WorldWideScience

Sample records for response atmospheric dispersion

  1. Atmospheric dispersion modeling: Challenges of the Fukushima Daiichi response

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Gayle [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nasstrom, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pobanz, Brenda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, Kevin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vogt, Phil [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Aluzzi, Fernando [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homann, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-05-01

    In this research, the U.S. Department of Energy’s (DOE) National Atmospheric Release Advisory Center (NARAC) provided a wide range of predictions and analyses as part of the response to the Fukushima Daiichi Nuclear Power Plant accident including: daily Japanese weather forecasts and atmospheric transport predictions to inform planning for field monitoring operations and to provide U.S. government agencies with ongoing situational awareness of meteorological conditions; estimates of possible dose in Japan based on hypothetical U.S. Nuclear Regulatory Commission scenarios of potential radionuclide releases to support protective action planning for U.S. citizens; predictions of possible plume arrival times and dose levels at U.S. locations; and source estimation and plume model refinement based on atmospheric dispersion modeling and available monitoring data.

  2. Atmospheric Dispersion Modeling: Challenges of the Fukushima Daiichi Response

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Gayle [Lawrence Livermore National Laboratory; Nasstrom, John [Lawrence Livermore National Laboratory; Pobanz, Brenda [Lawrence Livermore National Laboratory; Foster, Kevin [Lawrence Livermore National Laboratory; Simpson, Matthew [Lawrence Livermore National Laboratory; Vogt, Phil [Lawrence Livermore National Laboratory; Aluzzi, Fernando [Lawrence Livermore National Laboratory; Homann, Steve [Lawrence Livermore National Laboratory

    2012-05-01

    The U.S. Department of Energy’s (DOE) National Atmospheric Release Advisory Center (NARAC) provided a wide range of predictions and analyses as part of the response to the Fukushima Daiichi Nuclear Power Plant accident. This work encompassed: weather forecasts and atmospheric transport predictions, estimates of possible dose in Japan based on hypothetical U.S. Nuclear Regulatory Commission scenarios of potential radionuclide releases, predictions of possible plume arrival times and dose levels at U.S. locations, and source estimation and plume model refinement. An overview of NARAC response activities is provided, along with a more in-depth discussion of some of NARAC’s preliminary source reconstruction analyses. NARAC optimized the overall agreement of model predictions to dose rate measurements using statistical comparisons of data and model values paired in space and time. Estimated emission rates varied depending on the choice of release assumptions (e.g., time-varying vs. constant release rates), the radionuclide mix, meteorology, and/or the radiological data used in the analysis. Results were found to be consistent with other studies within expected uncertainties, despite the application of different source estimation methodologies and the use of significantly different radiological measurement data. A discussion of some of the operational and scientific challenges encountered during the response, along with recommendations for future work, is provided.

  3. Uncertainty modelling of atmospheric dispersion by stochastic response surface method under aleatory and epistemic uncertainties

    Indian Academy of Sciences (India)

    Rituparna Chutia; Supahi Mahanta; D Datta

    2014-04-01

    The parameters associated to a environmental dispersion model may include different kinds of variability, imprecision and uncertainty. More often, it is seen that available information is interpreted in probabilistic sense. Probability theory is a well-established theory to measure such kind of variability. However, not all available information, data or model parameters affected by variability, imprecision and uncertainty, can be handled by traditional probability theory. Uncertainty or imprecision may occur due to incomplete information or data, measurement error or data obtained from expert judgement or subjective interpretation of available data or information. Thus for model parameters, data may be affected by subjective uncertainty. Traditional probability theory is inappropriate to represent subjective uncertainty. Possibility theory is used as a tool to describe parameters with insufficient knowledge. Based on the polynomial chaos expansion, stochastic response surface method has been utilized in this article for the uncertainty propagation of atmospheric dispersion model under consideration of both probabilistic and possibility information. The proposed method has been demonstrated through a hypothetical case study of atmospheric dispersion.

  4. Stochastic models for atmospheric dispersion

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2003-01-01

    Simple stochastic differential equation models have been applied by several researchers to describe the dispersion of tracer particles in the planetary atmospheric boundary layer and to form the basis for computer simulations of particle paths. To obtain the drift coefficient, empirical vertical...... velocity distributions that depend on height above the ground both with respect to standard deviation and skewness are substituted into the stationary Fokker/Planck equation. The particle position distribution is taken to be uniform *the well/mixed condition( and also a given dispersion coefficient...

  5. Stochastic models for atmospheric dispersion

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2003-01-01

    Simple stochastic differential equation models have been applied by several researchers to describe the dispersion of tracer particles in the planetary atmospheric boundary layer and to form the basis for computer simulations of particle paths. To obtain the drift coefficient, empirical vertical...... positions close to the boundaries. Different rules have been suggested in the literature with justifications based on simulation studies. Herein the relevant stochastic differential equation model is formulated in a particular way. The formulation is based on the marginal transformation of the position...... dependent particle velocity into a position independent Gaussian velocity. Boundary conditions are obtained from Itos rule of stochastic differentiation. The model directly point at a canonical rule of reflection for the approximating random walk with finite time step. This reflection rule is different from...

  6. Impact of Land Surface Heterogeneity on Mesoscale Atmospheric Dispersion

    Science.gov (United States)

    Wu, Yuling; Nair, Udaysankar S.; Pielke, Roger A., Sr.; McNider, Richard T.; Christopher, Sundar A.; Anantharaj, Valentine G.

    2009-01-01

    Prior numerical modelling studies show that atmospheric dispersion is sensitive to surface heterogeneities, but past studies do not consider the impact of a realistic distribution of surface heterogeneities on mesoscale atmospheric dispersion. While these focussed on dispersion in the convective boundary layer, the present work also considers dispersion in the nocturnal boundary layer and above. Using a Lagrangian particle dispersion model (LPDM) coupled to the Eulerian Regional Atmospheric Modeling System (RAMS), the impact of topographic, vegetation, and soil moisture heterogeneities on daytime and nighttime atmospheric dispersion is examined. In addition, the sensitivity to the use of Moderate Resolution Imaging Spectroradiometer (MODIS)-derived spatial distributions of vegetation characteristics on atmospheric dispersion is also studied. The impact of vegetation and terrain heterogeneities on atmospheric dispersion is strongly modulated by soil moisture, with the nature of dispersion switching from non-Gaussian to near- Gaussian behaviour for wetter soils (fraction of saturation soil moisture content exceeding 40%). For drier soil moisture conditions, vegetation heterogeneity produces differential heating and the formation of mesoscale circulation patterns that are primarily responsible for non-Gaussian dispersion patterns. Nighttime dispersion is very sensitive to topographic, vegetation, soil moisture, and soil type heterogeneity and is distinctly non-Gaussian for heterogeneous land-surface conditions. Sensitivity studies show that soil type and vegetation heterogeneities have the most dramatic impact on atmospheric dispersion. To provide more skillful dispersion calculations, we recommend the utilisation of satellite-derived vegetation characteristics coupled with data assimilation techniques that constrain soil-vegetation-atmosphere transfer (SVAT) models to generate realistic spatial distributions of surface energy fluxes.

  7. Atmospheric Dispersion Model Validation in Low Wind Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Patrick

    2007-11-01

    Atmospheric plume dispersion models are used for a variety of purposes including emergency planning and response to hazardous material releases, determining force protection actions in the event of a Weapons of Mass Destruction (WMD) attack and for locating sources of pollution. This study provides a review of previous studies that examine the accuracy of atmospheric plume dispersion models for chemical releases. It considers the principles used to derive air dispersion plume models and looks at three specific models currently in use: Aerial Location of Hazardous Atmospheres (ALOHA), Emergency Prediction Information Code (EPIcode) and Second Order Closure Integrated Puff (SCIPUFF). Results from this study indicate over-prediction bias by the EPIcode and SCIPUFF models and under-prediction bias by the ALOHA model. The experiment parameters were for near field dispersion (less than 100 meters) in low wind speed conditions (less than 2 meters per second).

  8. Atmospheric Dispersion Model Validation in Low Wind Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Patrick

    2007-11-01

    Atmospheric plume dispersion models are used for a variety of purposes including emergency planning and response to hazardous material releases, determining force protection actions in the event of a Weapons of Mass Destruction (WMD) attack and for locating sources of pollution. This study provides a review of previous studies that examine the accuracy of atmospheric plume dispersion models for chemical releases. It considers the principles used to derive air dispersion plume models and looks at three specific models currently in use: Aerial Location of Hazardous Atmospheres (ALOHA), Emergency Prediction Information Code (EPIcode) and Second Order Closure Integrated Puff (SCIPUFF). Results from this study indicate over-prediction bias by the EPIcode and SCIPUFF models and under-prediction bias by the ALOHA model. The experiment parameters were for near field dispersion (less than 100 meters) in low wind speed conditions (less than 2 meters per second).

  9. Experimental Measurements of Concentration Fluctuations and Scales in a Dispersing Plume in the Atmospheric Surface Layer Obtained Using a Very Fast Response Concentration Detector

    Science.gov (United States)

    2016-06-14

    VOLUME 33 Experimental Measurements of Concentration Fluctuations and Scales in a Dispersing Plume in the Atmospheric Surface Layer Obtained Using a...final form 22 December 1993) ABSTRACT High-frequency fluctuations of concentration in a plume dispersing in the atmospheric surface layer have... layer is of critical importance in many industrial and envi- ronmental fluid mechanics problems, ranging from air quality control and regulation of

  10. MODA - A hybrid atmospheric pollutant dispersion model

    Energy Technology Data Exchange (ETDEWEB)

    Favaron, M.; Oliveti Selmi, O. [Servizi Territorio srl, Milan (Italy); Sozzi, R. [Agenzia Regionale Protezione Ambiente (ARPA) Lazio, Rieti (Italy)

    2004-07-01

    MODA is a Gaussian-hybrid atmospheric dispersion model, intended for regulatory applications, and designed to meet the following requirements: ability to operate in complex terrain, standard use of a refined description of turbulence, operational efficiency (in terms of both speed and ease to change simulation parameters), ease of integration in modelling interfaces, output compatibility with the widely-used ISC3. MODA can operate in two modes: a standard mode, in which the pollutant dispersion is treated as Gaussian, and an advanced mode, in which the hybrid relations are used to compute the pollutant concentrations. (orig.)

  11. Atmospheric dispersion effects in weak lensing measurements

    CERN Document Server

    Plazas, Andrés A

    2012-01-01

    The wavelength dependence of atmospheric refraction causes elongation of finite-bandwidth images along the elevation vector, which produces spurious signals in weak gravitational lensing shear measurements unless this atmospheric dispersion is calibrated and removed to high precision. Because astrometric solutions and point spread function (PSF) characteristics are typically calibrated from stellar images, differences between the reference stars' spectra and the galaxies' spectra will leave residual errors in both the astrometric positions ($\\Delta{\\bar{R}}$) and in the second moment (width) of the wavelength-averaged PSF ($\\Delta{v}$) for galaxies. We estimate the level of $\\Delta{V}$ that will induce spurious weak lensing signals in PSF-corrected galaxy shapes that exceed the statistical errors of the {\\em Dark Energy Survey (DES)} and the {\\em Large Synoptic Survey Telescope (LSST)} cosmic-shear experiments. We also estimate the $\\Delta{\\bar{R}}$ signals that will produce unacceptable spurious distortions ...

  12. Advances in parallel computer technology for desktop atmospheric dispersion models

    Energy Technology Data Exchange (ETDEWEB)

    Bian, X.; Ionescu-Niscov, S.; Fast, J.D. [Pacific Northwest National Lab., Richland, WA (United States); Allwine, K.J. [Allwine Enviornmental Serv., Richland, WA (United States)

    1996-12-31

    Desktop models are those models used by analysts with varied backgrounds, for performing, for example, air quality assessment and emergency response activities. These models must be robust, well documented, have minimal and well controlled user inputs, and have clear outputs. Existing coarse-grained parallel computers can provide significant increases in computation speed in desktop atmospheric dispersion modeling without considerable increases in hardware cost. This increased speed will allow for significant improvements to be made in the scientific foundations of these applied models, in the form of more advanced diffusion schemes and better representation of the wind and turbulence fields. This is especially attractive for emergency response applications where speed and accuracy are of utmost importance. This paper describes one particular application of coarse-grained parallel computer technology to a desktop complex terrain atmospheric dispersion modeling system. By comparing performance characteristics of the coarse-grained parallel version of the model with the single-processor version, we will demonstrate that applying coarse-grained parallel computer technology to desktop atmospheric dispersion modeling systems will allow us to address critical issues facing future requirements of this class of dispersion models.

  13. Dispersion of effluents in the atmosphere; Dispersion des effluents dans l`atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This conference day was organized by the `convection` section of the French association of thermal engineers with the support of the environment and energy mastery agency (ADEME). This book of proceedings contains 10 papers entitled: `physical modeling of atmospheric dispersion in wind tunnels. Some industrial examples`; `modeling of the noxious effects of a fire on the environment of an industrial site: importance of thermal engineering related hypotheses`; `atmospheric diffusion of a noxious cloud: fast evaluation method of safety areas around refrigerating installations that use ammonia`; `modeling of atmospheric flows in urban areas in order to study the dispersion of pollutants`; `use of a dispersion parameter to characterize the evolution of a diffusion process downstream of a linear source of passive contaminant placed inside a turbulent boundary layer`; `elements of reflexion around the development of an analytical methodology applied to the elaboration of measurement strategies of air quality in ambient and outdoor atmospheres around industrial sites`; `state-of-the-art about treatment techniques for VOC-rich gaseous effluents`; `characteristics of the time variation of the atmospheric pollution in the Paris region and visualization of its space distribution`; `mass-spectrometry for the measurement of atmospheric pollutants`; `volume variations in natural convection turbulence`. (J.S.)

  14. Atmospheric Dispersion Analysis using MACCS2

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, R; Yang, J M

    2004-02-02

    The Nuclear Regulatory Commission (NRC) Regulatory Guide 1.145 requires an evaluation of the offsite atmospheric dispersion coefficient, {Chi}/Q, as a part of the acceptance criteria in the accident analysis. In it, it requires in sequence computations of (1) the overall site 95th percentile {Chi}/Q, (2) the maximum of the sixteen sector 99.5th percentile {Chi}/Q, and (3) comparison and selection of the worst of the two values for reporting in the safety analysis report (SAR). In all cases, the site-specific meteorology and sector-specific site boundary distances are employed in the evaluation. There are sixteen 22.5-sectors, the nearest site boundary of which is determined within the 45-arc centered on each of the sixteen compass directions.

  15. Comparative Study on Atmospheric Dispersion Module of Level 3 PSA

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Dahye; Jang, Misuk; Kang, Hyun Sik; Kim, Seoung Rae [NESS, Daejeon (Korea, Republic of)

    2016-10-15

    Some regulation documents such as Regulatory Guides and NUREG publications from the U.S. Nuclear Regulatory Commission (NRC) have influences on domestic radiation environmental analyses. As renewal versions of NUREG-0800 and NUREG-1555 have issued lately, the assessment for Severe Accident (SA) with Probabilistic Safety Assessment (PSA) should be added to Safety Analysis Report (SAR) and Radiation Environmental Report (RER). Because these reports are the required documents for obtaining the construction permit and operating license, it is important to understand the PSA methodology and it needs to improve the site-specific input data of L3PSA codes for SA. First, our review focuses on the atmospheric dispersion and deposition related input data of L3PSA code in this paper. Then we will continue to review the improvements of other input data. Two atmospheric dispersion models, which are PAVAN developed for design basis accident and ATMOS of MACCS2 code developed for SA, were reviewed in this paper. L3PSA deals with the effects of severe accidents and basically includes the evaluation of both short- and long-term effects. Therefore, both the deposition effects and nuclide information(type, amount, and chemical characteristics of released radionuclide) would be considered as the input parameters of atmospheric dispersion model for L3PSA. Additionally, the meteorological data would be sampled randomly to meet the purpose of probabilistic method. However, the sampling method would be selected according to analysis purpose. After review, ATMOS module and its input data are suitably developed for the atmospheric dispersion analysis of L3PSA. However, ATMOS module was developed using the site-specific terrain and environment characteristics. For the domestic application, it needs to study the input data reflecting the Korean terrain and environment characteristics. It would be also continuously improved in response to the time- and site-specific changes of weather

  16. Comparison of RIMPUFF, HYSPLIT, ADMS atmospheric dispersion model outputs, using emergency response procedures, with (85)Kr measurements made in the vicinity of nuclear reprocessing plant.

    Science.gov (United States)

    Connan, Olivier; Smith, Kilian; Organo, Catherine; Solier, Luc; Maro, Denis; Hébert, Didier

    2013-10-01

    The Institut de Radioprotection et de Sureté Nucléaire (IRSN) performed a series of (85)Kr air sampling campaigns at mesoscale distances (18-50 km) from the AREVA NC La Hague nuclear reprocessing plant (North West France) between 2007 and 2009. The samples were collected in order to test and optimise a technique to measure low krypton-85 ((85)Kr) air concentrations and to investigate the performance of three atmospheric dispersion models (RIMPUFF, HYSPLIT, and ADMS), This paper presents the (85)Kr air concentrations measured at three sampling locations which varied from 2 to 8000 Bq m(-3), along with the (85)Kr air concentrations output by the dispersion models. The dispersion models made reasonable estimates of the mean concentrations of (85)Kr field measurements during steady wind conditions. In contrast, the models failed to accurately predict peaks in (85)Kr air concentration during periods of rapid and large changes in wind speed and/or wind direction. At distances where we made the comparisons (18-50 km), in all cases, the models underestimated the air concentration activities.

  17. A gamma radiation dose calculation method for use with Lagrangian puff atmospheric dispersion models used in real-time emergency response systems.

    Science.gov (United States)

    Andronopoulos, S; Bartzis, J G

    2010-12-01

    The paper presents the development of a model for the calculation of the gamma radiation dose rate from a cloud or plume of radionuclides. The model has been implemented in the Lagrangian puff dispersion model DIPCOT which is used in the framework of the RODOS system for nuclear emergency management. The basic characteristics of the model are its speed of execution and its ability to calculate the gamma dose rates from clouds or plumes of random shape formed under non-homogeneous meteorological conditions or over complicated topography. The three-dimensional integral that would normally have to be numerically calculated in such circumstances has been transformed to a one-dimensional one through a coordinate transformation for each model puff and by using a separation of variables technique. The resulting one-dimensional integrals have been pre-calculated and their values stored for a range of parameters that cover the possible ranges of photon energies, puff dimensions and distances encountered in cases of atmospheric dispersion. During runtime the model calculates the exact values by interpolation from stored tables of values. This is a very fast and accurate method, as the evaluation study has proved. The model performance has been evaluated through simulations of a real-scale experiment involving routine emissions of (41)Ar from a reactor and comparisons of model predictions with measured fluence rates. The comparisons have revealed a satisfactory level of agreement and the model performance statistical indices are well above the acceptance criteria that are suggested in the literature.

  18. Data assimilation on atmospheric dispersion of radioactive materials

    DEFF Research Database (Denmark)

    Drews, Martin

    2006-01-01

    , radiological observations, e.g. dose rate measurements, can be used to improve these model predictions and to obtain real-time estimates of the atmospheric dispersion parameters. This thesis examines data assimilation in the context of atmospheric dispersion of radioactive materials. In particular, it presents...... assimilation methods in a realistic setting. New experimental studies of atmospheric dispersion of radioactive material was carried out in October 2001 at the SCK"CEN in Mol, Belgium. In the Mol experiment, the radiation field from routine releases of 41 Ar is recorded by an array of gamma detectors along...... for evaluation of gamma dose rate models and for development and testing of data assimilation methods for atmospheric dispersion of radioactive materials. The Mol dataset has been used for experimental evaluation of the Gaussian plume model and the RIMPUFF model; the results of these studies are presented...

  19. Operational mesoscale atmospheric dispersion prediction using a parallel computing cluster

    Indian Academy of Sciences (India)

    C V Srinivas; R Venkatesan; N V Muralidharan; Someshwar Das; Hari Dass; P Eswara Kumar

    2006-06-01

    An operational atmospheric dispersion prediction system is implemented on a cluster supercomputer for Online Emergency Response at the Kalpakkam nuclear site.This numerical system constitutes a parallel version of a nested grid meso-scale meteorological model MM5 coupled to a random walk particle dispersion model FLEXPART.The system provides 48-hour forecast of the local weather and radioactive plume dispersion due to hypothetical airborne releases in a range of 100 km around the site.The parallel code was implemented on different cluster con figurations like distributed and shared memory systems.A 16-node dual Xeon distributed memory gigabit ethernet cluster has been found sufficient for operational applications.The runtime of a triple nested domain MM5 is about 4 h for a 24 h forecast.The system had been operated continuously for a few months and results were ported on the IMSc home page. Initial and periodic boundary condition data for MM5 are provided by NCMRWF,New Delhi. An alternative source is found to be NCEP,USA.These two sources provide the input data to the operational models at different spatial and temporal resolutions using different assimilation methods.A comparative study on the results of forecast is presented using these two data sources for present operational use.Improvement is noticed in rainfall forecasts that used NCEP data, probably because of its high spatial and temporal resolution.

  20. Atmospheric dispersion modelling over complex terrain at small scale

    Science.gov (United States)

    Nosek, S.; Janour, Z.; Kukacka, L.; Jurcakova, K.; Kellnerova, R.; Gulikova, E.

    2014-03-01

    Previous study concerned of qualitative modelling neutrally stratified flow over open-cut coal mine and important surrounding topography at meso-scale (1:9000) revealed an important area for quantitative modelling of atmospheric dispersion at small-scale (1:3300). The selected area includes a necessary part of the coal mine topography with respect to its future expansion and surrounding populated areas. At this small-scale simultaneous measurement of velocity components and concentrations in specified points of vertical and horizontal planes were performed by two-dimensional Laser Doppler Anemometry (LDA) and Fast-Response Flame Ionization Detector (FFID), respectively. The impact of the complex terrain on passive pollutant dispersion with respect to the prevailing wind direction was observed and the prediction of the air quality at populated areas is discussed. The measured data will be used for comparison with another model taking into account the future coal mine transformation. Thus, the impact of coal mine transformation on pollutant dispersion can be observed.

  1. Data assimilation on atmospheric dispersion of radioactive materials

    DEFF Research Database (Denmark)

    Drews, Martin

    2006-01-01

    , radiological observations, e.g. dose rate measurements, can be used to improve these model predictions and to obtain real-time estimates of the atmospheric dispersion parameters. This thesis examines data assimilation in the context of atmospheric dispersion of radioactive materials. In particular, it presents...... with simultaneous measurements of the 41 Ar source term, the main meteorological parameters and direct plume measurements, using a Lidar scanning technique. The thesis provides a detailed description of the experiment and the subsequent data analysis. A reference dataset has been generated, which is suitable......During a nuclear accident in which radionuclides are released to the atmosphere, off-site dose assessment using atmospheric dispersion models play an important role in facilitating optimized interventions, i.e. for mitigating the radiological consequences. By using data assimilation methods...

  2. Dense gas dispersion in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Morten

    1998-09-01

    Dense gas dispersion is characterized by buoyancy induced gravity currents and reduction of the vertical mixing. Liquefied gas releases from industrial accidents are cold because of the heat of evaporation which determines the density for a given concentration and physical properties. The temperature deficit is moderated by the heat flux from the ground, and this convection is an additional source of turbulence which affects the mixing. A simple model as the soil heat flux is used to estimate the ability of the ground to sustain the heat flux during release. The initial enthalpy, release rate, initial entrainment and momentum are discussed for generic source types and the interaction with obstacles is considered. In the MTH project BA experiments source with and without momentum were applied. The continuously released propane gas passed a two-dimensional removable obstacle perpendicular to the wind direction. Ground-level gas concentrations and vertical profiles of concentration, temperature, wind speed and turbulence were measured in front of and behind the obstacle. Ultrasonic anemometers providing fast velocity and concentration signals were mounted at three levels on the masts. The observed turbulence was influenced by the stability and the initial momentum of the jet releases. Additional information were taken from the `Dessert tortoise` ammonia jet releases, from the `Fladis` experiment with transition from dense to passive dispersion, and from the `Thorney Island` continuous releases of isothermal freon mixtures. The heat flux was found to moderate the negative buoyancy in both the propane and ammonia experiments. The heat flux measurements are compared to an estimate by analogy with surface layer theory. (au) 41 tabs., 146 ills., 189 refs.

  3. Nuclear risk from atmospheric dispersion in Northern Europe - Summary Report

    DEFF Research Database (Denmark)

    Lauritzen, Bent

    The objective of the NordRisk II project has been to derive practical means for assessing the risks from long-range atmospheric dispersion of radioac-tive materials. An atlas over different atmospheric dispersion and deposi-tion scenarios has been developed using historical numerical weather pre......-diction (NWP) model data. The NWP model data covers three years span-ning the climate variability associated with the North Atlantic Oscillation, and the atlas considers radioactive releases from 16 release sites in and near the Nordic countries. A statistical analysis of the long-range disper...

  4. Complex source rate estimation for atmospheric transport and dispersion models

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, L.L.

    1993-09-13

    The accuracy associated with assessing the environmental consequences of an accidental atmospheric release of radioactivity is highly dependent on our knowledge of the source release rate which is generally poorly known. This paper reports on a technique that integrates the radiological measurements with atmospheric dispersion modeling for more accurate source term estimation. We construct a minimum least squares methodology for solving the inverse problem with no a priori information about the source rate.

  5. MET-RODOS: A comprehensive atmospheric dispersion module

    DEFF Research Database (Denmark)

    Mikkelsen, T.; Thykier-Nielsen, S.; Astrup, P.;

    1997-01-01

    air concentrations, and ground level gamma dose rates from up to 15 simultaneous released nuclides are calculated using a nested system of local and long range atmospheric dispersion models, driven by real-time available on-line meteorological information. The MET-PODOS module uses concurrently...

  6. Meteorological Uncertainty of atmospheric Dispersion model results (MUD)

    DEFF Research Database (Denmark)

    Havskov Sørensen, Jens; Amstrup, Bjarne; Feddersen, Henrik

    The MUD project addresses assessment of uncertainties of atmospheric dispersion model predictions, as well as optimum presentation to decision makers. Previously, it has not been possible to estimate such uncertainties quantitatively, but merely to calculate the 'most likely' dispersion scenario...... of the meteorological model results. These uncertainties stem from e.g. limits in meteorological obser-vations used to initialise meteorological forecast series. By perturbing the initial state of an NWP model run in agreement with the available observa-tional data, an ensemble of meteorological forecasts is produced....... However, recent developments in numerical weather prediction (NWP) include probabilistic forecasting techniques, which can be utilised also for atmospheric dispersion models. The ensemble statistical methods developed and applied to NWP models aim at describing the inherent uncertainties...

  7. Meteorological Uncertainty of atmospheric Dispersion model results (MUD)

    DEFF Research Database (Denmark)

    Havskov Sørensen, Jens; Amstrup, Bjarne; Feddersen, Henrik

    The MUD project addresses assessment of uncertainties of atmospheric dispersion model predictions, as well as possibilities for optimum presentation to decision makers. Previously, it has not been possible to estimate such uncertainties quantitatively, but merely to calculate the ‘most likely...... uncertainties of the meteorological model results. These uncertainties stem from e.g. limits in meteorological observations used to initialise meteorological forecast series. By perturbing e.g. the initial state of an NWP model run in agreement with the available observational data, an ensemble......’ dispersion scenario. However, recent developments in numerical weather prediction (NWP) include probabilistic forecasting techniques, which can be utilised also for long-range atmospheric dispersion models. The ensemble statistical methods developed and applied to NWP models aim at describing the inherent...

  8. Footprints and footprint analysis for atmospheric dispersion problems

    CERN Document Server

    Brännström, Niklas

    2014-01-01

    Footprint analysis, also known as the study of Influence areas, is a first order method for solving inverse atmospheric dispersion problems. We revisit the concept of footprints giving a rigorous definition of the concept (denoted posterior footprints and posterior zero footprints) in terms of spatio-temporal domains. The notion of footprints is then augmented the to the forward dispersion problem by defining prior footprints and prior zero footprints. We then study how posterior footprints and posterior zero footprints can be combined to reveal more information about the source, and how prior footprints and prior footprints can be combined to yield more information about the measurements.

  9. A Atmospheric Dispersion Model for the Sudbury, Ontario, Area.

    Science.gov (United States)

    Huhn, Frank Jones

    1982-03-01

    A mathematical model was developed and tested to predict the relationship between sulphur oxide and trace metal emissions from smelters in the Sudbury, Ontario area, and atmospheric, precipitation, lake water and sediment chemistry. The model consists of atmospheric and lake chemistry portions. The atmospheric model is a Gaussian crosswind concentration distribution modification to a box model with a uniform vertical concentration gradient limited by a mixing height. In the near-field Briggs' plume rise and vertical dispersion terms are utilized. Oxidation, wet and dry deposition mechanisms are included to account for the gas, liquid and solid phases separately. Important improvements over existing models include (1) near- and far-field conditions treated in a single model; (2) direct linkage of crosswind dispersion to hourly meteorological observations; (3) utilization of maximum to minimum range of input parameters to realistically model the range of outputs; (4) direct linkage of the atmospheric model to a lake model. Precipitation chemistry as calculated by the atmospheric model is related to lake water and sediment chemistry utilizing a mass balance approach and assuming a continuously stirred reactor (CSTR) model to describe lake circulation. All inputs are atmospheric, modified by hydrology, soil chemistry and sedimentation. Model results were tested by comparison with existing atmospheric and precipitation chemistry measurements, supplemented with analyses of lake water and sediment chemistry collected in a field program. Eight pollutant species were selected for modeling: sulphur dioxide, sulphate ion, hydrogen ion, copper, nickel, lead, zinc, and iron. The model effectively predicts precipitation chemistry within 150 km of Sudbury, with an average prediction to measurement ratio of 90 percent. Atmospheric concentrations are effectively predicted within 80 km, with an average prediction to measurement ratio of 81 percent. Lake chemistry predictions are

  10. The annual averaged atmospheric dispersion factor and deposition factor according to methods of atmospheric stability classification

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae Sun; Jeong, Hyo Joon; Kim, Eun Han; Han, Moon Hee; Hwang, Won Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-09-15

    This study analyzes the differences in the annual averaged atmospheric dispersion factor and ground deposition factor produced using two classification methods of atmospheric stability, which are based on a vertical temperature difference and the standard deviation of horizontal wind direction fluctuation. Daedeok and Wolsong nuclear sites were chosen for an assessment, and the meteorological data at 10 m were applied to the evaluation of atmospheric stability. The XOQDOQ software program was used to calculate atmospheric dispersion factors and ground deposition factors. The calculated distances were chosen at 400 m, 800 m, 1,200 m, 1,600 m, 2,400 m, and 3,200 m away from the radioactive material release points. All of the atmospheric dispersion factors generated using the atmospheric stability based on the vertical temperature difference were shown to be higher than those from the standard deviation of horizontal wind direction fluctuation. On the other hand, the ground deposition factors were shown to be same regardless of the classification method, as they were based on the graph obtained from empirical data presented in the Nuclear Regulatory Commission's Regulatory Guide 1.111, which is unrelated to the atmospheric stability for the ground level release. These results are based on the meteorological data collected over the course of one year at the specified sites; however, the classification method of atmospheric stability using the vertical temperature difference is expected to be more conservative.

  11. Short-range atmospheric dispersion of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Cortis, A.; Oldenburg, C.M.

    2009-11-01

    We present a numerical study aimed at quantifying the effects of concentration-dependent density on the spread of a seeping plume of CO{sub 2} into the atmosphere such as could arise from a leaking geologic carbon sequestration site. Results of numerical models can be used to supplement field monitoring estimates of CO{sub 2} seepage flux by modelling transport and dispersion between the source emission and concentration-measurement points. We focus on modelling CO{sub 2} seepage dispersion over relatively short distances where density effects are likely to be important. We model dense gas dispersion using the steady-state Reynolds-averaged Navier-Stokes equations with density dependence in the gravity term. Results for a two-dimensional system show that a density dependence emerges at higher fluxes than prior estimates. A universal scaling relation is derived that allows estimation of the flux from concentrations measured downwind and vice versa.

  12. Joint Observational Research on Nocturnal Atmospheric Dispersion of Aerosols (JORNADA)

    Science.gov (United States)

    2009-02-01

    REPORT Joint Observational Research on Nocturnal Atmospheric Dispersion of Aerosols ( JORNADA ) Grant W911NF-07-1-0066 Final Progress Report (January 15...2009) 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Four major analyses were conducted using the stable boundary layer JORNADA data. The first was... JORNADA ) Grant W911NF-07-1-0066 Final Progress Report (January 15, 2009) Report Title ABSTRACT Four major analyses were conducted using the stable

  13. An Advanced Atmospheric Dispersion Corrector: The Magellan Visible AO Camera

    OpenAIRE

    Kopon, Derek; Close, Laird M.; Gasho, Victor

    2010-01-01

    In addition to the BLINC/MIRAC IR science instruments, the Magellan adaptive secondary AO system will have an EEV CCD47 that can be used both for visible AO science and as a wide-field acquisition camera. The effects of atmospheric dispersion on the elongation of the diffraction limited Magellan adaptive optics system point spread function (PSF) are significant in the near IR. This elongation becomes particularly egregious at visible wavelengths, culminating in a PSF that is 2000\\{mu}m long i...

  14. Atmospheric dispersion models help to improve air quality; Los modelos de dispersion atmosferica ayudan a mejorar la calidad del aire

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.

    2013-07-01

    One of the main challenges of the atmospheric sciences is to reproduce as well as possible the phenomena and processes of pollutants in the atmosphere. To do it, mathematical models based in this case on fluid dynamics and mass and energy conservation equations, equations that govern the atmospheric chemistry, etc., adapted to the spatial scales to be simulated, are developed. The dispersion models simulate the processes of transport, dispersion, chemical transformation and elimination by deposition that air pollutants undergo once they are emitted. Atmospheric dispersion models with their multiple applications have become essential tools for the air quality management. (Author)

  15. Using meteorological ensembles for atmospheric dispersion modelling of the Fukushima nuclear accident

    Science.gov (United States)

    Périllat, Raphaël; Korsakissok, Irène; Mallet, Vivien; Mathieu, Anne; Sekiyama, Thomas; Didier, Damien; Kajino, Mizuo; Igarashi, Yasuhito; Adachi, Kouji

    2016-04-01

    Dispersion models are used in response to an accidental release of radionuclides of the atmosphere, to infer mitigation actions, and complement field measurements for the assessment of short and long term environmental and sanitary impacts. However, the predictions of these models are subject to important uncertainties, especially due to input data, such as meteorological fields or source term. This is still the case more than four years after the Fukushima disaster (Korsakissok et al., 2012, Girard et al., 2014). In the framework of the SAKURA project, an MRI-IRSN collaboration, a meteorological ensemble of 20 members designed by MRI (Sekiyama et al. 2013) was used with IRSN's atmospheric dispersion models. Another ensemble, retrieved from ECMWF and comprising 50 members, was also used for comparison. The MRI ensemble is 3-hour assimilated, with a 3-kilometers resolution, designed to reduce the meteorological uncertainty in the Fukushima case. The ECMWF is a 24-hour forecast with a coarser grid, representative of the uncertainty of the data available in a crisis context. First, it was necessary to assess the quality of the ensembles for our purpose, to ensure that their spread was representative of the uncertainty of meteorological fields. Using meteorological observations allowed characterizing the ensembles' spread, with tools such as Talagrand diagrams. Then, the uncertainty was propagated through atmospheric dispersion models. The underlying question is whether the output spread is larger than the input spread, that is, whether small uncertainties in meteorological fields can produce large differences in atmospheric dispersion results. Here again, the use of field observations was crucial, in order to characterize the spread of the ensemble of atmospheric dispersion simulations. In the case of the Fukushima accident, gamma dose rates, air activities and deposition data were available. Based on these data, selection criteria for the ensemble members were

  16. Atmospheric mercury dispersion modelling from two nearest hypothetical point sources

    Energy Technology Data Exchange (ETDEWEB)

    Al Razi, Khandakar Md Habib; Hiroshi, Moritomi; Shinji, Kambara [Environmental and Renewable Energy System (ERES), Graduate School of Engineering, Gifu University, Yanagido, Gifu City, 501-1193 (Japan)

    2012-07-01

    The Japan coastal areas are still environmentally friendly, though there are multiple air emission sources originating as a consequence of several developmental activities such as automobile industries, operation of thermal power plants, and mobile-source pollution. Mercury is known to be a potential air pollutant in the region apart from SOX, NOX, CO and Ozone. Mercury contamination in water bodies and other ecosystems due to deposition of atmospheric mercury is considered a serious environmental concern. Identification of sources contributing to the high atmospheric mercury levels will be useful for formulating pollution control and mitigation strategies in the region. In Japan, mercury and its compounds were categorized as hazardous air pollutants in 1996 and are on the list of 'Substances Requiring Priority Action' published by the Central Environmental Council of Japan. The Air Quality Management Division of the Environmental Bureau, Ministry of the Environment, Japan, selected the current annual mean environmental air quality standard for mercury and its compounds of 0.04 ?g/m3. Long-term exposure to mercury and its compounds can have a carcinogenic effect, inducing eg, Minamata disease. This study evaluates the impact of mercury emissions on air quality in the coastal area of Japan. Average yearly emission of mercury from an elevated point source in this area with background concentration and one-year meteorological data were used to predict the ground level concentration of mercury. To estimate the concentration of mercury and its compounds in air of the local area, two different simulation models have been used. The first is the National Institute of Advanced Science and Technology Atmospheric Dispersion Model for Exposure and Risk Assessment (AIST-ADMER) that estimates regional atmospheric concentration and distribution. The second is the Hybrid Single Particle Lagrangian Integrated trajectory Model (HYSPLIT) that estimates the atmospheric

  17. Atmospheric mercury dispersion modelling from two nearest hypothetical point sources

    Directory of Open Access Journals (Sweden)

    Khandakar Md Habib Al Razi, Moritomi Hiroshi, Kambara Shinji

    2012-01-01

    Full Text Available The Japan coastal areas are still environmentally friendly, though there are multiple air emission sources originating as a consequence of several developmental activities such as automobile industries, operation of thermal power plants, and mobile-source pollution. Mercury is known to be a potential air pollutant in the region apart from SOX, NOX, CO and Ozone. Mercury contamination in water bodies and other ecosystems due to deposition of atmospheric mercury is considered a serious environmental concern. Identification of sources contributing to the high atmospheric mercury levels will be useful for formulating pollution control and mitigation strategies in the region. In Japan, mercury and its compounds were categorized as hazardous air pollutants in 1996 and are on the list of "Substances Requiring Priority Action" published by the Central Environmental Council of Japan. The Air Quality Management Division of the Environmental Bureau, Ministry of the Environment, Japan, selected the current annual mean environmental air quality standard for mercury and its compounds of 0.04 μg/m3. Long-term exposure to mercury and its compounds can have a carcinogenic effect, inducing eg, Minamata disease. This study evaluates the impact of mercury emissions on air quality in the coastal area of Japan. Average yearly emission of mercury from an elevated point source in this area with background concentration and one-year meteorological data were used to predict the ground level concentration of mercury. To estimate the concentration of mercury and its compounds in air of the local area, two different simulation models have been used. The first is the National Institute of Advanced Science and Technology Atmospheric Dispersion Model for Exposure and Risk Assessment (AIST-ADMER that estimates regional atmospheric concentration and distribution. The second is the Hybrid Single Particle Lagrangian Integrated trajectory Model (HYSPLIT that estimates the

  18. Emission rate estimation through data assimilation of gamma dose measurements in a Lagrangian atmospheric dispersion model.

    Science.gov (United States)

    Tsiouri, V; Kovalets, I; Andronopoulos, S; Bartzis, J G

    2012-01-01

    This paper presents an efficient algorithm for estimating the unknown emission rate of radionuclides in the atmosphere following a nuclear accident. The algorithm is based on assimilation of gamma dose rate measured data in a Lagrangian atmospheric dispersion model. Such models are used in the framework of nuclear emergency response systems (ERSs). It is shown that the algorithm is applicable in both deterministic and stochastic modes of operation of the dispersion model. The method is evaluated by computational simulations of a 3-d field experiment on atmospheric dispersion of ⁴¹Ar emitted routinely from a research reactor. Available measurements of fluence rate (photons flux) in air are assimilated in the Lagrangian dispersion model DIPCOT and the ⁴¹Ar emission rate is estimated. The statistical analysis shows that the model-calculated emission rates agree well with the real ones. In addition the model-predicted fluence rates at the locations of the sensors, which were not used in the data assimilation procedure are in better agreement with the measurements. The first evaluation results of the method presented in this study show that the method performs satisfactorily and therefore it is applicable in nuclear ERSs provided that more comprehensive validation studies will be performed.

  19. Modified ensemble Kalman filter for nuclear accident atmospheric dispersion: prediction improved and source estimated.

    Science.gov (United States)

    Zhang, X L; Su, G F; Yuan, H Y; Chen, J G; Huang, Q Y

    2014-09-15

    Atmospheric dispersion models play an important role in nuclear power plant accident management. A reliable estimation of radioactive material distribution in short range (about 50 km) is in urgent need for population sheltering and evacuation planning. However, the meteorological data and the source term which greatly influence the accuracy of the atmospheric dispersion models are usually poorly known at the early phase of the emergency. In this study, a modified ensemble Kalman filter data assimilation method in conjunction with a Lagrangian puff-model is proposed to simultaneously improve the model prediction and reconstruct the source terms for short range atmospheric dispersion using the off-site environmental monitoring data. Four main uncertainty parameters are considered: source release rate, plume rise height, wind speed and wind direction. Twin experiments show that the method effectively improves the predicted concentration distribution, and the temporal profiles of source release rate and plume rise height are also successfully reconstructed. Moreover, the time lag in the response of ensemble Kalman filter is shortened. The method proposed here can be a useful tool not only in the nuclear power plant accident emergency management but also in other similar situation where hazardous material is released into the atmosphere.

  20. An Advanced Atmospheric Dispersion Corrector: The Magellan Visible AO Camera

    CERN Document Server

    Kopon, Derek; Gasho, Victor

    2010-01-01

    In addition to the BLINC/MIRAC IR science instruments, the Magellan adaptive secondary AO system will have an EEV CCD47 that can be used both for visible AO science and as a wide-field acquisition camera. The effects of atmospheric dispersion on the elongation of the diffraction limited Magellan adaptive optics system point spread function (PSF) are significant in the near IR. This elongation becomes particularly egregious at visible wavelengths, culminating in a PSF that is 2000\\{mu}m long in one direction and diffraction limited (30-60 \\{mu}m) in the other over the wavelength band 0.5-1.0\\{mu}m for a source at 45\\pm zenith angle. The planned Magellan AO system consists of a deformable secondary mirror with 585 actuators. This number of actuators should be sufficient to nyquist sample the atmospheric turbulence and correct images to the diffraction limit at wavelengths as short as 0.7\\{mu}m, with useful science being possible as low as 0.5\\{mu}m. In order to achieve diffraction limited performance over this ...

  1. Helicopter response to atmospheric turbulence

    Science.gov (United States)

    Riaz, J.; Prasad, J. V. R.; Schrage, D. P.; Gaonkar, G. H.

    1992-01-01

    A new time-domain method for simulating cyclostationary turbulence as seen by a translating and rotating blade element has recently been developed for the case of one-dimensional spectral distribution. This paper extends the simulation method to the cases of two- and three-dimensional spectral distributions and presents validation results for the two-dimensional case. The statistics of an isolated rigid blade flapping response to turbulence are computed using a two-dimensional spectral representation of the von Karman turbulence model, and the results are compared with those obtained using the conventional space-fixed turbulence analysis. The new turbulence simulation method is used for predicting the Black Hawk helicopter response to atmospheric turbulence.

  2. The use of atmospheric dispersion models in risk assessment decision support systems for pesticides

    NARCIS (Netherlands)

    Leeuw, de F.A.A.M.; Pul, van W.A.J.; Berg, van den F.; Gilbert, A.J.

    2000-01-01

    In the evaluation of potentially adverse effects of organic chemicals such as pesticides on the environment the atmosphere may play an important role. After its release to the atmosphere the chemical will be transported/dispersed in the atmosphere andfinally it will be removed either by atmospheric-

  3. Global atmospheric dispersion modelling after the Fukushima accident

    Energy Technology Data Exchange (ETDEWEB)

    Suh, K.S.; Youm, M.K.; Lee, B.G.; Min, B.I. [Korea Atomic Energy Research Institute (Korea, Republic of); Raul, P. [Universidad de Sevilla (Spain)

    2014-07-01

    A large amount of radioactive material was released to the atmosphere due to the Fukushima nuclear accident in March 2011. The radioactive materials released into the atmosphere were mostly transported to the Pacific Ocean, but some of them were fallen on the surface due to dry and wet depositions in the northwest area from the Fukushima nuclear site. Therefore, northwest part of the nuclear site was seriously contaminated and it was designated with the restricted zone within a radius of 20 ∼ 30 km around the Fukushima nuclear site. In the early phase of the accident from 11 March to 30 March, the radioactive materials were dispersed to an area of the inland and offshore of the nuclear site by the variations of the wind. After the Fukushima accident, the radionuclides were detected through the air monitoring in the many places over the world. The radioactive plume was transported to the east part off the site by the westerly jet stream. It had detected in the North America during March 17-21, in European countries during March 23-24, and in Asia during from March 24 to April 6, 2011. The radioactive materials were overall detected across the northern hemisphere passed by 15 ∼ 20 days after the accident. Three dimensional numerical model was applied to evaluate the dispersion characteristics of the radionuclides released into the air. Simulated results were compared with measurements in many places over the world. Comparative results had good agreements in some places, but they had a little differences in some locations. The difference between the calculations and measurements are due to the meteorological data and relatively coarse resolutions in the model. Some radioactive materials were measured in Philippines, Taiwan, Hon Kong and South Korea during from March 23-28. It inferred that it was directly transported from the Fukushima by the northeastern monsoon winds. This event was well represented in the numerical model. Generally, the simulations had a good

  4. The Atmospheric Radionuclide Transport Model (ARTM) - Validation of a long-term atmospheric dispersion model

    Science.gov (United States)

    Hettrich, Sebastian; Wildermuth, Hans; Strobl, Christopher; Wenig, Mark

    2016-04-01

    In the last couple of years, the Atmospheric Radionuclide Transport Model (ARTM) has been developed by the German Federal Office for Radiation Protection (BfS) and the Society for Plant and Reactor Security (GRS). ARTM is an atmospheric dispersion model for continuous long-term releases of radionuclides into the atmosphere, based on the Lagrangian particle model. This model, developed in the first place as a more realistic replacement for the out-dated Gaussian plume models, is currently being optimised for further scientific purposes to study atmospheric dispersion in short-range scenarios. It includes a diagnostic wind field model, allows for the application of building structures and multiple sources (including linear, 2-and 3-dimensional source geometries), and considers orography and surface roughness. As an output it calculates the activity concentration, dry and wet deposition and can model also the radioactive decay of Rn-222. As such, ARTM requires to undergo an intense validation process. While for short-term and short-range models, which were mainly developed for examining nuclear accidents or explosions, a few measurement data-sets are available for validation, data-sets for validating long-term models are very sparse and the existing ones mostly prove to be not applicable for validation. Here we present a strategy for the validation of long-term Lagrangian particle models based on the work with ARTM. In our validation study, the first part we present is a comprehensive analysis of the model sensitivities on different parameters like e.g. (simulation grid size resolution, starting random number, amount of simulation particles, etc.). This study provides a good estimation for the uncertainties of the simulation results and consequently can be used to generate model outputs comparable to the available measurements data at various distances from the emission source. This comparison between measurement data from selected scenarios and simulation results

  5. Atmospheric transport and dispersion modeling for the Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Ramsdell, J.V.

    1991-07-01

    Radiation doses that may have resulted from operations at the Hanford Site are being estimated in the Hanford Environmental Dose Reconstruction (HEDR) Project. One of the project subtasks, atmospheric transport, is responsible for estimating the transport, diffusion and deposition of radionuclides released to the atmosphere. This report discusses modeling transport and diffusion in the atmospheric pathway. It is divided into three major sections. The first section of the report presents the atmospheric modeling approach selected following discussion with the Technical Steering Panel that directs the HEDR Project. In addition, the section discusses the selection of the MESOI/MESORAD suite of atmospheric dispersion models that form the basis for initial calculations and future model development. The second section of the report describes alternative modeling approaches that were considered. Emphasis is placed on the family of plume and puff models that are based on Gaussian solution to the diffusion equations. The final portion of the section describes the performance of various models. The third section of the report discusses factors that bear on the selection of an atmospheric transport modeling approach for HEDR. These factors, which include the physical setting of the Hanford Site and the available meteorological data, serve as constraints on model selection. Five appendices are included in the report. 39 refs., 4 figs., 2 tabs.

  6. Impact of atmospheric release in stable night meteorological conditions; can emergency models predict dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Connan, O.; Hebert, D.; Solier, L.; Voiseux, C.; Lamotte, M.; Laguionie, P.; Maro, D.; Thomas, L. [IRSN/PRP-ENV/SERIS/LRC (France)

    2014-07-01

    Atmospheric dispersion of pollutant or radionuclides in stratified meteorological condition, i.e. especially when weather conditions are very stable, mainly at night, is still poorly understood and not well apprehended by the operational atmospheric dispersion models. However, correctly predicting the dispersion of a radioactive plume, and estimating the radiological consequences for the population, following an unplanned atmospheric release of radionuclides are crucial steps in an emergency response. To better understand dispersion in these special weather conditions, IRSN performed a series of 22 air sampling campaigns between 2010 and 2013 in the vicinity of the La Hague nuclear reprocessing plant (AREVA - NC, France), at distances between 200 m and 3000 m from the facility. Krypton-85 ({sup 85}Kr), a b-and g-emitting radionuclide, released during the reprocessing of spent nuclear fuel was used as a non-reactive tracer of radioactive plumes. Experimental campaigns were realized in stability class stable or very stable (E or F according to Pasquill classification) 18 times, and in neutral conditions (D according to Pasquill classification) 4 times. During each campaign, Krypton-85 real time measurement were made to find the plume around the plant, and then integrated samples (30 min) were collected in bag perpendicularly to the assumed wind direction axis. After measurement by gamma spectrometry, we have, when it was possible, estimate the point of impact and the width of the plume. The objective was to estimate the horizontal dispersion (width) of the plume at ground level in function of the distance and be able to calculate atmospheric transfer coefficients. In a second step, objective was to conclude on the use of common model and on their uncertainties. The results will be presented in terms of impact on the near-field. They will be compared with data obtained in previous years in neutral atmospheric conditions, and finally the results will be confronted with

  7. Atmospheric dispersion models and pre-processing of meteorological data for real-time application

    DEFF Research Database (Denmark)

    Mikkelsen, T.; Desiato, F.

    1993-01-01

    and selects a series of suitable local scale atmospheric flow and dispersion models for RODOS, covering a variety of release types, terrain types and atmospheric stability conditions. The identification and ranking of suitable models is based on a discussion of principal modelling requirements, scale...... considerations, model performance and evaluation records, computational needs, user expertise, and type of sources to be modelled. Models suitable for a given accident scenario are chosen from this hierarchy in order to provide the dose assessments via the dispersion module. A forecasting feasibility......-processor provides the flow and dispersion models with on-site wind and atmospheric stability measures....

  8. Improved Meteorological Input for Atmospheric Release Decision support Systems and an Integrated LES Modeling System for Atmospheric Dispersion of Toxic Agents: Homeland Security Applications

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, E; Simpson, M; Larsen, S; Gash, J; Aluzzi, F; Lundquist, J; Sugiyama, G

    2010-04-26

    When hazardous material is accidently or intentionally released into the atmosphere, emergency response organizations look to decision support systems (DSSs) to translate contaminant information provided by atmospheric models into effective decisions to protect the public and emergency responders and to mitigate subsequent consequences. The Department of Homeland Security (DHS)-led Interagency Modeling and Atmospheric Assessment Center (IMAAC) is one of the primary DSSs utilized by emergency management organizations. IMAAC is responsible for providing 'a single piont for the coordination and dissemination of Federal dispersion modeling and hazard prediction products that represent the Federal position' during actual or potential incidents under the National Response Plan. The Department of Energy's (DOE) National Atmospheric Release Advisory Center (NARAC), locatec at the Lawrence Livermore National Laboratory (LLNL), serves as the primary operations center of the IMAAC. A key component of atmospheric release decision support systems is meteorological information - models and data of winds, turbulence, and other atmospheric boundary-layer parameters. The accuracy of contaminant predictions is strongly dependent on the quality of this information. Therefore, the effectiveness of DSSs can be enhanced by improving the meteorological options available to drive atmospheric transport and fate models. The overall goal of this project was to develop and evaluate new meteorological modeling capabilities for DSSs based on the use of NASA Earth-science data sets in order to enhance the atmospheric-hazard information provided to emergency managers and responders. The final report describes the LLNL contributions to this multi-institutional effort. LLNL developed an approach to utilize NCAR meteorological predictions using NASA MODIS data for the New York City (NYC) region and demonstrated the potential impact of the use of different data sources and data

  9. The Infrared Imaging Spectrograph (IRIS) for TMT: the atmospheric dispersion corrector

    CERN Document Server

    Phillips, Andrew C; Larkin, James E; Moore, Anna M; Niehaus, Cynthia N; Cramptone, David; Simard, Luc

    2010-01-01

    We present a conceptual design for the atmospheric dispersion corrector (ADC) for TMT's Infrared Imaging Spectrograph (IRIS). The severe requirements of this ADC are reviewed, as are limitations to observing caused by uncorrectable atmospheric effects. The requirement of residual dispersion less than 1 milliarcsecond can be met with certain glass combinations. The design decisions are discussed and the performance of the design ADC is described. Alternative options and their performance tradeoffs are also presented.

  10. Computational dispersion properties of horizontal staggered grids for atmospheric and ocean models

    Science.gov (United States)

    Fox-Rabinovitz, Michael S.

    1991-01-01

    The computational dispersion properties of horizontally and time-horizontally staggered grids utilizing corresponding centered-difference techniques for approximation of the adjustment, or gravity wave equations, are examined in terms of their group velocity characteristics. Results are acquired for oceanic and atmospheric models, the former being characterized by a much smaller Rossby radius of deformation. For all grids considered additional filtering is required to control and even eliminate waves with poor computational dispersion characteristics. Computational dispersion properties along with other computational characteristics and requirements give some guidance for an optimal selection of an appropriate grid for an ocean or atmospheric model.

  11. Development of NEXRAD Wind Retrievals as Input to Atmospheric Dispersion Models

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Jerome D.; Newsom, Rob K.; Allwine, K Jerry; Xu, Qin; Zhang, Pengfei; Copeland, Jeffrey H.; Sun, Jenny

    2007-03-06

    The objective of this study is to determine the feasibility that routinely collected data from the Doppler radars can appropriately be used in Atmospheric Dispersion Models (ADMs) for emergency response. We have evaluated the computational efficiency and accuracy of two variational mathematical techniques that derive the u- and v-components of the wind from radial velocities obtained from Doppler radars. A review of the scientific literature indicated that the techniques employ significantly different approaches in applying the variational techniques: 2-D Variational (2DVar), developed by NOAA¹s (National Oceanic and Atmospheric Administration's) National Severe Storms Laboratory (NSSL) and Variational Doppler Radar Analysis System (VDRAS), developed by the National Center for Atmospheric Research (NCAR). We designed a series of numerical experiments in which both models employed the same horizontal domain and resolution encompassing Oklahoma City for a two-week period during the summer of 2003 so that the computed wind retrievals could be fairly compared. Both models ran faster than real-time on a typical single dual-processor computer, indicating that they could be used to generate wind retrievals in near real-time. 2DVar executed ~2.5 times faster than VDRAS because of its simpler approach.

