WorldWideScience

Sample records for response surface optimization

  1. Application of Response Surface Methodology for Optimizing Oil ...

    African Journals Online (AJOL)

    Application of Response Surface Methodology for Optimizing Oil Extraction Yield From ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search ... from tropical almond seed by the use of response surface methodology (RSM).

  2. Response Surface Optimized Extraction of Total Triterpene Acids ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research May 2014; 13 (5): 787-792 ... surface method were used to optimize the extraction process, while antioxidant activity was evaluated in vitro using α ... Response surface methodology is increasingly.

  3. Statistical optimization of cultural conditions by response surface ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... Full Length Research Paper. Statistical optimization of cultural conditions by response surface methodology for phenol degradation by a novel ... Phenol is a hydrocarbon compound that is highly toxic, ... Microorganism.

  4. Response Ant Colony Optimization of End Milling Surface Roughness

    Directory of Open Access Journals (Sweden)

    Ahmed N. Abd Alla

    2010-03-01

    Full Text Available Metal cutting processes are important due to increased consumer demands for quality metal cutting related products (more precise tolerances and better product surface roughness that has driven the metal cutting industry to continuously improve quality control of metal cutting processes. This paper presents optimum surface roughness by using milling mould aluminium alloys (AA6061-T6 with Response Ant Colony Optimization (RACO. The approach is based on Response Surface Method (RSM and Ant Colony Optimization (ACO. The main objectives to find the optimized parameters and the most dominant variables (cutting speed, feedrate, axial depth and radial depth. The first order model indicates that the feedrate is the most significant factor affecting surface roughness.

  5. Response surface method to optimize the low cost medium for ...

    African Journals Online (AJOL)

    A protease producing Bacillus sp. GA CAS10 was isolated from ascidian Phallusia arabica, Tuticorin, Southeast coast of India. Response surface methodology was employed for the optimization of different nutritional and physical factors for the production of protease. Plackett-Burman method was applied to identify ...

  6. Application of response surface methodology optimization for the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-20

    Apr 20, 2009 ... of CQAs in tobacco waste were identified as three isomers containing chlorogenic acid (5-caffecylquinic acid ... Key words: Caffeic acid, caffeoylquinic acids (CQAs), hydrolysis reaction parameter optimization, response surface ..... Rosmarinic acid and caffeic acid produce antidepressive-like effect in.

  7. Optimization of sustained release aceclofenac microspheres using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, Rameshwar K.; Naik, Jitendra B., E-mail: jitunaik@gmail.com

    2015-03-01

    Polymeric microspheres containing aceclofenac were prepared by single emulsion (oil-in-water) solvent evaporation method using response surface methodology (RSM). Microspheres were prepared by changing formulation variables such as the amount of Eudragit® RS100 and the amount of polyvinyl alcohol (PVA) by statistical experimental design in order to enhance the encapsulation efficiency (E.E.) of the microspheres. The resultant microspheres were evaluated for their size, morphology, E.E., and in vitro drug release. The amount of Eudragit® RS100 and the amount of PVA were found to be significant factors respectively for determining the E.E. of the microspheres. A linear mathematical model equation fitted to the data was used to predict the E.E. in the optimal region. Optimized formulation of microspheres was prepared using optimal process variables setting in order to evaluate the optimization capability of the models generated according to IV-optimal design. The microspheres showed high E.E. (74.14 ± 0.015% to 85.34 ± 0.011%) and suitably sustained drug release (minimum; 40% to 60%; maximum) over a period of 12 h. The optimized microspheres formulation showed E.E. of 84.87 ± 0.005 with small error value (1.39). The low magnitudes of error and the significant value of R{sup 2} in the present investigation prove the high prognostic ability of the design. The absence of interactions between drug and polymers was confirmed by Fourier transform infrared (FTIR) spectroscopy. Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) revealed the dispersion of drug within microspheres formulation. The microspheres were found to be discrete, spherical with smooth surface. The results demonstrate that these microspheres could be promising delivery system to sustain the drug release and improve the E.E. thus prolong drug action and achieve the highest healing effect with minimal gastrointestinal side effects. - Highlights: • Aceclofenac microspheres

  8. Computational optimization of biodiesel combustion using response surface methodology

    Directory of Open Access Journals (Sweden)

    Ganji Prabhakara Rao

    2017-01-01

    Full Text Available The present work focuses on optimization of biodiesel combustion phenomena through parametric approach using response surface methodology. Physical properties of biodiesel play a vital role for accurate simulations of the fuel spray, atomization, combustion, and emission formation processes. Typically methyl based biodiesel consists of five main types of esters: methyl palmitate, methyl oleate, methyl stearate, methyl linoleate, and methyl linolenate in its composition. Based on the amount of methyl esters present the properties of pongamia bio-diesel and its blends were estimated. CONVERGETM computational fluid dynamics software was used to simulate the fuel spray, turbulence and combustion phenomena. The simulation responses such as indicated specific fuel consumption, NOx, and soot were analyzed using design of experiments. Regression equations were developed for each of these responses. The optimum parameters were found out to be compression ratio – 16.75, start of injection – 21.9° before top dead center, and exhaust gas re-circulation – 10.94%. Results have been compared with baseline case.

  9. Optimization of composite flour biscuits by mixture response surface methodology.

    Science.gov (United States)

    Okpala, Laura C; Okoli, Eric C

    2013-08-01

    Biscuits were produced from blends of pigeon pea, sorghum and cocoyam flours. The study was carried out using mixture response surface methodology as the optimization technique. Using the simplex centroid design, 10 formulations were obtained. Protein and sensory quality of the biscuits were analyzed. The sensory attributes studied were appearance, taste, texture, crispness and general acceptability, while the protein quality indices were biological value and net protein utilization. The results showed that while the addition of pigeon pea improved the protein quality, its addition resulted in reduced sensory ratings for all the sensory attributes with the exception of appearance. Some of the biscuits had sensory ratings, which were not significantly different (p > 0.05) from biscuits made with wheat. Rat feeding experiments indicated that the biological value and net protein utilization values obtained for most of the biscuits were above minimum recommended values. Optimization suggested biscuits containing 75.30% sorghum, 0% pigeon pea and 24.70% cocoyam flours as the best proportion of these components. This sample received good scores for the sensory attributes.

  10. Optimization of vibratory welding process parameters using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pravin Kumar; Kumar, S. Deepak; Patel, D.; Prasad, S. B. [National Institute of Technology Jamshedpur, Jharkhand (India)

    2017-05-15

    The current investigation was carried out to study the effect of vibratory welding technique on mechanical properties of 6 mm thick butt welded mild steel plates. A new concept of vibratory welding technique has been designed and developed which is capable to transfer vibrations, having resonance frequency of 300 Hz, into the molten weld pool before it solidifies during the Shielded metal arc welding (SMAW) process. The important process parameters of vibratory welding technique namely welding current, welding speed and frequency of the vibrations induced in molten weld pool were optimized using Taguchi’s analysis and Response surface methodology (RSM). The effect of process parameters on tensile strength and hardness were evaluated using optimization techniques. Applying RSM, the effect of vibratory welding parameters on tensile strength and hardness were obtained through two separate regression equations. Results showed that, the most influencing factor for the desired tensile strength and hardness is frequency at its resonance value, i.e. 300 Hz. The micro-hardness and microstructures of the vibratory welded joints were studied in detail and compared with those of conventional SMAW joints. Comparatively, uniform and fine grain structure has been found in vibratory welded joints.

  11. Response Surface Optimized Extraction of Total Triterpene Acids ...

    African Journals Online (AJOL)

    Purpose: To optimize extraction of total triterpene acids from loquat leaf and evaluate their in vitro antioxidant activities. Methods: The independent variables were ethanol concentration, extraction time, and solvent ratio, while the dependent variable was content of total triterpene acids. Composite design and response ...

  12. Response surface optimization of the medium components for the production of biosurfactants by probiotic bacteria

    NARCIS (Netherlands)

    Rodrigues, L; Teixeira, J; Oliveira, R; van der Mei, HC

    Optimization of the medium for biosurfactants production by probiotic bacteria (Lactococcus lactis 53 and Streptococcus thermophilus A) was carried out using response surface methodology. Both biosurfactants were proved to be growth-associated, thus the desired response selected for the optimization

  13. Optimization of galacto-oligosacharides synthesis using response surface methodology

    Directory of Open Access Journals (Sweden)

    Carević Milica B.

    2017-01-01

    Full Text Available Galacto-oligosaccharides (GOS are important lactose-derived compounds, considered to be a prebiotics, based on abundant scientific evidence about their unique physical properties and physiological effects. This consequently allows their widespread application as supplement in food and feed industry. They are preferably produced by the enzymatic transgalactosylation action of β-galactosidase. However, this enzyme simultaneously performs its primary biological function of lactose hydrolysis, and it is of crucial importance to gain an insight into the influence of different reaction conditions, and provide favorization of transgalactosylation, particularly GOS synthesis reaction. In this study, the response surface methodology (RSM was applied in terms of individual experimental factors effect estimation, their mutual interaction identification and finally, the determination of optimum conditions for highest GOS yield achievement. Having said that, it can be observed that the temperature and pH have no significant impact on the GOS yield, while on the other hand, the lactose concentration of 400 g/l, enzyme concentration of 13.5 g/l and reaction time of 13 min represent the optimum conditions for achieving the highest GOS yields.

  14. Optimization of CO2 Laser Cutting Process using Taguchi and Dual Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    M. Madić

    2014-09-01

    Full Text Available Selection of optimal cutting parameter settings for obtaining high cut quality in CO2 laser cutting process is of great importance. Among various analytical and experimental optimization methods, the application of Taguchi and response surface methodology is one of most commonly used for laser cutting process optimization. Although the concept of dual response surface methodology for process optimization has been used with success, till date, no experimental study has been reported in the field of laser cutting. In this paper an approach for optimization of CO2 laser cutting process using Taguchi and dual response surface methodology is presented. The goal was to determine the near optimal laser cutting parameter values in order to ensure robust condition for minimization of average surface roughness. To obtain experimental database for development of response surface models, Taguchi’s L25 orthogonal array was implemented for experimental plan. Three cutting parameters, the cutting speed (3, 4, 5, 6, 7 m/min, the laser power (0.7, 0.9, 1.1, 1.3, 1.5 kW, and the assist gas pressure (3, 4, 5, 6, 7 bar, were used in the experiment. To obtain near optimal cutting parameters settings, multi-stage Monte Carlo simulation procedure was performed on the developed response surface models.

  15. Robust Optimization in Simulation : Taguchi and Response Surface Methodology

    NARCIS (Netherlands)

    Dellino, G.; Kleijnen, J.P.C.; Meloni, C.

    2008-01-01

    Optimization of simulated systems is tackled by many methods, but most methods assume known environments. This article, however, develops a 'robust' methodology for uncertain environments. This methodology uses Taguchi's view of the uncertain world, but replaces his statistical techniques by

  16. An optimal design of wind turbine and ship structure based on neuro-response surface method

    Directory of Open Access Journals (Sweden)

    Jae-Chul Lee

    2015-07-01

    Full Text Available The geometry of engineering systems affects their performances. For this reason, the shape of engineering systems needs to be optimized in the initial design stage. However, engineering system design problems consist of multi-objective optimization and the performance analysis using commercial code or numerical analysis is generally time-consuming. To solve these problems, many engineers perform the optimization using the approximation model (response surface. The Response Surface Method (RSM is generally used to predict the system performance in engi-neering research field, but RSM presents some prediction errors for highly nonlinear systems. The major objective of this research is to establish an optimal design method for multi-objective problems and confirm its applicability. The proposed process is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the approximation model is generated using the Backpropagation Artificial Neural Network (BPANN which is considered as Neuro-Response Surface Method (NRSM. The optimization is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II. Through case studies of marine system and ship structure (substructure of floating offshore wind turbine considering hydrodynamics performances and bulk carrier bottom stiffened panels considering structure performance, we have confirmed the applicability of the proposed method for multi-objective side constraint optimization problems.

  17. An optimal design of wind turbine and ship structure based on neuro-response surface method

    Science.gov (United States)

    Lee, Jae-Chul; Shin, Sung-Chul; Kim, Soo-Young

    2015-07-01

    The geometry of engineering systems affects their performances. For this reason, the shape of engineering systems needs to be optimized in the initial design stage. However, engineering system design problems consist of multi-objective optimization and the performance analysis using commercial code or numerical analysis is generally time-consuming. To solve these problems, many engineers perform the optimization using the approximation model (response surface). The Response Surface Method (RSM) is generally used to predict the system performance in engineering research field, but RSM presents some prediction errors for highly nonlinear systems. The major objective of this research is to establish an optimal design method for multi-objective problems and confirm its applicability. The proposed process is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the approximation model is generated using the Backpropagation Artificial Neural Network (BPANN) which is considered as Neuro-Response Surface Method (NRSM). The optimization is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II). Through case studies of marine system and ship structure (substructure of floating offshore wind turbine considering hydrodynamics performances and bulk carrier bottom stiffened panels considering structure performance), we have confirmed the applicability of the proposed method for multi-objective side constraint optimization problems.

  18. Use of response surface methodology to optimize the drying ...

    African Journals Online (AJOL)

    CHABI

    2016-09-15

    Sep 15, 2016 ... ATCC 27844, methicillin resistant S. aureus (MRSA),. Salmonella typhi R ... count (YM), bacteriocin production (BE) and the antimicrobial activity against indicator .... predicted one from the optimized model by calculating the percentage error to ..... A mathematical model considering variable diffusivity ...

  19. Response surface optimization of the process conditions for anti ...

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... These two phenolic acids are already known to have anti-diabetic properties from previous study. ... Key words: Anti-diabetic, Cucumis sativus, β-glucosidase inhibitor, optimization, phenolic acids. .... concentration of 0.022 unit/ml solution. ..... antioxidant properties (Srivastava et al., 2009). ... acids in beer.

  20. Surface Plasmon Polaritons on Silver Gratings for Optimal SERS Response.

    Czech Academy of Sciences Publication Activity Database

    Kalachyova, Y.; Mareš, D.; Lyutakov, O.; Koštejn, Martin; Lapčák, L.; Svorčík, V.

    2015-01-01

    Roč. 119, č. 17 (2015), s. 9506-9512 ISSN 1932-7447 Institutional support: RVO:67985858 Keywords : enhanced raman-scattering * metallic surface * relief gratings Subject RIV: CC - Organic Chemistry Impact factor: 4.509, year: 2015

  1. Optimization of Ultrasonic Extraction of Phenolic Antioxidants from Green Tea Using Response Surface Methodology

    OpenAIRE

    Lee, Lan-Sook; Lee, Namhyouck; Kim, Young; Lee, Chang-Ho; Hong, Sang; Jeon, Yeo-Won; Kim, Young-Eon

    2013-01-01

    Response surface methodology (RSM) has been used to optimize the extraction conditions of antioxidants with relatively low caffeine content from green tea by using ultrasonic extraction. The predicted optimal conditions for the highest antioxidant activity and minimum caffeine level were found at 19.7% ethanol, 26.4 min extraction time, and 24.0 °C extraction temperature. In the predicted optimal conditions, the experimental values were very close to the predicted values. Moreover, the ratio ...

  2. Optimization of dyeing wool fibers procedure with Isatis tinctoria by Response Surface Methodology

    NARCIS (Netherlands)

    Barani, H.; Nasiriboroumand, Majid; Haji, A.; Kazemipour, M.

    2012-01-01

    The response surface method (RMS) was used to optimize the color strength (K/S) of the wool fibers dyed with Isatis tinctoria. The eight independent variable terms, in which two of them are categorical and the other six numerical, were selected at two levels (low and high). The ANOVA test results of

  3. Production of specific structured lipids by enzymatic interesterification: optimization of the reaction by response surface design

    DEFF Research Database (Denmark)

    Xu, Xuebing; Skands, Anja Rebecca Havegaard; Adler-Nissen, Jens

    1998-01-01

    Rapeseed oil and capric acid were interesterified in solvent-free media catalyzed by Lipozyme IM (Rhizomucor miehei) to produce specific-structured lipids (SSLs). The process was optimized by response surface design concerning the effects of acyl migration and the by-products of diacylglycerols...

  4. [Optimization of riboflavin sodium phosphate loading to calcium alginate floating microspheres by response surface methodology].

    Science.gov (United States)

    Zhang, An-yang; Fan, Tian-yuan

    2009-12-18

    To investigate the preparation, optimization and in vitro properties of riboflavin sodium phosphate floating microspheres. The floating microspheres composed of riboflavin sodium phosphate and calcium alginate were prepared using ion gelatin-oven drying method. The properties of the microspheres were investigated, including the buoyancy, release, appearance and entrapment efficiency. The formulation was optimized by response surface methodology (RSM). The optimized microspheres were round. The entrapment efficiency was 57.49%. All the microspheres could float on the artificial gastric juice over 8 hours. The release of the drug from the microspheres complied with Fick's diffusion.

  5. Optimization of Nanocomposite Modified Asphalt Mixtures Fatigue Life using Response Surface Methodology

    Science.gov (United States)

    Bala, N.; Napiah, M.; Kamaruddin, I.; Danlami, N.

    2018-04-01

    In this study, modelling and optimization of materials polyethylene, polypropylene and nanosilica for nanocomposite modified asphalt mixtures has been examined to obtain optimum quantities for higher fatique life. Response Surface Methodology (RSM) was applied for the optimization based on Box Behnken design (BBD). Interaction effects of independent variables polymers and nanosilica on fatique life were evaluated. The result indicates that the individual effects of polymers and nanosilica content are both important. However, the content of nanosilica used has more significant effect on fatique life resistance. Also, the mean error obtained from optimization results is less than 5% for all the responses, this indicates that predicted values are in agreement with experimental results. Furthermore, it was concluded that asphalt mixture design with high performance properties, optimization using RSM is a very effective approach.

  6. Optimization of the extraction of flavonoids from grape leaves by response surface methodology

    International Nuclear Information System (INIS)

    Brad, K.; Liu, W.

    2013-01-01

    The extraction of flavonoids from grape leaves was optimized to maximize flavonoids yield in this study. A central composite design of response surface methodology involving extracting time, power, liquid-solid ratio, and concentration was used, and second-order model for Y was employed to generate the response surfaces. The optimum condition for flavonoids yield was determined as follows: extracting time 24.95 min, power 72.05, ethanol concentration 63.35%, liquid-solid ratio 10.04. Under the optimum condition, the flavonoids yield was 76.84 %. (author)

  7. [Optimization of calcium alginate floating microspheres loading aspirin by artificial neural networks and response surface methodology].

    Science.gov (United States)

    Zhang, An-yang; Fan, Tian-yuan

    2010-04-18

    To investigate the preparation and optimization of calcium alginate floating microspheres loading aspirin. A model was used to predict the in vitro release of aspirin and optimize the formulation by artificial neural networks (ANNs) and response surface methodology (RSM). The amounts of the material in the formulation were used as inputs, while the release and floating rate of the microspheres were used as outputs. The performances of ANNs and RSM were compared. ANNs were more accurate in prediction. There was no significant difference between ANNs and RSM in optimization. Approximately 90% of the optimized microspheres could float on the artificial gastric juice over 4 hours. 42.12% of aspirin was released in 60 min, 60.97% in 120 min and 78.56% in 240 min. The release of the drug from the microspheres complied with Higuchi equation. The aspirin floating microspheres with satisfying in vitro release were prepared successfully by the methods of ANNs and RSM.

  8. Biodiesel production from crude cottonseed oil: an optimization process using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xiaohu; Wang, Xi; Chen, Feng

    2011-07-01

    As the depletion of fossil resources continues, the demand for environmentally friendly sources of energy as biodiesel is increasing. Biodiesel is the resulting fatty acid methyl ester (FAME) from an esterification reaction. The use of cottonseed oil to produce biodiesel has been investigated in recent years, but it is difficult to find the optimal conditions of this process since multiple factors are involved. The aim of this study was to optimize the transesterification of cottonseed oil with methanol to produce biodiesel. A response surface methodology (RSM), an experimental method to seek optimal conditions for a multivariable system and reverse phase HPLC was used to analyze the conversion of triglyceride into biodiesel. RSM was successfully applied and the optimal condition was found with a 97% yield.

  9. Optimization of Progressive Freeze Concentration on Apple Juice via Response Surface Methodology

    Science.gov (United States)

    Samsuri, S.; Amran, N. A.; Jusoh, M.

    2018-05-01

    In this work, a progressive freeze concentration (PFC) system was developed to concentrate apple juice and was optimized by response surface methodology (RSM). The effects of various operating conditions such as coolant temperature, circulation flowrate, circulation time and shaking speed to effective partition constant (K) were investigated. Five different level of central composite design (CCD) was employed to search for optimal concentration of concentrated apple juice. A full quadratic model for K was established by using method of least squares. A coefficient of determination (R2) of this model was found to be 0.7792. The optimum conditions were found to be coolant temperature = -10.59 °C, circulation flowrate = 3030.23 mL/min, circulation time = 67.35 minutes and shaking speed = 30.96 ohm. A validation experiment was performed to evaluate the accuracy of the optimization procedure and the best K value of 0.17 was achieved under the optimized conditions.

  10. [Optimization of Formulation and Process of Paclitaxel PEGylated Liposomes by Box-Behnken Response Surface Methodology].

    Science.gov (United States)

    Shi, Ya-jun; Zhang, Xiao-feil; Guo, Qiu-ting

    2015-12-01

    To develop a procedure for preparing paclitaxel encapsulated PEGylated liposomes. The membrane hydration followed extraction method was used to prepare PEGylated liposomes. The process and formulation variables were optimized by "Box-Behnken Design (BBD)" of response surface methodology (RSM) with the amount of Soya phosphotidylcholine (SPC) and PEG2000-DSPE as well as the rate of SPC to drug as independent variables and entrapment efficiency as dependent variables for optimization of formulation variables while temperature, pressure and cycle times as independent variables and particle size and polydispersion index as dependent variables for process variables. The optimized liposomal formulation was characterized for particle size, Zeta potential, morphology and in vitro drug release. For entrapment efficiency, particle size, polydispersion index, Zeta potential, and in vitro drug release of PEGylated liposomes was found to be 80.3%, (97.15 ± 14.9) nm, 0.117 ± 0.019, (-30.3 ± 3.7) mV, and 37.4% in 24 h, respectively. The liposomes were found to be small, unilamellar and spherical with smooth surface as seen in transmission electron microscopy. The Box-Behnken response surface methodology facilitates the formulation and optimization of paclitaxel PEGylated liposomes.

  11. Optimization of Growth Medium for Efficient Cultivation of Lactobacillus salivarius i 24 using Response Surface Method

    Directory of Open Access Journals (Sweden)

    Lim, C. H.

    2007-01-01

    Full Text Available Production of Lactobacillus salivarius i 24, a probiotic strain for chicken, was studied in batch fermentation using 500 mL Erlenmeyer flask. Response surface method (RSM was used to optimize the medium for efficient cultivation of the bacterium. The factors investigated were yeast extract, glucose and initial culture pH. A polynomial regression model with cubic and quartic terms was used for the analysis of the experimental data. Estimated optimal conditions of the factors for growth of L. salivarius i 24 were; 3.32 % (w/v glucose, 4.31 % (w/v yeast extract and initial culture pH of 6.10.

  12. Application of response surface methodology to optimize uranium biological leaching at high pulp density

    International Nuclear Information System (INIS)

    Fatemi, Faezeh; Arabieh, Masoud; Jahani, Samaneh

    2016-01-01

    The aim of the present study was to carry out uranium bioleaching via optimization of the leaching process using response surface methodology. For this purpose, the native Acidithiobacillus sp. was adapted to different pulp densities following optimization process carried out at a high pulp density. Response surface methodology based on Box-Behnken design was used to optimize the uranium bioleaching. The effects of six key parameters on the bioleaching efficiency were investigated. The process was modeled with mathematical equation, including not only first and second order terms, but also with probable interaction effects between each pair of factors.The results showed that the extraction efficiency of uranium dropped from 100% at pulp densities of 2.5, 5, 7.5 and 10% to 68% at 12.5% of pulp density. Using RSM, the optimum conditions for uranium bioleaching (12.5% (w/v)) were identified as pH = 1.96, temperature = 30.90 C, stirring speed = 158 rpm, 15.7% inoculum, FeSO 4 . 7H 2 O concentration at 13.83 g/L and (NH 4 ) 2 SO 4 concentration at 3.22 g/L which achieved 83% of uranium extraction efficiency. The results of uranium bioleaching experiment using optimized parameter showed 81% uranium extraction during 15 d. The obtained results reveal that using RSM is reliable and appropriate for optimization of parameters involved in the uranium bioleaching process.

  13. Application of response surface methodology to optimize uranium biological leaching at high pulp density

    Energy Technology Data Exchange (ETDEWEB)

    Fatemi, Faezeh; Arabieh, Masoud; Jahani, Samaneh [NSTRI, Tehran (Iran, Islamic Republic of). Nuclear Fuel Cycle Research School

    2016-08-01

    The aim of the present study was to carry out uranium bioleaching via optimization of the leaching process using response surface methodology. For this purpose, the native Acidithiobacillus sp. was adapted to different pulp densities following optimization process carried out at a high pulp density. Response surface methodology based on Box-Behnken design was used to optimize the uranium bioleaching. The effects of six key parameters on the bioleaching efficiency were investigated. The process was modeled with mathematical equation, including not only first and second order terms, but also with probable interaction effects between each pair of factors.The results showed that the extraction efficiency of uranium dropped from 100% at pulp densities of 2.5, 5, 7.5 and 10% to 68% at 12.5% of pulp density. Using RSM, the optimum conditions for uranium bioleaching (12.5% (w/v)) were identified as pH = 1.96, temperature = 30.90 C, stirring speed = 158 rpm, 15.7% inoculum, FeSO{sub 4} . 7H{sub 2}O concentration at 13.83 g/L and (NH{sub 4}){sub 2}SO{sub 4} concentration at 3.22 g/L which achieved 83% of uranium extraction efficiency. The results of uranium bioleaching experiment using optimized parameter showed 81% uranium extraction during 15 d. The obtained results reveal that using RSM is reliable and appropriate for optimization of parameters involved in the uranium bioleaching process.

  14. Optimization of β-cyclodextrin-based flavonol extraction from apple pomace using response surface methodology.

    Science.gov (United States)

    Parmar, Indu; Sharma, Sowmya; Rupasinghe, H P Vasantha

    2015-04-01

    The present study investigated five cyclodextrins (CDs) for the extraction of flavonols from apple pomace powder and optimized β-CD based extraction of total flavonols using response surface methodology. A 2(3) central composite design with β-CD concentration (0-5 g 100 mL(-1)), extraction temperature (20-72 °C), extraction time (6-48 h) and second-order quadratic model for the total flavonol yield (mg 100 g(-1) DM) was selected to generate the response surface curves. The optimal conditions obtained were: β-CD concentration, 2.8 g 100 mL(-1); extraction temperature, 45 °C and extraction time, 25.6 h that predicted the extraction of 166.6 mg total flavonols 100 g(-1) DM. The predicted amount was comparable to the experimental amount of 151.5 mg total flavonols 100 g(-1) DM obtained from optimal β-CD based parameters, thereby giving a low absolute error and adequacy of fitted model. In addition, the results from optimized extraction conditions showed values similar to those obtained through previously established solvent based sonication assisted flavonol extraction procedure. To the best of our knowledge, this is the first study to optimize aqueous β-CD based flavonol extraction which presents an environmentally safe method for value-addition to under-utilized bio resources.

  15. Optimization of Protease Production by Psychrotrophic Rheinheimera sp. with Response Surface Methodology

    OpenAIRE

    Mrayam Mahjoubin-Tehran; Bahar Shahnavaz; Razie Ghazi-Birjandi; Mansour Mashreghi; Jamshid Fooladi

    2016-01-01

    Background and Objectives: Psychrotrophic bacteria can produce enzymes at low temperatures; this provides a wide biotechnological potential, and offers numerous economical advantages over the use of mesophilic bacteria. In this study, extracellular protease production by psychrotrophic Rheinheimera sp. (KM459533) was optimized by the response surface methodology.Materials and Methods: The culture medium was tryptic soy broth containing 1% (w v -1 ) skim milk. First, the effects of variables w...

  16. Minimization of Antinutrients in Idli by Using Response Surface Process Optimization

    NARCIS (Netherlands)

    Sharma, Anand; Kumari, Sarita; Nout, Martinus J.R.; Sarkar, Prabir K.

    2017-01-01

    Deploying response surface methodology, the stages of idli preparation were optimized for minimizing the level of antinutrients. Under optimum conditions of soaking blackgram dal (1:5 of dal and water at 16C, and pH 4.0 for 18 h) and rice (1:5 of rice and water at 16C, and pH 5.6 for 18 h), the

  17. Reliability-based design optimization via high order response surface method

    International Nuclear Information System (INIS)

    Li, Hong Shuang

    2013-01-01

    To reduce the computational effort of reliability-based design optimization (RBDO), the response surface method (RSM) has been widely used to evaluate reliability constraints. We propose an efficient methodology for solving RBDO problems based on an improved high order response surface method (HORSM) that takes advantage of an efficient sampling method, Hermite polynomials and uncertainty contribution concept to construct a high order response surface function with cross terms for reliability analysis. The sampling method generates supporting points from Gauss-Hermite quadrature points, which can be used to approximate response surface function without cross terms, to identify the highest order of each random variable and to determine the significant variables connected with point estimate method. The cross terms between two significant random variables are added to the response surface function to improve the approximation accuracy. Integrating the nested strategy, the improved HORSM is explored in solving RBDO problems. Additionally, a sampling based reliability sensitivity analysis method is employed to reduce the computational effort further when design variables are distributional parameters of input random variables. The proposed methodology is applied on two test problems to validate its accuracy and efficiency. The proposed methodology is more efficient than first order reliability method based RBDO and Monte Carlo simulation based RBDO, and enables the use of RBDO as a practical design tool.

  18. Optimization of Process Variables for Insulation Coating of Conductive Particles by Response Surface Methodology

    International Nuclear Information System (INIS)

    Sim, Chol-Ho

    2016-01-01

    The powder core, conventionally fabricated from iron particles coated with insulator, showed large eddy current loss under high frequency, because of small specific resistance. To overcome the eddy current loss, the increase in the specific resistance of powder cores was needed. In this study, copper oxide coating onto electrically conductive iron particles was performed using a planetary ball mill to increase the specific resistance. Coating factors were optimized by the Response surface methodology. The independent variables were the CuO mass fraction, mill revolution number, coating time, ball size, ball mass and sample mass. The response variable was the specific resistance. The optimization of six factors by the fractional factorial design indicated that CuO mass fraction, mill revolution number, and coating time were the key factors. The levels of these three factors were selected by the three-factors full factorial design and steepest ascent method. The steepest ascent method was used to approach the optimum range for maximum specific resistance. The Box-Behnken design was finally used to analyze the response surfaces of the screened factors for further optimization. The results of the Box-Behnken design showed that the CuO mass fraction and mill revolution number were the main factors affecting the efficiency of coating process. As the CuO mass fraction increased, the specific resistance increased. In contrast, the specific resistance increased with decreasing mill revolution number. The process optimization results revealed a high agreement between the experimental and the predicted data (Adj-R2=0.944). The optimized CuO mass fraction, mill revolution number, and coating time were 0.4, 200 rpm, and 15 min, respectively. The measured value of the specific resistance of the coated pellet under the optimized conditions of the maximum specific resistance was 530 kΩ·cm

  19. Optimization of Process Variables for Insulation Coating of Conductive Particles by Response Surface Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Chol-Ho [Sangji University, Wonju (Korea, Republic of)

    2016-02-15

    The powder core, conventionally fabricated from iron particles coated with insulator, showed large eddy current loss under high frequency, because of small specific resistance. To overcome the eddy current loss, the increase in the specific resistance of powder cores was needed. In this study, copper oxide coating onto electrically conductive iron particles was performed using a planetary ball mill to increase the specific resistance. Coating factors were optimized by the Response surface methodology. The independent variables were the CuO mass fraction, mill revolution number, coating time, ball size, ball mass and sample mass. The response variable was the specific resistance. The optimization of six factors by the fractional factorial design indicated that CuO mass fraction, mill revolution number, and coating time were the key factors. The levels of these three factors were selected by the three-factors full factorial design and steepest ascent method. The steepest ascent method was used to approach the optimum range for maximum specific resistance. The Box-Behnken design was finally used to analyze the response surfaces of the screened factors for further optimization. The results of the Box-Behnken design showed that the CuO mass fraction and mill revolution number were the main factors affecting the efficiency of coating process. As the CuO mass fraction increased, the specific resistance increased. In contrast, the specific resistance increased with decreasing mill revolution number. The process optimization results revealed a high agreement between the experimental and the predicted data (Adj-R2=0.944). The optimized CuO mass fraction, mill revolution number, and coating time were 0.4, 200 rpm, and 15 min, respectively. The measured value of the specific resistance of the coated pellet under the optimized conditions of the maximum specific resistance was 530 kΩ·cm.

  20. [Extraction Optimization of Rhizome of Curcuma longa by Response Surface Methodology and Support Vector Regression].

    Science.gov (United States)

    Zhou, Pei-pei; Shan, Jin-feng; Jiang, Jian-lan

    2015-12-01

    To optimize the optimal microwave-assisted extraction method of curcuminoids from Curcuma longa. On the base of single factor experiment, the ethanol concentration, the ratio of liquid to solid and the microwave time were selected for further optimization. Support Vector Regression (SVR) and Central Composite Design-Response Surface Methodology (CCD) algorithm were utilized to design and establish models respectively, while Particle Swarm Optimization (PSO) was introduced to optimize the parameters of SVR models and to search optimal points of models. The evaluation indicator, the sum of curcumin, demethoxycurcumin and bisdemethoxycurcumin by HPLC, were used. The optimal parameters of microwave-assisted extraction were as follows: ethanol concentration of 69%, ratio of liquid to solid of 21 : 1, microwave time of 55 s. On those conditions, the sum of three curcuminoids was 28.97 mg/g (per gram of rhizomes powder). Both the CCD model and the SVR model were credible, for they have predicted the similar process condition and the deviation of yield were less than 1.2%.

  1. In Vitro Optimization of Enzymes Involved in Precorrin-2 Synthesis Using Response Surface Methodology.

    Science.gov (United States)

    Fang, Huan; Dong, Huina; Cai, Tao; Zheng, Ping; Li, Haixing; Zhang, Dawei; Sun, Jibin

    2016-01-01

    In order to maximize the production of biologically-derived chemicals, kinetic analyses are first necessary for predicting the role of enzyme components and coordinating enzymes in the same reaction system. Precorrin-2 is a key precursor of cobalamin and siroheme synthesis. In this study, we sought to optimize the concentrations of several molecules involved in precorrin-2 synthesis in vitro: porphobilinogen synthase (PBGS), porphobilinogen deaminase (PBGD), uroporphyrinogen III synthase (UROS), and S-adenosyl-l-methionine-dependent urogen III methyltransferase (SUMT). Response surface methodology was applied to develop a kinetic model designed to maximize precorrin-2 productivity. The optimal molar ratios of PBGS, PBGD, UROS, and SUMT were found to be approximately 1:7:7:34, respectively. Maximum precorrin-2 production was achieved at 0.1966 ± 0.0028 μM/min, agreeing with the kinetic model's predicted value of 0.1950 μM/min. The optimal concentrations of the cofactor S-adenosyl-L-methionine (SAM) and substrate 5-aminolevulinic acid (ALA) were also determined to be 200 μM and 5 mM, respectively, in a tandem-enzyme assay. By optimizing the relative concentrations of these enzymes, we were able to minimize the effects of substrate inhibition and feedback inhibition by S-adenosylhomocysteine on SUMT and thereby increase the production of precorrin-2 by approximately five-fold. These results demonstrate the effectiveness of kinetic modeling via response surface methodology for maximizing the production of biologically-derived chemicals.

  2. Response surface optimization of biosurfactant produced by Pseudomonas aeruginosa MA01 isolated from spoiled apples.

    Science.gov (United States)

    Abbasi, Habib; Sharafi, Hakimeh; Alidost, Leila; Bodagh, Atefe; Zahiri, Hossein Shahbani; Noghabi, Kambiz Akbari

    2013-01-01

    A potent biosurfactant-producing bacterial strain isolated from spoiled apples was identified by 16S rRNA as Pseudomonas aeruginosa MA01. Compositional analysis revealed that the extracted biosurfactant was composed of high percentages of lipid (66%, w/w) and carbohydrate (32%, w/w). The surface tension of pure water decreased gradually with increasing biosurfactant concentration to 32.5 mN m(-1) with critical micelle concentration (CMC) value of 10.1 mg L(-1). The Fourier transform infrared spectrum of extracted biosurfactant confirmed the glycolipid nature of this natural product. Response surface methodology (RSM) was employed to optimize the biosynthesis medium for the production of MA01 biosurfactant. Nineteen carbon sources and 11 nitrogen sources were examined, with soybean oil and sodium nitrate being the most effective carbon and nitrogen sources on biosurfactant production, respectively. Among the organic nitrogen sources examined, yeast extract was necessary as a complementary nitrogen source for high production yield. Biosurfactant production at the optimum value of fermentation processing factor (15.68 g/L) was 29.5% higher than the biosurfactant concentration obtained before the RSM optimization (12.1 g/L). A central composite design algorithm was used to optimize the levels of key medium components, and it was concluded that two stages of optimization using RSM could increase biosurfactant production by 1.46 times, as compared to the values obtained before optimization.

  3. Response surface methodology for the optimization of sludge solubilization by ultrasonic pre-treatment

    Science.gov (United States)

    Zheng, Mingyue; Zhang, Xiaohui; Lu, Peng; Cao, Qiguang; Yuan, Yuan; Yue, Mingxing; Fu, Yiwei; Wu, Libin

    2018-02-01

    The present study examines the optimization of the ultrasonic pre-treatment conditions with response surface experimental design in terms of sludge disintegration efficiency (solubilisation of organic components). Ultrasonic pre-treatment for the maximum solubilization with residual sludge enhanced the SCOD release. Optimization of the ultrasonic pre-treatment was conducted through a Box-Behnken design (three variables, a total of 17 experiments) to determine the effects of three independent variables (power, residence time and TS) on COD solubilization of sludge. The optimal COD was obtained at 17349.4mg/L, when the power was 534.67W, the time was 10.77, and TS was 2%, while the SE of this condition was 28792J/kg TS.

  4. OPTIMIZATION OF HIBISCUS SABDARIFFA L. (ROSELLE ANTHOCYANIN AQUEOUS-ETHANOL EXTRACTION PARAMETERS USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    ANILÚ MIRANDA-MEDINA

    2018-03-01

    Full Text Available Anthocyanins along with protocatechuic acid and quercetin have been recognized as bioactive compounds in Hibiscus sabdariffa L. aqueous extracts. Characteristic anthocyanin absorption in the visible region makes their quantification possible without the interference of the other two compounds, and also can favor its potential application as an alternative to organic-based dye sensitized solar cell, in various forms. In order to optimize measurable factors linked to the extraction of these flavonoids, an optimization was performed using a Box-Behnken experimental design and response surface methodology (RSM. Three levels of ethanol concentration, temperature and solid-solvent ratio (SSR were investigated. The optimization model showed that with 96 % EtOH, 65 °C, and 1:50 SSR, the highest anthocyanin concentration of 150 mg/100 g was obtained.

  5. Optimization of ultrasonic extraction of phenolic antioxidants from green tea using response surface methodology.

    Science.gov (United States)

    Lee, Lan-Sook; Lee, Namhyouck; Kim, Young Ho; Lee, Chang-Ho; Hong, Sang Pil; Jeon, Yeo-Won; Kim, Young-Eon

    2013-10-31

    Response surface methodology (RSM) has been used to optimize the extraction conditions of antioxidants with relatively low caffeine content from green tea by using ultrasonic extraction. The predicted optimal conditions for the highest antioxidant activity and minimum caffeine level were found at 19.7% ethanol, 26.4 min extraction time, and 24.0 ° C extraction temperature. In the predicted optimal conditions, the experimental values were very close to the predicted values. Moreover, the ratio of (EGCg + ECg)/EGC was identified a major factor contributing to the antioxidant activity of green tea extracts. In this study, ultrasonic extraction showed that the ethanol concentration and extraction time used for antioxidant extraction could be remarkably reduced without a decrease in antioxidant activity compared to the conventional extraction conditions.

  6. Performance/Noise Optimization of Centrifugal Fan Using Response Surface Method

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Donghui; Cheong, Cheolung [Pusan Nat’l Univ., Busan (Korea, Republic of); Heo Seung [Korea Aerospace Industries, Sacheon (Korea, Republic of); Kim, Tae-Hoon; Jung, Jiwon [LG Electronics, Seoul (Korea, Republic of)

    2017-03-15

    In this study, centrifugal fan blades used to circulate cold air inside a household refrigerator were optimized to achieve high performance and low noise by using the response surface method, which is frequently employed as an optimization algorithm when multiple independent variables affect one dependent variable. The inlet and outlet blade angles, and the inner radius, were selected as the independent variables. First, the fan blades were optimized to achieve the maximum volume flow rate. Based on this result, a prototype fan blade was manufactured using a 3-D printer. The measured P-Q curves confirmed the increased volume flow rate of the proposed fan. Then, the rotation speed of the new fan was decreased to match the P-Q curve of the existing fan. It was found that a noise reduction of 1.7 dBA could be achieved using the new fan at the same volume flow rate.

  7. Application of Response Surface Methodology in Optimizing a Three Echelon Inventory System

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Razavi Hajiagha

    2014-01-01

    Full Text Available Inventory control is an important subject in supply chain management. In this paper, a three echelon production, distribution, inventory system composed of one producer, two wholesalers and a set of retailers has been considered. Costumers' demands follow a compound Poisson process and the inventory policy is a kind of continuous review (R, Q. In this paper, regarding the standard cost structure in an inventory model, the cost function of system has been approximated using Response Surface Methodology as a combination of designed experiments, simulation, regression analysis and optimization. The proposed methodology in this paper can be applied as a novel method in optimization of inventory policy of supply chains. Also, the joint optimization of inventory parameters, including reorder point and batch order size, is another advantage of the proposed methodology.

  8. Optimization of Ultrasonic Extraction of Phenolic Antioxidants from Green Tea Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Lan-Sook Lee

    2013-10-01

    Full Text Available Response surface methodology (RSM has been used to optimize the extraction conditions of antioxidants with relatively low caffeine content from green tea by using ultrasonic extraction. The predicted optimal conditions for the highest antioxidant activity and minimum caffeine level were found at 19.7% ethanol, 26.4 min extraction time, and 24.0 °C extraction temperature. In the predicted optimal conditions, the experimental values were very close to the predicted values. Moreover, the ratio of (EGCg + ECg/EGC was identified a major factor contributing to the antioxidant activity of green tea extracts. In this study, ultrasonic extraction showed that the ethanol concentration and extraction time used for antioxidant extraction could be remarkably reduced without a decrease in antioxidant activity compared to the conventional extraction conditions.

  9. Performance/Noise Optimization of Centrifugal Fan Using Response Surface Method

    International Nuclear Information System (INIS)

    Shin, Donghui; Cheong, Cheolung; Heo Seung; Kim, Tae-Hoon; Jung, Jiwon

    2017-01-01

    In this study, centrifugal fan blades used to circulate cold air inside a household refrigerator were optimized to achieve high performance and low noise by using the response surface method, which is frequently employed as an optimization algorithm when multiple independent variables affect one dependent variable. The inlet and outlet blade angles, and the inner radius, were selected as the independent variables. First, the fan blades were optimized to achieve the maximum volume flow rate. Based on this result, a prototype fan blade was manufactured using a 3-D printer. The measured P-Q curves confirmed the increased volume flow rate of the proposed fan. Then, the rotation speed of the new fan was decreased to match the P-Q curve of the existing fan. It was found that a noise reduction of 1.7 dBA could be achieved using the new fan at the same volume flow rate.

  10. Optimization of Electrochemical Treatment Process Conditions for Distillery Effluent Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    P. Arulmathi

    2015-01-01

    Full Text Available Distillery industry is recognized as one of the most polluting industries in India with a large amount of annual effluent production. In this present study, the optimization of electrochemical treatment process variables was reported to treat the color and COD of distillery spent wash using Ti/Pt as an anode in a batch mode. Process variables such as pH, current density, electrolysis time, and electrolyte dose were selected as operation variables and chemical oxygen demand (COD and color removal efficiency were considered as response variable for optimization using response surface methodology. Indirect electrochemical-oxidation process variables were optimized using Box-Behnken response surface design (BBD. The results showed that electrochemical treatment process effectively removed the COD (89.5% and color (95.1% of the distillery industry spent wash under the optimum conditions: pH of 4.12, current density of 25.02 mA/cm2, electrolysis time of 103.27 min, and electrolyte (NaCl concentration of 1.67 g/L, respectively.

  11. Extraction optimization of mucilage from Basil (Ocimum basilicum L.) seeds using response surface methodology.

    Science.gov (United States)

    Nazir, Sadaf; Wani, Idrees Ahmed; Masoodi, Farooq Ahmad

    2017-05-01

    Aqueous extraction of basil seed mucilage was optimized using response surface methodology. A Central Composite Rotatable Design (CCRD) for modeling of three independent variables: temperature (40-91 °C); extraction time (1.6-3.3 h) and water/seed ratio (18:1-77:1) was used to study the response for yield. Experimental values for extraction yield ranged from 7.86 to 20.5 g/100 g. Extraction yield was significantly ( P  < 0.05) affected by all the variables. Temperature and water/seed ratio were found to have pronounced effect while the extraction time was found to have minor possible effects. Graphical optimization determined the optimal conditions for the extraction of mucilage. The optimal condition predicted an extraction yield of 20.49 g/100 g at 56.7 °C, 1.6 h, and a water/seed ratio of 66.84:1. Optimal conditions were determined to obtain highest extraction yield. Results indicated that water/seed ratio was the most significant parameter, followed by temperature and time.

  12. Media optimization for laccase production by Trichoderma harzianum ZF-2 using response surface methodology.

    Science.gov (United States)

    Gao, Huiju; Chu, Xiang; Wang, Yanwen; Zhou, Fei; Zhao, Kai; Mu, Zhimei; Liu, Qingxin

    2013-12-01

    Trichoderma harzianum ZF-2 producing laccase was isolated from decaying samples from Shandong, China, and showed dye decolorization activities. The objective of this study was to optimize its culture conditions using a statistical analysis of its laccase production. The interactions between different fermentation parameters for laccase production were characterized using a Plackett-Burman design and the response surface methodology. The different media components were initially optimized using the conventional one-factor-at-a-time method and an orthogonal test design, and a Plackett-Burman experiment was then performed to evaluate the effects on laccase production. Wheat straw powder, soybean meal, and CuSO4 were all found to have a significant influence on laccase production, and the optimal concentrations of these three factors were then sequentially investigated using the response surface methodology with a central composite design. The resulting optimal medium components for laccase production were determined as follows: wheat straw powder 7.63 g/l, soybean meal 23.07 g/l, (NH4)2SO4 1 g/l, CuSO4 0.51 g/l, Tween-20 1 g/l, MgSO4 1 g/l, and KH2PO4 0.6 g/l. Using this optimized fermentation method, the yield of laccase was increased 59.68 times to 67.258 U/ml compared with the laccase production with an unoptimized medium. This is the first report on the statistical optimization of laccase production by Trichoderma harzianum ZF-2.

  13. Optimization of Reactive Blue 21 removal by Nanoscale Zero-Valent Iron using response surface methodology

    Directory of Open Access Journals (Sweden)

    Mahmood Reza Sohrabi

    2016-07-01

    Full Text Available Since Reactive Blue 21 (RB21 is one of the dye compounds which is harmful to human life, a simple and sensitive method to remove this pollutant from wastewater is using Nano Zero-Valent Iron (NZVI catalyst. In this paper, a Central Composite Rotatable Design (CCRD was employed for response surface modeling to optimize experimental conditions of the RB21 removal from aqueous solution. The significance and adequacy of the model were analyzed using analysis of variance (ANOVA. Four independent variables—including catalyst amount (0.1–0.9 g, pH (3.5–9.5, removal time (30–150 s and dye concentration (10–50 mg/L—were transformed to coded values and consequently second order quadratic model was built to predict the responses. The result showed that under optimized experimental conditions the removal of RB21 was over 95%.

  14. Optimizing removal of cod from water by catalytic ozonation of cephalexin using response surface methodology

    International Nuclear Information System (INIS)

    Akhtar, J.; Amin, N.S.; Zahoor, M.K.

    2013-01-01

    Response surface methodology (RSM) has been used to optimize the effect of circulation rates, ozone supply, cephalexin (CEX) concentration, and granular activated carbon (GAC) dose on removal of COD from solution. According to statistical analysis, all of the input variables exerted significant influence on COD removal, however, the effect of interaction variables was not found to be significant on comparative basis. Further, the developed quadratic regression model based on obtained results emphasized the significance of individual terms and little of interaction terms. The values of r/sup 2/ (0.959), adjusted r/sup 2/ (0.902) obtained by analysis of variance (ANOVA) indicates the significance of quadratic model in predicting desired response. The maximum of 70% of COD was removed in these experiments and optimized value according to main effect of variables was 60%. (author)

  15. Finite Element Based Response Surface Methodology to Optimize Segmental Tunnel Lining

    Directory of Open Access Journals (Sweden)

    A. Rastbood

    2017-04-01

    Full Text Available The main objective of this paper is to optimize the geometrical and engineering characteristics of concrete segments of tunnel lining using Finite Element (FE based Response Surface Methodology (RSM. Input data for RSM statistical analysis were obtained using FEM. In RSM analysis, thickness (t and elasticity modulus of concrete segments (E, tunnel height (H, horizontal to vertical stress ratio (K and position of key segment in tunnel lining ring (θ were considered as input independent variables. Maximum values of Mises and Tresca stresses and tunnel ring displacement (UMAX were set as responses. Analysis of variance (ANOVA was carried out to investigate the influence of each input variable on the responses. Second-order polynomial equations in terms of influencing input variables were obtained for each response. It was found that elasticity modulus and key segment position variables were not included in yield stresses and ring displacement equations, and only tunnel height and stress ratio variables were included in ring displacement equation. Finally optimization analysis of tunnel lining ring was performed. Due to absence of elasticity modulus and key segment position variables in equations, their values were kept to average level and other variables were floated in related ranges. Response parameters were set to minimum. It was concluded that to obtain optimum values for responses, ring thickness and tunnel height must be near to their maximum and minimum values, respectively and ground state must be similar to hydrostatic conditions.

  16. Optimization of Selenium-enriched Candida utilis by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    ZHANG Fan

    2014-12-01

    Full Text Available The fermentation conditions of selenium enrichment by Candida utilis were studied. Based on the results of the single factor experiment, three factors including the concentration of sodium selenite, inital pH and incubation temperature were selected. The response surface method was used to optimize the various factors. The optimal conditions were obtained as follows: incubation time was 30 h, time of adding selenium was mid-logarithmic, the sodium selenite concentration was 35 mg·L-1 with inital pH of 6.6, incubation concentration of 10%, incubation temperature of 27 ℃, the medium volume of 150 mL/500 mL, respectively. Under the optimal condition, the biomass was 6.87 g·L-1. The total selenium content of Candida utilis was 12 639.7 μg·L-1, and the selenium content of the cells was 1 839.8 μg·g-1, in which sodium selenite conversion rate was 79.1% and the organic selenium was higher than 90%. The actual value of selenium content was substantially consistent with the theoretical value, and the response surface methodology was applicable for the fermentation conditions of selenium enriched by Candida utilis.

  17. Optimization of enzymatic clarification of green asparagus juice using response surface methodology.

    Science.gov (United States)

    Chen, Xuehong; Xu, Feng; Qin, Weidong; Ma, Lihua; Zheng, Yonghua

    2012-06-01

    Enzymatic clarification conditions for green asparagus juice were optimized by using response surface methodology (RSM). The asparagus juice was treated with pectinase at different temperatures (35 °C-45 °C), pH values (4.00-5.00), and enzyme concentrations (0.6-1.8 v/v%). The effects of enzymatic treatment on juice clarity and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging capacity were investigated by employing a 3-factor central composite design coupled with RSM. According to response surface analysis, the optimal enzymatic treatment condition was pectinase concentration of 1.45%, incubation temperature of 40.56 °C and pH of 4.43. The clarity, juice yield, and soluble solid contents in asparagus juice were significantly increased by enzymatic treatment at the optimal conditions. DPPH radical-scavenging capacity was maintained at the level close to that of raw asparagus juice. These results indicated that enzymatic treatment could be a useful technique for producing green asparagus juice with high clarity and high-antioxidant activity. Treatment with 1.45% pectinase at 40.56 ° C, pH 4.43, significantly increased the clarity and yield of asparagus juice. In addition, enzymatic treatment maintained antioxidant activity. Thus, enzymatic treatment has the potential for industrial asparagus juice clarification. © 2012 Institute of Food Technologists®

  18. A novel design procedure for tractor clutch fingers by using optimization and response surface methods

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, Oguz; Karpat, Fatih; Yuce, Celalettin; Kaya, Necmettin; Yavuz, Nurettin [Uludag University, Gorukle (Turkmenistan); Sen, Hasan [Valeo A. S., Bursa (Turkmenistan)

    2016-06-15

    This paper presents a methodology for re-designing a failed tractor transmission component subjected to cyclic loading. Unlike other vehicles, tractors cope with tough working conditions. Thus, it is necessary to re-design components by using modern optimization techniques. To extend their service life, we present a design methodology for a failed tractor clutch power take-off finger. The finger was completely re-designed using topology and shape optimization approach. Stress-life based fatigue analyses were performed. Shape optimization and response surface methodology were conducted to obtain optimum dimensions of the finger. Two design parameters were selected for the design of experiment method and 15 cases were analyzed. By using design of the experiment method, three responses were obtained: Maximum stresses, mass, and displacement depending on the selected the design parameters. After solving the optimization problem, we achieved a maximum stress and mass reduction of 14% and 6%, respectively. The stiffness was improved up to 31.6% compared to the initial design.

  19. Medium optimization for ε-poly-L-lysine production by Streptomyces diastatochromogenes using response surface methodology.

    Science.gov (United States)

    Guo, F; Zheng, H; Cheng, Y; Song, S; Zheng, Z; Jia, S

    2018-02-01

    Poly-ε-L-lysine is a natural homo-polyamide of L-lysine with excellent antimicrobial properties, which can be used as a novel preservative and has a wide range of applications. In this paper, the fermentation medium for ε-PL production by Streptomyces diastatochromogenes 6#-7 was optimized by Response Surface Methodology. The results of Plackett-Burman design showed that glucose, yeast extract and (NH 4 ) 2 SO 4 were the major influencing factors in ε-PL production of S. diastatochromogenes 6#-7. The optimal concentrations of glucose, yeast extract and (NH 4 ) 2 SO 4 were determined to be 60, 7·5 and 7·5 g l -1 according to Box-Behnken experiment and regression analysis, respectively. Under the optimized conditions, the ε-PL yield in shake-flask fermentation was 0·948 ± 0·030 g l -1 , which was in good agreement with the predicted value of 0·970 g l -1 . The yield was improved by 43·1% from that with the initial medium. In 5 l jar-fermenter the ε-PL yield reached 25·5 g l -1 , which was increased by 56·4% from the original medium. In addition, the fermentation time was reduced from 174 to 120 h. Medium optimization is a very practical and valuable tool for fermentation industry to improve product yield and minimize by-products as well as reduce overall manufacturing costs. The response surface methodology is not new, but it is still a very effective method in medium optimization research. This study used ε-polylysine fermentation as an example to demonstrate how the product yield can be significantly increased by medium optimization through surface response methodology. Similar approach can be used in other microbial fermentations such as in pharmaceutical, food, agricultural and energy industries. As an example, ε-polylysine is one of a few newly approved natural food-grade antimicrobials for food and beverages preservations. Yield improvement is economically beneficial to not only ε-polylysine manufacturers but also to their users and

  20. Optimization of Protease Production by Psychrotrophic Rheinheimera sp. with Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Mrayam Mahjoubin-Tehran

    2016-10-01

    Full Text Available Background and Objectives: Psychrotrophic bacteria can produce enzymes at low temperatures; this provides a wide biotechnological potential, and offers numerous economical advantages over the use of mesophilic bacteria. In this study, extracellular protease production by psychrotrophic Rheinheimera sp. (KM459533 was optimized by the response surface methodology.Materials and Methods: The culture medium was tryptic soy broth containing 1% (w v -1 skim milk. First, the effects of variables were independently evaluated on the microbial growth and protease production by one-factor-at-a-time method within the following ranges: incubation time 24-120 h, temperature 15-37°C, pH 6- 11, skim milk concentration 0-2% (w v -1 , and inoculum size 0.5-3% (v v -1 . The combinational effects of the four major variable including temperature, pH, skim milk concentration, and inoculum size were then evaluated within 96 h using response surface methodology through 27 experiments.Results and Conclusion: In one-factor-at-a-time method, high cell density was detected at 72h, 20°C, pH 7, skim milk 2% (w v -1 , and inoculum size 3% (v v -1 , and maximum enzyme production (533.74 Uml-1 was achieved at 96h, 20°C, pH 9, skim milk 1% (w v -1 , and inoculum size 3% (v v -1 . The response surface methodology study showed that pH is the most effective factor in enzyme production, and among the other variables, only temperature had significant interaction with pH and inoculum size. The determination coefficient (R2 =0.9544 and non-significant lack of fit demonstrated correlation between the experimental and predicted values. The optimal conditions predicted by the response surface methodology for protease production were defined as: 22C, pH 8.5, skim milk 1.1% (w v -1 , and inoculum size 4% (v v -1 . Protease production under these conditions reached to 567.19 Uml-1 . The use of response surface methodology in this study increased protease production by eight times as

  1. An optimization study on transesterification catalyzed by the activated carbide slag through the response surface methodology

    International Nuclear Information System (INIS)

    Liu, Mengqi; Niu, Shengli; Lu, Chunmei; Cheng, Shiqing

    2015-01-01

    Highlights: • New catalyst material for biodiesel production. • New utilization approach of waste carbide slag. • Detailed characterization of carbide slag used as transesterification catalyst. • Optimal parameters for biodiesel production obtained by response surface methodology. • Effect of impurities on catalytic activity of carbide slag in transesterification. - Abstract: After activated at 850 °C under air condition, calcium hydroxide and calcium carbonate in carbide slag are transformed into calcium oxide. The prepared transesterification catalyst, labeled as CS-850, gains surface area of 8.00 m 2 g −1 , functional groups of vanishing O−C−O and O−H bonds, surface morphology of tenuous branch and porous structure and basic strength of 9.8 < H – < 15.0. From aspects of the molar ratio of methanol to oil (γ), the catalyst added amount (ζ) and the reaction temperature (T r ), transesterification catalyzed by CS-850 is optimized through the Box–Behnken design of the response surface methodology (BBD–RSM). A quadratic polynomial model is preferred for transesterification efficiency prediction with coefficient of determination (R 2 ) of 0.9815. The optimal parameters are predicted to be γ = 13.8, ζ = 6.7% and T r = 60 °C with the efficiency of 94.70% and validated by experimental value of 93.83%. Meanwhile, γ is demonstrated to be the most significant variable for the minimum p-value. Besides, CS-850 performs acceptable reusability and for the fifth time reusage, efficiency of 82.61% could still be supplied. Aluminium oxide is proved to have the greatest effect on the catalytic activity of CS-850 among other small quality oxides. Physicochemical properties of the purified biodiesel meet American Society for Testing and Material (ASTM) standard

  2. Optimization of deposition conditions of CdS thin films using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Yücel, Ersin, E-mail: dr.ersinyucel@gmail.com [Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey); Güler, Nuray [Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey); Yücel, Yasin [Department of Chemistry, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey)

    2014-03-15

    Highlights: • Statistical methods used for optimization of CdS deposition parameters. • The morphology of the films was smooth, homogeneous and continuous. • Optimal conditions found as pH 11, stirring speed:361 rpm and deposition time: 55 min. • CdS thin film band gap value was 2.72 eV under the optimum conditions. -- Abstract: Cadmium sulfide (CdS) thin films were prepared on glass substrates by chemical bath deposition (CBD) technique under different pH, stirring speed and deposition time. Response Surface Methodology (RSM) and Central Composite Design (CCD) were used to optimization of deposition parameters of the CdS thin films. RSM and CCD were also used to understand the significance and interaction of the factors affecting the film quality. Variables were determined as pH, stirring speed and deposition time. The band gap was chosen as response in the study. Influences of the variables on the band gap and the film quality were investigated. 5-level-3-factor central composite design was employed to evaluate the effects of the deposition conditions parameters such as pH (10.2–11.8), stirring speed (132–468 rpm) and deposition time (33–67 min) on the band gap of the films. The samples were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and ultraviolet–visible spectroscopy (UV–vis) measurements. The optimal conditions for the deposition parameters of the CdS thin films have been found to be: pH 11, 361 of stirring speed and 55 min of deposition time. Under the optimal conditions theoretical (predicted) band gap of CdS (2.66 eV) was calculated using optimal coded values from the model and the theoretical value is good agreement with the value (2.72 eV) obtained by verification experiment.

  3. Response surface optimization of the ultrasonic-assisted extraction of edible brown pigment from Macadamia shells

    Science.gov (United States)

    Liu, Y. Y.; Liu, Y. J.; Gong, X.; Li, J. H.

    2017-09-01

    The ultrasonic extraction of Edible brown pigment from macadamia shells was researched using response surface methodology (RSM) with 3 factors and 3 levels. A Box-Behnken design (BBD) was employed to investigate the effects of Solvent concentration, ratio of water to raw material and extraction time on the extraction yield of brown pigment. By using this new method, the optimum extraction condition was obtained as follows: Ultrasonic treating time 71 min, solvent to sample ratio of 23 mL/g, Alcohol concentrations 62%. Under the optimized condition, the experimental yield of brown pigment was 0.636g.

  4. Optimization of Sugar Replacement with Date Syrup in Prebiotic Chocolate Milk Using Response Surface Methodology.

    Science.gov (United States)

    Kazemalilou, Sahar; Alizadeh, Ainaz

    2017-01-01

    Chocolate milk is one of the most commonly used non-fermentative dairy products, which, due to high level of sucrose, could lead to diabetes and tooth decay among children. Therefore, it is important to replace sucrose with other types of sweeteners, especially, natural ones. In this research, response surface methodology (RSM) was used to optimize the ingredients formulation of prebiotic chocolate milk, date syrup as sweetener (4-10%w/w), inulin as prebiotic texturizer (0-0.5%w/w) and carrageenan as thickening agent (0-0.04%w/w) in the formulation of chocolate milk. The fitted models to predict the variables of selected responses such as pH, viscosity, total solid, sedimentation and overall acceptability of chocolate milk showed a high coefficient of determination. The independent effect of carrageenan was the most effective parameter which led to pH and sedimentation decrease but increased viscosity. Moreover, in most treatments, date syrup and inulin variables had significant effects which had a mutual impact. Optimization of the variables, based on the responses surface 3D plots showed that the sample containing 0.48% (w/w) of inulin, 0.04% (w/w) of carrageenan, and 10% of date syrup was selected as the optimum condition.

  5. OPTIMIZATION OF PRETREATMENT CONDITIONS OF CARROTS TO MAXIMIZE JUICE RECOVERY BY RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    H. K. SHARMA

    2006-12-01

    Full Text Available Carrot juice was expressed in a hydraulic press using a wooden set up. Carrot samples pretreated at different designed combinations, using Central Composite Rotatable Design (CCRD, Response Surface Methodology (RSM, of pH, temperature and time were expressed and juice so obtained was characterized for various physico-chemical parameters which involved yield, TSS and water content, reducing sugars, total sugars and color (absorbance. The study indicated that carrots exposed to the different pretreatment conditions resulted in increased amount of yield than that of the control. The responses were optimized by numerical method and were found to be 78.23% yield, 0.93% color (abs, 3.41% reducing sugars, 5.53% total sugars, 6.69obrix, and 90.50% water content. All the derived mathematical models for the various responses were found to be fit significantly to predict the data.

  6. Optimization of gelatine extraction from grass carp (Catenopharyngodon idella) fish skin by response surface methodology.

    Science.gov (United States)

    Kasankala, Ladislaus M; Xue, Yan; Weilong, Yao; Hong, Sun D; He, Qian

    2007-12-01

    To establish the optimum gelatine extraction conditions from grass carp fish skin, response surface methodology (RSM) was adopted in this study. The effects of concentration of HCl (%, A), pre-treatment time (h, B), extraction temperature ( degrees C, C) and extraction time (h, D) were studied. The responses were yield (%) and gel strength (g). A=1.19%, B=24 h, C=52.61 degrees C and D=5.12h were determined as the optimum conditions while the predicted responses were 19.83% yield and 267 g gel strength. Gelling and melting points were 19.5 degrees C and 26.8 degrees C, respectively. Moreover, grass carp gelatine showed high contents of imino acids (proline and hydroxyproline) 19.47%. RSM provided a powerful tool to optimize the extraction parameters and the results may be adapted for industrial extraction of gelatine from grass carp fish skins.

  7. Optimization of Coolant Technique Conditions for Machining A319 Aluminium Alloy Using Response Surface Method (RSM)

    Science.gov (United States)

    Zainal Ariffin, S.; Razlan, A.; Ali, M. Mohd; Efendee, A. M.; Rahman, M. M.

    2018-03-01

    Background/Objectives: The paper discusses about the optimum cutting parameters with coolant techniques condition (1.0 mm nozzle orifice, wet and dry) to optimize surface roughness, temperature and tool wear in the machining process based on the selected setting parameters. The selected cutting parameters for this study were the cutting speed, feed rate, depth of cut and coolant techniques condition. Methods/Statistical Analysis Experiments were conducted and investigated based on Design of Experiment (DOE) with Response Surface Method. The research of the aggressive machining process on aluminum alloy (A319) for automotive applications is an effort to understand the machining concept, which widely used in a variety of manufacturing industries especially in the automotive industry. Findings: The results show that the dominant failure mode is the surface roughness, temperature and tool wear when using 1.0 mm nozzle orifice, increases during machining and also can be alternative minimize built up edge of the A319. The exploration for surface roughness, productivity and the optimization of cutting speed in the technical and commercial aspects of the manufacturing processes of A319 are discussed in automotive components industries for further work Applications/Improvements: The research result also beneficial in minimizing the costs incurred and improving productivity of manufacturing firms. According to the mathematical model and equations, generated by CCD based RSM, experiments were performed and cutting coolant condition technique using size nozzle can reduces tool wear, surface roughness and temperature was obtained. Results have been analyzed and optimization has been carried out for selecting cutting parameters, shows that the effectiveness and efficiency of the system can be identified and helps to solve potential problems.

  8. Hardness optimization of boride diffusion layer on Astm F-75 alloy using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Arguelles O, J. L.; Corona R, M. A. [Universidad Autonoma de San Luis Potosi, Doctorado Institucional en Ingenieria y Ciencia de Materiales, San Luis Potosi 78000, SLP (Mexico); Marquez H, A.; Saldana R, A. L.; Saldana R, A. [Universidad de Guanajuato, Ingenieria Mecanica Agricola DICIVA, Irapuato, Guanajuato 36500 (Mexico); Moreno P, J., E-mail: amarquez@ugto.mx [Universidad de Guanajuato, Departamento de Minas, Metalurgia y Geologia, Ex-Hacienda San Matias s/n, Guanajuato, Guanajuato 36020 (Mexico)

    2017-11-01

    In this study, the Response Surface Methodology (Rsm) and Central Composite Design (Ccd) were used to optimize the hardness of boride diffusion layer on Astm F-75 alloy (also called Haynes alloy). A boronizing thermochemical treatment was carried out at different temperatures and for different time periods. Hardness tests were conducted. The boride diffusion layer was verified by the X-ray diffraction (XRD) analysis indicating the formation of Co B, Co{sub 2}B, Cr B and Mo{sub 2}B phases. An optimal hardness of 3139.7 Hv was obtained for the samples subjected to the boriding process for a duration of 6.86 h at 802.4 degrees Celsius. (Author)

  9. Synthesis and Process Optimization of Electrospun PEEK-Sulfonated Nanofibers by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Carlo Boaretti

    2015-07-01

    Full Text Available In this study electrospun nanofibers of partially sulfonated polyether ether ketone have been produced as a preliminary step for a possible development of composite proton exchange membranes for fuel cells. Response surface methodology has been employed for the modelling and optimization of the electrospinning process, using a Box-Behnken design. The investigation, based on a second order polynomial model, has been focused on the analysis of the effect of both process (voltage, tip-to-collector distance, flow rate and material (sulfonation degree variables on the mean fiber diameter. The final model has been verified by a series of statistical tests on the residuals and validated by a comparison procedure of samples at different sulfonation degrees, realized according to optimized conditions, for the production of homogeneous thin nanofibers.

  10. Optimizing Oily Wastewater Treatment Via Wet Peroxide Oxidation Using Response Surface Methodology

    International Nuclear Information System (INIS)

    Shi, Jianzhong; Wang, Xiuqing; Wang, Xiaoyin

    2014-01-01

    The process of petroleum involves in a large amount of oily wastewater that contains high levels of chemical oxygen demand (COD) and toxic compounds. So they must be treated before their discharge into the receptor medium. In this paper, wet peroxide oxidation (WPO) was adopted to treat the oily wastewater. Central composite design, an experimental design for response surface methodology (RSM), was used to create a set of 31 experimental runs needed for optimizing of the operating conditions. Quadratic regression models with estimated coefficients were developed to describe the COD removals. The experimental results show that WPO could effectively reduce COD by 96.8% at the optimum conditions of temperature 290 .deg. C, H 2 O 2 excess (HE) 0.8, the initial concentration of oily wastewater 3855 mg/L and reaction time 9 min. RSM could be effectively adopted to optimize the operating multifactors in complex WPO process

  11. OPTIMIZATION OF EXTRACELLULAR TANNASE PRODUCTION BY ASPERGILLUS NIGER VAN TIEGHEM USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Hamada Abou-Bakr

    2013-12-01

    Full Text Available Response surface methodology (RSM was used to optimize the production of tannase by a newly isolate of Aspergillus niger Van Tieghem using rotatable central composite design (RCCD. This statistical optimization process was carried out involving four of quantitative growth parameters (variables, namely tannic acid concentration, nitrogen source concentration, initial pH of the medium and inoculum size. A mathematical model expressing the production process of tannase by submerged fermentation (SmF technique was generated statistically in the form of a second order polynomial equation. The model indicated the presence of significant linear, quadratic and interaction effects of the studied variables on tannase production by the fungal isolate. The results showed maximum tannase production (580 U/50 ml medium at 2% tannic acid, 4 g/l sodium nitrate, pH 4 and inoculum size of 5×107 spores/50 ml medium, which was also verified by experimental data.

  12. Response surface methodology for the optimization of alpha amylase production by serratia marcescens SB08

    International Nuclear Information System (INIS)

    Venil, C.K.; Lakshmanaperumalsamy, P.

    2008-01-01

    In this work, central composite design combining with response surface methodology was successfully employed to optimize medium composition for the production of alpha amylase by Serratia marcescens SB08 in submerged fermentation. The process parameters that influence the enzyme production were identified using Plackett- Burman design. Among the various factors screened, inoculum concentration, pH, NaCl and CaCl/sub 2/ were found to be most significant. The optimum level of pH was 5.0, inoculum concentration 3%, NaCl 0.30 g/l and CaCl/sub 2/ 0.13 g/l. The actual enzyme yield before and after optimization was 56.43 U/ml and 87.23 U/ml, respectively. Thus, it is advisable to the microbial industry sponsors to apply such profitable bioprocess to maintain high yield for mass production of alpha amylase. (author)

  13. Enzymatic Transesterification of Ethyl Ferulate with Fish Oil and Its Optimization by Response Surface Methodology

    DEFF Research Database (Denmark)

    Yang, Zhiyong; Glasius, Marianne; Xu, Xuebing

    2012-01-01

    formation of feruloyl fish oil products as well when appropriate amount of glycerol was present in the reaction. Therefore, the addition of equivalent molar amount of glycerol to EF was decided for the practical optimization of the system. The mutual effects of temperature (40 to 70 oC), reaction time (1......The enzymatic transesterification of ethyl ferulate (EF) with cod liver fish oil was investigated with Novozym 435 as catalyst under solvent-free conditions. The purpose of the study is to evaluate the synthesis system for production of feruloyl fish oil in industry. The modified HPLC method...... to 5 days), enzyme load (2 to 20 %) and substrate amount ratio of fish oil/EF (1 to 5) were thus studied with assistance of response surface methodology (RSM) for the purpose of maximizing the formation towards feruloyl fish oil. The models were well fitted and verified. The optimized conditions were...

  14. Optimization of Preparation of Antioxidative Peptides from Pumpkin Seeds Using Response Surface Method

    Science.gov (United States)

    Fan, Sanhong; Hu, Yanan; Li, Chen; Liu, Yanrong

    2014-01-01

    Protein isolates of pumpkin (Cucurbita pepo L) seeds were hydrolyzed by acid protease to prepare antioxidative peptides. The hydrolysis conditions were optimized through Box-Behnken experimental design combined with response surface method (RSM). The second-order model, developed for the DPPH radical scavenging activity of pumpkin seed hydrolysates, showed good fit with the experiment data with a high value of coefficient of determination (0.9918). The optimal hydrolysis conditions were determined as follows: hydrolyzing temperature 50°C, pH 2.5, enzyme amount 6000 U/g, substrate concentration 0.05 g/ml and hydrolyzing time 5 h. Under the above conditions, the scavenging activity of DPPH radical was as high as 92.82%. PMID:24637721

  15. Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology.

