation of attitudinal stimuli among political moderates (N = 12) and anarchists (N = 11). We used a modified oddball paradigm to investigate the evaluative inconsistency effect elicited by stimuli embedded in a sequence of contextual stimuli with an opposite valence. Increased late positive potentials (LPPs) of extreme political attitudes were observed. Moreover, this LPP enhancement was larger among anarchists than among moderates, indicating that an extreme political attitude of a moderate differs from an extreme political attitude of an anarchist. The discussion elaborates on the meaning of attitude extremity for moderates and extremists. PMID:21421734

  16. 49 CFR 236.765 - Locking, mechanical.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locking, mechanical. 236.765 Section 236.765 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Locking, mechanical. An arrangement of locking bars, dogs, tappets, cross locking and other apparatus by...

  17. Poor relation between biomechanical and clinical studies for the proximal femoral locking compression plate

    DEFF Research Database (Denmark)

    Viberg, Bjarke; Voergård Rasmussen, Katrine Marie; Overgaard, Søren

    2017-01-01

    Background and purpose — The proximal femur locking compression plate (PF-LCP) is a new concept in the treatment of hip fractures. When releasing new implants onto the market, biomechanical studies are conducted to evaluate performance of the implant. We investigated the relation between biomecha......Background and purpose — The proximal femur locking compression plate (PF-LCP) is a new concept in the treatment of hip fractures. When releasing new implants onto the market, biomechanical studies are conducted to evaluate performance of the implant. We investigated the relation between...

  18. Electrical Brain Responses to an Auditory Illusion and the Impact of Musical Expertise.

    Science.gov (United States)

    Ioannou, Christos I; Pereda, Ernesto; Lindsen, Job P; Bhattacharya, Joydeep

    2015-01-01

    The presentation of two sinusoidal tones, one to each ear, with a slight frequency mismatch yields an auditory illusion of a beating frequency equal to the frequency difference between the two tones; this is known as binaural beat (BB). The effect of brief BB stimulation on scalp EEG is not conclusively demonstrated. Further, no studies have examined the impact of musical training associated with BB stimulation, yet musicians' brains are often associated with enhanced auditory processing. In this study, we analysed EEG brain responses from two groups, musicians and non-musicians, when stimulated by short presentation (1 min) of binaural beats with beat frequency varying from 1 Hz to 48 Hz. We focused our analysis on alpha and gamma band EEG signals, and they were analysed in terms of spectral power, and functional connectivity as measured by two phase synchrony based measures, phase locking value and phase lag index. Finally, these measures were used to characterize the degree of centrality, segregation and integration of the functional brain network. We found that beat frequencies belonging to alpha band produced the most significant steady-state responses across groups. Further, processing of low frequency (delta, theta, alpha) binaural beats had significant impact on cortical network patterns in the alpha band oscillations. Altogether these results provide a neurophysiological account of cortical responses to BB stimulation at varying frequencies, and demonstrate a modulation of cortico-cortical connectivity in musicians' brains, and further suggest a kind of neuronal entrainment of a linear and nonlinear relationship to the beating frequencies.

  19. Electrical Brain Responses to an Auditory Illusion and the Impact of Musical Expertise.

    Directory of Open Access Journals (Sweden)

    Christos I Ioannou

    Full Text Available The presentation of two sinusoidal tones, one to each ear, with a slight frequency mismatch yields an auditory illusion of a beating frequency equal to the frequency difference between the two tones; this is known as binaural beat (BB. The effect of brief BB stimulation on scalp EEG is not conclusively demonstrated. Further, no studies have examined the impact of musical training associated with BB stimulation, yet musicians' brains are often associated with enhanced auditory processing. In this study, we analysed EEG brain responses from two groups, musicians and non-musicians, when stimulated by short presentation (1 min of binaural beats with beat frequency varying from 1 Hz to 48 Hz. We focused our analysis on alpha and gamma band EEG signals, and they were analysed in terms of spectral power, and functional connectivity as measured by two phase synchrony based measures, phase locking value and phase lag index. Finally, these measures were used to characterize the degree of centrality, segregation and integration of the functional brain network. We found that beat frequencies belonging to alpha band produced the most significant steady-state responses across groups. Further, processing of low frequency (delta, theta, alpha binaural beats had significant impact on cortical network patterns in the alpha band oscillations. Altogether these results provide a neurophysiological account of cortical responses to BB stimulation at varying frequencies, and demonstrate a modulation of cortico-cortical connectivity in musicians' brains, and further suggest a kind of neuronal entrainment of a linear and nonlinear relationship to the beating frequencies.

  20. An event-related brain potential study of visual selective attention to conjunctions of color and shape.

    Science.gov (United States)

    Smid, H G; Jakob, A; Heinze, H J

    1999-03-01

    What cognitive processes underlie event-related brain potential (ERP) effects related to visual multidimensional selective attention and how are these processes organized? We recorded ERPs when participants attended to one conjunction of color, global shape and local shape and ignored other conjunctions of these attributes in three discriminability conditions. Attending to color and shape produced three ERP effects: frontal selection positivity (FSP), central negativity (N2b), and posterior selection negativity (SN). The results suggested that the processes underlying SN and N2b perform independent within-dimension selections, whereas the process underlying the FSP performs hierarchical between-dimension selections. At posterior electrodes, manipulation of discriminability changed the ERPs to the relevant but not to the irrelevant stimuli, suggesting that the SN does not concern the selection process itself but rather a cognitive process initiated after selection is finished. Other findings suggested that selection of multiple visual attributes occurs in parallel.

  1. [Event-related brain potentials when Russian verbs being conjugated: to the problem of language processing modularity].

    Science.gov (United States)

    Dan'ko, S G; Boĭtsova, Iu A; Solov'eva, M L; Chernigovskaia, T V; Medvedev, S V

    2014-01-01

    In the light of alternative conceptions of "two-system" and "single-system" models of language processing the efforts have been undertaken to study brain mechanisnis for generation of regular and irregular forms of Russian verbs. The 19 EEG channels of evoked activity were registered along with casual alternations of speech morphology operations to be compared. Verbs of imperfective aspect in the form of an infinitive, belonging either to a group of productive verbs (default, conventionally regular class), or toan unproductive group of verbs (conventionally irregular class) were presented to healthy subjects. The subjects were requested to produce first person present time forms of these verbs. Results of analysis of event related potentials (ERP) for a group of 22 persons are presented. Statistically reliable ERP amplitude distinctions between the verb groups are found onlyin the latencies 600-850 ms in central and parietal zones of the cortex. In these latencies ERP values associated with a presentation of irregular verbs are negative in relation to ERP values associated with the presentation of regular verbs. The received results are interpreted as a consequence of various complexity of mental work with verbs of these different groups and presumably don't support a hypothesis of universality of the "two-system" brain mechanism for processing of the regular and irregular language forms.

  2. Adverse effects associated with ethanol catheter lock solutions: a systematic review.

    Science.gov (United States)

    Mermel, Leonard A; Alang, Neha

    2014-10-01

    Antimicrobial lock therapy has been widely utilized internationally for the prevention and management of intravascular catheter-related bloodstream infections. One of the agents commonly utilized for lock therapy is ethanol. However, a systematic review of adverse events associated with ethanol locks has not been published. PubMed was searched to collect articles published from May 2003 through March 2014. The bibliographies of relevant articles were also reviewed. In vitro studies of the mechanical properties of catheters after ethanol immersion have revealed changes predominantly in polyurethane catheters and to a lesser extent in silicone and Carbothane catheters. An elution of polymers from polyurethane and Carbothane catheters has been observed at the ethanol concentrations used in ethanol lock therapy. Ethanol above a concentration of 28% leads to plasma protein precipitation. Ethanol locks were associated with catheter occlusion in 11 studies and independently increased the risk of thrombosis compared with heparin lock in a randomized trial. Six studies noted abnormalities in catheter integrity, including one case leading to catheter embolization. Of note, five of these studies involved silicone catheters. Ethanol lock use was associated with systemic side effects in 10 studies and possible side effects in one additional study. Four studies noted liver function test abnormalities, predominantly transaminase elevation, related to ethanol lock use. However, a prospective study did not find any difference in the risk of doubling the transaminase level above the normal range during use of ethanol locks compared with not using an ethanol lock. The use of ethanol locks has been associated with structural changes in catheters, as well as the elution of molecules from the catheter polymers. Clinical studies have revealed systemic toxicity, increased catheter occlusion and breaches in catheter integrity. © The Author 2014. Published by Oxford University Press on

  3. Event-related brain potentials to emotional images and gonadal steroid hormone levels in patients with schizophrenia and paired controls.

    Science.gov (United States)

    Champagne, Julie; Mendrek, Adrianna; Germain, Martine; Hot, Pascal; Lavoie, Marc E

    2014-01-01

    Prominent disturbances in the experience, expression, and emotion recognition in patients with schizophrenia have been relatively well documented over the last few years. Furthermore, sex differences in behavior and brain activity, associated with the processing of various emotions, have been reported in the general population and in schizophrenia patients. Others proposed that sex differences should be rather attributed to testosterone, which may play a role in the etiology of schizophrenia. Also, it had been suggested that estradiol may play a protective role in schizophrenia. Surprisingly, few studies investigating this pathology have focused on both brain substrates and gonadal steroid hormone levels, in emotional processing. In the present study, we investigated electrocortical responses related to emotional valence and arousal as well as gonadal steroid hormone levels in patients with schizophrenia. Event-Related Potentials (ERP) were recorded during exposition to emotional pictures in 18 patients with schizophrenia and in 24 control participants paired on intelligence, manual dominance and socioeconomic status. Given their previous sensitivity to emotional and attention processes, the P200, N200 and the P300 were selected for analysis. More precisely, emotional valence generally affects early components (N200), which reflect early process of selective attention, whereas emotional arousal and valence both influences the P300 component, which is related to memory context updating, and stimulus categorization. Results showed that, in the control group, the amplitude of the N200 was significantly more lateralized over the right hemisphere, while there was no such lateralization in patients with schizophrenia. In patients with schizophrenia, significantly smaller anterior P300 amplitude was observed to the unpleasant, compared to the pleasant. That anterior P300 reduction was also correlated with negative symptoms. The N200 and P300 amplitudes were positively

  4. Multivariate evaluation of brain function by measuring regional cerebral blood flow and event-related potentials

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Yoshihiko; Mochida, Masahiko; Shutara, Yoshikazu; Nakagawa, Kazumi [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine; Nagata, Ken

    1998-07-01

    To measure the effect of events on human cognitive function, effects of odors by measurement regional cerebral blood flow (rCBF) and P300 were evaluated during the auditory odd-ball exercise. PET showed the increase in rCBF on the right hemisphere of the brain by coffee aroma. rCBF was measured by PET in 9 of right-handed healthy adults men, and P300 was by event-related potential (ERP) in each sex of 20 right-handed healthy adults. ERP showed the difference of the P300 amplitude between men and women, and showed the tendency, by odors except the lavender oil, that women had higher in the P300 amplitude than men. These results suggest the presence of effects on the cognitive function through emotional actions. Next, the relationship between rCBF and ERP were evaluated. The subjects were 9 of the right-handed healthy adults (average: 25.6{+-}3.4 years old). rCBF by PET and P300 amplitude by ERP were simultaneously recorded during the auditory odd-ball exercise using the tone-burst method (2 kHz of the low frequency aimed stimuli and 1 kHz of the high frequency non-aimed stimuli). The rCBF value was the highest at the transverse gyrus of Heschl and the lowest at the piriform cortex among 24 regions of interest (ROI) from both sides. The difference of P300 peak latent time among ROI was almost the same. The brain waves from Cz and Pz were similar and the average amplitude was highest at Pz. We found the high correlation in the right piriform cortex (Fz), and right (Fz, Cz) and left (Cz, Pz) transverse gyrus of Heschl between the P300 amplitude and rCBF. (K.H.)

  5. Multivariate evaluation of brain function by measuring regional cerebral blood flow and event-related potentials

    International Nuclear Information System (INIS)

    Koga, Yoshihiko; Mochida, Masahiko; Shutara, Yoshikazu; Nakagawa, Kazumi; Nagata, Ken

    1998-01-01

    To measure the effect of events on human cognitive function, effects of odors by measurement regional cerebral blood flow (rCBF) and P300 were evaluated during the auditory odd-ball exercise. PET showed the increase in rCBF on the right hemisphere of the brain by coffee aroma. rCBF was measured by PET in 9 of right-handed healthy adults men, and P300 was by event-related potential (ERP) in each sex of 20 right-handed healthy adults. ERP showed the difference of the P300 amplitude between men and women, and showed the tendency, by odors except the lavender oil, that women had higher in the P300 amplitude than men. These results suggest the presence of effects on the cognitive function through emotional actions. Next, the relationship between rCBF and ERP were evaluated. The subjects were 9 of the right-handed healthy adults (average: 25.6±3.4 years old). rCBF by PET and P300 amplitude by ERP were simultaneously recorded during the auditory odd-ball exercise using the tone-burst method (2 kHz of the low frequency aimed stimuli and 1 kHz of the high frequency non-aimed stimuli). The rCBF value was the highest at the transverse gyrus of Heschl and the lowest at the piriform cortex among 24 regions of interest (ROI) from both sides. The difference of P300 peak latent time among ROI was almost the same. The brain waves from Cz and Pz were similar and the average amplitude was highest at Pz. We found the high correlation in the right piriform cortex (Fz), and right (Fz, Cz) and left (Cz, Pz) transverse gyrus of Heschl between the P300 amplitude and rCBF. (K.H.)

  6. Behavioural and brain responses related to Internet search and memory.

    Science.gov (United States)

    Dong, Guangheng; Potenza, Marc N

    2015-10-01

    The ready availability of data via searches on the Internet has changed how many people seek and perhaps store and recall information, although the brain mechanisms underlying these processes are not well understood. This study investigated brain mechanisms underlying Internet-based vs. non-Internet-based searching. The results showed that Internet searching was associated with lower accuracy in recalling information as compared with traditional book searching. During functional magnetic resonance imaging, Internet searching was associated with less regional brain activation in the left ventral stream, the association area of the temporal-parietal-occipital cortices, and the middle frontal cortex. When comparing novel items with remembered trials, Internet-based searching was associated with higher brain activation in the right orbitofrontal cortex and lower brain activation in the right middle temporal gyrus when facing those novel trials. Brain activations in the middle temporal gyrus were inversely correlated with response times, and brain activations in the orbitofrontal cortex were positively correlated with self-reported search impulses. Taken together, the results suggest that, although Internet-based searching may have facilitated the information-acquisition process, this process may have been performed more hastily and be more prone to difficulties in recollection. In addition, people appear less confident in recalling information learned through Internet searching and that recent Internet searching may promote motivation to use the Internet. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Fear across the senses: brain responses to music, vocalizations and facial expressions.

    Science.gov (United States)

    Aubé, William; Angulo-Perkins, Arafat; Peretz, Isabelle; Concha, Luis; Armony, Jorge L

    2015-03-01

    Intrinsic emotional expressions such as those communicated by faces and vocalizations have been shown to engage specific brain regions, such as the amygdala. Although music constitutes another powerful means to express emotions, the neural substrates involved in its processing remain poorly understood. In particular, it is unknown whether brain regions typically associated with processing 'biologically relevant' emotional expressions are also recruited by emotional music. To address this question, we conducted an event-related functional magnetic resonance imaging study in 47 healthy volunteers in which we directly compared responses to basic emotions (fear, sadness and happiness, as well as neutral) expressed through faces, non-linguistic vocalizations and short novel musical excerpts. Our results confirmed the importance of fear in emotional communication, as revealed by significant blood oxygen level-dependent signal increased in a cluster within the posterior amygdala and anterior hippocampus, as well as in the posterior insula across all three domains. Moreover, subject-specific amygdala responses to fearful music and vocalizations were correlated, consistent with the proposal that the brain circuitry involved in the processing of musical emotions might be shared with the one that have evolved for vocalizations. Overall, our results show that processing of fear expressed through music, engages some of the same brain areas known to be crucial for detecting and evaluating threat-related information. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. Locke and botany.

    Science.gov (United States)

    Anstey, Peter R; Harris, Stephen A

    2006-06-01

    This paper argues that the English philosopher John Locke, who has normally been thought to have had only an amateurish interest in botany, was far more involved in the botanical science of his day than has previously been known. Through the presentation of new evidence deriving from Locke's own herbarium, his manuscript notes, journal and correspondence, it is established that Locke made a modest contribution to early modern botany. It is shown that Locke had close and ongoing relations with the Bobarts, keepers of the Oxford Botanic Garden, and that Locke distributed seeds and plant parts to other botanists, seeds of which the progeny almost certainly ended up in the most important herbaria of the period. Furthermore, it is claimed that the depth of Locke's interest in and practice of botany has a direct bearing on our understanding of his views on the correct method of natural philosophy and on the interpretation of his well known discussion of the nature of species in Book III of his Essay concerning human understanding.

  9. Functional MRI of food-induced brain responses

    NARCIS (Netherlands)

    Smeets, P.A.M.

    2006-01-01

    The ultimate goal of this research was to find central biomarkers of satiety, i.e., physiological measures in the brain that relate to subjectively rated appetite, actual food intake, or both. This thesis describes the changes in brain activity in response to food stimuli as measured by functional

  10. Transient and steady-state auditory gamma-band responses in first-degree relatives of people with autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Rojas Donald C

    2011-07-01

    Full Text Available Abstract Background Stimulus-related γ-band oscillations, which may be related to perceptual binding, are reduced in people with autism spectrum disorders (ASD. The purpose of this study was to examine auditory transient and steady-state γ-band findings in first-degree relatives of people with ASD to assess the potential familiality of these findings in ASD. Methods Magnetoencephalography (MEG recordings in 21 parents who had a child with an autism spectrum disorder (pASD and 20 healthy adult control subjects (HC were obtained. Gamma-band phase locking factor (PLF, and evoked and induced power to 32, 40 and 48 Hz amplitude-modulated sounds were measured for transient and steady-state responses. Participants were also tested on a number of behavioral and cognitive assessments related to the broad autism phenotype (BAP. Results Reliable group differences were seen primarily for steady-state responses. In the left hemisphere, pASD subjects exhibited lower phase-locked steady-state power in all three conditions. Total γ-band power, including the non-phase-locked component, was also reduced in the pASD group. In addition, pASD subjects had significantly lower PLF than the HC group. Correlations were seen between MEG measures and BAP measures. Conclusions The reduction in steady-state γ-band responses in the pASD group is consistent with previous results for children with ASD. Steady-state responses may be more sensitive than transient responses to phase-locking errors in ASD. Together with the lower PLF and phase-locked power in first-degree relatives, correlations between γ-band measures and behavioral measures relevant to the BAP highlight the potential of γ-band deficits as a potential new autism endophenotype.

  11. Workshop on gate valve pressure locking and thermal binding

    International Nuclear Information System (INIS)

    Brown, E.J.

    1995-07-01

    The purpose of the Workshop on Gate Valve Pressure Locking and Thermal Binding was to discuss pressure locking and thermal binding issues that could lead to inoperable gate valves in both boiling water and pressurized water reactors. The goal was to foster exchange of information to develop the technical bases to understand the phenomena, identify the components that are susceptible, discuss actual events, discuss the safety significance, and illustrate known corrective actions that can prevent or limit the occurrence of pressure locking or thermal binding. The presentations were structured to cover U.S. Nuclear Regulatory Commission staff evaluation of operating experience and planned regulatory activity; industry discussions of specific events, including foreign experience, and efforts to determine causes and alleviate the affects; and valve vendor experience and recommended corrective action. The discussions indicated that identifying valves susceptible to pressure locking and thermal binding was a complex process involving knowledge of components, systems, and plant operations. The corrective action options are varied and straightforward

  12. Final Report on LDRD project 130784 : functional brain imaging by tunable multi-spectral Event-Related Optical Signal (EROS).

    Energy Technology Data Exchange (ETDEWEB)

    Speed, Ann Elizabeth; Spahn, Olga Blum; Hsu, Alan Yuan-Chun

    2009-09-01

    Functional brain imaging is of great interest for understanding correlations between specific cognitive processes and underlying neural activity. This understanding can provide the foundation for developing enhanced human-machine interfaces, decision aides, and enhanced cognition at the physiological level. The functional near infrared spectroscopy (fNIRS) based event-related optical signal (EROS) technique can provide direct, high-fidelity measures of temporal and spatial characteristics of neural networks underlying cognitive behavior. However, current EROS systems are hampered by poor signal-to-noise-ratio (SNR) and depth of measure, limiting areas of the brain and associated cognitive processes that can be investigated. We propose to investigate a flexible, tunable, multi-spectral fNIRS EROS system which will provide up to 10x greater SNR as well as improved spatial and temporal resolution through significant improvements in electronics, optoelectronics and optics, as well as contribute to the physiological foundation of higher-order cognitive processes and provide the technical foundation for miniaturized portable neuroimaging systems.

  13. Regulating the Access to Awareness: Brain Activity Related to Probe-related and Spontaneous Reversals in Binocular Rivalry.

    Science.gov (United States)

    Metzger, Brian A; Mathewson, Kyle E; Tapia, Evelina; Fabiani, Monica; Gratton, Gabriele; Beck, Diane M

    2017-06-01

    Research on the neural correlates of consciousness (NCC) has implicated an assortment of brain regions, ERP components, and network properties associated with visual awareness. Recently, the P3b ERP component has emerged as a leading NCC candidate. However, typical P3b paradigms depend on the detection of some stimulus change, making it difficult to separate brain processes elicited by the stimulus itself from those associated with updates or changes in visual awareness. Here we used binocular rivalry to ask whether the P3b is associated with changes in awareness even in the absence of changes in the object of awareness. We recorded ERPs during a probe-mediated binocular rivalry paradigm in which brief probes were presented over the image in either the suppressed or dominant eye to determine whether the elicited P3b activity is probe or reversal related. We found that the timing of P3b (but not its amplitude) was closely related to the timing of the report of a perceptual change rather than to the onset of the probe. This is consistent with the proposal that P3b indexes updates in conscious awareness, rather than being related to stimulus processing per se. Conversely, the probe-related P1 amplitude (but not its latency) was associated with reversal latency, suggesting that the degree to which the probe is processed increases the likelihood of a fast perceptual reversal. Finally, the response-locked P3b amplitude (but not its latency) was associated with the duration of an intermediate stage between reversals in which parts of both percepts coexist (piecemeal period). Together, the data suggest that the P3b reflects an update in consciousness and that the intensity of that process (as indexed by P3b amplitude) predicts how immediate that update is.

  14. Global brain blood-oxygen level responses to autonomic challenges in obstructive sleep apnea.

    Directory of Open Access Journals (Sweden)

    Paul M Macey

    Full Text Available Obstructive sleep apnea (OSA is accompanied by brain injury, perhaps resulting from apnea-related hypoxia or periods of impaired cerebral perfusion. Perfusion changes can be determined indirectly by evaluation of cerebral blood volume and oxygenation alterations, which can be measured rapidly and non-invasively with the global blood oxygen level dependent (BOLD signal, a magnetic resonance imaging procedure. We assessed acute BOLD responses in OSA subjects to pressor challenges that elicit cerebral blood flow changes, using a two-group comparative design with healthy subjects as a reference. We separately assessed female and male patterns, since OSA characteristics and brain injury differ between sexes. We studied 94 subjects, 37 with newly-diagnosed, untreated OSA (6 female (age mean ± std: 52.1±8.1 yrs; apnea/hypopnea index [AHI]: 27.7±15.6 events/hr and 31 male 54.3±8.4 yrs; AHI: 37.4±19.6 events/hr, and 20 female (age 50.5±8.1 yrs and 37 male (age 45.6±9.2 yrs healthy control subjects. We measured brain BOLD responses every 2 s while subjects underwent cold pressor, hand grip, and Valsalva maneuver challenges. The global BOLD signal rapidly changed after the first 2 s of each challenge, and differed in magnitude between groups to two challenges (cold pressor, hand grip, but not to the Valsalva maneuver (repeated measures ANOVA, p<0.05. OSA females showed greater differences from males in response magnitude and pattern, relative to healthy counterparts. Cold pressor BOLD signal increases (mean ± adjusted standard error at the 8 s peak were: OSA 0.14±0.08% vs. Control 0.31±0.06%, and hand grip at 6 s were: OSA 0.08±0.03% vs. Control at 0.30±0.02%. These findings, indicative of reduced cerebral blood flow changes to autonomic challenges in OSA, complement earlier reports of altered resting blood flow and reduced cerebral artery responsiveness. Females are more affected than males, an outcome which may contribute to the sex

  15. Dissociation of Category-Learning Systems via Brain Potentials

    Directory of Open Access Journals (Sweden)

    Robert G Morrison

    2015-07-01

    Full Text Available Behavioral, neuropsychological, and neuroimaging evidence has suggested that categories can often be learned via either an explicit rule-based mechanism critically dependent on medial temporal and prefrontal brain regions, or via an implicit information-integration mechanism relying on the basal ganglia. In this study, participants viewed sine-wave gratings (i.e., Gabor patches that varied on two dimensions and learned to categorize them via trial-by-trial feedback. Two different stimulus distributions were used; one was intended to encourage an explicit rule-based process and the other an implicit information-integration process. We monitored brain activity with scalp electroencephalography (EEG while each participant (1 passively observed stimuli represented of both distributions, (2 categorized stimuli from one distribution, and, one week later, (3 categorized stimuli from the other distribution. Categorization accuracy was similar for the two distributions. Subtractions of Event-Related Potentials (ERPs for correct and incorrect trials were used to identify neural differences in rule-based and information-integration categorization processes. We identified an occipital brain potential that was differentially modulated by categorization condition accuracy at an early latency (150 - 250 ms, likely reflecting the degree of holistic processing. A stimulus-locked late positive complex associated with explicit memory updating was modulated by accuracy in the rule-based, but not the information-integration task. Likewise, a feedback-locked P300 ERP associated with expectancy was correlated with performance only in the rule-based, but not the information-integration condition. These results provide additional evidence for distinct brain mechanisms supporting rule-based versus implicit information-integration category learning and use.

  16. Measurement of event-related potentials and placebo

    Directory of Open Access Journals (Sweden)

    Sovilj Platon

    2014-01-01

    Full Text Available ERP is common abbreviation for event-related brain potentials, which are measured and used in clinical practice as well as in research practice. Contemporary studies of placebo effect are often based on functional neuromagnetic resonance (fMRI, positron emission tomography (PET, and event related potentials (ERP. This paper considers an ERP instrumentation system used in experimental researches of placebo effect. This instrumentation system can be divided into four modules: electrodes and cables, conditioning module, digital measurement module, and PC module for stimulations, presentations, acquisition and data processing. The experimental oddball paradigm is supported by the software of the instrumentation. [Projekat Ministarstva nauke Republike Srbije, br. TR32019 and Provincial Secretariat for Science and Technological Development of Autonomous Province of Vojvodina (Republic of Serbia under research grant No. 114-451-2723

  17. Protective air lock

    International Nuclear Information System (INIS)

    Evans, H.W.

    1976-01-01

    A device suitable for preventing escape and subsequent circulation of toxic gases is described. An enclosure is sealed by a surrounding air lock, and an automatic mechanism partially evacuates the enclosure and air lock. The enclosure ventilating mechanism can be disconnected so that a relatively undisturbed atmosphere is created in the enclosure

  18. The role of hunger state and dieting history in neural response to food cues: An event-related potential study.

    Science.gov (United States)

    Feig, Emily H; Winter, Samantha R; Kounios, John; Erickson, Brian; Berkowitz, Staci A; Lowe, Michael R

    2017-10-01

    A history of dieting to lose weight has been shown to be a robust predictor of future weight gain. A potential factor in propensity towards weight gain is the nature of people's reactions to the abundance of highly palatable food cues in the environment. Event Related Potentials (ERPs) have revealed differences in how the brain processes food cues between obese and normal weight individuals, as well as between restrained and unrestrained eaters. However, comparisons by weight status are not informative regarding whether differences predate or follow weight gain in obese individuals and restrained eating has not consistently been found to predict future weight gain. The present study compared ERP responses to food cues in non-obese historic dieters (HDs) to non-obese never dieters (NDs). HDs showed a blunted N1 component relative to NDs overall, and delayed N1 and P2 components compared to NDs in the hungry state, suggesting that early, perceptual processing of food cues differs between these groups, especially when food-deprived. HDs also showed a more hunger-dependent sustained ERP (LPP) compared to NDs. Future research should test ERP-based food cue responsivity as a mediator between dieting history and future weight gain to better identify those most at risk for weight gain as well as the nature of their vulnerability. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. EEG-Annotate: Automated identification and labeling of events in continuous signals with applications to EEG.

    Science.gov (United States)

    Su, Kyung-Min; Hairston, W David; Robbins, Kay

    2018-01-01

    In controlled laboratory EEG experiments, researchers carefully mark events and analyze subject responses time-locked to these events. Unfortunately, such markers may not be available or may come with poor timing resolution for experiments conducted in less-controlled naturalistic environments. We present an integrated event-identification method for identifying particular responses that occur in unlabeled continuously recorded EEG signals based on information from recordings of other subjects potentially performing related tasks. We introduce the idea of timing slack and timing-tolerant performance measures to deal with jitter inherent in such non-time-locked systems. We have developed an implementation available as an open-source MATLAB toolbox (http://github.com/VisLab/EEG-Annotate) and have made test data available in a separate data note. We applied the method to identify visual presentation events (both target and non-target) in data from an unlabeled subject using labeled data from other subjects with good sensitivity and specificity. The method also identified actual visual presentation events in the data that were not previously marked in the experiment. Although the method uses traditional classifiers for initial stages, the problem of identifying events based on the presence of stereotypical EEG responses is the converse of the traditional stimulus-response paradigm and has not been addressed in its current form. In addition to identifying potential events in unlabeled or incompletely labeled EEG, these methods also allow researchers to investigate whether particular stereotypical neural responses are present in other circumstances. Timing-tolerance has the added benefit of accommodating inter- and intra- subject timing variations. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  20. Incidental encoding of emotional pictures: affective bias studied through event related brain potentials.

    Science.gov (United States)

    Tapia, Manuel; Carretié, Luis; Sierra, Benjamín; Mercado, Francisco

    2008-06-01

    Emotional stimuli are better remembered than neutral stimuli. Most of the studies taking into account this emotional bias refer to explicit memory, use behavioral measures of the recall and predict better recall of negative stimuli. The few studies taking into account implicit memory and the valence emotional dimension are inconclusive on the effect of the stimulus' emotional valence. In the present study, 120 pictures (30 positive, 30 negative, 30 relaxing and 30 neutral) were shown to, and assessed by, 28 participants (study phase). Subsequently, event related brain potentials (ERPs) were recorded during the presentation of 120 new (shown for the first time) and 120 old (already shown in the study phase) pictures (test phase). No explicit instructions or clues related to recovery were given to participants, and a distractor task was employed, in order to maintain implicit the memory assessment. As expected from other studies' data, our results showed that old stimuli elicited an enhanced late positive component 450 ms after stimulus onset (repetition effect). Moreover, this effect was modulated by the stimuli's emotional valence, since the most positively valenced stimuli were associated with a decreased repetition effect with respect to the most negatively valenced stimuli. This effect was located at ventromedial prefrontal cortex. These results suggest the existence of a valence-mediated bias in implicit memory.

  1. Brain Arterial Diameters as a Risk Factor for Vascular Events.

    Science.gov (United States)

    Gutierrez, Jose; Cheung, Ken; Bagci, Ahmet; Rundek, Tatjana; Alperin, Noam; Sacco, Ralph L; Wright, Clinton B; Elkind, Mitchell S V

    2015-08-06

    Arterial luminal diameters are routinely used to assess for vascular disease. Although small diameters are typically considered pathological, arterial dilatation has also been associated with disease. We hypothesize that extreme arterial diameters are biomarkers of the risk of vascular events. Participants in the Northern Manhattan Study who had a time-of-flight magnetic resonance angiography were included in this analysis (N=1034). A global arterial Z-score, called the brain arterial remodeling (BAR) score, was obtained by averaging the measured diameters within each individual. Individuals with a BAR score -2 and 2 SDs had the largest diameters. All vascular events were recorded prospectively after the brain magnetic resonance imaging. Spline curves and incidence rates were used to test our hypothesis. The association of the BAR score with death (P=0.001), vascular death (P=0.02), any vascular event (P=0.05), and myocardial infarction (P=0.10) was U-shaped except for ischemic stroke (P=0.74). Consequently, incidence rates for death, vascular death, myocardial infarction, and any vascular event were higher in individuals with the largest diameters, whereas individuals with the smallest diameters had a higher incidence of death, vascular death, any vascular event, and ischemic stroke compared with individuals with average diameters. The risk of death, vascular death, and any vascular event increased at both extremes of brain arterial diameters. The pathophysiology linking brain arterial remodeling to systemic vascular events needs further research. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  2. High temporal discounters overvalue immediate rewards rather than undervalue future rewards: an event-related brain potential study.

    Science.gov (United States)

    Cherniawsky, Avital S; Holroyd, Clay B

    2013-03-01

    Impulsivity is characterized in part by heightened sensitivity to immediate relative to future rewards. Although previous research has suggested that "high discounters" in intertemporal choice tasks tend to prefer immediate over future rewards because they devalue the latter, it remains possible that they instead overvalue immediate rewards. To investigate this question, we recorded the reward positivity, a component of the event-related brain potential (ERP) associated with reward processing, with participants engaged in a task in which they received both immediate and future rewards and nonrewards. The participants also completed a temporal discounting task without ERP recording. We found that immediate but not future rewards elicited the reward positivity. High discounters also produced larger reward positivities to immediate rewards than did low discounters, indicating that high discounters relatively overvalued immediate rewards. These findings suggest that high discounters may be more motivated than low discounters to work for monetary rewards, irrespective of the time of arrival of the incentives.

  3. Attentional Mechanisms in Sports via Brain-Electrical Event-Related Potentials

    Science.gov (United States)

    Hack, Johannes; Memmert, Daniel; Rup, Andre

    2009-01-01

    In this study, we examined attention processes in complex, sport-specific decision-making tasks without interdependencies from anticipation. Psychophysiological and performance data recorded from advanced and intermediate level basketball referees were compared. Event-related potentials obtained while judging game situations in foul recognition…

  4. Enhanced Brain Responses to Pain-Related Words in Chronic Back Pain Patients and Their Modulation by Current Pain.

    Science.gov (United States)

    Ritter, Alexander; Franz, Marcel; Puta, Christian; Dietrich, Caroline; Miltner, Wolfgang H R; Weiss, Thomas

    2016-08-10

    Previous functional magnetic resonance imaging (fMRI) studies in healthy controls (HC) and pain-free migraine patients found activations to pain-related words in brain regions known to be activated while subjects experience pain. The aim of the present study was to identify neural activations induced by pain-related words in a sample of chronic back pain (CBP) patients experiencing current chronic pain compared to HC. In particular, we were interested in how current pain influences brain activations induced by pain-related adjectives. Subjects viewed pain-related, negative, positive, and neutral words; subjects were asked to generate mental images related to these words during fMRI scanning. Brain activation was compared between CBP patients and HC in response to the different word categories and examined in relation to current pain in CBP patients. Pain-related words vs. neutral words activated a network of brain regions including cingulate cortex and insula in subjects and patients. There was stronger activation in medial and dorsolateral prefrontal cortex (DLPFC) and anterior midcingulate cortex in CPB patients than in HC. The magnitude of activation for pain-related vs. negative words showed a negative linear relationship to CBP patients' current pain. Our findings confirm earlier observations showing that pain-related words activate brain networks similar to noxious stimulation. Importantly, CBP patients show even stronger activation of these structures while merely processing pain-related words. Current pain directly influences on this activation.

  5. A novel mode-locking technique

    International Nuclear Information System (INIS)

    Chen Shaoh; Chen Youming; Chen Taolue; Si Xiangdong; Yang Yi; Deng Ximing

    1993-01-01

    A novel mode-locked Nd:YAG oscillator has been developed by using an ultrafast photoconductive feedback controlled loop, and mode-locked pulses with a duration of 100ps have been obtained. The energy instability of the pulse trains is ±5%. In this type of mode-locking technology, a type of deep-level doped GaAs (Cr-doped) photoconductive switch, which has a fast response in time and is free of avalance process, is used to drive a Pockels' cell to realize mode-locking. The dark resistance of this type of photoconductive switch is 6 orders of magnitude higher than that of the intrinsic single-crystal silicon, and it can reach a level as high as 10 9 ohms. Consequently, it is able to withstand longterm operation at several thousand DC volts. By means of the photoconductive ohmic switch characteristics, the authors have designed a positive feedback control network which has a very fast response time, and can couple a voltage of up to a thousand volts. Using this unit in a Nd:YAG laser, they have successfully realized a very stable mode-locked pulse train with pulse width shorter than 100 ps. The operation principle, and the results of the preliminary experiments are presented here. 1 ref., 3 figs

  6. Event-related potentials, cognition, and behavior: a biological approach.

    Science.gov (United States)

    Kotchoubey, Boris

    2006-01-01

    The prevailing cognitive-psychological accounts of event-related brain potentials (ERPs) assume that ERP components manifest information processing operations leading from stimulus to response. Since this view encounters numerous difficulties already analyzed in previous studies, an alternative view is presented here that regards cortical control of behavior as a repetitive sensorimotor cycle consisting of two phases: (i) feedforward anticipation and (ii) feedback cortical performance. This view allows us to interpret in an integrative manner numerous data obtained from very different domains of ERP studies: from biophysics of ERP waves to their relationship to the processing of language, in which verbal behavior is viewed as likewise controlled by the same two basic control processes: feedforward (hypothesis building) and feedback (hypothesis checking). The proposed approach is intentionally simplified, explaining numerous effects on the basis of few assumptions and relating several levels of analysis: neurophysiology, macroelectrical processes (i.e. ERPs), cognition and behavior. It can, therefore, be regarded as a first approximation to a general theory of ERPs.

  7. Differential effects of face-realism and emotion on event-related brain potentials and their implications for the uncanny valley theory

    Science.gov (United States)

    Schindler, Sebastian; Zell, Eduard; Botsch, Mario; Kissler, Johanna

    2017-03-01

    Cartoon characters are omnipresent in popular media. While few studies have scientifically investigated their processing, in computer graphics, efforts are made to increase realism. Yet, close approximations of reality have been suggested to evoke sometimes a feeling of eeriness, the “uncanny valley” effect. Here, we used high-density electroencephalography to investigate brain responses to professionally stylized happy, angry, and neutral character faces. We employed six face-stylization levels varying from abstract to realistic and investigated the N170, early posterior negativity (EPN), and late positive potential (LPP) event-related components. The face-specific N170 showed a u-shaped modulation, with stronger reactions towards both most abstract and most realistic compared to medium-stylized faces. For abstract faces, N170 was generated more occipitally than for real faces, implying stronger reliance on structural processing. Although emotional faces elicited highest amplitudes on both N170 and EPN, on the N170 realism and expression interacted. Finally, LPP increased linearly with face realism, reflecting activity increase in visual and parietal cortex for more realistic faces. Results reveal differential effects of face stylization on distinct face processing stages and suggest a perceptual basis to the uncanny valley hypothesis. They are discussed in relation to face perception, media design, and computer graphics.

  8. Differential effects of face-realism and emotion on event-related brain potentials and their implications for the uncanny valley theory.

    Science.gov (United States)

    Schindler, Sebastian; Zell, Eduard; Botsch, Mario; Kissler, Johanna

    2017-03-23

    Cartoon characters are omnipresent in popular media. While few studies have scientifically investigated their processing, in computer graphics, efforts are made to increase realism. Yet, close approximations of reality have been suggested to evoke sometimes a feeling of eeriness, the "uncanny valley" effect. Here, we used high-density electroencephalography to investigate brain responses to professionally stylized happy, angry, and neutral character faces. We employed six face-stylization levels varying from abstract to realistic and investigated the N170, early posterior negativity (EPN), and late positive potential (LPP) event-related components. The face-specific N170 showed a u-shaped modulation, with stronger reactions towards both most abstract and most realistic compared to medium-stylized faces. For abstract faces, N170 was generated more occipitally than for real faces, implying stronger reliance on structural processing. Although emotional faces elicited highest amplitudes on both N170 and EPN, on the N170 realism and expression interacted. Finally, LPP increased linearly with face realism, reflecting activity increase in visual and parietal cortex for more realistic faces. Results reveal differential effects of face stylization on distinct face processing stages and suggest a perceptual basis to the uncanny valley hypothesis. They are discussed in relation to face perception, media design, and computer graphics.

  9. Sensation seeking predicts brain responses in the old-new task: converging multimodal neuroimaging evidence.

    Science.gov (United States)

    Lawson, Adam L; Liu, Xun; Joseph, Jane; Vagnini, Victoria L; Kelly, Thomas H; Jiang, Yang

    2012-06-01

    Novel images and message content enhance visual attention and memory for high sensation seekers, but the neural mechanisms associated with this effect are unclear. To investigate the individual differences in brain responses to new and old (studied) visual stimuli, we utilized event-related potentials (ERP) and functional Magnetic Resonance Imaging (fMRI) measures to examine brain reactivity among high and low sensation seekers during a classic old-new memory recognition task. Twenty low and 20 high sensation seekers completed separate, but parallel, ERP and fMRI sessions. For each session, participants initially studied drawings of common images, and then performed an old-new recognition task during scanning. High sensation seekers showed greater ERP responses to new objects at the frontal N2 ERP component, compared to low sensation seekers. The ERP Novelty-N2 responses were correlated with fMRI responses in the orbitofrontal gyrus. Sensation seeking status also modulated the FN400 ERP component indexing familiarity and conceptual learning, along with fMRI responses in the caudate nucleus, which correlated with FN400 activity. No group differences were found in the late ERP positive components indexing classic old-new amplitude effects. Our combined ERP and fMRI results suggest that sensation-seeking personality affects the early brain responses to visual processing, but not the later stage of memory recognition. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Brain responses in 4-month-old infants are already language specific.

    Science.gov (United States)

    Friederici, Angela D; Friedrich, Manuela; Christophe, Anne

    2007-07-17

    Language is the most important faculty that distinguishes humans from other animals. Infants learn their native language fast and effortlessly during the first years of life, as a function of the linguistic input in their environment. Behavioral studies reported the discrimination of melodic contours [1] and stress patterns [2, 3] in 1-4-month-olds. Behavioral [4, 5] and brain measures [6-8] have shown language-independent discrimination of phonetic contrasts at that age. Language-specific discrimination, however, has been reported for phonetic contrasts only for 6-12-month-olds [9-12]. Here we demonstrate language-specific discrimination of stress patterns in 4-month-old German and French infants by using electrophysiological brain measures. We compare the processing of disyllabic words differing in their rhythmic structure, mimicking German words being stressed on the first syllable, e.g., pápa/daddy[13], and French ones being stressed on the second syllable, e.g., papá/daddy. Event-related brain potentials reveal that experience with German and French differentially affects the brain responses of 4-month-old infants, with each language group displaying a processing advantage for the rhythmic structure typical in its native language. These data indicate language-specific neural representations of word forms in the infant brain as early as 4 months of age.

  11. Globalizing carbon lock-in

    International Nuclear Information System (INIS)

    Unruh, Gregory C.; Carrillo-Hermosilla, Javier

    2006-01-01

    This paper extends the arguments surrounding carbon lock-in elaborated in Unruh (Energy Policy 28 (2000) 817; 30 (2002) 317) to countries currently undergoing industrialization. It argues that, for numerous reasons, industrializing countries are unlikely to leapfrog carbon intensive energy development. On the contrary, carbon lock-in may be globalizing and could further constrain climate change mitigation options. It is then argued that many policy recommendations ignore carbon lock-in, possibly limiting their potential for successful implementation. The paper then discusses four policy approaches that appear to have advantages given lock-in conditions. It is recognized, however, that relative ease of implementation does not necessarily equate with superiority. Instead, it is merely a path dependent outcome of past development decisions. Pursuing policies on the basis of relative implementation ease may help address the issue of climate change, but could also result in sub-optimal outcomes along other dimensions of sustainable development

  12. LOCKS AND KEYS SERVICE

    CERN Multimedia

    Locks and Keys Service

    2002-01-01

    The Locks and Keys service (ST/FM) will move from building 55 to building 570 from the 2nd August to the 9th August 2002 included. During this period the service will be closed. Only in case of extreme urgency please call the 164550. Starting from Monday, 12th August, the Locks and Keys Service will continue to follow the activities related to office keys (keys and locks) and will provide the keys for furniture. The service is open from 8h30 to 12h00 and from 13h00 to 17h30. We remind you that your divisional correspondents can help you in the execution of the procedures. We thank you for your comprehension and we remain at your service to help you in solving all the matters related to keys for offices and furniture. Locks and Keys Service - ST Division - FM Group

  13. 49 CFR 236.761 - Locking, electric.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locking, electric. 236.761 Section 236.761 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Locking, electric. The combination of one or more electric locks and controlling circuits by means of...

  14. 49 CFR 236.105 - Electric lock.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Electric lock. 236.105 Section 236.105 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION...: All Systems Inspections and Tests; All Systems § 236.105 Electric lock. Electric lock, except forced...

  15. The Recording and Quantification of Event-Related Potentials: II. Signal Processing and Analysis

    Directory of Open Access Journals (Sweden)

    Paniz Tavakoli

    2015-06-01

    Full Text Available Event-related potentials are an informative method for measuring the extent of information processing in the brain. The voltage deflections in an ERP waveform reflect the processing of sensory information as well as higher-level processing that involves selective attention, memory, semantic comprehension, and other types of cognitive activity. ERPs provide a non-invasive method of studying, with exceptional temporal resolution, cognitive processes in the human brain. ERPs are extracted from scalp-recorded electroencephalography by a series of signal processing steps. The present tutorial will highlight several of the analysis techniques required to obtain event-related potentials. Some methodological issues that may be encountered will also be discussed.

  16. The functional organization of trial-related activity in lexical processing after early left hemispheric brain lesions: An event-related fMRI study.