  12. Hanford atmospheric dispersion data: 1960 through June 1967

    Energy Technology Data Exchange (ETDEWEB)

    Nickola, P.W.; Ramsdell, J.V.; Glantz, C.S.; Kerns, R.E.

    1983-11-01

    This volume presents dispersion and supporting meteorological data from experiments conducted over relatively flat terrain at Hanford, Washington from January 1960 through June 1967. The nature of the experiments, the sampling grids, and the tracer techniques used are described in the narrative portion of the document. Appendices contain the time-integrated concentrations for samplers within the plumes, summaries of the concentration distributions across the plumes, and wind and temperature profile data for each release period. 18 references, 7 figures, 3 tables.

  13. National Atmospheric Release Advisory Center Dispersion Modeling of the Full-scale Radiological Dispersal Device (FSRDD) Field Trials.

    Science.gov (United States)

    Neuscamman, Stephanie; Yu, Kristen

    2016-05-01

    The results of the National Atmospheric Release Advisory Center (NARAC) model simulations are compared to measured data from the Full-Scale Radiological Dispersal Device (FSRDD) field trials. The series of explosive radiological dispersal device (RDD) experiments was conducted in 2012 by Defence Research and Development Canada (DRDC) and collaborating organizations. During the trials, a wealth of data was collected, including a variety of deposition and air concentration measurements. The experiments were conducted with one of the stated goals being to provide measurements to atmospheric dispersion modelers. These measurements can be used to facilitate important model validation studies. For this study, meteorological observations recorded during the tests are input to the diagnostic meteorological model, ADAPT, which provides 3-D, time-varying mean wind and turbulence fields to the LODI dispersion model. LODI concentration and deposition results are compared to the measured data, and the sensitivity of the model results to changes in input conditions (such as the particle activity size distribution of the source) and model physics (such as the rise of the buoyant cloud of explosive products) is explored. The NARAC simulations predicted the experimentally measured deposition results reasonably well considering the complexity of the release. Changes to the activity size distribution of the modeled particles can improve the agreement of the model results to measurement.

  14. Analyses of Aircraft Responses to Atmospheric Turbulence

    NARCIS (Netherlands)

    Van Staveren, W.H.J.J.

    2003-01-01

    The response of aircraft to stochastic atmospheric turbulence plays an important role in aircraft-design (load calculations), Flight Control System (FCS) design and flight-simulation (handling qualities research and pilot training). In order to simulate these aircraft responses, an accurate

  15. Analyses of Aircraft Responses to Atmospheric Turbulence

    NARCIS (Netherlands)

    Van Staveren, W.H.J.J.

    2003-01-01

    The response of aircraft to stochastic atmospheric turbulence plays an important role in aircraft-design (load calculations), Flight Control System (FCS) design and flight-simulation (handling qualities research and pilot training). In order to simulate these aircraft responses, an accurate mathemat

  16. Sensitivity model study of regional mercury dispersion in the atmosphere

    Science.gov (United States)

    Gencarelli, Christian N.; Bieser, Johannes; Carbone, Francesco; De Simone, Francesco; Hedgecock, Ian M.; Matthias, Volker; Travnikov, Oleg; Yang, Xin; Pirrone, Nicola

    2017-01-01

    Atmospheric deposition is the most important pathway by which Hg reaches marine ecosystems, where it can be methylated and enter the base of food chain. The deposition, transport and chemical interactions of atmospheric Hg have been simulated over Europe for the year 2013 in the framework of the Global Mercury Observation System (GMOS) project, performing 14 different model sensitivity tests using two high-resolution three-dimensional chemical transport models (CTMs), varying the anthropogenic emission datasets, atmospheric Br input fields, Hg oxidation schemes and modelling domain boundary condition input. Sensitivity simulation results were compared with observations from 28 monitoring sites in Europe to assess model performance and particularly to analyse the influence of anthropogenic emission speciation and the Hg0(g) atmospheric oxidation mechanism. The contribution of anthropogenic Hg emissions, their speciation and vertical distribution are crucial to the simulated concentration and deposition fields, as is also the choice of Hg0(g) oxidation pathway. The areas most sensitive to changes in Hg emission speciation and the emission vertical distribution are those near major sources, but also the Aegean and the Black seas, the English Channel, the Skagerrak Strait and the northern German coast. Considerable influence was found also evident over the Mediterranean, the North Sea and Baltic Sea and some influence is seen over continental Europe, while this difference is least over the north-western part of the modelling domain, which includes the Norwegian Sea and Iceland. The Br oxidation pathway produces more HgII(g) in the lower model levels, but overall wet deposition is lower in comparison to the simulations which employ an O3 / OH oxidation mechanism. The necessity to perform continuous measurements of speciated Hg and to investigate the local impacts of Hg emissions and deposition, as well as interactions dependent on land use and vegetation, forests, peat

  17. Dispersive infrared spectroscopy measurements of atmospheric CO₂ using a Fabry-Pérot interferometer sensor.

    Science.gov (United States)

    Chan, K L; Ning, Z; Westerdahl, D; Wong, K C; Sun, Y W; Hartl, A; Wenig, M O

    2014-02-15

    In this paper, we present the first dispersive infrared spectroscopic (DIRS) measurement of atmospheric carbon dioxide (CO2) using a new scanning Fabry-Pérot interferometer (FPI) sensor. The sensor measures the optical spectra in the mid infrared (3,900 nm to 5,220 nm) wavelength range with full width half maximum (FWHM) spectral resolution of 78.8 nm at the CO2 absorption band (~4,280 nm) and sampling resolution of 20 nm. The CO2 concentration is determined from the measured optical absorption spectra by fitting it to the CO2 reference spectrum. Interference from other major absorbers in the same wavelength range, e.g., carbon monoxide (CO) and water vapor (H2O), was taken out by including their reference spectra in the fit as well. The detailed descriptions of the instrumental setup, the retrieval procedure, a modeling study for error analysis as well as laboratory validation using standard gas concentrations are presented. An iterative algorithm to account for the non-linear response of the fit function to the absorption cross sections due to the broad instrument function was developed and tested. A modeling study of the retrieval algorithm showed that errors due to instrument noise can be considerably reduced by using the dispersive spectral information in the retrieval. The mean measurement error of the prototype DIRS CO2 measurement for 1 minute averaged data is about ±2.5 ppmv, and down to ± 0.8ppmv for 10 minute averaged data. A field test of atmospheric CO2 measurements were carried out in an urban site in Hong Kong for a month and compared to a commercial non-dispersive infrared (NDIR) CO2 analyzer. 10 minute averaged data shows good agreement between the DIRS and NDIR measurements with Pearson correlation coefficient (R) of 0.99. This new method offers an alternative approach of atmospheric CO2 measurement featuring high accuracy, correction of non-linear absorption and interference of water vapor.

  18. Atmospheric-dispersion parameter evaluation in the Po Valley

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, G. (Turin Univ. (Italy). Ist. di Fisica; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica); Anfossi, D. (Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica); Bacci, P.; Brusasca, G.; Longhetto, A. (Ente Nazionale per l' Energia Elettrica, Milan (Italy))

    Comparison of turbulent-diffusion parameters sigmasub(y) and sigmasub(z), evaluated through different experimental tests carried out in the Po Valley in the range (10/sup 2/:10/sup 4/) m downwind the source, under natural and unstable conditions, is presented and discussed. Two kinds of methods of tracer dispersion were adopted. The first one dealt with no-lift balloon diffusion in the range (10/sup 2/:10/sup 3/) m, while the second one was relative to SF/sub 6/ dispersion in the range (10/sup 3/:10/sup 4/) m. In the present paper the two sets of data are joined and a single series of best-fit curves covering the whole measured range (10/sup 2/:10/sup 4/) m is derived. The results show different behaviours for sigmasub(y) and sigmasub(z); in fact, it is possible to extrapolate sigmasub(y) trends from one set of data (SF/sub 6/) to the other one (no-lift balloons) without changing the analytical expression and the values of their coefficients. For sigmasub(z), instead, some new considerations are needed. In fact, for the unstable categories here considered (B/C and C) it is necessary to change the analytical form of the sigmasub(z) trend. This is due to the effect of convection resulting in an increase of dsigmasub(z)/d x. Finally, the exponent of the sampling time tau, in the sigmasub(y) vs. tau relationship, was found equal to 0.2, in the range (16:128) min.

  19. A diffusion model for use with directional samplers. [particle dispersion in atmosphere

    Science.gov (United States)

    Anbar, D.

    1978-01-01

    The paper presents a mathematical model for describing dispersion processes of airborne particles in the atmosphere. The process is described as a superposition of independent Brownian motion processes with drifts and a boundary at zero. It is assumed that the terrain is flat and of a homogeneous roughness. All sources are assumed to be point sources. The time dependencies of emission rates, wind speed, wind direction, and atmospheric conditions are taken into account.

  20. Inverse problems using artificial neural networks in long range atmospheric dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, P.K.; Gera, B.; Ghosh, A.K. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Reactor Safety Div.

    2011-05-15

    Scalar dispersion in the atmosphere is an important area wherein different approaches are followed in development of good analytical models. The analyses based on Computational Fluid Dynamics (CFD) codes offer an opportunity of model development based on first principles of physics and hence such models have an edge over the existing models. Both forward and backward calculation methods are being developed for atmospheric dispersion around NPPs at BARC. Forward modeling methods, which describe the atmospheric transport from sources to receptors, use forward-running transport and dispersion models or computational fluid dynamics models which are run many times, and the resulting dispersion field is compared to observations from multiple sensors. Backward or inverse modeling methods use only one model run in the reverse direction from the receptors to estimate the upwind sources. Inverse modeling methods include adjoint and tangent linear models, Kalman filters, and variational data assimilation, and neural network. The present paper is aimed at developing a new approach where the identified specific signatures at receptor points form the basis for source estimation or inversions. This approach is expected to reduce the large transient data sets to reduced and meaningful data sets. In fact this reduces the inherently transient data set into a time independent mean data set. Forward computations were carried out with CFD code for various cases to generate a large set of data to train the Artificial Neural Network (ANN). Specific signature analysis was carried out to find the parameters of interest for ANN training like peak concentration, time to reach peak concentration and time to fall. The ANN was trained with data and source strength and locations were predicted from ANN. The inverse problem was performed using the ANN approach in long range atmospheric dispersion. An illustration of application of CFD code for atmospheric dispersion studies for a hypothetical

  1. Analyses of Aircraft Responses to Atmospheric Turbulence

    OpenAIRE

    Van Staveren, W.H.J.J.

    2003-01-01

    The response of aircraft to stochastic atmospheric turbulence plays an important role in aircraft-design (load calculations), Flight Control System (FCS) design and flight-simulation (handling qualities research and pilot training). In order to simulate these aircraft responses, an accurate mathematical model is required. Two classical models will be discussed in this thesis, that is the Delft University of Technology (DUT) model and the Four Point Aircraft (FPA) model. Although they are well...

  2. Atmospheric aerosol dispersion models and their applications to environmental risk assessment

    Directory of Open Access Journals (Sweden)

    Andrzej Mazur

    2014-03-01

    Full Text Available Introduction. Numerical models of dispersion of atmospheric pollutants are widely used to forecast the spread of contaminants in the air and to analyze the effects of this phenomenon. The aim of the study is to investigate the possibilities and the quality of diagnosis and prediction of atmospheric transport of aerosols in the air using the dispersion model of atmospheric pollutants, developed at the Institute of Meteorology and Water Management (IMWM in Warsaw. Material and methods. A model of the dispersion of atmospheric pollutants, linked with meteorological models in a diagnostic mode, was used to simulate the transport of the cloud of aerosols released during the crash near the town of Ożydiw (Ukraine and of volcanic ash – during the volcanic eruption of Eyjafjallajökull in Iceland. Results. Possible directions of dispersion of pollutants in the air and its concentration in the atmosphere and deposition to the soil were assessed. The analysis of temporal variability of concentrations of aerosols in the atmosphere confirmed that the model developed at IMWM is an effective tool for diagnosis of air quality in the area of Poland as well as for determination of exposure duration to the aerosol clouds for different weather scenarios. Conclusions. The results are a confirmation of the thesis, that because in the environmental risk assessment, an important element is not only current information on the level of pollution concentrations, but also the time of exposure to pollution and forecast of these elements, and consequently the predicted effects on man or the environment in general; so it is necessary to use forecasting tools, similar to presented application. The dispersion model described in the paper is an operational tool for description, analysis and forecasting of emergency situations in case of emissions of hazardous substances.

  3. Understanding strategies for seed dispersal by wind under contrasting atmospheric conditions.

    Science.gov (United States)

    Wright, S Joseph; Trakhtenbrot, Ana; Bohrer, Gil; Detto, Matteo; Katul, Gabriel G; Horvitz, Nir; Muller-Landau, Helene C; Jones, Frank A; Nathan, Ran

    2008-12-09

    Traits associated with seed dispersal vary tremendously among sympatric wind-dispersed plants. We used two contrasting tropical tree species, seed traps, micrometeorology, and a mechanistic model to evaluate how variation in four key traits affects seed dispersal by wind. The conceptual framework of movement ecology, wherein external factors (wind) interact with internal factors (plant traits) that enable movement and determine when and where movement occurs, fully captures the variable inputs and outputs of wind dispersal models and informs their interpretation. We used model calculations to evaluate the spatial pattern of dispersed seeds for the 16 factorial combinations of four traits. The study species differed dramatically in traits related to the timing of seed release, and a strong species by season interaction affected most aspects of the spatial pattern of dispersed seeds. A rich interplay among plant traits and seasonal differences in atmospheric conditions caused this interaction. Several of the same plant traits are crucial for both seed dispersal and other aspects of life history variation. Observed traits that limit dispersal are likely to be constrained by their life history consequences.

  4. Modelling the atmospheric dispersion of foot-and-mouth disease virus for emergency preparedness

    DEFF Research Database (Denmark)

    Sørensen, J.H.; Jensen, C.O.; Mikkelsen, T.

    2001-01-01

    A model system for simulating airborne spread of foot-and-mouth disease (FMD) is described. The system includes a virus production model and the local- and mesoscale atmospheric dispersion model RIMPUFF linked to the LINCOM local-scale Row model. LINCOM is used to calculate the sub-grid scale Row...

  5. ATMOSPHERIC DISPERSION COEFFICIENTS AND RADIOLOGICAL AND TOXICOLOGICAL EXPOSURE METHODOLOGY FOR USE IN TANK FARMS

    Energy Technology Data Exchange (ETDEWEB)

    GRIGSBY KM

    2011-04-07

    This report presents the atmospheric dispersion coefficients used in Tank Farms safety analysis. The basis equations for calculating radiological and toxicological exposures are also included. In this revision, the time averaging for toxicological consequence evaluations is clarified based on a review of DOE complex guidance and a review of tank farm chemicals.

  6. Characterization of exoplanet atmospheres using high-dispersion spectroscopy with the E-ELT and beyond

    Directory of Open Access Journals (Sweden)

    Snellen Ignas

    2013-04-01

    Full Text Available Ground-based high-dispersion (R ∼ 100,000 spectroscopy provides unique information on exoplanet atmospheres, inaccessible from space - even using the JWST or other future space telescopes. Recent successes in transmission- and dayside spectroscopy using CRIRES on the Very Large Telescope prelude the enormous discovery potential of high-dispersion spectrographs on the E-ELT, such as METIS in the thermal infrared, and HIRES in the optical/near-infrared. This includes the orbital inclination and masses of hundred(s of non-transiting planets, line-by-line molecular band spectra, planet rotation and global wind patterns, longitudinal spectral variations, and possibly isotopologue ratios. Thinking beyond the E-ELT, we advocate that ultimately a systematic search for oxygen in atmospheres of nearby Earth-like planets can be conducted using large arrays of relatively low-cost flux collector telescopes equipped with high-dispersion spectrographs.

  7. The limitations of atmospheric dispersion data and their contribution to uncertainties in dose assessment.

    Science.gov (United States)

    Murphy, B D; Ohr, S Y

    1985-03-01

    The calculation of atmospheric dispersion patterns is often an important component of radiation dose estimates. These dispersion calculations are a possible source of error and such errors or uncertainties need to be quantified. An important source of uncertainty is the meteorological data used in the calculations. Such data may be less than ideal because of constraints imposed by both availability and by the variances associated with population from which the data are obtained. We have studied a simple and much used model of atmospheric dispersion--the Gaussian plume. We discuss the uncertainties on the meteorological data which are input to the model and how these uncertainties could be used to estimate uncertainties for the modeling results. In doing this we have addressed both the uncertainty associated with a recorded climatology and the added uncertainty arising from the year-to-year variability at any given location.

  8. Transport and Dispersion Model Predictions of Elevated Source Tracer Experiments in the Copenhagen Area: Comparisons of Hazard Prediction and Assessment Capability (HPAC) and National Atmospheric Release Advisory Center (NARAC) Emergency Response Model Predictions

    Science.gov (United States)

    2006-07-01

    before the sampling arcs for these elevated releases. Based on this study, we recommend that the HPAC/ SCIPUFF developer reexamine the algorithm and...Integrated Puff Model ( SCIPUFF ) • Lagrangian model that uses Gaussian puff method; turbulent dispersion parameterization is based on second-order closure...error # 99 in the .log file from the SCIPUFF Weather Input Model (SWIM)]. We speculate that the cause of this error is the absence of any co-located

  9. Chernobyl and Fukushima nuclear accidents: what has changed in the use of atmospheric dispersion modeling?

    Science.gov (United States)

    Benamrane, Y; Wybo, J-L; Armand, P

    2013-12-01

    The threat of a major accidental or deliberate event that would lead to hazardous materials emission in the atmosphere is a great cause of concern to societies. This is due to the potential large scale of casualties and damages that could result from the release of explosive, flammable or toxic gases from industrial plants or transport accidents, radioactive material from nuclear power plants (NPPs), and chemical, biological, radiological or nuclear (CBRN) terrorist attacks. In order to respond efficiently to such events, emergency services and authorities resort to appropriate planning and organizational patterns. This paper focuses on the use of atmospheric dispersion modeling (ADM) as a support tool for emergency planning and response, to assess the propagation of the hazardous cloud and thereby, take adequate counter measures. This paper intends to illustrate the noticeable evolution in the operational use of ADM tools over 25 y and especially in emergency situations. This study is based on data available in scientific publications and exemplified using the two most severe nuclear accidents: Chernobyl (1986) and Fukushima (2011). It appears that during the Chernobyl accident, ADM were used few days after the beginning of the accident mainly in a diagnosis approach trying to reconstruct what happened, whereas 25 y later, ADM was also used during the first days and weeks of the Fukushima accident to anticipate the potentially threatened areas. We argue that the recent developments in ADM tools play an increasing role in emergencies and crises management, by supporting stakeholders in anticipating, monitoring and assessing post-event damages. However, despite technological evolutions, its prognostic and diagnostic use in emergency situations still arise many issues.

  10. Meteorological input for atmospheric dispersion models: an inter-comparison between new generation models

    Energy Technology Data Exchange (ETDEWEB)

    Busillo, C.; Calastrini, F.; Gualtieri, G. [Lab. for Meteorol. and Environ. Modell. (LaMMA/CNR-IBIMET), Florence (Italy); Carpentieri, M.; Corti, A. [Dept. of Energetics, Univ. of Florence (Italy); Canepa, E. [INFM, Dept. of Physics, Univ. of Genoa (Italy)

    2004-07-01

    The behaviour of atmospheric dispersion models is strongly influenced by meteorological input, especially as far as new generation models are concerned. More sophisticated meteorological pre-processors require more extended and more reliable data. This is true in particular when short-term simulations are performed, while in long-term modelling detailed data are less important. In Europe no meteorological standards exist about data, therefore testing and evaluating the results of new generation dispersion models is particularly important in order to obtain information on reliability of model predictions. (orig.)

  11. Estimation of tritium dispersion from the spent nuclear fuel reprocessing plant in Rokkasho using an atmospheric dispersion model

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Koichi; Kakiuchi, Hideki; Iyogi, Takashi; Hisamatsu, Shun' ichi [Institute for Environmental Sciences, Rokkasho, Aomori 039-3212 (Japan); Akata, Naofumi [Institute for Environmental Sciences, Rokkasho, Aomori 039-3212 (Japan); National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Chiang, Jing-Hsien; Suwa, Hiroji [Japan NUS Co., Ltd., Tokyo 160-0023 (Japan)

    2014-07-01

    Japan's first large-scale commercial plant for reprocessing spent nuclear fuel was constructed in Rokkasho, Japan, by Japan Nuclear Fuel Limited (JNFL). Final tests of plant operation carried out with spent fuels since 31 March 2006 have indicated that small amounts of radionuclides (mainly {sup 3}H, {sup 14}C, {sup 85}Kr, and {sup 129}I) are discharged into the atmosphere from the main stack of the plant. To estimate the atmospheric dispersion of {sup 3}H discharged from the plant, we used a combination of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5) and the CG-MATHEW/ADPIC models, Version 5.0 (ARAC-2). Simulation results were validated with atmospheric {sup 3}H concentrations and wet deposition rates measured at the Institute for Environmental Sciences (IES), located 2.6 km east from the stack. Biweekly atmospheric HTO, HT, and CH3T samples and monthly precipitation samples were collected at IES from April 2006 to February 2009 (the test period). Concentrations of {sup 3}H in the samples were measured with a low-background liquid scintillation counter (LSC-LB5, Hitachi Aloka Medical, Ltd., Tokyo, Japan). To simulate the dispersion of {sup 3}H from the stack, a meteorological field was calculated by MM5 and used as input to ARAC-2, which consists of a mass-consistent wind model and a particle-tracing-type dispersion model. The simulation areas were 315 km x 315 km for MM5 and 50 km x 50 km for ARAC-2. The following meteorological data were input to MM5: grid point data derived from the Mesoscale Model of the Japan Meteorological Agency (JMA), data from JMA's Automated Meteorological Data Acquisition System (AMeDAS), and wind speed and direction at IES and JNFL measured every 10 min. The weekly discharge rates of {sup 3}H disclosed by JNFL were used as the source term for ARAC-2. The concentrations of {sup 3}H in atmospheric moisture and precipitation samples increased from their background values during the test period. As an index of

  12. Lateral Dispersion of Pollutants in a Very Stable Atmosphere - The Effect of Meandering

    DEFF Research Database (Denmark)

    Kristensen, Leif; Jensen, Niels Otto; Lundtang Petersen, Erik

    1981-01-01

    A model based on single particle diffusion is introduced to account for the effect of “meandering” on lateral plume dispersion in a very stable atmosphere. It is assumed that small scale atmospheric turbulence is absent, so that only large horizontal eddies are effective. A formula for the lateral...... standard deviation σy as function of observation time, distance from source, mean wind speed, lateral turbulence intensity, and scale of the atmospheric motion is derived. Climatological time series of temperature lapse rates, wind speeds, and wind directions can be used as input to calculate σy....... Meteorological data from Risø and the small island Sprogø have been analysed in order to identify all situations in which the atmosphere is so stable that small scale turbulence cannot exist. The purpose is to see in how many of these situations meandering is also absent. The results show that, as a rule...

  13. A high precision technique to correct for residual atmospheric dispersion in high-contrast imaging systems

    CERN Document Server

    Pathak, P; Jovanovic, N; Lozi, J; Martinache, F; Minowa, Y; Kudo, T; Takami, H; Hayano, Y; Narita, N

    2016-01-01

    Direct detection and spectroscopy of exoplanets requires high contrast imaging. For habitable exoplanets in particular, located at small angular separation from the host star, it is crucial to employ small inner working angle (IWA) coronagraphs that efficiently suppress starlight. These coronagraphs, in turn, require careful control of the wavefront which directly impacts their performance. For ground-based telescopes, atmospheric refraction is also an important factor, since it results in a smearing of the PSF, that can no longer be efficiently suppressed by the coronagraph. Traditionally, atmospheric refraction is compensated for by an atmospheric dispersion compensator (ADC). ADC control relies on an a priori model of the atmosphere whose parameters are solely based on the pointing of the telescope, which can result in imperfect compensation. For a high contrast instrument like the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system, which employs very small IWA coronagraphs, refraction-induced sm...

  14. Prime focus wide-field corrector designs with lossless atmospheric dispersion correction

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, Will [Australian Astron. Observ.; Gillingham, Peter [Australian Astron. Observ.; Smith, Greg [Australian Astron. Observ.; Kent, Steve [Fermilab; Doel, Peter [University Coll. London

    2014-07-18

    Wide-Field Corrector designs are presented for the Blanco and Mayall telescopes, the CFHT and the AAT. The designs are Terezibh-style, with 5 or 6 lenses, and modest negative optical power. They have 2.2-3 degree fields of view, with curved and telecentric focal surfaces suitable for fiber spectroscopy. Some variants also allow wide-field imaging, by changing the last WFC element. Apart from the adaptation of the Terebizh design for spectroscopy, the key feature is a new concept for a 'Compensating Lateral Atmospheric Dispersion Corrector', with two of the lenses being movable laterally by small amounts. This provides excellent atmospheric dispersion correction, without any additional surfaces or absorption. A novel and simple mechanism for providing the required lens motions is proposed, which requires just 3 linear actuators for each of the two moving lenses.

  15. Estimation of 85Kr dispersion from the spent nuclear fuel reprocessing plant in Rokkasho, Japan, using an atmospheric dispersion model.

    Science.gov (United States)

    Abe, K; Iyogi, T; Kawabata, H; Chiang, J H; Suwa, H; Hisamatsu, S

    2015-11-01

    The spent nuclear fuel reprocessing plant of Japan Nuclear Fuel Limited (JNFL) located in Rokkasho, Japan, discharged small amounts of (85)Kr into the atmosphere during final tests of the plant with actual spent fuel from 31 March 2006 to October 2008. During this period, the gamma-ray dose rates due to discharged (85)Kr were higher than the background rates measured at the Institute for Environmental Sciences and at seven monitoring stations of the Aomori prefectural government and JNFL. The dispersion of (85)Kr was simulated by means of the fifth-generation Penn State/NCAR Mesoscale Model and the CG-MATHEW/ADPIC models (ver. 5.0) with a vertical terrain-following height coordinate. Although the simulated gamma-ray dose rates due to discharged (85)Kr agreed fairly well with measured rates, the agreement between the estimated monthly mean (85)Kr concentrations and the observed concentrations was poor. Improvement of the vertical flow of air may lead to better estimation of (85)Kr dispersion.

  16. Simplified Atmospheric Dispersion Model andModel Based Real Field Estimation System ofAir Pollution

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The atmospheric dispersion model has been well developed and applied in pollution emergency and prediction. Based on thesophisticated air diffusion model, this paper proposes a simplified model and some optimization about meteorological andgeological conditions. The model is suitable for what is proposed as Real Field Monitor and Estimation system. The principle ofsimplified diffusion model and its optimization is studied. The design of Real Field Monitor system based on this model and itsfundamental implementations are introduced.

  17. A new formulation of the probability density function in random walk models for atmospheric dispersion

    DEFF Research Database (Denmark)

    Falk, Anne Katrine Vinther; Gryning, Sven-Erik

    1997-01-01

    In this model for atmospheric dispersion particles are simulated by the Langevin Equation, which is a stochastic differential equation. It uses the probability density function (PDF) of the vertical velocity fluctuations as input. The PDF is constructed as an expansion after Hermite polynomials....... In several previous works where the PDF was expressed this way, further use was hampered by the fact that the PDF takes negative values for a range of velocities. This problem is overcome in the present formulation...

  18. Radon dispersion modeling and dose assessment for uranium mine ventilation shaft exhausts under neutral atmospheric stability.

    Science.gov (United States)

    Xie, Dong; Wang, Hanqing; Kearfott, Kimberlee J; Liu, Zehua; Mo, Shunquan

    2014-03-01

    In the present study, the roles of atmospheric wind profiles in the neutral atmosphere and surface roughness parameters in a complex terrain were examined to determine their impacts on radon ((222)Rn) dispersion from an actual uranium mine ventilation shaft. Simulations were completed on (222)Rn dispersion extending from the shaft to a vulnerable distance, near the location of an occupied farmhouse. The eight dispersion scenarios for the ventilation shaft source included four downwind velocities (0.5, 1.0, 2.0 and 4.0 m s(-1)) and two underlying surface roughness characteristics (0.1 m and 1.0 m). (222)Rn distributions and elevated pollution regions were identified. Effective dose estimation methods involving a historical weighting of wind speeds in the direction of interest coupled to the complex dispersion model were proposed. Using this approach, the radiation effects on the residents assumed to be outside at the location of the farm house 250 m downwind from the ventilation shaft outlet were computed. The maximum effective dose rate calculated for the residents at the outside of the farm house was 2.2 mSv y(-1), which is less than the low limit action level of 3-10 mSv y(-1) recommended by the International Commission on Radiological Protection (ICRP) occupational exposure action level for radon.

  19. Model calculating annual mean atmospheric dispersion factor for coastal site of nuclear power plant

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper describes an atmospheric dispersion field experiment performed on the coastal site of nuclear power plant in the east part of China during 1995 to 1996. The three-dimension joint frequency are obtained by hourly observation of wind and temperature on a 100m high tower; the frequency of the “event day of land and sea breezes” are given by observation of surface wind and land and sea breezes; the diffusion parameters are got from measurements of turbulent and wind tunnel simulation test.A new model calculating the annual mean atmospheric dispersion factor for coastal site of nuclear power plant is developed and established.This model considers not only the effect from mixing release and mixed layer but also the effect from the internal boundary layer and variation of diffusion parameters due to the distance from coast.The comparison between results obtained by the new model and current model shows that the ratio of annual mean atmospheric dispersion factor gained by the new model and the current one is about 2.0.

  20. Angular velocity response of nanoparticles dispersed in liquid crystal

    Science.gov (United States)

    Huang, Pin-Chun; Shih, Wen-Pin

    2013-06-01

    A hybrid material of nanoparticles dispersed in liquid crystal changed capacitance after spinning beyond threshold angular velocity. Once the centrifugal force of nanoparticles overcomes the attractive force between liquid crystals, the nanoparticles begin to move. The order of highly viscous liquid crystals is disturbed by the nanoparticles' penetrative movement, and the dielectric constant of the liquid crystal cell changes as a result. We found that the angular velocity response of nanoparticles dispersed in liquid crystal with higher working temperature and nanoparticles' density provided higher sensitivity. The obtained results are important for the continuous improvement of liquid-crystal-based inertial sensors or nano-viscometers.

  1. A Direct Measurement of Atmospheric Dispersion in N-band Spectra: Implications for Mid-IR Systems on ELTs

    Science.gov (United States)

    Skemer, Andrew J.; Hinz, Philip M.; Hoffmann, William F.; Close, Laird M.; Kendrew, Sarah; Mathar, Richard J.; Stuik, Remko; Greene, Thomas P.; Woodward, Charles E.; Kelley, Michael S.

    2009-08-01

    Adaptive optics will almost completely remove the effects of atmospheric turbulence at 10 μm on the Extremely Large Telescope (ELT) generation of telescopes. In this article, we observationally confirm that the next most important limitation to image quality is atmospheric dispersion, rather than telescope diffraction. By using the 6.5 m MMT with its unique mid-IR adaptive optics system, we measure atmospheric dispersion in the N band with the newly commissioned spectroscopic mode on MIRAC4-BLINC. Our results indicate that atmospheric dispersion is generally linear in the N band, although there is some residual curvature. We compare our measurements to theory, and make predictions for ELT Strehls and image FHWM with and without an atmospheric dispersion corrector (ADC). We find that for many mid-IR applications, an ADC will be necessary on ELTs. The observations reported here were obtained at the MMT Observatory, a facility operated jointly by the Smithsonian Institution and the University of Arizona.

  2. Containment atmosphere response to external sprays

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.; Almenas, K. [Univ. of Maryland, College Park, MD (United States)

    1995-09-01

    The application of external sprays to a containment steel shell can be an effective energy removal method and has been proposed in the passive AP-600 design. Reduction of the steel shell temperature in contact with the containment atmosphere enhances both heat and mass transfer driving forces. Large scale experimental data in this area is scarce, therefore the measurements obtained from the E series tests conducted at the German HDR facility deserve special attention. These long term tests simulated various severe accident conditions, including external spraying of the hemispherical steel shell. This investigation focuses upon the integral response of the HDR containment atmosphere during spray periods and upon methods by which lumped parameter system codes, like CONTAIN, model the underlying condensation phenomena. Increases in spray water flowrates above a minimum value were ineffective at improving containment pressure reduction since the limiting resistance for energy transfer lies in the noncondensable-vapor boundary layer at the inner condensing surface. The spray created an unstable condition by cooling the upper layers of a heated atmosphere and thus inducing global natural circulation flows in the facility and subsequently, abrupt changes in lighter-than-air noncondensable (J{sub 2}/He) concentrations. Modeling results using the CONTAIN code are outlined and code limitations are delineated.

  3. Response of cyanobacteria to low atmospheric pressure

    Science.gov (United States)

    Qin, Lifeng; Yu, Qingni; Ai, Weidang; Tang, Yongkang; Ren, Jin; Guo, Shuangsheng

    2014-10-01

    Maintaining a low pressure environment in a controlled ecological life support system would reduce the technological complexity and resupply cost in the course of the construction of a future manned lunar base. To estimate the effect of a hypobaric environment in a lunar base on biological components, such as higher plants, microbes, and algae, cyanobacteria was used as the model by determining their response of growth, morphology, and physiology when exposed to half of standard atmospheric pressure for 16 days (brought back to standard atmospheric pressure 30 minutes every two days for sampling). The results indicated that the decrease of atmospheric pressure from 100 kPa to 50 kPa reduced the growth rates of Microcystis aeruginosa, Merismopedia sp., Anabaena sp. PCC 7120, and Anabaena flos-aquae. The ratio of carotenoid to chlorophyll a content in the four tested strains increased under low pressure conditions compared to ambient conditions, resulting from the decrease of chlorophyll a and the increase of carotenoid in the cells. Moreover, low pressure induced the reduction of the phycocyanin content in Microcystis aeruginosa, Anabaena sp. PCC 7120, and Anabaena flos-aquae. The result from the ultrastructure observed using SEM indicated that low pressure promoted the production of more extracellular polymeric substances (EPSs) compared to ambient conditions. The results implied that the low pressure environment of 50 kPa in a future lunar base would induce different effects on biological components in a CELSS, which must be considered during the course of designing a future lunar base. The results will be a reference for exploring the response of other biological components, such as plants, microbes, and animals, living in the life support system of a lunar base.

  4. Some Observational and Modeling Studies of the Atmospheric Boundary Layer at Mississippi Gulf Coast for Air Pollution Dispersion Assessment

    Directory of Open Access Journals (Sweden)

    Anjaneyulu Yerramilli

    2008-12-01

    Full Text Available Coastal atmospheric conditions widely vary from those over inland due to the land-sea interface, temperature contrast and the consequent development of local circulations. In this study a field meteorological experiment was conducted to measure vertical structure of boundary layer during the period 25-29 June, 2007 at three locations Seabee base, Harrison and Wiggins sites in the Mississippi coast. A GPS Sonde along with slow ascent helium balloon and automated weather stations equipped with slow and fast response sensors were used in the experiment. GPS sonde were launched at three specific times (0700 LT, 1300 LT and 1800 LT during the experiment days. The observations indicate shallow boundary layer near the coast which gradually develops inland. The weather research and forecasting (WRF meso-scale atmospheric model and a Lagrangian particle dispersion model (HYSPLIT are used to simulate the lower atmospheric flow and dispersion in a range of 100 km from the coast for 28-30 June, 2007. The simulated meteorological parameters were compared with the experimental observations. The meso-scale model results show significant temporal and spatial variations in the meteorological fields as a result of development of sea breeze flow, its coupling with the large scale flow field and the ensuing alteration in the mixing depth across the coast. Simulated ground-level concentrations of SO2 from four elevated point sources located along the coast indicate diurnal variation and impact of the local sea-land breeze on the direction of the plume. Model concentration levels were highest during the stable morning condition and during the sea-breeze time in the afternoon. The highest concentrations were found up to 40 km inland during sea breeze time. The study illustrates the application of field meteorological observations for the validation of WRF which is coupled to HYSPLIT for dispersion assessment in the coastal region.

  5. A CFD approach to the atmospheric dispersion of radionuclides in the vicinity of NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Sampaio, Paulo A.B. de; Goncalves Junior, Milton A.; Lapa, Celso M.F. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mails: sampaio@ien.gov.br; miago@ien.gov.br; lapa@ien.gov.br

    2007-07-01

    Most studies of atmospheric dispersion of radionuclides released from Nuclear Power Plants (NPPs) are based on Gaussian plume models or on the use of a convection-diffusion equation. Such methods, which do not involve solving the flow problem, are useful in the atmospheric mesoscale, of the order of 2-2000 km from the NPP. However, they do not account for the turbulence generated by the interaction of the wind with obstacles and with the released material stream, which are the dominant factors in the local scale, of the order of 0-2 km from the source of emission. In order to study the dispersion of radionuclides in the vicinity of NPPs, the authors advocate the use of Computational Fluid Dynamics (CFD). The physical model is based on the Navier- Stokes equations, a convection-diffusion energy equation, and transport equations for the radionuclides. The stabilized finite element formulation employed results in a Large Eddy Simulation procedure, where no explicit subgrid modeling is required. The code uses adaptive techniques combining error estimation and remeshing. It has been implemented in a Beowulf parallel computing system using domain decomposition and the Message Passing Interface (MPI) for communication among processors. Both controlled emissions from a chimney and severe accidents have been simulated, showing the importance of the local phenomena on the dispersion of radionuclides. (author)

  6. A CFD approach to the atmospheric dispersion of radionuclides in the vicinity of NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Sampaio, Paulo A.B. [Programa de Pos-Graduacao em Ciencia e Tecnologia Nucleares, Instituto de Engenharia Nuclear/CNEN, CP 68550, CEP 21945-970, Rio de Janeiro, RJ (Brazil)], E-mail: sampaio@ien.gov.br; Junior, Milton A.G.; Lapa, Celso M.F. [Programa de Pos-Graduacao em Ciencia e Tecnologia Nucleares, Instituto de Engenharia Nuclear/CNEN, CP 68550, CEP 21945-970, Rio de Janeiro, RJ (Brazil)

    2008-01-15

    Most studies of atmospheric dispersion of radionuclides released from Nuclear Power Plants (NPPs) are based on Gaussian plume models or on the use of a convection-diffusion equation. Such methods, which do not involve solving the flow problem, are useful in the atmospheric mesoscale, of the order of 2-2000 km from the NPP. However, they do not account for the turbulence generated by the interaction of the wind with obstacles and with the released material stream, which are the dominant factors in the local scale, of the order of 0-2 km from the source of emission. Here, the authors advocate the use of computational fluid dynamics (CFD) to study the dispersion problem. The physical model comprises the Navier-Stokes equations, a convection-diffusion energy equation, and transport equations for the radionuclides. The paper details the stabilized finite element formulation used, stressing its connection with the variational multiscale/large eddy simulation approach. Adaptive techniques combining error estimation and remeshing are also employed. The method is implemented on a Beowulf parallel computing system using domain decomposition and the message passing interface (MPI). Controlled emissions from a chimney and release from severe accidents have been simulated, showing the importance of the local phenomena on the dispersion problem.

  7. Atmospheric dispersion of radon around uranium mill tailings of the former Pridneprovsky Chemical Plant in Ukraine.

    Science.gov (United States)

    Kovalets, Ivan V; Asker, Christian; Khalchenkov, Alexander V; Persson, Christer; Lavrova, Tatyana V

    2017-06-01

    Simulations of atmospheric dispersion of radon around the uranium mill tailings of the former Pridneprovsky Chemical Plant (PChP) in Ukraine were carried out with the aid of two atmospheric dispersion models: the Airviro Grid Model and the CALMET/CALPUFF model chain. The available measurement data of radon emission rates taken in the territories and the close vicinity of tailings were used in simulations. The results of simulations were compared to the yearly averaged measurements of concentration data. Both models were able to reasonably reproduce average radon concentration at the Sukhachivske site using averaged measured emission rates as input together with the measured meteorological data. At the same time, both models significantly underestimated concentrations as compared to measurements collected at the PChP industrial site. According to the results of both dispersion models, it was shown that only addition of significant radon emission rate from the whole territory of PChP in addition to emission rates from the tailings could explain the observed concentration measurements. With the aid of the uncertainty analysis, the radon emission rate from the whole territory of PChP was estimated to be between 1.5 and 3.5 Bq·m(-2)s(-1). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Dispersive infrared spectroscopy measurements of atmospheric CO{sub 2} using a Fabry–Pérot interferometer sensor

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K.L. [School of Energy and Environment, City University of Hong Kong (Hong Kong); Ning, Z., E-mail: zhining@cityu.edu.hk [School of Energy and Environment, City University of Hong Kong (Hong Kong); Guy Carpenter Climate Change Centre, City University of Hong Kong (Hong Kong); Westerdahl, D. [Ability R and D Energy Research Centre, City University of Hong Kong (Hong Kong); Wong, K.C. [School of Energy and Environment, City University of Hong Kong (Hong Kong); Sun, Y.W. [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei (China); Hartl, A. [School of Energy and Environment, City University of Hong Kong (Hong Kong); Wenig, M.O. [Meteorological Institute, Ludwig-Maximilians-Universität Munich (Germany)

    2014-02-01

    In this paper, we present the first dispersive infrared spectroscopic (DIRS) measurement of atmospheric carbon dioxide (CO{sub 2}) using a new scanning Fabry–Pérot interferometer (FPI) sensor. The sensor measures the optical spectra in the mid infrared (3900 nm to 5220 nm) wavelength range with full width half maximum (FWHM) spectral resolution of 78.8 nm at the CO{sub 2} absorption band (∼ 4280 nm) and sampling resolution of 20 nm. The CO{sub 2} concentration is determined from the measured optical absorption spectra by fitting it to the CO{sub 2} reference spectrum. Interference from other major absorbers in the same wavelength range, e.g., carbon monoxide (CO) and water vapor (H{sub 2}O), was taken out by including their reference spectra in the fit as well. The detailed descriptions of the instrumental setup, the retrieval procedure, a modeling study for error analysis as well as laboratory validation using standard gas concentrations are presented. An iterative algorithm to account for the non-linear response of the fit function to the absorption cross sections due to the broad instrument function was developed and tested. A modeling study of the retrieval algorithm showed that errors due to instrument noise can be considerably reduced by using the dispersive spectral information in the retrieval. The mean measurement error of the prototype DIRS CO{sub 2} measurement for 1 minute averaged data is about ± 2.5 ppmv, and down to ± 0.8 ppmv for 10 minute averaged data. A field test of atmospheric CO{sub 2} measurements were carried out in an urban site in Hong Kong for a month and compared to a commercial non-dispersive infrared (NDIR) CO{sub 2} analyzer. 10 minute averaged data shows good agreement between the DIRS and NDIR measurements with Pearson correlation coefficient (R) of 0.99. This new method offers an alternative approach of atmospheric CO{sub 2} measurement featuring high accuracy, correction of non-linear absorption and interference of water

  9. Spatially dispersive dynamical response of hot carriers in doped graphene

    OpenAIRE

    Kukhtaruk, S. M.; V. A. Kochelap; Sokolov, V. N.; Kim, K. W.

    2015-01-01

    We study theoretically wave-vector and frequency dispersion of the complex dynamic conductivity tensor (DCT), $\\sigma_{lm}(\\mathbf{k}, \\omega)$, of doped monolayer graphene under a strong dc electric field. For a general analysis, we consider the weak ac field of arbitrary configuration given by two independent vectors, the ac field polarization and the wave vector $\\mathbf{k}$. The high-field transport and linear response to the ac field are described on the base of the Boltzmann kinetic equ...

  10. EVALUATING EMERGENCY RESPONSE MODELS OF RADIOLOGICAL DISPERSION IN COMPLEX TERRAIN

    OpenAIRE

    Dyer, L.L.; Pascoe, J.H.

    2008-01-01

    Abstract: Operational airborne releases of trace quantities of the radioactive noble gas Ar-41 from the HIFAR Nuclear Research Reactor located in Sydney, Australia are valuable for evaluating emergency response models incorporating radiological dispersion. The Australian Nuclear Science and Technology Organisation (ANSTO), where the reactor is located, has a network of meteorological stations and GR-150 environmental gamma dose detectors placed in complex terrain within a 5km radius ...

  11. Predictability of the dispersion of Fukushima-derived radionuclides and their homogenization in the atmosphere

    Science.gov (United States)

    Mészáros, Róbert; Leelőssy, Ádám; Kovács, Tibor; Lagzi, István

    2016-01-01

    Long-range simulation of the dispersion of air pollutants in the atmosphere is one of the most challenging tasks in geosciences. Application of precise and fast numerical models in risk management and decision support can save human lives and can diminish consequences of an accidental release. Disaster at Fukushima Daiichi nuclear power plant has been the most serious event in the nuclear technology and industry in the recent years. We present and discuss the results of the numerical simulations on dispersion of Fukushima-derived particulate 131I and 137Cs using a global scale Lagrangian particle model. We compare concentrations and arrival times, using two emission scenarios, with the measured data obtained from 182 monitoring stations located all over the Northern Hemisphere. We also investigate the homogenization of isotopes in the atmosphere. Peak concentrations were predicted with typical accuracy of one order of magnitude showing a general underestimation in the case of 131I but not for 137Cs. Tropical and Arctic plumes, as well as the early detections in American and European midlatitudes were generally well predicted, however, the later regional-scale mixing could not be captured by the model. Our investigation highlights the importance of the parameterization of free atmospheric turbulence.

  12. A simplified chemistry module for atmospheric transport and dispersion models: Proof-of-concept using SCIPUFF

    Science.gov (United States)

    Burns, Douglas S.; Rottmann, Shawn D.; Plitz, Angela B. L.; Wiseman, Floyd L.; Moore, William; Chynwat, Veeradej

    2012-09-01

    An atmospheric chemistry module was developed to predict the fate of environmentally hazardous compounds discharged into the atmosphere. The computationally efficient model captures the diurnal variation within the environment and in the degradation rates of the released compounds, follows the formation of toxic degradation products, runs rapidly, and in principle can be integrated with any atmospheric transport and dispersion model. To accomplish this, a detailed atmospheric chemistry mechanism for a target toxic industrial compound (TIC) was reduced to a simple empirical effective degradation rate term (keff). Empirically derived decay functions for keff were developed as a function of important meteorological parameters such as solar flux, temperature, humidity, and cloud cover for various land uses and locations by statistically analyzing data generated from a detailed chemistry mechanism run over a wide range of (typical) atmospheric conditions. 1-Butene and two degradation products (propanal and nitrooxybutanone) were used as representative chemicals in the algorithm development for this proof-of-concept demonstration of the capability of the model. The quality of the developed model was evaluated via comparison with experimental chamber data and the results (decay rates) compared favorably for ethene, propene, and 1-butene (within a factor of two 75% or more of the time).

  13. Polyurethane Dispersions with Peptide Corona: Facile Synthesis of Stimuli-Responsive Dispersions and Films.

    Science.gov (United States)

    Breucker, Laura; Schöttler, Susanne; Landfester, Katharina; Taden, Andreas

    2015-08-10

    Peptide-polymer hybrid particles of submicron size yielding stimuli-responsive macroscopic films are presented. A thermoplastic polyurethane (PU) carrying polysiloxane and polyester soft segments serves as core material to obtain flexible, yet semicrystalline films with temperature-sensitivity. The synthesis is based on the high-sheer emulsification of isocyanate-terminated PU prepolymers, which in our model system purposefully lack any ability of colloidal self-stabilization. While emulsification in water leads to immediate coagulation, stable dispersions of polyurethane nanoparticles were formed in aqueous solutions of a hydrolyzed protein from wool. A comparison of dispersion and film properties to nonreactive, otherwise identical dispersions suggests covalent attachment of the peptide to the PU backbone. We show that the colloidal stability of the hybrid particles is completely governed by the peptide corona, and hence pH-triggered coagulation can be employed to induce particle deposition and film formation. Differential scanning calorimetry confirms partial crystallinity in the film and reveals strongly modified crystallization behavior due to the peptide.

  14. Kalman filtration of radiation monitoring data from atmospheric dispersion of radioactive materials

    DEFF Research Database (Denmark)

    Drews, M.; Lauritzen, B.; Madsen, H.;

    2004-01-01

    A Kalman filter method using off-site radiation monitoring data is proposed as a tool for on-line estimation of the source term for short-range atmospheric dispersion of radioactive materials. The method is based on the Gaussian plume model, in which the plume parameters including the source term...... exhibit a ‘random walk’ process. The embedded parameters of the Kalman filter are determined through maximum-likelihood estimation making the filter essentially free of external parameters. The method is tested using both real and simulated radiation monitoring data. For simulated data, the method...

  15. Estimating urban roadside emissions with an atmospheric dispersion model based on in-field measurements.

    Science.gov (United States)

    Pu, Yichao; Yang, Chao

    2014-09-01

    Urban vehicle emission models have been utilized to calculate pollutant concentrations at both microscopic and macroscopic levels based on vehicle emission rates which few researches have been able to validate. The objective of our research is to estimate urban roadside emissions and calibrate it with in-field measurement data. We calculated the vehicle emissions based on localized emission rates, and used an atmospheric dispersion model to estimate roadside emissions. A non-linear regression model was applied to calibrate the localized emission rates using in-field measurement data. With the calibrated emission rates, emissions on urban roadside can be estimated with a high accuracy.

  16. Atmospheric responses to stratospheric aerosol geoengineering

    Science.gov (United States)

    Ferraro, Angus; Highwood, Eleanor; Charlton-Perez, Andrew

    2013-04-01

    Stratospheric aerosol geoengineering, also called solar radiation management (SRM), involves the injection of aerosol into the stratosphere to increase the planetary albedo. It has been conceieved as a policy option in response to human-induced global warming. It is well-established from modelling studies and observations following volcanic eruptions that stratospheric sulphate aerosols cause global cooling. Some aspects of the climate response, especially those involving large-scale dynamical changes, are more uncertain. This work attempts to identify the physical mechanisms operating in the climate response to stratospheric aerosol geoengineering using idealised model experiments. The radiative forcing produced by the aerosol depends on its type (species) and size. Aerosols absorb terrestrial and solar radiation, which drives stratospheric temperature change. The stratospheric temperature change also depends on aerosol type and size. We calculate the stratospheric temperature change due to geoengineering with sulphate, titania, limestone and soot in a fixed-dynamical-heating radiative model. Sulphate produces tropical heating of up to ~6 K. Titania produces much less heating, whereas soot produces much more. Most aerosols increase the meridional temperature gradient in the lower stratosphere which, by thermal wind balance, would be expected to intensify the zonal winds in the polar vortex. An intermediate-complexity general circulation model is used to investigate the dynamical response to geoengineering aerosols. Atmospheric carbon dioxide concentrations are quadrupled. The carbon dioxide forcing is then balanced using stratospheric sulphate aerosol. We assess dynamical changes in the stratosphere, for example, the frequency of stratospheric sudden warmings and the strength of the Brewer-Dobson overturning circulation. We also assess changes in the strength and position of the tropospheric jets. We compare results for sulphate with those for titania.

  17. Response of cyanobacteria to low atmosphere pressure

    Science.gov (United States)

    Qin, Lifeng; Ai, Weidang; Guo, Shuangsheng; Tang, Yongkang; Yu, Qingni; Shen, Yunze; Ren, Jin

    Maintaining a low pressure environment would reduce the technological complexity and constructed cost of future lunar base. To estimate the effect of hypobaric of controlled ecological life support system in lunar base on terrestrial life, cyanobacteria was used as the model to exam the response of growth, morphology, physiology to it. The decrease of atmosphere pressure from 100 KPa to 50 KPa reducing the growth rates of Microcystis aeruginosa, Merismopedia.sp, Anabaena sp. PCC 7120, Anabaena Hos-aquae, the chlorophyll a content in Microcystis aeruginosa, Merismopedia.sp, Anabaena Hos-aquae, the carotenoid content in Microcystis aeruginosa, Merismopedia.sp and Anabaena sp. PCC 7120, the phycocyanin content in Microcystis aeruginosa. This study explored the biological characteristics of the cyanobacteria under low pressure condition, which aimed at understanding the response of the earth's life to environment for the future moon base, the results enrich the research contents of the lunar biology and may be referred for the research of other terrestrial life, such as human, plant, microbe and animal living in life support system of lunar base.

  18. Implicit coupling of turbulent diffusion with chemical reaction mechanisms for prognostic atmospheric dispersion models

    Energy Technology Data Exchange (ETDEWEB)

    Berlowitz, D.R.

    1996-11-01

    In the last few decades the negative impact by humans on the thin atmospheric layer enveloping the earth, the basis for life on this planet, has increased steadily. In order to halt, or at least slow down this development, the knowledge and study of these anthropogenic influence has to be increased and possible remedies have to be suggested. An important tool for these studies are computer models. With their help the atmospheric system can be approximated and the various processes, which have led to the current situation can be quantified. They also serve as an instrument to assess short or medium term strategies to reduce this human impact. However, to assure efficiency as well as accuracy, a careful analysis of the numerous processes involved in the dispersion of pollutants in the atmosphere is called for. This should help to concentrate on the essentials and also prevent excessive usage of sometimes scarce computing resources. The basis of the presented work is the EUMAC Zooming Model (ETM), and particularly the component calculating the dispersion of pollutants in the atmosphere, the model MARS. The model has two main parts: an explicit solver, where the advection and the horizontal diffusion of pollutants are calculated, and an implicit solution mechanism, allowing the joint computation of the change of concentration due to chemical reactions, coupled with the respective influence of the vertical diffusion of the species. The aim of this thesis is to determine particularly the influence of the horizontal components of the turbulent diffusion on the existing implicit solver of the model. Suggestions for a more comprehensive inclusion of the full three dimensional diffusion operator in the implicit solver are made. This is achieved by an appropriate operator splitting. A selection of numerical approaches to tighten the coupling of the diffusion processes with the calculation of the applied chemical reaction mechanisms are examined. (author) figs., tabs., refs.

  19. Dispersal

    Science.gov (United States)

    Clobert, J.; Danchin, E.; Dhondt, A.A.; Nichols, J.D.

    2001-01-01

    The ability of species to migrate and disperse is a trait that has interested ecologists for many years. Now that so many species and ecosystems face major environmental threats from habitat fragmentation and global climate change, the ability of species to adapt to these changes by dispersing, migrating, or moving between patches of habitat can be crucial to ensuring their survival. This book provides a timely and wide-ranging overview of the study of dispersal and incorporates much of the latest research. The causes, mechanisms, and consequences of dispersal at the individual, population, species and community levels are considered. The potential of new techniques and models for studying dispersal, drawn from molecular biology and demography, is also explored. Perspectives and insights are offered from the fields of evolution, conservation biology and genetics. Throughout the book, theoretical approaches are combined with empirical data, and care has been taken to include examples from as wide a range of species as possible.