    Science.gov (United States)

    Deepak, V; Kalishwaralal, K; Ramkumarpandian, S; Babu, S Venkatesh; Senthilkumar, S R; Sangiliyandi, G

    2008-11-01

    Response surface methodology and central composite rotary design (CCRD) was employed to optimize a fermentation medium for the production of Nattokinase by Bacillus subtilis at pH 7.5. The four variables involved in this study were Glucose, Peptone, CaCl2, and MgSO4. The statistical analysis of the results showed that, in the range studied; only peptone had a significant effect on Nattokinase production. The optimized medium containing (%) Glucose: 1, Peptone: 5.5, MgSO4: 0.2 and CaCl2: 0.5 resulted in 2-fold increased level of Nattokinase (3194.25U/ml) production compared to initial level (1599.09U/ml) after 10h of fermentation. Nattokinase production was checked with fibrinolytic activity.

  16. Deploying response surface methodology (RSM) and glowworm swarm optimization (GSO) in optimizing warpage on a mobile phone cover

    Science.gov (United States)

    Lee, X. N.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.; Shazzuan, S.

    2017-09-01

    Plastic injection moulding is a popular manufacturing method not only it is reliable, but also efficient and cost saving. It able to produce plastic part with detailed features and complex geometry. However, defects in injection moulding process degrades the quality and aesthetic of the injection moulded product. The most common defect occur in the process is warpage. Inappropriate process parameter setting of injection moulding machine is one of the reason that leads to the occurrence of warpage. The aims of this study were to improve the quality of injection moulded part by investigating the optimal parameters in minimizing warpage using Response Surface Methodology (RSM) and Glowworm Swarm Optimization (GSO). Subsequent to this, the most significant parameter was identified and recommended parameters setting was compared with the optimized parameter setting using RSM and GSO. In this research, the mobile phone case was selected as case study. The mould temperature, melt temperature, packing pressure, packing time and cooling time were selected as variables whereas warpage in y-direction was selected as responses in this research. The simulation was carried out by using Autodesk Moldflow Insight 2012. In addition, the RSM was performed by using Design Expert 7.0 whereas the GSO was utilized by using MATLAB. The warpage in y direction recommended by RSM were reduced by 70 %. The warpages recommended by GSO were decreased by 61 % in y direction. The resulting warpages under optimal parameter setting by RSM and GSO were validated by simulation in AMI 2012. RSM performed better than GSO in solving warpage issue.

  17. Optimal placement of trailing-edge flaps for helicopter vibration reduction using response surface methods

    Science.gov (United States)

    Viswamurthy, S. R.; Ganguli, Ranjan

    2007-03-01

    This study aims to determine optimal locations of dual trailing-edge flaps to achieve minimum hub vibration levels in a helicopter, while incurring low penalty in terms of required trailing-edge flap control power. An aeroelastic analysis based on finite elements in space and time is used in conjunction with an optimal control algorithm to determine the flap time history for vibration minimization. The reduced hub vibration levels and required flap control power (due to flap motion) are the two objectives considered in this study and the flap locations along the blade are the design variables. It is found that second order polynomial response surfaces based on the central composite design of the theory of design of experiments describe both objectives adequately. Numerical studies for a four-bladed hingeless rotor show that both objectives are more sensitive to outboard flap location compared to the inboard flap location by an order of magnitude. Optimization results show a disjoint Pareto surface between the two objectives. Two interesting design points are obtained. The first design gives 77 percent vibration reduction from baseline conditions (no flap motion) with a 7 percent increase in flap power compared to the initial design. The second design yields 70 percent reduction in hub vibration with a 27 percent reduction in flap power from the initial design.

  18. Response Surface Methodology: An Extensive Potential to Optimize in vivo Photodynamic Therapy Conditions

    International Nuclear Information System (INIS)

    Tirand, Loraine; Bastogne, Thierry; Bechet, Denise M.Sc.; Linder, Michel; Thomas, Noemie; Frochot, Celine; Guillemin, Francois; Barberi-Heyob, Muriel

    2009-01-01

    Purpose: Photodynamic therapy (PDT) is based on the interaction of a photosensitizing (PS) agent, light, and oxygen. Few new PS agents are being developed to the in vivo stage, partly because of the difficulty in finding the right treatment conditions. Response surface methodology, an empirical modeling approach based on data resulting from a set of designed experiments, was suggested as a rational solution with which to select in vivo PDT conditions by using a new peptide-conjugated PS targeting agent, neuropilin-1. Methods and Materials: A Doehlert experimental design was selected to model effects and interactions of the PS dose, fluence, and fluence rate on the growth of U87 human malignant glioma cell xenografts in nude mice, using a fixed drug-light interval. All experimental results were computed by Nemrod-W software and Matlab. Results: Intrinsic diameter growth rate, a tumor growth parameter independent of the initial volume of the tumor, was selected as the response variable and was compared to tumor growth delay and relative tumor volumes. With only 13 experimental conditions tested, an optimal PDT condition was selected (PS agent dose, 2.80 mg/kg; fluence, 120 J/cm 2 ; fluence rate, 85 mW/cm 2 ). Treatment of glioma-bearing mice with the peptide-conjugated PS agent, followed by the optimized PDT condition showed a statistically significant improvement in delaying tumor growth compared with animals who received the PDT with the nonconjugated PS agent. Conclusions: Response surface methodology appears to be a useful experimental approach for rapid testing of different treatment conditions and determination of optimal values of PDT factors for any PS agent.

  19. Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by Brushite

    Directory of Open Access Journals (Sweden)

    M. Mourabet

    2017-05-01

    Full Text Available In the present study, Response surface methodology (RSM was employed for the removal of fluoride on Brushite and the process parameters were optimized. Four important process parameters including initial fluoride concentration (40–50 mg/L, pH (4–11, temperature (10–40 °C and B dose (0.05–0.15 g were optimized to obtain the best response of fluoride removal using the statistical Box–Behnken design. The experimental data obtained were analyzed by analysis of variance (ANOVA and fitted to a second-order polynomial equation using multiple regression analysis. Numerical optimization applying desirability function was used to identify the optimum conditions for maximum removal of fluoride. The optimum conditions were found to be initial concentration = 49.06 mg/L, initial solution pH = 5.36, adsorbent dose = 0.15 g and temperature = 31.96 °C. A confirmatory experiment was performed to evaluate the accuracy of the optimization procedure and maximum fluoride removal of 88.78% was achieved under the optimized conditions. Several error analysis equations were used to measure the goodness-of-fit. Kinetic studies showed that the adsorption followed a pseudo-second order reaction. The equilibrium data were analyzed using Langmuir, Freundlich, and Sips isotherm models at different temperatures. The Langmuir model was found to be describing the data. The adsorption capacity from the Langmuir isotherm (QL was found to be 29.212, 35.952 and 36.260 mg/g at 298, 303, and 313 K respectively.

  20. Optimization of Reactor Temperature and Catalyst Weight for Plastic Cracking to Fuels Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2011-01-01

    Full Text Available The present study deals with effect of reactor temperature and catalyst weight on performance of plastic waste cracking to fuels over modified catalyst waste as well as their optimization. From optimization study, the most operating parameters affected the performance of the catalytic cracking process is reactor temperature followed by catalyst weight. Increasing the reactor temperature improves significantly the cracking performance due to the increasing catalyst activity. The optimal operating conditions of reactor temperature about 550 oC and catalyst weight about 1.25 gram were produced with respect to maximum liquid fuel product yield of 29.67 %. The liquid fuel product consists of gasoline range hydrocarbons (C4-C13 with favorable heating value (44,768 kJ/kg. ©2010 BCREC UNDIP. All rights reserved(Received: 10th July 2010, Revised: 18th September 2010, Accepted: 19th September 2010[How to Cite: I. Istadi, S. Suherman, L. Buchori. (2010. Optimization of Reactor Temperature and Catalyst Weight for Plastic Cracking to Fuels Using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 103-111. doi:10.9767/bcrec.5.2.797.103-111][DOI: http://dx.doi.org/10.9767/bcrec.5.2.797.103-111 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/797

  1. Response surface optimization of culture medium for enhanced docosahexaenoic acid production by a Malaysian thraustochytrid.

    Science.gov (United States)

    Manikan, Vidyah; Kalil, Mohd Sahaid; Hamid, Aidil Abdul

    2015-02-27

    Docosahexaenoic acid (DHA, C22:6n-3) plays a vital role in the enhancement of human health, particularly for cognitive, neurological, and visual functions. Marine microalgae, such as members of the genus Aurantiochytrium, are rich in DHA and represent a promising source of omega-3 fatty acids. In this study, levels of glucose, yeast extract, sodium glutamate and sea salt were optimized for enhanced lipid and DHA production by a Malaysian isolate of thraustochytrid, Aurantiochytrium sp. SW1, using response surface methodology (RSM). The optimized medium contained 60 g/L glucose, 2 g/L yeast extract, 24 g/L sodium glutamate and 6 g/L sea salt. This combination produced 17.8 g/L biomass containing 53.9% lipid (9.6 g/L) which contained 44.07% DHA (4.23 g/L). The optimized medium was used in a scale-up run, where a 5 L bench-top bioreactor was employed to verify the applicability of the medium at larger scale. This produced 24.46 g/L biomass containing 38.43% lipid (9.4 g/L), of which 47.87% was DHA (4.5 g/L). The total amount of DHA produced was 25% higher than that produced in the original medium prior to optimization. This result suggests that Aurantiochytrium sp. SW1 could be developed for industrial application as a commercial DHA-producing microorganism.

  2. Parametric optimization of rice bran oil extraction using response surface methodology

    Directory of Open Access Journals (Sweden)

    Ahmad Syed W.

    2016-09-01

    Full Text Available Use of bran oil in various edible and nonedible industries is very common. In this research work, efficient and optimized methodology for the recovery of rice bran oil has been investigated. The present statistical study includes parametric optimization, based on experimental results of rice bran oil extraction. In this study, three solvents, acetone, ethanol and solvent mixture (SM [acetone: ethanol (1:1 v/v] were employed in extraction investigations. Response surface methodology (RSM, an optimization technique, was exploited for this purpose. A five level central composite design (CCD consisting four operating parameter, like temperature, stirring rate, solvent-bran ratio and contact time were examined to optimize rice bran oil extraction. Experimental results showed that oil recovery can be enhanced from 71% to 82% when temperature, solvent-bran ratio, stirring rate and contact time were kept at 55°C, 6:1, 180 rpm and 45 minutes, respectively while fixing the pH of the mixture at 7.1.

  3. Optimization of lipase-catalyzed synthesis of ginsenoside Rb1 esters using response surface methodology.

    Science.gov (United States)

    Hu, Jiang-Ning; Lee, Jeung-Hee; Zhu, Xue-Mei; Shin, Jung-Ah; Adhikari, Prakash; Kim, Jae-Kyung; Lee, Ki-Teak

    2008-11-26

    In the lipase (Novozyme 435)-catalyzed synthesis of ginsenoside Rb1 esters, different acyl donors were found to affect not only the degree of conversion but also the regioselectivity. The reaction of acyl donors with short carbon chain was more effective, showing higher conversion than those with long carbon chain. Among the three solvent systems, the reaction in tert-amyl alcohol showed the highest conversion rate, while the reaction in the mixed solvent of t-BuOH and pyridine (1:1) had the lowest conversion rate. To allow the increase of GRb1 lipophilicity, we decided to further study the optimal condition of synthesis of GRb1 with vinyl decanoate with 10 carbon chain fatty acids in tert-amyl alcohol. Response surface methodology (RSM) was employed to optimize the synthesis condition. From the ridge analysis with maximum responses, the maximum GRb1 conversion was predicted to be 61.51% in a combination of factors (40.2 h, 52.95 degrees C, substrate mole ratio 275.57, and enzyme amount 39.81 mg/mL). Further, the adequacy of the predicted model was examined by additional independent experiments at the predicted maximum synthesis conditions. Results showed that the RSM was effective to optimize a combination of factors for lipase-catalyzed synthesis of ginsenoside Rb1 with vinyl decanoate.

  4. Application of Response Surface Methodology to Optimize Malachite Green Removal by Cl-nZVI Nanocomposites

    Directory of Open Access Journals (Sweden)

    Farshid Ghorbani

    2017-09-01

    Full Text Available Disposal of effluents containing dyes into natural ecosystems pose serious threats to both the environment and its aquatic life. Malachite green (MG is a basic dye that has extensive industrial applications, especially in aquaculture, throughout the world. This study reports on the application of the central composite design (CCD under the response surface methodology (RSM for the optimization of MG adsorption from aqueous solutions using the clinoptilolite nano-zerovalence iron (Cl-nZVI nanocomposites. The sorbent structures produced are characterized by means of scanning electron micrograph (SEM, energy-dispersive X-ray spectroscopy (EDS, and vibrating sample magnetometer (VSM. The effects of different parameters including pH, initial MG concentration, and sorbent dosage on the removal efficiency (R of MG were studied to find the optimum operating conditions. For this purpose, a total of 20 sets of experiments were designed by the Design Expert.7.0 software and the values of removal efficiency were used as input response to the software. The optimum pH, initial MG concentration, and sorbent dosage were found to be 5.6, 49.21 mg.L-1, and 1.43 g.L-1, respectively. A high MG removal efficiency (57.90% was obtained with optimal process parameters. Moreover, a desirability value of 0.963 was obtained for the optimization process.

  5. Optimization of ultrasonic-assisted extraction of natural antioxidants from rice bran using response surface methodology.

    Science.gov (United States)

    Tabaraki, Reza; Nateghi, Ashraf

    2011-11-01

    Ultrasonic technology was applied for extraction of polyphenols and antioxidants from the rice bran using ethanol as a food grade solvent. Response surface methodology (RSM) was used to optimize experimental conditions for extraction of polyphenols and antioxidants. Three independent variables such as solvent percentage (%), temperature (°C) and time (min) were studied. Effect of ethanol concentration was found to be significant on all responses. Total phenolic content (TPC) varied from 2.37 to 6.35mg gallic acid equivalent/g of dry sample. Antioxidant activity of the extracts was determined by the ferric reducing antioxidant power (FRAP) assay and scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. FRAP and DPPH values varied from 31.74 to 57.23μmol Fe(2+)/g of dry sample and 16.88% to 55.61% inhibition, respectively. Extraction yields ranged from 11 to 20.2%. Optimal ultrasonic-assisted extraction (UAE) conditions were identified as 65-67% ethanol, 51-54°C, 40-45min. The experimental values agreed with those predicted by SRM models, thus indicating suitability of the model employed and the success of RSM in optimizing the extraction conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Optimization of integrated chemical-biological degradation of a reactive azo dye using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sudarjanto, Gatut [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia); Keller-Lehmann, Beatrice [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia); Keller, Jurg [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia)]. E-mail: j.keller@awmc.uq.edu.au

    2006-11-02

    The integrated chemical-biological degradation combining advanced oxidation by UV/H{sub 2}O{sub 2} followed by aerobic biodegradation was used to degrade C.I. Reactive Azo Red 195A, commonly used in the textile industry in Australia. An experimental design based on the response surface method was applied to evaluate the interactive effects of influencing factors (UV irradiation time, initial hydrogen peroxide dosage and recirculation ratio of the system) on decolourisation efficiency and optimizing the operating conditions of the treatment process. The effects were determined by the measurement of dye concentration and soluble chemical oxygen demand (S-COD). The results showed that the dye and S-COD removal were affected by all factors individually and interactively. Maximal colour degradation performance was predicted, and experimentally validated, with no recirculation, 30 min UV irradiation and 500 mg H{sub 2}O{sub 2}/L. The model predictions for colour removal, based on a three-factor/five-level Box-Wilson central composite design and the response surface method analysis, were found to be very close to additional experimental results obtained under near optimal conditions. This demonstrates the benefits of this approach in achieving good predictions while minimising the number of experiments required.

  7. Optimization of integrated chemical-biological degradation of a reactive azo dye using response surface methodology

    International Nuclear Information System (INIS)

    Sudarjanto, Gatut; Keller-Lehmann, Beatrice; Keller, Jurg

    2006-01-01

    The integrated chemical-biological degradation combining advanced oxidation by UV/H 2 O 2 followed by aerobic biodegradation was used to degrade C.I. Reactive Azo Red 195A, commonly used in the textile industry in Australia. An experimental design based on the response surface method was applied to evaluate the interactive effects of influencing factors (UV irradiation time, initial hydrogen peroxide dosage and recirculation ratio of the system) on decolourisation efficiency and optimizing the operating conditions of the treatment process. The effects were determined by the measurement of dye concentration and soluble chemical oxygen demand (S-COD). The results showed that the dye and S-COD removal were affected by all factors individually and interactively. Maximal colour degradation performance was predicted, and experimentally validated, with no recirculation, 30 min UV irradiation and 500 mg H 2 O 2 /L. The model predictions for colour removal, based on a three-factor/five-level Box-Wilson central composite design and the response surface method analysis, were found to be very close to additional experimental results obtained under near optimal conditions. This demonstrates the benefits of this approach in achieving good predictions while minimising the number of experiments required

  8. Partial oxidation of landfill leachate in supercritical water: Optimization by response surface methodology

    International Nuclear Information System (INIS)

    Gong, Yanmeng; Wang, Shuzhong; Xu, Haidong; Guo, Yang; Tang, Xingying

    2015-01-01

    Highlights: • Partial oxidation of landfill leachate in supercritical water was investigated. • The process was optimized by Box–Behnken design and response surface methodology. • GY H2 , TRE and CR could exhibit up to 14.32 mmol·gTOC −1 , 82.54% and 94.56%. • Small amounts of oxidant can decrease the generation of tar and char. - Abstract: To achieve the maximum H 2 yield (GY H2 ), TOC removal rate (TRE) and carbon recovery rate (CR), response surface methodology was applied to optimize the process parameters for supercritical water partial oxidation (SWPO) of landfill leachate in a batch reactor. Quadratic polynomial models for GY H2 , CR and TRE were established with Box–Behnken design. GY H2 , CR and TRE reached up to 14.32 mmol·gTOC −1 , 82.54% and 94.56% under optimum conditions, respectively. TRE was invariably above 91.87%. In contrast, TC removal rate (TR) only changed from 8.76% to 32.98%. Furthermore, carbonate and bicarbonate were the most abundant carbonaceous substances in product, whereas CO 2 and H 2 were the most abundant gaseous products. As a product of nitrogen-containing organics, NH 3 has an important effect on gas composition. The carbon balance cannot be reached duo to the formation of tar and char. CR increased with the increase of temperature and oxidation coefficient

  9. Development, Characterization, and Optimization of Protein Level in Date Bars Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem

    2012-01-01

    Full Text Available This project was designed to produce a nourishing date bar with commercial value especially for school going children to meet their body development requirements. Protein level of date bars was optimized using response surface methodology (RSM. Economical and underutilized sources, that is, whey protein concentrate and vetch protein isolates, were explored for protein supplementation. Fourteen date bar treatments were produced using a central composite design (CCD with 2 variables and 3 levels for each variable. Date bars were then analyzed for nutritional profile. Proximate composition revealed that addition of whey protein concentrate and vetch protein isolates improved the nutritional profile of date bars. Protein level, texture, and taste were considerably improved by incorporating 6.05% whey protein concentrate and 4.35% vetch protein isolates in date bar without affecting any sensory characteristics during storage. Response surface methodology was observed as an economical and effective tool to optimize the ingredient level and to discriminate the interactive effects of independent variables.

  10. Optimization and evaluation of chelerythrine nanoparticles composed of magnetic multiwalled carbon nanotubes by response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yong [School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541014 (China); Yuan, Yulin [Department of Clinical Laboratory, the People' s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021 (China); Zhou, Zhide; Liang, Jintao; Chen, Zhencheng [School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541014 (China); Li, Guiyin, E-mail: liguiyin01@163.com [School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541014 (China)

    2014-02-15

    In this study, a new chelerythrine nanomaterial targeted drug delivery system (Fe{sub 3}O{sub 4}/MWNTs-CHE) was designed with chelerythrine (CHE) as model of antitumor drug and magnetic multiwalled carbon nanotubes (Fe{sub 3}O{sub 4}/MWNTs) nanocomposites as drug carrier. The process and formulation variables of Fe{sub 3}O{sub 4}/MWNTs-CHE were optimized using response surface methodology (RSM) with a three-level, three-factor Box–Behnken design (BBD). Mathematical equations and response surface plots were used to relate the dependent and independent variables. The experimental results were fitted into second-order response surface model. When Fe{sub 3}O{sub 4}/MWNTs:CHE ratio was 20.6:1, CHE concentration was 172.0 μg/mL, temperature was 34.5 °C, the drug loading content and entrapment efficiency were 3.04 ± 0.17% and 63.68 ± 2.36%, respectively. The optimized Fe{sub 3}O{sub 4}/MWNTs-CHE nanoparticles were characterized by scanning electron microscopy (SEM), Zeta potential, in vitro drug release and MTT assays. The in vitro CHE drug release behavior from Fe{sub 3}O{sub 4}/MWNTs-CHE displayed a biphasic drug release pattern and followed Korsmeyer–Peppas model with Fickian diffusion mechanism for drug release. The results from MTT assays suggested that the Fe{sub 3}O{sub 4}/MWNTs-CHE could effectively inhibit the proliferation of human hepatoma cells (HepG2), which displayed time or concentration-dependent manner. All these preliminary studies were expected to provide a theoretical basis and offer new methods for preparation efficient magnetic targeted drug delivery systems.

  11. Modeling and optimization of ammonia treatment by acidic biochar using response surface methodology

    Directory of Open Access Journals (Sweden)

    Narong Chaisongkroh

    2012-09-01

    Full Text Available Emission of ammonia (NH3 contaminated waste air to the atmosphere without treatment has affected humans andenvironment. Eliminating NH3 in waste air emitted from industries is considered an environmental requisite. In this study,optimization of NH3 adsorption time using acidic rubber wood biochar (RWBs impregnated with sulfuric acid (H2SO4 wasinvestigated. The central composite design (CCD in response surface methodology (RSM by the Design Expert softwarewas used for designing the experiments as well as the full response surface estimation. The RSM was used to evaluate theeffect of adsorption parameters in continuous mode of fixed bed column including waste air flow rate, inlet NH3 concentration in waste air stream, and H2SO4 concentration for adsorbent surface modification. Based on statistical analysis, the NH3symmetric adsorption time (at 50% NH3 removal efficiency model proved to be very highly significant (p<0.0001. The optimum conditions obtained were 300 ppmv inlet NH3 concentration, 72% H2SO4, and 2.1 l/min waste air flow rate. This resultedin 219 minutes of NH3 adsorption time as obtained from the predicted model, which fitted well with the laboratory verification result. This was supported by the high value of coefficient of determination (R2=0.9137. (NH42SO4, a nitrogen fertilizerfor planting, was the by-product from chemical adsorption between NH3 and H2SO4.

  12. Ethanol production from sweet sorghum bagasse through process optimization using response surface methodology.

    Science.gov (United States)

    Lavudi, Saida; Oberoi, Harinder Singh; Mangamoori, Lakshmi Narasu

    2017-08-01

    In this study, comparative evaluation of acid- and alkali pretreatment of sweet sorghum bagasse (SSB) was carried out for sugar production after enzymatic hydrolysis. Results indicated that enzymatic hydrolysis of alkali-pretreated SSB resulted in higher production of glucose, xylose and arabinose, compared to the other alkali concentrations and also acid-pretreated biomass. Response Surface Methodology (RSM) was, therefore, used to optimize parameters, such as alkali concentration, temperature and time of pretreatment prior to enzymatic hydrolysis to maximize the production of sugars. The independent variables used during RSM included alkali concentration (1.5-4%), pretreatment temperature (125-140 °C) and pretreatment time (10-30 min) were investigated. Process optimization resulted in glucose and xylose concentration of 57.24 and 10.14 g/L, respectively. Subsequently, second stage optimization was conducted using RSM for optimizing parameters for enzymatic hydrolysis, which included substrate concentration (10-15%), incubation time (24-60 h), incubation temperature (40-60 °C) and Celluclast concentration (10-20 IU/g-dwt). Substrate concentration 15%, (w/v) temperature of 60 °C, Celluclast concentration of 20 IU/g-dwt and incubation time of 58 h led to a glucose concentration of 68.58 g/l. Finally, simultaneous saccharification fermentation (SSF) as well as separated hydrolysis and fermentation (SHF) was evaluated using Pichia kudriavzevii HOP-1 for production of ethanol. Significant difference in ethanol concentration was not found using either SSF or SHF; however, ethanol productivity was higher in case of SSF, compared to SHF. This study has established a platform for conducting scale-up studies using the optimized process parameters.

  13. Optimization of petroleum refinery effluent treatment in a UASB reactor using response surface methodology

    International Nuclear Information System (INIS)

    Rastegar, S.O.; Mousavi, S.M.; Shojaosadati, S.A.; Sheibani, S.

    2011-01-01

    Highlights: ► A UASB was successfully used for treatment of petroleum refinery effluent. ► Response surface methodology was applied to design and analysis of experiments. ► System was modeled between efficient factors include HRT, influent COD and V up . ► UASB was able to remove about 76.3% influent COD at optimum conditions. - Abstract: An upflow anaerobic sludge blanket (UASB) bioreactor was successfully used for the treatment of petroleum refinery effluent. Before optimization, chemical oxygen demand (COD) removal was 81% at a constant organic loading rate (OLR) of 0.4 kg/m 3 d and a hydraulic retention time (HRT) of 48 h. The rate of biogas production was 559 mL/h at an HRT of 40 h and an influent COD of 1000 mg/L. Response surface methodology (RSM) was applied to predict the behaviors of influent COD, upflow velocity (V up ) and HRT in the bioreactor. RSM showed that the best models for COD removal and biogas production rate were the reduced quadratic and cubic models, respectively. The optimum region, identified based on two critical responses, was an influent COD of 630 mg/L, a V up of 0.27 m/h, and an HRT of 21.4 h. This resulted in a 76.3% COD removal efficiency and a 0.25 L biogas/L feed d biogas production rate.

  14. Response surface methodology for autolysis parameters optimization of shrimp head and amino acids released during autolysis.

    Science.gov (United States)

    Cao, Wenhong; Zhang, Chaohua; Hong, Pengzhi; Ji, Hongwu

    2008-07-01

    Protein hydrolysates were prepared from the head waste of Penaens vannamei, a China seawater major shrimp by autolysis method. Autolysis conditions (viz., temperature, pH and substrate concentration) for preparing protein hydrolysates from the head waste proteins were optimized by response surface methodology (RSM) using a central composite design. Model equation was proposed with regard to the effect of temperature, pH and substrate concentration. Substrate concentration at 23% (w/v), pH at 7.85 and temperature at 50°C were found to be the optimal conditions to obtain a higher degree of hydrolysis close to 45%. The autolysis reaction was nearly finished in the initial 3h. The amino acid compositions of the autolysis hydrolysates prepared using the optimized conditions in different time revealed that the hydrolysates can be used as a functional food ingredient or flavor enhancer. Endogenous enzymes in the shrimp heads had a strong autolysis capacity (AC) for releasing threonine, serine, valine, isoleucine, tyrosine, histidine and tryptophan. Endogenous enzymes had a relatively lower AC for releasing cystine and glycine. Copyright © 2008. Published by Elsevier Ltd.

  15. Optimization of Saccharomyces boulardii production in solid-state fermentation with response surface methodology

    Directory of Open Access Journals (Sweden)

    Yuanliang Hu

    2016-01-01

    Full Text Available Saccharomyces boulardii preparations are promising probiotics and clinical agents for animals and humans. This work focused on optimizing the nutritional conditions for the production of S. boulardii in solid-state fermentation by using classical and statistical methods. In single-factor experiments, the S. boulardii production was significantly increased by the addition of glucoamylase and the optimal carbon and nitrogen sources were found to be soluble starch and NH4Cl, respectively. The effects of the glucoamylase, soluble starch and NH4Cl on S. boulardii production were evaluated by a three-level three-factor Box–Behnken design and response surface methodology (RSM. The maximal yeast count (4.50 ×109CFU/g was obtained under the optimized conditions (198 U/g glucoamylase, 2.37% soluble starch and 0.9% NH4Cl, which was in a good agreement with the predicted value of the model. This study has provided useful information on how to improve the accumulation of yeast cells by RSM.

  16. Electrochemical oxidation of landfill leachate in a flow reactor: optimization using response surface methodology.

    Science.gov (United States)

    Silveira, Jefferson E; Zazo, Juan A; Pliego, Gema; Bidóia, Edério D; Moraes, Peterson B

    2015-04-01

    Response surface methodology based on Box-Behnken (BBD) design was successfully applied to the optimization in the operating conditions of the electrochemical oxidation of sanitary landfill leachate aimed for making this method feasible for scale up. Landfill leachate was treated in continuous batch-recirculation system, where a dimensional stable anode (DSA(©)) coated with Ti/TiO2 and RuO2 film oxide were used. The effects of three variables, current density (milliampere per square centimeter), time of treatment (minutes), and supporting electrolyte dosage (moles per liter) upon the total organic carbon removal were evaluated. Optimized conditions were obtained for the highest desirability at 244.11 mA/cm(2), 41.78 min, and 0.07 mol/L of NaCl and 242.84 mA/cm(2), 37.07 min, and 0.07 mol/L of Na2SO4. Under the optimal conditions, 54.99% of chemical oxygen demand (COD) and 71.07 ammonia nitrogen (NH3-N) removal was achieved with NaCl and 45.50 of COD and 62.13 NH3-N with Na2SO4. A new kinetic model predicted obtained from the relation between BBD and the kinetic model was suggested.

  17. Process optimization by response surface methodology for extracellular alkaline protease production from bacillus subtilis

    International Nuclear Information System (INIS)

    Mushtaq, Z.; Adnan, A.; Mehmood, Z.

    2014-01-01

    Three microbial cultures Bacillus subtilis DSM 1970, Bacillus subtilis GCU-8 and Bacillus licheniformis DSM 1969 were screened for protease production by casein agar plate method. Among these Bacillus subtilis GCU-8 was found to be the most potent protease producer in wide pH range (5.0 to 8.0). Fermentation conditions were optimized for the production of alkaline protease using two statistical tools: Placket Burmen Model for linear regression study and Response Surface Model for interactive effects of significant factors on production. The alkaline protease was optimally produced after 48 hours of incubation at 37 degree C in fermentation media containing equal amounts of substrates (soybean meal and wheat bran, 7.5 g), MgSO/sub 4/ 7H/sub 2/O, 0.10 g and yeast extract 0.55 g. The protease was purified to homogeneity by salt precipitation, ion-exchange chromatography and size exclusion chromatography. The homogeneity and molecular weights were checked by SDS-PAGE. The protease was 45 KDa protein, predominantly alkaline and optimally active at pH 8.0. (author)

  18. Response surface optimization of lyoprotectant for Lactobacillus bulgaricus during vacuum freeze-drying.

    Science.gov (United States)

    Chen, He; Chen, Shiwei; Li, Chuanna; Shu, Guowei

    2015-01-01

    The individual and interactive effects of skimmed milk powder, lactose, and sodium ascorbate on the number of viable cells and freeze-drying survival for vacuum freeze-dried powder formulation of Lactobacillus bulgaricus were studied by response surface methodology, and the optimal compound lyoprotectant formulations were gained. It is shown that skim milk powder, lactose, and sodium ascorbate had a significant impact on variables and survival of cultures after freeze-drying. Also, their protective abilities could be enhanced significantly when using them as a mixture of 28% w/v skim milk, 24% w/v lactose, and 4.8% w/v sodium ascorbate. The optimal freeze-drying survival rate and the number of viable cells of Lactobacillus bulgaricus were observed to be (64.41±0.02)% and (3.22±0.02)×10(11) colony-forming units (CFU)/g using the optimal compound protectants, which were very close to the expected values 64.47% and 3.28×10(11) CFU/g.

  19. Optimization of Medium Using Response Surface Methodology for Lipid Production by Scenedesmus sp.

    Science.gov (United States)

    Yang, Fangfang; Long, Lijuan; Sun, Xiumei; Wu, Hualian; Li, Tao; Xiang, Wenzhou

    2014-01-01

    Lipid production is an important indicator for assessing microalgal species for biodiesel production. In this work, the effects of medium composition on lipid production by Scenedesmus sp. were investigated using the response surface methodology. The results of a Plackett–Burman design experiment revealed that NaHCO3, NaH2PO4·2H2O and NaNO3 were three factors significantly influencing lipid production, which were further optimized by a Box–Behnken design. The optimal medium was found to contain 3.07 g L−1 NaHCO3, 15.49 mg L−1 NaH2PO4·2H2O and 803.21 mg L−1 NaNO3. Using the optimal conditions previously determined, the lipid production (304.02 mg·L−1) increased 54.64% more than that using the initial medium, which agreed well with the predicted value 309.50 mg L−1. Additionally, lipid analysis found that palmitic acid (C16:0) and oleic acid (C18:1) dominantly constituted the algal fatty acids (about 60% of the total fatty acids) and a much higher content of neutral lipid accounted for 82.32% of total lipids, which strongly proved that Scenedesmus sp. is a very promising feedstock for biodiesel production. PMID:24663113

  20. Optimization of ultrasound-assisted extraction of charantin from Momordica charantia fruits using response surface methodology

    Directory of Open Access Journals (Sweden)

    Javed Ahamad

    2015-01-01

    Full Text Available Background: Momordica charantia Linn. (Cucurbitaceae fruits are well known for their beneficial effects in diabetes that are often attributed to its bioactive component charantin. Objective: The aim of the present study is to develop and optimize an efficient protocol for the extraction of charantin from M. charantia fruits. Materials and Methods: Response surface methodology (RSM was used for the optimization of ultrasound-assisted extraction (UAE conditions. RSM was based on a three-level, three-variable Box-Behnken design (BBD, and the studied variables included solid to solvent ratio, extraction temperature, and extraction time. Results: The optimal conditions predicted by the BBD were: UAE with methanol: Water (80:20, v/v at 46°C for 120 min with solid to solvent ratio of 1:26 w/v, under which the yield of charantin was 3.18 mg/g. Confirmation trials under slightly adjusted conditions yielded 3.12 ± 0.14 mg/g of charantin on dry weight basis of fruits. The result of UAE was also compared with Soxhlet extraction method and UAE was found 2.74-fold more efficient than the Soxhlet extraction for extracting charantin. Conclusions:A facile UAE protocol for a high extraction yield of charantin was developed and validated.

  1. Optimization of ultrasound-assisted extraction of charantin from Momordica charantia fruits using response surface methodology.

    Science.gov (United States)

    Ahamad, Javed; Amin, Saima; Mir, Showkat R

    2015-01-01

    Momordica charantia Linn. (Cucurbitaceae) fruits are well known for their beneficial effects in diabetes that are often attributed to its bioactive component charantin. The aim of the present study is to develop and optimize an efficient protocol for the extraction of charantin from M. charantia fruits. Response surface methodology (RSM) was used for the optimization of ultrasound-assisted extraction (UAE) conditions. RSM was based on a three-level, three-variable Box-Behnken design (BBD), and the studied variables included solid to solvent ratio, extraction temperature, and extraction time. The optimal conditions predicted by the BBD were: UAE with methanol: Water (80:20, v/v) at 46°C for 120 min with solid to solvent ratio of 1:26 w/v, under which the yield of charantin was 3.18 mg/g. Confirmation trials under slightly adjusted conditions yielded 3.12 ± 0.14 mg/g of charantin on dry weight basis of fruits. The result of UAE was also compared with Soxhlet extraction method and UAE was found 2.74-fold more efficient than the Soxhlet extraction for extracting charantin. A facile UAE protocol for a high extraction yield of charantin was developed and validated.

  2. Optimizing pressurized liquid extraction of microbial lipids using the response surface method.

    Science.gov (United States)

    Cescut, J; Severac, E; Molina-Jouve, C; Uribelarrea, J-L

    2011-01-21

    Response surface methodology (RSM) was used for the determination of optimum extraction parameters to reach maximum lipid extraction yield with yeast. Total lipids were extracted from oleaginous yeast (Rhodotorula glutinis) using pressurized liquid extraction (PLE). The effects of extraction parameters on lipid extraction yield were studied by employing a second-order central composite design. The optimal condition was obtained as three cycles of 15 min at 100°C with a ratio of 144 g of hydromatrix per 100 g of dry cell weight. Different analysis methods were used to compare the optimized PLE method with two conventional methods (Soxhlet and modification of Bligh and Dyer methods) under efficiency, selectivity and reproducibility criteria thanks to gravimetric analysis, GC with flame ionization detector, High Performance Liquid Chromatography linked to Evaporative Light Scattering Detector (HPLC-ELSD) and thin-layer chromatographic analysis. For each sample, the lipid extraction yield with optimized PLE was higher than those obtained with referenced methods (Soxhlet and Bligh and Dyer methods with, respectively, a recovery of 78% and 85% compared to PLE method). Moreover, the use of PLE led to major advantages such as an analysis time reduction by a factor of 10 and solvent quantity reduction by 70%, compared with traditional extraction methods. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Optimal color design of psychological counseling room by design of experiments and response surface methodology.

    Science.gov (United States)

    Liu, Wenjuan; Ji, Jianlin; Chen, Hua; Ye, Chenyu

    2014-01-01

    Color is one of the most powerful aspects of a psychological counseling environment. Little scientific research has been conducted on color design and much of the existing literature is based on observational studies. Using design of experiments and response surface methodology, this paper proposes an optimal color design approach for transforming patients' perception into color elements. Six indices, pleasant-unpleasant, interesting-uninteresting, exciting-boring, relaxing-distressing, safe-fearful, and active-inactive, were used to assess patients' impression. A total of 75 patients participated, including 42 for Experiment 1 and 33 for Experiment 2. 27 representative color samples were designed in Experiment 1, and the color sample (L = 75, a = 0, b = -60) was the most preferred one. In Experiment 2, this color sample was set as the 'central point', and three color attributes were optimized to maximize the patients' satisfaction. The experimental results show that the proposed method can get the optimal solution for color design of a counseling room.

  4. Optimization of Subcritical Water Extraction of Resveratrol from Grape Seeds by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Yajie Tian

    2017-03-01

    Full Text Available The subcritical water extraction (SWE is a high-efficiency and environment-friendly extraction method. The extraction of resveratrol (RES of grape seeds obtained from the wine production process was proposed using subcritical water extraction (SWE. The effects of different extraction process parameters on RES yield were investigated by single factors. Extraction optimization was conducted using response surface methodology (RSM. Extraction temperature was proven to be the most significant factor influencing RES yield. The optimal conditions was as follows: extraction pressure of 1.02 MPa, temperature of 152.32 °C, time of 24.89 min, and a solid/solvent ratio of 1:15 g/mL. Under these optimal conditions, the predicted extraction RES yield was 6.90 μg/g and the recoveries was up to 91.98%. Compared to other previous studies, this method required less pollution and less treatment time to extract RES from grape seeds. From these results, added economic value to this agroindustrial residue is proposed using environmentally friendly extraction techniques.

  5. Reliability-Based Topology Optimization Using Stochastic Response Surface Method with Sparse Grid Design

    Directory of Open Access Journals (Sweden)

    Qinghai Zhao

    2015-01-01

    Full Text Available A mathematical framework is developed which integrates the reliability concept into topology optimization to solve reliability-based topology optimization (RBTO problems under uncertainty. Two typical methodologies have been presented and implemented, including the performance measure approach (PMA and the sequential optimization and reliability assessment (SORA. To enhance the computational efficiency of reliability analysis, stochastic response surface method (SRSM is applied to approximate the true limit state function with respect to the normalized random variables, combined with the reasonable design of experiments generated by sparse grid design, which was proven to be an effective and special discretization technique. The uncertainties such as material property and external loads are considered on three numerical examples: a cantilever beam, a loaded knee structure, and a heat conduction problem. Monte-Carlo simulations are also performed to verify the accuracy of the failure probabilities computed by the proposed approach. Based on the results, it is demonstrated that application of SRSM with SGD can produce an efficient reliability analysis in RBTO which enables a more reliable design than that obtained by DTO. It is also found that, under identical accuracy, SORA is superior to PMA in view of computational efficiency.

  6. Optimization of ultrasound-assisted extraction of polyphenolic compounds from coriander seeds using response surface methodology

    Directory of Open Access Journals (Sweden)

    Zeković Zoran P.

    2016-01-01

    Full Text Available Coriandrum sativum L. (coriander seeds (CS were used for preparation of extracts with high content of biologically active compounds. In order to optimize ultrasoundassisted extraction process, three levels and three variables of Box-Behnken experimental design (BBD in combination with response surface methodology (RSM were applied, yielding maximized total phenolics (TP and flavonoids (TF content and antioxidant activity (IC50 and EC50 values. Independent variables were temperature (40-80oC, extraction time (40-80 min and ultrasonic power (96-216 W. Experimental results were fitted to a second-order polynomial model with multiple regression, while the analysis of variance (ANOVA was employed to assess the model fitness and determine optimal conditions for TP (79.60oC, 49.20 min, 96.69 W, TF (79.40oC, 43.60 min, 216.00 W, IC50 (80.00oC, 60.40 min, 216.00 W and EC50 (78.40oC, 68.60 min, 214.80 W. On the basis of the obtained mathematical models, three-dimensional surface plots were generated. The predicted values for TP, TF, IC50 and EC50 were: 382.68 mg GAE/100 g CS, 216 mg CE/100 g CS, 0.03764 mg/mL and 0.1425 mg/mL, respectively. [Projekat Ministarstva nauke Republike Srbije, br. TR31013

  7. A dual response surface optimization methodology for achieving uniform coating thickness in powder coating process

    Directory of Open Access Journals (Sweden)

    Boby John

    2015-09-01

    Full Text Available The powder coating is an economic, technologically superior and environment friendly painting technique compared with other conventional painting methods. However large variation in coating thickness can reduce the attractiveness of powder coated products. The coating thickness variation can also adversely affect the surface appearance and corrosion resistivity of the product. This can eventually lead to customer dissatisfaction and loss of market share. In this paper, the author discusses a dual response surface optimization methodology to minimize the thickness variation around the target value of powder coated industrial enclosures. The industrial enclosures are cabinets used for mounting the electrical and electronic equipment. The proposed methodology consists of establishing the relationship between the coating thickness & the powder coating process parameters and developing models for the mean and variance of coating thickness. Then the powder coating process is optimized by minimizing the standard deviation of coating thickness subject to the constraint that the thickness mean would be very close to the target. The study resulted in achieving a coating thickness mean of 80.0199 microns for industrial enclosures, which is very close to the target value of 80 microns. A comparison of the results of the proposed approach with that of existing methodologies showed that the suggested method is equally good or even better than the existing methodologies. The result of the study is also validated with a new batch of industrial enclosures.

  8. Statistical optimization for alkali pretreatment conditions of narrow-leaf cattail by response surface methodology

    Directory of Open Access Journals (Sweden)

    Arrisa Ruangmee

    2013-08-01

    Full Text Available Response surface methodology with central composite design was applied to optimize alkali pretreatment of narrow-leafcattail (Typha angustifolia. Joint effects of three independent variables; NaOH concentration (1-5%, temperature (60-100 ºC,and reaction time (30-150 min, were investigated to evaluate the increase in and the improvement of cellulosic componentscontained in the raw material after pretreatment. The combined optimum condition based on the cellulosic content obtainedfrom this study is: a concentration of 5% NaOH, a reaction time of 120 min, and a temperature of 100 ºC. This result has beenanalyzed employing ANOVA with a second order polynomial equation. The model was found to be significant and was able topredict accurately the response of strength at less than 5% error. Under this combined optimal condition, the desirable cellulosic content in the sample increased from 38.5 to 68.3%, while the unfavorable hemicellulosic content decreased from 37.6 to7.3%.

  9. Optimization of electrocoagulation process to treat grey wastewater in batch mode using response surface methodology.

    Science.gov (United States)

    Karichappan, Thirugnanasambandham; Venkatachalam, Sivakumar; Jeganathan, Prakash Maran

    2014-01-10

    Discharge of grey wastewater into the ecological system causes the negative impact effect on receiving water bodies. In this present study, electrocoagulation process (EC) was investigated to treat grey wastewater under different operating conditions such as initial pH (4-8), current density (10-30 mA/cm2), electrode distance (4-6 cm) and electrolysis time (5-25 min) by using stainless steel (SS) anode in batch mode. Four factors with five levels Box-Behnken response surface design (BBD) was employed to optimize and investigate the effect of process variables on the responses such as total solids (TS), chemical oxygen demand (COD) and fecal coliform (FC) removal. The process variables showed significant effect on the electrocoagulation treatment process. The results were analyzed by Pareto analysis of variance (ANOVA) and second order polynomial models were developed in order to study the electrocoagulation process statistically. The optimal operating conditions were found to be: initial pH of 7, current density of 20 mA/cm2, electrode distance of 5 cm and electrolysis time of 20 min. These results indicated that EC process can be scale up in large scale level to treat grey wastewater with high removal efficiency of TS, COD and FC.

  10. Optimization of electrocoagulation process to treat grey wastewater in batch mode using response surface methodology

    Science.gov (United States)

    2014-01-01

    Background Discharge of grey wastewater into the ecological system causes the negative impact effect on receiving water bodies. Methods In this present study, electrocoagulation process (EC) was investigated to treat grey wastewater under different operating conditions such as initial pH (4–8), current density (10–30 mA/cm2), electrode distance (4–6 cm) and electrolysis time (5–25 min) by using stainless steel (SS) anode in batch mode. Four factors with five levels Box-Behnken response surface design (BBD) was employed to optimize and investigate the effect of process variables on the responses such as total solids (TS), chemical oxygen demand (COD) and fecal coliform (FC) removal. Results The process variables showed significant effect on the electrocoagulation treatment process. The results were analyzed by Pareto analysis of variance (ANOVA) and second order polynomial models were developed in order to study the electrocoagulation process statistically. The optimal operating conditions were found to be: initial pH of 7, current density of 20 mA/cm2, electrode distance of 5 cm and electrolysis time of 20 min. Conclusion These results indicated that EC process can be scale up in large scale level to treat grey wastewater with high removal efficiency of TS, COD and FC. PMID:24410752

  11. Optimization of osmotic dehydration of chestnut (Castanea sativa Mill. slices using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Teresa Delgado

    2018-04-01

    Full Text Available Osmotic dehydration of chestnut slices in sucrose was optimized for the first time by Response Surface Methodology (RSM. Experiments were planned according to a three-factor central composite design (α=1.68, studying the influence of sucrose concentration, temperature and time, on the following parameters: volume ratio, water activity, color variation, weight reduction, solids gain, water loss and normalized moisture content, as well as total moisture, ash and fat contents. The experimental data was adequately fitted into second-order polynomial models with coefficients of determination (R2 from 0.716 to 0.976, adjusted-R2 values from 0.460 to 0.954, and non-significant lacks of fit. The optimal osmotic dehydration process conditions for maximum water loss and minimum solids gain and color variation were determined by the “Response Optimizer” option: 83% sucrose concentration, 20 °C and 9.2 hours. Thus, the best operational conditions corresponded to high sugar concentration and low temperature, improving energy saving and decreasing the process costs.

  12. Extraction of triterpenoids and phenolic compounds from Ganoderma lucidum: optimization study using the response surface methodology.

    Science.gov (United States)

    Oludemi, Taofiq; Barros, Lillian; Prieto, M A; Heleno, Sandrina A; Barreiro, Maria F; Ferreira, Isabel C F R

    2018-01-24

    The extraction of triterpenoids and phenolic compounds from Ganoderma lucidum was optimized by using the response surface methodology (RSM), using heat and ultrasound assisted extraction techniques (HAE and UAE). The obtained results were compared with that of the standard Soxhlet procedure. RSM was applied using a circumscribed central composite design with three variables (time, ethanol content, and temperature or ultrasonic power) and five levels. The conditions that maximize the responses (extraction yield, triterpenoids and total phenolics) were: 78.9 min, 90.0 °C and 62.5% ethanol and 40 min, 100.0 W and 89.5% ethanol for HAE and UAE, respectively. The latter was the most effective, resulting in an extraction yield of 4.9 ± 0.6% comprising a content of 435.6 ± 21.1 mg g -1 of triterpenes and 106.6 ± 16.2 mg g -1 of total phenolics. The optimized extracts were fully characterized in terms of individual phenolic compounds and triterpenoids by HPLC-DAD-ESI/MS. The recovery of the above-mentioned bioactive compounds was markedly enhanced using the UAE technique.

  13. Response surface methodology optimization of nickel (II) removal using pigeon pea pod bio sorbent

    International Nuclear Information System (INIS)

    Aravind, J.; Lenin, C.; Nancyflavia, C.; Rashika, P.; Saravanan, S.

    2015-01-01

    Pod of pigeon pea (Cajanus cajan), a cellulose rich agricultural residue, was investigated for its nickel binding efficiency. The influence of key physicochemical parameters such as contact time, initial metal ion concentration, adsorbent dosage and p H on nickel (II) removal was studied. The equilibrium time was found to be 45 min. The optimum Ni (II) removal was obtained at an initial metal ion concentration of 80 mg/l, p H of 9.0 and an adsorbent dose of 400 mg/100 ml. A search for optimal combination of key variables was studied by response surface methodology for maximum removal of nickel. The experiment encompassing 17 runs was established with the aid of Box–Behnken design. Owing to the reasonable agreement between predicted and adjusted R2 value (0.9714), the corresponding quadratic model gives the most appropriate relationship between the variables and response. The optimal point obtained was located in the valid region and the optimum adsorption parameters were predicted as an initial Ni (II) concentration of 60 mg/l, p H value of 9.0 and contact time of 75 min. Under these adsorption conditions, a maximum removal of 96.54 % of initial metal concentration was demonstrated.

  14. Process optimization of microencapsulation of curcumin in γ-polyglutamic acid using response surface methodology.

    Science.gov (United States)

    Ko, Wen-Ching; Chang, Chao-Kai; Wang, Hsiu-Ju; Wang, Shian-Jen; Hsieh, Chang-Wei

    2015-04-01

    The aim of this study was to develop an optimal microencapsulation method for an oil-soluble component (curcumin) using γ-PGA. The results show that Span80 significantly enhances the encapsulation efficiency (EE) of γ-Na(+)-PGA microcapsules. Therefore, the effects of γ-Na(+)-PGA, curcumin and Span80 concentration on EE of γ-Na(+)-PGA microcapsules were studied by means of response surface methodology (RSM). It was found that the optimal microencapsulation process is achieved by using γ-Na(+)-PGA 6.05%, curcumin 15.97% and Span80 0.61% with a high EE% (74.47 ± 0.20%). Furthermore, the models explain 98% of the variability in the responses. γ-Na(+)-PGA seems to be a good carrier for the encapsulation of curcumin. In conclusion, this simple and versatile approach can potentially be applied to the microencapsulation of various oil-soluble components for food applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Warpage optimization on a mobile phone case using response surface methodology (RSM)

    Science.gov (United States)

    Lee, X. N.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.; Shazzuan, S.

    2017-09-01

    Plastic injection moulding is a popular manufacturing method not only it is reliable, but also efficient and cost saving. It able to produce plastic part with detailed features and complex geometry. However, defects in injection moulding process degrades the quality and aesthetic of the injection moulded product. The most common defect occur in the process is warpage. Inappropriate process parameter setting of injection moulding machine is one of the reason that leads to the occurrence of warpage. The aims of this study were to improve the quality of injection moulded part by investigating the optimal parameters in minimizing warpage using Response Surface Methodology (RSM). Subsequent to this, the most significant parameter was identified and recommended parameters setting was compared with the optimized parameter setting using RSM. In this research, the mobile phone case was selected as case study. The mould temperature, melt temperature, packing pressure, packing time and cooling time were selected as variables whereas warpage in y-direction was selected as responses in this research. The simulation was carried out by using Autodesk Moldflow Insight 2012. In addition, the RSM was performed by using Design Expert 7.0. The warpage in y direction recommended by RSM were reduced by 70 %. RSM performed well in solving warpage issue.

  16. OPTIMIZATION OF SURFACE RESISTIVITY AND RELATIVE PERMITTIVITY OF SILICONE RUBBER FOR HIGH VOLTAGE APPLICATION USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    N.N. Ali

    2017-06-01

    Full Text Available Silicone Rubber (SiR is considered as one of the most established insulator in High Voltage (HV industry. SiR possess a great function ability such as its lighter weight, great heat resistance and substantial electrical insulation properties. Dynamic research were performed all around the world in order to explore the unique insulating behavior of SiR but very little are done on the optimization of SiR in term of their processing parameters and formulation. In this work, four materials and processing factors were introduced; A: Alumina Trihydrate (ATH, B: Dicumyl-Peroxide (DCP, C: mixing speed and D: mixing time in order to analyze its contribution towards improving the surface resistivity and relative permittivity of SIR rubber. The factors range were set based on prior screening and are defined as; ATH (10 – 50 pphr, Dicumyl Peroxide (0.50 -1.50 pphr, speed of mixer (40 – 70 rpm and mixing period (5 – 10 mins which were then varied accordingly to produce an overall 19 samples of SiR blends. The testing results were analyzed using statistical Design of Experiment (DOE by applying two level full factorial from Design Expert Software (v10 to discover the inter-correlation between the factors studied and benefaction of each factor in improving both surface resistivity and relative permittivity responses of produced SiR blends. The model analysis on surface resistivity shows the coefficient of determination R2 value of 88.72% while the one for relative permittivity shows R2 value of 82.34 %. Combination of both dependent variables had yielded an optimization suggestion for SiR formulation and processing strategy of ATH: 50 pphr, DCP: 0.50 pphr, mixing speed: 70 rpm and mixing period: 10 mins with the desirability level of 0.835. The optimized formulation had resulted in the production of SiR blend with the characteristic of surface resistivity of 1.02039x10^14 Ω/sq and relative permittivity of 4.0231, respectively. In conclusion, it can be

  17. OPTIMIZATION OF MICROWAVE AND AIR DRYING CONDITIONS OF QUINCE (CYDONIA OBLONGA, MILLER USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Cem Baltacioglu

    2015-03-01

    Full Text Available Effects of slice thickness of quince (Cydonia oblonga Miller , microwave incident power and air drying temperature on antioxidant activity and total phenolic content of quince were investigated during drying in microwave and air drying. Optimum conditions were found to be: i for microwave drying, 285 W and 4.14 mm thick (maximum antioxidant activity and 285 W and 6.85 mm thick (maximum total phenolic content, and ii for air drying, 75 ºC and 1.2 mm thick (both maximum antioxidant activity and total phenolic content. Drying conditions were optimized by using the response surface methodology. 13 experiments were carried out considering incident microwave powers from 285 to 795 W, air temperature from 46 to 74 ºC and slice thickness from 1.2 to 6.8 mm.

  18. Optimization of Gluten-Free Tulumba Dessert Formulation Including Corn Flour: Response Surface Methodology Approach

    Directory of Open Access Journals (Sweden)

    Yildiz Önder

    2017-03-01

    Full Text Available Tulumba dessert is widely preferred in Turkey; however, it cannot be consumed by celiac patients because it includes gluten. The diversity of gluten-free products should be expanded so that celiac patients may meet their daily needs regularly. In this study, corn flour (CF / potato starch (PS blend to be used in the gluten-free tulumba dessert formulation was optimized using the Response Surface Methodology (RSM. Increasing ratio of PS in the CF-PS led to a decrease in hardness of the dessert and to an increase in expansion, viscosity, adhesiveness, yield of dessert both with and without syrup (P0.05, additionally these desserts had a much higher sensory score compared to the control sample in terms of the overall quality and pore structure (P<0.05.

  19. Optimization of the single point incremental forming process for titanium sheets by using response surface

    Directory of Open Access Journals (Sweden)

    Saidi Badreddine

    2016-01-01

    Full Text Available The single point incremental forming process is well-known to be perfectly suited for prototyping and small series. One of its fields of applicability is the medicine area for the forming of titanium prostheses or titanium medical implants. However this process is not yet very industrialized, mainly due its geometrical inaccuracy, its not homogeneous thickness distribution& Moreover considerable forces can occur. They must be controlled in order to preserve the tooling. In this paper, a numerical approach is proposed in order to minimize the maximum force achieved during the incremental forming of titanium sheets and to maximize the minimal thickness. A surface response methodology is used to find the optimal values of two input parameters of the process, the punch diameter and the vertical step size of the tool path.

  20. Optimization of Total Flavonoids Extraction from Coreopsis tinctoria Nutt. by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Liu, X. F.

    2014-11-01

    Full Text Available Response surface methodology (RSM was applied to predict optimum conditions for extraction of flavonoid from Coreopsis tinctoria Nutt. A central composite design (CCD was used to monitor the effect of extraction temperature, extraction time, and water-to-material ratio on yield of total flavonoids. The optimal extraction conditions were obtained as water-to-material ratio of 55 ml g−1, extraction temperature of 80 °C and extraction time of 70 minutes. Under these conditions, the average total flavonoids yield, according to the mass of raw material, was 9.0 ± 0.6 %, which corresponds to the predicted value of 8.9 %. Thus, the extraction method was applied successfully to extract total flavonoids from C. tinctoria.

  1. Optimization of cocoa nib roasting based on sensory properties and colour using response surface methodology

    Directory of Open Access Journals (Sweden)

    D.M.H. A.H. Farah

    2012-05-01

    Full Text Available Roasting of cocoa beans is a critical stage for development of its desirable flavour, aroma and colour. Prior to roasting, cocoa bean may taste astringent, bitter, acidy, musty, unclean, nutty or even chocolate-like, depends on the bean sources and their preparations. After roasting, the bean possesses a typical intense cocoa flavour. The Maillard or non-enzymatic browning reactions is a very important process for the development of cocoa flavor, which occurs primarily during the roasting process and it has generally been agreed that the main flavor components, pyrazines formation is associated within this reaction involving amino acids and reducing sugars. The effect of cocoa nib roasting conditions on sensory properties and colour of cocoa beans were investigated in this study. Roasting conditions in terms of temperature ranged from 110 to 160OC and time ranged from 15 to 40 min were optimized by using Response Surface Methodology based on the cocoa sensory characteristics including chocolate aroma, acidity, astringency, burnt taste and overall acceptability. The analyses used 9- point hedonic scale with twelve trained panelist. The changes in colour due to the roasting condition were also monitored using chromameter. Result of this study showed that sensory quality of cocoa liquor increased with the increase in roasting time and temperature up to 160OC and up to 40 min, respectively. Based on the Response Surface Methodology, the optimised operating condition for the roaster was at temperature of 127OC and time of 25 min. The proposed roasting conditions were able to produce superior quality cocoa beans that will be very useful for cocoa manufactures.Key words : Cocoa, cocoa liquor, flavour, aroma, colour, sensory characteristic, response surface methodology.

  2. Optimization for the Production of Deoxynivalenoland Zearalenone by Fusarium graminearum UsingResponse Surface Methodology

    Directory of Open Access Journals (Sweden)

    Li Wu

    2017-02-01

    Full Text Available Fusarium mycotoxins deoxynivalenol (DON and zearalenone (ZEN are the most common contaminants in cereals worldwide, causing a wide range of adverse health effects on animals and humans. Many environmental factors can affect the production of these mycotoxins. Here, we have used response surface methodology (RSM to optimize the Fusarium graminearum strain 29 culture conditions for maximal toxin production. Three factors, medium pH, incubation temperature and time, were optimized using a Box-Behnken design (BBD. The optimized conditions for DON production were pH 4.91 and an incubation temperature of 23.75 °C for 28 days, while maximal ZEN production required pH 9.00 and an incubation temperature of 15.05 °C for 28 days. The maximum levels of DON and ZEN production were 2811.17 ng/mL and 23789.70 ng/mL, respectively. Considering the total level of DON and ZEN, desirable yields of the mycotoxins were still obtained with medium pH of 6.86, an incubation temperature of 17.76 °C and a time of 28 days. The corresponding experimental values, from the validation experiments, fitted well with these predictions. This suggests that RSM could be used to optimize Fusarium mycotoxin levels, which are further purified for use as potential mycotoxin standards. Furthermore, it shows that acidic pH is a determinant for DON production, while an alkaline environment and lower temperature (approximately 15 °C are favorable for ZEN accumulation. After extraction, separation and purification processes, the isolated mycotoxins were obtained through a simple purification process, with desirable yields, and acceptable purity. The mycotoxins could be used as potential analytical standards or chemical reagents for routine analysis.

  3. Optimization of a Functional Cookie Formulation by Using Response Surface Methodology

    International Nuclear Information System (INIS)

    Lee, L.Y.; Tan, K.S.; Liew, S.L.

    2011-01-01

    A functional cookie formulation containing oligo fructose, dietary fibre and lower calorie, fat and sugar contents than conventional cookies was optimized using Response Surface Methodology (RSM). Instant N-Oil II was used as a fat replacer, while Raftilose P95 was used as a sugar substitute with the addition of fructose to enhance sweetness. Selection of the optimal formulation was based on caloric content. An optimized formulation, V1, was obtained from the model Y = 4927.70 - 152.34X 1 - 155.42X 3 + 104.20X 3 2 + 151.71X 3 3 - 95.08X 3 4 , where Instant N-Oil II replaced 30 % of butter and 24.4 %, w/w (30.5 g) fructose replaced 40.0 %, w/w (50.0 g) sucrose. Two additional optimized formulations, S1 and S2, were proposed which contained the same ingredients as V1, but both contained 19.0 %, w/w (23.8 g) Raftilose P95. Also, S2 had a higher fat replacement level (42 %). A reference cookie prepared from a conventional recipe received significantly higher scores (P < 0.05) than the functional cookies V1, S1 and S2 in the sensory evaluation. However, when health benefits of the functional cookies were explained to the panel after the sensory evaluation had concluded, majority of the panelists stated that they would prefer S1, had they known of its health benefits. S1 contained 19.04 % fat, 8.62 % fructose and 0.74 % sucrose, namely, significantly lower fat and sucrose levels and higher fructose content than the conventional cookie. (author)

  4. Modeling and process optimization of electrospinning of chitosan-collagen nanofiber by response surface methodology

    Science.gov (United States)

    Amiri, Nafise; Moradi, Ali; Abolghasem Sajjadi Tabasi, Sayyed; Movaffagh, Jebrail

    2018-04-01

    Chitosan-collagen composite nanofiber is of a great interest to researchers in biomedical fields. Since the electrospinning is the most popular method for nanofiber production, having a comprehensive knowledge of the electrospinning process is beneficial. Modeling techniques are precious tools for managing variables in the electrospinning process, prior to the more time- consuming and expensive experimental techniques. In this study, a central composite design of response surface methodology (RSM) was employed to develop a statistical model as well as to define the optimum condition for fabrication of chitosan-collagen nanofiber with minimum diameter. The individual and the interaction effects of applied voltage (10–25 kV), flow rate (0.5–1.5 mL h‑1), and needle to collector distance (15–25 cm) on the fiber diameter were investigated. ATR- FTIR and cell study were done to evaluate the optimized nanofibers. According to the RSM, a two-factor interaction (2FI) model was the most suitable model. The high regression coefficient value (R 2 ≥ 0.9666) of the fitted regression model and insignificant lack of fit (P = 0.0715) indicated that the model was highly adequate in predicting chitosan-collagen nanofiber diameter. The optimization process showed that the chitosan-collagen nanofiber diameter of 156.05 nm could be obtained in 9 kV, 0.2 ml h‑1, and 25 cm which was confirmed by experiment (155.92 ± 18.95 nm). The ATR-FTIR and cell study confirmed the structure and biocompatibility of the optimized membrane. The represented model could assist researchers in fabricating chitosan-collagen electrospun scaffolds with a predictable fiber diameter, and optimized chitosan-collagen nanofibrous mat could be a potential candidate for wound healing and tissue engineering.

  5. Optimization of Process Parameters for ε-Polylysine Production by Response Surface Methods

    Directory of Open Access Journals (Sweden)

    Maxiaoqi Zhu

    2016-01-01

    Full Text Available ε-Polylysine (ε-PL is a highly safe natural food preservative with a broad antimicrobial spectrum, excellent corrosion resistances, and great commercial potentials. In the present work, we evaluated the ε-PL adsorption performances of HZB-3B and D155 resins and optimized the adsorption and desorption conditions by single-factor test, response surface method, and orthogonal design. The complexes of resin and ε-PL were characterized by SEM and FITR. The results indicated that D155 resin had the best ε-PL adsorption performance and was selected for the separation and purification of ε-PL. The conditions for the static adsorption of ε-PL on D155 resin were optimized as follows: ε-PL solution 40 g/L, pH 8.5, resins 15 g/L, and absorption time 14 h. The adsorption efficiency of ε-PL under the optimal conditions was 96.84%. The ε-PL adsorbed on the D155 resin was easily desorbed with 0.4 mol/L HCl at 30°C in 10 h. The highest desorption efficiency was 97.57% and the overall recovery of ε-PL was 94.49% under the optimal conditions. The excellent ε-PL adsorption and desorption properties of D155 resin including high selectivity and adsorption capacity, easy desorption, and high stability make it a good candidate for the isolation of ε-PL from fermentation broths.

  6. Research on optimization design of conformal cooling channels in hot stamping tool based on response surface methodology and multi-objective optimization

    Directory of Open Access Journals (Sweden)

    He Bin

    2016-01-01

    Full Text Available In order to optimize the layout of the conformal cooling channels in hot stamping tools, a response surface methodology and multi-objective optimization technique are proposed. By means of an Optimal Latin Hypercube experimental design method, a design matrix with 17 factors and 50 levels is generated. Three kinds of design variables, the radius Rad of the cooling channel, the distance H from the channel center to tool work surface and the ratio rat of each channel center, are optimized to determine the layout of cooling channels. The average temperature and temperature deviation of work surface are used to evaluate the cooling performance of hot stamping tools. On the basis of the experimental design results, quadratic response surface models are established to describe the relationship between the design variables and the evaluation objectives. The error analysis is performed to ensure the accuracy of response surface models. Then the layout of the conformal cooling channels is optimized in accordance with a multi-objective optimization method to find the Pareto optimal frontier which consists of some optimal combinations of design variables that can lead to an acceptable cooling performance.

  7. Partial oxidation of landfill leachate in supercritical water: Optimization by response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yanmeng; Wang, Shuzhong; Xu, Haidong; Guo, Yang; Tang, Xingying

    2015-09-15

    Highlights: • Partial oxidation of landfill leachate in supercritical water was investigated. • The process was optimized by Box–Behnken design and response surface methodology. • GY{sub H2}, TRE and CR could exhibit up to 14.32 mmol·gTOC{sup −1}, 82.54% and 94.56%. • Small amounts of oxidant can decrease the generation of tar and char. - Abstract: To achieve the maximum H{sub 2} yield (GY{sub H2}), TOC removal rate (TRE) and carbon recovery rate (CR), response surface methodology was applied to optimize the process parameters for supercritical water partial oxidation (SWPO) of landfill leachate in a batch reactor. Quadratic polynomial models for GY{sub H2}, CR and TRE were established with Box–Behnken design. GY{sub H2}, CR and TRE reached up to 14.32 mmol·gTOC{sup −1}, 82.54% and 94.56% under optimum conditions, respectively. TRE was invariably above 91.87%. In contrast, TC removal rate (TR) only changed from 8.76% to 32.98%. Furthermore, carbonate and bicarbonate were the most abundant carbonaceous substances in product, whereas CO{sub 2} and H{sub 2} were the most abundant gaseous products. As a product of nitrogen-containing organics, NH{sub 3} has an important effect on gas composition. The carbon balance cannot be reached duo to the formation of tar and char. CR increased with the increase of temperature and oxidation coefficient.

  8. Investigation on multi-objective performance optimization algorithm application of fan based on response surface method and entropy method

    Science.gov (United States)

    Zhang, Li; Wu, Kexin; Liu, Yang

    2017-12-01

    A multi-objective performance optimization method is proposed, and the problem that single structural parameters of small fan balance the optimization between the static characteristics and the aerodynamic noise is solved. In this method, three structural parameters are selected as the optimization variables. Besides, the static pressure efficiency and the aerodynamic noise of the fan are regarded as the multi-objective performance. Furthermore, the response surface method and the entropy method are used to establish the optimization function between the optimization variables and the multi-objective performances. Finally, the optimized model is found when the optimization function reaches its maximum value. Experimental data shows that the optimized model not only enhances the static characteristics of the fan but also obviously reduces the noise. The results of the study will provide some reference for the optimization of multi-objective performance of other types of rotating machinery.

  9. Three-factor response surface optimization of nano-emulsion formation using a microfluidizer.

    Science.gov (United States)

    Sadeghpour Galooyak, Saeed; Dabir, Bahram

    2015-05-01

    Emulsification of sunflower oil in water by microfluidization was studied. Response surface methodology (RSM) and the central composite design (CCD) were applied to determine the effects of certain process parameters on performance of the apparatus for optimization of nano-emulsion fabrication. Influence of pressure, oil content and number of passes on the disruption of emulsions was studied. Quadratic multiple regression models were chosen for two available responses, namely Sauter mean diameter (SMD) and Polydispersity index (PdI). Analysis of variance (ANOVA) showed a high coefficient of determination (R(2)) value for both responses, confirming adjustment of the models with experimental data. The SMD and the PdI decreased as the pressure of emulsification increased from 408 to 762.3 bar for the oil content of 5 vol% and from 408 to 854.4 bar for the oil content of 13 vol%, and thereafter, increasing the pressure up to 952 bar led to increasing the both responses. The results implied that laminar elongational flow is the alternative disruption mechanism in addition to inertia in turbulence flow, especially at low treatment pressures. Both of responses improved with increase in number of passes from 2 to 4 cycles. The oil content depicted low effect on responses; however, interaction of this parameter with other regressors pointed remarkable impact. Also, the effect of pressure on Kolmogorov micro-scale was studied. The results implied that Kolmogorov equation did not take into account the over-processing and was applicable only for disruption of droplets in the inertial turbulent flow.

  10. Optimized extraction of polysaccharides from corn silk by pulsed electric field and response surface quadratic design.

    Science.gov (United States)

    Zhao, Wenzhu; Yu, Zhipeng; Liu, Jingbo; Yu, Yiding; Yin, Yongguang; Lin, Songyi; Chen, Feng

    2011-09-01

    Corn silk is a traditional Chinese herbal medicine, which has been widely used for treatment of some diseases. In this study the effects of pulsed electric field on the extraction of polysaccharides from corn silk were investigated. Polysaccharides in corn silk were extracted by pulsed electric field and optimized by response surface methodology (RSM), based on a Box-Behnken design (BBD). Three independent variables, including electric field intensity (kV cm(-1) ), ratio of liquid to raw material and pulse duration (µs), were investigated. The experimental data were fitted to a second-order polynomial equation and also profiled into the corresponding 3-D contour plots. Optimal extraction conditions were as follows: electric field intensity 30 kV cm(-1) , ratio of liquid to raw material 50, and pulse duration 6 µs. Under these condition, the experimental yield of extracted polysaccharides was 7.31% ± 0.15%, matching well with the predicted value. The results showed that a pulsed electric field could be applied to extract value-added products from foods and/or agricultural matrix. Copyright © 2011 Society of Chemical Industry.

  11. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Bambang Tri Nugroho

    2009-06-01

    Full Text Available Biodiesel production has received considerable attention in the recent past as a renewable fuel. The production of biodiesel by conventional transesterification process employs alkali or acid catalyst and has been industrially accepted for its high conversion and reaction rates. However for alkali catalyst, there may be risk of free acid or water contamination and soap formation is likely to take place which makes the separation process difficult. Although yield is high, the acids, being corrosive, may cause damage to the equipment and the reaction rate was also observed to be low. This research focuses on empirical modeling and optimization for the biodiesel production over plasma reactor. The plasma reactor technology is more promising than the conventional catalytic processes due to the reducing reaction time and easy in product separation. Copyright (c 2009 by BCREC. All Rights reserved.[Received: 10 August 2009, Revised: 5 September 2009, Accepted: 12 October 2009][How to Cite: I. Istadi, D.D. Anggoro, P. Marwoto, S. Suherman, B.T. Nugroho (2009. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 4(1: 23-31. doi:10.9767/bcrec.4.1.23.23-31][How to Link/ DOI: http://dx.doi.org/10.9767/bcrec.4.1.23.23-31

  12. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2009-06-01

    Full Text Available Biodiesel production has received considerable attention in the recent past as a renewable fuel. The production of biodiesel by conventional transesterification process employs alkali or acid catalyst and has been industrially accepted for its high conversion and reaction rates. However for alkali catalyst, there may be risk of free acid or water contamination and soap formation is likely to take place which makes the separation process difficult. Although yield is high, the acids, being corrosive, may cause damage to the equipment and the reaction rate was also observed to be low. This research focuses on empirical modeling and optimization for the biodiesel production over plasma reactor. The plasma reactor technology is more promising than the conventional catalytic processes due to the reducing reaction time and easy in product separation. Copyright (c 2009 by BCREC. All Rights reserved.[Received: 10 August 2009, Revised: 5 September 2009, Accepted: 12 October 2009][How to Cite: I. Istadi, D.D. Anggoro, P. Marwoto, S. Suherman, B.T. Nugroho (2009. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 4(1: 23-31.  doi:10.9767/bcrec.4.1.7115.23-31][How to Link/ DOI: http://dx.doi.org/10.9767/bcrec.4.1.7115.23-31 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/7115

  13. Optimization of HNO3 leaching of copper from old AMD Athlon processors using response surface methodology.

    Science.gov (United States)

    Javed, Umair; Farooq, Robina; Shehzad, Farrukh; Khan, Zakir

    2018-04-01

    The present study investigates the optimization of HNO 3 leaching of Cu from old AMD Athlon processors under the effect of nitric acid concentration (%), temperature (°C) and ultrasonic power (W). The optimization study is carried out using response surface methodology with central composite rotatable design (CCRD). The ANOVA study concludes that the second degree polynomial model is fitted well to the fifteen experimental runs based on p-value (0.003), R 2 (0.97) and Adj-R 2 (0.914). The study shows that the temperature is the most significant process variable to the leaching concentration of Cu followed by nitric acid concentration. However, ultrasound power shows no significant impact on the leaching concentration. The optimum conditions were found to be 20% nitric acid concentration, 48.89 °C temperature and 5.52 W ultrasound power for attaining maximum concentration of 97.916 mg/l for Cu leaching in solution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Geometrical Optimization Of Clinch Forming Process Using The Response Surface Method

    International Nuclear Information System (INIS)

    Oudjene, M.; Ben-Ayed, L.; Batoz, J.-L.