    Science.gov (United States)

    Fair, Damien A; Choi, Alexander H; Dosenbach, Yannic B L; Coalson, Rebecca S; Miezin, Francis M; Petersen, Steven E; Schlaggar, Bradley L

    2010-08-01

    Children with congenital left hemisphere damage due to perinatal stroke are capable of acquiring relatively normal language functions despite experiencing a cortical insult that in adults often leads to devastating lifetime disabilities. Although this observed phenomenon is accepted, its neurobiological mechanisms are not well characterized. In this paper we examined the functional neuroanatomy of lexical processing in 13 children/adolescents with perinatal left hemispheric damage. In contrast to many previous perinatal infarct fMRI studies, we used an event-related design, which allowed us to isolate trial-related activity and examine correct and error trials separately. Using both group and single subject analysis techniques we attempt to address several methodological factors that may contribute to some discrepancies in the perinatal lesion literature. These methodological factors include making direct statistical comparisons, using common stereotactic space, using both single subject and group analyses, and accounting for performance differences. Our group analysis, investigating correct trial-related activity (separately from error trials), showed very few statistical differences in the non-involved right hemisphere between patients and performance matched controls. The single subject analysis revealed atypical regional activation patterns in several patients; however, the location of these regions identified in individual patients often varied across subjects. These results are consistent with the idea that alternative functional organization of trial-related activity after left hemisphere lesions is in large part unique to the individual. In addition, reported differences between results obtained with event-related designs and blocked designs may suggest diverging organizing principles for sustained and trial-related activity after early childhood brain injuries. 2009 Elsevier Inc. All rights reserved.

  17. Aesthetic appreciation: event-related field and time-frequency analyses.

    Science.gov (United States)

    Munar, Enric; Nadal, Marcos; Castellanos, Nazareth P; Flexas, Albert; Maestú, Fernando; Mirasso, Claudio; Cela-Conde, Camilo J

    2011-01-01

    Improvements in neuroimaging methods have afforded significant advances in our knowledge of the cognitive and neural foundations of aesthetic appreciation. We used magnetoencephalography (MEG) to register brain activity while participants decided about the beauty of visual stimuli. The data were analyzed with event-related field (ERF) and Time-Frequency (TF) procedures. ERFs revealed no significant differences between brain activity related with stimuli rated as "beautiful" and "not beautiful." TF analysis showed clear differences between both conditions 400 ms after stimulus onset. Oscillatory power was greater for stimuli rated as "beautiful" than those regarded as "not beautiful" in the four frequency bands (theta, alpha, beta, and gamma). These results are interpreted in the frame of synchronization studies.

  18. Brain responses to repeated visual experience among low and high sensation seekers: role of boredom susceptibility

    OpenAIRE

    Jiang, Yang; Lianekhammy, Joann; Lawson, Adam; Guo, Chunyan; ynam, Donald; Joseph, Jane E.; Gold, Brian T.; Kelly, Thomas H.

    2009-01-01

    To better understand individual differences in sensation seeking and its components, including boredom susceptibility and experience seeking, we examined brain responses of high and low sensation seekers during repeated visual experience. Individuals scoring in the top and bottom quartiles from a college-aged population on the Brief Sensation-Seeking Scale (BSSS) participated in an event-related potentials (ERPs) experiment. Line drawings of common objects were randomly intermixed and present...

  19. Fuel not fun: Reinterpreting attenuated brain responses to reward in obesity.

    Science.gov (United States)

    Kroemer, Nils B; Small, Dana M

    2016-08-01

    There is a well-established literature linking obesity to altered dopamine signaling and brain response to food-related stimuli. Neuroimaging studies frequently report enhanced responses in dopaminergic regions during food anticipation and decreased responses during reward receipt. This has been interpreted as reflecting anticipatory "reward surfeit", and consummatory "reward deficiency". In particular, attenuated response in the dorsal striatum to primary food rewards is proposed to reflect anhedonia, which leads to overeating in an attempt to compensate for the reward deficit. In this paper, we propose an alternative view. We consider brain response to food-related stimuli in a reinforcement-learning framework, which can be employed to separate the contributions of reward sensitivity and reward-related learning that are typically entangled in the brain response to reward. Consequently, we posit that decreased striatal responses to milkshake receipt reflect reduced reward-related learning rather than reward deficiency or anhedonia because reduced reward sensitivity would translate uniformly into reduced anticipatory and consummatory responses to reward. By re-conceptualizing reward deficiency as a shift in learning about subjective value of rewards, we attempt to reconcile neuroimaging findings with the putative role of dopamine in effort, energy expenditure and exploration and suggest that attenuated brain responses to energy dense foods reflect the "fuel", not the fun entailed by the reward. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Fronto-limbic dysfunction in response to facial emotion in borderline personality disorder: an event-related fMRI study.

    Science.gov (United States)

    Minzenberg, Michael J; Fan, Jin; New, Antonia S; Tang, Cheuk Y; Siever, Larry J

    2007-08-15

    Clinical hallmarks of borderline personality disorder (BPD) include social and emotional dysregulation. We tested a model of fronto-limbic dysfunction in facial emotion processing in BPD. Groups of 12 unmedicated adults with BPD by DSM-IV and 12 demographically-matched healthy controls (HC) viewed facial expressions (Conditions) of neutral emotion, fear and anger, and made gender discriminations during rapid event-related functional magnetic resonance imaging (fMRI). Analysis of variance of Region of Interest signal change revealed a statistically significant effect of the Group-by-Region-by-Condition interaction. This was due to the BPD group exhibiting a significantly larger magnitude of deactivation (relative to HC) in the bilateral rostral/subgenual anterior cingulate cortex (ACC) to fear and in the left ACC to fear minus neutral; and significantly greater activation in the right amygdala to fear minus neutral. There were no significant between-group differences in ROI signal change in response to anger. In voxel-wise analyses constrained within these ROIs, the BPD group exhibited significant changes in the fear minus neutral contrast, with relatively less activation in the bilateral rostral/subgenual ACC, and greater activation in the right amygdala. In the anger minus neutral contrast this pattern was reversed, with the BPD group showing greater activation in the bilateral rostral/subgenual ACC and less activation in the bilateral amygdala. We conclude that adults with BPD exhibit changes in fronto-limbic activity in the processing of fear stimuli, with exaggerated amygdala response and impaired emotion-modulation of ACC activity. The neural substrates underlying processing of anger may also be altered. These changes may represent an expression of the volumetric and serotonergic deficits observed in these brain areas in BPD.

  1. Sensory suppression of brain responses to self-generated sounds is observed with and without the perception of agency.

    Science.gov (United States)

    Timm, Jana; Schönwiesner, Marc; Schröger, Erich; SanMiguel, Iria

    2016-07-01

    Stimuli caused by our own movements are given special treatment in the brain. Self-generated sounds evoke a smaller brain response than externally generated ones. This attenuated response may reflect a predictive mechanism to differentiate the sensory consequences of one's own actions from other sensory input. It may also relate to the feeling of being the agent of the movement and its effects, but little is known about how sensory suppression of brain responses to self-generated sounds is related to judgments of agency. To address this question, we recorded event-related potentials in response to sounds initiated by button presses. In one condition, participants perceived agency over the production of the sounds, whereas in another condition, participants experience an illusory lack of agency caused by changes in the delay between actions and effects. We compared trials in which the timing of button press and sound was physically identical, but participants' agency judgment differed. Results show reduced amplitudes of the auditory N1 component in response to self-generated sounds irrespective of agency experience, whilst P2 effects correlate with the perception of agency. Our findings suggest that suppression of the auditory N1 component to self-generated sounds does not depend on adaptation to specific action-effect time delays, and does not determine agency judgments, however, the suppression of the P2 component might relate more directly to the experience of agency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Reward-related brain response and craving correlates of marijuana cue exposure: a preliminary study in treatment-seeking marijuana-dependent subjects.

    Science.gov (United States)

    Goldman, Marina; Szucs-Reed, Regina P; Jagannathan, Kanchana; Ehrman, Ronald N; Wang, Ze; Li, Yin; Suh, Jesse J; Kampman, Kyle; O'Brien, Charles P; Childress, Anna Rose; Franklin, Teresa R

    2013-01-01

    : Determining the brain substrates underlying the motivation to abuse addictive drugs is critical for understanding and treating addictive disorders. Laboratory neuroimaging studies have demonstrated differential activation of limbic and motivational circuitry (eg, amygdala, hippocampus, ventral striatum, insula, and orbitofrontal cortex) triggered by cocaine, heroin, nicotine, and alcohol cues. The literature on neural responses to marijuana cues is sparse. Thus, the goals of this study were to characterize the brain's response to marijuana cues, a major motivator underlying drug use and relapse, and determine whether these responses are linked to self-reported craving in a clinically relevant population of treatment-seeking marijuana-dependent subjects. : Marijuana craving was assessed in 12 marijuana-dependent subjects using the Marijuana Craving Questionnaire-Short Form. Subsequently, blood oxygen level dependent functional magnetic resonance imaging data were acquired during exposure to alternating 20-second blocks of marijuana-related versus matched nondrug visual cues. : Brain activation during marijuana cue exposure was significantly greater in the bilateral amygdala and the hippocampus. Significant positive correlations between craving scores and brain activation were found in the ventral striatum and the medial and lateral orbitofrontal cortex (P cues and craving and extends the current literature on marijuana cue reactivity. Furthermore, the correlative relationship between craving and brain activity in reward-related regions was observed in a clinically relevant sample (treatment-seeking marijuana-dependent subjects). Results are consistent with prior findings in cocaine, heroin, nicotine, and alcohol cue studies, indicating that the brain substrates of cue-triggered drug motivation are shared across abused substances.

  3. Applying Acoustical and Musicological Analysis to Detect Brain Responses to Realistic Music: A Case Study

    Directory of Open Access Journals (Sweden)

    Niels Trusbak Haumann

    2018-05-01

    Full Text Available Music information retrieval (MIR methods offer interesting possibilities for automatically identifying time points in music recordings that relate to specific brain responses. However, how the acoustical features and the novelty of the music structure affect the brain response is not yet clear. In the present study, we tested a new method for automatically identifying time points of brain responses based on MIR analysis. We utilized an existing database including brain recordings of 48 healthy listeners measured with electroencephalography (EEG and magnetoencephalography (MEG. While we succeeded in capturing brain responses related to acoustical changes in the modern tango piece Adios Nonino, we obtained less reliable brain responses with a metal rock piece and a modern symphony orchestra musical composition. However, brain responses might also relate to the novelty of the music structure. Hence, we added a manual musicological analysis of novelty in the musical structure to the computational acoustic analysis, obtaining strong brain responses even to the rock and modern pieces. Although no standardized method yet exists, these preliminary results suggest that analysis of novelty in music is an important aid to MIR analysis for investigating brain responses to realistic music.

  4. Auditory event-related responses to diphthongs in different attention conditions

    DEFF Research Database (Denmark)

    Morris, David Jackson; Steinmetzger, Kurt; Tøndering, John

    2016-01-01

    The modulation of auditory event-related potentials (ERP) by attention generally results in larger amplitudes when stimuli are attended. We measured the P1-N1-P2 acoustic change complex elicited with synthetic overt (second formant, F2 = 1000 Hz) and subtle (F2 = 100 Hz) diphthongs, while subjects...... (i) attended to the auditory stimuli, (ii) ignored the auditory stimuli and watched a film, and (iii) diverted their attention to a visual discrimination task. Responses elicited by diphthongs where F2 values rose and fell were found to be different and this precluded their combined analysis....... Multivariate analysis of ERP components from the rising F2 changes showed main effects of attention on P2 amplitude and latency, and N1-P2 amplitude. P2 amplitude decreased by 40% between the attend and ignore conditions, and by 60% between the attend and divert conditions. The effect of diphthong magnitude...

  5. Cognitive processing in non-communicative patients: what can event-related potentials tell us?

    Directory of Open Access Journals (Sweden)

    Zulay Rosario Lugo

    2016-11-01

    Full Text Available Event-related potentials (ERP have been proposed to improve the differential diagnosis of non-responsive patients. We investigated the potential of the P300 as a reliable marker of conscious processing in patients with locked-in syndrome (LIS. Eleven chronic LIS patients and ten healthy subjects (HS listened to a complex-tone auditory oddball paradigm, first in a passive condition (listen to the sounds and then in an active condition (counting the deviant tones. Seven out of nine HS displayed a P300 waveform in the passive condition and all in the active condition. HS showed statistically significant changes in peak and area amplitude between conditions. Three out of seven LIS patients showed the P3 waveform in the passive condition and 5 of 7 in the active condition. No changes in peak amplitude and only a significant difference at one electrode in area amplitude were observed in this group between conditions. We conclude that, in spite of keeping full consciousness and intact or nearly intact cortical functions, compared to HS, LIS patients present less reliable results when testing with ERP, specifically in the passive condition. We thus strongly recommend applying ERP paradigms in an active condition when evaluating consciousness in non-responsive patients.

  6. Robust tilt and lock mechanism for hopping actuator

    Energy Technology Data Exchange (ETDEWEB)

    Salton, Jonathan R.; Buerger, Stephen; Dullea, Kevin J.; Marron, Lisa C.; Salisbury, Curt Michael; Spletzer, Barry Louis

    2017-02-07

    A tilt and lock apparatus that includes a tilt servomechanism, a spiral torsion spring, a lock wheel, and a lock hook is described herein. The spiral torsion spring is mechanically coupled to the tilt servomechanism and the lock wheel (which includes an opening). When a shaft is positioned through the opening, rotation of the lock wheel is in unison with rotation of the shaft. An external surface of the lock wheel includes one or more grooves. The lock hook includes a head that engages and disengages the grooves. The lock wheel is stationary when the head engages one of the grooves and is rotatable when the head disengages the grooves. The head and the grooves are geometrically aligned when engaged to prevent creation of a force that acts to disengage the head responsive to an applied force acting on the shaft.

  7. Decoding the auditory brain with canonical component analysis.

    Science.gov (United States)

    de Cheveigné, Alain; Wong, Daniel D E; Di Liberto, Giovanni M; Hjortkjær, Jens; Slaney, Malcolm; Lalor, Edmund

    2018-05-15

    The relation between a stimulus and the evoked brain response can shed light on perceptual processes within the brain. Signals derived from this relation can also be harnessed to control external devices for Brain Computer Interface (BCI) applications. While the classic event-related potential (ERP) is appropriate for isolated stimuli, more sophisticated "decoding" strategies are needed to address continuous stimuli such as speech, music or environmental sounds. Here we describe an approach based on Canonical Correlation Analysis (CCA) that finds the optimal transform to apply to both the stimulus and the response to reveal correlations between the two. Compared to prior methods based on forward or backward models for stimulus-response mapping, CCA finds significantly higher correlation scores, thus providing increased sensitivity to relatively small effects, and supports classifier schemes that yield higher classification scores. CCA strips the brain response of variance unrelated to the stimulus, and the stimulus representation of variance that does not affect the response, and thus improves observations of the relation between stimulus and response. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Regional Brain Responses Are Biased Toward Infant Facial Expressions Compared to Adult Facial Expressions in Nulliparous Women.

    Science.gov (United States)

    Li, Bingbing; Cheng, Gang; Zhang, Dajun; Wei, Dongtao; Qiao, Lei; Wang, Xiangpeng; Che, Xianwei

    2016-01-01

    Recent neuroimaging studies suggest that neutral infant faces compared to neutral adult faces elicit greater activity in brain areas associated with face processing, attention, empathic response, reward, and movement. However, whether infant facial expressions evoke larger brain responses than adult facial expressions remains unclear. Here, we performed event-related functional magnetic resonance imaging in nulliparous women while they were presented with images of matched unfamiliar infant and adult facial expressions (happy, neutral, and uncomfortable/sad) in a pseudo-randomized order. We found that the bilateral fusiform and right lingual gyrus were overall more activated during the presentation of infant facial expressions compared to adult facial expressions. Uncomfortable infant faces compared to sad adult faces evoked greater activation in the bilateral fusiform gyrus, precentral gyrus, postcentral gyrus, posterior cingulate cortex-thalamus, and precuneus. Neutral infant faces activated larger brain responses in the left fusiform gyrus compared to neutral adult faces. Happy infant faces compared to happy adult faces elicited larger responses in areas of the brain associated with emotion and reward processing using a more liberal threshold of p facial expressions compared to adult facial expressions among nulliparous women, and this bias may be modulated by individual differences in Interest-In-Infants and perspective taking ability.

  9. Effects of hunger state on food-related brain responses across the lifespan

    NARCIS (Netherlands)

    Charbonnier, L

    2016-01-01

    Thesis aims The studies conducted in this thesis were part of the Full4Health project. The aims of the Full4Health project were to assess the differences in the brain responses to food presentation and food choice and how these responses are modulated by hunger and gut signals in lean and obese

  10. Altered Brain Response to Drinking Glucose and Fructose in Obese Adolescents.

    Science.gov (United States)

    Jastreboff, Ania M; Sinha, Rajita; Arora, Jagriti; Giannini, Cosimo; Kubat, Jessica; Malik, Saima; Van Name, Michelle A; Santoro, Nicola; Savoye, Mary; Duran, Elvira J; Pierpont, Bridget; Cline, Gary; Constable, R Todd; Sherwin, Robert S; Caprio, Sonia

    2016-07-01

    Increased sugar-sweetened beverage consumption has been linked to higher rates of obesity. Using functional MRI, we assessed brain perfusion responses to drinking two commonly consumed monosaccharides, glucose and fructose, in obese and lean adolescents. Marked differences were observed. In response to drinking glucose, obese adolescents exhibited decreased brain perfusion in brain regions involved in executive function (prefrontal cortex [PFC]) and increased perfusion in homeostatic appetite regions of the brain (hypothalamus). Conversely, in response to drinking glucose, lean adolescents demonstrated increased PFC brain perfusion and no change in perfusion in the hypothalamus. In addition, obese adolescents demonstrated attenuated suppression of serum acyl-ghrelin and increased circulating insulin level after glucose ingestion; furthermore, the change in acyl-ghrelin and insulin levels after both glucose and fructose ingestion was associated with increased hypothalamic, thalamic, and hippocampal blood flow in obese relative to lean adolescents. Additionally, in all subjects there was greater perfusion in the ventral striatum with fructose relative to glucose ingestion. Finally, reduced connectivity between executive, homeostatic, and hedonic brain regions was observed in obese adolescents. These data demonstrate that obese adolescents have impaired prefrontal executive control responses to drinking glucose and fructose, while their homeostatic and hedonic responses appear to be heightened. Thus, obesity-related brain adaptations to glucose and fructose consumption in obese adolescents may contribute to excessive consumption of glucose and fructose, thereby promoting further weight gain. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  11. Evidence of a visual-to-auditory cross-modal sensory gating phenomenon as reflected by the human P50 event-related brain potential modulation.

    Science.gov (United States)

    Lebib, Riadh; Papo, David; de Bode, Stella; Baudonnière, Pierre Marie

    2003-05-08

    We investigated the existence of a cross-modal sensory gating reflected by the modulation of an early electrophysiological index, the P50 component. We analyzed event-related brain potentials elicited by audiovisual speech stimuli manipulated along two dimensions: congruency and discriminability. The results showed that the P50 was attenuated when visual and auditory speech information were redundant (i.e. congruent), in comparison with this same event-related potential component elicited with discrepant audiovisual dubbing. When hard to discriminate, however, bimodal incongruent speech stimuli elicited a similar pattern of P50 attenuation. We concluded to the existence of a visual-to-auditory cross-modal sensory gating phenomenon. These results corroborate previous findings revealing a very early audiovisual interaction during speech perception. Finally, we postulated that the sensory gating system included a cross-modal dimension.

  12. Semantic, syntactic, and phonological processing of written words in adult developmental dyslexic readers: an event-related brain potential study

    Directory of Open Access Journals (Sweden)

    Johannes Sönke

    2007-07-01

    Full Text Available Abstract Background The present study used event-related brain potentials to investigate semantic, phonological and syntactic processes in adult German dyslexic and normal readers in a word reading task. Pairs of German words were presented one word at a time. Subjects had to perform a semantic judgment task (house – window; are they semantically related?, a rhyme judgment task (house – mouse; do they rhyme? and a gender judgment task (das – Haus [the – house]; is the gender correct? [in German, house has a neutral gender: das Haus]. Results Normal readers responded faster compared to dyslexic readers in all three tasks. Onset latencies of the N400 component were delayed in dyslexic readers in the rhyme judgment and in the gender judgment task, but not in the semantic judgment task. N400 and the anterior negativity peak amplitudes did not differ between the two groups. However, the N400 persisted longer in the dyslexic group in the rhyme judgment and in the semantic judgment tasks. Conclusion These findings indicate that dyslexics are phonologically impaired (delayed N400 in the rhyme judgment task but that they also have difficulties in other, non-phonological aspects of reading (longer response times, longer persistence of the N400. Specifically, semantic and syntactic integration seem to require more effort for dyslexic readers and take longer irrespective of the reading task that has to be performed.

  13. Mindfulness meditation-related pain relief: Evidence for unique brain mechanisms in the regulation of pain

    Science.gov (United States)

    Zeidan, F.; Grant, J.A.; Brown, C.A.; McHaffie, J.G.; Coghill, R.C.

    2013-01-01

    The cognitive modulation of pain is influenced by a number of factors ranging from attention, beliefs, conditioning, expectations, mood, and the regulation of emotional responses to noxious sensory events. Recently, mindfulness meditation has been found attenuate pain through some of these mechanisms including enhanced cognitive and emotional control, as well as altering the contextual evaluation of sensory events. This review discusses the brain mechanisms involved in mindfulness meditation-related pain relief across different meditative techniques, expertise and training levels, experimental procedures, and neuroimaging methodologies. Converging lines of neuroimaging evidence reveal that mindfulness meditation-related pain relief is associated with unique appraisal cognitive processes depending on expertise level and meditation tradition. Moreover, it is postulated that mindfulness meditation-related pain relief may share a common final pathway with other cognitive techniques in the modulation of pain. PMID:22487846

  14. Separating acoustic deviance from novelty during the first year of life: a review of event-related potential evidence

    Science.gov (United States)

    Kushnerenko, Elena V.; Van den Bergh, Bea R. H.; Winkler, István

    2013-01-01

    Orienting to salient events in the environment is a first step in the development of attention in young infants. Electrophysiological studies have indicated that in newborns and young infants, sounds with widely distributed spectral energy, such as noise and various environmental sounds, as well as sounds widely deviating from their context elicit an event-related potential (ERP) similar to the adult P3a response. We discuss how the maturation of event-related potentials parallels the process of the development of passive auditory attention during the first year of life. Behavioral studies have indicated that the neonatal orientation to high-energy stimuli gradually changes to attending to genuine novelty and other significant events by approximately 9 months of age. In accordance with these changes, in newborns, the ERP response to large acoustic deviance is dramatically larger than that to small and moderate deviations. This ERP difference, however, rapidly decreases within first months of life and the differentiation of the ERP response to genuine novelty from that to spectrally rich but repeatedly presented sounds commences during the same period. The relative decrease of the response amplitudes elicited by high-energy stimuli may reflect development of an inhibitory brain network suppressing the processing of uninformative stimuli. Based on data obtained from healthy full-term and pre-term infants as well as from infants at risk for various developmental problems, we suggest that the electrophysiological indices of the processing of acoustic and contextual deviance may be indicative of the functioning of auditory attention, a crucial prerequisite of learning and language development. PMID:24046757

  15. ERP Reliability Analysis (ERA) Toolbox: An open-source toolbox for analyzing the reliability of event-related brain potentials.

    Science.gov (United States)

    Clayson, Peter E; Miller, Gregory A

    2017-01-01

    Generalizability theory (G theory) provides a flexible, multifaceted approach to estimating score reliability. G theory's approach to estimating score reliability has important advantages over classical test theory that are relevant for research using event-related brain potentials (ERPs). For example, G theory does not require parallel forms (i.e., equal means, variances, and covariances), can handle unbalanced designs, and provides a single reliability estimate for designs with multiple sources of error. This monograph provides a detailed description of the conceptual framework of G theory using examples relevant to ERP researchers, presents the algorithms needed to estimate ERP score reliability, and provides a detailed walkthrough of newly-developed software, the ERP Reliability Analysis (ERA) Toolbox, that calculates score reliability using G theory. The ERA Toolbox is open-source, Matlab software that uses G theory to estimate the contribution of the number of trials retained for averaging, group, and/or event types on ERP score reliability. The toolbox facilitates the rigorous evaluation of psychometric properties of ERP scores recommended elsewhere in this special issue. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Visual short term memory related brain activity predicts mathematical abilities.

    Science.gov (United States)

    Boulet-Craig, Aubrée; Robaey, Philippe; Lacourse, Karine; Jerbi, Karim; Oswald, Victor; Krajinovic, Maja; Laverdière, Caroline; Sinnett, Daniel; Jolicoeur, Pierre; Lippé, Sarah

    2017-07-01

    Previous research suggests visual short-term memory (VSTM) capacity and mathematical abilities are significantly related. Moreover, both processes activate similar brain regions within the parietal cortex, in particular, the intraparietal sulcus; however, it is still unclear whether the neuronal underpinnings of VSTM directly correlate with mathematical operation and reasoning abilities. The main objective was to investigate the association between parieto-occipital brain activity during the retention period of a VSTM task and performance in mathematics. The authors measured mathematical abilities and VSTM capacity as well as brain activity during memory maintenance using magnetoencephalography (MEG) in 19 healthy adult participants. Event-related magnetic fields (ERFs) were computed on the MEG data. Linear regressions were used to estimate the strength of the relation between VSTM related brain activity and mathematical abilities. The amplitude of parieto-occipital cerebral activity during the retention of visual information was related to performance in 2 standardized mathematical tasks: mathematical reasoning and calculation fluency. The findings show that brain activity during retention period of a VSTM task is associated with mathematical abilities. Contributions of VSTM processes to numerical cognition should be considered in cognitive interventions. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Can echoic memory store two traces simultaneously? A study of event-related brain potentials.

    Science.gov (United States)

    Winkler, I; Paavilainen, P; Näätänen, R

    1992-05-01

    The mismatch negativity, a component of the event-related brain potential elicited by infrequent deviants in sequences of auditory stimuli, is presumably generated by an automatic mismatch process in a mechanism that compares the current stimulus to the trace of the previous one. The present study addressed the possible simultaneous existence of two such traces. Two equiprobable (45% each) frequent stimuli ("standards"), one of 600 Hz and the other of 700 Hz, were presented together with an infrequent (10%), "deviant" stimulus which was of different frequency in different blocks. These deviants elicited a mismatch negativity, though a smaller one than that obtained in corresponding blocks with only one standard stimulus. Two aspects of the present results from the blocks with two standard stimuli implicate two parallel stimulus traces in these blocks: 1) deviants elicited a mismatch negativity (MMN) of approximately the same amplitude when preceded by sequences of four identical standards as when preceded by sequences of four stimuli containing both standards; 2) in contrast to the one-standard condition, the magnitude of stimulus deviance did not affect the MMN component elicited by the different deviants.

  18. Sex differences in the response to emotional distraction: an event-related fMRI investigation.

    Science.gov (United States)

    Iordan, Alexandru D; Dolcos, Sanda; Denkova, Ekaterina; Dolcos, Florin

    2013-03-01

    Evidence has suggested that women have greater emotional reactivity than men. However, it is unclear whether these differences in basic emotional responses are also associated with differences in emotional distractibility, and what the neural mechanisms that implement differences in emotional distractibility between women and men are. Functional MRI recording was used in conjunction with a working memory (WM) task, with emotional distraction (angry faces) presented during the interval between the memoranda and the probes. First, we found an increased impact of emotional distraction among women in trials associated with high-confidence responses, in the context of overall similar WM performance in women and men. Second, women showed increased sensitivity to emotional distraction in brain areas associated with "hot" emotional processing, whereas men showed increased sensitivity in areas associated with "cold" executive processing, in the context of overall similar patterns of response to emotional distraction in women and men. Third, a sex-related dorsal-ventral hemispheric dissociation emerged in the lateral PFC related to coping with emotional distraction, with women showing a positive correlation with WM performance in left ventral PFC, and men showing similar effects in the right dorsal PFC. In addition to extending to men results that have previously been reported in women, by showing that both sexes engage mechanisms that are similar overall in response to emotional distraction, the present study identifies sex differences in both the response to and coping with emotional distraction. These results have implications for understanding sex differences in the susceptibility to affective disorders, in which basic emotional responses, emotional distractibility, and coping abilities are altered.

  19. Hemispheric Lateralization of Event-Related Brain Potentials in Different Processing Phases during Unimanual Finger Movements

    Directory of Open Access Journals (Sweden)

    Yi-Wen Li

    2008-04-01

    Full Text Available Previous functional MRI and brain electrophysiology studies have studied the left-right differences during the tapping tasks and found that the activation of left hemisphere was more significant than that of right hemisphere. In this study, we wanted to delineate this lateralization phenomenon not only in the execution phase but also in other processing phases, such as early visual, pre-executive and post-executive phases. We have designed a finger-tapping task to delineate the left-right differences of event related potentials (ERPs to right finger movement in sixteen right handed college students. The mean amplitudes of ERPs were analyzed to examine the left-right dominance of cortical activity in the phase of early visual process (75-120ms, pre-execution (175-260ms, execution (310-420ms and post-execution (420-620ms. In the execution phase, ERPs at the left electrodes were significantly more pronounced than those at the right electrodes (F3 > F4, C3 > C4, P3 > P4, O1 > O2 under the situation without comparing the central electrodes (Fz, Cz, Pz, and Oz. No difference was found between left and right electrodes in other three phases except the C3 electrode still showed more dominant than C4 in the pre- and post-execution phase. In conclusion, the phenomenon of brain lateralization occur major in the execution phase. The central area also showed the lateralization in the pre- and post-execution to demonstrate its unique lateralized contributions to unilateral simple finger movements.

  20. An event-related brain potential correlate of visual short-term memory

    NARCIS (Netherlands)

    Klaver, Peter; Talsma, D.; Wijers, Albertus; Heinze, Hans-Jochen; Mulder, Gijsbertus

    1999-01-01

    EVENT-RELATED potentials (ERPs) were recorded as 12 subjects performed a delayed matching to sample task. We presented two bilateral abstract shapes and cued spatially which had to be memorized for a subsequent matching task: left, right or both. During memorization a posterior slow negative ERP

  1. Even More Brain-Powered Science: Teaching and Learning with Discrepant Events. Brain-Powered Science Series

    Science.gov (United States)

    O'Brien, Thomas

    2011-01-01

    How can water and a penny demonstrate the power of mathematics and molecular theory? Do spelling and punctuation really matter to the human brain? The third of Thomas O'Brien's books designed for 5-12 grade science teachers, "Even More Brain-Powered Science" uses the questions above and 11 other inquiry-oriented discrepant events--experiments or…

  2. Event-related potential effects of superior action anticipation in professional badminton players.

    Science.gov (United States)

    Jin, Hua; Xu, Guiping; Zhang, John X; Gao, Hongwei; Ye, Zuoer; Wang, Pin; Lin, Huiyan; Mo, Lei; Lin, Chong-De

    2011-04-04

    The ability to predict the trajectory of a ball based on the opponent's body kinematics has been shown to be critical to high-performing athletes in many sports. However, little is known about the neural correlates underlying such superior ability in action anticipation. The present event-related potential study compared brain responses from professional badminton players and non-player controls when they watched video clips of badminton games and predicted a ball's landing position. Replicating literature findings, the players made significantly more accurate judgments than the controls and showed better action anticipation. Correspondingly, they showed enlarged amplitudes of two ERP components, a P300 peaking around 350ms post-stimulus with a parietal scalp distribution and a P2 peaking around 250ms with a posterior-occipital distribution. The P300 effect was interpreted to reflect primed access and/or directing of attention to game-related memory representations in the players facilitating their online judgment of related actions. The P2 effect was suggested to reflect some generic learning effects. The results identify clear neural responses that differentiate between different levels of action anticipation associated with sports expertise. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Neural Synchrony during Response Production and Inhibition

    Science.gov (United States)

    Müller, Viktor; Anokhin, Andrey P.

    2012-01-01

    Inhibition of irrelevant information (conflict monitoring) and/or of prepotent actions is an essential component of adaptive self-organized behavior. Neural dynamics underlying these functions has been studied in humans using event-related brain potentials (ERPs) elicited in Go/NoGo tasks that require a speeded motor response to the Go stimuli and withholding a prepotent response when a NoGo stimulus is presented. However, averaged ERP waveforms provide only limited information about the neuronal mechanisms underlying stimulus processing, motor preparation, and response production or inhibition. In this study, we examine the cortical representation of conflict monitoring and response inhibition using time-frequency analysis of electroencephalographic (EEG) recordings during continuous performance Go/NoGo task in 50 young adult females. We hypothesized that response inhibition would be associated with a transient boost in both temporal and spatial synchronization of prefrontal cortical activity, consistent with the role of the anterior cingulate and lateral prefrontal cortices in cognitive control. Overall, phase synchronization across trials measured by Phase Locking Index and phase synchronization between electrode sites measured by Phase Coherence were the highest in the Go and NoGo conditions, intermediate in the Warning condition, and the lowest under Neutral condition. The NoGo condition was characterized by significantly higher fronto-central synchronization in the 300–600 ms window, whereas in the Go condition, delta- and theta-band synchronization was higher in centro-parietal regions in the first 300 ms after the stimulus onset. The present findings suggest that response production and inhibition is supported by dynamic functional networks characterized by distinct patterns of temporal and spatial synchronization of brain oscillations. PMID:22745691

  4. Neural synchrony during response production and inhibition.

    Directory of Open Access Journals (Sweden)

    Viktor Müller

    Full Text Available Inhibition of irrelevant information (conflict monitoring and/or of prepotent actions is an essential component of adaptive self-organized behavior. Neural dynamics underlying these functions has been studied in humans using event-related brain potentials (ERPs elicited in Go/NoGo tasks that require a speeded motor response to the Go stimuli and withholding a prepotent response when a NoGo stimulus is presented. However, averaged ERP waveforms provide only limited information about the neuronal mechanisms underlying stimulus processing, motor preparation, and response production or inhibition. In this study, we examine the cortical representation of conflict monitoring and response inhibition using time-frequency analysis of electroencephalographic (EEG recordings during continuous performance Go/NoGo task in 50 young adult females. We hypothesized that response inhibition would be associated with a transient boost in both temporal and spatial synchronization of prefrontal cortical activity, consistent with the role of the anterior cingulate and lateral prefrontal cortices in cognitive control. Overall, phase synchronization across trials measured by Phase Locking Index and phase synchronization between electrode sites measured by Phase Coherence were the highest in the Go and NoGo conditions, intermediate in the Warning condition, and the lowest under Neutral condition. The NoGo condition was characterized by significantly higher fronto-central synchronization in the 300-600 ms window, whereas in the Go condition, delta- and theta-band synchronization was higher in centro-parietal regions in the first 300 ms after the stimulus onset. The present findings suggest that response production and inhibition is supported by dynamic functional networks characterized by distinct patterns of temporal and spatial synchronization of brain oscillations.

  5. Pedophilic brain potential responses to adult erotic stimuli.

    Science.gov (United States)

    Knott, Verner; Impey, Danielle; Fisher, Derek; Delpero, Emily; Fedoroff, Paul

    2016-02-01

    Cognitive mechanisms associated with the relative lack of sexual interest in adults by pedophiles are poorly understood and may benefit from investigations examining how the brain processes adult erotic stimuli. The current study used event-related brain potentials (ERP) to investigate the time course of the explicit processing of erotic, emotional, and neutral pictures in 22 pedophilic patients and 22 healthy controls. Consistent with previous studies, early latency anterior ERP components were highly selective for erotic pictures. Although the ERPs elicited by emotional stimuli were similar in patients and controls, an early frontal positive (P2) component starting as early as 185 ms was significantly attenuated and slow to onset in pedophilia, and correlated with a clinical measure of cognitive distortions. Failure of rapid attentional capture by erotic stimuli suggests a relative reduction in early processing in pedophilic patients which may be associated with relatively diminished sexual interest in adults. Copyright © 2016. Published by Elsevier B.V.

  6. Shareholder Lock-In Contracts : Share Price and Trading Volume Effects at the Lock-In Expiry

    NARCIS (Netherlands)

    Angenandt, P.P.; Goergen, M.; Renneboog, L.D.R.

    2005-01-01

    This paper unveils the diversity in lock-in agreements of firms listed on the Nouveau Marche stock exchange in France.We give the main economic reasons why shareholders adopt lock-in agreements that are more stringent than legally required.We relate the abnormal returns and the abnormal volume at

  7. Decisions during Negatively-Framed Messages Yield Smaller Risk-Aversion-Related Brain Activation in Substance-Dependent Individuals

    Science.gov (United States)

    Fukunaga, Rena; Bogg, Tim; Finn, Peter R.; Brown, Joshua W.

    2012-01-01

    A sizable segment of addiction research investigates the effects of persuasive message appeals on risky and deleterious behaviors. However, to date, little research has examined how various forms of message framing and corresponding behavioral choices might by mediated by risk-related brain regions. Using event-related functional magnetic resonance imaging, we investigated brain regions hypothesized to mediate the influence of message appeals on decision making in substance-dependent (SD) compared to non-substance-dependent (non-SD) individuals. The Iowa Gambling Task (IGT) was modified to include positively-framed, negatively-framed, and control messages about long-term deck payoffs. In the positively-framed condition, the SD and non-SD groups showed improved decision-making performance that corresponded to higher risk-aversion-related brain activity in the anterior cingulate cortex (ACC) and anterior insula (AI). In contrast, in the negatively-framed condition, the SD group showed poorer performance that corresponded to lower risk-aversion-related brain activity in the AI region. In addition, only the non-SD group showed a positive association between decision quality and greater risk-related activity in the ACC, regardless of message type. The findings suggest substance-dependent individuals may have reduced neurocognitive sensitivity in the ACC and AI regions involved in risk perception and aversion during decision-making, especially in response to framed messages that emphasize reduced prospects for long-term gains. PMID:23148798

  8. Response inhibition in borderline personality disorder: event-related potentials in a Go/Nogo task.

    Science.gov (United States)

    Ruchsow, M; Groen, G; Kiefer, M; Buchheim, A; Walter, H; Martius, P; Reiter, M; Hermle, L; Spitzer, M; Ebert, D; Falkenstein, M

    2008-01-01

    Borderline personality disorder (BPD) has been related to a dysfunction of anterior cingulate cortex, amygdala, and prefrontal cortex and has been associated clinically with impulsivity, affective instability, and significant interpersonal distress. We examined 17 patients with BPD and 17 age-, sex-, and education matched control participants with no history of Axis I or II psychopathology using event-related potentials (ERPs). Participants performed a hybrid flanker-Go/Nogo task while multichannel EEG was recorded. Our study focused on two ERP components: the Nogo-N2 and the Nogo-P3, which have been discussed in the context of response inhibition and response conflict. ERPs were computed on correct Go trials (button press) and correct Nogo trials (no button press), separately. Groups did not differ with regard to the Nogo-N2. However, BPD patients showed reduced Nogo-P3 amplitudes. For the entire group (n = 34) we found a negative correlation with the Barratt Impulsiveness Scale (BIS-10) and Becks's depression inventory (BDI). The present study is the first to examine Nogo-N2 and Nogo-P3 in BPD and provides further evidence for impaired response inhibition in BPD patients.

  9. Hew Locke: House of Cards

    OpenAIRE

    Reckitt, Helena; Joyce, Julie; Locke, Hew

    2004-01-01

    ‘Hew Locke: House of Cards’ featured a selection of the artist's portraits of British royalty in various media, and his response to other trappings of the monarchy and empire. The show included works previously exhibited at the Luckman Gallery, Los Angeles, in tandem with a newly commissioned coat of arms, and other recent works. \\ud \\ud Locke draws from everyday sources, ranging from items found in London's Brixton Market to discount fabric shops and thrift stores. Other sources of inspirati...

  10. Relative brain displacement and deformation during constrained mild frontal head impact.

    Science.gov (United States)

    Feng, Y; Abney, T M; Okamoto, R J; Pless, R B; Genin, G M; Bayly, P V

    2010-12-06

    This study describes the measurement of fields of relative displacement between the brain and the skull in vivo by tagged magnetic resonance imaging and digital image analysis. Motion of the brain relative to the skull occurs during normal activity, but if the head undergoes high accelerations, the resulting large and rapid deformation of neuronal and axonal tissue can lead to long-term disability or death. Mathematical modelling and computer simulation of acceleration-induced traumatic brain injury promise to illuminate the mechanisms of axonal and neuronal pathology, but numerical studies require knowledge of boundary conditions at the brain-skull interface, material properties and experimental data for validation. The current study provides a dense set of displacement measurements in the human brain during mild frontal skull impact constrained to the sagittal plane. Although head motion is dominated by translation, these data show that the brain rotates relative to the skull. For these mild events, characterized by linear decelerations near 1.5g (g = 9.81 m s⁻²) and angular accelerations of 120-140 rad s⁻², relative brain-skull displacements of 2-3 mm are typical; regions of smaller displacements reflect the tethering effects of brain-skull connections. Strain fields exhibit significant areas with maximal principal strains of 5 per cent or greater. These displacement and strain fields illuminate the skull-brain boundary conditions, and can be used to validate simulations of brain biomechanics.

  11. Exploration of changes in the brain response to sleep-related pictures after cognitive–behavioral therapy for psychophysiological insomnia

    OpenAIRE

    Kim, Seog Ju; Lee, Yu Jin; Kim, Nambeom; Kim, Soohyun; Choi, Jae-Won; Park, Juhyun; Gwak, Ah Reum; Kang, Chang-Ki; Kang, Seung-Gul; Jeong, Do-Un

    2017-01-01

    Psychophysiological insomnia (PI) includes arousal to sleep-related stimuli (SS), which can be treated by cognitive behavioral therapy for insomnia (CBT-I). The present study was an exploratory, prospective intervention study that aimed to explore brain response to visual SS in PI before and after CBT-I. Blood oxygen level dependent (BOLD) signal differences in response to SS and neutral stimuli (NS) were compared between 14 drug-free PI patients and 18 good sleepers (GS) using functional mag...

  12. Study of GNSS Loss of Lock Characteristics under Ionosphere Scintillation with GNSS Data at Weipa (Australia) During Solar Maximum Phase.

    Science.gov (United States)

    Liu, Yang; Fu, Lianjie; Wang, Jinling; Zhang, Chunxi

    2017-09-25

    One of the adverse impacts of scintillation on GNSS signals is the loss of lock status, which can lead to GNSS geometry and visibility reductions that compromise the accuracy and integrity of navigation performance. In this paper the loss of lock based on ionosphere scintillation in this solar maximum phase has been well investigated with respect to both temporal and spatial behaviors, based on GNSS observatory data collected at Weipa (Australia; geographic: 12.45° S, 130.95° E; geomagnetic: 21.79° S, 214.41° E) from 2011 to 2015. Experiments demonstrate that the percentage of occurrence of loss of lock events under ionosphere scintillation is closely related with solar activity and seasonal shifts. Loss of lock behaviors under ionosphere scintillation related to elevation and azimuth angles are statistically analyzed, with some distinct characteristics found. The influences of daytime scintillation and geomagnetic storms on loss of lock have also been discussed in details. The proposed work is valuable for a deeper understanding of theoretical mechanisms of-loss of lock under ionosphere scintillation in global regions, and provides a reference for GNSS applications in certain regions at Australian low latitudes.

  13. Psychometric considerations in the measurement of event-related brain potentials: Guidelines for measurement and reporting.

    Science.gov (United States)

    Clayson, Peter E; Miller, Gregory A

    2017-01-01

    Failing to consider psychometric issues related to reliability and validity, differential deficits, and statistical power potentially undermines the conclusions of a study. In research using event-related brain potentials (ERPs), numerous contextual factors (population sampled, task, data recording, analysis pipeline, etc.) can impact the reliability of ERP scores. The present review considers the contextual factors that influence ERP score reliability and the downstream effects that reliability has on statistical analyses. Given the context-dependent nature of ERPs, it is recommended that ERP score reliability be formally assessed on a study-by-study basis. Recommended guidelines for ERP studies include 1) reporting the threshold of acceptable reliability and reliability estimates for observed scores, 2) specifying the approach used to estimate reliability, and 3) justifying how trial-count minima were chosen. A reliability threshold for internal consistency of at least 0.70 is recommended, and a threshold of 0.80 is preferred. The review also advocates the use of generalizability theory for estimating score dependability (the generalizability theory analog to reliability) as an improvement on classical test theory reliability estimates, suggesting that the latter is less well suited to ERP research. To facilitate the calculation and reporting of dependability estimates, an open-source Matlab program, the ERP Reliability Analysis Toolbox, is presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Cortical Auditory Disorders: A Case of Non-Verbal Disturbances Assessed with Event-Related Brain Potentials

    Directory of Open Access Journals (Sweden)

    Sönke Johannes

    1998-01-01

    Full Text Available In the auditory modality, there has been a considerable debate about some aspects of cortical disorders, especially about auditory forms of agnosia. Agnosia refers to an impaired comprehension of sensory information in the absence of deficits in primary sensory processes. In the non-verbal domain, sound agnosia and amusia have been reported but are frequently accompanied by language deficits whereas pure deficits are rare. Absolute pitch and musicians’ musical abilities have been associated with left hemispheric functions. We report the case of a right handed sound engineer with the absolute pitch who developed sound agnosia and amusia in the absence of verbal deficits after a right perisylvian stroke. His disabilities were assessed with the Seashore Test of Musical Functions, the tests of Wertheim and Botez (Wertheim and Botez, Brain 84, 1961, 19–30 and by event-related potentials (ERP recorded in a modified 'oddball paradigm’. Auditory ERP revealed a dissociation between the amplitudes of the P3a and P3b subcomponents with the P3b being reduced in amplitude while the P3a was undisturbed. This is interpreted as reflecting disturbances in target detection processes as indexed by the P3b. The findings that contradict some aspects of current knowledge about left/right hemispheric specialization in musical processing are discussed and related to the literature concerning cortical auditory disorders.

  15. Cortical auditory disorders: a case of non-verbal disturbances assessed with event-related brain potentials.

    Science.gov (United States)

    Johannes, Sönke; Jöbges, Michael E.; Dengler, Reinhard; Münte, Thomas F.

    1998-01-01

    In the auditory modality, there has been a considerable debate about some aspects of cortical disorders, especially about auditory forms of agnosia. Agnosia refers to an impaired comprehension of sensory information in the absence of deficits in primary sensory processes. In the non-verbal domain, sound agnosia and amusia have been reported but are frequently accompanied by language deficits whereas pure deficits are rare. Absolute pitch and musicians' musical abilities have been associated with left hemispheric functions. We report the case of a right handed sound engineer with the absolute pitch who developed sound agnosia and amusia in the absence of verbal deficits after a right perisylvian stroke. His disabilities were assessed with the Seashore Test of Musical Functions, the tests of Wertheim and Botez (Wertheim and Botez, Brain 84, 1961, 19-30) and by event-related potentials (ERP) recorded in a modified 'oddball paradigm'. Auditory ERP revealed a dissociation between the amplitudes of the P3a and P3b subcomponents with the P3b being reduced in amplitude while the P3a was undisturbed. This is interpreted as reflecting disturbances in target detection processes as indexed by the P3b. The findings that contradict some aspects of current knowledge about left/right hemispheric specialization in musical processing are discussed and related to the literature concerning cortical auditory disorders.