  20. Dynamic dose assessment by Large Eddy Simulation of the near-range atmospheric dispersion.

    Science.gov (United States)

    Vervecken, Lieven; Camps, Johan; Meyers, Johan

    2015-03-01

    In order to improve the simulation of the near-range atmospheric dispersion of radionuclides, computational fluid dynamics is becoming increasingly popular. In the current study, Large-Eddy Simulation is used to examine the time-evolution of the turbulent dispersion of radioactive gases in the atmospheric boundary layer, and it is coupled to a gamma dose rate model that is based on the point-kernel method with buildup factors. In this way, the variability of radiological dose rate from cloud shine due to instantaneous turbulent mixing processes can be evaluated. The steady release in an open field of (41)Ar and (133)Xe for 4 different release heights is studied, thus covering radionuclides that decay with a high-energy gamma and a low-energy gamma, respectively. Based on these simulations, the variability of dose rates at ground level for different averaging times in the dose measurements is analyzed. It is observed that turbulent variability in the wind field can lead to dose estimates that are underestimated by up to a factor of four when conventional long-term measurements are used to estimate the dose from short-term exposures.

  1. Field studies of transport and dispersion of atmospheric tracers in nocturnal drainage flows

    Energy Technology Data Exchange (ETDEWEB)

    Gudiksen, P.H.; Ferber, G.J.; Fowler, M.M.; Eberhard, W.L.; Fosberg, M.A.; Knuth, W.R.

    1984-01-01

    A series of tracer experiments were carried out as part of the Atmospheric Studies in Complex Terrain (ASCOT) program to evaluate pollutant transport and dispersion characteristics of nocturnal drainage flows within a valley in northern California. The results indicate that the degree of interaction of the drainage flows with the larger scale regional flows are strongly dependent on how well the shallow drainage flows are shielded by the surrounding topography from the external environment. For the valley under study, the drainage flows from about mid-slope elevations and below were generally decoupled from the externally generated flows; as evidenced by the similarity of the surface tracer distribution produced during widely varying regional flow conditions. However, tracers released immediately above the drainage flows near the ridge top did reveal considerable mixing between the transition layer flows and the underlying surface drainage flows. Likewise, the transport and dispersion of the tracers at elevated heights within the valley basin were extremely dependent on the influences of the regional scale flows on the valley circulation. The dispersion rates associated with the transition layer flows were dependent on topographic constraints but were appreciably higher than those reported for homogeneous flat terrain situations.

  2. Dispersion of aerosol particles in the free atmosphere using ensemble forecasts

    Directory of Open Access Journals (Sweden)

    T. Haszpra

    2013-10-01

    Full Text Available The dispersion of aerosol particle pollutants is studied using 50 members of an ensemble forecast in the example of a hypothetical free atmospheric emission above Fukushima over a period of 2.5 days. Considerable differences are found among the dispersion predictions of the different ensemble members, as well as between the ensemble mean and the deterministic result at the end of the observation period. The variance is found to decrease with the particle size. The geographical area where a threshold concentration is exceeded in at least one ensemble member expands to a 5–10 times larger region than the area from the deterministic forecast, both for air column "concentration" and in the "deposition" field. We demonstrate that the root-mean-square distance of any particle from its own clones in the ensemble members can reach values on the order of one thousand kilometers. Even the centers of mass of the particle cloud of the ensemble members deviate considerably from that obtained by the deterministic forecast. All these indicate that an investigation of the dispersion of aerosol particles in the spirit of ensemble forecast contains useful hints for the improvement of risk assessment.

  3. Atmospheric dispersion characteristics of radioactive materials according to the local weather and emission conditions

    Energy Technology Data Exchange (ETDEWEB)

    An, Hye Yeon; Kang, Yoon Hee; Kim, Yoo Keun [Pusan National University, Busan (Korea, Republic of); Song, Sang Keun [Jeju National University, Jeju (Korea, Republic of)

    2016-12-15

    This study evaluated the atmospheric dispersion of radioactive material according to local weather conditions and emission conditions. Local weather conditions were defined as 8 patterns that frequently occur around the Kori Nuclear Power Plant and emission conditions were defined as 6 patterns from a combination of emission rates and the total number of particles of the {sup 137}Cs, using the WRF/HYSPLIT modeling system. The highest mean concentration of {sup 137}Cs occurred at 0900 LST under the ME4{sub 1} (main wind direction: SSW, daily average wind speed: 2.8 ms{sup -1}), with a wide region of its high concentration due to the continuous wind changes between 0000 and 0900 LST; under the ME3 (NE, 4.1 ms{sup -1}), the highest mean concentration of {sup 137}Cs occurred at 1500 and 2100 LST with a narrow dispersion along a strong northeasterly wind. In the case of ME4{sub 4} (S, 2.7 ms{sup -1}), the highest mean concentration of {sup 137}Cs occurred at 0300 LST because {sup 137}Cs stayed around the KNPP under low wind speed and low boundary layer height. As for the emission conditions, EM1{sub 3} and EM2{sub 3} that had the maximum total number of particles showed the widest dispersion of {sup 137}Cs, while its highest mean concentration was estimated under the EM1{sub 1} considering the relatively narrow dispersion and high emission rate. This study showed that even though an area may be located within the same radius around the Kori Nuclear Power Plant, the distribution and levels of {sup 137}Cs concentration vary according to the change in time and space of weather conditions (the altitude of the atmospheric boundary layer, the horizontal and vertical distribution of the local winds, and the precipitation levels), the topography of the regions where {sup 137}Cs is dispersed, the emission rate of {sup 137}Cs, and the number of emitted particles.

  4. Final Report for the Joint Urban 2003 Atmospheric Dispersion Study in Oklahoma City: Lawrence Livermore National Laboratory participation

    Energy Technology Data Exchange (ETDEWEB)

    Leach, M J

    2005-10-12

    The Joint Urban 2003 (JU2003) field study was designed to collect meteorological and tracer data resolving atmospheric dispersion at scales-of-motion ranging from flows in and around a single city block, in and around several blocks in the downtown Central Business District (CBD), and into the suburban Oklahoma City area a few km from the CBD. Indoor tracer and flow measurements within four downtown study buildings were also made in conjunction with detailed outdoor measurements investigating the outdoor-indoor exchange rates and mechanisms. The movement of tracer within the study buildings was also studied. The data from the field experiment is being used to evaluate models that are being developed for predicting dispersion of contaminants in urban areas. These models may be fast-response models based on semi-empirical algorithms that are used in real-time emergencies, or highly sophisticated computational fluid dynamics models that resolve individual building faces and crevices. The data from the field experiment, together with the models, can then be used to develop other advanced tools that are especially valuable in the efforts to thwart terrorists. These include tools for finding location and characteristics of a contaminant source; tools that can be used for real-time response or for forensic investigation. The tools will make use of monitoring networks for biological agents that are being established in several sensitive cities throughout the nation. This major urban study was conducted beginning June 28 and ending July 31, 2003. It included several integrated scientific components necessary to describe and understand the physical processes governing dispersion within and surrounding an urban area and into and within building environments. The components included characterizing: (1) the urban boundary layer and the development of the urban boundary layer within the atmospheric boundary layer, (2) the flows within and downwind of the tall-building core, (3

  5. Large eddy simulation of atmospheric boundary layer flows and application to pollen dispersal

    Science.gov (United States)

    Chamecki, Marcelo

    This work presents a framework for simulating pollen dispersal by wind based on Large Eddy Simulation. Important phenomena such as pollen emission by plants and ground deposition are modeled through the boundary condition. An expression for the vertical equilibrium concentration profile of pollen particles, including the effect of the canopy on the eddy diffusivity as well as corrections for atmospheric stability, is proposed for this purpose. This expression is validated against measurements of vertical concentration profiles of corn pollen above a corn field. The numerical discretization of the evolution equations follows a new approach in which different discretization schemes are used for the velocity and concentration fields. A new interpolation scheme is proposed to couple the two discretizations. The numerical model is validated against previously published experiments of point-source releases of glass beads and pollen grains in the atmospheric boundary layer. The numerical model is used together with experimental data of pollen emission and downwind deposition from a natural field obtained near Washington DC in the summer of 2006. The combined analysis of experimental and numerical data elucidates the emission, transport, and deposition processes in considerable detail. In particular, the relative fractions of pollen deposited inside the source field and airborne at the edge of the field can be quantified. Investigations based on experimental data and direct numerical simulation of the effects of the local structure of the flow on subgrid scale models for simulations of the atmospheric boundary layer are also presented.

  6. Toxicity of dispersant application: Biomarkers responses in gills of juvenile golden grey mullet (Liza aurata)

    Energy Technology Data Exchange (ETDEWEB)

    Milinkovitch, Thomas, E-mail: thomas.milinkovitch01@univ-lr.fr [Littoral Environnement et Societes (LIENSs), UMR 6250, CNRS-Universite de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01 (France); Godefroy, Joachim [Littoral Environnement et Societes (LIENSs), UMR 6250, CNRS-Universite de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01 (France); Theron, Michael, E-mail: michael.theron@univ-brest.fr [Laboratoire ORPHY EA4324, Universite de Bretagne Occidentale, 6 Avenue le Gorgeu, CS 93837, 29238 Brest Cedex 3 (France); Thomas-Guyon, Helene, E-mail: helene.thomas@univ-lr.fr [Littoral Environnement et Societes (LIENSs), UMR 6250, CNRS-Universite de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01 (France)

    2011-10-15

    Dispersant use in nearshore areas is likely to increase the exposure of aquatic organisms to petroleum. To measure the toxicity of this controversial response technique, golden grey mullets (Liza aurata) were exposed to mechanically dispersed oil, chemically dispersed oil, dispersant alone in seawater, water-soluble fraction of oil and to seawater as a control treatment. Several biomarkers were assessed in the gills (enzymatic antioxidant activities, glutathione content, lipid peroxidation) and in the gallbladder (polycylic aromatic hydrocarbons metabolites). The significant differences between chemically dispersed oil and water soluble fraction of oil highlight the environmental risk to disperse an oil slick when containment and recovery can be conducted. The lack of significance between chemically and mechanically dispersed oil suggests that dispersant application is no more toxic than the natural dispersion of the oil slick. The results of this study are of interest in order to establish dispersant use policies in nearshore areas. - Highlights: > This study simulates and evaluates the toxicity of dispersant use in nearshore area. > Dispersant use toxicity is assessed through biomarkers measurement in a fish species. > Chemical dispersion of an oil slick increases the petroleum toxicity. > Dispersant use does not enhance the toxicity of a mechanically dispersed oil slick. > This work leads to conclusions concerning dispersant use policies in nearshore area. - When the meteorological conditions induce the dispersion of the oil slick (e.g. wave), the application of dispersant does not increase the toxicity of petroleum.

  7. Testing the atmospheric dispersion model of CSA N288.1 with site-specific data

    CERN Document Server

    Chouhan, S L

    2001-01-01

    The atmospheric dispersion component of CSA Standard N288. 1, which provides guidelines for calculating derived release limits, has been tested. Long-term average concentrations of tritium in air were predicted using site-specific release rates and meteorological data and compared with measured concentrations at 43 monitoring sites at all CANDU stations in Canada. The predictions correlate well with the observations but were found to be conservative, overestimating by about 50% on average. The model overpredicted 84% of the time, with the highest prediction lying a factor of 5.5 above the corresponding observation. The model underpredicted the remaining 16% of the time, with the lowest prediction about one-half of the corresponding measurement. Possible explanations for this bias are discussed but no single reason appears capable of accounting for the discrepancy. Rather, the tendency to overprediction seems to result from the cumulative effects of a number of small conservatisms in the model. The model predi...

  8. A source term estimation method for a nuclear accident using atmospheric dispersion models

    DEFF Research Database (Denmark)

    Kim, Minsik; Ohba, Ryohji; Oura, Masamichi

    2015-01-01

    The objective of this study is to develop an operational source term estimation (STE) method applicable for a nuclear accident like the incident that occurred at the Fukushima Dai-ichi nuclear power station in 2011. The new STE method presented here is based on data from atmospheric dispersion...... models and short-range observational data around the nuclear power plants.The accuracy of this method is validated with data from a wind tunnel study that involved a tracer gas release from a scaled model experiment at Tokai Daini nuclear power station in Japan. We then use the methodology developed...... and validated through the effort described in this manuscript to estimate the release rate of radioactive material from the Fukushima Dai-ichi nuclear power station....

  9. Atmospheric dispersion of airborne pollen evidenced by near-surface and columnar measurements in Barcelona, Spain

    Science.gov (United States)

    Sicard, Michaël.; Izquierdo, Rebeca; Jorba, Oriol; Alarcón, Marta; Belmonte, Jordina; Comerón, Adolfo; De Linares, Concepción; Baldasano, José Maria

    2016-10-01

    Hourly measurements of pollen near-surface concentration and lidar-derived profiles of volume and particle depolarization ratios during a 5-day pollination event observed in Barcelona, Spain, between 27 - 31 March, 2015, are presented. Maximum hourly pollen concentrations of 4700 and 1200 m-3 h-1 were found for Platanus and Pinus, respectively, which represented together more than 80 % of the total pollen. . The pollen concentration was found positively correlated with temperature (correlation coefficient, r, of 0.95) and wind speed (r = 0.82) and negatively correlated with relative humidity (r = -0.18). The ground concentration shows a clear diurnal cycle although pollen activity is also detected during nighttime in three occasions and is clearly associated with periods of strong wind speeds. Everyday a clear diurnal cycle caused by the vertical transport of the airborne pollen was visible on the lidar-derived profiles of the volume depolarization ratio with maxima usually reached between 12 and 15 UT. On average the volume depolarization ratios in the pollen plume ranged between 0.08 and 0.22. Except in the cases of nocturnal pollen activity, the correlation coefficients between volume depolarization ratio and near-surface concentration are high (>0.68). The dispersion of the Platanus and Pinus in the atmosphere was simulated with the Nonhydrostatic Multiscale Meteorological Model on the B grid at the Barcelona Supercomputing Center with a newly developed Chemical Transport Model (NMMB/BSC-CTM). Model near-surface daily pollen concentrations were compared to our observations at two sites: in Barcelona and Bellaterra (12 km NE of Barcelona). Model hourly pollen concentrations were compared to our observations in Barcelona. Better results are obtained for Pinus than for Platanus. Guidelines are proposed to improve the dispersion of airborne pollen by atmospheric models.

  10. Iterative ensemble Kalman filter for atmospheric dispersion in nuclear accidents: An application to Kincaid tracer experiment.

    Science.gov (United States)

    Zhang, X L; Su, G F; Chen, J G; Raskob, W; Yuan, H Y; Huang, Q Y

    2015-10-30

    Information about atmospheric dispersion of radionuclides is vitally important for planning effective countermeasures during nuclear accidents. Results of dispersion models have high spatial and temporal resolutions, but they are not accurate enough due to the uncertain source term and the errors in meteorological data. Environmental measurements are more reliable, but they are scarce and unable to give forecasts. In this study, our newly proposed iterative ensemble Kalman filter (EnKF) data assimilation scheme is used to combine model results and environmental measurements. The system is thoroughly validated against the observations in the Kincaid tracer experiment. The initial first-guess emissions are assumed to be six magnitudes underestimated. The iterative EnKF system rapidly corrects the errors in the emission rate and wind data, thereby significantly improving the model results (>80% reduction of the normalized mean square error, r=0.71). Sensitivity tests are conducted to investigate the influence of meteorological parameters. The results indicate that the system is sensitive to boundary layer height. When the heights from the numerical weather prediction model are used, only 62.5% of reconstructed emission rates are within a factor two of the actual emissions. This increases to 87.5% when the heights derived from the on-site observations are used.

  11. Atmospheric Dispersal and Dispostion of Tephra From a Potential Volcanic Eruption at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G. Keating; W.Statham

    2004-02-12

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (ASHPLUME) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. The ASHPLUME conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The ASHPLUME mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report will improve and clarify the previous documentation of the ASHPLUME mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model.

  12. Accidental benzene release risk assessment in an urban area using an atmospheric dispersion model

    Science.gov (United States)

    Truong, Son C. H.; Lee, Myong-In; Kim, Ganghan; Kim, Dongmin; Park, Jong-Hwa; Choi, Sung-Deuk; Cho, Gi-Hyoug

    2016-11-01

    This study applied the American Meteorological Society and Environmental Protection Agency Regulatory Model (AERMOD) to assess the risk caused by an accidental release and dispersion of the toxic chemical benzene in the vicinity of a highly populated urban area. The modeling domain encompasses the Korean megacity of Ulsan, which includes two national industrial complexes and is characterized by a complex coastal terrain. Multiple AERMOD simulations were conducted for an assumed emission scenario using background wind data from August between 2009 and 2013. The series of experiments produced the spatial accident probability patterns for different concentration levels during daytime and nighttime scenarios based on the corresponding dominant wind patterns. This study further quantifies the potential accident risk based on the number of affected individuals by combining the accident probability with the indoor and outdoor population estimates. The chemical gas dispersion characteristics depend on various local meteorological conditions, such as the land-sea breeze direction, which alternates between daytime and nighttime, and the atmospheric stability. The results reveal that benzene dispersion affects a much larger area during the nighttime owing to the presence of a nocturnal stable boundary layer with significant temperature stratification. The affected area is smaller during the daytime owing to decreased stability and enhanced vertical mixing in the boundary layer. The results include a high degree of uncertainty during the nighttime owing to weak wind speeds and the lack of a prevailing wind direction, which impact the vulnerable area. However, vulnerable areas are more effectively identified during the daytime, when more consistent meteorological conditions exist. However, the potential risk becomes much lower during the nighttime owing to a substantial reduction of the outdoor population.

  13. ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    C. Harrington

    2004-10-25

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit

  14. Method to characterize directional changes in Arctic sea ice drift and associated deformation due to synoptic atmospheric variations using Lagrangian dispersion statistics

    Science.gov (United States)

    Lukovich, Jennifer V.; Geiger, Cathleen A.; Barber, David G.

    2017-07-01

    A framework is developed to assess the directional changes in sea ice drift paths and associated deformation processes in response to atmospheric forcing. The framework is based on Lagrangian statistical analyses leveraging particle dispersion theory which tells us whether ice drift is in a subdiffusive, diffusive, ballistic, or superdiffusive dynamical regime using single-particle (absolute) dispersion statistics. In terms of sea ice deformation, the framework uses two- and three-particle dispersion to characterize along- and across-shear transport as well as differential kinematic parameters. The approach is tested with GPS beacons deployed in triplets on sea ice in the southern Beaufort Sea at varying distances from the coastline in fall of 2009 with eight individual events characterized. One transition in particular follows the sea level pressure (SLP) high on 8 October in 2009 while the sea ice drift was in a superdiffusive dynamic regime. In this case, the dispersion scaling exponent (which is a slope between single-particle absolute dispersion of sea ice drift and elapsed time) changed from superdiffusive (α ˜ 3) to ballistic (α ˜ 2) as the SLP was rounding its maximum pressure value. Following this shift between regimes, there was a loss in synchronicity between sea ice drift and atmospheric motion patterns. While this is only one case study, the outcomes suggest similar studies be conducted on more buoy arrays to test momentum transfer linkages between storms and sea ice responses as a function of dispersion regime states using scaling exponents. The tools and framework developed in this study provide a unique characterization technique to evaluate these states with respect to sea ice processes in general. Application of these techniques can aid ice hazard assessments and weather forecasting in support of marine transportation and indigenous use of near-shore Arctic areas.

  15. Atmospheric Dispersion Modeling of the February 2014 Waste Isolation Pilot Plant Release

    Energy Technology Data Exchange (ETDEWEB)

    Nasstrom, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Piggott, Tom [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lobaugh, Megan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tai, Lydia [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pobanz, Brenda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Yu, Kristen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-22

    This report presents the results of a simulation of the atmospheric dispersion and deposition of radioactivity released from the Waste Isolation Pilot Plant (WIPP) site in New Mexico in February 2014. These simulations were made by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL), and supersede NARAC simulation results published in a previous WIPP report (WIPP, 2014). The results presented in this report use additional, more detailed data from WIPP on the specific radionuclides released, radioactivity release amounts and release times. Compared to the previous NARAC simulations, the new simulation results in this report are based on more detailed modeling of the winds, turbulence, and particle dry deposition. In addition, the initial plume rise from the exhaust vent was considered in the new simulations, but not in the previous NARAC simulations. The new model results show some small differences compared to previous results, but do not change the conclusions in the WIPP (2014) report. Presented are the data and assumptions used in these model simulations, as well as the model-predicted dose and deposition on and near the WIPP site. A comparison of predicted and measured radionuclide-specific air concentrations is also presented.

  16. Evaluation of radioxenon releases in Australia using atmospheric dispersion modelling tools.

    Science.gov (United States)

    Tinker, Rick; Orr, Blake; Grzechnik, Marcus; Hoffmann, Emmy; Saey, Paul; Solomon, Stephen

    2010-05-01

    The origin of a series of atmospheric radioxenon events detected at the Comprehensive Test Ban Treaty Organisation (CTBTO) International Monitoring System site in Melbourne, Australia, between November 2008 and February 2009 was investigated. Backward tracking analyses indicated that the events were consistent with releases associated with hot commission testing of the Australian Nuclear Science Technology Organisation (ANSTO) radiopharmaceutical production facility in Sydney, Australia. Forward dispersion analyses were used to estimate release magnitudes and transport times. The estimated (133)Xe release magnitude of the largest event (between 0.2 and 34 TBq over a 2 d window), was in close agreement with the stack emission releases estimated by the facility for this time period (between 0.5 and 2 TBq). Modelling of irradiation conditions and theoretical radioxenon emission rates were undertaken and provided further evidence that the Melbourne detections originated from this radiopharmaceutical production facility. These findings do not have public health implications. This is the first comprehensive study of atmospheric radioxenon measurements and releases in Australia.

  17. Toxicity of dispersant application: Biomarkers responses in gills of juvenile golden grey mullet (Liza aurata).

    Science.gov (United States)

    Milinkovitch, Thomas; Godefroy, Joachim; Théron, Michaël; Thomas-Guyon, Hélène

    2011-10-01

    Dispersant use in nearshore areas is likely to increase the exposure of aquatic organisms to petroleum. To measure the toxicity of this controversial response technique, golden grey mullets (Liza aurata) were exposed to mechanically dispersed oil, chemically dispersed oil, dispersant alone in seawater, water-soluble fraction of oil and to seawater as a control treatment. Several biomarkers were assessed in the gills (enzymatic antioxidant activities, glutathione content, lipid peroxidation) and in the gallbladder (polycylic aromatic hydrocarbons metabolites). The significant differences between chemically dispersed oil and water soluble fraction of oil highlight the environmental risk to disperse an oil slick when containment and recovery can be conducted. The lack of significance between chemically and mechanically dispersed oil suggests that dispersant application is no more toxic than the natural dispersion of the oil slick. The results of this study are of interest in order to establish dispersant use policies in nearshore areas.

  18. Methodology for risk analysis based on atmospheric dispersion modelling from nuclear risk sites

    Science.gov (United States)

    Baklanov, A.; Mahura, A.; Sørensen, J. H.; Rigina, O.

    2003-04-01

    The main purpose of this multidisciplinary study is to develop a methodology for complex nuclear risk and vulnerability assessment, and to test it on example of estimation of nuclear risk to the population in the Nordic countries in case of a severe accident at a nuclear risk site (NRS). The main focus of the paper is the methodology for the evaluation of the atmospheric transport and deposition of radioactive pollutants from NRSs. The method developed for this evaluation is derived from a probabilistic point of view. The main question we are trying to answer is: What is the probability for radionuclide atmospheric transport and impact to different neighbouring regions and countries in case of an accident at an NPP? To answer this question we applied a number of different tools: (i) Trajectory Modelling - to calculate multiyear forward trajectories originating over the locations of selected risk sites; (ii) Dispersion Modelling - for long-term simulation and case studies of radionuclide transport from hypothetical accidental releases at NRSs; (iii) Cluster Analysis - to identify atmospheric transport pathways from NRSs; (iv) Probability Fields Analysis - to construct annual, monthly, and seasonal NRS impact indicators to identify the most impacted geographical regions; (v) Specific Case Studies - to estimate consequences for the environment and the populations after a hypothetical accident; (vi) Vulnerability Evaluation to Radioactive Deposition - to describe its persistence in the ecosystems with a focus to the transfer of certain radionuclides into the food chains of key importance for the intake and exposure for a whole population and for certain population groups; (vii) Risk Evaluation and Mapping - to analyse socio-economical consequences for different geographical areas and various population groups taking into account social-geophysical factors and probabilities, and using demographic databases based on GIS analysis.

  19. High-accuracy alignment based on atmospherical dispersion - technological approaches and solutions for the dual-wavelength transmitter

    Energy Technology Data Exchange (ETDEWEB)

    Burkhard, Boeckem [Institute for Geodesy and Photogrammetry, ETH Zurich (Switzerland)

    1999-07-01

    In the course of the progressive developments of sophisticated geodetic systems utilizing electromagnetic waves in the visible or near IR-range a more detailed knowledge of the propagation medium and coevally solutions of atmospherically induced limitations will become important. An alignment system based on atmospherical dispersion, called a dispersometer, is a metrological solution to the atmospherically induced limitations, in optical alignment and direction observations of high accuracy. In the dispersometer we are using the dual-wavelength method for dispersive air to obtain refraction compensated angle measurements, the detrimental impact of atmospheric turbulence notwithstanding. The principle of the dual-wavelength method utilizes atmospherical dispersion, i.e. the wavelength dependence of the refractive index. The difference angle between two light beams of different wavelengths, which is called the dispersion angle {delta}{beta}, is to first approximation proportional to the refraction angle: {beta}{sub IR} {nu}({beta}{sub blue} - {beta}{sub IR}) = {nu} {delta}{beta}, this equation implies that the dispersion angle has to be measured at least 42 times more accurate than the desired accuracy of the refraction angle for the wavelengths used in the present dispersometer. This required accuracy constitutes one major difficulty for the instrumental performance in applying the dispersion effect. However, the dual-wavelength method can only be successfully used in an optimized transmitter-receiver combination. Beyond the above mentioned resolution requirement for the detector, major difficulties in instrumental realization arise in the availability of a suitable dual-wavelength laser light source, laser light modulation with a very high extinction ratio and coaxial emittance of mono-mode radiation at both wavelengths. Therefore, this paper focuses on the solutions of the dual-wavelength transmitter introducing a new hardware approach and a complete re-design of

  20. Federal Response Assets for a Radioactive Dispersal Device Incident

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan,T.

    2009-06-30

    If a large scale RDD event where to occur in New York City, the magnitude of the problem would likely exceed the capabilities of City and State to effectively respond to the event. New York State could request Federal Assistance if the United States President has not already made the decision to provide it. The United States Federal Government has a well developed protocol to respond to emergencies. The National Response Framework (NRF) describes the process for responding to all types of emergencies including RDD incidents. Depending on the location and type of event, the NRF involves appropriate Federal Agencies, e.g., Department of Homeland Security (DHS), the Department of Energy (DOE), Environmental Protection Agency (EPA), United States Coast Guard (USCG), Department of Defense (DOD), Department of Justice (DOJ), Department of Agriculture (USDA), and Nuclear Regulatory Commission (NRC). The Federal response to emergencies has been refined and improved over the last thirty years and has been tested on natural disasters (e.g. hurricanes and floods), man-made disasters (oil spills), and terrorist events (9/11). However, the system has never been tested under an actual RDD event. Drills have been conducted with Federal, State, and local agencies to examine the initial (early) phases of such an event (TopOff 2 and TopOff 4). The Planning Guidance for Protection and Recovery Following Radiological Dispersal Device (RDD) and Improvised Nuclear Device (IND) incidents issued by the Department of Homeland Security (DHS) in August 2008 has never been fully tested in an interagency exercise. Recently, another exercise called Empire 09 that was situated in Albany, New York was conducted. Empire 09 consists of 3 different exercises be held in May and June, 2009. The first exercise, May 2009, involved a table top exercise for phase 1 (0-48 hours) of the response to an RDD incident. In early June, a full-scale 3- day exercise was conducted for the mid-phase response (48

  1. Modeling Responses of Leafy Spurge Dispersal to Control Strategies

    Institute of Scientific and Technical Information of China (English)

    Zewei Miao

    2007-01-01

    Leafy spurge (Euphorbia esula L.) has substantial negative effects on grassland biodiversity, productivity, and economic benefit in North America.To predict these negative impacts, we need an appropriate plant-spread model which can simulate the response of an invading population to different control strategies.In this study, using a stochastic map lattice approach we generated a spatially explicitly stochastic process-based model to simulate dispersal trajectories of leafy spurge under various control scenarios.The model integrated dispersal curve, propagule pressure, and population growth of leafy spurge at local and short-temporal scales to capture spread features of leafy spurge at large spatial and long-temporal scales.Our results suggested that narrow-, medium-, and fat-tailed kernels did not differ In their ability to predict spread, in contrast to previous works.For all kernels, Allee effects were significantly present and could explain the lag phase (three decades)before leafy spurge spread accelerated.When simulating from the initial stage of introduction, Allee effects were critical in predicting spread rate of leafy spurge, because the prediction could be seriously affected by the low density period of leafy spurge community.No Allee effects models were not able to simulate spread rate well in this circumstance.When applying control strategies to the current diatribution, Allee effects could stop the spread of leafy spurge; no Allee effects models, however, were able to slow but not stop the spread.The presence of Allee effects had significant ramifications on the efficiencies of control strategies.For both Allee and no Allee effects models, the later that control strategies were implemented, the more effort had to be input to achieve similar control results.

  2. A High-precision Technique to Correct for Residual Atmospheric Dispersion in High-contrast Imaging Systems

    Science.gov (United States)

    Pathak, P.; Guyon, O.; Jovanovic, N.; Lozi, J.; Martinache, F.; Minowa, Y.; Kudo, T.; Takami, H.; Hayano, Y.; Narita, N.

    2016-12-01

    Direct detection and spectroscopy of exoplanets requires high-contrast imaging. For habitable exoplanets in particular, located at a small angular separation from the host star, it is crucial to employ small inner working angle (IWA) coronagraphs that efficiently suppress starlight. These coronagraphs, in turn, require careful control of the wavefront that directly impacts their performance. For ground-based telescopes, atmospheric refraction is also an important factor, since it results in a smearing of the point-spread function (PSF), that can no longer be efficiently suppressed by the coronagraph. Traditionally, atmospheric refraction is compensated for by an atmospheric dispersion compensator (ADC). ADC control relies on an a priori model of the atmosphere whose parameters are solely based on the pointing of the telescope, which can result in imperfect compensation. For a high-contrast instrument like the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system, which employs very small IWA coronagraphs, refraction-induced smearing of the PSF has to be less than 1 mas in the science band for optimum performance. In this paper, we present the first on-sky measurement and correction of residual atmospheric dispersion. Atmospheric dispersion is measured from the science image directly, using an adaptive grid of artificially introduced speckles as a diagnostic to feedback to the telescope’s ADC. With our current setup, we were able to reduce the initial residual atmospheric dispersion from 18.8 mas to 4.2 in broadband light (y- to H-band) and to 1.4 mas in the H-band only. This work is particularly relevant to the upcoming extremely large telescopes (ELTs) that will require fine control of their ADC to reach their full high-contrast imaging potential.

  3. Atmospheric dispersion of argon-41 from anuclear research reactor: measurement and modeling of plume geometry and gamma radiation field

    DEFF Research Database (Denmark)

    Lauritzen, Bent; Astrup, Poul; Drews, Martin

    2003-01-01

    An atmospheric dispersion experiment was conducted using a visible tracer along with the routine release of argon-41 from the BR1 research reactor in Mol, Belgium. Simultaneous measurements of plume geometry and radiation fields for argon-41 decay were performed as well as measurements of the argon...

  4. Dutch distribution zones of stable iodine tablets based on atmospheric dispersion modelling of accidental releases from nuclear power plants.

    NARCIS (Netherlands)

    Kok-Palma, Y.S.; Leenders, M.; Meulenbelt, J.

    2010-01-01

    Rapid administration of stable iodine is essential for the saturation and subsequent protection of the thyroid gland against the potential harm caused by radioiodines. This paper proposes the Dutch risk analysis that uses an atmospheric dispersion model to calculate the size of the zones around nucl

  5. Atmospheric dispersion of argon-41 from anuclear research reactor: measurement and modeling of plume geometry and gamma radiation field

    DEFF Research Database (Denmark)

    Lauritzen, Bent; Astrup, Poul; Drews, Martin

    2003-01-01

    An atmospheric dispersion experiment was conducted using a visible tracer along with the routine release of argon-41 from the BR1 research reactor in Mol, Belgium. Simultaneous measurements of plume geometry and radiation fields for argon-41 decay were performed as well as measurements of the argon...

  6. Source apportionment based on an atmospheric dispersion model and multiple linear regression analysis

    Science.gov (United States)

    Fushimi, Akihiro; Kawashima, Hiroto; Kajihara, Hideo

    Understanding the contribution of each emission source of air pollutants to ambient concentrations is important to establish effective measures for risk reduction. We have developed a source apportionment method based on an atmospheric dispersion model and multiple linear regression analysis (MLR) in conjunction with ambient concentrations simultaneously measured at points in a grid network. We used a Gaussian plume dispersion model developed by the US Environmental Protection Agency called the Industrial Source Complex model (ISC) in the method. Our method does not require emission amounts or source profiles. The method was applied to the case of benzene in the vicinity of the Keiyo Central Coastal Industrial Complex (KCCIC), one of the biggest industrial complexes in Japan. Benzene concentrations were simultaneously measured from December 2001 to July 2002 at sites in a grid network established in the KCCIC and the surrounding residential area. The method was used to estimate benzene emissions from the factories in the KCCIC and from automobiles along a section of a road, and then the annual average contribution of the KCCIC to the ambient concentrations was estimated based on the estimated emissions. The estimated contributions of the KCCIC were 65% inside the complex, 49% at 0.5-km sites, 35% at 1.5-km sites, 20% at 3.3-km sites, and 9% at a 5.6-km site. The estimated concentrations agreed well with the measured values. The estimated emissions from the factories and the road were slightly larger than those reported in the first Pollutant Release and Transfer Register (PRTR). These results support the reliability of our method. This method can be applied to other chemicals or regions to achieve reasonable source apportionments.

  7. Iterative ensemble Kalman filter for atmospheric dispersion in nuclear accidents: An application to Kincaid tracer experiment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.L.; Su, G.F.; Chen, J.G. [Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Raskob, W. [Institute for Nuclear and Energy Technologies, Karlsruhe Institute of Technology, Karlsruhe, D-76021 (Germany); Yuan, H.Y., E-mail: hy-yuan@outlook.com [Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Huang, Q.Y. [Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2015-10-30

    Highlights: • We integrate the iterative EnKF method into the POLYPHEMUS platform. • We thoroughly evaluate the data assimilation system against the Kincaid dataset. • The data assimilation system substantially improves the model predictions. • More than 60% of the retrieved emissions are within a factor two of actual values. • The results reveal that the boundary layer height is the key influential factor. - Abstract: Information about atmospheric dispersion of radionuclides is vitally important for planning effective countermeasures during nuclear accidents. Results of dispersion models have high spatial and temporal resolutions, but they are not accurate enough due to the uncertain source term and the errors in meteorological data. Environmental measurements are more reliable, but they are scarce and unable to give forecasts. In this study, our newly proposed iterative ensemble Kalman filter (EnKF) data assimilation scheme is used to combine model results and environmental measurements. The system is thoroughly validated against the observations in the Kincaid tracer experiment. The initial first-guess emissions are assumed to be six magnitudes underestimated. The iterative EnKF system rapidly corrects the errors in the emission rate and wind data, thereby significantly improving the model results (>80% reduction of the normalized mean square error, r = 0.71). Sensitivity tests are conducted to investigate the influence of meteorological parameters. The results indicate that the system is sensitive to boundary layer height. When the heights from the numerical weather prediction model are used, only 62.5% of reconstructed emission rates are within a factor two of the actual emissions. This increases to 87.5% when the heights derived from the on-site observations are used.

  8. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model

    Science.gov (United States)

    Katata, G.; Chino, M.; Kobayashi, T.; Terada, H.; Ota, M.; Nagai, H.; Kajino, M.; Draxler, R.; Hort, M. C.; Malo, A.; Torii, T.; Sanada, Y.

    2015-01-01

    Temporal variations in the amount of radionuclides released into the atmosphere during the Fukushima Daiichi Nuclear Power Station (FNPS1) accident and their atmospheric and marine dispersion are essential to evaluate the environmental impacts and resultant radiological doses to the public. In this paper, we estimate the detailed atmospheric releases during the accident using a reverse estimation method which calculates the release rates of radionuclides by comparing measurements of air concentration of a radionuclide or its dose rate in the environment with the ones calculated by atmospheric and oceanic transport, dispersion and deposition models. The atmospheric and oceanic models used are WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information) and SEA-GEARN-FDM (Finite difference oceanic dispersion model), both developed by the authors. A sophisticated deposition scheme, which deals with dry and fog-water depositions, cloud condensation nuclei (CCN) activation, and subsequent wet scavenging due to mixed-phase cloud microphysics (in-cloud scavenging) for radioactive iodine gas (I2 and CH3I) and other particles (CsI, Cs, and Te), was incorporated into WSPEEDI-II to improve the surface deposition calculations. The results revealed that the major releases of radionuclides due to the FNPS1 accident occurred in the following periods during March 2011: the afternoon of 12 March due to the wet venting and hydrogen explosion at Unit 1, midnight of 14 March when the SRV (safety relief valve) was opened three times at Unit 2, the morning and night of 15 March, and the morning of 16 March. According to the simulation results, the highest radioactive contamination areas around FNPS1 were created from 15 to 16 March by complicated interactions among rainfall, plume movements, and the temporal variation of release rates. The simulation by WSPEEDI-II using the new source term reproduced the local and regional patterns of cumulative

  9. Ammonia emissions from an anaerobic digestion plant estimated using atmospheric measurements and dispersion modelling.

    Science.gov (United States)

    Bell, Michael W; Tang, Y Sim; Dragosits, Ulrike; Flechard, Chris R; Ward, Paul; Braban, Christine F

    2016-10-01

    Anaerobic digestion (AD) is becoming increasingly implemented within organic waste treatment operations. The storage and processing of large volumes of organic wastes through AD has been identified as a significant source of ammonia (NH3) emissions, however the totality of ammonia emissions from an AD plant have not been previously quantified. The emissions from an AD plant processing food waste were estimated through integrating ambient NH3 concentration measurements, atmospheric dispersion modelling, and comparison with published emission factors (EFs). Two dispersion models (ADMS and a backwards Lagrangian stochastic (bLS) model) were applied to calculate emission estimates. The bLS model (WindTrax) was used to back-calculate a total (top-down) emission rate for the AD plant from a point of continuous NH3 measurement downwind from the plant. The back-calculated emission rates were then input to the ADMS forward dispersion model to make predictions of air NH3 concentrations around the site, and evaluated against weekly passive sampler NH3 measurements. As an alternative approach emission rates from individual sources within the plant were initially estimated by applying literature EFs to the available site parameters concerning the chemical composition of waste materials, room air concentrations, ventilation rates, etc. The individual emission rates were input to ADMS and later tuned by fitting the simulated ambient concentrations to the observed (passive sampler) concentration field, which gave an excellent match to measurements after an iterative process. The total emission from the AD plant thus estimated by a bottom-up approach was 16.8±1.8mgs(-1), which was significantly higher than the back-calculated top-down estimate (7.4±0.78mgs(-1)). The bottom-up approach offered a more realistic treatment of the source distribution within the plant area, while the complexity of the site was not ideally suited to the bLS method, thus the bottom-up method is believed

  10. Validation of the Canadian atmospheric dispersion model for small exclusion area boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Davis, P. A.; Klukas, M. H. [AECL, Ontario (Canada)

    1999-07-01

    AECL is undertaking the validation of ADDAM, an atmospheric dispersion and dose code based on the Canadian Standards Association model CSA N288.2. The key component of the validation program involves the comparison of air concentrations predicted by the model with measured values. Measurements are available from field studies at two Canadian reactor sites and from a wind tunnel study of the CANDU site at Wol song, Korea. The measurements were obtained close enough to the release points to test the model for exclusion area boundaries as small as 500 m. Model predictions were higher than the observations almost 75 percent of the time and the magnitude of the over predictions was typically much larger than the magnitude of the under predictions. The effect of the topography at the Wol song site was limited to small changes in plume trajectory due to channeling in valleys and a small reduction in the lateral spread of the plume. The terrain did not substantially influence the effective release height of the plume or the conservatism of the predicted air concentrations. The results demonstrate that the methods used in ADDAM are unlikely to significantly underestimate concentrations for short-term releases 500 to 1000 m downwind of CANDU reactors for a wide range of meteorological conditions and for terrain of moderate complexity. The over predictions appear to arise primarily from built-in conservatisms in the models for plume rise, effective release height and building wake effects and from the assumption of steady atmospheric conditions. (author). 15 refs., 2 tabs., 60010fig.

  11. Coupled conduit and atmospheric dispersal dynamics of the AD 79 Plinian eruption of Vesuvius

    Science.gov (United States)

    Neri, Augusto; Papale, Paolo; Del Seppia, Dario; Santacroce, Roberto

    2003-01-01

    The AD 79 eruption of Vesuvius is certainly one of the most investigated explosive eruptions in the world. This makes it particularly suitable for the application of numerical models since we can be quite confident about input data, and the model predictions can be compared with field-based reconstruction of the eruption dynamics. Magma ascent along the volcanic conduit and the dispersal of pyroclasts in the atmosphere were simulated. The conduit and atmospheric domain were coupled through the flow conditions computed at the conduit exit. We simulated two different peak phases of the eruption which correspond to the emplacement of the white and gray magma types that produced Plinian fallout deposits with interlayered pyroclastic flow units during the gray phase. The input data, independently constrained and representative of each of the two eruptive phases, consist of liquid magma composition, crystal and water content, mass flow rate, and pressure-temperature-depth of the magma at the conduit entrance. A parametric study was performed on the less constrained variables such as microlite content of magma, pressure at the conduit entrance, and particle size representative of the eruptive mixture. Numerical results are substantially consistent with the reconstructed eruptive dynamics. In particular, the white eruption phase is found to lead to a fully buoyant eruption plume in all cases investigated, whereas the gray phase shows a more transitional character, i.e. the simultaneous production of a buoyant convective plume and pyroclastic surges, with a significant influence of the microlite content of magma in determining the partition of pyroclast mass between convective plumes and pyroclastic flows.

  12. CFD and Gaussian atmospheric dispersion models: A comparison for leak from carbon dioxide transportation and storage facilities

    Science.gov (United States)

    Mazzoldi, Alberto; Hill, Tim; Colls, Jeremy J.

    Carbon Capture and Storage (CCS) is of interest to the scientific community as a way of achieving significant global reduction of atmospheric CO 2 emission in the medium term. CO 2 would be transported from large emission points (e.g. coal fired power plants) to storage sites by surface/shallow high pressure pipelines. Modelling of CO 2 atmospheric dispersion after leakages from transportation facilities will be required before starting large scale CCS projects. This paper deals with the evaluation of the atmospheric dispersion CFD tool Fluidyn-PANACHE against Prairie Grass and Kit Fox field experiments. A description of the models for turbulence generation and dissipation used ( k- ɛ and k- l) and a comparison with the Gaussian model ALOHA for both field experiments are also outlined. The main outcome of this work puts PANACHE among the "fit-for-purpose" models, respecting all the prerequisites stated by Hanna et al. [Hanna, S.R., Chang, J.C. and Strimaitis, D.G., 1993. Hazardous gas model evaluation with field observations. Atmospheric Environment, 27, 2265-2285] for the evaluation of atmospheric dispersion model performance. The average under-prediction has been ascribed to the usage of mean wind speed and direction, which is characteristic of all CFD models. The authors suggest a modification of performance ranges for model acceptability measures, within the field of high pressure CO 2 transportation risk assessment, with the aim of accounting for the overall simplification induced by the usage of constant wind speed and direction within CFD atmospheric dispersion models.

  13. Spatially dispersive dynamical response of hot carriers in doped graphene

    Science.gov (United States)

    Kukhtaruk, S. M.; Kochelap, V. A.; Sokolov, V. N.; Kim, K. W.

    2016-05-01

    We study theoretically wave-vector and frequency dispersion of the complex dynamic conductivity tensor (DCT), σlm(k , ω), of doped monolayer graphene under a strong dc electric field. For a general analysis, we consider the weak ac field of arbitrary configuration given by two independent vectors, the ac field polarization and the wave vector k. The high-field transport and linear response to the ac field are described on the base of the Boltzmann kinetic equation. We show that the real part of DCT, calculated in the collisionless regime, is not zero due to dissipation of the ac wave, whose energy is absorbed by the resonant Dirac quasiparticles effectively interacting with the wave. The role of the kinematic resonance at ω =vF | k | (vF is the Fermi velocity) is studied in detail taking into account deviation from the linear energy spectrum and screening by the charge carriers. The isopower-density curves and distributions of angle between the ac current density and field vectors are presented as a map which provides clear graphic representation of the DCT anisotropy. Also, the map shows certain ac field configurations corresponding to a negative power density, thereby it indicates regions of terahertz frequency for possible electrical (drift) instability in the graphene system.

  14. Response surface analysis to improve dispersed crude oil biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Zahed, Mohammad A.; Aziz, Hamidi A.; Mohajeri, Leila [School of Civil Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang (Malaysia); Isa, Mohamed H. [Civil Engineering Department, Universiti Teknologi PETRONAS, Tronoh, Perak (Malaysia)

    2012-03-15

    In this research, the bioremediation of dispersed crude oil, based on the amount of nitrogen and phosphorus supplementation in the closed system, was optimized by the application of response surface methodology and central composite design. Correlation analysis of the mathematical-regression model demonstrated that a quadratic polynomial model could be used to optimize the hydrocarbon bioremediation (R{sup 2} = 0.9256). Statistical significance was checked by analysis of variance and residual analysis. Natural attenuation was removed by 22.1% of crude oil in 28 days. The highest removal on un-optimized condition of 68.1% were observed by using nitrogen of 20.00 mg/L and phosphorus of 2.00 mg/L in 28 days while optimization process exhibited a crude oil removal of 69.5% via nitrogen of 16.05 mg/L and phosphorus 1.34 mg/L in 27 days therefore optimization can improve biodegradation in shorter time with less nutrient consumption. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Atmospheric Reentry Dispersion Correction Ascent Phase Guidance for a Generic Reentry Vehicle

    Directory of Open Access Journals (Sweden)

    Avinash Chander

    2013-05-01

    Full Text Available Launch vehicle explicit guidance mechanism depends on the estimation of the desired burnout conditions and driving the vehicle to achieve these conditions. The accuracy of the vehicle at the target point depends on how tightly these conditions are achieved and what is the strategy used to define the trajectory. It has been observed inthe literature that most of the guidance mechanisms during reentry use vacuum guidance equations that is durin greentry the atmospheric effects are not considered. In order to achieve minimum miss distance at the target point theat mospheric effects are to be considered during the guided phase and appropriate corrections should be executed,otherwise depending on the reentry flight path angle and ballistic coefficient the errors can be as high as tens of nautical miles. In this paper, the authors develop a novel approach to these vacuum guided launch vehicle problems.The paper elaborates how to calculate a prior the reentry dispersion during the ascent phase guidance and provide guidance corrections such that the terminal conditions are achieved with higher accuracy.Defence Science Journal, 2013, 63(3, pp.233-241, DOI:http://dx.doi.org/10.14429/dsj.63.3733

  16. Emulation and Sobol' sensitivity analysis of an atmospheric dispersion model applied to the Fukushima nuclear accident

    Science.gov (United States)

    Girard, Sylvain; Mallet, Vivien; Korsakissok, Irène; Mathieu, Anne

    2016-04-01

    Simulations of the atmospheric dispersion of radionuclides involve large uncertainties originating from the limited knowledge of meteorological input data, composition, amount and timing of emissions, and some model parameters. The estimation of these uncertainties is an essential complement to modeling for decision making in case of an accidental release. We have studied the relative influence of a set of uncertain inputs on several outputs from the Eulerian model Polyphemus/Polair3D on the Fukushima case. We chose to use the variance-based sensitivity analysis method of Sobol'. This method requires a large number of model evaluations which was not achievable directly due to the high computational cost of Polyphemus/Polair3D. To circumvent this issue, we built a mathematical approximation of the model using Gaussian process emulation. We observed that aggregated outputs are mainly driven by the amount of emitted radionuclides, while local outputs are mostly sensitive to wind perturbations. The release height is notably influential, but only in the vicinity of the source. Finally, averaging either spatially or temporally tends to cancel out interactions between uncertain inputs.

  17. Atmospheric-dispersion experiments in the near and medium field (Fourth European Community Compaign, Turbigo, Italy, September 1979)

    Energy Technology Data Exchange (ETDEWEB)

    Longhetto, A.: Guillot, P; Anfossi, D.; Bacci, P.; Elisei, G.; Frego, G.; Sandroni, S.

    1982-05-01

    The results of the fourth European experiment on the remote sensing of atmospheric dispersion and boundary layer structure, sponsored by the Commission of the European Communities, are presented. The field experiment was carried out at the Turbigo, Italy, power plant in September 1979 and involved the collection of complete and simultaneous information on atmospheric and pollutant parameters over an extended area. The primary objectives of the experiments were to measure the meteorological conditions under low-wind unstable conditions and apply the results to plume trajectory models, comparing the calculated trajectories with those actually measured in the field, and to measure trajectories and dispersion when plumes from stacks of different height and emission characteristics merge to form a single plume. In addition, the atmospheric-stability categories from different types of measurement were derived and compared, and their applicability to models of dispersion was investigated. The dispersion parameters obtained from measurements with different instruments were compared, and the effectiveness of changing the sulfur content of the power station fuel on reducing ground-level concentrations of SO/sub 2/ were measured.

  18. Condition-dependent dispersal of a patchily distributed riparian ground beetle in response to disturbance.

    Science.gov (United States)

    Bates, Adam J; Sadler, Jon P; Fowles, Adrian P

    2006-11-01

    In common with many habitat elements of riverine landscapes, exposed riverine sediments (ERS) are highly disturbed, naturally patchy and regularly distributed, whose specialists are strongly adapted to flood disturbance and loss of habitat due to succession. Investigations of dispersal in ERS habitats therefore provide an important contrast to the unnaturally fragmented, stable systems usually studied. The present investigation analysed the three interdependent stages of dispersal: (1) emigration, (2) inter-patch movement and (3) immigration of a common ERS specialised beetle, Bembidion atrocaeruleum (Stephens 1828) (Coleoptera, Carabidae), in a relatively unmodified section of river, using mark-resight methods. Dispersal was correlated with estimates of local population size and density, water level and patch quality in order to test for condition-dependent dispersal cues. Flood inundation of habitat was found to increase strongly the overall rate of dispersal, and the rate of emigration was significantly higher from patches that were heavily trampled by cattle. Strongly declining numbers of dispersers with distance suggested low dispersal rates during periods of low water level. Dispersal in response to habitat degradation by cattle trampling would likely lead to a higher overall population fitness than a random dispersal strategy. Dispersal distances were probably adapted to the underlying habitat landscape distribution, high-flow dispersal cues and ready means of long-distance dispersal through hydrochory. Species whose dispersal is adapted to the natural habitat distribution of riverine landscapes are likely to be strongly negatively affected by reduced flood frequency and intensity and habitat fragmentation through flow regulation or channelisation.

  19. PIV Measurements of Atmospheric Turbulence and Pollen Dispersal Above a Corn Canopy

    Science.gov (United States)

    Zhu, W.; van Hout, R.; Luznik, L.; Katz, J.

    2003-12-01

    Dispersal of pollen grains by wind and gravity (Anemophilous) is one of the oldest means of plant fertilization available in nature. Recently, the growth of genetically modified foods has raised questions on the range of pollen dispersal in order to limit cross-fertilization between organically grown and transgenic crops. The distance that a pollen grain can travel once released from the anther is determined, among others, by the aerodynamic parameters of the pollen and the characteristics of turbulence in the atmosphere in which it is released. Turbulence characteristics of the flow above a pollinating corn field were measured using Particle Image Velocimetry (PIV). The measurements were performed on the eastern shore of the Chesapeake Bay, in Maryland, during July 2003. Two PIV systems were used simultaneously, each with an overall sample area of 18x18 cm. The spacing between samples was about equal to the field of view. The PIV instrumentation, including CCD cameras, power supply and laser sheets forming optics were mounted on a measurement platform, consisting of a hydraulic telescopic arm that could be extended up to 10m. The whole system could be rotated in order to align it with the flow. The flow was seeded with smoke generated about 30m upstream of the sample areas. Measurements were carried out at several elevations, from just below canopy height up to 1m above canopy. The local meteorological conditions around the test site were monitored by other sensors including sonic anemometers, Rotorod pollen counters and temperature sensors. Each processed PIV image provides an instantaneous velocity distribution containing 64x64 vectors with a vector spacing of ~3mm. The pollen grains (~100mm) can be clearly distinguished from the smoke particles (~1mm) based on their size difference. The acquired PIV data enables calculation of the mean flow and turbulence characteristics including Reynolds stresses, spectra, turbulent kinetic energy and dissipation rate. Data

  20. Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion.

    Science.gov (United States)

    Terada, Hiroaki; Katata, Genki; Chino, Masamichi; Nagai, Haruyasu

    2012-10-01

    Regional-scale atmospheric dispersion simulations were carried out to verify the source term of (131)I and (137)Cs estimated in our previous studies, and to analyze the atmospheric dispersion and surface deposition during the Fukushima Dai-ichi Nuclear Power Plant accident. The accuracy of the source term was evaluated by comparing the simulation results with measurements of daily and monthly surface depositions (fallout) over land in eastern Japan from March 12 to April 30, 2011. The source term was refined using observed air concentrations of radionuclides for periods when there were significant discrepancies between the calculated and measured daily surface deposition, and when environmental monitoring data, which had not been used in our previous studies, were now available. The daily surface deposition using the refined source term was predicted mostly to within a factor of 10, and without any apparent bias. Considering the errors in the model prediction, the estimated source term is reasonably accurate during the period when the plume flowed over land in Japan. The analysis of regional-scale atmospheric dispersion and deposition suggests that the present distribution of a large amount of (137)Cs deposition in eastern Japan was produced primarily by four events that occurred on March 12, 15-16, 20, and 21-23. The ratio of wet deposition to the total varied widely depending on the influence by the particular event. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Modeling the fallout from stabilized nuclear clouds using the HYSPLIT atmospheric dispersion model.

    Science.gov (United States)

    Rolph, G D; Ngan, F; Draxler, R R

    2014-10-01

    The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, developed by the National Oceanic and Atmospheric Administration's Air Resources Laboratory, has been configured to simulate the dispersion and deposition of nuclear materials from a surface-based nuclear detonation using publicly available information on nuclear explosions. Much of the information was obtained from "The Effects of Nuclear Weapons" by Glasstone and Dolan (1977). The model was evaluated against the measurements of nuclear fallout from six nuclear tests conducted between 1951 and 1957 at the Nevada Test Site using the global NCEP/NCAR Reanalysis Project (NNRP) and the Weather Research and Forecasting (WRF) meteorological data as input. The model was able to reproduce the general direction and deposition patterns using the coarse NNRP data with Figure of Merit in Space (FMS - the percent overlap between predicted and measured deposition patterns) scores in excess of 50% for four of six simulations for the smallest dose rate contour, with FMS scores declining for higher dose rate contours. When WRF meteorological data were used the FMS scores were 5-20% higher in five of the six simulations, especially at the higher dose rate contours. The one WRF simulation where the scores declined slightly (10-30%) was also the best scoring simulation when using the NNRP data. When compared with measurements of dose rate and time of arrival from the Town Data Base (Thompson et al., 1994), similar results were found with the WRF simulations providing better results for four of six simulations. The overall result was that the different plume simulations using WRF data had more consistent performance than the plume simulations using NNRP data fields.