    2007-01-01

    The determination of optimum tool shapes in clinch forming process is needed to achieve the required high quality of clinch joints. The design of the tools (punch and die) is crucial since the strength of the clinch joints is closely correlated to the tools geometry. To increase the strength of clinch joints, an automatic optimization procedure is developed. The objective function is defined in terms of the maximum value of the tensile force, obtained by separation of the sheets. Feasibility constraints on the geometrical parameters are also taken into account. First, a Python Script is used to generate the ABAQUS finite element model, to run the computations and post-process results, which are exported in an ASCII file. Then, this ASCII file is read by a FORTRAN program, in which the response surface approximation and SQP algorithm are implemented. The results show the potential interest of the developed optimization procedure towards the improvement of the strength of the clinch forming joints to tensile loading

  15. Response surface optimization of enzymatic hydrolysis of narrow-leaf cattail for bioethanol production

    International Nuclear Information System (INIS)

    Ruangmee, Arrisa; Sangwichien, Chayanoot

    2013-01-01

    Highlights: • The cellulose of pretreated sample was higher than untreated sample. • Lower hemicellulose and lignin were enhanced of hydrolyzed cellulose to sugar. • The predicted result of enzymatic hydrolysis process was fitted by quadratic model. • Predicted data was good agreement with the experimental data; with 95% confidence. - Abstract: Narrow-leaf cattail was employed as lignocellulosic biomass substrate for the investigation of the hydrolysis process of lignocellulosic ethanol. Cellulose saccharification into a high yield of fermentable sugar is an important step in ethanol production. Response surface methodology was utilized in the study of variables affecting enzymatic hydrolysis on the released glucose and xylose. Five levels (−2, −1, 0, +1, +2) of independent variable factors; cellulase (5–25 FPU/g substrate), β-glucosidase (0–20 U/g substrate), hydrolysis temperature (30–50 °C), and hydrolysis time (24–96 h), were randomly setup by using the Design of Experiment program. The significance of the regression model was high; with 95% confidence interval (less than 5% error). The predicted result after optimization was also in good agreement with the experimental data. An optimal condition; 13.50 FPU/g substrate, 16.50 U/g substrate, 50 °C and 24 h, was obtained, yielding a released glucose of 552.9 mg/g substrate (75.6% saccharification) and a released xylose of 74.0 mg/g substrate (45.6% saccharification)

  16. Optimization of solvent extraction of shea butter (Vitellaria paradoxa) using response surface methodology and its characterization.

    Science.gov (United States)

    Ajala, E O; Aberuagba, F; Olaniyan, A M; Onifade, K R

    2016-01-01

    Shea butter (SB) was extracted from its kernel by using n-hexane as solvent in an optimization study. This was to determine the optima operating variables that would give optimum yield of SB and to study the effect of solvent on the physico-chemical properties and chemical composition of SB extracted using n-hexane. A Box-behnken response surface methodology (RSM) was used for the optimization study while statistical analysis using ANOVA was used to test the significance of the variables for the process. The variables considered for this study were: sample weight (g), solvent volume (ml) and extraction time (min). The physico-chemical properties of SB extracted were determined using standard methods and Fourier Transform Infrared Spectroscopy (FTIR) for the chemical composition. The results of RSM analysis showed that the three variables investigated have significant effect (p food, biodiesel production, cosmetics, medicinal and pharmaceutical purposes than shea butter extracted using solvent extraction method (SBS). Fourier Transform Infrared Spectroscopy (FTIR) results obtained for the two samples were similar to what was obtainable from other vegetable oil.

  17. Optimization of the extraction of carrageenan from Kappaphycus alvarezii using response surface methodology

    Directory of Open Access Journals (Sweden)

    Vanessa Webber

    2012-12-01

    Full Text Available This study aims to optimize an alternative method of extraction of carrageenan without previous alkaline treatment and ethanol precipitation using Response Surface Methodology (RSM. In order to introduce an innovation in the isolation step, atomization drying was used reducing the time for obtaining dry carrageenan powder. The effects of extraction time and temperature on yield, gel strength, and viscosity were evaluated. Furthermore, the extracted material was submitted to structural analysis, by infrared spectroscopy and nuclear magnetic resonance spectroscopy (¹H-NMR, and chemical composition analysis. Results showed that the generated regression models adequately explained the data variation. Carrageenan yield and gel viscosity were influenced only by the extraction temperature. However, gel strength was influenced by both, extraction time and extraction temperature. Optimal extraction conditions were 74 ºC and 4 hours. In these conditions, the carrageenan extract properties determined by the polynomial model were 31.17%, 158.27 g.cm-2, and 29.5 cP for yield, gel strength, and viscosity, respectively, while under the experimental conditions they were 35.8 ± 4.68%, 112.50 ± 4.96 g.cm-2, and 16.01 ± 1.03 cP, respectively. The chemical composition, nuclear magnetic resonance spectroscopy, and infrared spectroscopy analyses showed that the crude carrageenan extracted is composed mainly of κ-carrageenan.

  18. Aroma profile design of wine spirits: Multi-objective optimization using response surface methodology.

    Science.gov (United States)

    Matias-Guiu, Pau; Rodríguez-Bencomo, Juan José; Pérez-Correa, José R; López, Francisco

    2018-04-15

    Developing new distillation strategies can help the spirits industry to improve quality, safety and process efficiency. Batch stills equipped with a packed column and an internal partial condenser are an innovative experimental system, allowing a fast and flexible management of the rectification. In this study, the impact of four factors (heart-cut volume, head-cut volume, pH and cooling flow rate of the internal partial condenser during the head-cut fraction) on 18 major volatile compounds of Muscat spirits was optimized using response surface methodology and desirability function approaches. Results have shown that high rectification at the beginning of the heart-cut enhances the overall positive aroma compounds of the product, reducing off-flavor compounds. In contrast, optimum levels of heart-cut volume, head-cut volume and pH factors varied depending on the process goal. Finally, three optimal operational conditions (head off-flavors reduction, flowery terpenic enhancement and fruity ester enhancement) were evaluated by chemical and sensory analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Optimization of cyanide extraction from wastewater using emulsion liquid membrane system by response surface methodology.

    Science.gov (United States)

    Xue, Juan Qin; Liu, Ni Na; Li, Guo Ping; Dang, Long Tao

    To solve the disposal problem of cyanide wastewater, removal of cyanide from wastewater using a water-in-oil emulsion type of emulsion liquid membrane (ELM) was studied in this work. Specifically, the effects of surfactant Span-80, carrier trioctylamine (TOA), stripping agent NaOH solution and the emulsion-to-external-phase-volume ratio on removal of cyanide were investigated. Removal of total cyanide was determined using the silver nitrate titration method. Regression analysis and optimization of the conditions were conducted using the Design-Expert software and response surface methodology (RSM). The actual cyanide removals and the removals predicted using RSM analysis were in close agreement, and the optimal conditions were determined to be as follows: the volume fraction of Span-80, 4% (v/v); the volume fraction of TOA, 4% (v/v); the concentration of NaOH, 1% (w/v); and the emulsion-to-external-phase volume ratio, 1:7. Under the optimum conditions, the removal of total cyanide was 95.07%, and the RSM predicted removal was 94.90%, with a small exception. The treatment of cyanide wastewater using an ELM is an effective technique for application in industry.

  20. Optimization of operating parameters in polysilicon chemical vapor deposition reactor with response surface methodology

    Science.gov (United States)

    An, Li-sha; Liu, Chun-jiao; Liu, Ying-wen

    2018-05-01

    In the polysilicon chemical vapor deposition reactor, the operating parameters are complex to affect the polysilicon's output. Therefore, it is very important to address the coupling problem of multiple parameters and solve the optimization in a computationally efficient manner. Here, we adopted Response Surface Methodology (RSM) to analyze the complex coupling effects of different operating parameters on silicon deposition rate (R) and further achieve effective optimization of the silicon CVD system. Based on finite numerical experiments, an accurate RSM regression model is obtained and applied to predict the R with different operating parameters, including temperature (T), pressure (P), inlet velocity (V), and inlet mole fraction of H2 (M). The analysis of variance is conducted to describe the rationality of regression model and examine the statistical significance of each factor. Consequently, the optimum combination of operating parameters for the silicon CVD reactor is: T = 1400 K, P = 3.82 atm, V = 3.41 m/s, M = 0.91. The validation tests and optimum solution show that the results are in good agreement with those from CFD model and the deviations of the predicted values are less than 4.19%. This work provides a theoretical guidance to operate the polysilicon CVD process.

  1. OPTIMIZATION OF REACTIVE BLUE 19 DECOLORIZATION BY GANODERMA SP. USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    1M. Mohammadian Fazli, *1A. R. Mesdaghinia, 1K. Naddafi, 1S. Nasseri , 1M. Yunesian, 2M. Mazaheri Assadi, 3S. Rezaie, 4H. Hamzehei

    2010-01-01

    Full Text Available Synthetic dyes are extensively used in different industries. Dyes have adverse impacts such as visual effects, chemical oxygen demand, toxicity, mutagenicity and carcinogenicity characteristics. White rot fungi, due to extracellular enzyme system, are capable to degrade dyes and various xenobiotics. The aim of this study was to optimize decolorization of reactive blue 19 (RB19 dye using Ganoderma sp. fungus. Response Surface Methodology (RSM was used to study the effect of independent variables, namely glycerol concentration (15, 20 and 25 g/L, temperature (27, 30 and 33 oC and pH (5.5, 6.0 and 6.5 on color removal efficiency in aqueous solution. From RSM-generated model, the optimum conditions for RB19 decolorization were identified to be at temperature of 27oC, glycerol concentration of 19.14 mg/L and pH=6.3. At the optimum conditions, predicted decolorization was 95.3 percent. The confirmatory experiments were conducted and confirmed the results by 94.89% color removal. Thus, this statistical approach enabled to improve reactive blue 19 decolorization process by Ganoderma sp. up to 1.27 times higher than non-optimized conditions.

  2. Optimization of biodiesel production from castor oil using response surface methodology.

    Science.gov (United States)

    Jeong, Gwi-Taek; Park, Don-Hee

    2009-05-01

    The short supply of edible vegetable oils is the limiting factor in the progression of biodiesel technology; thus, in this study, we applied response surface methodology in order to optimize the reaction factors for biodiesel synthesis from inedible castor oil. Specifically, we evaluated the effects of multiple parameters and their reciprocal interactions using a five-level three-factor design. In a total of 20 individual experiments, we optimized the reaction temperature, oil-to-methanol molar ratio, and quantity of catalyst. Our model equation predicted that the following conditions would generate the maximum quantity of castor biodiesel (92 wt.%): a 40-min reaction at 35.5 degrees C, with an oil-to-methanol molar ratio of 1:8.24, and a catalyst concentration of 1.45% of KOH by weight of castor oil. Subsequent empirical analyses of the biodiesel generated under the predicted conditions showed that the model equation accurately predicted castor biodiesel yields within the tested ranges. The biodiesel produced from castor oil satisfied the relevant quality standards without regard to viscosity and cold filter plugging point.

  3. Optimization of Baker's Yeast Production on Date Extract Using Response Surface Methodology (RSM).

    Science.gov (United States)

    Kara Ali, Mounira; Outili, Nawel; Ait Kaki, Asma; Cherfia, Radia; Benhassine, Sara; Benaissa, Akila; Kacem Chaouche, Noreddine

    2017-08-07

    This work aims to study the production of the biomass of S. cerevisiae on an optimized medium using date extract as the only carbon source in order to obtain a good yield of the biomass. The biomass production was carried out according to the central composite experimental design (CCD) as a response surface methodology using Minitab 16 software. Indeed, under optimal biomass production conditions, temperature (32.9 °C), pH (5.35) and the total reducing sugar extracted from dates (70.93 g/L), S. cerevisiae produced 40 g/L of their biomass in an Erlenmeyer after only 16 h of fermentation. The kinetic performance of the S. cerevisiae strain was investigated with three unstructured models i.e., Monod, Verhulst, and Tessier. The conformity of the experimental data fitted showed a good consistency with Monod and Tessier models with R² = 0.945 and 0.979, respectively. An excellent adequacy was noted in the case of the Verhulst model ( R² = 0.981). The values of kinetic parameters ( Ks , X m , μ m , p and q ) calculated by the Excel software, confirmed that Monod and Verhulst were suitable models, in contrast, the Tessier model was inappropriately fitted with the experimental data due to the illogical value of Ks (-9.434). The profiles prediction of the biomass production with the Verhulst model, and that of the substrate consumption using Leudeking Piret model over time, demonstrated a good agreement between the simulation models and the experimental data.

  4. Optimization of mucilage extraction from chia seeds (Salvia hispanica L.) using response surface methodology.

    Science.gov (United States)

    Orifici, Stefania C; Capitani, Marianela I; Tomás, Mabel C; Nolasco, Susana M

    2018-02-25

    Chia mucilage has potential application as a functional ingredient; advances on maximizing its extraction yield could represent a significant technological and economic impact for the food industry. Thus, first, the effect of mechanical agitation time (1-3 h) on the exudation of chia mucilage was analyzed. Then, response surface methodology was used to determine the optimal combination of the independent variables temperature (15-85 °C) and seed: water ratio (1: 12-1: 40.8 w/v) for the 2 h exudation that give maximum chia mucilage yield. Experiments were designed according to central composite rotatable design. A second-order polynomial model predicted the variation in extraction mucilage yield with the variables temperature and seed: water ratio. The optimal operating conditions were found to be temperature 85 °C and a seed: water ratio of 1: 31 (w/v), reaching an experimental extraction yield of 116 ± 0.21 g kg -1 (dry basis). The mucilage obtained exhibited good functional properties, mainly in terms of water-holding capacity, emulsifying activity, and emulsion stability. The results obtained show that temperature, seed: water ratio, and exudation time are important variables of the process that affect the extraction yield and the quality of the chia mucilage, determined according to its physicochemical and functional properties. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  5. Optimization of petroleum refinery effluent treatment in a UASB reactor using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Rastegar, S.O. [Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mousavi, S.M., E-mail: mousavi_m@modares.ac.ir [Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Shojaosadati, S.A. [Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Sheibani, S. [R and T Management Department, National Iranian Oil Refining and Distribution Company, Tehran (Iran, Islamic Republic of)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer A UASB was successfully used for treatment of petroleum refinery effluent. Black-Right-Pointing-Pointer Response surface methodology was applied to design and analysis of experiments. Black-Right-Pointing-Pointer System was modeled between efficient factors include HRT, influent COD and V{sub up}. Black-Right-Pointing-Pointer UASB was able to remove about 76.3% influent COD at optimum conditions. - Abstract: An upflow anaerobic sludge blanket (UASB) bioreactor was successfully used for the treatment of petroleum refinery effluent. Before optimization, chemical oxygen demand (COD) removal was 81% at a constant organic loading rate (OLR) of 0.4 kg/m{sup 3} d and a hydraulic retention time (HRT) of 48 h. The rate of biogas production was 559 mL/h at an HRT of 40 h and an influent COD of 1000 mg/L. Response surface methodology (RSM) was applied to predict the behaviors of influent COD, upflow velocity (V{sub up}) and HRT in the bioreactor. RSM showed that the best models for COD removal and biogas production rate were the reduced quadratic and cubic models, respectively. The optimum region, identified based on two critical responses, was an influent COD of 630 mg/L, a V{sub up} of 0.27 m/h, and an HRT of 21.4 h. This resulted in a 76.3% COD removal efficiency and a 0.25 L biogas/L feed d biogas production rate.

  6. Model development and optimization of operating conditions to maximize PEMFC performance by response surface methodology

    International Nuclear Information System (INIS)

    Kanani, Homayoon; Shams, Mehrzad; Hasheminasab, Mohammadreza; Bozorgnezhad, Ali

    2015-01-01

    Highlights: • The optimization of the operating parameters in a serpentine PEMFC is done using RSM. • The RSM model can predict the cell power over the wide range of operating conditions. • St-An, St-Ca and RH-Ca have an optimum value to obtain the best performance. • The interactions of the operating conditions affect the output power significantly. • The cathode and anode stoichiometry are the most effective parameters on the power. - Abstract: Optimization of operating conditions to obtain maximum power in PEMFCs could have a significant role to reduce the costs of this emerging technology. In the present experimental study, a single serpentine PEMFC is used to investigate the effects of operating conditions on the electrical power production of the cell. Four significant parameters including cathode stoichiometry, anode stoichiometry, gases inlet temperature, and cathode relative humidity are studied using Design of Experiment (DOE) to obtain an optimal power. Central composite second order Response Surface Methodology (RSM) is used to model the relationship between goal function (power) and considered input parameters (operating conditions). Using this statistical–mathematical method leads to obtain a second-order equation for the cell power. This model considers interactions and quadratic effects of different operating conditions and predicts the maximum or minimum power production over the entire working range of the parameters. In this range, high stoichiometry of cathode and low stoichiometry of anode results in the minimum cell power and contrary the medium range of fuel and oxidant stoichiometry leads to the maximum power. Results show that there is an optimum value for the anode stoichiometry, cathode stoichiometry and relative humidity to reach the best performance. The predictions of the model are evaluated by experimental tests and they are in a good agreement for different ranges of the parameters

  7. Optimization of acidified oil esterification catalyzed by sulfonated cation exchange resin using response surface methodology

    International Nuclear Information System (INIS)

    Ma, Lingling; Han, Ying; Sun, Kaian; Lu, Jie; Ding, Jincheng

    2015-01-01

    Highlights: • As lipid source, acidified oil are from industrial wastes for renewable energy. • The predicted conversion rate of FFAs was 75.24% under the RSM optimized conditions. • The adsorption system was employed to remove the water produced to shift the equilibrium toward ethyl ester production. • Maximum conversion rate of 98.32% was obtained using adsorption system at optimum process parameters. • Compared with tradition methods, molecular sieve dehydration method improved the conversion rate by 23.08%. - Abstract: The esterification of acidified oil with ethanol catalyzed by sulfonated cation exchange resins (SCER) was optimized using the response surface methodology (RSM). The effects of the molar ratio of ethanol to acidified oil, reaction time and catalyst loading on the conversion rate of free fatty acids (FFAs) were investigated at the temperature of the boiling point of ethanol. Results showed that the highest conversion rate of 75.24% was obtained at the molar ratio of ethanol to acidified oil of 23.2, reaction time of 8.0 h and catalyst loading of 35.0 wt.%. Moreover, the conversion rate of FFAs was increased to 98.32% by using a water adsorption apparatus under the RSM optimized conditions. Scanning electronic microscopic–energy dispersive spectrometric (SEM–EDS), X-ray diffractometric (XRD) and thermogravimetric–derivative thermogravimetric (TG–DTG) analyses confirmed that the morphology of catalysts did not change much and the mechanical and thermal stabilities were still good after the reaction. Furthermore, SCER exhibited a high catalytic activity and stability after being reused for five successive times. The fuel properties of the biodiesel were comparable to that of ASTM, EN and GB biodiesel standard

  8. Optimization of Solid-Liquid Extraction of Antioxidants from Black Mulberry Leaves by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Zoran Zeković

    2012-01-01

    Full Text Available The extraction of active components from natural sources depends on different factors. The knowledge of the effects of different extraction parameters is useful for the optimization of the process, as well for the ability to predict the extraction yield. The aim of this study is to examine the influence of solvent concentration (ethanol/water 40–80 %, by volume, temperature (40–80 °C and solvent/raw material ratio (10–30 mL/g on the extraction yield of phenolic compounds, flavonoids and antioxidant activity from black mulberry (Morus nigra L. leaves. Experimental values of total phenolic content were in the range from 18.6 to 48.7 mg of chlorogenic acid equivalents per g of dried leaves and total flavonoids in the range from 6.0 to 21.4 mg of rutin eqivalents per g of dried leaves. Antioxidant activity expressed as the inhibition concentration at 50 % (IC50 value was in the range from 0.019 to 0.078 mg of mulberry extract per mL. Response surface methodology (RSM was used to determine the optimum extraction conditions and to investigate the effect of different variables on the observed properties of mulberry leaf extracts. The results show a good fit to the proposed model (R˄2>0.90. The optimal conditions for obtaining the highest extraction yield of phenolics and flavonoids were within the experimental range. The experimental values agreed with those predicted, thus indicating suitability of the used model and the success of RSM in optimizing the investigated extraction conditions.

  9. Optimization of a two stage process for biodiesel production from shea butter using response surface methodology

    Directory of Open Access Journals (Sweden)

    E.O. Ajala

    2017-12-01

    Full Text Available The challenges of biodiesel production from high free fatty acid (FFA shea butter (SB necessitated this study. The reduction of %FFA of SB by esterification and its subsequent utilization by transesterification for biodiesel production in a two stage process for optimization studies was investigated using response surface methodology based on a central composite design (CCD. Four operating conditions were investigated to reduce the %FFA of SB and increase the %yield of shea biodiesel (SBD. The operating conditions were temperature (40–60°C, agitation speed (200–1400 rpm, methanol (MeOH: oil mole ratio: 2:1–6:1 (w/w for esterification and 4:1–8:1 (w/w for transesterification and catalyst loading: 1–2% (H2SO4, (v/v for esterification and KOH, (w/w for transesterification. The significance of the parameters obtained in linear and non-linear form from the models were determined using analysis of variance (ANOVA. The optimal operating conditions that gave minimum FFA of 0.26% were 52.19°C, 200 rpm, 2:1 (w/w and 1.5% (v/v, while those that gave maximum yield of 92.16% SBD were 40°C, 800 rpm, 7:1 (w/w and 1% (w/w. The p-value of <0.0001 for each of the stages showed that the models were significant with R2 of 0.96 each. These results indicate the reproducibility of the models and showed that the RSM is suitable to optimize the esterification and transesterification of SB for SBD production. Therefore, RSM is a useful tool that can be employed in industrial scale production of SBD from high FFA SB.

  10. Optimization of Mechanical Expression of Castor Seeds Oil (Ricinus communis using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    J. O. Olaoye

    2017-12-01

    Full Text Available The effect of the processing parameters of Castor seed on its oil yield was investigated. The castor seeds were passed through drying, crushing and separation into seeds and shells. These processing conditions were further succeeded by seed roasting and subsequent mechanical expression of the roasted nut by means of screw press in the course of its preparation for oil expression. Seed samples were conditioned by adding calculated amount of distilled water to obtain different moisture levels from the initial moisture content of the seeds. Samples were roasted at the temperatures of 83.18, 90.00, 100.00, 110.00 and 116.82°C, over periods of 6.59, 10.00, 15.00, 20.00 and 23.41min, seed moisture content of 6.32, 7.00, 8.00, 9.00 and 9.68 % wb, respectively and the oil was expressed using a screw roaster-expeller. Optimization of the oil expression process was achieved by applying Central Composite Rotatable Design of Response Surface Methodology. The optimal conditions for oil yield within the experimental range of the studied variables were 7%, 110°C and 20 min; moisture content, roasting temperature and roasting duration respectively. These values of the optimum process conditions were used to predict optimum value of oil yield to be 25.77%. A second-order model was obtained to predict oil yield as a function of moisture content, heating temperature and duration. Thus the result from this research work has established the optimal conditions for mechanical extraction of oil from castor seed. Closed agreement between experimental and predicted yield was obtained.

  11. Post-treatment of molasses wastewater by electrocoagulation and process optimization through response surface analysis.

    Science.gov (United States)

    Tsioptsias, C; Petridis, D; Athanasakis, N; Lemonidis, I; Deligiannis, A; Samaras, P

    2015-12-01

    Molasses wastewater is a high strength effluent of food industry such as distilleries, sugar and yeast production plants etc. It is characterized by a dark brown color and exhibits a high content in substances of recalcitrant nature such as melanoidins. In this study, electrocoagulation (EC) was studied as a post treatment step for biologically treated molasses wastewater with high nitrogen content obtained from a baker's yeast industry. Iron and copper electrodes were used in various forms; the influence and interaction of current density, molasses wastewater dilution, and reaction time, on COD, color, ammonium and nitrate removal rates and operating cost were studied and optimized through Box Behnken's response surface analysis. Reaction time varied from 0.5 to 4 h, current density varied from 5 to 40 mA/cm(2) and dilution from 0 to 90% (v/v expressed as water concentration). pH, conductivity and temperature measurements were also carried out during each experiment. From preliminary experiments, it was concluded that the application of aeration and sample dilution, considerably influenced the kinetics of the process. The obtained results showed that COD removal varied between 10 and 54%, corresponding to an operation cost ranging from 0.2 to 33 euro/kg COD removed. Significant removal rates were obtained for nitrogen as nitrate and ammonium (i.e. 70% ammonium removal). A linear relation of COD and ammonium to the design parameters was observed, while operation cost and nitrate removal responded in a curvilinear function. A low ratio of electrode surface to treated volume was used, associated to a low investment cost; in addition, iron wastes could be utilized as low cost electrodes i.e. iron fillings from lathes, aiming to a low operation cost due to electrodes replacement. In general, electrocoagulation proved to be an effective and low cost process for biologically treated molasses-wastewater treatment for additional removal of COD and nitrogen content and

  12. A Study on a Multi-Objective Optimization Method Based on Neuro-Response Surface Method (NRSM

    Directory of Open Access Journals (Sweden)

    Lee Jae-Chul

    2016-01-01

    Full Text Available The geometry of systems including the marine engineering problems needs to be optimized in the initial design stage. However, the performance analysis using commercial code is generally time-consuming. To solve this problem, many engineers perform the optimization process using the response surface method (RSM to predict the system performance, but RSM presents some prediction errors for nonlinear systems. The major objective of this research is to establish an optimal design framework. The framework is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the response surface is generated using the artificial neural network (ANN which is considered as NRSM. The optimization process is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II. Through case study of a derrick structure, we have confirmed the proposed framework applicability. In the future, we will try to apply the constructed framework to multi-objective optimization problems.

  13. Clarification of Pharmaceutical Wastewater with Moringa Oleifera: Optimization Through Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Iva Rustanti Eri

    2018-05-01

    Full Text Available Herbal pharmaceutical industrial wastewater contains a high amount of suspended solids and alkaline (pH > 8; therefore it requires approprite coagulant and flocculant compounds for its wastewater treatment. The most widely used flocculant is a synthetic that has certain problems such as non-biodegradability and releases of toxic residual monomers. The use of eco-friendly flocculants as alternative materials for conventional flocculant in water and wastewater treatments is increasing. Numerous factors influence the performance of coagulation-flocculation process, such as coagulant dosage, flocculant dosage, initial potential of hydrogen (pH and velocity gradient of coagulation-flocculation. The main aim of this research is to evaluate the capability and effectiveness of Moringa oleifera extract for removal of suspended solid in herbal pharmaceutical industry. A coagulation-flocculation test was done by performing jar test at various speeds, according to the variation of the conducted treatment research. In this study, response surface methodology (RSM approach was used to optimize the concentration of coagulant dosage, flocculant dosage and flocculation velocity gradient (G, and the results were measured as maximum percentage of suspended solid removal. The wastewater used in this research originally came from the inlet of herbal pharmaceutical industry wastewater treatment plant, which was collected over 3 days. The wastewater has a total suspended solids of more than 1250 mg/L, and was alkaline (pH 9-10. The moringa extract was made from the extraction of a fat free moringa powder with a salt solution in a certain ratio. The percentage removal of suspended solid was 93.42-99.54%. The final results of the analysis of response surface showed that the variables of flocculant dosage and the flocculation velocity gradient (G have a huge impact on the amount of suspended solid removal, compared with the coagulant dosage. The model generated from the

  14. Response surface method optimization of ectoine fermentation medium with moderate halophilic bacteria Halomonas sp. H02

    Science.gov (United States)

    Li, T. T.; Qu, A.; Yuan, X. N.; Tan, F. X.; Li, X. W.; Wang, T.; Zhang, L. H.

    2017-07-01

    Moderate halophilic bacteria are of halophilic bacteria whose suitable growth of NaCl is 5-10%. When the moderate halophilic bacteria response to high osmotic stress, the intracellular will synthesize small organic molecule compatible solutes. Ectoine, which is the major synthetic osmotic compatible solutes for moderate halophilic bacteria, can help microbial enzymes, nucleic acids and the whole cell resist to hypertonic, high temperature, freezing and other inverse environment. In order to increase the Ectoine production of Moderate halophilic bacteria Halomonas sp. H02, the Ectoine fermentation medium component was optimized by Plackett-Burman (PB) and Response Surface Methodology (RSM) based on the principle of non-complete equilibrium The results of PB experiments showed that the three main influencing factors of Moderate halophilic bacteria Halomonas sp. H02 synthesis Ectoine culture medium were C5H8NNaO4 concentration, NaCl concentration and initial pH. According to the center point of the steepest climbing experiment, the central combination design experiment was used to show that the model is consistent with the actual situation. The optimum combination of three influencing factors were C5H8NNaO4 41 g/L, NaCl 87.2 g/L and initial pH 5.9, and the predicted amount of Ectoine was 1835.8 mg/L, increased by 41.6%.

  15. OPTIMIZATION OF RED PIGMENT PRODUCTION BY MONASCUS PURPUREUS FTC 5356 USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Farhan M. Said

    2018-06-01

    Full Text Available Factors such as environmental conditions and nutrients are significant for successful growth and reproduction of microorganisms. Manipulations of the factors are the most effective way to stimulate the growth of the microorganism, which can be used to optimize the yield of a product. In this study, Central Composite Design (CCD of Response Surface Methodology (RSM was used to optimize the production of red pigment by Monascus purpureus FTC 5356 using the petioles of oil palm fronds (OPF as a substrate in solid state fermentation (SSF. The data was analyzed using Design Expert Software. The optimum combination predicted via RSM was confirmed through experimental work. The interactions between three variables such as initial moisture content (%, initial pH value (pH, and peptone concentration (% were studied and modelled. The statistical analysis of the results showed that the optimal conditions for red pigment production 47 AU/g with the biomass of 425.1 mg/g was at 55% initial moisture content, 3% of peptone, and at pH 3.  The RSM results showed that the initial pH value had a significant effect on red pigment production (P-value <0.05. The validation of these results was also conducted by fermentation with predicted conditions and it was found that there was a discrepancy of 0.39% between the values of the experimental result and those of the predicted values. ABSTRAK: Keadaan persekitaran dan nutrien merupakan faktor-faktor penting dalam pertumbuhan mikroorganisma. Manipulasi faktor-faktor tersebut adalah kaedah terbaik bagi meningkatkan pertumbuhan mikroorganisma dan mengoptimumkan penghasilan produk. Kajian ini mengguna pakai Rekaan Gabungan Pusat (CCD melalui Kaedah Tindak balas Permukaan (RSM bagi penghasilan pigmen merah optimum oleh Monascus purpureus FTC 5356 menggunakan batang pelepah kelapa sawit (OPF sebagai perumah dalam proses penapaian pepejal (SSF. Data telah dianalisis menggunakan perisian Design Expert. Gabungan parameter

  16. Application of response surface methodology for optimizing transesterification of Moringa oleifera oil: Biodiesel production

    International Nuclear Information System (INIS)

    Rashid, Umer; Anwar, Farooq; Ashraf, Muhammad; Saleem, Muhammad; Yusup, Suzana

    2011-01-01

    Highlights: → Biodiesel production from Moringa oil (MO) has been optimized for the first time using RSM. → RSM-optimized reaction conditions gave a high Moringa oil methyl esters (MOMEs) yield (94.3%). → Fuel properties of MOMEs yielded satisfied the ASTM D 6751 and EU 14214 specifications. → Present RSM-model can be useful for predicting optimum biodiesel yield from other oils. - Abstract: Response surface methodology (RSM), with central composite rotatable design (CCRD), was used to explore optimum conditions for the transesterification of Moringa oleifera oil. Effects of four variables, reaction temperature (25-65 deg. C), reaction time (20-90 min), methanol/oil molar ratio (3:1-12:1) and catalyst concentration (0.25-1.25 wt.% KOH) were appraised. The quadratic term of methanol/oil molar ratio, catalyst concentration and reaction time while the interaction terms of methanol/oil molar ratio with reaction temperature and catalyst concentration, reaction time with catalyst concentration exhibited significant effects on the yield of Moringa oil methyl esters (MOMEs)/biodiesel, p < 0.0001 and p < 0.05, respectively. Transesterification under the optimum conditions ascertained presently by RSM: 6.4:1 methanol/oil molar ratio, 0.80% catalyst concentration, 55 deg. C reaction temperature and 71.08 min reaction time offered 94.30% MOMEs yield. The observed and predicted values of MOMEs yield showed a linear relationship. GLC analysis of MOMEs revealed oleic acid methyl ester, with contribution of 73.22%, as the principal component. Other methyl esters detected were of palmitic, stearic, behenic and arachidic acids. Thermal stability of MOMEs produced was evaluated by thermogravimetric curve. The fuel properties such as density, kinematic viscosity, lubricity, oxidative stability, higher heating value, cetane number and cloud point etc., of MOMEs were found to be within the ASTM D6751 and EN 14214 biodiesel standards.

  17. Enzymatic Transesterification of Ethyl Ferulate with Fish Oil and Reaction Optimization by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Zhiyong Yang

    2012-01-01

    Full Text Available The enzymatic transesterification of ethyl ferulate (EF with fish oil from cod liver was investigated with Novozym® 435 as catalyst under solvent-free conditions. The purpose of the study is to evaluate the synthesis system for the production of feruloyl fish oil in industry. The modified HPLC method was first set up to characterise the reaction products together with liquid chromatography electrospray time-of-flight mass spectrometry (HPLC-ESI-TOF-MS. The influence of the addition of glycerol to the system on the feruloyl acylglycerol profile was investigated in terms of transesterification performance. The bioconversion rate of EF can be significantly increased with the increased formation of feruloyl fish oil products when appropriate amount of glycerol is present in the reaction. Therefore, an equivalent molar amount of glycerol was added to EF for the practical optimization of the system. The mutual effects of temperature (40 to 70 °C, reaction time (1 to 5 days, enzyme load (2 to 20 % and molar ratio of fish oil and EF in the substrate (1 to 5 were thus studied with the assistance of response surface methodology (RSM for the purpose of maximizing the formation of feruloyl fish oil. The models were well fitted and verified. The optimized conditions were found to be: temperature 70 °C, enzyme load 4.3 %, substrate ratio 4.7, and reaction time 5 days. Under these conditions, the maximum conversion of EF reached 92.4 %, and the formation of feruloyl fish oil reached 80.4 %, but the formation of by-product was minimized to 11.4 % only.

  18. Modeling and optimization of ethanol fermentation using Saccharomyces cerevisiae: Response surface methodology and artificial neural network

    Directory of Open Access Journals (Sweden)

    Esfahanian Mehri

    2013-01-01

    Full Text Available In this study, the capabilities of response surface methodology (RSM and artificial neural networks (ANN for modeling and optimization of ethanol production from glucoseusing Saccharomyces cerevisiae in batch fermentation process were investigated. Effect of three independent variables in a defined range of pH (4.2-5.8, temperature (20-40ºC and glucose concentration (20-60 g/l on the cell growth and ethanol production was evaluated. Results showed that prediction accuracy of ANN was apparently similar to RSM. At optimum condition of temperature (32°C, pH (5.2 and glucose concentration (50 g/l suggested by the statistical methods, the maximum cell dry weight and ethanol concentration obtained from RSM were 12.06 and 16.2 g/l whereas experimental values were 12.09 and 16.53 g/l, respectively. The present study showed that using ANN as fitness function, the maximum cell dry weight and ethanol concentration were 12.05 and 16.16 g/l, respectively. Also, the coefficients of determination for biomass and ethanol concentration obtained from RSM were 0.9965 and 0.9853 and from ANN were 0.9975 and 0.9936, respectively. The process parameters optimization was successfully conducted using RSM and ANN; however prediction by ANN was slightly more precise than RSM. Based on experimental data maximum yield of ethanol production of 0.5 g ethanol/g substrate (97 % of theoretical yield was obtained.

  19. Optimization of Chlorination Process for Mature Leachate Disinfection Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Hamzeh Ali Jamali1

    2014-06-01

    Full Text Available Background: leachate from landfill contains high level of microbial pathogens which is considered as one of the most important threats for the environment. One of the common and simple methods for water and wastewater disinfection is chlorination, but it rarely has been used for leachate disinfection. The objective of this study was evaluating the efficiency of chlorine for leachate disinfection and optimization of the effect of concentration and contact time on the death of total and fecal coliforms, as a microbial contamination index. Methods: In this descriptive-analysis study, microbial indices monitoring in leachates initiated from landfill of Qazvin city were conducted for one year. After pre-tests, the range of chlorine concentration and contact time on the inactivation of microbial indices were determined. Central composite design (CCD and response surface methodology (RSM were applied to optimize chlorine concentration and contact time parameters effect on microbial inactivation. 13 runs of tests were performed on samples. Tests were included BOD, COD, total and fecal coliforms. All analytical experiments were according to the standard methods for the examination of water and wastewater. Results: Results of the study showed that microbial indices had relatively high sensitivity to inactivation by chlorination, which in the chlorine concentration of 2 mg/L and contact time of 9 min, and chlorine concentration of 0.5 mg/L and contact time of 12 min, 100% of total and fecal coliforms inactivated, respectively. The RSM method was used for analysis of bacterial inactivation. Analyses showed that in contact time of 9.4 min and chlorine concentration of 2.99 mg/L, the inactivation efficiency of total and fecal coliforms were 89.16% and 100%, respectively. Conclusions: Chlorine could be used for leachate disinfection. However, in high concentrations of organic matter in leachates, due to production potential of chlorination by-products, health

  20. Optimization of extraction parameters of pentacyclic triterpenoids from Swertia chirata stem using response surface methodology.

    Science.gov (United States)

    Pandey, Devendra Kumar; Kaur, Prabhjot

    2018-03-01

    In the present investigation, pentacyclic triterpenoids were extracted from different parts of Swertia chirata by solid-liquid reflux extraction methods. The total pentacyclic triterpenoids (UA, OA, and BA) in extracted samples were determined by HPTLC method. Preliminary studies showed that stem part contains the maximum pentacyclic triterpenoid and was chosen for further studies. Response surface methodology (RSM) has been employed successfully by solid-liquid reflux extraction methods for the optimization of different extraction variables viz., temperature ( X 1 35-70 °C), extraction time ( X 2 30-60 min), solvent composition ( X 3 20-80%), solvent-to-solid ratio ( X 4 30-60 mlg -1 ), and particle size ( X 5 3-6 mm) on maximum recovery of triterpenoid from stem parts of Swertia chirata . A Plackett-Burman design has been used initially to screen out the three extraction factors viz., particle size, temperature, and solvent composition on yield of triterpenoid. Moreover, central composite design (CCD) was implemented to optimize the significant extraction parameters for maximum triterpenoid yield. Three extraction parameters viz., mean particle size (3 mm), temperature (65 °C), and methanol-ethyl acetate solvent composition (45%) can be considered as significant for the better yield of triterpenoid A second-order polynomial model satisfactorily fitted the experimental data with the R 2 values of 0.98 for the triterpenoid yield ( p  < 0.001), implying good agreement between the experimental triterpenoid yield (3.71%) to the predicted value (3.79%).

  1. Optimization of Alkaline and Dilute Acid Pretreatment of Agave Bagasse by Response Surface Methodology

    Science.gov (United States)

    Ávila-Lara, Abimael I.; Camberos-Flores, Jesus N.; Mendoza-Pérez, Jorge A.; Messina-Fernández, Sarah R.; Saldaña-Duran, Claudia E.; Jimenez-Ruiz, Edgar I.; Sánchez-Herrera, Leticia M.; Pérez-Pimienta, Jose A.

    2015-01-01

    Utilization of lignocellulosic materials for the production of value-added chemicals or biofuels generally requires a pretreatment process to overcome the recalcitrance of the plant biomass for further enzymatic hydrolysis and fermentation stages. Two of the most employed pretreatment processes are the ones that used dilute acid (DA) and alkaline (AL) catalyst providing specific effects on the physicochemical structure of the biomass, such as high xylan and lignin removal for DA and AL, respectively. Another important effect that need to be studied is the use of a high solids pretreatment (≥15%) since offers many advantaged over lower solids loadings, including increased sugar and ethanol concentrations (in combination with a high solids saccharification), which will be reflected in lower capital costs; however, this data is currently limited. In this study, several variables, such as catalyst loading, retention time, and solids loading, were studied using response surface methodology (RSM) based on a factorial central composite design of DA and AL pretreatment on agave bagasse using a range of solids from 3 to 30% (w/w) to obtain optimal process conditions for each pretreatment. Subsequently enzymatic hydrolysis was performed using Novozymes Cellic CTec2 and HTec2 presented as total reducing sugar (TRS) yield. Pretreated biomass was characterized by wet-chemistry techniques and selected samples were analyzed by calorimetric techniques, and scanning electron/confocal fluorescent microscopy. RSM was also used to optimize the pretreatment conditions for maximum TRS yield. The optimum conditions were determined for AL pretreatment: 1.87% NaOH concentration, 50.3 min and 13.1% solids loading, whereas DA pretreatment: 2.1% acid concentration, 33.8 min and 8.5% solids loading. PMID:26442260

  2. Application of response surface methodology for optimizing transesterification of Moringa oleifera oil: Biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Umer, E-mail: umer.rashid@yahoo.com [Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad 38040 (Pakistan); Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 31750, Tronoh, Perak (Malaysia); Anwar, Farooq, E-mail: fqanwar@yahoo.com [Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad 38040 (Pakistan); Ashraf, Muhammad, E-mail: ashrafbot@yahoo.com [Department of Botany, University of Agriculture, Faisalabad 38040 (Pakistan); Department of Botany and Microbiology, King Saud University, Riyadh (Saudi Arabia); Saleem, Muhammad [Department of Statistics, Government College University, Faisalabad 38000 (Pakistan); Yusup, Suzana, E-mail: drsuzana_yusuf@petronas.com.my [Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 31750, Tronoh, Perak (Malaysia)

    2011-08-15

    Highlights: {yields} Biodiesel production from Moringa oil (MO) has been optimized for the first time using RSM. {yields} RSM-optimized reaction conditions gave a high Moringa oil methyl esters (MOMEs) yield (94.3%). {yields} Fuel properties of MOMEs yielded satisfied the ASTM D 6751 and EU 14214 specifications. {yields} Present RSM-model can be useful for predicting optimum biodiesel yield from other oils. - Abstract: Response surface methodology (RSM), with central composite rotatable design (CCRD), was used to explore optimum conditions for the transesterification of Moringa oleifera oil. Effects of four variables, reaction temperature (25-65 deg. C), reaction time (20-90 min), methanol/oil molar ratio (3:1-12:1) and catalyst concentration (0.25-1.25 wt.% KOH) were appraised. The quadratic term of methanol/oil molar ratio, catalyst concentration and reaction time while the interaction terms of methanol/oil molar ratio with reaction temperature and catalyst concentration, reaction time with catalyst concentration exhibited significant effects on the yield of Moringa oil methyl esters (MOMEs)/biodiesel, p < 0.0001 and p < 0.05, respectively. Transesterification under the optimum conditions ascertained presently by RSM: 6.4:1 methanol/oil molar ratio, 0.80% catalyst concentration, 55 deg. C reaction temperature and 71.08 min reaction time offered 94.30% MOMEs yield. The observed and predicted values of MOMEs yield showed a linear relationship. GLC analysis of MOMEs revealed oleic acid methyl ester, with contribution of 73.22%, as the principal component. Other methyl esters detected were of palmitic, stearic, behenic and arachidic acids. Thermal stability of MOMEs produced was evaluated by thermogravimetric curve. The fuel properties such as density, kinematic viscosity, lubricity, oxidative stability, higher heating value, cetane number and cloud point etc., of MOMEs were found to be within the ASTM D6751 and EN 14214 biodiesel standards.

  3. Optimization of Baker’s Yeast Production on Date Extract Using Response Surface Methodology (RSM)

    Science.gov (United States)

    Kara Ali, Mounira; Outili, Nawel; Ait Kaki, Asma; Cherfia, Radia; Benhassine, Sara; Benaissa, Akila; Kacem Chaouche, Noreddine

    2017-01-01

    This work aims to study the production of the biomass of S. cerevisiae on an optimized medium using date extract as the only carbon source in order to obtain a good yield of the biomass. The biomass production was carried out according to the central composite experimental design (CCD) as a response surface methodology using Minitab 16 software. Indeed, under optimal biomass production conditions, temperature (32.9 °C), pH (5.35) and the total reducing sugar extracted from dates (70.93 g/L), S. cerevisiae produced 40 g/L of their biomass in an Erlenmeyer after only 16 h of fermentation. The kinetic performance of the S. cerevisiae strain was investigated with three unstructured models i.e., Monod, Verhulst, and Tessier. The conformity of the experimental data fitted showed a good consistency with Monod and Tessier models with R2 = 0.945 and 0.979, respectively. An excellent adequacy was noted in the case of the Verhulst model (R2 = 0.981). The values of kinetic parameters (Ks, Xm, μm, p and q) calculated by the Excel software, confirmed that Monod and Verhulst were suitable models, in contrast, the Tessier model was inappropriately fitted with the experimental data due to the illogical value of Ks (−9.434). The profiles prediction of the biomass production with the Verhulst model, and that of the substrate consumption using Leudeking Piret model over time, demonstrated a good agreement between the simulation models and the experimental data. PMID:28783118

  4. Response surface optimization of ethanol production from banana peels by organic acid hydrolysis and fermentation

    Directory of Open Access Journals (Sweden)

    Sininart Chongkhong

    2017-04-01

    Full Text Available The production of ethanol from banana peels was optimized by response surface methodology in a two-step process. The steps were vinegar hydrolysis of banana peels using microwave heating, and fermentation of the peel hydrolysate by commercial baker’s yeast. The sugar (glucose content in the hydrolysate was maximized over ranges of vinegar concentration, microwave power and hydrolysis time. The maximal 15.3 g/L glucose content was reached using 1.47 %w/w vinegar and 465 W microwave power for 10 min, and was used in maximizing the ethanol content from the second step. The maximal 9.2 %v/v ethanol was obtained with 4 %w/w yeast, an initial pH of 4.8, at 28°C for 192 hrs. The results suggest that a combination of microwave application and organic acid hydrolysis might contribute cost-efficiently in the production of ethanol from biological waste.

  5. Esterification Optimization of Crude African Palm Olein Using Response Surface Methodology and Heterogeneous Acid Catalysis

    Directory of Open Access Journals (Sweden)

    Francisco Anguebes-Franseschi

    2018-01-01

    Full Text Available In this work, the effect of zeolite montmorillonite KSF in the esterification of free fatty acids (FFAs of crude African palm olein (Eleaias guinnesis Jacq was studied. To optimize the esterification of FFAs of the crude African palm olein (CAPO, the response surface methodology (RSM that was based on a central composite rotatable design (CCRD was used. The effects of three parameters were investigated: (a catalyst loading (2.6–9.4 wt %, (b reaction temperature (133.2–166.2 °C, and (c reaction time (0.32–3.68 h. The Analysis of variance (ANOVA indicated that linear terms of catalyst loading (X1, reaction temperature (X2, the quadratic term of catalyst loading ( X 1 2 , temperature reaction ( X 2 2 , reaction time ( X 3 2 , the interaction catalyst loading with reaction time ( X 1 * X3, and the interaction reaction temperature with reaction time ( X 2 * X3 have a significant effect (p < 0.05 with a 95% confidence level on Fatty Methyl Ester (FAME yield. The result indicated that the optimum reaction conditions to esterification of FFAs were: catalyst loading 9.4 wt %, reaction temperature 155.5 °C, and 3.3 h for reaction time, respectively. Under these conditions, the numerical estimation of FAME yield was 91.81 wt %. This result was experimentally validated obtaining a difference of 1.7% FAME yield, with respect to simulated values.

  6. Optimization of enzymatic hydrolysis of guar gum using response surface methodology.

    Science.gov (United States)

    Mudgil, Deepak; Barak, Sheweta; Khatkar, B S

    2014-08-01

    Guar gum is a polysaccharide obtained from guar seed endosperm portion. Enzymatically hydrolyzed guar gum is low in viscosity and has several health benefits as dietary fiber. In this study, response surface methodology was used to determine the optimum conditions for hydrolysis that give minimum viscosity of guar gum. Central composite was employed to investigate the effects of pH (3-7), temperature (20-60 °C), reaction time (1-5 h) and cellulase concentration (0.25-1.25 mg/g) on viscosity during enzymatic hydrolysis of guar (Cyamopsis tetragonolobus) gum. A second order polynomial model was developed for viscosity using regression analysis. Results revealed statistical significance of model as evidenced from high value of coefficient of determination (R(2) = 0.9472) and P < 0.05. Viscosity was primarily affected by cellulase concentration, pH and hydrolysis time. Maximum viscosity reduction was obtained when pH, temperature, hydrolysis time and cellulase concentration were 6, 50 °C, 4 h and 1.00 mg/g, respectively. The study is important in optimizing the enzymatic process for hydrolysis of guar gum as potential source of soluble dietary fiber for human health benefits.

  7. [Response surface method optimize of nano-silica solid dispersion technology assistant enzymatic hydrolysis preparation genistein].

    Science.gov (United States)

    Jin, Xin; Zhang, Zhen-Hai; Zhu, Jing; Sun, E; Yu, Dan-Hong; Chen, Xiao-Yun; Liu, Qi-Yuan; Ning, Qing; Jia, Xiao-Bin

    2012-04-01

    This article reports that nano-silica solid dispersion technology was used to raise genistein efficiency through increasing the enzymatic hydrolysis rate. Firstly, genistin-nano-silica solid dispersion was prepared by solvent method. And differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) were used to verify the formation of solid dispersion, then enzymatic hydrolysis of solid dispersion was done by snailase to get genistein. With the conversion of genistein as criteria, single factor experiments were used to study the different factors affecting enzymatic hydrolysis of genistin and its solid dispersion. And then, response surface method was used to optimize of nano-silica solid dispersion technology assistant enzymatic hydrolysis. The optimum condition to get genistein through enzymatic hydrolysis of genistin-nano-silica solid dispersion was pH 7.1, temperature 52.2 degrees C, enzyme concentration 5.0 mg x mL(-1) and reaction time 7 h. Under this condition, the conversion of genistein was (93.47 +/- 2.40)%. Comparing with that without forming the genistin-nano-silica solid dispersion, the conversion increased 2.62 fold. At the same time, the product of hydrolysis was purified to get pure genistein. The method of enzymatic hydrolysis of genistin-nano-silica solid dispersion by snailase to obtain genistein is simple, efficiency and suitable for the modern scale production.

  8. Response surface method as a tool for heavy clay firing process optimization: Roofing tiles

    Directory of Open Access Journals (Sweden)

    Milica Arsenović

    2012-12-01

    Full Text Available Heavy clay samples collected in close vicinity of Toplička Mala Plana, Serbia, were surveyed to examine their possible use in heavy clay industry. The representative raw material, which contained the lowest content of clay minerals and the highest content of carbonates, was enriched with two more plastic clays. Chemical and mineralogical composition, as well as particle size distribution, were determined to distinct the samples. The samples in the form of tiles, hollow blocks and cubes were prepared following the usual practice in ceramic laboratories. The effect of process parameters, such as temperature (850–950 °C and concentration of the added clays (both in the range of 0–10 wt.%, were investigated in terms of compressive strength, water absorption, firing shrinkage, weight loss during firing and volume mass of cubes. The optimal conditions were determined by the response surface method, coupled with the fuzzy synthetic evaluation algorithm, using membership trapezoidal function, and showed that these materials can be used for roofing tiles production.

  9. Optimization of alkaline and dilute acid pretreatment of agave bagasse by response surface methodology

    Directory of Open Access Journals (Sweden)

    Abimael I. Ávila-Lara

    2015-09-01

    Full Text Available Utilization of lignocellulosic materials for the production of value-added chemicals or biofuels generally requires a pretreatment process to overcome the recalcitrance of the plant biomass for further enzymatic hydrolysis and fermentation stages. Two of the most employed pretreatment processes are the ones that used dilute acid (DA and alkaline (AL catalyst providing specific effects on the physicochemical structure of the biomass such as high xylan and lignin removal for DA and AL, respectively. Another important effect that need to be studied is the use of a high solids pretreatment (≥15% since offers many advantaged over lower solids loadings, including increased sugar and ethanol concentrations (in combination with a high solids saccharification which will be reflected in lower capital costs, however this data is currently limited. In this study, several variables such as catalyst loading, retention time and solids loading, were studied using Response Surface Methodology (RSM based on a factorial Central Composite Design (CCD of DA and AL pretreatment on agave bagasse using a range of solids from 3 to 30% (w/w to obtain optimal process conditions for each pretreatment. Subsequently enzymatic hydrolysis was performed using Novozymes Cellic CTec2 and HTec2 presented as total reducing sugar (TRS yield. Pretreated biomass

  10. Reinforcement of thermoplastic chitosan hydrogel using chitin whiskers optimized with response surface methodology.

    Science.gov (United States)

    Sun, Guohui; Zhang, Xin; Bao, Zixian; Lang, Xuqian; Zhou, Zhongzheng; Li, Yang; Feng, Chao; Chen, Xiguang

    2018-06-01

    To strengthen the mechanical strength of thermo-sensitive hydroxybutyl chitosan (HBC) hydrogel, chitin whiskers were used as sticker to fabricate reinforced HBC (HBCW) hydrogel by using response surface methodology. Unlike the intrinsic network of HBC hydrogel, HBCW hydrogel showed a laminar shape with firm structure. The preparation condition was optimized by three-factor-three-level Box-Behnken design. The maximum mechanical strength (1011.11 Pa) was achieved at 50 °C, when the concentrations of HBC and chitin whiskers were 5.1 wt% and 2.0 wt%, respectively. The effects of temperature, pH value and NaCl concentration on mechanical strength of HBCW hydrogels were investigated via the oscillatory stress sweeps. The results showed that HBCW hydrogel could reach the maximum stiffness (∼1126 Pa) at 37 °C pH 12.0. Low pH and high salty ions could decrease the stability of hydrogel, while chitin whiskers could increase the stress tolerance and related ruptured strain of HBCW hydrogels. Copyright © 2018. Published by Elsevier Ltd.

  11. Electrochemical treatment of simulated sugar industrial effluent: Optimization and modeling using a response surface methodology

    Directory of Open Access Journals (Sweden)

    P. Asaithambi

    2016-11-01

    Full Text Available The removal of organic compounds from a simulated sugar industrial effluent was investigated through the electrochemical oxidation technique. Effect of various experimental parameters such as current density, concentration of electrolyte and flow rate in a batch electrochemical reactor was studied on the percentage of COD removal and power consumption. The electrochemical reactor performance was analyzed based on with and without recirculation of the effluent having constant inter-electrodes distance. It was found out that the percentage removal of COD increased with the increase of electrolyte concentration and current density. The maximum percentage removal of COD was achieved at 80.74% at a current density of 5 A/dm2 and 5 g/L of electrolyte concentration in the batch electrochemical reactor. The recirculation electrochemical reactor system parameters like current density, concentration of COD and flow rate were optimized using response surface methodology, while COD removal percents were maximized and power consumption minimized. It has been observed from the present analysis that the predicted values are in good agreement with the experimental data with a correlation coefficient of 0.9888.

  12. Optimization of suitable ethanol blend ratio for motorcycle engine using response surface method.

    Science.gov (United States)

    Chen, Yu-Liang; Chen, Suming; Tsai, Jin-Ming; Tsai, Chao-Yin; Fang, Hsin-Hsiung; Yang, I-Chang; Liu, Sen-Yuan

    2012-01-01

    In view of energy shortage and air pollution, ethanol-gasoline blended fuel used for motorcycle engine was studied in this work. The emissions of carbon monoxide (CO), nitrogen oxides (NO(X)) and engine performance of a 125 cc four-stroke motorcycle engine with original carburetor using ethanol-gasoline fuels were investigated. The model of three-variable Box Behnken design (BBD) was used for experimental design, the ethanol blend ratios were prepared at 0, 10, 20 vol%; the speeds of motorcycle were selected as 30, 45, 60 km/h; and the throttle positions were set at 30, 60, 90 %. Both engine performance and air pollutant emissions were then analyzed by response surface method (RSM) to yield optimum operation parameters for tolerable pollutant emissions and maximum engine performance. The RSM optimization analysis indicated that the most suitable ethanol-gasoline blended ratio was found at the range of 3.92-4.12 vol% to yield a comparable fuel conversion efficiency, while considerable reductions of exhaust pollutant emissions of CO (-29 %) and NO(X) (-12 %) when compared to pure gasoline fuel. This study demonstrated low ethanol-gasoline blended fuels could be used in motorcycle carburetor engines without any modification to keep engine power while reducing exhaust pollutants.

  13. Optimization of Acid Black 172 decolorization by electrocoagulation using response surface methodology

    Science.gov (United States)

    2012-01-01

    This paper utilizes a statistical approach, the response surface optimization methodology, to determine the optimum conditions for the Acid Black 172 dye removal efficiency from aqueous solution by electrocoagulation. The experimental parameters investigated were initial pH: 4–10; initial dye concentration: 0–600 mg/L; applied current: 0.5-3.5 A and reaction time: 3–15 min. These parameters were changed at five levels according to the central composite design to evaluate their effects on decolorization through analysis of variance. High R2 value of 94.48% shows a high correlation between the experimental and predicted values and expresses that the second-order regression model is acceptable for Acid Black 172 dye removal efficiency. It was also found that some interactions and squares influenced the electrocoagulation performance as well as the selected parameters. Optimum dye removal efficiency of 90.4% was observed experimentally at initial pH of 7, initial dye concentration of 300 mg/L, applied current of 2 A and reaction time of 9.16 min, which is close to model predicted (90%) result. PMID:23369574

  14. Optimization of enzymatic esterification of dihydrocaffeic acid with hexanol in ionic liquid using response surface methodology.

    Science.gov (United States)

    Gholivand, Somayeh; Lasekan, Ola; Tan, Chin Ping; Abas, Faridah; Wei, Leong Sze

    2017-05-26

    Developing an efficient lipophilization reaction system for phenolic derivatives could enhance their applications in food processing. Low solubility of phenolic acids reduces the efficiency of phenolic derivatives in most benign enzyme solvents. The conversion of phenolic acids through esterification alters their solubility and enhances their use as food antioxidant additives as well as their application in cosmetics. This study has shown that lipase-catalyzed esterification of dihydrocaffeic acid with hexanol in ionic liquid (1-butyl-3-methylimidazoliumbis (trifluoromethylsulfonyl) imide) was the best approach for esterification reaction. In order to achieve the maximum yield, the process was optimized by response surface methodology (RSM) based on a five-level and four independent variables such as: dosage of enzyme; hexanol/dihydrocaffeic acid mole ratio; temperature and reaction time. The optimum esterification condition (Y = 84.4%) was predicted to be obtained at temperature of 39.4 °C, time of 77.5 h dosage of enzyme at 41.6% and hexanol/dihydrocaffeic acid mole ratio of 2.1. Finally, this study has produced an efficient enzymatic esterification method for the preparation of hexyl dihydrocaffeate in vitro using a lipase in an ionic liquid system. Concentration of hexanol was the most significant (p < 0.05) independent variable that influenced the yield of hexyl dihydrocaffeate. Graphical abstract Synthesis of different Hexyl dihydrocaffeates in ionic liquid.

  15. Optimization of lipase-catalyzed enantioselective production of 1-phenyl 1-propanol using response surface methodology.

    Science.gov (United States)

    Soyer, Asli; Bayraktar, Emine; Mehmetoglu, Ulku

    2010-01-01

    Optically active 1-phenyl 1-propanol is used as a chiral building block and synthetic intermediate in the pharmaceutical industries. In this study, the enantioselective production of 1-phenyl 1-propanol was investigated systematically using response surface methodology (RSM). Before RSM was applied, the effects of the enzyme source, the type of acyl donor, and the type of solvent on the kinetic resolution of 1-phenyl 1-propanol were studied. The best results were obtained with Candida antartica lipase (commercially available as Novozym 435), vinyl laurate as the acyl donor, and isooctane as the solvent. In the RSM, substrate concentration, molar ratio of acyl donor to the substrate, amount of enzyme, temperature, and stirring rate were chosen as independent variables. The predicted optimum conditions for a higher enantiomeric excess (ee) were as follows: substrate concentration, 233 mM; molar ratio of acyl donor to substrate, 1.5; enzyme amount, 116 mg; temperature, 47 °C; and stirring rate, 161 rpm. A verification experiment conducted at these optimized conditions for maximum ee yielded 91% for 3 hr, which is higher than the predicted value of 83%. The effect of microwave on the ee was also investigated and ee reached 87% at only 5 min.

  16. Formulation and optimization of mucoadhesive buccal patches of losartan potassium by using response surface methodology

    Science.gov (United States)

    Ikram, Md.; Gilhotra, Neeraj; Gilhotra, Ritu Mehra

    2015-01-01

    Background: This study was undertaken with an aim to systematically design a model of factors that would yield an optimized sustained release dosage form of an anti-hypertensive agent, losartan potassium, using response surface methodology (RSM) by employing 32 full factorial design. Materials and Methods: Mucoadhesive buccal patches were prepared using different grades of hydroxypropyl methylcellulose (HPMC) (K4M and K100M) and polyvinylpyrrolidone-K30 by solvent casting method. The amount of the release retardant polymers – HPMC K4M (X1) and HPMC K100M (X2) was taken as an independent variable. The dependent variables were the burst release in 30 min (Y1), cumulative percentage release of drug after 8 h (Y2) and swelling index (Y3) of the patches. In vitro release and swelling studies were carried out and the data were fitted to kinetic equations. Results: The physicochemical, bioadhesive, and swelling properties of patches were found to vary significantly depending on the viscosity of the polymers and their combination. Patches showed an initial burst release preceding a more gradual sustained release phase following a nonfickian diffusion process. Discussion: The results indicate that suitable bioadhesive buccal patches with desired permeability could be prepared, facilitated with the RSM. PMID:26682205

  17. Application of Response Surface Methodology for Optimization of Paracetamol Particles Formation by RESS Method

    International Nuclear Information System (INIS)

    Sabet, J.K.; Ghotbi, C.; Dorkoosh, F.

    2012-01-01

    Ultrafine particles of paracetamol were produced by Rapid Expansion of Supercritical Solution (RESS). The experiments were conducted to investigate the effects of extraction temperature (313-353 K), extraction pressure (10-18 MPa), pre expansion temperature (363-403 K), and post expansion temperature (273-323 K) on particles size and morphology of paracetamol particles. The characterization of the particles was determined by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Liquid Chromatography/Mass Spectrometry (LC-MS) analysis. The average particle size of the original paracetamol was 20.8 μm, while the average particle size of paracetamol after nan onization via the RESS process was 0.46 μm depending on the experimental conditions used. Moreover, the morphology of the processed particles changed to spherical and regular while the virgin particles of paracetamol were needle-shape and irregular. Response surface methodology (RSM) was used to optimize the process parameters. The extraction temperature, 347 K; extraction pressure, 12 MPa; pre expansion temperature, 403?K; and post expansion temperature, 322 K was found to be the optimum conditions to achieve the minimum average particle size of paracetamol.

  18. Optimization and Modeling of Process Variables of Biodiesel Production from Marula Oil using Response Surface Methodology

    International Nuclear Information System (INIS)

    Enweremadu, C. C.; Rutto, H. L.

    2015-01-01

    This paper presents an optimization study in the production of biodiesel production from Marula oil. The study was carried out using a central composite design of experiments under response surface methodology. A mathematical model was developed to correlate the transesterification process variables to biodiesel yield. The transesterification reaction variables were methanol to oil ratio, x /sub 1/ (10-50 wt percentage), reaction time, x /sub 2/ (30-90 min), reaction temperature, x /sub 3/ (30-90 Degree C) stirring speed, x /sub 4/ (100-400 rpm) and amount of catalyst, x /sub 5/ (0.5-1.5 g). The optimum conditions for the production of the biodiesel were found to be methanol to oil ratio (29.43 wt percentage), reaction time (59.17 minutes), reaction temperature (58.80 Degree C), stirring speed (325 rpm) and amount of catalyst (1.02 g). The optimum yield of biodiesel that can be produced was 95 percentage. The results revealed that the crucial fuel properties of the biodiesel produced at the optimum conditions met the ASTM biodiesel specifications. (author)

  19. OPTIMIZATION OF POTASSIUM NITRATE BASED SOLID PROPELLANT GRAINS FORMULATION USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Oladipupo Olaosebikan Ogunleye

    2015-08-01

    Full Text Available This study was designed to evaluate the effect of propellant formulation and geometry on the solid propellant grains internal ballistic performance using core, bates, rod and tubular and end-burn geometries. Response Surface Methodology (RSM was used to analyze and optimize the effect of sucrose, potassium nitrate and carbon on the chamber pressure, temperature, thrust and specific impulse of the solid propellant grains through Central Composite Design (CCD of the experiment. An increase in potassium nitrate increased the specific impulse while an increase in sucrose and carbon decreased specific impulse. The coefficient of determination (R2 for models of chamber pressure, temperature, thrust and specific impulse in terms of composition and geometry were 0.9737, 0.9984, 0.9745 and 0.9589, respectively. The optimum specific impulse of 127.89 s, pressure (462201 Pa, temperature (1618.3 K and thrust (834.83 N were obtained using 0.584 kg of sucrose, 1.364 kg of potassium nitrate and 0.052 kg of carbon as well as bate geometry. There was no significant difference between the calculated and experimented ballistic properties at p < 0.05. The bate grain geometry is more efficient for minimizing the oscillatory pressure in the combustion chamber.

  20. Optimization of a natural medium for cellulase by a marine Aspergillus niger using response surface methodology.

    Science.gov (United States)

    Xue, Dong-Sheng; Chen, Hui-Yin; Lin, Dong-Qiang; Guan, Yi-Xin; Yao, Shan-Jing

    2012-08-01

    The components of a natural medium were optimized to produce cellulase from a marine Aspergillus niger under solid state fermentation conditions by response surface methodology. Eichhornia crassipes and natural seawater were used as a major substrate and a source of mineral salts, respectively. Mineral salts of natural seawater could increase cellulase production. Raw corn cob and raw rice straw showed a significant positive effect on cellulase production. The optimum natural medium consisted of 76.9 % E. crassipes (w/w), 8.9 % raw corn cob (w/w), 3.5 % raw rice straw (w/w), 10.7 % raw wheat bran (w/w), and natural seawater (2.33 times the weight of the dry substrates). Incubation for 96 h in the natural medium increased the biomass to the maximum. The cellulase production was 17.80 U/g the dry weight of substrates after incubation for 144 h. The natural medium avoided supplying chemicals and pretreating substrates. It is promising for future practical fermentation of environment-friendly producing cellulase.

  1. OPTIMIZATION AND CHARACTERIZATION OF 5-FLUOROURACIL TRANSETHOSOMES FOR SKIN CANCER THERAPY USING RESPONSE SURFACE METHODOLOGY.

    OpenAIRE

    Jessy Shaji; Rinki Bajaj.

    2018-01-01

    The purpose of the present study was to develop, optimize and characterize 5-Fluorouracil transethosomes for skin cancer targeting. 5- Fluorouracil transethosomes were prepared by cold method using phospholipon 90G as the lipid and sodium cholate as edge activator. The size reduction was done by probe sonication. Central composite design was used for optimization procedure with different concentration of phospholipon 90G and sodium cholate as independent variables. The response variables sele...

  2. Egg shell waste as heterogeneous nanocatalyst for biodiesel production: Optimized by response surface methodology.

    Science.gov (United States)

    Pandit, Priti R; Fulekar, M H

    2017-08-01

    Worldwide consumption of hen eggs results in availability of large amount of discarded egg waste particularly egg shells. In the present study, the waste shells were utilized for the synthesis of highly active heterogeneous calcium oxide (CaO) nanocatalyst to transesterify dry biomass into methyl esters (biodiesel). The CaO nanocatalyst was synthesied by calcination-hydration-dehydration technique and fully characterized by infrared spectroscopy, X-ray powder diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), brunauer-emmett-teller (BET) elemental and thermogravimetric analysis. TEM image showed that the nano catalyst had spherical shape with average particle size of 75 nm. BET analysis indicated that the catalyst specific surface area was 16.4 m 2  g -1 with average pore diameter of 5.07 nm. The effect of nano CaO catalyst was investigated by direct transesterification of dry biomass into biodiesel along with other reaction parameters such as catalyst ratio, reaction time and stirring rate. The impact of the transesterification reaction parameters and microalgal biodiesel yield were analyzed by response surface methodology based on a full factorial, central composite design. The significance of the predicted mode was verified and 86.41% microalgal biodiesel yield was reported at optimal parameter conditions 1.7% (w/w), catalyst ratio, 3.6 h reaction time and stirring rate of 140.6 rpm. The biodiesel conversion was determined by 1 H nuclear magnetic resonance spectroscopy (NMR). The fuel properties of prepared biodiesel were found to be highly comply with the biodiesel standard ASTMD6751 and EN14214. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. [Optimization of enzymatic extraction of polysaccharide from Dendrobium officinale by box-Behnken design and response surface methodology].

    Science.gov (United States)

    Hu, Jian-mei; Li, Jing-ling; Feng, Peng; Zhang, Xiang-dong; Zhong, Ming

    2014-01-01

    To optimize the processing of enzymatic extraction of polysaccharide from Dendrobium officinale. With phenol-sulfuric acid method and the DNS determination polysaccharide, Box-Behnken response surface methodology was used to optimize different enzyme dosage, reaction temperature and reaction time by using Design-Expert 8.05 software for data analysis and processing. According to Box-Behnken response, the best extraction conditions for the polysaccharide from Dendrobium officinale were as follows: the amount of enzyme complex was 3.5 mg/mL, hydrolysis temperature was 53 degrees C, and reaction time was 70 min. In accordance with the above process, the polysaccharide yield was 16.11%. Box-Behnken response surface methodology is used to optimize the enzymatic extraction process for the polysaccharide in this study, which is effective, stable and feasible.

  4. [Optimization of Polysaccharide Extraction from Spirodela polyrrhiza by Plackett-Burman Design Combined with Box-Behnken Response Surface Methodology].

    Science.gov (United States)

    Jiang, Zheng; Wang, Hong; Wu, Qi-nan

    2015-06-01

    To optimize the processing of polysaccharide extraction from Spirodela polyrrhiza. Five factors related to extraction rate of polysaccharide were optimized by the Plackett-Burman design. Based on this study, three factors, including alcohol volume fraction, extraction temperature and ratio of material to liquid, were regarded as investigation factors by Box-Behnken response surface methodology. The effect order of three factors on the extraction rate of polysaccharide from Spirodela polyrrhiza were as follows: extraction temperature, alcohol volume fraction,ratio of material to liquid. According to Box-Behnken response, the best extraction conditions were: alcohol volume fraction of 81%, ratio of material to liquid of 1:42, extraction temperature of 100 degrees C, extraction time of 60 min for four times. Plackett-Burman design and Box-Behnken response surface methodology used to optimize the extraction process for the polysaccharide in this study is effective and stable.

  5. Optimization of Maillard Reaction in Model System of Glucosamine and Cysteine Using Response Surface Methodology.

    Science.gov (United States)

    Arachchi, Shanika Jeewantha Thewarapperuma; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Lee, Yang-Bong

    2017-03-01

    Sulfur-containing amino acids play important roles in good flavor generation in Maillard reaction of non-enzymatic browning, so aqueous model systems of glucosamine and cysteine were studied to investigate the effects of reaction temperature, initial pH, reaction time, and concentration ratio of glucosamine and cysteine. Response surface methodology was applied to optimize the independent reaction parameters of cysteine and glucosamine in Maillard reaction. Box-Behnken factorial design was used with 30 runs of 16 factorial levels, 8 axial levels and 6 central levels. The degree of Maillard reaction was determined by reading absorption at 425 nm in a spectrophotometer and Hunter's L, a, and b values. ΔE was consequently set as the fifth response factor. In the statistical analyses, determination coefficients (R 2 ) for their absorbance, Hunter's L, a, b values, and ΔE were 0.94, 0.79, 0.73, 0.96, and 0.79, respectively, showing that the absorbance and Hunter's b value were good dependent variables for this model system. The optimum processing parameters were determined to yield glucosamine-cysteine Maillard reaction product with higher absorbance and higher colour change. The optimum estimated absorbance was achieved at the condition of initial pH 8.0, 111°C reaction temperature, 2.47 h reaction time, and 1.30 concentration ratio. The optimum condition for colour change measured by Hunter's b value was 2.41 h reaction time, 114°C reaction temperature, initial pH 8.3, and 1.26 concentration ratio. These results can provide the basic information for Maillard reaction of aqueous model system between glucosamine and cysteine.