  16. Self-esteem modulates automatic attentional responses to self-relevant stimuli: Evidence from event-related brain potentials

    Directory of Open Access Journals (Sweden)

    Jie eChen

    2015-06-01

    Full Text Available Previous studies have widely shown that self-esteem modulates the attention bias towards social rejection or emotion-related information. However, little is known about the influences of self-esteem on attention bias towards self-relevant stimuli. We aimed to investigate neural correlates that underlie the modulation effect of self-esteem on self-relevant processing. Event-related potentials were recorded for subjects’ own names and close others’ names (the names of their friends while subjects performed a three-stimulus oddball task. The results showed larger P2 amplitudes for one’s own name than for close-other’s name in the low self-esteem group, whereas this P2 effect were not observed in the high self-esteem group. In addition, one’s own name elicited equivalent N250 amplitudes and larger P3 amplitudes compared with close-other’s name in both high and low self-esteem groups. However, no interaction effects were observed between self-esteem and self-relevant processing in the N250 and P3 components. Thus, we found that the modulation effects of self-esteem on self-relevant processing occurred at the early P2 stage, but not at the later N250 and P3 stages. These findings reflect that individuals with low self-esteem demonstrate automatic attention towards their own names.

  17. Twitter and traumatic brain injury: A content and sentiment analysis of tweets pertaining to sport-related brain injury.

    Science.gov (United States)

    Workewych, Adriana M; Ciuffetelli Muzzi, Madeline; Jing, Rowan; Zhang, Stanley; Topolovec-Vranic, Jane; Cusimano, Michael D

    2017-01-01

    Sport-related traumatic brain injuries are a significant public health burden, with hundreds of thousands sustained annually in North America. While sports offer numerous physical and social health benefits, traumatic brain injuries such as concussion can seriously impact a player's life, athletic career, and sport enjoyment. The culture in many sports encourages winning at all costs, placing athletes at risk for traumatic brain injuries. As social media has become a central part of everyday life, the content of users' messages often reflects the prevailing culture related to a particular event or health issue. We hypothesized that Twitter data might be useful for understanding public perceptions and misperceptions of sport-related traumatic brain injuries. We performed a content and sentiment analysis of 7483 Twitter ® tweets related to traumatic brain injuries in sports collected during June and July 2013. We identified five major themes. Users tweeted about personal traumatic brain injuries experiences, reported traumatic brain injuries in professional athletes, shared research about sport-related concussions, and discussed policy and safety in injury prevention, such as helmet use. We identified mixed perceptions of and sentiment toward traumatic brain injuries in sports: both an understanding that brain injuries are serious and disregard for activities that might reduce the public burden of traumatic brain injuries were prevalent in our Twitter analysis. While the scientific and medical community considers a concussion a form of traumatic brain injuries, our study demonstrates a misunderstanding of this fact among the public. In our current digital age, social media can provide useful insight into the culture around a health issue, facilitating implementation of prevention and treatment strategies.

  18. Clinical study of intermittent lock of the temporomandibular joint. Relation to frequency of intermittent lock on clinical examination and magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ide, Takashi; Nagai, Itaru; Miyazaki, Akihiro; Yamaguchi, Akira; Kohama, Geniku [Sapporo Medical Univ. (Japan). School of Medicine

    2002-03-01

    To examine the occurrence of intermittent lock, we investigated the correlation between the frequency of intermittent lock of the temporomandibular joint and magnetic resonance imaging (MRI) findings. The subjects consisted of 25 patients (25 joints) with unilateral intermittent lock who were treated from April 1994 through March 2000 at our department. MRI examination of the joint was performed on the affected side. We divided the patients into two groups: a high-frequency group consisting of 15 patients who had symptoms of intermittent lock every day and a low-frequency group consisting of 10 patients who did not have symptoms every day. The results showed no statistical difference between the two groups in clinical findings such as age, sex, clicking side of the joint, duration of intermittent lock, method of unlocking, muscle pain on palpation, degree of maximal mouth opening, distance between the maxillary and mandibular tooth midline, or the degree of overbite and overjet. However, the two groups differed significantly in the degree of anterior disc displacement as assessed by MRI. (author)

  19. APR1400 Locked Rotor Transient Analysis using KNAP

    International Nuclear Information System (INIS)

    Lee, Dong-Hyuk; Kim, Yo-Han; Ha, Sang Jun

    2007-01-01

    KEPRI (Korea Electric Power Research Institute) has developed safety analysis methodology for non-LOCA (Loss Of Coolant Accident) analysis of OPR1000 (Optimized Power Reactor 1000, formerly KSNP). The new methodology, named KNAP (Korea Non-LOCA Analysis Package), uses RETRAN as the main system analysis code for most transients. For locked rotor transient DNBR analysis, UNICORN-TM code is used. UNICORN-TM is the unified code of RETRAN, MASTER and TORC. The UNICORN-TM has 1-D and 3-D neutron kinetics calculation capability. For locked rotor DNBR analysis, 1-D neutron kinetics is used. In this paper, we apply KNAP methodology to APR1400 (Advanced Power Reactor 1400) locked rotor analysis and compare the results with those in the APR1400 SSAR(Standard Safety Analysis Report). The locked rotor transient is one of the 'decrease in reactor coolant system flow rate' events and the results are typically described in the chapter 15.3.3 of SAR (Safety Analysis Report). In this study, to confirm the applicability of the KNAP methodology and code system to APR1400, locked rotor transient is analyzed using UNICORN-TM code and the results are compared with those from APR1400 SSAR

  20. APR1400 Locked Rotor Transient Analysis using KNAP

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Hyuk; Kim, Yo-Han; Ha, Sang Jun [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    KEPRI (Korea Electric Power Research Institute) has developed safety analysis methodology for non-LOCA (Loss Of Coolant Accident) analysis of OPR1000 (Optimized Power Reactor 1000, formerly KSNP). The new methodology, named KNAP (Korea Non-LOCA Analysis Package), uses RETRAN as the main system analysis code for most transients. For locked rotor transient DNBR analysis, UNICORN-TM code is used. UNICORN-TM is the unified code of RETRAN, MASTER and TORC. The UNICORN-TM has 1-D and 3-D neutron kinetics calculation capability. For locked rotor DNBR analysis, 1-D neutron kinetics is used. In this paper, we apply KNAP methodology to APR1400 (Advanced Power Reactor 1400) locked rotor analysis and compare the results with those in the APR1400 SSAR(Standard Safety Analysis Report). The locked rotor transient is one of the 'decrease in reactor coolant system flow rate' events and the results are typically described in the chapter 15.3.3 of SAR (Safety Analysis Report). In this study, to confirm the applicability of the KNAP methodology and code system to APR1400, locked rotor transient is analyzed using UNICORN-TM code and the results are compared with those from APR1400 SSAR.

  1. Habit learning and brain-machine interfaces (BMI): a tribute to Valentino Braitenberg's "Vehicles".

    Science.gov (United States)

    Birbaumer, Niels; Hummel, Friedhelm C

    2014-10-01

    Brain-Machine Interfaces (BMI) allow manipulation of external devices and computers directly with brain activity without involvement of overt motor actions. The neurophysiological principles of such robotic brain devices and BMIs follow Hebbian learning rules as described and realized by Valentino Braitenberg in his book "Vehicles," in the concept of a "thought pump" residing in subcortical basal ganglia structures. We describe here the application of BMIs for brain communication in totally locked-in patients and argue that the thought pump may extinguish-at least partially-in those people because of extinction of instrumentally learned cognitive responses and brain responses. We show that Pavlovian semantic conditioning may allow brain communication even in the completely paralyzed who does not show response-effect contingencies. Principles of skill learning and habit acquisition as formulated by Braitenberg are the building blocks of BMIs and neuroprostheses.

  2. Toward brain-computer interface based wheelchair control utilizing tactually-evoked event-related potentials

    Science.gov (United States)

    2014-01-01

    Background People with severe disabilities, e.g. due to neurodegenerative disease, depend on technology that allows for accurate wheelchair control. For those who cannot operate a wheelchair with a joystick, brain-computer interfaces (BCI) may offer a valuable option. Technology depending on visual or auditory input may not be feasible as these modalities are dedicated to processing of environmental stimuli (e.g. recognition of obstacles, ambient noise). Herein we thus validated the feasibility of a BCI based on tactually-evoked event-related potentials (ERP) for wheelchair control. Furthermore, we investigated use of a dynamic stopping method to improve speed of the tactile BCI system. Methods Positions of four tactile stimulators represented navigation directions (left thigh: move left; right thigh: move right; abdomen: move forward; lower neck: move backward) and N = 15 participants delivered navigation commands by focusing their attention on the desired tactile stimulus in an oddball-paradigm. Results Participants navigated a virtual wheelchair through a building and eleven participants successfully completed the task of reaching 4 checkpoints in the building. The virtual wheelchair was equipped with simulated shared-control sensors (collision avoidance), yet these sensors were rarely needed. Conclusion We conclude that most participants achieved tactile ERP-BCI control sufficient to reliably operate a wheelchair and dynamic stopping was of high value for tactile ERP classification. Finally, this paper discusses feasibility of tactile ERPs for BCI based wheelchair control. PMID:24428900

  3. Semantic ambiguity processing in sentence context: Evidence from event-related fMRI

    NARCIS (Netherlands)

    Zempleni, Monika-Zita; Renken, Remco; Hoeks, John C. J.; Hoogduin, Johannes M.; Stowe, Laurie A.

    2007-01-01

    Lexical semantic ambiguity is the phenomenon when a word has multiple meanings (e.g. 'bank'). The aim of this event-related functional MRI study was to identify those brain areas, which are involved in contextually driven ambiguity resolution. Ambiguous words were selected which have a most

  4. Microcontroller-based locking in optics experiments

    International Nuclear Information System (INIS)

    Huang, K.; Le Jeannic, H.; Ruaudel, J.; Morin, O.; Laurat, J.

    2014-01-01

    Optics experiments critically require the stable and accurate locking of relative phases between light beams or the stabilization of Fabry-Perot cavity lengths. Here, we present a simple and inexpensive technique based on a stand-alone microcontroller unit to perform such tasks. Easily programmed in C language, this reconfigurable digital locking system also enables automatic relocking and sequential functioning. Different algorithms are detailed and applied to fringe locking and to low- and high-finesse optical cavity stabilization, without the need of external modulations or error signals. This technique can readily replace a number of analog locking systems advantageously in a variety of optical experiments

  5. Microcontroller-based locking in optics experiments.

    Science.gov (United States)

    Huang, K; Le Jeannic, H; Ruaudel, J; Morin, O; Laurat, J

    2014-12-01

    Optics experiments critically require the stable and accurate locking of relative phases between light beams or the stabilization of Fabry-Perot cavity lengths. Here, we present a simple and inexpensive technique based on a stand-alone microcontroller unit to perform such tasks. Easily programmed in C language, this reconfigurable digital locking system also enables automatic relocking and sequential functioning. Different algorithms are detailed and applied to fringe locking and to low- and high-finesse optical cavity stabilization, without the need of external modulations or error signals. This technique can readily replace a number of analog locking systems advantageously in a variety of optical experiments.

  6. Microcontroller-based locking in optics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Huang, K. [Laboratoire Kastler Brossel, UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University, Collège de France, 4 place Jussieu, 75005 Paris (France); State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China); Le Jeannic, H.; Ruaudel, J.; Morin, O.; Laurat, J., E-mail: julien.laurat@upmc.fr [Laboratoire Kastler Brossel, UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University, Collège de France, 4 place Jussieu, 75005 Paris (France)

    2014-12-15

    Optics experiments critically require the stable and accurate locking of relative phases between light beams or the stabilization of Fabry-Perot cavity lengths. Here, we present a simple and inexpensive technique based on a stand-alone microcontroller unit to perform such tasks. Easily programmed in C language, this reconfigurable digital locking system also enables automatic relocking and sequential functioning. Different algorithms are detailed and applied to fringe locking and to low- and high-finesse optical cavity stabilization, without the need of external modulations or error signals. This technique can readily replace a number of analog locking systems advantageously in a variety of optical experiments.

  7. Neurophysiological correlates of emotional directed-forgetting in persons with Schizophrenia: An event-related brain potential study.

    Science.gov (United States)

    Patrick, Regan E; Kiang, Michael; Christensen, Bruce K

    2015-12-01

    Recent research has shown that patients with schizophrenia (SCZ) exhibit reduced directed forgetting (DF) for negative words, suggesting impaired ability to instantiate goal-directed inhibition in order to suppress a competing, emotion-driven responses (i.e., emotional memory enhancement). However, disrupted inhibition is not the only possible mechanism by which patients could manifest reduced emotional DF. Therefore, the primary objective of the current study was to use event-related brain potential (ERP) recordings to investigate alternative hypotheses. ERPs were recorded while patients and controls completed an item-method DF paradigm using negative and neutral words. The N2 indexed goal-directed inhibition of to-be-forgotten items. The late positive potential (LPP) indexed emotional memory enhancement for negative study items. The P300 indexed selective rehearsal of to-be-remembered items. The SCZ group exhibited a reduced DF effect overall, but this was not modulated by emotion. N2 amplitude at anterior sites was larger for forget versus remember cues in the control group only, but this effect was not modulated by emotion. LPP amplitude was greater for negative versus neutral words in both groups, independent of region. P300 amplitude at posterior sites was greater for remember versus forget cues in the control group only. These data suggest that reduced DF in SCZ may be due, in part, to both diminished goal-directed inhibition of to-be-forgotten items and reduced selective rehearsal of to-be-remembered items. However, these data do not support the hypothesis that goal-directed, inhibitory processes are disrupted by competing, emotion-driven processes in SCZ. Patients' ERP data also suggested that they did not exhibit disproportionately heightened encoding of emotional stimuli, nor did they have deficient selective rehearsal of to-be-remembered emotional items. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Event-related fields evoked by vocal response inhibition: a comparison of younger and older adults.

    Science.gov (United States)

    Castro-Meneses, Leidy J; Johnson, Blake W; Sowman, Paul F

    2016-06-01

    The current study examined event-related fields (ERFs) evoked by vocal response inhibition in a stimulus-selective stop-signal task. We compared inhibition-related ERFs across a younger and an older group of adults. Behavioural results revealed that stop-signal reaction times (RTs), go-RTs, ignore-stop RTs and failed stop RTs were longer in the older, relative to the younger group by 38, 123, 149 and 116 ms, respectively. The amplitude of the ERF M2 peak (approximately 200 ms after the stop signal) evoked on successful stop trials was larger compared to that evoked on both failed stop and ignore-stop trials. The M4 peak (approximately 450 ms after stop signal) was of larger amplitude in both successful and failed stops compared to ignore-stop trials. In the older group, the M2, M3 and M4 peaks were smaller in amplitude and peaked later in time (by 24, 50 and 76 ms, respectively). We demonstrate that vocal response inhibition-related ERFs exhibit a similar temporal evolution to those previously described for manual response inhibition: an early peak at 200 ms (i.e. M2) that differentiates successful from failed stopping, and a later peak (i.e. M4) that is consistent with a neural marker of response checking and error processing. Across groups, our data support a more general decline of stimulus processing speed with age.

  9. Early adversity and brain response to faces in young adulthood.

    Science.gov (United States)

    Lieslehto, Johannes; Kiviniemi, Vesa; Mäki, Pirjo; Koivukangas, Jenni; Nordström, Tanja; Miettunen, Jouko; Barnett, Jennifer H; Jones, Peter B; Murray, Graham K; Moilanen, Irma; Paus, Tomáš; Veijola, Juha

    2017-09-01

    Early stressors play a key role in shaping interindividual differences in vulnerability to various psychopathologies, which according to the diathesis-stress model might relate to the elevated glucocorticoid secretion and impaired responsiveness to stress. Furthermore, previous studies have shown that individuals exposed to early adversity have deficits in emotion processing from faces. This study aims to explore whether early adversities associate with brain response to faces and whether this association might associate with the regional variations in mRNA expression of the glucocorticoid receptor gene (NR3C1). A total of 104 individuals drawn from the Northern Finland Brith Cohort 1986 participated in a face-task functional magnetic resonance imaging (fMRI) study. A large independent dataset (IMAGEN, N = 1739) was utilized for reducing fMRI data-analytical space in the NFBC 1986 dataset. Early adversities were associated with deviant brain response to fearful faces (MANCOVA, P = 0.006) and with weaker performance in fearful facial expression recognition (P = 0.01). Glucocorticoid receptor gene expression (data from the Allen Human Brain Atlas) correlated with the degree of associations between early adversities and brain response to fearful faces (R 2  = 0.25, P = 0.01) across different brain regions. Our results suggest that early adversities contribute to brain response to faces and that this association is mediated in part by the glucocorticoid system. Hum Brain Mapp 38:4470-4478, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Neural basis of postural focus effect on concurrent postural and motor tasks: phase-locked electroencephalogram responses.

    Science.gov (United States)

    Huang, Cheng-Ya; Zhao, Chen-Guang; Hwang, Ing-Shiou

    2014-11-01

    Dual-task performance is strongly affected by the direction of attentional focus. This study investigated neural control of a postural-suprapostural procedure when postural focus strategy varied. Twelve adults concurrently conducted force-matching and maintained stabilometer stance with visual feedback on ankle movement (visual internal focus, VIF) and on stabilometer movement (visual external focus, VEF). Force-matching error, dynamics of ankle and stabilometer movements, and event-related potentials (ERPs) were registered. Postural control with VEF caused superior force-matching performance, more complex ankle movement, and stronger kinematic coupling between the ankle and stabilometer movements than postural control with VIF. The postural focus strategy also altered ERP temporal-spatial patterns. Postural control with VEF resulted in later N1 with less negativity around the bilateral fronto-central and contralateral sensorimotor areas, earlier P2 deflection with more positivity around the bilateral fronto-central and ipsilateral temporal areas, and late movement-related potential commencing in the left frontal-central area, as compared with postural control with VIF. The time-frequency distribution of the ERP principal component revealed phase-locked neural oscillations in the delta (1-4Hz), theta (4-7Hz), and beta (13-35Hz) rhythms. The delta and theta rhythms were more pronounced prior to the timing of P2 positive deflection, and beta rebound was greater after the completion of force-matching in VEF condition than VIF condition. This study is the first to reveal the neural correlation of postural focusing effect on a postural-suprapostural task. Postural control with VEF takes advantage of efficient task-switching to facilitate autonomous postural response, in agreement with the "constrained-action" hypothesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The winner takes it all: Event-related brain potentials reveal enhanced motivated attention toward athletes' nonverbal signals of leading.

    Science.gov (United States)

    Furley, Philip; Schnuerch, Robert; Gibbons, Henning

    2017-08-01

    Observers of sports can reliably estimate who is leading or trailing based on nonverbal cues. Most likely, this is due to an adaptive mechanism of detecting motivationally relevant signals such as high status, superiority, and dominance. We reasoned that the relevance of leading athletes should lead to a sustained attentional prioritization. To test this idea, we recorded electroencephalography while 45 participants saw brief stills of athletes and estimated whether they were leading or trailing. Based on these recordings, we assessed event-related potentials and focused on the late positive complex (LPC), a well-established signature of controlled attention to motivationally relevant visual stimuli. Confirming our expectation, we found that LPC amplitude was significantly enhanced for leading as compared to trailing athletes. Moreover, this modulation was significantly related to behavioral performance on the score-estimation task. The present data suggest that subtle cues related to athletic supremacy are reliably differentiated in the human brain, involving a strong attentional orienting toward leading athletes. This mechanism might be part of an adaptive cognitive strategy that guides human social behavior.

  12. The cooperation of the functional activation areas in human brain: an application of event-related fMRI study of the voluntary motor function

    International Nuclear Information System (INIS)

    Li Enzhong; Tian Jie; Dai Ruwei

    2002-01-01

    Objective: To detect the cooperation of the functional activation areas in human brain using event-related fMRI technique developed in recent years. Methods: Forty-four subjects were selected in this experiment and scanned by GE Signa Horizon 1.5 Tesla superconductive MR system. A CUE-GO paradigm was used in this experiment. The data were analyzed in SUN and SGI workstation. Results: The activation areas were found in contralateral primary motor area (Ml), bilateral supplementary motor areas (SMA), pre-motor areas (PMA), basal ganglia, and cerebellar cortices. The time-signal curve of Ml was a typical single-peak curve, but the curves in PMA, basal ganglia, and cerebellar cortices were double-peak curves. SMA had 2 parts, one was Pre-SMA, and another was SMA Proper. The curve was double-peak type in Pre-SMA and single-peak type in SMA Proper. There was difference between the time-signal intensity curves in above-mentioned areas. Conclusion: (1) Ml is mainly associated with motor execution, while others with both motor preparation and execution. There are differences in the function at the variant areas in the brain. (2) The fact that bilateral SMA, PMA, basal ganglia, and cerebellar cortices were activated, is different from what the classical theories told. (3) Event-related fMRI technique has higher temporary and spatial resolutions. (4) There is cooperation among different cortical areas, basal ganglia, and cerebellum

  13. Inter-trial alignment of EEG data and phase-locking

    Science.gov (United States)

    Testorf, M. E.; Horak, P.; Connolly, A.; Holmes, G. L.; Jobst, B. C.

    2015-09-01

    Neuro-scientific studies are often aimed at imaging brain activity, which is time-locked to external stimuli. This provides the possibility to use statistical methods to extract even weak signal components, which occur with each stimulus. For electroencephalographic recordings this concept is limited by inevitable time jitter, which cannot be controlled in all cases. Our study is based on a cross-correlation analysis of trials to alignment trials based on the recorded data. This is demonstrated both with simulated signals and with clinical EEG data, which were recorded intracranially. Special attention is given to the evaluation of the time-frequency resolved phase-locking across multiple trails.

  14. Assessing carbon lock-in

    International Nuclear Information System (INIS)

    Erickson, Peter; Kartha, Sivan; Lazarus, Michael; Tempest, Kevin

    2015-01-01

    The term ‘carbon lock-in’ refers to the tendency for certain carbon-intensive technological systems to persist over time, ‘locking out’ lower-carbon alternatives, and owing to a combination of linked technical, economic, and institutional factors. These technologies may be costly to build, but relatively inexpensive to operate and, over time, they reinforce political, market, and social factors that make it difficult to move away from, or ‘unlock’ them. As a result, by investing in assets prone to lock-in, planners and investors restrict future flexibility and increase the costs of achieving agreed climate protection goals. Here, we develop a straight-forward approach to assess the speed, strength, and scale of carbon lock-in for major energy-consuming assets in the power, buildings, industry, and transport sectors. We pilot the approach at the global level, finding that carbon lock-in is greatest, globally, for coal power plants, gas power plants, and oil-based vehicles. The approach can be readily applied at the national or regional scale, and may be of particular relevance to policymakers interested in enhancing flexibility in their jurisdictions for deeper emissions cuts in the future, and therefore in limiting the future costs associated with ‘stranded assets’. (letter)

  15. Biomechanics of far cortical locking.

    Science.gov (United States)

    Bottlang, Michael; Feist, Florian

    2011-02-01

    The development of far cortical locking (FCL) was motivated by a conundrum: locked plating constructs provide inherently rigid stabilization, yet they should facilitate biologic fixation and secondary bone healing that relies on flexible fixation to stimulate callus formation. Recent studies have confirmed that the high stiffness of standard locked plating constructs can suppress interfragmentary motion to a level that is insufficient to reliably promote secondary fracture healing by callus formation. Furthermore, rigid locking screws cause an uneven stress distribution that may lead to stress fracture at the end screw and stress shielding under the plate. This review summarizes four key features of FCL constructs that have been shown to enhance fixation and healing of fractures: flexible fixation, load distribution, progressive stiffening, and parallel interfragmentary motion. Specifically, flexible fixation provided by FCL reduces the stiffness of a locked plating construct by 80% to 88% to actively promote callus proliferation similar to an external fixator. Load is evenly distributed between FCL screws to mitigate stress risers at the end screw. Progressive stiffening occurs by near cortex support of FCL screws and provides additional support under elevated loading. Finally, parallel interfragmentary motion by the S-shaped flexion of FCL screws promotes symmetric callus formation. In combination, these features of FCL constructs have been shown to induce more callus and to yield significantly stronger and more consistent healing compared with standard locked plating constructs. As such, FCL constructs function as true internal fixators by replicating the biomechanical behavior and biologic healing response of external fixators.

  16. Decisions during negatively-framed messages yield smaller risk-aversion-related brain activation in substance-dependent individuals.

    Science.gov (United States)

    Fukunaga, Rena; Bogg, Tim; Finn, Peter R; Brown, Joshua W

    2013-12-01

    A sizable segment of addiction research investigates the effects of persuasive message appeals on risky and deleterious behaviors. However, to date, little research has examined how various forms of message framing and corresponding behavioral choices might by mediated by risk-related brain regions. Using event-related functional MRI, we investigated brain regions hypothesized to mediate the influence of message appeals on decision making in substance-dependent (SD) compared with nonsubstance-dependent (non-SD) individuals. The Iowa Gambling Task (IGT) was modified to include positively-framed, negatively-framed, and control messages about long-term deck payoffs. In the positively-framed condition, the SD and non-SD groups showed improved decision-making performance that corresponded to higher risk-aversion-related brain activity in the anterior cingulate cortex (ACC) and anterior insula (AI). In contrast, in the negatively-framed condition, the SD group showed poorer performance that corresponded to lower risk-aversion-related brain activity in the AI region. In addition, only the non-SD group showed a positive association between decision quality and greater risk-related activity in the ACC, regardless of message type. The findings suggest substance-dependent individuals may have reduced neurocognitive sensitivity in the ACC and AI regions involved in risk perception and aversion during decision-making, especially in response to framed messages that emphasize reduced prospects for long-term gains. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  17. From sensation to percept: the neural signature of auditory event-related potentials.

    Science.gov (United States)

    Joos, Kathleen; Gilles, Annick; Van de Heyning, Paul; De Ridder, Dirk; Vanneste, Sven

    2014-05-01

    An external auditory stimulus induces an auditory sensation which may lead to a conscious auditory perception. Although the sensory aspect is well known, it is still a question how an auditory stimulus results in an individual's conscious percept. To unravel the uncertainties concerning the neural correlates of a conscious auditory percept, event-related potentials may serve as a useful tool. In the current review we mainly wanted to shed light on the perceptual aspects of auditory processing and therefore we mainly focused on the auditory late-latency responses. Moreover, there is increasing evidence that perception is an active process in which the brain searches for the information it expects to be present, suggesting that auditory perception requires the presence of both bottom-up, i.e. sensory and top-down, i.e. prediction-driven processing. Therefore, the auditory evoked potentials will be interpreted in the context of the Bayesian brain model, in which the brain predicts which information it expects and when this will happen. The internal representation of the auditory environment will be verified by sensation samples of the environment (P50, N100). When this incoming information violates the expectation, it will induce the emission of a prediction error signal (Mismatch Negativity), activating higher-order neural networks and inducing the update of prior internal representations of the environment (P300). Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Brain Events Underlying Episodic Memory Changes in Aging: A Longitudinal Investigation of Structural and Functional Connectivity.

    Science.gov (United States)

    Fjell, Anders M; Sneve, Markus H; Storsve, Andreas B; Grydeland, Håkon; Yendiki, Anastasia; Walhovd, Kristine B

    2016-03-01

    Episodic memories are established and maintained by close interplay between hippocampus and other cortical regions, but degradation of a fronto-striatal network has been suggested to be a driving force of memory decline in aging. We wanted to directly address how changes in hippocampal-cortical versus striatal-cortical networks over time impact episodic memory with age. We followed 119 healthy participants (20-83 years) for 3.5 years with repeated tests of episodic verbal memory and magnetic resonance imaging for quantification of functional and structural connectivity and regional brain atrophy. While hippocampal-cortical functional connectivity predicted memory change in young, changes in cortico-striatal functional connectivity were related to change in recall in older adults. Within each age group, effects of functional and structural connectivity were anatomically closely aligned. Interestingly, the relationship between functional connectivity and memory was strongest in the age ranges where the rate of reduction of the relevant brain structure was lowest, implying selective impacts of the different brain events on memory. Together, these findings suggest a partly sequential and partly simultaneous model of brain events underlying cognitive changes in aging, where different functional and structural events are more or less important in various time windows, dismissing a simple uni-factorial view on neurocognitive aging. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. The Cognitive Aging of Episodic Memory: A View Based On The Event-Related Brain Potential (ERP

    Directory of Open Access Journals (Sweden)

    David eFriedman

    2013-08-01

    Full Text Available A cardinal feature of older-adult cognition is a decline, relative to the young, in the encoding and retrieval of personally-relevant events, i.e. episodic memory (EM. A consensus holds that familiarity, a relatively automatic feeling of knowing that can support recognition-memory judgments, is preserved with aging. By contrast, recollection, which requires the effortful, strategic recovery of contextual detail, declines as we age. Over the last decade, ERPs have become increasingly important tools in the study of the aging of EM, because a few, well-researched EM effects have been associated with the cognitive processes thought to underlie successful EM performance. EM effects are operationalized by subtracting the ERPs elicited by correctly-rejected, new items from those to correctly recognized, old items. Although highly controversial, the mid-frontal effect (a positive component between ~300 and 500 ms, maximal at fronto-central scalp sites is thought to reflect familiarity-based recognition. A positivity between ~500 and 800 ms, maximal at left-parietal scalp, has been labeled the left-parietal EM effect. A wealth of evidence suggests that this brain activity reflects recollection-based retrieval. Here, I review the ERP evidence in support of the hypothesis that familiarity is maintained while recollection is compromised in older relative to young adults. I consider the possibility that the inconsistency in findings may be due to individual differences in performance, executive function and quality of life indices, such as socio-economic status.

  20. The effects of exercise on cigarette cravings and brain activation in response to smoking-related images.

    Science.gov (United States)

    Janse Van Rensburg, Kate; Taylor, Adrian; Benattayallah, Abdelmalek; Hodgson, Tim

    2012-06-01

    Smokers show heightened activation toward smoking-related stimuli and experience increased cravings which can precipitate smoking cessation relapse. Exercise can be effective for modulating cigarette cravings and attenuating reactivity to smoking cues, but the mechanism by which these effects occur remains uncertain. The objective of the study was to assess the effect of exercise on regional brain activation in response to smoking-related images during temporary nicotine abstinence. In a randomised crossover design, overnight abstinent smokers (n = 20) underwent an exercise (10-min moderate-intensity stationary cycling) and passive control (seating for the same duration) treatment, following 15 h of nicotine abstinence. After each treatment, participants underwent functional magnetic resonance imaging (fMRI) brain scanning while viewing a random series of blocked smoking or neutral images. Self-reported cravings were assessed at baseline, mid-, and post-treatments. There was a significant interaction effect (treatment × time) for desire to smoke, F (2,32) = 12.5, p exercise at all time points compared with the control treatment. After both exercise and rest, significant areas of activation were found in areas of the limbic lobe and in areas associated with visual attention in response to smoking-related stimuli. Smokers showed increased activation to smoking images in areas associated with primary and secondary visual processing following rest, but not following a session of exercise. The study shows differing activation towards smoking images following exercise compared to a control treatment and may point to a neuro-cognitive process following exercise that mediates effects on cigarette cravings.

  1. Neural Point-and-Click Communication by a Person With Incomplete Locked-In Syndrome.

    Science.gov (United States)

    Bacher, Daniel; Jarosiewicz, Beata; Masse, Nicolas Y; Stavisky, Sergey D; Simeral, John D; Newell, Katherine; Oakley, Erin M; Cash, Sydney S; Friehs, Gerhard; Hochberg, Leigh R

    2015-06-01

    A goal of brain-computer interface research is to develop fast and reliable means of communication for individuals with paralysis and anarthria. We evaluated the ability of an individual with incomplete locked-in syndrome enrolled in the BrainGate Neural Interface System pilot clinical trial to communicate using neural point-and-click control. A general-purpose interface was developed to provide control of a computer cursor in tandem with one of two on-screen virtual keyboards. The novel BrainGate Radial Keyboard was compared to a standard QWERTY keyboard in a balanced copy-spelling task. The Radial Keyboard yielded a significant improvement in typing accuracy and speed-enabling typing rates over 10 correct characters per minute. The participant used this interface to communicate face-to-face with research staff by using text-to-speech conversion, and remotely using an internet chat application. This study demonstrates the first use of an intracortical brain-computer interface for neural point-and-click communication by an individual with incomplete locked-in syndrome. © The Author(s) 2014.

  2. Effects of memory strategy training on performance and event-related brain potentials of children with ADHD in an episodic memory task.

    Science.gov (United States)

    Jonkman, Lisa M; Hurks, Petra P; Schleepen, Tamara M J

    2016-10-01

    Evidence for memory problems in children with attention deficit hyperactivity disorder (ADHD) is accumulating. Attempting to counter such problems, in the present study children with ADHD aged 8-12 years underwent a six-week metacognitive memory strategy training (MST) or one of two other active trainings, either a metacognitive attention-perceptual-motor training (APM) or placebo training consisting of playing board games (PLA). Effects of the training on episodic memory and underlying brain processes were investigated by comparing performance and event-related brain potentials (ERPs) on pre- and post-training sessions in an old/new recognition task between the three training groups. Potential far transfer effects of the memory strategy training were investigated by measuring performance on neuropsychological attention and memory-span tasks and parent-rated ADHD symptoms. The metacognitive memory strategy training led to significantly improved memory performance and enhanced amplitude of left parietal P600 activity associated with the process of memory recollection when compared to PLA, but APM training evoked similar improvements. Memory performance gains were significantly correlated with the memory-related ERP effects. Preliminary far transfer effects of MST training were found on attention and working memory performance and on parent-rated ADHD symptoms, although these results need replication with larger and better IQ-matched groups.

  3. Neurophysiological Effects of Meditation Based on Evoked and Event Related Potential Recordings.

    Science.gov (United States)

    Singh, Nilkamal; Telles, Shirley

    2015-01-01

    Evoked potentials (EPs) are a relatively noninvasive method to assess the integrity of sensory pathways. As the neural generators for most of the components are relatively well worked out, EPs have been used to understand the changes occurring during meditation. Event-related potentials (ERPs) yield useful information about the response to tasks, usually assessing attention. A brief review of the literature yielded eleven studies on EPs and seventeen on ERPs from 1978 to 2014. The EP studies covered short, mid, and long latency EPs, using both auditory and visual modalities. ERP studies reported the effects of meditation on tasks such as the auditory oddball paradigm, the attentional blink task, mismatched negativity, and affective picture viewing among others. Both EP and ERPs were recorded in several meditations detailed in the review. Maximum changes occurred in mid latency (auditory) EPs suggesting that maximum changes occur in the corresponding neural generators in the thalamus, thalamic radiations, and primary auditory cortical areas. ERP studies showed meditation can increase attention and enhance efficiency of brain resource allocation with greater emotional control.

  4. Neurophysiological Effects of Meditation Based on Evoked and Event Related Potential Recordings

    Science.gov (United States)

    Singh, Nilkamal; Telles, Shirley

    2015-01-01

    Evoked potentials (EPs) are a relatively noninvasive method to assess the integrity of sensory pathways. As the neural generators for most of the components are relatively well worked out, EPs have been used to understand the changes occurring during meditation. Event-related potentials (ERPs) yield useful information about the response to tasks, usually assessing attention. A brief review of the literature yielded eleven studies on EPs and seventeen on ERPs from 1978 to 2014. The EP studies covered short, mid, and long latency EPs, using both auditory and visual modalities. ERP studies reported the effects of meditation on tasks such as the auditory oddball paradigm, the attentional blink task, mismatched negativity, and affective picture viewing among others. Both EP and ERPs were recorded in several meditations detailed in the review. Maximum changes occurred in mid latency (auditory) EPs suggesting that maximum changes occur in the corresponding neural generators in the thalamus, thalamic radiations, and primary auditory cortical areas. ERP studies showed meditation can increase attention and enhance efficiency of brain resource allocation with greater emotional control. PMID:26137479

  5. An automatic mode-locked system for passively mode-locked fiber laser

    Science.gov (United States)

    Li, Sha; Xu, Jun; Chen, Guoliang; Mei, Li; Yi, Bo

    2013-12-01

    This paper designs and implements one kind of automatic mode-locked system. It can adjust a passively mode-locked fiber laser to keep steady mode-locked states automatically. So the unsteadiness of traditional passively mode-locked fiber laser can be avoided. The system transforms optical signals into electrical pulse signals and sends them into MCU after processing. MCU calculates the frequency of the signals and judges the state of the output based on a quick judgment algorithm. A high-speed comparator is used to check the signals and the comparison voltage can be adjusted to improve the measuring accuracy. Then by controlling two polarization controllers at an angle of 45degrees to each other, MCU extrudes the optical fibers to change the polarization until it gets proper mode-locked output. So the system can continuously monitor the output signal and get it back to mode-locked states quickly and automatically. States of the system can be displayed on the LCD and PC. The parameters of the steady mode-locked states can be stored into an EEPROM so that the system will get into mode-locked states immediately next time. Actual experiments showed that, for a 6.238MHz passively mode-locked fiber lasers, the system can get into steady mode-locked states automatically in less than 90s after starting the system. The expected lock time can be reduced to less than 20s after follow up improvements.

  6. Aggression-related brain function assessed with the Point Subtraction Aggression Paradigm in fMRI

    DEFF Research Database (Denmark)

    Skibsted, Anine P; Cunha-Bang, Sofi da; Carré, Justin M

    2017-01-01

    The Point Subtraction Aggression Paradigm (PSAP) measures aggressive behavior in response to provocations. The aim of the study was to implement the PSAP in a functional neuroimaging environment (fMRI) and evaluate aggression-related brain reactivity including response to provocations and associa......The Point Subtraction Aggression Paradigm (PSAP) measures aggressive behavior in response to provocations. The aim of the study was to implement the PSAP in a functional neuroimaging environment (fMRI) and evaluate aggression-related brain reactivity including response to provocations...... and associations with aggression within the paradigm. Twenty healthy participants completed two 12-min PSAP sessions within the scanner. We evaluated brain responses to aggressive behavior (removing points from an opponent), provocations (point subtractions by the opponent), and winning points. Our results showed...... with the involvement of these brain regions in emotional and impulsive behavior. Striatal reactivity may suggest an involvement of reward during winning and stealing points....

  7. Cefotaxime-heparin lock prophylaxis against hemodialysis catheter-related sepsis among Staphylococcus aureus nasal carriers

    Directory of Open Access Journals (Sweden)

    Anil K Saxena

    2012-01-01

    Full Text Available Staphylococcus aureus nasal carriers undergoing hemodialysis (HD through tunneled cuffed catheters (TCCs form a high-risk group for the development of catheter-related bloodstream infections (CRBSI and ensuing morbidity. The efficacy of antibiotic-locks on the outcomes of TCCs among S. aureus nasal carriers has not been studied earlier. Persistent nasal carriage was defined by two or more positive cultures for methicillin-susceptible (MSSA or methicillin-resistant (MRSA S. aureus of five standardized nasal swabs taken from all the participants dialyzed at a large out-patient HD center affiliated to a tertiary care hospital. Of 218 participants, 82 S. aureus nasal carriers dialyzed through TCCs (n = 88 were identified through April 2005 to March 2006 and randomized to two groups. Group I comprised of 39 nasal carriers who had TCCs (n = 41 "locked" with cefotaxime/heparin while group II included 43 patients with TCCs (n = 47 filled with standard heparin. The CRBSI incidence and TCC survival at 365 days were statistically compared between the two groups. A significantly lower CRBSI incidence (1.47 vs. 3.44/1000 catheter-days, P <0.001 and higher infection-free TCC survival rates at 365 days (80.5 vs. 40.4%, P <0.0001 were observed in the cefotaxime group compared with the stan-dard heparin group. However, no significant difference in MRSA-associated CRBSI incidence was observed between the two groups. Cefotaxime-heparin "locks" effectively reduced CRBSI-incidence associated with gram-positive cocci, including MSSA, among S. aureus nasal carriers. There remains a compelling requirement for antibiotic-locks effective against MRSA.

  8. Programmable Self-Locking Origami Mechanical Metamaterials.

    Science.gov (United States)

    Fang, Hongbin; Chu, Shih-Cheng A; Xia, Yutong; Wang, Kon-Well

    2018-04-01

    Developing mechanical metamaterials with programmable properties is an emerging topic receiving wide attention. While the programmability mainly originates from structural multistability in previously designed metamaterials, here it is shown that nonflat-foldable origami provides a new platform to achieve programmability via its intrinsic self-locking and reconfiguration capabilities. Working with the single-collinear degree-4 vertex origami tessellation, it is found that each unit cell can self-lock at a nonflat configuration and, therefore, possesses wide design space to program its foldability and relative density. Experiments and numerical analyses are combined to demonstrate that by switching the deformation modes of the constituent cell from prelocking folding to postlocking pressing, its stiffness experiences a sudden jump, implying a limiting-stopper effect. Such a stiffness jump is generalized to a multisegment piecewise stiffness profile in a multilayer model. Furthermore, it is revealed that via strategically switching the constituent cells' deformation modes through passive or active means, the n-layer metamaterial's stiffness is controllable among 2 n target stiffness values. Additionally, the piecewise stiffness can also trigger bistable responses dynamically under harmonic excitations, highlighting the metamaterial's rich dynamic performance. These unique characteristics of self-locking origami present new paths for creating programmable mechanical metamaterials with in situ controllable mechanical properties. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The impacts of racial group membership on people's distributive justice: an event-related potential study.

    Science.gov (United States)

    Wang, Yan; Tang, Yi-Yuan; Deng, Yuqin

    2014-04-16

    How individuals and societies distribute benefits has long been studied by psychologists and sociologists. Previous work has highlighted the importance of social identity on people's justice concerns. However, it is not entirely clear how racial in-group/out-group relationship affects the brain activity in distributive justice. In this study, event-related potentials were recorded while participants made their decisions about donation allocation. Behavioral results showed that racial in-group factor affected participants' decisions on justice consideration. Participants were more likely to make relatively equity decisions when racial in-group factor was congruent with equity compared with the corresponding incongruent condition. Moreover, this incongruent condition took longer response times than congruent condition. Meanwhile, less equity decisions were made when efficiency was larger in the opposite side to equity than it was equal between the two options. Scalp event-related potential analyses revealed that greater P300 and late positive potential amplitudes were elicited by the incongruent condition compared with the congruent condition. These findings suggest that the decision-making of distributive justice could be modulated by racial group membership, and greater attentional resources or cognitive efforts are required when racial in-group factor and equity conflict with each other.

  10. The Relative Importance of Spatial Versus Temporal Structure in the Perception of Biological Motion: An Event-Related Potential Study

    Science.gov (United States)

    Hirai, Masahiro; Hiraki, Kazuo

    2006-01-01

    We investigated how the spatiotemporal structure of animations of biological motion (BM) affects brain activity. We measured event-related potentials (ERPs) during the perception of BM under four conditions: normal spatial and temporal structure; scrambled spatial and normal temporal structure; normal spatial and scrambled temporal structure; and…

  11. Conceptual Integration of Arithmetic Operations with Real-World Knowledge: Evidence from Event-Related Potentials

    Science.gov (United States)

    Guthormsen, Amy M.; Fisher, Kristie J.; Bassok, Miriam; Osterhout, Lee; DeWolf, Melissa; Holyoak, Keith J.

    2016-01-01

    Research on language processing has shown that the disruption of conceptual integration gives rise to specific patterns of event-related brain potentials (ERPs)--N400 and P600 effects. Here, we report similar ERP effects when adults performed cross-domain conceptual integration of analogous semantic and mathematical relations. In a problem-solving…

  12. Differential Recruitment of Brain Regions During Response Inhibition in Children Prenatally Exposed to Alcohol.

    Science.gov (United States)

    Kodali, Vikas N; Jacobson, Joseph L; Lindinger, Nadine M; Dodge, Neil C; Molteno, Christopher D; Meintjes, Ernesta M; Jacobson, Sandra W

    2017-02-01

    Response inhibition is a distinct aspect of executive function that is frequently impaired in children with fetal alcohol spectrum disorders (FASD). We used a Go/NoGo (GNG) task in a functional MRI protocol to investigate differential activation of brain regions in the response inhibition network in children diagnosed with full or partial fetal alcohol syndrome (FAS/PFAS), compared with healthy controls. A rapid, event-related task with 120 Go and 60 NoGo trials was used to study children aged 8 to 12 years-8 with FAS/PFAS, 17 controls. Letters were projected sequentially, with Go and NoGo trials randomly interspersed across the task. BOLD signal in the whole brain was contrasted for the correct NoGo minus correct Go trials between the FAS/PFAS and control groups. Compared to the FAS/PFAS group, controls showed greater activation of the inferior frontal and anterior cingulate network linked to response inhibition in typically developing children. By contrast, the FAS/PFAS group showed greater BOLD response in dorsolateral prefrontal cortex and other middle prefrontal regions, suggesting compensation for inefficient function of pathways that normally mediate inhibitory processing. All group differences were significant after control for potential confounding variables. None of the effects of prenatal alcohol exposure on activation of the regions associated with response inhibition were attributable to the effects of this exposure on IQ. This is the first FASD GNG study in which all participants in the exposed group met criteria for a diagnosis of full FAS or PFAS. Although FASD is frequently comorbid with attention deficit hyperactivity disorder, the pattern of brain activation seen in these disorders differs, suggesting that different neural pathways mediate response inhibition in FASD and that different interventions for FASD are, therefore, warranted. Copyright © 2017 by the Research Society on Alcoholism.

  13. The Advanced Thread-Locking Mechanism

    Science.gov (United States)

    Weiss, Wolfgang

    2005-12-01

    (self-locking, running) torque.2. No extra locking hardware or retaining compounds required.3. ATLM fasteners produce stable retention (locking) torque with no limitation for the number of screw cycles; i.e., unlimited use of fastener in respect of the self-locking capability.4. Anti friction coatings on threads have no influence on locking torque.5. Locking of the threaded members takes place automatically - no assembly errors possible.6. Integrated tool design for installation / torquing and unlocking / removal of the fastener.7. Capture of unscrewed fastener by the tool - no inadvertent loss of hardware resulting in space debris.8. Relative to screw locking, no assembly inspection procedures are required.