  2. Analysis of a Kalman filter based method for on-line estimation of atmospheric dispersion parameters using radiation monitoring data

    DEFF Research Database (Denmark)

    Drews, Martin; Lauritzen, Bent; Madsen, Henrik

    2005-01-01

    A Kalman filter method is discussed for on-line estimation of radioactive release and atmospheric dispersion from a time series of off-site radiation monitoring data. The method is based on a state space approach, where a stochastic system equation describes the dynamics of the plume model...... parameters, and the observables are linked to the state variables through a static measurement equation. The method is analysed for three simple state space models using experimental data obtained at a nuclear research reactor. Compared to direct measurements of the atmospheric dispersion, the Kalman filter...... estimates are found to agree well with the measured parameters, provided that the radiation measurements are spread out in the cross-wind direction. For less optimal detector placement it proves difficult to distinguish variations in the source term and plume height; yet the Kalman filter yields consistent...

  3. Understanding strategies for seed dispersal by wind under contrasting atmospheric conditions

    OpenAIRE

    Wright, S. Joseph; Trakhtenbrot, Ana; Bohrer, Gil; Detto, Matteo; Katul, Gabriel G.; Horvitz, Nir; Muller-Landau, Helene C; Jones, Frank A.; Nathan, Ran

    2008-01-01

    Traits associated with seed dispersal vary tremendously among sympatric wind-dispersed plants. We used two contrasting tropical tree species, seed traps, micrometeorology, and a mechanistic model to evaluate how variation in four key traits affects seed dispersal by wind. The conceptual framework of movement ecology, wherein external factors (wind) interact with internal factors (plant traits) that enable movement and determine when and where movement occurs, fully captures the variable input...

  4. Study of Atmospheric Forcing and Responses (SAFAR campaign: overview

    Directory of Open Access Journals (Sweden)

    A. Jayaraman

    2010-01-01

    Full Text Available Study of Atmospheric Forcing and Responses (SAFAR is a five year (2009–2014 research programme specifically to address the responses of the earth's atmosphere to both natural and anthropogenic forcings using a host of collocated instruments operational at the National Atmospheric Research Laboratory, Gadanki (13.5° N, 79.2° E, India from a unified viewpoint of studying the vertical coupling between the forcings and responses from surface layer to the ionosphere. As a prelude to the main program a pilot campaign was conducted at Gadanki during May–November 2008 using collocated observations from the MST radar, Rayleigh lidar, GPS balloonsonde, and instruments measuring aerosol, radiation and precipitation, and supporting satellite data. We show the importance of the large radiative heating caused by absorption of solar radiation by soot particles in the lower atmosphere, the observed high vertical winds in the convective updrafts extending up to tropopause, and the difficulty in simulating the same with existing models, the upward traveling waves in the middle atmosphere coupling the lower atmosphere with the upper atmosphere, their manifestation in the mesospheric temperature structure and inversion layers, the mesopause height extending up to 100 km, and the electro-dynamical coupling between mesosphere and the ionosphere which causes irregularities in the ionospheric F-region. The purpose of this communication is not only to share the knowledge that we gained from the SAFAR pilot campaign, but also to inform the international atmospheric science community about the SAFAR program as well as to extend our invitation to join in our journey.

  5. Climate change and climate systems influence and control the atmospheric dispersion of desert dust: implications for human health

    Science.gov (United States)

    Griffin, Dale W.; Ragaini, Richard C.

    2010-01-01

    The global dispersion of desert dust through Earth’s atmosphere is greatly influenced by temperature. Temporal analyses of ice core data have demonstrated that enhanced dust dispersion occurs during glacial events. This is due to an increase in ice cover, which results in an increase in drier terrestrial cover. A shorter temporal analysis of dust dispersion data over the last 40 years has demonstrated an increase in dust transport. Climate systems or events such as the North Atlantic Oscillation, the Indian Ocean subtropical High, Pacific Decadal Oscillation, and El Nino-Sothern Oscillation are known to influence global short-term dust dispersion occurrence and transport routes. Anthropogenic influences on dust transport include deforestation, harmful use of topsoil for agriculture as observed during the American Dust Bowl period, and the creation of dry seas (Aral Sea) and lakes (Lake Owens in California and Lake Chad in North Africa) through the diversion of source waters (for irrigation and drinking water supplies). Constituents of desert dust both from source regions (pathogenic microorganisms, organic and inorganic toxins) and those scavenged through atmospheric transport (i.e., industrial and agricultural emissions) are known to directly impact human and ecosystem health. This presentation will present a review of global scale dust storms and how these events can be both a detriment and benefit to various organisms in downwind environments.

  6. Comparaison of 85Kr measurements with the ADMS model (Atmospheric Dispersion Modelling System) on a coastal complex site

    Science.gov (United States)

    Leroy, C.; Maro, D.; Connan, O.; Hebert, D.; Rozet, M.

    2009-04-01

    Modelling atmospheric dispersion of radioactive plumes is a major issue for nuclear safety institutes to predict and estimate the radiological consequences to the population. The French Institute for the Radiological protection and the Nuclear Safety (IRSN) uses gaussian plume models, particularly adapted in accidental situations, because of short computation times. Due to the lack of experimental data, the reliability of these models is poorly documented and misunderstood for elevated sources in the near field and more particularly, in complex areas (topography, change of roughness). In order to improve the knowledge of dispersion mechanisms in such conditions, the IRSN ran a series of experimental campaigns between 1999 and 2002 in the vicinity of the La Hague nuclear reprocessing plant (AREVA NC - France). The La Hague peninsula is very narrow and the plant is located at 2 km from the coastline, at 150 m above sea level. During the experiments, the krypton-85 (85Kr), a radionucleide, was used as a non-reactive tracer of the plumes released by the 100 m high stack. In this work, the Atmospheric Transfer Coefficients (ATC) obtained from 85Kr measurements at La Hague are compared with the computations of the "next generation" gaussian model ADMS (Atmospheric Dispersion Modelling System) performed with "complex and coastal effects" ADMS modules.

  7. Wintertime atmospheric response to Atlantic multidecadal variability: effect of stratospheric representation and ocean-atmosphere coupling

    Science.gov (United States)

    Peings, Yannick; Magnusdottir, Gudrun

    2016-08-01

    The impact of the Atlantic multidecadal variability (AMV) on the wintertime atmosphere circulation is investigated using three different configurations of the Community Atmospheric Model version 5 (CAM5). Realistic SST and sea ice anomalies associated with the AMV in observations are prescribed in CAM5 (low-top model) and WACCM5 (high-top model) to assess the dependence of the results on the representation of the stratosphere. In a third experiment, the role of ocean-atmosphere feedback is investigated by coupling CAM5 to a slab-ocean model in which the AMV forcing is prescribed through oceanic heat flux anomalies. The three experiments give consistent results concerning the response of the NAO in winter, with a negative NAO signal in response to a warming of the North Atlantic ocean. This response is found in early winter when the high-top model is used, and in late winter with the low-top model. With the slab-ocean, the negative NAO response is more persistent in winter and shifted eastward over the continent due to the damping of the atmospheric response over the North Atlantic ocean. Additional experiments suggest that both tropical and extratropical SST anomalies are needed to obtain a significant modulation of the NAO, with small influence of sea ice anomalies. Warm tropical SST anomalies induce a northward shift of the ITCZ and a Rossby-wave response that is reinforced in the mid-latitudes by the extratropical SST anomalies through eddy-mean flow interactions. This modeling study supports that the positive phase of the AMV promotes the negative NAO in winter, while illustrating the impacts of the stratosphere and of the ocean-atmosphere feedbacks in the spatial pattern and timing of this response.

  8. Integration of measurements with atmospheric dispersion models: Source term estimation for dispersal of (239)Pu due to non-nuclear detonation of high explosive

    Science.gov (United States)

    Edwards, L. L.; Harvey, T. F.; Freis, R. P.; Pitovranov, S. E.; Chernokozhin, E. V.

    1992-10-01

    The accuracy associated with assessing the environmental consequences of an accidental release of radioactivity is highly dependent on our knowledge of the source term characteristics and, in the case when the radioactivity is condensed on particles, the particle size distribution, all of which are generally poorly known. This paper reports on the development of a numerical technique that integrates the radiological measurements with atmospheric dispersion modeling. This results in a more accurate particle-size distribution and particle injection height estimation when compared with measurements of high explosive dispersal of (239)Pu. The estimation model is based on a non-linear least squares regression scheme coupled with the ARAC three-dimensional atmospheric dispersion models. The viability of the approach is evaluated by estimation of ADPIC model input parameters such as the ADPIC particle size mean aerodynamic diameter, the geometric standard deviation, and largest size. Additionally we estimate an optimal 'coupling coefficient' between the particles and an explosive cloud rise model. The experimental data are taken from the Clean Slate 1 field experiment conducted during 1963 at the Tonopah Test Range in Nevada. The regression technique optimizes the agreement between the measured and model predicted concentrations of (239)Pu by varying the model input parameters within their respective ranges of uncertainties. The technique generally estimated the measured concentrations within a factor of 1.5, with the worst estimate being within a factor of 5, very good in view of the complexity of the concentration measurements, the uncertainties associated with the meteorological data, and the limitations of the models. The best fit also suggest a smaller mean diameter and a smaller geometric standard deviation on the particle size as well as a slightly weaker particle to cloud coupling than previously reported.

  9. NKS NordRisk. Atlas of long-range atmospheric dispersion and deposition of radionuclides from selected risk sites in the Northern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Havskov Soerensen, J.; Baklanov, A.; Mahura, A. (Danish Meteorological Institute, Copenhagen (Denmark)); Lauritzen, Bent; Mikkelsen, Torben (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark))

    2008-07-15

    Within the NKS NordRisk project, 'Nuclear risk from atmospheric dispersion in Northern Europe', the NKS NordRisk Atlas has been developed. The atlas describes risks from hypothetical long-range atmospheric dispersion and deposition of radionuclides from selected nuclear risk sites in the Northern Hemisphere. A number of case studies of long-term long-range atmospheric transport and deposition of radionuclides has been developed, based on two years of meteorological data. Radionuclide concentrations in air and radionuclide depositions have been evaluated and examples of long-term averages of the dispersion and deposition and of the variability around these mean values are provided. (au)

  10. A rigid fast-response thermometer for atmospheric research

    NARCIS (Netherlands)

    van Asselt, C.J.; Jacobs, A.F.G.; van Boxel, J.; Jansen, A.E.

    1991-01-01

    A fast-response temperature sensor for measuring atmospheric temperature was constructed and is described. The sensor was based on the thermocouple principle, connected to a thermocouple conditioner (AD595): the cold junction was compensated via an electrical reference and the signal amplified. This

  11. Initial community and environment determine the response of bacterial communities to dispersant and oil contamination.

    Science.gov (United States)

    Ortmann, Alice C; Lu, YueHan

    2015-01-15

    Bioremediation of seawater by natural bacterial communities is one potential response to coastal oil spills, but the success of the approach may vary, depending on geographical location, oil composition and the timing of spill. The short term response of coastal bacteria to dispersant, oil and dispersed oil was characterized using 16S rRNA gene tags in two mesocosm experiments conducted two months apart. Despite differences in the amount of oil-derived alkanes across the treatments and experiments, increases in the contributions of hydrocarbon degrading taxa and decreases in common estuarine bacteria were observed in response to dispersant and/or oil. Between the two experiments, the direction and rates of changes in particulate alkane concentrations differed, as did the magnitude of the bacterial response to oil and/or dispersant. Together, our data underscore large variability in bacterial responses to hydrocarbon pollutants, implying that bioremediation success varies with starting biological and environmental conditions.

  12. NKS NordRisk II: Atlas of long-range atmospheric dispersion and deposition of radionuclides from selected risk sites in the Northern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Smith Korsholm, U.; Havskov Soerensen, J. (Danish Meteorological Institute (DMI), Copenhagen (Denmark)); Astrup, P.; Lauritzen, B. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy. Radiation Research Div., Roskilde (Denmark))

    2011-04-15

    The present atlas has been developed within the NKS/NordRisk-II project 'Nuclear risk from atmospheric dispersion in Northern Europe'. The atlas describes risks from hypothetical long-range dispersion and deposition of radionuclides from 16 nuclear risk sites on the Northern Hemisphere. The atmospheric dispersion model calculations cover a period of 30 days following each release to ensure almost complete deposition of the dispersed material. The atlas contains maps showing the total deposition and time-integrated air concentration of Cs-137 and I-131 based on three years of meteorological data spanning the climate variability associated with the North Atlantic Oscillation, and corresponding time evolution of the ensemble mean atmospheric dispersion. (Author)

  13. PERMANENCE OF A PERIODIC PREDATOR-PREY SYSTEM WITH DISPERSAL AND GENERAL HOLLING TYPE FUNCTIONAL RESPONSE

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, a set of sufficient conditions which ensure the permanence of a periodic predator-prey system with dispersal and general Holling type functional response are obtained. Our results generalize some known results.

  14. Atmospheric Transport Modeling with 3D Lagrangian Dispersion Codes Compared with SF6 Tracer Experiments at Regional Scale

    Directory of Open Access Journals (Sweden)

    François Van Dorpe

    2007-01-01

    Full Text Available The results of four gas tracer experiments of atmospheric dispersion on a regional scale are used for the benchmarking of two atmospheric dispersion modeling codes, MINERVE-SPRAY (CEA, and NOSTRADAMUS (IBRAE. The main topic of this comparison is to estimate the Lagrangian code capability to predict the radionuclide atmospheric transfer on a large field, in the case of risk assessment of nuclear power plant for example. For the four experiments, the results of calculations show a rather good agreement between the two codes, and the order of magnitude of the concentrations measured on the soil is predicted. Simulation is best for sampling points located ten kilometers from the source, while we note a divergence for more distant points results (difference in concentrations by a factor 2 to 5. This divergence may be explained by the fact that, for these four experiments, only one weather station (near the point source was used on a field of 10 000 km2, generating the simulation of a uniform wind field throughout the calculation domain.

  15. NKS NordRisk II: Atlas of long-range atmospheric dispersion and deposition of radionuclides from selected risk sites in the Northern Hemisphere

    DEFF Research Database (Denmark)

    Smith Korsholm, Ulrik; Astrup, Poul; Lauritzen, Bent;

    The present atlas has been developed within the NKS/NordRisk-II project "Nuclear risk from atmospheric dispersion in Northern Europe". The atlas describes risks from hypothetical long-range dispersion and deposition of radionuclides from 16 nuclear risk sites on the Northern Hemisphere...

  16. Modeling the effects of topography and wind on atmospheric dispersion of CO2 surface leakage at geologic carbon sequestration sites

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Fotini K.; Granvold, Patrick W.; Oldenburg, Curtis M.

    2008-11-01

    Understanding the potential impacts of unexpected surface releases of CO{sub 2} is an essential part of risk assessment for geologic carbon sequestration sites. We have extended a mesoscale atmospheric model to model dense gas dispersion of CO{sub 2} leakage. The hazard from CO{sub 2} leakage is greatest in regions with topographic depressions where the dense gas can pool. Simulation of dispersion in idealized topographies shows that CO{sub 2} can persist even under high winds. Simulation of a variety of topographies, winds, and release conditions allows the generation of a catalog of simulation results that can be queried to estimate potential impacts at actual geologic carbon sequestration sites.

  17. The pioneering works of Professor Duzheng Ye on atmospheric dispersion, Tibetan Plateau meteorology, and air-sea interaction

    Science.gov (United States)

    Lau, Ngar-Cheung

    2017-10-01

    This paper provides an overview of the impacts of the original works of Professor Duzheng YE on a selected set of observational and model studies with which the present author has been associated over the past several decades. The main themes of these works include atmospheric energy dispersion, air-land interactions over the Tibetan Plateau, and El Ni˜norelated air-sea coupling over East Asia. The dispersive behavior of observed atmospheric fluctuations accompanying cold surge events in East Asia is demonstrated. Cold air outbreaks over Korea and southern China are coincident with the successive downstream development of troughs and ridges, with the group velocity of such wave packets being notably faster than the phase propagation speed of individual troughs and ridges. In a more general context, dispersive features are also discernible from lagged teleconnection charts and cross-spectra of observed and model-simulated geopotential height variations on 10-30-day time scales. Using the output from a high-resolution general circulation model, the relative contributions of condensational, sensible, and radiative heating to the atmospheric energy budget over the Tibetan Plateau are documented. The rapid changes of the upper tropospheric Tibetan anticyclone and East Asian mei-yu ("plum rain") precipitation band associated with the development of the Asian monsoon system are described. The principal anomalies in sea level pressure, surface wind, precipitation and sea surface temperature over southeastern China and the Philippine Sea region during El Ni˜no events are presented. The contributions of remote El Ni˜no-related forcing and local air-sea interaction to the occurrence of these anomalies are assessed.

  18. The Venus Atmospheric Response to Solar Cycle Variations

    Science.gov (United States)

    Keating, Gerald M.; Hsu, N. Christina

    1993-01-01

    Atmospheric drag measurements from the orbital decay of the Pioneer Venus Orbiter and Magellan spacecraft have recently been obtained of the Venus dayside and nightside atmosphere between 130 and 210 km during a period of low solar activity. These new measurements, combined with the earlier Pioneer Venus drag measurements (1978-80) obtained near the maximum of the 11-year solar cycle, have allowed the detection of the detailed response of temperature, atomic oxygen and carbon dioxide to solar variations. We have found a weak but detectable temperature response on the dayside which is in accord with the response predicted by Keating and Bougher when they assumed very strong CO2 radiative cooling resulting from atomic oxygen exciting CO2 into 15 micron emission. This same radiative process may cause strong cooling in the Earth's upper atmosphere with the doubling of CO2 in the future. With decreasing solar activity, the O/CO2 ratio in the lower thermosphere is found to decrease, apparently due to decreased photodissociation of CO2 and lower temperatures. The percent decrease in atomic oxygen with decreasing solar activity on the dayside is found to be approximately the same as the percent decreases of atomic oxygen transported to the nightside. A very weak response of nightside temperatures to solar activity variations has also been detected.

  19. The Effect of Atmospheric Cooling on Vertical Velocity Dispersion and Density Distribution of Brown Dwarfs

    Science.gov (United States)

    Ryan, Russell E., Jr.; Thorman, Paul A.; Schmidt, Sarah J.; Cohen, Seth H.; Hathi, Nimish P.; Holwerda, Benne W.; Lunine, Jonathan I.; Pirzkal, Nor; Windhorst, Rogier A.; Young, Erick

    2017-09-01

    We present a Monte Carlo simulation designed to predict the vertical velocity dispersion of brown dwarfs in the Milky Way. We show that since these stars are constantly cooling, the velocity dispersion has a noticeable trend with the spectral type. With realistic assumptions for the initial mass function, star formation history, and the cooling models, we show that the velocity dispersion is roughly consistent with what is observed for M dwarfs, decreases to cooler spectral types, and increases again for the coolest types in our study (∼T9). We predict a minimum in the velocity dispersions for L/T transition objects, however, the detailed properties of the minimum predominately depend on the star formation history. Since this trend is due to brown dwarf cooling, we expect that the velocity dispersion as a function of spectral type should deviate from the constancy around the hydrogen-burning limit. We convert from velocity dispersion to vertical scale height using standard disk models and present similar trends in disk thickness as a function of spectral type. We suggest that future, wide-field photometric and/or spectroscopic missions may collect sizable samples of distant (∼ 1 kpc) dwarfs that span the hydrogen-burning limit. As such, we speculate that such observations may provide a unique way of constraining the average spectral type of hydrogen burning. Support for program #13266 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under the NASA contract NAS 5-26555.

  20. Final Technical Report: Development of the DUSTRAN GIS-Based Complex Terrain Model for Atmospheric Dust Dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Allwine, K Jerry; Rutz, Frederick C.; Shaw, William J.; Rishel, Jeremy P.; Fritz, Brad G.; Chapman, Elaine G.; Hoopes, Bonnie L.; Seiple, Timothy E.

    2007-05-01

    Activities at U.S. Department of Defense (DoD) training and testing ranges can be sources of dust in local and regional airsheds governed by air-quality regulations. The U.S. Department of Energy’s Pacific Northwest National Laboratory just completed a multi-year project to develop a fully tested and documented atmospheric dispersion modeling system (DUST TRANsport or DUSTRAN) to assist the DoD in addressing particulate air-quality issues at military training and testing ranges.

  1. Relation between Dispersion Characteristics over Surfaces with Dissimilar Roughness and Atmospheric Stability, under Conditions of Equal Geostrophic Winds

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Larsen, Søren Ejling

    1981-01-01

    A simple model was described that related the dispersion of material from ground-level sources at 2 areas, taking into account dissimilarities in the surface roughness parameter (z0) and the atmospheric stability characterized by the Monin-Obukhov length (L). The geostrophic wind speed was assumed...... that travelled a distance x; .hivin.z/L was found when z0/L and x/z0 were known. The model was reduced to 3 dimensionless parameters by merging .hivin.z/L for the 2 areas into a composite parameter. Dimensionless results from the model were illustrated for discrete values of this composite parameter....

  2. Analysis of a Kalman filter based method for on-line estimation of atmospheric dispersion parameters using radiation monitoring data

    DEFF Research Database (Denmark)

    Drews, Martin; Lauritzen, Bent; Madsen, Henrik

    2005-01-01

    parameters, and the observables are linked to the state variables through a static measurement equation. The method is analysed for three simple state space models using experimental data obtained at a nuclear research reactor. Compared to direct measurements of the atmospheric dispersion, the Kalman filter...... estimates are found to agree well with the measured parameters, provided that the radiation measurements are spread out in the cross-wind direction. For less optimal detector placement it proves difficult to distinguish variations in the source term and plume height; yet the Kalman filter yields consistent...... scheme are outlined, to account for realistic accident scenarios....

  3. Midlatitude atmospheric responses to Arctic sensible heat flux anomalies in Community Climate Model, Version 4: Atmospheric Response to Arctic SHFs

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Catrin M. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder Colorado USA; Cassano, John J. [Cooperative Institute for Research in Environmental Sciences and Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder Colorado USA; Cassano, Elizabeth N. [Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder Colorado USA

    2016-12-10

    Possible linkages between Arctic sea ice loss and midlatitude weather are strongly debated in the literature. We analyze a coupled model simulation to assess the possibility of Arctic ice variability forcing a midlatitude response, ensuring consistency between atmosphere, ocean, and ice components. We work with weekly running mean daily sensible heat fluxes with the self-organizing map technique to identify Arctic sensible heat flux anomaly patterns and the associated atmospheric response, without the need of metrics to define the Arctic forcing or measure the midlatitude response. We find that low-level warm anomalies during autumn can build planetary wave patterns that propagate downstream into the midlatitudes, creating robust surface cold anomalies in the eastern United States.

  4. Using Atmospheric Dispersion Theory to Inform the Design of a Short-lived Radioactive Particle Release Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rishel, Jeremy P.; Keillor, Martin E.; Arrigo, Leah M.; Baciak, James E.; Detwiler, Rebecca S.; Kernan, Warnick J.; Kirkham, Randy R.; Milbrath, Brian D.; Seifert, Allen; Seifert, Carolyn E.; Smart, John E.

    2016-05-01

    Atmospheric dispersion theory can be used to predict ground deposition of particulates downwind of a radionuclide release. This paper utilizes standard formulations found in Gaussian plume models to inform the design of an experimental release of short-lived radioactive particles into the atmosphere. Specifically, a source depletion algorithm is used to determine the optimum particle size and release height that maximizes the near-field deposition while minimizing the both the required source activity and the fraction of activity lost to long-distance transport. The purpose of the release is to provide a realistic deposition pattern that might be observed downwind of a small-scale vent from an underground nuclear explosion. The deposition field will be used, in part, to investigate several techniques of gamma radiation survey and spectrometry that could be utilized by an On-Site Inspection team under the verification regime of the Comprehensive Nuclear-Test-Ban Treaty.

  5. Trace Atmospheric Gas Analyzer (TAGA) Dispersant Data for BP Spil/Deepwater Horizon - August 2010

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Trace Atmospheric Gas Analyzer (TAGA) buses are self-contained mobile laboratories that conduct instant-result monitoring of air quality at particular locations....

  6. Measuring delta C-13 of atmospheric air with non-dispersive infrared spectroscopy

    NARCIS (Netherlands)

    Jager, F; Wagner, G; Meijer, HAJ; Kerstel, ERT; Jäger, Frank

    2005-01-01

    The potential use of non-dispersive infrared spectroscopy for measuring delta(13)C in air is demonstrated. This technique has already been successfully established for breath test analyses in medical diagnostics, where the CO2 concentration ranges from 1 to 5 vol.% in the exhaled breath of

  7. Plant adaptation to low atmospheric pressures: potential molecular responses

    Science.gov (United States)

    Ferl, Robert J.; Schuerger, Andrew C.; Paul, Anna-Lisa; Gurley, William B.; Corey, Kenneth; Bucklin, Ray

    2002-01-01

    There is an increasing realization that it may be impossible to attain Earth normal atmospheric pressures in orbital, lunar, or Martian greenhouses, simply because the construction materials do not exist to meet the extraordinary constraints imposed by balancing high engineering requirements against high lift costs. This equation essentially dictates that NASA have in place the capability to grow plants at reduced atmospheric pressure. Yet current understanding of plant growth at low pressures is limited to just a few experiments and relatively rudimentary assessments of plant vigor and growth. The tools now exist, however, to make rapid progress toward understanding the fundamental nature of plant responses and adaptations to low pressures, and to develop strategies for mitigating detrimental effects by engineering the growth conditions or by engineering the plants themselves. The genomes of rice and the model plant Arabidopsis thaliana have recently been sequenced in their entirety, and public sector and commercial DNA chips are becoming available such that thousands of genes can be assayed at once. A fundamental understanding of plant responses and adaptation to low pressures can now be approached and translated into procedures and engineering considerations to enhance plant growth at low atmospheric pressures. In anticipation of such studies, we present here the background arguments supporting these contentions, as well as informed speculation about the kinds of molecular physiological responses that might be expected of plants in low-pressure environments.

  8. On the atmospheric response experiment to a Blue Arctic Ocean

    Science.gov (United States)

    Nakamura, Tetsu; Yamazaki, Koji; Honda, Meiji; Ukita, Jinro; Jaiser, Ralf; Handorf, Dörthe; Dethloff, Klaus

    2016-10-01

    We demonstrated atmospheric responses to a reduction in Arctic sea ice via simulations in which Arctic sea ice decreased stepwise from the present-day range to an ice-free range. In all cases, the tropospheric response exhibited a negative Arctic Oscillation (AO)-like pattern. An intensification of the climatological planetary-scale wave due to the present-day sea ice reduction on the Atlantic side of the Arctic Ocean induced stratospheric polar vortex weakening and the subsequent negative AO. Conversely, strong Arctic warming due to ice-free conditions across the entire Arctic Ocean induced a weakening of the tropospheric westerlies corresponding to a negative AO without troposphere-stratosphere coupling, for which the planetary-scale wave response to a surface heat source extending to the Pacific side of the Arctic Ocean was responsible. Because the resultant negative AO-like response was accompanied by secondary circulation in the meridional plane, atmospheric heat transport into the Arctic increased, accelerating the Arctic amplification.

  9. Detailed source term estimation of atmospheric release during the Fukushima Dai-ichi nuclear power plant accident by coupling atmospheric and oceanic dispersion models

    Science.gov (United States)

    Katata, Genki; Chino, Masamichi; Terada, Hiroaki; Kobayashi, Takuya; Ota, Masakazu; Nagai, Haruyasu; Kajino, Mizuo

    2014-05-01

    Temporal variations of release amounts of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) accident and their dispersion process are essential to evaluate the environmental impacts and resultant radiological doses to the public. Here, we estimated a detailed time trend of atmospheric releases during the accident by combining environmental monitoring data and coupling atmospheric and oceanic dispersion simulations by WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information) and SEA-GEARN developed by the authors. New schemes for wet, dry, and fog depositions of radioactive iodine gas (I2 and CH3I) and other particles (I-131, Te-132, Cs-137, and Cs-134) were incorporated into WSPEEDI-II. The deposition calculated by WSPEEDI-II was used as input data of ocean dispersion calculations by SEA-GEARN. The reverse estimation method based on the simulation by both models assuming unit release rate (1 Bq h-1) was adopted to estimate the source term at the FNPP1 using air dose rate, and air sea surface concentrations. The results suggested that the major release of radionuclides from the FNPP1 occurred in the following periods during March 2011: afternoon on the 12th when the venting and hydrogen explosion occurred at Unit 1, morning on the 13th after the venting event at Unit 3, midnight on the 14th when several openings of SRV (steam relief valve) were conducted at Unit 2, morning and night on the 15th, and morning on the 16th. The modified WSPEEDI-II using the newly estimated source term well reproduced local and regional patterns of air dose rate and surface deposition of I-131 and Cs-137 obtained by airborne observations. Our dispersion simulations also revealed that the highest radioactive contamination areas around FNPP1 were created from 15th to 16th March by complicated interactions among rainfall (wet deposition), plume movements, and phase properties (gas or particle) of I-131 and release rates

  10. Large-eddy simulation of atmospheric boundary layer flow and passive scalar dispersion over idealized urban surfaces

    Science.gov (United States)

    Cheng, Wai Chi; Porté-Agel, Fernando

    2015-04-01

    Accurate prediction of atmospheric boundary layer (ABL) flow and its interaction with urban surfaces is critical for understanding the transport of momentum and scalars within and above cities. This, in turn, is essential for predicting the local climate and pollutant dispersion patterns in urban areas. Large-eddy simulation (LES) explicitly resolves the large-scale turbulent eddy motions and, therefore, can potentially provide improved understanding and prediction of flows and scalar transport inside and above urban canopies. In this study, LES is used to simulate the dispersion of passive scalar over idealized urban surfaces represented by uniform arrays of cubes. A modulated gradient subgird-scale (SGS) model is used to parametrize the SGS fluxes of momentum and scalar, and an immersed boundary method is used to model the presence of cubes. A similar LES framework for flow was validated in our previous studies in simulations of turbulent boundary-layer flow past a 2D block and a uniform array of cubes. Here, the LES framework is further validated with wind tunnel experimental data of passive scalar dispersion within and above a staggered array of cubes with a localized scalar source at ground level. Good agreement between the simulation results and experimental data are found in the vertical and horizontal profiles of scalar concentration in different streamwise locations. After the validation, the LES framework is used to simulate the scalar transport at rural-to-urban flow transition region and the results obtained are presented.

  11. Dispersion of atmospheric fine particulate matters in simulated lung fluid and their effects on model cell membranes.

    Science.gov (United States)

    Zhou, Qiuhua; Wang, Lixin; Cao, Zhaoyu; Zhou, Xuehua; Yang, Fan; Fu, Pingqing; Wang, Zhenhua; Hu, Jingtian; Ding, Lei; Jiang, Wei

    2016-01-15

    Atmospheric fine particulate matter (PM2.5) was collected to investigate its dispersion in simulated lung fluid (SLF) and its interaction with model cell membranes. Organic acids, NH4(+), SO4(2-) and NO3(-) were detected in PM2.5 soluble fraction, and heavy metals were detected from the total mass. The insoluble fraction contained kaolinite, CaCO3, aliphatic carbons, aromatic rings, carboxyl and hydroxyl groups reflected by the infrared spectra. Proteins dispersed PM2.5 in SLF, resulted in smaller hydrodynamic diameter (dH) and slower sedimentation rate. Conversely, phospholipids increased dH value and accelerated sedimentation rate. Giant unilamellar vesicles (GUVs) and supported lipid bilayers (SLBs) were used as model cell membranes. PM2.5 adhered on and disrupted the membrane containing positively-charged lipids but not the membrane containing neutrally- and negatively-charged lipids, which was monitored by microscopy and a quartz crystal microbalance with dissipation (QCM-D). The cationic sites on membrane were necessary for PM2.5 adhesion, but membrane should be disrupted by the combined action of electrostatic forces and hydrogen bonds between PM2.5 oxygen containing groups and the lipid phosphate groups. Our results specified the roles of proteins and phospholipids in PM2.5 dispersion and transport, highly suggested that the health hazard of PM2.5 was related to the biomolecules in the lung fluid and the particle surface groups.

  12. Assessment of wind characteristics and atmospheric dispersion modeling of {sup 137}Cs on the Barakah NPP area in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Kuk; Lee, Kun Jai; Yun, Jong IL [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Jae Chul; Belorid, Miloslav [Institute of Environmental Research, Chuncheon (Korea, Republic of); Beeley, Philip A. [Khalifa University of Science, Technology and Research, Dubai (Antigua and Barbuda)

    2014-08-15

    This paper presents the results of an analysis of wind characteristics and atmosphere dispersion modeling that are based on computational simulation and part of a preliminary study evaluating environmental radiation monitoring system (ERMS) positions within the Barakah nuclear power plant (BNPP). The return period of extreme wind speed was estimated using the Weibull distribution over the life time of the BNPP. In the annual meteorological modeling, the winds from the north and west accounted for more than 90 % of the wind directions. Seasonal effects were not represented. However, a discrepancy in the tendency between daytime and nighttime was observed. Six variations of cesium-137 ({sup 137}Cs) dispersion test were simulated under severe accident condition. The {sup 137}Cs dispersion was strongly influenced by the direction and speed of the main wind. A virtual receptor was set and calculated for observation of the {sup 137}Cs movement and accumulation. The results of the surface roughness effect demonstrated that the deposition of {sup 137}Cs was affected by surface condition. The results of these studies offer useful information for developing environmental radiation monitoring systems (ERMSs) for the BNPP and can be used to assess the environmental effects of new nuclear power plant.

  13. SPRAYTRAN USER'S GUIDE: A GIS-BASED ATMOSPHERIC SPRAY DROPLET DISPERSION MODELING SYSTEM

    Science.gov (United States)

    The offsite drift of pesticide from spray operations is an ongoing source of concern. The SPRAY TRANsport (SPRAYTRAN) system, documented in this report, incorporates the near-field spray application model, AGDISP, into a meso-scale atmospheric transport model. The AGDISP model ...

  14. Improving the low temperature dyeability of polyethylene terephthalate fabric with dispersive dyes by atmospheric pressure plasma discharge

    Science.gov (United States)

    Elabid, Amel E. A.; Zhang, Jie; Shi, Jianjun; Guo, Ying; Ding, Ke; Zhang, Jing

    2016-07-01

    Polyethylene terephthalate (PET) fiber and textile is one of the largest synthetic polymer commodity in the world. The great energy consumption and pollution caused by the high temperature and pressure dyeing of PET fibers and fabrics with disperse dyes has been caused concern these years. In this study, an atmospheric pressure plasma with fine and uniform filament discharge operated at 20 kHz has been used to improve the low temperature dyeability of PET fabric at 95 °C with three cation disperse dyes: Red 73, Blue 183 and Yellow 211. The dyes uptake percentage of the treated PET fabrics was observed to increase as twice as much of untreated fabric. The color strength rate was increased more than 20%. The reducing of the water contact angle and the raising of the capillary height of treated PET fabric strip indicate its hydrophilicity improvement. Scanning electron microscope (SEM) results display nano to micro size of etching pits appeared uniformly on the fiber surface of the treated PET. Simultaneously, X-ray photoelectron spectroscopy (XPS) analysis indicates an increase of the oxygen content in the surface caused by the introduction of polar groups such as Cdbnd O and COOH. The rough surface with improved polar oxygen groups showed hydrophilicity and affinity to C.I. dispersive dyes and is believed to be caused by the strong and very fine filament discharge appearing randomly at one place at an instant but evenly at many places at a longer period. This increases the diffusion and absorption of the C.I. disperse dyes on the PET fiber surface, which improve its low temperature dyeability.

  15. Responses of seed-dispersing birds to amount of rainforest in the landscape around fragments.

    Science.gov (United States)

    Moran, Cath; Catterall, Carla P

    2014-04-01

    Habitat loss and fragmentation alter the composition of bird assemblages in rainforest. Because birds are major seed dispersers in rainforests, fragmentation-induced changes to frugivorous bird assemblages are also likely to alter the ecological processes of seed dispersal and forest regeneration, but the specific nature of these changes is poorly understood. We assessed the influence of fragment size and landscape forest cover on the abundance, species composition, and functional properties of the avian seed disperser community in an extensively cleared, former rainforest landscape of subtropical Australia. Bird surveys of fixed time and area in 25 rainforest fragments (1-139 ha in size across a 1800 km(2) region) provided bird assemblage data which were coupled with prior knowledge of bird species' particular roles in seed dispersal to give measurements of seven different attributes of the seed disperser assemblage. We used multimodel regression to assess how patch size and surrounding forest cover (within 200 m, 1000 m, and 5000 m radii) influenced variation in the abundance of individual bird species and of functional groups based on bird species' responses to fragmentation and their roles in seed dispersal. Surrounding forest cover, specifically rainforest cover, generally had a greater effect on frugivorous bird assemblages than fragment size. Amount of rainforest cover within 200 m of fragments was the main factor positively associated with abundances of frugivorous birds that are both fragmentation sensitive and important seed dispersers. Our results suggest a high proportion of local rainforest cover is required for the persistence of seed-dispersing birds and the maintenance of seed dispersal processes. Thus, even small rainforest fragments can function as important parts of habitat networks for seed-dispersing birds, whether or not they are physically connected by vegetation. © 2014 Society for Conservation Biology.

  16. Modified Raman Response Model and Supercontinuum Generation in Flat Dispersion Photonic Crystal Fiber with Two-Zero Dispersion Wavelengths

    Institute of Scientific and Technical Information of China (English)

    WANG He-Lin; YANG Ai-Jun; LENG Yu-Xin; WANG Cheng

    2011-01-01

    The generation mechanisms of supercontinuum(SC)and the effect of the modified Raman model on SC are further analyzed in a flat dispersion photonic crystal fiber(PCF)with two-zero dispersion wavelengths(TZDWs)by introducing an accurate Raman response function in the scalar nonlinear Scho?dinger equation.The results show that the introduction of Boson peak in the modified Raman gain model not only results in much rapider broadening of SC but also promotes more pump pulse energy transferred to the short wavelength region,which is related to stimulated Raman scattering.Moreover,SC generated from the PCF splits into two spectral bands,and their spectral peaks rapidly separate and broaden with the increase of incidcnt power.Double-band central wavelengths are finally located at about 850 nm and 1220 nm.The pumping energy depletion phenomenon occurs.The simulated results from the modified Raman model are in better agreement with the experimental results than that from the single-Lorentzian moder.

  17. State of the art atmospheric dispersion modelling. Should the Gaussian plume model still be used?

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Cornelia [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Koeln (Germany)

    2016-11-15

    For regulatory purposes with respect to licensing and supervision of airborne releases of nuclear installations, the Gaussian plume model is still in use in Germany. However, for complex situations the Gaussian plume model is to be replaced by a Lagrangian particle model. Now the new EU basic safety standards for protection against the dangers arising from exposure to ionising radiation (EU BSS) [1] asks for a realistic assessment of doses to the members of the public from authorised practices. This call for a realistic assessment raises the question whether dispersion modelling with the Gaussian plume model is an adequate approach anymore or whether the use of more complex models is mandatory.

  18. The Bulgarian Emergency Response System for dose assessment in the early stage of accidental releases to the atmosphere.

    Science.gov (United States)

    Syrakov, D; Veleva, B; Prodanova, M; Popova, T; Kolarova, M

    2009-02-01

    The Bulgarian Emergency Response System (BERS) is being developed in the Bulgarian National Institute of Meteorology and Hydrology since 1994. BERS is based on numerical weather forecast meteorological information and a numerical long-range dispersion model accounting for the transport, dispersion, chemical and radioactive transformations of pollutants. In the present paper, the further development of this system for a mixture of radioactive gaseous and aerosol pollutants is described. The basic module for the BERS, the numerical dispersion model EMAP, is upgraded with a "dose calculation block". Two scenarios for hypothetical accidental atmospheric releases from two NPPs, one in Western, and the other in Eastern Europe, are numerically simulated. The effective doses from external irradiation, from air submersion and ground shinning, effective dose from inhalation and absorbed dose by thyroid gland formed by 37 different radionuclides, significant for the early stage of a nuclear accident, are calculated as dose fields for both case studies and discussed.

  19. Effect of temperature and atmospheric environment on the photodegradation of some Disperse Red 1-type polymers.

    Science.gov (United States)

    Galvan-Gonzalez, A; Canva, M; Stegeman, G I; Twieg, R; Kowalczyk, T C; Lackritz, H S

    1999-12-01

    The photodegradation of the azobenzene chromophore DR1 {4-[N-ethyl-N-(2-hydroxyethyl)amino]-4(?)-nitroazobenzene]} incorporated as a side chain or as a guest in a poly(methyl) methacrylate host has been evaluated as a function of wavelength, temperature, and the atmospheric environment. The effects of these variables on the lifetime of DR1-based electro-optic devices is quantified.

  20. Improving the low temperature dyeability of polyethylene terephthalate fabric with dispersive dyes by atmospheric pressure plasma discharge

    Energy Technology Data Exchange (ETDEWEB)

    Elabid, Amel E.A., E-mail: amelkanzi2014@gmail.com [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Zhang, Jie; Shi, Jianjun; Guo, Ying; Ding, Ke [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Science, Donghua University, Shanghai 201620 (China); Zhang, Jing, E-mail: jingzh@dhu.cdu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Science, Donghua University, Shanghai 201620 (China)

    2016-07-01

    Graphical abstract: - Highlights: • Atmospheric pressure glow-like plasma with fine and uniform filament discharge has been successfully applied to the low temperature dyeing (95 °C) of PET fabric. • Simultaneously the dye uptake was increased as twice as much and the color strength rate was increased by about 20% for less than 3 min plasma treated PET. • Dyeing mechanism research showed the significance of surface roughing and functional group introduction by this kind of discharge. • Results highlight a novel environmentally friendly dyeing process for one of the largest commodity in polymer fabric. - Abstract: Polyethylene terephthalate (PET) fiber and textile is one of the largest synthetic polymer commodity in the world. The great energy consumption and pollution caused by the high temperature and pressure dyeing of PET fibers and fabrics with disperse dyes has been caused concern these years. In this study, an atmospheric pressure plasma with fine and uniform filament discharge operated at 20 kHz has been used to improve the low temperature dyeability of PET fabric at 95 °C with three cation disperse dyes: Red 73, Blue 183 and Yellow 211. The dyes uptake percentage of the treated PET fabrics was observed to increase as twice as much of untreated fabric. The color strength rate was increased more than 20%. The reducing of the water contact angle and the raising of the capillary height of treated PET fabric strip indicate its hydrophilicity improvement. Scanning electron microscope (SEM) results display nano to micro size of etching pits appeared uniformly on the fiber surface of the treated PET. Simultaneously, X-ray photoelectron spectroscopy (XPS) analysis indicates an increase of the oxygen content in the surface caused by the introduction of polar groups such as C=O and COOH. The rough surface with improved polar oxygen groups showed hydrophilicity and affinity to C.I. dispersive dyes and is believed to be caused by the strong and very fine

  1. Hydrocarbon-Degrading Bacteria Exhibit a Species-Specific Response to Dispersed Oil while Moderating Ecotoxicity

    Science.gov (United States)

    Overholt, Will A.; Marks, Kala P.; Romero, Isabel C.; Hollander, David J.; Snell, Terry W.

    2015-01-01

    The Deepwater Horizon blowout in April 2010 represented the largest accidental marine oil spill and the largest release of chemical dispersants into the environment to date. While dispersant application may provide numerous benefits to oil spill response efforts, the impacts of dispersants and potential synergistic effects with crude oil on individual hydrocarbon-degrading bacteria are poorly understood. In this study, two environmentally relevant species of hydrocarbon-degrading bacteria were utilized to quantify the response to Macondo crude oil and Corexit 9500A-dispersed oil in terms of bacterial growth and oil degradation potential. In addition, specific hydrocarbon compounds were quantified in the dissolved phase of the medium and linked to ecotoxicity using a U.S. Environmental Protection Agency (EPA)-approved rotifer assay. Bacterial treatment significantly and drastically reduced the toxicity associated with dispersed oil (increasing the 50% lethal concentration [LC50] by 215%). The growth and crude oil degradation potential of Acinetobacter were inhibited by Corexit by 34% and 40%, respectively; conversely, Corexit significantly enhanced the growth of Alcanivorax by 10% relative to that in undispersed oil. Furthermore, both bacterial strains were shown to grow with Corexit as the sole carbon and energy source. Hydrocarbon-degrading bacterial species demonstrate a unique response to dispersed oil compared to their response to crude oil, with potentially opposing effects on toxicity. While some species have the potential to enhance the toxicity of crude oil by producing biosurfactants, the same bacteria may reduce the toxicity associated with dispersed oil through degradation or sequestration. PMID:26546426

  2. Clouds and the atmospheric circulation response to warming

    OpenAIRE

    Ceppi, Paulo; Hartmann, Dennis L.

    2016-01-01

    We study the effect of clouds on the atmospheric circulation response to CO2 quadrupling in an aquaplanet model with a slab-ocean lower boundary. The cloud effect is isolated by locking the clouds to either the control or 4xCO2 state in the shortwave (SW) or longwave (LW) radiation schemes. In our model, cloud-radiative changes explain more than half of the total poleward expansion of the Hadley cells, midlatitude jets, and storm tracks under CO2 quadrupling, even though they cause only one-f...

  3. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of atmospheric dispersion model with improved deposition scheme and oceanic dispersion model

    Directory of Open Access Journals (Sweden)

    G. Katata

    2014-06-01

    Full Text Available Temporal variations in the amount of radionuclides released into the atmosphere during the Fukushima Dai-ichi Nuclear Power Station (FNPS1 accident and their atmospheric and marine dispersion are essential to evaluate the environmental impacts and resultant radiological doses to the public. In this paper, we estimate a detailed time trend of atmospheric releases during the accident by combining environmental monitoring data with atmospheric model simulations from WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information, and simulations from the oceanic dispersion model SEA-GEARN-FDM, both developed by the authors. A sophisticated deposition scheme, which deals with dry and fogwater depositions, cloud condensation nuclei (CCN activation and subsequent wet scavenging due to mixed-phase cloud microphysics (in-cloud scavenging for radioactive iodine gas (I2 and CH3I and other particles (CsI, Cs, and Te, was incorporated into WSPEEDI-II to improve the surface deposition calculations. The fallout to the ocean surface calculated by WSPEEDI-II was used as input data for the SEA-GEARN-FDM calculations. Reverse and inverse source-term estimation methods based on coupling the simulations from both models was adopted using air dose rates and concentrations, and sea surface concentrations. The results revealed that the major releases of radionuclides due to FNPS1 accident occurred in the following periods during March 2011: the afternoon of 12 March due to the wet venting and hydrogen explosion at Unit 1, the morning of 13 March after the venting event at Unit 3, midnight of 14 March when the SRV (Safely Relief Valve at Unit 2 was opened three times, the morning and night of 15 March, and the morning of 16 March. According to the simulation results, the highest radioactive contamination areas around FNPS1 were created from 15 to 16 March by complicated interactions among rainfall, plume movements, and the temporal

  4. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of atmospheric dispersion model with improved deposition scheme and oceanic dispersion model

    Science.gov (United States)

    Katata, G.; Chino, M.; Kobayashi, T.; Terada, H.; Ota, M.; Nagai, H.; Kajino, M.; Draxler, R.; Hort, M. C.; Malo, A.; Torii, T.; Sanada, Y.

    2014-06-01

    Temporal variations in the amount of radionuclides released into the atmosphere during the Fukushima Dai-ichi Nuclear Power Station (FNPS1) accident and their atmospheric and marine dispersion are essential to evaluate the environmental impacts and resultant radiological doses to the public. In this paper, we estimate a detailed time trend of atmospheric releases during the accident by combining environmental monitoring data with atmospheric model simulations from WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information), and simulations from the oceanic dispersion model SEA-GEARN-FDM, both developed by the authors. A sophisticated deposition scheme, which deals with dry and fogwater depositions, cloud condensation nuclei (CCN) activation and subsequent wet scavenging due to mixed-phase cloud microphysics (in-cloud scavenging) for radioactive iodine gas (I2 and CH3I) and other particles (CsI, Cs, and Te), was incorporated into WSPEEDI-II to improve the surface deposition calculations. The fallout to the ocean surface calculated by WSPEEDI-II was used as input data for the SEA-GEARN-FDM calculations. Reverse and inverse source-term estimation methods based on coupling the simulations from both models was adopted using air dose rates and concentrations, and sea surface concentrations. The results revealed that the major releases of radionuclides due to FNPS1 accident occurred in the following periods during March 2011: the afternoon of 12 March due to the wet venting and hydrogen explosion at Unit 1, the morning of 13 March after the venting event at Unit 3, midnight of 14 March when the SRV (Safely Relief Valve) at Unit 2 was opened three times, the morning and night of 15 March, and the morning of 16 March. According to the simulation results, the highest radioactive contamination areas around FNPS1 were created from 15 to 16 March by complicated interactions among rainfall, plume movements, and the temporal variation of

  5. Ecological considerations for the use of dispersants in oil spill response

    Science.gov (United States)

    Lindstedt-Siva, J.; Albers, P.H.; Fucik, K.W.; Maynard, N.G.; Allen, Tom E.

    1984-01-01

    A multidisciplinary task force with membership from government agencies, academia, and industry is developing ecologically based guidelines for dispersant use in marine and estuarine environments. The guidelines are organized by habitat type (e.g., coral reefs, rocky shores, bird habitats) and consider dispersant use to protect the habitats from impact, to mitigate impacts, and to clean the habitats after a spill. Each guideline contains a description of the habitat type covered, recommendations for dispersant use, and a background section reviewing the relevant literature. The goal is to minimize the ecological impacts of oil spills. Aesthetic, socioeconomic, and political factors are not considered, although it is recognized that these are important concerns during spill response. Use of dispersants is considered along with other appropriate countermeasures and compared with the “no cleanup” alternative.

  6. Testing Plant Responses to Rarified Atmospheres for Inflatable Greenhouses

    Science.gov (United States)

    Corey, Kenneth A.

    2000-01-01

    Reduced atmospheric pressures will likely be used to minimize mass and engineering requirements for plant growth habitats used in extraterrestrial applications. A chamber with high vacuum capability was used to design and begin construction of a system for testing plant responses to reduced pressure atmospheres. Several preliminary tests were conducted to evaluate chamber suitability for plant tests and to determine performance of thermal and vacuum systems at ambient and reduced pressure atmospheres down to 0.1 atm. The first tests consisted of measurements of internal gas volume and leakage rate. The method for volume determination was quite sensitive and will be needed for plant gas exchange measurements and calculations. This information will also be used in conjunction with the leak rate. Measured leak rates on the order of 0.46 mm Hg/min at 76 mm Hg pressure are low enough to conduct sensitive carbon dioxide exchange rate measurements at reduced pressure given an adequate plant sample (0.5 to 1.0 sq m area). A test rack with lighting provided by three high-pressure sodium vapor lamps was built to accommodate both short-term and long-term plant responses. Initial short-term experiments with lettuce showed that a pressure of 77 mm Hg resulted in a 6.1-fold increase in the rate of water loss compared to water loss at ambient pressure. Plants were severely wilted after 30 minutes exposure to 77 mm Hg. Water loss was found to be inversely correlated with atmospheric pressure over the range of pressures from 0.2 to 1.0 atm; the rate of water loss at 0.2 atm was 4.3 times higher than water loss at ambient pressure. Older leaves showed moderate wilting during exposure to 156 mm Hg, but those exposed to 345 mm, Hg remained turgid. Results suggest a reduced atmospheric pressure limit of 0.2 to 0.3 atm for lettuce grown in a solid medium. Follow-up experiments with carbon dioxide control and control at high relative humidity (> 90 %) will be needed to further confirm

  7. The model SIRANE for atmospheric urban pollutant dispersion; part I, presentation of the model

    Science.gov (United States)

    Soulhac, Lionel; Salizzoni, Pietro; Cierco, F.-X.; Perkins, Richard

    2011-12-01

    In order to control and manage urban air quality, public authorities require an integrated approach that incorporates direct measurements and modelling of mean pollutant concentrations. These have to be performed by means of operational modelling tools, that simulate the transport of pollutants within and above the urban canopy over a large number of streets. The operational models must be able to assess rapidly a large variety of situations and with limited computing resources. SIRANE is an operational urban dispersion model based on a simplified description of the urban geometry that adopts parametric relations for the pollutant transfer phenomena within and out of the urban canopy. The streets in a city district are modelled as a network of connected street segments. The flow within each street is driven by the component of the external wind parallel to the street, and the pollutant is assumed to be uniformly mixed within the street. The model contains three main mechanisms for transport in and out of a street: advection along the street axis, diffusion across the interface between the street and the overlying air flow and exchanges with other streets at street intersections. The dispersion of pollutants advected or diffused out of the streets is taken into account using a Gaussian plume model, with the standard deviations σ y and σ z parameterised by the similarity theory. The input data for the final model are the urban geometry, the meteorological parameters, the background concentration of pollutants advected into the model domain by the wind and the emissions within each street in the network.

  8. A model employing integral transform method to simulate pollutant dispersion in atmosphere

    Directory of Open Access Journals (Sweden)

    Davidson Martins Moreira

    2013-12-01

    Full Text Available An updated version of the semi-analytical model for describing the steady-state concentration in the atmospheric boundary layer is presented here. Two inversion methods of the Laplace transform are tested: the Gaussian Quadrature scheme and the Fixed-Talbot method. The model takes into account settling velocity, removal (wet and dry deposition, and first order chemical reactions. The capability of the model to accurately predict the ground-level concentration is demonstrated qualitative and quantitatively. The results are in good agreement with experimental data.

  9. Atmospheric Dispersion Modeling of 137Cs generated from Nuclear Spent Fuel under Hypothetic Accidental Condition in the BNPP Area

    Science.gov (United States)

    Lee, Jongkuk; Lee, Kwan-Hee; Yook, Daesik; Kim, Sung Il; Lee, Byung Soo

    2016-04-01

    This study presents the results of atmosphere dispersion modeling using CALPUFF code that are based on computational simulation to evaluate the environmental characteristics of the Barakah nuclear power plant (BNPP) in west area of UAE. According to meteorological data analysis (2012~2013), the winds from the north(7.68%) and west(9.05%) including NNW(41.63%), NW(28.55%), and WNW(6.31%) winds accounted for more than 90% of the wind directions. East(0.2%) and south(0.6%) direction wind, including ESE(0.31%), SE(0.38%), and SSE(0.38%) were rarely distributed during the simulation period. Seasonal effects were not showed. However, a discrepancy in the tendency between daytime and night-time was observed. Approximately 87% of the wind speed was distributed below 5.4m/s (17%, 47% and 23% between the speeds of 0.5-1.8m/s 1.8-3.3m/s and 3.3-5.4m/s, respectively) during the annual period. Seasonal wind speed distribution results presented very similar pattern of annual distribution. Wind speed distribution of day and night, on the other hand, had a discrepancy with annual modeling results than seasonal distribution in some sections. The results for high wind speed (more than 10.8m/s) showed that this wind blew from the west. This high wind speed is known locally as the 'Shamal', which occurs rarely, lasting one or two days with the strongest winds experienced in association with gust fronts and thunderstorms. Six variations of cesium-137 (137Cs) dispersion test were simulated under hypothetic severe accidental condition. The 137Cs dispersion was strongly influenced by the direction and speed of the main wind. From the test cases, east-south area of the BNPP site was mainly influenced by 137Cs dispersion. A virtual receptor was set and calculated for observation of the 137Cs movement and accumulation. Surface roughness tests were performed for the analysis of topographic conditions. According to the surface condition, there are various surface roughness length. Four types

  10. Non-steady wind turbine response to daytime atmospheric turbulence

    Science.gov (United States)

    Nandi, Tarak N.; Herrig, Andreas; Brasseur, James G.