  6. Studying and optimizing the biodiesel production from mastic oil aided by ultrasonic using response surface method

    Directory of Open Access Journals (Sweden)

    B Hosseinzdeh Samani

    2016-09-01

    Full Text Available Introduction Biodiesel is a promising renewable substitute source of fuel produced from tree born oils, vegetable based oils, fats of animals and even waste cooking oil, has been identified as one of the key solutions for the alarming global twin problems of fossil fuel depletion and environmental degradation. One of the sources for biodiesel production is mastic which is often grown in mountains. Its kernel contains 55% oil which makes it as a valuable renewable resource for biodiesel production. The objective of this research was to study of the feasibility of biodiesel production from Atlas mastic oil using ultrasonic system and optimization of the process using Response surface methodology. Materials and Methods In order to supply the required oil for the biodiesel production process, the oil should be prepared before the reaction. Hence, the purified oil was methylated using Metcalf et al (1996 method, and the prepared sample was injected into Gas Chromatography device to determine fatty acids profile and molecular weight of the used oil. An ultrasonic processor (Hielscher Model UP400S, USA. was used to perform the transesterification reaction. All the experiments were replicated three times to determine the variability of the results and to assess the experimental errors. The reported values are the average of the individual runs. The different operating parameters used in the present work, to optimize the extent of conversion of Atlas pistache oil, include methanol to oil molar ratio (4:1, 5:1 ,6:1, amplitude (24.1, 62.5 100%, pulse (24.1, 62.5 100%, reaction time (3, 6, 9 min. Results and Discussion Results of analyses showed that the independent variables, namely molar ratio, vibration amplitude, pulse and reaction time had significant effects on the amount of produced methyl ester. By increasing the amplitude and pulse, the methyl ester content increased. Increase in amplitude and pulse cause to increase the mixing effect and physical

  7. Numerical thermal analysis and optimization of multi-chip LED module using response surface methodology and genetic algorithm

    NARCIS (Netherlands)

    Tang, Hong Yu; Ye, Huai Yu; Chen, Xian Ping; Qian, Cheng; Fan, Xue Jun; Zhang, G.Q.

    2017-01-01

    In this paper, the heat transfer performance of the multi-chip (MC) LED module is investigated numerically by using a general analytical solution. The configuration of the module is optimized with genetic algorithm (GA) combined with a response surface methodology. The space between chips, the

  8. [Optimization of dissolution process for superfine grinding technology on total saponins of Panax ginseng fibrous root by response surface methodology].

    Science.gov (United States)

    Zhao, Ya; Lai, Xiao-Pin; Yao, Hai-Yan; Zhao, Ran; Wu, Yi-Na; Li, Geng

    2014-03-01

    To investigate the effects of superfine comminution extraction technology of ginseng total saponins from Panax ginseng fibrous root, and to make sure the optimal extraction condition. Optimal condition of ginseng total saponins from Panax ginseng fibrous root was based on single factor experiment to study the effects of crushing degree, extraction time, alcohol concentration and extraction temperature on extraction rate. Response surface method was used to investigate three main factors such as superfine comminution time, extraction time and alcohol concentration. The relationship between content of ginseng total saponins in Panax ginseng fibrous root and three factors fitted second degree polynomial models. The optimal extraction condition was 9 min of superfine comminution time, 70% of alcohol, 50 degrees C of extraction temperature and 70 min of extraction time. Under the optimal condition, ginseng total saponins from Panax ginseng fibrous root was average 94. 81%, which was consistent with the predicted value. The optimization of technology is rapid, efficient, simple and stable.

  9. Optimization of surface maintenance

    International Nuclear Information System (INIS)

    Oeverland, E.

    1990-01-01

    The present conference paper deals with methods of optimizing the surface maintenance of steel-made offshore installations. The paper aims at identifying important approaches to the problems regarding the long-range planning of an economical and cost effective maintenance program. The methods of optimization are based on the obtained experiences from the maintenance of installations on the Norwegian continental shelf. 3 figs

  10. Optimization of MR fluid Yield stress using Taguchi Method and Response Surface Methodology Techniques

    Science.gov (United States)

    Mangal, S. K.; Sharma, Vivek

    2018-02-01

    Magneto rheological fluids belong to a class of smart materials whose rheological characteristics such as yield stress, viscosity etc. changes in the presence of applied magnetic field. In this paper, optimization of MR fluid constituents is obtained with on-state yield stress as response parameter. For this, 18 samples of MR fluids are prepared using L-18 Orthogonal Array. These samples are experimentally tested on a developed & fabricated electromagnet setup. It has been found that the yield stress of MR fluid mainly depends on the volume fraction of the iron particles and type of carrier fluid used in it. The optimal combination of the input parameters for the fluid are found to be as Mineral oil with a volume percentage of 67%, iron powder of 300 mesh size with a volume percentage of 32%, oleic acid with a volume percentage of 0.5% and tetra-methyl-ammonium-hydroxide with a volume percentage of 0.7%. This optimal combination of input parameters has given the on-state yield stress as 48.197 kPa numerically. An experimental confirmation test on the optimized MR fluid sample has been then carried out and the response parameter thus obtained has found matching quite well (less than 1% error) with the numerically obtained values.

  11. Mixed oxidizer hybrid propulsion system optimization under uncertainty using applied response surface methodology and Monte Carlo simulation

    Science.gov (United States)

    Whitehead, James Joshua

    The analysis documented herein provides an integrated approach for the conduct of optimization under uncertainty (OUU) using Monte Carlo Simulation (MCS) techniques coupled with response surface-based methods for characterization of mixture-dependent variables. This novel methodology provides an innovative means of conducting optimization studies under uncertainty in propulsion system design. Analytic inputs are based upon empirical regression rate information obtained from design of experiments (DOE) mixture studies utilizing a mixed oxidizer hybrid rocket concept. Hybrid fuel regression rate was selected as the target response variable for optimization under uncertainty, with maximization of regression rate chosen as the driving objective. Characteristic operational conditions and propellant mixture compositions from experimental efforts conducted during previous foundational work were combined with elemental uncertainty estimates as input variables. Response surfaces for mixture-dependent variables and their associated uncertainty levels were developed using quadratic response equations incorporating single and two-factor interactions. These analysis inputs, response surface equations and associated uncertainty contributions were applied to a probabilistic MCS to develop dispersed regression rates as a function of operational and mixture input conditions within design space. Illustrative case scenarios were developed and assessed using this analytic approach including fully and partially constrained operational condition sets over all of design mixture space. In addition, optimization sets were performed across an operationally representative region in operational space and across all investigated mixture combinations. These scenarios were selected as representative examples relevant to propulsion system optimization, particularly for hybrid and solid rocket platforms. Ternary diagrams, including contour and surface plots, were developed and utilized to aid in

  12. Optimization of lysine production in Corynebacteriumglutamicum ATCC15032 by Response surface methodology

    Directory of Open Access Journals (Sweden)

    Mehrnaz Haghi

    2017-03-01

    Discussion and conclusion: According to the results, the proposed culture media by response surface methodology causes 1400 times increase in the lysine production compared with M9 culture media and methionine had an important role in the production of lysine, probably by inhibiting the other metabolic pathway which has common metabolic precursor with lysine production metabolic pathway.

  13. Design and statistical optimization of glipizide loaded lipospheres using response surface methodology.

    Science.gov (United States)

    Shivakumar, Hagalavadi Nanjappa; Patel, Pragnesh Bharat; Desai, Bapusaheb Gangadhar; Ashok, Purnima; Arulmozhi, Sinnathambi

    2007-09-01

    A 32 factorial design was employed to produce glipizide lipospheres by the emulsification phase separation technique using paraffin wax and stearic acid as retardants. The effect of critical formulation variables, namely levels of paraffin wax (X1) and proportion of stearic acid in the wax (X2) on geometric mean diameter (dg), percent encapsulation efficiency (% EE), release at the end of 12 h (rel12) and time taken for 50% of drug release (t50), were evaluated using the F-test. Mathematical models containing only the significant terms were generated for each response parameter using the multiple linear regression analysis (MLRA) and analysis of variance (ANOVA). Both formulation variables studied exerted a significant influence (p optimization using the desirability approach was employed to develop an optimized formulation by setting constraints on the dependent and independent variables. The experimental values of dg, % EE, rel12 and t50 values for the optimized formulation were found to be 57.54 +/- 1.38 mum, 86.28 +/- 1.32%, 77.23 +/- 2.78% and 5.60 +/- 0.32 h, respectively, which were in close agreement with those predicted by the mathematical models. The drug release from lipospheres followed first-order kinetics and was characterized by the Higuchi diffusion model. The optimized liposphere formulation developed was found to produce sustained anti-diabetic activity following oral administration in rats.

  14. Chemical Flooding in Heavy-Oil Reservoirs: From Technical Investigation to Optimization Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Si Le Van

    2016-09-01

    rather than using a water slug in between. The results of the pre-evaluation show that two sequences of the ASP group have the highest NPV corresponding to the dissimilar applied oil prices. In the post-evaluation, the successful use of response surface methodology (RSM in the estimation and optimization procedures with coefficients of determination R2 greater than 0.97 shows that the project can possibly gain 4.47 $MM at a mean oil price of 46.5 $/bbl with the field scale of a quarter five-spot pattern. Further, with the novel assumption of normal distribution for the oil price variation, the chemical flooding sequence of concurrent alkali-surfactant-polymer injection with a buffering polymer solution is evaluated as the most feasible scheme owing to the achievement of the highest NPV at the highly possible oil price of 40–55 $/bbl compared to the other scheme.

  15. Response surface method applied to the thermoeconomic optimization of a complex cogeneration system modeled in a process simulator

    International Nuclear Information System (INIS)

    Pires, Thiago S.; Cruz, Manuel E.; Colaço, Marcelo J.

    2013-01-01

    This work presents the application of a surrogate model – a response surface – to replace the objective function to be minimized in the thermoeconomic optimization of a complex thermal system modeled with the aid of an expert process simulator. The objective function accounts for fuel, capital, operation and maintenance costs of the thermal system, and depends on nine decision variables. The minimization task is performed through the computational integration of two professional programs, a process simulator and a mathematical platform. Five algorithms are used to perform the optimization: the pattern search and genetic algorithms, both available in the mathematical platform, plus three custom-coded algorithms, differential evolution, particle swarm and simulated annealing. A comparative analysis of the performance of all five methods is presented, together with a critical appraisal of the surrogate model effectiveness. In the course of the optimization procedure, the process simulator computes the thermodynamic properties of all flows of the thermal system and solves the mass and energy balances each time the objective function has to be evaluated. By handling a set of radial basis functions as an approximation model to the original computationally expensive objective function, it is found here that the number of function evaluations can be appreciably reduced without significant deviation of the optimal value. The present study indicates that, for a thermoeconomic system optimization problem with a large number of decision variables and/or a costly objective function, the application of the response surface surrogate may prove more efficient than the original simulation model, reducing substantially the computational time involved in the optimization. - Highlights: ► A successful response surface method was proposed. ► The surrogate model may be more efficient than the original simulation model. ► Relative differences of less than 5% were found for the

  16. The Use of Response Surface Methodology to Optimize the Ultrasound-Assisted Extraction of Five Anthraquinones from Rheum palmatum L.

    Directory of Open Access Journals (Sweden)

    Xianghua Xia

    2011-07-01

    Full Text Available In this paper, ultrasound-assisted extraction (UAE was applied to the extraction of anthraquinones (aloe-emodin, rhein, emodin, chrysophanol and physcion from Rheum palmatum L. The five anthraquinones were quantified and analyzed by high performance liquid chromatography coupled with UV detection (HPLC-UV. The extraction solvent, extraction temperature and extraction time parameters, the three main factors for UAE, were optimized with response surface methodology (RSM to obtain the highest extraction efficiency. The optimal conditions were the use of 84% methanol as solvent, an extraction time of 33 min and an extraction temperature of 67 °C. Under these optimal conditions, the experimental values agreed closely with the predicted values. The analysis of variance indicated a high goodness of model fit and the success of RSM method for optimizing anthraquinones extraction in Rheum palmatum L.

  17. [Optimization of ultrasonic-assisted extraction of total flavonoids from leaves of the Artocarpus heterophyllus by response surface methodology].

    Science.gov (United States)

    Wang, Hong-wu; Liu, Yan-qing; Wang, Yuan-hong

    2011-07-01

    To investigate the ultrasonic-assisted extract on of total flavonoids from leaves of the Artocarpus heterophyllus. Investigated the effects of ethanol concentration, extraction time, and liquid-solid ratio on flavonoids yield. A 17-run response surface design involving three factors at three levels was generated by the Design-Expert software and experimental data obtained were subjected to quadratic regression analysis to create a mathematical model describing flavonoids extraction. The optimum ultrasonic assisted extraction conditions were: ethanol volume fraction 69.4% and liquid-solid ratio of 22.6:1 for 32 min. Under these optimized conditions, the yield of flavonoids was 7.55 mg/g. The Box-Behnken design and response surface analysis can well optimize the ultrasonic-assisted extraction of total flavonoids from Artocarpus heterophyllus.

  18. Optimization of ultrasonic assisted extraction of antioxidants from black soybean (Glycine max var) sprouts using response surface methodology.

    Science.gov (United States)

    Lai, Jixiang; Xin, Can; Zhao, Ya; Feng, Bing; He, Congfen; Dong, Yinmao; Fang, Yun; Wei, Shaomin

    2013-01-16

    Response surface methodology (RSM) using a central composite design (CCD) was employed to optimize the conditions for extraction of antioxidants from black soybean (Glycine max var) sprouts. Three influencing factors: liquid-solid ratio, period of ultrasonic assisted extraction and extraction temperature were investigated in the ultrasonic aqueous extraction. Then Response Surface Methodology (RSM) was applied to optimize the extraction process focused on DPPH radical-scavenging capacity of the antioxidants with respect to the above influencing factors. The best combination of each significant factor was determined by RSM design and optimum pretreatment conditions for maximum radical-scavenging capacity were established to be liquid-solid ratio of 29.19:1, extraction time of 32.13 min, and extraction temperature of 30 °C. Under these conditions, 67.60% of DPPH radical-scavenging capacity was observed experimentally, similar to the theoretical prediction of 66.36%.

  19. Using response surface methods to explore and optimize mating disruption of the leafminer Phyllocnistis citrella (Lepidoptera: Gracillariidae.

    Directory of Open Access Journals (Sweden)

    Denis S. Willett

    2015-03-01

    Full Text Available The application of synthetic sex pheromones to disrupt mating of agricultural pests can be an effective and environmentally friendly alternative to pesticide applications. Optimizing mating disruption through examination of multiple interrelated variables may contribute to wider adoption in agriculture, especially in situations where pheromone synthesis is expensive. Simulations and field experiments designed to produce response surfaces by varying the distribution and number of pheromone dispensers suggested procedures whereby understanding optimization might be increased over that resulting from more common experiments focusing on one factor at a time. Monte Carlo simulations of a spatially explicit agent-based model resulted in nonlinear disruption profiles with increasing point source density. Field trials conducted in citrus infested by the leafminer Phyllocnistis citrella varied the amount of pheromone applied at each point source and point source density using attractive and non-attractive disruption blends. Trap catch disruption in the field resulted in nonlinear disruption profiles similar to those observed with simulations. Response surfaces showed an interaction between the amount of pheromone applied and the number of point sources for the attractive blend, but not for the non-attractive blend. Disruption surfaces were combined with cost curves to optimize trap catch disruption under real world cost constraints. The methods used here highlight the importance of experiment design for understanding the underlying biological dynamics governing mating disruption and optimizing its implementation.

  20. [Optimization of prokaryotic expression conditions of Leptospira interrogans trigeminy genus-specific protein antigen based on surface response analysis].

    Science.gov (United States)

    Wang, Jiang; Luo, Dongjiao; Sun, Aihua; Yan, Jie

    2008-07-01

    Lipoproteins LipL32 and LipL21 and transmembrane protein OMPL1 have been confirmed as the superficial genus-specific antigens of Leptospira interrogans, which can be used as antigens for developing a universal genetic engineering vaccine. In order to obtain high expression of an artificial fusion gene lipL32/1-lipL21-ompL1/2, we optimized prokaryotic expression conditions. We used surface response analysis based on the central composite design to optimize culture conditions of a new antigen protein by recombinant Escherichia coli DE3.The culture conditions included initial pH, induction start time, post-induction time, Isopropyl beta-D-thiogalactopyranoside (IPTG) concentration, and temperature. The maximal production of antigen protein was 37.78 mg/l. The optimal culture conditions for high recombinant fusion protein was determined: initial pH 7.9, induction start time 2.5 h, a post-induction time of 5.38 h, 0.20 mM IPTG, and a post-induction temperature of 31 degrees C. Surface response analysis based on CCD increased the target production. This statistical method reduced the number of experiments required for optimization and enabled rapid identification and integration of the key culture condition parameters for optimizing recombinant protein expression.

  1. Optimization of biosurfactant production by Bacillus brevis using response surface methodology

    Directory of Open Access Journals (Sweden)

    Foukia E. Mouafi

    2016-03-01

    Full Text Available The present study aims to evaluate and validate a statistical model for maximizing biosurfactant productivity by Bacillus brevis using response surface methodology. In this respect, twenty bacterial isolates were screened for biosurfactant production using hemolytic activity, oil spreading technique, and emulsification index (E24. The most potent biosurfactant-producing bacterium (B. brevis was used for construction of the statistical response surface model. The optimum conditions for biosurfactant production by B. brevis were: 33 °C incubation temperature at pH 8 for 10 days incubation period and 8.5 g/L glucose concentration as a sole carbon source. The produced biosurfactant (BS (73% exhibited foaming activity, thermal stability in the range 30–80 °C for 30 min., pH stability, from 4 to 9 and antimicrobial activity against (Escherichia coli. The BS gave a good potential application as an emulsifier.

  2. Numerical Optimization of Impeller for Backward-Curved Centrifugal Fan by Response Surface Methodology (RSM)

    OpenAIRE

    Fannian Meng; Quanlin Dong; Yan Wang; Pengfei Wang; Chunxi Zhang

    2013-01-01

    A numerical optimum study on three-dimensional unsteady viscous flow in a centrifugal fan with backward-curved blades was performed. The influence of the inlet angle, the outlet blade angle and blade number on aerodynamic performance of the centrifugal fan was analyzed concerning the whole impeller-volute configuration. Response Surface Methodology (RSM) based on a three-level, three -variable Box-Behnken Design (BBD) was used to evaluate the interactive effects of factors such as inlet blade...

  3. Optimization of the Medium for the Production of Cellulase by the Mutant Trichoderma reesei WX-112 Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Xue-Cai Hao

    2006-01-01

    Full Text Available The mutant strain Trichoderma reesei WX-112 with high cellulase activity was isolated by a newly invented plate. The mutant’s ability to produce cellulase increased 1.95 times after the treatment with UV and N-methyl-N’-nitro-N-nitrosoguanidine (MNNG. Also, the medium composition was optimized using response surface methodology (RSM. A fractional factorial design (26–2 was applied to elucidate the medium components that significantly affect cellulase production. The concentration of Avicel and soybean cake flour in the medium were significant factors. The steepest ascent method was used to locate the optimal domain and a central composite design was used to estimate the quadratic response surface from which the factor levels for maximum production of cellulase were determined. The composition of fermentation medium optimized with response surface methodology was (in g/L: wheat bran 30, Avicel 36.4, soybean cake flour 24.7, KH2PO4 4 and corn steep flour 5. Compared to the original medium, the cellulase activity increased from 7.2 to 10.6 IU/mL.

  4. Optimization on Preparation Condition of Propolis Flavonoids Liposome by Response Surface Methodology and Research of Its Immunoenhancement Activity

    Directory of Open Access Journals (Sweden)

    Ju Yuan

    2013-01-01

    Full Text Available The aim of this study is to prepare propolis flavonoids liposome (PFL and optimize the preparation condition and to investigate further whether liposome could promote the immunoenhancement activity of propolis flavonoids (PF. PFL was prepared with ethanol injection method, and the preparation conditions of PFL were optimized with response surface methodology (RSM. Moreover, the immunoenhancement activity of PFL and PF in vitro was determined. The result showed that the optimal preparation conditions for PFL by response surface methodology were as follows: ratio of lipid to drug (w/w 9.6 : 1, ratio of soybean phospholipid to cholesterol (w/w 8.5 : 1, and speed of injection 0.8 mL·min−1. Under these conditions, the experimental encapsulation efficiency of PFL was 91.67 ± 0.21%, which was close to the predicted value. Therefore, the optimized preparation condition is very reliable. Moreover, the results indicated that PFL could not only significantly promote lymphocytes proliferation singly or synergistically with PHA, but also increase expression level of IL-2 and IFN-γ mRNA. These indicated that liposome could significantly improve the immunoenhancement activity of PF. PFL demonstrates the significant immunoenhancement activity, which provides the theoretical basis for the further experiment in vivo.

  5. Optimization of the production of extracellular α-amylase by Kluyveromyces marxianus IF0 0288 by response surface methodology

    Directory of Open Access Journals (Sweden)

    Panagiota-Yiolanda Stergiou

    2014-06-01

    Full Text Available The aim of this work was to study the production of extracellular α-amylase by Kluyveromyces marxianus IF0 0288 using optimized nutritional and cultural conditions in a complex yeast medium under aerobic batch fermentation. By applying the conventional "one-variable-at-a-time" approach and the response surface methodology, the effect of four fermentation parameters (type of carbon source, initial culture pH, temperature, and incubation time on the growth and α-amylase production was evaluated. The production of α-amylase during 60 h of fermentation increased 13-fold under optimized conditions (1% starch, pH 6.0, 30ºC in comparison to the conventional optimization method. The initial pH value of 6.13 and temperature of 30.3ºC were optimal conditions by the response surface methodology, leading to further improvement (up to 13-fold in the production of extracellular α-amylase. These results constituted first evidence that K. marxianus could be potentially used as an effective source of extracellular α-amylase.

  6. Optimization of microwave-assisted extraction (MAE) of coriander phenolic antioxidants - response surface methodology approach.

    Science.gov (United States)

    Zeković, Zoran; Vladić, Jelena; Vidović, Senka; Adamović, Dušan; Pavlić, Branimir

    2016-10-01

    Microwave-assisted extraction (MAE) of polyphenols from coriander seeds was optimized by simultaneous maximization of total phenolic (TP) and total flavonoid (TF) yields, as well as maximized antioxidant activity determined by 1,1-diphenyl-2-picrylhydrazyl and reducing power assays. Box-Behnken experimental design with response surface methodology (RSM) was used for optimization of MAE. Extraction time (X1 , 15-35 min), ethanol concentration (X2 , 50-90% w/w) and irradiation power (X3 , 400-800 W) were investigated as independent variables. Experimentally obtained values of investigated responses were fitted to a second-order polynomial model, and multiple regression analysis and analysis of variance were used to determine fitness of the model and optimal conditions. The optimal MAE conditions for simultaneous maximization of polyphenol yield and increased antioxidant activity were an extraction time of 19 min, an ethanol concentration of 63% and an irradiation power of 570 W, while predicted values of TP, TF, IC50 and EC50 at optimal MAE conditions were 311.23 mg gallic acid equivalent per 100 g dry weight (DW), 213.66 mg catechin equivalent per 100 g DW, 0.0315 mg mL(-1) and 0.1311 mg mL(-1) respectively. RSM was successfully used for multi-response optimization of coriander seed polyphenols. Comparison of optimized MAE with conventional extraction techniques confirmed that MAE provides significantly higher polyphenol yields and extracts with increased antioxidant activity. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Optimization of enzymatic hydrolysis of guar gum using response surface methodology

    OpenAIRE

    Mudgil, Deepak; Barak, Sheweta; Khatkar, B. S.

    2012-01-01

    Guar gum is a polysaccharide obtained from guar seed endosperm portion. Enzymatically hydrolyzed guar gum is low in viscosity and has several health benefits as dietary fiber. In this study, response surface methodology was used to determine the optimum conditions for hydrolysis that give minimum viscosity of guar gum. Central composite was employed to investigate the effects of pH (3–7), temperature (20–60 °C), reaction time (1–5 h) and cellulase concentration (0.25–1.25 mg/g) on viscosity d...

  8. Optimization of ultrasonic-assisted extraction of antioxidant compounds from Guava (Psidium guajava L.) leaves using response surface methodology.

    Science.gov (United States)

    Kong, Fansheng; Yu, Shujuan; Feng, Zeng; Wu, Xinlan

    2015-01-01

    To optimization of extraction of antioxidant compounds from guava (Psidium guajava L.) leaves and showed that the guava leaves are the potential source of antioxidant compounds. The bioactive polysaccharide compounds of guava leaves (P. guajava L.) were obtained using ultrasonic-assisted extraction. Extraction was carried out according to Box-Behnken central composite design, and independent variables were temperature (20-60°C), time (20-40 min) and power (200-350 W). The extraction process was optimized by using response surface methodology for the highest crude extraction yield of bioactive polysaccharide compounds. The optimal conditions were identified as 55°C, 30 min, and 240 W. 1,1-diphenyl-2-picryl-hydrazyl and hydroxyl free radical scavenging were conducted. The results of quantification showed that the guava leaves are the potential source of antioxidant compounds.

  9. Statistical Optimization of the Induction of Phytase Production by Arabinose in a recombinant E. coli using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Abd-El Aziem Farouk

    2017-11-01

    Full Text Available The production of phytase in a recombinant E.coli using the pBAD expression  system was optimized using response surface methodology with full-factorial faced centered central composite design. The ampicilin and arabinose concentration in the cultivation media and the incubation temperature were optimized in order to maximize phytase production using 2 3  central composite experimental design. With this design the number of actual experiment performed could be reduced while allowing eludidation of possible interactions among these factors. The most significant parameter was shown to be the linear and quadratic effect of the incubation temperature.  Optimal conditions for phytase production were determined to be 100 µg/ml ampicilin, 0.2 % arabinose and an incubation temperature of 37ºC. The production of phytase in the recombinant E. coli was scaled up to 100 ml and 1000 ml.

  10. Methotrexate loading in chitosan nanoparticles at a novel pH: Response surface modeling, optimization and characterization.

    Science.gov (United States)

    Hashad, Rania A; Ishak, Rania A H; Geneidi, Ahmed S; Mansour, Samar

    2016-10-01

    The aim of this study was to assess the feasibility of employing a novel but critical formulation pH (6.2) to encapsulate an anionic model drug (methotrexate, MTX) into chitosan(Cs)-tripolyphosphate nanoparticles(NPs). A response surface methodology using a three-level full factorial design was applied studying the effects of two independent variables namely; Cs concentration and MTX concentration. The responses investigated were the entrapment efficiency (EE%), mean hydrodynamic particle size (PS), polydispersity index (PDI) and zeta potential (ZP). In order to simultaneously optimize the series of models obtained, the desirability function approach was applied with a goal to produce high percent of MTX encapsulated into highly charged Cs-TPP NPs of homogenous optimum PS. MTX-loaded CsNPs were successfully prepared at the novel pH applied. The suggested significant models were found quadratic for EE, PS and ZP responses, while 2-factor interaction model for PDI. The optimization overlay graph showed that the maximum global desirability, D=0.856, was reached when the conditions were set at high Cs and MTX concentration. Thus, the use of such optimized conditions, at this novel pH, achieved a maximum drug EE% (73.38%) into NPs characterized by optimum PS (232.6nm), small PDI value (0.195) and highly surface charged (+18.4mV). Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Determination of Optimal Parameters for Diffusion Bonding of Semi-Solid Casting Aluminium Alloy by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Kaewploy Somsak

    2015-01-01

    Full Text Available Liquid state welding techniques available are prone to gas porosity problems. To avoid this solid state bonding is usually an alternative of preference. Among solid state bonding techniques, diffusion bonding is often employed in aluminium alloy automotive parts welding in order to enhance their mechanical properties. However, there has been no standard procedure nor has there been any definitive criterion for judicious welding parameters setting. It is thus a matter of importance to find the set of optimal parameters for effective diffusion bonding. This work proposes the use of response surface methodology in determining such a set of optimal parameters. Response surface methodology is more efficient in dealing with complex process compared with other techniques available. There are two variations of response surface methodology. The one adopted in this work is the central composite design approach. This is because when the initial upper and lower bounds of the desired parameters are exceeded the central composite design approach is still capable of yielding the optimal values of the parameters that appear to be out of the initially preset range. Results from the experiments show that the pressing pressure and the holding time affect the tensile strength of jointing. The data obtained from the experiment fits well to a quadratic equation with high coefficient of determination (R2 = 94.21%. It is found that the optimal parameters in the process of jointing semi-solid casting aluminium alloy by using diffusion bonding are the pressing pressure of 2.06 MPa and 214 minutes of the holding time in order to achieve the highest tensile strength of 142.65 MPa

  12. Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM).

    Science.gov (United States)

    Belwal, Tarun; Dhyani, Praveen; Bhatt, Indra D; Rawal, Ranbeer Singh; Pande, Veena

    2016-09-15

    This study for the first time designed to optimize the extraction of phenolic compounds and antioxidant potential of Berberis asiatica fruits using response surface methodology (RSM). Solvent selection was done based on the preliminary experiments and a five-factors-three-level, Central Composite Design (CCD). Extraction temperature (X1), sample to solvent ratio (X3) and solvent concentration (X5) significantly affect response variables. The quadratic model well fitted for all the responses. Under optimal extraction conditions, the dried fruit sample mixed with 80% methanol having 3.0 pH in a ratio of 1:50 and the mixture was heated at 80 °C for 30 min; the measured parameters was found in accordance with the predicted values. High Performance Liquid Chromatography (HPLC) analysis at optimized condition reveals 6 phenolic compounds. The results suggest that optimization of the extraction conditions is critical for accurate quantification of phenolics and antioxidants in Berberis asiatica fruits, which may further be utilized for industrial extraction procedure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Optimization of the Extraction of Antioxidants and Caffeine from Maté (Ilex paraguariensis Leaves by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Vanessa Graciela Hartwig

    2013-04-01

    Full Text Available Optimal conditions for the industrial extraction of total polyphenols from maté (Ilex paraguariensis were determined using response surface methodology, with two independent variables: ethanol percentage of the extraction solution and liquid to solid ratio. Response variables were total polyphenol content, antioxidant capacity, concentration of total polyphenols and caffeine content. The optimal conditions found were a liquid to solid ratio from 8 - 9 w w-1 and ethanol percentage of the extraction solution from 30 -50 % w w-1. Under these conditions the main predicted values corresponding to leaf extracts were 40 μg chlorogenic acid equivalents mL-1 of original extract, 13 g chlorogenic acid equivalents per 100 g dry matter for total polyphenol content, 22 g Trolox equivalents and 15.5 g ascorbic acid equivalents per 100 g dry matter for antioxidant capacity. The total polyphenol content of twig extracts was 36% lower than that in the leaf extracts.

  14. Synthesis of structured triacylglycerols containing caproic acid by lipase-catalyzed acidolysis: Optimization by response surface methodology

    DEFF Research Database (Denmark)

    Zhou, D.Q.; Xu, Xuebing; Mu, Huiling

    2001-01-01

    Production in a batch reactor with a solvent-free system of structured triacylglycerols containing short-chain fatty acids by Lipozyme RM IM-catalyzed acidolysis between rapeseed oil and caproic acid was optimized using response surface methodology (RSM). Reaction time (t(r)), substrate ratio (S......-r = 2-6 mol/mol; and W-c = 2-12 wt %. The biocatalyst was Lipozyme RM IM, in which Rhizomucor miehei lipase is immobilized on a resin. The incorporation of caproic acid into rapeseed oil was the main monitoring response. In addition, the contents of mono-incorporated structured triacylglycerols and di......-incorporated structured triacylglycerols were also evaluated. The optimal reaction conditions for the incorporation of caproic acid and the content of di-incorporated structured triacylglycerols were as follows: t(r) = 17 h; 8, = 5; E-1 = 14 wt %; W-c = 10 wt %; T-e = 65 degreesC. At these conditions, products with 55...

  15. Production of Heat Sensitive Monoacylglycerols by Enzymatic Glycerolysis in Tert-pentanol: Process Optimization by Response Surface Methodology

    DEFF Research Database (Denmark)

    Damstrup, Marianne L.; Jensen, Tine; Sparsø, Flemming V.

    2006-01-01

    The aim of this study was to optimize production of MAG by lipase-catalyzed glycerolysis in a tert-pentanol system. Twenty-nine batch reactions consisting of glycerol, sunflower oil, tert-pentanol, and commercially available lipase (Novozym®435) were carried out, with four process parameters being...... varied: Enzyme load, reaction time, substrate ratio of glycerol to oil, and solvent amount. Response surface methodology was applied to optimize the reaction system based on the experimental data achieved. MAG, DAG, and TAG contents, measured after a selected reaction time, were used as model responses....... Well-fitting quadratic models were obtained for MAG, DAG, and TAG contents as a function of the process parameters with determination coefficients (R2) of 0.89, 0.88, and 0.92, respectively. Of the main effects examined, only enzyme load and reaction time significantly influenced MAG, DAG, and TAG...

  16. Loteprednol Etabonate Nanoparticles: Optimization via Box-Behnken Design Response Surface Methodology and Physicochemical Characterization.

    Science.gov (United States)

    Sah, Abhishek K; Suresh, Preeti K

    2017-01-01

    Abstract: The objective of the present work was to prepare and optimize the loteprednoletabonate (LE) loaded poly (D,L-lactide co-glycolide) (PLGA) polymer based nanoparticle carrier. The review on recent patents (US9006241, US20130224302A1, US2012/0028947A1) assisted in the selection of drug and polymer for designing nanoparticles for ocular delivery applications. The nanoparticles were prepared by solvent evaporation followed by high speed homogenization. Biodegradable polymer PLGA (50:50) grade was utilized to develop various formulations with different drug:polymer ratio. A Box-Behnken design with 33 factorial design was selected for the present study and 17 runs were carried out in totality. The influence of various process variables (viz., polymer concentration, homogenization speed and sonication time) on the characteristics of nanoparticles including the in vitro drug release profile were studied. The nanoparticulate formulations were evaluated for mean spherical diameter, polydispersity index (PDI), zeta potential, surface morphology, drug entrapment and in-vitro drug release profile. The entrapment efficiency, drug loading and mean particle size were found to be 96.31±1.68 %, 35.46±0.35 % and 167.6±2.1 nm respectively. The investigated process and formulation variables were found to have significant effect on the particle size, drug loading (DL), entrapment efficiency (EE), and in vitro drug release profile. A biphasic in vitro drug release profile was apparent from the optimized nanoparticles (NPs) for 24 hours. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Optimization of hybrid laser - TIG welding of 316LN steel using response surface methodology (RSM)

    Science.gov (United States)

    Ragavendran, M.; Chandrasekhar, N.; Ravikumar, R.; Saxena, Rajesh; Vasudevan, M.; Bhaduri, A. K.

    2017-07-01

    In the present study, the hybrid laser - TIG welding parameters for welding of 316LN austenitic stainless steel have been investigated by combining a pulsed laser beam with a TIG welding heat source at the weld pool. Laser power, pulse frequency, pulse duration, TIG current were presumed as the welding process parameters whereas weld bead width, weld cross-sectional area and depth of penetration (DOP) were considered as the process responses. Central composite design was used to complete the design matrix and welding experiments were conducted based on the design matrix. Weld bead measurements were then carried out to generate the dataset. Multiple regression models correlating the process parameters with the responses have been developed. The accuracy of the models were found to be good. Then, the desirability approach optimization technique was employed for determining the optimum process parameters to obtain the desired weld bead profile. Validation experiments were then carried out from the determined optimum process parameters. There was good agreement between the predicted and measured values.

  18. Optimal Responsible Investment

    DEFF Research Database (Denmark)

    Jessen, Pernille

    The paper studies retail Socially Responsible Investment and portfolio allocation. It extends conventional portfolio theory by allowing for a personal value based investment decision. When preferences for responsibility enter the framework for mean-variance analysis, it yields an optimal...... responsible investment model. An example of index investing illustrates the theory. Results show that it is crucial for the responsible investor to consider portfolio risk, expected return, and responsibility simultaneously in order to obtain an optimal portfolio. The model enables responsible investors...

  19. Optimization of edible coating formulations for improving postharvest quality and shelf life of pear fruit using response surface methodology.

    Science.gov (United States)

    Nandane, A S; Dave, Rudri K; Rao, T V Ramana

    2017-01-01

    The effect of composite edible films containing soy protein isolate (SPI) in combination with additives like hydroxypropyl methylcellulose (HPMC) and olive oil on 'Babughosha' pear ( Pyrus communis L.) stored at ambient temperature (28 ± 5 °C and 60 ± 10% RH) was evaluated using Response surface methodology (RSM). A total of 30 edible coating formulations comprising of SPI (2-6%, w/v), olive oil (0.7-1.1%, v/v), HPMC (0.1-0.5%, w/v) and potassium sorbate (0-0.4% w/v) were evaluated for optimizing the most suitable combination. Quality parameters like weight loss%, TSS, pH and titrable acidity of the stored pears were selected as response variables for optimization. The optimization procedure was carried out using RSM. It was observed that the response variables were mainly effected by concentration of SPI and olive oil in the formulation. Edible coating comprising of SPI 5%, HPMC 0.40%, olive oil 1% and potassium sorbate 0.22% was found to be most suitable combination for pear fruit with predicted values of response variables indicated as weight loss% 3.50, pH 3.41, TSS 11.13 and TA% 0.513.

  20. Sustained release biodegradable solid lipid microparticles: Formulation, evaluation and statistical optimization by response surface methodology

    Directory of Open Access Journals (Sweden)

    Hanif Muhammad

    2017-12-01

    Full Text Available For preparing nebivolol loaded solid lipid microparticles (SLMs by the solvent evaporation microencapsulation process from carnauba wax and glyceryl monostearate, central composite design was used to study the impact of independent variables on yield (Y1, entrapment efficiency (Y2 and drug release (Y3. SLMs having a 10-40 μm size range, with good rheological behavior and spherical smooth surfaces, were produced. Fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray diffractometry pointed to compatibility between formulation components and the zeta-potential study confirmed better stability due to the presence of negative charge (-20 to -40 mV. The obtained outcomes for Y1 (29-86 %, Y2 (45-83 % and Y3 (49-86 % were analyzed by polynomial equations and the suggested quadratic model were validated. Nebivolol release from SLMs at pH 1.2 and 6.8 was significantly (p 0.85 value (Korsmeyer- Peppas suggested slow erosion along with diffusion. The optimized SLMs have the potential to improve nebivolol oral bioavailability.

  1. Sustained release biodegradable solid lipid microparticles: Formulation, evaluation and statistical optimization by response surface methodology.

    Science.gov (United States)

    Hanif, Muhammad; Khan, Hafeez Ullah; Afzal, Samina; Mahmood, Asif; Maheen, Safirah; Afzal, Khurram; Iqbal, Nabila; Andleeb, Mehwish; Abbas, Nazar

    2017-12-20

    For preparing nebivolol loaded solid lipid microparticles (SLMs) by the solvent evaporation microencapsulation process from carnauba wax and glyceryl monostearate, central composite design was used to study the impact of independent variables on yield (Y1), entrapment efficiency (Y2) and drug release (Y3). SLMs having a 10-40 μm size range, with good rheological behavior and spherical smooth surfaces, were produced. Fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray diffractometry pointed to compatibility between formulation components and the zeta-potential study confirmed better stability due to the presence of negative charge (-20 to -40 mV). The obtained outcomes for Y1 (29-86 %), Y2 (45-83 %) and Y3 (49-86 %) were analyzed by polynomial equations and the suggested quadratic model were validated. Nebivolol release from SLMs at pH 1.2 and 6.8 was significantly (p 0.85 value (Korsmeyer- Peppas) suggested slow erosion along with diffusion. The optimized SLMs have the potential to improve nebivolol oral bioavailability.

  2. Optimization of maltodextrin production from avocado seed starch by response surface methodology

    Science.gov (United States)

    Nguyen, Thanh Viet; Ma, Tuyen-Hoang Nguyen; Nguyen, Tha Thi; Ho, Vinh-Nghi Kim; Vo, Hau Tan

    2018-04-01

    A process for maltodextrin production from avocado seed starch was reported in this study. Response surface methodology was used to investigate the effects of three independent variables for hydrolysis of the starch using a commercial food-grade α-amylase, Termamyl SC. These variables included enzyme concentration (0.05 - 0.15% starch), pH (5.0 - 6.0) and hydrolysis time (1.0 - 3.0 h), while the temperature fixed at 95°C. The result showed that the optimum conditions were using enzyme concentration at 0.12%, pH at 5.5 and 2.75 h of the incubation time. Under the optimum conditions, the recovered starch yield was 79.8% and the maltodextrin powder had 15.8 of dextrose equivalent.

  3. Optimization of castor seed oil extraction process using response surface methodology

    Directory of Open Access Journals (Sweden)

    J. D. Mosquera-Artamonov

    2016-09-01

    Full Text Available This work focuses on the study of the oil extraction yield from castor seed using three different seed conditions: whole, minced and bare endosperm. Taguchi design was used to determine the contribution of the following parameters: seed condition, seed load in the extractor, temperature, and pressure. It was proved that it is necessary to introduce the whole seed and that the presence of the pericarp increases the extraction yield. The contribution of the control factors has an extraction yield limit. After determining which factors contributed to the process, these were left at their optimum levels aiming to reduce the control factors to only two. The complete analysis was done using a surface response methodology giving the best parameter for temperature and pressure that allows a better yielding mechanical extraction. The oil extraction yield can be kept up to 35% of the seed.

  4. Optimization and characterization studies on bio-oil production from palm shell by pyrolysis using response surface methodology

    International Nuclear Information System (INIS)

    Abnisa, Faisal; Wan Daud, W.M.A.; Sahu, J.N.

    2011-01-01

    In this work palm shell waste was pyrolyzed to produces bio-oil. The effects of several parameters on the pyrolysis efficiency were tested to identify the optimal bio-oil production conditions. The tested parameters include temperature, N 2 flow rate, feed-stock particle size, and reaction time. The experiments were conducted using a fix-bed reactor. The efficient response surface methodology (RSM), with a central composite design (CCD), were used for modeling and optimization the process parameters. The results showed that the second-order polynomial equation explains adequately the non-linear nature of the modeled response. An R 2 value of 0.9337 indicates a sufficient adjustment of the model with the experimental data. The optimal conditions found to be at the temperature of 500 o C, N 2 flow rate of 2 L/min, particle size of 2 mm and reaction time of 60 min and yield of bio-oil was approximately obtained 46.4 wt %. In addition, Fourier Transform infra-red (FT-IR) spectroscopy and gas chromatography/mass spectrometry (GC-MS) were used to characterize the gained bio-oil under the optimum condition. -- Highlights: → The RSM, with a CCD, was used for modeling and optimization for bio-oil synthesis. → The obtained model explains adequately the non-linear nature. → An R 2 value of 0.9337 ensures a sufficient adjustment of the model. → It explains the importance of the experimental factors, their interactions.

  5. Optimization of a novel improver gel formulation for Barbari flat bread using response surface methodology.

    Science.gov (United States)

    Pourfarzad, Amir; Haddad Khodaparast, Mohammad Hossein; Karimi, Mehdi; Mortazavi, Seyed Ali

    2014-10-01

    Nowadays, the use of bread improvers has become an essential part of improving the production methods and quality of bakery products. In the present study, the Response Surface Methodology (RSM) was used to determine the optimum improver gel formulation which gave the best quality, shelf life, sensory and image properties for Barbari flat bread. Sodium stearoyl-2-lactylate (SSL), diacetyl tartaric acid esters of monoglyceride (DATEM) and propylene glycol (PG) were constituents of the gel and considered in this study. A second-order polynomial model was fitted to each response and the regression coefficients were determined using least square method. The optimum gel formulation was found to be 0.49 % of SSL, 0.36 % of DATEM and 0.5 % of PG when desirability function method was applied. There was a good agreement between the experimental data and their predicted counterparts. Results showed that the RSM, image processing and texture analysis are useful tools to investigate, approximate and predict a large number of bread properties.

  6. Microencapsulation of Theobroma cacao L. waste extract: optimization using response surface methodology.

    Science.gov (United States)

    Gabbay Alves, Taís Vanessa; Silva da Costa, Russany; Aliakbarian, Bahar; Casazza, Alessandro Alberto; Perego, Patrizia; Carréra Silva Júnior, José Otávio; Ribeiro Costa, Roseane Maria; Converti, Attilio

    2017-03-01

    The cocoa extract (Theobroma cacao L.) has a significant amount of polyphenols (TP) with potent antioxidant activity (AA). This study aims to optimise microencapsulation of the extract of cocoa waste using chitosan and maltodextrin. Microencapsulation tests were performed according to a Box-Behnken factorial design, and the results were evaluated by response surface methodology with temperature, maltodextrin concentration (MD) and extract flowrate (EF) as independent variables, and the fraction of encapsulated TP, TP encapsulation yield, AA, yield of drying and solubility index as responses. The optimum conditions were: inlet temperature of 170 °C, MD of 5% and EF of 2.5 mL/min. HPLC analysis identified epicatechin as the major component of both the extract and microparticles. TP release was faster at pH 3.5 than in water. These results as a whole suggest that microencapsulation was successful and the final product can be used as a nutrient source for aquatic animal feed. Highlights Microencapsulation is optimised according to a factorial design of the Box-Behnken type. Epicatechin is the major component of both the extract and microcapsules. The release of polyphenols from microcapsules is faster at pH 3.5 than in water.

  7. Optimization of Fenton's oxidation of herbicide dicamba in water using response surface methodology

    Science.gov (United States)

    Sangami, Sanjeev; Manu, Basavaraju

    2017-12-01

    In this study Fenton's oxidation of dicamba in aqueous medium was investigated by using the response surface methodology. The influence of H2O2/COD ( A), H2O2/Fe2+ ( B), pH ( C) and reaction time ( D) as independent variables were studied on two responses (COD and dicamba removal efficiency). The dosage of H2O2 (5.35-17.4 mM) and Fe2+ (0.09-2.13 mM) were varied and optimum percentage removal of dicamba of 84.01% with H2O2 and Fe2+ dosage of 11.38 and 0.33 mM respectively. The whole oxidation process was monitored by high performance liquid chromatography (HPLC) along with liquid chromatography/mass spectrometry (LC/MS). It was found that 82% of dicamba was mineralized to oxalic acid, chloride ion, CO2 and H2O, which was confirmed with COD removal of 81.53%. The regression analysis was performed, in which standard deviation (2.74), coefficient of correlation ( R 2 = R_{adj}2) and adequate precision (>12) were in good agreement with model values. Finally, the treatment process was validated by performing the additional experiments.

  8. Optimization of fermentation conditions for 1,3-propanediol production by marine Klebsiella pneumonia HSL4 using response surface methodology

    Science.gov (United States)

    Li, Lili; Zhou, Sheng; Ji, Huasong; Gao, Ren; Qin, Qiwei

    2014-09-01

    The industrially important organic compound 1,3-propanediol (1,3-PDO) is mainly used as a building block for the production of various polymers. In the present study, response surface methodology protocol was followed to determine and optimize fermentation conditions for the maximum production of 1,3-PDO using marine-derived Klebsiella pneumoniae HSL4. Four nutritional supplements together with three independent culture conditions were optimized as follows: 29.3 g/L glycerol, 8.0 g/L K2 HPO4, 7.6 g/L (NH4)2 SO4, 3.0 g/L KH2 PO4, pH 7.1, cultivation at 35°C for 12 h. Under the optimal conditions, a maximum 1,3-PDO concentration of 14.5 g/L, a productivity of 1.21 g/(L·h) and a conversion of glycerol of 0.49 g/g were obtained. In comparison with the control conditions, fermentation under the optimized conditions achieved an increase of 38.8% in 1,3-PDO concentration, 39.0% in productivity and 25.7% in glycerol conversion in flask. This enhancement trend was further confirmed when the fermentation was conducted in a 5-L fermentor. The optimized fermentation conditions could be an important basis for developing lowcost, large-scale methods for industrial production of 1,3-PDO in the future.

  9. Optimizing the conditions for hydrothermal liquefaction of barley straw for bio-crude oil production using response surface methodology

    DEFF Research Database (Denmark)

    Zhu, Zhe; Rosendahl, Lasse Aistrup; Toor, Saqib Sohail

    2018-01-01

    The present paper examines the conversion of barley straw to bio-crude oil (BO) via hydrothermal liquefaction. Response surface methodology based on central composite design was utilized to optimize the conditions of four independent variables including reaction temperature (factor X1, 260-340 oC...... phenols and their derivatives, acids, aromatic hydrocarbon, ketones, N-contained compounds and alcohols, which makes it a promising material in the applications of either bio-fuel or as a phenol substitute in bio-phenolic resins....

  10. Production of specifically structured lipids by enzymatic interesterification in a pilot enzyme bed reactor: process optimization by response surface methodology

    DEFF Research Database (Denmark)

    Xu, Xuebing; Mu, Huiling; Høy, Carl-Erik

    1999-01-01

    Pilot production of specifically structured lipids by Lipozyme IM-catalyzed interesterification was carried out in a continuous enzyme bed reactor without the use of solvent. Medium chain triacylglycerols and oleic acid were used as model substrates. Response surface methodology was applied...... and the production of mono-incorporated and di-incorporated structured lipids with multiple regression and backward elimination. The coefficient of determination (R2) for the incorporation was 0.93, and that for the di-incorporated products was 0.94. The optimal conditions were flow rate, 2 ml/min; temperature, 65...

  11. Optimization and in-vivo evaluation of isradipine nanoparticles using Box-Behnken design surface response methodology

    Directory of Open Access Journals (Sweden)

    Vijayan Venugopal

    2016-01-01

    Full Text Available The isradipine is the potent anti hypertensive drug, which is matrix in polymeric nanoparticle by using solvent evaporation method. In this work, 3-factor, 3-level Box-Behnken design was used to optimize the process parameters like polymer concentration (A, sonication frequency (B and sonication time (C. Three dependent variable’s particle size, entrapment efficiency and practical yield were measured as responses. Mathematical equations and response surface plots were used to relate the dependent and independent variables. The optimization model of particle size of 343.14 nm, entrapment efficiency of about 83.74% and practical yield of 85.39% with A, B and C levels of 750 mg, 37.5 min and 40 kHz respectively. The observed responses were in close agreement with the predicted values of the optimized process. The prepared nanoparticle was characterized by Fourier transform infrared spectroscopy, morphological studies and in-vitro drug release studies. The prepared nanoparticle was showed good sustained release of drug upto 24 h. The anti-hypertensive study was performed on animal model. The PMMA (Poly-Methyl-Metha- Acrylate isradipine nano particle shows fall in blood pressure was delayed and reach 152±2 mmHg at 1 h. The action was sustained until prolong period. Based on pharmacokinetic and pharmacodynamics parameter, the isradipine nanoparticles shows better bioavailability compare with solution form.

  12. Hybrid response surface methodology-artificial neural network optimization of drying process of banana slices in a forced convective dryer.

    Science.gov (United States)

    Taheri-Garavand, Amin; Karimi, Fatemeh; Karimi, Mahmoud; Lotfi, Valiullah; Khoobbakht, Golmohammad

    2018-06-01

    The aim of the study is to fit models for predicting surfaces using the response surface methodology and the artificial neural network to optimize for obtaining the maximum acceptability using desirability functions methodology in a hot air drying process of banana slices. The drying air temperature, air velocity, and drying time were chosen as independent factors and moisture content, drying rate, energy efficiency, and exergy efficiency were dependent variables or responses in the mentioned drying process. A rotatable central composite design as an adequate method was used to develop models for the responses in the response surface methodology. Moreover, isoresponse contour plots were useful to predict the results by performing only a limited set of experiments. The optimum operating conditions obtained from the artificial neural network models were moisture content 0.14 g/g, drying rate 1.03 g water/g h, energy efficiency 0.61, and exergy efficiency 0.91, when the air temperature, air velocity, and drying time values were equal to -0.42 (74.2 ℃), 1.00 (1.50 m/s), and -0.17 (2.50 h) in the coded units, respectively.

  13. Optimization of the ethanolysis of Raphanus sativus (L. Var.) crude oil applying the response surface methodology.

    Science.gov (United States)

    Domingos, Anderson Kurunczi; Saad, Emir Bolzani; Wilhelm, Helena Maria; Ramos, Luiz Pereira

    2008-04-01

    Raphanus sativus (L. Var) is a perennial plant of the Brassicaceae (or Cruciferae) family whose oil has not been investigated in detail for biodiesel production, particularly when ethanol is used as the alcoholysis agent. In this work, response surface methodology (RSM) was used to determine the optimum condition for the ethanolysis of R. sativus crude oil. Three process variables were evaluated at two levels (2(3) experimental design): the ethanol:oil molar ratio (6:1 and 12:1), the catalyst concentration in relation to oil mass (0.4 and 0.8 wt% NaOH) and the alcoholysis temperature (45 and 65 degrees C). When the experimental results were tentatively adjusted by linear regression, only 58.15% of its total variance was explained. Therefore, a quadratic model was investigated to improve the poor predictability of the linear model. To apply the quadratic model, the 2(3) experimental design had to be expanded to a circumscribed central composite design. This allowed the development of a response surface that was able to predict 97.75% of the total variance of the system. Validation was obtained by performing one ethanolysis experiment at the conditions predicted by the model (38 degrees C, ethanol:oil molar ratio of 11.7:1 and 0.6 wt% NaOH). The resulting ester yield (104.10 wt% or 99.10% of the theoretical yield of 105.04 wt%) was shown to be the highest among all conditions tested in this study. The second ethanolysis stage of the best RSM product required 50% less ethanol and 90% less catalyst consumption. The amount of ethyl esters obtained after this procedure reached 94.5% of the theoretical yield. The resulting ethyl esters were shown to comply with most of the Brazilian biodiesel specification parameters except for oxidation stability. Addition of 500 ppm of BHT to the esters, however, complied with the specification target of 6h. The application of 2 wt% Magnesol after the second ethanolysis stage eliminated the need for water washing and helped generate a

  14. An effective vacuum assisted extraction method for the optimization of labdane diterpenoids from Andrographis paniculata by response surface methodology.

    Science.gov (United States)

    Wang, Ya-Qi; Wu, Zhen-Feng; Ke, Gang; Yang, Ming

    2014-12-31

    An effective vacuum assisted extraction (VAE) technique was proposed for the first time and applied to extract bioactive components from Andrographis paniculata. The process was carefully optimized by response surface methodology (RSM). Under the optimized experimental conditions, the best results were obtained using a boiling temperature of 65 °C, 50% ethanol concentration, 16 min of extraction time, one extraction cycles and a 12:1 liquid-solid ratio. Compared with conventional ultrasonic assisted extraction and heat reflux extraction, the VAE technique gave shorter extraction times and remarkable higher extraction efficiency, which indicated that a certain degree of vacuum gave the solvent a better penetration of the solvent into the pores and between the matrix particles, and enhanced the process of mass transfer. The present results demonstrated that VAE is an efficient, simple and fast method for extracting bioactive components from A. paniculata, which shows great potential for becoming an alternative technique for industrial scale-up applications.

  15. An Effective Vacuum Assisted Extraction Method for the Optimization of Labdane Diterpenoids from Andrographis paniculata by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Ya-Qi Wang

    2014-12-01

    Full Text Available An effective vacuum assisted extraction (VAE technique was proposed for the first time and applied to extract bioactive components from Andrographis paniculata. The process was carefully optimized by response surface methodology (RSM. Under the optimized experimental conditions, the best results were obtained using a boiling temperature of 65 °C, 50% ethanol concentration, 16 min of extraction time, one extraction cycles and a 12:1 liquid-solid ratio. Compared with conventional ultrasonic assisted extraction and heat reflux extraction, the VAE technique gave shorter extraction times and remarkable higher extraction efficiency, which indicated that a certain degree of vacuum gave the solvent a better penetration of the solvent into the pores and between the matrix particles, and enhanced the process of mass transfer. The present results demonstrated that VAE is an efficient, simple and fast method for extracting bioactive components from A. paniculata, which shows great potential for becoming an alternative technique for industrial scale-up applications.

  16. Response Surface Approximation for Fatigue Life Prediction and Its Application to Multi-Criteria Optimization With a Priori Preference Information

    International Nuclear Information System (INIS)

    Baek, Seok Heum; Joo, Won Sik; Cho, Seok Swoo

    2009-01-01

    In this paper, a versatile multi-criteria optimization concept for fatigue life prediction is introduced. Multi-criteria decision making in engineering design refers to obtaining a preferred optimal solution in the context of conflicting design objectives. Compromise decision support problems are used to model engineering decisions involving multiple trade-offs. These methods typically rely on a summation of weighted attributes to accomplish trade-offs among competing objectives. This paper gives an interpretation of the decision parameters as governing both the relative importance of the attributes and the degree of compensation between them. The approach utilizes a response surface model, the compromise decision support problem, which is a multi-objective formulation based on goal programming. Examples illustrate the concepts and demonstrate their applicability

  17. Optimization of biodiesel production process for mixed Jatropha curcas–Ceiba pentandra biodiesel using response surface methodology

    International Nuclear Information System (INIS)

    Dharma, S.; Masjuki, H.H.; Ong, Hwai Chyuan; Sebayang, A.H.; Silitonga, A.S.; Kusumo, F.; Mahlia, T.M.I.

    2016-01-01

    Highlights: • Jatropha curcas and Ceiba pentandra are potential feedstock for biodiesel. • Optimization of biodiesel production by response surface methodology. • Jatropha curcas–Ceiba pentandra mixed biodiesel yield was 93.33%. • The properties of mixed biodiesel fulfill ASTM (D6751) standard. - Abstract: Exploring and improvement of biodiesel production from non-edible vegetable oil is one of the effective ways to solve limited amount of traditional raw materials and their high prices. The main objective of this study is to optimize the biodiesel production process parameters (methanol-to-oil ratio, agitation speed and concentration of the potassium hydroxide catalyst) of a biodiesel derived from non-edible feedstocks, namely Jatropha curcas and Ceiba pentandra, using response surface methodology based on Box–Behnken experimental design. Based on the results, the optimum operating parameters for transesterification of the J50C50 oil mixture at 60 °C over a period of 2 h are as follows: methanol-to-oil ratio: 30%, agitation speed: 1300 rpm and catalyst concentration: 0.5 wt.%. These optimum operating parameters gives the highest yield for the J50C50 biodiesel with a value of 93.33%. The results show that there is a significant improvement in the physicochemical properties of the J50C50 biodiesel after optimization, whereby the kinematic viscosity at 40 °C, density at 15 °C, calorific value, acid value and oxidation stability is 3.950 mm"2/s, 831.2 kg/m"3, 40.929 MJ/kg, 0.025 mg KOH/g and 10.01 h, respectively. The physicochemical properties of the optimized J50C50 biodiesel fulfill the requirements given in the ASTM (D6751) and (EN14214) standards.

  18. The Response Surface Methodology speeds up the search for optimal parameters in the photoinactivation of E. coli by Photodynamic Therapy.

    Science.gov (United States)

    Amaral, Larissa S; Azevedo, Eduardo B; Perussi, Janice R

    2018-02-27

    Antimicrobial Photodynamic Inactivation (a-PDI) is based on the oxidative destruction of biological molecules by reactive oxygen species generated by the photo-excitation of a photosensitive molecule. When the a-PDT is performed along with the use of mathematical models, the optimal conditions for maximum inactivation are easily found. Experimental designs allow a multivariate analysis of the experimental parameters. This is usually made using a univariate approach, which demands a large number of experiments, being time and money consuming. This paper presents the use of the response surface methodology for improving the search for the best conditions to reduce E. coli survival levels by a-PDT using methylene blue (MB) and toluidine blue (TB) as photosensitizers and white light. The goal was achieved by analyzing the effects and interactions of the three main parameters involved in the process: incubation time (IT), photosensitizer concentration (C PS ), and light dose (LD). The optimization procedure began with a full 2 3 factorial design, followed by a central composite one, in which the optimal conditions were estimated. For MB, C PS was the most important parameter followed by LD and IT whereas, for TB, the main parameter was LD followed by C PS and IT. Using the estimated optimal conditions for inactivation, MB was able to inactivate 99.999999% CFU mL -1 of E. coli with IT of 28 min, LD of 31 J cm -2 , and C PS of 32 μmol L -1 , while TB required 18 min, 39 J cm -2 , and 37 μmol L -1 . The feasibility of using the response surface methodology with a-PDT was demonstrated, enabling enhanced photoinactivation efficiency and fast results with a minimal number of experiments. Copyright © 2018. Published by Elsevier B.V.

  19. Application of response surface methodology for optimization of parameters for microwave heating of rare earth carbonates

    Science.gov (United States)

    Yin, Shaohua; Lin, Guo; Li, Shiwei; Peng, Jinhui; Zhang, Libo

    2016-09-01

    Microwave heating has been applied in the field of drying rare earth carbonates to improve drying efficiency and reduce energy consumption. The effects of power density, material thickness and drying time on the weight reduction (WR) are studied using response surface methodology (RSM). The results show that RSM is feasible to describe the relationship between the independent variables and weight reduction. Based on the analysis of variance (ANOVA), the model is in accordance with the experimental data. The optimum experiment conditions are power density 6 w/g, material thickness 15 mm and drying time 15 min, resulting in an experimental weight reduction of 73%. Comparative experiments show that microwave drying has the advantages of rapid dehydration and energy conservation. Particle analysis shows that the size distribution of rare earth carbonates after microwave drying is more even than those in an oven. Based on these findings, microwave heating technology has an important meaning to energy-saving and improvement of production efficiency for rare earth smelting enterprises and is a green heating process.

  20. Optimization of Fat-Reduced Puff Pastry Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Christoph Silow

    2017-02-01

    Full Text Available Puff pastry is a high-fat bakery product with fat playing a key role, both during the production process and in the final pastry. In this study, response surface methodology (RSM was successfully used to evaluate puff pastry quality for the development of a fat-reduced version. The technological parameters modified included the level of roll-in fat, the number of fat layers (50–200 and the final thickness (1.0–3.5 mm of the laminated dough. Quality characteristics of puff pastry were measured using the Texture Analyzer with an attached Extended Craft Knife (ECK and Multiple Puncture Probe (MPP, the VolScan and the C-Cell imaging system. The number of fat layers and final dough thickness, in combination with the amount of roll-in fat, had a significant impact on the internal and external structural quality parameters. With technological changes alone, a fat-reduced (≥30% puff pastry was developed. The qualities of fat-reduced puff pastries were comparable to conventional full-fat (33 wt % products. A sensory acceptance test revealed no significant differences in taste of fatness or ‘liking of mouthfeel’. Additionally, the fat-reduced puff pastry resulted in a significant (p < 0.05 positive correlation to ‘liking of flavor’ and overall acceptance by the assessors.

  1. Optimization of Fat-Reduced Puff Pastry Using Response Surface Methodology.

    Science.gov (United States)

    Silow, Christoph; Zannini, Emanuele; Axel, Claudia; Belz, Markus C E; Arendt, Elke K

    2017-02-22

    Puff pastry is a high-fat bakery product with fat playing a key role, both during the production process and in the final pastry. In this study, response surface methodology (RSM) was successfully used to evaluate puff pastry quality for the development of a fat-reduced version. The technological parameters modified included the level of roll-in fat, the number of fat layers (50-200) and the final thickness (1.0-3.5 mm) of the laminated dough. Quality characteristics of puff pastry were measured using the Texture Analyzer with an attached Extended Craft Knife (ECK) and Multiple Puncture Probe (MPP), the VolScan and the C-Cell imaging system. The number of fat layers and final dough thickness, in combination with the amount of roll-in fat, had a significant impact on the internal and external structural quality parameters. With technological changes alone, a fat-reduced (≥30%) puff pastry was developed. The qualities of fat-reduced puff pastries were comparable to conventional full-fat (33 wt %) products. A sensory acceptance test revealed no significant differences in taste of fatness or 'liking of mouthfeel'. Additionally, the fat-reduced puff pastry resulted in a significant ( p < 0.05) positive correlation to 'liking of flavor' and overall acceptance by the assessors.

  2. OPTIMIZATION OF SESAME SEEDS OIL EXTRACTION OPERATING CONDITIONS USING THE RESPONSE SURFACE DESIGN METHODOLOGY

    Directory of Open Access Journals (Sweden)

    HAITHAM OSMAN

    2016-12-01

    Full Text Available This paper applies Response Surface Design (RSD to model the experimental data obtained from the extraction of sesame seeds oil using n-hexane, chloroform and acetone as solvents under different operating conditions. The results obtained revealed that n-hexane outperformed the extraction obtained using chloroform and acetone. The developed model predicted that n-hexane with a rotational speed of 547 rpm and a contact time between the solvent and seeds of 19.46 hours with solvent: seeds ratio of 4.93, yields the optimum oil extracted of 37.03 %, outperforming chloroform and acetone models that gave prediction for 4.75 and 4.21 respectively. While the maximum predictions yield for chloroform is 6.73 %, under the operating conditions of 602 rpm, and 24 hours contact time, with a ratio of solvent: seeds of 1.74. On the other hand the acetone maximum prediction is only 4.37 %, with operational conditions of 467 rpm, and 6.00 hours contact time, with a ratio of solvent: seeds of 1. It is has been found that the maximum oil extraction yield obtained from the chloroform (6.73 % and Acetone (4.37 % is much lower than that predicted by n-hexane 37.03 %.

  3. Optimization of Extraction Parameters of Phenolic Compounds from Sarcopoterium spinosum Leaves by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Ceren Sunguc

    2017-07-01

    Full Text Available The shrublands are very common in Urla-Çeşme-Karaburun peninsula located in the western point of Turkey. Prickly shrubby burnet (Sarcopoterium spinosum L. is one of the common weed which has intensive thorns making its consumption for the local domestic animals. However, Sarcopoterium spinosum is a valuable and common medicinal plant in the Mediterranean region. Crude extract of S. spinosum leaves exhibited higher antioxidant activity, as 3143.5± 238.5 µM TEAC (Trolox Equivalent Antioxidant Capacity/g dry weight (DW, when compared to other medicinal plants found in the literature. The aim of this study was to determine the effect of extraction parameters on the content and biological activity of the extract by response surface methodology (RSM as well as to identify its major compounds. High Performance Liquid Chromatography (HPLC was employed to investigate the phenolic content of S. spinosum extract. The composition of the phenolic contents including hyperoside and isoquercetin, the latter being the major component, in S. spinosum extract has been shown for the first time by HPLC. Antimicrobial activity of S. spinosum extract, identified by minimum inhibition concentration (MIC assay, indicated that the crude extract had antifungal activity against Candida albicans.

  4. Optimization of microwave-assisted extraction (MAP) for ginseng components by response surface methodology.

    Science.gov (United States)

    Kwon, Joong-Ho; Bélanger, Jacqueline M R; Paré, J R Jocelyn

    2003-03-26

    Response surface methodology (RSM) was applied to predict optimum conditions for microwave-assisted extraction-a MAP technology-of saponin components from ginseng roots. A central composite design was used to monitor the effect of ethanol concentration (30-90%, X(1)) and extraction time (30-270 s, X(2)) on dependent variables, such as total extract yield (Y(1)), crude saponin content (Y(2)), and saponin ratio (Y(3)), under atmospheric pressure conditions when focused microwaves were applied at an emission frequency of 2450 MHz. In MAP under pre-established conditions, correlation coefficients (R (2)) of the models for total extract yield and crude saponin were 0.9841 (p extraction conditions were predicted for each variable as 52.6% ethanol and 224.7 s in extract yield and as 77.3% ethanol and 295.1 s in crude saponins, respectively. Estimated maximum values at predicted optimum conditions were in good agreement with experimental values.

  5. Response surface optimization for ethanol production from Pennisetum Alopecoider by Klebsiella oxytoca THLC0409

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chi-Wen; I, Yet-Pole [Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin 64002 (China); Tran, Dang-Thuan [Department of Chemical Engineering, National Cheng-Kung University, Tainan City 701 (China); Lai, Chi-Yung [Department of Biology, National Changhua University of Education, Changhua (China); Wu, Chih-Hung [Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Yunlin 64002 (China)

    2010-12-15

    The strain Klebsiella oxytoca THLC0409 was isolated from a lignocellulose-degrading microflora and used in the direct conversion of Napiergrass powder to ethanol. Central Composite Design (CCD), part of the Response Surface Methodology (RSM) was adopted to study the effects of the fermentation time, the initial pH of the liquid medium, the cultivation temperature, and the yeast extract (YE) concentration on ethanol production. A second-order model that relates the ethanol concentration to four basic factors was developed. Regression analysis revealed that the maximum ethanol concentration of 472 ppm could be reached at a fermentation time of about 11 days, an initial pH of 7.04, a cultivating temperature of 31 C, and a YE concentration of 7.0 g l{sup -1}. The adjusted R-square of the regression model was 0.996, indicating a good fit at 99.6% confidence level. The highest ethanol yield and productivity were estimated to be 82 g kg{sup -1} and 360 mg kg{sup -1} h{sup -1}, respectively. (author)

  6. Applying Central Composite Design and Response Surface Methodology to Optimize Growth and Biomass Production of Haemophilus influenzae Type b.

    Science.gov (United States)

    Momen, Seyed Bahman; Siadat, Seyed Davar; Akbari, Neda; Ranjbar, Bijan; Khajeh, Khosro

    2016-06-01

    Haemophilus influenzae type b (Hib) is the leading cause of bacterial meningitis, otitis media, pneumonia, cellulitis, bacteremia, and septic arthritis in infants and young children. The Hib capsule contains the major virulence factor, and is composed of polyribosyl ribitol phosphate (PRP) that can induce immune system response. Vaccines consisting of Hib capsular polysaccharide (PRP) conjugated to a carrier protein are effective in the prevention of the infections. However, due to costly processes in PRP production, these vaccines are too expensive. To enhance biomass, in this research we focused on optimizing Hib growth with respect to physical factors such as pH, temperature, and agitation by using a response surface methodology (RSM). We employed a central composite design (CCD) and a response surface methodology to determine the optimum cultivation conditions for growth and biomass production of H. influenzae type b. The treatment factors investigated were initial pH, agitation, and temperature, using shaking flasks. After Hib cultivation and determination of dry biomass, analysis of experimental data was performed by the RSM-CCD. The model showed that temperature and pH had an interactive effect on Hib biomass production. The dry biomass produced in shaking flasks was about 5470 mg/L, which was under an initial pH of 8.5, at 250 rpm and 35° C. We found CCD and RSM very effective in optimizing Hib culture conditions, and Hib biomass production was greatly influenced by pH and incubation temperature. Therefore, optimization of the growth factors to maximize Hib production can lead to 1) an increase in bacterial biomass and PRP productions, 2) lower vaccine prices, 3) vaccination of more susceptible populations, and 4) lower risk of Hib infections.

  7. Prediction and Optimization of Phase Transformation Region After Spot Continual Induction Hardening Process Using Response Surface Method

    Science.gov (United States)

    Qin, Xunpeng; Gao, Kai; Zhu, Zhenhua; Chen, Xuliang; Wang, Zhou

    2017-09-01

    The spot continual induction hardening (SCIH) process, which is a modified induction hardening, can be assembled to a five-axis cooperating computer numerical control machine tool to strengthen more than one small area or relatively large area on complicated component surface. In this study, a response surface method was presented to optimize phase transformation region after the SCIH process. The effects of five process parameters including feed velocity, input power, gap, curvature and flow rate on temperature, microstructure, microhardness and phase transformation geometry were investigated. Central composition design, a second-order response surface design, was employed to systematically estimate the empirical models of temperature and phase transformation geometry. The analysis results indicated that feed velocity has a dominant effect on the uniformity of microstructure and microhardness, domain size, oxidized track width, phase transformation width and height in the SCIH process while curvature has the largest effect on center temperature in the design space. The optimum operating conditions with 0.817, 0.845 and 0.773 of desirability values are expected to be able to minimize ratio (tempering region) and maximize phase transformation width for concave, flat and convex surface workpieces, respectively. The verification result indicated that the process parameters obtained by the model were reliable.

  8. Optimization of Preparation Program for Biomass Based Porous Active Carbon by Response Surface Methodology Based on Adsorptive Property

    Directory of Open Access Journals (Sweden)

    ZHANG Hao

    2017-06-01

    Full Text Available With waste walnut shell as raw material, biomass based porous active carbon was made by microwave oven method. The effects of microwave power, activation time and mass fraction of phosphoric acid on adsorptive property of biomass based porous active carbon in the process of physical activation of active carbon precursor were studied by response surface method and numerical simulation method, the preparation plan of biomass based porous active carbon was optimized, and the optimal biomass based porous active carbon property was characterized. The results show that three factors affect the adsorptive property of biomass based porous active carbon, but the effect of microwave power is obviously more significant than that of mass fraction of phosphoric acid, and the effect of mass fraction of phosphoric acid is more significant than that of activation time. The optimized preparation conditions are:microwave power is 746W, activation time is 11.2min and mass fraction of phosphoric acid is 85.9% in the process of physical activation of activated carbon precursor by microwave heating method. For the optimal biomass based porous active carbon, the adsorption value of iodine is 1074.57mg/g, adsorption value of methylene blue is 294.4mL/g and gain rate is 52.1%.

  9. Optimization of Goat Milk with ACE Inhibitory Peptides Fermented by Lactobacillus bulgaricus LB6 Using Response Surface Methodology.