  14. Operating experience feedback report -- Pressure locking and thermal binding of gate valves

    International Nuclear Information System (INIS)

    Hsu, C.

    1993-03-01

    The potential for valve inoperability caused by pressure locking and thermal binding has been known for many years in the nuclear industry. Pressure locking or thermal binding is a common-mode failure mechanism that can prevent a gate valve from opening, and could render redundant trains of safety systems or multiple safety systems inoperable. In spite of numerous generic communications issued in the past by the Nuclear Regulatory Commission (NRC) and industry, pressure locking and thermal binding continues to occur to gate valves installed in safety-related systems of both boding water reactors (BWRs) and pressurized water reactors (PWRs). The generic communications to date have not led to effective industry action to fully identify, evaluate, and correct the problem. This report provides a review of operating events involving these failure mechanisms. As a result of this review this report: (1) identifies conditions when the failure mechanisms have occurred, (2) identifies the spectrum of safety systems that have been subjected to the failure mechanisms, and (3) identifies conditions that may introduce the failure mechanisms under both normal and accident conditions. On the basis of the evaluation of the operating events, the Office for Analysis and Evaluation of Operational Data (AEOD) of the NRC concludes that the binding problems with gate valves are an important safety issue that needs priority NRC and industry attention. This report also provides AEOD's recommendation for actions to effectively prevent the occurrence of valve binding failures

  15. Directed cortical information flow during human object recognition: analyzing induced EEG gamma-band responses in brain's source space.

    Directory of Open Access Journals (Sweden)

    Gernot G Supp

    Full Text Available The increase of induced gamma-band responses (iGBRs; oscillations >30 Hz elicited by familiar (meaningful objects is well established in electroencephalogram (EEG research. This frequency-specific change at distinct locations is thought to indicate the dynamic formation of local neuronal assemblies during the activation of cortical object representations. As analytically power increase is just a property of a single location, phase-synchrony was introduced to investigate the formation of large-scale networks between spatially distant brain sites. However, classical phase-synchrony reveals symmetric, pair-wise correlations and is not suited to uncover the directionality of interactions. Here, we investigated the neural mechanism of visual object processing by means of directional coupling analysis going beyond recording sites, but rather assessing the directionality of oscillatory interactions between brain areas directly. This study is the first to identify the directionality of oscillatory brain interactions in source space during human object recognition and suggests that familiar, but not unfamiliar, objects engage widespread reciprocal information flow. Directionality of cortical information-flow was calculated based upon an established Granger-Causality coupling-measure (partial-directed coherence; PDC using autoregressive modeling. To enable comparison with previous coupling studies lacking directional information, phase-locking analysis was applied, using wavelet-based signal decompositions. Both, autoregressive modeling and wavelet analysis, revealed an augmentation of iGBRs during the presentation of familiar objects relative to unfamiliar controls, which was localized to inferior-temporal, superior-parietal and frontal brain areas by means of distributed source reconstruction. The multivariate analysis of PDC evaluated each possible direction of brain interaction and revealed widespread reciprocal information-transfer during familiar

  16. Automated Identification of MHD Mode Bifurcation and Locking in Tokamaks

    Science.gov (United States)

    Riquezes, J. D.; Sabbagh, S. A.; Park, Y. S.; Bell, R. E.; Morton, L. A.

    2017-10-01

    Disruption avoidance is critical in reactor-scale tokamaks such as ITER to maintain steady plasma operation and avoid damage to device components. A key physical event chain that leads to disruptions is the appearance of rotating MHD modes, their slowing by resonant field drag mechanisms, and their locking. An algorithm has been developed that automatically detects bifurcation of the mode toroidal rotation frequency due to loss of torque balance under resonant braking, and mode locking for a set of shots using spectral decomposition. The present research examines data from NSTX, NSTX-U and KSTAR plasmas which differ significantly in aspect ratio (ranging from A = 1.3 - 3.5). The research aims to examine and compare the effectiveness of different algorithms for toroidal mode number discrimination, such as phase matching and singular value decomposition approaches, and to examine potential differences related to machine aspect ratio (e.g. mode eigenfunction shape variation). Simple theoretical models will be compared to the dynamics found. Main goals are to detect or potentially forecast the event chain early during a discharge. This would serve as a cue to engage active mode control or a controlled plasma shutdown. Supported by US DOE Contracts DE-SC0016614 and DE-AC02-09CH11466.

  17. Frequency locking in auditory hair cells: Distinguishing between additive and parametric forcing

    Science.gov (United States)

    Edri, Yuval; Bozovic, Dolores; Yochelis, Arik

    2016-10-01

    The auditory system displays remarkable sensitivity and frequency discrimination, attributes shown to rely on an amplification process that involves a mechanical as well as a biochemical response. Models that display proximity to an oscillatory onset (also known as Hopf bifurcation) exhibit a resonant response to distinct frequencies of incoming sound, and can explain many features of the amplification phenomenology. To understand the dynamics of this resonance, frequency locking is examined in a system near the Hopf bifurcation and subject to two types of driving forces: additive and parametric. Derivation of a universal amplitude equation that contains both forcing terms enables a study of their relative impact on the hair cell response. In the parametric case, although the resonant solutions are 1 : 1 frequency locked, they show the coexistence of solutions obeying a phase shift of π, a feature typical of the 2 : 1 resonance. Different characteristics are predicted for the transition from unlocked to locked solutions, leading to smooth or abrupt dynamics in response to different types of forcing. The theoretical framework provides a more realistic model of the auditory system, which incorporates a direct modulation of the internal control parameter by an applied drive. The results presented here can be generalized to many other media, including Faraday waves, chemical reactions, and elastically driven cardiomyocytes, which are known to exhibit resonant behavior.

  18. Interband optical pulse injection locking of quantum dot mode-locked semiconductor laser.

    Science.gov (United States)

    Kim, Jimyung; Delfyett, Peter J

    2008-07-21

    We experimentally demonstrate optical clock recovery from quantum dot mode-locked semiconductor lasers by interband optical pulse injection locking. The passively mode-locked slave laser oscillating on the ground state or the first excited state transition is locked through the injection of optical pulses generated via the opposite transition bands, i.e. the first excited state or the ground state transition from the hybridly mode-locked master laser, respectively. When an optical pulse train generated via the first excited state from the master laser is injected to the slave laser oscillating via ground state, the slave laser shows an asymmetric locking bandwidth around the nominal repetition rate of the slave laser. In the reverse injection case of, i.e. the ground state (master laser) to the first excited state (slave laser), the slave laser does not lock even though both lasers oscillate at the same cavity frequency. In this case, the slave laser only locks to higher injection rates as compared to its own nominal repetition rate, and also shows a large locking bandwidth of 6.7 MHz.

  19. Motivational Hierarchy in the Chinese Brain: Primacy of the Individual Self, Relational Self, or Collective Self?

    Science.gov (United States)

    Zhu, Xiangru; Wu, Haiyan; Yang, Suyong; Gu, Ruolei

    2016-01-01

    According to the three-tier hierarchy of motivational potency in the self system, the self can be divided into individual self, relational self, and collective self, and individual self is at the top of the motivational hierarchy in Western culture. However, the motivational primacy of the individual self is challenged in Chinese culture, which raises the question about whether the three-tier hierarchy of motivational potency in the self system can be differentiated in the collectivist brain. The present study recorded the event-related potentials (ERPs) to evaluate brain responses when participants gambled for individual self, for a close friend (relational self), or for the class (collective self). The ERP results showed that when outcome feedback was positive, gambling for individual self evoked a larger reward positivity compared with gambling for a friend or for the class, while there is no difference between the latter two conditions. In contrast, when outcome feedback was negative, no significant effect was found between conditions. The present findings provide direct electrophysiological evidence that individual self is at the top of the three-tier hierarchy of the motivational system in the collectivist brain, which supports the classical pancultural view that individual self has motivational primacy.

  20. Neurophysiological correlates of response inhibition predict relapse in detoxified alcoholic patients: some preliminary evidence from event-related potentials

    Directory of Open Access Journals (Sweden)

    Petit G

    2014-06-01

    Full Text Available Géraldine Petit, Agnieszka Cimochowska, Charles Kornreich, Catherine Hanak, Paul Verbanck, Salvatore CampanellaLaboratory of Psychological Medicine and Addictology, ULB Neuroscience Institute (UNI, Université Libre de Bruxelles (ULB, Brussels, BelgiumBackground: Alcohol dependence is a chronic relapsing disease. The impairment of response inhibition and alcohol-cue reactivity are the main cognitive mechanisms that trigger relapse. Despite the interaction suggested between the two processes, they have long been investigated as two different lines of research. The present study aimed to investigate the interaction between response inhibition and alcohol-cue reactivity and their potential link with relapse.Materials and methods: Event-related potentials were recorded during a variant of a “go/no-go” task. Frequent and rare stimuli (to be inhibited were superimposed on neutral, nonalcohol-related, and alcohol-related contexts. The task was administered following a 3-week detoxification course. Relapse outcome was measured after 3 months, using self-reported abstinence. There were 27 controls (seven females and 27 patients (seven females, among whom 13 relapsed during the 3-month follow-up period. The no-go N2, no-go P3, and the “difference” wave (P3d were examined with the aim of linking neural correlates of response inhibition on alcohol-related contexts to the observed relapse rate.Results: Results showed that 1 at the behavioral level, alcohol-dependent patients made significantly more commission errors than controls (P<0.001, independently of context; 2 through the subtraction no-go P3 minus go P3, this inhibition deficit was neurophysiologically indexed in patients with greater P3d amplitudes (P=0.034; and 3 within the patient group, increased P3d amplitude enabled us to differentiate between future relapsers and nonrelapsers (P=0.026.Conclusion: Our findings suggest that recently detoxified alcoholics are characterized by poorer

  1. Encoding of faces and objects into visual working memory: an event-related brain potential study.

    Science.gov (United States)

    Meinhardt-Injac, Bozana; Persike, Malte; Berti, Stefan

    2013-09-11

    Visual working memory (VWM) is an important prerequisite for cognitive functions, but little is known on whether the general perceptual processing advantage for faces also applies to VWM processes. The aim of the present study was (a) to test whether there is a general advantage for face stimuli in VWM and (b) to unravel whether this advantage is related to early sensory processing stages. To address these questions, we compared encoding of faces and complex nonfacial objects into VWM within a combined behavioral and event-related brain potential (ERP) study. In detail, we tested whether the N170 ERP component - which is associated with face-specific holistic processing - is affected by memory load for faces or whether it might be involved in WM encoding of any complex object. Participants performed a same-different task with either face or watch stimuli and with two different levels of memory load. Behavioral measures show an advantage for faces on the level of VWM, mirrored in higher estimated VWM capacity (i.e. Cowan's K) for faces compared with watches. In the ERP, the N170 amplitude was enhanced for faces compared with watches. However, the N170 was not modulated by working memory load either for faces or for watches. In contrast, the P3b component was affected by memory load irrespective of the stimulus category. Taken together, the results suggest that the VWM advantage for faces is not reflected at the sensory stages of stimulus processing, but rather at later higher-level processes as reflected by the P3b component.

  2. The effects of cortisol administration on approach-avoidance behavior: An event-related potential study

    NARCIS (Netherlands)

    Peer, J.M. van; Roelofs, K.; Rotteveel, M.; Dijk, J.G. van; Spinhoven, P.; Ridderinkhof, K.R.

    2007-01-01

    We investigated the effects of cortisol administration (50 mg) on approach and avoidance tendencies in low and high trait avoidant healthy young men. Event-related brain potentials (ERPs) were measured during a reaction time task, in which participants evaluated the emotional expression of

  3. Relations between Rainfall and Postfire Debris-Flow- and Flood-Event Magnitudes for Emergency-Response Planning, San Gabriel Mountains, Southern California, USA

    Science.gov (United States)

    Cannon, Susan; Collins, Larry; Boldt, Eric; Staley, Dennis

    2010-05-01

    .46defines the rainfall conditions above which Magnitude III events can be expected. Rainfall trigger-event magnitude relations are linked with potential emergency-response actions in the form of an emergency-response decision chart. The chart leads a user through steps to 1) determine potential event magnitudes, and 2) identify possible evacuation and resource-deployment levels as a function of either individual storm forecasts or measured precipitation during storms. The ability to use this information in the planning and response decision-making process may result in significant financial savings and increased safety for both the public and emergency responders.

  4. Key-lock colloids in a nematic liquid crystal.

    Science.gov (United States)

    Silvestre, Nuno M; Tasinkevych, M

    2017-01-01

    The Landau-de Gennes free energy is used to study theoretically the effective interaction of spherical "key" and anisotropic "lock" colloidal particles. We assume identical anchoring properties of the surfaces of the key and of the lock particles, and we consider planar degenerate and perpendicular anchoring conditions separately. The lock particle is modeled as a spherical particle with a spherical dimple. When such a particle is introduced into a nematic liquid crystal, it orients its dimple at an oblique angle θ_{eq} with respect to the far field director n_{∞}. This angle depends on the depth of the dimple. Minimization results show that the free energy of a pair of key and lock particles exhibits a global minimum for the configuration when the key particle is facing the dimple of the lock colloidal particle. The preferred orientation ϕ_{eq} of the key-lock composite doublet relative to n_{∞} is robust against thermal fluctuations. The preferred orientation θ_{eq}^{(2)} of the dimple particle in the doublet is different from the isolated situation. This is related to the "direct" interaction of defects accompanying the key particle with the edge of the dimple. We propose that this nematic-amplified key-lock interaction can play an important role in self-organization and clustering of mixtures of colloidal particles with dimple colloids present.

  5. Brain Regions Related to Impulsivity Mediate the Effects of Early Adversity on Antisocial Behavior.

    Science.gov (United States)

    Mackey, Scott; Chaarani, Bader; Kan, Kees-Jan; Spechler, Philip A; Orr, Catherine; Banaschewski, Tobias; Barker, Gareth; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Cattrell, Anna; Conrod, Patricia J; Desrivières, Sylvane; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Paillère Martinot, Marie-Laure; Artiges, Eric; Nees, Frauke; Papadopoulos-Orfanos, Dimitri; Poustka, Luise; Smolka, Michael N; Jurk, Sarah; Walter, Henrik; Whelan, Robert; Schumann, Gunter; Althoff, Robert R; Garavan, Hugh

    2017-08-15

    Individual differences in impulsivity and early adversity are known to be strong predictors of adolescent antisocial behavior. However, the neurobiological bases of impulsivity and their relation to antisocial behavior and adversity are poorly understood. Impulsivity was estimated with a temporal discounting task. Voxel-based morphometry was used to determine the brain structural correlates of temporal discounting in a large cohort (n = 1830) of 14- to 15-year-old children. Mediation analysis was then used to determine whether the volumes of brain regions associated with temporal discounting mediate the relation between adverse life events (e.g., family conflict, serious accidents) and antisocial behaviors (e.g., precocious sexual activity, bullying, illicit substance use). Greater temporal discounting (more impulsivity) was associated with 1) lower volume in frontomedial cortex and bilateral insula and 2) greater volume in a subcortical region encompassing the ventral striatum, hypothalamus and anterior thalamus. The volume ratio between these cortical and subcortical regions was found to partially mediate the relation between adverse life events and antisocial behavior. Temporal discounting is related to regions of the brain involved in reward processing and interoception. The results support a developmental imbalance model of impulsivity and are consistent with the idea that negative environmental factors can alter the developing brain in ways that promote antisocial behavior. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Modulation of untruthful responses with noninvasive brain stimulation

    Directory of Open Access Journals (Sweden)

    Shirley eFecteau

    2013-02-01

    Full Text Available Deceptive abilities have long been studied in relation to personality traits. More recently, studies explored the neural substrates associated with deceptive skills suggesting a critical role of the prefrontal cortex. Here we investigated whether noninvasive brain stimulation over the dorsolateral prefrontal cortex (DLPFC could modulate generation of untruthful responses about subject’s personal life across contexts (i.e., deceiving on guilt-free questions on daily activities; generating previously memorized lies about past experience; and producing spontaneous lies about past experience, as well as across modality responses (verbal and motor responses. Results reveal that real, but not sham, transcranial direct current stimulation (tDCS over the DLPFC can reduce response latency for untruthful over truthful answers across contexts and modality responses. Also, contexts of lies seem to incur a different hemispheric laterality. These findings add up to previous studies demonstrating that it is possible to modulate some processes involved in generation of untruthful answers by applying noninvasive brain stimulation over the DLPFC and extend these findings by showing a differential hemispheric contribution of DLPFCs according to contexts.

  7. Mining known attack patterns from security-related events

    Directory of Open Access Journals (Sweden)

    Nicandro Scarabeo

    2015-10-01

    Full Text Available Managed Security Services (MSS have become an essential asset for companies to have in order to protect their infrastructure from hacking attempts such as unauthorized behaviour, denial of service (DoS, malware propagation, and anomalies. A proliferation of attacks has determined the need for installing more network probes and collecting more security-related events in order to assure the best coverage, necessary for generating incident responses. The increase in volume of data to analyse has created a demand for specific tools that automatically correlate events and gather them in pre-defined scenarios of attacks. Motivated by Above Security, a specialized company in the sector, and by National Research Council Canada (NRC, we propose a new data mining system that employs text mining techniques to dynamically relate security-related events in order to reduce analysis time, increase the quality of the reports, and automatically build correlated scenarios.

  8. Roald Dahl and the complete locked-in syndrome: "Cold dead body, living brain"

    DEFF Research Database (Denmark)

    Kondziella, Daniel

    2017-01-01

    they no longer have any motor output at all. Of note, Roald Dahl, the internationally acclaimed children book author, described this complete locked-in syndrome in one of his short stories, William and Mary (1959), almost half a century before the medical community became aware of this devastating condition......The classical locked-in syndrome in which partially preserved eye movements allow for communication is well-recognized by most neurologists. Yet, it is much less well-known that patients exist who are clearly conscious but have lost all means of communicating it to the outside world because...

  9. Brain network activation as a novel biomarker for the return-to-play pathway following sport-related brain injury: A prospective case study

    Directory of Open Access Journals (Sweden)

    Adam W Kiefer

    2015-11-01

    Full Text Available Children and adolescent athletes are at a higher risk for concussion than adults, and also experience longer recovery times and increased associated symptoms. It has also recently been demonstrated that multiple, seemingly mild concussions may result in exacerbated and prolonged neurologic deficits. Objective assessments and return to play criteria are needed to reduce risk and morbidity associated with concussive events in these populations. Recent research has pushed to study the use of electroencephalography as an objective measure of brain injury. In the present case study, we present a novel approach that examines event related potentials via a brain network activation (BNA analysis as a biomarker of concussion and recovery. Specifically, changes in BNA scores as indexed through this approach, offer a potential indicator of neurological health as the BNA assessment qualitatively and quantitatively indexes the network dynamics associated with brain injury. Objective tools such as these support accurate and efficient assessment of brain injury and may offer a useful step in categorizing the temporal and spatial changes in brain activity following concussive blows, as well as the functional connectivity of brain networks, associated with concussion.

  10. Acute nicotine fails to alter event-related potential or behavioral performance indices of auditory distraction in cigarette smokers.

    Science.gov (United States)

    Knott, Verner J; Scherling, Carole S; Blais, Crystal M; Camarda, Jordan; Fisher, Derek J; Millar, Anne; McIntosh, Judy F

    2006-04-01

    Behavioral studies have shown that nicotine enhances performance in sustained attention tasks, but they have not shown convincing support for the effects of nicotine on tasks requiring selective attention or attentional control under conditions of distraction. We investigated distractibility in 14 smokers (7 females) with event-related brain potentials (ERPs) and behavioral performance measures extracted from an auditory discrimination task requiring a choice reaction time response to short- and long-duration tones, both with and without embedded deviants. Nicotine gum (4 mg), administered in a randomized, double-blind, placebo-controlled crossover design, failed to counter deviant-elicited behavioral distraction (i.e., slower reaction times and increased response errors), and it did not influence the distracter-elicited mismatch negativity, the P300a, or the reorienting negativity ERP components reflecting acoustic change detection, involuntary attentional switching, and attentional reorienting, respectively. Results are discussed in relation to a stimulus-filter model of smoking and in relation to future research directions.

  11. Event-related potentials and secondary task performance during simulated driving.

    Science.gov (United States)

    Wester, A E; Böcker, K B E; Volkerts, E R; Verster, J C; Kenemans, J L

    2008-01-01

    Inattention and distraction account for a substantial number of traffic accidents. Therefore, we examined the impact of secondary task performance (an auditory oddball task) on a primary driving task (lane keeping). Twenty healthy participants performed two 20-min tests in the Divided Attention Steering Simulator (DASS). The visual secondary task of the DASS was replaced by an auditory oddball task to allow recording of brain activity. The driving task and the secondary (distracting) oddball task were presented in isolation and simultaneously, to assess their mutual interference. In addition to performance measures (lane keeping in the primary driving task and reaction speed in the secondary oddball task), brain activity, i.e. event-related potentials (ERPs), was recorded. Performance parameters on the driving test and the secondary oddball task did not differ between performance in isolation and simultaneous performance. However, when both tasks were performed simultaneously, reaction time variability increased in the secondary oddball task. Analysis of brain activity indicated that ERP amplitude (P3a amplitude) related to the secondary task, was significantly reduced when the task was performed simultaneously with the driving test. This study shows that when performing a simple secondary task during driving, performance of the driving task and this secondary task are both unaffected. However, analysis of brain activity shows reduced cortical processing of irrelevant, potentially distracting stimuli from the secondary task during driving.

  12. Neural correlates of economic value and valuation context: an event-related potential study.

    Science.gov (United States)

    Tyson-Carr, John; Kokmotou, Katerina; Soto, Vicente; Cook, Stephanie; Fallon, Nicholas; Giesbrecht, Timo; Stancak, Andrej

    2018-05-01

    The value of environmental cues and internal states is continuously evaluated by the human brain, and it is this subjective value that largely guides decision making. The present study aimed to investigate the initial value attribution process, specifically the spatiotemporal activation patterns associated with values and valuation context, using electroencephalographic event-related potentials (ERPs). Participants completed a stimulus rating task in which everyday household items marketed up to a price of £4 were evaluated with respect to their desirability or material properties. The subjective values of items were evaluated as willingness to pay (WTP) in a Becker-DeGroot-Marschak auction. On the basis of the individual's subjective WTP values, the stimuli were divided into high- and low-value items. Source dipole modeling was applied to estimate the cortical sources underlying ERP components modulated by subjective values (high vs. low WTP) and the evaluation condition (value-relevant vs. value-irrelevant judgments). Low-WTP items and value-relevant judgments both led to a more pronounced N2 visual evoked potential at right frontal scalp electrodes. Source activity in right anterior insula and left orbitofrontal cortex was larger for low vs. high WTP at ∼200 ms. At a similar latency, source activity in right anterior insula and right parahippocampal gyrus was larger for value-relevant vs. value-irrelevant judgments. A stronger response for low- than high-value items in anterior insula and orbitofrontal cortex appears to reflect aversion to low-valued item acquisition, which in an auction experiment would be perceived as a relative loss. This initial low-value bias occurs automatically irrespective of the valuation context. NEW & NOTEWORTHY We demonstrate the spatiotemporal characteristics of the brain valuation process using event-related potentials and willingness to pay as a measure of subjective value. The N2 component resolves values of objects with a

  13. Representations in human visual short-term memory : an event-related brain potential study

    NARCIS (Netherlands)

    Klaver, P; Smid, HGOM; Heinze, HJ

    1999-01-01

    Behavioral measures and event-related potentials (ERPs) were recorded from 12 subjects while performing three delayed matching-to-sample tasks. The task instructions indicated whether stimulus locations, shapes or conjunctions of locations and shapes had to be memorized and matched against a probe.

  14. Enhanced-locality fiber-optic two-photon-fluorescence live-brain interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov, I. V.; Doronina-Amitonova, L. V. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Kurchatov Institute National Research Center, Moscow (Russian Federation); Sidorov-Biryukov, D. A.; Fedotov, A. B. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Anokhin, K. V. [Kurchatov Institute National Research Center, Moscow (Russian Federation); P.K. Anokhin Institute of Normal Physiology, Russian Academy of Medical Sciences, Moscow (Russian Federation); Kilin, S. Ya. [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus); Sakoda, K. [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Zheltikov, A. M. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Center of Photochemistry, Russian Academy of Sciences, ul. Novatorov 7a, Moscow 117421 (Russian Federation)

    2014-02-24

    Two-photon excitation is shown to substantially enhance the locality of fiber-based optical interrogation of strongly scattering biotissues. In our experiments, a high-numerical-aperture, large-core-are fiber probe is used to deliver the 200-fs output of a 100-MHz mode-locked ytterbium fiber laser to samples of live mouse brain, induce two-photon fluorescence of nitrogen–vacancy centers in diamond markers in brain sample. Fiber probes with a high numerical aperture and a large core area are shown to enable locality enhancement in fiber-laser–fiber-probe two-photon brain excitation and interrogation without sacrificing the efficiency of fluorescence response collection.

  15. Joint Maximum Likelihood Time Delay Estimation of Unknown Event-Related Potential Signals for EEG Sensor Signal Quality Enhancement

    Science.gov (United States)

    Kim, Kyungsoo; Lim, Sung-Ho; Lee, Jaeseok; Kang, Won-Seok; Moon, Cheil; Choi, Ji-Woong

    2016-01-01

    Electroencephalograms (EEGs) measure a brain signal that contains abundant information about the human brain function and health. For this reason, recent clinical brain research and brain computer interface (BCI) studies use EEG signals in many applications. Due to the significant noise in EEG traces, signal processing to enhance the signal to noise power ratio (SNR) is necessary for EEG analysis, especially for non-invasive EEG. A typical method to improve the SNR is averaging many trials of event related potential (ERP) signal that represents a brain’s response to a particular stimulus or a task. The averaging, however, is very sensitive to variable delays. In this study, we propose two time delay estimation (TDE) schemes based on a joint maximum likelihood (ML) criterion to compensate the uncertain delays which may be different in each trial. We evaluate the performance for different types of signals such as random, deterministic, and real EEG signals. The results show that the proposed schemes provide better performance than other conventional schemes employing averaged signal as a reference, e.g., up to 4 dB gain at the expected delay error of 10°. PMID:27322267

  16. Joint Maximum Likelihood Time Delay Estimation of Unknown Event-Related Potential Signals for EEG Sensor Signal Quality Enhancement

    Directory of Open Access Journals (Sweden)

    Kyungsoo Kim

    2016-06-01

    Full Text Available Electroencephalograms (EEGs measure a brain signal that contains abundant information about the human brain function and health. For this reason, recent clinical brain research and brain computer interface (BCI studies use EEG signals in many applications. Due to the significant noise in EEG traces, signal processing to enhance the signal to noise power ratio (SNR is necessary for EEG analysis, especially for non-invasive EEG. A typical method to improve the SNR is averaging many trials of event related potential (ERP signal that represents a brain’s response to a particular stimulus or a task. The averaging, however, is very sensitive to variable delays. In this study, we propose two time delay estimation (TDE schemes based on a joint maximum likelihood (ML criterion to compensate the uncertain delays which may be different in each trial. We evaluate the performance for different types of signals such as random, deterministic, and real EEG signals. The results show that the proposed schemes provide better performance than other conventional schemes employing averaged signal as a reference, e.g., up to 4 dB gain at the expected delay error of 10°.

  17. Design and Performance Test of Locking Curved-Nut

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Min Cheol; Kang, Ho Sung; Kim, Do Yeop; Lee, Suk Yong; Lee, Eung Suk [Chungbuk Nat’l Univ., Cheongju (Korea, Republic of); Jeong, Hui Jong [Viblock Company, Cheongwon (Korea, Republic of)

    2017-03-15

    Many types of locking nut are commercializing in the various industries where has heavy vibration. Because Nut's loosing causes a serious accident. But the most locking nuts are too expensive as the complicate manufacturing process. In this study, we design the new type of locking nut, 'Curved-Nut' that is relatively simple making process. We study a relation between the elastic energy and the nut loosing mechanism. So it is analysed, the elastic energy of Curved-Nut comparing with the locking test. The Curved-Nut was manufactured on the commercial nut using a milling tool with horizontal cutting, one or two time under the nut. As the result, the more elastic energy the more prevent the loosing of the nut. We verified the performance of the loosing nut using the vibration testing equipment (NAS3350).

  18. Interpretation of ambiguous social scenarios in social phobia and depression: evidence from event-related brain potentials.

    Science.gov (United States)

    Moser, Jason S; Huppert, Jonathan D; Foa, Edna B; Simons, Robert F

    2012-02-01

    In the current study, event-related potentials (ERPs) and behavioral responses were measured in individuals meeting diagnostic criteria for social phobia, depression, their combination, or neither in order to examine the unique and combined effects of social phobia and depression on the interpretation of ambiguous social scenarios. ERPs revealed a lack of positive interpretation bias and some suggestion of a negative bias in the semantic expectancy N4 component across all clinical groups. Furthermore, socially phobic and comorbid individuals showed reductions in baseline attention allocation to the task, as indexed by P6 amplitude. RT and accuracy likewise revealed a lack of positive interpretation bias across disordered groups. When considered on a continuum across all samples, social phobia and depression symptoms were related to the N4 interpretation bias effect whereas P6 amplitude reduction and RT interpretation bias appeared uniquely associated with social phobia. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Dynamics of large-scale cortical interactions at high gamma frequencies during word production: event related causality (ERC) analysis of human electrocorticography (ECoG).

    Science.gov (United States)

    Korzeniewska, Anna; Franaszczuk, Piotr J; Crainiceanu, Ciprian M; Kuś, Rafał; Crone, Nathan E

    2011-06-15

    Intracranial EEG studies in humans have shown that functional brain activation in a variety of functional-anatomic domains of human cortex is associated with an increase in power at a broad range of high gamma (>60Hz) frequencies. Although these electrophysiological responses are highly specific for the location and timing of cortical processing and in animal recordings are highly correlated with increased population firing rates, there has been little direct empirical evidence for causal interactions between different recording sites at high gamma frequencies. Such causal interactions are hypothesized to occur during cognitive tasks that activate multiple brain regions. To determine whether such causal interactions occur at high gamma frequencies and to investigate their functional significance, we used event-related causality (ERC) analysis to estimate the dynamics, directionality, and magnitude of event-related causal interactions using subdural electrocorticography (ECoG) recorded during two word production tasks: picture naming and auditory word repetition. A clinical subject who had normal hearing but was skilled in American Signed Language (ASL) provided a unique opportunity to test our hypothesis with reference to a predictable pattern of causal interactions, i.e. that language cortex interacts with different areas of sensorimotor cortex during spoken vs. signed responses. Our ERC analyses confirmed this prediction. During word production with spoken responses, perisylvian language sites had prominent causal interactions with mouth/tongue areas of motor cortex, and when responses were gestured in sign language, the most prominent interactions involved hand and arm areas of motor cortex. Furthermore, we found that the sites from which the most numerous and prominent causal interactions originated, i.e. sites with a pattern of ERC "divergence", were also sites where high gamma power increases were most prominent and where electrocortical stimulation mapping

  20. Automatic NMR field-frequency lock-pulsed phase locked loop approach.

    Science.gov (United States)

    Kan, S; Gonord, P; Fan, M; Sauzade, M; Courtieu, J

    1978-06-01

    A self-contained deuterium frequency-field lock scheme for a high-resolution NMR spectrometer is described. It is based on phase locked loop techniques in which the free induction decay signal behaves as a voltage-controlled oscillator. By pulsing the spins at an offset frequency of a few hundred hertz and using a digital phase-frequency discriminator this method not only eliminates the usual phase, rf power, offset adjustments needed in conventional lock systems but also possesses the automatic pull-in characteristics that dispense with the use of field sweeps to locate the NMR line prior to closure of the lock loop.

  1. Forced phase-locked response of a nonlinear system with time delay after Hopf bifurcation

    International Nuclear Information System (INIS)

    Ji, J.C.; Hansen, Colin H.

    2005-01-01

    The trivial equilibrium of a nonlinear autonomous system with time delay may become unstable via a Hopf bifurcation of multiplicity two, as the time delay reaches a critical value. This loss of stability of the equilibrium is associated with two coincident pairs of complex conjugate eigenvalues crossing the imaginary axis. The resultant dynamic behaviour of the corresponding nonlinear non-autonomous system in the neighbourhood of the Hopf bifurcation is investigated based on the reduction of the infinite-dimensional problem to a four-dimensional centre manifold. As a result of the interaction between the Hopf bifurcating periodic solutions and the external periodic excitation, a primary resonance can occur in the forced response of the system when the forcing frequency is close to the Hopf bifurcating periodic frequency. The method of multiple scales is used to obtain four first-order ordinary differential equations that determine the amplitudes and phases of the phase-locked periodic solutions. The first-order approximations of the periodic solutions are found to be in excellent agreement with those obtained by direct numerical integration of the delay-differential equation. It is also found that the steady state solutions of the nonlinear non-autonomous system may lose their stability via either a pitchfork or Hopf bifurcation. It is shown that the primary resonance response may exhibit symmetric and asymmetric phase-locked periodic motions, quasi-periodic motions, chaotic motions, and coexistence of two stable motions

  2. Stability improvement for coil position locking of joule balance

    Science.gov (United States)

    Bai, Yang; Liu, Yongmeng; Lu, Yunfeng; Hu, Pengcheng; Wang, Dawei; Li, Zhengkun; Tan, Jiubin; Zhang, Zhonghua

    2017-08-01

    The relative vertical position locking precision between the exciting and suspended coils is an important uncertainty for the Planck constant traceability in joule balance. In order to improve the relative vertical position locking precision, several stability experiments are conducted. The stability characteristics of the suspended and exciting coils are measured using a six-axis laser interferometer system; meanwhile, the effectiveness of the active vibration isolation table is measured using a vibration measurement sensor. The piezoelectric ceramic actuators with PID controller are used to compensate the relative vertical displacement drifts while a six-axis laser interferometer system is used to measure the positions of two coils. Experimental results show that the relative vertical position is stably locked.

  3. Children's Brain Responses to Optic Flow Vary by Pattern Type and Motion Speed.

    Directory of Open Access Journals (Sweden)

    Rick O Gilmore

    Full Text Available Structured patterns of global visual motion called optic flow provide crucial information about an observer's speed and direction of self-motion and about the geometry of the environment. Brain and behavioral responses to optic flow undergo considerable postnatal maturation, but relatively little brain imaging evidence describes the time course of development in motion processing systems in early to middle childhood, a time when psychophysical data suggest that there are changes in sensitivity. To fill this gap, electroencephalographic (EEG responses were recorded in 4- to 8-year-old children who viewed three time-varying optic flow patterns (translation, rotation, and radial expansion/contraction at three different speeds (2, 4, and 8 deg/s. Modulations of global motion coherence evoked coherent EEG responses at the first harmonic that differed by flow pattern and responses at the third harmonic and dot update rate that varied by speed. Pattern-related responses clustered over right lateral channels while speed-related responses clustered over midline channels. Both children and adults show widespread responses to modulations of motion coherence at the second harmonic that are not selective for pattern or speed. The results suggest that the developing brain segregates the processing of optic flow pattern from speed and that an adult-like pattern of neural responses to optic flow has begun to emerge by early to middle childhood.

  4. Discretely tunable micromachined injection-locked lasers

    International Nuclear Information System (INIS)

    Cai, H; Yu, M B; Lo, G Q; Kwong, D L; Zhang, X M; Liu, A Q; Liu, B

    2010-01-01

    This paper reports a micromachined injection-locked laser (ILL) to provide tunable discrete wavelengths. It utilizes a non-continuously tunable laser as the master to lock a Fabry–Pérot semiconductor laser chip. Both lasers are integrated into a deep-etched silicon chip with dimensions of 3 mm × 3 mm × 0.8 mm. Based on the experimental results, significant improvements in the optical power and spectral purity have been achieved in the fully locked state, and optical hysteresis and bistability have also been observed in response to the changes of the output wavelength and optical power of the master laser. As a whole system, the micromachined ILL is able to provide single mode, discrete wavelength tuning, high power and direct modulation with small size and single-chip solution, making it promising for advanced optical communications such as wavelength division multiplexing optical access networks.

  5. Brain network disturbance related to posttraumatic stress and traumatic brain injury in veterans.

    Science.gov (United States)

    Spielberg, Jeffrey M; McGlinchey, Regina E; Milberg, William P; Salat, David H

    2015-08-01

    Understanding the neural causes and consequences of posttraumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI) is a high research priority, given the high rates of associated disability and suicide. Despite remarkable progress in elucidating the brain mechanisms of PTSD and mTBI, a comprehensive understanding of these conditions at the level of brain networks has yet to be achieved. The present study sought to identify functional brain networks and topological properties (measures of network organization and function) related to current PTSD severity and mTBI. Graph theoretic tools were used to analyze resting-state functional magnetic resonance imaging data from 208 veterans of Operation Enduring Freedom, Operation Iraqi Freedom, and Operation New Dawn, all of whom had experienced a traumatic event qualifying for PTSD criterion A. Analyses identified brain networks and topological network properties linked to current PTSD symptom severity, mTBI, and the interaction between PTSD and mTBI. Two brain networks were identified in which weaker connectivity was linked to higher PTSD re-experiencing symptoms, one of which was present only in veterans with comorbid mTBI. Re-experiencing was also linked to worse functional segregation (necessary for specialized processing) and diminished influence of key regions on the network, including the hippocampus. Findings of this study demonstrate that PTSD re-experiencing symptoms are linked to weakened connectivity in a network involved in providing contextual information. A similar relationship was found in a separate network typically engaged in the gating of working memory, but only in veterans with mTBI. Published by Elsevier Inc.

  6. Sex differences in humor processing: An event-related potential study.

    Science.gov (United States)

    Chang, Yi-Tzu; Ku, Li-Chuan; Chen, Hsueh-Chih

    2018-02-01

    Numerous behavioral studies and a handful of functional neuroimaging studies have reported sex differences in humor. However, no study to date has examined differences in the time-course of brain activity during multistage humor processing between the sexes. The purpose of this study was to compare real-time dynamics related to humor processing between women and men, with reference to a proposed three-stage model (involving incongruity detection, incongruity resolution, and elaboration stages). Forty undergraduate students (20 women) underwent event-related potential recording while subjectively rating 30 question-answer-type jokes and 30 question-answer-type statements in a random order. Sex differences were revealed by analyses of the mean amplitudes of difference waves during a specific time window between 1000 and 1300 ms poststimulus onset (P1000-1300). This indicates that women recruited more mental resources to integrate cognitive and emotional components at this late stage. In contrast, men recruited more automated processes during the transition from the cognitive operations of the incongruity resolution stage to the emotional response of the humor elaboration stage. Our results suggest that sex differences in humor processing lie in differences in the integration of cognitive and emotional components, which are closely linked and interact reciprocally, particularly in women. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Discrimination of Fearful and Angry Emotional Voices in Sleeping Human Neonates: a Study of the Mismatch Brain Responses

    Directory of Open Access Journals (Sweden)

    Dandan eZhang

    2014-12-01

    Full Text Available Appropriate processing of human voices with different threat-related emotions is of evolutionarily adaptive value for the survival of individuals. Nevertheless, it is still not clear whether the sensitivity to threat-related information is present at birth. Using an oddball paradigm, the current study investigated the neural correlates underlying automatic processing of emotional voices of fear and anger in sleeping neonates. Event-related potential data showed that the frontocentral scalp distribution of the neonatal brain could discriminate fearful voices from angry voices; the mismatch response (MMR was larger in response to the deviant stimuli of anger, compared with the standard stimuli of fear. Furthermore, this fear-anger MMR discrimination was observed only when neonates were in active sleep state. Although the neonates’ sensitivity to threat-related voices is not likely associated with a conceptual understanding of fearful and angry emotions, this special discrimination in early life may provide a foundation for later emotion and social cognition development.

  8. Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain.

    Science.gov (United States)

    Kotrschal, Alexander; Rogell, Björn; Bundsen, Andreas; Svensson, Beatrice; Zajitschek, Susanne; Brännström, Ioana; Immler, Simone; Maklakov, Alexei A; Kolm, Niclas

    2013-01-21

    The large variation in brain size that exists in the animal kingdom has been suggested to have evolved through the balance between selective advantages of greater cognitive ability and the prohibitively high energy demands of a larger brain (the "expensive-tissue hypothesis"). Despite over a century of research on the evolution of brain size, empirical support for the trade-off between cognitive ability and energetic costs is based exclusively on correlative evidence, and the theory remains controversial. Here we provide experimental evidence for costs and benefits of increased brain size. We used artificial selection for large and small brain size relative to body size in a live-bearing fish, the guppy (Poecilia reticulata), and found that relative brain size evolved rapidly in response to divergent selection in both sexes. Large-brained females outperformed small-brained females in a numerical learning assay designed to test cognitive ability. Moreover, large-brained lines, especially males, developed smaller guts, as predicted by the expensive-tissue hypothesis, and produced fewer offspring. We propose that the evolution of brain size is mediated by a functional trade-off between increased cognitive ability and reproductive performance and discuss the implications of these findings for vertebrate brain evolution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Neural correlates of rhythmic expectancy

    Directory of Open Access Journals (Sweden)

    Theodore P. Zanto

    2006-01-01

    Full Text Available Temporal expectancy is thought to play a fundamental role in the perception of rhythm. This review summarizes recent studies that investigated rhythmic expectancy by recording neuroelectric activity with high temporal resolution during the presentation of rhythmic patterns. Prior event-related brain potential (ERP studies have uncovered auditory evoked responses that reflect detection of onsets, offsets, sustains,and abrupt changes in acoustic properties such as frequency, intensity, and spectrum, in addition to indexing higher-order processes such as auditory sensory memory and the violation of expectancy. In our studies of rhythmic expectancy, we measured emitted responses - a type of ERP that occurs when an expected event is omitted from a regular series of stimulus events - in simple rhythms with temporal structures typical of music. Our observations suggest that middle-latency gamma band (20-60 Hz activity (GBA plays an essential role in auditory rhythm processing. Evoked (phase-locked GBA occurs in the presence of physically presented auditory events and reflects the degree of accent. Induced (non-phase-locked GBA reflects temporally precise expectancies for strongly and weakly accented events in sound patterns. Thus far, these findings support theories of rhythm perception that posit temporal expectancies generated by active neural processes.

  10. Do Event-Related Evoked Potentials Reflect Apathy Tendency and Motivation?

    Science.gov (United States)

    Takayoshi, Hiroyuki; Onoda, Keiichi; Yamaguchi, Shuhei

    2018-01-01

    Apathy is a mental state of diminished motivation. Although the reward system as the foundation of the motivation in the human brain has been studied extensively with neuroimaging techniques, the electrophysiological correlates of motivation and apathy have not been fully explored. Thus, in 14 healthy volunteers, we examined whether event-related evoked potentials (ERP) obtained during a simple number discrimination task with/without rewards reflected apathy tendency and a reward-dependent tendency, which were assessed separately using the apathy scale and the temperament and character inventory (TCI). Participants were asked to judge the size of a number, and received feedback based on their performance in each trial. The P3 amplitudes related to the feedback stimuli increased only in the reward condition. Furthermore, the P2 amplitudes related to the negative feedback stimuli in the reward condition had a positive correlation with the reward-dependent tendency in TCI, whereas the P3 amplitudes related to the positive feedback stimuli had a negative correlation with the apathy score. Our result suggests that the P2 and P3 ERPs to reward-related feedback stimuli are modulated in a distinctive manner by the motivational reward dependence and apathy tendency, and thus the current paradigm may be useful for investigating the brain activity associated with motivation. PMID:29445331

  11. Personal significance is encoded automatically by the human brain: an event-related potential study with ringtones.

    Science.gov (United States)

    Roye, Anja; Jacobsen, Thomas; Schröger, Erich

    2007-08-01

    In this human event-related brain potential (ERP) study, we have used one's personal--relative to another person's--ringtone presented in a two-deviant passive oddball paradigm to investigate the long-term memory effects of self-selected personal significance of a sound on the automatic deviance detection and involuntary attention system. Our findings extend the knowledge of long-term effects usually reported in group-approaches in the domains of speech, music and environmental sounds. In addition to the usual mismatch negativity (MMN) and P3a component elicited by deviants in contrast to standard stimuli, we observed a posterior ERP deflection directly following the MMN for the personally significant deviant only. This specific impact of personal significance started around 200 ms after sound onset and involved neural generators that were different from the mere physical deviance detection mechanism. Whereas the early part of the P3a component was unaffected by personal significance, the late P3a was enhanced for the ERPs to the personal significant deviant suggesting that this stimulus was more powerful in attracting attention involuntarily. Following the involuntary attention switch, the personally significant stimulus elicited a widely-distributed negative deflection, probably reflecting further analysis of the significant sound involving evaluation of relevance or reorienting to the primary task. Our data show, that the personal significance of mobile phone and text message technology, which have developed as a major medium of communication in our modern world, prompts the formation of individual memory representations, which affect the processing of sounds that are not in the focus of attention.

  12. Innovation and Lock-in

    DEFF Research Database (Denmark)

    Cantner, Uwe; Vannuccini, Simone

    2016-01-01

    This study focuses on a well-known but yet elusive concept: (technological) lock-in. We summarize what is known about the nature of lock-in and offer a critical view on history-dependent processes based on recent contributions to the literature. We discuss if lock-ins are really inescapable......, especially when innovation is concerned. Also, we address the question if lock-in is a well-defined concept at all. To offer a fresh view on lock-in and to tackle the issues just raised, we employ the replicator dynamics model. By making a parallel between monopolization in the replicator dynamics...... and the occurrence of lock-ins, we show that the convergence of a system to a given outcome can be reversed, under certain conditions. We highlight the need for a more precise demarcation of the conceptual boundaries of lock-in and path dependence, both from the formal and the empirical side, and suggest...

  13. Comparing the Overhead of Lock-based and Lock-free Implementations of Priority Queues

    DEFF Research Database (Denmark)

    Passas, Stavros; Karlsson, Sven

    2011-01-01

    . In this paper, we compare a lock-free implementation of a priority queue with a lock-based implementation. We perform experiments with processors of different generations and observe large performance differences for lock-free data structures depending on the processor generation. The lock-free implementation...... performs much better on the most recent processor generation. We investigate this performance trend, using a set of micro-benchmarks and show a significant difference in the overhead of atomic operations between processor generations. The lock-free implementation executes approximately three times as many...