    2017-03-01

    Relevant to drivetrain bearing fatigue failures, we analyse non-steady wind turbine responses from interactions between energy-dominant daytime atmospheric turbulence eddies and the rotating blades of a GE 1.5 MW wind turbine using a unique dataset from a GE field experiment and computer simulation. Time-resolved local velocity data were collected at the leading and trailing edges of an instrumented blade together with generator power, revolutions per minute, pitch and yaw. Wind velocity and temperature were measured upwind on a meteorological tower. The stability state and other atmospheric conditions during the field experiment were replicated with a large-eddy simulation in which was embedded a GE 1.5 MW wind turbine rotor modelled with an advanced actuator line method. Both datasets identify three important response time scales: advective passage of energy-dominant eddies (≈25-50 s), blade rotation (once per revolution (1P), ≈3 s) and sub-1P scale (<1 s) response to internal eddy structure. Large-amplitude short-time ramp-like and oscillatory load fluctuations result in response to temporal changes in velocity vector inclination in the aerofoil plane, modulated by eddy passage at longer time scales. Generator power responds strongly to large-eddy wind modulations. We show that internal dynamics of the blade boundary layer near the trailing edge is temporally modulated by the non-steady external flow that was measured at the leading edge, as well as blade-generated turbulence motions. This article is part of the themed issue 'Wind energy in complex terrains'.

  11. VALDRIFT 1.0: A valley atmospheric dispersion model with deposition

    Energy Technology Data Exchange (ETDEWEB)

    Allwine, K.J.; Bian, X.; Whiteman, C.D.

    1995-05-01

    VALDRIFT version 1.0 is an atmospheric transport and diffusion model for use in well-defined mountain valleys. It is designed to determine the extent of ddft from aedal pesticide spraying activities, but can also be applied to estimate the transport and diffusion of various air pollutants in valleys. The model is phenomenological -- that is, the dominant meteorological processes goveming the behavior of the valley atmosphere are formulated explicitly in the model, albeit in a highly parameterized fashion. The key meteorological processes treated are: (1) nonsteady and nonhomogeneous along-valley winds and turbulent diffusivities, (2) convective boundary layer growth, (3) inversion descent, (4) noctumal temperature inversion breakup, and (5) subsidence. The model is applicable under relatively cloud-free, undisturbed synoptic conditions and is configured to operate through one diumal cycle for a single valley. The inputs required are the valley topographical characteristics, pesticide release rate as a function of time and space, along-valley wind speed as a function of time and space, temperature inversion characteristics at sunrise, and sensible heat flux as a function of time following sunrise. Default values are provided for certain inputs in the absence of detailed observations. The outputs are three-dimensional air concentration and ground-level deposition fields as a function of time.

  12. VALDRIFT 1.0: A valley atmospheric dispersion model with deposition

    Energy Technology Data Exchange (ETDEWEB)

    Allwine, K.J.; Bian, X.; Whiteman, C.D.

    1995-05-01

    VALDRIFT version 1.0 is an atmospheric transport and diffusion model for use in well-defined mountain valleys. It is designed to determine the extent of ddft from aedal pesticide spraying activities, but can also be applied to estimate the transport and diffusion of various air pollutants in valleys. The model is phenomenological -- that is, the dominant meteorological processes goveming the behavior of the valley atmosphere are formulated explicitly in the model, albeit in a highly parameterized fashion. The key meteorological processes treated are: (1) nonsteady and nonhomogeneous along-valley winds and turbulent diffusivities, (2) convective boundary layer growth, (3) inversion descent, (4) noctumal temperature inversion breakup, and (5) subsidence. The model is applicable under relatively cloud-free, undisturbed synoptic conditions and is configured to operate through one diumal cycle for a single valley. The inputs required are the valley topographical characteristics, pesticide release rate as a function of time and space, along-valley wind speed as a function of time and space, temperature inversion characteristics at sunrise, and sensible heat flux as a function of time following sunrise. Default values are provided for certain inputs in the absence of detailed observations. The outputs are three-dimensional air concentration and ground-level deposition fields as a function of time.

  13. Atmospheric dispersal of [sup 129]iodine from nuclear fuel reprocessing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Moran, J.E.; Schink, D.R. (Texas A and M Univ., College Station, TX (United States). Dept. of Oceanography); Oktay, S.; Santschi, P.H. (Texas A and M Univ., Galveston, TX (United States). Dept. of Oceanography)

    1999-08-01

    [sup 129]I/[sup 127]I ratios measured in meteoric water and epiphytes from the continental United States are higher than those measured in coastal seawater or surface freshwater and suggest long-range atmospheric transport of [sup 129]I from the main source for the earth's surface inventory, viz., nuclear fuel reprocessing facilities. The median ratio for 14 meteoric water samples is 2100 [times] 10[sup [minus]12], corresponding to a [sup 129]I concentration of 2.5 [times] 10[sup 7] atoms/L, whereas 9 epiphyte samples have a median ratio of 1800 [times] 10[sup [minus]12]. Calculated deposition rates of [sup 129]I in the continental United States reveal that a small but significant fraction of the atmospheric releases from the nuclear fuel reprocessing facilities at Sellafield, England, and Cap de La Hague, France, is deposited after distribution by long-range transport. The inferred dominant mode of transport is easterly, within the troposphere, mainly in the form of the organic gas methyl iodide.

  14. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2011-10-01

    Full Text Available On 11 March 2011, an earthquake occurred about 130 km off the Pacific coast of Japan's main island Honshu, followed by a large tsunami. The resulting loss of electric power at the Fukushima Dai-ichi nuclear power plant (FD-NPP developed into a disaster causing massive release of radioactivity into the atmosphere. In this study, we determine the emissions of two isotopes, the noble gas xenon-133 (133Xe and the aerosol-bound caesium-137 (137Cs, which have very different release characteristics as well as behavior in the atmosphere. To determine radionuclide emissions as a function of height and time until 20 April, we made a first guess of release rates based on fuel inventories and documented accident events at the site. This first guess was subsequently improved by inverse modeling, which combined the first guess with the results of an atmospheric transport model, FLEXPART, and measurement data from several dozen stations in Japan, North America and other regions. We used both atmospheric activity concentration measurements as well as, for 137Cs, measurements of bulk deposition. Regarding 133Xe, we find a total release of 16.7 (uncertainty range 13.4–20.0 EBq, which is the largest radioactive noble gas release in history not associated with nuclear bomb testing. There is strong evidence that the first strong 133Xe release started very early, possibly immediately after the earthquake and the emergency shutdown on 11 March at 06:00 UTC. The entire noble gas inventory of reactor units 1–3 was set free into the atmosphere between 11 and 15 March 2011. For 137Cs, the inversion results give a total emission of 35.8 (23.3–50.1 PBq, or about 42% of the estimated Chernobyl emission. Our results indicate that 137Cs emissions peaked on 14–15 March but were generally high from 12 until 19 March, when they suddenly dropped by orders of magnitude exactly when spraying of

  15. Source term for atmospheric dispersion in pipeline rupture; Termo fonte para dispersao atmosferica em ruptura de gasoduto

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Rubem da Cunha [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil). Faculdade de Engenharia. Dept. de Engenharia Quimica]. E-mail: rreis@eq.pucrs.br; Leal, Cesar Antonio [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Dept. de Engenharia Nuclear. Programa de Pos-graduacao em Engenharia Mecanica]. E-mail: leal@vortex.ufrgs.br

    2003-07-01

    The evaluation of consequences of industrial accidents requires the determination of physical effects in the several stages that compose a sequence of events that needs to be modeled. When a dangerous product is liberated accidentally, in order to the estimate of the possible number of victims in the scenario under consideration, one needs to evaluate the amount of released material, its physical state, and the amount that becomes airborne to form the source term for dispersion. Natural gas, transported in pipelines, is already crossing the state of Rio Grande do Sul, where, as well as in another areas of the country, it will be widely used. The need to overcome large distances between distribution and consuming units of natural gas implies in the use of high pressure conditions for transportation. The modeling of the behavior of the system in case of an accidents under this condition of quite severe pressure was done in a similar fashion used in a previous work where good results were obtained. The pipeline initial conditions are supercritical. In this paper, it is presented a discussion and results of the amount of natural gas that would be liberated in the form gas for further dispersion in the atmosphere, for the case of a pipeline initially in the pressure of 7 MPa and ambient temperature. (author)

  16. Estimation for zero-inflated over-dispersed count data model with missing response.

    Science.gov (United States)

    Mian, Rajibul; Paul, Sudhir

    2016-12-30

    In this paper, we develop estimation procedure for the parameters of a zero-inflated over-dispersed/under-dispersed count model in the presence of missing responses. In particular, we deal with a zero-inflated extended negative binomial model in the presence of missing responses. A weighted expectation maximization algorithm is used for the maximum likelihood estimation of the parameters involved. Some simulations are conducted to study the properties of the estimators. Robustness of the procedure is shown when count data follow other over-dispersed models, such as the log-normal mixture of the Poisson distribution or even from a zero-inflated Poisson model. An illustrative example and a discussion leading to some conclusions are given. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Development of a code to simulate dispersion of atmospheric released tritium gas in the environmental media and to evaluate doses. TRIDOSE

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Mikio [Nuclear Engineering Co., Ltd., Hitachi, Ibaraki (Japan); Noguchi, Hiroshi; Yokoyama, Sumi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-11-01

    A computer code (TRIDOSE) was developed to assess the environmental impact of atmospheric released tritium gas (T{sub 2}) from nuclear fusion related facilities. The TRIDOSE simulates dispersion of T{sub 2} and resultant HTO in the atmosphere, land, plant, water and foods in the environment, and evaluates contamination concentrations in the media and exposure doses. A part of the mathematical models in TRIDOSE were verified by comparison of the calculation with the results of the short range (400 m) dispersion experiment of HT gas performed in Canada postulating a short-time (30 minutes) accidental release. (author)

  18. A GIS-based atmospheric dispersion model for pollutants emitted by complex source areas.

    Science.gov (United States)

    Teggi, Sergio; Costanzini, Sofia; Ghermandi, Grazia; Malagoli, Carlotta; Vinceti, Marco

    2018-01-01

    Gaussian dispersion models are widely used to simulate the concentrations and deposition fluxes of pollutants emitted by source areas. Very often, the calculation time limits the number of sources and receptors and the geometry of the sources must be simple and without holes. This paper presents CAREA, a new GIS-based Gaussian model for complex source areas. CAREA was coded in the Python language, and is largely based on a simplified formulation of the very popular and recognized AERMOD model. The model allows users to define in a GIS environment thousands of gridded or scattered receptors and thousands of complex sources with hundreds of vertices and holes. CAREA computes ground level, or near ground level, concentrations and dry deposition fluxes of pollutants. The input/output and the runs of the model can be completely managed in GIS environment (e.g. inside a GIS project). The paper presents the CAREA formulation and its applications to very complex test cases. The tests shows that the processing time are satisfactory and that the definition of sources and receptors and the output retrieval are quite easy in a GIS environment. CAREA and AERMOD are compared using simple and reproducible test cases. The comparison shows that CAREA satisfactorily reproduces AERMOD simulations and is considerably faster than AERMOD. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effect of Additional Structure on Effective Stack Height of Gas Dispersion in Atmosphere

    Directory of Open Access Journals (Sweden)

    Takenobu Michioka

    2016-03-01

    Full Text Available Wind-tunnel experiments were conducted to evaluate the effect of additional structure (building, sea wall and banking on the effective stack height, which is usually used in safety analyses of nuclear power facilities in Japan. The effective stack heights were estimated with and without the additional structure in addition to the reactor building while varying several conditions such as the source height, the height of additional structure and the distance between the source position and the additional structure. When the source height is equivalent to the reactor building height, the additional structure enhances both the vertical and horizontal gas dispersion widths and decreases the ground gas concentration, and it means that the additional structure does not decrease the effective stack height. When the source height is larger than the reactor height, the additional structures might affect the effective stack height. As the distance between the source and the additional structure decreases, or as the height of the additional structure increases, the structure has a larger effect on the effective stack height.

  20. The sand bag model of the dispersion of the cosmic body in the atmosphere

    Science.gov (United States)

    Teterev, A. V.; Nemchinov, I. V.

    1993-01-01

    The strength of the extraterrestrial bodies depends on their structure, composition, dimensions, and the history of this body. The fragmentation of the body due to aerodynamic stresses begins at sufficiently large heights above the surface of the Earth. The process of fragmentation and dispersion of the fragments usually is studied by the hydrodynamic or even gasdynamic models. If the fragmentation process begins due to the initial cracks and faults of the body, or this body consists of large boulders glued by ice, the strength of these boulders after fragmentation remains higher than the aerodynamic stresses exerted at the remaining part of the body. It is supposed that fragmentation occurs at initial moment t = 0 at some height z(sub o) above the surface of the air, these fragments remain solid. The possibility of further fragmentation during the remaining part of the trajectory is not taken into account. If the number of these parts is large enough and their size is small in comparison to the initial radius of the body than we can use the sand bag model proposed in qualitative form.

  1. Fluctuations, Response, and Resonances in a Simple Atmospheric Model

    CERN Document Server

    Gritsun, Andrey

    2016-01-01

    We study the response of a simple quasi-geostrophic barotropic model of the atmosphere to various classes of perturbations affecting its forcing and its dissipation using the formalism of the Ruelle response theory. We investigate the geometry of such perturbations using the covariant Lyapunov vectors on the unperturbed system and discover in one specific case - orographic forcing - a substantial projection of the perturbation onto the stable directions of the flow. As a result, we find a clear violation of the fluctuation-dissipation theorem, in agreement with the basic tenets of nonequilibrium statistical mechanics. This results into a very strong response in the form of a forced Rossby-like wave that has no resemblance to the natural variability in the same range of spatial and temporal scales. We further analyze such a feature and discover it can be interpreted as resonant response to a specific group of rarely visited unstable periodic orbits of the unperturbed system. Our results reinforce the idea of u...

  2. Non-steady wind turbine response to daytime atmospheric turbulence.

    Science.gov (United States)

    Nandi, Tarak N; Herrig, Andreas; Brasseur, James G

    2017-04-13

    Relevant to drivetrain bearing fatigue failures, we analyse non-steady wind turbine responses from interactions between energy-dominant daytime atmospheric turbulence eddies and the rotating blades of a GE 1.5 MW wind turbine using a unique dataset from a GE field experiment and computer simulation. Time-resolved local velocity data were collected at the leading and trailing edges of an instrumented blade together with generator power, revolutions per minute, pitch and yaw. Wind velocity and temperature were measured upwind on a meteorological tower. The stability state and other atmospheric conditions during the field experiment were replicated with a large-eddy simulation in which was embedded a GE 1.5 MW wind turbine rotor modelled with an advanced actuator line method. Both datasets identify three important response time scales: advective passage of energy-dominant eddies (≈25-50 s), blade rotation (once per revolution (1P), ≈3 s) and sub-1P scale (load fluctuations result in response to temporal changes in velocity vector inclination in the aerofoil plane, modulated by eddy passage at longer time scales. Generator power responds strongly to large-eddy wind modulations. We show that internal dynamics of the blade boundary layer near the trailing edge is temporally modulated by the non-steady external flow that was measured at the leading edge, as well as blade-generated turbulence motions.This article is part of the themed issue 'Wind energy in complex terrains'.

  3. Atmospheric Response to Variations in Arctic Sea Ice Conditions

    Science.gov (United States)

    Bhatt, U.; Alexander, M.; Walsh, J.; Timlin, M.; Miller, J.

    2001-12-01

    While it is generally accepted that changes in air temperature and circulation determine sea ice conditions, it is not understood how the atmosphere is influenced by changes in sea ice. We employ the NCAR CCM 3.6 with specified ice extent and sea surface temperatures (sst). The overarching question addressed in this study is: how do variations in sea ice influence the atmosphere? We are particularly interested in the summer time response to highlight this unique aspect of this research. A control experiment has been integrated for 55 years by repeating the mean annual cycle of observed sea ice extent (either 0% or 100% ice cover) and sst, based on the period 1979-99. Sets of 50 member ensemble experiments were constructed by integrating the CCM from October to April using climatological sst (same as control) and observed sea ice extent from the winters of 1982-83 (ice maximum) and 1995-96 (ice minimum). Similar summertime sensitivity experiments were performed using ice extent conditions from April to October during 1982 (maximum) and 1995 (minimum). While responses were found both in winter and summer, the results described below refer to the summer of 1995. A set of 50 ensembles was also integrated for the summer of 1995 using sea ice concentration instead of extent. During the summer of 1995, negative sea ice anomalies were particularly large in the Siberian Arctic. Sea ice reductions result in increased surface and air temperatures and enhanced latent, sensible, and longwave fluxes out of the ocean. However, the net heat flux out of the ocean decreases because the changes are dominated by increased absorption of solar radiation over the low-albedo ocean. Cloud feedbacks are important in the Arctic and the downwelling solar at the surface decreases. The total cloud amount decreases due to reductions in low level clouds, however, convective cloud amounts increased. The net cloud radiative (shortwave and longwave) forcing is smaller in the experiment than the

  4. A RECOMMENDED PASQUILL-GIFFORD STABILITY CLASSIFICATION METHOD FOR SAFETY BASIS ATMOSPHERIC DISPERSION MODELING AT SRS

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, C.

    2012-03-28

    Several of the most common methods for estimating Pasquill-Gifford (PG) stability (turbulence) class were evaluated for use in modeling the radiological consequences of SRS accidental releases using the MELCOR Accident Consequence Code System, Ver. 2 (MACCS2). Evaluation criteria included: (1) the ability of the method to represent diffusion characteristics above a predominantly forested landscape at SRS, (2) suitability of the method to provide data consistent with the formulation of the MACCS2 model, and (3) the availability of onsite meteorological data to support implementation of the method The evaluation resulted in a recommendation that PG stability classification for regulatory applications at SRS should be based on measurements of the standard deviation of the vertical component of wind direction fluctuations, {sigma}{sub e}, collected from the 61-m level of the SRS meteorological towers, and processed in full accordance with EPA-454/R-99-005 (EPA, 2000). This approach provides a direct measurement that is fundamental to diffusion and captures explicitly the turbulence generated by both mechanical and buoyant forces over the characteristic surface (forested) of SRS. Furthermore, due to the potentially significant enhancement of horizontal fluctuations in wind direction from the occurrence of meander at night, the use of {sigma}{sub e} will ensure a reasonably conservative estimate of PG stability class for use in dispersion models that base diffusion calculations on a single value of PG stability class. Furthermore, meteorological data bases used as input for MACCS2 calculations should contain hourly data for five consecutive annual periods from the most recent 10 years.

  5. Dispersion and dry and wet deposition of PAHs in an atmospheric environment.

    Science.gov (United States)

    Ozaki, N; Nitta, K; Fukushima, T

    2006-01-01

    The atmospheric concentration and dry and wet deposition were measured for particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) from August to December in Higashi-Hiroshima City, Japan. PM concentration of fine particles (0.6-7 microm) was 5.7-75.1 micro m(-3), and coarse particles (> 7 microm) was 2.2-22.3 microg m(-3). Total PAHs concentration of fine particles was 0.14-16.3 ng m(-3), and coarse particles was 0.01-0.77 ng m(-3). Their concentration increased on non-rainy days and decreased rapidly on rainy days. For seasonal fluctuations of PAHs, their concentrations decreased from summer to winter, and the rate of decrease was more distinct for fine particles. For total (dry + wet) depositions, the PM flux was 1.9-11.2 mg m(-2) d(-1), and the total PAHs flux was 1.9-97.2 ng m(-3) d(-1). From these measurements, the yearly total loading of PAHs was estimated for the particle phase. Total loading was 28 microg m(-2) y(-1) for the dry deposition and 52 mg m(-2) y(-1) for the wet deposition. The loading of the wet deposition was comparable to those of the dry deposition for all ring numbers.

  6. Fluctuations, response, and resonances in a simple atmospheric model

    Science.gov (United States)

    Gritsun, Andrey; Lucarini, Valerio

    2017-06-01

    We study the response of a simple quasi-geostrophic barotropic model of the atmosphere to various classes of perturbations affecting its forcing and its dissipation using the formalism of the Ruelle response theory. We investigate the geometry of such perturbations by constructing the covariant Lyapunov vectors of the unperturbed system and discover in one specific case-orographic forcing-a substantial projection of the forcing onto the stable directions of the flow. This results into a resonant response shaped as a Rossby-like wave that has no resemblance to the unforced variability in the same range of spatial and temporal scales. Such a climatic surprise corresponds to a violation of the fluctuation-dissipation theorem, in agreement with the basic tenets of nonequilibrium statistical mechanics. The resonance can be attributed to a specific group of rarely visited unstable periodic orbits of the unperturbed system. Our results reinforce the idea of using basic methods of nonequilibrium statistical mechanics and high-dimensional chaotic dynamical systems to approach the problem of understanding climate dynamics.

  7. Disclosure of the National Data Centre Preparedness Exercise 2013 radionuclide release and atmospheric dispersion scenario

    Science.gov (United States)

    Ross, J. Ole; Hartmann, Gernot; Ceranna, Lars; Gestermann, Nicolai

    2015-04-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) prohibits all kinds of nuclear explosions. For the detection of treaty violations the International Monitoring System (IMS) operates stations observing seismic, hydroacoustic, and infrasound signals as well as radioisotopes in the atmosphere. While the IMS data is collected, processed and technically analyzed in the International Data Center (IDC) of the CTBT-Organization, National Data Centers (NDC) provide interpretation and advice to their government concerning suspicious detections occurring in IMS data. NDC Preparedness Exercises (NPE) are regularly performed dealing with fictitious treaty violations to practice the combined analysis of CTBT verification technologies and for the mutual exchange of information between NDC and also with the IDC. The scenario of the NPE2013 was the most complex so far. As exercise trigger, a fictitious accusing State Signatory points to a series of (simulated) radionuclide findings at IMS stations in Europe/Asia and postulates a connection with detections of a supposed seismic event which occurred within the territory of the fictitious state of FRISIA on September 4th, 2013. FRISIA is located at the Coast of the North Sea in Central Europe. The synthetic radionuclide detections start in Vienna (8 Sept, I-131) and Schauinsland (11 Sept, Xe-133) with rather low activity concentrations and are most prominent in Stockholm and Spitsbergen mid of September 2013. Smaller concentrations in Asia follow later on. The potential connection between the waveform and radionuclide evidence remained unclear for the participants. The verification task was to identify the waveform event in the given tempo-spatial domain and to investigate potential sources of the simulated radionuclide findings. Finally the potential conjunction between the sources and the CTBT-relevance of the whole picture has to be evaluated. The overall question is whether requesting an On-Site-Inspection in FRISIA would be

  8. Atmospheric dispersion of an elevated release in a rural environment: Comparison between field SF 6 tracer measurements and computations of Briggs and ADMS models

    Science.gov (United States)

    Connan, O.; Leroy, C.; Derkx, F.; Maro, D.; Hébert, D.; Roupsard, P.; Rozet, M.

    2011-12-01

    The French Institute for Radiological Protection and Nuclear Safety (IRSN), in collaboration with VEOLIA (French environmental services company), conducted experimental campaigns to study atmospheric dispersion around an Energy Recycling Unit (EUR). The objectives were to study dispersion for an elevated release in a rural environment and to compare results with those of models. The atmospheric dispersion was studied by SF 6 tracer injection into a 40 m high stack. Maximum values of experimental Atmospheric Transfer Coefficients (ATC max) and horizontal dispersion standard deviations ( σh) were compared to predictions from a first generation Briggs gaussian model as well as results from the latest generation ADMS 4.1 gaussian model. In neutral atmospheric conditions, the Briggs and ADMS models are in good agreement with experimental data in terms of ATC and σh. In unstable condition, for σh, both ADMS and Briggs models slightly overestimate the data for winter and summer conditions. In unstable conditions, ADMS and Briggs models overestimated ATC max. The statistical evaluation of the models versus experimental data shows neither models ever meets all of the criteria for good performance. However, statistical evaluation indicates that the ADMS model is more suitable for neutral condition, and that the Briggs model is more reliable for summer unstable conditions.

  9. Numerical investigation on three-dimensional dispersion and conversion behaviors of silicon tetrachloride release in the atmosphere.

    Science.gov (United States)

    Jianwen, Zhang; Xinxin, Yin; Yanan, Xin; Jian, Zhang; Xiaoping, Zheng; Chunming, Jiang

    2015-05-15

    The world has experienced heavy thirst of energy as it has to face a dwindling supply of fossil fuel and polycrystalline silicon photovoltaic solar energy technology has been assigned great importance. Silicon tetrachloride is the main byproducts of polysilicon industry, and it's volatile and highly toxic. Once silicon tetrachloride releases, it rapidly forms a dense gas cloud and reacts violently with water vapor in the atmosphere to form a gas cloud consisting of the mixture of silicon tetrachloride, hydrochloric acid and silicic acid, which endangers environment and people. In this article, numerical investigation is endeavored to explore the three dimensional dispersion and conversion behaviors of silicon tetrachloride release in the atmosphere. The k-ϵ model with buoyancy correction on k is applied for turbulence closure and modified EBU model is applied to describe the hydrolysis reaction of silicon tetrachloride. It is illustrated that the release of silicon tetrachloride forms a dense cloud, which sinks onto the ground driven by the gravity and wind and spreads both upwind and downwind. Complicated interaction occurs between the silicon tetrachloride cloud and the air mass. The main body of the dense cloud moves downwind and reacts with the water vapor on the interface between the dense cloud and the air mass to generate a toxic mixture of silicon tetrachloride, hydrogen chloride and silicic acid. A large coverage in space is formed by the toxic mixture and imposes chemical hazards to the environment. The exothermic hydrolysis reaction consumes water and releases reaction heat resulting in dehydration and temperature rise, which imposes further hazards to the ecosystem over the affected space.

  10. Development of a fast response dispersion model for virtual urban environments

    Science.gov (United States)

    Singh, Balwinder

    According to a UN report, more than 50% of the total world's population resides in urban areas and this fraction is increasing. Urbanization has a wide range of potential environmental impacts, including those related to the dispersion of potentially dangerous substances emitted from activities such as combustion, industrial processing or from deliberate harmful releases. This research is primarily focused on the investigation of various factors which contribute to the dispersion of certain classes of materials in a complex urban environment and improving both of the fundamental components of a fast response dispersion modeling system---wind modeling and dispersion modeling. Specifically, new empirical parameterizations have been suggested for an existing fast response wind model for street canyon flow fields. These new parameterizations are shown to produce more favorable results when compared with the experimental data. It is also demonstrated that the use of Graphics Processing Unit (GPU) technology can enhance the efficiency of an urban Lagrangian dispersion model and can achieve near real-time particle advection. The GPU also enables real-time visualizations which can be used for creating virtual urban environments to aid emergency responders. The dispersion model based on the GPU architecture relies on the so-called "simplified Langevin equations (SLEs)" for particle advection. The full or generalized form of the Langevin equations (GLEs) is known for its stiffness which tends to generate unstable modes in particle trajectory, where a particle may travel significant distances in a small time step. A fractional step methodology has been used to implement the GLEs into an existing Lagrangian random walk model to partially circumvent the stiffness associated with the GLEs. Dispersion estimates from the GLEs-based model have been compared with the SLEs-based model and available wind tunnel data. The GLEs-based model is more dispersive than the SLEs-based model in

  11. Liver antioxidant and plasma immune responses in juvenile golden grey mullet (Liza aurata) exposed to dispersed crude oil.

    Science.gov (United States)

    Milinkovitch, Thomas; Ndiaye, Awa; Sanchez, Wilfried; Le Floch, Stéphane; Thomas-Guyon, Hélène

    2011-01-17

    Dispersants are often used after oil spills. To evaluate the environmental cost of this operation in nearshore habitats, the experimental approach conducted in this study exposed juvenile golden grey mullets (Liza aurata) for 48 h to chemically dispersed oil (simulating, in vivo, dispersant application), to dispersant alone in seawater (as an internal control of chemically dispersed oil), to mechanically dispersed oil (simulating, in vivo, natural dispersion), to the water-soluble fraction of oil (simulating, in vivo, an oil slick confinement response technique) and to seawater alone (control condition). Biomarkers such as fluorescence of biliary polycyclic aromatic hydrocarbon (PAH) metabolites, total glutathione liver content, EROD (7-ethoxy-resorufin-O-deethylase) activity, liver antioxidant enzyme activities, liver lipid peroxidation and an innate immune parameter (haemolytic activity of the alternative complement pathway) were measured to assess the toxicity of dispersant application. Significant responses of PAH metabolites and total glutathione content of liver to chemically dispersed oil were found, when compared to water-soluble fraction of oil. As was suggested in other studies, these results highlight that priority must be given to oil slick confinement instead of dispersant application. However, since the same patterns of biomarker responses were observed for both chemically and mechanically dispersed oil, the results also suggest that dispersant application is no more toxic than the natural dispersion occurring in nearshore areas (due to, e.g. waves). The results of this study must, nevertheless, be interpreted cautiously since other components of nearshore habitats must be considered to establish a framework for dispersant use in nearshore areas.

  12. Biomedical Applications of the Cold Atmospheric Plasma: Cell Responses

    Science.gov (United States)

    Volotskova, Olga

    Current breakthrough research on cold atmospheric plasma (CAP) demonstrates that CAP has great potential in various areas, including medicine and biology, thus providing a new tool for living tissue treatment. Depending on the configuration the cold plasma sources can be used in the following areas: wound healing, skin diseases, hospital hygiene, sterilization, antifungal treatments, dental care, cosmetics targeted cell/tissue removal, and cancer treatments. This dissertation is focused on the studies of biomedical applications of cold atmospheric plasma jet based on helium flow and resultant cell responses to the cold plasma treatment. The studies were carried out on extra-cellular and intra-cellular levels in vitro. The main practical applications are wound healing and alternative to existing cancer therapy methods, areas of great interest and significant challenges. The CAP jet was built in the Micropropulsion and Nanotechnology Laboratory of Dr. Michael Keidar, as a part of multidisciplinary collaboration with the GW Medical School (Dr. M.A. Stepp) concerned with plasma medicine and bioengineering studies. Normal and cancer cells have two fundamental behavioral properties, proliferation and motility, which can be evaluated through cell migration rates and cell cycle progression. Various microscopic, spectroscopic and flow cytometry techniques were used to characterize cell responses to the cold plasma treatment. It was found that CAP effect on the cells is localized within the area of the treatment (of around ˜ 5mm in diameter). The migration rates of the normal skin cells can be reduced up to ˜ 40%. However, depending on the cell type the required treatment time is different, thus differential treatment of various cells presented in tissue is possible. The CAP effect on the migration was explained through the changes of the cell surface proteins/integrins. It was also found that normal and cancer cells respond differently to the CAP treatment under the same

  13. Atmospheric Dispersion at Spatial Resolutions Below Mesoscale for university of Tennessee SimCenter at Chattanooga: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dr. David Whitfield; Dr. Daniel Hyams

    2009-09-14

    In Year 1 of this project, items 1.1 and 1.2 were addressed, as well as item 2.2. The baseline parallel computational simulation tool has been refined significantly over the timeline of this project for the purpose of atmospheric dispersion and transport problems; some of these refinements are documented in Chapter 3. The addition of a concentration transport capability (item 1.2) was completed, along with validation and usage in a highly complex urban environment. Multigrid capability (item 2.2) was a primary focus of Year 1 as well, regardless of the fact that it was scheduled for Year 2. It was determined by the authors that due to the very large nature of the meshes required for atmospheric simulations at mesoscale, multigrid was a key enabling technology for the rest of the project to be successful. Therefore, it was addressed early according to the schedule laid out in the original proposal. The technology behind the multigrid capability is discussed in detail in Chapter 5. Also in Year 1, the issue of ground topography specification is addressed. For simulations of pollutant transport in a given region, a key prerequisite is the specification of the detailed ground topography. The local topography must be placed into a form suitable for generating an unstructured grid both on the topography itself and the atmospheric volume above it; this effort is documented in Chapter 6. In Year 2 of this project, items 1.3 and 2.1 were addressed. Weather data in the form of wind speeds, relative humidity, and baseline pollution levels may be input into the code in order to improve the real-world fidelity of the solutions. Of course, the computational atmospheric boundary layer (ABL) boundary condition developed in Year 1 may still be used when necessary. Cloud cover may be simulated via the levels of actinic flux allowed in photochemical reactions in the atmospheric chemistry model. The primary focus of Year 2 was the formulation of a multispecies capability with included

  14. Atmospheric dispersion of natural gas from a rupture in a pressurized and valved subsea pipeline; Dispersao atmosferica de gas natural por ruptura em duto submarino pressurizado e valvulado

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Fabio Coimbra Moreira de Macedo; Medeiros, Jose Luiz de; Araujo, Ofelia de Queiroz Fernandes [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica. Dept. de Engenharia Quimica

    2008-04-15

    This paper presents a simplified approach to the problem of transient atmospheric dispersion of natural gas released accidentally under the ocean, caused by leaks in pressurized subsea pipelines. The model aims to estimate the transient spatial distribution of gas concentration in the atmosphere for subsequent risk analysis. In this scenario, shut-off valves are used to rapidly isolate the damaged stretch of the gas pipeline (pipeline shutdown). The analysis considers the transient behavior of the remaining inventory inside the pipes through a release-by-leakage model, and the subsequent effect on the atmosphere surrounding the epicenter of release. There are also scenarios formulated with occurrences of numerous ruptures, synchronized or not, with known spatial distribution. The spatial-temporal model of atmospheric dispersion employed is based on the resolution of the tridimensional diffusion equation under turbulence in semi-infinite domains. The model includes appropriate resources to deal with: an ample range of atmospheric conditions; different wind velocities; transient conditions of gas released into the atmosphere (i.e., outflow, pressure, and temperature); many depths of emission; multi-source configuration of release. In this work a simulation tool in MATLAB environment was developed for the analyses of scenarios of transient dispersion of gas into the atmosphere. In the case of ruptures in subsea gas lines, this tool is useful to determine the conditions of maximum risk on production platforms situated close to the occurrence, as well as the impact of the localization of the shut-off valves in the release transient behavior. (author)

  15. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2012-03-01

    Full Text Available On 11 March 2011, an earthquake occurred about 130 km off the Pacific coast of Japan's main island Honshu, followed by a large tsunami. The resulting loss of electric power at the Fukushima Dai-ichi nuclear power plant developed into a disaster causing massive release of radioactivity into the atmosphere. In this study, we determine the emissions into the atmosphere of two isotopes, the noble gas xenon-133 (133Xe and the aerosol-bound caesium-137 (137Cs, which have very different release characteristics as well as behavior in the atmosphere. To determine radionuclide emissions as a function of height and time until 20 April, we made a first guess of release rates based on fuel inventories and documented accident events at the site. This first guess was subsequently improved by inverse modeling, which combined it with the results of an atmospheric transport model, FLEXPART, and measurement data from several dozen stations in Japan, North America and other regions. We used both atmospheric activity concentration measurements as well as, for 137Cs, measurements of bulk deposition. Regarding 133Xe, we find a total release of 15.3 (uncertainty range 12.2–18.3 EBq, which is more than twice as high as the total release from Chernobyl and likely the largest radioactive noble gas release in history. The entire noble gas inventory of reactor units 1–3 was set free into the atmosphere between 11 and 15 March 2011. In fact, our release estimate is higher than the entire estimated 133Xe inventory of the Fukushima Dai-ichi nuclear power plant, which we explain with the decay of iodine-133 (half-life of 20.8 h into 133Xe. There is strong evidence that the 133Xe release started before the first active venting was made, possibly indicating structural damage to reactor components and/or leaks due to overpressure which would have allowed early release of noble gases. For 137

  16. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant. Determination of the source term, atmospheric dispersion, and deposition

    Energy Technology Data Exchange (ETDEWEB)

    Stohl, A.; Burkhart, J.F.; Eckhardt, S. [NILU - Norwegian Institute for Air Research, Kjeller (Norway); Seibert, P. [Univ. of Natural Resources and Life Sciences, Vienna (Austria). Inst. of Meteorology; Wotawa, G. [Central Institute for Meteorology and Geodynamics, Vienna (Austria); Arnold, D. [Univ. of Natural Resources and Life Sciences, Vienna (Austria). Inst. of Meteorology; Technical Univ. of Catalonia, Barcelona (Spain). Inst. of Energy Technologies; Tapia, C. [Technical Univ. of Catalonia, Barcelona (Spain). Dept. of Physics and Nucelar Engineering; Vargas, A. [Technical Univ. of Catalonia, Barcelona (Spain). Inst. of Energy Technologies; Yasunari, T.J. [Univs. Space Research Association, Columbia, MD (United States). Goddard Earth Sciences and Technology and Research

    2012-07-01

    On 11 March 2011, an earthquake occurred about 130 km off the Pacific coast of Japan's main island Honshu, followed by a large tsunami. The resulting loss of electric power at the Fukushima Dai-ichi nuclear power plant developed into a disaster causing massive release of radioactivity into the atmosphere. In this study, we determine the emissions into the atmosphere of two isotopes, the noble gas xenon-133 ({sup 133}Xe) and the aerosol-bound caesium-137 ({sup 137}Cs), which have very different release characteristics as well as behavior in the atmosphere. To determine radionuclide emissions as a function of height and time until 20 April, we made a first guess of release rates based on fuel inventories and documented accident events at the site. This first guess was subsequently improved by inverse modeling, which combined it with the results of an atmospheric transport model, FLEXPART, and measurement data from several dozen stations in Japan, North America and other regions. We used both atmospheric activity concentration measurements as well as, for {sup 137}Cs, measurements of bulk deposition. Regarding {sup 133}Xe, we find a total release of 15.3 (uncertainty range 12.2-18.3) EBq, which is more than twice as high as the total release from Chernobyl and likely the largest radioactive noble gas release in history. The entire noble gas inventory of reactor units 1-3 was set free into the atmosphere between 11 and 15 March 2011. In fact, our release estimate is higher than the entire estimated {sup 133}Xe inventory of the Fukushima Dai-ichi nuclear power plant, which we explain with the decay of iodine-133 (half-life of 20.8 h) into {sup 133}Xe. There is strong evidence that the {sup 133}Xe release started before the first active venting was made, possibly indicating structural damage to reactor components and/or leaks due to overpressure which would have allowed early release of noble gases. For {sup 137}Cs, the inversion results give a total emission of 36

  17. Atmospheric response to the North Pacific enabled by daily sea surface temperature variability

    Science.gov (United States)

    Zhou, Guidi; Latif, Mojib; Greatbatch, Richard J.; Park, Wonsun

    2015-09-01

    Ocean-atmosphere interactions play a key role in climate variability on a wide range of timescales from seasonal to decadal and longer. The extratropical oceans are thought to exert noticeable feedbacks on the atmosphere especially on decadal and longer timescales, yet the large-scale atmospheric response to anomalous extratropical sea surface temperature (SST) is still under debate. Here we show, by means of dedicated high-resolution atmospheric model experiments, that sufficient daily variability in the extratropical background SST needs to be resolved to force a statistically significant large-scale atmospheric response to decadal North Pacific SST anomalies associated with the Pacific Decadal Oscillation, which is consistent with observations. The large-scale response is mediated by atmospheric eddies. This implies that daily extratropical SST fluctuations must be simulated by the ocean components and resolved by the atmospheric components of global climate models to enable realistic simulation of decadal North Pacific sector climate variability.

  18. Taste and physiological responses to glucosinolates: seed predator versus seed disperser.

    Directory of Open Access Journals (Sweden)

    Michal Samuni-Blank

    Full Text Available In contrast to most other plant tissues, fleshy fruits are meant to be eaten in order to facilitate seed dispersal. Although fleshy fruits attract consumers, they may also contain toxic secondary metabolites. However, studies that link the effect of fruit toxins with seed dispersal and predation are scarce. Glucosinolates (GLSs are a family of bitter-tasting compounds. The fleshy fruit pulp of Ochradenus baccatus was previously found to harbor high concentrations of GLSs, whereas the myrosinase enzyme, which breaks down GLSs to produce foul tasting chemicals, was found only in the seeds. Here we show the differential behavioral and physiological responses of three rodent species to high dose (80% Ochradenus' fruits diets. Acomys russatus, a predator of Ochradenus' seeds, was the least sensitive to the taste of the fruit and the only rodent to exhibit taste-related physiological adaptations to deal with the fruits' toxins. In contrast, Acomys cahirinus, an Ochradenus seed disperser, was more sensitive to a diet containing the hydrolyzed products of the GLSs. A third rodent (Mus musculus was deterred from Ochradenus fruits consumption by the GLSs and their hydrolyzed products. We were able to alter M. musculus avoidance of whole fruit consumption by soaking Ochradenus fruits in a water solution containing 1% adenosine monophosphate, which blocks the bitter taste receptor in mice. The observed differential responses of these three rodent species may be due to evolutionary pressures that have enhanced or reduced their sensitivity to the taste of GLSs.

  19. Responses of northern forest plants to atmospheric changes

    Energy Technology Data Exchange (ETDEWEB)

    Laine, K.; Huttunen, S.; Kauppi, M.; Ohtonen, R.; Laehdesmaeki, P. [Oulu Univ. (Finland). Dept. of Biology

    1996-12-31

    This research programme has been under way since 1990 to study the long-term synergistic effects of air pollutants and changing climatic conditions on the northern forest ecosystem and to increase the knowledge of climatic change and its consequences for the fragile northern nature. Ecological, physiological, morphological and biochemical methods have been used to study the responses of forest trees, dwarf shrubs, lichens and soil biology to environmental changes. The research programme is divided into four subprojects concentrating on different ecosystem levels. The subprojects are: (1) life, growth and survival strategies of northern dwarf shrubs under the pressure of a changing environment, (2) forest trees under the impact of air pollutants, increasing CO{sub 2} and UV-B, (3) susceptibility of lichens to air pollution and climatic change and (4) impact of elevated atmospheric CO{sub 2} and O{sub 3} on soil biology with special reference to carbon allocation and N fixation in symbiotic systems. This report summarizes the results of short-term experiments which showed many ecological and physiological changes in almost all elements of the northern boreal forests. These species-level measurements focused on the key species of the northern boreal forest, which have been thought to be useful in large-scale ecosystem experiments and modelling. The results will also facilitate the further studies on the patterns of plant species distribution and northern ecosystem function with respect to the environmental parameters that are expected to change along with global change (e.g. temperature, airchemistry, UV-B, snow condition)

  20. A Fast-Response Atmospheric Turbulence (FRAT) Probe with Gas-Sampling Ducts Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to design, construct and test a high-frequency-response air-data probe, the Fast Response Atmospheric Turbulence probe (FRAT probe)...

  1. Impact of giant resonant dispersion on the response of intracavity phase interferometry and laser gyros

    CERN Document Server

    Hendrie, James; Diels, Jean Claude; Arissian, Ladan

    2016-01-01

    Intracavity Phase Interferometry is a phase sensing technique using mode-locked lasers in which two intracavity pulses circulate. The beat frequency between the two output frequency combs is proportional to a phase shift to be measured. A laser gyro is a particular implementation of this device. The demonstrated sensitivity of $10^{-8}$ could be manipulated by applying a giant dispersion to each tooth of the comb. Such coupling is achieved with an intracavity etalon, resulting a large change in phase response of a ring laser. This change is shown to be unrelated to the average pulse velocity within the laser cavity.

  2. Earth's Atmospheric Electricity Parameter Response During Venus Transit

    Directory of Open Access Journals (Sweden)

    Syam Sundar De

    2015-01-01

    Full Text Available Venus transited across the Sun on 06 June 2012, introducing significant contribution to the tidal characteristics of the solar atmosphere. _ atmosphere was perturbed due to an anomalous Coronal Mass Ejection (CME and γ-radiationγ-radiation influenced by the solar tide due to Venus transit, thereby the Earth-ionosphere waveguide characteristics were changed. In this anomalous situation we measured some atmospheric electricity parameters such as Schumann resonance (SR amplitude, very low frequency (VLF sferics, subionospheric transmitted signals and the point discharge current (PDC along with the vertical electrical potential gradient (PG at the ground surface on the day of transit. The results showed some remarkable variations during the transit as well as pre- and post-transit periods. The observed anomalies in the recorded data were interpreted in terms of the anomalous solar tidal effects initiated due to Venus transit.

  3. Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition

    Science.gov (United States)

    Zhuang, Qianlai; Chen, Min; Xu, Kai; Tang, Jinyun; Saikawa, Eri; Lu, Yanyu; Melillo, Jerry M.; Prinn, Ronald G.; McGuire, A. David

    2013-01-01

    Soil consumption of atmospheric methane plays an important secondary role in regulating the atmospheric CH4 budget, next to the dominant loss mechanism involving reaction with the hydroxyl radical (OH). Here we used a process-based biogeochemistry model to quantify soil consumption during the 20th and 21st centuries. We estimated that global soils consumed 32–36 Tg CH4 yr−1 during the 1990s. Natural ecosystems accounted for 84% of the total consumption, and agricultural ecosystems only consumed 5 Tg CH4 yr−1 in our estimations. During the twentieth century, the consumption rates increased at 0.03–0.20 Tg CH4 yr−2 with seasonal amplitudes increasing from 1.44 to 3.13 Tg CH4 month−1. Deserts, shrublands, and xeric woodlands were the largest sinks. Atmospheric CH4 concentrations and soil moisture exerted significant effects on the soil consumption while nitrogen deposition had a moderate effect. During the 21st century, the consumption is predicted to increase at 0.05-1.0 Tg CH4 yr−2, and total consumption will reach 45–140 Tg CH4 yr−1 at the end of the 2090s, varying under different future climate scenarios. Dry areas will persist as sinks, boreal ecosystems will become stronger sinks, mainly due to increasing soil temperatures. Nitrogen deposition will modestly reduce the future sink strength at the global scale. When we incorporated the estimated global soil consumption into our chemical transport model simulations, we found that nitrogen deposition suppressed the total methane sink by 26 Tg during the period 1998–2004, resulting in 6.6 ppb higher atmospheric CH4 mixing ratios compared to without considering nitrogen deposition effects. On average, a cumulative increase of every 1 Tg soil CH4 consumption decreased atmospheric CH4 mixing ratios by 0.26 ppb during the period 1998–2004.

  4. High-resolution modelling of atmospheric dispersion of dense gas using TWODEE-2.1: application to the 1986 Lake Nyos limnic eruption

    Science.gov (United States)

    Folch, Arnau; Barcons, Jordi; Kozono, Tomofumi; Costa, Antonio

    2017-06-01

    Atmospheric dispersal of a gas denser than air can threat the environment and surrounding communities if the terrain and meteorological conditions favour its accumulation in topographic depressions, thereby reaching toxic concentration levels. Numerical modelling of atmospheric gas dispersion constitutes a useful tool for gas hazard assessment studies, essential for planning risk mitigation actions. In complex terrains, microscale winds and local orographic features can have a strong influence on the gas cloud behaviour, potentially leading to inaccurate results if not captured by coarser-scale modelling. We introduce a methodology for microscale wind field characterisation based on transfer functions that couple a mesoscale numerical weather prediction model with a microscale computational fluid dynamics (CFD) model for the atmospheric boundary layer. The resulting time-dependent high-resolution microscale wind field is used as input for a shallow-layer gas dispersal model (TWODEE-2.1) to simulate the time evolution of CO2 gas concentration at different heights above the terrain. The strategy is applied to review simulations of the 1986 Lake Nyos event in Cameroon, where a huge CO2 cloud released by a limnic eruption spread downslopes from the lake, suffocating thousands of people and animals across the Nyos and adjacent secondary valleys. Besides several new features introduced in the new version of the gas dispersal code (TWODEE-2.1), we have also implemented a novel impact criterion based on the percentage of human fatalities depending on CO2 concentration and exposure time. New model results are quantitatively validated using the reported percentage of fatalities at several locations. The comparison with previous simulations that assumed coarser-scale steady winds and topography illustrates the importance of high-resolution modelling in complex terrains.

  5. Tuning the nonlinear response of (6,5)-enriched single-wall carbon nanotubes dispersions

    Science.gov (United States)

    Aréstegui, O. S.; Silva, E. C. O.; Baggio, A. L.; Gontijo, R. N.; Hickmann, J. M.; Fantini, C.; Alencar, M. A. R. C.; Fonseca, E. J. S.

    2017-04-01

    Ultrafast nonlinear optical properties of (6,5)-enriched single-wall carbon nanotubes (SWCNTs) dispersions are investigated using the thermally managed Z-scan technique. As the (6,5) SWCNTs presented a strong resonance in the range of 895-1048 nm, the nonlinear refractive index (n2) and the absorption coefficients (β) measurements were performed tuning the laser exactly around absorption peak of the (6,5) SWCNTs. It is observed that the nonlinear response is very sensitive to the wavelength and the spectral behavior of n2 is strongly correlated to the tubes one-photon absorption band, presenting also a peak when the laser photon energy is near the tube resonance energy. This result suggests that a suitable selection of nanotubes types may provide optimized nonlinear optical responses in distinct regions of the electromagnetic spectrum. Analysis of the figures of merit indicated that this material is promising for ultrafast nonlinear optical applications under near infrared excitation.

  6. Aloha - Optics studies by combined kick-response and dispersion fits.

    CERN Document Server

    Fuchsberger, K

    2009-01-01

    The Aloha software is based on a JAVA reimplementation of the former LOCO response fitting code [1]. The project was initiated in order to have a tool that is available online in the control room to quickly analyze kick response data during the LHC injection tests and startup. Later it was extended to handle dispersion data as another source for fit-constraints and to import other input data as for example alignment and trim-values. It was already successfully used to determine monitor- an corrector-gains as well as identifying various error sources during the LHC injection tests. This note describes the principles used by Aloha as well as some implementation details of this software package.

  7. Atmospheric Response to Weddell Sea Open-Ocean Polynya

    Energy Technology Data Exchange (ETDEWEB)

    Hodos, Travis [United States Air Force Academy, Colorado Springs, CO (United States); Weijer, Wilbert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-02

    The atmospheric conditions associated with the rare Weddell Sea open ocean polynya are investigated. The polynya has not been seen since 1976, so data on the event is scarce. The CESM high resolution model is used to investigate multiple atmospheric variables. We analyze three years of polynyas, which are also compared to three years without a polynya. The surface temperature, sensible heat flux, latent heat flux, humidity, average wind speed, precipitation, longwave flux, and shortwave flux all increased over the polynya. The sensible heat flux had a higher magnitude than the latent heat flux because conduction and convection were the primary drivers of heat flux. A combination of increased latent heat flux and humidity led to an increase in precipitation. Increased longwave downwelling flux over the polynya indicated the presence of clouds over the polynya. Lastly, the sea level pressure was consistently lower over the polynya because of the presence of a thermal low generated by thermally driven convective updrafts.

  8. Culturable bacteria in Himalayan ice in response to atmospheric circulation

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2006-06-01

    Full Text Available Only recently has specific attention been given to culturable bacteria in Tibetan glaciers, but their relation to atmospheric circulation is less understood yet. Here we investigate the seasonal variation of culturable bacteria preserved in a Himalayan ice core. High concentration of culturable bacteria in glacial ice deposited during the pre-monsoon season is attributed to the transportation of continental dust stirred up by the frequent dust storms in Northwest China during spring. This is also confirmed by the spatial distribution of culturable bacteria in Tibetan glaciers. Culturable bacteria deposited during monsoon season are more diverse than other seasons because they derive from both marine air masses and local or regional continental sources. We suggest that microorganisms in Himalayan ice can be used to reconstruct atmospheric circulation.

  9. Potential Biosignatures in Super-Earth Atmospheres II. Photochemical Responses

    CERN Document Server

    Grenfell, J L; Godolt, M; Palczynski, K; Rauer, H; Stock, J; Paris, P v; Lehmann, R; Selsis, F

    2013-01-01

    Spectral characterization of Super-Earth atmospheres for planets orbiting in the Habitable Zone of M-dwarf stars is a key focus in exoplanet science. A central challenge is to understand and predict the expected spectral signals of atmospheric biosignatures (species associated with life). Our work applies a global-mean radiative-convective-photochemical column model assuming a planet with an Earth-like biomass and planetary development. We investigated planets with gravities of 1g and 3g and a surface pressure of one bar around central stars with spectral classes from M0 to M7. The spectral signals of the calculated planetary scenarios have been presented by Rauer et al. (2011). The main motivation of the present work is to perform a deeper analysis of the chemical processes in the planetary atmospheres. We apply a diagnostic tool, the Pathway Analysis Program, to shed light on the photochemical pathways that form and destroy biosignature species. Ozone is a potential biosignature for complex- life. An import...

  10. Contaminant dispersion prediction and source estimation with integrated Gaussian-machine learning network model for point source emission in atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Denglong [Fuli School of Food Equipment Engineering and Science, Xi’an Jiaotong University, No.28 Xianning West Road, Xi’an 710049 (China); Zhang, Zaoxiao, E-mail: zhangzx@mail.xjtu.edu.cn [State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, No.28 Xianning West Road, Xi’an 710049 (China); School of Chemical Engineering and Technology, Xi’an Jiaotong University, No.28 Xianning West Road, Xi’an 710049 (China)

    2016-07-05

    Highlights: • The intelligent network models were built to predict contaminant gas concentrations. • The improved network models coupled with Gaussian dispersion model were presented. • New model has high efficiency and accuracy for concentration prediction. • New model were applied to indentify the leakage source with satisfied results. - Abstract: Gas dispersion model is important for predicting the gas concentrations when contaminant gas leakage occurs. Intelligent network models such as radial basis function (RBF), back propagation (BP) neural network and support vector machine (SVM) model can be used for gas dispersion prediction. However, the prediction results from these network models with too many inputs based on original monitoring parameters are not in good agreement with the experimental data. Then, a new series of machine learning algorithms (MLA) models combined classic Gaussian model with MLA algorithm has been presented. The prediction results from new models are improved greatly. Among these models, Gaussian-SVM model performs best and its computation time is close to that of classic Gaussian dispersion model. Finally, Gaussian-MLA models were applied to identifying the emission source parameters with the particle swarm optimization (PSO) method. The estimation performance of PSO with Gaussian-MLA is better than that with Gaussian, Lagrangian stochastic (LS) dispersion model and network models based on original monitoring parameters. Hence, the new prediction model based on Gaussian-MLA is potentially a good method to predict contaminant gas dispersion as well as a good forward model in emission source parameters identification problem.

  11. Quantitative energy-dispersive electron probe X-ray microanalysis for single-particle analysis and its application for characterizing atmospheric aerosol particles

    Indian Academy of Sciences (India)

    Shila Maskey; Chul-Un Ro

    2011-02-01

    An energy-dispersive electron probe X-ray microanalysis (ED-EPMA) technique using an energy-dispersive X-ray detector with an ultra-thin window, designated as low-Z particle EPMA, has been developed. The low-Z particle EPMA allows the quantitative determination of concentrations of low-Z elements such as C, N and O, as well as higher-Z elements that can be analysed by conventional ED-EPMA. The quantitative determination of low-Z elements (using full Monte Carlo simulations, from the electron impact to the X-ray detection) in individual particles has improved the applicability of single-particle analysis, especially in atmospheric environmental aerosol research; many environmentally important atmospheric particles, e.g. sulphates, nitrates, ammonium and carbonaceous particles, contain low-Z elements. To demonstrate its practical applicability, the application of the low-Z particle EPMA for the characterization of Asian Dust, urban and subway aerosol particles is shown herein. In addition, it is demonstrated that the Monte Carlo calculation can also be applied in a quantitative single-particle analysis using transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectrometry (EDX), showing that the technique is useful and reliable for the characterization of submicron aerosol particles

  12. Comparison between conventional biofilters and biotrickling filters applied to waste bio-drying in terms of atmospheric dispersion and air quality.