    Science.gov (United States)

    Shu, Guowei; Shi, Xiaoyu; Chen, He; Ji, Zhe; Meng, Jiangpeng

    2017-11-21

    In the present study, the incubation conditions of goat milk fermented by Lactobacillus bulgaricus LB6 were optimized to increase the angiotensin converting enzyme (ACE, EC 3.4.15.1) inhibitory activity by Box-Behnken design of response surface methodology. Incubation temperature, whey powder, and calcium lactate had significant effects on ACE inhibition rate and viable counts of LB6 during incubation. The results showed that optimal conditions of fermentation were found to be 37.05 °C, 0.8% ( w / w ) whey powder and 0.50% ( w / w ) calcium lactate. ACE inhibition rate increased significantly from 71.04 ± 0.37% to 83.31 ± 0.45% and the viable counts of Lactobacillus bulgaricus LB6 reached to 8.03 × 10⁷ cfu·mL -1 under the optimal conditions, which approached the predicted values 83.25% and 8.04 × 10⁷ cfu·mL -1 . The optimal fermentation conditions can be a good reference for preparing ACE inhibitory peptides from goat milk.

  10. Optimization of Goat Milk with ACE Inhibitory Peptides Fermented by Lactobacillus bulgaricus LB6 Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Guowei Shu

    2017-11-01

    Full Text Available In the present study, the incubation conditions of goat milk fermented by Lactobacillus bulgaricus LB6 were optimized to increase the angiotensin converting enzyme (ACE, EC 3.4.15.1 inhibitory activity by Box–Behnken design of response surface methodology. Incubation temperature, whey powder, and calcium lactate had significant effects on ACE inhibition rate and viable counts of LB6 during incubation. The results showed that optimal conditions of fermentation were found to be 37.05 °C, 0.8% (w/w whey powder and 0.50% (w/w calcium lactate. ACE inhibition rate increased significantly from 71.04 ± 0.37% to 83.31 ± 0.45% and the viable counts of Lactobacillus bulgaricus LB6 reached to 8.03 × 107 cfu·mL−1 under the optimal conditions, which approached the predicted values 83.25% and 8.04 × 107 cfu·mL−1. The optimal fermentation conditions can be a good reference for preparing ACE inhibitory peptides from goat milk.

  11. Response surface optimization of carbon and nitrogen sources for nuclease P1 production by Penicillium citrinum F-5-5

    International Nuclear Information System (INIS)

    Liang Xinle; Huang Yingying; Zhang Hong; Chen Min; Liu Xuan

    2011-01-01

    Penicillium citrinum F-5-5, a nuclease P1 high-producing strain with 978.6 U/ml in potato glucose medium, was derived from the original Penicillium citrinum CICC 4011 with 60 Co γ-rays irradiation mutation and then protoplasts fusion treatment. Culture components were optimized for the nuclease P1 production, and response surface methodology was applied for the critical medium components(carbon and nitrogen sources) which were preselected by Plackett-Burman design approach. Glucose, soluble starch and corn steep powder showed significant effects on production of nuclease. Central composite design was used for the optimization levels by software Minitab 15, and it showed that, the optimal values for the concentration of glucose, soluble starch and corn steep powder were 30.89, 42.46 and 11.60 g/L, respectively. With this medium,an enzyme activity of 1687.16 U/ml could be obtained theoretically. Using this optimized medium, an experimental enzyme activity of 1672.6 U/ml was reached. (authors)

  12. Statistical Optimization for Biobutanol Production by Clostridium acetobutylicum ATCC 824 from Oil Palm Frond (OPF Juice Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Muhamad Nasrah Nur Syazana

    2017-01-01

    Full Text Available The interaction between incubation temperature, yeast extract concentration and inoculum size was investigated to optimize critical environmental parameters for production of biobutanol from oil palm frond (OPF juice by Clostridium acetobutylicum ATCC 824 using response surface methodology (RSM. A central composite design (CCD was applied as the experimental design and a polynomial regression model with quadratic term was used to analyse the experimental data using analysis of variance (ANOVA. ANOVA analysis showed that the model was very significant (p < 0.0001 for the biobutanol production. The incubation temperature, yeast extract concentration and inoculum size showed significant value at p < 0.005. The results of optimization process showed that a maximum biobutanol production was obtained under the condition of temperature 37 °C, yeast extract concentration 5.5 g/L and inoculum size 10%. Under these optimized conditions, the highest biobutanol yield was 0.3054 g/g after 144 hours of incubation period. The model was validated by applying the optimized conditions and 0.2992 g/g biobutanol yield was obtained. These experimental findings were in close agreement with the model prediction, with a difference of only 9.76%.

  13. Response surface method optimization of V-shaped fin assisted latent heat thermal energy storage system during discharging process

    Directory of Open Access Journals (Sweden)

    Sina Lohrasbi

    2016-09-01

    Full Text Available Latent Heat Thermal Energy Storage Systems (LHTESS containing Phase Change Material (PCM are used to establish balance between energy supply and demand. PCMs have high latent heat but low thermal conductivity, which affects their heat transfer performance. In this paper, a novel fin array has been optimized by multi-objective Response Surface Method (RSM based on discharging process of PCM, and then this fin configuration is applied on LHTESS, and comparison between full discharging time by applying this fin array and LHTESS with other fin structures has been carried out. The employed numerical method in this paper is Standard Galerkin Finite Element Method. Adaptive grid refinement is used to solve the equations. Since the enhancement technique, which has been employed in the present study reduces the employed PCM mass, maximum energy storage capacity variations have been considered. Therefore phase change expedition and maximum energy storage capacity have been considered as the objectives of optimization and the importance of second objective is indicated which is proposed as the novelty here. Results indicate that considering maximum energy storage capacity as the objective of optimization procedure leads to efficient shape design of LHTESS. Also employing optimized V-shaped fin in LHTESS, expedites discharging process considerably in comparison with the LHTESS without fin.

  14. Optimization of formulation of soy-cakes baked in infrared-microwave combination oven by response surface methodology.

    Science.gov (United States)

    Şakıyan, Özge

    2015-05-01

    The aim of present work is to optimize the formulation of a functional cake (soy-cake) to be baked in infrared-microwave combination oven. For this optimization process response surface methodology was utilized. It was also aimed to optimize the processing conditions of the combination baking. The independent variables were the baking time (8, 9, 10 min), the soy flour concentration (30, 40, 50 %) and the DATEM (diacetyltartaric acid esters of monoglycerides) concentration (0.4, 0.6 and 0.8 %). The quality parameters that were examined in the study were specific volume, weight loss, total color change and firmness of the cake samples. The results were analyzed by multiple regression; and the significant linear, quadratic, and interaction terms were used in the second order mathematical model. The optimum baking time, soy-flour concentration and DATEM concentration were found as 9.5 min, 30 and 0.72 %, respectively. The corresponding responses of the optimum points were almost comparable with those of conventionally baked soy-cakes. So it may be declared that it is possible to produce high quality soy cakes in a very short time by using infrared-microwave combination oven.

  15. Adsorptive removal of crystal violet dye by a local clay and process optimization by response surface methodology

    Science.gov (United States)

    Loqman, Amal; El Bali, Brahim; Lützenkirchen, Johannes; Weidler, Peter G.; Kherbeche, Abdelhak

    2017-11-01

    The current study relates to the removal of a dye [crystal violet (CV)] from aqueous solutions through batch adsorption experiment onto a local clay from Morocco. The clay was characterized by X-ray diffraction, IR spectroscopy, X-ray fluorescence, scanning electron microscope, Brunauer-Emmett-Teller analysis and Fraunhofer diffraction method. The influence of independent variables on the removal efficiency was determined and optimized by response surface methodology using the Box-Behnken surface statistical design. The model predicted maximum adsorption of 81.62% under the optimum conditions of operational parameters (125 mg L-1 initial dye concentration, 2.5 g L-1 adsorbent dose and time of 43 min). Practically, the removal ranges in 27.4-95.3%.

  16. Synthesis of biocompatible and highly photoluminescent nitrogen doped carbon dots from lime: Analytical applications and optimization using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Barati, Ali [Faculty of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of); Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Arkan, Elham [Nano Drug Delivery Research Center Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Hosseinzadeh, Leila [Novel Drug Delivery Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Abdollahi, Hamid, E-mail: abd@iasbs.ac.ir [Faculty of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of)

    2015-02-01

    Herein, a facile hydrothermal treatment of lime juice to prepare biocompatible nitrogen-doped carbon quantum dots (N-CQDs) in the presence of ammonium bicarbonate as a nitrogen source has been presented. The resulting N-CQDs exhibited excitation and pH independent emission behavior; with the quantum yield (QY) up to 40%, which was several times greater than the corresponding value for CQDs with no added nitrogen source. The N-CQDs were applied as a fluorescent probe for the sensitive and selective detection of Hg{sup 2+} ions with a detection limit of 14 nM. Moreover, the cellular uptake and cytotoxicity of N-CQDs at different concentration ranges from 0.0 to 0.8 mg/ml were investigated by using PC12 cells as a model system. Response surface methodology was used for optimization and systematic investigation of the main variables that influence the QY, including reaction time, reaction temperature, and ammonium bicarbonate weight. - Highlights: • High fluorescent N-doped CQDs from lime juice have been prepared. • Response surface methodology was used to optimize and model the main factors. • N-doped CQDs were used in the selective and sensitive detection of Hg(II). • The biocompatibility of prepared N-doped CQDs was conformed using PC12 cells.

  17. Sorption of phenol from synthetic aqueous solution by activated saw dust: Optimizing parameters with response surface methodology

    Directory of Open Access Journals (Sweden)

    Omprakash Sahu

    2017-12-01

    Full Text Available Organic pollutants have an adverse effect on the neighboring environment. Industrial activates are the major sources of different organic pollutants. These primary pollutants react with surrounding and forms secondary pollutant, which persists for a long time. The present investigation has been carried out on the surface of activated sawdust for phenol eliminations. The process parameters initial concentration, contact time, adsorbent dose and pH were optimized by the response surface methodology (RSM. The numerical optimization of sawdust (SD, initial concentration 10 mg/l, contact time 1.5 h, adsorbent dose 4 g and pH 2, the optimum response result was 78.3% adsorption. Analysis of variance (ANOVA was used to judge the adequacy of the central composite design and quadratic model found to be suitable. The coefficient of determination values was found to be maximum Adj R2 0.7223, and Pre R2 0.5739 and significant regression at 95% confidence level values.

  18. Updating Optimal Decisions Using Game Theory and Exploring Risk Behavior Through Response Surface Methodology

    National Research Council Canada - National Science Library

    Jordan, Jeremy D

    2007-01-01

    .... Methodology is developed that allows a decision maker to change his perceived optimal policy based on available knowledge of the opponents strategy, where the opponent is a rational decision maker...

  19. Design and optimization of hydrogen production from hydrothermally pretreated sugarcane bagasse using response surface methodology.

    Science.gov (United States)

    Soares, Lais Américo; Braga, Juliana Kawanishi; Motteran, Fabrício; Sakamoto, Isabel Kimiko; Silva, Edson Luiz; Varesche, Maria Bernadete Amâncio

    2017-07-01

    Hydrogen production from hydrothermally pretreated (200 °C for 10 min at 16 bar) sugarcane bagasse was analyzed using response surface methodology. The yeast extract concentration and the temperature had a significant influence for hydrogen production (p-value 0.027 and 0.009, respectively). Maximum hydrogen production (17.7 mmol/L) was observed with 3 g/L yeast extract at 60 °C (C10). In this conditions were produced acetic acid (50.44 mg/L), butyric acid (209.71 mg/L), ethanol (38.4 mg/L), and methane (6.27 mmol/L). Lower hydrogen productions (3.5 mmol/L and 3.9 mmol/L) were observed under the conditions C7 (2 g/L of yeast extract, 35.8 °C) and C9 (1 g/L of yeast extract, 40 °C), respectively. The low yeast extract concentration and low temperature caused a negative effect on the hydrogen production. By means of denaturing gradient gel electrophoresis 20% of similarity was observed between the archaeal population of mesophilic (35 and 40 °C) and thermophilic (50, 60 and 64 °C) reactors. Likewise, similarity of 22% was noted between the bacterial population for the reactors with the lowest hydrogen production (3.5 mmol/L), at 35.8 °C and with the highest hydrogen production (17.7 mmol/L) at 60 °C demonstrating that microbial population modification was a function of incubation temperature variation.

  20. Medium optimization for the production of recombinant nattokinase by Bacillus subtilis using response surface methodology.

    Science.gov (United States)

    Chen, Po Ting; Chiang, Chung-Jen; Chao, Yun-Peng

    2007-01-01

    Nattokinase is a potent fibrinolytic enzyme with the potential for fighting cardiovascular diseases. Most recently, a new Bacillus subtilis/Escherichia coli (B. subtilis/E. coli) shuttle vector has been developed to achieve stable production of recombinant nattokinase in B. subtilis (Chen; et al. 2007, 23, 808-813). With this developed B. subtilis strain, the design of an optimum but cost-effective medium for high-level production of recombinant nattokinase was attempted by using response surface methodology. On the basis of the Plackett-Burman design, three critical medium components were selected. Subsequently, the optimum combination of selected factors was investigated by the Box-Behnken design. As a result, it gave the predicted maximum production of recombinant nattokinase with 71 500 CU/mL for shake-flask cultures when the concentrations of soybean hydrolysate, potassium phosphate, and calcium chloride in medium were at 6.100, 0.415, and 0.015%, respectively. This was further verified by a duplicated experiment. Moreover, the production scheme based on the optimum medium was scaled up in a fermenter. The batch fermentation of 3 L was carried out by controlling the condition at 37 degrees C and dissolved oxygen reaching 20% of air saturation level while the fermentation pH was initially set at 8.5. Without the need for controlling the broth pH, recombinant nattokinase production with a yield of 77 400 CU/mL (corresponding to 560 mg/L) could be obtained in the culture broth within 24 h. In particular, the recombinant B. subtilis strain was found fully stable at the end of fermentation when grown on the optimum medium. Overall, it indicates the success of this experimental design approach in formulating a simple and cost-effective medium, which provides the developed strain with sufficient nutrient supplements for stable and high-level production of recombinant nattokinase in a fermenter.

  1. Optimization of free radical scavenging capacity and pH of Hylocereus polyrhizus peel by Response Surface Methodology

    Science.gov (United States)

    Putranto, A. W.; Dewi, S. R.; Puspitasari, Y.; Nuriah, F. A.

    2018-03-01

    Red dragon fruit (Hylocereus polyrhizus) peel, a by-product of juice processing, contains a high antioxidant that can be used for nutraceuticals. Hence, it is important to extract and investigate its antioxidant stability. The aim of this study was to optimize the free radical scavenging capacity and pH of H. polyrhizus peel extract using Central Composite Design (CCD) under Response Surface Methodology (RSM). The extraction of H. polyrhizus peel was done by using green-Pulsed Electric Field (PEF)-assisted extraction method. Factors optimized were electric field strength (kV/cm) and extraction time (seconds). The result showed that the correlation between responses (free radical-scavenging capacity and pH) and two factors was quadratic model. The optimum conditions was obtained at the electric field strength of 3.96 kV/cm, and treatment time of 31.9 seconds. Under these conditions, the actual free radical-scavenging capacity and pH were 75.86 ± 0.2 % and 4.8, respectively. The verification model showed that the actual values are in accordance with the predicted values, and have error rate values of free radical-scavenging capacity and pH responses were 0.1% and 3.98%, respectively. We suggest to extract the H. polyrhizus peel using a green and non-thermal extraction technology, PEF-assisted extraction, for research, food applications and nutraceuticals industry.

  2. Ultrasound-assisted xanthation of cellulose from lignocellulosic biomass optimized by response surface methodology for Pb(II) sorption.

    Science.gov (United States)

    Wang, Chongqing; Wang, Hui; Gu, Guohua

    2018-02-15

    Alkali treatment of lignocellulosic biomass is conducted to remove hemi-cellulose and lignin, further increasing the reactivity and accessibility of cellulose. Ultrasound-assisted xanthation of alkali cellulose is optimized by response surface methodology (RSM) with a Box-Behnken design. A predicting mathematical model is obtained by fitting experimental data, and it is verified by analysis of variance. Response surface plots and the contour plots obtained from the model are applied to determine the interactions of experimental variables. The optimum conditions are NaOH concentration 1.3mol/L, ultrasonic time 71.6min and CS 2 dosage 1.5mL. FTIR, SEM and XPS characterizations confirm the synthesis and sorption mechanism of cellulose xanthate (CX). Biosorption of Pb (II) onto CX obeys pseudo-second order model and Langmuir model. The sorption mechanism is attributed to surface complexation or ion exchange. CX shows good reusability for Pb (II) sorption. The maximum sorption capacity of Pb(II) is 134.41mg/g, higher than that of other biosorbents. CX has great potential as an efficient and low-cost biosorbent for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Combining a 2-D multiphase CFD model with a Response Surface Methodology to optimize the gasification of Portuguese biomasses

    International Nuclear Information System (INIS)

    Silva, Valter; Rouboa, Abel

    2015-01-01

    Highlights: • A multiphase CFD model was combined with RSM. • Gasification optimal operating conditions were found in a pilot scale reactor. • Syngas quality indices were optimized in a biomass gasification process. • Propagation of error methodology was combined with a CFD model and RSM. - Abstract: This paper presents a study to evaluate the potential of Portuguese biomasses (coffee husks, forest residues and vine pruning residues) to produce syngas for different applications. By using a 2-D Eulerian–Eulerian approach within the CFD framework, a design of several computer experiments was developed and were used as analysis tools the response surface method (RSM) and the propagation of error (POE) approach. The CFD model was validated under experimental results collected at a semi-industrial reactor. For design purposes, temperature, steam to biomass ratio (SBR) and the type of biomass were selected as input factors. The responses were the H 2 generation, the H 2 /CO ratio, the CH 4 /H 2 ratio, the carbon conversion and the cold gas efficiency. It was concluded that after an optimization procedure to determine the operating conditions, vine pruning residues could show very promising results considering some of the typical syngas indice standards for commercial purposes. From the optimization procedure, it was also concluded that forest residues are preferable for domestic natural gas applications and vine pruning residues for fuel cells and integrated gasification systems application. By using the RSM combined with POE, it was verified that the operating conditions to get higher performances do not always coincide with those necessary to obtain a stable syngas composition

  4. Response Surface Methodology Optimization of Ultrasonic-Assisted Extraction of Acer Truncatum Leaves for Maximal Phenolic Yield and Antioxidant Activity.

    Science.gov (United States)

    Yang, Lingguang; Yin, Peipei; Fan, Hang; Xue, Qiang; Li, Ke; Li, Xiang; Sun, Liwei; Liu, Yujun

    2017-02-04

    This study is the first to report the use of response surface methodology to improve phenolic yield and antioxidant activity of Acer truncatum leaves extracts (ATLs) obtained by ultrasonic-assisted extraction. The phenolic composition in ATLs extracted under the optimized conditions were characterized by UPLC-QTOF-MS/MS. Solvent and extraction time were selected based on preliminary experiments, and a four-factors-three-levels central composite design was conducted to optimize solvent concentration ( X ₁), material-to-liquid ratio ( X ₂), ultrasonic temperature ( X ₃) and power ( X ₄) for an optimal total phenol yield ( Y ₁) and DPPH• antioxidant activity ( Y ₂). The results showed that the optimal combination was ethanol:water ( v : v ) 66.21%, material-to-liquid ratio 1:15.31 g/mL, ultrasonic bath temperature 60 °C, power 267.30 W, and time 30 min with three extractions, giving a maximal total phenol yield of 7593.62 mg gallic acid equivalent/100 g d.w. and a maximal DPPH• antioxidant activity of 74,241.61 μmol Trolox equivalent/100 g d.w. Furthermore, 22 phenolics were first identified in ATL extract obtained under the optimized conditions, indicating that gallates, gallotannins, quercetin, myricetin and chlorogenic acid derivatives were the main phenolic components in ATL. What's more, a gallotannins pathway existing in ATL from gallic acid to penta- O -galloylglucoside was proposed. All these results provide practical information aiming at full utilization of phenolics in ATL, together with fundamental knowledge for further research.

  5. Low-fat meat sausages with fish oil: optimization of milk proteins and carrageenan contents using response surface methodology.

    Science.gov (United States)

    Marchetti, L; Andrés, S C; Califano, A N

    2014-03-01

    Response surface methodology was used to analyze the effect of milk proteins and 2:1 κ:ι-carrageenans on cooking loss (CL), weight lost by centrifugation (WLC) and texture attributes of low-fat meat sausages with pre-emulsified fish oil. A central-composite design was used to develop models for the objective responses. Changes in carrageenans affected more the responses than milk proteins levels. Convenience functions were calculated for CL, WLC, hardness, and springiness of the product. Responses were optimized simultaneously minimizing CL and WLC; ranges for hardness and springiness corresponded to commercial products (20 g of pork fat/100 g). The optimum corresponded to 0.593 g of carrageenans/100 g and 0.320 g of milk proteins and its total lipid content was 6.3 g/100 g. This formulation was prepared and evaluated showing a good agreement between predicted and experimental responses. These additives could produce low-fat meat sausages with pre-emulsified fish oil with good nutritional quality and similar characteristics than traditional ones. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Response surface methodology for evaluation and optimization of process parameter and antioxidant capacity of rice flour modified by enzymatic extrusion.

    Science.gov (United States)

    Xu, Enbo; Pan, Xiaowei; Wu, Zhengzong; Long, Jie; Li, Jingpeng; Xu, Xueming; Jin, Zhengyu; Jiao, Aiquan

    2016-12-01

    For the purpose of investigating the effect of enzyme concentration (EC), barrel temperature (BT), moisture content (MC), and screw speed (SS) on processing parameters (product temperature, die pressure and special mechanical energy (SME)) and product responses (extent of gelatinization (GE), retention rate of total phenolic content (TPC-RR)), rice flour extruded with thermostable α-amylase was analyzed by response surface methodology. Stepwise regression models were computed to generate response surface and contour plots, revealing that both TPC-RR and GE increased as increasing MC while expressed different sensitivities to BT during enzymatic extrusion. Phenolics preservation was benefited from low SME. According to multiple-factor optimization, the conditions required to obtain the target SME (10kJ/kg), GE (100%) and TPC-RR (85%) were: EC=1.37‰, BT=93.01°C, MC=44.30%, and SS=171.66rpm, with the actual values (9.49kJ/kg, 99.96% and 87.10%, respectively) showing a good fit to the predicted values. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  7. RESPONSE SURFACE METHODOLOGY FOR OPTIMIZATION OF THE EXTRACTION OF FLAX (LINUM USITATISSIMUM SEED OIL

    Directory of Open Access Journals (Sweden)

    Tibor Maliar

    2011-12-01

    Full Text Available Flax seed is an important source of ω-3 polyunsaturated fatty acids essential for human physiology. The aim of this paper is to investigate the effects of major parameters of the lipid extraction from flax seed, in relation to the recovery of oil as well as the oil quality properties. The independent variables of extraction were proposed as: organic solvents, temperature, extraction time and solid-liquid ratio. The following quantitative and qualitative parameters were chosen as dependent variables: yield of the lipid fraction, acid value of oil and the absorbance at 490 nm. After calculating the optimal values of the extraction, the validation analysis was carried out and it was found out that the predicted and experimentally verified dependent variables were in agreement with the optimal extraction parameters.doi:10.5219/168

  8. OPTIMIZATION OF PATCHOULI OIL (POGOSTEMON CABLIN, BENTH WITH STEAM DISTILLATION ASSISTED BY PULSED ELECTRIC FIELD VIA RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    SUKARDI

    2017-08-01

    Full Text Available The study was aimed to determine the role of pulsed electric field (PEF treatment before hydro-distillation of the patchouli oil. Response Surface Methodology (RSM was employed to optimize PEF treatment (voltages, frequencies and times of distillation of patchouli oil from dried patchouli crops. The experimental design and analysis the result to obtain the optimal processing parameters was a Box-Behnken Design (BBD. Three variables were examined in this study: voltages (1,000-2,000 volt; frequencies (1,000-2,000 Hz; and distillation time (4-8 hours. The results showed that the voltage greatly affects the volume of patchouli oil obtained and optimum condition of PEF was voltages of 2,000 volts, frequencies of 1,874 Hz, and 8 hours distillation. The patchouli oil obtained is 8.037 ml of 300 g of dry material (±2.7%. The verification of the model shows that 96.6% (7.76±0.15 ml can adequately for reflecting the expected optimization.

  9. Response Surface Optimization of Lyoprotectant from Amino Acids and Salts for Bifidobacterium Bifidum During Vacuum Freeze-Drying

    Directory of Open Access Journals (Sweden)

    Qi Kangru

    2017-12-01

    Full Text Available High quality probiotic powder can lay the foundation for the commercial production of functional dairy products. The freeze-drying method was used for the preservation of microorganisms, having a deleterious effect on the microorganisms viability. In order to reduce the damage to probiotics and to improve the survival rate of probiotics during freeze-drying, the Response Surface Methodology (RSM was adopted in this research to optimize lyoprotectant composed of amino acids (glycine, arginine and salts (NaHCO3 and ascorbic acid. Probiotic used was Bifidobacterium bifidum BB01. The regression model (p<0.05 was obtained by Box–Behnken experiment design, indicating this model can evaluate the freeze-drying survival rate of B. bifidum BB01 under different lyoprotectants. The results indicated these concentrations as optimal (in W/V: glycine 4.5%, arginine 5.5%, NaHCO3 0.8% and ascorbic acid 2.3%, respectively. Under these optimal conditions, the survival rate of lyophilized powder of B. bifidum BB01 was significantly increased by 80.9% compared to the control group (6.9±0.62%, the results were agreement with the model prediction value (88.7%.

  10. Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants and rosmarinic acid from perilla leaves using response surface methodology

    Directory of Open Access Journals (Sweden)

    Hui-Zhen LI

    Full Text Available Abstract Response surface methodology (RSM was used to optimize ultrasound-assisted extraction (UAE of functional components from perilla leaves. The factors investigated were ethanol concentration, extraction temperature, and extraction time. The results revealed that ethanol concentration had significant effects on all extraction parameters. Based on the RSM results, the optimal conditions were an ethanol concentration of 56%, a UAE temperature of 54 °C, and a UAE time of 55 min. Under these conditions, the experimental TPC (total phenolic content, RA (rosmarinic acid, FRAP (ferric reducing antioxidant power and DPPH (1,1-diphenyl-2-picrylhydrazyl values were 48.85 mg GAE/g DW (mg gallic acid equivalent /g of dry weight, 31.02 mg/g DW, 85.55 μmol Fe2+/g DW and 73.35%, respectively. The experimental values were in agreement with those predicted by RSM models, confirming suitability of the model employed and the success of RSM for optimization of the extraction conditions.

  11. Characterization of Melanogenesis Inhibitory Constituents of Morus alba Leaves and Optimization of Extraction Conditions Using Response Surface Methodology.

    Science.gov (United States)

    Jeong, Ji Yeon; Liu, Qing; Kim, Seon Beom; Jo, Yang Hee; Mo, Eun Jin; Yang, Hyo Hee; Song, Dae Hye; Hwang, Bang Yeon; Lee, Mi Kyeong

    2015-05-14

    Melanin is a natural pigment that plays an important role in the protection of skin, however, hyperpigmentation cause by excessive levels of melatonin is associated with several problems. Therefore, melanogenesis inhibitory natural products have been developed by the cosmetic industry as skin medications. The leaves of Morus alba (Moraceae) have been reported to inhibit melanogenesis, therefore, characterization of the melanogenesis inhibitory constituents of M. alba leaves was attempted in this study. Twenty compounds including eight benzofurans, 10 flavonoids, one stilbenoid and one chalcone were isolated from M. alba leaves and these phenolic constituents were shown to significantly inhibit tyrosinase activity and melanin content in B6F10 melanoma cells. To maximize the melanogenesis inhibitory activity and active phenolic contents, optimized M. alba leave extraction conditions were predicted using response surface methodology as a methanol concentration of 85.2%; an extraction temperature of 53.2 °C and an extraction time of 2 h. The tyrosinase inhibition and total phenolic content under optimal conditions were found to be 74.8% inhibition and 24.8 μg GAE/mg extract, which were well-matched with the predicted values of 75.0% inhibition and 23.8 μg GAE/mg extract. These results shall provide useful information about melanogenesis inhibitory constituents and optimized extracts from M. alba leaves as cosmetic therapeutics to reduce skin hyperpigmentation.

  12. Characterization of Melanogenesis Inhibitory Constituents of Morus alba Leaves and Optimization of Extraction Conditions Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Ji Yeon Jeong

    2015-05-01

    Full Text Available Melanin is a natural pigment that plays an important role in the protection of skin, however, hyperpigmentation cause by excessive levels of melatonin is associated with several problems. Therefore, melanogenesis inhibitory natural products have been developed by the cosmetic industry as skin medications. The leaves of Morus alba (Moraceae have been reported to inhibit melanogenesis, therefore, characterization of the melanogenesis inhibitory constituents of M. alba leaves was attempted in this study. Twenty compounds including eight benzofurans, 10 flavonoids, one stilbenoid and one chalcone were isolated from M. alba leaves and these phenolic constituents were shown to significantly inhibit tyrosinase activity and melanin content in B6F10 melanoma cells. To maximize the melanogenesis inhibitory activity and active phenolic contents, optimized M. alba leave extraction conditions were predicted using response surface methodology as a methanol concentration of 85.2%; an extraction temperature of 53.2 °C and an extraction time of 2 h. The tyrosinase inhibition and total phenolic content under optimal conditions were found to be 74.8% inhibition and 24.8 μg GAE/mg extract, which were well-matched with the predicted values of 75.0% inhibition and 23.8 μg GAE/mg extract. These results shall provide useful information about melanogenesis inhibitory constituents and optimized extracts from M. alba leaves as cosmetic therapeutics to reduce skin hyperpigmentation.

  13. Optimization of methanol crystallization for highly efficient separation of palmitic acid from palm fatty acid mixture using response surface methodology

    Directory of Open Access Journals (Sweden)

    A. A.W. Japir

    2018-01-01

    Full Text Available The objective of the current study was to develop parameters for the separation of palmitic acid (PA from a crude palm oil saturated fatty acid (SFAs mixture by using the methanol crystallization method. The conditions of methanol crystallization were optimized by the response surface methodology (RSM with the D-optimal design. The procedure of developing the solvent crystallization method was based on various different parameters. The fatty acid composition was carried out using a gas chromatography flame ionization detector (GC-FID as fatty acid methyl esters. The highest percentage of SFAs was more than 96% with the percentage yield of 87.5% under the optimal conditions of fatty acids-to-methanol ratio of 1: 20 (w/v, the crystallization temperature of -15 °C, and the crystallization time of 24 hours, respectively. The composition of separated SFAs in the solid fraction contains 96.7% of palmitic acid (C16:0 as a dominant component and 3.3% of stearic acid (C18:0. The results showed that utilizing methanol as a crystallization solvent is recommended because of its high efficiency, low cost, stability, availability, comparative ease of recovery and its ability to form needle-like crystals which have good filtering and washing characteristics.

  14. Optimization of methanol crystallization for highly efficient separation of palmitic acid from palm fatty acid mixture using response surface methodology

    International Nuclear Information System (INIS)

    Japir, A.A.W.; Salimon, J.; Derawi, D.; Yahaya, B.H.; Jamil, M.S.M.; Yusop, M.R.

    2017-01-01

    The objective of the current study was to develop parameters for the separation of palmitic acid (PA) from a crude palm oil saturated fatty acid (SFAs) mixture by using the methanol crystallization method. The conditions of methanol crystallization were optimized by the response surface methodology (RSM) with the D-optimal design. The procedure of developing the solvent crystallization method was based on various different parameters. The fatty acid composition was carried out using a gas chromatography flame ionization detector (GC-FID) as fatty acid methyl esters. The highest percentage of SFAs was more than 96% with the percentage yield of 87.5% under the optimal conditions of fatty acids-to-methanol ratio of 1: 20 (w/v), the crystallization temperature of -15 °C, and the crystallization time of 24 hours, respectively. The composition of separated SFAs in the solid fraction contains 96.7% of palmitic acid (C16:0) as a dominant component and 3.3% of stearic acid (C18:0). The results showed that utilizing methanol as a crystallization solvent is recommended because of its high efficiency, low cost, stability, availability, comparative ease of recovery and its ability to form needle-like crystals which have good filtering and washing characteristics. [es

  15. OPTIMIZATION OF HIBISCUS SABDARIFFA L. (ROSELLE) ANTHOCYANIN AQUEOUS-ETHANOL EXTRACTION PARAMETERS USING RESPONSE SURFACE METHODOLOGY

    OpenAIRE

    ANILÚ MIRANDA-MEDINA; PATRICIA M. HAYWARD-JONES; OCTAVIO CARVAJAL-ZARRABAL; LUZ DEL ALBA LADRÓN DE GUEVARA-VELA; YERIKC DAVID RAMÍREZ-VILLAGÓMEZ; DULCE M. BARRADAS-DERMITZ; GEORGINA LUNA-CARRILLO; MARÍA G. AGUILAR-USCANGA

    2018-01-01

    Anthocyanins along with protocatechuic acid and quercetin have been recognized as bioactive compounds in Hibiscus sabdariffa L. aqueous extracts. Characteristic anthocyanin absorption in the visible region makes their quantification possible without the interference of the other two compounds, and also can favor its potential application as an alternative to organic-based dye sensitized solar cell, in various forms. In order to optimize measurable factors linked to the extraction of these fla...

  16. Final Report: Optimal Model Complexity in Geological Carbon Sequestration: A Response Surface Uncertainty Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ye [Univ. of Wyoming, Laramie, WY (United States)

    2018-01-17

    The critical component of a risk assessment study in evaluating GCS is an analysis of uncertainty in CO2 modeling. In such analyses, direct numerical simulation of CO2 flow and leakage requires many time-consuming model runs. Alternatively, analytical methods have been developed which allow fast and efficient estimation of CO2 storage and leakage, although restrictive assumptions on formation rock and fluid properties are employed. In this study, an intermediate approach is proposed based on the Design of Experiment and Response Surface methodology, which consists of using a limited number of numerical simulations to estimate a prediction outcome as a combination of the most influential uncertain site properties. The methodology can be implemented within a Monte Carlo framework to efficiently assess parameter and prediction uncertainty while honoring the accuracy of numerical simulations. The choice of the uncertain properties is flexible and can include geologic parameters that influence reservoir heterogeneity, engineering parameters that influence gas trapping and migration, and reactive parameters that influence the extent of fluid/rock reactions. The method was tested and verified on modeling long-term CO2 flow, non-isothermal heat transport, and CO2 dissolution storage by coupling two-phase flow with explicit miscibility calculation using an accurate equation of state that gives rise to convective mixing of formation brine variably saturated with CO2. All simulations were performed using three-dimensional high-resolution models including a target deep saline aquifer, overlying caprock, and a shallow aquifer. To evaluate the uncertainty in representing reservoir permeability, sediment hierarchy of a heterogeneous digital stratigraphy was mapped to create multiple irregularly shape stratigraphic models of decreasing geologic resolutions: heterogeneous (reference), lithofacies, depositional environment, and a (homogeneous) geologic formation. To ensure model

  17. On the application of response surface methodology for predicting and optimizing surface roughness and cutting forces in hard turning by PVD coated insert

    Directory of Open Access Journals (Sweden)

    Hessainia Zahia

    2015-04-01

    Full Text Available This paper focuses on the exploitation of the response surface methodology (RSM to determine optimum cutting conditions leading to minimum surface roughness and cutting force components. The technique of RSM helps to create an efficient statistical model for studying the evolution of surface roughness and cutting forces according to cutting parameters: cutting speed, feed rate and depth of cut. For this purpose, turning tests of hardened steel alloy (AISI 4140 (56 HRC were carried out using PVD – coated ceramic insert under different cutting conditions. The equations of surface roughness and cutting forces were achieved by using the experimental data and the technique of the analysis of variance (ANOVA. The obtained results are presented in terms of mean values and confidence levels. It is shown that feed rate and depth of cut are the most influential factors on surface roughness and cutting forces, respectively. In addition, it is underlined that the surface roughness is mainly related to the cutting speed, whereas depth of cut has the greatest effect on the evolution of cutting forces. The optimal machining parameters obtained in this study represent reductions about 6.88%, 3.65%, 19.05% in cutting force components (Fa, Fr, Ft, respectively. The latters are compared with the results of initial cutting parameters for machining AISI 4140 steel in the hard turning process.

  18. Policosanol fabrication from insect wax and optimization by response surface methodology.

    Science.gov (United States)

    Ma, Jinju; Ma, Liyi; Zhang, Hong; Zhang, Zhongquan; Wang, Youqiong; Li, Kai; Chen, Xiaoming

    2018-01-01

    Insect wax is a famous biological resource for the role in economic production in China. Insect wax is a good source of policosanol, which may is a candidate supplement in foodstuff and pharmaceuticals that has important physiological activities. Therefore, this work aims to investigate a high-yield and rapid method for policosanol fabrication from insect wax. The conditions for policosanol fabrication were optimized as follows: an oil bath temperature of 112.7°C and reductant dosage of 0.97 g (used for the reduction of 10.00 g of insect wax). The yield of policosanol reached 83.20%, which was 4 times greater than that of existing methods, such as saponification. The total content of policosanol obtained under the optimal conditions reached 87%. In other words, a high yield of policosanol was obtained from insect wax (723.84 mg/g), that was 55 times higher than that generated from beeswax-brown via saponification. The concentrations of metal residues in policosanol were within the limits of the European Union regulations and EFSA stipulation. The LD50 values for oral doses of insect wax and policosanol were both > 5 g/kg. Policosanol was fabricated via solvent-free reduction from insect wax using LiAlH4 at a high yield. The fabrication conditions were optimized. Policosanol and insect wax showed high security, which made them potential candidates as supplements in foods, pharmaceuticals and cosmetics. The rapid and high-yield method has great potential for commercial manufacturing of policosanol.

  19. Optimization of Process Variables for Grinding of Ibuprofen using Response Surface Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Chol-Ho [Sangji University, Wonju (Korea, Republic of)

    2013-12-15

    Ibuprofen, non-steroidal anti-inflammatory drugs; NSAIDs, is a highly crystalline substance with the pharmaceutical properties of poor solubility and low bioavailability. The size reduction of ibuprofen is needed to improve the solubility. The objective of this study is to optimize the grinding condition of ibuprofen. Grinding of ibuprofen was carried out using a planetary mill. Grinding parameters were optimized using Box-Behnken experimental design method. The physical characteristics of ground ibuprofen were investigated for the particle size by particle size analyzer, for the crystal size by X-ray diffraction (XRD), and for the tensile strength by tensile/compression tester. The optimum conditions for the milling of ibuprofen were 290 rpm of the revolution number of mill, 24.6 g of the weight of sample, and 10minutes of grinding time. The measured value of the particle size of ground ibuprofen at these optimum conditions was 13.5 µm. The results showed that the crystal size of ibuprofen was reduced by the planetary milling process. In case the relative density of the tablets formulated of ground ibuprofen was range of 0.85-0.90, the tensile strength of them was range of 12-14 Kg{sub f}/cm{sup 2}.

  20. Inulin blend as prebiotic and fat replacer in dairy desserts: optimization by response surface methodology.

    Science.gov (United States)

    Arcia, P L; Costell, E; Tárrega, A

    2011-05-01

    The purpose of this work was to optimize the formulation of a prebiotic dairy dessert with low fat content (dessert were prepared, varying inulin concentration (3 to 9 g/100g), sucrose concentration (4 to 16 g/100g), and lemon flavor concentration (25 to 225 mg/kg). Sample acceptability evaluated by 100 consumers varied mainly in terms of inulin and sucrose concentrations and, to a lesser extent, of lemon flavor content. An interaction effect among inulin and sucrose concentration was also found. According to the model obtained, the formulation with 5.5 g/100g inulin, 10 g/100g sucrose and 60 mg/kg of lemon flavor was selected. Finally, this sample was compared sensorially with the regular fat content (2.8 g/100g) sample previously optimized in terms of lemon flavor (146 mg/kg) and sucrose (11.4 g/100g). No significant difference in acceptability was found between them but the low-fat sample with inulin possessed stronger lemon flavor and greater thickness and creaminess. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Optimization of Process Variables for Grinding of Ibuprofen using Response Surface Methodology

    International Nuclear Information System (INIS)

    Sim, Chol-Ho

    2013-01-01

    Ibuprofen, non-steroidal anti-inflammatory drugs; NSAIDs, is a highly crystalline substance with the pharmaceutical properties of poor solubility and low bioavailability. The size reduction of ibuprofen is needed to improve the solubility. The objective of this study is to optimize the grinding condition of ibuprofen. Grinding of ibuprofen was carried out using a planetary mill. Grinding parameters were optimized using Box-Behnken experimental design method. The physical characteristics of ground ibuprofen were investigated for the particle size by particle size analyzer, for the crystal size by X-ray diffraction (XRD), and for the tensile strength by tensile/compression tester. The optimum conditions for the milling of ibuprofen were 290 rpm of the revolution number of mill, 24.6 g of the weight of sample, and 10minutes of grinding time. The measured value of the particle size of ground ibuprofen at these optimum conditions was 13.5 µm. The results showed that the crystal size of ibuprofen was reduced by the planetary milling process. In case the relative density of the tablets formulated of ground ibuprofen was range of 0.85-0.90, the tensile strength of them was range of 12-14 Kg f /cm 2

  2. Parametric optimization for floating drum anaerobic bio-digester using Response Surface Methodology and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    S. Sathish

    2016-12-01

    Full Text Available The main purpose of this study to increase the optimal conditions for biogas yield from anaerobic digestion of agricultural waste (Rice Straw using Response Surface Methodology (RSM and Artificial Neural Network (ANN. In the development of predictive models temperature, pH, substrate concentration and agitation time are conceived as model variables. The experimental results show that the liner model terms of temperature, substrate concentration and pH, agitation time have significance of interactive effects (p < 0.05. The results manifest that the optimum process parameters affected on biogas yield increase from the ANN model when compared to RSM model. The ANN model indicates that it is much more accurate and reckons the values of maximum biogas yield when compared to RSM model.

  3. Optimization of extraction of linarin from Flos chrysanthemi indici by response surface methodology and artificial neural network.

    Science.gov (United States)

    Pan, Hongye; Zhang, Qing; Cui, Keke; Chen, Guoquan; Liu, Xuesong; Wang, Longhu

    2017-05-01

    The extraction of linarin from Flos chrysanthemi indici by ethanol was investigated. Two modeling techniques, response surface methodology and artificial neural network, were adopted to optimize the process parameters, such as, ethanol concentration, extraction period, extraction frequency, and solvent to material ratio. We showed that both methods provided good predictions, but artificial neural network provided a better and more accurate result. The optimum process parameters include, ethanol concentration of 74%, extraction period of 2 h, extraction three times, solvent to material ratio of 12 mL/g. The experiment yield of linarin was 90.5% that deviated less than 1.6% from that obtained by predicted result. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Optimization of Aqueous Ammonia Soaking of manure fibers by Response Surface Methodology for unlocking the methane potential of swine manure

    DEFF Research Database (Denmark)

    Lymperatou, Anna; Gavala, Hariklia N.; Skiadas, Ioannis

    2017-01-01

    Swine manure mono-digestion often results to economically non-feasible processes, due to the high dilution and ammonia concentration together with the low degradation rates it presents. The effects of different parameters of Aqueous Ammonia Soaking (AAS) as a pretreatment for improving...... to be optimal (7% w/w NH3, 96 hours, and 0.16 kg/l) in combination to a significant increase of the short term CH4 yield (244% in 17 days), make this pretreatment a promising solution for improving swine manure mono-digestion. Furthermore, compositional analysis of the manure fibers revealed significant...... the digestion of manure fibers when coupled to an ammonia removal step were investigated in this study. Response Surface Methodology was followed and the influence and interactions of the following AAS parameters were studied: NH3 concentration, duration and solid-to-liquid ratio. The mild conditions found...

  5. Preparation, characterization, and optimization of altretamine-loaded solid lipid nanoparticles using Box-Behnken design and response surface methodology.

    Science.gov (United States)

    Gidwani, Bina; Vyas, Amber

    2016-01-01

    The objective of the present study was to prepare solid lipid nanoparticles (SLNs) of altretamine (ALT) by the hot homogenization and ultrasonication method. The study was conducted using the Box-Behnken design (BBD), with a 3(3) design and a total of 17 experimental runs, performed in combination with response surface methodology (RSM). The SLNs were evaluated for mean particle size, entrapment efficiency, and drug-loading. The optimized formulation, with a desirability factor of 0.92, was selected and characterized. In vitro release studies showed a biphasic release pattern from the SLNs for up to 24 h. The results of % EE (93.21 ± 1.5), %DL (1.15 ± 0.6), and mean diameter of (100.6 ± 2.1) nm, were very close to the predicted values.

  6. Ultrasound-Assisted Extraction of Cannabinoids from Cannabis Sativa L. Optimized by Response Surface Methodology.

    Science.gov (United States)

    Agarwal, Charu; Máthé, Katalin; Hofmann, Tamás; Csóka, Levente

    2018-03-01

    Ultrasonication was used to extract bioactive compounds from Cannabis sativa L. such as polyphenols, flavonoids, and cannabinoids. The influence of 3 independent factors (time, input power, and methanol concentration) was evaluated on the extraction of total phenols (TPC), flavonoids (TF), ferric reducing ability of plasma (FRAP) and the overall yield. A face-centered central composite design was used for statistical modelling of the response data, followed by regression and analysis of variance in order to determine the significance of the model and factors. Both the solvent composition and the time significantly affected the extraction while the sonication power had no significant impact on the responses. The response predictions obtained at optimum extraction conditions of 15 min time, 130 W power, and 80% methanol were 314.822 mg GAE/g DW of TPC, 28.173 mg QE/g DW of TF, 18.79 mM AAE/g DW of FRAP, and 10.86% of yield. A good correlation was observed between the predicted and experimental values of the responses, which validated the mathematical model. On comparing the ultrasonic process with the control extraction, noticeably higher values were obtained for each of the responses. Additionally, ultrasound considerably improved the extraction of cannabinoids present in Cannabis. Low frequency ultrasound was employed to extract bioactive compounds from the inflorescence part of Cannabis. The responses evaluated were-total phenols, flavonoids, ferric reducing assay and yield. The solvent composition and time significantly influenced the extraction process. Appreciably higher extraction of cannabinoids was achieved on sonication against control. © 2018 Institute of Food Technologists®.

  7. Optimization of Ultrasonic-Assisted Extraction of Flavonoid Compounds and Antioxidants from Alfalfa Using Response Surface Method

    Directory of Open Access Journals (Sweden)

    Chang-Liang Jing

    2015-08-01

    Full Text Available Ultrasonic-assisted extraction (UAE was used to extract flavonoid-enriched antioxidants from alfalfa aerial part. Response surface methodology (RSM, based on a four-factor, five-level central composite design (CCD, was employed to obtain the optimal extraction parameters, in which the flavonoid content was maximum and the antioxidant activity of the extracts was strongest. Radical scavenging capacity of the extracts, which represents the amounts of antioxidants in alfalfa, was determined by using 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid (ABTS and 2,2′-diphenyl-1-picrylhydrazyl (DPPH methods. The results showed good fit with the proposed models for the total flavonoid extraction (R2 = 0.9849, for the antioxidant extraction assayed by ABTS method (R2 = 0.9764, and by DPPH method (R2 = 0.9806. Optimized extraction conditions for total flavonoids was a ratio of liquid to solid of 57.16 mL/g, 62.33 °C, 57.08 min, and 52.14% ethanol. The optimal extraction parameters of extracts for the highest antioxidant activity by DPPH method was a ratio of liquid to solid 60.3 mL/g, 54.56 °C, 45.59 min, and 46.67% ethanol, and by ABTS assay was a ratio of liquid to solid 47.29 mL/g, 63.73 °C, 51.62 min, and 60% ethanol concentration. Our work offers optimal extraction conditions for total flavonoids and antioxidants from alfalfa.

  8. Optimization of Ultrasonic-Assisted Extraction of Flavonoid Compounds and Antioxidants from Alfalfa Using Response Surface Method.

    Science.gov (United States)

    Jing, Chang-Liang; Dong, Xiao-Fang; Tong, Jian-Ming

    2015-08-26

    Ultrasonic-assisted extraction (UAE) was used to extract flavonoid-enriched antioxidants from alfalfa aerial part. Response surface methodology (RSM), based on a four-factor, five-level central composite design (CCD), was employed to obtain the optimal extraction parameters, in which the flavonoid content was maximum and the antioxidant activity of the extracts was strongest. Radical scavenging capacity of the extracts, which represents the amounts of antioxidants in alfalfa, was determined by using 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) methods. The results showed good fit with the proposed models for the total flavonoid extraction (R² = 0.9849), for the antioxidant extraction assayed by ABTS method (R² = 0.9764), and by DPPH method (R² = 0.9806). Optimized extraction conditions for total flavonoids was a ratio of liquid to solid of 57.16 mL/g, 62.33 °C, 57.08 min, and 52.14% ethanol. The optimal extraction parameters of extracts for the highest antioxidant activity by DPPH method was a ratio of liquid to solid 60.3 mL/g, 54.56 °C, 45.59 min, and 46.67% ethanol, and by ABTS assay was a ratio of liquid to solid 47.29 mL/g, 63.73 °C, 51.62 min, and 60% ethanol concentration. Our work offers optimal extraction conditions for total flavonoids and antioxidants from alfalfa.

  9. Immobilized Rhizopus oryzae lipase catalyzed synthesis of palm stearin and cetyl alcohol wax esters: Optimization by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Gargouri Youssef

    2011-06-01

    Full Text Available Abstract Background Waxes are esters of long-chain fatty acids and long-chain alcohols. Their principal natural sources are animals (sperm whale oil and vegetables (jojoba which are expensive and not easily available. Wax esters synthesized by enzymatic transesterification, using palm stearin as raw material, can be considered as an alternative to natural ones. Results Palm stearin is a solid fraction obtained by fractionation of palm oil. Palm stearin was esterified with cetyl alcohol to produce a mixture of wax esters. A non-commercial immobilized lipase from Rhizopus oryzae was used as biocatalyst. Response surface methodology was employed to determine the effects of the temperature (30-50°C, the enzyme concentration (33.34-300 IU/mL, the alcohol/palm stearin molar ratio (3-7 mol/mol and the substrate concentration (0.06-0.34 g/mL on the conversion yield of palm stearin. Under optimal conditions (temperature, 30°C; enzyme concentration, 300 IU/mL; molar ratio 3 and substrate concentration 0.21 g/mL a high conversion yield of 98.52% was reached within a reaction time of 2 h. Conclusions Response surface methodology was successfully applied to determine the optimum operational conditions for synthesis of palm stearin based wax esters. This study may provide useful tools to develop economical and efficient processes for the synthesis of wax esters.

  10. Optimization of lactic acid production by pellet-form Rhizopus oryzae in 3-L airlift bioreactor using response surface methodology.

    Science.gov (United States)

    Maneeboon, Thanapoom; Vanichsriratana, Wirat; Pomchaitaward, Chaiyaporn; Kitpreechavanich, Vichien

    2010-05-01

    The influence of two key environmental factors, pH and oxygen transfer coefficient (k(L)a), was evaluated on the lactic acid production as the main answer and, on the size of cell pellets of the fungal strain Rhizopus oryzae KPS106, as second dependant answer by response surface methodology using a central composite design. The results of the analysis of variance and modeling demonstrated that pH and k(L)a had a significant effect on lactic acid production by this strain. However, no interaction was observed between these two experimental factors. pH and k(L)a had no significant influence on the pellet size. Optimal pH and k(L)a of the fermentation medium for lactic acid production from response surface analysis was 5.85 and of 3.6 h(-1), respectively. The predicted and experimental lactic acid maximal values were 75.4 and 72.0 g/l, respectively, with pellets of an average of 2.54 +/- 0.41 mm. Five repeated batches in series were conducted with a mean lactic acid production of 77.54 g/l. The productivity was increased from 0.75 in the first batch to 0.99 g/l h in the last fifth batch.

  11. Optimization of synthesis conditions of PbS thin films grown by chemical bath deposition using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Yücel, Ersin, E-mail: dr.ersinyucel@gmail.com [Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey); Yücel, Yasin; Beleli, Buse [Department of Chemistry, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey)

    2015-09-05

    Highlights: • For the first time, RSM and CCD used for optimization of PbS thin film. • Tri-sodium citrate, deposition time and temperature were independent variables. • PbS thin film band gap value was 2.20 eV under the optimum conditions. • Quality of the film was improved after chemometrics optimization. - Abstract: In this study, PbS thin films were synthesized by chemical bath deposition (CBD) under different deposition parameters. Response surface methodology (RSM) was used to optimize synthesis parameters including amount of tri-sodium citrate (0.2–0.8 mL), deposition time (14–34 h) and deposition temperature (26.6–43.4 °C) for deposition of the films. 5-level-3-factor central composite design (CCD) was employed to evaluate effects of the deposition parameters on the response (optical band gap of the films). The significant level of both the main effects and the interaction are investigated by analysis of variance (ANOVA). The film structures were characterized by X-ray diffractometer (XRD). Morphological properties of the films were studied with a scanning electron microscopy (SEM). The optical properties of the films were investigated using a UV–visible spectrophotometer. The optimum amount of tri-sodium citrate, deposition time and deposition temperature were found to be 0.7 mL, 18.07 h and 30 °C respectively. Under these conditions, the experimental band gap of PbS was 2.20 eV, which is quite good correlation with value (1.98 eV) predicted by the model.

  12. Phenolics extraction from sweet potato peels: modelling and optimization by response surface modelling and artificial neural network.

    Science.gov (United States)

    Anastácio, Ana; Silva, Rúben; Carvalho, Isabel S

    2016-12-01

    Sweet potato peels (SPP) are a major waste generated during root processing and currently have little commercial value. Phenolics with free radical scavenging activity from SPP may represent a possible added-value product for the food industry. The aqueous extraction of phenolics from SPP was studied using a Central Composite Design with solvent to solid ratio (30-60 mL g -1 ), time (30-90 min) and temperature (25-75 °C) as independent variables. The comparison of response surface methodology (RSM) and artificial neural network (ANN) analysis on extraction modelling and optimising was performed. Temperature and solvent to solid ratio, alone and in interaction, presented a positive effect in TPC, ABTS and DPPH assays. Time was only significant for ABTS assay with a negative influence both as main effect and in interaction with other independent variables. RSM and ANN models predicted the same optimal extraction conditions as 60 mL g -1 for solvent to solid ratio, 30 min for time and 75 °C for temperature. The obtained responses in the optimized conditions were as follow: 11.87 ± 0.69 mg GAE g -1 DM for TPC, 12.91 ± 0.42 mg TE g -1 DM for ABTS assay and 46.35 ± 3.08 mg TE g -1 DM for DPPH assay. SPP presented similar optimum extraction conditions and phenolic content than peels of potato, tea fruit and bambangan. Predictive models and the optimized extraction conditions offers an opportunity for food processors to generate products with high potential health benefits.

  13. Optimization of synthesis conditions of PbS thin films grown by chemical bath deposition using response surface methodology

    International Nuclear Information System (INIS)

    Yücel, Ersin; Yücel, Yasin; Beleli, Buse

    2015-01-01

    Highlights: • For the first time, RSM and CCD used for optimization of PbS thin film. • Tri-sodium citrate, deposition time and temperature were independent variables. • PbS thin film band gap value was 2.20 eV under the optimum conditions. • Quality of the film was improved after chemometrics optimization. - Abstract: In this study, PbS thin films were synthesized by chemical bath deposition (CBD) under different deposition parameters. Response surface methodology (RSM) was used to optimize synthesis parameters including amount of tri-sodium citrate (0.2–0.8 mL), deposition time (14–34 h) and deposition temperature (26.6–43.4 °C) for deposition of the films. 5-level-3-factor central composite design (CCD) was employed to evaluate effects of the deposition parameters on the response (optical band gap of the films). The significant level of both the main effects and the interaction are investigated by analysis of variance (ANOVA). The film structures were characterized by X-ray diffractometer (XRD). Morphological properties of the films were studied with a scanning electron microscopy (SEM). The optical properties of the films were investigated using a UV–visible spectrophotometer. The optimum amount of tri-sodium citrate, deposition time and deposition temperature were found to be 0.7 mL, 18.07 h and 30 °C respectively. Under these conditions, the experimental band gap of PbS was 2.20 eV, which is quite good correlation with value (1.98 eV) predicted by the model

  14. Enzymatic Phorbol Esters Degradation using the Germinated Jatropha Curcas Seed Lipase as Biocatalyst: Optimization Process Conditions by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Avita Kusuma Wardhani

    2016-10-01

    Full Text Available Utilization of Jatropha curcas seed cake is limited by the presence of phorbol esters (PE, which are the main toxic compound and heat stable. The objective of this research was to optimize the reaction conditions of the enzymatic PE degradation of the defatted Jatropha curcas seed cake (DJSC using the acetone-dried lipase from the germinated Jatropha curcas seeds as a biocatalyst. Response Surface Methodology (RSM using three-factors-three-levels Box-Behnken design was used to evaluate the effects of the reaction time, the ratio of buffer volume to DJSC, and the ratio of enzyme to DJSC on PE degradation. The results showed that the optimum conditions of PE degradation were 29.33 h, 51.11 : 6 (mL/g, and 30.10 : 5 (U/g cake for the reaction time, the ratio of buffer volume to DJSC, and the ratio of enzyme to DJSC, respectively. The predicted degradation of PE was 98.96% and not significantly different with the validated data of PE degradation. PE content was 0.035 mg/g, in which it was lower than PE in non-toxic Jatropha seeds. The results indicated that enzymatic degradation of PE might be a promising method for degradation of PE.  Copyright © 2016 BCREC GROUP. All rights reserved Received: 22nd December 2015; Revised: 1st April 2016; Accepted: 14th April 2016 How to Cite: Wardhani, A.K., Hidayat, C., Hastuti, P. (2016. Enzymatic Phorbol Esters Degradation using the Germinated Jatropha Curcas Seed Lipase as Biocatalyst: Optimization Process Conditions by Response Surface Methodology. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (3: 346-353 (doi:10.9767/bcrec.11.3.574.346-353 Permalink/DOI: http://doi.org/10.9767/bcrec.11.3.574.346-353

  15. Solar photoelectro-Fenton degradation of the herbicide 4-chloro-2-methylphenoxyacetic acid optimized by response surface methodology

    International Nuclear Information System (INIS)

    Garcia-Segura, Sergi; Almeida, Lucio Cesar; Bocchi, Nerilso; Brillas, Enric

    2011-01-01

    Highlights: → The herbicide MCPA is quickly mineralized by solar photoelectro-Fenton. → A CCRD allowed the optimization of current, Fe 2+ content and solution pH. → TOC, MCE and energy consumption are described by response surface methodology. → Generated hydroxyl radical destroys MCPA and its aromatic oxidation by-products. → UV light of solar irradiation photolyzes the Fe(III)-carboxylate complexes produced. - Abstract: A central composite rotatable design and response surface methodology (RSM) were used to optimize the experimental variables of the solar photoelectro-Fenton (SPEF) treatment of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA). The experiments were made with a flow plant containing a Pt/air-diffusion reactor coupled to a solar compound parabolic collector (CPC) under recirculation of 10 L of 186 mg L -1 MCPA solutions in 0.05 M Na 2 SO 4 at a liquid flow rate of 180 L h -1 with an average UV irradiation intensity of about 32 W m -2 . The optimum variables found for the SPEF process were 5.0 A, 1.0 mM Fe 2+ and pH 3.0 after 120 min of electrolysis. Under these conditions, 75% of mineralization with 71% of current efficiency and 87.7 kWh kg -1 TOC of energy consumption were obtained. MCPA decayed under the attack of generated hydroxyl radicals following a pseudo-first-order kinetics. Hydroxyl radicals also destroyed 4-chloro-2-methylphenol, methylhydroquinone and methyl-p-benzoquinone detected as aromatic by-products. Glycolic, maleic, fumaric, malic, succinic, tartronic, oxalic and formic acids were identified as generated carboxylic acids, which form Fe(III) complexes that are quickly photodecarboxylated by the UV irradiation of sunlight at the CPC photoreactor. A reaction sequence for the SPEF degradation of MCPA was proposed.

  16. D-isoascorbyl palmitate: lipase-catalyzed synthesis, structural characterization and process optimization using response surface methodology.

    Science.gov (United States)

    Sun, Wen-Jing; Zhao, Hong-Xia; Cui, Feng-Jie; Li, Yun-Hong; Yu, Si-Lian; Zhou, Qiang; Qian, Jing-Ya; Dong, Ying

    2013-07-08

    Isoascorbic acid is a stereoisomer of L-ascorbic acid, and widely used as a food antioxidant. However, its highly hydrophilic behavior prevents its application in cosmetics or fats and oils-based foods. To overcome this problem, D-isoascorbyl palmitate was synthesized in the present study for improving the isoascorbic acid's oil solubility with an immobilized lipase in organic media. The structural information of synthesized product was clarified using LC-ESI-MS, FT-IR, 1H and 13C NMR analysis, and process parameters for high yield of D-isoascorbyl palmitate were optimized by using One-factor-at-a-time experiments and response surface methodology (RSM). The synthesized product had the purity of 95% and its structural characteristics were confirmed as isoascorbyl palmitate by LC-ESI-MS, FT-IR, 1H, and 13C NMR analysis. Results from "one-factor-at-a-time" experiments indicated that the enzyme load, reaction temperature and D-isoascorbic-to-palmitic acid molar ratio had a significant effect on the D-isoascorbyl palmitate conversion rate. 95.32% of conversion rate was obtained by using response surface methodology (RSM) under the the optimized condition: enzyme load of 20% (w/w), reaction temperature of 53°C and D- isoascorbic-to-palmitic acid molar ratio of 1:4 when the reaction parameters were set as: acetone 20 mL, 40 g/L of molecular sieves content, 200 rpm speed for 24-h reaction time. The findings of this study can become a reference for developing industrial processes for the preparation of isoascorbic acid ester, which might be used in food additives, cosmetic formulations and for the synthesis of other isoascorbic acid derivatives.

  17. Optimal Responsible Investment

    DEFF Research Database (Denmark)

    Jessen, Pernille

    Numerous institutions are now engaged in Socially Responsible Investment or have signed the "UN Principles for Responsible Investment". Retail investors, however, are still lacking behind. This is peculiar since the sector constitutes key stakeholders in environmental, social and governmental...... standards. This paper considers optimal responsible investment for a small retail investor. It extends conventional portfolio theory by allowing for a personal-value based investment decision. Preferences for responsibility are defined in the framework of mean-variance analysis and an optimal responsible...... investment model identified. Implications of the altered investment problem are investigated when the dynamics between portfolio risk, expected return and responsibility is considered. Relying on the definition of a responsible investor, it is shown how superior investment opportunities can emerge when...

  18. Enzymatic scavenging of oxygen dissolved in water: Application of response surface methodology in optimization of conditions

    Directory of Open Access Journals (Sweden)

    Karimi Afzal

    2012-01-01

    Full Text Available In this work, removal of dissolved oxygen in water through reduction by glucose, which was catalyzed by glucose oxidase – catalase enzyme, was studied. Central composite design (CCD technique was applied to achieve optimum conditions for dissolved oxygen scavenging. Linear, square and interactions between effective parameters were obtained to develop a second order polynomial equation. The adequacy of the obtained model was evaluated by the residual plots, probability-value, coefficient of determination, and Fisher’s variance ratio test. Optimum conditions for activity of two enzymes in water deoxygenation were obtained as follows: pH=5.6, T=40°C, initial substrate concentration [S] = 65.5 mmol/L and glucose oxidase activity [E] = 252 U/Lat excess amount of catalase. The deoxygenation process during 30 seconds, in the optimal conditions, was predicted 98.2%. Practical deoxygenation in the predicted conditions was achieved to be 95.20% which was close to the model prediction.

  19. Optimizing the bulk copolymerization of D,L-lactide and glycolide by response surface methodology

    Directory of Open Access Journals (Sweden)

    J. F. Rodriguez

    2013-11-01

    Full Text Available Poly(D,L-lactide-co-glycolide, PLGA, is a biodegradable polyester with high interest in medical industry, especially when zinc (II 2-ethylhexanoate (ZnOct2 is used as catalyst substitute in polymerization processes as a substitute of the toxic tin (II 2-ethylhexanoate (SnOct2 together an initiator such as methanol to improve the reaction rate. This article shows the optimization of the bulk copolymerization method by using a factorial design approach on three experimental parameters: temperature (T, molar ratio monomers/catalyst (MC ratio and molar ratio initiator/catalyst (IC ratio. Their influence on mass conversion (X and number-average molecular weight (Mn was also discussed. Also it provides a useful tool to select in a fast way the proper experimental conditions for the obtaining of this polymer as a previous stage in the synthesis and impregnation of biodegradable scaffolds. This analysis revealed that the most relevant variable in the process is the temperature, being desirable to use the high value (160ºC in order to obtain high values of conversion and molecular weight.

  20. Optimization of radiation treatment of ginger (Zingiber officinale) rhizomes using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Nketsia-Tabiri, Josephine

    1998-06-01

    The effects of pre-irradiation storage time (7-21 days), radiation dose (0-75 Gy) and post-irradiation storage time (2-20 weeks) on sprouting, wrinkling and weight loss of ginger was investigated using a central composite rotatable design. Predictive models developed for all three responses were highly significant. Weight loss and wrinkling decreased as pre-irradiation storage time increased. Dose and post-irradiation storage time had significant interactive effects on weight loss and sprouting. Processing conditions for achieving minimal sprouting resulted in maximum weight loss and wrinkling.

  1. Optimization of radiation treatment of ginger (Zingiber officinale) rhizomes using response surface methodology

    International Nuclear Information System (INIS)

    Nketsia-Tabiri, Josephine

    1998-01-01

    The effects of pre-irradiation storage time (7-21 days), radiation dose (0-75 Gy) and post-irradiation storage time (2-20 weeks) on sprouting, wrinkling and weight loss of ginger was investigated using a central composite rotatable design. Predictive models developed for all three responses were highly significant. Weight loss and wrinkling decreased as pre-irradiation storage time increased. Dose and post-irradiation storage time had significant interactive effects on weight loss and sprouting. Processing conditions for achieving minimal sprouting resulted in maximum weight loss and wrinkling

  2. Optimization of radiation treatment of ginger ( Zingiber officinale) rhizomes using response surface methodology

    Science.gov (United States)

    Nketsia-Tabiri, Josephine

    1998-06-01

    The effects of pre-irradiation storage time (7-21 days), radiation dose (0-75 Gy) and post-irradiation storage time (2-20 weeks) on sprouting, wrinkling and weight loss of ginger was investigated using a central composite rotatable design. Predictive models developed for all three responses were highly significant. Weight loss and wrinkling decreased as pre-irradiation storage time increased. Dose and post-irradiation storage time had significant interactive effects on weight loss and sprouting. Processing conditions for achieving minimal sprouting resulted in maximum weight loss and wrinkling.

  3. Multi-response optimization of T300/epoxy prepreg tape-wound cylinder by grey relational analysis coupled with the response surface method

    Science.gov (United States)

    Kang, Chao; Shi, Yaoyao; He, Xiaodong; Yu, Tao; Deng, Bo; Zhang, Hongji; Sun, Pengcheng; Zhang, Wenbin

    2017-09-01

    This study investigates the multi-objective optimization of quality characteristics for a T300/epoxy prepreg tape-wound cylinder. The method integrates the Taguchi method, grey relational analysis (GRA) and response surface methodology, and is adopted to improve tensile strength and reduce residual stress. In the winding process, the main process parameters involving winding tension, pressure, temperature and speed are selected to evaluate the parametric influences on tensile strength and residual stress. Experiments are conducted using the Box-Behnken design. Based on principal component analysis, the grey relational grades are properly established to convert multi-responses into an individual objective problem. Then the response surface method is used to build a second-order model of grey relational grade and predict the optimum parameters. The predictive accuracy of the developed model is proved by two test experiments with a low prediction error of less than 7%. The following process parameters, namely winding tension 124.29 N, pressure 2000 N, temperature 40 °C and speed 10.65 rpm, have the highest grey relational grade and give better quality characteristics in terms of tensile strength and residual stress. The confirmation experiment shows that better results are obtained with GRA improved by the proposed method than with ordinary GRA. The proposed method is proved to be feasible and can be applied to optimize the multi-objective problem in the filament winding process.

  4. Optimization of the Transesterification of Waste Cooking Oil with Mg-Al Hydrotalcite Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Laureano Costarrosa

    2018-01-01

    Full Text Available Nowadays, biodiesel has become a very promising alternative to fossil diesel fuel, regarding environmental concerns and fuel resource depletion. Biodiesel is usually produced through homogeneous or heterogeneous transesterification of different fatty raw materials. Although main research has been carried out with homogenous catalysts, heterogeneous catalysts may be of interest due to ease of recovery and recycling, as well as readiness for continuous processing. In this work, calcined Mg-Al hydrotalcite (HT was used for the heterogeneous transesterification of waste cooking oil. Three reaction parameters, namely, reaction time, amount of catalyst, and methanol-to-oil molar ratio, were optimized by means of Response Surface Methodology (RSM at constant temperature (65 °C, using a Box-Behnken design. Optimal fatty acid methyl ester (FAME content (86.23% w/w FAME/sample was predicted by the model with an R-squared value of 98.45%, using 3.39 g of HT (8.5% w/w oil and an 8:1 methanol-oil molar ratio, for a duration of 3.12 h. It was observed that calcination of HT, while avoiding the previous washing step, allowed the presence of chemical species that enhanced the effect of the catalyst. It can be concluded from this field trial that calcined and nonwashed Mg-Al hydrotalcite may be considered an effective basic catalyst for the production of biodiesel from waste cooking oil. Also, RSM proved to be a useful tool for predicting biodiesel yield.

  5. Optimization of conditions for probiotic curd formulation by Enterococcus faecium MTCC 5695 with probiotic properties using response surface methodology.

    Science.gov (United States)

    Ramakrishnan, Vrinda; Goveas, Louella Concepta; Prakash, Maya; Halami, Prakash M; Narayan, Bhaskar

    2014-11-01

    Enterococcus faecium MTCC 5695 possessing potential probiotic properties as well as enterocin producing ability was used as starter culture. Effect of time (12-24 h) and inoculum level (3-7 % v/v) on cell growth, bacteriocin production, antioxidant property, titrable acidity and pH of curd was studied by response surface methodology (RSM). The optimized conditions were 26.48 h and 2.17%v/v inoculum and the second order model validated. Co cultivation studies revealed that the formulated product had the ability to prevent growth of foodborne pathogens that affect keeping quality of the product during storage. The results indicated that application of E. faecium MTCC 5695 along with usage of optimized conditions attributed to the formation of highly consistent well set curd with bioactive and bioprotective properties. Formulated curd with potential probiotic attributes can be used as therapeutic agent for the treatment of foodborne diseases like Traveler's diarrhea and gastroenteritis which thereby help in improvement of bowel health.

  6. Optimization of the production of bio diesel from egusi melon (Colocynthis Citrullus L.) oil using response surface methodology

    International Nuclear Information System (INIS)

    Giwa, S.O.; Chuah, L.A.; Nor Mariah Adam

    2009-01-01

    Full text: In the present work, the response surface methodology (RSM), based on a central composite design (CCD), was used to determine the optimum conditions for the transesterification of crude egusi melon (Colocynthis citrullus L.) seed oil. Three process factors were evaluated at three levels (2 3 experimental design): the oil/ methanol molar ratio, the amount of catalyst in relation to the oil mass, and the reaction temperature. The amounts of catalyst and reaction temperature were the most significant (P 2 = 0.98). Using multiple regression analysis a quadratic polynomial equation was obtained for predicting methyl ester yield of the transesterification reaction. The squared terms of catalyst amount (P < 0.0001) and oil/ methanol molar ratio (P < 0.0072) showed significant effects on esters yield. The optimum reaction conditions for synthesis of EMOME were 1:6.55 oil-to-methanol molar ratio, 1.22 % catalyst amounts, and 65 degree Celsius reaction temperature resulting in a yield of 84.01 %. Using these optimal factor values under experimental conditions a methyl esters yield of 84.04 % was obtained on an average, and this value was well within the range predicted by the model. RSM was found to be a suitable technique for optimizing transesterification of egusi melon seed oil. Fuel properties of EMOME measured according to accepted methods were found to satisfy all prescribed ASTM (D 6751) and EN 14214 specifications. (author)

  7. Response surface methodology optimization of lipase catalyzed transesterification of Jatropha curcas L. seed oil for biodiesel production

    International Nuclear Information System (INIS)

    Li, Yingxia; Wang, Yun; Guan, Xiu Li; Yu, Dong Dong

    2013-01-01

    The immobilized lipase-catalyzed transesterification of Jatropha curcas L. seed oil and methanol for biodiesel production in tert-butanol was investigated. The effects of different tert-butanol volume, methanol molar ratio, reaction temperature, reaction time and immobilized lipase amount on the total conversion were systematically analyzed by response surface methodology (RSM). RSM analysis showed good correspondence between experimental and predicted values. The optimal conditions for the transesterification were a reaction time of 17.355 h, a reaction temperature of 34.868 °C, an immobilized lipase amount of 12.435 %, a methanol molar ratio of 5.282:1, a tert-butanol volume ratio of 0.577:1. The optimal predicted yield of fatty acid methyl esters (FAME) was 88.5 % and the actual value was 88.1 %. The predicted yield of fatty acid esters and the real one was very close, indicating that the RSM based on central composite design (CCD) was adaptable for a FAME study for the present transesterification system. Moreover, the infrared spectrum of biodiesel showed the characteristic bands of C=O, O–C–O, C=C and –(CH_2)n–. Furthermore, GC-linked mass spectrometry showed that biodiesel was mainly composed of the methyl esters of hexadecanoic, 9,12-octadecadienoic and 9-octadecadienoic acid

  8. Response Surface Methodology to Optimize Enzymatic Preparation of Deapio-Platycodin D and Platycodin D from Radix Platycodi

    Directory of Open Access Journals (Sweden)

    Jian Liang

    2012-03-01

    Full Text Available In the present work, we reported the enzymatic preparation of deapio-platycodin D (dPD and platycodin D (PD optimized by response surface methodology (RSM from Radix Platycodi. During investigation of the hydrolysis of crude platycosides by various glycoside hydrolases, snailase showed a strong ability to transform deapio-platycoside E (dPE and platycoside E (PE into dPD and PD with 100% conversion. RSM was used to optimize the effects of the reaction temperature (35–45 °C, enzyme load (5–20%, and reaction time (4–24 h on the conversion process. Validation of the RSM model was verified by the good agreement between the experimental and the predicted values of dPD and PD conversion yield. The optimum preparation conditions were as follows: temperature, 43 °C; enzyme load, 15%; reaction time, 22 h. The biotransformation pathways were dPE→dPD3→dPD and PE→PD3→PD, respectively. The determined method may be highly applicable for the enzymatic preparation of dPD and PD for medicinal purposes and also for commercial use.