  14. Brain-computer interface with language model-electroencephalography fusion for locked-in syndrome.

    Science.gov (United States)

    Oken, Barry S; Orhan, Umut; Roark, Brian; Erdogmus, Deniz; Fowler, Andrew; Mooney, Aimee; Peters, Betts; Miller, Meghan; Fried-Oken, Melanie B

    2014-05-01

    Some noninvasive brain-computer interface (BCI) systems are currently available for locked-in syndrome (LIS) but none have incorporated a statistical language model during text generation. To begin to address the communication needs of individuals with LIS using a noninvasive BCI that involves rapid serial visual presentation (RSVP) of symbols and a unique classifier with electroencephalography (EEG) and language model fusion. The RSVP Keyboard was developed with several unique features. Individual letters are presented at 2.5 per second. Computer classification of letters as targets or nontargets based on EEG is performed using machine learning that incorporates a language model for letter prediction via Bayesian fusion enabling targets to be presented only 1 to 4 times. Nine participants with LIS and 9 healthy controls were enrolled. After screening, subjects first calibrated the system, and then completed a series of balanced word generation mastery tasks that were designed with 5 incremental levels of difficulty, which increased by selecting phrases for which the utility of the language model decreased naturally. Six participants with LIS and 9 controls completed the experiment. All LIS participants successfully mastered spelling at level 1 and one subject achieved level 5. Six of 9 control participants achieved level 5. Individuals who have incomplete LIS may benefit from an EEG-based BCI system, which relies on EEG classification and a statistical language model. Steps to further improve the system are discussed.

  15. Event-related potentials for gender discrimination: an examination between differences in gender discrimination between males and females.

    Science.gov (United States)

    Suyama, Natsuka; Hoshiyama, Minoru; Shimizu, Hideki; Saito, Hirofumi

    2008-09-01

    The event-related potentials (ERP) following presentation of male and female faces were investigated to study differences in the gender discrimination process. Visual stimuli from four categories including male and female faces were presented. For the male subjects, the P220 amplitude of the T5 area following viewing of a female face was significantly larger than that following viewing of a male face. On the other hand for female subjects, the P170 amplitude of the Cz area following observation of a male face was larger than that for a female face. The results indicate that the neural processes, including responsive brain areas used for gender discrimination by observing faces, are different between males and females.

  16. Scaling laws for mode lockings in circle maps

    International Nuclear Information System (INIS)

    Cvitanovic, P.; Shraiman, B.; Soederberg, B.

    1985-06-01

    The self-similar structure of mode lockings for circle maps is studied by means of the associated Farey trees. We investigate numerically several classes of scaling relations implicit in the Farey organization of mode lockings and discuss the extent to which they lead to universal scaling laws. (orig.)

  17. Surprise responses in the human brain demonstrate statistical learning under high concurrent cognitive demand

    Science.gov (United States)

    Garrido, Marta Isabel; Teng, Chee Leong James; Taylor, Jeremy Alexander; Rowe, Elise Genevieve; Mattingley, Jason Brett

    2016-06-01

    The ability to learn about regularities in the environment and to make predictions about future events is fundamental for adaptive behaviour. We have previously shown that people can implicitly encode statistical regularities and detect violations therein, as reflected in neuronal responses to unpredictable events that carry a unique prediction error signature. In the real world, however, learning about regularities will often occur in the context of competing cognitive demands. Here we asked whether learning of statistical regularities is modulated by concurrent cognitive load. We compared electroencephalographic metrics associated with responses to pure-tone sounds with frequencies sampled from narrow or wide Gaussian distributions. We showed that outliers evoked a larger response than those in the centre of the stimulus distribution (i.e., an effect of surprise) and that this difference was greater for physically identical outliers in the narrow than in the broad distribution. These results demonstrate an early neurophysiological marker of the brain's ability to implicitly encode complex statistical structure in the environment. Moreover, we manipulated concurrent cognitive load by having participants perform a visual working memory task while listening to these streams of sounds. We again observed greater prediction error responses in the narrower distribution under both low and high cognitive load. Furthermore, there was no reliable reduction in prediction error magnitude under high-relative to low-cognitive load. Our findings suggest that statistical learning is not a capacity limited process, and that it proceeds automatically even when cognitive resources are taxed by concurrent demands.

  18. Injection Locking of a Semiconductor Double Quantum Dot Micromaser.

    Science.gov (United States)

    Liu, Y-Y; Stehlik, J; Gullans, M J; Taylor, J M; Petta, J R

    2015-11-01

    Emission linewidth is an important figure of merit for masers and lasers. We recently demonstrated a semiconductor double quantum dot (DQD) micromaser where photons are generated through single electron tunneling events. Charge noise directly couples to the DQD energy levels, resulting in a maser linewidth that is more than 100 times larger than the Schawlow-Townes prediction. Here we demonstrate a linewidth narrowing of more than a factor 10 by locking the DQD emission to a coherent tone that is injected to the input port of the cavity. We measure the injection locking range as a function of cavity input power and show that it is in agreement with the Adler equation. The position and amplitude of distortion sidebands that appear outside of the injection locking range are quantitatively examined. Our results show that this unconventional maser, which is impacted by strong charge noise and electron-phonon coupling, is well described by standard laser models.

  19. Outdraft at Lock Approach, Tom Bevill Lock and Dam, Alabama: Hydraulic Model Investigation

    National Research Council Canada - National Science Library

    Lynch, Gary

    2001-01-01

    .... The lock is connected to the dam with a 150-ft abutment wall. A strong crosscurrent or outdraft existing in and around the upstream lock entrance causes difficulty for tow traffic navigating the lock...

  20. Contingent Attentional Capture by Top-Down Control Settings: Converging Evidence from Event-Related Potentials

    Science.gov (United States)

    Lien, Mei-Ching; Ruthruff, Eric; Goodin, Zachary; Remington, Roger W.

    2008-01-01

    Theories of attentional control are divided over whether the capture of spatial attention depends primarily on stimulus salience or is contingent on attentional control settings induced by task demands. The authors addressed this issue using the N2-posterior-contralateral (N2pc) effect, a component of the event-related brain potential thought to…

  1. Impact of age-related neuroglial cell responses on hippocampal deterioration

    Directory of Open Access Journals (Sweden)

    Joseph O Ojo

    2015-04-01

    Full Text Available Aging is one of the greatest risk factors for the development of sporadic age-related neurodegenerative diseases and neuroinflammation is a common feature of this disease phenotype. In the immunoprivileged brain, neuroglial cells, which mediate neuroinflammatory responses, are influenced by the physiological factors in the microenvironment of the central nervous system (CNS. These physiological factors include but are not limited to cell-to-cell communication involving cell adhesion molecules, neuronal electrical activity and neurotransmitter and neuromodulator action. However, despite this dynamic control of neuroglial activity, in the healthy aged brain there is an alteration in the underlying neuroinflammatory response notably seen in the hippocampus, typified by astrocyte/microglia activation and increased pro-inflammatory cytokine production and signalling. Normally, these changes occur without any concurrent pathology, however, they can correlate with deteriorations in hippocampal or cognitive function. In this review we examine two important phenomenons, firstly the relationship between age-related brain deterioration (focusing on hippocampal function and underlying neuroglial response(s, and secondly how the latter affects molecular and cellular processes within the hippocampus that makes it vulnerable to age-related cognitive decline.

  2. Reproducibility assessment of brain responses to visual food stimuli in adults with overweight and obesity.

    Science.gov (United States)

    Drew Sayer, R; Tamer, Gregory G; Chen, Ningning; Tregellas, Jason R; Cornier, Marc-Andre; Kareken, David A; Talavage, Thomas M; McCrory, Megan A; Campbell, Wayne W

    2016-10-01

    The brain's reward system influences ingestive behavior and subsequently obesity risk. Functional magnetic resonance imaging (fMRI) is a common method for investigating brain reward function. This study sought to assess the reproducibility of fasting-state brain responses to visual food stimuli using BOLD fMRI. A priori brain regions of interest included bilateral insula, amygdala, orbitofrontal cortex, caudate, and putamen. Fasting-state fMRI and appetite assessments were completed by 28 women (n = 16) and men (n = 12) with overweight or obesity on 2 days. Reproducibility was assessed by comparing mean fasting-state brain responses and measuring test-retest reliability of these responses on the two testing days. Mean fasting-state brain responses on day 2 were reduced compared with day 1 in the left insula and right amygdala, but mean day 1 and day 2 responses were not different in the other regions of interest. With the exception of the left orbitofrontal cortex response (fair reliability), test-retest reliabilities of brain responses were poor or unreliable. fMRI-measured responses to visual food cues in adults with overweight or obesity show relatively good mean-level reproducibility but considerable within-subject variability. Poor test-retest reliability reduces the likelihood of observing true correlations and increases the necessary sample sizes for studies. © 2016 The Obesity Society.

  3. Emotional Incongruence of Facial Expression and Voice Tone Investigated with Event-Related Brain Potentials of Infants

    Directory of Open Access Journals (Sweden)

    Kota Arai

    2011-10-01

    Full Text Available Human emotions are perceived from multi-modal information including facial expression and voice tone. We aimed to investigate development of neural mechanism for cross-modal perception of emotions. We presented congruent and incongruent combinations of facial expression (happy and voice tone (happy or angry, and measured EEG to analyze event-related brain potentials for 8-10 month-old infants and adults. Ten repetitions of 10 trials were presented in random order for each participant. Half of them performed 20% congruent (happy face with happy voice and 80% incongruent (happy face with angry voice trials, and the others performed 80% congruent and 20% incongruent trials. We employed the oddball paradigm, but did not instruct participants to count a target. The odd-ball (infrequent stimulus increased the amplitude of P2 and delayed its latency for infants in comparison with the frequent stimulus. When the odd-ball stimulus was also emotionally incongruent, P2 amplitude was more increased and its latency was more delayed than for the odd-ball and emotionally congruent stimulus. However, we did not find difference of P2 amplitude or latency for adults between conditions. These results suggested that the 8–10 month-old infants already have a neural basis for detecting emotional incongruence of facial expression and voice tone.

  4. After-effects of human-computer interaction indicated by P300 of the event-related brain potential.

    Science.gov (United States)

    Trimmel, M; Huber, R

    1998-05-01

    After-effects of human-computer interaction (HCI) were investigated by using the P300 component of the event-related brain potential (ERP). Forty-nine subjects (naive non-users, beginners, experienced users, programmers) completed three paper/pencil tasks (text editing, solving intelligence test items, filling out a questionnaire on sensation seeking) and three HCI tasks (text editing, executing a tutor program or programming, playing Tetris). The sequence of 7-min tasks was randomized between subjects and balanced between groups. After each experimental condition ERPs were recorded during an acoustic discrimination task at F3, F4, Cz, P3 and P4. Data indicate that: (1) mental after-effects of HCI can be detected by P300 of the ERP; (2) HCI showed in general a reduced amplitude; (3) P300 amplitude varied also with type of task, mainly at F4 where it was smaller after cognitive tasks (intelligence test/programming) and larger after emotion-based tasks (sensation seeking/Tetris); (4) cognitive tasks showed shorter latencies; (5) latencies were widely location-independent (within the range of 356-358 ms at F3, F4, P3 and P4) after executing the tutor program or programming; and (6) all observed after-effects were independent of the user's experience in operating computers and may therefore reflect short-term after-effects only and no structural changes of information processing caused by HCI.

  5. Effects of unexpected chords and of performer's expression on brain responses and electrodermal activity.

    Science.gov (United States)

    Koelsch, Stefan; Kilches, Simone; Steinbeis, Nikolaus; Schelinski, Stefanie

    2008-07-09

    There is lack of neuroscientific studies investigating music processing with naturalistic stimuli, and brain responses to real music are, thus, largely unknown. This study investigates event-related brain potentials (ERPs), skin conductance responses (SCRs) and heart rate (HR) elicited by unexpected chords of piano sonatas as they were originally arranged by composers, and as they were played by professional pianists. From the musical excerpts played by the pianists (with emotional expression), we also created versions without variations in tempo and loudness (without musical expression) to investigate effects of musical expression on ERPs and SCRs. Compared to expected chords, unexpected chords elicited an early right anterior negativity (ERAN, reflecting music-syntactic processing) and an N5 (reflecting processing of meaning information) in the ERPs, as well as clear changes in the SCRs (reflecting that unexpected chords also elicited emotional responses). The ERAN was not influenced by emotional expression, whereas N5 potentials elicited by chords in general (regardless of their chord function) differed between the expressive and the non-expressive condition. These results show that the neural mechanisms of music-syntactic processing operate independently of the emotional qualities of a stimulus, justifying the use of stimuli without emotional expression to investigate the cognitive processing of musical structure. Moreover, the data indicate that musical expression affects the neural mechanisms underlying the processing of musical meaning. Our data are the first to reveal influences of musical performance on ERPs and SCRs, and to show physiological responses to unexpected chords in naturalistic music.

  6. Effects of unexpected chords and of performer's expression on brain responses and electrodermal activity.

    Directory of Open Access Journals (Sweden)

    Stefan Koelsch

    Full Text Available BACKGROUND: There is lack of neuroscientific studies investigating music processing with naturalistic stimuli, and brain responses to real music are, thus, largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: This study investigates event-related brain potentials (ERPs, skin conductance responses (SCRs and heart rate (HR elicited by unexpected chords of piano sonatas as they were originally arranged by composers, and as they were played by professional pianists. From the musical excerpts played by the pianists (with emotional expression, we also created versions without variations in tempo and loudness (without musical expression to investigate effects of musical expression on ERPs and SCRs. Compared to expected chords, unexpected chords elicited an early right anterior negativity (ERAN, reflecting music-syntactic processing and an N5 (reflecting processing of meaning information in the ERPs, as well as clear changes in the SCRs (reflecting that unexpected chords also elicited emotional responses. The ERAN was not influenced by emotional expression, whereas N5 potentials elicited by chords in general (regardless of their chord function differed between the expressive and the non-expressive condition. CONCLUSIONS/SIGNIFICANCE: These results show that the neural mechanisms of music-syntactic processing operate independently of the emotional qualities of a stimulus, justifying the use of stimuli without emotional expression to investigate the cognitive processing of musical structure. Moreover, the data indicate that musical expression affects the neural mechanisms underlying the processing of musical meaning. Our data are the first to reveal influences of musical performance on ERPs and SCRs, and to show physiological responses to unexpected chords in naturalistic music.

  7. Genetic Differences in the Immediate Transcriptome Response to Stress Predict Risk-Related Brain Function and Psychiatric Disorders

    Science.gov (United States)

    Arloth, Janine; Bogdan, Ryan; Weber, Peter; Frishman, Goar; Menke, Andreas; Wagner, Klaus V.; Balsevich, Georgia; Schmidt, Mathias V.; Karbalai, Nazanin; Czamara, Darina; Altmann, Andre; Trümbach, Dietrich; Wurst, Wolfgang; Mehta, Divya; Uhr, Manfred; Klengel, Torsten; Erhardt, Angelika; Carey, Caitlin E.; Conley, Emily Drabant; Ripke, Stephan; Wray, Naomi R.; Lewis, Cathryn M.; Hamilton, Steven P.; Weissman, Myrna M.; Breen, Gerome; Byrne, Enda M.; Blackwood, Douglas H.R.; Boomsma, Dorret I.; Cichon, Sven; Heath, Andrew C.; Holsboer, Florian; Lucae, Susanne; Madden, Pamela A.F.; Martin, Nicholas G.; McGuffin, Peter; Muglia, Pierandrea; Noethen, Markus M.; Penninx, Brenda P.; Pergadia, Michele L.; Potash, James B.; Rietschel, Marcella; Lin, Danyu; Müller-Myhsok, Bertram; Shi, Jianxin; Steinberg, Stacy; Grabe, Hans J.; Lichtenstein, Paul; Magnusson, Patrik; Perlis, Roy H.; Preisig, Martin; Smoller, Jordan W.; Stefansson, Kari; Uher, Rudolf; Kutalik, Zoltan; Tansey, Katherine E.; Teumer, Alexander; Viktorin, Alexander; Barnes, Michael R.; Bettecken, Thomas; Binder, Elisabeth B.; Breuer, René; Castro, Victor M.; Churchill, Susanne E.; Coryell, William H.; Craddock, Nick; Craig, Ian W.; Czamara, Darina; De Geus, Eco J.; Degenhardt, Franziska; Farmer, Anne E.; Fava, Maurizio; Frank, Josef; Gainer, Vivian S.; Gallagher, Patience J.; Gordon, Scott D.; Goryachev, Sergey; Gross, Magdalena; Guipponi, Michel; Henders, Anjali K.; Herms, Stefan; Hickie, Ian B.; Hoefels, Susanne; Hoogendijk, Witte; Hottenga, Jouke Jan; Iosifescu, Dan V.; Ising, Marcus; Jones, Ian; Jones, Lisa; Jung-Ying, Tzeng; Knowles, James A.; Kohane, Isaac S.; Kohli, Martin A.; Korszun, Ania; Landen, Mikael; Lawson, William B.; Lewis, Glyn; MacIntyre, Donald; Maier, Wolfgang; Mattheisen, Manuel; McGrath, Patrick J.; McIntosh, Andrew; McLean, Alan; Middeldorp, Christel M.; Middleton, Lefkos; Montgomery, Grant M.; Murphy, Shawn N.; Nauck, Matthias; Nolen, Willem A.; Nyholt, Dale R.; O’Donovan, Michael; Oskarsson, Högni; Pedersen, Nancy; Scheftner, William A.; Schulz, Andrea; Schulze, Thomas G.; Shyn, Stanley I.; Sigurdsson, Engilbert; Slager, Susan L.; Smit, Johannes H.; Stefansson, Hreinn; Steffens, Michael; Thorgeirsson, Thorgeir; Tozzi, Federica; Treutlein, Jens; Uhr, Manfred; van den Oord, Edwin J.C.G.; Van Grootheest, Gerard; Völzke, Henry; Weilburg, Jeffrey B.; Willemsen, Gonneke; Zitman, Frans G.; Neale, Benjamin; Daly, Mark; Levinson, Douglas F.; Sullivan, Patrick F.; Ruepp, Andreas; Müller-Myhsok, Bertram; Hariri, Ahmad R.; Binder, Elisabeth B.

    2015-01-01

    Summary Depression risk is exacerbated by genetic factors and stress exposure; however, the biological mechanisms through which these factors interact to confer depression risk are poorly understood. One putative biological mechanism implicates variability in the ability of cortisol, released in response to stress, to trigger a cascade of adaptive genomic and non-genomic processes through glucocorticoid receptor (GR) activation. Here, we demonstrate that common genetic variants in long-range enhancer elements modulate the immediate transcriptional response to GR activation in human blood cells. These functional genetic variants increase risk for depression and co-heritable psychiatric disorders. Moreover, these risk variants are associated with inappropriate amygdala reactivity, a transdiagnostic psychiatric endophenotype and an important stress hormone response trigger. Network modeling and animal experiments suggest that these genetic differences in GR-induced transcriptional activation may mediate the risk for depression and other psychiatric disorders by altering a network of functionally related stress-sensitive genes in blood and brain. Video Abstract PMID:26050039

  8. Abnormal early brain responses during visual search are evident in schizophrenia but not bipolar affective disorder.

    Science.gov (United States)

    VanMeerten, Nicolaas J; Dubke, Rachel E; Stanwyck, John J; Kang, Seung Suk; Sponheim, Scott R

    2016-01-01

    People with schizophrenia show deficits in processing visual stimuli but neural abnormalities underlying the deficits are unclear and it is unknown whether such functional brain abnormalities are present in other severe mental disorders or in individuals who carry genetic liability for schizophrenia. To better characterize brain responses underlying visual search deficits and test their specificity to schizophrenia we gathered behavioral and electrophysiological responses during visual search (i.e., Span of Apprehension [SOA] task) from 38 people with schizophrenia, 31 people with bipolar disorder, 58 biological relatives of people with schizophrenia, 37 biological relatives of people with bipolar disorder, and 65 non-psychiatric control participants. Through subtracting neural responses associated with purely sensory aspects of the stimuli we found that people with schizophrenia exhibited reduced early posterior task-related neural responses (i.e., Span Endogenous Negativity [SEN]) while other groups showed normative responses. People with schizophrenia exhibited longer reaction times than controls during visual search but nearly identical accuracy. Those individuals with schizophrenia who had larger SENs performed more efficiently (i.e., shorter reaction times) on the SOA task suggesting that modulation of early visual cortical responses facilitated their visual search. People with schizophrenia also exhibited a diminished P300 response compared to other groups. Unaffected first-degree relatives of people with bipolar disorder and schizophrenia showed an amplified N1 response over posterior brain regions in comparison to other groups. Diminished early posterior brain responses are associated with impaired visual search in schizophrenia and appear to be specifically associated with the neuropathology of schizophrenia. Published by Elsevier B.V.

  9. Error-related brain activity and error awareness in an error classification paradigm.

    Science.gov (United States)

    Di Gregorio, Francesco; Steinhauser, Marco; Maier, Martin E

    2016-10-01

    Error-related brain activity has been linked to error detection enabling adaptive behavioral adjustments. However, it is still unclear which role error awareness plays in this process. Here, we show that the error-related negativity (Ne/ERN), an event-related potential reflecting early error monitoring, is dissociable from the degree of error awareness. Participants responded to a target while ignoring two different incongruent distractors. After responding, they indicated whether they had committed an error, and if so, whether they had responded to one or to the other distractor. This error classification paradigm allowed distinguishing partially aware errors, (i.e., errors that were noticed but misclassified) and fully aware errors (i.e., errors that were correctly classified). The Ne/ERN was larger for partially aware errors than for fully aware errors. Whereas this speaks against the idea that the Ne/ERN foreshadows the degree of error awareness, it confirms the prediction of a computational model, which relates the Ne/ERN to post-response conflict. This model predicts that stronger distractor processing - a prerequisite of error classification in our paradigm - leads to lower post-response conflict and thus a smaller Ne/ERN. This implies that the relationship between Ne/ERN and error awareness depends on how error awareness is related to response conflict in a specific task. Our results further indicate that the Ne/ERN but not the degree of error awareness determines adaptive performance adjustments. Taken together, we conclude that the Ne/ERN is dissociable from error awareness and foreshadows adaptive performance adjustments. Our results suggest that the relationship between the Ne/ERN and error awareness is correlative and mediated by response conflict. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Analogy between optically driven injection-locked laser diodes and driven damped linear oscillators

    International Nuclear Information System (INIS)

    Murakami, Atsushi; Shore, K. Alan

    2006-01-01

    An analytical study of optically driven laser diodes (LDs) has been undertaken to meet the requirement for a theoretical treatment for chaotic drive and synchronization occurring in the injection-locked LDs with strong injection. A small-signal analysis is performed for the sets of rate equations for the injection-locked LDs driven by a sinusoidal optical signal. In particular, as a model of chaotic driving signals from LD dynamics, an optical signal caused by direct modulation to the master LD is assumed, oscillating both in field amplitude and phase as is the case with chaotic driving signals. Consequently, we find conditions that allow reduction in the degrees of freedom of the driven LD. Under these conditions, the driven response is approximated to a simple form which is found to be equivalent to driven damped linear oscillators. The validity of the application of this theory to previous work on the synchronization of chaos and related phenomena occurring in the injection-locked LDs is demonstrated

  11. Brain response to traumatic brain injury in wild-type and interleukin-6 knockout mice: a microarray analysis

    DEFF Research Database (Denmark)

    Poulsen, Christian Bjørn; Penkowa, Milena; Borup, Rehannah

    2005-01-01

    Traumatic injury to the brain is one of the leading causes of injury-related death or disability. Brain response to injury is orchestrated by cytokines, such as interleukin (IL)-6, but the full repertoire of responses involved is not well known. We here report the results obtained with microarrays...... in wild-type and IL-6 knockout mice subjected to a cryolesion of the somatosensorial cortex and killed at 0, 1, 4, 8 and 16 days post-lesion. Overall gene expression was analyzed by using Affymetrix genechips/oligonucleotide arrays with approximately 12,400 probe sets corresponding to approximately 10...... in the initial tissue injury and later regeneration of the parenchyma. IL-6 deficiency showed a dramatic effect in the expression of many genes, especially in the 1 day post-lesion timing, which presumably underlies the poor capacity of IL-6 knockout mice to cope with brain damage. The results highlight...

  12. Overweight adolescents' brain response to sweetened beverages mirrors addiction pathways.

    Science.gov (United States)

    Feldstein Ewing, Sarah W; Claus, Eric D; Hudson, Karen A; Filbey, Francesca M; Yakes Jimenez, Elizabeth; Lisdahl, Krista M; Kong, Alberta S

    2017-08-01

    Many adolescents struggle with overweight/obesity, which exponentially increases in the transition to adulthood. Overweight/obesity places youth at risk for serious health conditions, including type 2 diabetes. In adults, neural substrates implicated in addiction (e.g., orbitofrontal cortex (OFC), striatum, amygdala, and ventral tegmental area) have been found to be relevant to risk for overweight/obesity. In this study, we examined three hypotheses to disentangle the potential overlap between addiction and overweight/obesity processing by examining (1) brain response to high vs. low calorie beverages, (2) the strength of correspondence between biometrics, including body mass index (BMI) and insulin resistance, and brain response and (3) the relationship between a measure of food addiction and brain response using an established fMRI gustatory cue exposure task with a sample of overweight/obese youth (M age = 16.46; M BMI = 33.1). Greater BOLD response was observed across the OFC, inferior frontal gyrus (IFG), nucleus accumbens, right amygdala, and additional frontoparietal and temporal regions in neural processing of high vs. low calorie beverages. Further, BMI scores positively correlated with BOLD activation in the high calorie > low calorie contrast in the right postcentral gyrus and central operculum. Insulin resistance positively correlated with BOLD activation across the bilateral middle/superior temporal gyrus, left OFC, and superior parietal lobe. No relationships were observed between measures of food addiction and brain response. These findings support the activation of parallel addiction-related neural pathways in adolescents' high calorie processing, while also suggesting the importance of refining conceptual and neurocognitive models to fit this developmental period.

  13. Air lock

    International Nuclear Information System (INIS)

    Palkovich, P.; Gruber, J.; Madlener, W.

    1974-01-01

    The patent refers to an air lock system preferably for nuclear stations for the transport of heavy loads by means of a trolley on rails. For opening and closing of the air lock parts of the rails are removed, e.g. by a second rail system perpendicular to the main rails. (P.K.)

  14. Do Event-Related Evoked Potentials Reflect Apathy Tendency and Motivation?

    Directory of Open Access Journals (Sweden)

    Hiroyuki Takayoshi

    2018-01-01

    Full Text Available Apathy is a mental state of diminished motivation. Although the reward system as the foundation of the motivation in the human brain has been studied extensively with neuroimaging techniques, the electrophysiological correlates of motivation and apathy have not been fully explored. Thus, in 14 healthy volunteers, we examined whether event-related evoked potentials (ERP obtained during a simple number discrimination task with/without rewards reflected apathy tendency and a reward-dependent tendency, which were assessed separately using the apathy scale and the temperament and character inventory (TCI. Participants were asked to judge the size of a number, and received feedback based on their performance in each trial. The P3 amplitudes related to the feedback stimuli increased only in the reward condition. Furthermore, the P2 amplitudes related to the negative feedback stimuli in the reward condition had a positive correlation with the reward-dependent tendency in TCI, whereas the P3 amplitudes related to the positive feedback stimuli had a negative correlation with the apathy score. Our result suggests that the P2 and P3 ERPs to reward-related feedback stimuli are modulated in a distinctive manner by the motivational reward dependence and apathy tendency, and thus the current paradigm may be useful for investigating the brain activity associated with motivation.

  15. Taurolidine-citrate-heparin lock reduces catheter-related bloodstream infections in intestinal failure patients dependent on home parenteral support

    DEFF Research Database (Denmark)

    Tribler, Siri; Brandt, Christopher F.; Petersen, Anne H.

    2017-01-01

    Background: In patients with intestinal failure who are receiving home parenteral support (HPS), catheter-related bloodstream infections (CRBSIs) inflict health impairment and high costs.Objective: This study investigates the efficacy and safety of the antimicrobial catheter lock solution, taurol...

  16. Clinical feasibility of brain-computer interface based on steady-state visual evoked potential in patients with locked-in syndrome: Case studies.

    Science.gov (United States)

    Hwang, Han-Jeong; Han, Chang-Hee; Lim, Jeong-Hwan; Kim, Yong-Wook; Choi, Soo-In; An, Kwang-Ok; Lee, Jun-Hak; Cha, Ho-Seung; Hyun Kim, Seung; Im, Chang-Hwan

    2017-03-01

    Although the feasibility of brain-computer interface (BCI) systems based on steady-state visual evoked potential (SSVEP) has been extensively investigated, only a few studies have evaluated its clinical feasibility in patients with locked-in syndrome (LIS), who are the main targets of BCI technology. The main objective of this case report was to share our experiences of SSVEP-based BCI experiments involving five patients with LIS, thereby providing researchers with useful information that can potentially help them to design BCI experiments for patients with LIS. In our experiments, a four-class online SSVEP-based BCI system was implemented and applied to four of five patients repeatedly on multiple days to investigate its test-retest reliability. In the last experiments with two of the four patients, the practical usability of our BCI system was tested using a questionnaire survey. All five patients showed clear and distinct SSVEP responses at all four fundamental stimulation frequencies (6, 6.66, 7.5, 10 Hz), and responses at harmonic frequencies were also observed in three patients. Mean classification accuracy was 76.99% (chance level = 25%). The test-retest reliability experiments demonstrated stable performance of our BCI system over different days even when the initial experimental settings (e.g., electrode configuration, fixation time, visual angle) used in the first experiment were used without significant modifications. Our results suggest that SSVEP-based BCI paradigms might be successfully used to implement clinically feasible BCI systems for severely paralyzed patients. © 2016 Society for Psychophysiological Research.

  17. Acute exercise modulates cigarette cravings and brain activation in response to smoking-related images: an fMRI study.

    Science.gov (United States)

    Janse Van Rensburg, Kate; Taylor, Adrian; Hodgson, Tim; Benattayallah, Abdelmalek

    2009-04-01

    Substances of misuse (such as nicotine) are associated with increases in activation within the mesocorticolimbic brain system, a system thought to mediate the rewarding effects of drugs of abuse. Pharmacological treatments have been designed to reduce cigarette cravings during temporary abstinence. Exercise has been found to be an effective tool for controlling cigarette cravings. The objective of this study is to assess the effect of exercise on regional brain activation in response to smoking-related images during temporary nicotine abstinence. In a randomized crossover design, regular smokers (n = 10) undertook an exercise (10 min moderate-intensity stationary cycling) and control (passive seating for same duration) session, following 15 h of nicotine abstinence. Following treatments, participants entered a functional Magnetic Resonance Imaging (fMRI) scanner. Subjects viewed a random series of smoking and neutral images for 3 s, with an average inter-stimulus-interval (ISI) of 10 s. Self-reported cravings were assessed at baseline, mid-, and post-treatments. A significant interaction effect (time by group) was found, with self-reported cravings lower during and following exercise. During control scanning, significant activation was recorded in areas associated with reward (caudate nucleus), motivation (orbitofrontal cortex) and visuo-spatial attention (parietal lobe, parahippocampal, and fusiform gyrus). Post-exercise scanning showed hypo-activation in these areas with a concomitant shift of activation towards areas identified in the 'brain default mode' (Broadmanns Area 10). The study confirms previous evidence that a single session of exercise can reduce cigarette cravings, and for the first time provides evidence of a shift in regional activation in response to smoking cues.

  18. Signal-to-Noise Enhancement of a Nanospring Redox-Based Sensor by Lock-in Amplification

    Directory of Open Access Journals (Sweden)

    Pavel V. Bakharev

    2015-06-01

    Full Text Available A significant improvement of the response characteristics of a redox chemical gas sensor (chemiresistor constructed with a single ZnO coated silica nanospring has been achieved with the technique of lock-in signal amplification. The comparison of DC and analog lock-in amplifier (LIA AC measurements of the electrical sensor response to toluene vapor, at the ppm level, has been conducted. When operated in the DC detection mode, the sensor exhibits a relatively high sensitivity to the analyte vapor, as well as a low detection limit at the 10 ppm level. However, at 10 ppm the signal-to-noise ratio is 5 dB, which is less than desirable. When operated in the analog LIA mode, the signal-to-noise ratio at 10 ppm increases by 30 dB and extends the detection limit to the ppb range.

  19. Automated AC Electrical Impedance Measurement of Ceramic Oxides by means of a Lock-in Amplifier

    International Nuclear Information System (INIS)

    Al-Khawaja, S.; Al-Sous, M. B.; Nasrallah, F.

    2009-06-01

    In this study, the electrical impedance of some ceramic oxides has been investigated employing the Perkin Elmer DSP 7280 Lock-in amplifier, while recording the electric response versus frequency and temperature at constant amplitude. Via integral automation of this lock-in with other delicate electrical measuring devices, a control program has been developed to accurately and swiftly acquire the frequency response of the sample, in order to lately infer the resulting samples' impedance in volt and ampere. Two maxima peaks characterising the impedance, in the curve of the doped molybdenum oxide have been observed discerning two phases in the sample (doped with 40% of niobium oxide), which shows a remarkable relaxation related to improvement in its ionic conductivity within the solid phase, with respect to increasing frequency. (author)

  20. Processing of visual semantic information to concrete words: temporal dynamics and neural mechanisms indicated by event-related brain potentials( ).

    Science.gov (United States)

    van Schie, Hein T; Wijers, Albertus A; Mars, Rogier B; Benjamins, Jeroen S; Stowe, Laurie A

    2005-05-01

    Event-related brain potentials were used to study the retrieval of visual semantic information to concrete words, and to investigate possible structural overlap between visual object working memory and concreteness effects in word processing. Subjects performed an object working memory task that involved 5 s retention of simple 4-angled polygons (load 1), complex 10-angled polygons (load 2), and a no-load baseline condition. During the polygon retention interval subjects were presented with a lexical decision task to auditory presented concrete (imageable) and abstract (nonimageable) words, and pseudowords. ERP results are consistent with the use of object working memory for the visualisation of concrete words. Our data indicate a two-step processing model of visual semantics in which visual descriptive information of concrete words is first encoded in semantic memory (indicated by an anterior N400 and posterior occipital positivity), and is subsequently visualised via the network for object working memory (reflected by a left frontal positive slow wave and a bilateral occipital slow wave negativity). Results are discussed in the light of contemporary models of semantic memory.

  1. Short desynchronization episodes prevail in synchronous dynamics of human brain rhythms.

    Science.gov (United States)

    Ahn, Sungwoo; Rubchinsky, Leonid L

    2013-03-01

    Neural synchronization is believed to be critical for many brain functions. It frequently exhibits temporal variability, but it is not known if this variability has a specific temporal patterning. This study explores these synchronization/desynchronization patterns. We employ recently developed techniques to analyze the fine temporal structure of phase-locking to study the temporal patterning of synchrony of the human brain rhythms. We study neural oscillations recorded by electroencephalograms in α and β frequency bands in healthy human subjects at rest and during the execution of a task. While the phase-locking strength depends on many factors, dynamics of synchrony has a very specific temporal pattern: synchronous states are interrupted by frequent, but short desynchronization episodes. The probability for a desynchronization episode to occur decreased with its duration. The transition matrix between synchronized and desynchronized states has eigenvalues close to 0 and 1 where eigenvalue 1 has multiplicity 1, and therefore if the stationary distribution between these states is perturbed, the system converges back to the stationary distribution very fast. The qualitative similarity of this patterning across different subjects, brain states and electrode locations suggests that this may be a general type of dynamics for the brain. Earlier studies indicate that not all oscillatory networks have this kind of patterning of synchronization/desynchronization dynamics. Thus, the observed prevalence of short (but potentially frequent) desynchronization events (length of one cycle of oscillations) may have important functional implications for the brain. Numerous short desynchronizations (as opposed to infrequent, but long desynchronizations) may allow for a quick and efficient formation and break-up of functionally significant neuronal assemblies.

  2. Additive effects of repetition and predictability during comprehension: evidence from event-related potentials.

    Directory of Open Access Journals (Sweden)

    Wing-Yee Chow

    Full Text Available Previous research has shown that neural responses to words during sentence comprehension are sensitive to both lexical repetition and a word's predictability in context. While previous research has often contrasted the effects of these variables (e.g. by looking at cases in which word repetition violates sentence-level constraints, little is known about how they work in tandem. In the current study we examine how recent exposure to a word and its predictability in context combine to impact lexical semantic processing. We devise a novel paradigm that combines reading comprehension with a recognition memory task, allowing for an orthogonal manipulation of a word's predictability and its repetition status. Using event-related brain potentials (ERPs, we show that word repetition and predictability have qualitatively similar and additive effects on the N400 amplitude. We propose that prior exposure to a word and predictability impact lexical semantic processing in an additive and independent fashion.

  3. Self locking drive system for rotating plug of a nuclear reactor

    International Nuclear Information System (INIS)

    Brubaker, J.E.

    1979-01-01

    A self locking drive system for rotating the plugs on the head of a nuclear reactor which is able to restrain plug motion if a seismic event whould occur during reactor refueling is described. A servomotor is engaged via a gear train and a bull gear to the plug. Connected to the gear train is a feedback control system which allows the motor to rotate the plug to predetermined locations for refueling of the reactor. The gear train contains a self locking double enveloping worm gear set. The worm gear set is utilized for its self locking nature to prevent unwanted rotation of the plugs as the result of an earthquake. The double enveloping type is used because its unique contour spreads the load across several teeth providing added strength and allowing the use of a conventional size worm

  4. Application of a brain-computer interface for person authentication using EEG responses to photo stimuli.

    Science.gov (United States)

    Mu, Zhendong; Yin, Jinhai; Hu, Jianfeng

    2018-01-01

    In this paper, a person authentication system that can effectively identify individuals by generating unique electroencephalogram signal features in response to self-face and non-self-face photos is presented. In order to achieve a good stability performance, the sequence of self-face photo including first-occurrence position and non-first-occurrence position are taken into account in the serial occurrence of visual stimuli. In addition, a Fisher linear classification method and event-related potential technique for feature analysis is adapted to yield remarkably better outcomes than that by most of the existing methods in the field. The results have shown that the EEG-based person authentications via brain-computer interface can be considered as a suitable approach for biometric authentication system.

  5. Switching Attention within Working Memory is Reflected in the P3a Component of the Human Event-Related Brain Potential.

    Directory of Open Access Journals (Sweden)

    Stefan eBerti

    2016-01-01

    Full Text Available The flexible access to information in working memory is crucial for adaptive behavior. It is assumed that this is realized by switching the focus of attention within working memory. Switching of attention is mirrored in the P3a component of the human event-related brain potential (ERP and it has been argued that the processes reflected by the P3a are also relevant for selecting information within working memory. The aim of the present study was to further evaluate whether the P3a mirrors genuine switching of attention within working memory by applying an object switching task: Participants updated a memory list of four digits either by replacing one item with another digit or by processing the stored digit. ERPs were computed separately for two types of trials: (1 trials in which an object was repeated and (2 trials in which a switch to a new object was required in order to perform the task. Object switch trials showed increased response times compared with repetition trials in both task conditions. In addition, switching costs were increased in the processing compared with the replacement condition. Pronounced P3a’s were obtained in switching trials but there were no difference between the two updating tasks (replacement or processing. These results were qualified by the finding that the magnitude of the visual location shift also affects the ERPs in the P3a time window. Taken together, the present pattern of results suggest that the P3a reflects an initial process of selecting information in working memory but not the memory updating itself.

  6. Children's Performance on Pseudoword Repetition Depends on Auditory Trace Quality: Evidence from Event-Related Potentials.

    Science.gov (United States)

    Ceponiene, Rita; Service, Elisabet; Kurjenluoma, Sanna; Cheour, Marie; Naatanen, Risto

    1999-01-01

    Compared the mismatch-negativity (MMN) component of auditory event-related brain potentials to explore the relationship between phonological short-term memory and auditory-sensory processing in 7- to 9-year olds scoring the highest and lowest on a pseudoword repetition test. Found that high and low repeaters differed in MMN amplitude to speech…

  7. Radiotherapy for brain metastases: defining palliative response

    International Nuclear Information System (INIS)

    Bezjak, Andrea; Adam, Janice; Panzarella, Tony; Levin, Wilfred; Barton, Rachael; Kirkbride, Peter; McLean, Michael; Mason, Warren; Wong, Chong Shun; Laperriere, Normand

    2001-01-01

    Background and purpose: Most patients with brain metastases are treated with palliative whole brain radiotherapy (WBRT). There is no established definition of palliative response. The aim of this study was to develop and test clinically useful criteria for response following palliative WBRT. Materials and methods: A prospective study was conducted of patients with symptomatic brain metastases treated with WBRT (20 Gy/5 fractions) and standardised steroid tapering. Assessments included observer rating of neurological symptoms, patient-completed symptom checklist and performance status (PS). Response criteria were operationally defined based on a combination of neurological symptoms, PS and steroid dose. Results: Seventy-five patients were accrued. At 1 month, presenting neurological symptoms were improved in 14 patients, stable in 17, and worse in 21; 23 patients were not assessed, mainly due to death or frailty. Using response criteria defined a priori, 15% (95% CI 7-23%) of patients were classified as having a response to RT, 25% no response, and 29% progression; 27% were deceased at or soon after 1 month. A revised set of criteria was tested, with less emphasis on complete tapering of steroids: they increased the proportion of patients responding to 39% (95% CI 27-50%) but didn't change the large proportion who did not benefit (44%). Conclusions: Clinical response to RT of patients with brain metastases is multifactorial, comprising symptoms, PS and other factors. Assessment of degree of palliation depend on the exact definition used. More research is needed in this important area, to help validate criteria for assessing palliation after WBRT

  8. Comparative evaluation of 2.3 mm locking plate system vs conventional 2.0 mm non locking plate system for mandibular condyle fracture fixation: a seven year retrospective study.

    Science.gov (United States)

    Zhang, J; Wang, X; Wu, R-H; Zhuang, Q-W; Gu, Q P; Meng, J

    2015-01-01

    This retrospective study evaluated the efficacy of a 2.3 mm locking plate/screw system compared with a 2.0-mm non-locking plate/screw system in fixation of isolated non comminuted mandibular condyle fractures. Surgical records of 101 patients who received either a 2.3 mm locking plate (group A, n = 51) or 2.0 mm non locking plate (group B, n = 50) were analyzed. All patients were followed up to a minimum of 6 months postoperatively and evaluated for hardware related complications, occlusal stability, need for and duration of MMF and mandibular functional results. Four complications occurred in the locking group and eighteen in the non locking group with complication rates equalling 8% and 36% respectively. When comparing the overall results according to plates used, the χ2 test showed a statistically significant difference between the locking and non locking plates (p Mandibular condyle fractures treated with a 2.3 mm locking plate exhibited stable osteosynthesis, were associated with minimal complications and resulted in acceptable mandibular range of motion compared with a 2.0 mm non locking plate.

  9. Quantum noise locking

    International Nuclear Information System (INIS)

    McKenzie, Kirk; Mikhailov, Eugeniy E; Goda, Keisuke; Lam, Ping Koy; Grosse, Nicolai; Gray, Malcolm B; Mavalvala, Nergis; McClelland, David E

    2005-01-01

    Quantum optical states which have no coherent amplitude, such as squeezed vacuum states, cannot rely on standard readout techniques to generate error signals for control of the quadrature phase. Here we investigate the use of asymmetry in the quadrature variances to obtain a phase-sensitive readout and to lock the phase of a squeezed vacuum state, a technique which we call noise locking (NL). We carry out a theoretical derivation of the NL error signal and the associated stability of the squeezed and anti-squeezed lock points. Experimental data for the NL technique both in the presence and absence of coherent fields are shown, including a comparison with coherent locking techniques. Finally, we use NL to enable a stable readout of the squeezed vacuum state on a homodyne detector

  10. ''Old'' locked inflation

    International Nuclear Information System (INIS)

    Liu, Yang; Piao, Yun-Song; Si, Zong-Guo

    2009-01-01

    In this paper, we revisit the idea of locked inflation, which does not require a potential satisfying the normal slow-roll condition, but suffers from the problems associated with ''saddle inflation''. We propose a scenario based on locked inflation, however, with an alternative evolution mechanism of the ''waterfall field'' φ. Instead of rolling down along the potential, the φ field will tunnel to end the inflation stage like in old inflation, by which the saddle inflation could be avoided. Further, we study a cascade of old locked inflation, which can be motivated by the string landscape. Our model is based on the consideration of making locked inflation feasible so as to give a working model without slow roll; It also can be seen as an effort to embed the old inflation in string landscape

  11. A novel calibration method for phase-locked loops

    DEFF Research Database (Denmark)

    Cassia, Marco; Shah, Peter Jivan; Bruun, Erik

    2005-01-01

    A novel method to calibrate the frequency response of a Phase-Locked Loop is presented. The method requires just an additional digital counter to measure the natural frequency of the PLL; moreover it is capable of estimating the static phase offset. The measured value can be used to tune the PLL ...... response to the desired value. The method is demonstrated mathematically on a typical PLL topology and it is extended to SigmaDelta fractional-N PLLs. A set of simulations performed with two different simulators is used to verify the applicability of the method.......A novel method to calibrate the frequency response of a Phase-Locked Loop is presented. The method requires just an additional digital counter to measure the natural frequency of the PLL; moreover it is capable of estimating the static phase offset. The measured value can be used to tune the PLL...

  12. Analyzing System on A Chip Single Event Upset Responses using Single Event Upset Data, Classical Reliability Models, and Space Environment Data

    Science.gov (United States)

    Berg, Melanie; LaBel, Kenneth; Campola, Michael; Xapsos, Michael

    2017-01-01

    We are investigating the application of classical reliability performance metrics combined with standard single event upset (SEU) analysis data. We expect to relate SEU behavior to system performance requirements. Our proposed methodology will provide better prediction of SEU responses in harsh radiation environments with confidence metrics. single event upset (SEU), single event effect (SEE), field programmable gate array devises (FPGAs)

  13. EEG classification of emotions using emotion-specific brain functional network.

    Science.gov (United States)

    Gonuguntla, V; Shafiq, G; Wang, Y; Veluvolu, K C

    2015-08-01

    The brain functional network perspective forms the basis to relate mechanisms of brain functions. This work analyzes the network mechanisms related to human emotion based on synchronization measure - phase-locking value in EEG to formulate the emotion specific brain functional network. Based on network dissimilarities between emotion and rest tasks, most reactive channel pairs and the reactive band corresponding to emotions are identified. With the identified most reactive pairs, the subject-specific functional network is formed. The identified subject-specific and emotion-specific dynamic network pattern show significant synchrony variation in line with the experiment protocol. The same network pattern are then employed for classification of emotions. With the study conducted on the 4 subjects, an average classification accuracy of 62 % was obtained with the proposed technique.