    Science.gov (United States)

    Schiavon, Marco; Ragazzi, Marco; Torretta, Vincenzo; Rada, Elena Cristina

    2016-01-01

    Biofiltration has been widely applied to remove odours and volatile organic compounds (VOCs) from industrial off-gas and mechanical-biological waste treatments. However, conventional open biofilters cannot guarantee an efficient dispersion of air pollutants emitted into the atmosphere. The aim of this paper is to compare conventional open biofilters with biotrickling filters (BTFs) in terms of VOC dispersion in the atmosphere and air quality in the vicinity of a hypothetical municipal solid waste bio-drying plant. Simulations of dispersion were carried out regarding two VOCs of interest due to their impact in terms of odours and cancer risk: dimethyl disulphide and benzene, respectively. The use of BTFs, instead of conventional biofilters, led to significant improvements in the odour impact and the cancer risk: when adopting BTFs instead of an open biofilter, the area with an odour concentration > 1 OU m(-3) and a cancer risk > 10(-6) was reduced by 91.6% and 95.2%, respectively. When replacing the biofilter with BTFs, the annual mean concentrations of odorants and benzene decreased by more than 90% in the vicinity of the plant. These improvements are achieved above all because of the higher release height of BTFs and the higher velocity of the outgoing air flow.

  13. Responses of dispersal agents to tree and fruit traits in Virola calophylla (Myristicaceae): implications for selection.

    Science.gov (United States)

    Russo, Sabrina E

    2003-06-01

    Variation in traits affecting seed dispersal in plants has been attributed to selection exerted by dispersal agents. The potential for such selection was investigated in Virola calophylla (Myristicaceae) in Manú National Park, Peru, through identification of seed dispersal agents and of tree and fruit traits significantly affecting the quantity of seeds dispersed. Seventeen bird and one primate species (the spider monkey, Ateles paniscus) dispersed its seeds. Spider monkeys dispersed the majority of seeds (a minimum of 83% of all dispersed seeds). Visitation by dispersal agents depended only on the quantity of ripe fruit available during a tree observation. In contrast, seed removal increased with both greater quantity of ripe fruit and aril: seed ratio. When analyzed separately, seed removal by birds increased only with greater aril: seed ratio, whereas seed removal by spider monkeys was affected by the quantity of ripe fruit and phenological stage. The finding that dispersal agents responded differently to some tree and fruit traits indicates not only that dispersal agents can exert selection on traits affecting seed dispersal, but also that the resulting selection pressures are likely to be inconsistent. This conclusion is supported by the result that the proportion of the seed crop that was dispersed from individual trees, which accounted for cumulative dispersal by all agents, was not influenced by any tree or fruit trait evaluated. Comparing these results with those from studies of V. sebifera and V. nobilis in Panama revealed that the disperser assemblages of these three Virola species were congruent in their similar taxonomic representation. In Panama the proportion of V. nobilis seed crop dispersed was related positively to aril: seed ratio and negatively to seed mass, a result not found for V. calophylla in Peru. The greater importance of dispersal by primates versus birds in V. calophylla, relative to V. nobilis, may explain this difference. Thus

  14. Immune response varies with rate of dispersal in invasive cane toads (Rhinella marina.

    Directory of Open Access Journals (Sweden)

    Gregory P Brown

    Full Text Available What level of immunocompetence should an animal maintain while undertaking long-distance dispersal? Immune function (surveillance and response might be down-regulated during prolonged physical exertion due to energy depletion, and/or to avoid autoimmune reactions arising from damaged tissue. On the other hand, heightened immune vigilance might be favored if the organism encounters novel pathogens as it enters novel environments. We assessed the links between immune defense and long-distance movement in a population of invasive cane toads (Rhinella marina in Australia. Toads were radio-tracked for seven days to measure their activity levels and were then captured and subjected to a suite of immune assays. Toads that moved further showed decreased bacteria-killing ability in their plasma and decreased phagocytic activity in their whole blood, but a heightened skin-swelling response to phytohemagglutinin. Baseline and post-stress corticosterone levels were unrelated to distance moved. Thus, long-distance movement in cane toads is associated with a dampened response in some systems and enhanced response in another. This pattern suggests that sustained activity is accompanied by trade-offs among immune components rather than an overall down or up-regulation. The finding that high mobility is accompanied by modification of the immune system has important implications for animal invasions.

  15. Wind turbine aerodynamic response under atmospheric icing conditions

    DEFF Research Database (Denmark)

    Etemaddar, M.; Hansen, Martin Otto Laver; Moan, T.

    2014-01-01

    -four hours of icing, with time varying wind speed and atmospheric icing conditions, was simulated on a rotor. Computational fluid dynamics code, FLUENT, was used to estimate the aerodynamic coefficients of the blade after icing. The results were also validated against wind tunnel measurements performed at LM......). However, the thrust of the iced rotor in below rated wind speed is smaller than the clean rotor up to 14%, but after rated wind speed, it is up to 40% bigger than the clean rotor. Finally, it is briefly indicated how the results of this paper can be used for condition monitoring and ice detection...

  16. Contaminant dispersion prediction and source estimation with integrated Gaussian-machine learning network model for point source emission in atmosphere.

    Science.gov (United States)

    Ma, Denglong; Zhang, Zaoxiao

    2016-07-05

    Gas dispersion model is important for predicting the gas concentrations when contaminant gas leakage occurs. Intelligent network models such as radial basis function (RBF), back propagation (BP) neural network and support vector machine (SVM) model can be used for gas dispersion prediction. However, the prediction results from these network models with too many inputs based on original monitoring parameters are not in good agreement with the experimental data. Then, a new series of machine learning algorithms (MLA) models combined classic Gaussian model with MLA algorithm has been presented. The prediction results from new models are improved greatly. Among these models, Gaussian-SVM model performs best and its computation time is close to that of classic Gaussian dispersion model. Finally, Gaussian-MLA models were applied to identifying the emission source parameters with the particle swarm optimization (PSO) method. The estimation performance of PSO with Gaussian-MLA is better than that with Gaussian, Lagrangian stochastic (LS) dispersion model and network models based on original monitoring parameters. Hence, the new prediction model based on Gaussian-MLA is potentially a good method to predict contaminant gas dispersion as well as a good forward model in emission source parameters identification problem.

  17. Diagnosis of Middle Atmosphere Climate Sensitivity by the Climate Feedback Response Analysis Method

    Science.gov (United States)

    Zhu, Xun; Yee, Jeng-Hwa; Cai, Ming; Swartz, William H.; Coy, Lawrence; Aquila, Valentina; Talaat, Elsayed R.

    2014-01-01

    We present a new method to diagnose the middle atmosphere climate sensitivity by extending the Climate Feedback-Response Analysis Method (CFRAM) for the coupled atmosphere-surface system to the middle atmosphere. The Middle atmosphere CFRAM (MCFRAM) is built on the atmospheric energy equation per unit mass with radiative heating and cooling rates as its major thermal energy sources. MCFRAM preserves the CFRAM unique feature of an additive property for which the sum of all partial temperature changes due to variations in external forcing and feedback processes equals the observed temperature change. In addition, MCFRAM establishes a physical relationship of radiative damping between the energy perturbations associated with various feedback processes and temperature perturbations associated with thermal responses. MCFRAM is applied to both measurements and model output fields to diagnose the middle atmosphere climate sensitivity. It is found that the largest component of the middle atmosphere temperature response to the 11-year solar cycle (solar maximum vs. solar minimum) is directly from the partial temperature change due to the variation of the input solar flux. Increasing CO2 always cools the middle atmosphere with time whereas partial temperature change due to O3 variation could be either positive or negative. The partial temperature changes due to different feedbacks show distinctly different spatial patterns. The thermally driven globally averaged partial temperature change due to all radiative processes is approximately equal to the observed temperature change, ranging from 0.5 K near 70 km from the near solar maximum to the solar minimum.

  18. The response of atmospheric CO sub 2 to changes in land use

    Energy Technology Data Exchange (ETDEWEB)

    King, A.W.; Emanuel, W.R.; Post, W.M.

    1990-01-01

    The burning of biomass that often accompanies deforestation and other changes in land use is believed to be a major contributor to documented increases in the concentration of atmospheric CO{sub 2}. Using three models of carbon turnover in the atmosphere and ocean, we simulate changes in atmospheric CO{sub 2} that result from the addition of CO{sub 2} from industrial sources and terrestrial ecosystems disturbed by changes in land use. We simulate atmospheric response to different histories of terrestrial biospheric CO{sub 2} release, and we compare these simulations with the history of atmospheric CO{sub 2} obtained from ice core measurements and atmospheric monitoring stations. 63 refs., 12 figs., 1 tab.

  19. How displaced migratory birds could use volatile atmospheric compounds to find their migratory corridor? A test using a particle dispersion model.

    Directory of Open Access Journals (Sweden)

    Kamran Safi

    2016-10-01

    Full Text Available Olfaction represents an important sensory modality for navigation of both homing pigeons and wild birds. Experimental evidence in homing pigeons showed that airborne volatile compounds carried by the winds at the home area are learned in association with wind directions. When displaced, pigeons obtain information on the direction of their displacement using local odours at the release site. Recently, the role of olfactory cues in navigation has been reported also for wild birds during migration. However, the question whether wild birds develop an olfactory navigational map similar to that described in homing pigeons or, alternatively, exploit the distribution of volatile compounds in different manners for reaching the goal is still an open question. Using an interdisciplinary approach, we evaluate the possibilities of reconstructing spatio-temporally explicit aerosol dispersion at large spatial scales using the particle dispersion model FLEXPART. By combining atmospheric information with particle dispersion models, atmospheric scientists predict the dispersion of pollutants for example, after nuclear fallouts or volcanic eruptions or wildfires, or in retrospect reconstruct the origin of emissions such as aerosols. Using simple assumptions, we reconstructed the putative origin of aerosols traveling to the location of migrating birds. We use the model to test whether the putative odour plume could have originated from an important stopover site. If the migrating birds knew this site and the associated plume from previous journeys, the odour could contribut to the reorientation towards the migratory corridor, as suggested for the model scenario in displaced Lesser black-backed gulls migrating from Northern Europe into Africa.

  20. Multiwalled Carbon Nanotube Dispersion Methods Affect Their Aggregation, Deposition, and Biomarker Response

    Science.gov (United States)

    To systematically evaluate how dispersion methods affect the environmental behaviors of multiwalled carbon nanotubes (MWNTs), MWNTs were dispersed in various solutions (e.g., surfactants, natural organic matter (NOM), and etc.) via ultrasonication (SON) and long-term stirring (LT...

  1. Multiwalled Carbon Nanotube Dispersion Methods Affect Their Aggregation, Deposition, and Biomarker Response

    Science.gov (United States)

    To systematically evaluate how dispersion methods affect the environmental behaviors of multiwalled carbon nanotubes (MWNTs), MWNTs were dispersed in various solutions (e.g., surfactants, natural organic matter (NOM), and etc.) via ultrasonication (SON) and long-term stirring (LT...

  2. Conditions for the formation and atmospheric dispersion of a toxic, heavy gas layer during thermal metamorphism of coal and evaporite deposits by sill intrusion

    Science.gov (United States)

    Storey, Michael; Hankin, Robin K. S.

    2010-05-01

    There is compelling evidence for massive discharge of volatiles, including toxic species, into the atmosphere at the end of the Permian. It has been argued that most of the gases were produced during thermal metamorphism of coal and evaporite deposits in the East Siberia Tunguska basin following sill intrusion (Retallack and Jahren, 2008; Svensen et al., 2009). The release of the volatiles has been proposed as a major cause of environmental and extinction events at the end of the Permian, with venting of carbon gases and halocarbons to the atmosphere leading to global warming and atmospheric ozone depletion (Svensen et al., 2009) Here we consider the conditions required for the formation and dispersion of toxic, heavier than air, gas plumes, made up of a mixture of CO2, CH4, H2S and SO2 and formed during the thermal metamorphism of C- and S- rich sediments. Dispersion models and density considerations within a range of CO2/CH4 ratios and volatile fluxes and temperatures, for gas discharge by both seepage and from vents, allow the possibility that following sill emplacement much of the vast East Siberia Tunguska basin was - at least intermittently - covered by a heavy, toxic gas layer that was unfavorable for life. Dispersion scenarios for a heavy gas layer beyond the Siberian region during end-Permian times will be presented. REFERENCES G. J. Retallack and A. H. Jahren, Methane release from igneous intrusion of coal during Late Permian extinction events, Journal of Geology, volume 116, 1-20, 2008 H. Svensen et al., Siberian gas venting and the end-Permian environmental crisis, Earth and Planetary Science Letters, volume 277, 490-500, 2009

  3. Magnetic response of split-ring resonator metamaterials: From effective medium dispersion to photonic band gaps

    Indian Academy of Sciences (India)

    Sangeeta Chakrabarti; S Anantha Ramakrishna

    2012-03-01

    On systematically investigating the electromagnetic response of periodic split-ring resonator (SRR) metamaterials as a function of the size-to-wavelength (/) ratio, we find that the stop bands due to the geometric resonances of the SRR weaken with increasing (/) ratio, and are eventually replaced by stop bands due to Bragg scattering. Our study traces the behaviour of SRR-based metamaterials as the resonance frequency increases and the wavelength of the radiation finally becomes comparable to the size of the unit cell of the metamaterial. In the intermediate stages, the dispersion of the SRR metamaterial can still be described as due to a localized magnetic resonances while Bragg scattering finally becomes the dominant phenomenon as / ∼ 1/2.

  4. Radiation Response of a 9 Cr Oxide Dispersion Strengthened Steel to Heavy Ion Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Todd R. [University of Wisconsin, Madison; Gan, J. [Idaho National Laboratory (INL); Cole, James I. [Idaho National Laboratory (INL); Miller, Michael K [ORNL; Busby, Jeremy T [ORNL; Ukai, S. [Japan Atomic Energy Agency (JAEA); Shutthanandan, S. [Pacific Northwest National Laboratory (PNNL); Thevuthasan, S. [Pacific Northwest National Laboratory (PNNL)

    2008-01-01

    Ferritic-martensitic (FM) alloys are expected to play an important role as cladding or structural components in Generation IV systems operating in the temperature range 350-700 C and to doses up to 200 dpa. Oxide dispersion strengthened (ODS) ferritic-martensitic steels have been developed to operate at higher temperatures than traditional FM steels. These steels contain nanometer-sized Y-Ti-O nanoclusters as a strengthening mechanism. Heavy ion irradiation has been used to determine the nanocluster stability over a temperature range of 500-700 C to doses of 150 dpa. At all temperatures, the average nanocluster size decreases but the nanocluster density increases. The increased density of smaller nanoclusters under radiation should lead to strengthening of the matrix. While a reduction in size under irradiation has been reported in some other studies, many report oxide stability. The data from this study are contrasted to the available literature to highlight the differences in the reported radiation response.

  5. ASSESSMENT OF WIND CHARACTERISTICS AND ATMOSPHERIC DISPERSION MODELING OF 137Cs ON THE BARAKAH NPP AREA IN THE UAE

    Directory of Open Access Journals (Sweden)

    JONG KUK LEE

    2014-08-01

    Six variations of cesium-137 (137Cs dispersion test were simulated under severe accident condition. The 137Cs dispersion was strongly influenced by the direction and speed of the main wind. A virtual receptor was set and calculated for observation of the 137Cs movement and accumulation. The results of the surface roughness effect demonstrated that the deposition of 137Cs was affected by surface condition. The results of these studies offer useful information for developing environmental radiation monitoring systems (ERMSs for the BNPP and can be used to assess the environmental effects of new nuclear power plant.

  6. Plant volatiles in polluted atmospheres: stress responses and signal degradation

    National Research Council Canada - National Science Library

    BLANDE, JAMES D; HOLOPAINEN, JARMO K; NIINEMETS, ÜLO

    2014-01-01

    .... Volatiles induced by herbivore feeding are among the best studied plant responses to stress and may constitute an informative message to the surrounding community and further function in plant defence processes...

  7. Investigations on atmospheric dispersion of air pollutants after short-time releases in complex terrain. Third field experiment on atmospheric dispersion around the isolated hill Sophienhoehe in August/September 1988. Methods - experiments - data bank

    Energy Technology Data Exchange (ETDEWEB)

    Zeuner, G.; Heinemann, K. [eds.; Bahmann, W.; Becker, K.; Frank, J.; Gryning, S.E.; Lyck, E.; Mextorf, O.; Moellmann-Coers, M.; Moenig, C.; Narres, H.D.; Oetz, C.; Oetz, W.; Polster, G.; Veroustraete, F.; Voss, W.

    1990-09-01

    In order to set up a data bank for the validation of advanced dispersion models, comprehensive meteorological measurements and dispersion experiments in a complex terrain with a well measured topography are being carried out. These investigations have become possible in cooperation with several external groups and with the financial support of the `Bundesminister fuer Umwelt, Naturschutz und Reaktorsicherheit`. In this report the methods, experiments and results (data bank) of the third field experiment are described. (orig.). [Deutsch] Um eine Datenbasis fuer die Validierung von fortgeschrittenen Ausbreitungsmodellen zur Verfuegung zu stellen, werden umfangreiche meteorologische Messungen und Ausbreitungsexperimente in einem gut vermessenen nicht ebenem Gelaende durchgefuehrt. Diese Untersuchungen werden durch die Zusammenarbeit mit verschiedenen externen Gruppen und die finanzielle Unterstuetzung des Bundesministers fuer Umwelt, Naturschutz und Reaktorsicherheit ermoeglicht. In diesem Beriicht sind die Methoden, doe Experimente und die Ergebnisse der dritten Messkampagne zusammengestellt. (orig.).

  8. Evaluation of regional and local atmospheric dispersion models for the analysis of traffic-related air pollution in urban areas

    Science.gov (United States)

    Fallah-Shorshani, Masoud; Shekarrizfard, Maryam; Hatzopoulou, Marianne

    2017-10-01

    Dispersion of road transport emissions in urban metropolitan areas is typically simulated using Gaussian models that ignore the turbulence and drag induced by buildings, which are especially relevant for areas with dense downtown cores. To consider the effect of buildings, street canyon models are used but often at the level of single urban corridors and small road networks. In this paper, we compare and validate two dispersion models with widely varying algorithms, across a modelling domain consisting of the City of Montreal, Canada accounting for emissions of more 40,000 roads. The first dispersion model is based on flow decomposition into the urban canopy sub-flow as well as overlying airflow. It takes into account the specific height and geometry of buildings along each road. The second model is a Gaussian puff dispersion model, which handles complex terrain and incorporates three-dimensional meteorology, but accounts for buildings only through variations in the initial vertical mixing coefficient. Validation against surface observations indicated that both models under-predicted measured concentrations. Average weekly exposure surfaces derived from both models were found to be reasonably correlated (r = 0.8) although the Gaussian dispersion model tended to underestimate concentrations around the roadways compared to the street canyon model. In addition, both models were used to estimate exposures of a representative sample of the Montreal population composed of 1319 individuals. Large differences were noted whereby exposures derived from the Gaussian puff model were significantly lower than exposures derived from the street canyon model, an expected result considering the concentration of population around roadways. These differences have large implications for the analyses of health effects associated with NO2 exposure.

  9. Atmospheric Dispersion of Radioactivity from Nuclear Power Plant Accidents: Global Assessment and Case Study for the Eastern Mediterranean and Middle East

    Directory of Open Access Journals (Sweden)

    Theodoros Christoudias

    2014-12-01

    Full Text Available We estimate the contamination risks from the atmospheric dispersion of radionuclides released by severe nuclear power plant accidents using the ECHAM/Modular Earth Submodel System (MESSy atmospheric chemistry (EMAC atmospheric chemistry-general circulation model at high resolution (50 km. We present an overview of global risks and also a case study of nuclear power plants that are currently under construction, planned and proposed in the Eastern Mediterranean and Middle East, a region prone to earthquakes. We implemented continuous emissions from each location, making the simplifying assumption that all potential accidents release the same amount of radioactivity. We simulated atmospheric transport and decay, focusing on 137Cs and 131I as proxies for particulate and gaseous radionuclides, respectively. We present risk maps for potential surface layer concentrations, deposition and doses to humans from the inhalation exposure of 131I. The estimated risks exhibit seasonal variability, with the highest surface level concentrations of gaseous radionuclides in the Northern Hemisphere during winter.

  10. Physiological responses of plant leaves to atmospheric ammonia and ammonium

    Science.gov (United States)

    Pearson, J.; Soares, A.

    Misting of leaves of several plant species with 3 mM aqueous NH +4 at pH 5, or fumigation with 3000 μg m -3 gaseous NH 3 for 1 h, elicits similar biochemical and physiological changes in the species tested. The enzyme glutamine synthetase (GS) was shown to increase its activity in all species, while that of nitrate reductase (NR) was inhibited, at least in those species which possessed the ability to induce foliar NR. At the same time there were marked changes in organic anion concentrations, with malate and citrate in particular being reduced in concentration, following either NH +4 or NH 3 application to leaves. The changes in organic anions are also discussed in the light of pH regulation by the cell. A stimulation of photosynthesis was also evident when leaves were treated with either NH 3 or NH +4. It is argued that, because of the differences in solution chemistry of the two ammonia forms, the aqueous form applied at pH 5 and the gaseous form being an alkali in solution, these changes can only have occurred through the ability of the leaves to readily assimilate both forms of the ammonia. The biochemical changes might have potential as markers for the onset of physiological perturbation by atmospheric ammonia pollution, particularly changes in organic acid concentration; their use in an index of pollution stress is briefly discussed.

  11. Nonlinear optical responses of multiply ionized noble gases: Dispersion and spin multiplicity effects

    Science.gov (United States)

    Tarazkar, M.; Romanov, D. A.; Levis, R. J.

    2016-07-01

    Dynamic second-order hyperpolarizabilities of atomic noble gases and their multiply ionized ions are computed using ab initio multiconfigurational self-consistent field cubic response theory. For each species, the calculations are performed at wavelengths ranging from the static regime to those about 100 nm above the first multiphoton resonance. The second-order hyperpolarizability coefficients progressively decrease as the electrons are removed from the system, in qualitative agreement with phenomenological calculations. In higher ionization states, the resulting nonlinear refractive index becomes less dispersive as a function of wavelength. At each ionization stage, the sign of the optical response depends on the number of electrons in the system and, if multiple state symmetries are possible, on the spin of the particular quantum state. Thus, for N e3 + and N e4 + , the hyperpolarizability coefficients in the low-spin states (P2u, and S1g, respectively) are positive, while in the high-spin states (S4u, and P3g) they are negative. However, for doubly, triply, and quadruply charged Ar and Kr these coefficients do not undergo a sign change.

  12. Fourth field experiment on atmospheric dispersion around the isolated hill Sophienhoehe in September 1989. Methods - experiments - data bank

    Energy Technology Data Exchange (ETDEWEB)

    Zeuner, G. [ed.; Heinemann, K. [ed.

    1993-05-01

    In order to establish a data bank for the validation of advanced dispersion models, comprehensive meteorological measurements and dispersion experiments in a complex terrain with a well measured topography were carried out. These investigations became possible in cooperation with several external groups and with the financial support of the `Bundesminister fuer Umwelt, Naturschutz und Reaktorsicherheit`. In this report the methods, experiments and results (data bank) of the fourth field experiment are described. (orig.) [Deutsch] Um eine Datenbasis fuer die Validierung von fortgeschrittenen Ausbreitungsmodellen zur Verfuegung zu stellen, wurden umfangreiche meteorologische Messungen und Ausbreitungsexperimente in einem gut vermessenen nicht ebenem Gelaende durchgefuehrt. Diese Untersuchungen wurden durch die Zusammenarbeit mit verschiedenen externen Gruppen und die finanzielle Unterstuetzung des Bundesministers fuer Umwelt, Naturschutz und Reaktorsicherheit ermoeglicht. In diesem Bericht sind die Methoden, die Experimente und die Ergebnisse der vierten Messkampagne zusammengestellt. (orig.)

  13. Can the confidence in long range atmospheric transport models be increased? The Pan-European experience of ENSEMBLE

    DEFF Research Database (Denmark)

    Galmarini, S.; Bianconi, R.; Klug, W.

    2004-01-01

    Is atmospheric dispersion forecasting an important asset of the early-phase nuclear emergency response management? Is there a 'perfect atmospheric dispersion model'? Is there a way to make the results of dispersion models more reliable and trustworthy? While seeking to answer these questions...

  14. Multi-model study of mercury dispersion in the atmosphere: vertical and interhemispheric distribution of mercury species

    Directory of Open Access Journals (Sweden)

    J. Bieser

    2017-06-01

    Full Text Available Atmospheric chemistry and transport of mercury play a key role in the global mercury cycle. However, there are still considerable knowledge gaps concerning the fate of mercury in the atmosphere. This is the second part of a model intercomparison study investigating the impact of atmospheric chemistry and emissions on mercury in the atmosphere. While the first study focused on ground-based observations of mercury concentration and deposition, here we investigate the vertical and interhemispheric distribution and speciation of mercury from the planetary boundary layer to the lower stratosphere. So far, there have been few model studies investigating the vertical distribution of mercury, mostly focusing on single aircraft campaigns. Here, we present a first comprehensive analysis based on various aircraft observations in Europe, North America, and on intercontinental flights. The investigated models proved to be able to reproduce the distribution of total and elemental mercury concentrations in the troposphere including interhemispheric trends. One key aspect of the study is the investigation of mercury oxidation in the troposphere. We found that different chemistry schemes were better at reproducing observed oxidized mercury patterns depending on altitude. High concentrations of oxidized mercury in the upper troposphere could be reproduced with oxidation by bromine while elevated concentrations in the lower troposphere were better reproduced by OH and ozone chemistry. However, the results were not always conclusive as the physical and chemical parameterizations in the chemistry transport models also proved to have a substantial impact on model results.

  15. Multi-model study of mercury dispersion in the atmosphere: vertical and interhemispheric distribution of mercury species

    Science.gov (United States)

    Bieser, Johannes; Slemr, Franz; Ambrose, Jesse; Brenninkmeijer, Carl; Brooks, Steve; Dastoor, Ashu; DeSimone, Francesco; Ebinghaus, Ralf; Gencarelli, Christian N.; Geyer, Beate; Gratz, Lynne E.; Hedgecock, Ian M.; Jaffe, Daniel; Kelley, Paul; Lin, Che-Jen; Jaegle, Lyatt; Matthias, Volker; Ryjkov, Andrei; Selin, Noelle E.; Song, Shaojie; Travnikov, Oleg; Weigelt, Andreas; Luke, Winston; Ren, Xinrong; Zahn, Andreas; Yang, Xin; Zhu, Yun; Pirrone, Nicola

    2017-06-01

    Atmospheric chemistry and transport of mercury play a key role in the global mercury cycle. However, there are still considerable knowledge gaps concerning the fate of mercury in the atmosphere. This is the second part of a model intercomparison study investigating the impact of atmospheric chemistry and emissions on mercury in the atmosphere. While the first study focused on ground-based observations of mercury concentration and deposition, here we investigate the vertical and interhemispheric distribution and speciation of mercury from the planetary boundary layer to the lower stratosphere. So far, there have been few model studies investigating the vertical distribution of mercury, mostly focusing on single aircraft campaigns. Here, we present a first comprehensive analysis based on various aircraft observations in Europe, North America, and on intercontinental flights. The investigated models proved to be able to reproduce the distribution of total and elemental mercury concentrations in the troposphere including interhemispheric trends. One key aspect of the study is the investigation of mercury oxidation in the troposphere. We found that different chemistry schemes were better at reproducing observed oxidized mercury patterns depending on altitude. High concentrations of oxidized mercury in the upper troposphere could be reproduced with oxidation by bromine while elevated concentrations in the lower troposphere were better reproduced by OH and ozone chemistry. However, the results were not always conclusive as the physical and chemical parameterizations in the chemistry transport models also proved to have a substantial impact on model results.

  16. Using soil records with atmospheric dispersion modeling to investigate the effects of clean air regulations on 60 years of manganese deposition in Marietta, Ohio (USA).

    Science.gov (United States)

    Carter, Megan R; Gaudet, Brian J; Stauffer, David R; White, Timothy S; Brantley, Susan L

    2015-05-15

    Atmospheric emissions of metals from anthropogenic activities have led to deposition and contamination of soils worldwide. We quantified addition of manganese (Mn) to soils around the largest emitter of Mn in the United States (U.S.) using chemical analyses and atmospheric dispersion modeling (Second-Order Closure Integrated Puff (SCIPUFF)). Concentrations of soil-surface Mn were enriched by 9-fold relative to that of the parent material within 1 km of the facility. Elevated concentrations of Mn and chromium (Cr), another potentially toxic element that was emitted, document contamination only within 1 m of the soil surface. Total mass of Mn added per unit land area integrated over 1 m, mMn, equals ~80 mg Mn cm(-2) near the facility. Values of mMn remained above background up to tens of kilometers from the source. Air concentrations of Mn particles of 7.5-micron diameter simulated with SCIPUFF using available data for the emission rate and local meteorological conditions for 2006 were consistent with measured air concentrations. However, the Mn deposition calculated for 2006 with SCIPUFF yielded a cumulative value over the lifetime of the refinery (60 years) that is a factor of 15 lower than the Mn observed to have been added to the soils. This discrepancy can be easily explained if Mn deposition rates before 1988 were more than an order of magnitude greater than today. Such higher emissions are probable, given the changes in metal production with time and the installation of emission controls after the Clean Air Act (1970). This work shows that atmospheric dispersion models can be used with soil profiles to understand the changes in metal emissions over decadal timescales. In addition, the calculations are consistent with the Clean Air Act accounting for a 15-fold decrease in the Mn deposition to soils around the refinery per metric ton of Mn alloy produced. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Atmospheric Layers in Response to the Propagation of Gravity Waves under Nonisothermal, Wind-shear, and Dissipative Conditions

    Directory of Open Access Journals (Sweden)

    John Z. G. Ma

    2016-03-01

    Full Text Available We study the atmospheric structure in response to the propagation of gravity waves under nonisothermal (nonzero vertical temperature gradient, wind-shear (nonzero vertical zonal/meridional wind speed gradients, and dissipative (nonzero molecular viscosity and thermal conduction conditions. As an alternative to the “complex wave-frequency” model proposed by Vadas and Fritts, we employ the traditional “complex vertical wave-number” approach to solving an eighth-order complex polynomial dispersion equation. The empirical neutral atmospheric models of NRLMSISE-00 and HWM93 are employed to provide mean-field properties. In response to the propagation of gravity waves, the atmosphere is driven into three sandwich-like layers: the adiabatic layer (0–130 km, the dissipation layer (130–230 km and the pseudo-adiabatic layer (above 230 km. In the lower layer, (extended-Hines’ mode or ordinary dissipative wave modes exist, whereas viscous dissipation and thermal conduction fail to exert perceptible influences; in the middle layer, Hines’ mode ceases to exist, and both ordinary and extraordinary dissipative wave modes flourish; in the top layer, only extraordinary wave modes survive, and dissipations affect the real part of the vertical wavenumber ( m r substantially; however, they contribute little to the imaginary part, which is the vertical growth rate ( m i . We also analyze the transition of Hines’ classical mode to ordinary dissipative wave modes, describe both the upward and downward modes of gravity waves and illustrate nonisothermal and wind-shear effects on the propagation of gravity waves of different modes.

  18. On Modeling the Upper Atmosphere and Ionosphere Response to Global Change

    Science.gov (United States)

    Roble, R. G.; Solomon, S. C.

    2005-05-01

    Ice core records indicate that the temperature and composition of the atmosphere can change significantly over geologic times. These changes occur naturally, however, recently the releases of trace gases from human activity have been recognized to have a potential for causing a significant change in the climate of the Earth. Most of the effort in investigating the global response to these trace gases has been directed toward the troposphere and stratosphere. Studies have shown that the troposphere will warm and the stratosphere will cool as trace gas concentrations increase in the 21st century. Studies have also been made that suggest that the mesosphere and thermosphere could also cool and affect the compositional structure of the upper atmosphere and ionosphere. We first review previous studies of the upper atmosphere and ionosphere response to trace gas increases. We then use both a global average model and the NCAR Thermosphere - Ionosphere - Mesosphere - Electrodynamics General Circulation Model (TIME-GCM) to investigate the atmospheric response to various scenarios of trace gas increases and compare the modeling results to the present day upper atmosphere and ionosphere structure. We will also discuss the key aeronomic processes that control the structure of the upper atmosphere as well as the extent to which these processes are known.

  19. Mycorrhizal mediation of plant response to atmospheric change: Air quality concepts and research considerations.

    Science.gov (United States)

    Shafer, S R; Schoeneberger, M M

    1991-01-01

    The term 'global climate change' encompasses many physical and chemical changes in the atmosphere that have been induced by anthropogenic pollutants. Increases in concentrations of CO2 and CH4 enhance the 'greenhouse effect' of the atmosphere and may contribute to changes in temperature and precipitation patterns at the earth's surface. Nitrogen oxides and SO2 are phytotoxic and also react with other pollutants to produce other phytotoxins in the troposphere such as O3 and acidic substances. However, release of chlorofluorocarbons into the atmosphere may cause depletion of stratospheric O3, increasing the transmittance of ultraviolet-B (UV-B) radiation to the earth's surface. Increased intensities of UV-B could affect plants and enhance photochemical reactions that generate some phytotoxic pollutants. The role of mycorrhizae in plant responses to such stresses has received little attention. Although plans for several research programs have acknowledged the importance of drought tolerance and soil fertility in plant responses to atmospheric stresses, mycorrhizae are rarely targeted to receive specific investigation. Most vascular land plants form mycorrhizae, so the role of mycorrhizae in mediating plant responses to atmospheric change may be an important consideration in predicting effects of atmospheric changes on plants in managed and natural ecosystems.

  20. Determining the dispersion characteristics of rivers from the frequency response of the system

    Science.gov (United States)

    Lambertz, Peter; Palancar, MaríA. C.; Aragón, José M.; Gil, Roberto

    2006-09-01

    A new method of determining the parameters of an aggregated dead zone model (ADZ) to predict longitudinal dispersion in rivers is presented. The method is based on the frequency response analysis (FRA) of observed field tests, which consist of tracer injections (input) and measurement of tracer in downstream sampling points (output) located downstream from the injection point. The ADZ is a combination of plug and completely mixed flow compartments. The ADZ parameters (number of compartments, mean residence time, and delay time) are evaluated by means of Bode plots that give the system order (number of compartments), gain, time constant (mean residence time of each compartment) and delay time. The FRA-ADZ method was checked with tracer data runs in two Spanish rivers, the Tagus and the Ebro rivers. The experimental tracer concentration versus time distributions were compared with the ADZ predicted curves, which were calculated using parameters obtained from the FRA method, and with curves predicted by several classical models. The residence time of several reaches within the two studied rivers was predicted by the FRA-ADZ method with a relative error lower than 10%. The method is generally applicable to ideal and nonideal inputs and is particularly well suited to arbitrary-shaped initial source concentration distributions.

  1. A CFD-based wind solver for a fast response transport and dispersion model

    Energy Technology Data Exchange (ETDEWEB)

    Gowardhan, Akshay A [Los Alamos National Laboratory; Brown, Michael J [Los Alamos National Laboratory; Pardyjak, Eric R [UNIV OF UTAH; Senocak, Inanc [BOISE STATE UNIV

    2010-01-01

    In many cities, ambient air quality is deteriorating leading to concerns about the health of city inhabitants. In urban areas with narrow streets surrounded by clusters of tall buildings, called street canyons, air pollution from traffic emissions and other sources is difficult to disperse and may accumulate resulting in high pollutant concentrations. For various situations, including the evacuation of populated areas in the event of an accidental or deliberate release of chemical, biological and radiological agents, it is important that models should be developed that produce urban flow fields quickly. For these reasons it has become important to predict the flow field in urban street canyons. Various computational techniques have been used to calculate these flow fields, but these techniques are often computationally intensive. Most fast response models currently in use are at a disadvantage in these cases as they are unable to correlate highly heterogeneous urban structures with the diagnostic parameterizations on which they are based. In this paper, a fast and reasonably accurate computational fluid dynamics (CFD) technique that solves the Navier-Stokes equations for complex urban areas has been developed called QUIC-CFD (Q-CFD). This technique represents an intermediate balance between fast (on the order of minutes for a several block problem) and reasonably accurate solutions. The paper details the solution procedure and validates this model for various simple and complex urban geometries.

  2. Use of MODIS Satellite Images and an Atmospheric Dust Transport Model To Evaluate Juniperus spp. Pollen Phenology and Dispersal

    Science.gov (United States)

    Luvall, J. C.; Sprigg, W. A.; Levetin, Estelle; Huete, Alfredo; Nickovic, S.; Pejanovic, G. A.; Vukovic, A.; VandeWater, P. K.; Myers, O. B.; Budge, A. M.; Zelicoff, A. P.; Bunderson, L.; Crimmins, T. M.

    2011-01-01

    Pollen can be transported great distances. Van de Water et. al., 2003 reported Juniperus spp. pollen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model, Nickovic et al. 2001) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and quantities of dust. We are modifying the DREAM model to incorporate pollen transport. Pollen release will be estimated based on MODIS derived phenology of Juniperus spp. communities. Ground based observational records of pollen release timing and quantities will be used as verification. This information will be used to support the Centers for Disease Control and Prevention's National Environmental Public Health Tracking Program and the State of New Mexico environmental public health decision support for asthma and allergies alerts.

  3. Release and dispersion of vegetation and peat fire emissions in the atmosphere over Indonesia 1997/1998

    Directory of Open Access Journals (Sweden)

    B. Langmann

    2004-01-01

    Full Text Available Smoke-haze episodes caused by vegetation and peat fires affect parts of Indonesia every year with significant impacts on human health and climate. Particularly fires in degenerated peat areas release huge amounts of trace gases, e.g. CO2, CO and CH4, and particles into the atmosphere, exceeding by far the emissions per unit area from fires in surface vegetation. However, only limited information is available about the current distribution of pristine and degenerated peat areas in Indonesia, their depth, drainage condition and modification by fire. Particularly during the strong El Niño event in 1997/1998 a huge uncertainty exists about the contribution of Indonesian peat fire emissions to the measured increase of atmospheric CO2, as the published estimates of the peat area burned differ considerably. In this paper we study the contribution of peat fire emissions in Indonesia during the El Niño event 1997/1998. A regional three-dimensional atmosphere-chemistry model is applied over Indonesia using two emission estimates. These vegetation and peat fire emission inventories for Indonesia are set up in 0.5° resolution in weekly intervals and differ only in the size of the fire affected peat areas. We evaluate simulated rainfall and particle concentrations by comparison with observations to draw conclusions on the total carbon emissions released from the vegetation and peat fires in Indonesia in 1997/1998.

  4. Release and dispersion of vegetation and peat fire emissions in the atmosphere over Indonesia 1997/1998

    Science.gov (United States)

    Langmann, B.; Heil, A.

    2004-11-01

    Smoke-haze episodes caused by vegetation and peat fires affect parts of Indonesia every year with significant impacts on human health and climate. Particularly fires in degenerated peat areas release huge amounts of trace gases, e.g. CO2, CO and CH4, and particles into the atmosphere, exceeding by far the emissions per unit area from fires in surface vegetation. However, only limited information is available about the current distribution of pristine and degenerated peat areas in Indonesia, their depth, drainage condition and modification by fire. Particularly during the strong El Niño event in 1997/1998 a huge uncertainty exists about the contribution of Indonesian peat fire emissions to the measured increase of atmospheric CO2, as the published estimates of the peat area burned differ considerably. In this paper we study the contribution of peat fire emissions in Indonesia during the El Niño event 1997/1998. A regional three-dimensional atmosphere-chemistry model is applied over Indonesia using two emission estimates. These vegetation and peat fire emission inventories for Indonesia are set up in 0.5° resolution in weekly intervals and differ only in the size of the fire affected peat areas. We evaluate simulated rainfall and particle concentrations by comparison with observations to draw conclusions on the total carbon emissions released from the vegetation and peat fires in Indonesia in 1997/1998.

  5. Lower and middle atmosphere and ozone layer responses to solar variation

    Science.gov (United States)

    Elias, Ana G.

    2010-02-01

    Global warming in the troposphere and the decrease of stratospheric ozone concentration has become a major concern to the scientific community. The increase in greenhouse gases and aerosols concentration is believed to be the main cause of this global change in the lower atmosphere and in stratospheric ozone, which is corresponded by a cooling in the middle and upper atmosphere. However, there are natural sources, such as the sun and volcanic eruptions, with the same ability to produce global changes in the atmosphere. The present work will focus on solar variation and its signature in lower and middle atmosphere parameters. The Sun can influence the Earth and its climate through electromagnetic radiation variations and also through changes in the solar wind which causes geomagnetic storms. The effects of both mechanisms over the lower and middle atmosphere and ozone layer will be discussed through an overview of selected papers, which by no means cover this subject that is extremely wide and complex. A fundamental understanding of the atmosphere response to solar variations is required for understanding and interpreting the causes of atmospheric variability. This is an essential focus of climate science, which is seeking to determine the extent to which human activities are altering the planetary energy balance through the emission of greenhouse gases and pollutants.

  6. Dispersal responses override density effects on genetic diversity during post-disturbance succession.

    Science.gov (United States)

    Smith, Annabel L; Landguth, Erin L; Bull, C Michael; Banks, Sam C; Gardner, Michael G; Driscoll, Don A

    2016-03-30

    Dispersal fundamentally influences spatial population dynamics but little is known about dispersal variation in landscapes where spatial heterogeneity is generated predominantly by disturbance and succession. We tested the hypothesis that habitat succession following fire inhibits dispersal, leading to declines over time in genetic diversity in the early successional gecko Nephrurus stellatus We combined a landscape genetics field study with a spatially explicit simulation experiment to determine whether successional patterns in genetic diversity were driven by habitat-mediated dispersal or demographic effects (declines in population density leading to genetic drift). Initial increases in genetic structure following fire were likely driven by direct mortality and rapid population expansion. Subsequent habitat succession increased resistance to gene flow and decreased dispersal and genetic diversity inN. stellatus Simulated changes in population density alone did not reproduce these results. Habitat-mediated reductions in dispersal, combined with changes in population density, were essential to drive the field-observed patterns. Our study provides a framework for combining demographic, movement and genetic data with simulations to discover the relative influence of demography and dispersal on patterns of landscape genetic structure. Our results suggest that succession can inhibit connectivity among individuals, opening new avenues for understanding how disturbance regimes influence spatial population dynamics. © 2016 The Author(s).

  7. Earth's changing global atmospheric energy cycle in response to climate change.

    Science.gov (United States)

    Pan, Yefeng; Li, Liming; Jiang, Xun; Li, Gan; Zhang, Wentao; Wang, Xinyue; Ingersoll, Andrew P

    2017-01-24

    The Lorenz energy cycle is widely used to investigate atmospheres and climates on planets. However, the long-term temporal variations of such an energy cycle have not yet been explored. Here we use three independent meteorological data sets from the modern satellite era, to examine the temporal characteristics of the Lorenz energy cycle of Earth's global atmosphere in response to climate change. The total mechanical energy of the global atmosphere basically remains constant with time, but the global-average eddy energies show significant positive trends. The spatial investigations suggest that these positive trends are concentrated in the Southern Hemisphere. Significant positive trends are also found in the conversion, generation and dissipation rates of energies. The positive trends in the dissipation rates of kinetic energies suggest that the efficiency of the global atmosphere as a heat engine increased during the modern satellite era.

  8. The model SIRANE for atmospheric urban pollutant dispersion. PART III: Validation against NO2 yearly concentration measurements in a large urban agglomeration

    Science.gov (United States)

    Soulhac, L.; Nguyen, C. V.; Volta, P.; Salizzoni, P.

    2017-10-01

    We present a validation study of an updated version of the SIRANE model, whose results have been systematically compared to concentrations of nitrogen dioxide collected over the whole urban agglomeration of Lyon. We model atmospheric dispersion of nitrogen oxides emitted by road traffic, industries and domestic heating. The meteorological wind field is computed by a pre-processor using data collected at a ground level monitoring station. Model results are compared with hourly concentrations measured at 15 monitoring stations over the whole year (2008). Further 75 passive diffusion samplers were used during 3 periods of 2 weeks to get a detailed spatial distribution over the west part of the city. An analysis of the model results depending on the variability of the meteorological input allows us to identify the causes for peculiar bad performances of the model and to identify possible improvements of the parameterisations implemented in it.

  9. Response of the REWARD detection system to the presence of a Radiological Dispersal Device

    Energy Technology Data Exchange (ETDEWEB)

    Luis, R.; Baptista, M.; Barros, S.; Marques, J.; Vaz, P. [IST - Campus Tecnologico e Nuclear, Estrada Nacional 10 - km 139.7, 2695-066, Bobadela LRS (Portugal); Balbuena, J.; Disch, C. [Physical Institut, University of Freiburg Hermann-Herder-Str. 3 D-79104 Freiburg (Germany); Fleta, C.; Jumilla, C.; Lozano, M. [Instituto de Microelectronica de Barcelona - IMB-CNM, CSIC, E-08193 Bellaterra, Barcelona (Spain)

    2015-07-01

    In recent years an increased international concern has emerged about the radiological and nuclear (RN) threats associated with the illicit trafficking of nuclear and radioactive materials that could be potentially used for terrorist attacks. The objective of the REWARD (Real Time Wide Area Radiation Surveillance System) project, co-funded by the European Union 7. Framework Programme Security, consisted in building a mobile system for real time, wide area radiation surveillance, using a CdZnTe detector for gamma radiation and a neutron detector based on novel silicon technologies. The sensing unit includes a GPS system and a wireless communication interface to send the data remotely to a monitoring base station, where it will be analyzed in real time and correlated with historical data from the tag location, in order to generate an alarm when an abnormal situation is detected. Due to its portability and accuracy, the system will be extremely useful in many different scenarios such as nuclear terrorism, lost radioactive sources, radioactive contamination or nuclear accidents. This paper shortly introduces the REWARD detection system, depicts some terrorist threat scenarios involving radioactive sources and special nuclear materials and summarizes the simulation work undertaken during the past three years in the framework of the REWARD project. The main objective consisted in making predictions regarding the behavior of the REWARD system in the presence of a Radiological Dispersion Device (RDD), one of the reference scenarios foreseen for REWARD, using the Monte Carlo simulation program MCNP6. The reference scenario is characterized in detail, from the i) radiological protection, ii) radiation detection requirements and iii) communications points of view. Experimental tests were performed at the Fire Brigades Facilities in Rome and at the Naples Fire Brigades, and the results, which validate the simulation work, are presented and analyzed. The response of the REWARD

  10. Efficient forcing and its response in the barotropic atmosphere and teleconnection patterns

    Institute of Scientific and Technical Information of China (English)

    李志锦; 纪立人

    1996-01-01

    For linear forcing problems, a method is developed to provide a set of forcing modes, which form a complete orthonormal basis to identify the efficient forcing. The method is used in the damping barotropic model linearized about the 30000 Pa zonally-varying dimatological flow for northern summertime. The results show that there will be only a few dominant efficient forcing modes which control the behaviour of atmospheric response. The structure of the response to such efficient forcing modes is primarily composed of the teleconnection patterns in good agreement with those in the real atmosphere. Energetics analyses have shown that the primary source of energy of response to the most efficient forcing modes is the conversion of basic state kinetic energy to response kinetic energy, rather than that directly supplied by the forcing itself. It is suggested that teleconnection patterns produced by external source result in the consequence of the coupling action of the conversion of kinetic energy from the b

  11. Advances on the Responses of Root Dynamics to Increased Atmospheric CO2 and Global Climate Change

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Plant roots dynamics responses to elevated atmospheric CO2 concentration, increased temperature and changed precipitation can be a key link between plant growth and long-term changes in soil organic matter and ecosystem carbon balance. This paper reviews some experiments and hypotheses developed in this area, which mainly include plant fine roots growth, root turnover, root respiration and other root dynamics responses to elevated CO2 and global climate change. Some recent new methods of studying root systems were also discussed and summarized. It holds herein that the assemblage of information about root turnover patterns, root respiration and other dynamic responses to elevated atmospheric CO2 and global climatic change can help to better understand and explore some new research areas. In this paper, some research challenges in the plant root responses to the elevated CO2 and other environmental factors during global climate change were also demonstrated.

  12. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils

    NARCIS (Netherlands)

    Cai, Yuanfeng; Yan, Zheng; Bodelier, P.L.E.; Conrad, R.; Jia, Zhongjun

    2016-01-01

    Soils serve as the biological sink of the potent greenhouse gas methane with exceptionally low concentrations of ~1.84 p.p.m.v. in the atmosphere. The as-yet-uncultivated methane-consuming bacteria have long been proposed to be responsible for this ‘high-affinity’ methane oxidation (HAMO). Here we

  13. Tropical cyclones in two atmospheric (re)analyses and their response in two oceanic reanalyses

    Digital Repository Service at National Institute of Oceanography (India)

    Jourdain, N.C.; Barnier, B.; Ferry, N.; Vialard, J.; Menkes, C.E.; Lengaigne, M.; Parent

    Matthieu Lengaigne , Laurent Parent aTropical cyclones in two atmospheric (re in two oceanic reanalyses Nicolas C. Jourdain a,b,⇑, Bernard Barnier b, Nicolas Fe c,f d journal homepage: www.nalyses and their response d, Jérome Vialard c, Christophe E. Menkes c...

  14. Response of radiochromic film dosimeters to gamma rays in different atmospheres

    Science.gov (United States)

    McLaughlin, W. L.; Humphreys, J. C.; Wenxiu, Chen

    The high-dose gamma ray response (10 3 - 5×10 5 Gy) of radiochromic film dosimeters, with ten kinds of plastic matrices (polychlorostyrene containing 1 or 25% C ?, polybromostyrene containing 2 or 43% Br, nylon, polyvinyl chloride, cellulose triacetate, and an aromatic polymide) were investigated when irradiated under certain conditions in vacuum and in different atmospheres (air, oxygen, nitrogen, and nitrous oxide). In addition, the stability of the films was studied for storage periods up to one month after irradiation under these conditions. The responses and stabilities of the polyhalostyrene and nylon films were only slightly affected by the different atmospheres of irradiation, but there were marked differences of response for the other film types. The dyed cellulose triacetate films and polyvinylchloride films are generally more sensitive in N 2O and O 2-deprived atmospheres than in air or in O 2, but the opposite is true for the dyed polyvinyl butyral and aromatic nylon films. The dyed cellulose triacetate and dyed polychlorostryrene with 1% C ? are the most stable films for all conditions or irradiation. For accurate routine radiation processing dosimetry, it is important to know the conditions of irradiation so that appropriate dosimetry systems and procedures may be used and so that suitable correction factors can be applied. Emphasis must be given to differences in atmospheric conditions encountered by dosimeters in practical industrial situations, which may cause marked differences in ultimate response factors.

  15. Biomass and toxicity responses of poison ivy (toxicodendron radicans) to elevated atmospheric C02: Reply

    Science.gov (United States)

    This is an invited comment that was requested by the Editors of the journal Ecology. The authors of this comment previously published an article showing that poison ivy growth was enhanced in a controlled experiment in response to elevated atmospheric carbon dioxide. In this study the growth of po...

  16. On the response of the tropical atmosphere to large-scale deforestation

    Science.gov (United States)

    Eltahir, E. A. B.; Bras, R. L.

    1993-01-01

    Recent studies on the Amazon deforestation problem predict that removal of the forest will result in a higher surface temperature, a significant reduction in evaporation and precipitation, and possibly significant changes in the tropical circulation. Here, we discuss the basic mechanisms contributing to the response of the tropical atmosphere to deforestation. A simple linear model of the tropical atmosphere is used in studying the effects of deforestation on climate. It is suggested that the impact of large-scale deforestation on the circulation of the tropical atmosphere consists of two components: the response of the tropical circulation to the negative change in precipitation (heating), and the response of the same circulation to the positive change in surface temperature. Owing to their different signs, the changes in predicted temperature and precipitation excite competing responses working in opposite directions. The predicted change in tropical circulation determines the change, if any, in atmospheric moisture convergence, which is equivalent to the change in run-off. The dependence of run-off predictions on the relative magnitudes of the predicted changes in precipitation and surface temperature implies that the predictions about run-off are highly sensitive, which explains, at least partly, the disagreement between the different models concerning the sign of the predicted change in Amazonian run-off.

  17. Isolating the atmospheric circulation response to Arctic sea-ice loss in the coupled climate system

    Science.gov (United States)

    Kushner, Paul; Blackport, Russell

    2017-04-01

    In the coupled climate system, projected global warming drives extensive sea-ice loss, but sea-ice loss drives warming that amplifies and can be confounded with the global warming process. This makes it challenging to cleanly attribute the atmospheric circulation response to sea-ice loss within coupled earth-system model (ESM) simulations of greenhouse warming. In this study, many centuries of output from coupled ocean/atmosphere/land/sea-ice ESM simulations driven separately by sea-ice albedo reduction and by projected greenhouse-dominated radiative forcing are combined to cleanly isolate the hemispheric scale response of the circulation to sea-ice loss. To isolate the sea-ice loss signal, a pattern scaling approach is proposed in which the local multidecadal mean atmospheric response is assumed to be separately proportional to the total sea-ice loss and to the total low latitude ocean surface warming. The proposed approach estimates the response to Arctic sea-ice loss with low latitude ocean temperatures fixed and vice versa. The sea-ice response includes a high northern latitude easterly zonal wind response, an equatorward shift of the eddy driven jet, a weakening of the stratospheric polar vortex, an anticyclonic sea level pressure anomaly over coastal Eurasia, a cyclonic sea level pressure anomaly over the North Pacific, and increased wintertime precipitation over the west coast of North America. Many of these responses are opposed by the response to low-latitude surface warming with sea ice fixed. However, both sea-ice loss and low latitude surface warming act in concert to reduce storm track strength throughout the mid and high latitudes. The responses are similar in two related versions of the National Center for Atmospheric Research earth system models, apart from the stratospheric polar vortex response. Evidence is presented that internal variability can easily contaminate the estimates if not enough independent climate states are used to construct them

  18. Dynamic responses of atmospheric carbon dioxide concentration to global temperature changes between 1850 and 2010

    Science.gov (United States)

    Wang, Weile; Nemani, Ramakrishna

    2016-02-01

    Changes in Earth's temperature have significant impacts on the global carbon cycle that vary at different time scales, yet to quantify such impacts with a simple scheme is traditionally deemed difficult. Here, we show that, by incorporating a temperature sensitivity parameter (1.64 ppm yr-1 °C-1) into a simple linear carbon-cycle model, we can accurately characterize the dynamic responses of atmospheric carbon dioxide (CO2) concentration to anthropogenic carbon emissions and global temperature changes between 1850 and 2010 ( r 2 > 0.96 and the root-mean-square error reservoir (~12 year) approximates the long-term temperature sensitivity of global atmospheric CO2 concentration (~15 ppm °C-1), generally consistent with previous estimates based on reconstructed CO2 and climate records over the Little Ice Age. Our results suggest that recent increases in global surface temperatures, which accelerate the release of carbon from the surface reservoirs into the atmosphere, have partially offset surface carbon uptakes enhanced by the elevated atmospheric CO2 concentration and slowed the net rate of atmospheric CO2 sequestration by global land and oceans by ~30% since the 1960s. The linear modeling framework outlined in this paper thus provides a useful tool to diagnose the observed atmospheric CO2 dynamics and monitor their future changes.

  19. Early twentieth century response of the global atmospheric electric circuit to ENSO

    Science.gov (United States)

    Harrison, G.; Joshi, M.