  9. Optimization of Ultrasound-Assisted Extraction of Natural Antioxidants from the Flower of Jatropha integerrima by Response Surface Methodology.

    Science.gov (United States)

    Xu, Dong-Ping; Zhou, Yue; Zheng, Jie; Li, Sha; Li, An-Na; Li, Hua-Bin

    2015-12-24

    An ultrasound-assisted extraction (UAE) method was developed for the efficient extraction of natural antioxidants from the flowers of Jatropha integerrima. Four independent variables, including ethanol concentration, solvent/material ratio, ultrasound irradiation time and temperature were studied by single factor experiments. Then, the central composite rotatable design and response surface methodology were employed to investigate the effect of three key parameters (ethanol concentration, solvent/material ratio, and ultrasound irradiation time) on the antioxidant activities of the flower extracts. The optimal extraction conditions were an ethanol concentration of 59.6%, solvent/material ratio of 50:1, ultrasound irradiation time of 7 min, and ultrasound irradiation temperature of 40 °C. Under these conditions, the optimized experimental value was 1103.38 ± 16.11 µmol Trolox/g dry weight (DW), which was in accordance with the predicted value (1105.49 µmol Trolox/g DW). Furthermore, the antioxidant activities of flower extracts obtained by UAE were compared with those produced by the traditional maceration and Soxhlet extraction methods, and UAE resulted in higher antioxidant activities after a shorter time at a lower temperature. The results obtained are helpful for the full utilization of Jatropha integerrima, and also indicate that ultrasound-assisted extraction is an efficient method for the extraction of natural antioxidants from plant materials.

  10. Optimization of Ultrasound-Assisted Extraction of Natural Antioxidants from the Flower of Jatropha integerrima by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Dong-Ping Xu

    2015-12-01

    Full Text Available An ultrasound-assisted extraction (UAE method was developed for the efficient extraction of natural antioxidants from the flowers of Jatropha integerrima. Four independent variables, including ethanol concentration, solvent/material ratio, ultrasound irradiation time and temperature were studied by single factor experiments. Then, the central composite rotatable design and response surface methodology were employed to investigate the effect of three key parameters (ethanol concentration, solvent/material ratio, and ultrasound irradiation time on the antioxidant activities of the flower extracts. The optimal extraction conditions were an ethanol concentration of 59.6%, solvent/material ratio of 50:1, ultrasound irradiation time of 7 min, and ultrasound irradiation temperature of 40 °C. Under these conditions, the optimized experimental value was 1103.38 ± 16.11 µmol Trolox/g dry weight (DW, which was in accordance with the predicted value (1105.49 µmol Trolox/g DW. Furthermore, the antioxidant activities of flower extracts obtained by UAE were compared with those produced by the traditional maceration and Soxhlet extraction methods, and UAE resulted in higher antioxidant activities after a shorter time at a lower temperature. The results obtained are helpful for the full utilization of Jatropha integerrima, and also indicate that ultrasound-assisted extraction is an efficient method for the extraction of natural antioxidants from plant materials.

  11. Optimization of artemisinin extraction from artemisia annua l. With supercritical carbon dioxide + ethanol using response surface methodology.

    Science.gov (United States)

    Ciftci, Ozan Nazim; Cahyadi, Jessica; Guigard, Selma E; Saldaña, Marleny D A

    2018-05-13

    Malaria is a high priority life-threatening public health concern in developing countries, and therefore there is a growing interest to obtain artemisinin for the production of artemisinin-based combination therapy products. In this study, artemisinin was extracted from the Artemisia annua L. plant using supercritical carbon dioxide (SC-CO 2 ) modified with ethanol. Response surface methodology (RSM) based on central composite rotatable design (CCRD) was employed to investigate and optimize the extraction conditions of pressure (9.9-30 MPa), temperature (33-67°C), and co-solvent (ethanol, 0-12.6 wt.%). Optimum SC-CO 2 extraction conditions were found to be 30 MPa and 33°C. Under optimized conditions, the predicted artemisinin yield was 1.09% whereas the experimental value was 0.71±0.07%. Soxhlet extraction with hexane resulted in higher artemisinin yields and there was no significant difference in the purity of the extracts obtained with SC-CO 2 and Soxhlet extractions. Results indicated that SC-CO 2 and SC-CO 2 +ethanol extraction is a promising alternative for the extraction of artemisinin to eliminate the use of organic solvents, such as hexane and produce extracts that can be used for the production of antimalarial products. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Modeling and optimization of gelatin-chitosan micro-carriers preparation for soft tissue engineering: Using Response Surface Methodology.

    Science.gov (United States)

    Radaei, Payam; Mashayekhan, Shohreh; Vakilian, Saeid

    2017-06-01

    Electrospray ionization is a wide spread technique for producing polymeric microcarriers (MCs) by applying electrostatic force and ionic cross-linker, simultaneously. In this study, fabrication process of gelatin-chitosan MCs and its optimization using the Response Surface Methodology (RSM) is reported. Gelatin/chitosan (G/C) blend ratio, applied voltage and feeding flow rate, their individual and interaction effects on the diameter and mechanical strength of the MCs were investigated. The obtained models for diameter and mechanical strength of MCs have a quadratic relationship with G/C blend ratio, applied voltage and feeding flow rate. Using the desirability curve, optimized G/C blend ratios that are introduced, include the desirable quantities for MCs diameter and mechanical strength. MCs of the same desirable diameter (350μm) and different G/C blend ratio (1, 2, and 3) were fabricated and their elasticity was investigated via Atomic Force Microscopy (AFM). The biocompatibility of the MCs was evaluated using MTT assay. The results showed that human Umbilical Cord Mesenchymal Stem Cells (hUCMSCs) could attach and proliferate on fabricated MCs during 7days of culturing especially on those prepared with G/C blend ratios of 1 and 2. Such gelatin-chitosan MCs may be considered as a promising candidate for injectable tissue engineering scaffolds, supporting attachment and proliferation of hUCMSCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Optimization of process variables on flexural properties of epoxy/organo-montmorillonite nanocomposite by response surface methodology

    Directory of Open Access Journals (Sweden)

    2008-01-01

    Full Text Available This study attempted to investigate the preparation and optimization of the flexural properties for epoxy/organomontmorillonite (OMMT nanocomposites. In-situ polymerization method was used to prepare epoxy/OMMT nanocomposites. The diglycidyl ether bisphenol A (DGEBA and curing agent were mixed first, followed by the addition of OMMT. In this study, computer aided statistical methods of experimental design (Response Surface Methodology, RSM was used to investigate the process variables on the flexural properties of epoxy/4wt% OMMT nanocomposites. Speed of mechanical stirrer, post-curing time and post-curing temperature were chosen as process variables in the experimental design. Results showed that the speed of mechanical stirrer, post-curing time and post-curing temperature were able to influence the flexural modulus and flexural yield stress of epoxy/4 wt% OMMT nanocomposites. The results of optimization showed that the design of experiment (DOE has six combination of operating variables which have been obtained in order to attain the greatest overall desirability.

  14. Optimization of Aqueous Ammonia Soaking of manure fibers by Response Surface Methodology for unlocking the methane potential of swine manure.

    Science.gov (United States)

    Lymperatou, Anna; Gavala, Hariklia N; Skiadas, Ioannis V

    2017-11-01

    Swine manure mono-digestion often results to economically non-feasible processes, due to the high dilution and ammonia concentration together with the low degradation rates it presents. The effects of different parameters of Aqueous Ammonia Soaking (AAS) as a pretreatment for improving the digestion of manure fibers when coupled to an ammonia removal step were investigated in this study. Response Surface Methodology was followed and the influence and interactions of the following AAS parameters were studied: NH 3 concentration, duration and solid-to-liquid ratio. The mild conditions found to be optimal (7%w/w NH 3 , 96h, and 0.16kg/L) in combination to a significant increase of the short term CH 4 yield (244% in 17days), make this pretreatment a promising solution for improving swine manure mono-digestion. Furthermore, compositional analysis of the manure fibers revealed significant solubilization of hemicellulose, while no lignin removal or loss of cellulose occurred under optimal conditions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Optimization for decolorization of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology

    International Nuclear Information System (INIS)

    Zhang Zhanmei; Zheng Huaili

    2009-01-01

    Response surface methodology (RSM) based on Box-Behnken design was successfully applied to the optimization of the operating conditions in decolorization of acid green 20 (AG 20) by ultrasonic irradiation in the presence of H 2 O 2 . The effects of three operating variables, ultrasonic power density, initial pH value of dye solution and H 2 O 2 concentration on the decolorization efficiency of AG 20 were evaluated. A quadratic model for AG 20 decolorization was proposed. Analysis of variance (ANOVA) indicated that the proposed quadratic model could be used to navigate the design space. The proposed model was approximately in accordance with the experimental case with correlation coefficients R 2 and R adj 2 of 0.9995 and 0.9984, respectively. The optimum operating conditions for AG 20 decolorization were found to be 1.08 W/mL of ultrasonic power density, 4.85 of initial pH and 1.94 mM of H 2 O 2 concentration, respectively. The predicted decolorization rate under the optimum conditions determined by RSM was 96.8%. Confirmatory tests were carried out under the optimum conditions and the decolorization rate of 96.3% was observed, which closely agreed with the predicted value. The results confirmed that RSM based on Box-Behnken design was an accurate and reliable method to optimize the operating conditions of AG 20 decolorization.

  16. Optimization of Maillard reaction with ribose for enhancing anti-allergy effect of fish protein hydrolysates using response surface methodology.

    Science.gov (United States)

    Yang, Sung-Yong; Kim, Se-Wook; Kim, Yoonsook; Lee, Sang-Hoon; Jeon, Hyeonjin; Lee, Kwang-Won

    2015-06-01

    Halibut is served on sushi and as sliced raw fish fillets. We investigated the optimal conditions of the Maillard reaction (MR) with ribose using response surface methodology to reduce the allergenicity of its protein. A 3-factored and 5-leveled central composite design was used, where the independent variables were substrate (ribose) concentration (X1, %), reaction time (X2, min), and pH (X3), while the dependent variables were browning index (Y1, absorbance at 420nm), DPPH scavenging (Y2, EC50 mg/mL), FRAP (Y3, mM FeSO4/mg extract) and β-hexosaminidase release (Y4, %). The optimal conditions were obtained as follows: X1, 28.36%; X2, 38.09min; X3, 8.26. Maillard reaction products of fish protein hydrolysate (MFPH) reduced the amount of nitric oxide synthesis compared to the untreated FPH, and had a significant anti-allergy effect on β-hexosaminidase and histamine release, compared with that of the FPH control. We concluded that MFPH, which had better antioxidant and anti-allergy activities than untreated FPH, can be used as an improved dietary source. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Optimization of activated carbon from sewage sludge using response surface methodology

    International Nuclear Information System (INIS)

    Muhammad Salleh Abustan; Hamidi Abdul Aziz; Mohd Azmier Ahmad

    2010-01-01

    Wastewater sludge cake was used to prepare activated carbon using physical activation method. The effects of three preparation variables; the activation temperature, activation time and carbon dioxide gas flow rate on chemical oxygen demand (COD) and ammonia removal from leachate solutions were investigated. Based on the central composite design (CCD), two quadratic models were developed to correlate the preparation variables to the COD and ammonia removal. From the analysis of variance (ANOVA), the significant factors on each experimental design response were identified. The optimum activated carbon prepared from wastewater sludge cake was obtained by using activation temperature of 510 degree Celsius, activation time of 30 min and carbon dioxide flow rate of 500 ml/ min. The optimum activated carbon showed COD and ammonia removal of 26 and 13 %, respectively. (author)

  18. Optimization of sulfamethoxazole degradation by TiO2/hydroxyapatite composite under ultraviolet irradiation using response surface methodology

    International Nuclear Information System (INIS)

    Chun, Suk Young; Kim, Ji Tae; Chang, Soon Woong; An, Sang Woo; Lee, Si Jin

    2014-01-01

    A titanium dioxide/hydroxyapatite/ultraviolet (TiO 2 /HAP/UV-A) system was used to remove sulfamethoxazole (SMX) from water in a second-order response surface methodology (RSM) experiment with a three-level Box-Behnken design (BBD) for optimization. The effects of both the primary and secondary interaction effects of three photocatalytic reaction variables were examined: the concentration of SMX (X 1 ), dose of TiO 2 /HAP composite (X 2 ), and UV intensity (X 3 ). The UV intensity and TiO 2 /HAP dose significantly influence the SMX and total organic carbon (TOC) removal (p<0.001). However, the SMX and TOC removal are enhanced with increasing TiO 2 /HAP dose up to certain levels, and further increases in the TiO 2 /HAP dose result in adverse effects due to hydroxyl radical scavenging at higher catalyst concentrations. Complete removal of SMX was achieved upon UV-A irradiation for 180 min. Under optimal conditions, 51.2% of the TOC was removed, indicating the formation of intermediate products during SMX degradation. The optimal ratio of SMX (mg L -1 ) to TiO 2 /HAP (g L -1 ) to UV (W/L) was 5.4145 mg L -1 to 1.4351 g L -1 to 18 W for both SMX and TOC removal. By comparison with actual applications, the experimental results were found to be in good agreement with the model's predictions, with mean results for SMX and TOC removal of 99.89% and 51.01%, respectively

  19. Modeling and optimization of gelatin-chitosan micro-carriers preparation for soft tissue engineering: Using Response Surface Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Radaei, Payam [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 11365-8639 (Iran, Islamic Republic of); Mashayekhan, Shohreh, E-mail: mashayekhan@sharif.edu [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 11365-8639 (Iran, Islamic Republic of); Vakilian, Saeid [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 11365-8639 (Iran, Islamic Republic of); Stem Cell Technology Research Center, Tehran 1997775555 (Iran, Islamic Republic of)

    2017-06-01

    Electrospray ionization is a wide spread technique for producing polymeric microcarriers (MCs) by applying electrostatic force and ionic cross-linker, simultaneously. In this study, fabrication process of gelatin-chitosan MCs and its optimization using the Response Surface Methodology (RSM) is reported. Gelatin/chitosan (G/C) blend ratio, applied voltage and feeding flow rate, their individual and interaction effects on the diameter and mechanical strength of the MCs were investigated. The obtained models for diameter and mechanical strength of MCs have a quadratic relationship with G/C blend ratio, applied voltage and feeding flow rate. Using the desirability curve, optimized G/C blend ratios that are introduced, include the desirable quantities for MCs diameter and mechanical strength. MCs of the same desirable diameter (350 μm) and different G/C blend ratio (1, 2, and 3) were fabricated and their elasticity was investigated via Atomic Force Microscopy (AFM). The biocompatibility of the MCs was evaluated using MTT assay. The results showed that human Umbilical Cord Mesenchymal Stem Cells (hUCMSCs) could attach and proliferate on fabricated MCs during 7 days of culturing especially on those prepared with G/C blend ratios of 1 and 2. Such gelatin-chitosan MCs may be considered as a promising candidate for injectable tissue engineering scaffolds, supporting attachment and proliferation of hUCMSCs. - Highlights: • Gelatin-chitosan Micro-carriers fabricated by electrospray ionization method. • The effects of blend ratio, the syringe feeding rate, and voltage on micro-carrier optimization were investigated via RSM. • Both diameter and mechanical strength of Micro-carriers have a quadratic relationship with selected parameters. • The optimum conditions with fixed diameter of 350μm and maximized strength in different blend ratios were achieved. • The elasticity and biocompatibility of desirable fabricated micro-carriers characterized.

  20. Optimization of sulfamethoxazole degradation by TiO{sub 2}/hydroxyapatite composite under ultraviolet irradiation using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Suk Young; Kim, Ji Tae; Chang, Soon Woong [Kyonggi University, Suwon (Korea, Republic of); An, Sang Woo [Hanyang University, Seoul (Korea, Republic of); Lee, Si Jin [Korea Environment Corporation, Incheon (Korea, Republic of)

    2014-06-15

    A titanium dioxide/hydroxyapatite/ultraviolet (TiO{sub 2}/HAP/UV-A) system was used to remove sulfamethoxazole (SMX) from water in a second-order response surface methodology (RSM) experiment with a three-level Box-Behnken design (BBD) for optimization. The effects of both the primary and secondary interaction effects of three photocatalytic reaction variables were examined: the concentration of SMX (X{sub 1}), dose of TiO{sub 2}/HAP composite (X{sub 2}), and UV intensity (X{sub 3}). The UV intensity and TiO{sub 2}/HAP dose significantly influence the SMX and total organic carbon (TOC) removal (p<0.001). However, the SMX and TOC removal are enhanced with increasing TiO{sub 2}/HAP dose up to certain levels, and further increases in the TiO{sub 2}/HAP dose result in adverse effects due to hydroxyl radical scavenging at higher catalyst concentrations. Complete removal of SMX was achieved upon UV-A irradiation for 180 min. Under optimal conditions, 51.2% of the TOC was removed, indicating the formation of intermediate products during SMX degradation. The optimal ratio of SMX (mg L{sup -1}) to TiO{sub 2}/HAP (g L{sup -1}) to UV (W/L) was 5.4145 mg L{sup -1} to 1.4351 g L{sup -1} to 18 W for both SMX and TOC removal. By comparison with actual applications, the experimental results were found to be in good agreement with the model's predictions, with mean results for SMX and TOC removal of 99.89% and 51.01%, respectively.

  1. PRODUCTION OF MEDIUM-CHAIN ACYLGLYCEROLS BY LIPASE ESTERIFICATION IN PACKED BED REACTOR: PROCESS OPTIMIZATION BY RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    ZANARIAH MOHD DOM

    2014-06-01

    Full Text Available Medium-chain acylglycerols (or glycerides are formed of mono-, di- and triacylglycerol classes. In this study, an alternative method to produce MCA from esterifying palm oil fatty acid distillate (PFAD with the presence of oil palm mesocarp lipase (OPML which is a plant-sourced lipase and PFAD is also cheap by-product is developed in a packed bed reactor. The production of medium-chain acylglycerols (MCA by lipase-catalysed esterification of palm oil fatty acid distillate with glycerol are optimize in order to determine the factors that have significant effects on the reaction condition and high yield of MCA. Response surface methodology (RSM was applied to optimize the reaction conditions. The reaction conditions, namely, the reaction time (30-240 min, enzyme load (0.5-1.5 kg, silica gel load (0.2-1.0 kg, and solvent amount (200-600 vol/wt. Reaction time, enzyme loading and solvent amount strongly effect MCA synthesis (p0.05 influence on MCA yield. Best-fitting models were successfully established for MCA yield (R 2 =0.9133. The optimum MCA yield were 75% from the predicted value and 75.4% from the experimental data for 6 kg enzyme loading, a reaction time of 135min and a solvent amount of 350 vol/wt at 65ºC reaction temperature. Verification of experimental results under optimized reaction conditions were conducted, and the results agreed well with the predicted range. Esterification products (mono-, di- and triacylglycerol from the PBR were identified using Thin Layer Chromatography method. The chromatograms showed the successful fractionation of esterified products in this alternative method of process esterification.

  2. Evaluation and optimization of ethanol production from carob pod extract by Zymomonas mobilis using response surface methodology.

    Science.gov (United States)

    Vaheed, Hossein; Shojaosadati, Seyed Abbas; Galip, Hasan

    2011-01-01

    In this research, ethanol production from carob pod extract (extract) using Zymomonas mobilis with medium optimized by Plackett-Burman (P-B) and response surface methodologies (RSM) was studied. Z. mobilis was recognized as useful for ethanol production from carob pod extract. The effects of initial concentrations of sugar, peptone, and yeast extract as well as agitation rate (rpm), pH, and culture time in nonhydrolyzed carob pod extract were investigated. Significantly affecting variables (P = 0.05) in the model obtained from RSM studies were: weights of bacterial inoculum, initial sugar, peptone, and yeast extract. Acid hydrolysis was useful to complete conversion of sugars to glucose and fructose. Nonhydrolyzed extract showed higher ethanol yield and residual sugar compared with hydrolyzed extract. Ethanol produced (g g(-1) initial sugar, as the response) was not significantly different (P = 0.05) when Z. mobilis performance was compared in hydrolyzed and nonhydrolyzed extract. The maximum ethanol of 0.34 ± 0.02 g g(-1) initial sugar was obtained at 30°C, initial pH 5.2, and 80 rpm, using concentrations (g per 50 mL culture media) of: inoculum bacterial dry weight, 0.017; initial sugar, 5.78; peptone, 0.43; yeast extract, 0.43; and culture time of 36 h.

  3. Optimization of pressurized liquid extraction by response surface methodology of Goji berry (Lycium barbarum L.) phenolic bioactive compounds.

    Science.gov (United States)

    Tripodo, Giusy; Ibáñez, Elena; Cifuentes, Alejandro; Gilbert-López, Bienvenida; Fanali, Chiara

    2018-01-03

    Pressurized liquid extraction (PLE) has been used for the first time in this work to extract phenolic compounds from Goji berries according to a multilevel factorial design using response surface methodology. The global yield (% w/dw, weight/dry-weight), total phenolic content (TPC), total flavonoid (TF) and antioxidant activity (determined via ABTS assay, expressed as TEAC value) were used as response variables to study the effects of temperature (50-180°C) and green solvent composition (mixtures of ethanol/water). Phenolic compounds characterization was performed by high performance liquid chromatography-diode array detector-tandem mass spectrometry (HPLC-DAD-MS/MS). The optimum PLE conditions predicted by the model were as follows: 180°C and 86% ethanol in water with a good desirability value of 0.815. The predicted conditions were confirmed experimentally and once the experimental design was validated for commercial fruit samples, the PLE extraction of phenolic compounds from three different varieties of fruit samples (Selvatico mongolo, Bigol, and Polonia) was performed. Nine phenolic compounds were tentatively identified in these extracts, including phenolic acids and their derivatives, and flavonols. The optimized PLE conditions were compared to a conventional solid-liquid extraction, demonstrating that PLE is a useful alternative to extract phenolic compounds from Goji berry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Optimization of microwave-assisted drying of Jerusalem artichokes (Helianthus tuberosus L. by response surface methodology and genetic algorithm

    Directory of Open Access Journals (Sweden)

    E. KARACABEY

    2016-03-01

    Full Text Available The objective of the present study was to investigate microwave-assisted drying of Jerusalem artichoke tubers to determine the effects of the processing conditions. Drying time (DT and effectivemoisture diffusivity (EMD were determined to evaluate the drying process in terms of dehydration performance, whereas the rehydration ratio (RhR was considered as a significant quality index. A pretreatment of soaking in a NaCl solution was applied before all trials. The output power of the microwave oven, slice thickness and NaCl concentration of the pretreatment solution werethe three investigated parameters. The drying process was accelerated by altering the conditions while obtaining a higher quality product. For optimization of the drying process, response surface methodology (RSM and genetic algorithms (GA were used. Model adequacy was evaluated for each corresponding mathematical expression developed for interested responses by RSM. The residual of the model obtained by GA was compared to that of the RSM model. The GA was successful in high-performance prediction and produced results similar to those of RSM. The analysis and results of the present study show that both RSM and GA models can be used in cohesion to gain insight into the bioprocessing system.

  5. Process Optimization of Eco-Friendly Flame Retardant Finish for Cotton Fabric: a Response Surface Methodology Approach

    Science.gov (United States)

    Yasin, Sohail; Curti, Massimo; Behary, Nemeshwaree; Perwuelz, Anne; Giraud, Stephane; Rovero, Giorgio; Guan, Jinping; Chen, Guoqiang

    The n-methylol dimethyl phosphono propionamide (MDPA) flame retardant compounds are predominantly used for cotton fabric treatments with trimethylol melamine (TMM) to obtain better crosslinking and enhanced flame retardant properties. Nevertheless, such treatments are associated with a toxic issue of cancer-causing formaldehyde release. An eco-friendly finishing was used to get formaldehyde-free fixation of flame retardant to the cotton fabric. Citric acid as a crosslinking agent along with the sodium hypophosphite as a catalyst in the treatment was utilized. The process parameters of the treatment were enhanced for optimized flame retardant properties, in addition, low mechanical loss to the fabric by response surface methodology using Box-Behnken statistical design experiment methodology was achieved. The effects of concentrations on the fabric’s properties (flame retardancy and mechanical properties) were evaluated. The regression equations for the prediction of concentrations and mechanical properties of the fabric were also obtained for the eco-friendly treatment. The R-squared values of all the responses were above 0.95 for the reagents used, indicating the degree of relationship between the predicted values by the Box-Behnken design and the actual experimental results. It was also found that the concentration parameters (crosslinking reagents and catalysts) in the treatment formulation have a prime role in the overall performance of flame retardant cotton fabrics.

  6. Optimization of oil yield from Hevea brasiliensis seeds through ultrasonic-assisted solvent extraction via response surface methodology

    Directory of Open Access Journals (Sweden)

    Val Irvin F. Mabayo

    2018-01-01

    Full Text Available The demand for oil has been increasing vastly over time, and the source of this has slowly been diminishing. The use of non-food feedstock is seen as a promising alternative source for the production of bio-based fuel. In this study, rubber (Hevea brasiliensis seeds were utilized as biomass in bio-oil production considering that these are non-edible and considered wastes in rubber tree plantations. In the oil extraction process, the rubber seed kernels were oven dried at 100 °C for 24 h, powdered and then dried further at 105 °C for 4 h. After characterization, optimization study was done using Design Expert 7.0 software through central composite design of the response surface methodology. Ultrasonication technology was employed in the oil extraction process which significantly reduced the reaction time needed for extraction to 15 min compared the conventional extraction method of at least 8 h. An optimum rubber seed oil (RSO yield of 30.3 ± 0.3% was obtained using 15 g biomass, 5:1 n-hexane to biomass (mL g−1 ratio, 50 μm resonance amplitude and 60 ± 5 °C temperature at 15 min reaction time. The oil yield at optimum condition was found to have 0.89 g mL−1 density at room temperature, 26.7 cSt kinematic viscosity at 40 °C and high heating value of 39.2 MJ kg−1. The Fourier Transform Infrared Radiation spectroscopy analysis of the RSO, at optimum condition, showed the presence of carboxylic acid and ester carbonyl functional groups which are good indicators as a potential source of biodiesel. Keywords: Hevea brasiliensis, Oil extraction, Optimization, Response surface methodology, Rubber seed oil, Ultrasonic-assisted solvent extraction

  7. Optimizing supercritical carbon dioxide in the inactivation of bacteria in clinical solid waste by using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Md. Sohrab [Department of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia); Nik Ab Rahman, Nik Norulaini [School of Distance Education, Universiti Sains Malaysia, 11800 Penang (Malaysia); Balakrishnan, Venugopal [Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang (Malaysia); Alkarkhi, Abbas F.M. [Department of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia); Ahmad Rajion, Zainul [School of Dental Science, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia); Ab Kadir, Mohd Omar, E-mail: akmomar@usm.my [Department of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2015-04-15

    Highlights: • Supercritical carbon dioxide sterilization of clinical solid waste. • Inactivation of bacteria in clinical solid waste using supercritical carbon dioxide. • Reduction of the hazardous exposure of clinical solid waste. • Optimization of the supercritical carbon dioxide experimental conditions. - Abstract: Clinical solid waste (CSW) poses a challenge to health care facilities because of the presence of pathogenic microorganisms, leading to concerns in the effective sterilization of the CSW for safe handling and elimination of infectious disease transmission. In the present study, supercritical carbon dioxide (SC-CO{sub 2}) was applied to inactivate gram-positive Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, and gram-negative Escherichia coli in CSW. The effects of SC-CO{sub 2} sterilization parameters such as pressure, temperature, and time were investigated and optimized by response surface methodology (RSM). Results showed that the data were adequately fitted into the second-order polynomial model. The linear quadratic terms and interaction between pressure and temperature had significant effects on the inactivation of S. aureus, E. coli, E. faecalis, and B. subtilis in CSW. Optimum conditions for the complete inactivation of bacteria within the experimental range of the studied variables were 20 MPa, 60 °C, and 60 min. The SC-CO{sub 2}-treated bacterial cells, observed under a scanning electron microscope, showed morphological changes, including cell breakage and dislodged cell walls, which could have caused the inactivation. This espouses the inference that SC-CO{sub 2} exerts strong inactivating effects on the bacteria present in CSW, and has the potential to be used in CSW management for the safe handling and recycling-reuse of CSW materials.

  8. Biodiesel Production from Non-Edible Beauty Leaf (Calophyllum inophyllum Oil: Process Optimization Using Response Surface Methodology (RSM

    Directory of Open Access Journals (Sweden)

    Mohammad I. Jahirul

    2014-08-01

    Full Text Available In recent years, the beauty leaf plant (Calophyllum Inophyllum is being considered as a potential 2nd generation biodiesel source due to high seed oil content, high fruit production rate, simple cultivation and ability to grow in a wide range of climate conditions. However, however, due to the high free fatty acid (FFA content in this oil, the potential of this biodiesel feedstock is still unrealized, and little research has been undertaken on it. In this study, transesterification of beauty leaf oil to produce biodiesel has been investigated. A two-step biodiesel conversion method consisting of acid catalysed pre-esterification and alkali catalysed transesterification has been utilized. The three main factors that drive the biodiesel (fatty acid methyl ester (FAME conversion from vegetable oil (triglycerides were studied using response surface methodology (RSM based on a Box-Behnken experimental design. The factors considered in this study were catalyst concentration, methanol to oil molar ratio and reaction temperature. Linear and full quadratic regression models were developed to predict FFA and FAME concentration and to optimize the reaction conditions. The significance of these factors and their interaction in both stages was determined using analysis of variance (ANOVA. The reaction conditions for the largest reduction in FFA concentration for acid catalysed pre-esterification was 30:1 methanol to oil molar ratio, 10% (w/w sulfuric acid catalyst loading and 75 °C reaction temperature. In the alkali catalysed transesterification process 7.5:1 methanol to oil molar ratio, 1% (w/w sodium methoxide catalyst loading and 55 °C reaction temperature were found to result in the highest FAME conversion. The good agreement between model outputs and experimental results demonstrated that this methodology may be useful for industrial process optimization for biodiesel production from beauty leaf oil and possibly other industrial processes as well.

  9. Optimization of the Expression of DT386-BR2 Fusion Protein in Escherichia coli using Response Surface Methodology.

    Science.gov (United States)

    Shafiee, Fatemeh; Rabbani, Mohammad; Jahanian-Najafabadi, Ali

    2017-01-01

    The aim of this study was to determine the best condition for the production of DT386-BR2 fusion protein, an immunotoxin consisting of catalytic and translocation domains of diphtheria toxin fused to BR2, a cancer specific cell penetrating peptide, for targeted eradication of cancer cells, in terms of the host, cultivation condition, and culture medium. Recombinant pET28a vector containing the codons optimized for the expression of the DT386-BR2 gene was transformed to different strains of Escherichia coli ( E. coli BL21 DE3, E. coli Rosetta DE3 and E. coli Rosetta-gami 2 DE3), followed by the induction of expression using 1 mM IPTG. Then, the strain with the highest ability to produce recombinant protein was selected and used to determine the best expression condition using response surface methodology (RSM). Finally, the best culture medium was selected. Densitometry analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the expressed fusion protein showed that E. coli Rosetta DE3 produced the highest amounts of the recombinant fusion protein when quantified by 1 mg/ml bovine serum albumin (178.07 μg/ml). Results of RSM also showed the best condition for the production of the recombinant fusion protein was induction with 1 mM IPTG for 2 h at 37°C. Finally, it was established that terrific broth could produce higher amounts of the fusion protein when compared to other culture media. In this study, we expressed the recombinant DT386-BR2 fusion protein in large amounts by optimizing the expression host, cultivation condition, and culture medium. This fusion protein will be subjected to purification and evaluation of its cytotoxic effects in future studies.

  10. Optimization of the Expression of DT386-BR2 Fusion Protein in Escherichia coli using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Fatemeh Shafiee

    2017-01-01

    Full Text Available Background: The aim of this study was to determine the best condition for the production of DT386-BR2 fusion protein, an immunotoxin consisting of catalytic and translocation domains of diphtheria toxin fused to BR2, a cancer specific cell penetrating peptide, for targeted eradication of cancer cells, in terms of the host, cultivation condition, and culture medium. Materials and Methods: Recombinant pET28a vector containing the codons optimized for the expression of the DT386-BR2 gene was transformed to different strains of Escherichia coli (E. coli BL21 DE3, E. coli Rosetta DE3 and E. coli Rosetta-gami 2 DE3, followed by the induction of expression using 1 mM IPTG. Then, the strain with the highest ability to produce recombinant protein was selected and used to determine the best expression condition using response surface methodology (RSM. Finally, the best culture medium was selected. Results: Densitometry analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the expressed fusion protein showed that E. coli Rosetta DE3 produced the highest amounts of the recombinant fusion protein when quantified by 1 mg/ml bovine serum albumin (178.07 μg/ml. Results of RSM also showed the best condition for the production of the recombinant fusion protein was induction with 1 mM IPTG for 2 h at 37°C. Finally, it was established that terrific broth could produce higher amounts of the fusion protein when compared to other culture media. Conclusion: In this study, we expressed the recombinant DT386-BR2 fusion protein in large amounts by optimizing the expression host, cultivation condition, and culture medium. This fusion protein will be subjected to purification and evaluation of its cytotoxic effects in future studies.

  11. Dechlorination of Hexachlorobenzene in Contaminated Soils Using a Nanometallic Al/CaO Dispersion Mixture: Optimization through Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Yuhui Jiang

    2018-04-01

    Full Text Available Hexachlorobenzene (HCB contamination of soils remains a significant environmental challenge all over the world. Reductive stabilization is a developing technology that can decompose the HCB with a dechlorination process. A nanometallic Al/CaO (n-Al/CaO dispersion mixture was developed utilizing ball-milling technology in this study. The dechlorination efficiency of HCB in contaminated soils by the n-Al/CaO grinding treatment was evaluated. Response surface methodology (RSM was employed to investigate the effects of three variables (soil moisture content, n-Al/CaO dosage and grinding time and the interactions between these variables under the Box-Behnken Design (BBD. A high regression coefficient value (R2 = 0.9807 and low p value (<0.0001 of the quadratic model indicated that the model was accurate in predicting the experimental results. The optimal soil moisture content, n-Al/CaO dosage, and grinding time were found to be 7% (m/m, 17.7% (m/m, and 24 h, respectively, in the experimental ranges and levels. Under optimal conditions, the dechlorination efficiency was 80%. The intermediate product analysis indicated that dechlorination was the process by stepwise loss of chloride atoms. The main pathway observed within 24 h was HCB → pentachlorobenzene (PeCB → 1,2,3,4-tetrachlorobenzene (TeCB and 1,2,4,5-TeCB. The results indicated that the moderate soil moisture content was crucial for the hydrodechlorination of HCB. A probable mechanism was proposed wherein water acted like a hydrogen donor and promoted the hydrodechlorination process. The potential application of n-Al/CaO is an environmentally-friendly and cost-effective option for decontamination of HCB-contaminated soils.

  12. Application of electrochemical peroxidation (ECP) process for waste-activated sludge stabilization and system optimization using response surface methodology (RSM).

    Science.gov (United States)

    Gholikandi, Gagik Badalians; Kazemirad, Khashayar

    2018-03-01

    In this study, the performance of the electrochemical peroxidation (ECP) process for removing the volatile suspended solids (VSS) content of waste-activated sludge was evaluated. The Fe 2+ ions required by the process were obtained directly from iron electrodes in the system. The performance of the ECP process was investigated in various operational conditions employing a laboratory-scale pilot setup and optimized by response surface methodology (RSM). According to the results, the ECP process showed its best performance when the pH value, current density, H 2 O 2 concentration and the retention time were 3, 3.2 mA/cm 2 , 1,535 mg/L and 240 min, respectively. In these conditions, the introduced Fe 2+ concentration was approximately 500 (mg/L) and the VSS removal efficiency about 74%. Moreover, the results of the microbial characteristics of the raw and the stabilized sludge demonstrated that the ECP process is able to remove close to 99.9% of the coliforms in the raw sludge during the stabilization process. The energy consumption evaluation showed that the required energy of the ECP reactor (about 1.8-2.5 kWh (kg VSS removed) -1 ) is considerably lower than for aerobic digestion, the conventional waste-activated sludge stabilization method (about 2-3 kWh (kg VSS removed) -1 ). The RSM optimization process showed that the best operational conditions of the ECP process comply with the experimental results, and the actual and the predicted results are in good conformity with each other. This feature makes it possible to predict the introduced Fe 2+ concentrations into the system and the VSS removal efficiency of the process precisely.

  13. Employing Response Surface Methodology for the Optimization of Ultrasound Assisted Extraction of Lutein and β-Carotene from Spinach

    Directory of Open Access Journals (Sweden)

    Ammar Altemimi

    2015-04-01

    Full Text Available The extraction of lutein and β-carotene from spinach (Spinacia oleracea L. leaves is important to the dietary supplement industry. A Box-Behnken design and response surface methodology (RSM were used to investigate the effect of process variables on the ultrasound-assisted extraction (UAE of lutein and β-carotene from spinach. Three independent variables, extraction temperature (°C, extraction power (% and extraction time (min were studied. Thin-layer chromatography (TLC followed by UV visualization and densitometry was used as a simple and rapid method for both identification and quantification of lutein and β-carotene during UAE. Methanol extracts of leaves from spinach and authentic standards of lutein and β-carotene were separated by normal-phase TLC with ethyl acetate-acetone (5:4 (v/v as the mobile phase. In this study, the combination of TLC, densitometry, and Box–Behnken with RSM methods were effective for the quantitative analysis of lutein and β-carotene from spinach extracts. The resulting quadratic polynomial models for optimizing lutein and β-carotene from spinach had high coefficients of determination of 0.96 and 0.94, respectively. The optimal UAE settings for output of lutein and β-carotene simultaneously from spinach extracts were an extraction temperature of 40 °C, extraction power of 40% (28 W/cm3 and extraction time of 16 min. The identity and purity of each TLC spot was measured using time-of-flight mass spectrometry. Therefore, UAE assisted extraction of carotenes from spinach can provide a source of lutein and β-carotene for the dietary supplement industry.

  14. Optimizing supercritical carbon dioxide in the inactivation of bacteria in clinical solid waste by using response surface methodology

    International Nuclear Information System (INIS)

    Hossain, Md. Sohrab; Nik Ab Rahman, Nik Norulaini; Balakrishnan, Venugopal; Alkarkhi, Abbas F.M.; Ahmad Rajion, Zainul; Ab Kadir, Mohd Omar

    2015-01-01

    Highlights: • Supercritical carbon dioxide sterilization of clinical solid waste. • Inactivation of bacteria in clinical solid waste using supercritical carbon dioxide. • Reduction of the hazardous exposure of clinical solid waste. • Optimization of the supercritical carbon dioxide experimental conditions. - Abstract: Clinical solid waste (CSW) poses a challenge to health care facilities because of the presence of pathogenic microorganisms, leading to concerns in the effective sterilization of the CSW for safe handling and elimination of infectious disease transmission. In the present study, supercritical carbon dioxide (SC-CO 2 ) was applied to inactivate gram-positive Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, and gram-negative Escherichia coli in CSW. The effects of SC-CO 2 sterilization parameters such as pressure, temperature, and time were investigated and optimized by response surface methodology (RSM). Results showed that the data were adequately fitted into the second-order polynomial model. The linear quadratic terms and interaction between pressure and temperature had significant effects on the inactivation of S. aureus, E. coli, E. faecalis, and B. subtilis in CSW. Optimum conditions for the complete inactivation of bacteria within the experimental range of the studied variables were 20 MPa, 60 °C, and 60 min. The SC-CO 2 -treated bacterial cells, observed under a scanning electron microscope, showed morphological changes, including cell breakage and dislodged cell walls, which could have caused the inactivation. This espouses the inference that SC-CO 2 exerts strong inactivating effects on the bacteria present in CSW, and has the potential to be used in CSW management for the safe handling and recycling-reuse of CSW materials

  15. Microwave-Assisted Extraction of Cannabinoids in Hemp Nut Using Response Surface Methodology: Optimization and Comparative Study

    Directory of Open Access Journals (Sweden)

    Chih-Wei Chang

    2017-11-01

    Full Text Available Hemp nut is commonly incorporated into several food preparations; however, most countries set regulations for hemp products according to their cannabinoid content. In this study, we have developed an efficient microwave-assisted extraction (MAE method for cannabinoids (i.e., Δ9-tetrahydrocannabinol, cannabidiol, and cannabinol in hemp nut. Optimization of the MAE procedure was conducted through single factor experiments and response surface methodology (RSM. A comparative study was also conducted to determine the differences in the extraction yields and morphology of hemp nut between MAE and reference extraction methods, namely heat reflux extraction (HRE, Soxhlet extraction (SE, supercritical fluid extraction (SFE, and ultrasound-assisted extraction (UAE. Among the independent variables in RSM, the temperature was the most significant parameter. The optimal conditions of MAE were as follows: extraction solvent of methanol, microwave power of 375 W, temperature of 109 °C, and extraction time of 30 min. Compared with reference extraction methods, MAE achieved the highest extraction yields of total cannabinoids in hemp nut (6.09 μg/g for MAE; 4.15 μg/g for HRE; 5.81 μg/g for SE; 3.61 μg/g for SFE; 3.73 μg/g for UAE with the least solvent consumption and shortest time. Morphological observations showed that substantial cell rupturing occurred in the microstructure of hemp nut after MAE, indicating enhanced dissolution of the target compounds during the extraction process. The MAE method is thus a rapid, economic, and environmentally friendly extraction method that is both effective and practical for industrial applications.

  16. Optimizing of Nitrogen, Phosphorus and Cattle Manure Fertilizers Application in Winter Wheat Production Using Response-Surface Methodology (RSM

    Directory of Open Access Journals (Sweden)

    M. jahan

    2016-02-01

    low levels of manure were determined based on nutrient content and local recommendations. Response of measured variables (y to experimental factors (X was estimated by using second order polynomials with interaction (Equation 1: (1 Where 0 is constant and i, ij and ii are coefficients for linear, interaction and quadratic terms, respectively. After simulation, using statistical methods, the result is a second order polynomial which states the estimated of response (yield as a function of inputs variables. Finally, after optimizing of resulted function and eliminating of low effect terms, using statistical tests and criteria such as, F test, lack of fit test, coefficient of determination (R2, a final function to predict yield and other expected variables was calculated (Equation 2: (2 In this function, Y is a dependent variable, X is the independent variable of N fertilizer, X2 is independent variable of P fertilizer, X3 is independent variable of manure, and a0 to a9 are coefficients of function. The equation is functional only in the defined range of input variables and could not predict values out of the range. The optimized rates of N, P and manure, determined considering 3 scenarios including: economic, environmental and eco-environmental, which seed yield, N loss and NUE and N loss were the main determining factors, respectively. To obtain optimized levels, response-surface methodology was used. Finally, the fitted values compared to observed values then validity of regression models evaluated by RMSE test (Equation 3 and 1:1 regression line. (3 RMSE (% Results and Discussion Optimization of nitrogen, phosphorus and manure fertilization were done according to 3 scenarios of economic, environmental and eco-environmental. In economic scenario, wheat seed yield was considered as the main determining factor of optimized resource, thus the result showed by applying of 145.45 kg ha-1 N, 200 kg ha-1 P and 18.48 tones ha-1 manure, it would be attained the

  17. Batch versus column modes for the adsorption of radioactive metal onto rice husk waste: conditions optimization through response surface methodology.

    Science.gov (United States)

    Kausar, Abida; Bhatti, Haq Nawaz; Iqbal, Munawar; Ashraf, Aisha

    2017-09-01

    Batch and column adsorption modes were compared for the adsorption of U(VI) ions using rice husk waste biomass (RHWB). Response surface methodology was employed for the optimization of process variables, i.e., (pH (A), adsorbent dose (B), initial ion concentration (C)) in batch mode. The B, C and C 2 affected the U(VI) adsorption significantly in batch mode. The developed quadratic model was found to be validated on the basis of regression coefficient as well as analysis of variance. The predicted and actual values were found to be correlated well, with negligible residual value, and B, C and C 2 were significant terms. The column study was performed considering bed height, flow rate and initial metal ion concentration, and adsorption efficiency was evaluated through breakthrough curves and bed depth service time and Thomas models. Adsorption was found to be dependent on bed height and initial U(VI) ion concentration, and flow rate decreased the adsorption capacity. Thomas models fitted well to the U(VI) adsorption onto RHWB. Results revealed that RHWB has potential to remove U(VI) ions and batch adsorption was found to be efficient versus column mode.

  18. Optimization of Ultrasound-Assisted Extraction of Antioxidants from Apium graveolens L. Seeds using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Şule Dinç Zor

    2017-09-01

    Full Text Available In this study, optimum conditions for ultrasound-assisted extraction (UAE of antioxidants from Apium graveolens L. seeds were investigated by Response Surface Methodology (RSM. A Box-Behnken Design (BBD was used to evaluate the effect of sonication time (5, 10, 15 min, ultrasound power (60, 120, 180 W and the ratio of extraction solvent in terms of methanol (0, 50, 100% on antioxidant capacity. The optimal UAE conditions for the parameters investigated were 11 min of sonication time, ultrasound power of 131 W and 100% methanol as an extraction solvent. Under these conditions, UAE of antioxidants from the seeds achieved a maximum of 95.08% in respect to 1,1-diphenyl-2-picryl hydrazyl (DPPH radical scavenging activity. Additionally, the high value of the adjusted coefficient of determination (R2adj = 0.9192 and the non-significant difference between experimental and predicted values confirmed the validity of the quadratic polynomial model. Hence, UAE is a suitable, fast, economical and practical technique for the extraction of antioxidants from Apium graveolens L. seeds.

  19. Solar photoelectro-Fenton degradation of the herbicide 4-chloro-2-methylphenoxyacetic acid optimized by response surface methodology.

    Science.gov (United States)

    Garcia-Segura, Sergi; Almeida, Lucio Cesar; Bocchi, Nerilso; Brillas, Enric

    2011-10-30

    A central composite rotatable design and response surface methodology (RSM) were used to optimize the experimental variables of the solar photoelectro-Fenton (SPEF) treatment of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA). The experiments were made with a flow plant containing a Pt/air-diffusion reactor coupled to a solar compound parabolic collector (CPC) under recirculation of 10 L of 186 mg L(-1) MCPA solutions in 0.05 M Na(2)SO(4) at a liquid flow rate of 180 L h(-1) with an average UV irradiation intensity of about 32 Wm(-2). The optimum variables found for the SPEF process were 5.0 A, 1.0mM Fe(2+) and pH 3.0 after 120 min of electrolysis. Under these conditions, 75% of mineralization with 71% of current efficiency and 87.7 k Wh kg(-1) TOC of energy consumption were obtained. MCPA decayed under the attack of generated hydroxyl radicals following a pseudo-first-order kinetics. Hydroxyl radicals also destroyed 4-chloro-2-methylphenol, methylhydroquinone and methyl-p-benzoquinone detected as aromatic by-products. Glycolic, maleic, fumaric, malic, succinic, tartronic, oxalic and formic acids were identified as generated carboxylic acids, which form Fe(III) complexes that are quickly photodecarboxylated by the UV irradiation of sunlight at the CPC photoreactor. A reaction sequence for the SPEF degradation of MCPA was proposed. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Optimizing Phosphoric Acid plus Hydrogen Peroxide (PHP) Pretreatment on Wheat Straw by Response Surface Method for Enzymatic Saccharification.

    Science.gov (United States)

    Qiu, Jingwen; Wang, Qing; Shen, Fei; Yang, Gang; Zhang, Yanzong; Deng, Shihuai; Zhang, Jing; Zeng, Yongmei; Song, Chun

    2017-03-01

    Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP), in which temperature, time, and H 3 PO 4 proportion for pretreatment were investigated by using response surface method. Results indicated that hemicellulose and lignin removal positively responded to the increase of pretreatment temperature, H 3 PO 4 proportion, and time. H 3 PO 4 proportion was the most important variable to control cellulose recovery, followed by pretreatment temperature and time. Moreover, these three variables all negatively related to cellulose recovery. Increasing H 3 PO 4 proportion can improve enzymatic hydrolysis; however, reduction on cellulose recovery results in decrease of glucose yield. Extra high temperature or long time for pretreatment was not beneficial to enzymatic hydrolysis and glucose yield. Based on the criterion for minimizing H 3 PO 4 usage and maximizing glucose yield, the optimized pretreatment conditions was 40 °C, 2.0 h, and H 3 PO 4 proportion of 70.2 % (H 2 O 2 proportion of 5.2 %), by which glucose yielded 299 mg/g wheat straw (946.2 mg/g cellulose) after 72-h enzymatic hydrolysis.

  1. Optimization of Lactide synthesis from Lactic Acid in biorefinery of palm oil waste using Response Surface Methodology

    Science.gov (United States)

    Gozan, M.; Kamilah, F.; Whulanza, Y.; Rahmayetty

    2018-03-01

    Ring open polymerization is one of the production polylactic acid by formation of monomer before. Lactic acid is converted into lactide in two stages, polycondensation and depolymerization. Yield lactide will determine the molecular weight which produced. This study is to optimize the lactide production from lactic acid 90% by the variations of temperature (190-220°C), vacuum pressure (5-15 cmHg), and zinc acetate catalyst (0,3-0,6% w/w). As the temperature, vacuum pressure, and catalyst is increased, lactide that is produced also increases. Optimum condition of lactide production is obtained by Response surface methodology at the temperature 220°C, catalyst 0,45%w/w, and 10 cmHg in vacuum pressure. Equation or model from this study by using RSM is yield lactide = -258,75 + 7,79A + 2,90B + 3,51C + 0,48AB - 0,06AC – 3,97x10-3BC – 105,42A2 – 7,17B2– 0,10C2(A:catalyst; B:temperature; C:pressure).

  2. Statistical optimization of ultraviolet irradiate conditions for vitamin D₂ synthesis in oyster mushrooms (Pleurotus ostreatus using response surface methodology.

    Directory of Open Access Journals (Sweden)

    Wei-Jie Wu

    Full Text Available Response surface methodology (RSM was used to determine the optimum vitamin D2 synthesis conditions in oyster mushrooms (Pleurotus ostreatus. Ultraviolet B (UV-B was selected as the most efficient irradiation source for the preliminary experiment, in addition to the levels of three independent variables, which included ambient temperature (25-45°C, exposure time (40-120 min, and irradiation intensity (0.6-1.2 W/m2. The statistical analysis indicated that, for the range which was studied, irradiation intensity was the most critical factor that affected vitamin D2 synthesis in oyster mushrooms. Under optimal conditions (ambient temperature of 28.16°C, UV-B intensity of 1.14 W/m2, and exposure time of 94.28 min, the experimental vitamin D2 content of 239.67 µg/g (dry weight was in very good agreement with the predicted value of 245.49 µg/g, which verified the practicability of this strategy. Compared to fresh mushrooms, the lyophilized mushroom powder can synthesize remarkably higher level of vitamin D2 (498.10 µg/g within much shorter UV-B exposure time (10 min, and thus should receive attention from the food processing industry.

  3. Microstructure Optimization of Dual-Phase Steels Using a Representative Volume Element and a Response Surface Method: Parametric Study

    Science.gov (United States)

    Belgasam, Tarek M.; Zbib, Hussein M.

    2017-12-01

    Dual-phase (DP) steels have received widespread attention for their low density and high strength. This low density is of value to the automotive industry for the weight reduction it offers and the attendant fuel savings and emission reductions. Recent studies on developing DP steels showed that the combination of strength/ductility could be significantly improved when changing the volume fraction and grain size of phases in the microstructure depending on microstructure properties. Consequently, DP steel manufacturers are interested in predicting microstructure properties and in optimizing microstructure design. In this work, a microstructure-based approach using representative volume elements (RVEs) was developed. The approach examined the flow behavior of DP steels using virtual tension tests with an RVE to identify specific mechanical properties. Microstructures with varied martensite and ferrite grain sizes, martensite volume fractions, carbon content, and morphologies were studied in 3D RVE approaches. The effect of these microstructure parameters on a combination of strength/ductility of DP steels was examined numerically using the finite element method by implementing a dislocation density-based elastic-plastic constitutive model, and a Response surface methodology to determine the optimum conditions for a required combination of strength/ductility. The results from the numerical simulations are compared with experimental results found in the literature. The developed methodology proves to be a powerful tool for studying the effect and interaction of key microstructural parameters on strength and ductility and thus can be used to identify optimum microstructural conditions.

  4. Aluminum nitride coatings using response surface methodology to optimize the thermal dissipated performance of light-emitting diode modules

    Science.gov (United States)

    Jean, Ming-Der; Lei, Peng-Da; Kong, Ling-Hua; Liu, Cheng-Wu

    2018-05-01

    This study optimizes the thermal dissipation ability of aluminum nitride (AlN) ceramics to increase the thermal performance of light-emitting diode (LED) modulus. AlN powders are deposited on heat sink as a heat interface material, using an electrostatic spraying process. The junction temperature of the heat sink is developed by response surface methodology based on Taguchi methods. In addition, the structure and properties of the AlN coating are examined using X-ray photoelectron spectroscopy (XPS). In the XPS analysis, the AlN sub-peaks are observed at 72.79 eV for Al2p and 398.88 eV for N1s, and an N1s sub-peak is assigned to N-O at 398.60eV and Al-N bonding at 395.95eV, which allows good thermal properties. The results have shown that the use of AlN ceramic material on a heat sink can enhance the thermal performance of LED modules. In addition, the percentage error between the predicted and experimental results compared the quadric model with between the linear and he interaction models was found to be within 7.89%, indicating that it was a good predictor. Accordingly, RSM can effectively enhance the thermal performance of an LED, and the beneficial heat dissipation effects for AlN are improved by electrostatic spraying.

  5. Response Surface Optimized Extraction of 1-Deoxynojirimycin from Mulberry Leaves (Morus alba L. and Preparative Separation with Resins

    Directory of Open Access Journals (Sweden)

    Teng Wang

    2014-05-01

    Full Text Available In the present study, the extraction technology and preparative separation of 1-deoxynojirimycin from mulberry leaves were systematically investigated. Four extraction parameters (ethanol concentration, extraction temperature, extraction time and ratio of solvent to sample were explored by response surface methodology (RSM. The results indicated that the maximal yield of 1-deoxynojirimycin was achieved with an ethanol concentration of 55%, extraction temperature of 80 °C, extraction time of 1.2 h and ratio of solvent to sample of 12:1. The extraction yield under these optimum conditions was found to be 256 mg/100 g dry mulberry leaves. A column packed with a selected resin was used to perform dynamic adsorption and desorption tests to optimize the separation process. The results show that the preparative separation of 1-deoxynojirimycin from mulberry leaves can be easily and effectively done by adopting 732 resin. In conclusion, 732 resin is the most appropriate for the separation of 1-deoxynojirimycin from other components in mulberry leaves extracts, and its adsorption behavior can be described with Langmuir isotherms and a two-step adsorption kinetics model. The recovery and purity of 1-deoxynojirimycin in the final product were 90.51% and 15.3%, respectively.

  6. Optimization of the Conditions for Extraction of Serine Protease from Kesinai Plant (Streblus asper Leaves Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Md. Zaidul Islam Sarker

    2011-11-01

    Full Text Available Response surface methodology (RSM using a central composite design (CCD was employed to optimize the conditions for extraction of serine protease from kesinai (Streblus asper leaves. The effect of independent variables, namely temperature (42.5,47.5, X1, mixing time (2–6 min, X2, buffer content (0–80 mL, X3 and buffer pH (4.5–10.5, X4 on specific activity, storage stability, temperature and oxidizing agent stability of serine protease from kesinai leaves was investigated. The study demonstrated that use of the optimum temperature, mixing time, buffer content and buffer pH conditions protected serine protease during extraction, as demonstrated by low activity loss. It was found that the interaction effect of mixing time and buffer content improved the serine protease stability, and the buffer pH had the most significant effect on the specific activity of the enzyme. The most desirable conditions of 2.5 °C temperature, 4 min mixing time, 40 mL buffer at pH 7.5 was established for serine protease extraction from kesinai leaves.

  7. Green chemistry focus on optimization of silver nanoparticles using response surface methodology (RSM) and mosquitocidal activity: Anopheles stephensi (Diptera: Culicidae).

    Science.gov (United States)

    Ondari Nyakundi, Erick; Padmanabhan, M Nalini

    2015-01-01

    There is an exigent necessity for development of environmental friendly bio-control agent(s) for elimination of mosquito due to increased resistance resurgence against synthetic control agents. Mosquito control strategy will lay a strong foundation to malaria exclusion or it can be curbed to certain level especially in the developing nations. In this study, silver nanoparticles were synthesized by green chemistry approach using Tridax procumbens leaf extract as a reducing agent. The reaction medium involved in the synthesis process was optimized by statistical experimental design using response surface methodology to obtain better yield, uniform size, shape and stability. Further, these synthesized nanoparticles were confirmed through UV-Visible, FT-IR spectroscopy, PSA and SEM Subsequently, the bioefficacy of these particles were investigated on Anopheles stephensi for larvicidal and pupicidal activity. Interestingly, time period of 90 min, temperature of 76±2 °C, pH 7.2±2, 2 mM silver nitrate (AgNO3), 3mM PEG and 2mM PVP showed excellent parameters for bioprocess design for large scale production of stabilized nanoparticles. A concentration of 5 ppm of PVP stabilized nanoparticles exhibited 100% mortality. Thus, the obtained results clearly suggest that silver nanoparticles stabilized by PEG and PVP may have important function as stabilizers, dispersants as well as larvicides for mosquito control. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Rapid adsorption of heavy metals by Fe3O4/talc nanocomposite and optimization study using response surface methodology.

    Science.gov (United States)

    Kalantari, Katayoon; Ahmad, Mansor B; Masoumi, Hamid Reza Fard; Shameli, Kamyar; Basri, Mahiran; Khandanlou, Roshanak

    2014-07-21

    Fe3O4/talc nanocomposite was used for removal of Cu(II), Ni(II), and Pb(II) ions from aqueous solutions. Experiments were designed by response surface methodology (RSM) and a quadratic model was used to predict the variables. The adsorption parameters such as adsorbent dosage, removal time, and initial ion concentration were used as the independent variables and their effects on heavy metal ion removal were investigated. Analysis of variance was incorporated to judge the adequacy of the models. Optimal conditions with initial heavy metal ion concentration of 100, 92 and 270 mg/L, 120 s of removal time and 0.12 g of adsorbent amount resulted in 72.15%, 50.23%, and 91.35% removal efficiency for Cu(II), Ni(II), and Pb(II), respectively. The predictions of the model were in good agreement with experimental results and the Fe3O4/talc nanocomposite was successfully used to remove heavy metals from aqueous solutions.

  9. Optimization of the general acceptability though affective tests and response surface methodology of a dry cacao powder mixture based beverage

    Directory of Open Access Journals (Sweden)

    Elena Chau Loo Kung

    2013-09-01

    Full Text Available This research work had as main objective optimizing the general acceptability though affective tests and response surface methodology of a dry cacao powder mixture based beverage. We obtained formulations of mixtures of cacao powder with different concentrations of 15%, 17.5% and 20%, as well as lecithin concentrations of 0.1%; 0.3%; and 0.5% maintaining a constant content of sugar (25 %, Vanillin (1% that included cacao powder with different pH values: natural (pH 5 and alkalinized (pH 6.5 and pH 8 and water by difference to 100%, generating a total of fifteen treatments to be evaluated, according to the Box-Behnen design for three factors. The treatments underwent satisfaction level tests to establish the general acceptability. The treatment that included cacao powder with a concentration of 17.5 %, pH 6.5 and lecithin concentration of 0.3 % obtained the best levels of acceptability. The software Statgraphics Plus 5.1 was used to obtain the treatment with maximum acceptability that corresponded to cacao powder with pH 6.81, with a concentration of 18.24 % and soy lecithin in 0.28% with a tendency to what was obtained in the satisfaction levels tests. Finally we characterized in a physical-chemistry and microbiological way the optimum formulation as well as evaluated sensitively obtaining an acceptability of 6.17.

  10. Extraction of gelatin from salmon (Salmo salar) fish skin using trypsin-aided process: optimization by Plackett-Burman and response surface methodological approaches.

    Science.gov (United States)

    Fan, HuiYin; Dumont, Marie-Josée; Simpson, Benjamin K

    2017-11-01

    Gelatin from salmon ( Salmo salar ) skin with high molecular weight protein chains ( α -chains) was extracted using trypsin-aided process. Response surface methodology was used to optimise the extraction parameters. Yield, hydroxyproline content and protein electrophoretic profile via sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of gelatin were used as responses in the optimization study. The optimum conditions were determined as: trypsin concentration at 1.49 U/g; extraction temperature at 45 °C; and extraction time at 6 h 16 min. This response surface optimized model was significant and produced an experimental value (202.04 ± 8.64%) in good agreement with the predicted value (204.19%). Twofold higher yields of gelatin with high molecular weight protein chains were achieved in the optimized process with trypsin treatment when compared to the process without trypsin.

  11. UTILIZATION OF RESPONSE SURFACE METHODOLOGY IN THE OPTIMIZATION OF ROSELLE ICE CREAM MAKING [Penggunaan Response Surface Methodology dalam Optimisasi Pembuatan Es Krim Rosella

    Directory of Open Access Journals (Sweden)

    Jeremia Manuel*

    2014-12-01

    Full Text Available This research was carried out to develop a functional ice cream product with natural colorant derived from an optimum set of roselle calyces extract and citric acid concentrations. Although citric acid can improve red color stability of rosella, its addition is limited due to the acidic and bitter aftertaste it imparts. Response surface methodology (RSM was employed to analyze the effect of roselle calyces extract and citric acid on physico-chemical characteristics and sensory acceptance of an ice cream. A central composite design consisting of two independent variables (roselle calyces extract and citric acid cocentrations at five levels (-1.41421, -1, 0, +1, and +1.41421 with 13 runs (formulations was prepared to establish the optimum set of variables. Higher concentration of roselle calyces extract significantly increased the total anthocyanin content and color acceptance, while decreased the ºHue and pH of the ice cream. Higher concentration of citric acid significantly increased the overrun and color acceptance, but decreased the viscosity, ºHue, pH, texture, taste acceptance, and overall acceptance of ice cream. The optimum scores of consumer sensory acceptance were met at 11.5% roselle calyces extract and 1.5% citric acid concentrations.

  12. [Optimization of process of icraiin be hydrolyzed to Baohuoside I by cellulase based on Plackett-Burman design combined with CCD response surface methodology].

    Science.gov (United States)

    Song, Chuan-xia; Chen, Hong-mei; Dai, Yu; Kang, Min; Hu, Jia; Deng, Yun

    2014-11-01

    To optimize the process of Icraiin be hydrolyzed to Baohuoside I by cellulase by Plackett-Burman design combined with Central Composite Design (CCD) response surface methodology. To select the main influencing factors by Plackett-Burman design, using CCD response surface methodology to optimize the process of Icraiin be hydrolyzed to Baohuoside I by cellulase. Taking substrate concentration, the pH of buffer and reaction time as independent variables, with conversion rate of icariin as dependent variable,using regression fitting of completely quadratic response surface between independent variable and dependent variable,the optimum process of Icraiin be hydrolyzed to Baohuoside I by cellulase was intuitively analyzed by 3D surface chart, and taking verification tests and predictive analysis. The best enzymatic hydrolytic process was as following: substrate concentration 8. 23 mg/mL, pH 5. 12 of buffer,reaction time 35. 34 h. The optimum process of Icraiin be hydrolyzed to Baohuoside I by cellulase is determined by Plackett-Burman design combined with CCD response surface methodology. The optimized enzymatic hydrolytic process is simple, convenient, accurate, reproducible and predictable.

  13. Effect of microemulsions on transdermal delivery of citalopram: optimization studies using mixture design and response surface methodology

    Directory of Open Access Journals (Sweden)

    Huang CT

    2013-06-01

    Full Text Available Chi-Te Huang,1 Ming-Jun Tsai,2,3 Yu-Hsuan Lin,1 Yaw-Sya Fu,4 Yaw-Bin Huang,5 Yi-Hung Tsai,5 Pao-Chu Wu11School of Pharmacy, Kaohsiung Medical University, Kaohsiung City, 2Department of Neurology, China Medical University Hospital, Taichung, 3School of Medicine, Medical College, China Medical University, Taichung, 4Faculty of Biomedical Science and Environmental Biology, 5Graduate Institute of Clinical Pharmacy, Kaohsiung Medical University, Kaohsiung City, Taiwan, Republic of ChinaAbstract: The aim of this study was to evaluate the potential of microemulsions as a drug vehicle for transdermal delivery of citalopram. A computerized statistical technique of response surface methodology with mixture design was used to investigate and optimize the influence of the formulation compositions including a mixture of Brij 30/Brij 35 surfactants (at a ratio of 4:1, 20%–30%, isopropyl alcohol (20%–30%, and distilled water (40%–50% on the properties of the drug-loaded microemulsions, including permeation rate (flux and lag time. When microemulsions were used as a vehicle, the drug permeation rate increased significantly and the lag time shortened significantly when compared with the aqueous control of 40% isopropyl alcohol solution containing 3% citalopram, demonstrating that microemulsions are a promising vehicle for transdermal application. With regard to the pharmacokinetic parameters of citalopram, the flux required for the transdermal delivery system was about 1280 µg per hour. The microemulsions loaded with citalopram 3% and 10% showed respective flux rates of 179.6 µg/cm2 and 513.8 µg/cm2 per hour, indicating that the study formulation could provide effective therapeutic concentrations over a practical application area. The animal study showed that the optimized formulation (F15 containing 3% citalopram with an application area of 3.46 cm2 is able to reach a minimum effective therapeutic concentration with no erythematous reaction

  14. Response Surface Optimization of Rotenone Using Natural Alcohol-Based Deep Eutectic Solvent as Additive in the Extraction Medium Cocktail

    Directory of Open Access Journals (Sweden)

    Zetty Shafiqa Othman

    2017-01-01

    Full Text Available Rotenone is a biopesticide with an amazing effect on aquatic life and insect pests. In Asia, it can be isolated from Derris species roots (Derris elliptica and Derris malaccensis. The previous study revealed the comparable efficiency of alcohol-based deep eutectic solvent (DES in extracting a high yield of rotenone (isoflavonoid to binary ionic liquid solvent system ([BMIM]OTf and organic solvent (acetone. Therefore, this study intends to analyze the optimum parameters (solvent ratio, extraction time, and agitation rate in extracting the highest yield of rotenone extract at a much lower cost and in a more environmental friendly method by using response surface methodology (RSM based on central composite rotatable design (CCRD. By using RSM, linear polynomial equations were obtained for predicting the concentration and yield of rotenone extracted. The verification experiment confirmed the validity of both of the predicted models. The results revealed that the optimum conditions for solvent ratio, extraction time, and agitation rate were 2 : 8 (DES : acetonitrile, 19.34 hours, and 199.32 rpm, respectively. At the optimum condition of the rotenone extraction process using DES binary solvent system, this resulted in a 3.5-fold increase in a rotenone concentration of 0.49 ± 0.07 mg/ml and yield of 0.35 ± 0.06 (%, w/w as compared to the control extract (acetonitrile only. In fact, the rotenone concentration and yield were significantly influenced by binary solvent ratio and extraction time (P<0.05 but not by means of agitation rate. For that reason, the optimal extraction condition using alcohol-based deep eutectic solvent (DES as a green additive in the extraction medium cocktail has increased the potential of enhancing the rotenone concentration and yield extracted.

  15. Dechlorination of Hexachlorobenzene in Contaminated Soils Using a Nanometallic Al/CaO Dispersion Mixture: Optimization through Response Surface Methodology

    Science.gov (United States)

    Jiang, Yuhui; Shang, Yixuan; Yu, Shuyao; Liu, Jianguo

    2018-01-01

    Hexachlorobenzene (HCB) contamination of soils remains a significant environmental challenge all over the world. Reductive stabilization is a developing technology that can decompose the HCB with a dechlorination process. A nanometallic Al/CaO (n-Al/CaO) dispersion mixture was developed utilizing ball-milling technology in this study. The dechlorination efficiency of HCB in contaminated soils by the n-Al/CaO grinding treatment was evaluated. Response surface methodology (RSM) was employed to investigate the effects of three variables (soil moisture content, n-Al/CaO dosage and grinding time) and the interactions between these variables under the Box-Behnken Design (BBD). A high regression coefficient value (R2 = 0.9807) and low p value (soil moisture content, n-Al/CaO dosage, and grinding time were found to be 7% (m/m), 17.7% (m/m), and 24 h, respectively, in the experimental ranges and levels. Under optimal conditions, the dechlorination efficiency was 80%. The intermediate product analysis indicated that dechlorination was the process by stepwise loss of chloride atoms. The main pathway observed within 24 h was HCB → pentachlorobenzene (PeCB) → 1,2,3,4-tetrachlorobenzene (TeCB) and 1,2,4,5-TeCB. The results indicated that the moderate soil moisture content was crucial for the hydrodechlorination of HCB. A probable mechanism was proposed wherein water acted like a hydrogen donor and promoted the hydrodechlorination process. The potential application of n-Al/CaO is an environmentally-friendly and cost-effective option for decontamination of HCB-contaminated soils. PMID:29702570

  16. Optimization of hydrodynamic cavitations reactor efficiency for biodiesel production by response surface methods (Case study: Sunflower oil

    Directory of Open Access Journals (Sweden)

    H Javadikia

    2017-05-01

    reaction. Response surface methodology: Three important settings of reactor were considered to optimize reactor performance, which include: inlet flow to reactor, reactor rotational speed and the fluid cycle time in the system. Each set was considered at three levels. The factorial design was used to the analysis without any repeat, there will be 27 situations that because of the cost of analysis per sample by GC, practically not possible to do it. Therefore, response surface methodology was used by Design Expert software. In the other words, after defining the number of variables and their boundaries, software determined the number of necessary tests and the value of the relevant variables. Results and Discussion Three parameters include the inlet flow to reactor, reactor rotational speed and the fluid cycle time in the system were considered as input variables and performance of reactor as outcome in analyzing of extracted data from the reactor and GC by Design Expert software. The results of tests and optimization by software indicated that in 3.51 minutes as retention time of the raw material of biodiesel fuel in the system, the method of transesterification reaction had more than 88% Methyl ester and this represents an improvement in reaction time of biodiesel production. This method has very low retention time rather than biodiesel fuel production in conventional batch reactors that it takes 20 minutes to more than one hour. Conclusions According to the researches, efficiency of biodiesel fuel production in hydrodynamic cavitation reactors is higher than ultrasonic reactors so in this study, the settings of hydrodynamic reactor were investigated so that the settings were optimized in production of biodiesel fuel. Sunflower oil was used in this research. The molar ratio of Methanol to oil was 6 to 1 and sodium hydroxide as a catalyst was used. Three important settings of reactor were considered which include: inlet flow to reactor, reactor rotational speed and the

  17. Multi-objective parametric optimization of Inertance type pulse tube refrigerator using response surface methodology and non-dominated sorting genetic algorithm

    Science.gov (United States)

    Rout, Sachindra K.; Choudhury, Balaji K.; Sahoo, Ranjit K.; Sarangi, Sunil K.

    2014-07-01

    The modeling and optimization of a Pulse Tube Refrigerator is a complicated task, due to its complexity of geometry and nature. The aim of the present work is to optimize the dimensions of pulse tube and regenerator for an Inertance-Type Pulse Tube Refrigerator (ITPTR) by using Response Surface Methodology (RSM) and Non-Sorted Genetic Algorithm II (NSGA II). The Box-Behnken design of the response surface methodology is used in an experimental matrix, with four factors and two levels. The diameter and length of the pulse tube and regenerator are chosen as the design variables where the rest of the dimensions and operating conditions of the ITPTR are constant. The required output responses are the cold head temperature (Tcold) and compressor input power (Wcomp). Computational fluid dynamics (CFD) have been used to model and solve the ITPTR. The CFD results agreed well with those of the previously published paper. Also using the results from the 1-D simulation, RSM is conducted to analyse the effect of the independent variables on the responses. To check the accuracy of the model, the analysis of variance (ANOVA) method has been used. Based on the proposed mathematical RSM models a multi-objective optimization study, using the Non-sorted genetic algorithm II (NSGA-II) has been performed to optimize the responses.