  14. Experimental implementation of phase locking in a nonlinear interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hailong; Jing, Jietai, E-mail: jtjing@phy.ecnu.edu.cn [State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062 (China); Marino, A. M. [Homer L. Dodge Department of Physics and Astronomy, The University of Oklahoma, 440 West Brooks Street, Norman, Oklahoma 73019 (United States)

    2015-09-21

    Based upon two cascade four-wave mixing processes in two identical hot rubidium vapor cells, a nonlinear interferometer has been experimentally realized [Jing et al., Appl. Phys. Lett. 99, 011110 (2011); Hudelist et al., Nat. Commun. 5, 3049 (2014)]. It has a higher degree of phase sensitivity than a traditional linear interferometer and has many potential applications in quantum metrology. Phase locking of the nonlinear interferometer is needed before it can find its way into applications. In this letter, we investigate the experimental implementation of phase locking of the relative phase between the three beams at different frequencies involved in such a nonlinear interferometer. We have utilized two different methods, namely, beat note locking and coherent modulation locking. We find that coherent modulation locking can achieve much better phase stability than beat note locking in our system. Our results pave the way for real applications of a nonlinear interferometer in precision measurement and quantum manipulation, for example, phase control in phase-sensitive N-wave mixing process, N-port nonlinear interferometer and quantum-enhanced real-time phase tracking.

  15. Long-term independent brain-computer interface home use improves quality of life of a patient in the locked-in state: a case study.

    Science.gov (United States)

    Holz, Elisa Mira; Botrel, Loic; Kaufmann, Tobias; Kübler, Andrea

    2015-03-01

    Despite intense brain-computer interface (BCI) research for >2 decades, BCIs have hardly been established at patients' homes. The current study aimed at demonstrating expert independent BCI home use by a patient in the locked-in state and the effect it has on quality of life. In this case study, the P300 BCI-controlled application Brain Painting was facilitated and installed at the patient's home. Family and caregivers were trained in setting up the BCI system. After every BCI session, the end user indicated subjective level of control, loss of control, level of exhaustion, satisfaction, frustration, and enjoyment. To monitor BCI home use, evaluation data of every session were automatically sent and stored on a remote server. Satisfaction with the BCI as an assistive device and subjective workload was indicated by the patient. In accordance with the user-centered design, usability of the BCI was evaluated in terms of its effectiveness, efficiency, and satisfaction. The influence of the BCI on quality of life of the end user was assessed. At the patient's home. A 73-year-old patient with amyotrophic lateral sclerosis in the locked-in state. Not applicable. The BCI has been used by the patient independent of experts for >14 months. The patient painted in about 200 BCI sessions (1-3 times per week) with a mean painting duration of 81.86 minutes (SD=52.15, maximum: 230.41). BCI improved quality of life of the patient. In most of the BCI sessions the end user's satisfaction was high (mean=7.4, SD=3.24; range, 0-10). Dissatisfaction occurred mostly because of technical problems at the beginning of the study or varying BCI control. The subjective workload was moderate (mean=40.61; range, 0-100). The end user was highy satisfied with all components of the BCI (mean 4.42-5.0; range, 1-5). A perfect match between the user and the BCI technology was achieved (mean: 4.8; range, 1-5). Brain Painting had a positive impact on the patient's life on all three dimensions: competence

  16. A comparison of two spelling Brain-Computer Interfaces based on visual P3 and SSVEP in Locked-In Syndrome.

    Directory of Open Access Journals (Sweden)

    Adrien Combaz

    Full Text Available We study the applicability of a visual P3-based and a Steady State Visually Evoked Potentials (SSVEP-based Brain-Computer Interfaces (BCIs for mental text spelling on a cohort of patients with incomplete Locked-In Syndrome (LIS.Seven patients performed repeated sessions with each BCI. We assessed BCI performance, mental workload and overall satisfaction for both systems. We also investigated the effect of the quality of life and level of motor impairment on the performance.All seven patients were able to achieve an accuracy of 70% or more with the SSVEP-based BCI, compared to 3 patients with the P3-based BCI, showing a better performance with the SSVEP BCI than with the P3 BCI in the studied cohort. Moreover, the better performance of the SSVEP-based BCI was accompanied by a lower mental workload and a higher overall satisfaction. No relationship was found between BCI performance and level of motor impairment or quality of life.Our results show a better usability of the SSVEP-based BCI than the P3-based one for the sessions performed by the tested population of locked-in patients with respect to all the criteria considered. The study shows the advantage of developing alternative BCIs with respect to the traditional matrix-based P3 speller using different designs and signal modalities such as SSVEPs to build a faster, more accurate, less mentally demanding and more satisfying BCI by testing both types of BCIs on a convenience sample of LIS patients.

  17. Religious Fundamentalism Modulates Neural Responses to Error-Related Words: The Role of Motivation Toward Closure

    Directory of Open Access Journals (Sweden)

    Małgorzata Kossowska

    2018-03-01

    Full Text Available Examining the relationship between brain activity and religious fundamentalism, this study explores whether fundamentalist religious beliefs increase responses to error-related words among participants intolerant to uncertainty (i.e., high in the need for closure in comparison to those who have a high degree of toleration for uncertainty (i.e., those who are low in the need for closure. We examine a negative-going event-related brain potentials occurring 400 ms after stimulus onset (the N400 due to its well-understood association with the reactions to emotional conflict. Religious fundamentalism and tolerance of uncertainty were measured on self-report measures, and electroencephalographic neural reactivity was recorded as participants were performing an emotional Stroop task. In this task, participants read neutral words and words related to uncertainty, errors, and pondering, while being asked to name the color of the ink with which the word is written. The results confirm that among people who are intolerant of uncertainty (i.e., those high in the need for closure, religious fundamentalism is associated with an increased N400 on error-related words compared with people who tolerate uncertainty well (i.e., those low in the need for closure.

  18. Religious Fundamentalism Modulates Neural Responses to Error-Related Words: The Role of Motivation Toward Closure.

    Science.gov (United States)

    Kossowska, Małgorzata; Szwed, Paulina; Wyczesany, Miroslaw; Czarnek, Gabriela; Wronka, Eligiusz

    2018-01-01

    Examining the relationship between brain activity and religious fundamentalism, this study explores whether fundamentalist religious beliefs increase responses to error-related words among participants intolerant to uncertainty (i.e., high in the need for closure) in comparison to those who have a high degree of toleration for uncertainty (i.e., those who are low in the need for closure). We examine a negative-going event-related brain potentials occurring 400 ms after stimulus onset (the N400) due to its well-understood association with the reactions to emotional conflict. Religious fundamentalism and tolerance of uncertainty were measured on self-report measures, and electroencephalographic neural reactivity was recorded as participants were performing an emotional Stroop task. In this task, participants read neutral words and words related to uncertainty, errors, and pondering, while being asked to name the color of the ink with which the word is written. The results confirm that among people who are intolerant of uncertainty (i.e., those high in the need for closure), religious fundamentalism is associated with an increased N400 on error-related words compared with people who tolerate uncertainty well (i.e., those low in the need for closure).

  19. Religious Fundamentalism Modulates Neural Responses to Error-Related Words: The Role of Motivation Toward Closure

    Science.gov (United States)

    Kossowska, Małgorzata; Szwed, Paulina; Wyczesany, Miroslaw; Czarnek, Gabriela; Wronka, Eligiusz

    2018-01-01

    Examining the relationship between brain activity and religious fundamentalism, this study explores whether fundamentalist religious beliefs increase responses to error-related words among participants intolerant to uncertainty (i.e., high in the need for closure) in comparison to those who have a high degree of toleration for uncertainty (i.e., those who are low in the need for closure). We examine a negative-going event-related brain potentials occurring 400 ms after stimulus onset (the N400) due to its well-understood association with the reactions to emotional conflict. Religious fundamentalism and tolerance of uncertainty were measured on self-report measures, and electroencephalographic neural reactivity was recorded as participants were performing an emotional Stroop task. In this task, participants read neutral words and words related to uncertainty, errors, and pondering, while being asked to name the color of the ink with which the word is written. The results confirm that among people who are intolerant of uncertainty (i.e., those high in the need for closure), religious fundamentalism is associated with an increased N400 on error-related words compared with people who tolerate uncertainty well (i.e., those low in the need for closure). PMID:29636709

  20. Interpretability of Multivariate Brain Maps in Linear Brain Decoding: Definition, and Heuristic Quantification in Multivariate Analysis of MEG Time-Locked Effects.

    Science.gov (United States)

    Kia, Seyed Mostafa; Vega Pons, Sandro; Weisz, Nathan; Passerini, Andrea

    2016-01-01

    Brain decoding is a popular multivariate approach for hypothesis testing in neuroimaging. Linear classifiers are widely employed in the brain decoding paradigm to discriminate among experimental conditions. Then, the derived linear weights are visualized in the form of multivariate brain maps to further study spatio-temporal patterns of underlying neural activities. It is well known that the brain maps derived from weights of linear classifiers are hard to interpret because of high correlations between predictors, low signal to noise ratios, and the high dimensionality of neuroimaging data. Therefore, improving the interpretability of brain decoding approaches is of primary interest in many neuroimaging studies. Despite extensive studies of this type, at present, there is no formal definition for interpretability of multivariate brain maps. As a consequence, there is no quantitative measure for evaluating the interpretability of different brain decoding methods. In this paper, first, we present a theoretical definition of interpretability in brain decoding; we show that the interpretability of multivariate brain maps can be decomposed into their reproducibility and representativeness. Second, as an application of the proposed definition, we exemplify a heuristic for approximating the interpretability in multivariate analysis of evoked magnetoencephalography (MEG) responses. Third, we propose to combine the approximated interpretability and the generalization performance of the brain decoding into a new multi-objective criterion for model selection. Our results, for the simulated and real MEG data, show that optimizing the hyper-parameters of the regularized linear classifier based on the proposed criterion results in more informative multivariate brain maps. More importantly, the presented definition provides the theoretical background for quantitative evaluation of interpretability, and hence, facilitates the development of more effective brain decoding algorithms

  1. Clarifying relations between dispositional aggression and brain potential response: overlapping and distinct contributions of impulsivity and stress reactivity.

    Science.gov (United States)

    Venables, Noah C; Patrick, Christopher J; Hall, Jason R; Bernat, Edward M

    2011-03-01

    Impulsive-aggressive individuals exhibit deficits in amplitude of the P3 brain potential response, however, it remains unclear how separable dispositional traits account for this association. The current study sought to clarify the basis of this association by examining contributions of trait impulsiveness and stress reactivity to the observed relationship between dispositional aggression and amplitude of the P3 brain potential response in a visual novelty-oddball procedure. A significant negative association was found between aggressiveness and amplitude of P3 response to both target and novel stimuli over frontal-central scalp sites. Impulsivity showed a parallel inverse relationship with P3 amplitude, attributable to its overlap with dispositional aggression. In contrast, stress reactivity did not exhibit a zero-order association with P3 amplitude, but modestly predicted P3 in a positive direction after accounting for its overlap with aggression. Results are discussed in terms of their implications for individual difference variables and brain processes underlying impulsive-aggressive behavior. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. White matter microstructure within the superior longitudinal fasciculus modulates the degree of response conflict indexed by N2 in healthy adults.

    Science.gov (United States)

    Gao, Shudan; Liu, Peng; Guo, Jialu; Zhu, Yuanqiang; Liu, Peng; Sun, Jinbo; Yang, Xuejuan; Qin, Wei

    2017-12-01

    Response conflict can be induced by priming multiple responses competing for control of action in trials. The N2 is one functionally-related cognitive control index for response conflict. And yet the underlying whiter matter neural substrates of inter-individual difference in conflict N2 remain unclear. So the aim of present study was to address the white matter microstructure of the N2 responsible for conflict by directly relating the amplitude cost of the event-related potential (ERP) N2 component to diffusion tensor imaging (DTI) indices in healthy subjects. Thirty healthy subjects underwent DTI scanning and electrophysiology recording during a modified Flanker task. N2 was a stimulus-locked negative ERP component. Fractional anisotropy (FA) was calculated based on DTI measures and was assumed to reflect the integrity of myelinate fiber bundles. Therefore, we tested the relationship between N2 amplitude and FA in brain white matter. Results showed that FA, an index for white matter characteristics, in the right superior longitudinal fasciculus (SLF) was significantly positively associated with N2 amplitude cost. The N2 amplitude cost also predicted response time (RT) cost in the Flanker task. Higher FA was associated with larger N2 amplitude cost, suggesting that changes in white matter integrity in the SLF may account for changes in efficient transmission of fronto-parietal modulatory conflict signals. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Sleep duration and age-related changes in brain structure and cognitive performance.

    Science.gov (United States)

    Lo, June C; Loh, Kep Kee; Zheng, Hui; Sim, Sam K Y; Chee, Michael W L

    2014-07-01

    To investigate the contribution of sleep duration and quality to age-related changes in brain structure and cognitive performance in relatively healthy older adults. Community-based longitudinal brain and cognitive aging study using a convenience sample. Participants were studied in a research laboratory. Relatively healthy adults aged 55 y and older at study commencement. N/A. Participants underwent magnetic resonance imaging and neuropsychological assessment every 2 y. Subjective assessments of sleep duration and quality and blood samples were obtained. Each hour of reduced sleep duration at baseline augmented the annual expansion rate of the ventricles by 0.59% (P = 0.007) and the annual decline rate in global cognitive performance by 0.67% (P = 0.050) in the subsequent 2 y after controlling for the effects of age, sex, education, and body mass index. In contrast, global sleep quality at baseline did not modulate either brain or cognitive aging. High-sensitivity C-reactive protein, a marker of systemic inflammation, showed no correlation with baseline sleep duration, brain structure, or cognitive performance. In healthy older adults, short sleep duration is associated with greater age-related brain atrophy and cognitive decline. These associations are not associated with elevated inflammatory responses among short sleepers. Lo JC, Loh KK, Zheng H, Sim SK, Chee MW. Sleep duration and age-related changes in brain structure and cognitive performance.

  4. 5-HTTLPR moderates the association between interdependence and brain responses to mortality threats.

    Science.gov (United States)

    Luo, Siyang; Yu, Dian; Han, Shihui

    2017-12-01

    While behavioral research suggests an association between cultural worldview and decreased anxiety of death, the underlying neurobiological mechanisms remain unclear. Using functional MRI, we investigated whether and how the serotonin transporter promoter polymorphism (5-HTTLPR), which has been associated with mental disorders such as anxiety and depression, moderates the associations between a cultural trait (i.e., interdependence) and self-report of death anxiety/depression and between interdependence and brain responses to mortality threats. Long/long and short/short allele carriers of the 5-HTTLPR were scanned using fMRI while they performed a one-back task on death-related, death-unrelated negative, and neutral words. Participants' interdependence and death anxiety/depression were assessed using questionnaires after scanning. We found that participants who assessed themselves with greater interdependence reported lower death anxiety/depression and showed decreased neural response to death-related words in emotion-related brain regions including the anterior cingulate, putamen, and thalamus. However, these results were evident in long/long allele carriers of the 5-HTTLPR but not in short/short allele carriers who even showed positive associations between interdependence and neural activities in the anterior cingulate, putamen and thalamus in response to death-related words. Our findings suggest candidate mechanisms for explaining the complex relationship between genotype, cultural traits, and mental/neural responses to mortality threats. Hum Brain Mapp 38:6157-6171, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Age-related changes in brain hemodynamics; A calibrated MRI study

    DEFF Research Database (Denmark)

    De Vis, J B; Hendrikse, J; Bhogal, A

    2015-01-01

    INTRODUCTION: Blood oxygenation-level dependent (BOLD) magnetic resonance imaging signal changes in response to stimuli have been used to evaluate age-related changes in neuronal activity. Contradictory results from these types of experiments have been attributed to differences in cerebral blood....... A dual-echo pseudocontinuous arterial spin labeling (ASL) sequence was performed during normocapnic, hypercapnic, and hyperoxic breathing challenges. Whole brain and regional gray matter values of CBF, ASL cerebrovascular reactivity (CVR), BOLD CVR, oxygen extraction fraction (OEF), and CMRO2 were...... calculated. RESULTS: Whole brain CBF was 49 ± 14 and 40 ± 9 ml/100 g/min in young and older subjects respectively (P brain, in the frontal...

  6. Expected reward modulates encoding-related theta activity before an event.

    Science.gov (United States)

    Gruber, Matthias J; Watrous, Andrew J; Ekstrom, Arne D; Ranganath, Charan; Otten, Leun J

    2013-01-01

    Oscillatory brain activity in the theta frequency range (4-8 Hz) before the onset of an event has been shown to affect the likelihood of successfully encoding the event into memory. Recent work has also indicated that frontal theta activity might be modulated by reward, but it is not clear how reward expectancy, anticipatory theta activity, and memory formation might be related. Here, we used scalp electroencephalography (EEG) to assess the relationship between these factors. EEG was recorded from healthy adults while they memorized a series of words. Each word was preceded by a cue that indicated whether a high or low monetary reward would be earned if the word was successfully remembered in a later recognition test. Frontal theta power between the presentation of the reward cue and the onset of a word was predictive of later memory for the word, but only in the high reward condition. No theta differences were observed before word onset following low reward cues. The magnitude of prestimulus encoding-related theta activity in the high reward condition was correlated with the number of high reward words that were later confidently recognized. These findings provide strong evidence for a link between reward expectancy, theta activity, and memory encoding. Theta activity before event onset seems to be especially important for the encoding of motivationally significant stimuli. One possibility is that dopaminergic activity during reward anticipation mediates frontal theta activity related to memory. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. The definition of exertion-related cardiac events.

    Science.gov (United States)

    Rai, M; Thompson, P D

    2011-02-01

    Vigorous physical activity increases the risk of sudden cardiac death (SCD) and acute myocardial infarction (AMI) but there is no standard definition as to what constitutes an exertion-related cardiac event, specifically the time interval between physical exertion and cardiac event. A systematic review of studies related to exertion-related cardiac events was performed and the time interval between exertion and the event or the symptoms leading to the event was looked for in all the articles selected for inclusion. A total of 12 of 26 articles "suggested" or "defined" exertion-related events as those events whose symptoms started during or within 1 h of exertion. Others used definitions of 0.5 h, 2 h, "during exertion", "during or immediately post exertion" and "during or within several hours after exertion". It is suggested, therefore, that the definition of an exertion-related cardiac event be established as a cardiac event in which symptoms started during or within 1 h of physical exertion.

  8. 49 CFR 236.766 - Locking, movable bridge.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locking, movable bridge. 236.766 Section 236.766... Locking, movable bridge. The rail locks, bridge locks, bolt locks, circuit controllers, and electric locks used in providing interlocking protection at a movable bridge. ...

  9. Social context and perceived agency affects empathy for pain: an event-related fMRI investigation.

    Science.gov (United States)

    Akitsuki, Yuko; Decety, Jean

    2009-08-15

    Studying of the impact of social context on the perception of pain in others is important for understanding the role of intentionality in interpersonal sensitivity, empathy, and implicit moral reasoning. Here we used an event-related fMRI with pain and social context (i.e., the number of individuals in the stimuli) as the two factors to investigate how different social contexts and resulting perceived agency modulate the neural response to the perception of pain in others. Twenty-six healthy participants were scanned while presented with short dynamic visual stimuli depicting painful situations accidentally caused by or intentionally caused by another individual. The main effect of perception of pain was associated with signal increase in the aMCC, insula, somatosensory cortex, SMA and PAG. Importantly, perceiving the presence of another individual led to specific hemodynamic increase in regions involved in representing social interaction and emotion regulation including the temporoparietal junction, medial prefrontal cortex, inferior frontal gyrus, and orbitofrontal cortex. Furthermore, the functional connectivity pattern between the left amygdala and other brain areas was modulated by the perceived agency. Our study demonstrates that the social context in which pain occurs modulate the brain response to other's pain. This modulation may reflect successful adaptation to potential danger present in a social interaction. Our results contribute to a better understanding of the neural mechanisms underpinning implicit moral reasoning that concern actions that can harm other people.

  10. Positioning and locking apparatus

    Science.gov (United States)

    Hayward, M.L.; Harper, W.H.

    1985-06-19

    A positioning and locking apparatus including a fixture having a rotatable torque ring provided with a plurality of cam segments for automatically guiding a container into a desired location within the fixture. Rotation of the ring turns the container into a final position in pressure sealing relation against a hatch member.

  11. Heritability of brain activity related to response inhibition: a longitudinal genetic study in adolescent twins

    Science.gov (United States)

    Anokhin, Andrey P.; Golosheykin, Simon; Grant, Julia D.; Heath, Andrew C.

    2017-01-01

    The ability to inhibit prepotent but context- or goal-inappropriate responses is essential for adaptive self-regulation of behavior. Deficits in response inhibition, a key component of impulsivity, have been implicated as a core dysfunction in a range of neuropsychiatric disorders such as ADHD and addictions. Identification of genetically transmitted variation in the neural underpinnings of response inhibition can help to elucidate etiological pathways to these disorders and establish the links between genes, brain, and behavior. However, little is known about genetic influences on the neural mechanisms of response inhibition during adolescence, a developmental period characterized by weak self-regulation of behavior. Here we investigated heritability of ERPs elicited in a Go/No-Go task in a large sample of adolescent twins assessed longitudinally at ages 12, 14, and 16. Genetic analyses showed significant heritability of inhibition-related frontal N2 and P3 components at all three ages, with 50 to 60% of inter-individual variability being attributable to genetic factors. These genetic influences included both common genetic factors active at different ages and novel genetic influences emerging during development. Finally, individual differences in the rate of developmental changes from age 12 to age 16 were significantly influenced by genetic factors. In conclusion, the present study provides the first evidence for genetic influences on neural correlates of response inhibition during adolescence and suggests that ERPs elicited in the Go/No-Go task can serve as intermediate neurophysiological phenotypes (endophenotypes) for the study of disinhibition and impulse control disorders. PMID:28300615

  12. Attentional Modulation of Brain Responses to Primary Appetitive and Aversive Stimuli

    Science.gov (United States)

    Field, Brent A.; Buck, Cara L.; McClure, Samuel M.; Nystrom, Leigh E.; Kahneman, Daniel; Cohen, Jonathan D.

    2015-01-01

    Studies of subjective well-being have conventionally relied upon self-report, which directs subjects’ attention to their emotional experiences. This method presumes that attention itself does not influence emotional processes, which could bias sampling. We tested whether attention influences experienced utility (the moment-by-moment experience of pleasure) by using functional magnetic resonance imaging (fMRI) to measure the activity of brain systems thought to represent hedonic value while manipulating attentional load. Subjects received appetitive or aversive solutions orally while alternatively executing a low or high attentional load task. Brain regions associated with hedonic processing, including the ventral striatum, showed a response to both juice and quinine. This response decreased during the high-load task relative to the low-load task. Thus, attentional allocation may influence experienced utility by modulating (either directly or indirectly) the activity of brain mechanisms thought to represent hedonic value. PMID:26158468

  13. Attentional Modulation of Brain Responses to Primary Appetitive and Aversive Stimuli.

    Directory of Open Access Journals (Sweden)

    Brent A Field

    Full Text Available Studies of subjective well-being have conventionally relied upon self-report, which directs subjects' attention to their emotional experiences. This method presumes that attention itself does not influence emotional processes, which could bias sampling. We tested whether attention influences experienced utility (the moment-by-moment experience of pleasure by using functional magnetic resonance imaging (fMRI to measure the activity of brain systems thought to represent hedonic value while manipulating attentional load. Subjects received appetitive or aversive solutions orally while alternatively executing a low or high attentional load task. Brain regions associated with hedonic processing, including the ventral striatum, showed a response to both juice and quinine. This response decreased during the high-load task relative to the low-load task. Thus, attentional allocation may influence experienced utility by modulating (either directly or indirectly the activity of brain mechanisms thought to represent hedonic value.

  14. The light-makeup advantage in facial processing: Evidence from event-related potentials

    OpenAIRE

    Tagai, Keiko; Shimakura, Hitomi; Isobe, Hiroko; Nittono, Hiroshi

    2017-01-01

    The effects of makeup on attractiveness have been evaluated using mainly subjective measures. In this study, event-related brain potentials (ERPs) were recorded from a total of 45 Japanese women (n = 23 and n = 22 for Experiment 1 and 2, respectively) to examine the neural processing of faces with no makeup, light makeup, and heavy makeup. To have the participants look at each face carefully, an identity judgement task was used: they were asked to judge whether the two faces presented in succ...

  15. Recording brain waves at the supermarket: what can we learn from a shopper's brain?

    Science.gov (United States)

    Sands, Stephen F; Sands, J Andrew

    2012-01-01

    cognitive and emotional activity and are complimentary. EEG is more sensitive to time-locked events (i.e., story lines), whereas fMRI is more sensitive to the brain regions involved. The application of neuroscience in BTL campaigns is significantly more difficult to achieve. Participants move unconstrained in a shopping environment while EEG and eye movements are monitored. In this scenario, fMRI is not possible. fMRI can be used with virtual store mock-ups, but it is expensive and seldom used. We have developed a technology that allows for the measurement of EEG in an unobtrusive manner. The intent is to record the brain waves of participants during their day-to-day shopping experience. A miniaturized video recorder, EEG amplifiers, and eye-tracking systems are used. Digital signal processing is employed to remove the substantial artifact generated by eye movements and motion. Eye fixations identify specific viewings of products and displays, and they are used for synchronizing the behavior with EEG response. The location of EEG sources is determined by the use of a source reconstruction software.

  16. Physics and Control of Locked Modes in the DIII-D Tokamak

    International Nuclear Information System (INIS)

    Volpe, Francesco

    2017-01-01

    This Final Technical Report summarizes an investigation, carried out under the auspices of the DOE Early Career Award, of the physics and control of non-rotating magnetic islands (''locked modes'') in tokamak plasmas. Locked modes are one of the main causes of disruptions in present tokamaks, and could be an even bigger concern in ITER, due to its relatively high beta (favoring the formation of Neoclassical Tearing Mode islands) and low rotation (favoring locking). For these reasons, this research had the goal of studying and learning how to control locked modes in the DIII-D National Fusion Facility under ITER-relevant conditions of high pressure and low rotation. Major results included: the first full suppression of locked modes and avoidance of the associated disruptions; the demonstration of error field detection from the interaction between locked modes, applied rotating fields and intrinsic errors; the analysis of a vast database of disruptive locked modes, which led to criteria for disruption prediction and avoidance.

  17. Physics and Control of Locked Modes in the DIII-D Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Volpe, Francesco [Columbia Univ., New York, NY (United States). Dept. of Applied Physics and Applied Mathematics

    2017-01-30

    This Final Technical Report summarizes an investigation, carried out under the auspices of the DOE Early Career Award, of the physics and control of non-rotating magnetic islands (“locked modes”) in tokamak plasmas. Locked modes are one of the main causes of disruptions in present tokamaks, and could be an even bigger concern in ITER, due to its relatively high beta (favoring the formation of Neoclassical Tearing Mode islands) and low rotation (favoring locking). For these reasons, this research had the goal of studying and learning how to control locked modes in the DIII-D National Fusion Facility under ITER-relevant conditions of high pressure and low rotation. Major results included: the first full suppression of locked modes and avoidance of the associated disruptions; the demonstration of error field detection from the interaction between locked modes, applied rotating fields and intrinsic errors; the analysis of a vast database of disruptive locked modes, which led to criteria for disruption prediction and avoidance.

  18. Competing recombinant technologies for environmental innovation: Extending Arthur's model of lock-in

    NARCIS (Netherlands)

    Zeppini, P.; van den Bergh, J.C.J.M.

    2011-01-01

    This article presents a model of sequential decisions about investments in environmentally dirty and clean technologies, which extends the path-dependence framework of B. Arthur (1989, Competing technologies, increasing returns, and lock-in by historical events, The Economic Journal, 99, pp.

  19. Competing recombinant technologies for environmental innovation : extending Arthur's model of lock-in

    NARCIS (Netherlands)

    Zeppini, P.; Bergh, van den J.C.J.M.

    2011-01-01

    This article presents a model of sequential decisions about investments in environmentally dirty and clean technologies, which extends the path-dependence framework of B. Arthur (1989, Competing technologies, increasing returns, and lock-in by historical events, The Economic Journal, 99, pp.

  20. Research of mechanism of density lock

    International Nuclear Information System (INIS)

    Wang Shengfei; Yan Changqi; Gu Haifeng

    2010-01-01

    Mechanism of density lock was analyzed according to the work conditions of density lock. The results showed that: the stratification with no disturbance satisfied the work conditions of density lock; fluids between the stratification were not mixed at the condition of connected to each other; the density lock can be open automatically by controlled the pressure balance at the stratification. When disturbance existed, the stratification might be broken and mass would be transferred by convection. The stability of stratification can be enhanced by put the special structure in density lock to ensure the normal work of density lock. At last, the minimum of heat loss in density lock was also analyzed. (authors)

  1. Transient time of an Ising machine based on injection-locked laser network

    International Nuclear Information System (INIS)

    Takata, Kenta; Utsunomiya, Shoko; Yamamoto, Yoshihisa

    2012-01-01

    We numerically study the dynamics and frequency response of the recently proposed Ising machine based on the polarization degrees of freedom of an injection-locked laser network (Utsunomiya et al 2011 Opt. Express 19 18091). We simulate various anti-ferromagnetic Ising problems, including the ones with symmetric Ising and Zeeman coefficients, which enable us to study the problem size up to M = 1000. Transient time, to reach a steady-state polarization configuration after a given Ising problem is mapped onto the system, is inversely proportional to the locking bandwidth and does not scale exponentially with the problem size. In the Fourier analysis with first-order linearization approximation, we find that the cut-off frequency of a system's response is almost identical to the locking bandwidth, which supports the time-domain analysis. It is also shown that the Zeeman term, which is created by the horizontally polarized injection signal from the master laser, serves as an initial driving force on the system and contributes to the transient time in addition to the inverse locking bandwidth. (paper)

  2. Multiple linear regression to estimate time-frequency electrophysiological responses in single trials.

    Science.gov (United States)

    Hu, L; Zhang, Z G; Mouraux, A; Iannetti, G D

    2015-05-01

    Transient sensory, motor or cognitive event elicit not only phase-locked event-related potentials (ERPs) in the ongoing electroencephalogram (EEG), but also induce non-phase-locked modulations of ongoing EEG oscillations. These modulations can be detected when single-trial waveforms are analysed in the time-frequency domain, and consist in stimulus-induced decreases (event-related desynchronization, ERD) or increases (event-related synchronization, ERS) of synchrony in the activity of the underlying neuronal populations. ERD and ERS reflect changes in the parameters that control oscillations in neuronal networks and, depending on the frequency at which they occur, represent neuronal mechanisms involved in cortical activation, inhibition and binding. ERD and ERS are commonly estimated by averaging the time-frequency decomposition of single trials. However, their trial-to-trial variability that can reflect physiologically-important information is lost by across-trial averaging. Here, we aim to (1) develop novel approaches to explore single-trial parameters (including latency, frequency and magnitude) of ERP/ERD/ERS; (2) disclose the relationship between estimated single-trial parameters and other experimental factors (e.g., perceived intensity). We found that (1) stimulus-elicited ERP/ERD/ERS can be correctly separated using principal component analysis (PCA) decomposition with Varimax rotation on the single-trial time-frequency distributions; (2) time-frequency multiple linear regression with dispersion term (TF-MLRd) enhances the signal-to-noise ratio of ERP/ERD/ERS in single trials, and provides an unbiased estimation of their latency, frequency, and magnitude at single-trial level; (3) these estimates can be meaningfully correlated with each other and with other experimental factors at single-trial level (e.g., perceived stimulus intensity and ERP magnitude). The methods described in this article allow exploring fully non-phase-locked stimulus-induced cortical

  3. Performance of arm locking in LISA

    International Nuclear Information System (INIS)

    McKenzie, Kirk; Spero, Robert E.; Shaddock, Daniel A.

    2009-01-01

    For the Laser Interferometer Space Antenna (LISA) to reach its design sensitivity, the coupling of the free-running laser frequency noise to the signal readout must be reduced by more than 14 orders of magnitude. One technique employed to reduce the laser frequency noise will be arm locking, where the laser frequency is locked to the LISA arm length. In this paper we detail an implementation of arm locking. We investigate orbital effects (changing arm lengths and Doppler frequencies), the impact of errors in the Doppler knowledge that can cause pulling of the laser frequency, and the noise limit of arm locking. Laser frequency pulling is examined in two regimes: at lock acquisition and in steady state. The noise performance of arm locking is calculated with the inclusion of the dominant expected noise sources: ultrastable oscillator (clock) noise, spacecraft motion, and shot noise. We find that clock noise and spacecraft motion limit the performance of dual arm locking in the LISA science band. Studying these issues reveals that although dual arm locking [A. Sutton and D. A. Shaddock, Phys. Rev. D 78, 082001 (2008)] has advantages over single (or common) arm locking in terms of allowing high gain, it has disadvantages in both laser frequency pulling and noise performance. We address this by proposing a modification to the dual arm-locking sensor, a hybrid of common and dual arm-locking sensors. This modified dual arm-locking sensor has the laser frequency pulling characteristics and low-frequency noise coupling of common arm locking, but retains the control system advantages of dual arm locking. We present a detailed design of an arm-locking controller and perform an analysis of the expected performance when used with and without laser prestabilization. We observe that the sensor phase changes beneficially near unity-gain frequencies of the arm-locking controller, allowing a factor of 10 more gain than previously believed, without degrading stability. With a time

  4. Escaping carbon lock-in

    International Nuclear Information System (INIS)

    Unruh, G.C.

    2002-01-01

    This article explores the climate policy implications of the arguments made in ''Understanding carbon lock-in'' (Unruh, 2000), which posited that industrial countries have become locked-into fossil fuel-based energy systems through path dependent processes driven by increasing returns to scale. Carbon lock-in arises through technological, organizational, social and institutional co-evolution, ''culminating'' in what was termed as techno-institutional complex (TIC). In order to resolve the climate problem, an escape from the lock-in condition is required. However, due to the self-referential nature of TIC, escape conditions are unlikely to be generated internally and it is argued here that erogenous forces are probably required. (author)

  5. A single-chip event sequencer and related microcontroller instrumentation for atomic physics research.

    Science.gov (United States)

    Eyler, E E

    2011-01-01

    A 16-bit digital event sequencer with 50 ns resolution and 50 ns trigger jitter is implemented by using an internal 32-bit timer on a dsPIC30F4013 microcontroller, controlled by an easily modified program written in standard C. It can accommodate hundreds of output events, and adjacent events can be spaced as closely as 1.5 μs. The microcontroller has robust 5 V inputs and outputs, allowing a direct interface to common laboratory equipment and other electronics. A USB computer interface and a pair of analog ramp outputs can be added with just two additional chips. An optional display/keypad unit allows direct interaction with the sequencer without requiring an external computer. Minor additions also allow simple realizations of other complex instruments, including a precision high-voltage ramp generator for driving spectrum analyzers or piezoelectric positioners, and a low-cost proportional integral differential controller and lock-in amplifier for laser frequency stabilization with about 100 kHz bandwidth.

  6. Brain Imaging of Human Sexual Response: Recent Developments and Future Directions.

    Science.gov (United States)

    Ruesink, Gerben B; Georgiadis, Janniko R

    2017-01-01

    The purpose of this study is to provide a comprehensive summary of the latest developments in the experimental brain study of human sexuality, focusing on brain connectivity during the sexual response. Stable patterns of brain activation have been established for different phases of the sexual response, especially with regard to the wanting phase, and changes in these patterns can be linked to sexual response variations, including sexual dysfunctions. From this solid basis, connectivity studies of the human sexual response have begun to add a deeper understanding of the brain network function and structure involved. The study of "sexual" brain connectivity is still very young. Yet, by approaching the brain as a connected organ, the essence of brain function is captured much more accurately, increasing the likelihood of finding useful biomarkers and targets for intervention in sexual dysfunction.

  7. Homodyne locking of a squeezer.

    Science.gov (United States)

    Heurs, M; Petersen, I R; James, M R; Huntington, E H

    2009-08-15

    We report on the successful implementation of an approach to locking the frequencies of an optical parametric oscillator (OPO)-based squeezed-vacuum source and its driving laser. The technique allows the simultaneous measurement of the phase shifts induced by a cavity, which may be used for the purposes of frequency locking, as well as the simultaneous measurement of the sub-quantum-noise-limited (sub-QNL) phase quadrature output of the OPO. The homodyne locking technique is cheap, easy to implement, and has the distinct advantage that subsequent homodyne measurements are automatically phase locked. The homodyne locking technique is also unique in that it is a sub-QNL frequency discriminator.

  8. The Event-Related Brain Potential as an Index of Information Processing and Cognitive Activity: A Program of Basic Research.

    Science.gov (United States)

    1986-02-20

    keyboard is that fingers can rest 27 continuously over the keys, so that no travelling or visual control is required at any stage of learning. Previous...Society, 1977. ev,,ked responses: Possible brain stem components detected on Ogden, G. D., LevineJ. W., & Eisner. E. J. Measurement of work- the salp

  9. Event-related potentials to event-related words: grammatical class and semantic attributes in the representation of knowledge.

    Science.gov (United States)

    Barber, Horacio A; Kousta, Stavroula-Thaleia; Otten, Leun J; Vigliocco, Gabriella

    2010-05-21

    A number of recent studies have provided contradictory evidence on the question of whether grammatical class plays a role in the neural representation of lexical knowledge. Most of the previous studies comparing the processing of nouns and verbs, however, confounded word meaning and grammatical class by comparing verbs referring to actions with nouns referring to objects. Here, we recorded electrical brain activity from native Italian speakers reading single words all referring to events (e.g., corsa [the run]; correre [to run]), thus avoiding confounding nouns and verbs with objects and actions. We manipulated grammatical class (noun versus verb) as well as semantic attributes (motor versus sensory events). Activity between 300 and 450ms was more negative for nouns than verbs, and for sensory than motor words, over posterior scalp sites. These grammatical class and semantic effects were not dissociable in terms of latency, duration, or scalp distribution. In a later time window (450-110ms) and at frontal regions, grammatical class and semantic effects interacted; motor verbs were more positive than the other three word categories. We suggest that the lack of a temporal and topographical dissociation between grammatical class and semantic effects in the time range of the N400 component is compatible with an account in which both effects reflect the same underlying process related to meaning retrieval, and we link the later effect with working memory operations associated to the experimental task. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Shape Memory Alloy (SMA)-Based Launch Lock

    Science.gov (United States)

    Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph

    2014-01-01

    Most NASA missions require the use of a launch lock for securing moving components during the launch or securing the payload before release. A launch lock is a device used to prevent unwanted motion and secure the controlled components. The current launch locks are based on pyrotechnic, electro mechanically or NiTi driven pin pullers and they are mostly one time use mechanisms that are usually bulky and involve a relatively high mass. Generally, the use of piezoelectric actuation provides high precession nanometer accuracy but it relies on friction to generate displacement. During launch, the generated vibrations can release the normal force between the actuator components allowing shaft's free motion which could result in damage to the actuated structures or instruments. This problem is common to other linear actuators that consist of a ball screw mechanism. The authors are exploring the development of a novel launch lock mechanism that is activated by a shape memory alloy (SMA) material ring, a rigid element and an SMA ring holding flexure. The proposed design and analytical model will be described and discussed in this paper.

  11. Event-related potential response to auditory social stimuli, parent-reported social communicative deficits and autism risk in school-aged children with congenital visual impairment

    Directory of Open Access Journals (Sweden)

    Joe Bathelt

    2017-10-01

    Full Text Available Communication with visual signals, like facial expression, is important in early social development, but the question if these signals are necessary for typical social development remains to be addressed. The potential impact on social development of being born with no or very low levels of vision is therefore of high theoretical and clinical interest. The current study investigated event-related potential responses to basic social stimuli in a rare group of school-aged children with congenital visual disorders of the anterior visual system (globe of the eye, retina, anterior optic nerve. Early-latency event-related potential responses showed no difference between the VI and control group, suggesting similar initial auditory processing. However, the mean amplitude over central and right frontal channels between 280 and 320 ms was reduced in response to own-name stimuli, but not control stimuli, in children with VI suggesting differences in social processing. Children with VI also showed an increased rate of autistic-related behaviours, pragmatic language deficits, as well as peer relationship and emotional problems on standard parent questionnaires. These findings suggest that vision may be necessary for the typical development of social processing across modalities.

  12. Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice.

    Directory of Open Access Journals (Sweden)

    Ralph Timaru-Kast

    Full Text Available After traumatic brain injury (TBI elderly patients suffer from higher mortality rate and worse functional outcome compared to young patients. However, experimental TBI research is primarily performed in young animals. Aim of the present study was to clarify whether age affects functional outcome, neuroinflammation and secondary brain damage after brain trauma in mice. Young (2 months and old (21 months male C57Bl6N mice were anesthetized and subjected to a controlled cortical impact injury (CCI on the right parietal cortex. Animals of both ages were randomly assigned to 15 min, 24 h, and 72 h survival. At the end of the observation periods, contusion volume, brain water content, neurologic function, cerebral and systemic inflammation (CD3+ T cell migration, inflammatory cytokine expression in brain and lung, blood differential cell count were determined. Old animals showed worse neurological function 72 h after CCI and a high mortality rate (19.2% compared to young (0%. This did not correlate with histopathological damage, as contusion volumes were equal in both age groups. Although a more pronounced brain edema formation was detected in old mice 24 hours after TBI, lack of correlation between brain water content and neurological deficit indicated that brain edema formation is not solely responsible for age-dependent differences in neurological outcome. Brains of old naïve mice were about 8% smaller compared to young naïve brains, suggesting age-related brain atrophy with possible decline in plasticity. Onset of cerebral inflammation started earlier and primarily ipsilateral to damage in old mice, whereas in young mice inflammation was delayed and present in both hemispheres with a characteristic T cell migration pattern. Pulmonary interleukin 1β expression was up-regulated after cerebral injury only in young, not aged mice. The results therefore indicate that old animals are prone to functional deficits and strong ipsilateral cerebral

  13. A Longitudinal Investigation of Mandarin-speaking Preschoolers' Relation of Events in Narratives: From Unrelated to Related Events

    Directory of Open Access Journals (Sweden)

    Wen-hui Sah

    2007-06-01

    Full Text Available This study focuses on the way preschoolers relate events in a story. Twelve Mandarin-speaking preschoolers served as subjects; their narratives were elicited through the use of a picture book, Frog, where are you? Our data suggest that children’s progression from treating single, unrelated events to related ones requires proper linguistic and cognitive capacities. The data also support earlier findings that most 5-year-olds are not able to relate a chain of events well. Additionally, it is found that there is dissociation in abilities for producing linguistic expressions and for inferring relations between events. We try to interpret the dissociation in terms of Karmiloff-Smith’s problem-solving model.

  14. Reactivity of dogs' brain oscillations to visual stimuli measured with non-invasive electroencephalography.

    Directory of Open Access Journals (Sweden)

    Miiamaaria V Kujala

    Full Text Available Studying cognition of domestic dogs has gone through a renaissance within the last decades. However, although the behavioral studies of dogs are beginning to be common in the field of animal cognition, the neural events underlying cognition remain unknown. Here, we employed a non-invasive electroencephalography, with adhesive electrodes attached to the top of the skin, to measure brain activity of from 8 domestic dogs (Canis familiaris while they stayed still to observe photos of dog and human faces. Spontaneous oscillatory activity of the dogs, peaking in the sensors over the parieto-occipital cortex, was suppressed statistically significantly during visual task compared with resting activity at the frequency of 15-30 Hz. Moreover, a stimulus-induced low-frequency (~2-6 Hz suppression locked to the stimulus onset was evident at the frontal sensors, possibly reflecting a motor rhythm guiding the exploratory eye movements. The results suggest task-related reactivity of the macroscopic oscillatory activity in the dog brain. To our knowledge, the study is the first to reveal non-invasively measured reactivity of brain electrophysiological oscillations in healthy dogs, and it has been based purely on positive operant conditional training, without the need for movement restriction or medication.

  15. Testosterone is inversely related to brain activity during emotional inhibition in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Ans Vercammen

    Full Text Available Sex steroids affect cognitive function as well as emotion processing and regulation. They may also play a role in the pathophysiology of schizophrenia. However, the effects of sex steroids on cognition and emotion-related brain activation in schizophrenia are poorly understood. Our aim was to determine the extent to which circulating testosterone relates to brain activation in men with schizophrenia compared to healthy men during cognitive-emotional processing. We assessed brain activation in 18 men with schizophrenia and 22 age-matched healthy men during an emotional go/no-go task using fMRI and measured total serum testosterone levels on the same morning. We performed an ROI analysis to assess the relationship between serum testosterone and brain activation, focusing on cortical regions involved the emotional go/no-go task. Slower RT and reduced accuracy was observed when participants responded to neutral stimuli, while inhibiting responses to negative stimuli. Healthy men showed a robust increase in activation of the middle frontal gyrus when inhibiting responses to negative stimuli, but there was no significant association between activation and serum testosterone level in healthy men. Men with schizophrenia showed a less pronounced increase in activation when inhibiting responses to negative stimuli; however, they did show a strong inverse association between serum testosterone level and activation of the bilateral middle frontal gyrus and left insula. Additionally, increased accuracy during inhibition of response to negative words was associated with both higher serum testosterone levels and decreased activation of the middle frontal gyrus in men with schizophrenia only. We conclude that endogenous hormone levels, even within the normal range, may play an enhanced modulatory role in determining the neural and behavioural response during cognitive-emotional processing in schizophrenia.