    2012-04-01

    The global atmospheric electric circuit links charge separation in disturbed weather regions with current flow in the fair weather regions elsewhere. Variations in disturbed weather, such as the changes in lightning associated with Pacific ocean temperature anomalies, can be expected in turn to modify currents flowing in the global atmospheric electric circuit. Strengthening and weakening of the global circuit current has been observed* to follow El Niño and La Niña respectively, from northern hemisphere atmospheric electricity data obtained during the 1970s. Extending this relationship quantitatively into the first half of the twentieth century is pursued here, using surface data from multiple atmospheric electricity observatories including measurements from the southern hemisphere. The independent atmospheric electricity time series from the observatories show similar variations, which is a pre-requisite for inferring global circuit variations from surface measurement. Combining the measurements allows the global circuit sensitivity to ENSO sea surface temperature anomalies to be derived during the earlier part of the twentieth century. * R.G. Harrison, M. Joshi, K. Pascoe, Inferring convective responses to El Niño with atmospheric electricity measurements at Shetland Environ Res Lett 6 (2011) 044028 http://iopscience.iop.org/1748-9326/6/4/044028/

  20. Revisiting the Impact of Atmospheric Dispersion and Differential Refraction on Widefield Multiobject Spectroscopic Observations. From VLT/VIMOS to Next Generation Instruments

    CERN Document Server

    Sánchez-Janssen, Rubén; Selman, Fernando; Bristow, Paul; Hammersley, Peter; Hilker, Michael; Rejkuba, Marina; Wolff, Burkhard

    2014-01-01

    (Abridged) Atmospheric dispersion and field differential refraction impose severe constraints on widefield MOS observations. Flux reduction and spectral distortions must be minimised by a careful planning of the observations -- which is especially true for instruments that use slits instead of fibres. This is the case of VIMOS at the VLT, where MOS observations have been restricted, since the start of operations, to a narrow two-hour range from the meridian to minimise slit losses. We revisit in detail the impact of atmospheric effects on the quality of VIMOS-MOS spectra. We model slit losses across the entire VIMOS FOV as a function of target declination. We explore two different slit orientations at the meridian: along the parallactic angle (North-South), and perpendicular to it (East-West). We show that, for fields culminating at zenith distances larger than 20 deg, slit losses are minimised with slits oriented along the parallactic angle at the meridian. The two-hour angle rule holds for these observation...

  1. New low-temperature preparations of some simple and mixed co and ni dispersed sulfides and their chemical behavior in reducing atmosphere.

    Science.gov (United States)

    Bezverkhyy, I; Danot, M; Afanasiev, P

    2003-03-10

    A series of simple (CoS(2), Co(9)S(8), NiS(2), NiS, Ni(3)S(2)) and mixed sulfides (NiCo(2)S(4), Ni(0.33)Co(0.67)S(2), Ni(3)Co(6)S(8), CuCo(2)S(4), Cu(0.33)Co(0.67)S(2)) was prepared using low-temperature procedures. To obtain the mixed sulfides, the mixtures of the solutions of the corresponding salts were precipitated by Na(2)S and then heated in a sulfiding atmosphere at 300 degrees C. It has been found that the product phase composition depends on the sulfiding atmosphere. Using a H(2)S/Ar mixture leads to pyrite type sulfides, whereas treatment in H(2)S/H(2) flow allowed the preparation of Ni-Co and Cu-Co thiospinels. The as prepared highly dispersed single-phase materials were characterized by X-ray powder diffraction, scanning electron microscopy, temperature-programmed reduction (TPR), elemental analysis, and BET surface area measurements.

  2. Atmospheric response to orbital forcing and 20th century sea surface temperatures

    Science.gov (United States)

    Mantsis, Damianos F.

    This study investigates modes of atmospheric variability in response to changes in Earth's orbit and changes in 20th century sea surface temperatures (SST). The orbital forcing is manifested by a change in obliquity and precession, and changes the distribution of the top-of-atmosphere insolation. A smaller obliquity reduces the annual insolation that the poles receive and increases the annual insolation in the tropics. As the meridional insolation gradient increases, the zonal mean atmospheric-ocean circulation increases. The resulting climate also has a reduced global mean temperature due to the effect of climate feedbacks. This cooling can be attributed to a reduced lapse rate, increased cloud fraction, reduced water vapor in the atmosphere, and an increase in the surface albedo. A change in the precession, as the perihelion shifts from the winter to the summer solstice, causes a strengthening as well as an expansion of the N. Pacific summer subtropical anticyclone. This anticyclonic anomaly can be attributed to the weakening of the baroclinic activity, but also represents the circulation response to remote and local diabatic heating. The remote diabatic heating is associated with monsoonal activity in the SE Asia and North Africa. Regarding the 20th century SST forcing, it is represented by a multidecadal variability in the inter-hemispheric SST difference. This change in the SST causes a latitudinal shift in the ascending branch of the Hadley cell and precipitation in the tropics, as well as an increase in the atmospheric meridional heat transport from the warmer to the colder hemisphere.

  3. Statistical study of emerging flux regions and the response of the upper atmosphere

    Institute of Scientific and Technical Information of China (English)

    Jie Zhao; Hui Li

    2012-01-01

    We statistically study the properties of emerging flux regions (EFRs) and response of the upper solar atmosphere to the flux emergence using data from the Helioseismic and Magnetic Imager and the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory.Parameters including total emerged flux,flux growth rate,maximum area,duration of the emergence and separation speed of the opposite polarities are adopted to delineate the properties of EFRs.The response of the upper atmosphere is addressed by the response of the atmosphere at different wavelengths (and thus at different temperatures).According to our results,the total emerged fluxes are in the range of (0.44-11.2)× 1019 Mx while the maximum area ranges from 17 to 182 arcsec2.The durations of the emergence are between 1 and 12 h,which are positively correlated to both the total emerged flux and the maximum area.The maximum distances between the opposite polarities are 7-25 arcsec and are also positively correlated to the duration.The separation speeds are from 0.05 to 1.08 km S-1,negatively correlated to the duration.The derived flux growth rates are (0.1-1.3) × 1019 Mxh-1,which are positively correlated to the total emerging flux.The upper atmosphere first responds to the flux emergence in the 1600(A) chromospheric line,and then tens to hundreds of seconds later,in coronal lines,such as the 171(A) (T = 105.8 K) and 211(A)(T = 106.3 K) lines almost simultaneously,suggesting the successive heating of the atmosphere from the chromosphere to the corona.

  4. Short-term dispersal response of an endangered Australian lizard varies with time of year.

    Science.gov (United States)

    Ebrahimi, Mehregan; Bull, C Michael

    2014-01-01

    Dispersal is an important component in the demography of animal populations. Many animals show seasonal changes in their tendency to disperse, reflecting changes in resource availability, mating opportunities, or in population age structure at the time when new offspring enter the population. Understanding when and why dispersal occurs can be important for the management of endangered species. The pygmy bluetongue lizard is an endangered Australian species that occupies and defends single burrow refuges for extended periods of time, rarely moving far from the burrow entrance. However, previous pitfall trapping data have suggested movement of adult males in spring and of juveniles in autumn of each year. In the current study we compared behaviours of adult lizards each month, over the spring-summer activity period over two consecutive field seasons, to provide deeper understanding of the seasonal dispersal pattern. We released adult pygmy bluetongue lizards into a central area, provided with artificial burrows, within large enclosures, and monitored the behaviour and movements of the released lizards over a four day period. There was a consistent decline in time spent basking, amount of movement around burrow entrances, and rates of dispersal from the central release area from early spring to late summer. Results could be relevant to understanding and managing natural populations and for any translocation attempts of this endangered lizard species.

  5. Martian upper atmosphere response to solar EUV flux and soft X-ray flares

    Science.gov (United States)

    Jain, Sonal; Stewart, Ian; Schneider, Nicholas M.; Deighan, Justin; Stiepen, Arnaud; Evans, J. Scott; Stevens, Michael H.; Chaffin, Michael S.; Crismani, Matteo; McClintock, William; Montmessin, Franck; Thiemann, E. M.; Eparvier, Frank; Chamberlin, Phillip C.; Jacosky, Bruce

    2016-10-01

    Planetary upper atmosphere energetics is mainly governed by absorption of solar extreme ultraviolet (EUV) radiation. Understanding the response of planetary upper atmosphere to the daily, long and short term variation in solar flux is very important to quantify energy budget of upper atmosphere. We report a comprehensive study of Mars dayglow observations made by the IUVS instrument aboard the MAVEN spacecraft, focusing on upper atmospheric response to solar EUV flux. Our analysis shows both short and long term effect of solar EUV flux on Martian thermospheric temperature. We find a significant drop (> 100 K) in thermospheric temperature between Ls = 218° and Ls = 140°, attributed primarily to the decrease in solar activity and increase in heliocentric distance. IUVS has observed response of Martian thermosphere to the 27-day solar flux variation due to solar rotation.We also report effect of two solar flare events (19 Oct. 2014 and 24 March 2015) on Martian dayglow observations. IUVS observed about ~25% increase in observed brightness of major ultraviolet dayglow emissions below 120 km, where most of the high energy photons (< 10 nm) deposit their energy. The results presented in this talk will help us better understand the role of EUV flux in total heat budget of Martian thermosphere.

  6. Dynamics of a nonautonomous predator-prey dispersion-delay system with Beddington-DeAngelis functional response

    Energy Technology Data Exchange (ETDEWEB)

    Cai Liming [Department of Mathematics, Xinyang Normal University, Xinyang 464000, Henan (China); Beijing Institute of Information Control, Beijing 100037 (China)], E-mail: lmcai06@yahoo.com.cn; Li Xuezhi [Department of Mathematics, Xinyang Normal University, Xinyang 464000, Henan (China); Yu Jingyuan [Beijing Institute of Information Control, Beijing 100037 (China); Zhu Guangtian [Academy of Mathematics and System Science, C.A.S., Beijing 100080 (China)

    2009-05-30

    A nonautonomous predator-prey dispersion-delay model with Beddington-DeAngelis functional response is investigated. It is proved that the general nonautonomous system is permanent and globally asymptotically stable under appropriate conditions. Furthermore, if the system is a(n) (almost) periodic one, a set of easily verifiable sufficient conditions are established, which guarantee the existence, uniqueness and global asymptotic stability of a positive (almost) periodic solution of the system.

  7. Midlatitude atmospheric responses to Arctic sensible heat flux anomalies in Community Climate Model, Version 4

    Science.gov (United States)

    Mills, Catrin M.; Cassano, John J.; Cassano, Elizabeth N.

    2016-12-01

    Possible linkages between Arctic sea ice loss and midlatitude weather are strongly debated in the literature. We analyze a coupled model simulation to assess the possibility of Arctic ice variability forcing a midlatitude response, ensuring consistency between atmosphere, ocean, and ice components. We work with weekly running mean daily sensible heat fluxes with the self-organizing map technique to identify Arctic sensible heat flux anomaly patterns and the associated atmospheric response, without the need of metrics to define the Arctic forcing or measure the midlatitude response. We find that low-level warm anomalies during autumn can build planetary wave patterns that propagate downstream into the midlatitudes, creating robust surface cold anomalies in the eastern United States.

  8. Addressing the Photometric Calibration Challenge: Explicit Determination of the Instrumental Response and Atmospheric Response Functions, and Tying it All Together.

    Science.gov (United States)

    Stubbs, C. W.; Tonry, J. L.

    2016-05-01

    Photometric calibration is currently the dominant source of systematic uncertainty in exploiting type Ia supernovae to determine the nature of the dark energy. We review our ongoing program to address this calibration challenge by performing measurements of both the instrumental response function and the optical transmission function of the atmosphere. A key aspect of this approach is to complement standard star observations by using NIST-calibrated photodiodes as a metrology foundation for optical flux measurements. We present our first attempt to assess photometric consistency between synthetic photometry and observations, by comparing predictions based on a NIST-diode-based determination of the PanSTARRS-1 instrumental response and empirical atmospheric transmission measurements, with fluxes we obtained from observing spectrophotometric standards.

  9. Addressing the Photometric Calibration Challenge: Explicit Determination of the Instrumental Response and Atmospheric Response Functions, and Tying it All Together

    CERN Document Server

    Stubbs, Christopher W

    2012-01-01

    Photometric calibration is currently the dominant source of systematic uncertainty in exploiting type Ia supernovae to determine the nature of the dark energy. We review our ongoing program to address this calibration challenge by performing measurements of both the instrumental response function and the optical transmission function of the atmosphere. A key aspect of this approach is to complement standard star observations by using NIST-calibrated photodiodes as a metrology foundation for optical flux measurements. We present our first attempt to assess photometric consistency between synthetic photometry and observations, by comparing predictions based on a NIST-diode-based determination of the PanSTARRS-1 instrumental response and empirical atmospheric transmission measurements, with fluxes we obtained from observing spectrophotometric standards.

  10. Large-basin hydrological response to climate model outputs: uncertainty caused by the internal atmospheric variability

    Directory of Open Access Journals (Sweden)

    A. Gelfan

    2015-02-01

    Full Text Available An approach is proposed to assess hydrological simulation uncertainty originating from internal atmospheric variability. The latter is one of three major factors contributing to the uncertainty of simulated climate change projections (along with so-called "forcing" and "climate model" uncertainties. Importantly, the role of the internal atmospheric variability is the most visible over the spatial–temporal scales of water management in large river basins. The internal atmospheric variability is represented by large ensemble simulations (45 members with the ECHAM5 atmospheric general circulation model. The ensemble simulations are performed using identical prescribed lower boundary conditions (observed sea surface temperature, SST, and sea ice concentration, SIC, for 1979–2012 and constant external forcing parameters but different initial conditions of the atmosphere. The ensemble of the bias-corrected ECHAM5-outputs as well as ensemble averaged ECHAM5-output are used as the distributed input for ECOMAG and SWAP hydrological models. The corresponding ensembles of runoff hydrographs are calculated for two large rivers of the Arctic basin: the Lena and the Northern Dvina rivers. A number of runoff statistics including the mean and the SD of the annual, monthly and daily runoff, as well as the annual runoff trend are assessed. The uncertainties of runoff statistics caused by the internal atmospheric variability are estimated. It is found that the uncertainty of the mean and SD of the runoff has a distinguished seasonal dependence with maximum during the periods of spring-summer snowmelt and summer-autumn rainfall floods. A noticeable non-linearity of the hydrological models' response to the ensemble ECHAM5 output is found most strongly expressed for the Northern Dvine River basin. It is shown that the averaging over ensemble members effectively filters stochastic term related to internal atmospheric variability. The simulated trends are close to

  11. Can auditory stady-state responses reflect place-specific cochlear dispersion?

    DEFF Research Database (Denmark)

    Paredes Gallardo, Andreu; Epp, Bastian; Dau, Torsten

    The cochlear travelling wave propagates from the base to the apex, resulting in an increasing phase with distance from the cochlear base. Together with the tonotopic organization of the cochlea, this results in a frequency dependent delay of the resonance, a phenomenon known as cochlear dispersion...

  12. Vertical groundwater storage properties and changes in confinement determined using hydraulic head response to atmospheric tides

    Science.gov (United States)

    Acworth, R. Ian; Rau, Gabriel C.; Halloran, Landon J. S.; Timms, Wendy A.

    2017-04-01

    Accurate determination of groundwater state of confinement and compressible storage properties at vertical resolution over depth is notoriously difficult. We use the hydraulic head response to atmospheric tides at 2 cpd frequency as a tracer to quantify barometric efficiency (BE) and specific storage (Ss) over depth. Records of synthesized Earth tides, atmospheric pressure, and hydraulic heads measured in nine piezometers completed at depths between 5 and 55 m into unconsolidated smectitic clay and silt, sand and gravel were examined in the frequency domain. The barometric efficiency increased over depth from ˜0.05 in silty clay to ˜0.15 in sands and gravels. BE for silty clay was confirmed by calculating the loading efficiency as 0.95 using rainfall at the surface. Specific storage was calculated using effective rather than total moisture. The differences in phase between atmospheric pressure and hydraulic heads at 2 cpd were ˜180° below 10 m indicating confined conditions despite the low BE. Heads in the sediment above a fine sand and silt layer at 12 m exhibited a time variable phase difference between 0° and 180° indicating varying confinement. Our results illustrate that the atmospheric tide at 2 cpd is a powerful natural tracer for quantifying groundwater state of confinement and compressible storage properties in layered formations from hydraulic heads and atmospheric pressure records without the need for externally induced hydraulic stress. This approach could significantly improve the development of conceptual hydrogeological model used for groundwater resource development and management.

  13. Emission of gas and atmospheric dispersion of SO2 during the December 2013 eruption at San Miguel volcano (El Salvador)

    Science.gov (United States)

    Salerno, Giuseppe G.; Granieri, Domenico; Liuzzo, Marco; La Spina, Alessandro; Giuffrida, Giovanni B.; Caltabiano, Tommaso; Giudice, Gaetano; Gutierrez, Eduardo; Montalvo, Francisco; Burton, Michael; Papale, Paolo

    2016-04-01

    y Recursos Naturales (MARN) of El Salvador and by a network of geophysical and geochemical stations established on the volcano by the Italian Istituto Nazionale di Geofisica e Vulcanologia (INGV), immediately after the December 2013 eruption, on the request of MARN. During the eruption, SO2 emissions increased from a background level of ~330 t d-1 to 2200 t d-1, dropping after the eruption to an average level of 680 t d-1. Wind measurements and SO2 fluxes during the pre-, syn- and post-eruptive stages were used to model SO2 dispersion around the volcano. Air SO2 concentration exceeds the dangerous threshold of 5 ppm in the crater region, and in some middle sectors of the highly visited volcanic cone.

  14. [Assessment of in vitro immune response in a young population exposed to atmospheric contamination of Guadalajara].

    Science.gov (United States)

    Hernández Urzúa, Miguel Angel; Moreno Ramírez, Everardo; Zaitseva, Galina; Fafutis Morris, Mary

    2009-01-01

    Atmospheric pollutants may cause alterations on health of persons exposed to urban environment. To evaluate in vitro immunological response in young population exposed to different levels of atmospheric pollution. The study was performed in two groups of young men, one from Guadalajara, and the other from Tlajomulco. The volunteers had to be healthy and without precedents of atopia. The immunological responses studied on PBMC were: stimulation index by timidin incorporation, CD25 expression by flow citometry, and production of citokines IL-2 and IL-4 by ELISAtest. Atmospheric parameters monitored were: NO2, O3, SO2, CO and PM10. In Guadalajara the concentrations of NO2 and PM10 exceeded in 30% and 40%, respectively, the index established by WHO. Stimulation index of PBMC of the young men to Guadalajara was 18 +/- 4, whereas that of the volunteers from Tlajomulco was 23 +/- 3. Expression of CD25 did not show a significant difference between studied groups. IL-2 and IL-4 levels were similar between the young men of the city and those from the rural area. The environmental pollution in Guadalajara did not modify in a significant way proliferation, CD25 expression, nor secretion of IL-2 and IL-4 on PBMC. This demonstrates that healthy young men are less susceptible than other groups to the alterations caused by exposure to moderate levels of atmospheric pollutants.

  15. Chemical dispersants

    NARCIS (Netherlands)

    Rahsepar, Shokouhalsadat; Smit, Martijn P.J.; Murk, Albertinka J.; Rijnaarts, Huub H.M.; Langenhoff, Alette A.M.

    2016-01-01

    Chemical dispersants were used in response to the Deepwater Horizon oil spill in the Gulf of Mexico, both at the sea surface and the wellhead. Their effect on oil biodegradation is unclear, as studies showed both inhibition and enhancement. This study addresses the effect of Corexit on oil biodeg

  16. Chemical dispersants

    NARCIS (Netherlands)

    Rahsepar, Shokouhalsadat; Smit, Martijn P.J.; Murk, Albertinka J.; Rijnaarts, Huub H.M.; Langenhoff, Alette A.M.

    2016-01-01

    Chemical dispersants were used in response to the Deepwater Horizon oil spill in the Gulf of Mexico, both at the sea surface and the wellhead. Their effect on oil biodegradation is unclear, as studies showed both inhibition and enhancement. This study addresses the effect of Corexit on oil

  17. Atmospheric Wind Relaxations and the Oceanic Response in the California Current Large Marine Ecosystem

    Science.gov (United States)

    Fewings, M. R.; Dorman, C. E.; Washburn, L.; Liu, W.

    2010-12-01

    On the West Coast of North America in summer, episodic relaxation of the upwelling-favorable winds causes warm water to propagate northward from southern to central California, against the prevailing currents [Harms and Winant 1998, Winant et al. 2003, Melton et al. 2009]. Similar wind relaxations are an important characteristic of coastal upwelling ecosystems worldwide. Although these wind relaxations have an important influence on coastal ocean dynamics, no description exists of the regional atmospheric patterns that lead to wind relaxations in southern California, or of the regional ocean response. We use QuikSCAT wind stress, North American Regional Reanalysis atmospheric pressure products, water temperature and velocity from coastal ocean moorings, surface ocean currents from high-frequency radars, and MODIS satellite sea-surface temperature and ocean color images to analyze wind relaxation events and the ocean response. We identify the events based on an empirical index calculated from NDBC buoy winds [Melton et al. 2009]. We describe the regional evolution of the atmosphere from the Gulf of Alaska to Baja California over the few days leading up to wind relaxations, and the coastal ocean temperature, color, and current response off southern and central California. We analyze ~100 wind relaxation events in June-September during the QuikSCAT mission, 1999-2009. Our results indicate south-central California wind relaxations in summer are tied to mid-level atmospheric low-pressure systems that form in the Gulf of Alaska and propagate southeastward over 3-5 days. As the low-pressure systems reach southern California, the atmospheric pressure gradient along the coast weakens, causing the surface wind stress to relax to near zero. The weak wind signal appears first at San Diego and propagates northward. QuikSCAT data indicate the relaxed winds extend over the entire Southern California Bight and up to 200 km offshore of central California. Atmospheric dynamics in

  18. The selected response procedure: a variation on Appelbaum's altered atmosphere procedure for the Rorschach.

    Science.gov (United States)

    Jaffe, L

    1988-01-01

    This article introduces the Selected Response Procedure, which is a supplementary technique for expanding the scope of the Rorschach test. The procedure is conducted as follows: After the standard administration of the Rorschach test, patients are asked to look through all of the cards a second time and select one more response from any card of their choice. A rationale for this procedure is developed through a comparison to another supplementary Rorschach technique, the Altered Atmosphere Procedure. The importance of understanding the selected response within a theoretical framework, as well as the clinical context of each selected response, is highlighted by a clinical example using object relations theory. Finally, a number of didactic questions are offered as potential ways to query the possible meaning of selected responses.

  19. [Plant responses to elevated atmospheric carbon dioxide and transmission to other trophic levels]. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lincoln, D.E.

    1995-10-01

    This program investigated how host plant responses to elevated atmospheric carbon dioxide may be transmitted to other trophic levels, especially leaf eating insects, and alter consumption of leaves and impare their function. Study results included the following findings: increased carbon dioxide to plants alters feeding by insect herbivores; leaves produced under higher carbon conditions contain proportionally less nitrogen; insect herbivores may have decreased reproduction under elevated carbon dioxide.

  20. The modeled atmospheric and oceanic response to the South China Sea SST anomaly

    Science.gov (United States)

    Zhu, Xiande; Wu, Lixin; Zhou, Jun; Gao, Jianjun

    2016-10-01

    The sensitivity of the global atmospheric and oceanic response to sea surface temperature anomaly (SSTA) throughout the South China Sea (SCS) is investigated using the Fast Ocean-Atmosphere Model (FOAM). Forced by a warming SST, the experiment explicitly demonstrates that the responses of surface air temperature (SAT) and SST exhibit positive anomalous center over SCS and negative anomalous center over the Northern Pacific Ocean (NPO). The atmospheric response to the warm SST anomalies is characterized by a barotropical anomaly in middle-latitude, leading to a weak subtropical high in summer and a weak Aleutian low in winter. Accordingly, Indian monsoon and eastern Asian monsoon strengthen in summer but weaken in winter as a result of wind convergence owing to the warm SST. It is worth noting that the abnormal signals propagate poleward and eastward away in the form of Rossby Waves from the forcing region, which induces high pressure anomaly. Owing to action of the wind-driven circulation, an anomalous anti-cyclonic circulation is induced with a primary southward current in the upper ocean. An obvious cooling appears over the North Pacific, which can be explained by anomalous meridional cold advection and mixing as shown in the analysises of heat budget and other factors that affect SST.

  1. Model thermal response to minor radiative energy sources and sinks in the middle atmosphere

    Science.gov (United States)

    Fomichev, V. I.; Fu, C.; de Grandpré, J.; Beagley, S. R.; Ogibalov, V. P.; McConnell, J. C.

    2004-10-01

    This paper presents the thermal response of the Canadian middle atmosphere model (CMAM) to minor radiative energy sources and sinks. These include chemical heating, infrared (IR) H2O cooling, sphericity effect in solar heating, and solar heating in the near-IR CO2 bands. All of these energy sources/sinks can be considered as minor ones either in terms of their magnitude or in terms of the limited height region where they are of importance or both. To examine the thermal response of the middle atmosphere, a version of the CMAM with an interactive gas phase chemistry scheme has been used in a series of multiyear experiments for conditions of perpetual July. Each of the analyzed mechanisms may provide a noticeable contribution into the model energy balance that results in a statistically significant model response. Various forcing terms due to minor energy sources/sinks have different spatial and temporal distributions. Their magnitudes vary from tenths K d-1 for the sphericity effect up to ˜10 K d-1 for chemical heating that provides corresponding thermal responses of a few to about 20 K in the middle atmosphere. The model thermal response depends on the magnitude of the applied forcing but is not always local and can be spread beyond the regions where the forcing terms are initially applied. On a globally averaged basis the local strength of the model response is nearly proportional to the magnitude of the small forcing terms but shows nonlinearity when forcing due to chemical heating exceeds ˜1 K d-1 in the mesosphere. Accounting for the combined effects of the minor energy sources and sinks leads to a better agreement between the model temperature field and observations.

  2. Evaluation of ensemble atmospheric simulations in oil dispersion models at Itaguai Port region; Avaliacao do uso de resultados numericos de previsao atmosferica por conjunto na modelagem da dispersao de oleo na regiao do Porto de Itaguai

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Renato Goncalves dos; Silva, Mariana P.R.; Silva, Ricardo Marcelo da; Torres Junior, Audalio R. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Lab. de Modelagem de Processos Marinhos e Atmosfericos (LAMMA); Landau, Luiz [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Lab. de Metodos Computacinais em Engenharia (LAMCE); Sa, Reginaldo Ventura de; Hochleitner, Fabio; Correa, Eduardo Barbosa [AQUAMET Meteorologia e Projeto de Sistemas, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This work discusses the use of numerical prediction using ensemble as boundary condition in pollutants dispersion models, applied in a hypothetical case of an oil spill occurrence in Itaguai Port. The Princeton Ocean Model (POM) has been used to simulate hydrodynamics and NICOIL Eulerian model to forecast oil spill dispersion, and ensemble wind forecast from Global Forecast System (GFS), aiming to assess the importance of this parameter variability in oil dispersion at sea. The wind scenarios using ensemble members has showed significant dispersion when compared to control simulation, demonstrating that the uncertainty in the atmospheric modeling can generate considerable variations in the placement of the final spot of oil. The region of interest was the Sepetiba Bay, located on the southern coast of the Rio de Janeiro state; because of port operations carried out around the Port of Itaguai where they can, eventually, oil leaks occur. (author)

  3. Large-eddy simulation and Lagrangian stochastic modelling of solid particle and droplet dispersion and mixing. Application to atmospheric pollution; Dispersion et melange turbulents de particules solides et de gouttelettes par une simulation des grandes echelles et une modelisation stochastique lagrangienne. Application a la pollution de l'atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vinkovic, I.

    2005-07-15

    In order to study atmospheric pollution and the dispersion of industrial stack emissions, a large eddy simulation with the dynamic Smagorinsky-Germano sub-grid-scale model is coupled with Lagrangian tracking of fluid particles containing scalar, solid particles and droplets. The movement of fluid particles at a sub-grid level is given by a three-dimensional Langevin model. The stochastic model is written in terms of sub-grid-scale statistics at a mesh level. By introducing a diffusion model, the coupling between the large-eddy simulation and the modified three-dimensional Langevin model is applied to passive scalar dispersion. The results are validated by comparison with the wind-tunnel experiments of Fackrell and Robins (1982). The equation of motion of a small rigid sphere in a turbulent flow is introduced. Solid particles and droplets are tracked in a Lagrangian way. The velocity of solid particles and droplets is considered to have a large scale component (directly computed by the large-eddy simulation) and a sub-grid scale part. Because of inertia and gravity effects, solid particles and droplets, deviate from the trajectories of the surrounding fluid particles. Therefore, a modified Lagrangian correlation timescale is introduced into the Langevin model previously developed for the sub-grid velocity of fluid particles. Two-way coupling and collisions are taken into account. The results of the large-eddy simulation with solid particles are compared with the wind-tunnel experiments of Nalpanis et al. (1993) and of Taniere et al. (1997) on sand particles in saltation and in modified saltation, respectively. A model for droplet coalescence and breakup is implemented which allows to predict droplet interactions under turbulent flow conditions in the frame of the Euler/Lagrange approach. Coalescence and breakup are considered as a stochastic process with simple scaling symmetry assumption for the droplet radius, initially proposed by Kolmogorov (1941). At high

  4. Public member dose assessment of Bushehr Nuclear Power Plant under normal operation by modeling the fallout from stack using the HYSPLIT atmospheric dispersion model.

    Science.gov (United States)

    Zali, A; Shamsaei Zafarghandi, M; Feghhi, S A; Taherian, A M

    2017-05-01

    In this work, public dose resulting from fission products released from Bushehr Nuclear Power Plant (BNPP) under normal operation is assessed. Due to the long range transport of radionuclides in this work (80 km) and considering terrain and meteorological data, HYbrid Single-Particle Lagrangian Integrated Trajectory (HYsplit) model, which uses three dimensional long-range numerical models, has been employed to calculate atmospheric dispersion. Annual effective dose calculation is carried out for inhalation, ingestion, and external exposure pathways in 16directions and within 80 km around the site for representative person. The results showed the maximum dose of inhalation and external exposure for adults is 3.8 × 10(-8)Sv/y in the SE direction and distance of 600 m from the BNPP site which is less than ICRP 103 recommended dose limit (1 mSv). Children and infants' doses are higher in comparison with adults, although they are less than 1 mSv. Ingestion dose percentage in the total dose is less than 0.1%. The results of this study underestimate the Final Safety Analysis Report ofBNPP-1 (FSAR)data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Emission of gas and atmospheric dispersion of SO2 during the December 2013 eruption at San Miguel volcano (El Salvador, Central America)

    Science.gov (United States)

    Granieri, Domenico; Salerno, Giuseppe; Liuzzo, Marco; La Spina, Alessandro; Giuffrida, Giovanni; Caltabiano, Tommaso; Giudice, Gaetano; Gutierrez, Eduardo; Montalvo, Francisco; Burton, Michael R.; Papale, Paolo

    2015-07-01

    San Miguel volcano, El Salvador, erupted on 29 December 2013, after a 46 year period characterized by weak activity. Prior to the eruption a trend of increasing SO2 emission rate was observed, with all values measured after mid-November greater than the average value of the previous year (~310 t d-1). During the eruption, SO2 emissions increased from the level of ~330 t d-1 to 2200 t d-1, dropping after the eruption to an average level of 680 t d-1. Wind measurements and SO2 emission rates during the preeruptive, syneruptive, and posteruptive stages were used to model SO2 dispersion around the volcano. Atmospheric SO2 concentration exceeded the dangerous threshold of 5 ppm in the crater region and in some sectors with medium elevation of the highly visited volcanic cone. Combining the SO2 emission rate with measured CO2/SO2, HCl/SO2, and HF/SO2 plume gas ratios, we estimate the CO2, HCl, and HF outputs for the first time on this volcano.

  6. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils

    Science.gov (United States)

    Cai, Yuanfeng; Zheng, Yan; Bodelier, Paul L. E.; Conrad, Ralf; Jia, Zhongjun

    2016-06-01

    Soils serve as the biological sink of the potent greenhouse gas methane with exceptionally low concentrations of ~1.84 p.p.m.v. in the atmosphere. The as-yet-uncultivated methane-consuming bacteria have long been proposed to be responsible for this `high-affinity' methane oxidation (HAMO). Here we show an emerging HAMO activity arising from conventional methanotrophs in paddy soil. HAMO activity was quickly induced during the low-affinity oxidation of high-concentration methane. Activity was lost gradually over 2 weeks, but could be repeatedly regained by flush-feeding the soil with elevated methane. The induction of HAMO activity occurred only after the rapid growth of methanotrophic populations, and a metatranscriptome-wide association study suggests that the concurrent high- and low-affinity methane oxidation was catalysed by known methanotrophs rather than by the proposed novel atmospheric methane oxidizers. These results provide evidence of atmospheric methane uptake in periodically drained ecosystems that are typically considered to be a source of atmospheric methane.

  7. Lifespan and oxidative stress show a non-linear response to atmospheric oxygen in Drosophila.

    Science.gov (United States)

    Rascón, Brenda; Harrison, Jon F

    2010-10-15

    Oxygen provides the substrate for most ATP production, but also serves as a source of reactive oxygen species (ROS), which can induce cumulative macromolecular oxidative damage and cause aging. Pure oxygen atmospheres (100 kPa) are known to strongly reduce invertebrate lifespan and induce aging-related physiological changes. However, the nature of the relationship between atmospheric oxygen, oxidative stress, and lifespan across a range of oxygen levels is poorly known. Developmental responses are likely to play a strong role, as prior research has shown strong effects of rearing oxygen level on growth, size and respiratory system morphology. In this study, we examined (1) the effect of oxygen on adult longevity and (2) the effect of the oxygen concentration experienced by larvae on adult lifespan by rearing Drosophila melanogaster in three oxygen atmospheres throughout larval development (10, 21 and 40 kPa), then measuring the lifespan of adults in five oxygen tensions (2, 10, 21, 40, 100 kPa). We also assessed the rate of protein carbonyl production for flies kept at 2, 10, 21, 40 and 100 kPa as adults (all larvae reared in normoxia). The rearing of juveniles in varying oxygen treatments affected lifespan in a complex manner, and the effect of different oxygen tensions on adult lifespan was non-linear, with reduced longevity and heightened oxidative stress at extreme high and low atmospheric oxygen levels. Moderate hypoxia (10 kPa) extended maximum, but not mean lifespan.

  8. Angular dependent anisotropic terahertz response of vertically aligned multi-walled carbon nanotube arrays with spatial dispersion

    Science.gov (United States)

    Zhou, Yixuan; Yiwen, E.; Xu, Xinlong; Li, Weilong; Wang, Huan; Zhu, Lipeng; Bai, Jintao; Ren, Zhaoyu; Wang, Li

    2016-12-01

    Spatial dispersion effect of aligned carbon nanotubes (CNTs) in the terahertz (THz) region has significance for both theoretical and applied consideration due to the unique intrinsically anisotropic physical properties of CNTs. Herein, we report the angular dependent reflection of p-polarized THz wave from vertically aligned multi-walled CNT arrays in both experiment and theory. The spectra indicate that the reflection depends on the film thickness of vertically aligned CNTs, the incident angle, and the frequency. The calculation model is based on the spatial dispersion effect of aligned CNTs and performed with effective impedance method and the Maxwell-Garnett approximation. The results fit well with the experiment when the thickness of CNT film is thin, which reveals a coherent superposition mechanism of the CNT surface reflection and CNTs/Si interface reflection. For thick CNT films, the CNTs/Si interface response determines the reflection at small incident angles, while the CNTs surface effect dominates at large incident angles. This work investigates the spatial dispersion effect of vertically aligned CNT arrays in the THz region, and paves a way for potential anisotropic THz applications based on CNTs with oblique incidence requirements.

  9. Roseate Tern breeding dispersal and fidelity: Responses to two newly restored colony sites

    Science.gov (United States)

    Spendelow, Jeffrey A.; Monticelli, David; Nichols, James; Hines, James; Nisbet, Ian; Cormons, Grace; Hays, Helen; Hatch, Jeremy; Mostello, Carolyn

    2016-01-01

    We used 22 yr of capture–mark–reencounter (CMR) data collected from 1988 to 2009 on about 12,500 birds at what went from three to five coastal colony sites in Massachusetts, New York, and Connecticut, United States, to examine spatial and temporal variation in breeding dispersal/fidelity rates of adult Roseate Terns (Sterna dougallii). At the start of our study, Roseate Terns nested at only one site (Bird Island) in Buzzards Bay, Massachusetts, but two more sites in this bay (Ram and Penikese Islands) were subsequently recolonized and became incorporated into our CMR metapopulation study. We examined four major hypotheses about factors we thought might influence colony-site fidelity and movement rates in the restructured system. We found some evidence that colony-site fidelity remained higher at long-established sites compared with newer ones and that breeding dispersal was more likely to occur among nearby sites than distant ones. Sustained predation at Falkner Island, Connecticut, did not result in a sustained drop in fidelity rates of breeders. Patterns of breeding dispersal differed substantially at the two restored sites. The fidelity of Roseate Terns at Bird dropped quickly after nearby Ram was recolonized in 1994, and fidelity rates for Ram soon approached those for Bird. After an oil spill in Buzzards Bay in April 2003, hazing (deliberate disturbance) of the terns at Ram prior to the start of egg-laying resulted in lowering of fidelity at this site, a decrease in immigration from Bird, and recolonization of Penikese by Roseate Terns. Annual fidelity rates at Penikese increased somewhat several years after the initial recolonization, but they remained much lower there than at all the other sites throughout the study period. The sustained high annual rates of emigration from Penikese resulted in the eventual failure of the restoration effort there, and in 2013, no Roseate Terns nested at this site.

  10. Atmospheric effects on the photosensitive response of poly(methylphenylsilane) thin films.

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Barrett George, Jr. (University of Arizona, Tucson, AZ); Chandra, Haripin (University of Arizona, Tucson, AZ); Simmons-Potter, Kelly (University of Arizona, Tucson, AZ); Thomes, William Joseph, Jr.; Jamison, Gregory Marks

    2004-06-01

    Agile ready-when-needed patterning of refractive index structures in photosensitive materials requires an understanding of the impact of local application environment on mechanisms contributing to the desired photoinduced index change. The present work examines the impact of atmosphere on the photosensitive response of poly(methylphenylsilane) (PMPS) thin films whose high photoinduced index change under low incident optical fluence make them attractive candidates for such applications. Changes in optical absorption and refractive index are investigated after exposure to ultraviolet (UV) light resonant with the lowest energy transition exhibited by the Si-Si backbone structure in the material. A comparison between photoinduced absorption changes for thin films exposed in an air atmosphere versus those observed for samples subjected to a nitrogen environment during photoexposure is made for the first time. The study reveals that the anaerobic conditions of the nitrogen atmosphere significantly reduce the photosensitive response of the material to light. These results are discussed in terms of photooxidation processes within the polysilane structure and in the context of the need for predictable photosensitive refractive index change in varied photoimprinting environments.

  11. The Growth Response of Two Diatom Species to Atmospheric Dust from the Last Glacial Maximum.

    Directory of Open Access Journals (Sweden)

    Tim M Conway

    Full Text Available Relief of iron (Fe limitation in the surface Southern Ocean has been suggested as one driver of the regular glacial-interglacial cycles in atmospheric carbon dioxide (CO2. The proposed cause is enhanced deposition of Fe-bearing atmospheric dust to the oceans during glacial intervals, with consequent effects on export production and the carbon cycle. However, understanding the role of enhanced atmospheric Fe supply in biogeochemical cycles is limited by knowledge of the fluxes and 'bioavailability' of atmospheric Fe during glacial intervals. Here, we assess the effect of Fe fertilization by dust, dry-extracted from the Last Glacial Maximum portion of the EPICA Dome C Antarctic ice core, on the Antarctic diatom species Eucampia antarctica and Proboscia inermis. Both species showed strong but differing reactions to dust addition. E. antarctica increased cell number (3880 vs. 786 cells mL-1, chlorophyll a (51 vs. 3.9 μg mL-1 and particulate organic carbon (POC; 1.68 vs. 0.28 μg mL-1 production in response to dust compared to controls. P. inermis did not increase cell number in response to dust, but chlorophyll a and POC per cell both strongly increased compared to controls (39 vs. 15 and 2.13 vs. 0.95 ng cell-1 respectively. The net result of both responses was a greater production of POC and chlorophyll a, as well as decreased Si:C and Si:N incorporation ratios within cells. However, E, antarctica decreased silicate uptake for the same nitrate and carbon uptake, while P. inermis increased carbon and nitrate uptake for the same silicate uptake. This suggests that nutrient utilization changes in response to Fe addition could be driven by different underlying mechanisms between different diatom species. Enhanced supply of atmospheric dust to the surface ocean during glacial intervals could therefore have driven nutrient-utilization changes which could permit greater carbon fixation for lower silica utilization. Additionally, both species responded

  12. The Growth Response of Two Diatom Species to Atmospheric Dust from the Last Glacial Maximum.

    Science.gov (United States)

    Conway, Tim M; Hoffmann, Linn J; Breitbarth, Eike; Strzepek, Robert F; Wolff, Eric W

    2016-01-01

    Relief of iron (Fe) limitation in the surface Southern Ocean has been suggested as one driver of the regular glacial-interglacial cycles in atmospheric carbon dioxide (CO2). The proposed cause is enhanced deposition of Fe-bearing atmospheric dust to the oceans during glacial intervals, with consequent effects on export production and the carbon cycle. However, understanding the role of enhanced atmospheric Fe supply in biogeochemical cycles is limited by knowledge of the fluxes and 'bioavailability' of atmospheric Fe during glacial intervals. Here, we assess the effect of Fe fertilization by dust, dry-extracted from the Last Glacial Maximum portion of the EPICA Dome C Antarctic ice core, on the Antarctic diatom species Eucampia antarctica and Proboscia inermis. Both species showed strong but differing reactions to dust addition. E. antarctica increased cell number (3880 vs. 786 cells mL-1), chlorophyll a (51 vs. 3.9 μg mL-1) and particulate organic carbon (POC; 1.68 vs. 0.28 μg mL-1) production in response to dust compared to controls. P. inermis did not increase cell number in response to dust, but chlorophyll a and POC per cell both strongly increased compared to controls (39 vs. 15 and 2.13 vs. 0.95 ng cell-1 respectively). The net result of both responses was a greater production of POC and chlorophyll a, as well as decreased Si:C and Si:N incorporation ratios within cells. However, E, antarctica decreased silicate uptake for the same nitrate and carbon uptake, while P. inermis increased carbon and nitrate uptake for the same silicate uptake. This suggests that nutrient utilization changes in response to Fe addition could be driven by different underlying mechanisms between different diatom species. Enhanced supply of atmospheric dust to the surface ocean during glacial intervals could therefore have driven nutrient-utilization changes which could permit greater carbon fixation for lower silica utilization. Additionally, both species responded more strongly

  13. Mineral nutrition and plant responses to elevated levels of atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, A.

    1996-08-01

    The atmospheric concentration of CO{sub 2}, a radiatively-active ({open_quotes}green-house{close_quotes}) gas, is increasing. This increase is considered a post-industrial phenomenon attributable to increasing rates of fossil fuel combustion and changing land use practices, particularly deforestation. Climate changes resulting from such elevated atmospheric CO{sub 2} levels, in addition to the direct effects of increased CO{sub 2}, are expected to modify the productivity of forests and alter species distributions. Elevated levels of CO{sub 2} have been shown, in some cases, to lead to enhanced growth rates in plants, particularly those with C{sub 3} metabolism - indicating that plant growth is CO{sub 2}-limited in these situations. Since the major process underlying growth is CO{sub 2} assimilation via photosynthesis in leaves, plant growth represents a potential for sequestering atmospheric carbon into biomass, but this potential could be hampered by plant carbon sink size. Carbon sinks are utilization sites for assimilated carbon, enabling carbon assimilation to proceed without potential inhibition from the accumulation of assimilate (photosynthate). Plant growth provides new sinks for assimilated carbon which permits greater uptake of atmospheric carbon dioxide. However, sinks are, on the whole, reduced in size by stress events due to the adverse effects of stress on photosynthetic rates and therefore growth. This document reviews some of the literature on plant responses to increasing levels of atmospheric carbon dioxide and to inadequate nutrient supply rates, and with this background, the potential for nutrient-limited plants to respond to increasing carbon dioxide is addressed. Conclusions from the literature review are then tested experimentally by means of a case study exploring carbon-nitrogen interactions in seedlings of loblolly pine.

  14. Atmospheric responses to idealized urban land surface forcing in eastern China during the boreal spring

    Science.gov (United States)

    Deng, Jiechun; Xu, Haiming

    2015-10-01

    In contrast to the impacts of anthropogenic aerosols and greenhouse gases, little is known about the impact of urban land surface forcing (ULSF) on large-scale atmospheric circulation. This study explores atmospheric responses to idealized ULSF in eastern China during the boreal spring using the Community Atmosphere Model version 5.1 coupled with the Community Land Model version 4. Results show that the ULSF leads to an increased air temperature in northern China both near the surface and in the lower troposphere. Related to a strong thermal feedback loop, a middle-upper tropospheric cooling is found in eastern China while a relatively strong warming occurs in the middle-high latitudes, which acts to enhance the meridional temperature gradient to the north of the source region and then shifts the East Asian subtropical jet stream (EASJ) southward. A weakened southwesterly in the lower troposphere in southern China slows down moisture transportation to northern China, and the southward shifted EASJ induces strong anomalous sinking motion to the north of the Yangtze River Valley (YRV). The associated changes in moisture and vertical airflow result in moisture divergence along the YRV and convergence in southern China. Thus, the spring rain belt is shifted southward, as characterized by below-normal rainfall extending from the Huai River Valley to South Korea and above-normal rainfall from southern China to the south coast of Japan. In addition, analysis of the upper tropospheric wave activity signifies that large-scale atmospheric responses due to the ULSF also exert an important influence on local climate.

  15. Weather forecasting by insects: modified sexual behaviour in response to atmospheric pressure changes.

    Science.gov (United States)

    Pellegrino, Ana Cristina; Peñaflor, Maria Fernanda Gomes Villalba; Nardi, Cristiane; Bezner-Kerr, Wayne; Guglielmo, Christopher G; Bento, José Maurício Simões; McNeil, Jeremy N

    2013-01-01

    Prevailing abiotic conditions may positively or negatively impact insects at both the individual and population levels. For example while moderate rainfall and wind velocity may provide conditions that favour development, as well as movement within and between habitats, high winds and heavy rains can significantly decrease life expectancy. There is some evidence that insects adjust their behaviours associated with flight, mating and foraging in response to changes in barometric pressure. We studied changes in different mating behaviours of three taxonomically unrelated insects, the curcurbit beetle, Diabrotica speciosa (Coleoptera), the true armyworm moth, Pseudaletia unipuncta (Lepidoptera) and the potato aphid, Macrosiphum euphorbiae (Hemiptera), when subjected to natural or experimentally manipulated changes in atmospheric pressure. In response to decreasing barometric pressure, male beetles exhibited decreased locomotory activity in a Y-tube olfactometer with female pheromone extracts. However, when placed in close proximity to females, they exhibited reduced courtship sequences and the precopulatory period. Under the same situations, females of the true armyworm and the potato aphid exhibited significantly reduced calling behaviour. Neither the movement of male beetles nor the calling of armyworm females differed between stable and increasing atmospheric pressure conditions. However, in the case of the armyworm there was a significant decrease in the incidence of mating under rising atmospheric conditions, suggesting an effect on male behaviour. When atmospheric pressure rose, very few M. euphorbiae oviparae called. This was similar to the situation observed under decreasing conditions, and consequently very little mating was observed in this species except under stable conditions. All species exhibited behavioural modifications, but there were interspecific differences related to size-related flight ability and the diel periodicity of mating activity. We

  16. A Database of Herbaceous Vegetation Responses to Elevated Atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Jones, M.H.

    1999-11-24

    To perform a statistically rigorous meta-analysis of research results on the response by herbaceous vegetation to increased atmospheric CO{sub 2} levels, a multiparameter database of responses was compiled from the published literature. Seventy-eight independent CO{sub 2}-enrichment studies, covering 53 species and 26 response parameters, reported mean response, sample size, and variance of the response (either as standard deviation or standard error). An additional 43 studies, covering 25 species and 6 response parameters, did not report variances. This numeric data package accompanies the Carbon Dioxide Information Analysis Center's (CDIAC's) NDP-072, which provides similar information for woody vegetation. This numeric data package contains a 30-field data set of CO{sub 2}-exposure experiment responses by herbaceous plants (as both a flat ASCII file and a spreadsheet file), files listing the references to the CO{sub 2}-exposure experiments and specific comments relevant to the data in the data sets, and this documentation file (which includes SAS{reg_sign} and Fortran codes to read the ASCII data file). The data files and this documentation are available without charge on a variety of media and via the Internet from CDIAC.

  17. Responses of mammal dispersers to fruit availability: Rowan ( Sorbus aucuparia) and carnivores in mountain habitats of northern Spain

    Science.gov (United States)

    Guitián, José; Munilla, Ignacio

    2010-03-01

    Despite the well known fact that carnivore mammals are important fruit consumers and legitimate seed dispersers in temperate habitats, little is known about their quantitative responses to fruit availability. Here we show the results of two studies conducted at two different temporal and spatial scales, that were intended to assess the response of pine martens ( Martes martes) and red foxes ( Vulpes vulpes) to variations in the supply of rowan ( Sorbus aucuparia) fruits in the Cantabrian Range (northern Iberia). First, we studied the association between fruit availability and the importance of rowan fruit in the diet of carnivores during a period of 11 consecutive years. This was accomplished by comparing fruit-crop size in 54 trees and the analysis of faecal contents in a sample of 863 faeces. Secondly, we assessed the consumption of fruits by these two species underneath the canopy of 20 rowan trees along 10 consecutive days. In the first study, the diet of martens and foxes consistently tracked interannual variations in rowan fruit availability, despite large fluctuations in fruit yield that included three mast years of heavy rowanberry crops and three non-fruiting years. For both carnivores total crop size was correlated with the frequency of occurrence and the proportion of rowan by volume in faeces. The second study suggested that carnivores feeding on fallen fruit tended to visit the trees that exhibited a higher density of fruits under the canopy. Thus, carnivores apparently choose to feed on high-density patches of fruit, which in turn were located underneath the canopy of the trees that produced the larger crops. Our results stress the need to pay proper attention to the role of carnivores as seed dispersers, in order to disentangle the evolutionary and ecological outcomes of plant-animal interactions in mixed-dispersed plants.

  18. Mars - The role of the regolith in determining atmospheric pressure and the atmosphere's response to insolation changes

    Science.gov (United States)

    Fanale, F. P.; Cannon, W. A.

    1978-01-01

    A quantitative model for atmosphere-regolith exchange of CO2 on Mars is presented. The model, based on new laboratory measurements of CO2 adsorption on ground rock at 158, 175, 196, and 231 K for CO2 pressures from 1.0 to 80 mbar, is consistent with Viking observations, while models involving a massive residual CO2 cap and no long-term atmosphere-regolith CO2 exchange are not consistent. The model indicates: (1) the atmosphere-plus-cap system is buffered on a long-term basis by exchangeable CO2 adsorbed in the regolith; (2) if the atmosphere-plus-cap system suddenly disappeared, the system would eventually be almost completely restored by reequilibration with the regolith; (3) exchange with the adsorbed phase in the regolith has greatly restricted O-18 enrichment of the atmosphere; (4) the layered terrain primarily represents current periodic pressure increases; and (5) pressures of 100-300 nbar might have existed during the early history of the planet.

  19. Atmospheric circulation remote response during two types of El Niño in changing climate

    Science.gov (United States)

    Zheleznova, Irina

    2017-04-01

    The ENSO is the general mode of interannual climate variability. Studies of the last decade revealed that there are two different types of El Niño (Central Pacific and Eastern Pacific), and the effect of these two phenomena on atmospheric circulation differs significantly [Ashok et al., 2007; Weng et al., 2009; Zheleznova and Gushchina, 2015; Zheleznova and Gushchina, 2016]. This study investigates the changes in characteristics of the remote response on two types of El Niño in the context of climate warming in the 21st century, using CMIP5 climate models data. The ability of CMIP5 coupled ocean-atmosphere general circulation models (CGCMs) to simulate two flavors of El Niño was estimated in preliminary researches [Matveeva and Gushchina, 2015; Zheleznova et al., 2015]. It was shown that only 14 of the 20 CGCMs realistically reproduce SST anomalies distinctive for two types of El Nino. Further research carried out among these models have shown that only three CGCMs are capable to reproduce features of the response of the global, regional and vertical atmospheric circulation on the two flavours of El Niño. These CGCMs are MIROC 5, GFDL-ESM2M and CESM1-CAM5. Changing remote response features under climate change (based on the RCP group of experiments) was assessed on the basis of the data of these CGCMs. It was noted a general weakening of the remote response intensity, reducing its duration, as well as explore its change depending on the "rigidity" of the experiment. The study was supported by the Russian foundation for basic research (project № 16-35-00394 mol_a). References: 1. Ashok K., Behera S. K., Rao S. A., Weng H., Yamagata, T. El Nino Modoki and its possible teleconnection. J. Geophys. Res. 2007, 112, C11007, doi:10.1029/2006JC003798. 2. Matveeva T., Gushchina D. The role of intraseasonal atmosphere variability in enso generation in future climate // European Geosciences Union General Assembly 2016. — Vol. 18 of Geophysical Research Abstracts.

  20. Sensing response of copper phthalocyanine salt dispersed glass with organic vapours

    Energy Technology Data Exchange (ETDEWEB)

    Ridhi, R.; Sachdeva, Sheenam; Saini, G. S. S.; Tripathi, S. K., E-mail: surya@pu.ac.in [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160 014 (INDIA) Fax: +91-172-2783336; Tel.:+91-172-2544362 (India)

    2016-05-06

    Copper Phthalocyanine and other Metal Phthalocyanines are very flexible and tuned easily to modify their structural, spectroscopic, optical and electrical properties by either functionalizing them with various substituent groups or by replacing or adding a ligand to the central metal atom in the phthalocyanine ring and accordingly can be made sensitive and selective to various organic species or gaseous vapours. In the present work, we have dispersed Copper Phthalocyanine Salt (CuPcS) in sol-gel glass form using chemical route sol-gel method and studied its sensing mechanism with organic vapours like methanol and benzene and found that current increases onto their exposure with vapours. A variation in the activation energies was also observed with exposure of vapours.

  1. Atmospheric Response to Zonal Variations in Midlatitude SST: Transient and Stationary Eddies and Their Feedback(.

    Science.gov (United States)

    Inatsu, Masaru; Mukougawa, Hitoshi; Xie, Shang-Ping

    2003-10-01

    Midwinter storm track response to zonal variations in midlatitude sea surface temperatures (SSTs) has been investigated using an atmospheric general circulation model under aquaplanet and perpetual-January conditions. Zonal wavenumber-1 SST variations with a meridionally confined structure are placed at various latitudes. Having these SST variations centered at 30°N leads to a zonally localized storm track, while the storm track becomes nearly zonally uniform when the same SST forcing is moved farther north at 40° and 50°N. Large (small) baroclinic energy conversion north of the warm (cold) SST anomaly near the axis of the storm track (near 40°N) is responsible for the large (small) storm growth. The equatorward transfer of eddy kinetic energy by the ageostrophic motion and the mechanical damping are important to diminish the storm track activity in the zonal direction.Significant stationary eddies form in the upper troposphere, with a ridge (trough) northeast of the warm (cold) SST anomaly at 30°N. Heat and vorticity budget analyses indicate that zonally localized condensational heating in the storm track is the major cause for these stationary eddies, which in turn exert a positive feedback to maintain the localized storm track by strengthening the vertical shear near the surface. These results indicate an active role of synoptic eddies in inducing deep, tropospheric-scale response to midlatitude SST variations. Finally, the application of the model results to the real atmosphere is discussed.