  18. Multi-Objective Optimization of Moving-magnet Linear Oscillatory Motor Using Response Surface Methodology with Quantum-Behaved PSO Operator

    Science.gov (United States)

    Lei, Meizhen; Wang, Liqiang

    2018-01-01

    To reduce the difficulty of manufacturing and increase the magnetic thrust density, a moving-magnet linear oscillatory motor (MMLOM) without inner-stators was Proposed. To get the optimal design of maximum electromagnetic thrust with minimal permanent magnetic material, firstly, the 3D finite element analysis (FEA) model of the MMLOM was built and verified by comparison with prototype experiment result. Then the influence of design parameters of permanent magnet (PM) on the electromagnetic thrust was systematically analyzed by the 3D FEA to get the design parameters. Secondly, response surface methodology (RSM) was employed to build the response surface model of the new MMLOM, which can obtain an analytical model of the PM volume and thrust. Then a multi-objective optimization methods for design parameters of PM, using response surface methodology (RSM) with a quantum-behaved PSO (QPSO) operator, was proposed. Then the way to choose the best design parameters of PM among the multi-objective optimization solution sets was proposed. Then the 3D FEA of the optimal design candidates was compared. The comparison results showed that the proposed method can obtain the best combination of the geometric parameters of reducing the PM volume and increasing the thrust.

  19. Optimization of hydroxyl radical scavenging activity of exopolysaccharides from Inonotus obliquus in submerged fermentation using response surface methodology

    NARCIS (Netherlands)

    Chen, H.; Xu, X.; Zhu, Y.

    2010-01-01

    The objectives of this study were to investigate the effect of fermentation medium on the hydroxyl radical scavenging activity of exopolysaccharides from Inonotus obliquus by response surface methodology (RSM). A two-level fractional factorial design was used to evaluate the effect of different

  20. Multi-response optimization of surface integrity characteristics of EDM process using grey-fuzzy logic-based hybrid approach

    Directory of Open Access Journals (Sweden)

    Shailesh Dewangan

    2015-09-01

    Full Text Available Surface integrity remains one of the major areas of concern in electric discharge machining (EDM. During the current study, grey-fuzzy logic-based hybrid optimization technique is utilized to determine the optimal settings of EDM process parameters with an aim to improve surface integrity aspects after EDM of AISI P20 tool steel. The experiment is designed using response surface methodology (RSM considering discharge current (Ip, pulse-on time (Ton, tool-work time (Tw and tool-lift time (Tup as process parameters. Various surface integrity characteristics such as white layer thickness (WLT, surface crack density (SCD and surface roughness (SR are considered during the current research work. Grey relational analysis (GRA combined with fuzzy-logic is used to determine grey fuzzy reasoning grade (GFRG. The optimal solution based on this analysis is found to be Ip = 1 A, Ton = 10 μs, Tw = 0.2 s, and Tup = 0.0 s. Analysis of variance (ANOVA results clearly indicate that Ton is the most contributing parameter followed by Ip, for multiple performance characteristics of surface integrity.

  1. Optimization of supercritical carbon dioxide (CO2 extraction of sardine (Sardinella lemuru Bleeker oil using response surface methodology (RSM

    Directory of Open Access Journals (Sweden)

    Gedi, M. A.

    2015-06-01

    Full Text Available Oil was extracted from freeze-dried sardine (Sardinella lemur fillets using supercritical carbon dioxide (SC-CO2 and a few milliliters of ethanol were optimized with response surface methodology (RSM. The impact of extraction pressure (200–400 bars and temperature (40–70 °C were studied on the total extraction yields, ratios of Eicosapentaenoic acid (EPA and Docosahexaenoic acid (DHA. The results were compared with those of Soxhlet and modified Kinsella methods (MKM. The oils obtained using the SC-CO2 and MKM methods were significantly (P El aceite se extrae de filetes de sardinas (Sardinella lemur liofilizando, mediante dióxido de carbono supercrítico (SC-CO2 y unos mililitros de etanol, optimizándose mediante la metodología de superficie de respuesta (RSM. Se ha estudiado la influencia de la presión de extracción (200–400 bars y la temperatura (40–70 °C sobre los rendimientos de extracción total, y sobre las relaciones de ácido eicosapentaenoico (EPA y ácido docosahexaenoico (DHA. Los resultados se compararon con los obtenidos mediante extracción con Soxhlet y el método de Kinsella modificado (MKM. Los aceites obtenidos mediante SC-CO2 y métodos MKM fueron significativamente (P < 0.05 superiores en rendimientos de aceite (8,04% y 6,83%, EPA (5,43% y 5,45% y DHA (18,76% y 18,54%, respectivamente, en comparación con rendimientos mediante Soxhlet (5,10%, EPA (2,17% y DHA (06,46%. De las dos variables independientes, la presión tuvo un efecto crítico sobre el rendimiento, mientras que los porcentajes de EPA y DHA estuvieron notablemente influenciados por la temperatura. Los valores óptimos fueron para una presión de 328 bar y una temperatura de 40 °C, y sus correspondientes respuestas fueron 7,20%, 5,68% y 20,09% para el rendimiento, EPA y DHA, respectivamente. Los valores experimentales de este estudio fueron los previstos y son comparables razonablemente con sus homólogos.

  2. Optimization of soybean \\'dawadawa\\' production, using response ...

    African Journals Online (AJOL)

    dawadawa\\'. Response surface experimental design with 53 combinations in replicate was used to optimize the six processing variables. This was used to determine the optimum combinations of five processing variables that will produce the most ...

  3. Application of Response Surface Methodology (RSM for Optimization of Operating Parameters and Performance Evaluation of Cooling Tower Cold Water Temperature

    Directory of Open Access Journals (Sweden)

    Ramkumar RAMAKRISHNAN

    2012-01-01

    Full Text Available The performance of a cooling tower was analyzed with various operating parameters tofind the minimum cold water temperature. In this study, optimization of operating parameters wasinvestigated. An experimental design was carried out based on central composite design (CCD withresponse surface methodology (RSM. This paper presents optimum operating parameters and theminimum cold water temperature using the RSM method. The RSM was used to evaluate the effectsof operating variables and their interaction towards the attainment of their optimum conditions.Based on the analysis, air flow, hot water temperature and packing height were high significanteffect on cold water temperature. The optimum operating parameters were predicted using the RSMmethod and confirmed through experiment.

  4. Optimization protocol for the extraction of 6-gingerol and 6-shogaol from Zingiber officinale var. rubrum Theilade and improving antioxidant and anticancer activity using response surface methodology.

    Science.gov (United States)

    Ghasemzadeh, Ali; Jaafar, Hawa Z E; Rahmat, Asmah

    2015-07-30

    Analysis and extraction of plant matrices are important processes for the development, modernization, and quality control of herbal formulations. Response surface methodology is a collection of statistical and mathematical techniques that are used to optimize the range of variables in various experimental processes to reduce the number of experimental runs, cost , and time, compared to other methods. Response surface methodology was applied for optimizing reflux extraction conditions for achieving high 6-gingerol and 6-shogaol contents, and high antioxidant activity in Zingiber officinale var. rubrum Theilade . The two-factor central composite design was employed to determine the effects of two independent variables, namely extraction temperature (X1: 50-80 °C) and time (X2: 2-4 h), on the properties of the extracts. The 6-gingerol and 6-shogaol contents were measured using ultra-performance liquid chromatography. The antioxidant activity of the rhizome extracts was determined by means of the 1,1-diphenyl-2-picrylhydrazyl assay. Anticancer activity of optimized extracts against HeLa cancer cell lines was measured using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Increasing the extraction temperature and time induced significant response of the variables. The optimum extraction condition for all responses was at 76.9 °C for 3.4 h. Under the optimum condition, the corresponding predicted response values for 6-gingerol, 6-shogaol, and the antioxidant activity were 2.89 mg/g DW, 1.85 mg/g DW, and 84.3%, respectively. 6-gingerol and 6-shogaol were extracted under optimized condition to check the viability of the models. The values were 2.92 and 1.88 mg/g DW, and 84.0% for 6-gingerol, 6-shogaol, and the antioxidant activity respectively. The experimental values agreed with those predicted, thus indicating suitability of the models employed and the success of RSM in optimizing the extraction condition. With optimizing of reflux extraction

  5. Optimization of an A(2)/O process for tetracycline removal via response surface methodology coupled with a Box-Behnken design.

    Science.gov (United States)

    Qi, Fang-Fang; Huang, Man-Hong; Zheng, Yu; Xu, Qi

    2015-01-01

    Response surface methodology (RSM) was used to optimize the operating conditions of an anaerobic-anoxic-oxic (A(2)/O) process by maximizing the removal efficiency of tetracycline (TC). Solid retention time (SRT), hydraulic retention time (HRT) and initial TC concentration (CTC, in) were selected as independent variables for incorporation in the Box-Behnken design. The results showed SRT and CTC, in were more significant parameters than HRT for the removal efficiency of TC. TC could be completely removed under the optimal conditions of an SRT of 15.5 days, an HRT of 9.9 h and a CTC, in of 283.3 μg L(-1). TC removal efficiencies of 99% and 96% were attained for synthetic and real wastewater, respectively, under the optimal conditions. This indicated the constructed model was validated and reliable for optimizing the A(2)/O process for TC removal.

  6. Decolorization and mineralization of Diarylide Yellow 12 (PY12) by photo-Fenton process: the Response Surface Methodology as the optimization tool.

    Science.gov (United States)

    GilPavas, Edison; Dobrosz-Gómez, Izabela; Gómez-García, Miguel Ángel

    2012-01-01

    The Response Surface Methodology (RSM) was applied as a tool for the optimization of the operational conditions of the photo-degradation of highly concentrated PY12 wastewater, resulting from a textile industry located in the suburbs of Medellin (Colombia). The Box-Behnken experimental Design (BBD) was chosen for the purpose of response optimization. The photo-Fenton process was carried out in a laboratory-scale batch photo-reactor. A multifactorial experimental design was proposed, including the following variables: the initial dyestuff concentration, the H(2)O(2) and the Fe(+2) concentrations, as well as the UV wavelength radiation. The photo-Fenton process performed at the optimized conditions resulted in ca. 100% of dyestuff decolorization, 92% of COD and 82% of TOC degradation. A kinetic study was accomplished, including the identification of some intermediate compounds generated during the oxidation process. The water biodegradability reached a final DBO(5)/DQO = 0.86 value.

  7. [Optimization of one-step pelletization technology of Biqiu granules by Plackett-Burman design and Box-Behnken response surface methodology].

    Science.gov (United States)

    Zhang, Yan-jun; Liu, Li-li; Hu, Jun-hua; Wu, Yun; Chao, En-xiang; Xiao, Wei

    2015-11-01

    First with the qualified rate of granules as the evaluation index, significant influencing factors were firstly screened by Plackett-Burman design. Then, with the qualified rate and moisture content as the evaluation indexes, significant factors that affect one-step pelletization technology were further optimized by Box-Behnken design; experimental data were imitated by multiple regression and second-order polynomial equation; and response surface method was used for predictive analysis of optimal technology. The best conditions were as follows: inlet air temperature of 85 degrees C, sample introduction speed of 33 r x min(-1), density of concrete 1. 10. One-step pelletization technology of Biqiu granules by Plackett-Burman design and Box-Behnken response surface methodology was stable and feasible with good predictability, which provided reliable basis for the industrialized production of Biqiu granules.

  8. Optimization of GMAW process of AA 6063-T5 aluminum alloy butt joints based on the response surface methodology and on the bead geometry

    International Nuclear Information System (INIS)

    Miguel, V.; Martinez-Conesa, E. J.; Segura, F.; Manjabacas, M. C.; Abellan, E.

    2012-01-01

    The geometry of the weld beads is characterized by the overhead, the width and the penetration. These values are indices of the behavior of the welded joint and therefore, they can be considered as factors that control the process. This work is performed to optimize the GMAW process of the aluminum alloy AA 6063-T5 by means of the response surface methodology (RSM). The variables herein considered are the arc voltage, the welding speed, the wire feed speed and the separation between surfaces in butt joints. The response functions that are herein studied are the overhead, the width, the penetration and the angle of the bead. The obtained results by RSM show high grade of agreement with the experimental values. The procedure is experimentally validated by welding for the theoretically obtained optimized technological conditions and a wide agreement between theoretical and experimental values is found. (Author) 16 refs.

  9. [Optimization of vacuum belt drying process of Gardeniae Fructus in Reduning injection by Box-Behnken design-response surface methodology].

    Science.gov (United States)

    Huang, Dao-sheng; Shi, Wei; Han, Lei; Sun, Ke; Chen, Guang-bo; Wu Jian-xiong; Xu, Gui-hong; Bi, Yu-an; Wang, Zhen-zhong; Xiao, Wei

    2015-06-01

    To optimize the belt drying process conditions optimization of Gardeniae Fructus extract from Reduning injection by Box-Behnken design-response surface methodology, on the basis of single factor experiment, a three-factor and three-level Box-Behnken experimental design was employed to optimize the drying technology of Gardeniae Fructus extract from Reduning injection. With drying temperature, drying time, feeding speed as independent variables and the content of geniposide as dependent variable, the experimental data were fitted to a second order polynomial equation, establishing the mathematical relationship between the content of geniposide and respective variables. With the experimental data analyzed by Design-Expert 8. 0. 6, the optimal drying parameter was as follows: the drying temperature was 98.5 degrees C , the drying time was 89 min, the feeding speed was 99.8 r x min(-1). Three verification experiments were taked under this technology and the measured average content of geniposide was 564. 108 mg x g(-1), which was close to the model prediction: 563. 307 mg x g(-1). According to the verification test, the Gardeniae Fructus belt drying process is steady and feasible. So single factor experiments combined with response surface method (RSM) could be used to optimize the drying technology of Reduning injection Gardenia extract.

  10. The Challenge of Peat Substitution in Organic Seedling Production: Optimization of Growing Media Formulation through Mixture Design and Response Surface Analysis.

    Directory of Open Access Journals (Sweden)

    Francesco Giovanni Ceglie

    Full Text Available Peat replacement is an increasing demand in containerized and transplant production, due to the environmental constraints associated to peat use. However, despite the wide information concerning the use of alternative materials as substrates, it is very complex to establish the best materials and mixtures. This work evaluates the use of mixture design and surface response methodology in a peat substitution experiment using two alternative materials (green compost and palm fibre trunk waste for transplant production of tomato (Lycopersicon esculentum Mill.; melon, (Cucumis melo L.; and lettuce (Lactuca sativa L. in organic farming conditions. In general, the substrates showed suitable properties for their use in seedling production, showing the best plant response the mixture of 20% green compost, 39% palm fibre and 31% peat. The mixture design and applied response surface methodology has shown to be an useful approach to optimize substrate formulations in peat substitution experiments to standardize plant responses.

  11. New hybrid multivariate analysis approach to optimize multiple response surfaces considering correlations in both inputs and outputs

    OpenAIRE

    Hejazi, Taha Hossein; Amirkabir University of Technology - Iran; Seyyed-Esfahani, Mirmehdi; Amirkabir University of Technology - Iran; Ramezani, Majid; Amirkabir University of Technology - Iran

    2014-01-01

    Quality control in industrial and service systems requires the correct setting of input factors by which the outputs result at minimum cost with desirable characteristics. There are often more than one input and output in such systems. Response surface methodology in its multiple variable forms is one of the most applied methods to estimate and improve the quality characteristics of products with respect to control factors. When there is some degree of correlation among the variables, the exi...

  12. Optimization of ultrasonic-assisted extraction of bioactive alkaloid compounds from rhizoma coptidis (Coptis chinensis Franch.) using response surface methodology.

    Science.gov (United States)

    Teng, Hui; Choi, Yong Hee

    2014-01-01

    The optimum extraction conditions for the maximum recovery of total alkaloid content (TAC), berberine content (BC), palmatine content (PC), and the highest antioxidant capacity (AC) from rhizoma coptidis subjected to ultrasonic-assisted extraction (UAE) were determined using response surface methodology (RSM). Central composite design (CCD) with three variables and five levels was employed, and response surface plots were constructed in accordance with a second order polynomial model. Analysis of variance (ANOVA) showed that the quadratic model was well fitted and significant for responses of TAC, BC, PC, and AA. The optimum conditions obtained through the overlapped contour plot were as follows: ethanol concentration of 59%, extraction time of 46.57min, and temperature of 66.22°C. Verification experiment was carried out, and no significant difference was found between observed and estimated values for each response, suggesting that the estimated models were reliable and valid for UAE of alkaloids. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  13. Response Surface Methodology

    NARCIS (Netherlands)

    Kleijnen, Jack P.C.

    2014-01-01

    Abstract: This chapter first summarizes Response Surface Methodology (RSM), which started with Box and Wilson’s article in 1951 on RSM for real, non-simulated systems. RSM is a stepwise heuristic that uses first-order polynomials to approximate the response surface locally. An estimated polynomial

  14. Aminolysis of polyethylene terephthalate surface along with in situ synthesis and stabilizing ZnO nanoparticles using triethanolamine optimized with response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Poortavasoly, Hajar; Montazer, Majid, E-mail: tex5mm@aut.ac.ir; Harifi, Tina

    2016-01-01

    This research concerned the simultaneous polyester surface modification and synthesis of zinc oxide nano-reactors to develop durable photo-bio-active fabric with variable hydrophobicity/hydrophilicity under sunlight. For this purpose, triethanolamine (TEA) was applied as a stabilizer and pH adjusting chemical for the aminolysis of polyester surface and enhancing the surface reactivity along with synthesis and deposition of ZnO nanoparticles on the fabric. Therefore, TEA played a crucial role in providing the alkaline condition for the preparation of zinc oxide nanoparticles and acting as stabilizer controlling the size of the prepared nanoparticles. The stain–photodegradability regarded as self-cleaning efficiency, wettability and weight change under the process was optimized based on zinc acetate and TEA concentrations, using central composite design (CCD). Findings also suggested the potential of the prepared fabric in inhibiting Staphylococcus aureus and Escherichia coli bacteria growth with greater than 99.99% antibacterial efficiency. Besides, the proposed treatment had no detrimental effect on tensile strength and hand feeling of the polyester fabric. - Highlights: • Durable photo-bio-active polyester with variable hydrophobicity/hydrophilicity • Simultaneous polyester surface aminolysis and ZnO ball-like nanoparticle production • Multi-role of TEA for polyester aminolysis and nanoparticle formation • Optimization of photoactivity and wettability by central composite design.

  15. Optimization of photocatalytic degradation of methyl blue using silver ion doped titanium dioxide by combination of experimental design and response surface approach

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, C. [Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology, Kharagpur, 721302 (India); Gupta, A.K., E-mail: agupta@civil.iitkgp.ernet.in [Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology, Kharagpur, 721302 (India)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Optimization of color removal and COD removal done by response surface approach. Black-Right-Pointing-Pointer The experiments were designed using Box-Behnken spherical design. Black-Right-Pointing-Pointer Two quadratic polynomial models were developed for the responses. Black-Right-Pointing-Pointer Single point numerical optimization was done considering three constraints. Black-Right-Pointing-Pointer Validation by performing the experiment under optimized conditions. - Abstract: Photocatalytic degradation of methyl blue (MYB) was studied using Ag{sup +} doped TiO{sub 2} under UV irradiation in a batch reactor. Catalytic dose, initial concentration of dye and pH of the reaction mixture were found to influence the degradation process most. The degradation was found to be effective in the range catalytic dose (0.5-1.5 g/L), initial dye concentration (25-100 ppm) and pH of reaction mixture (5-9). Using the three factors three levels Box-Behnken design of experiment technique 15 sets of experiments were designed considering the effective ranges of the influential parameters. The results of the experiments were fitted to two quadratic polynomial models developed using response surface methodology (RSM), representing functional relationship between the decolorization and mineralization of MYB and the experimental parameters. Design Expert software version 8.0.6.1 was used to optimize the effects of the experimental parameters on the responses. The optimum values of the parameters were dose of Ag{sup +} doped TiO{sub 2} 0.99 g/L, initial concentration of MYB 57.68 ppm and pH of reaction mixture 7.76. Under the optimal condition the predicted decolorization and mineralization rate of MYB were 95.97% and 80.33%, respectively. Regression analysis with R{sup 2} values >0.99 showed goodness of fit of the experimental results with predicted values.

  16. Optimization of photocatalytic degradation of methyl blue using silver ion doped titanium dioxide by combination of experimental design and response surface approach

    International Nuclear Information System (INIS)

    Sahoo, C.; Gupta, A.K.

    2012-01-01

    Highlights: ► Optimization of color removal and COD removal done by response surface approach. ► The experiments were designed using Box–Behnken spherical design. ► Two quadratic polynomial models were developed for the responses. ► Single point numerical optimization was done considering three constraints. ► Validation by performing the experiment under optimized conditions. - Abstract: Photocatalytic degradation of methyl blue (MYB) was studied using Ag + doped TiO 2 under UV irradiation in a batch reactor. Catalytic dose, initial concentration of dye and pH of the reaction mixture were found to influence the degradation process most. The degradation was found to be effective in the range catalytic dose (0.5–1.5 g/L), initial dye concentration (25–100 ppm) and pH of reaction mixture (5–9). Using the three factors three levels Box–Behnken design of experiment technique 15 sets of experiments were designed considering the effective ranges of the influential parameters. The results of the experiments were fitted to two quadratic polynomial models developed using response surface methodology (RSM), representing functional relationship between the decolorization and mineralization of MYB and the experimental parameters. Design Expert software version 8.0.6.1 was used to optimize the effects of the experimental parameters on the responses. The optimum values of the parameters were dose of Ag + doped TiO 2 0.99 g/L, initial concentration of MYB 57.68 ppm and pH of reaction mixture 7.76. Under the optimal condition the predicted decolorization and mineralization rate of MYB were 95.97% and 80.33%, respectively. Regression analysis with R 2 values >0.99 showed goodness of fit of the experimental results with predicted values.

  17. Formulation development and optimization of sustained release matrix tablet of Itopride HCl by response surface methodology and its evaluation of release kinetics.

    Science.gov (United States)

    Bose, Anirbandeep; Wong, Tin Wui; Singh, Navjot

    2013-04-01

    The objective of this present investigation was to develop and formulate sustained release (SR) matrix tablets of Itopride HCl, by using different polymer combinations and fillers, to optimize by Central Composite Design response surface methodology for different drug release variables and to evaluate drug release pattern of the optimized product. Sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: hydroxy propyl methyl cellulose (HPMC) and polyvinyl pyrolidine (pvp) and lactose as fillers. Study of pre-compression and post-compression parameters facilitated the screening of a formulation with best characteristics that underwent here optimization study by response surface methodology (Central Composite Design). The optimized tablet was further subjected to scanning electron microscopy to reveal its release pattern. The in vitro study revealed that combining of HPMC K100M (24.65 MG) with pvp(20 mg)and use of LACTOSE as filler sustained the action more than 12 h. The developed sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet.

  18. Optimization of Xylanase Production through Response Surface Methodology by Fusarium sp. BVKT R2 Isolated from forest soil and its applications in saccharification

    Directory of Open Access Journals (Sweden)

    Ramanjaneyulu Golla

    2016-09-01

    Full Text Available AbstractXylanses are hydrolytic enzymes with wide applications in several industries like biofuels, paper and pulp, deinking, food and feed. The present study was aimed at hitting at high yield xylanase producing fungi from natural resources. Two highest xylanase producing fungal isolates - Q12 and L1were picked from collection of 450 fungal cultures for the utilization of xylan. These fungal isolates - Q12 and L1 were identified basing on ITS gene sequencing analysis as Fusarium sp. BVKT R2 (KT119615 and Fusarium strain BRR R6 (KT119619, respectively with construction of phylogenetic trees. Fusarium sp. BVKT R2 was further optimized for maximum xylanase production and the interaction effects between variables on production of xylanase were studied through response surface methodology. The optimal conditions for maximal production of xylanase were sorbitol 1.5%, yeast extract 1.5%, pH of 5.0, Temperature of 32.5ºC, and agitation of 175 rpm. Under optimal conditions, the yields of xylanase production by Fusarium sp. BVKT R2 was as high as 4560 U/ml in SmF. Incubation of different lignocellulosic biomasses with crude enzyme of Fusarium sp. BVKT R2 at 37°C for 72 h could achieve about 45% saccharification. The results suggest that Fusarium sp. BVKT R2 has potential applications in saccharification process of biomass.Key words: Fusarium sp., Optimization, Response Surface Methodology, Saccharification, Submerged fermentation, Xylanase

  19. [Optimization of ethylene production from ethanol dehydration using Zn-Mn-Co/HZSM-5 by response surface methodology].

    Science.gov (United States)

    Wang, Wei; Cheng, Keke; Xue, Jianwei; Zhang, Jian'an

    2011-03-01

    The effects of reaction temperature, ethanol concentration and weight hourly space velocity (WHSV) on the ethylene production from ethanol dehydration using zinc, manganese and cobalt modified HZSM-5 catalyst were investigated by response surface methodology (RSM). The results showed that the most significant effect among factors was reaction temperature and the factors had interaction. The optimum conditions were found as 34.4% ethanol concentration, 261.3 0 degrees C of reaction temperature and 1.18 h(-1) of WHSV, under these conditions the yield of ethylene achieved 98.69%.

  20. Optimization of the Use of Selected Non-Phosphate Water Retention Additives in Minced Beef Using Response Surface Methodology

    Science.gov (United States)

    Shang, Xiaolan; Qiao, Jie; Liu, Yujie

    2017-12-01

    This study looked to determine what the optimum cooking loss for minced beef was when three different non-phosphate water retention additives (L-Arginine, sodium carbonate, and sodium citrate) were combined; the optimum value was determined using a Box-Behnken response surface design method. The optimum value was found to be 8.26%, and it was obtained when 0.29% L-Arginine, 0.45% sodium carbonate, and 0.24% sodium citrate were added to the beef.

  1. Modeling and optimization of fermentation variables for enhanced production of lactase by isolated Bacillus subtilis strain VUVD001 using artificial neural networking and response surface methodology.

    Science.gov (United States)

    Venkateswarulu, T C; Prabhakar, K Vidya; Kumar, R Bharath; Krupanidhi, S

    2017-07-01

    Modeling and optimization were performed to enhance production of lactase through submerged fermentation by Bacillus subtilis VUVD001 using artificial neural networks (ANN) and response surface methodology (RSM). The effect of process parameters namely temperature (°C), pH, and incubation time (h) and their combinational interactions on production was studied in shake flask culture by Box-Behnken design. The model was validated by conducting an experiment at optimized process variables which gave the maximum lactase activity of 91.32 U/ml. Compared to traditional activity, 3.48-folds improved production was obtained after RSM optimization. This study clearly shows that both RSM and ANN models provided desired predictions. However, compared with RSM (R 2  = 0.9496), the ANN model (R 2  = 0.99456) gave a better prediction for the production of lactase.

  2. Statistical optimization of beta-carotene production by Arthrobacter agilis A17 using response surface methodology and Box-Behnken design

    Science.gov (United States)

    Özdal, Murat; Özdal, Özlem Gür; Gürkök, Sümeyra

    2017-04-01

    β-carotene is a commercially important natural pigment and has been widely applied in the medicine, pharmaceutical, food, feed and cosmetic industries. The current study aimed to investigate the usability of molasses for β-carotene production by Arthrobacter agilis A17 (KP318146) and to optimize the production process. Box-Behnken Design of Response Surface Methodology was used to determine the optimum levels and the interactions of three independent variables namely molasses, yeast extract and KH2PO4 at three different levels. β-carotene yield in optimized medium containing 70 g/l molasses, 25 g/l yeast extract and 0.96 g/l KH2PO4, reached up to 100 mg/l, which is approximately 2.5-fold higher than the yield, obtained from control cultivation. A remarkable β-carotene production on inexpensive carbon source was achieved with the use of statistical optimization.

  3. Optimization of foaming properties of sludge protein solution by 60Co γ-ray/H2O2 using response surface methodology

    International Nuclear Information System (INIS)

    Xiang, Yulin; Xiang, Yuxiu; Wang, Lipeng; Zhang, Zhifang

    2016-01-01

    Response surface methodology and Box-Behnken experimental design were used to model and optimize the operational parameters of foaming properties of the sludge protein solution by 60 Co γ-ray/H 2 O 2 treatment. The four variables involved in this research were the protein solution concentration, H 2 O 2 , pH and dose. In the range studied, statistical analysis of the results showed that selected variables had a significant effect on protein foaming properties. The optimized conditions contained: protein solution concentration 26.50% (v/v), H 2 O 2 concentration 0.30% (v/v), pH value 9.0, and dose 4.81 kGy. Under optimal conditions, the foamability and foam stability approached 23.3 cm and 21.3 cm, respectively. Regression analysis with R 2 value of 0.9923 (foamability) and 0.9922 (foam stability) indicated a satisfactory correlation between the experimental data and predicted values (response). In addition, based on a feasibility analysis, the 60 Co γ-ray/H 2 O 2 method can improve odor and color of the protein foaming solution. - Highlights: • Effects of 60 Co γ-ray/H 2 O 2 on foaming properties of sludge protein were studied. • Response surface methodology and Box-Behnken experimental design were applied. • 60 Co γ-ray/H 2 O 2 method can improve foaming properties of protein solution.

  4. Effect of C/N Ratio and Media Optimization through Response Surface Methodology on Simultaneous Productions of Intra- and Extracellular Inulinase and Invertase from Aspergillus niger ATCC 20611

    Science.gov (United States)

    Dinarvand, Mojdeh; Rezaee, Malahat; Masomian, Malihe; Jazayeri, Seyed Davoud; Zareian, Mohsen; Abbasi, Sahar; Ariff, Arbakariya B.

    2013-01-01

    The study is to identify the extraction of intracellular inulinase (exo- and endoinulinase) and invertase as well as optimization medium composition for maximum productions of intra- and extracellular enzymes from Aspergillus niger ATCC 20611. From two different methods for extraction of intracellular enzymes, ultrasonic method was found more effective. Response surface methodology (RSM) with a five-variable and three-level central composite design (CCD) was employed to optimize the medium composition. The effect of five main reaction parameters including sucrose, yeast extract, NaNO3, Zn+2, and Triton X-100 on the production of enzymes was analyzed. A modified quadratic model was fitted to the data with a coefficient of determination (R 2) more than 0.90 for all responses. The intra-extracellular inulinase and invertase productions increased in the range from 16 to 8.4 times in the optimized medium (10% (w/v) sucrose, 2.5% (w/v) yeast extract, 2% (w/v) NaNO3, 1.5 mM (v/v) Zn+2, and 1% (v/v) Triton X-100) by RSM and from around 1.2 to 1.3 times greater than in the medium optimized by one-factor-at-a-time, respectively. The results of bioprocesses optimization can be useful in the scale-up fermentation and food industry. PMID:24151605

  5. Effect of C/N Ratio and Media Optimization through Response Surface Methodology on Simultaneous Productions of Intra- and Extracellular Inulinase and Invertase from Aspergillus niger ATCC 20611

    Directory of Open Access Journals (Sweden)

    Mojdeh Dinarvand

    2013-01-01

    Full Text Available The study is to identify the extraction of intracellular inulinase (exo- and endoinulinase and invertase as well as optimization medium composition for maximum productions of intra- and extracellular enzymes from Aspergillus niger ATCC 20611. From two different methods for extraction of intracellular enzymes, ultrasonic method was found more effective. Response surface methodology (RSM with a five-variable and three-level central composite design (CCD was employed to optimize the medium composition. The effect of five main reaction parameters including sucrose, yeast extract, NaNO3, Zn+2, and Triton X-100 on the production of enzymes was analyzed. A modified quadratic model was fitted to the data with a coefficient of determination (R2 more than 0.90 for all responses. The intra-extracellular inulinase and invertase productions increased in the range from 16 to 8.4 times in the optimized medium (10% (w/v sucrose, 2.5% (w/v yeast extract, 2% (w/v NaNO3, 1.5 mM (v/v Zn+2, and 1% (v/v Triton X-100 by RSM and from around 1.2 to 1.3 times greater than in the medium optimized by one-factor-at-a-time, respectively. The results of bioprocesses optimization can be useful in the scale-up fermentation and food industry.

  6. Application of response surface methodology for optimization of natural organic matter degradation by UV/H2O2 advanced oxidation process.

    Science.gov (United States)

    Rezaee, Reza; Maleki, Afshin; Jafari, Ali; Mazloomi, Sajad; Zandsalimi, Yahya; Mahvi, Amir H

    2014-01-01

    In this research, the removal of natural organic matter from aqueous solutions using advanced oxidation processes (UV/H2O2) was evaluated. Therefore, the response surface methodology and Box-Behnken design matrix were employed to design the experiments and to determine the optimal conditions. The effects of various parameters such as initial concentration of H2O2 (100-180 mg/L), pH (3-11), time (10-30 min) and initial total organic carbon (TOC) concentration (4-10 mg/L) were studied. Analysis of variance (ANOVA), revealed a good agreement between experimental data and proposed quadratic polynomial model (R(2) = 0.98). Experimental results showed that with increasing H2O2 concentration, time and decreasing in initial TOC concentration, TOC removal efficiency was increased. Neutral and nearly acidic pH values also improved the TOC removal. Accordingly, the TOC removal efficiency of 78.02% in terms of the independent variables including H2O2 concentration (100 mg/L), pH (6.12), time (22.42 min) and initial TOC concentration (4 mg/L) were optimized. Further confirmation tests under optimal conditions showed a 76.50% of TOC removal and confirmed that the model is accordance with the experiments. In addition TOC removal for natural water based on response surface methodology optimum condition was 62.15%. This study showed that response surface methodology based on Box-Behnken method is a useful tool for optimizing the operating parameters for TOC removal using UV/H2O2 process.

  7. Robust optimization of the billet for isothermal local loading transitional region of a Ti-alloy rib-web component based on dual-response surface method

    Science.gov (United States)

    Wei, Ke; Fan, Xiaoguang; Zhan, Mei; Meng, Miao

    2018-03-01

    Billet optimization can greatly improve the forming quality of the transitional region in the isothermal local loading forming (ILLF) of large-scale Ti-alloy ribweb components. However, the final quality of the transitional region may be deteriorated by uncontrollable factors, such as the manufacturing tolerance of the preforming billet, fluctuation of the stroke length, and friction factor. Thus, a dual-response surface method (RSM)-based robust optimization of the billet was proposed to address the uncontrollable factors in transitional region of the ILLF. Given that the die underfilling and folding defect are two key factors that influence the forming quality of the transitional region, minimizing the mean and standard deviation of the die underfilling rate and avoiding folding defect were defined as the objective function and constraint condition in robust optimization. Then, the cross array design was constructed, a dual-RSM model was established for the mean and standard deviation of the die underfilling rate by considering the size parameters of the billet and uncontrollable factors. Subsequently, an optimum solution was derived to achieve the robust optimization of the billet. A case study on robust optimization was conducted. Good results were attained for improving the die filling and avoiding folding defect, suggesting that the robust optimization of the billet in the transitional region of the ILLF was efficient and reliable.

  8. Medium optimization for pyrroloquinoline quinone (PQQ) production by Methylobacillus sp. zju323 using response surface methodology and artificial neural network-genetic algorithm.

    Science.gov (United States)

    Wei, Peilian; Si, Zhenjun; Lu, Yao; Yu, Qingfei; Huang, Lei; Xu, Zhinan

    2017-08-09

    Methylobacillus sp. zju323 was adopted to improve the biosynthesis of pyrroloquinoline quinone (PQQ) by systematic optimization of the fermentation medium. The Plackett-Burman design was implemented to screen for the key medium components for the PQQ production. CoCl 2  · 6H 2 O, ρ-amino benzoic acid, and MgSO 4  · 7H 2 O were found capable of enhancing the PQQ production most significantly. A five-level three-factor central composite design was used to investigate the direct and interactive effects of these variables. Both response surface methodology (RSM) and artificial neural network-genetic algorithm (ANN-GA) were used to predict the PQQ production and to optimize the medium composition. The results showed that the medium optimized by ANN-GA was better than that by RSM in maximizing PQQ production and the experimental PQQ concentration in the ANN-GA-optimized medium was improved by 44.3% compared with that in the unoptimized medium. Further study showed that this ANN-GA-optimized medium was also effective in improving PQQ production by fed-batch mode, reaching the highest PQQ accumulation of 232.0 mg/L, which was about 47.6% increase relative to that in the original medium. The present work provided an optimized medium and developed a fed-batch strategy which might be potentially applicable in industrial PQQ production.

  9. Optimizing adsorption of blue pigment from wastewater by nano-porous modified Na-bentonite using spectrophotometry based on response surface method

    Science.gov (United States)

    Moradi, Neshat; Salem, Shiva; Salem, Amin

    2018-03-01

    This work highlighted the effective activation of bentonite paste to produce nano-porous powder for removal of cationic dye from wastewater. The effects of activation parameters such as soda and moisture contents, ageing time and temperature were analyzed using response surface methodology (RSM). The significance of independent variables and their interactions were tested by blending the obtained powders with wastewater and then the adsorption was evaluated, spectrophotometrically. The experiments were carried out by preparation of pastes according to response surface methodology and central composite design, which is the standard method, was used to evaluate the effects and interactions of four factors on the treatment efficiency. RSM was demonstrated as an appropriate approach for optimization of alkali activation. The optimal conditions obtained from the desirable responses were 5.0 wt% soda and 45.0 wt% moisture, respectively in which the powder activation was carried out at 150 °C. In order to well understand the role of nano-structured material on dye removal, the adsorbents were characterized through X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and Brunauer-Emmett-Teller surface area measurement. Finally, the analysis clearly demonstrates that the dye removal onto prepared adsorbent is well fitted with Langmuir isotherm compared to the other isotherm models. The low cost of material and facile process support the further development for commercial application purpose.

  10. Optimization Of Activated Carbon Preparation From Spent Mushroom Farming Waste (SMFW) Via Box- Behnken Design Of Response Surface Methodology

    International Nuclear Information System (INIS)

    Nurul Shuhada Md Desa; Zaidi Ab Ghani; Suhaimi Abdul-Talib; Chia-Chay, T.

    2016-01-01

    This study focuses on activated carbon preparation from spent mushroom farming waste (SMFW) via chemical activation using Box-Behnken design (BBD) of Response Surface Methodology (RSM). Potassium hydroxide (KOH) functions as activating reagent and it play an important role in enhancing the activated carbon porosity. Three input parameters and two responses were evaluated via this software generated experimental design. The effects of three preparation parameters of impregnation ratio, activation time and activation temperature as well as two responses of carbon yield and iodine number were investigated. The optimum conditions for preparing activated carbon from SMFW was found at SMFW: KOH impregnation ratio of 0.25, activation time of 30 min and activation temperature of 400 degree Celsius which resulted in 28.23 % of carbon yield and 314.14 mg/ g of iodine number with desirability of 0.994. The predicted results were well corresponded with experimental results. This study is important in economical large scale SMFW activated carbon preparation for application study of adsorption process for metal treatment in wastewater with minimum chemical and energy input. (author)

  11. Optimization of reaction parameters of radiation induced grafting of 1-vinylimidazole onto poly(ethylene-co-tetraflouroethene) using response surface method

    Energy Technology Data Exchange (ETDEWEB)

    Nasef, Mohamed Mahmoud, E-mail: mahmoudeithar@fkkksa.utm.my [Institute of Hydrogen Economy, International Campus, Universiti Teknologi Malaysia, 54100 Kuala Lumpur (Malaysia); Aly, Amgad Ahmed; Saidi, Hamdani; Ahmad, Arshad [Institute of Hydrogen Economy, International Campus, Universiti Teknologi Malaysia, 54100 Kuala Lumpur (Malaysia)

    2011-11-15

    Radiation induced grafting of 1-vinylimidazole (1-VIm) onto poly(ethylene-co-tetraflouroethene) (ETFE) was investigated. The grafting parameters such as absorbed dose, monomer concentration, grafting time and temperature were optimized using response surface method (RSM). The Box-Behnken module available in the design expert software was used to investigate the effect of reaction conditions (independent parameters) varied in four levels on the degree of grafting (G%) (response parameter). The model yielded a polynomial equation that relates the linear, quadratic and interaction effects of the independent parameters to the response parameter. The analysis of variance (ANOVA) was used to evaluate the results of the model and detect the significant values for the independent parameters. The optimum parameters to achieve a maximum G% were found to be monomer concentration of 55 vol%, absorbed dose of 100 kGy, time in the range of 14-20 h and a temperature of 61 {sup o}C. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to investigate the properties of the obtained films and provide evidence for grafting. - Highlights: > A precursor for phosphoric acid membrane for a high temperature PEM fuel cell was prepared. > The grafting parameters for radiation induced grafting of 1-VIm onto ETFE film were optimized. > Surface response method was used to predict the degree of grafting. > The predicted value agreed well with the experimental data as indicated by a 3% deviation. > The number of the experiments and cost of radiation induced grafting were reduced.

  12. Mathematical Modelling and Optimization of Cutting Force, Tool Wear and Surface Roughness by Using Artificial Neural Network and Response Surface Methodology in Milling of Ti-6242S

    Directory of Open Access Journals (Sweden)

    Erol Kilickap

    2017-10-01

    Full Text Available In this paper, an experimental study was conducted to determine the effect of different cutting parameters such as cutting speed, feed rate, and depth of cut on cutting force, surface roughness, and tool wear in the milling of Ti-6242S alloy using the cemented carbide (WC end mills with a 10 mm diameter. Data obtained from experiments were defined both Artificial Neural Network (ANN and Response Surface Methodology (RSM. ANN trained network using Levenberg-Marquardt (LM and weights were trained. On the other hand, the mathematical models in RSM were created applying Box Behnken design. Values obtained from the ANN and the RSM was found to be very close to the data obtained from experimental studies. The lowest cutting force and surface roughness were obtained at high cutting speeds and low feed rate and depth of cut. The minimum tool wear was obtained at low cutting speed, feed rate, and depth of cut.

  13. Extraction optimization by response surface methodology: Purification and characterization of phytosterol from sugarcane (Saccharum officinarum L.) rind.

    Science.gov (United States)

    Feng, Simin; Luo, Zisheng; Zhong, Zhou; Jiang, Lei; Tang, Kaichen

    2014-06-01

    A green, simple, and effective method for the extraction of sugarcane lipids from sugarcane rind was investigated by response surface methodology. The optimum conditions of technological progress obtained through response surface methodology were as follows: liquid-to-solid ratio 7.94: 1 mL/g, extraction temperature 50°C and extraction time 5.98 h. The practical sugarcane lipids extraction yield was 6.55 ± 0.28%, which was in good consistence with the predicted extraction yield of 6.47%. The results showed that the sugarcane lipids extraction yield obtained in optimum conditions increased by 1.16∼7.28-fold compared to the yields obtained in single-factor experiments. After saponification and SPE steps, the nonsaponifiable fraction of sugarcane lipids was analyzed by gas chromatography with mass spectrometry and high-performance liquid chromatography. β-Sitosterol, stigmasterol, and campesterol were the prevailing phytosterols in the sample, while fucosterol, gramisterol, stigmast-7-en-3-ol, (3β,5α,24S)-, stigmasta-4,6,22-trien-3α-ol, and cholest-8(14)-en-3β-ol acetate were also identified as minor steroids. Furthermore, the content of β-sitosterol and a mixture of campesterol and stigmasterol (quantified by high-performance liquid chromatography) was 44.18 mg/100 g dry weight and 43.20 mg stigmasterol/100 g dry weight, respectively. Our results indicate that sugarcane rind is a good source of phytosterol. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Formulation and optimization of a novel oral fast dissolving film containing drug nanoparticles by Box-Behnken design-response surface methodology.

    Science.gov (United States)

    Shen, Chengying; Shen, Baode; Xu, He; Bai, Jinxia; Dai, Ling; Lv, Qingyuan; Han, Jin; Yuan, Hailong

    2014-05-01

    The purpose of this study was to design and optimize a novel drug nanoparticles-loaded oral fast dissolving film (NP-OFDF) using Box-Behnken design-response surface methodology. Drug nanosuspensions produced from high pressure homogenization were transformed into oral fast dissolving film containing drug nanoparticles by casting methods. Herpetrione (HPE), a novel and potent antiviral agent with poor water solubility that was extracted from Herpetospermum caudigerum, was studied as the model drug. The formulations of oral fast dissolving film containing HPE nanoparticles (HPE-NP-OFDF) were optimized by employing Box-Behnken design-response surface methodology and then systematically characterized. The optimized HPE-NP-OFDF was disintegrated in water within 20 s with reconstituted nanosuspensions particle size of 299.31 nm. Scanning electron microscopy (SEM) images showed that well-dispersed HPE nanoparticles with slight adhesion to each other were exposed on the surface of film or embedded in film. The X-ray diffractogram (XRD) analysis suggested that HPE in the HPE-NP-OFDF was in the amorphous state. In-vitro release study, approximate 77.23% of HPE was released from the HPE-NP-OFDF within 5 min, which was more than eight times compared with that of HPE raw materials (9.57%). The optimized HPE-NP-OFDF exhibits much faster drug release rates compared to HPE raw material, which indicated that this novel NP-OFDF may provide a potential opportunity for oral delivery of drugs with poor water solubility.

  15. Multi-Optimization of Ultrasonic-Assisted Enzymatic Extraction of Atratylodes macrocephala Polysaccharides and Antioxidants Using Response Surface Methodology and Desirability Function Approach.

    Science.gov (United States)

    Pu, Jin-Bao; Xia, Bo-Hou; Hu, Yi-Juan; Zhang, Hong-Jian; Chen, Jing; Zhou, Jie; Liang, Wei-Qing; Xu, Pan

    2015-12-11

    Rhizoma Atractylodes macrocephala polysaccharides (RAMP) have been reported to have a variety of important biological activities. In this study, an ultrasonic-assisted enzymatic extraction (UAEE) was employed to obtain the highest extraction yield and strongest antioxidant activity of RAMP and optimized by a multi-response optimization process. A three-level four-factor Box-Behnken design (BBD) was performed as response surface methodology (RSM) with desirability function (DF) to attain the optimal extraction parameters. The DPPH scavenging percentage was used to represent the antioxidant ability of RAMP. The maximum D value (0.328), along with the maximum yield (59.92%) and DPPH scavenging percentage (13.28%) were achieved at 90.54 min, 57.99 °C, 1.95% cellulase and 225.29 W. These values were further validated and found to be in good agreement with the predicted values. Compared to the other extraction methods, both the yield and scavenging percentage of RAMP obtained by UAEE was favorable and the method appeared to be time-saving and of high efficiency. These results demostrated that UAEE is an appropriate and effective extraction technique. Moreover, RSM with DF approach has been proved to be adequate for the design and optimization of the extraction parameters for RAMP. This work has a wide range of implications for the design and operation of polysaccharide extraction processes.

  16. Optimization of Bacillus aerius strain JS-786 cell dry mass and its antifungal activity against Botrytis cinerea using response surface methodology

    Directory of Open Access Journals (Sweden)

    Shafi Jamil

    2017-01-01

    Full Text Available The optimization of fermentation conditions is necessary for field application of biological control agents. The present study was designed to optimize the fermentation conditions for the Bacillus aerius strain, JS-786 in terms of cell dry mass and its antifungal activity against Botrytis cinerea with response surface methodology. A strain of bacteria with strong antifungal activity was isolated from the phyllosphere of tomato plant and identified as B. aerius JS-786 based on the sequence homology of its 16S rRNA gene. After the success of preliminary antifungal activity tests, response surface methodology was used to optimize the fermentation conditions (medium pH, gelatin percentage, incubation period, rotatory speed and incubation temperature to maximize the cell dry mass and antifungal activity against B. cinerea. A 25 factorial central composite design was employed and multiple response optimization was used to determine the desirability of the operation. The results of regression analysis showed that at the individual level, all of the experimental parameters were significant for cell dry mass; significant results were obtained for antifungal activity pH, incubation period, rotatory speed and incubation temperature. The interactive effect of the incubation period, rotatory speed and incubation temperature was significant. Maximum cell dry mass (8.7 g/L and inhibition zone (30.4 mm were obtained at pH 6.4, gelatin 3.2%, incubation period 36.92 h, rotatory speed 163 rpm, and temperature 33.5°C. This study should help to formulate a more rational and cost-effective biological product both in terms of bacterial growth and antifungal activity.

  17. Application of response surface methodology to optimize pressurized liquid extraction of antioxidant compounds from sage (Salvia officinalis L.), basil (Ocimum basilicum L.) and thyme (Thymus vulgaris L.).

    Science.gov (United States)

    Hossain, M B; Brunton, N P; Martin-Diana, A B; Barry-Ryan, C

    2010-12-01

    The present study optimized pressurized liquid extraction (PLE) conditions using Dionex ASE® 200, USA to maximize the antioxidant activity [Ferric ion Reducing Antioxidant Power (FRAP)] and total polyphenol content (TP) of the extracts from three spices of Lamiaceae family (sage, basil and thyme). Optimal conditions with regard to extraction temperature (66-129 °C) and solvent concentration (32-88% methanol) were identified using response surface methodology (RSM). For all three spices, results showed that 129 °C was the optimum temperature with regard to antioxidant activity. Optimal methanol concentrations with respect to the antioxidant activity of sage and basil extracts were 58% and 60% respectively. Thyme showed a different trend with regard to methanol concentration and was optimally extracted at 33%. Antioxidant activity yields of the optimal PLE were significantly (p < 0.05) higher than solid/liquid extracts. Predicted models were highly significant (p < 0.05) for both total phenol (TP) and FRAP values in all the spices with high regression coefficients (R(2)) ranging from 0.651 to 0.999.

  18. Optimization of Extraction Process for Antidiabetic and Antioxidant Activities of Kursi Wufarikun Ziyabit Using Response Surface Methodology and Quantitative Analysis of Main Components.

    Science.gov (United States)

    Edirs, Salamet; Turak, Ablajan; Numonov, Sodik; Xin, Xuelei; Aisa, Haji Akber

    2017-01-01

    By using extraction yield, total polyphenolic content, antidiabetic activities (PTP-1B and α -glycosidase), and antioxidant activity (ABTS and DPPH) as indicated markers, the extraction conditions of the prescription Kursi Wufarikun Ziyabit (KWZ) were optimized by response surface methodology (RSM). Independent variables were ethanol concentration, extraction temperature, solid-to-solvent ratio, and extraction time. The result of RSM analysis showed that the four variables investigated have a significant effect ( p analysis of effective part of KWZ was characterized via UPLC method, 12 main components were identified by standard compounds, and all of them have shown good regression within the test ranges and the total content of them was 11.18%.

  19. Optimizing culture conditions for production of intra and extracellular inulinase and invertase from Aspergillus niger ATCC 20611 by response surface methodology (RSM).

    Science.gov (United States)

    Dinarvand, Mojdeh; Rezaee, Malahat; Foroughi, Majid

    The aim of this study was obtain a model that maximizes growth and production of inulinase and invertase by Aspergillus niger ATCC 20611, employing response surface methodology (RSM). The RSM with a five-variable and three-level central composite design (CCD) was employed to optimize the medium composition. Results showed that the experimental data could be appropriately fitted into a second-order polynomial model with a coefficient of determination (R 2 ) more than 0.90 for all responses. This model adequately explained the data variation and represented the actual relationships between the parameters and responses. The pH and temperature value of the cultivation medium were the most significant variables and the effects of inoculum size and agitation speed were slightly lower. The intra-extracellular inulinase, invertase production and biomass content increased 10-32 fold in the optimized medium condition (pH 6.5, temperature 30°C, 6% (v/v), inoculum size and 150rpm agitation speed) by RSM compared with medium optimized through the one-factor-at-a-time method. The process development and intensification for simultaneous production of intra-extracellular inulinase (exo and endo inulinase) and invertase from A. niger could be used for industrial applications. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  20. Optimization of the photoelectrocatalytic oxidation of landfill leachate using copper and nitrate co-doped TiO2 (Ti by response surface methodology.

    Directory of Open Access Journals (Sweden)

    Xiao Zhou

    Full Text Available In this paper, a statistically-based experimental design with response surface methodology (RSM was employed to examine the effects of functional conditions on the photoelectrocatalytic oxidation of landfill leachate using a Cu/N co-doped TiO2 (Ti electrode. The experimental design method was applied to response surface modeling and the optimization of the operational parameters of the photoelectro-catalytic degradation of landfill leachate using TiO2 as a photo-anode. The variables considered were the initial chemical oxygen demand (COD concentration, pH and the potential bias. Two dependent parameters were either directly measured or calculated as responses: chemical oxygen demand (COD removal and total organic carbon (TOC removal. The results of this investigation reveal that the optimum conditions are an initial pH of 10.0, 4377.98mgL-1 initial COD concentration and 25.0 V of potential bias. The model predictions and the test data were in satisfactory agreement. COD and TOC removals of 67% and 82.5%, respectively, were demonstrated. Under the optimal conditions, GC/MS showed 73 organic micro-pollutants in the raw landfill leachate which included hydrocarbons, aromatic compounds and esters. After the landfill leachate treatment processes, 38 organic micro-pollutants disappeared completely in the photoelectrocatalytic process.

  1. Optimization of the production conditions of the lipase produced by Bacillus cereus from rice flour through Plackett-Burman Design (PBD) and response surface methodology (RSM).

    Science.gov (United States)

    Vasiee, Alireza; Behbahani, Behrooz Alizadeh; Yazdi, Farideh Tabatabaei; Moradi, Samira

    2016-12-01

    In this study, the screening of lipase positive bacteria from rice flour was carried out by Rhodamin B agar plate method. Bacillus cereus was identified by 16S rDNA method. Screening of the appropriate variables and optimization of the lipase production was performed using Plackett-Burman design (PBD) and response surface methodology (RSM). Among the isolated bacteria, an aerobic Bacillus cereus strain was recognized as the best lipase-producing bacteria (177.3 ± 20 U/ml). Given the results, the optimal enzyme production conditions were achieved with coriander seed extract (CSE)/yeast extract ratio of 16.9 w/w, olive oil (OO) and MgCl 2 concentration of 2.37 g/L and 24.23 mM, respectively. In these conditions, the lipase activity (LA) was predicted 343 U/mL that was approximately close to the predicted value (324 U/mL), which was increased 1.83 fold LA compared with the non-optimized lipase. The kinetic parameters of V max and K m for the lipase were measured 0.367 μM/min.mL and 5.3 mM, respectively. The lipase producing Bacillus cereus was isolated and RSM was used for the optimization of enzyme production. The CSE/yeast extract ratio of 16.9 w/w, OO concentration of 2.37 g/L and MgCl 2 concentration of 24.23 mM, were found to be the optimal conditions of the enzyme production process. LA at optimal enzyme production conditions was observed 1.83 times more than the non-optimal conditions. Ultimately, it can be concluded that the isolated B. cereus from rice flour is a proper source of lipase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Optimization of dye extraction from Cordyline fruticosa via response surface methodology to produce a natural sensitizer for dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Mahmoud A.M. Al-Alwani

    Full Text Available In the present work, the application of response surface methodology (RSM for the optimization of process parameters in the chlorophyll extraction from Cordyline fruticosa leaves was performed. The absorbance of the extract obtained from the extraction process under different conditions was estimated using the D-optimal design in RSM. Three different process parameters such as the nature of organic solvent based on their boiling point (ethanol, methanol, and acetonitrile, pH (4–8 and extraction temperature (50–90 °C were optimized for chlorophyll extraction. The effects of these parameters on the absorbance or concentration of the extract were evaluated using ANOVA results of quadratic polynomial regression. The results showed a high R2 and adjusted R2 correlation coefficients of 0.9963 and 0.9921 respectively. Moreover, the analysis of the final quadric model based on the design experiments indicated an optimal extraction condition of pH of 7.99, extraction temperature of 78.33 °C, and a solvent boiling point, 78 °C. The predicted absorbance was 1.006, which is in good agreement with the experimentally obtained result of 1.04 at 665 nm wavelength. The application of pigment obtained under the optimal condition was further evaluated as a sensitizer for the dye sensitized solar cells. Maximum solar conversion efficiency (η of 0.5% was achieved for the C. fruticosa leaf extract obtained under the optimum extraction conditions. Furthermore, the exposure of the leaf pigment to 100 mW/cm2 simulated sunlight yielded a short circuit photocurrent density (Isc of 1.3 mA, open circuit voltage (Voc of 616 mV, and a fill factor (ff of 60.16%. Keywords: Optimization, Cordyline fruticosa, Chlorophyll, Process variables, D-optimal design, Solar cells

  3. Optimization of Aqueous Extraction from Kalanchoe pinnata Leaves to Obtain the Highest Content of an Anti-inflammatory Flavonoid using a Response Surface Model.

    Science.gov (United States)

    Dos Santos Nascimento, Luana Beatriz; de Aguiar, Paula Fernandes; Leal-Costa, Marcos Vinicius; Coutinho, Marcela Araújo Soares; Borsodi, Maria Paula Gonçalves; Rossi-Bergmann, Bartira; Tavares, Eliana Schwartz; Costa, Sônia Soares

    2018-05-01

    The medicinal plant Kalanchoe pinnata is a phenolic-rich species used worldwide. The reports on its pharmacological uses have increased by 70% in the last 10 years. The leaves of this plant are the main source of an unusual quercetin-diglycosyl flavonoid (QAR, quercetin arabinopyranosyl rhamnopyranoside), which can be easily extracted using water. QAR possess a strong in vivo anti-inflammatory activity. To optimize the aqueous extraction of QAR from K. pinnata leaves using a three-level full factorial design. After a previous screening design, time (x 1 ) and temperature (x 2 ) were chosen as the two independent variables for optimization. Freeze-dried leaves were extracted with water (20% w/v), at 30°C, 40°C or 50°C for 5, 18 or 30 min. QAR content (determined by HPLC-DAD) and yield of extracts were analyzed. The optimized extracts were also evaluated for cytotoxicity. The optimal heating times for extract yield and QAR content were similar in two-dimensional (2D) surface responses (between 12.8 and 30 min), but their optimal extraction temperatures were ranged between 40°C and 50°C for QAR content and 30°C and 38°C for extract yield. A compromise region for both parameters was at the mean points that were 40°C for the extraction temperature and 18 min for the total time. The optimized process is faster and spends less energy than the previous one (water; 30 min at 55°C); therefore is greener and more attractive for industrial purposes. This is the first report of extraction optimization of this bioactive flavonoid. Copyright © 2018 John Wiley & Sons, Ltd. Copyright © 2018 John Wiley & Sons, Ltd.

  4. Optimization of ultrasonic-assisted extraction of total carotenoids from peach palm fruit (Bactris gasipaes) by-products with sunflower oil using response surface methodology.

    Science.gov (United States)

    Ordóñez-Santos, Luis Eduardo; Pinzón-Zarate, Lina Ximena; González-Salcedo, Luis Octavio

    2015-11-01

    The present study reports on the extraction of total carotenoids from peach palm fruit by-products with sunflower oil. Response surface methodology (RSM) was used to investigate the effect of process variables on the ultrasound-assisted extraction (UAE). Three independent variables including ultrasonic intensity (764-1528, W/m(2)), temperature (25-45°C), and the extraction time (10-30 min). According to the results, the optimal UAE condition was obtained with an ultrasonic intensity of 1528 W/m(2), extraction temperature of 35°C and extraction time of 30 min. At these conditions, extraction maximum extraction of total carotenoids as 163.47 mg/100 g dried peel. The experimental values under optimal condition were in good consistent with the predicted values. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Process Optimization of Ultrasonic-Assisted Extraction of Arabinogalactan from Dihydroquercetin Extracted Residues by Response Surface Methodology and Evaluation of Its Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Zaizhi Liu

    2013-01-01

    Full Text Available Ultrasound was used for the extraction of larch arabinogalactan from Larix gmelinii. The optimal conditions for ultrasound extraction were determined by response surface methodology. Specifically, the Box-Behnken design was employed to evaluate the effects of three independent variables: ultrasound time, temperature, and liquid-solid ratio. The highest arabinogalactan yield (11.18% was obtained under the optimal extraction condition (extraction temperature 41.5°C, extraction time 24.3 min, and liquid-solid ratio 40 mL/g. In addition, the antioxidant activity of arabinogalactan that was extracted from dihydroquercetin extraction residues exhibited a moderate and concentration-dependent hydroxyl radical-scavenging capacity, ferric-reducing power, and reducing power. The wood material was characterized before and after processing by scanning electron microscopy and Fourier-transform infrared spectroscopy.

  6. Recovery of Vanadium from Magnetite Ore Using Direct Acid Leaching: Optimization of Parameters by Plackett-Burman and Response Surface Methodologies

    Science.gov (United States)

    Nejad, Davood Ghoddocy; Khanchi, Ali Reza; Taghizadeh, Majid

    2018-06-01

    Recovery of vanadium from magnetite ore by direct acid leaching is discussed. The proposed process, which employs a mixture of nitric and sulfuric acids, avoids pyrometallurgical treatments since such treatment consumes a high amount of energy. To determine the optimum conditions of vanadium recovery, the leaching process is optimized through Plackett-Burman (P-B) design and response surface methodology (RSM). In this respect, temperature (80-95°C), liquid to solid ratio (L/S) (3-10 mL g-1), sulfuric acid concentration (3-6 M), nitric acid concentration (5-10 vol.%) and time (4-8 h) are considered as the independent variables. According to the P-B approach, temperature and acid concentrations are, respectively, the most effective parameters in the leaching process. These parameters are optimized using RSM to maximize recovery of vanadium by direct acid leaching. In this way, 86.7% of vanadium can be extracted from magnetic ore.

  7. Optimization of lipase-catalyzed biodiesel by isopropanolysis in a continuous packed-bed reactor using response surface methodology.

    Science.gov (United States)

    Chang, Cheng; Chen, Jiann-Hwa; Chang, Chieh-Ming J; Wu, Tsung-Ta; Shieh, Chwen-Jen

    2009-10-31

    Isopropanolysis reactions were performed using triglycerides with immobilized lipase in a solvent-free environment. This study modeled the degree of isopropanolysis of soybean oil in a continuous packed-bed reactor when Novozym 435 was used as the biocatalyst. Response surface methodology (RSM) and three-level-three-factor Box-Behnken design were employed to evaluate the effects of synthesis parameters, reaction temperature ( degrees C), flow rate (mL/min) and substrate molar ratio of isopropanol to soybean oil, on the percentage molar conversion of biodiesel by transesterification. The results show that flow rate and temperature have a significant effect on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions for synthesis were as follows: flow rate 0.1 mL/min, temperature 51.5 degrees C and substrate molar ratio 1:4.14. The predicted value was 76.62+/-1.52% and actual experimental value was 75.62+/-0.81% molar conversion. Moreover, continuous enzymatic process for seven days did not show any appreciable decrease in the percent of molar conversion (75%). This work demonstrates the applicability of lipase catalysis to prepare isopropyl esters by transesterification in solvent-free system with a continuous packed-bed reactor for industrial production.

  8. Optimization of binder addition and particle size for densification of coffee husks briquettes using response surface methodology

    Science.gov (United States)

    Raudah; Zulkifli

    2018-03-01

    The present research focuses on establishing the optimum conditions in converting coffee husk into a densified biomass fuel using starch as a binding agent. A Response Surface Methodology (RSM) approach using Box-Behnken experimental design with three levels (-1, 0, and +1) was employed to obtain the optimum level for each parameter. The briquettes wereproduced by compressing the mixture of coffee husk-starch in a piston and die assembly with the pressure of 2000 psi. Furthermore, starch percentage, pyrolysis time, and particle size were the input parameters for the algorithm. Bomb calorimeter was used to determine the heating value (HHV) of the solid fuel. The result of the study indicated that a combination of 34.71 mesh particle size, 110.93 min pyrolysis time, and 8% starch concentration werethe optimum variables.The HHV and density of the fuel were up to 5644.66 calgr-1 and 0.7069 grcm-3,respectively. The study showed that further research should be conducted to improve the briquette density therefore the coffee husk could be convert into commercialsolid fuel to replace the dependent on fossil fuel.

  9. Optimization of ultrasonic-assisted extraction of phenolic antioxidants from Malus baccata (Linn.) Borkh. using response surface methodology.

    Science.gov (United States)

    Wang, Lu; Wang, Zhenyu; Li, Xiaoyu

    2013-05-01

    In this study, the optimum extraction conditions for maximum recovery of the content of total phenolics (TPC) and total antioxidant abilities were analyzed for Malus baccata (Linn.) Borkh. using response surface methodology. The effects of ethanol percentage (X1 ,%), ultrasonic power (X2 , W) and extraction temperature (X3 , °C) on the total phenolic content (Y1 ) and antioxidant ability (Y2 ) were evaluated. A second-order polynomial model produced a satisfactory fitting of the experimental data with regard to total phenolic content (R(2) = 0.9942, P antioxidant ability (R(2) = 0.9966, P extraction temperature of 51.1°C for TPC and 60.5%, 311.4 W, 51.6°C for antioxidant ability, the predicted values agreed well with the experimental values. Results implied that the major phenolic compounds in obtained extracts as chlorogenic acid, quercetin-3-gal/glu, quercetin-3-xyl/ara, phloretin-2-xyloside, quercetin-3- rhamnoside, and phloridzin. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Optimization of microwave-assisted extraction for anthocyanins, polyphenols, and antioxidants from raspberry (Rubus Coreanus Miq.) using response surface methodology.

    Science.gov (United States)

    Teng, Hui; Lee, Won Young; Choi, Yong Hee

    2013-09-01

    Anthocyanins (Acys), polyphenols, and antioxidants were extracted from raspberry (Rubus Coreanus Miq.) using a highly efficient microwave-assisted extraction technique. Different solvents, including methanol, ethanol, and acetone, were tested. The colors of the extracts varied from light yellow to purple red or dark red. SEM and other nutrient analyses verified that ethanol was the most favorable medium for the microwave-assisted extraction of raspberry due to its high output and low toxicity. Effects of process parameters, including microwave power, irradiation time, and solvent concentration, were investigated through response surface methodology. Canonical analysis estimated that the highest total Acys content, total polyphenols content, and antioxidant activity of raspberry were 17.93 mg cyanidin-3-O-glucoside equivalents per gram dry weight, 38.57 mg gallic acid equivalents per gram dry weight, and 81.24%, respectively. The polyphenol compositions of raspberry extract were identified by HPLC with diode array detection, and nine kinds of polyphenols were identified and quantified, revealing that chlorogenic acid, syringic acid, and rutin are the major polyphenols contained in raspberry fruits. Compared with other fruits and vegetables, raspberry contains higher Acy and polyphenol contents with stronger antioxidant activity, suggesting that raspberry fruits are a good source of natural food colorants and antioxidants. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Optimization of ultrasound-assisted extraction of colchicine compound from Colchicum haussknechtii by using response surface methodology

    Directory of Open Access Journals (Sweden)

    Saeid Khodadoust

    2017-04-01

    Full Text Available In this research an ultrasound-assisted extraction (UAE method was used for extraction of colchicine in root of Colchicum haussknechtii prior to high-performance liquid chromatography with UV detection. C. haussknechtii is used widely in traditional medicine for the treatment of various diseases. The root of this plant is full of colchicine that is suitable for the treatment of gout and cirrhosis and applicable in plant breeding studies to produce polyploidy. The influence of variables on the extraction method was investigated by response surface methodology (RSM and composite design (CCD to achieve maximum extraction yield of colchicine from the root of C. haussknechtii. The most suitable condition for the extraction of colchicine was found to at 40 °C temperature, 32 min extraction time, and 70:30 v/v ethanol–water mixtures with 45:1 solvent-solid ratio. Obtained results showed that there is 1.2% colchicine in the root of C. haussknechtii, so this plant could be introduced as a rich source of colchicine.

  12. Optimization of process condition for the preparation of amine-impregnated activated carbon developed for CO2 capture and applied to methylene blue adsorption by response surface methodology.

    Science.gov (United States)

    Das, Dipa; Meikap, Bhim C

    2017-10-15

    The present research describes the optimal adsorption condition for methylene blue (MB). The adsorbent used here was monoethanol amine-impregnated activated carbon (MEA-AC) prepared from green coconut shell. Response surface methodology (RSM) is the multivariate statistical technique used for the optimization of the process variables. The central composite design is used to determine the effect of activation temperature, activation time and impregnation ratio on the MB removal. The percentage (%) MB adsorption by MEA-AC is evaluated as a response of the system. A quadratic model was developed for response. From the analysis of variance, the factor which was the most influential on the experimental design response has been identified. The optimum condition for the preparation of MEA-AC from green coconut shells is the temperature of activation 545.6°C, activation time of 41.64 min and impregnation ratio of 0.33 to achieve the maximum removal efficiency of 98.21%. At the same optimum parameter, the % MB removal from the textile-effluent industry was examined and found to be 96.44%.

  13. Application of the Response Surface Methodology to Optimize the Fermentation Parameters for Enhanced Docosahexaenoic Acid (DHA) Production by Thraustochytrium sp. ATCC 26185.

    Science.gov (United States)

    Wu, Kang; Ding, Lijian; Zhu, Peng; Li, Shuang; He, Shan

    2018-04-22

    The aim of this study was to determine the cumulative effect of fermentation parameters and enhance the production of docosahexaenoic acid (DHA) by Thraustochytrium sp. ATCC 26185 using response surface methodology (RSM). Among the eight variables screened for effects of fermentation parameters on DHA production by Plackett-Burman design (PBD), the initial pH, inoculum volume, and fermentation volume were found to be most significant. The Box-Behnken design was applied to derive a statistical model for optimizing these three fermentation parameters for DHA production. The optimal parameters for maximum DHA production were initial pH: 6.89, inoculum volume: 4.16%, and fermentation volume: 140.47 mL, respectively. The maximum yield of DHA production was 1.68 g/L, which was in agreement with predicted values. An increase in DHA production was achieved by optimizing the initial pH, fermentation, and inoculum volume parameters. This optimization strategy led to a significant increase in the amount of DHA produced, from 1.16 g/L to 1.68 g/L. Thraustochytrium sp. ATCC 26185 is a promising resource for microbial DHA production due to the high-level yield of DHA that it produces, and the capacity for large-scale fermentation of this organism.

  14. Utilization of tannery fleshings: Optimization of conditions for fermenting delimed tannery fleshings using Enterococcus faecium HAB01 by response surface methodology.

    Science.gov (United States)

    Kumar Rai, Amit; General, Thiyam; Bhaskar, N; Suresh, P V; Sakhare, P Z; Halami, P M; Gowda, Lalitha R; Mahendrakar, N S

    2010-03-01

    Conditions for fermentation of delimed tannery fleshings--to obtain higher degree of protein hydrolysis and reasonably better antioxidant activity--using Enterococcus faecium HAB01 (GenBank #FJ418568) were optimized. Three independent variables--viz., inoculum level (X1), glucose level (X2) and fermentation time (X3)--were optimized using response surface method considering degree of hydrolysis (DH; %) and total titrable acidity (TTA) as response variables. The optimized conditions were found to be 12.5% (v/w) inoculum, 17.5% (w/w) glucose and 96h of fermentation at 37+/-1 degrees C to obtain a maximum DH%. The usefulness of the predicted model was further validated by considering random combinations of the independent factors. The chemical score of the hydrolysate revealed an excess amount of essential amino acids, viz., arginine and leucine compared to reference protein. The liquor portion had relatively high antioxidant activities, indicating its potential for use as a high value feed ingredient. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  15. Computation of interactive effects and optimization of process parameters for alkaline lipase production by mutant strain of Pseudomonas aeruginosa using response surface methodology

    Directory of Open Access Journals (Sweden)

    Deepali Bisht

    2013-01-01

    Full Text Available Alkaline lipase production by mutant strain of Pseudomonas aeruginosa MTCC 10,055 was optimized in shake flask batch fermentation using response surface methodology. An empirical model was developed through Box-Behnken experimental design to describe the relationship among tested variables (pH, temperature, castor oil, starch and triton-X-100. The second-order quadratic model determined the optimum conditions as castor oil, 1.77 mL.L-1; starch, 15.0 g.L-1; triton-X-100, 0.93 mL.L-1; incubation temperature, 34.12 ºC and pH 8.1 resulting into maximum alkaline lipase production (3142.57 U.mL-1. The quadratic model was in satisfactory adjustment with the experimental data as evidenced by a high coefficient of determination (R² value (0.9987. The RSM facilitated the analysis and interpretation of experimental data to ascertain the optimum conditions of the variables for the process and recognized the contribution of individual variables to assess the response under optimal conditions. Hence Box-Behnken approach could fruitfully be applied for process optimization.