  16. Neural Correlates of Task Cost for Stance Control with an Additional Motor Task: Phase-Locked Electroencephalogram Responses

    Science.gov (United States)

    Hwang, Ing-Shiou; Huang, Cheng-Ya

    2016-01-01

    With appropriate reallocation of central resources, the ability to maintain an erect posture is not necessarily degraded by a concurrent motor task. This study investigated the neural control of a particular postural-suprapostural procedure involving brain mechanisms to solve crosstalk between posture and motor subtasks. Participants completed a single posture task and a dual-task while concurrently conducting force-matching and maintaining a tilted stabilometer stance at a target angle. Stabilometer movements and event-related potentials (ERPs) were recorded. The added force-matching task increased the irregularity of postural response rather than the size of postural response prior to force-matching. In addition, the added force-matching task during stabilometer stance led to marked topographic ERP modulation, with greater P2 positivity in the frontal and sensorimotor-parietal areas of the N1-P2 transitional phase and in the sensorimotor-parietal area of the late P2 phase. The time-frequency distribution of the ERP primary principal component revealed that the dual-task condition manifested more pronounced delta (1–4 Hz) and beta (13–35 Hz) synchronizations but suppressed theta activity (4–8 Hz) before force-matching. The dual-task condition also manifested coherent fronto-parietal delta activity in the P2 period. In addition to a decrease in postural regularity, this study reveals spatio-temporal and temporal-spectral reorganizations of ERPs in the fronto-sensorimotor-parietal network due to the added suprapostural motor task. For a particular set of postural-suprapostural task, the behavior and neural data suggest a facilitatory role of autonomous postural response and central resource expansion with increasing interregional interactions for task-shift and planning the motor-suprapostural task. PMID:27010634

  17. Neurodevelopment of Conflict Adaptation: Evidence From Event-Related Potentials

    DEFF Research Database (Denmark)

    Liu, Xiuying; Liu, Tongran; Shangguan, Fangfang

    2018-01-01

    Conflict adaptation is key in how children self-regulate and assert cognitive control in a given situation compared with a previous experience. In the current study, we analyzed event-related potentials (ERPs) to identify age-related differences in conflict adaptation. Participants of different a...... to better assimilate and accommodate potential environmental conflicts. The results may also indicate that the development of conflict adaption is affected by the specific characteristic of the different types of conflict.......Conflict adaptation is key in how children self-regulate and assert cognitive control in a given situation compared with a previous experience. In the current study, we analyzed event-related potentials (ERPs) to identify age-related differences in conflict adaptation. Participants of different...... ages (5-year-old children, 10-year-old children, and adults) were subjected to a stimulus-stimulus (S-S) conflict control task (the flanker task) and a stimulus-response (S-R) conflict control task (the Simon task). The behavioral results revealed that all age groups had reliable conflict adaptation...

  18. Stirring up a storm: convective climate variability on tidally locked exoplanets

    Science.gov (United States)

    Koll, D. D. B.; Cronin, T.

    2017-12-01

    Earth-sized exoplanets are extremely common in the galaxy and many of them are likely tidally locked, such that they have permanent day- and nightsides. Astronomers have started to probe the atmospheres of such planets, which raises the question: can tidally locked planets support habitable climates and life?Several studies have explored this question using global circulation models (GCMs). Not only did these studies find that tidally locked Earth analogs can indeed sustain habitable climates, their large day-night contrast should also create a distinct cloud structure that could help astronomers identify such planets. These studies, however, relied on GCMs which do not explicitly resolve convection, raising the question of how robust their results are.Here we consider the dynamics of clouds and convection on a tidally locked planet using the System for Atmospheric Modeling (SAM) cloud-resolving model. We simulate a 3d `channel', representing an equatorial strip that covers both day- and nightside of a tidally locked planet. We use interactive radiation and an interactive slab ocean surface and investigate the response to changes in the stellar constant. We find mean climates that are broadly comparable to those produced by a GCM. However, when the slab ocean is shallow, we also find internal variability that is far bigger than in a GCM. Convection in a tidally locked domain can self-organize in a dramatic fashion, with large outbursts of convection followed by periods of relative calm. We show that one of the timescales for this behavior is set by the time it takes for a dry gravity wave to travel between day- and nightside. The quasi-periodic self-organization of clouds can vary the planetary albedo by up to 50%. Changes this large are potentially detectable with future space telescopes, which raises the prospect of using convectively driven variability to identify high priority targets in the search for life around other stars.

  19. Structural and functional brain changes in posttraumatic stress disorder.

    Science.gov (United States)

    Nutt, David J; Malizia, Andrea L

    2004-01-01

    Posttraumatic stress disorder (PTSD) is a highly disabling condition that is associated with intrusive recollections of a traumatic event, hyperarousal, avoidance of clues associated with the trauma, and psychological numbing. The field of neuroimaging has made tremendous advances in the past decade and has contributed greatly to our understanding of the physiology of fear and the pathophysiology of PTSD. Neuroimaging studies have demonstrated significant neurobiologic changes in PTSD. There appear to be 3 areas of the brain that are different in patients with PTSD compared with those in control subjects: the hippocampus, the amygdala, and the medial frontal cortex. The amygdala appears to be hyperreactive to trauma-related stimuli. The hallmark symptoms of PTSD, including exaggerated startle response and flashbacks, may be related to a failure of higher brain regions (i.e., the hippocampus and the medial frontal cortex) to dampen the exaggerated symptoms of arousal and distress that are mediated through the amygdala in response to reminders of the traumatic event. The findings of structural and functional neuroimaging studies of PTSD are reviewed as they relate to our current understanding of the pathophysiology of this disorder.

  20. Name conditioning in event-related brain potentials.

    Science.gov (United States)

    Kotchoubey, Boris; Pavlov, Yuri G

    2017-11-01

    Four experiments are reported in which two harmonic tones (CS+ and CS-) were paired with a participant's own name (SON) and different names (DN), respectively. A third tone was not paired with any other stimulus and served as a standard (frequent stimulus) in a three-stimuli oddball paradigm. The larger posterior positivity (P3) to SON than DN, found in previous studies, was replicated in all experiments. Conditioning of the P3 response was albeit observed in two similar experiments (1 and 3), but the obtained effects were weak and not identical in the two experiments. Only Experiment 4, where the number of CS/UCS pairings and the Stimulus-Onset Asynchrony between CS and UCS were increased, showed clear CS+/CS- differences both in time and time-frequency domains. Surprisingly, differential responses to CS+ and CS- were also obtained in Experiment 2, although SON and DN in that experiment were masked and never consciously recognized as meaningful words (recognition rate 0/63 participants). The results are discussed in the context of other ERP conditioning experiments and, particularly, the studies of non-conscious effect on ERP. Several further experiments are suggested to replicate and extend the present findings and to remove the remaining methodological limitations. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Plasticity-related genes in brain development and amygdala-dependent learning.

    Science.gov (United States)

    Ehrlich, D E; Josselyn, S A

    2016-01-01

    Learning about motivationally important stimuli involves plasticity in the amygdala, a temporal lobe structure. Amygdala-dependent learning involves a growing number of plasticity-related signaling pathways also implicated in brain development, suggesting that learning-related signaling in juveniles may simultaneously influence development. Here, we review the pleiotropic functions in nervous system development and amygdala-dependent learning of a signaling pathway that includes brain-derived neurotrophic factor (BDNF), extracellular signaling-related kinases (ERKs) and cyclic AMP-response element binding protein (CREB). Using these canonical, plasticity-related genes as an example, we discuss the intersection of learning-related and developmental plasticity in the immature amygdala, when aversive and appetitive learning may influence the developmental trajectory of amygdala function. We propose that learning-dependent activation of BDNF, ERK and CREB signaling in the immature amygdala exaggerates and accelerates neural development, promoting amygdala excitability and environmental sensitivity later in life. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  2. The Stroop matching task presents conflict at both the response and nonresponse levels: an event-related potential and electromyography study.

    Science.gov (United States)

    Caldas, A L; Machado-Pinheiro, W; Souza, L B; Motta-Ribeiro, G C; David, I A

    2012-09-01

    In the Stroop matching task, a Stroop word is compared to a colored bar. The origin of the conflict presented by this task is a topic of current debate. In an effort to disentangle nonresponse and response conflicts, we recorded electromyography (EMG) and event-related potentials (ERPs) while participants performed the task. The N450 component was sensitive to the relationship of color surfaces, regardless of the response, suggesting the participation of nonresponse conflict. Incompatible arrays (e.g., incongruent Stroop stimuli during "same" responses) presented a substantial amount of double EMG activation and slower EMG latencies, suggesting the participation of response conflict. We propose that both response and nonresponse conflicts are sources of these effects. The combined use of the EMG and ERP techniques played an important role in elucidating the conflicts immersed in the Stroop matching task. Copyright © 2012 Society for Psychophysiological Research.

  3. Face the hierarchy: ERP and oscillatory brain responses in social rank processing.

    Science.gov (United States)

    Breton, Audrey; Jerbi, Karim; Henaff, Marie-Anne; Cheylus, Anne; Baudouin, Jean-Yves; Schmitz, Christina; Krolak-Salmon, Pierre; Van der Henst, Jean-Baptiste

    2014-01-01

    Recognition of social hierarchy is a key feature that helps us navigate through our complex social environment. Neuroimaging studies have identified brain structures involved in the processing of hierarchical stimuli but the precise temporal dynamics of brain activity associated with such processing remains largely unknown. Here, we used electroencephalography to examine the effect of social hierarchy on neural responses elicited by faces. In contrast to previous studies, the key manipulation was that a hierarchical context was constructed, not by varying facial expressions, but by presenting neutral-expression faces in a game setting. Once the performance-based hierarchy was established, participants were presented with high-rank, middle-rank and low-rank player faces and had to evaluate the rank of each face with respect to their own position. Both event-related potentials and task-related oscillatory activity were investigated. Three main findings emerge from the study. First, the experimental manipulation had no effect on the early N170 component, which may suggest that hierarchy did not modulate the structural encoding of neutral-expression faces. Second, hierarchy significantly modulated the amplitude of the late positive potential (LPP) within a 400-700 ms time-window, with more a prominent LPP occurring when the participants processed the face of the highest-rank player. Third, high-rank faces were associated with the highest reduction of alpha power. Taken together these findings provide novel electrophysiological evidence for enhanced allocation of attentional resource in the presence of high-rank faces. At a broader level, this study brings new insights into the neural processing underlying social categorization.

  4. Aberrant brain response after auditory deviance in PTSD compared to trauma controls: An EEG study

    NARCIS (Netherlands)

    Bangel, Katrin A.; van Buschbach, Susanne; Smit, Dirk J. A.; Mazaheri, Ali; Olff, Miranda

    2017-01-01

    Part of the symptomatology of post-traumatic stress disorder (PTSD) are alterations in arousal and reactivity which could be related to a maladaptive increase in the automated sensory change detection system of the brain. In the current EEG study we investigated whether the brain's response to a

  5. Food-Related Odors Activate Dopaminergic Brain Areas

    Directory of Open Access Journals (Sweden)

    Agnieszka Sorokowska

    2017-12-01

    Full Text Available Food-associated cues of different sensory categories have often been shown to be a potent elicitor of cerebral activity in brain reward circuits. Smells influence and modify the hedonic qualities of eating experience, and in contrast to smells not associated with food, perception of food-associated odors may activate dopaminergic brain areas. In this study, we aimed to verify previous findings related to the rewarding value of food-associated odors by means of an fMRI design involving carefully preselected odors of edible and non-edible substances. We compared activations generated by three food and three non-food odorants matching in terms of intensity, pleasantness and trigeminal qualities. We observed that for our mixed sample of 30 hungry and satiated participants, food odors generated significantly higher activation in the anterior cingulate cortex (right and left, insula (right, and putamen (right than non-food odors. Among hungry subjects, regardless of the odor type, we found significant activation in the ventral tegmental area in response to olfactory stimulation. As our stimuli were matched in terms of various perceptual qualities, this result suggests that edibility of an odor source indeed generates specific activation in dopaminergic brain areas.

  6. Weak-light phase locking for LISA

    International Nuclear Information System (INIS)

    McNamara, Paul W

    2005-01-01

    The long armlengths of the LISA interferometer, and the finite aperture of the telescope, lead to an optical power attenuation of ∼10 -10 of the transmitted to received light. Simple reflection at the end of the arm is therefore not an optimum interferometric design. Instead, a local laser is offset phase locked to the weak incoming beam, transferring the phase information of the incoming to the outgoing light. This paper reports on an experiment to characterize a weak-light phase-locking scheme suitable for LISA in which a diode-pumped, Nd:YAG, non-planar ring oscillator (NPRO) is offset phase locked to a low-power (13 pW) frequency stabilized master NPRO. Preliminary results of the relative phase noise of the slave laser shows shot noise limited performance above 0.4 Hz. Excess noise is observed at lower frequencies, most probably due to thermal effects in the optical arrangement and phase-sensing electronics

  7. Radiation-related damage to the developing human brain

    International Nuclear Information System (INIS)

    Schull, W.J.; Yoshimaru, Hiroshi; Kyorin Univ., Tokyo

    1989-01-01

    The authors summarize the significant dose-related effects on brain development which have emerged largely within the last six years of study of prenatally exposed A-bomb survivors. The results are described primarily in terms of the DS86 estimates and differences between these and the older T65DR dose estimates are discussed. The severe mental retardation sample was based on 1598 individuals taken from the PE-86 sample, and the intelligence test scores considered from the same sample involved 1673 children. The authors also discuss some of the recent neurobiological developments that appear relevant to an understanding of the biological bases of dose-related events observed, and suggest future research that may contribute either to further delineation of exposure consequences or to the explanation of the cellular and molecular origins of observed effects. (UK)

  8. Comparative Study of Determining of the Responsible Person and the Basis of Compensation in Civil Liability Results from Events Related to Nuclear Facilities

    Directory of Open Access Journals (Sweden)

    Sayyed Mohammad Mahdi Qabuli Dorafshan

    2015-12-01

    Full Text Available Nuclear facilities, though have large advantages for human being, they also creates heavy hazards. Thus, the question of civil liability results from events of mentioned facilities are so significant. This paper studies the question of the basis and responsible for compensation results from aforementioned events in international instruments, Iran and French law. Outcome of this study shows that in this regard, Paris and Vienna conventions and the other related conventions and protocols adjust a special legal régime. In this respect, the international instruments while distancing themselves from liability based on fault, highlight the exclusive responsibility of the operator of nuclear facilities and they have commited the operator to insurance or appropriate secure financing. Also French legal régime have followed this manner with the impact of the Paris Convention and its amendments and additions. There is no special provisions in Iran legal régime in this matter so civil liability results from nuclear events is under general rules of civil liability and rules such Itlaf (loss, Tasbib (causation, Taqsir (fault and La-zarar (no damage in the context of Imamye jurisprudence. Ofcourse, the responsible is basically the one who the damage is attributable to him. Finaly, It is appropriate that the Iranian legislator predict favorable régime and provides special financial fund for compensation of possible injured parties in accordance with necessities and specific requirements related to nuclear energy

  9. Recent adaptive events in human brain revealed by meta-analysis of positively selected genes.

    Directory of Open Access Journals (Sweden)

    Yue Huang

    Full Text Available BACKGROUND AND OBJECTIVES: Analysis of positively-selected genes can help us understand how human evolved, especially the evolution of highly developed cognitive functions. However, previous works have reached conflicting conclusions regarding whether human neuronal genes are over-represented among genes under positive selection. METHODS AND RESULTS: We divided positively-selected genes into four groups according to the identification approaches, compiling a comprehensive list from 27 previous studies. We showed that genes that are highly expressed in the central nervous system are enriched in recent positive selection events in human history identified by intra-species genomic scan, especially in brain regions related to cognitive functions. This pattern holds when different datasets, parameters and analysis pipelines were used. Functional category enrichment analysis supported these findings, showing that synapse-related functions are enriched in genes under recent positive selection. In contrast, immune-related functions, for instance, are enriched in genes under ancient positive selection revealed by inter-species coding region comparison. We further demonstrated that most of these patterns still hold even after controlling for genomic characteristics that might bias genome-wide identification of positively-selected genes including gene length, gene density, GC composition, and intensity of negative selection. CONCLUSION: Our rigorous analysis resolved previous conflicting conclusions and revealed recent adaptation of human brain functions.

  10. A low-cost, high-performance, digital signal processor-based lock-in amplifier capable of measuring multiple frequency sweeps simultaneously

    International Nuclear Information System (INIS)

    Sonnaillon, Maximiliano Osvaldo; Bonetto, Fabian Jose

    2005-01-01

    A high-performance digital lock-in amplifier implemented in a low-cost digital signal processor (DSP) board is described. This lock in is capable of measuring simultaneously multiple frequencies that change in time as frequency sweeps (chirps). The used 32-bit DSP has enough computing power to generate N=3 simultaneous reference signals and accurately measure the N=3 responses, operating as three lock ins connected in parallel to a linear system. The lock in stores the measured values in memory until they are downloaded to the a personal computer (PC). The lock in works in stand-alone mode and can be programmed and configured through the PC serial port. Downsampling and multiple filter stages were used in order to obtain a sharp roll off and a long time constant in the filters. This makes measurements possible in presence of high-noise levels. Before each measurement, the lock in performs an autocalibration that measures the frequency response of analog output and input circuitry in order to compensate for the departure from ideal operation. Improvements from previous lock-in implementations allow measuring the frequency response of a system in a short time. Furthermore, the proposed implementation can measure how the frequency response changes with time, a characteristic that is very important in our biotechnological application. The number of simultaneous components that the lock in can generate and measure can be extended, without reprogramming, by only using other DSPs of the same family that are code compatible and work at higher clock frequencies

  11. A low-cost, high-performance, digital signal processor-based lock-in amplifier capable of measuring multiple frequency sweeps simultaneously

    Energy Technology Data Exchange (ETDEWEB)

    Sonnaillon, Maximiliano Osvaldo; Bonetto, Fabian Jose [Laboratorio de Cavitacion y Biotecnologia, San Carlos de Bariloche (8400) (Argentina)

    2005-02-01

    A high-performance digital lock-in amplifier implemented in a low-cost digital signal processor (DSP) board is described. This lock in is capable of measuring simultaneously multiple frequencies that change in time as frequency sweeps (chirps). The used 32-bit DSP has enough computing power to generate N=3 simultaneous reference signals and accurately measure the N=3 responses, operating as three lock ins connected in parallel to a linear system. The lock in stores the measured values in memory until they are downloaded to the a personal computer (PC). The lock in works in stand-alone mode and can be programmed and configured through the PC serial port. Downsampling and multiple filter stages were used in order to obtain a sharp roll off and a long time constant in the filters. This makes measurements possible in presence of high-noise levels. Before each measurement, the lock in performs an autocalibration that measures the frequency response of analog output and input circuitry in order to compensate for the departure from ideal operation. Improvements from previous lock-in implementations allow measuring the frequency response of a system in a short time. Furthermore, the proposed implementation can measure how the frequency response changes with time, a characteristic that is very important in our biotechnological application. The number of simultaneous components that the lock in can generate and measure can be extended, without reprogramming, by only using other DSPs of the same family that are code compatible and work at higher clock frequencies.

  12. Mastication accelerates Go/No-go decisional processing: An event-related potential study.

    Science.gov (United States)

    Sakamoto, Kiwako; Nakata, Hiroki; Yumoto, Masato; Sadato, Norihiro; Kakigi, Ryusuke

    2015-11-01

    The purpose of the present study was to investigate the effect of mastication on Go/No-go decisional processing using event-related potentials (ERPs). Thirteen normal subjects underwent seven sessions of a somatosensory Go/No-go paradigm for approximately 4min; Pre, and Post 1, 2, 3, 4, 5, and 6. The Control condition included the same seven sessions. The RT and standard deviation were recorded, and the peak amplitude and latency of the N140 and P300 components were analyzed. The RT was significantly shorter in Mastication than in Control at Post 1-3 and 4-6. The peak latency of N140 was earlier in Mastication than in Control at Post 4-6. The latency of N140 was shortened by repeated sessions in Mastication, but not by those in Control. The peak latency of P300 was significantly shorter in Mastication than in Control at Post 4-6. The peak latency of P300 was significantly longer in Control with repeated sessions, but not in Mastication. These results suggest that mastication may influence response execution processing in Go trials, as well as response inhibition processing in No-go trials. Mastication accelerated Go/No-go decisional processing in the human brain. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Low-cost, digital lock-in module with external reference for coating glass transmission/reflection spectrophotometer

    Science.gov (United States)

    Alonso, R.; Villuendas, F.; Borja, J.; Barragán, L. A.; Salinas, I.

    2003-05-01

    A versatile, low-cost, digital signal processor (DSP) based lock-in module with external reference is described. This module is used to implement an industrial spectrophotometer for measuring spectral transmission and reflection of automotive and architectonic coating glasses over the ultraviolet, visible and near-infrared wavelength range. The light beams are modulated with an optical chopper. A digital phase-locked loop (DPLL) is used to lock the lock-in to the chop frequency. The lock-in rejects the ambient radiation and permits the spectrophotometer to work in the presence of ambient light. The algorithm that implements the dual lock-in and the DPLL in the DSP56002 evaluation module from Motorola is described. The use of a DSP allows implementation of the lock-in and DPLL by software, which gives flexibility and programmability to the system. Lock-in module cost, under 300 euro, is an important parameter taking into account that two modules are used in the system. Besides, the algorithms implemented in this DSP can be directly implemented in the latest DSP generations. The DPLL performance and the spectrophotometer are characterized. Capture and lock DPLL ranges have been measured and checked to be greater than the chop frequency drifts. The lock-in measured frequency response shows that the lock-in performs as theoretically predicted.

  14. Reusable locking tube in a reconstitutable fuel assembly

    International Nuclear Information System (INIS)

    Shallenberger, J.M.; Ferlan, S.J.

    1987-01-01

    This patent describes a reconstitutable fuel assembly including a top nozzle with an adapter plate having an interior wall forming at least one passageway, at least one guide thimble with an upper end portion, and an attaching structure having an outer socket formed by a circumferential groove defined in the adapter plate passageway wall and opening into the passageway and an inner socket formed by a circumferential bulge and at least one longitudinal slot defined in the upper end portion of the guide thimble. The circumferential bulge is capable of seating within the circumferential groove, an improved reusable tube for releasably locking the inner socket of the guide thimble upper end portion in locking engagement within the outer socket of the adapter plate passageway when the circumferential bulge is seated within the circumferential groove. The reusable tube comprises: (a) an elongated hollow tubular body capable of insertion within the adapter plate passageway and guide thimble upper end portion to a locking position therein such that the circumferential bulge of the inner socket is maintained seated in the locking engagement with the circumferential groove of the outer socket; and (b) at least a pair of dimples performed on the exterior of the tubular body prior to insertion of the body in the guide thimble upper end portion and to the locking position, the dimples being performed and configured to increase the thickness of the tubular body in relation to the remainder of the tubular body. The dimples are substantially resisting resilient yielding in relation to the remainder of the tubular body

  15. Processing ser and estar to locate objects and events

    Science.gov (United States)

    Dussias, Paola E.; Contemori, Carla; Román, Patricia

    2016-01-01

    In Spanish locative constructions, a different form of the copula is selected in relation to the semantic properties of the grammatical subject: sentences that locate objects require estar while those that locate events require ser (both translated in English as ‘to be’). In an ERP study, we examined whether second language (L2) speakers of Spanish are sensitive to the selectional restrictions that the different types of subjects impose on the choice of the two copulas. Twenty-four native speakers of Spanish and two groups of L2 Spanish speakers (24 beginners and 18 advanced speakers) were recruited to investigate the processing of ‘object/event + estar/ser’ permutations. Participants provided grammaticality judgments on correct (object + estar; event + ser) and incorrect (object + ser; event + estar) sentences while their brain activity was recorded. In line with previous studies (Leone-Fernández, Molinaro, Carreiras, & Barber, 2012; Sera, Gathje, & Pintado, 1999), the results of the grammaticality judgment for the native speakers showed that participants correctly accepted object + estar and event + ser constructions. In addition, while ‘object + ser’ constructions were considered grossly ungrammatical, ‘event + estar’ combinations were perceived as unacceptable to a lesser degree. For these same participants, ERP recording time-locked to the onset of the critical word ‘en’ showed a larger P600 for the ser predicates when the subject was an object than when it was an event (*La silla es en la cocina vs. La fiesta es en la cocina). This P600 effect is consistent with syntactic repair of the defining predicate when it does not fit with the adequate semantic properties of the subject. For estar predicates (La silla está en la cocina vs. *La fiesta está en la cocina), the findings showed a central-frontal negativity between 500–700 ms. Grammaticality judgment data for the L2 speakers of Spanish showed that beginners were significantly less

  16. Social contexts modulate neural responses in the processing of others' pain: An event-related potential study.

    Science.gov (United States)

    Cui, Fang; Zhu, Xiangru; Luo, Yuejia

    2017-08-01

    Two hypotheses have been proposed regarding the response that is triggered by observing others' pain: the "empathizing hypothesis" and the "threat value of pain hypothesis." The former suggests that observing others' pain triggers an empathic response. The latter suggests that it activates the threat-detection system. In the present study, participants were instructed to observe pictures that showed an anonymous hand or foot in a painful or non-painful situation in a threatening or friendly social context. Event-related potentials were recorded when the participants passively observed these pictures in different contexts. We observed an interaction between context and picture in the early automatic N1 component, in which the painful pictures elicited a larger amplitude than the non-painful pictures only in the threatening context and not in the friendly context. We also observed an interaction between context and picture in the late P3 component, in which the painful pictures elicited a larger amplitude than the non-painful pictures only in the friendly context and not in the threatening context. These results indicate that specific social contexts can modulate the neural responses to observing others' pain. The "empathic hypothesis" and "threat value of pain hypothesis" are not mutually exclusive and do not contradict each other but rather work in different temporal stages.

  17. Seasonal variability of stream water quality response to storm events captured using high-frequency and multi-parameter data

    Science.gov (United States)

    Fovet, O.; Humbert, G.; Dupas, R.; Gascuel-Odoux, C.; Gruau, G.; Jaffrezic, A.; Thelusma, G.; Faucheux, M.; Gilliet, N.; Hamon, Y.; Grimaldi, C.

    2018-04-01

    The response of stream chemistry to storm is of major interest for understanding the export of dissolved and particulate species from catchments. The related challenge is the identification of active hydrological flow paths during these events and of the sources of chemical elements for which these events are hot moments of exports. An original four-year data set that combines high frequency records of stream flow, turbidity, nitrate and dissolved organic carbon concentrations, and piezometric levels was used to characterize storm responses in a headwater agricultural catchment. The data set was used to test to which extend the shallow groundwater was impacting the variability of storm responses. A total of 177 events were described using a set of quantitative and functional descriptors related to precipitation, stream and groundwater pre-event status and event dynamics, and to the relative dynamics between water quality parameters and flow via hysteresis indices. This approach led to identify different types of response for each water quality parameter which occurrence can be quantified and related to the seasonal functioning of the catchment. This study demonstrates that high-frequency records of water quality are precious tools to study/unique in their ability to emphasize the variability of catchment storm responses.

  18. An event-related potential study on the interaction between lighting level and stimulus spatial location

    Directory of Open Access Journals (Sweden)

    Luis eCarretié

    2015-11-01

    Full Text Available Due to heterogeneous photoreceptor distribution, spatial location of stimulation is crucial to study visual brain activity in different light environments. This unexplored issue was studied through occipital event-related potentials (ERPs recorded from 40 participants in response to discrete visual stimuli presented at different locations and in two environmental light conditions, low mesopic (L, 0.03 lux and high mesopic (H, 6.5 lux, characterized by a differential photoreceptor activity balance: rod>cone and rodresponse to peripheral stimuli than to stimuli presented at fixation. Moreover, in the former case, significance of L vs. H differences was even stronger in response to stimuli presented at the horizontal than at the vertical periphery. These low vs. high mesopic differences may be explained by photoreceptor activation and their retinal distribution, and confirm that ERPs discriminate between rod- and cone-originated visual processing.

  19. Brain connectivity in pathological and pharmacological coma

    Directory of Open Access Journals (Sweden)

    Quentin Noirhomme

    2010-12-01

    Full Text Available Recent studies in patients with disorders of consciousness (DOC tend to support the view that awareness is not related to activity in a single brain region but to thalamo-cortical connectivity in the frontoparietal network. Functional neuroimaging studies have shown preserved albeit disconnected low level cortical activation in response to external stimulation in patients in a vegetative state or unresponsive wakefulness syndrome. While activation of these primary sensory cortices does not necessarily reflect conscious awareness, activation in higher order associative cortices in minimally conscious state patients seems to herald some residual perceptual awareness. PET studies have identified a metabolic dysfunction in a widespread fronto-parietal global neuronal workspace in DOC patients including the midline default mode network, ‘intrinsic’ system, and the lateral frontoparietal cortices or ‘extrinsic system’. Recent studies have investigated the relation of awareness to the functional connectivity within intrinsic and extrinsic networks, and with the thalami in both pathological and pharmacological coma. In brain damaged patients, connectivity in all default network areas was found to be non-linearly correlated with the degree of clinical consciousness impairment, ranging from healthy controls and locked-in syndrome to minimally conscious, vegetative, coma and brain dead patients. Anesthesia-induced loss of consciousness was also shown to correlate with a global decrease in cortico-cortical and thalamo-cortical connectivity in both intrinsic and extrinsic networks, but not in auditory or visual networks. In anesthesia, unconsciousness was also associated with a loss of cross-modal interactions between networks. These results suggest that conscious awareness critically depends on the functional integrity of thalamo-cortical and cortico-cortical frontoparietal connectivity within and between intrinsic and extrinsic brain networks.

  20. When the brain changes its mind: Oscillatory dynamics of conflict processing and response switching in a flanker task during alcohol challenge.

    Science.gov (United States)

    Beaton, Lauren E; Azma, Sheeva; Marinkovic, Ksenija

    2018-01-01

    Despite the subjective experience of being in full and deliberate control of our actions, our daily routines rely on a continuous and interactive engagement of sensory evaluation and response preparation streams. They unfold automatically and unconsciously and are seamlessly integrated with cognitive control which is mobilized by stimuli that evoke ambiguity or response conflict. Methods with high spatio-temporal sensitivity are needed to provide insight into the interplay between automatic and controlled processing. This study used anatomically-constrained MEG to examine the underlying neural dynamics in a flanker task that manipulated S-R incongruity at the stimulus (SI) and response levels (RI). Though irrelevant, flankers evoked automatic preparation of motor plans which had to be suppressed and reversed following the target presentation on RI trials. Event-related source power estimates in beta (15-25 Hz) frequency band in the sensorimotor cortex tracked motor preparation and response in real time and revealed switching from the incorrectly-primed to the correctly-responding hemisphere. In contrast, theta oscillations (4-7 Hz) were sensitive to the levels of incongruity as the medial and ventrolateral frontal cortices were especially activated by response conflict. These two areas are key to cognitive control and their integrated contributions to response inhibition and switching were revealed by phase-locked co-oscillations. These processes were pharmacologically manipulated with a moderate alcohol beverage or a placebo administered to healthy social drinkers. Alcohol selectively decreased accuracy to response conflict. It strongly attenuated theta oscillations during decision making and partly re-sculpted relative contributions of the frontal network without affecting the motor switching process subserved by beta band. Our results indicate that motor preparation is initiated automatically even when counterproductive but that it is monitored and regulated by

  1. When the brain changes its mind: Oscillatory dynamics of conflict processing and response switching in a flanker task during alcohol challenge.

    Directory of Open Access Journals (Sweden)

    Lauren E Beaton

    Full Text Available Despite the subjective experience of being in full and deliberate control of our actions, our daily routines rely on a continuous and interactive engagement of sensory evaluation and response preparation streams. They unfold automatically and unconsciously and are seamlessly integrated with cognitive control which is mobilized by stimuli that evoke ambiguity or response conflict. Methods with high spatio-temporal sensitivity are needed to provide insight into the interplay between automatic and controlled processing. This study used anatomically-constrained MEG to examine the underlying neural dynamics in a flanker task that manipulated S-R incongruity at the stimulus (SI and response levels (RI. Though irrelevant, flankers evoked automatic preparation of motor plans which had to be suppressed and reversed following the target presentation on RI trials. Event-related source power estimates in beta (15-25 Hz frequency band in the sensorimotor cortex tracked motor preparation and response in real time and revealed switching from the incorrectly-primed to the correctly-responding hemisphere. In contrast, theta oscillations (4-7 Hz were sensitive to the levels of incongruity as the medial and ventrolateral frontal cortices were especially activated by response conflict. These two areas are key to cognitive control and their integrated contributions to response inhibition and switching were revealed by phase-locked co-oscillations. These processes were pharmacologically manipulated with a moderate alcohol beverage or a placebo administered to healthy social drinkers. Alcohol selectively decreased accuracy to response conflict. It strongly attenuated theta oscillations during decision making and partly re-sculpted relative contributions of the frontal network without affecting the motor switching process subserved by beta band. Our results indicate that motor preparation is initiated automatically even when counterproductive but that it is monitored

  2. Relationship between early and late stages of information processing: an event-related potential study

    Directory of Open Access Journals (Sweden)

    Claudio Portella

    2012-11-01

    Full Text Available The brain is capable of elaborating and executing different stages of information processing. However, exactly how these stages are processed in the brain remains largely unknown. This study aimed to analyze the possible correlation between early and late stages of information processing by assessing the latency to, and amplitude of, early and late event-related potential (ERP components, including P200, N200, premotor potential (PMP and P300, in healthy participants in the context of a visual oddball paradigm. We found a moderate positive correlation among the latency of P200 (electrode O2, N200 (electrode O2, PMP (electrode C3, P300 (electrode PZ and the reaction time (RT. In addition, moderate negative correlation between the amplitude of P200 and the latencies of N200 (electrode O2, PMP (electrode C3, P300 (electrode PZ was found. Therefore, we propose that if the secondary processing of visual input (P200 latency occurs faster, the following will also happen sooner: discrimination and classification process of this input (N200 latency, motor response processing (PMP latency, reorganization of attention and working memory update (P300 latency, and RT. N200, PMP, and P300 latencies are also anticipated when higher activation level of occipital areas involved in the secondary processing of visual input rise (P200 amplitude.

  3. Relationship between early and late stages of information processing: an event-related potential study

    Science.gov (United States)

    Portella, Claudio; Machado, Sergio; Arias-Carrión, Oscar; Sack, Alexander T.; Silva, Julio Guilherme; Orsini, Marco; Leite, Marco Antonio Araujo; Silva, Adriana Cardoso; Nardi, Antonio E.; Cagy, Mauricio; Piedade, Roberto; Ribeiro, Pedro

    2012-01-01

    The brain is capable of elaborating and executing different stages of information processing. However, exactly how these stages are processed in the brain remains largely unknown. This study aimed to analyze the possible correlation between early and late stages of information processing by assessing the latency to, and amplitude of, early and late event-related potential (ERP) components, including P200, N200, premotor potential (PMP) and P300, in healthy participants in the context of a visual oddball paradigm. We found a moderate positive correlation among the latency of P200 (electrode O2), N200 (electrode O2), PMP (electrode C3), P300 (electrode PZ) and the reaction time (RT). In addition, moderate negative correlation between the amplitude of P200 and the latencies of N200 (electrode O2), PMP (electrode C3), P300 (electrode PZ) was found. Therefore, we propose that if the secondary processing of visual input (P200 latency) occurs faster, the following will also happen sooner: discrimination and classification process of this input (N200 latency), motor response processing (PMP latency), reorganization of attention and working memory update (P300 latency), and RT. N200, PMP, and P300 latencies are also anticipated when higher activation level of occipital areas involved in the secondary processing of visual input rise (P200 amplitude). PMID:23355929

  4. Mode-locking in advection-reaction-diffusion systems: An invariant manifold perspective

    Science.gov (United States)

    Locke, Rory A.; Mahoney, John R.; Mitchell, Kevin A.

    2018-01-01

    Fronts propagating in two-dimensional advection-reaction-diffusion systems exhibit a rich topological structure. When the underlying fluid flow is periodic in space and time, the reaction front can lock to the driving frequency. We explain this mode-locking phenomenon using the so-called burning invariant manifolds (BIMs). In fact, the mode-locked profile is delineated by a BIM attached to a relative periodic orbit (RPO) of the front element dynamics. Changes in the type (and loss) of mode-locking can be understood in terms of local and global bifurcations of the RPOs and their BIMs. We illustrate these concepts numerically using a chain of alternating vortices in a channel geometry.

  5. Magnetized color flavor locked state and compact stars

    CERN Document Server

    Felipe, R Gonzalez; Martinez, A Perez

    2010-01-01

    The stability of the color flavor locked phase in the presence of a strong magnetic field is investigated within the phenomenological MIT bag model, taking into account the variation of the strange quark mass, the baryon density, the magnetic field, as well as the bag and gap parameters. It is found that the minimum value of the energy per baryon in a color flavor locked state at vanishing pressure is lower than the corresponding one for unpaired magnetized strange quark matter and, as the magnetic field increases, the energy per baryon decreases. This implies that magnetized color flavor locked matter is more stable and could become the ground state inside neutron stars. The mass-radius relation for such stars is also studied.

  6. Aging affects both perceptual and lexical/semantic components of word stem priming: An event-related fMRI study

    NARCIS (Netherlands)

    Daselaar, S.M.; Veltman, D.J.; Rombouts, S.A.R.B.; Raaijmakers, J.G.; Jonker, C.

    2005-01-01

    In this event-related fMRI study, brain activity patterns were compared in extensive groups of young (N = 25) and older (N = 38) adults, while they were performing a word stem completion priming task. Based on behavioral findings, we tested the hypothesis that aging affects only the

  7. Brain response to prosodic boundary cues depends on boundary position

    Directory of Open Access Journals (Sweden)

    Julia eHolzgrefe

    2013-07-01

    Full Text Available Prosodic information is crucial for spoken language comprehension and especially for syntactic parsing, because prosodic cues guide the hearer’s syntactic analysis. The time course and mechanisms of this interplay of prosody and syntax are not yet well understood. In particular, there is an ongoing debate whether local prosodic cues are taken into account automatically or whether they are processed in relation to the global prosodic context in which they appear. The present study explores whether the perception of a prosodic boundary is affected by its position within an utterance. In an event-related potential (ERP study we tested if the brain response evoked by the prosodic boundary differs when the boundary occurs early in a list of three names connected by conjunctions (i.e., after the first name as compared to later in the utterance (i.e., after the second name. A closure positive shift (CPS — marking the processing of a prosodic phrase boundary — was elicited only for stimuli with a late boundary, but not for stimuli with an early boundary. This result is further evidence for an immediate integration of prosodic information into the parsing of an utterance. In addition, it shows that the processing of prosodic boundary cues depends on the previously processed information from the preceding prosodic context.

  8. High-density EEG characterization of brain responses to auditory rhythmic stimuli during wakefulness and NREM sleep.

    Science.gov (United States)

    Lustenberger, Caroline; Patel, Yogi A; Alagapan, Sankaraleengam; Page, Jessica M; Price, Betsy; Boyle, Michael R; Fröhlich, Flavio

    2018-04-01

    Auditory rhythmic sensory stimulation modulates brain oscillations by increasing phase-locking to the temporal structure of the stimuli and by increasing the power of specific frequency bands, resulting in Auditory Steady State Responses (ASSR). The ASSR is altered in different diseases of the central nervous system such as schizophrenia. However, in order to use the ASSR as biological markers for disease states, it needs to be understood how different vigilance states and underlying brain activity affect the ASSR. Here, we compared the effects of auditory rhythmic stimuli on EEG brain activity during wake and NREM sleep, investigated the influence of the presence of dominant sleep rhythms on the ASSR, and delineated the topographical distribution of these modulations. Participants (14 healthy males, 20-33 years) completed on the same day a 60 min nap session and two 30 min wakefulness sessions (before and after the nap). During these sessions, amplitude modulated (AM) white noise auditory stimuli at different frequencies were applied. High-density EEG was continuously recorded and time-frequency analyses were performed to assess ASSR during wakefulness and NREM periods. Our analysis revealed that depending on the electrode location, stimulation frequency applied and window/frequencies analysed the ASSR was significantly modulated by sleep pressure (before and after sleep), vigilance state (wake vs. NREM sleep), and the presence of slow wave activity and sleep spindles. Furthermore, AM stimuli increased spindle activity during NREM sleep but not during wakefulness. Thus, (1) electrode location, sleep history, vigilance state and ongoing brain activity needs to be carefully considered when investigating ASSR and (2) auditory rhythmic stimuli during sleep might represent a powerful tool to boost sleep spindles. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Event-related potential response to auditory social stimuli, parent-reported social communicative deficits and autism risk in school-aged children with congenital visual impairment.

    Science.gov (United States)

    Bathelt, Joe; Dale, Naomi; de Haan, Michelle

    2017-10-01

    Communication with visual signals, like facial expression, is important in early social development, but the question if these signals are necessary for typical social development remains to be addressed. The potential impact on social development of being born with no or very low levels of vision is therefore of high theoretical and clinical interest. The current study investigated event-related potential responses to basic social stimuli in a rare group of school-aged children with congenital visual disorders of the anterior visual system (globe of the eye, retina, anterior optic nerve). Early-latency event-related potential responses showed no difference between the VI and control group, suggesting similar initial auditory processing. However, the mean amplitude over central and right frontal channels between 280 and 320ms was reduced in response to own-name stimuli, but not control stimuli, in children with VI suggesting differences in social processing. Children with VI also showed an increased rate of autistic-related behaviours, pragmatic language deficits, as well as peer relationship and emotional problems on standard parent questionnaires. These findings suggest that vision may be necessary for the typical development of social processing across modalities. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Perceiving temporal regularity in music: The role of auditory event-related potentials (ERPs) in probing beat perception

    NARCIS (Netherlands)

    Honing, H.; Bouwer, F.L.; Háden, G.P.; Merchant, H.; de Lafuente, V.

    2014-01-01

    The aim of this chapter is to give an overview of how the perception of a regular beat in music can be studied in humans adults, human newborns, and nonhuman primates using event-related brain potentials (ERPs). Next to a review of the recent literature on the perception of temporal regularity in

  11. Who Are the True Fans? Evidence from an Event-Related Potential Study.

    Science.gov (United States)

    Ma, Qingguo; Jin, Jia; Yuan, Ruixian; Zhang, Wuke

    2015-01-01

    Fans of celebrities commonly exist in modern society. Researchers from social science have been concerned with this problem for years. Furthermore, such researchers have attempted to measure people's involvement with celebrities in various ways. However, no study measured the degree of addiction to a specific celebrity at the neurological level. Therefore, the current study employed visually evoked event related potentials (ERPs) to examine people's attitude toward celebrities by comparing different brain activities of fans and non-fans when they were shown a set of photos. These photos include a specific celebrity, a familiar person, a stranger and a butterfly. Furthermore, to examine the validity of the detected neural index, we also investigated the correlation between brain activity and the score of the Celebrity Attitude Scale (CAS), which was a questionnaire used to explore people's attitude toward celebrities at behavioral level. Two groups of subjects were asked to complete an implicit task, i.e., to press a button when a picture of a butterfly appeared. Results revealed that fans showed significant positive N2 and P300 deflection when viewing the photos of their favorite celebrity, whereas in the non-fan group, the subjects only showed larger P300 amplitude as a response to the celebrity's photos. Furthermore, a positive correlation between P300 amplitude elicited by the stimuli of a celebrity face and CAS scores was also observed. These findings indicated fan attitude to a specific celebrity can also be observed at the neurological level and suggested the potential utility of using ERP component as an index of fandom involvement.

  12. PWR integral tie plate and locking mechanism

    International Nuclear Information System (INIS)

    Flora, B.S.; Osborne, J.L.

    1980-01-01

    A locking mechanism for securing an upper tie plate to the tie rods of a nuclear fuel bundle is described. The mechanism includes an upper tie plate assembly and locking sleeves fixed to the ends of the tie rods. The tie plate is part of the upper tie plate assembly and is secured to the fuel bundle by securing the entire upper tie plate assembly to the locking sleeves fixed to the tie rods. The assembly includes, in addition to the tie plate, locking nuts for engaging the locking sleeves, retaining sleeves to operably connect the locking nuts to the assembly, a spring biased reaction plate to restrain the locking nuts in the locked position and a means to facilitate the removal of the entire assembly as a unit from the fuel bundle

  13. Towards User-Friendly Spelling with an Auditory Brain-Computer Interface: The CharStreamer Paradigm

    Science.gov (United States)

    Höhne, Johannes; Tangermann, Michael

    2014-01-01

    Realizing the decoding of brain signals into control commands, brain-computer interfaces (BCI) aim to establish an alternative communication pathway for locked-in patients. In contrast to most visual BCI approaches which use event-related potentials (ERP) of the electroencephalogram, auditory BCI systems are challenged with ERP responses, which are less class-discriminant between attended and unattended stimuli. Furthermore, these auditory approaches have more complex interfaces which imposes a substantial workload on their users. Aiming for a maximally user-friendly spelling interface, this study introduces a novel auditory paradigm: “CharStreamer”. The speller can be used with an instruction as simple as “please attend to what you want to spell”. The stimuli of CharStreamer comprise 30 spoken sounds of letters and actions. As each of them is represented by the sound of itself and not by an artificial substitute, it can be selected in a one-step procedure. The mental mapping effort (sound stimuli to actions) is thus minimized. Usability is further accounted for by an alphabetical stimulus presentation: contrary to random presentation orders, the user can foresee the presentation time of the target letter sound. Healthy, normal hearing users (n = 10) of the CharStreamer paradigm displayed ERP responses that systematically differed between target and non-target sounds. Class-discriminant features, however, varied individually from the typical N1-P2 complex and P3 ERP components found in control conditions with random sequences. To fully exploit the sequential presentation structure of CharStreamer, novel data analysis approaches and classification methods were introduced. The results of online spelling tests showed that a competitive spelling speed can be achieved with CharStreamer. With respect to user rating, it clearly outperforms a control setup with random presentation sequences. PMID:24886978

  14. Safety lock for radiography exposure device

    International Nuclear Information System (INIS)

    Gaines, T.M.

    1982-01-01

    A safety lock for securing a radiation source in a radiography exposure device is disclosed. The safety lock prevents the inadvertent extension of the radiation source from the exposure device. The exposure devices are used extensively in industry for nondestructive testing of metal materials for defect. Unnecessary exposure of the radiographer or operator occurs not infrequently due to operator's error in believing that the radiation source is secured in the exposure device when, in fact, it is not. The present invention solves this problem of unnecessary exposure by releasingly trapping the radiation source in the shield of the radiography exposure device each time the source is retracted therein so that it is not inadvertently extended therefrom without the operator resetting the safety lock, thereby releasing the radiation source. Further, the safety lock includes an indicator which indicates when the source is trapped in the exposure device and also when it is untrapped. The safety lock is so designed that it does not prevent the return of the source to the trapped, shielded position in the exposure device. Further the safety lock includes a key means for locking the radiation source in the trapped position. The key means cannot be actuated until said radiation source is in said trapped position to further insure the safety lock cannot be inadvertently locked with the source untrapped and thus still extendable from the exposure device

  15. Noninvasive transcranial brain stimulation and pain.

    Science.gov (United States)

    Rosen, Allyson C; Ramkumar, Mukund; Nguyen, Tam; Hoeft, Fumiko

    2009-02-01

    Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are two noninvasive brain stimulation techniques that can modulate activity in specific regions of the cortex. At this point, their use in brain stimulation is primarily investigational; however, there is clear evidence that these tools can reduce pain and modify neurophysiologic correlates of the pain experience. TMS has also been used to predict response to surgically implanted stimulation for the treatment of chronic pain. Furthermore, TMS and tDCS can be applied with other techniques, such as event-related potentials and pharmacologic manipulation, to illuminate the underlying physiologic mechanisms of normal and pathological pain. This review presents a description and overview of the uses of two major brain stimulation techniques and a listing of useful references for further study.

  16. The light-makeup advantage in facial processing: Evidence from event-related potentials.

    Science.gov (United States)

    Tagai, Keiko; Shimakura, Hitomi; Isobe, Hiroko; Nittono, Hiroshi

    2017-01-01

    The effects of makeup on attractiveness have been evaluated using mainly subjective measures. In this study, event-related brain potentials (ERPs) were recorded from a total of 45 Japanese women (n = 23 and n = 22 for Experiment 1 and 2, respectively) to examine the neural processing of faces with no makeup, light makeup, and heavy makeup. To have the participants look at each face carefully, an identity judgement task was used: they were asked to judge whether the two faces presented in succession were of the same person or not. The ERP waveforms in response to the first faces were analyzed. In two experiments with different stimulus probabilities, the amplitudes of N170 and vertex positive potential (VPP) were smaller for faces with light makeup than for faces with heavy makeup or no makeup. The P1 amplitude did not differ between facial types. In a subsequent rating phase, faces with light makeup were rated as more attractive than faces with heavy makeup and no makeup. The results suggest that the processing fluency of faces with light makeup is one of the reasons why light makeup is preferred to heavy makeup and no makeup in daily life.

  17. Contraction of online response to major events.

    Science.gov (United States)

    Szell, Michael; Grauwin, Sébastian; Ratti, Carlo

    2014-01-01

    Quantifying regularities in behavioral dynamics is of crucial interest for understanding collective social events such as panics or political revolutions. With the widespread use of digital communication media it has become possible to study massive data streams of user-created content in which individuals express their sentiments, often towards a specific topic. Here we investigate messages from various online media created in response to major, collectively followed events such as sport tournaments, presidential elections, or a large snow storm. We relate content length and message rate, and find a systematic correlation during events which can be described by a power law relation--the higher the excitation, the shorter the messages. We show that on the one hand this effect can be observed in the behavior of most regular users, and on the other hand is accentuated by the engagement of additional user demographics who only post during phases of high collective activity. Further, we identify the distributions of content lengths as lognormals in line with statistical linguistics, and suggest a phenomenological law for the systematic dependence of the message rate to the lognormal mean parameter. Our measurements have practical implications for the design of micro-blogging and messaging services. In the case of the existing service Twitter, we show that the imposed limit of 140 characters per message currently leads to a substantial fraction of possibly dissatisfying to compose tweets that need to be truncated by their users.

  18. Contraction of online response to major events.

    Directory of Open Access Journals (Sweden)

    Michael Szell

    Full Text Available Quantifying regularities in behavioral dynamics is of crucial interest for understanding collective social events such as panics or political revolutions. With the widespread use of digital communication media it has become possible to study massive data streams of user-created content in which individuals express their sentiments, often towards a specific topic. Here we investigate messages from various online media created in response to major, collectively followed events such as sport tournaments, presidential elections, or a large snow storm. We relate content length and message rate, and find a systematic correlation during events which can be described by a power law relation--the higher the excitation, the shorter the messages. We show that on the one hand this effect can be observed in the behavior of most regular users, and on the other hand is accentuated by the engagement of additional user demographics who only post during phases of high collective activity. Further, we identify the distributions of content lengths as lognormals in line with statistical linguistics, and suggest a phenomenological law for the systematic dependence of the message rate to the lognormal mean parameter. Our measurements have practical implications for the design of micro-blogging and messaging services. In the case of the existing service Twitter, we show that the imposed limit of 140 characters per message currently leads to a substantial fraction of possibly dissatisfying to compose tweets that need to be truncated by their users.

  19. Alcohol impairs brain reactivity to explicit loss feedback.

    Science.gov (United States)

    Nelson, Lindsay D; Patrick, Christopher J; Collins, Paul; Lang, Alan R; Bernat, Edward M

    2011-11-01

    Alcohol impairs the brain's detection of performance errors as evidenced by attenuated error-related negativity (ERN), an event-related potential (ERP) thought to reflect a brain system that monitors one's behavior. However, it remains unclear whether alcohol impairs performance-monitoring capacity across a broader range of contexts, including those entailing external feedback. This study sought to determine whether alcohol-related monitoring deficits are specific to internal recognition of errors (reflected by the ERN) or occur also in external cuing contexts. We evaluated the impact of alcohol consumption on the feedback-related negativity (FRN), an ERP thought to engage a similar process as the ERN but elicited by negative performance feedback in the environment. In an undergraduate sample randomly assigned to drink alcohol (n = 37; average peak BAC = 0.087 g/100 ml, estimated from breath alcohol sampling) or placebo beverages (n = 42), ERP responses to gain and loss feedback were measured during a two-choice gambling task. Time-frequency analysis was used to parse the overlapping theta-FRN and delta-P3 and clarified the effects of alcohol on the measures. Alcohol intoxication attenuated both the theta-FRN and delta-P3 brain responses to feedback. The theta-FRN attenuation was stronger following loss than gain feedback. Attenuation of both theta-FRN and delta-P3 components indicates that alcohol pervasively attenuates the brain's response to feedback in this task. That theta-FRN attenuation was stronger following loss trials is consistent with prior ERN findings and suggests that alcohol broadly impairs the brain's recognition of negative performance outcomes across differing contexts.

  20. Relating derived relations as a model of analogical reasoning: reaction times and event-related potentials.

    Science.gov (United States)

    Barnes-Holmes, Dermot; Regan, Donal; Barnes-Holmes, Yvonne; Commins, Sean; Walsh, Derek; Stewart, Ian; Smeets, Paul M; Whelan, Robert; Dymond, Simon

    2005-11-01

    The current study aimed to test a Relational Frame Theory (RFT) model of analogical reasoning based on the relating of derived same and derived difference relations. Experiment 1 recorded reaction time measures of similar-similar (e.g., "apple is to orange as dog is to cat") versus different-different (e.g., "he is to his brother as chalk is to cheese") derived relational responding, in both speed-contingent and speed-noncontingent conditions. Experiment 2 examined the event-related potentials (ERPs) associated with these two response patterns. Both experiments showed similar-similar responding to be significantly faster than different-different responding. Experiment 2 revealed significant differences between the waveforms of the two response patterns in the left-hemispheric prefrontal regions; different-different waveforms were significantly more negative than similar-similar waveforms. The behavioral and neurophysiological data support the RFT prediction that, all things being equal, similar-similar responding is relationally "simpler" than, and functionally distinct from, different-different analogical responding. The ERP data were fully consistent with findings in the neurocognitive literature on analogy. These findings strengthen the validity of the RFT model of analogical reasoning and supplement the behavior-analytic approach to analogy based on the relating of derived relations.

  1. Emotional response patterns of depression, grief, sadness and stress to differing life events: a quantitative analysis.

    Science.gov (United States)

    Parker, Gordon; Paterson, Amelia; Hadzi-Pavlovic, Dusan

    2015-04-01

    In clarifying the clinical definition of an episode of major depression, DSM-5 equates bereavement with a number of other loss-related stressors (e.g. financial ruin, serious medical problems) and infers differences between such loss-related and non-loss-related responses. We undertook a study with the aim of examining the likelihood of varying life stressors leading to depression or to other emotional responses, and so allowing consideration as to whether bereavement might be equivalent to other loss-related stressful triggers. We studied a sample comprising sub-sets of those likely to have either experienced or never experienced a clinical depressive episode and report data for both the whole sample and the separate sub-sets. Participants were asked to report their exposure to 16 differing stressors and, given definitions of depression, grief, sadness and stress, to rate (in order of importance) their primary and secondary reactions if so experienced. Only one event (i.e. the individual being left by their partner) generated depression as the most likely response within the sample. A grief reaction was nominated as the most likely primary response to the death of a first-degree relative (52%) and was also a relatively common primary response to the death of a more distant relative or close family friend (36%). While one-fourth (24%) nominated grief as the primary response to being left by one's partner, it was rarely nominated as a primary response to all other events, including the DSM-5 'loss-related' exemplars of a financial crisis and of a medical illness (rates of 3% and 2%, respectively). As participants were given a definition of the emotional responses and candidate contexts, their responses may have been a reflection of the definitions provided. Additionally, a retrospective, self-report design was used which may have impacted on the veracity of responses. Findings position a grief response as showing relative specificity to bereavement events and that

  2. The effect of conditional probability of chord progression on brain response: an MEG study.

    Directory of Open Access Journals (Sweden)

    Seung-Goo Kim

    Full Text Available BACKGROUND: Recent electrophysiological and neuroimaging studies have explored how and where musical syntax in Western music is processed in the human brain. An inappropriate chord progression elicits an event-related potential (ERP component called an early right anterior negativity (ERAN or simply an early anterior negativity (EAN in an early stage of processing the musical syntax. Though the possible underlying mechanism of the EAN is assumed to be probabilistic learning, the effect of the probability of chord progressions on the EAN response has not been previously explored explicitly. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, the empirical conditional probabilities in a Western music corpus were employed as an approximation of the frequencies in previous exposure of participants. Three types of chord progression were presented to musicians and non-musicians in order to examine the correlation between the probability of chord progression and the neuromagnetic response using magnetoencephalography (MEG. Chord progressions were found to elicit early responses in a negatively correlating fashion with the conditional probability. Observed EANm (as a magnetic counterpart of the EAN component responses were consistent with the previously reported EAN responses in terms of latency and location. The effect of conditional probability interacted with the effect of musical training. In addition, the neural response also correlated with the behavioral measures in the non-musicians. CONCLUSIONS/SIGNIFICANCE: Our study is the first to reveal the correlation between the probability of chord progression and the corresponding neuromagnetic response. The current results suggest that the physiological response is a reflection of the probabilistic representations of the musical syntax. Moreover, the results indicate that the probabilistic representation is related to the musical training as well as the sensitivity of an individual.

  3. Distinction between perceptual and attentional processing in working memory tasks: a study of phase-locked and induced oscillatory brain dynamics.

    Science.gov (United States)

    Deiber, Marie-Pierre; Missonnier, Pascal; Bertrand, Olivier; Gold, Gabriel; Fazio-Costa, Lara; Ibañez, Vicente; Giannakopoulos, Panteleimon

    2007-01-01

    Working memory involves the short-term storage and manipulation of information necessary for cognitive performance, including comprehension, learning, reasoning and planning. Although electroencephalogram (EEG) rhythms are modulated during working memory, the temporal relationship of EEG oscillations with the eliciting event has not been well studied. In particular, the dynamics of the neural network supporting memory processes may be best captured in induced oscillations, characterized by a loose temporal link with the stimulus. In order to differentiate induced from evoked functional processes, the present study proposes a time-frequency analysis of the 3 to 30 Hz EEG oscillatory activity in a verbal n-back working memory paradigm. Control tasks were designed to identify oscillatory activity related to stimulus presentation (passive task) and focused attention to the stimulus (detection task). Evoked theta activity (4-8 Hz) phase-locked to the visual stimulus was evidenced in the parieto-occipital region for all tasks. In parallel, induced theta activity was recorded in the frontal region for detection and n-back memory tasks, but not for the passive task, suggesting its dependency on focused attention to the stimulus. Sustained induced oscillatory activity was identified in relation to working memory in the theta and beta (15-25 Hz) frequency bands, larger for the highest memory load. Its late occurrence limited to nonmatched items suggests that it could be related to item retention and active maintenance for further task requirements. Induced theta and beta activities displayed respectively a frontal and parietal topographical distribution, providing further functional information on the fronto-posterior network supporting working memory.

  4. Anxiety type modulates immediate versus delayed engagement of attention-related brain regions.

    Science.gov (United States)

    Spielberg, Jeffrey M; De Leon, Angeline A; Bredemeier, Keith; Heller, Wendy; Engels, Anna S; Warren, Stacie L; Crocker, Laura D; Sutton, Bradley P; Miller, Gregory A

    2013-09-01

    Background Habituation of the fear response, critical for the treatment of anxiety, is inconsistently observed during exposure to threatening stimuli. One potential explanation for this inconsistency is differential attentional engagement with negatively valenced stimuli as a function of anxiety type. Methods The present study tested this hypothesis by examining patterns of neural habituation associated with anxious arousal, characterized by panic symptoms and immediate engagement with negatively valenced stimuli, versus anxious apprehension, characterized by engagement in worry to distract from negatively valenced stimuli. Results As predicted, the two anxiety types evidenced distinct patterns of attentional engagement. Anxious arousal was associated with immediate activation in attention-related brain regions that habituated over time, whereas anxious apprehension was associated with delayed activation in attention-related brain regions that occurred only after habituation in a worry-related brain region. Conclusions Results further elucidate mechanisms involved in attention to negatively valenced stimuli and indicate that anxiety is a heterogeneous construct with regard to attention to such stimuli.

  5. The relation of ongoing brain activity, evoked neural responses, and cognition

    Directory of Open Access Journals (Sweden)

    Sepideh Sadaghiani

    2010-06-01

    Full Text Available Ongoing brain activity has been observed since the earliest neurophysiological recordings and is found over a wide range of temporal and spatial scales. It is characterized by remarkably large spontaneous modulations. Here, we review evidence for the functional role of these ongoing activity fluctuations and argue that they constitute an essential property of the neural architecture underlying cognition. The role of spontaneous activity fluctuations is probably best understood when considering both their spatiotemporal structure and their functional impact on cognition. We first briefly argue against a ‘segregationist’ view on ongoing activity, both in time and space, countering this view with an emphasis on integration within a hierarchical spatiotemporal organization of intrinsic activity. We then highlight the flexibility and context-sensitivity of intrinsic functional connectivity that suggest its involvement in functionally relevant information processing. This role in information processing is pursued by reviewing how ongoing brain activity interacts with afferent and efferent information exchange of the brain with its environment. We focus on the relationship between the variability of ongoing and evoked brain activity, and review recent reports that tie ongoing brain activity fluctuations to variability in human perception and behavior. Finally, these observations are discussed within the framework of the free-energy principle which – applied to human brain function - provides a theoretical account for a non-random, coordinated interaction of ongoing and evoked activity in perception and behaviour.

  6. Can Older Adults Resist the Positivity Effect in Neural Responding: The Impact of Verbal Framing on Event-Related Brain Potentials Elicited by Emotional Images

    OpenAIRE

    Rehmert, Andrea E.; Kisley, Michael A.

    2013-01-01

    Older adults have demonstrated an avoidance of negative information presumably with a goal of greater emotional satisfaction. Understanding whether avoidance of negative information is a voluntary, motivated choice, or an involuntary, automatic response will be important to differentiate, as decision-making often involves emotional factors. With the use of an emotional framing event-related potential (ERP) paradigm, the present study investigated whether older adults could alter neural respon...

  7. Brain responses to vestibular pain and its anticipation in women with Genito-Pelvic Pain/Penetration Disorder.

    Science.gov (United States)

    Pazmany, Els; Ly, Huynh Giao; Aerts, Leen; Kano, Michiko; Bergeron, Sophie; Verhaeghe, Johan; Peeters, Ronald; Tack, Jan; Dupont, Patrick; Enzlin, Paul; Van Oudenhove, Lukas

    2017-01-01

    In DSM-5, pain-related fear during anticipation of vaginal penetration is a diagnostic criterion of Genito-Pelvic Pain/Penetration Disorder (GPPPD). We aimed to investigate subjective and brain responses during anticipatory fear and subsequent induction of vestibular pain in women with GPPPD. Women with GPPPD (n = 18) and age-matched healthy controls (HC) (n = 15) underwent fMRI scanning during vestibular pain induction at individually titrated pain threshold after a cued anticipation period. (Pain-related) fear and anxiety traits were measured with questionnaires prior to scanning, and anticipatory fear and pain intensity were rated during scanning using visual analog scales. Women with GPPPD reported significantly higher levels of anticipatory fear and pain intensity. During anticipation and pain induction they had stronger and more extensive brain responses in regions involved in cognitive and affective aspects of pain perception, but the group difference did not reach significance for the anticipation condition. Pain-related fear and anxiety traits as well as anticipatory fear ratings were positively associated with pain ratings in GPPPD, but not in HC. Further, in HC, a negative association was found between anticipatory fear ratings and brain responses in regions involved in cognitive and affective aspects of pain perception, but not in women with GPPPD. Women with GPPPD are characterized by increased subjective and brain responses to vestibular pain and, to a lesser extent, its anticipation, with fear and anxiety associated with responses to pain, supporting the introduction of anticipatory fear as a criterion of GPPPD in DSM-5.

  8. Theoretical investigation of injection-locked high modulation bandwidth quantum cascade lasers.

    Science.gov (United States)

    Meng, Bo; Wang, Qi Jie

    2012-01-16

    In this study, we report for the first time to our knowledge theoretical investigation of modulation responses of injection-locked mid-infrared quantum cascade lasers (QCLs) at wavelengths of 4.6 μm and 9 μm, respectively. It is shown through a three-level rate equations model that the direct intensity modulation of QCLs gives the maximum modulation bandwidths of ~7 GHz at 4.6 μm and ~20 GHz at 9 μm. By applying the injection locking scheme, we find that the modulation bandwidths of up to ~30 GHz and ~70 GHz can be achieved for QCLs at 4.6 μm and 9 μm, respectively, with an injection ratio of 5 dB. The result also shows that an ultrawide modulation bandwidth of more than 200 GHz is possible with a 10 dB injection ratio for QCLs at 9 μm. An important characteristic of injection-locked QCLs is the nonexistence of unstable locking region in the locking map, in contrast to their diode laser counterparts. We attribute this to the ultra-short upper laser state lifetimes of QCLs.

  9. Coordination and Lock-In: Competition with Switching Costs and Network Effects

    OpenAIRE

    Farrell, Joseph; Klemperer, Paul

    2006-01-01

    Switching costs and network effects bind customers to vendors if products are incompatible, locking customers or even markets in to early choices. Lock-in hinders customers from changing suppliers in response to (predictable or unpredictable) changes in efficiency, and gives vendors lucrative ex post market power—over the same buyer in the case of switching costs (or brand loyalty), or over others with network effects. Firms compete ex ante for this ex post power, using penetration ...

  10. INES rating of radiation protection related events

    International Nuclear Information System (INIS)

    Hort, M.

    2009-01-01

    In this presentation, based on the draft Manual, a short review of the use of the INES rating of events concerning radiation protection is given, based on a new INES User's Manual edition. The presentation comprises a brief history of the scale development, general description of the scale and the main principles of the INES rating. Several examples of the use of the scale for radiation protection related events are mentioned. In the presentation, the term 'radiation protection related events' is used for radiation source and transport related events outside the nuclear installations. (authors)

  11. Novel assessment of cortical response to somatosensory stimuli in children with hemiparetic cerebral palsy.

    Science.gov (United States)

    Maitre, Nathalie L; Barnett, Zachary P; Key, Alexandra P F

    2012-10-01

    The brain's response to somatosensory stimuli is essential to experience-driven learning in children. It was hypothesized that advances in event-related potential technology could quantify the response to touch in somatosensory cortices and characterize the responses of hemiparetic children. In this prospective study of 8 children (5-8 years old) with hemiparetic cerebral palsy, both event-related potential responses to sham or air puff trials and standard functional assessments were used. Event-related potential technology consistently measured signals reflecting activity in the primary and secondary somatosensory cortices as well as complex cognitive processing of touch. Participants showed typical early responses but less efficient perceptual processes. Significant differences between affected and unaffected extremities correlated with sensorimotor testing, stereognosis, and 2-point discrimination (r > 0.800 and P = .001 for all). For the first time, a novel event-related potential paradigm shows that hemiparetic children have slower and less efficient tactile cortical perception in their affected extremities.

  12. The neural basis of responsibility attribution in decision-making.

    Science.gov (United States)

    Li, Peng; Shen, Yue; Sui, Xue; Chen, Changming; Feng, Tingyong; Li, Hong; Holroyd, Clay

    2013-01-01

    Social responsibility links personal behavior with societal expectations and plays a key role in affecting an agent's emotional state following a decision. However, the neural basis of responsibility attribution remains unclear. In two previous event-related brain potential (ERP) studies we found that personal responsibility modulated outcome evaluation in gambling tasks. Here we conducted a functional magnetic resonance imaging (fMRI) study to identify particular brain regions that mediate responsibility attribution. In a context involving team cooperation, participants completed a task with their teammates and on each trial received feedback about team success and individual success sequentially. We found that brain activity differed between conditions involving team success vs. team failure. Further, different brain regions were associated with reinforcement of behavior by social praise vs. monetary reward. Specifically, right temporoparietal junction (RTPJ) was associated with social pride whereas dorsal striatum and dorsal anterior cingulate cortex (ACC) were related to reinforcement of behaviors leading to personal gain. The present study provides evidence that the RTPJ is an important region for determining whether self-generated behaviors are deserving of praise in a social context.

  13. Brain responses to sound intensity changes dissociate depressed participants and healthy controls.

    Science.gov (United States)

    Ruohonen, Elisa M; Astikainen, Piia

    2017-07-01

    Depression is associated with bias in emotional information processing, but less is known about the processing of neutral sensory stimuli. Of particular interest is processing of sound intensity which is suggested to indicate central serotonergic function. We tested weather event-related brain potentials (ERPs) to occasional changes in sound intensity can dissociate first-episode depressed, recurrent depressed and healthy control participants. The first-episode depressed showed larger N1 amplitude to deviant sounds compared to recurrent depression group and control participants. In addition, both depression groups, but not the control group, showed larger N1 amplitude to deviant than standard sounds. Whether these manifestations of sensory over-excitability in depression are directly related to the serotonergic neurotransmission requires further research. The method based on ERPs to sound intensity change is fast and low-cost way to objectively measure brain activation and holds promise as a future diagnostic tool. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. True Low-Power Self-Locking Soft Actuators.

    Science.gov (United States)

    Kim, Seung Jae; Kim, Onnuri; Park, Moon Jeong

    2018-03-01

    Natural double-layered structures observed in living organisms are known to exhibit asymmetric volume changes with environmental triggers. Typical examples are natural roots of plants, which show unique self-organized bending behavior in response to environmental stimuli. Herein, light- and electro-active polymer (LEAP) based actuators with a double-layered structure are reported. The LEAP actuators exhibit an improvement of 250% in displacement and hold an object three times heavier as compared to that in the case of conventional electro-active polymer actuators. Most interestingly, the bending motion of the LEAP actuators can be effectively locked for a few tens of minutes even in the absence of a power supply. Further, the self-locking LEAP actuators show a large and reversible bending strain of more than 2.0% and require only 6.2 mW h cm -2 of energy to hold an object for 15 min at an operating voltage of 3 V. These novel self-locking soft actuators should find wide applicability in artificial muscles, biomedical microdevices, and various innovative soft robot technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Age-related infra-tentorial brain atrophy on CT scan

    International Nuclear Information System (INIS)

    Kitani, Mitsuhiro; Kobayashi, Shotai; Yamaguchi, Shuhei; Okada, Kazunori; Murata, Akihiro; Tsunematsu, Tokugoro

    1985-01-01

    We had reported that the brain atrophy progressed significantly with advancing age using the two dimensional CT measurement by digitizer which was connected with personal computer. Using this method, we studied the age-related infra-tentrial brain atrophy in 67 normal subjects (14-90 years), and compared that with age-related supra-tentrial brain atrophy. There was a significant correlation between age and all indices [cranio-ventricular index (CVI), ventricular area index (VAI) and brain atrophy index (BAI)] in supratentrial brain. These indices did not correlated to the age in infra-tentrial brain (brainstem and cerebellum). Significant change of the brain atrophy occured above 60 years old was observed by BAI and VAI in supra-tentrial brain. There was a significant correlation between supra-tentrial brain atrophy index (BAI) and that of infratentrial brain. These results indicate that age-related brain atrophy might progress more slowly in brainstem and cerebellum than in cerebrum. (author)

  16. Brain death and related issues

    International Nuclear Information System (INIS)

    Akhtar, M.; Mushtaq, S.; Jamil, K.; Ahmed, S.

    2003-01-01

    Concerns about the erroneous diagnosis of death and premature burial have been expressed from times immemorial. Patients with brain stem death have absolutely no chance of recovery. Brain death is considered at par with death in most of the countries. General public in most parts of the world shows reluctance to accept this concept due to different social, cultural and religious backgrounds and state of literacy and awareness. The criteria for the diagnosis of brain death have been established which include certain pre-conditions, exclusions and tests of the brain stem function. These criteria are universally accepted. The criteria in children are somewhat different from the adults. The subject is intimately related with organ transplantation. If the patients is registered as organ donor or the family consents, organs can be harvested from brain dead patients for transplantation. Pakistan is amongst the few countries where no legislation exists to accept brain death as being at par with death of an individual, and to facilitate and regulate, cadaveric organ donation and transplantation. (author)

  17. Brain Imaging of Human Sexual Response: Recent Developments and Future Directions

    OpenAIRE

    Ruesink, Gerben B; Georgiadis, Janniko R

    2017-01-01

    Purpose of Review: The purpose of this study is to provide a comprehensive summary of the latest developments in the experimental brain study of human sexuality, focusing on brain connectivity during the sexual response. Recent Findings: Stable patterns of brain activation have been established for different phases of the sexual response, especially with regard to the wanting phase, and changes in these patterns can be linked to sexual response variations, including sexual dysfunctions. From ...

  18. Nonspatial intermodal selective attention is mediated by sensory brain brain areas: Evidence from event-related potential.

    NARCIS (Netherlands)

    Talsma, D.; Kok, A.

    2001-01-01

    Focuses on the question of whether inter-and intramodal forms of attention are reflected in activation of the same or different brain areas. ERPs were recorded while Ss (aged 18-41 yrs) were presented a random sequence of visual and auditory stimuli. They were instructed to attend to nonspatial

  19. The impact of verbal framing on brain activity evoked by emotional images.

    Science.gov (United States)

    Kisley, Michael A; Campbell, Alana M; Larson, Jenna M; Naftz, Andrea E; Regnier, Jesse T; Davalos, Deana B

    2011-12-01

    Emotional stimuli generally command more brain processing resources than non-emotional stimuli, but the magnitude of this effect is subject to voluntary control. Cognitive reappraisal represents one type of emotion regulation that can be voluntarily employed to modulate responses to emotional stimuli. Here, the late positive potential (LPP), a specific event-related brain potential (ERP) component, was measured in response to neutral, positive and negative images while participants performed an evaluative categorization task. One experimental group adopted a "negative frame" in which images were categorized as negative or not. The other adopted a "positive frame" in which the exact same images were categorized as positive or not. Behavioral performance confirmed compliance with random group assignment, and peak LPP amplitude to negative images was affected by group membership: brain responses to negative images were significantly reduced in the "positive frame" group. This suggests that adopting a more positive appraisal frame can modulate brain activity elicited by negative stimuli in the environment.

  20. How task demands shape brain responses to visual food cues.

    Science.gov (United States)

    Pohl, Tanja Maria; Tempelmann, Claus; Noesselt, Toemme

    2017-06-01

    Several previous imaging studies have aimed at identifying the neural basis of visual food cue processing in humans. However, there is little consistency of the functional magnetic resonance imaging (fMRI) results across studies. Here, we tested the hypothesis that this variability across studies might - at least in part - be caused by the different tasks employed. In particular, we assessed directly the influence of task set on brain responses to food stimuli with fMRI using two tasks (colour vs. edibility judgement, between-subjects design). When participants judged colour, the left insula, the left inferior parietal lobule, occipital areas, the left orbitofrontal cortex and other frontal areas expressed enhanced fMRI responses to food relative to non-food pictures. However, when judging edibility, enhanced fMRI responses to food pictures were observed in the superior and middle frontal gyrus and in medial frontal areas including the pregenual anterior cingulate cortex and ventromedial prefrontal cortex. This pattern of results indicates that task sets can significantly alter the neural underpinnings of food cue processing. We propose that judging low-level visual stimulus characteristics - such as colour - triggers stimulus-related representations in the visual and even in gustatory cortex (insula), whereas discriminating abstract stimulus categories activates higher order representations in both the anterior cingulate and prefrontal cortex. Hum Brain Mapp 38:2897-2912, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Towards a Unified Understanding of Event-Related Changes in the EEG: The Firefly Model of Synchronization through Cross-Frequency Phase Modulation

    Science.gov (United States)

    Burgess, Adrian P.

    2012-01-01

    Although event-related potentials (ERPs) are widely used to study sensory, perceptual and cognitive processes, it remains unknown whether they are phase-locked signals superimposed upon the ongoing electroencephalogram (EEG) or result from phase-alignment of the EEG. Previous attempts to discriminate between these hypotheses have been unsuccessful but here a new test is presented based on the prediction that ERPs generated by phase-alignment will be associated with event-related changes in frequency whereas evoked-ERPs will not. Using empirical mode decomposition (EMD), which allows measurement of narrow-band changes in the EEG without predefining frequency bands, evidence was found for transient frequency slowing in recognition memory ERPs but not in simulated data derived from the evoked model. Furthermore, the timing of phase-alignment was frequency dependent with the earliest alignment occurring at high frequencies. Based on these findings, the Firefly model was developed, which proposes that both evoked and induced power changes derive from frequency-dependent phase-alignment of the ongoing EEG. Simulated data derived from the Firefly model provided a close match with empirical data and the model was able to account for i) the shape and timing of ERPs at different scalp sites, ii) the event-related desynchronization in alpha and synchronization in theta, and iii) changes in the power density spectrum from the pre-stimulus baseline to the post-stimulus period. The Firefly Model, therefore, provides not only a unifying account of event-related changes in the EEG but also a possible mechanism for cross-frequency information processing. PMID:23049827

  2. [Locked-in syndrome in literature, cinema and television].

    Science.gov (United States)

    Collado-Vázquez, Susana; Carrillo, Jesús M

    2012-05-01

    Many diseases have been dealt with in literature, cinema or television, including epilepsy, cancer, mental disorders, movement disorders or infectious diseases. Among the many pathologies that have been considered, locked-in syndrome is one that has been of particular interest to writers and film-makers. To review how locked-in syndrome has been portrayed in literature, cinema and television. Locked-in syndrome is a state that is generally secondary to a brainstem lesion with involvement of the corticobulbar and corticospinal tracts, thereby impeding the patient from producing any kind of motor response. Patients remain conscious, maintain their higher functions and can both see and hear. Yet, they are quadriplegic with paralysis of the lower cranial nerves and cannot move or speak. They only conserve the capacity to move their eyes vertically and their eyelids, which they can use as a way to communicate. This pathology has come to the attention of writers and film and television directors, who have described characters with this syndrome. Likewise, there are also stories told in the first person by patients who have experienced this condition and who have written their story using eye movements as a means to communicate. Literature, cinema and television have shown an interest in locked-in syndrome and have placed special attention on the problems these patients have to communicate with others.

  3. 5-HTTLPR differentially predicts brain network responses to emotional faces

    DEFF Research Database (Denmark)

    Fisher, Patrick M; Grady, Cheryl L; Madsen, Martin K

    2015-01-01

    The effects of the 5-HTTLPR polymorphism on neural responses to emotionally salient faces have been studied extensively, focusing on amygdala reactivity and amygdala-prefrontal interactions. Despite compelling evidence that emotional face paradigms engage a distributed network of brain regions...... to fearful faces was significantly greater in S' carriers compared to LA LA individuals. These findings provide novel evidence for emotion-specific 5-HTTLPR effects on the response of a distributed set of brain regions including areas responsive to emotionally salient stimuli and critical components...... involved in emotion, cognitive and visual processing, less is known about 5-HTTLPR effects on broader network responses. To address this, we evaluated 5-HTTLPR differences in the whole-brain response to an emotional faces paradigm including neutral, angry and fearful faces using functional magnetic...

  4. Neural Oscillations and Synchrony in Brain Dysfunction and Neuropsychiatric Disorders: It's About Time.

    Science.gov (United States)

    Mathalon, Daniel H; Sohal, Vikaas S

    2015-08-01

    Neural oscillations are rhythmic fluctuations over time in the activity or excitability of single neurons, local neuronal populations or "assemblies," and/or multiple regionally distributed neuronal assemblies. Synchronized oscillations among large numbers of neurons are evident in electrocorticographic, electroencephalographic, magnetoencephalographic, and local field potential recordings and are generally understood to depend on inhibition that paces assemblies of excitatory neurons to produce alternating temporal windows of reduced and increased excitability. Synchronization of neural oscillations is supported by the extensive networks of local and long-range feedforward and feedback bidirectional connections between neurons. Here, we review some of the major methods and measures used to characterize neural oscillations, with a focus on gamma oscillations. Distinctions are drawn between stimulus-independent oscillations recorded during resting states or intervals between task events, stimulus-induced oscillations that are time locked but not phase locked to stimuli, and stimulus-evoked oscillations that are both time and phase locked to stimuli. Synchrony of oscillations between recording sites, and between the amplitudes and phases of oscillations of different frequencies (cross-frequency coupling), is described and illustrated. Molecular mechanisms underlying gamma oscillations are also reviewed. Ultimately, understanding the temporal organization of neuronal network activity, including interactions between neural oscillations, is critical for elucidating brain dysfunction in neuropsychiatric disorders.

  5. Neural Correlates of Belief- and Desire-Reasoning in 7- and 8-Year-Old Children: An Event-Related Potential Study

    Science.gov (United States)

    Bowman, Lindsay C.; Liu, David; Meltzoff, Andrew N.; Wellman, Henry M.

    2012-01-01

    Theory of mind requires belief- "and" desire-understanding. Event-related brain potential (ERP) research on belief- and desire-reasoning in adults found mid-frontal activations for both desires and beliefs, and selective right-posterior activations "only" for beliefs. Developmentally, children understand desires before beliefs; thus, a critical…

  6. Phase-locked Josephson soliton oscillators

    DEFF Research Database (Denmark)

    Holst, T.; Hansen, Jørn Bindslev; Grønbech-Jensen, N.

    1991-01-01

    Detailed experimental characterization of the phase-locking at both DC and at microwave frequencies is presented for two closely spaced Josephson soliton (fluxon) oscillators. In the phase-locked state, the radiated microwave power exhibited an effective gain. With one common bias source......, a frequency tunability of the phase-locked oscillators up to 7% at 10 GHz was observed. The interacting soliton oscillators were modeled by two inductively coupled nonlinear transmission lines...

  7. Locking of Turing patterns in the chlorine dioxide-iodine-malonic acid reaction with one-dimensional spatial periodic forcing.

    Science.gov (United States)

    Dolnik, Milos; Bánsági, Tamás; Ansari, Sama; Valent, Ivan; Epstein, Irving R

    2011-07-21

    We use the photosensitive chlorine dioxide-iodine-malonic acid reaction-diffusion system to study wavenumber locking of Turing patterns with spatial periodic forcing. Wavenumber-locked stripe patterns are the typical resonant structures that labyrinthine patterns exhibit in response to one-dimensional forcing by illumination when images of stripes are projected on a working medium. Our experimental results reveal that segmented oblique, hexagonal and rectangular patterns can also be obtained. However, these two-dimensional resonant structures only develop in a relatively narrow range of forcing parameters, where the unforced stripe pattern is in close proximity to the domain of hexagonal patterns. Numerical simulations based on a model that incorporates the forcing by illumination using an additive term reproduce well the experimental observations. These findings confirm that additive one-dimensional forcing can generate a two-dimensional resonant response. However, such a response is considerably less robust than the effect of multiplicative forcing. This journal is © the Owner Societies 2011

  8. Cyclotomy and Ramanujan sums in quantum phase locking

    International Nuclear Information System (INIS)

    Planat, Michel; Rosu, Haret C.

    2003-01-01

    Phase-locking governs the phase noise in classical clocks through effects described in precise mathematical terms. We seek here a quantum counterpart of these effects by working in a finite Hilbert space. We use a coprimality condition to define phase-locked quantum states and the corresponding Pegg-Barnett type phase operator. Cyclotomic symmetries in matrix elements are revealed and related to Ramanujan sums in the theory of prime numbers. The employed mathematical procedures also emphasize the isomorphism between algebraic number theory and the theory of quantum entanglement

  9. Decomposing interference during Stroop performance into different conflict factors: an event-related fMRI study.

    Science.gov (United States)

    Melcher, Tobias; Gruber, Oliver

    2009-02-01

    In the current event-related functional magnetic resonance imaging (fMRI) study, we sought to trace back Stroop-interference to circumscribed properties of task-irrelevant word information - response-incompatibility, semantic incongruency and task-reference - that we conceive as conflict factors. Thereby, we particularly wanted to disentangle intermingled contributions of semantic conflict and response conflict to the overall Stroop-interference effect. To delineate neural substrates of single factors, we referred to the logics of cognitive subtraction and cognitive conjunction. Moreover, in a second step, we conducted correlation analyses to determine the relationship between neural activations and behavioral interference costs (i.e., conflict-related reaction time (RT) slowing) so as to further elucidate the functional role of the respective brain regions in conflict processing. Response-incompatibility was associated with activation in the left premotor cortex which can be interpreted as indicating motor competition or conflict, i.e., the presence of competing response tendencies. Accordingly, this activation was positively correlated with behavioral conflict costs. Semantic incongruency exhibited specific activation in the anterior cingulate cortex (ACC), the bilateral insula, and thalamus as well as in left somatosensory cortex. As supported by the consistent negative correlation with behavioral conflict costs, these activations most probably reflect strengthened control efforts to overcome interference and to ensure adequate task performance. Finally, task-reference elicited activation in the left temporo-polar cortex (TPC) and the right medial superior as well as in left rostroventral prefrontal cortex (rvPFC, sub-threshold activation). As strongly supported by prior studies' findings, this neural activation pattern may underlie residual semantic processing of the task-irrelevant word information.

  10. Montgomery Point Lock and Dam, White River, Arkansas

    Science.gov (United States)

    2016-01-01

    the time of this study was James E. Walker, Chief, Navigation Branch, HQUSACE. W. Jeff Lillycrop, CHL, was the ERDC Technical Director for... Fischer , and J. Mewes. 2011. Montgomery Point Lock and Dam HSR model, White River miles 4.0 – 0.0; Hydraulic sediment response model investigation

  11. Accident sequence precursor events with age-related contributors

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, G.A.; Kohn, W.E.

    1995-12-31

    The Accident Sequence Precursor (ASP) Program at ORNL analyzed about 14.000 Licensee Event Reports (LERs) filed by US nuclear power plants 1987--1993. There were 193 events identified as precursors to potential severe core accident sequences. These are reported in G/CR-4674. Volumes 7 through 20. Under the NRC Nuclear Plant Aging Research program, the authors evaluated these events to determine the extent to which component aging played a role. Events were selected that involved age-related equipment degradation that initiated an event or contributed to an event sequence. For the 7-year period, ORNL identified 36 events that involved aging degradation as a contributor to an ASP event. Except for 1992, the percentage of age-related events within the total number of ASP events over the 7-year period ({approximately}19%) appears fairly consistent up to 1991. No correlation between plant ape and number of precursor events was found. A summary list of the age-related events is presented in the report.

  12. Extracellular vesicle-mediated transfer of genetic information between the hematopoietic system and the brain in response to inflammation.

    Directory of Open Access Journals (Sweden)

    Kirsten Ridder

    2014-06-01

    Full Text Available Mechanisms behind how the immune system signals to the brain in response to systemic inflammation are not fully understood. Transgenic mice expressing Cre recombinase specifically in the hematopoietic lineage in a Cre reporter background display recombination and marker gene expression in Purkinje neurons. Here we show that reportergene expression in neurons is caused by intercellular transfer of functional Cre recombinase messenger RNA from immune cells into neurons in the absence of cell fusion. In vitro purified secreted extracellular vesicles (EVs from blood cells contain Cre mRNA, which induces recombination in neurons when injected into the brain. Although Cre-mediated recombination events in the brain occur very rarely in healthy animals, their number increases considerably in different injury models, particularly under inflammatory conditions, and extend beyond Purkinje neurons to other neuronal populations in cortex, hippocampus, and substantia nigra. Recombined Purkinje neurons differ in their miRNA profile from their nonrecombined counterparts, indicating physiological significance. These observations reveal the existence of a previously unrecognized mechanism to communicate RNA-based signals between the hematopoietic system and various organs, including the brain, in response to inflammation.

  13. Breaking Carbon Lock-in

    DEFF Research Database (Denmark)

    Driscoll, Patrick Arthur

    2014-01-01

    This central focus of this paper is to highlight the ways in which path dependencies and increasing returns (network effects) serve to reinforce carbon lock-in in large-scale road transportation infrastructure projects. Breaking carbon lock-in requires drastic changes in the way we plan future...

  14. Safety related events at nuclear installations in 1995

    DEFF Research Database (Denmark)

    Korsbech, Uffe C C

    1996-01-01

    Nuclear safety related events of significance at least corresponding to level 2 of the International Nuclear Event Scale are described. In 1995 only two events occured at nuclear power plants, and four events occured at plants using ionizing radiation for processing or research.......Nuclear safety related events of significance at least corresponding to level 2 of the International Nuclear Event Scale are described. In 1995 only two events occured at nuclear power plants, and four events occured at plants using ionizing radiation for processing or research....

  15. Big words, halved brains and small worlds: complex brain networks of figurative language comprehension.

    Science.gov (United States)

    Arzouan, Yossi; Solomon, Sorin; Faust, Miriam; Goldstein, Abraham

    2011-04-27

    Language comprehension is a complex task that involves a wide network of brain regions. We used topological measures to qualify and quantify the functional connectivity of the networks used under various comprehension conditions. To that aim we developed a technique to represent functional networks based on EEG recordings, taking advantage of their excellent time resolution in order to capture the fast processes that occur during language comprehension. Networks were created by searching for a specific causal relation between areas, the negative feedback loop, which is ubiquitous in many systems. This method is a simple way to construct directed graphs using event-related activity, which can then be analyzed topologically. Brain activity was recorded while subjects read expressions of various types and indicated whether they found them meaningful. Slightly different functional networks were obtained for event-related activity evoked by each expression type. The differences reflect the special contribution of specific regions in each condition and the balance of hemispheric activity involved in comprehending different types of expressions and are consistent with the literature in the field. Our results indicate that representing event-related brain activity as a network using a simple temporal relation, such as the negative feedback loop, to indicate directional connectivity is a viable option for investigation which also derives new information about aspects not reflected in the classical methods for investigating brain activity.

  16. 49 CFR 236.742 - Dog, locking.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Dog, locking. 236.742 Section 236.742 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.742 Dog...

  17. Trpc2-deficient lactating mice exhibit altered brain and behavioral responses to bedding stimuli.

    Science.gov (United States)

    Hasen, Nina S; Gammie, Stephen C

    2011-03-01

    The trpc2 gene encodes an ion channel involved in pheromonal detection and is found in the vomeronasal organ. In tprc2(-/-) knockout (KO) mice, maternal aggression (offspring protection) is impaired and brain Fos expression in females in response to a male are reduced. Here we examine in lactating wild-type (WT) and KO mice behavioral and brain responses to different olfactory/pheromonal cues. Consistent with previous studies, KO dams exhibited decreased maternal aggression and nest building, but we also identified deficits in nighttime nursing and increases in pup weight. When exposed to the bedding tests, WT dams typically ignored clean bedding, but buried male-soiled bedding from unfamiliar males. In contrast, KO dams buried both clean and soiled bedding. Differences in brain Fos expression were found between WT and KO mice in response to either no bedding, clean bedding, or soiled bedding. In the accessory olfactory bulb, a site of pheromonal signal processing, KO mice showed suppressed Fos activation in the anterior mitral layer relative to WT mice in response to clean and soiled bedding. However, in the medial and basolateral amygdala, KO mice showed a robust Fos response to bedding, suggesting that regions of the amygdala canonically associated with pheromonal sensing can be active in the brains of KO mice, despite compromised signaling from the vomeronasal organ. Together, these results provide further insights into the complex ways by which pheromonal signaling regulates the brain and behavior of the maternal female. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. A photovoltaic module diagnostic setup for lock-in-thermography and lock-in electroluminescence imaging

    DEFF Research Database (Denmark)

    Parikh, Harsh; Spataru, Sergiu; Sera, Dezso

    2018-01-01

    Electroluminescence (EL) imaging and infrared (IRT) thermography techniques have become indispensable tools in recent years for health diagnostic of PV modules in solar industry application. Complementary to these imaging methods, lock-in techniques can effectively remove noise by periodically...... modulating the input signal and averaging it over a desired number of periods. We propose a combined lock-in EL and lock-in IRT diagnostic setup for accurate analysis of different types of faults occurring in a solar module. The setup is built around a Goldeye CL-033 high-speed SWIR camera, which can acquire...... experimental work on a (36/72) cell solar module using combined (EL) or (IRT) lock-in-thermography. The setup allows one to investigate the different technological problems that can occur when performing PV diagnostics in drone-based inspections....

  19. Epigenetic modulation of gene expression governs the brain's response to injury.

    Science.gov (United States)

    Simon, Roger P

    2016-06-20

    Mild stress from ischemia, seizure, hypothermia, or infection can produce a transient neuroprotected state in the brain. In the neuroprotected state, the brain responds differently to a severe stress and sustains less injury. At the genomic level, the response of the neuroprotected brain to a severe stress is characterized by widespread differential regulation of genes with diverse functions. This reprogramming of gene expression observed in the neuroprotected brain in response to a stress is consistent with an epigenetic model of regulation mediated by changes in DNA methylation and histone modification. Here, we summarize our evolving understanding of the molecular basis for endogenous neuroprotection and review recent findings that implicate DNA methylation and protein mediators of histone modification as epigenetic regulators of the brain's response to injury. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Phase-locking and bistability in neuronal networks with synaptic depression

    Science.gov (United States)

    Akcay, Zeynep; Huang, Xinxian; Nadim, Farzan; Bose, Amitabha

    2018-02-01

    We consider a recurrent network of two oscillatory neurons that are coupled with inhibitory synapses. We use the phase response curves of the neurons and the properties of short-term synaptic depression to define Poincaré maps for the activity of the network. The fixed points of these maps correspond to phase-locked modes of the network. Using these maps, we analyze the conditions that allow short-term synaptic depression to lead to the existence of bistable phase-locked, periodic solutions. We show that bistability arises when either the phase response curve of the neuron or the short-term depression profile changes steeply enough. The results apply to any Type I oscillator and we illustrate our findings using the Quadratic Integrate-and-Fire and Morris-Lecar neuron models.