  16. Computation of interactive effects and optimization of process parameters for alkaline lipase production by mutant strain of Pseudomonas aeruginosa using response surface methodology

    Science.gov (United States)

    Bisht, Deepali; Yadav, Santosh Kumar; Darmwal, Nandan Singh

    2013-01-01

    Alkaline lipase production by mutant strain of Pseudomonas aeruginosa MTCC 10,055 was optimized in shake flask batch fermentation using response surface methodology. An empirical model was developed through Box-Behnken experimental design to describe the relationship among tested variables (pH, temperature, castor oil, starch and triton-X-100). The second-order quadratic model determined the optimum conditions as castor oil, 1.77 mL.L−1; starch, 15.0 g.L−1; triton-X-100, 0.93 mL.L−1; incubation temperature, 34.12 °C and pH 8.1 resulting into maximum alkaline lipase production (3142.57 U.mL−1). The quadratic model was in satisfactory adjustment with the experimental data as evidenced by a high coefficient of determination (R2) value (0.9987). The RSM facilitated the analysis and interpretation of experimental data to ascertain the optimum conditions of the variables for the process and recognized the contribution of individual variables to assess the response under optimal conditions. Hence Box-Behnken approach could fruitfully be applied for process optimization. PMID:24159311

  17. Optimization of Crude Oil and PAHs Degradation by Stenotrophomonas rhizophila KX082814 Strain through Response Surface Methodology Using Box-Behnken Design

    Science.gov (United States)

    Virupakshappa, Praveen Kumar Siddalingappa; Mishra, Gaurav; Mehkri, Mohammed Ameenuddin

    2016-01-01

    The present paper describes the process optimization study for crude oil degradation which is a continuation of our earlier work on hydrocarbon degradation study of the isolate Stenotrophomonas rhizophila (PM-1) with GenBank accession number KX082814. Response Surface Methodology with Box-Behnken Design was used to optimize the process wherein temperature, pH, salinity, and inoculum size (at three levels) were used as independent variables and Total Petroleum Hydrocarbon, Biological Oxygen Demand, and Chemical Oxygen Demand of crude oil and PAHs as dependent variables (response). The statistical analysis, via ANOVA, showed coefficient of determination R 2 as 0.7678 with statistically significant P value 0.0163 fitting in second-order quadratic regression model for crude oil removal. The predicted optimum parameters, namely, temperature, pH, salinity, and inoculum size, were found to be 32.5°C, 9, 12.5, and 12.5 mL, respectively. At this optimum condition, the observed and predicted PAHs and crude oil removal were found to be 71.82% and 79.53% in validation experiments, respectively. The % TPH results correlate with GC/MS studies, BOD, COD, and TPC. The validation of numerical optimization was done through GC/MS studies and % removal of crude oil. PMID:28116165

  18. Optimizing the conditions for the microwave-assisted direct liquefaction of Ulva prolifera for bio-oil production using response surface methodology

    International Nuclear Information System (INIS)

    Liu, Junhai; Zhuang, Yingbin; Li, Yan; Chen, Limei; Guo, Jingxue; Li, Demao; Ye, Naihao

    2013-01-01

    Microwave-assisted direct liquefaction (MADL) of Ulva prolifera was performed in ethylene glycol (EG) using sulfuric acid (H 2 SO 4 ) as a catalyst. Response Surface Methodology (RSM) based on central composite rotatable design (CCRD) was employed to optimize the conditions of three independent variables (catalyst content, solvent-to-feedstock ratio and temperature) for the liquefaction yield. And the bio-oil was analyzed by elementary analysis, Fourier transform infrared spectroscopic analysis (FT-IR) and gas chromatography–mass spectrometry (GC–MS). The maximum liquefaction yield was 93.17%, which was obtained under a microwave power of 600 W for 30 min at 165 °C with a solvent-to-feedstock ratio of 18.87:1 and 4.93% sulfuric acid. The bio-oil was mainly composed of phthalic acid esters, alkenes and a fatty acid methyl ester with a long chain from C 16 to C 20 . - Highlights: • Ulva prolifera was converted to bio-oil through microwave-assisted direct liquefaction. • Response surface methodology was used to optimize the liquefaction technology. • A maximum liquefaction rate of 93.17 wt% bio-oil was obtained. • The bio-oil was composed of carboxylic acids and esters

  19. Optimization of Culture Conditions for Production of the Anti-Leukemic Glutaminase Free L-Asparaginase by Newly Isolated Streptomyces olivaceus NEAE-119 Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Noura El-Ahmady El-Naggar

    2015-01-01

    Full Text Available Among the antitumor drugs, bacterial enzyme L-asparaginase has been employed as the most effective chemotherapeutic agent in pediatric oncotherapy especially for acute lymphoblastic leukemia. Glutaminase free L-asparaginase producing actinomycetes were isolated from soil samples collected from Egypt. Among them, a potential culture, strain NEAE-119, was selected and identified on the basis of morphological, cultural, physiological, and biochemical properties together with 16S rRNA sequence as Streptomyces olivaceus NEAE-119 and sequencing product (1509 bp was deposited in the GenBank database under accession number KJ200342. The optimization of different process parameters for L-asparaginase production by Streptomyces olivaceus NEAE-119 using Plackett-Burman experimental design and response surface methodology was carried out. Fifteen variables (temperature, pH, incubation time, inoculum size, inoculum age, agitation speed, dextrose, starch, L-asparagine, KNO3, yeast extract, K2HPO4, MgSO4·7H2O, NaCl, and FeSO4·7H2O were screened using Plackett-Burman experimental design. The most positive significant independent variables affecting enzyme production (temperature, inoculum age, and agitation speed were further optimized by the face-centered central composite design-response surface methodology.

  20. Optimization of process parameters for the inactivation of Lactobacillus sporogenes in tomato paste with ultrasound and {sup 60}Co-{gamma} irradiation using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Ye Shengying [College of Food Science, South China Agricultural University, Wushan, Guangzhou, GD 510640 (China)], E-mail: yesy@scau.edu.cn; Qiu Yuanxin; Song Xianliang; Luo Shucan [College of Food Science, South China Agricultural University, Wushan, Guangzhou, GD 510640 (China)

    2009-03-15

    The processing parameters for ultrasound and {sup 60}Co-{gamma} irradiation were optimized for their ability to inactivate Lactobacillus sporogenes in tomato paste using a systematic experimental design based on response surface methodology. Ultrasonic power, ultrasonic processing time and irradiation dose were explored and a central composite rotation design was adopted as the experimental plan, and a least-squares regression model was obtained. The significant influential factors for the inactivation rate of L. sporogenes were obtained from the quadratic model and the t-test analyses for each process parameter. Confirmation of the experimental results indicated that the proposed model was reasonably accurate and could be used to describe the efficacy of the treatments for inactivating L. sporogenes within the limits of the factors studied. The optimized processing parameters were found to be an ultrasonic power of 120 W with a processing time of 25 min and an irradiation dose of 6.5 kGy. These were measured under the constraints of parameter limitation, based on the Monte Carlo searching method and the quadratic model of the response surface methodology, including the a/b value of the Hunter color scale of tomato paste. Nevertheless, the ultrasound treatment prior to irradiation for the inactivation of L. sporogenes in tomato paste was unsuitable for reducing the irradiation dose.

  1. Application and optimization of electric field-assisted ultrasonication for disintegration of waste activated sludge using response surface methodology with a Box-Behnken design.

    Science.gov (United States)

    Jung, Kyung-Won; Hwang, Min-Jin; Cha, Min-Jung; Ahn, Kyu-Hong

    2015-01-01

    In the present study, an electric field is applied in order to disintegrate waste activated sludge (WAS). As a preliminary step, feasibility tests are investigated using different applied voltages of 10-100V for 60min. As the applied voltage increases, the disintegration degrees (DD) are gradually enhanced, and thereby the soluble N, P, and carbohydrate concentrations increase simultaneously due to the WAS decomposition. Subsequently, an optimization process is conducted using a response surface methodology with a Box-Behnken design (BBD). The total solid concentration, applied voltage, and reaction time are selected as independent variables, while the DD is selected as the response variable. The overall results demonstrate that the BBD with an experimental design can be used effectively in the optimization of the electric field treatment of WAS. In the confirmation test, a DD of 10.26±0.14% is recorded, which corresponds to 99.1% of the predicted response value under the statistically optimized conditions. Finally, the statistic optimization of the combined treatment (electric field+ultrasonication) demonstrated that even though this method is limited to highly disintegrated WAS when it is applied individually, a high DD of 47.28±0.20% was recorded where the TS concentration was 6780mg/l, the strength of ultrasonication was 8.0W, the applied voltage was 68.4V, and the reaction time was 44min. E-SEM images clearly revealed that the application of the electric field is a significant alternative method for the combined treatment of WAS. This study was the first attempt to increase disintegration using the electric field for a combined treatment with ultrasonication. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Application of response surface methodology in optimization of lactic acid fermentation of radish: effect of addition of salt, additives and growth stimulators.

    Science.gov (United States)

    Joshi, V K; Chauhan, Arjun; Devi, Sarita; Kumar, Vikas

    2015-08-01

    Lactic acid fermentation of radish was conducted using various additive and growth stimulators such as salt (2 %-3 %), lactose, MgSO4 + MnSO4 and Mustard (1 %, 1.5 % and 2 %) to optimize the process. Response surface methodology (Design expert, Trial version 8.0.5.2) was applied to the experimental data for the optimization of process variables in lactic acid fermentation of radish. Out of various treatments studied, only the treatments having ground mustard had an appreciable effect on lactic acid fermentation. Both linear and quadratic terms of the variables studied had a significant effect on the responses studied. The interactions between the variables were found to contribute to the response at a significant level. The best results were obtained in the treatment with 2.5 % salt, 1.5 % lactose, 1.5 % (MgSO4 + MnSO4) and 1.5 % mustard. These optimized concentrations increased titrable acidity and LAB count, but lowered pH. The second-order polynomial regression model determined that the highest titrable acidity (1.69), lowest pH (2.49) and maximum LAB count (10 × 10(8) cfu/ml) would be obtained at these concentrations of additives. Among 30 runs conducted, run 2 has got the optimum concentration of salt- 2.5 %, lactose- 1.5 %, MgSO4 + MnSO4- 1.5 % and mustard- 1.5 % for lactic acid fermentation of radish. The values for different additives and growth stimulators optimized in this study could successfully be employed for the lactic acid fermentation of radish as a postharvest reduction tool and for product development.

  3. Characterization and Optimization of the Glyoxalation of a Methanol-Fractionated Alkali Lignin using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Aikfei Ang

    2015-06-01

    Full Text Available The glyoxalation of a methanol-fractionated alkali lignin was executed at 60 °C for 8 h with different amounts of glyoxal (40% in water and 30% NaOH. The weights of the lignin and water were fixed at 10.0 and 15.0 g, respectively. The gel permeation chromatography (GPC results indicated that depolymerization of lignin molecules occurred during the glyoxalation process. However, a higher polydispersity index (Mw/Mn of all glyoxalated lignins compared to the unmodified lignin (ML showed that lignin polymers with a variety of chain lengths were generated through the crosslinking and through the repolymerization of lignin molecules via methylene (CH2 bridges and new, strong C-C bonds after the condensation reaction. This was confirmed by thermogravimetry analysis (TGA. Optimum amounts of glyoxal and NaOH to be used in the glyoxalation process were ascertained by quantifying the intensity of relative absorbance for the CH2 bands obtained from FT-IR spectra and by using response surface methodology (RSM and central composite design (CCD, which facilitated the development of a lignin with appropriate reactivity for wood adhesive formulation. The experimental values were in good agreement with the predicted ones, and the model was highly significant, with a coefficient of determination of 0.9164. The intensity of the relative absorbance for the CH2 band of 0.42 was obtained when the optimum amounts of glyoxal and NaOH, i.e., 0.222 and 0.353, respectively, were used in the glyoxalation process.

  4. Parametric and energy consumption optimization of Basic Red 2 removal by electrocoagulation/egg shell adsorption coupling using response surface methodology in a batch system.

    Science.gov (United States)

    de Carvalho, Helder Pereira; Huang, Jiguo; Zhao, Meixia; Liu, Gang; Yang, Xinyu; Dong, Lili; Liu, Xingjuan

    2016-01-01

    In this study, response surface methodology (RSM) model was applied for optimization of Basic Red 2 (BR2) removal using electrocoagulation/eggshell (ES) coupling process in a batch system. Central composite design was used to evaluate the effects and interactions of process parameters including current density, reaction time, initial pH and ES dosage on the BR2 removal efficiency and energy consumption. The analysis of variance revealed high R(2) values (≥85%) indicating that the predictions of RSM models are adequately applicable for both responses. The optimum conditions when the dye removal efficiency of 93.18% and energy consumption of 0.840 kWh/kg were observed were 11.40 mA/cm(2) current density, 5 min and 3 s reaction time, 6.5 initial pH and 10.91 g/L ES dosage.

  5. Warpage investigation on side arms using response surface methodology (RSM) and glow-worm swarm optimizations (GSO)

    Science.gov (United States)

    Sow, C. K.; Fathullah, M.; Nasir, S. M.; Shayfull, Z.; Shazzuan, S.

    2017-09-01

    This paper discusses on an analysis run via injection moulding process in determination of the optimum processing parameters used for manufacturing side arms of catheters in minimizing the warpage issues. The optimization method used was RSM. Moreover, in this research tries to find the most significant factor affecting the warpage. From the previous literature review,4 most significant parameters on warpage defect was selected. Those parameters were melt temperature, packing time, packing pressure, mould temperature and cooling time. At the beginning, side arm was drawn using software of CATIA V5. Then, software Mouldflow and Design Expert were employed to analyses on the popular warpage issues. After that, GSO artificial intelligence was apply using the mathematical model from Design Expert for more optimization on RSM result. Recommended parameter settings from the simulation work were then compared with the optimization work of RSM and GSO. The result show that the warpage on the side arm was improved by 3.27 %

  6. Medium Optimization for the Production of Fibrinolytic Enzyme by Paenibacillus sp. IND8 Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Ponnuswamy Vijayaraghavan

    2014-01-01

    Full Text Available Production of fibrinolytic enzyme by a newly isolated Paenibacillus sp. IND8 was optimized using wheat bran in solid state fermentation. A 25 full factorial design (first-order model was applied to elucidate the key factors as moisture, pH, sucrose, yeast extract, and sodium dihydrogen phosphate. Statistical analysis of the results has shown that moisture, sucrose, and sodium dihydrogen phosphate have the most significant effects on fibrinolytic enzymes production (P<0.05. Central composite design (CCD was used to determine the optimal concentrations of these three components and the experimental results were fitted with a second-order polynomial model at 95% level (P<0.05. Overall, 4.5-fold increase in fibrinolytic enzyme production was achieved in the optimized medium as compared with the unoptimized medium.

  7. Optimization of extraction parameters of PTP1β (protein tyrosine phosphatase 1β), inhibitory polyphenols, and anthocyanins from Zea mays L. using response surface methodology (RSM).

    Science.gov (United States)

    Hwang, Seung Hwan; Kwon, Shin Hwa; Wang, Zhiqiang; Kim, Tae Hyun; Kang, Young-Hee; Lee, Jae-Yong; Lim, Soon Sung

    2016-08-26

    Protein tyrosine phosphatase expressed in insulin-sensitive tissues (such as liver, muscle, and adipose tissue) has a key role in the regulation of insulin signaling and pathway activation, making protein tyrosine phosphatase a promising target for the treatment of type 2 diabetes mellitus and obesity and response surface methodology (RSM) is an effective statistical technique for optimizing complex processes using a multi-variant approach. In this study, Zea mays L. (Purple corn kernel, PCK) and its constituents were investigated for protein tyrosine phosphatase 1β (PTP1β) inhibitory activity including enzyme kinetic study and to improve total yields of anthocyanins and polyphenols, four extraction parameters, including temperature, time, solid-liquid ratio, and solvent volume, were optimized by RSM. Isolation of seven polyphenols and five anthocyanins was achieved by PTP1β assay. Among them, cyanidin-3-(6"malonylglucoside) and 3'-methoxyhirsutrin showed the highest PTP1β inhibition with IC50 values of 54.06 and 64.04 μM, respectively and 4.52 mg gallic acid equivalent/g (GAE/g) of total polyphenol content (TPC) and 43.02 mg cyanidin-3-glucoside equivalent/100 g (C3GE/100g) of total anthocyanin content (TAC) were extracted at 40 °C for 8 h with a 33 % solid-liquid ratio and a 1:15 solvent volume. Yields were similar to predictions of 4.58 mg GAE/g of TPC and 42.28 mg C3GE/100 g of TAC. These results indicated that PCK and 3'-methoxyhirsutrin and cyanidin-3-(6"malonylglucoside) might be active natural compounds and could be apply by optimizing of extraction process using response surface methodology.

  8. Response surface methodology for the optimization of lanthanum removal from an aqueous solution using a Fe{sub 3}O{sub 4}/chitosan nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Haldorai, Yuvaraj [Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul (Korea, Republic of); Rengaraj, Arunkumar [Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon 402-751 (Korea, Republic of); Ryu, Taegong; Shin, Junho [Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Huh, Yun Suk, E-mail: yunsuk.huh0311@gmail.com [Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon 402-751 (Korea, Republic of); Han, Young-Kyu, E-mail: ykenergy@dongguk.edu [Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul (Korea, Republic of)

    2015-05-15

    Highlights: • Magnetite/chitosan composite for lanthanum removal. • Response surface methodology was used for optimization. • A 99.88% removal of La{sup 3+} was observed at 40 °C, pH 11, and 50 min. • Adsorption process was significantly affected by pH and adsorbent dosage. • Biocompatible, eco-friendly and a low-cost adsorbent. - Abstract: In the present work, magnetite nanoparticles/chitosan composites (Fe{sub 3}O{sub 4}/CS) were prepared by a chemical precipitation method. We demonstrated the efficient removal of a rare earth metal, lanthanum (La{sup 3+}), from an aqueous solution using the composite. The removal of La{sup 3+} was optimized by using response surface methodology. Analysis of variance and Fisher's F-test were used to determine the reaction parameters which affect the removal of La{sup 3+}. Optimal conditions, including adsorbent dosage, pH, temperature, and contact time for the removal of La{sup 3+}, were found to be 6.5 mg, pH 11, 40 °C, and 50 min, respectively. The adsorption capacity was 99.88%. The rate of La{sup 3+} adsorption was significantly affected by the solution pH and adsorbent amount. An adsorption isotherm was fitted well by the Freundlich model with a linear regression correlation value of 0.9975. The adsorption of La{sup 3+} using the composite followed pseudo second-order kinetics. Thermodynamic studies have revealed that the negative values of Gibbs free energy confirmed the spontaneous and feasible nature of adsorption.

  9. Extraction Optimization of Water-Extracted Mycelial Polysaccharide from Endophytic Fungus Fusarium oxysporum Dzf17 by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Ligang Zhou

    2012-05-01

    Full Text Available Water-extracted mycelial polysaccharide (WPS from the endophytic fungus Fusarium oxysporum Dzf17 isolated from Dioscorea zingiberensis was found to be an efficient elicitor to enhance diosgenin accumulation in D. zingigerensis cultures, and also demonstrated antioxidant activity. In this study, response surface methodology (RSM was employed to optimize the extraction process of WPS from F. oxysporum Dzf17 using Box-Behnken design (BBD. The ranges of the factors investigated were 1–3 h for extraction time (X1, 80–100 °C for extraction temperature (X2, and 20–40 (v/w for ratio of water volume (mL to raw material weight (g (X3. The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis. Statistical analysis showed that the polynomial regression model was in good agreement with the experimental results with the determination coefficient (R2 of 0.9978. By solving the regression equation and analyzing the response surface contour plots, the extraction parameters were optimized as 1.7 h for extraction time, 95 °C for extraction temperature, 39 (v/w for ratio of water volume (mL to raw material weight (g, and with 2 extractions. The maximum value (10.862% of WPS yield was obtained when the WPS extraction process was conducted under the optimal conditions.

  10. Response surface methodology (RSM) based multi-objective optimization of fusel oil -gasoline blends at different water content in SI engine

    International Nuclear Information System (INIS)

    Awad, Omar I.; Mamat, R.; Ali, Obed M.; Azmi, W.H.; Kadirgama, K.; Yusri, I.M.; Leman, A.M.; Yusaf, T.

    2017-01-01

    Highlights: • The optimal ratio ratio of fusel oil–gasoline blended fuels is proposed. • The water content of fusel oil was reduced from 13.5% to 6.5%. • The heating value of fusel oil was improved by 13%. • FAWE 20 fuels were found to be optimal values with a high desirability of 0.707. • RSM was applied to optimize the engine performance and exhaust emissions. - Abstract: The main objective of this study is to determine the optimal blend ratio of fusel oil–gasoline before and after water extraction (FBWE10, FBWE20, FAWE10, and FAWE20) regarding the performance and emissions of spark ignition engine using response surface methodology (RSM). The multi-objective optimization is applied to maximize the brake power, brake thermal efficiency and minimize the brake specific fuel consumption (BSFC), NOx emission, HC emission and CO emission. The water content of fusel oil has been extracted by employing rotary extractor method. The experimental of this study has been carried out with different fusel oil–gasoline blends, different throttle valve opening position (15%, 30%, 45% and 60%) and different engine speed (1500, 2500, 3500 and 4500 rpm). All the developed models for responses were determined to be statistically significant at 95% confidence level. The study results reveal an improvement in heating value of fusel oil after water extraction with FAWE20 (80 vol% gasoline fuel, 20 vol% fusel oil after water extracted) as the optimally blended fuel. The best condition of engine parameters with FAWE20 were 55.4% of WOT for load and 4499 rpm engine speed. In additional of the optimal values with a high desirability of 0.707 were 62.511 kW, 241.139 g/kW h, 36%, 1895.913 ppm140.829 ppm and % for brake power, BSFC, BTE, NO x , HC and CO emissions respectively. The reduction of water content in fusel oil has a statistical significance influence to increases BTE, NO x emission and decreases the BSFC, HC and CO emissions.

  11. Generalized Response Surface Methodology : A New Metaheuristic

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2006-01-01

    Generalized Response Surface Methodology (GRSM) is a novel general-purpose metaheuristic based on Box and Wilson.s Response Surface Methodology (RSM).Both GRSM and RSM estimate local gradients to search for the optimal solution.These gradients use local first-order polynomials.GRSM, however, uses

  12. Preparation of oil palm empty fruit bunch-based activated carbon for removal of 2,4,6-trichlorophenol: Optimization using response surface methodology

    International Nuclear Information System (INIS)

    Hameed, B.H.; Tan, I.A.W.; Ahmad, A.L.

    2009-01-01

    The effects of three preparation variables: CO 2 activation temperature, CO 2 activation time and KOH:char impregnation ratio (IR) on the 2,4,6-trichlorophenol (2,4,6-TCP) uptake and carbon yield of the activated carbon prepared from oil palm empty fruit bunch (EFB) were investigated. Based on the central composite design, two quadratic models were developed to correlate the three preparation variables to the two responses. The activated carbon preparation conditions were optimized using response surface methodology by maximizing both the 2,4,6-TCP uptake and activated carbon yield within the ranges studied. The optimum conditions for preparing activated carbon from EFB for adsorption of 2,4,6-TCP were found as follows: CO 2 activation temperature of 814 deg. C, CO 2 activation time of 1.9 h and IR of 2.8, which resulted in 168.89 mg/g of 2,4,6-TCP uptake and 17.96% of activated carbon yield. The experimental results obtained agreed satisfactorily with the model predictions. The activated carbon prepared under optimum conditions was mesoporous with BET surface area of 1141 m 2 /g, total pore volume of 0.6 cm 3 /g and average pore diameter of 2.5 nm. The surface morphology and functional groups of the activated carbon were respectively determined from the scanning electron microscopy and Fourier transform infrared analysis.

  13. Plant Phenolics Extraction from Flos Chrysanthemi: Response Surface Methodology Based Optimization and the Correlation Between Extracts and Free Radical Scavenging Activity.

    Science.gov (United States)

    Wu, Yanfang; Wang, Xinsheng; Xue, Jintao; Fan, Enguo

    2017-11-01

    Huaiju is one of the most famous and widely used Flos Chrysanthemi (FC) for medicinal purposes in China. Although various investigations aimed at phenolics extraction from other FC have been reported, a thorough optimization of the phenolics extraction conditions from Huaiju has not been achieved. This work applied the widely used response surface methodology (RSM) to investigate the effects of 3 independent variables including ethanol concentration (%), extraction time (min), and solvent-to-material ratio (mL/g) on the ultrasound-assisted extraction (UAE) of phenolics from FC. The data suggested the optimal UAE condition was an ethanol concentration of 75.3% and extraction time of 43.5 min, whereas the ratio of solvent to material has no significant effect. When the free radical scavenging ability was used as an indicator for a successful extraction, a similar optimal extraction was achieved with an ethanol concentration of 72.8%, extraction time of 44.3 min, and the ratio of solvent to material was 29.5 mL/g. Furthermore, a moderate correlation between the antioxidant activity of TP extract and the content of extracted phenolic compounds was observed. Moreover, a well consistent of the experimental values under optimal conditions with those predicted values suggests RSM successfully optimized the UAE conditions for phenolics extraction from FC. The work of the research investigated the plant phenolics in Flos Chrysanthemi and antioxidant capacities. These results of this study can support the development of antioxidant additive and relative food. © 2017 The Authors. Journal of Food Science published by Wiley Periodicals, Inc. on behalf of Institute of Food Technologists.

  14. Unequal-thickness billet optimization in transitional region during isothermal local loading forming of Ti-alloy rib-web component using response surface method

    Directory of Open Access Journals (Sweden)

    Ke WEI

    2018-04-01

    Full Text Available Avoiding the folding defect and improving the die filling capability in the transitional region are desired in isothermal local loading forming of a large-scale Ti-alloy rib-web component (LTRC. To achieve a high-precision LTRC, the folding evolution and die filling process in the transitional region were investigated by 3D finite element simulation and experiment using an equal-thickness billet (ETB. It is found that the initial volume distribution in the second-loading region can greatly affect the amount of material transferred into the first-loading region during the second-loading step, and thus lead to the folding defect. Besides, an improper initial volume distribution results in non-concurrent die filling in the cavities of ribs after the second-loading step, and then causes die underfilling. To this end, an unequal-thickness billet (UTB was employed with the initial volume distribution optimized by the response surface method (RSM. For a certain eigenstructure, the critical value of the percentage of transferred material determined by the ETB was taken as a constraint condition for avoiding the folding defect in the UTB optimization process, and the die underfilling rate was considered as the optimization objective. Then, based on the RSM models of the percentage of transferred material and the die underfilling rate, non-folding parameter combinations and optimum die filling were achieved. Lastly, an optimized UTB was obtained and verified by the simulation and experiment. Keywords: Die filling, Folding defect, Isothermal local loading forming, Transitional region, Unequal-thickness billet optimization

  15. Application of response surface methodology in optimization of performance and exhaust emissions of secondary butyl alcohol-gasoline blends in SI engine

    International Nuclear Information System (INIS)

    Yusri, I.M.; Mamat, R.; Azmi, W.H.; Omar, A.I.; Obed, M.A.; Shaiful, A.I.M.

    2017-01-01

    Highlights: • Adding 2-butanol in gasoline fuel can improve engine performance. • 2-Butanol addition reduced NO x , CO, and HC but produced higher CO 2 . • RSM was applied to optimize the engine performance and exhaust emissions. - Abstract: Producing an optimal balance between engine performance and exhaust emissions has always been one of the main challenges in automotive technology. This paper examines the use of RSM (response surface methodology) to optimize the engine performance, and exhaust emissions of a spark-ignition (SI) engine which operates with 2-butanol–gasoline blends of 5%, 10%, and 15% called GBu5, GBu10, and GBu15. In the experiments, the engine ran at various speeds for each test fuel and 13 different conditions were constructed. The optimization of the independent variables was performed by means of a statistical tool known as DoE (design of experiments). The desirability approach by RSM was employed with the aim of minimizing emissions and maximizing of performance parameters. Based on the RSM model, performance characteristics revealed that increments of 2-butanol in the blended fuels lead to increasing trends of brake power, brake mean effective pressure and brake thermal efficiency. Nonetheless, marginal higher brake specific fuel consumption was observed. Furthermore, the RSM model suggests that the presence of 2-butanol exhibits a decreasing trend of nitrogen oxides, carbon monoxides, and unburnt hydrocarbon, however, a higher trend was observed for carbon dioxides exhaust emissions. It was established from the study that the GBu15 blend with an engine speed of 3205 rpm was found to be optimal to provide the best performance and emissions characteristics as compared to the other tested blends.

  16. Application and optimization of the tenderization of pig Longissimus dorsi muscle by adenosine 5'-monophosphate (AMP) using the response surface methodology.

    Science.gov (United States)

    Deng, Shaoying; Wang, Daoying; Zhang, Muhan; Geng, Zhiming; Sun, Chong; Bian, Huan; Xu, Weimin; Zhu, Yongzhi; Liu, Fang; Wu, Haihong

    2016-03-01

    Based on single factor experiments, NaCl concentration, adenosine 5'-monophosphate (AMP) concentration and temperature were selected as independent variables for a three-level Box-Behnken experimental design, and the shear force and cooking loss were response values for regression analysis. According to the statistical models, it showed that all independent variables had significant effects on shear force and cooking loss, and optimal values were at the NaCl concentration of 4.15%, AMP concentration of 22.27 mmol/L and temperature of 16.70°C, which was determined with three-dimensional response surface diagrams and contour plots. Under this condition, the observed shear force and cooking loss were 0.625 kg and 8.07%, respectively, exhibiting a good agreement with their predicted values, showing the good applicability and feasibility of response surface methodology (RSM) for improving pork tenderness. Compared with control pig muscles, AMP combined with NaCl treatment demonstrated significant effects on improvement of meat tenderness and reduction of cooking loss. Therefore, AMP could be regarded as an effective tenderization agent for pork. © 2015 Japanese Society of Animal Science.

  17. Extraction of Antioxidants from Borage (Borago officinalis L. Leaves—Optimization by Response Surface Method and Application in Oil-in-Water Emulsions

    Directory of Open Access Journals (Sweden)

    Francisco Segovia

    2014-05-01

    Full Text Available Borage (Borago officinalis L. is a typical Spanish plant. During processing, 60% are leaves. The aim of this work is to model and optimize the extraction of polyphenol from borage leaves using the response surface method (RSM and to use this extract for application in emulsions. The responses were: total polyphenol content (TPC, antioxidant capacity by ORAC, and rosmarinic acid by HPLC. The ranges of the variables temperature, ethanol content and time were 50–90 °C, 0%–30%–60% ethanol (v/v, and 10–15 min. For ethanolic extraction, optimal conditions were at 75.9 °C, 52% ethanol and 14.8 min, yielding activity of 27.05 mg GAE/g DW TPC; 115.96 mg TE/g DW in ORAC and 11.02 mg/L rosmarinic acid. For water extraction, optimal activity was achieved with extraction at 98.3 °C and 22 min, with responses of 22.3 mg GAE/g DW TPC; 81.6 mg TE/g DW in ORAC and 3.9 mg/L rosmarinic acid. The significant variables were ethanol concentration and temperature. For emulsions, the peroxide value was inhibited by 60% for 3% extract concentration; and 80% with 3% extract concentration and 0.2% of BSA. The p-anisidine value between the control and the emulsion with 3% extract was reduced to 73.6% and with BSA 86.3%, and others concentrations had similar behavior.

  18. Design and statistical optimization of an effervescent floating drug delivery system of theophylline using response surface methodology

    Directory of Open Access Journals (Sweden)

    Srikanth Meka Venkata

    2016-03-01

    Full Text Available The aim of this research was to formulate effervescent floating drug delivery systems of theophylline using different release retarding polymers such as ethyl cellulose, Eudragit® L100, xanthan gum and polyethylene oxide (PEO N12K. Sodium bicarbonate was used as a gas generating agent. Direct compression was used to formulate floating tablets and the tablets were evaluated for their physicochemical and dissolution characteristics. PEO based formulations produced better drug release properties than other formulations. Hence, it was further optimized by central composite design. Further subjects of research were the effect of formulation variables on floating lag time and the percentage of drug released at the seventh hour (D7h. The optimum quantities of PEO and sodium bicarbonate, which had the highest desirability close to 1.0, were chosen as the statistically optimized formulation. No interaction was found between theophylline and PEO by Fourier Transformation Infrared spectroscopy (FTIR and Differential Scanning Calorimetry (DSC studies.

  19. Investigation and optimization of the novel UASB-MFC integrated system for sulfate removal and bioelectricity generation using the response surface methodology (RSM).

    Science.gov (United States)

    Zhang, Baogang; Zhang, Jing; Yang, Qi; Feng, Chuanping; Zhu, Yuling; Ye, Zhengfang; Ni, Jinren

    2012-11-01

    COD/sulfate ratio and hydraulic residence time (HRT), both of which influence sulfate loadings jointly, are recognized as the most two important affecting factors for sulfate removal and bioelectricity generation in the novel up-flow anaerobic sludge blanket reactor-microbial fuel cell (UASB-MFC) integrated system. The response surface methodology (RSM) was employed for the optimization of this system and the optimum condition with COD/sulfate ratio of 2.3 and HRT of 54.3h was obtained with the target of maximizing the power output. In terms of maximizing the total sulfate removal efficiency, the obtained optimum condition was COD/sulfate ratio of 3.7 and HRT of 55.6h. Experimental results indicated the undistorted simulation and reliable optimized results. These demonstrated that RSM was effective to evaluate and optimize the UASB-MFC system for sulfate removal and energy recovery, providing a promising guide to further improvement of the system for potential applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Optimization of Ultrasound-Assisted Extraction of Natural Antioxidants from Sugar Apple (Annona squamosa L. Peel Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Gui-Fang Deng

    2015-11-01

    Full Text Available Sugar apple (Annona squamosa L. is a popular tropical fruit and its peel is a municipal waste. An ultrasound-assisted extraction method was developed for the recovery of natural antioxidants from sugar apple peel. Central composite design was used to optimize solvent concentration (13.2%–46.8%, ultrasonic time (33.2–66.8 min, and temperature (43.2–76.8 °C for the recovery of natural antioxidants from sugar apple peel. The second-order polynomial models demonstrated a good fit of the quadratic models with the experimental results in respect to total phenolic content (TPC, R2 = 0.9524, p < 0.0001, FRAP (R2 = 0.9743, p < 0.0001, and TEAC (R2 = 0.9610, p < 0.0001 values. The optimal extraction conditions were 20:1 (mL/g of solvent-to-solid ratio, 32.68% acetone, and 67.23 °C for 42.54 min under ultrasonic irradiation. Under these conditions, the maximal yield of total phenolic content was 26.81 (mg GA/g FW. The experimental results obtained under optimal conditions agreed well with the predicted results. The application of ultrasound markedly decreased extraction time and improved the extraction efficiency, compared with the conventional methods.

  1. Responsive acoustic surfaces

    DEFF Research Database (Denmark)

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  2. Simultaneous optimization of the ultrasound-assisted extraction for phenolic compounds content and antioxidant activity of Lycium ruthenicum Murr. fruit using response surface methodology.

    Science.gov (United States)

    Chen, Shasha; Zeng, Zhi; Hu, Na; Bai, Bo; Wang, Honglun; Suo, Yourui

    2018-03-01

    Lycium ruthenicum Murr. (LR) is a functional food that plays an important role in anti-oxidation due to its high level of phenolic compounds. This study aims to optimize ultrasound-assisted extraction (UAE) of phenolic compounds and antioxidant activities of obtained extracts from LR using response surface methodology (RSM). A four-factor-three-level Box-Behnken design (BBD) was employed to discuss the following extracting parameters: extraction time (X 1 ), ultrasonic power (X 2 ), solvent to sample ratio (X 3 ) and solvent concentration (X 4 ). The analysis of variance (ANOVA) results revealed that the solvent to sample ratio had a significant influence on all responses, while the extraction time had no statistically significant effect on phenolic compounds. The optimum values of the combination of phenolic compounds and antioxidant activities were obtained for X 1 =30min, X 2 =100W, X 3 =40mL/g, and X 4 =33% (v/v). Five phenolic acids, including chlorogenic acid, caffeic acid, syringic acid, p-coumaric acid and ferulic acid, were analyzed by HPLC. Our results indicated that optimization extraction is vital for the quantification of phenolic compounds and antioxidant activity in LR, which may be contributed to large-scale industrial applications and future pharmacological activities research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Optimization of photocatalytic degradation of methyl blue using silver ion doped titanium dioxide by combination of experimental design and response surface approach.

    Science.gov (United States)

    Sahoo, C; Gupta, A K

    2012-05-15

    Photocatalytic degradation of methyl blue (MYB) was studied using Ag(+) doped TiO(2) under UV irradiation in a batch reactor. Catalytic dose, initial concentration of dye and pH of the reaction mixture were found to influence the degradation process most. The degradation was found to be effective in the range catalytic dose (0.5-1.5g/L), initial dye concentration (25-100ppm) and pH of reaction mixture (5-9). Using the three factors three levels Box-Behnken design of experiment technique 15 sets of experiments were designed considering the effective ranges of the influential parameters. The results of the experiments were fitted to two quadratic polynomial models developed using response surface methodology (RSM), representing functional relationship between the decolorization and mineralization of MYB and the experimental parameters. Design Expert software version 8.0.6.1 was used to optimize the effects of the experimental parameters on the responses. The optimum values of the parameters were dose of Ag(+) doped TiO(2) 0.99g/L, initial concentration of MYB 57.68ppm and pH of reaction mixture 7.76. Under the optimal condition the predicted decolorization and mineralization rate of MYB were 95.97% and 80.33%, respectively. Regression analysis with R(2) values >0.99 showed goodness of fit of the experimental results with predicted values. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Traditional Cereal Food as Container of Probiotic Bacteria “Lb. rhamnosus GG”: Optimization by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Asma Gharbi Yahyaoui

    2017-01-01

    Full Text Available This research paper aims at optimizing three parameters involved in solid state fermentation (SSF using Lactobacillus rhamnosus GG (LGG to improve a traditional cereal food “Bsissa” in order to elaborate a new probiotic fermented breakfast cereal. A Box-Behnken experimental design was used and the optimal fermentation conditions were liquid to solid ratio: 1.2 (vw−1, fermentation time: 12 h, and sucrose concentration: 10.48 g (100 g DM−1. Under these conditions, the viable LGG cells, the free amino nitrogen content, and the total acidity were obtained to be 9.1 log10⁡(cfu g-1, 12.95 (mg g−1, and 6.46 (μmol g−1, respectively. After three weeks of refrigerated storage, the viability of LGG in the fermented Bsissa was 8.23 log10⁡(cfu g-1. This study shows a new possibility to make an acceptable nonfermented dairy product based mainly on cereals, leguminous plants, spices, and aromatic herbs, which are suitable substrates able to support the high probiotic viability.

  5. Optimization of Ultrasound-Assisted Extraction of Natural Antioxidants from Sugar Apple (Annona squamosa L.) Peel Using Response Surface Methodology.

    Science.gov (United States)

    Deng, Gui-Fang; Xu, Dong-Ping; Li, Sha; Li, Hua-Bin

    2015-11-17

    Sugar apple (Annona squamosa L.) is a popular tropical fruit and its peel is a municipal waste. An ultrasound-assisted extraction method was developed for the recovery of natural antioxidants from sugar apple peel. Central composite design was used to optimize solvent concentration (13.2%-46.8%), ultrasonic time (33.2-66.8 min), and temperature (43.2-76.8 °C) for the recovery of natural antioxidants from sugar apple peel. The second-order polynomial models demonstrated a good fit of the quadratic models with the experimental results in respect to total phenolic content (TPC, R²=0.9524, pextraction conditions were 20:1 (mL/g) of solvent-to-solid ratio, 32.68% acetone, and 67.23 °C for 42.54 min under ultrasonic irradiation. Under these conditions, the maximal yield of total phenolic content was 26.81 (mg GA/g FW). The experimental results obtained under optimal conditions agreed well with the predicted results. The application of ultrasound markedly decreased extraction time and improved the extraction efficiency, compared with the conventional methods.

  6. Modeling and Optimization of BT and DBT Photooxidation over Multiwall Carbon Nanotube-Titania Composite by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Molood Barmala

    2018-01-01

    Full Text Available This study investigates optimization of benzothiophene (BT and dibenzothiophene (DBT removal via a photocatalytic process by using central composite design (CCD method. Temperature, pH, and p-25 to MWCNT ratio (g/g in the composite structure are considered as design factors. According to the results, temperature has the greatest impact on removal rate. In optimal condition, after being exposed to UV lamps (9 W for 20 min, 59.8% of the solutions’ BT was removed, while DBT was completely removed. Although the generated structure band gap is 3.4, but due to the presence of MWCNTs in the structure, it is capable of absorbing visible light, and this leads to complete removal of DBT and 42% removal of BT under visible light radiation (in similar circumstances. Kinetics analysis of thiophene’s reaction showed that, in the presence of visible light, first order removal rate constants for DBT and BT are 7.98 and 0.953 1/h, respectively.

  7. Optimization of biostimulant for bioremediation of contaminated coastal sediment by response surface methodology (RSM) and evaluation of microbial diversity by pyrosequencing.

    Science.gov (United States)

    Subha, Bakthavachallam; Song, Young Chae; Woo, Jung Hui

    2015-09-15

    The present study aims to optimize the slow release biostimulant ball (BSB) for bioremediation of contaminated coastal sediment using response surface methodology (RSM). Different bacterial communities were evaluated using a pyrosequencing-based approach in contaminated coastal sediments. The effects of BSB size (1-5cm), distance (1-10cm) and time (1-4months) on changes in chemical oxygen demand (COD) and volatile solid (VS) reduction were determined. Maximum reductions of COD and VS, 89.7% and 78.8%, respectively, were observed at a 3cm ball size, 5.5cm distance and 4months; these values are the optimum conditions for effective treatment of contaminated coastal sediment. Most of the variance in COD and VS (0.9291 and 0.9369, respectively) was explained in our chosen models. BSB is a promising method for COD and VS reduction and enhancement of SRB diversity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Optimization of volatile fatty acid production with co-substrate of food wastes and dewatered excess sludge using response surface methodology.

    Science.gov (United States)

    Hong, Chen; Haiyun, Wu

    2010-07-01

    Central-composite design (CCD) and response surface methodology (RSM) were used to optimize the parameters of volatile fatty acid (VFA) production from food wastes and dewatered excess sludge in a semi-continuous process. The effects of four variables (food wastes composition in the co-substrate of food wastes and excess sludge, hydraulic retention time (HRT), organic loading rate (OLR), and pH) on acidogenesis were evaluated individually and interactively. The optimum condition derived via RSM was food wastes composition, 88.03%; HRT, 8.92 days; OLR, 8.31 g VSS/ld; and pH 6.99. The experimental VFA concentration was 29,099 mg/l under this optimum condition, which was well in agreement with the predicted value of 28,000 mg/l. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. Optimization of Biodiesel-Diesel Blended Fuel Properties and Engine Performance with Ether Additive Using Statistical Analysis and Response Surface Methods

    Directory of Open Access Journals (Sweden)

    Obed M. Ali

    2015-12-01

    Full Text Available In this study, the fuel properties and engine performance of blended palm biodiesel-diesel using diethyl ether as additive have been investigated. The properties of B30 blended palm biodiesel-diesel fuel were measured and analyzed statistically with the addition of 2%, 4%, 6% and 8% (by volume diethyl ether additive. The engine tests were conducted at increasing engine speeds from 1500 rpm to 3500 rpm and under constant load. Optimization of independent variables was performed using the desirability approach of the response surface methodology (RSM with the goal of minimizing emissions and maximizing performance parameters. The experiments were designed using a statistical tool known as design of experiments (DoE based on RSM.

  10. Optimization of thermophysical properties of Pacific white shrimp (Litopenaeus vannamei) previously treated with freezing-point regulators using response surface methodology.

    Science.gov (United States)

    Wang, Liang; Liu, Zunying; Zhao, Yuanhui; Dong, Shiyuan; Zeng, Mingyong; Yang, Huicheng

    2015-08-01

    Three freezing-point regulators (glycine, sodium chloride and D-sorbitol) were employed to optimize thermophysical properties of Pacific white shrimp (Litopenaeus vannamei) using response surface methodology (RSM). The independent variables were glycine content (0.250-1.250 %), sodium chloride content (0.500-2.500 %) and D-sorbitol content (0.125-0.625 %) and analysis of variance showed that the effects of glycine, sodium chloride and D-sorbitol on the thermophysical properties were statistically significant (P thermophysical properties were T i , - 5.086 °C; W u , 17.222 %; C app , 41.038 J/g °C and H, 155.942 J/g, respectively. Briefly, the application of freezing-point regulators depressed T i and obtained the optimum W u , C app and H, which would be obviously beneficial for the exploitation of various thermal processing and food storage.

  11. Optimization of magnetic field-assisted ultrasonication for the disintegration of waste activated sludge using Box-Behnken design with response surface methodology.

    Science.gov (United States)

    Guan, Su; Deng, Feng; Huang, Si-Qi; Liu, Shu-Yang; Ai, Le-Xian; She, Pu-Ying

    2017-09-01

    This study investigated for the first time the feasibility of using a magnetic field for sludge disintegration. Approximately 41.01% disintegration degree (DD) was reached after 30min at 180mT magnetic field intensity upon separate magnetic field treatment. Protein and polysaccharide contents significantly increased. This test was optimized using a Box-Behnken design (BBD) with response surface methodology (RSM) to fit the multiple equation of the DD. The maximum DD was 43.75% and the protein and polysaccharide contents increased to 56.71 and 119.44mg/L, respectively, when the magnetic field strength was 119.69mT, reaction time was 30.49min, and pH was 9.82 in the optimization experiment. We then analyzed the effects of ultrasound alone. We are the first to combine magnetic field with ultrasound to disintegrate waste-activated sludge (WAS). The optimum effect was obtained with the application of ultrasound alone at 45kHz frequency, with a DD of about 58.09%. By contrast, 62.62% DD was reached in combined magnetic field and ultrasound treatment. This combined test was also optimized using BBD with RSM to fit the multiple equation of DD. The maximum DD of 64.59% was achieved when the magnetic field intensity was 197.87mT, ultrasonic frequency was 42.28kHz, reaction time was 33.96min, and pH was 8.90. These results were consistent with those of particle size and electron microscopy analyses. This research proved that a magnetic field can effectively disintegrate WAS and can be combined with other physical techniques such as ultrasound for optimal results. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Evaluation, prediction and optimization the ultrasound-assisted extraction method using response surface methodology: antioxidant and biological properties of Stachys parviflora L.

    Science.gov (United States)

    Bashi, Davoud Salar; Dowom, Samaneh Attaran; Bazzaz, Bibi Sedigheh Fazly; Khanzadeh, Farhad; Soheili, Vahid; Mohammadpour, Ali

    2016-05-01

    To optimize the extraction method using response surface methodology, extract the phenolic compounds, and identify the antioxidant and biological properties of Stachys parviflora L. extracts. Maceration and ultrasound-assisted extraction (UAE) (4, 7, 10 min treatment time, 40, 70, 100 % high-intensity and 60, 80, 100 % (v v-1) methanol purity) were applied to obtain the extracts. SEM was conducted to provide the microstructure of the extracted plant. MICs (colorimetric assay), MFCs (colony diameter), total phenolic content, total flavonoid content, radical scavenging capacity and extraction efficiency were determined. HPLC analysis was applied to measure the existent phenolic compounds. A quadratic model (4 min treatment time, 74.5 % high-intensity and 74.2 % solvent purity) was suggested as the best (TPC: 20.89 mg GAE g-1 d.m., TFC: 6.22 mg QEs g-1 d.m., DPPH IC50: 21.86 µg ml-1 and EE: 113.65 mg g-1 d.m.) UAE extraction model. The optimized UAE extract was generally more effective against Gram-positive microorganisms (MIC: 10-20; MBC: 10-40 (mg ml-1)) than Gram-negative ones (MIC: 40; MBC: >40 (mg ml-1)). Moreover, it (MGI: 2.32-100 %) revealed more anti-mold activity than maceration (MGI: <28.77 %). Explosive disruption of the cell walls, therefore, enhanced extraction yield by acoustic cavitation, was elucidated using SEM. Caffeic acid, tannic acid, quercetin, trans ferulic acid and rosmarinic acid were determined as the phenolic compounds in the optimized extract. RSM optimization was successfully applied for UAE from S. parviflora. The considerable antioxidant and biological properties were attributed to the phenolic compounds.

  13. Response surface methodology based optimization of diesel–n-butanol –cotton oil ternary blend ratios to improve engine performance and exhaust emission characteristics

    International Nuclear Information System (INIS)

    Atmanlı, Alpaslan; Yüksel, Bedri; İleri, Erol; Deniz Karaoglan, A.

    2015-01-01

    Highlights: • RSM based optimization for optimum blend ratio of diesel fuel, n-butanol and cotton oil was done. • 65.5 vol.% diesel fuel, 23.1 vol.% n-butanol and 11.4 vol.% cotton oil (DnBC) was determined. • DnBC decreased brake torque, brake power, BTE and BMEP, while increased BSFC. • DnBC decreased NO x , CO and HC emissions. - Abstract: Many studies declare that 20% biodiesel is the optimum concentration for biodiesel–diesel fuel blends to improve performance. The present work focuses on finding diesel fuel, n-butanol, and cotton oil optimum blend ratios for diesel engine applications by using the response surface method (RSM). Experimental test fuels were prepared by choosing 7 different concentrations, where phase decomposition did not occur in the phase diagram of −10 °C. Experiments were carried out at full load conditions and the constant speed (2200 rpm) of maximum brake torque to determine engine performance and emission parameters. According to the test results of the engine, optimization was done by using RSM considering engine performance and exhaust emissions parameters, to identify the rates of concentrations of components in the optimum blend of three. Confirmation tests were employed to compare the output values of concentrations that were identified by optimization. The real experiment results and the R 2 actual values that show the relation between the outputs from the optimizations and real experiments were determined in high accordance. The optimum component concentration was determined as 65.5 vol.% diesel, 23.1 vol.% n-butanol and 11.4 vol.% cotton oil (DnBC). According to engine performance tests brake torque, brake power, BTE and BMEP of DnBC decreased while BSFC increased compared to those of diesel fuel. NO x , CO and HC emissions of DnBC drastically decreased as 11.33%, 45.17% and 81.45%, respectively

  14. Optimization of pH, temperature and CaCl2 concentrations for Ricotta cheese production from Buffalo cheese whey using Response Surface Methodology.

    Science.gov (United States)

    Rashid, Abdul Ahid; Huma, Nuzhat; Zahoor, Tahir; Asgher, Muhammad

    2017-02-01

    The recovery of milk constituents from cheese whey is affected by various processing conditions followed during production of Ricotta cheese. The objective of the present investigation was to optimize the temperature (60-90 °C), pH (3-7) and CaCl2 concentration (2·0-6·0 mm) for maximum yield/recovery of milk constituents. The research work was carried out in two phases. In 1st phase, the influence of these processing conditions was evaluated through 20 experiments formulated by central composite design (CCD) keeping the yield as response factor. The results obtained from these experiments were used to optimize processing conditions for maximum yield using response surface methodology (RSM). The three best combinations of processing conditions (90 °C, pH 7, CaCl2 6 mm), (100 °C, pH 5, CaCl2 4 mm) and (75 °C, pH 8·4, CaCl2 4 mm) were exploited in the next phase for Ricotta cheese production from a mixture of Buffalo cheese whey and skim milk (9 : 1) to determine the influence of optimized conditions on the cheese composition. Ricotta cheeses were analyzed for various physicochemical (moisture, fat, protein, lactose, total solids, pH and acidity indicated) parameters during storage of 60 d at 4 ± 2 °C after every 15 d interval. Ricotta cheese prepared at 90 °C, pH 7 and CaCl2 6 mm exhibited the highest cheese yield, proteins and total solids, while high fat content was recorded for cheese processed at 100 °C, pH 5 and 4 mm CaCl2 concentration. A significant storage-related increase in acidity and NPN was recorded for all cheese samples.

  15. Optimization of aqueous enzymatic extraction of oil from shrimp processing by-products using response surface methodology

    Directory of Open Access Journals (Sweden)

    Chen WENWEI

    2018-06-01

    Full Text Available Abstract The aqueous enzymatic extraction (AEE of oil from shrimp processing by-products was investigated. Four kinds of proteases, including alkaline protease, neutral protease, flavor protease and compound protease, were applied to hydrolysis shrimp processing by-products. The results showed that flavor protease was the best hydrolysis enzyme for shrimp processing by-products to obtain high oil recovery. The influences of four factors, including enzyme amount, liquid/solid ratio, hydrolysis time and hydrolysis temperature, on shrimp oil extraction yield were also studied. The flavor enzyme hydrolysis condition was optimized as following: enzyme amount of 2.0% (w/w, liquid/solid ratio of 9.0ml/g, hydrolysis time of 2.6 h and hydrolysis temperature of 50 °C. Under these optimum hydrolysis conditions, the experimental oil extraction yield was 88.9%.

  16. Optimization of fat-reduced ice cream formulation employing inulin as fat replacer via response surface methodology.

    Science.gov (United States)

    Pintor, Aurora; Severiano-Pérez, Patricia; Totosaus, Alfonso

    2014-10-01

    The use of new ingredients like inulin for fat replacement is of wide application in the food industry. The aim of the present work was to reduce the fat content on ice cream formulations. It was possible to reduce up to 25% of butyric and vegetable fats with 3% of inulin, with good textural and sensory characteristics of the final product. The substitution of fat with inulin increased the ice cream mix viscosity, improved air incorporation, and produced ice cream with soft and homogeneous textures. Color characteristics were not affected by the replacement. Hedonic sensory analysis showed that optimized fat-reduced inulin ice cream was not perceived different to commercial vanilla ice cream. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  17. A new search for thermotolerant yeasts, its characterization and optimization using response surface methodology for ethanol production.

    Science.gov (United States)

    Arora, Richa; Behera, Shuvashish; Sharma, Nilesh K; Kumar, Sachin

    2015-01-01

    The progressive rise in energy crisis followed by green house gas (GHG) emissions is serving as the driving force for bioethanol production from renewable resources. Current bioethanol research focuses on lignocellulosic feedstocks as these are abundantly available, renewable, sustainable and exhibit no competition between the crops for food and fuel. However, the technologies in use have some drawbacks including incapability of pentose fermentation, reduced tolerance to products formed, costly processes, etc. Therefore, the present study was carried out with the objective of isolating hexose and pentose fermenting thermophilic/thermotolerant ethanologens with acceptable product yield. Two thermotolerant isolates, NIRE-K1 and NIRE-K3 were screened for fermenting both glucose and xylose and identified as Kluyveromyces marxianus NIRE-K1 and K. marxianus NIRE-K3. After optimization using Face-centered Central Composite Design (FCCD), the growth parameters like temperature and pH were found to be 45.17°C and 5.49, respectively for K. marxianus NIRE-K1 and 45.41°C and 5.24, respectively for K. marxianus NIRE-K3. Further, batch fermentations were carried out under optimized conditions, where K. marxianus NIRE-K3 was found to be superior over K. marxianus NIRE-K1. Ethanol yield (Y x∕s ), sugar to ethanol conversion rate (%), microbial biomass concentration (X) and volumetric product productivity (Q p ) obtained by K. marxianus NIRE-K3 were found to be 9.3, 9.55, 14.63, and 31.94% higher than that of K. marxianus NIRE-K1, respectively. This study revealed the promising potential of both the screened thermotolerant isolates for bioethanol production.

  18. A new search for thermotolerant yeasts, its characterization and optimization using response surface methodology for ethanol production

    Directory of Open Access Journals (Sweden)

    Richa eArora

    2015-09-01

    Full Text Available The progressive rise in energy crisis followed by green house gas (GHG emissions is serving as the driving force for bioethanol production from renewable resources. Current bioethanol research focuses on lignocellulosic feedstocks as these are abundantly available, renewable, sustainable and exhibit no competition between the crops for food and fuel. However, the technologies in use have some drawbacks including incapability of pentose fermentation, reduced tolerance to products formed, costly processes, etc. Therefore, the present study was carried out with the objective of isolating hexose and pentose fermenting thermophilic/ thermotolerant ethanologens with acceptable product yield. Two thermotolerant isolates, NIRE-K1 and NIRE-K3 were screened for fermenting both glucose and xylose and identified as Kluyveromyces marxianus NIRE-K1 and K. marxianus NIRE-K3. After optimization using FCCD (Face-centered Central Composite Design, the growth parameters like temperature and pH were found to be 45.17 oC and 5.49, respectively for K. marxianus NIRE-K1 and 45.41 oC and 5.24, respectively for K. marxianus NIRE-K3. Further, batch fermentations were carried out under optimized conditions, where K. marxianus NIRE-K3 was found to be superior over K. marxianus NIRE-K1. Ethanol yield (Yx/s, sugar to ethanol conversion rate (%, microbial biomass concentration (X and volumetric product productivity (Qp obtained by K. marxianus NIRE-K3 were found to be 9.3%, 9.55%, 14.63% and 31.94% higher than that of K. marxianus NIRE-K1, respectively. This study revealed the promising potential of both the screened thermotolerant isolates for bioethanol production.

  19. Optimization of Factors Affecting Beauveria bassiana Fungus Ability in Control of Greater Wax Moth (Galleria mellonella L. by Response Surface Method

    Directory of Open Access Journals (Sweden)

    Ali Heidari

    2017-03-01

    Full Text Available Introduction: Stored product pests are a major problem in the storage of agricultural products that cause damage from harvest until consumption. Greater Wax Moth (Galleria mellonella L. is one of the most important pests of stored products and beehives. The most common method to control this pest in many countries is use of chemical compounds. However, these compounds have disadvantages such as pesticide residues in wax, the development of resistance in pest and irreversible effects on the environment and humans. The use of insect pathogenic fungi due to its low risk on mammals and natural enemies can be a good alternative to conventional chemical pesticides. Response surface methodology (RSM is a statistical technique that is employed to optimize processes that are affected by several variables. This technique uses regression analysis to obtain optimal equations to estimate the values. Using this method, while maintaining the quality in the experiments, the number of those could be reduced. Therefore, this study was aimed to evaluate response surface methodology to determine the effect of optimum lethal level of concentration of B. bassiana conidia, temperature as well as humidity variables on the mortality of fifth instar larvae of greater wax moth. Materials and Methods: Wax moth-eating insects were raised in plastic containers containing artificial food and old black wax at 30 ± 1 ° C and a relative humidity of 85 ± 1 % and photoperiod of 14:10 h (L: D. Isolation of insect pathogenic fungus B. bassiana was done by using Galleria Bait Method (GBM. For this purpose, after preparation of the fungus suspension from the infected larvae, 1 ml volume of the suspension was transferred to the water-agar 1.2% and then sealed petri dishes incubated at 30 ° C for three days. After identifying the single colony and formation of pure isolates, microscopic slides were prepared and eventually recovered isolates were recognized as B. bassiana. The

  20. Optimization of Extraction Parameters by Using Response Surface Methodology, Purification, and Identification of Anthocyanin Pigments in Melastoma malabathricum Fruit

    Directory of Open Access Journals (Sweden)

    Nordiyanah Anuar

    2013-01-01

    Full Text Available Anthocyanins not just have various benefits in food industry but also have been used as natural colourants in cosmetic, coating products and as potential natural photosensitizers in solar cell. Thus, the main purpose of this study was to obtain information on the maximum yield of anthocyanin that can be recovered from Melastoma malabathricum fruit. Factors such as extraction temperature, extraction time, and solid to liquid ratio were identified to be significantly affecting anthocyanin extraction efficiency. By using three-level three-factor Box-Behnken design, the optimized conditions for anthocyanin extraction by acidified methanol (R2=0.972 were temperature of 60°C, time of 86.82 min, and 0.5 : 35 (g/mL solid to liquid ratio while the optimum extraction conditions by acidified ethanol (R2=0.954 were temperature of 60°C, time of 120 min, and 0.5 : 23.06 (g/mL solid to liquid ratio. The crude anthocyanin extract was further purified by using Amberlite XAD-7 and Sephadex LH-20 column chromatography. Identification of anthocyanins revealed the presence of cyanidin dihexoside, cyanidin hexoside, and delphinidin hexoside as the main anthocyanins in M. malabathricum fruit.

  1. Optimization of Extraction Parameters by Using Response Surface Methodology, Purification, and Identification of Anthocyanin Pigments in Melastoma malabathricum Fruit

    Science.gov (United States)

    Anuar, Nordiyanah; Mohd Adnan, Ahmad Faris; Saat, Naziz; Aziz, Norkasmani; Mat Taha, Rosna

    2013-01-01

    Anthocyanins not just have various benefits in food industry but also have been used as natural colourants in cosmetic, coating products and as potential natural photosensitizers in solar cell. Thus, the main purpose of this study was to obtain information on the maximum yield of anthocyanin that can be recovered from Melastoma malabathricum fruit. Factors such as extraction temperature, extraction time, and solid to liquid ratio were identified to be significantly affecting anthocyanin extraction efficiency. By using three-level three-factor Box-Behnken design, the optimized conditions for anthocyanin extraction by acidified methanol (R 2 = 0.972) were temperature of 60°C, time of 86.82 min, and 0.5 : 35 (g/mL) solid to liquid ratio while the optimum extraction conditions by acidified ethanol (R 2 = 0.954) were temperature of 60°C, time of 120 min, and 0.5 : 23.06 (g/mL) solid to liquid ratio. The crude anthocyanin extract was further purified by using Amberlite XAD-7 and Sephadex LH-20 column chromatography. Identification of anthocyanins revealed the presence of cyanidin dihexoside, cyanidin hexoside, and delphinidin hexoside as the main anthocyanins in M. malabathricum fruit. PMID:24174918

  2. Application of Response Surface Methodology for Optimization of Urea Grafted Multiwalled Carbon Nanotubes in Enhancing Nitrogen Use Efficiency and Nitrogen Uptake by Paddy Plants

    Directory of Open Access Journals (Sweden)

    Norazlina Mohamad Yatim

    2016-01-01

    Full Text Available Efficient use of urea fertilizer (UF as important nitrogen (N source in the world’s rice production has been a concern. Carbon-based materials developed to improve UF performance still represent a great challenge to be formulated for plant nutrition. Advanced N nanocarrier is developed based on functionalized multiwall carbon nanotubes (f-MWCNTs grafted with UF to produce urea-multiwall carbon nanotubes (UF-MWCNTs for enhancing the nitrogen uptake (NU and use efficiency (NUE. The grafted N can be absorbed and utilized by rice efficiently to overcome the N loss from soil-plant systems. The individual and interaction effect between the specified factors of f-MWCNTs amount (0.10–0.60 wt% and functionalization reflux time (12–24 hrs with the corresponding responses (NUE, NU were structured via the Response Surface Methodology (RSM based on five-level CCD. The UF-MWCNTs with optimized 0.5 wt% f-MWCNTs treated at 21 hrs reflux time achieve tremendous NUE up to 96% and NU at 1180 mg/pot. Significant model terms (p value < 0.05 for NUE and NU responses were confirmed by the ANOVA. Homogeneous dispersion of UF-MWCNTs was observed via FESEM and TEM. The chemical changes were monitored by FT-IR and Raman spectroscopy. Hence, this UF-MWCNTs’ approach provides a promising strategy in enhancing plant nutrition for rice.

  3. Application of Response Surface Methodology for Optimization of Urea Grafted Multi walled Carbon Nano tubes in Enhancing Nitrogen Use Efficiency and Nitrogen Uptake by Paddy Plants

    International Nuclear Information System (INIS)

    Yatim, N. M.; Shaaban, A.; Dimin, M. F.; Yusof, F.; Abo Razak, J.

    2016-01-01

    Efficient use of urea fertilizer (UF) as important nitrogen (N) source in the world’s rice production has been a concern. Carbon-based materials developed to improve UF performance still represent a great challenge to be formulated for plant nutrition. Advanced N nano carrier is developed based on functionalized multi wall carbon nano tubes (f-MWCNTs) grafted with UF to produce urea-multi wall carbon nano tubes (UF-MWCNTs) for enhancing the nitrogen uptake (NU) and use efficiency (NUE). The grafted N can be absorbed and utilized by rice efficiently to overcome the N loss from soil-plant systems. The individual and interaction effect between the specified factors of f-MWCNTs amount (0.10-0.60 wt%) and functionalization reflux time (12-24 hrs) with the corresponding responses (NUE, NU) were structured via the Response Surface Methodology (RSM) based on five-level CCD. The UF-MWCNTs with optimized 0.5 wt% f-MWCNTs treated at 21 hrs reflux time achieve tremendous NUE up to 96% and NU at 1180 mg/pot. Significant model terms (Þ value < 0.05) for NUE and NU responses were confirmed by the ANOVA. Homogeneous dispersion of UF-MWCNTs was observed via FESEM and TEM. The chemical changes were monitored by FT-IR and Raman spectroscopy. Hence, this UF-MWCNTs’ approach provides a promising strategy in enhancing plant nutrition for rice.

  4. Optimization of Laser Transmission Joining Process Parameters on Joint Strength of PET and 316 L Stainless Steel Joint Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Shashi Prakash Dwivedi

    2014-01-01

    Full Text Available The objective of the present work is to study the effects of laser power, joining speed, and stand-off distance on the joint strength of PET and 316 L stainless steel joint. The process parameters were optimized using response methodology for achieving good joint strength. The central composite design (CCD has been utilized to plan the experiments and response surface methodology (RSM is employed to develop mathematical model between laser transmission joining parameters and desired response (joint strength. From the ANOVA (analysis of variance, it was concluded that laser power is contributing more and it is followed by joining speed and stand-off distance. In the range of process parameters, the result shows that laser power increases and joint strength increases. Whereas joining speed increases, joint strength increases. The joint strength increases with the increase of the stand-off distance until it reaches the center value; the joint strength then starts to decrease with the increase of stand-off distance beyond the center limit. Optimum values of laser power, joining speed, and stand-off distance were found to be 18 watt, 100 mm/min, and 2 mm to get the maximum joint strength (predicted: 88.48 MPa. There was approximately 3.37% error in the experimental and modeled results of joint strength.

  5. Optimization of process parameters for ethanol production from sugar cane molasses by Zymomonas mobilis using response surface methodology and genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, Bodhisatta; Shekhawat, Mitali; Srivastava, Pradeep [Banaras Hindu Univ., Varanasi (India). School of Biochemical Engineering; Rathore, Ankita [Nizam College, Hyderabad (India). Dept. of Biotechnology; Srivastava, Saurav [National Institute of Technology, Durgapur (India). Dept. of Biotechnology

    2011-04-15

    Ethanol is a potential energy source and its production from renewable biomass has gained lot of popularity. There has been worldwide research to produce ethanol from regional inexpensive substrates. The present study deals with the optimization of process parameters (viz. temperature, pH, initial total reducing sugar (TRS) concentration in sugar cane molasses and fermentation time) for ethanol production from sugar cane molasses by Zymomonas mobilis using Box-Behnken experimental design and genetic algorithm (GA). An empirical model was developed through response surface methodology to analyze the effects of the process parameters on ethanol production. The data obtained after performing the experiments based on statistical design was utilized for regression analysis and analysis of variance studies. The regression equation obtained after regression analysis was used as a fitness function for the genetic algorithm. The GA optimization technique predicted a maximum ethanol yield of 59.59 g/L at temperature 31 C, pH 5.13, initial TRS concentration 216 g/L and fermentation time 44 h. The maximum experimental ethanol yield obtained after applying GA was 58.4 g/L, which was in close agreement with the predicted value. (orig.)

  6. The optimization study on the tool wear of carbide cutting tool during milling Carbon Fibre Reinforced (CFRP) using Response Surface Methodology (RSM)

    Science.gov (United States)

    Nor Khairusshima, M. K.; Hafiz Zakwan, B. Muhammad; Suhaily, M.; Sharifah, I. S. S.; Shaffiar, N. M.; Rashid, M. A. N.

    2018-01-01

    Carbon Fibre Reinforced Plastic (CFRP) composite has become one of famous materials in industry, such as automotive, aeronautics, aerospace and aircraft. CFRP is attractive due to its properties, which promising better strength and high specification of mechanical properties other than its high resistance to corrosion. Other than being abrasive material due to the carbon nature, CFRP is an anisotropic material, which the knowledge of machining metal and steel cannot be applied during machining CFRP. The improper technique and parameters used to machine CFRP may result in high tool wear. This paper is to study the tool wear of 8 mm diameter carbide cutting tool during milling CFRP. To predict the suitable cutting parameters within range of 3500-6220 (rev/min), 200-245 (mm/min), and 0.4-1.8 (mm) for cutting speed, speed, feed rate and depth of cut respectively, which produce optimized result (less tool wear), Response Surface Methodology (RSM) has been used. Based on the developed mathematical model, feed rate was identified as the primary significant item that influenced tool wear. The optimized cutting parameters are cutting speed, feed and depth of cut of 3500 rev/min, 200 mm/min and 0.5 mm, respectively, with tool wear of 0.0267 mm. It is also can be observed that as the cutting speed and feed rate increased the tool wear is increasing.

  7. The optimization of phenolic compounds extraction from cactus pear (Opuntia ficus-indica) skin in a reflux system using response surface methodology.

    Science.gov (United States)

    Jorge, Aguirre Joya; Heliodoro, De La Garza Toledo; Alejandro, Zugasti Cruz; Ruth, Belmares Cerda; Noé, Aguilar Cristóbal

    2013-06-01

    To extract, quantify, and evaluate the phenolic content in Opuntia ficus-indica skin for their antioxidant capacity with three different methods (ABTS, DPPH, and lipid oxidation) and to optimize the extraction conditions (time, temperature and ethanol concentration) in a reflux system. The extraction process was done using a reflux system. A San Cristobal II experimental design with three variables and three levels was used. The variables evaluated were time of extraction (h), concentration of ethanol (%, v/v) and temperature (°C). The extraction process was optimized using a response surface methodology. It was observed that at higher temperature more phenolic compounds were extracted, but the antioxidant capacity was decreased. The optimum conditions for phenolic compounds extraction and antioxidant capacity mixing the three methods were as follows: 45% of ethanol, 80 °C and 2 hours of extraction. Values obtained in our results are little higher that other previously reported. It can be concluded the by-products of Opuntia ficus-indica represent a good source of natural antioxidants with possible applications in food, cosmetics or drugs industries.

  8. Optimization of Culture Medium for the Growth of Candida sp. and Blastobotrys sp. as Starter Culture in Fermentation of Cocoa Beans (Theobroma cacao) Using Response Surface Methodology (RSM).

    Science.gov (United States)

    Mahazar, N H; Zakuan, Z; Norhayati, H; MeorHussin, A S; Rukayadi, Y

    2017-01-01

    Inoculation of starter culture in cocoa bean fermentation produces consistent, predictable and high quality of fermented cocoa beans. It is important to produce healthy inoculum in cocoa bean fermentation for better fermented products. Inoculum could minimize the length of the lag phase in fermentation. The purpose of this study was to optimize the component of culture medium for the maximum cultivation of Candida sp. and Blastobotrys sp. Molasses and yeast extract were chosen as medium composition and Response Surface Methodology (RSM) was then employed to optimize the molasses and yeast extract. Maximum growth of Candida sp. (7.63 log CFU mL-1) and Blastobotrys sp. (8.30 log CFU mL-1) were obtained from the fermentation. Optimum culture media for the growth of Candida sp., consist of 10% (w/v) molasses and 2% (w/v) yeast extract, while for Blastobotrys sp., were 1.94% (w/v) molasses and 2% (w/v) yeast extract. This study shows that culture medium consists of molasses and yeast extract were able to produce maximum growth of Candida sp. and Blastobotrys sp., as a starter culture for cocoa bean fermentation.

  9. Biosorption optimization of lead(II), cadmium(II) and copper(II) using response surface methodology and applicability in isotherms and thermodynamics modeling

    International Nuclear Information System (INIS)

    Singh, Rajesh; Chadetrik, Rout; Kumar, Rajender; Bishnoi, Kiran; Bhatia, Divya; Kumar, Anil; Bishnoi, Narsi R.; Singh, Namita

    2010-01-01

    The present study was carried out to optimize the various environmental conditions for biosorption of Pb(II), Cd(II) and Cu(II) by investigating as a function of the initial metal ion concentration, temperature, biosorbent loading and pH using Trichoderma viride as adsorbent. Biosorption of ions from aqueous solution was optimized in a batch system using response surface methodology. The values of R 2 0.9716, 0.9699 and 0.9982 for Pb(II), Cd(II) and Cu(II) ions, respectively, indicated the validity of the model. The thermodynamic properties ΔG o , ΔH o , ΔE o and ΔS o by the metal ions for biosorption were analyzed using the equilibrium constant value obtained from experimental data at different temperatures. The results showed that biosorption of Pb(II) ions by T. viride adsorbent is more endothermic and spontaneous. The study was attempted to offer a better understating of representative biosorption isotherms and thermodynamics with special focuses on binding mechanism for biosorption using the FTIR spectroscopy.

  10. Multi-criteria optimization for ultrasonic-assisted extraction of antioxidants from Pericarpium Citri Reticulatae using response surface methodology, an activity-based approach.

    Science.gov (United States)

    Zeng, Shanshan; Wang, Lu; Zhang, Lei; Qu, Haibin; Gong, Xingchu

    2013-06-01

    An activity-based approach to optimize the ultrasonic-assisted extraction of antioxidants from Pericarpium Citri Reticulatae (Chenpi in Chinese) was developed. Response surface optimization based on a quantitative composition-activity relationship model showed the relationships among product chemical composition, antioxidant activity of extract, and parameters of extraction process. Three parameters of ultrasonic-assisted extraction, including the ethanol/water ratio, Chenpi amount, and alkaline amount, were investigated to give optimum extraction conditions for antioxidants of Chenpi: ethanol/water 70:30 v/v, Chenpi amount of 10 g, and alkaline amount of 28 mg. The experimental antioxidant yield under the optimum conditions was found to be 196.5 mg/g Chenpi, and the antioxidant activity was 2023.8 μmol Trolox equivalents/g of the Chenpi powder. The results agreed well with the second-order polynomial regression model. This presented approach promised great application potentials in both food and pharmaceutical industries. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Optimization of nutritional and non-nutritional factors involved for production of antimicrobial compounds from Lactobacillus pentosus SJ65 using response surface methodology

    Directory of Open Access Journals (Sweden)