  2. Fungal Community Responses to Past and Future Atmospheric CO2 Differ by Soil Type

    Science.gov (United States)

    Ellis, J. Christopher; Fay, Philip A.; Polley, H. Wayne; Jackson, Robert B.

    2014-01-01

    Soils sequester and release substantial atmospheric carbon, but the contribution of fungal communities to soil carbon balance under rising CO2 is not well understood. Soil properties likely mediate these fungal responses but are rarely explored in CO2 experiments. We studied soil fungal communities in a grassland ecosystem exposed to a preindustrial-to-future CO2 gradient (250 to 500 ppm) in a black clay soil and a sandy loam soil. Sanger sequencing and pyrosequencing of the rRNA gene cluster revealed that fungal community composition and its response to CO2 differed significantly between soils. Fungal species richness and relative abundance of Chytridiomycota (chytrids) increased linearly with CO2 in the black clay (P 0.7), whereas the relative abundance of Glomeromycota (arbuscular mycorrhizal fungi) increased linearly with elevated CO2 in the sandy loam (P = 0.02, R2 = 0.63). Across both soils, decomposition rate was positively correlated with chytrid relative abundance (r = 0.57) and, in the black clay soil, fungal species richness. Decomposition rate was more strongly correlated with microbial biomass (r = 0.88) than with fungal variables. Increased labile carbon availability with elevated CO2 may explain the greater fungal species richness and Chytridiomycota abundance in the black clay soil, whereas increased phosphorus limitation may explain the increase in Glomeromycota at elevated CO2 in the sandy loam. Our results demonstrate that soil type plays a key role in soil fungal responses to rising atmospheric CO2. PMID:25239904

  3. The atmosphere as a global commons : responsible caring and equitable sharing

    Energy Technology Data Exchange (ETDEWEB)

    Hallman, D.G. [World Council of Churches, Toronto, ON (Canada)

    2000-06-01

    The World Council of Churches (WCC) views climate change issues from a theological and ethical perspective. This justice statement regarding climate change was prepared by the WCC in anticipation of the sixth session of the Conference of Parties (COP6) held in the Hague, Netherlands in November 2000. The statement presents the atmosphere as a global commons which envelops the Earth, nurturing and protecting life. Their statement urges that economic and political powers cannot be allowed to hinder the health of the atmosphere nor claim possession of it. The WCC pairs human responsibility with climate change and recognizes that the problem is caused largely by rich industrialized countries, the consequences of which will be suffered mostly by developing nations and by future generations. The statement emphasized that we must be held responsible for the destructive impact of our actions which are leading to climate change. The WCC argued that emissions trading under the Kyoto Protocol would violate the criterion of ecological effectiveness because it would not ensure a reduction in actual emissions. Trading mechanisms such as proposed under the Clean Development Mechanism would raise issues of equity and justice and would risk exacerbating inequities between rich and poor countries. The WCC made several recommendations for COP6. One of them was to refocus climate change negotiations on to options that meet the criteria of environmental effectiveness, equity, responsibility and economic efficiency with priority given to emissions reduction strategies in high per capita polluting countries. This statement also made reference to the use of a Global Atmospheric Commons Fund which would help impoverished countries to move towards a non-carbon economy focusing on renewable energy sources such as solar, biomass, wind and small scale hydroelectric.

  4. Amphiphilic zwitterionic poly(dimethylsiloxane) (PDMS)-contained poly(ether amine) (Z-SiPEA) as the responsive polymeric dispersant.

    Science.gov (United States)

    Jiang, Xuesong; Di, Chunfeng; Yu, Bing; Yin, Jie

    2011-05-01

    We demonstrated here a novel concept of the responsive dispersant based on the amphiphilic zwitterionic poly(ether amine) (Z-SiPEAs), which can control the dispersion of dyes and pigments in water. Z-SiPEAs are composed of short poly (dimethylsiloxane) (PDMS) chain in the backbone and Jeffamine L100 as graft chain. The amino groups in the backbone and carboxyl groups grafted to the backbone make the obtained Z-SiPEAs zwitterionic. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) results revealed that the obtained Z-SiPEAs can self-assemble into nanoparticles in water, which possessed sharp response to temperature, pH, and ionic strength with the tunable clouding point (CP). In the presence of Z-SiPEAs, not only hydrophobic dyes such as Nile Red can be dispersed in water, but the hydrophilic dye Rose Bengal (RB) can be dispersed in unpolar solvents. Further more, Z-SiPEAs can enhance the dispersion of inorganic pigments Titanium White, Iron Red and Chrome Yellow very efficiently in most solvents. It should be noted that the dispersion of organic dyes and inorganic pigments in water can be controlled by temperature in the presence of Z-SiPEAs. ¹H NMR and FT-IR revealed the strong coordination between carboxyl groups in Z-SiPEAs and metal atoms of inorganic pigments. These characteristics will give Z-SiPEAs potential as the novel responsive polymeric dispersant.

  5. Factorial Based Response Surface Modeling with Confidence Intervals for Optimizing Thermal Optical Transmission Analysis of Atmospheric Black Carbon

    Science.gov (United States)

    We demonstrate how thermal-optical transmission analysis (TOT) for refractory light-absorbing carbon in atmospheric particulate matter was optimized with empirical response surface modeling. TOT employs pyrolysis to distinguish the mass of black carbon (BC) from organic carbon (...

  6. Local Atmospheric Response to an Open-Ocean Polynya in a High-Resolution Climate Model

    Energy Technology Data Exchange (ETDEWEB)

    Weijer, Wilbert; Veneziani, Milena; Stossel, Achim; Hecht, Matthew; Jeffery, Nicole; Jonko, Alexandra; Hodos, Travis; Wang, Hailong

    2017-03-01

    In this paper we study the atmospheric response to an open-ocean polynya in the Southern Ocean by analyzing the results from an atmospheric and oceanic synoptic-scale resolving Community Earth System Model (CESM) simulation. While coarser-resolution versions of CESM generally do not produce open-ocean polynyas in the Southern Ocean, they do emerge and disappear on interannual timescales in the synoptic-scale simulation. This provides an ideal opportunity to study the polynya’s impact on the overlying and surrounding atmosphere. This has been pursued here by investigating the seasonal cycle of differences of surface and air-column variables between polynya and nonpolynya years. Our results indicate significant local impacts on turbulent heat fluxes, precipitation, cloud characteristics, and radiative fluxes. In particular, we find that clouds over polynyas are optically thicker and higher than clouds over sea ice during non-polynya years. Although the lower albedo of polynyas significantly increases the net shortwave absorption, the enhanced cloud brightness tempers this increase by almost 50%. Also, in this model, enhanced longwave radiation emitted from the warmer surface of polynyas is balanced by stronger downwelling fluxes from the thicker cloud deck. Impacts are found to be sensitive to the synoptic wind direction. Strongest regional impacts are found when northeasterly winds cross the polynya and interact with katabatic winds. Surface air pressure anomalies over the polynya are only found to be significant when cold, dry air masses strike over the polynya, i.e. in case of southerly winds.

  7. A new method for continuous measurements of oceanic and atmospheric N2O, CO and CO2: performance of off-axis integrated cavity output spectroscopy (OA-ICOS coupled to non-dispersive infrared detection (NDIR

    Directory of Open Access Journals (Sweden)

    D. L. Arévalo-Martínez

    2013-07-01

    Full Text Available A new system for continuous, highly-resolved oceanic and atmospheric measurements of N2O, CO and CO2 is described. The system is based upon off-axis integrated cavity output spectroscopy (OA-ICOS and a non-dispersive infrared analyzer (NDIR both coupled to a Weiss-type equilibrator. Performance of the combined setup was evaluated by testing its precision, accuracy, long-term stability, linearity and response time. Furthermore, the setup was tested during two oceanographic campaigns in the equatorial Atlantic Ocean in order to explore its potential for autonomous deployment onboard voluntary observing ships (VOS. Improved equilibrator response times for N2O (2.5 min and CO (45 min were achieved in comparison to response times from similar chamber designs used by previous studies. High stability of the OA-ICOS analyzer was demonstrated by low optimal integration times of 2 and 4 min for N2O and CO respectively, as well as detection limits of −1/2. Results from a direct comparison of the method presented here and well-established discrete methods for oceanic N2O and CO2 measurements showed very good consistency. The favorable agreement between underway atmospheric N2O, CO and CO2 measurements and monthly means at Ascension Island (7.96° S 14.4° W further suggests a reliable operation of the underway setup in the field. The potential of the system as an improved platform for measurements of trace gases was explored by using continuous N2O and CO2 data to characterize the development of the seasonal equatorial upwelling in the Atlantic Ocean during two R/V Maria S. Merian cruises. A similar record of high-resolution CO measurements was simultaneously obtained offering for the first time the possibility of a comprehensive view on the distribution and emissions of these climate relevant gases on the area. The relatively simple underway N2O/CO/CO2 setup is suitable for long-term deployment on board of research and commercial vessels although

  8. Role of EPS, Dispersant and Nutrients on the Microbial Response and MOS Formation in the Subarctic Northeast Atlantic

    Directory of Open Access Journals (Sweden)

    Tony Gutierrez

    2017-04-01

    Full Text Available In this study we report the formation of marine oil snow (MOS, its associated microbial community, the factors influencing its formation, and the microbial response to crude oil in surface waters of the Faroe-Shetland Channel (FSC. The FSC is a subarctic region that is hydrodynamically complex located in the northeast Atlantic where oil extraction is currently occurring and where exploration is likely to expand into its deeper waters (>500 m. A major oil spill in this region may mirror the aftermath that ensued following the Deepwater Horizon (DWH blowout in the Gulf of Mexico, where the massive influx of Macondo crude oil triggered the formation of copious quantities of rapidly sinking MOS and successional blooms of opportunistic oil-degrading bacteria. In laboratory experiments, we simulated environmental conditions in sea surface waters of the FSC using water collected from this site during the winter of 2015. We demonstrated that the presence of dispersant triggers the formation of MOS, and that nutrient amendments magnify this. Illumina MiSeq sequencing revealed the enrichment on MOS of associated oil-degrading (Cycloclasticus, Thalassolituus, Marinobacter and EPS-producing (Halomonas, Pseudoalteromonas, Alteromonas bacteria, and included major representation by Psychrobacter and Cobetia with putative oil-degrading/EPS-producing qualities. The formation of marine snow, in the absence of crude oil and dispersant, in seawater amended with nutrients alone indicated that the de novo synthesis of bacterial EPS is a key factor in MOS formation, and the glycoprotein composition of the MOS aggregates confirmed that its amorphous biopolymeric matrix was of microbial (likely bacterial origin. The presence of dispersants and crude oil with/without nutrients resulted in distinct microbial responses marked by intermittent, and in some cases short-lived, blooms of opportunistic heterotrophs, principally obligate hydrocarbonoclastic (Alcanivorax

  9. Understanding the Atmospheric Response to Ocean Heat Transport: a Model Inter-Comparison

    Science.gov (United States)

    Rose, B.

    2012-12-01

    The oceans' contribution to poleward heat transport (1 to 2 PW) is dwarfed by the atmosphere, and yet ocean heat transport (OHT) exerts a powerful climatic influence by exciting various atmospheric feedbacks. OHT drives polar-amplified greenhouse warming through a dynamical redistribution of tropospheric water vapor, and helps set the strength and position of the ITCZ. These complex responses explicitly couple tropical and extra-tropical processes, and depend on interactions between large-scale dynamics and moist physics. Considerable insights have been drawn from recent idealized experiments with aquaplanet GCMs coupled to slab oceans with prescribed OHT convergence (q-flux). However sensitivity to uncertain model parameterizations pose a barrier to deeper understanding. I will introduce a new multi-institution collaboration called the Q-flux / Aquaplanet Model Inter-comparison Project (QAquMIP), designed to test the robustness of the climatic impact of OHT and its relationship to traditional climate sensitivity. A standardized set of GCM experiments, repeated across a broad range of models, are forced by a few simple analytical q-fluxes. Experimental controls include the meridional scale of poleward OHT, strength of inter-hemispheric OHT, and zonally asymmetric equatorial heating. I will compare robust spatial patterns of temperature and precipitation changes associated with OHT forcing to those driven by CO2, and discuss the underlying spatial pattern of atmospheric feedbacks. A recurring theme is the key role of moist convection in communicating sea surface heating signals throughout the atmosphere, with consequences for clouds, water vapor, radiation, and hydrology. QAquMIP will better constrain the possible role of the oceans in past warm climates, provide a standard framework for testing new parameterizations, and advance our fundamental understanding of the moist processes contributing to present-day climate sensitivity.

  10. Coupled atmosphere-mixed layer ocean response to ocean heat flux convergence along the Kuroshio current extension

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young-Oh [Woods Hole Oceanographic Institution, Physical Oceanography Department, Woods Hole, MA (United States); Deser, Clara [National Center for Atmospheric Research, Boulder, CO (United States); Cassou, Christophe [CNRS-CERFACS, Toulouse (France)

    2011-06-15

    The winter response of the coupled atmosphere-ocean mixed layer system to anomalous geostrophic ocean heat flux convergence in the Kuroshio Extension is investigated by means of experiments with an atmospheric general circulation model coupled to an entraining ocean mixed layer model in the extra-tropics. The direct response consists of positive SST anomalies along the Kuroshio Extension and a baroclinic (low-level trough and upper-level ridge) circulation anomaly over the North Pacific. The low-level component of this atmospheric circulation response is weaker in the case without coupling to an extratropical ocean mixed layer, especially in late winter. The inclusion of an interactive mixed layer in the tropics modifies the direct coupled atmospheric response due to a northward displacement of the Pacific Inter-Tropical Convergence Zone which drives an equivalent barotropic anomalous ridge over the North Pacific. Although the tropically driven component of the North Pacific atmospheric circulation response is comparable to the direct response in terms of sea level pressure amplitude, it is less important in terms of wind stress curl amplitude due to the mitigating effect of the relatively broad spatial scale of the tropically forced atmospheric teleconnection. (orig.)

  11. Clouds and the extratropical circulation response to global warming in a hierarchy of global atmosphere models

    Science.gov (United States)

    Voigt, Aiko

    2017-04-01

    Climate models project that global warming will lead to substantial changes in the position of the extratropical jet streams. Yet, many quantitative aspects of such jet stream changes remain uncertain among models, and recent work has indicated a potentially important role of cloud radiative interactions. Here, I will investigate how cloud-radiative changes impact the extratropical circulation response using a hierarchy of global atmosphere models. I will first focus on aquaplanet setups with prescribed sea-surface temperatures (SSTs), which reproduce the model spread found in realistic simulations with interactive SSTs. Simulations with two CMIP5 models MPI-ESM and IPSL-CM5A and prescribed clouds show that half of the circulation response can be attributed to cloud changes. The rise of tropical high-level clouds and the upward and poleward movement of midlatitude high-level clouds lead to poleward jet shifts. High-latitude low-level cloud changes shift the jet poleward in one model but not in the other. The impact of clouds on the jet operates via the atmospheric radiative forcing that is created by the cloud changes and is qualitatively reproduced in a dry Held-Suarez model, although the latter is too sensitive because of its simplified treatment of diabatic processes. I will then show that the aquaplanet results also hold when the models are used in a realistic setup that includes continents and seasonality. Finally, I will juxtapose these prescribed-SST simulations with interactive-SST simulations. This will allow for a comparison of the circulation impacts of atmospheric and surface cloud-radiative changes.

  12. Mechanical response and deformation mechanisms of ferritic oxide dispersion strengthened steel structures produced by selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Dryepondt, Sebastien N [ORNL; Boegelein, T [University of Liverpool, UK; Pandey, Amit [LGFCS; Dawson, K [University of Liverpool, UK; Tatlock, G.J. [University of Liverpool, UK

    2015-01-28

    Oxide dispersion strengthened (ODS) ferritic steels typically contain a fine dispersion of nanoscopic Y(Al, Ti) oxides, leading to an improvement in mechanical and physical properties. For a rapid prototyping technique, selective laser melting (SLM), was successfully applied to consolidate as-mechanically alloyed ODS-PM2000 (Fe 19Cr 5.5Al 0.5Ti 0.5Y2O3; all wt.%) powder to fabricate solid and thin-walled builds of different thickness. Our work is intended to act as a first study to investigate the tensile response of such configurations at room temperature, using miniaturized test specimens along and perpendicular to the growth direction. The 0.2% offset yield strength of as-grown wall builds was inferior to conventional PM2000 alloy (recrystallized), but could be significantly increased by conducting post-build heat treatments. Young s modulus and yield strength showed anisotropy and were enhanced when testing perpendicular to the build growth direction. Electron backscatter diffraction revealed a strong [001] fibre texture along the growth direction, which explains the anisotropic behaviour. In addition, studies on the morphology of the individual fracture surfaces, the grain structure of the cross-section near this region and the size distribution of ODS particles in such builds were conducted. A fine dispersion of precipitates was retained in all SLM builds, and findings suggest that a certain amount of Y is probably still in atomic solution in the as-grown condition and forms new small nanoscopic dispersoids during annealing, which lead to enhanced strengthening.

  13. Responses of atmospheric electric field and air-earth current to variations of conductivity profiles

    Science.gov (United States)

    Makino, M.; Ogawa, T.

    1984-05-01

    A global circuit model is constructed to study responses of air-earth current and electric field to a variation of atmospheric electrical conductivity profile. The model includes the orography and the global distribution of thunderstorm generators. The conductivity varies with latitude and exponentially with altitude. The thunderstorm cloud is assumed to be a current generator with a positive source at the top and a negative one at the bottom. The UT diurnal variations of the global current and the ionospheric potential are evaluated considering the local-time dependence of thunderstorm activity. The global distribution of the electric field and the air-earth current are affected by the orography and latitudinal effects. Assuming a variation of conductivity profile, responses of atmospheric electrical parameters are investigated. The nonuniform decrement of the conductivity with altitude increases both the electric field and the air-earth current. The result suggests a possibility that the increment of the electric field and the air-earth current after a solar flare may be caused by this scheme, due to Forbush decrease.

  14. Responses of Metabolites in Soybean Shoot Apices to Changing Atmospheric Carbon Dioxide Concentrations

    Directory of Open Access Journals (Sweden)

    Richard Sicher

    2012-01-01

    Full Text Available Soybean seedlings were grown in controlled environment chambers with CO2 partial pressures of 38 (ambient and 72 (elevated Pa. Five or six shoot apices were harvested from individual 21- to 24-day-old plants. Metabolites were analyzed by gas chromatography and, out of 21 compounds, only sucrose and fructose increased in response to CO2 enrichment. One unidentified metabolite, Unk-21.03 decreased up to 80% in soybean apices in response to elevated CO2. Levels of Unk-21.03 decreased progressively when atmospheric CO2 partial pressures were increased from 26 to 100 Pa. Reciprocal transfer experiments showed that Unk-21.03, and sucrose in soybean apices were altered slowly over several days to changes in atmospheric CO2 partial pressures. The mass spectrum of Unk-21.03 indicated that this compound likely contained both an amino and carboxyl group and was structurally related to serine and aspartate. Our findings suggested that CO2 enrichment altered a small number of specific metabolites in soybean apices. This could be an important step in understanding how plant growth and development are affected by carbon dioxide enrichment.

  15. Grassland/atmosphere response to changing climate: Coupling regional and local scales. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Coughenour, M.B.; Kittel, T.G.F.; Pielke, R.A.; Eastman, J.

    1993-10-01

    The objectives of the study were: to evaluate the response of grassland ecosystems to atmospheric change at regional and site scales, and to develop multiscaled modeling systems to relate ecological and atmospheric models with different spatial and temporal resolutions. A menu-driven shell was developed to facilitate use of models at different temporal scales and to facilitate exchange information between models at different temporal scales. A detailed ecosystem model predicted that C{sub 3} temperate grasslands wig respond more strongly to elevated CO{sub 2} than temperate C{sub 4} grasslands in the short-term while a large positive N-PP response was predicted for a C{sub 4} Kenyan grassland. Long-term climate change scenarios produced either decreases or increases in Colorado plant productivity (NPP) depending on rainfall, but uniform increases in N-PP were predicted in Kenya. Elevated CO{sub 2} is likely to have little effect on ecosystem carbon storage in Colorado while it will increase carbon storage in Kenya. A synoptic climate classification processor (SCP) was developed to evaluate results of GCM climate sensitivity experiments. Roughly 80% agreement was achieved with manual classifications. Comparison of lx and 2xCO{sub 2} GCM Simulations revealed relatively small differences.

  16. Atmospheric Response to of an Active Region to new Small Flux Emergence

    CERN Document Server

    Shelton, D L; Green, L M

    2014-01-01

    We investigate the atmospheric response to a small emerging flux region (EFR) that occurred in the positive polarity of Active Region 11236 on 23 \\,-\\ 24 June 2011. Data from the \\textit{Solar Dynamics Observatory's Atmopheric Imaging Assembly} (AIA), the \\textit{Helioseismic and Magnetic Imager} (HMI) and Hinode's \\textit{EUV imaging spectrometer} (EIS) are used to determine the atmospheric response to new flux emerging into a pre-existing active region. Brightenings are seen forming in the upper photosphere, chromosphere, and corona over the EFR's location whilst flux cancellation is observed in the photosphere. The impact of the flux emergence is far reaching, with new large-scale coronal loops forming up to 43 Mm from the EFR and coronal upflow enhancements of approximately 10 km s$^{-1}$ on the north side of the EFR. Jets are seen forming in the chromosphere and the corona over the emerging serpentine field. This is the first time that coronal jets have been seen over the serpentine field.

  17. Axonal transmission in the retina introduces a small dispersion of relative timing in the ganglion cell population response.

    Directory of Open Access Journals (Sweden)

    Günther Zeck

    Full Text Available BACKGROUND: Visual stimuli elicit action potentials in tens of different retinal ganglion cells. Each ganglion cell type responds with a different latency to a given stimulus, thus transforming the high-dimensional input into a temporal neural code. The timing of the first spikes between different retinal projection neurons cells may further change along axonal transmission. The purpose of this study is to investigate if intraretinal conduction velocity leads to a synchronization or dispersion of the population signal leaving the eye. METHODOLOGY/PRINCIPAL FINDINGS: We 'imaged' the initiation and transmission of light-evoked action potentials along individual axons in the rabbit retina at micron-scale resolution using a high-density multi-transistor array. We measured unimodal conduction velocity distributions (1.3±0.3 m/sec, mean ± SD for axonal populations at all retinal eccentricities with the exception of the central part that contains myelinated axons. The velocity variance within each piece of retina is caused by ganglion cell types that show narrower and slightly different average velocity tuning. Ganglion cells of the same type respond with similar latency to spatially homogenous stimuli and conduct with similar velocity. For ganglion cells of different type intraretinal conduction velocity and response latency to flashed stimuli are negatively correlated, indicating that differences in first spike timing increase (up to 10 msec. Similarly, the analysis of pair-wise correlated activity in response to white-noise stimuli reveals that conduction velocity and response latency are negatively correlated. CONCLUSION/SIGNIFICANCE: Intraretinal conduction does not change the relative spike timing between ganglion cells of the same type but increases spike timing differences among ganglion cells of different type. The fastest retinal ganglion cells therefore act as indicators of new stimuli for postsynaptic neurons. The intraretinal dispersion

  18. Hydrological response to Black Carbon deposition in seasonally snow covered catchments in Norway using two different atmospheric transport models

    Science.gov (United States)

    Matt, F.; Burkhart, J. F.; Pietikäinen, J. P.

    2015-12-01

    Black Carbon (BC) has been shown to significantly impact snow melt through lowering the albedo of snow and increasing the absorption rate of short wave radiation. Yet few studies have investigated the effect of the enhanced melt on hydrological variability. BC sources for Norway are rather remote and deposition rates low. However, once deposited on snow even low concentrations of BC can have a detectable effect on the snow melt. Variations in snow melt have a direct impact on the snow cover duration and the timing and magnitude of peak outflow. In this study, we use two different atmospheric transport models (the Lagrangian transport and dispersion model FELXPART and the regional aerosol-climate model REMO-HAM) and GAINS emissions to simulate deposition rates over Norway and Statkraft's Hydrologic Forecasting Toolbox (ShyFT) to simulate the impact of BC deposition on the seasonal snow melt. The Snow, Ice, and Aerosol Radiation (SNICAR) model coupled to the snow routine of the hydrological model is used to determine the albedo of the snow as a function of the BC concentration in two snow layers. To investigate the impact range of BC on the seasonal snow melt, we simulate the catchment hydrology of catchments in south-east, south-west and northern Norway under the impact of deposition rates from both transport models, respectively. Comparing the deposition rates from the two transport models, we observe large differences in the seasonal cycle which in turn results in a significantly different response in the snow melt. Furthermore, we investigate the overall impact of BC deposition on the snow melt and duration on a catchment scale for both transport models.

  19. Dispersive response of atoms trapped near the surface of an optical nanofiber with applications to QND measurement and spin squeezing

    CERN Document Server

    Qi, Xiaodong; Jessen, Poul S; Deutsch, Ivan H

    2015-01-01

    We study the strong coupling between photons and atoms that can be achieved in an optical nanofiber geometry when the interaction is dispersive. While the Purcell enhancement factor for spontaneous emission into the guided mode does not reach the strong-coupling regime for individual atoms, one can obtain high cooperativity for ensembles of a few thousand atoms due to the tight confinement of the guided modes and constructive interference over the entire chain of trapped atoms. We calculate the dyadic Green's function, which determines the scattering of light by atoms in the presence of the fiber, and thus the phase shift and polarization rotation induced on the guided light by the trapped atoms. The Green's function is related to a full Heisenberg-Langevin treatment of the dispersive response of the quantized field to tensor polarizable atoms. We apply our formalism to quantum nondemolition (QND) measurement of the atoms via polarimetry. We study shot-noise-limited detection of atom number for atoms in a com...

  20. FINITE ELEMENT SIMULATION FOR STRUCTURAL RESPONSE OF U7MO DISPERSION FUEL PLATES VIA FLUID-THERMAL-STRUCTURAL INTERACTION

    Energy Technology Data Exchange (ETDEWEB)

    Hakan Ozaltun; Herman Shen; Pavel Madvedev

    2010-11-01

    This article presents numerical simulation of dispersion fuel mini plates via fluid–thermal–structural interaction performed by commercial finite element solver COMSOL Multiphysics to identify initial mechanical response under actual operating conditions. Since fuel particles are dispersed in Aluminum matrix, and temperatures during the fabrication process reach to the melting temperature of the Aluminum matrix, stress/strain characteristics of the domain cannot be reproduced by using simplified models and assumptions. Therefore, fabrication induced stresses were considered and simulated via image based modeling techniques with the consideration of the high temperature material data. In order to identify the residuals over the U7Mo particles and the Aluminum matrix, a representative SEM image was employed to construct a microstructure based thermo-elasto-plastic FE model. Once residuals and plastic strains were identified in micro-scale, solution was used as initial condition for subsequent multiphysics simulations at the continuum level. Furthermore, since solid, thermal and fluid properties are temperature dependent and temperature field is a function of the velocity field of the coolant, coupled multiphysics simulations were considered. First, velocity and pressure fields of the coolant were computed via fluidstructural interaction. Computed solution for velocity fields were used to identify the temperature distribution on the coolant and on the fuel plate via fluid-thermal interaction. Finally, temperature fields and residual stresses were used to obtain the stress field of the plates via fluid-thermal-structural interaction.

  1. Preliminary report on operational guidelines developed for use in emergency preparedness and response to a radiological dispersal device incident.

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C.; Cheng, J.-J.; Kamboj, S.; Domotor, S.; Wallo, A.; Environmental Science Division; DOE

    2006-12-15

    This report presents preliminary operational guidelines and supporting work products developed through the interagency Operational Guidelines Task Group (OGT). The report consolidates preliminary operational guidelines, all ancillary work products, and a companion software tool that facilitates their implementation into one reference source document. The report is intended for interim use and comment and provides the foundation for fostering future reviews of the operational guidelines and their implementation within emergency preparedness and response initiatives in the event of a radiological dispersal device (RDD) incident. The report principally focuses on the technical derivation and presentation of the operational guidelines. End-user guidance providing more details on how to apply these operational guidelines within planning and response settings is being considered and developed elsewhere. The preliminary operational guidelines are categorized into seven groups on the basis of their intended application within early, intermediate, and long-term recovery phases of emergency response. We anticipate that these operational guidelines will be updated and refined by interested government agencies in response to comments and lessons learned from their review, consideration, and trial application. This review, comment, and trial application process will facilitate the selection of a final set of operational guidelines that may be more or less inclusive of the preliminary operational guidelines presented in this report. These and updated versions of the operational guidelines will be made available through the OGT public Web site (http://ogcms.energy.gov) as they become finalized for public distribution and comment.

  2. The responses of rising or falling spherical wind sensors to atmospheric wind perturbations.

    Science.gov (United States)

    Fichtl, G. H.

    1971-01-01

    Analysis of the responses of rising or falling spherical wind sensors to atmospheric wind perturbations on the wind profile in the vertical, using Fourier transform techniques. The linearized equations of motion of a sensor that is subject to drag and gravitational body forces are developed by perturbing a sensor about an equilibrium uniform motion with wind fluctuations which have vertical variations. The wind environment and sensor velocities are decomposed with stochastic Fourier-Stieltjes integrals, and the linearized equations of motion are used to derive the response functions and phase angles of the sensor motions. The results of the analysis are used to analyze the response properties of the Jimsphere balloon wind sensor. It is shown that, in general, the transfer functions associated with the horizontal sensor motions are smaller than the transfer functions associated with the vertical sensor motions in the omega times T product range from zero to infinity, omega being the wind perturbation frequency and T a time constant of the system. Thus, the sensor is more responsive to vertical than to horizontal air motions.

  3. Short-term physiological responses of mosses to atmospheric ammonium and nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Soares, A.; Pearson, J. [University College London, London (United Kingdom). Dept. of Biology

    1997-01-01

    Many bryophytes rely to a large extent on atmospheric deposition for their nutrient uptake. However, increasing levels of atmospheric ammonium (NH{sub 4}{sup +}) and nitrate (NO{sub 3}{sup -}) attract concern as to the possible harmful effects on bryophytes from these two nutrient sources. Changes in nitrate reductase (NR) activities, cation (Ca, K and Mg), total nitrogen (N) and organic acid concentrations were investigated for the mosses, Racomitrium lanuginosum, Rytidiadelphus loreus and Philonotis fontana, in response to a single field misting with 3 mol m{sup -3}NH{sub 4}{sup +} and NO{sub 3}{sup -}. Increases of 20% were recorded for tissue N content, 48hr after misting with 3 mol m{sup -3} NH{sub 4}{sup +} and NO{sub 3}{sup -. Increase labelled {sup 15}NH{sub 4}sup +} or {sup 15}NO{sub 3}{sup -} were applied to R. Lanuginosum at 1, 3 and 6 mol m{sup -3} concentrations, partitioning of incorporated {sup 15}N between different tissue regions occurred, with the highest N uptake in the upper stem and leaves. High concentrations of applied N resulted in reduced efficiency of N uptake. NH{sup 4}{sup +} applications caused declines in NR activities, organic acids and cations, whereas, NO{sub 3}{sup -} treatments caused the reverse response. Changes in cation contents, organic acids and NR activity reflect short-term regulation of N metabolism in the presence of defined N sources, as well as potential mechanisms of regulating cell pH homoeostasis. The consistency of physiological responses, especially NR activities, over short-term pollution episodes, provides evidence for their use as indicators of both NH{sub 4}{sup +} and NO{sub 3}{sup -} pollution. 41 refs., 7 figs., 1 tab.

  4. Atmospheric and ionospheric response to sudden stratospheric warming of January 2013

    Science.gov (United States)

    Jonah, O. F.; Paula, E. R.; Kherani, E. A.; Dutra, S. L. G.; Paes, R. R.

    2014-06-01

    In this work, we examine the atmospheric and ionospheric responses to the January 2013 sudden stratospheric warming (SSW) event. To examine the atmospheric and ionospheric behavior during this event, three main parameters are used (1) Total Electron Content (TEC) collected from the International Global Positioning System and from the Brazilian Network of Continuous Monitoring stations, (2) daytime E × B vertical drift derived from the magnetometers located at the equatorial station Alta Floresta (9.9°S, 55.9°W, dip latitude 1.96°) and an off-equatorial station Cuiaba (15.3°S, 56.0°W, dip latitude 7.10°), both in the Brazilian sector, (3) the mesosphere and lower thermosphere (MLT) meridional and zonal wind components measured by the Meteor Radar located at the southern midlatitude Santa Maria (29.4°S, 53.3°W, dip latitude 17.8°). We identify the anomalous variation in E × B drift based on later local-time migration of peak value with SSW days. A novel feature of the present study is the identification of the similar migration pattern in the TEC anomaly, in spite that the simultaneous solar flux increases during the SSW event. Other novel features are the amplification of the 13-16 day period in the TEC anomaly during the SSW days and simultaneous amplification of this period in the meridional and zonal wind components in the MLT region, as far as 30°S. These aspects reveal the presence of coupled atmosphere-ionosphere dynamics during the SSW event and the amplification of the lunar and/or solar tidal component, a characteristic which is recently reported from the electrojet current measurements.

  5. Atmospheric and Ionospheric Response to Stratospheric Sudden Warming of January 2013.

    Science.gov (United States)

    Jonah, Olusegun Folarin; De Paula, Eurico; Kherani, Esfhan alam; Severino, Dutra

    In this work, we examine the atmospheric and ionospheric responses to the January 2013 Stratospheric Sudden Warming (SSW) event. To examine the atmospheric and ionospheric behavior during this event, three main parameters are used: (1) Total Electron Content (TEC) collected from the International Global Positioning System (IGS) and from the Brazilian Network of Continuous Monitoring (RBMC) stations, (2) Daytime ExB vertical drift derived from the magnetometers located at the equatorial station Alta Floresta (9.9ºS, 55.9ºW, dip lat: 1.96º) and an off equatorial station Cuiaba (15.3ºS, 56.0ºW, dip lat: 7.10º), both in the Brazilian sector, (3) The Mesosphere and lower thermosphere (MLT) meridional and zonal wind components measured by the Meteor Radar located at the southern mid-latitude Santa Maria (29.4ºS, 53.3ºW, dip lat: 17.8º). We identify the anomalous variation in ExB drift based on later local time migration of peak value with SSW days, as reported recently by Goncharenko et al [2013]. A novel feature of the present study is the identification of the similar migration pattern in the TEC anomaly, in spite that the simultaneous solar-flux increase during the SSW event also acts as another dominant forcing. Other novel features are the amplification of the 13-16 day periods in the TEC anomaly during the SSW days, and simultaneous amplification of these periods in the meridional and zonal wind components in the MLT region. These aspects reveal the presence of coupled atmosphere-ionosphere dynamics during the SSW event and the amplification of the lunar and/or solar tidal component, a characteristic which is recently reported from the electrojet current measurements [Park et al, 2012].

  6. Responses of deciduous trees to elevated atmospheric CO[sub 2]: Productivity, phytochemistry, and insect performance

    Energy Technology Data Exchange (ETDEWEB)

    Lindroth, R.L.; Kinney, K.K.; Platz, C.L. (Univ. of Wisconsin, Madison (United States))

    1993-04-01

    Rising levels of atmospheric carbon dioxide are expected to directly affect forest ecosystems. This research evaluated the effects of enriched CO[sub 2], on the productivity and phytochemistry of forest trees and performance of associated insects. Our experimental system consisted of three tree species (quaking aspen [Populus tremuloides], red oak [Quercus rubra], sugar maple [Acer saccharum]) and two species of leaf-feeding insects (gypsy moth [Lymantria dispar] and forest tent caterpillar [Malacosma disstria]). Three questions were evaluated: in response to enriched CO[sub 2]: (1) relative increases in tree growth rates (2) relative decreases in protein and increases in carbon-based compounds, and (3) relative reductions in insect performance. Aspen responded the most to enriched CO[sub 2], atmospheres whereas maple responded the least. Proportional growth increases, were highest for oak and least for maple. Effects of elevated CO[sub 2], on biomass allocation patterns differed among the three species. Enriched CO[sub 2], altered concentrations of primary and secondary metabolites in leaves, but the magnitude and direction of effects were species-specific. Consumption rates of insects fed high-CO[sub 2], aspen increased dramatically, but growth rates declined. Gypsy moths grew better on high-CO[sub 2], oak, whereas forest tent caterpillars were unaffected; tent caterpillars grew less on high-CO[sub 2], maple, while gypsy moths were unaffected. Changes in insect performance parameters were related to changes in foliar chemistry. This study illustrates that tree productivity and chemistry, and the performance of associated insects, will change under CO[sub 2], atmospheres predicted for the next century. Changes in higher level ecological processes, such as community structure and nutrient cycling, are also implicated. 61 refs., 3 figs., 2 tabs.

  7. Atmospheric response to Indian Ocean Dipole forcing: changes of Southeast China winter precipitation under global warming

    Science.gov (United States)

    Zhang, Ling; Sielmann, Frank; Fraedrich, Klaus; Zhi, Xiefei

    2017-03-01

    To investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the subsequent winter precipitation in Southeast China (SEC), observed fields of monthly precipitation, sea surface temperature (SST) and atmospheric circulation are subjected to a running and a maximum correlation analysis. The results show a significant change of the relevance of IOD for the early modulation of SEC winter precipitation in the 1980s. After 1980, positive correlations suggest prolonged atmospheric responses to IOD forcing, which are linked to an abnormal moisture supply initiated in autumn and extended into the subsequent winter. Under global warming two modulating factors are relevant: (1) an increase of the static stability has been observed suppressing vertical heat and momentum transports; (2) a positive (mid-level) cloud-radiation feedback jointly with the associated latent heating (apparent moisture sink Q2) explains the prolongation of positive as well as negative SST anomalies by conserving the heating (apparent heat source Q1) in the coupled atmosphere-ocean system. During the positive IOD events in fall (after 1980) the dipole heating anomalies in the middle and lower troposphere over the tropical Indian Ocean are prolonged to winter by a positive mid-level cloud-radiative feedback with latent heat release. Subsequently, thermal adaptation leads to an anticyclonic anomaly over Eastern India overlying the anomalous cooling SST of the tropical Eastern Indian Ocean enhancing the moisture flow from the tropical Indian Ocean through the Bay of Bengal into South China, following the northwestern boundary of the anticyclonic circulation anomaly over east India, thereby favoring abundant precipitation in SEC.

  8. Response of Tundra Ecosystems to Elevated Atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, Walter C.

    1990-09-05

    OAK B188 Response of Tundra Ecosystems to Elevated Atmospheric CO{sub 2}. Atmospheric CO{sub 2} is expected to double by the end of the next century. Global mean increases in surface air temperature of 1.5-4.5 C are anticipated with larger increases towards the poles predicted. Changes in CO{sub 2} levels and temperature could have major impacts on ecosystem functioning, including primary productivity, species composition, plant-animal interactions, and carbon storage. Until recently, there has been little direct information on the impact of changes in CO{sub 2} and temperature on native ecosystems. The study described here was undertaken to evaluate the effects of a 50 and 100% increase in atmospheric CO{sub 2}, and a 100% increase in atmospheric CO{sub 2} coupled with a 4 C summer air temperature rise on the structure and function of an arctic tussock tundra ecosystem. The arctic contains large stores of carbon as soil organic matter, much frozen in permafrost and currently not reactive or available for oxidation and release into the atmosphere. About 10-27% of the world's terrestrial carbon occurs in arctic and boreal regions, and carbon is accumulating in these regions at the rate of 0.19 GT y{sup -1}. Mean temperature increases of 11 C and summer temperature increases of 4 C have been suggested. Mean July temperatures on the arctic coastal plain and arctic foothills regions are 4-12 C, and mean annual temperatures are -7 to -13 C (Haugen, 1982). The projected temperature increases represent a substantial elevation above current temperatures which will have major impacts on physical processes such as permafrost development and development of the active layer, and on biological and ecosystem processes such as primary productivity, carbon storage, and species composition. Extreme nutrient and temperature limitation of this ecosystem raised questions of the responsiveness of arctic systems to elevated CO{sub 2}. Complex ecosystem interactions with the effects

  9. The role of ozone feedback in modulating the atmospheric response to the solar cycle forcing

    Science.gov (United States)

    Bednarz, Ewa; Maycock, Amanda; Braesicke, Peter; Telford, Paul; Abraham, Luke; Pyle, John

    2016-04-01

    in the seasonality of the dynamical response in the Northern Hemisphere high latitudes. All in all, our results highlight the importance of the solar-ozone feedback in modulating the atmospheric response to the solar cycle forcing and the importance of properly representing this for future model studies of the impact of the solar cycle forcing on climate.

  10. Development and application of a random walk model of atmospheric diffusion in the emergency response of nuclear accidents

    Institute of Scientific and Technical Information of China (English)

    CHI Bing; LI Hong; FANG Dong

    2007-01-01

    Plume concentration prediction is one of the main contents of radioactive consequence assessment for early emergency response to nuclear accidents. Random characteristics of atmospheric diffusion itself was described, a random walk model of atmospheric diffusion (Random Walk) was introduced and compared with the Lagrangian puff model (RIMPUFF) in the nuclear emergency decision support system (RODOS) developed by the European Community for verification. The results show the concentrations calculated by the two models are quite close except that the plume area calculated by Random Walk is a little smaller than that by RIMPUFF. The random walk model for atmospheric diffusion can simulate the atmospheric diffusion in case of nuclear accidents, and provide more actual information for early emergency and consequence assessment as one of the atmospheric diffusion module of the nuclear emergency decision support system.

  11. Atmospheric winter response to Arctic sea ice changes in reanalysis data and model simulations

    Science.gov (United States)

    Jaiser, Ralf; Nakamura, Tetsu; Handorf, Dörthe; Dethloff, Klaus; Ukita, Jinro; Yamazaki, Koji

    2016-07-01

    The changes of atmospheric flow patterns related to Arctic Amplification have impacts well beyond the Arctic regional weather and climate system. Here we examine modulations of vertically propagating planetary waves, a major feature of the climate response to Arctic sea ice reduction by comparing the corresponding results of an atmospheric general circulation model with reanalysis data for periods of high and low sea ice conditions. Under low sea ice condition we find enhanced coupling between troposphere and stratosphere starting in November with preferred polar stratospheric vortex breakdowns in February, which then feeds back to the troposphere. The model experiment and ERA-Interim reanalysis data agree well with respect to temporal and spatial characteristics associated with vertical planetary wave propagation including its precursors. The upward propagating planetary wave anomalies resemble a wave number 1 and 2 pattern depending on region and timing. Since our experimental design only allows influences from sea ice changes and there is a high degree of resemblance between model results and observations, we conclude that sea ice is a main driver of observed winter circulation changes.

  12. [Magnetic Response of Dust-loaded Leaves in Parks of Shanghai to Atmospheric Heavy Metal Pollution].

    Science.gov (United States)

    Liu, Fei; Chu, Hui-min; Zheng, Xiang-min

    2015-12-01

    To reveal the magnetic response to the atmospheric heavy metal pollution in leaves along urban parks, Camphor leaf samples, widely distributed at urban parks, were collected along the year leading wind direction of Shanghai, by setting two vertical and horizontal sections, using rock magnetic properties and heavy metal contents analysis. The results showed that the magnetic minerals of samples were predominated by ferromagnetic minerals, and both the concentration and grain size of magnetite particles gradually decreased with the winter monsoon direction from the main industrial district. A rigorous cleaning of leaves using ultrasonic agitator washer could remove about 63%-90% of low-field susceptibility values of the leaves, and this strongly indicated that the intensity of magnetic signal was mainly controlled by the PMs accumulated on the leaves surfaces. Moreover, there was a significant linear relationship between heavy metals contents (Fe, Mn, Zn, Cu, Cr, V and Pb) and magnetic parameters (0.442 ≤ R ≤ 0.799, P magnetic parameters of urban park leaves could be used as a proxy for atmospheric heavy metal pollution. The results of multivariate statistical analysis showed that the content of magnetic minerals and heavy metal indust-loaded tree leaves was affected by associated pollution of industry and traffic.

  13. Middle atmosphere response to the solar cycle in irradiance and ionizing particle precipitation

    Directory of Open Access Journals (Sweden)

    K. Semeniuk

    2011-05-01

    Full Text Available The impact of NOx and HOx production by three types of energetic particle precipitation (EPP, auroral zone medium and high energy electrons, solar proton events and galactic cosmic rays on the middle atmosphere is examined using a chemistry climate model. This process study uses ensemble simulations forced by transient EPP derived from observations with one-year repeating sea surface temperatures and fixed chemical boundary conditions for cases with and without solar cycle in irradiance. Our model results show a wintertime polar stratosphere ozone reduction of between 3 and 10 % in agreement with previous studies. EPP is found to modulate the radiative solar cycle effect in the middle atmosphere in a significant way, bringing temperature and ozone variations closer to observed patterns. The Southern Hemisphere polar vortex undergoes an intensification from solar minimum to solar maximum instead of a weakening. This changes the solar cycle variation of the Brewer-Dobson circulation, with a weakening during solar maxima compared to solar minima. In response, the tropical tropopause temperature manifests a statistically significant solar cycle variation resulting in about 4 % more water vapour transported into the lower tropical stratosphere during solar maxima compared to solar minima. This has implications for surface temperature variation due to the associated change in radiative forcing.

  14. Response of the middle atmosphere to the geomagnetic storm of November 2004

    Science.gov (United States)

    Hocke, Klemens

    2017-02-01

    Ozone and temperature profiles of the satellite microwave limb sounder Aura/MLS are used for the derivation of the middle atmospheric response to the geomagnetic superstorm of 9 November 2004. We find a destruction of the tertiary ozone layer at 0.022 hPa (77 km) in the northern winter hemisphere lasting for about one week. This effect is surely due to the solar proton event (SPE) of November 2004. At the same time, the zonal mean temperature is enhanced by 5-10 K in the northern polar mesosphere. On the other hand, the zonal mean temperature is decreased by 5-10 K in the northern polar stratosphere. We do not think that the strong temperature perturbations are directly related to the SPE. It seems that the polar vortex was moved by the geomagnetic storm, and this vortex movement caused the strong temperature variations in the zonal mean. However, internal variability of temperature in the polar middle atmosphere in winter without any significant link to the geomagnetic storm cannot be excluded.

  15. Atmospheric winter response to Arctic sea ice changes in reanalysis data and model simulations

    Science.gov (United States)

    Jaiser, Ralf; Nakamura, Tetsu; Handorf, Dörthe; Romanowsky, Erik; Dethloff, Klaus; Ukita, Jinro; Yamazaki, Koji

    2017-04-01

    In recent years, Arctic regions showcased the most pronounced signals of a changing climate: Sea ice is reduced by more the ten percent per decade. At the same time, global warming trends have their maximum in Arctic latitudes often labled Arctic Amplification. There is strong evidence that amplified Arctic changes feed back into mid-latitudes in winter. We identified mechanisms that link recent Arctic changes through vertically propagating planetary waves to events of a weakened stratospheric polar vortex. Related anomalies propagate downward and lead to negative AO-like situations in the troposphere. European winter climate is sensitive to negative AO situations in terms of cold air outbreaks that are likely to occur more often in that case. These results based on ERA-Interim reanalysis data do not allow to dismiss other potential forcing factors leading to observed mid-latitude climate changes. Nevertheless, properly designed Atmospheric General Circulation Model (AGCM) experiments with AFES and ECHAM6 are able to reproduce observed atmospheric circulation changes if only observed sea ice changes in the Arctic are prescribed. This allows to deduce mechanisms that explain how Arctic Amplification can lead to a negative AO response via a stratospheric pathway. Further investigation of these mechanisms may feed into improved prediction systems.

  16. Identifying large-scale patterns of unpredictability and response to insolation in atmospheric data.

    Science.gov (United States)

    Arizmendi, Fernando; Barreiro, Marcelo; Masoller, Cristina

    2017-03-30

    Understanding the complex dynamics of the atmosphere is of paramount interest due to its impact in the entire climate system and in human society. Here we focus on identifying, from data, the geographical regions which have similar atmospheric properties. We study surface air temperature (SAT) time series with monthly resolution, recorded at a regular grid covering the Earth surface. We consider two datasets: NCEP CDAS1 and ERA Interim reanalysis. We show that two surprisingly simple measures are able to extract meaningful information: i) the distance between the lagged SAT and the incoming solar radiation and ii) the Shannon entropy of SAT and SAT anomalies. The distance uncovers well-defined spatial patterns formed by regions with similar SAT response to solar forcing while the entropy uncovers regions with similar degree of SAT unpredictability. The entropy analysis also allows identifying regions in which SAT has extreme values. Importantly, we uncover differences between the two datasets which are due to the presence of extreme values in one dataset but not in the other. Our results indicate that the distance and entropy measures can be valuable tools for the study of other climatological variables, for anomaly detection and for performing model inter-comparisons.

  17. Sea-level response to atmospheric forcing along the north coast of Persian Gulf

    Science.gov (United States)

    Hassanzadeh, S.; Kiasatpour, A.; Hosseinibalam, F.

    2007-02-01

    Data from tide gauges (1990-1999) at Bandar Abbas and Bushehr combined with atmospheric data at both stations are utilized to investigate the mean sea-level (MSL) response to meteorological forcing functions along the north coast of the Persian Gulf. The relations between MSL and forces due to air pressure, air temperature and local wind are examined. The characteristics of variability of each field are analyzed using the spectral analysis method. The annual cycle is dominant in the sea-level, atmospheric pressure, air temperature and wind spectra. The influence of local meteorological functions are quantified using forward stepwise regression techniques. The results suggest that 71.5% and 71.2% variations in the MSL of Bandar Abbas and Bushehr stations are due to meteorological forces at each stations. The model indicates that the most significant influence on the observed variation of MSL at Bandar Abbas is air pressure, while at Bushehr is air temperature. The results of multivariate and simple regression show that these parameters are highly intercorrelated. The sea-level is not significantly correlated with the monthly and winter NAO and Monsoon in the Persian Gulf. The remaining variations are due to density of sea water (steric effect), which has considerable influence on the sea-level variations, and coastal upwelling.

  18. NOAA Atmospheric, Marine and Arctic Monitoring Using UASs (including Rapid Response)

    Science.gov (United States)

    Coffey, J. J.; Jacobs, T.

    2015-12-01

    Unmanned systems have the potential to efficiently, effectively, economically, and safely bridge critical observation requirements in an environmentally friendly manner. As the United States' Atmospheric, Marine and Arctic areas of interest expand and include hard-to-reach regions of the Earth (such as the Arctic and remote oceanic areas) optimizing unmanned capabilities will be needed to advance the United States' science, technology and security efforts. Through increased multi-mission and multi-agency operations using improved inter-operable and autonomous unmanned systems, the research and operations communities will better collect environmental intelligence and better protect our Country against hazardous weather, environmental, marine and polar hazards. This presentation will examine NOAA's Atmospheric, Marine and Arctic Monitoring Unmanned Aircraft System (UAS) strategies which includes developing a coordinated effort to maximize the efficiency and capabilities of unmanned systems across the federal government and research partners. Numerous intra- and inter-agency operational demonstrations and assessments have been made to verify and validated these strategies. This includes the introduction of the Targeted Autonomous Insitu Sensing and Rapid Response (TAISRR) with UAS concept of operations. The presentation will also discuss the requisite UAS capabilities and our experience in using them.

  19. Biomass and toxicity responses of poison ivy (Toxicodendron radicans) to elevated atmospheric CO2.

    Science.gov (United States)

    Mohan, Jacqueline E; Ziska, Lewis H; Schlesinger, William H; Thomas, Richard B; Sicher, Richard C; George, Kate; Clark, James S

    2006-06-13

    Contact with poison ivy (Toxicodendron radicans) is one of the most widely reported ailments at poison centers in the United States, and this plant has been introduced throughout the world, where it occurs with other allergenic members of the cashew family (Anacardiaceae). Approximately 80% of humans develop dermatitis upon exposure to the carbon-based active compound, urushiol. It is not known how poison ivy might respond to increasing concentrations of atmospheric carbon dioxide (CO(2)), but previous work done in controlled growth chambers shows that other vines exhibit large growth enhancement from elevated CO(2). Rising CO(2) is potentially responsible for the increased vine abundance that is inhibiting forest regeneration and increasing tree mortality around the world. In this 6-year study at the Duke University Free-Air CO(2) Enrichment experiment, we show that elevated atmospheric CO(2) in an intact forest ecosystem increases photosynthesis, water use efficiency, growth, and population biomass of poison ivy. The CO(2) growth stimulation exceeds that of most other woody species. Furthermore, high-CO(2) plants produce a more allergenic form of urushiol. Our results indicate that Toxicodendron taxa will become more abundant and more "toxic" in the future, potentially affecting global forest dynamics and human health.

  20. Extension and validation of ARTM (atmospheric radionuclide transportation model) for the application as dispersion calculation model in AVV (general administrative provision) and SBG (incident calculation bases); Erweiterung und Validierung von ARTM fuer den Einsatz als Ausbreitungsmodell in AVV und SBG

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Reinhard; Bruecher, Wenzel; Richter, Cornelia; Sentuc, Florence; Sogalla, Martin; Thielen, Harald

    2012-02-15

    In the medium-term time scale the Gaussian plume model used so far for atmospheric dispersion calculations in the General Administrative Provision (AVV) relating to Section 47 of the Radiation Protection Ordinance (StrISchV) as well as in the Incident Calculation Bases (SGB) relating to Section 49 StrISchV is to be replaced by a Lagrangian particle model. Meanwhile the Atmospheric Radionuclide Transportation Model (ARTM) is available, which allows the simulation of the atmospheric dispersion of operational releases from nuclear installations. ARTM is based on the program package AUSTAL2000 which is designed for the simulation of atmospheric dispersion of nonradioactive operational releases from industrial plants and was adapted to the application of airborne radioactive releases. In the context of the research project 3608S05005 possibilities for an upgrade of ARTM were investigated and implemented as far as possible to the program system. The work program comprises the validation and evaluation of ARTM, the implementation of technical-scientific extensions of the model system and the continuation of experience exchange between developers and users. In particular, the suitability of the model approach for simulations of radiological consequences according to the German SBG and the representation of the influence of buildings typical for nuclear power stations have been validated and further evaluated. Moreover, post-processing modules for calculation of dose-relevant decay products and for dose calculations have been developed and implemented. In order to continue the experience feedback and exchange, a web page has been established and maintained. Questions by users and other feedback have been dealt with and a common workshop has been held. The continued development and validation of ARTM has strengthened the basis for applications of this model system in line with the German regulations AVV and SBG. Further activity in this field can contribute to maintain and

  1. Atmospheric Imaging Assembly Response Functions: Solving the Fe VIII Problems with Hinode EIS Bright Point Data

    CERN Document Server

    Schmelz, Joan T; Kimble, Jason A; 10.1007/s11207-012-0208-1

    2013-01-01

    The Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory is a state-of-the-art imager with the potential to do unprecedented time-dependent multi-thermal analysis at every pixel on scales short compared to the radiative and conductive cooling times. Recent results, however, have identified missing spectral lines in the CHIANTI atomic physics data base, which is used to construct the instrument response functions. We have done differential emission measure analysis using simultaneous AIA and Hinode/EIS observations of six X-ray bright points. Our results not only support the conclusion that CHIANTI is incomplete near 131 angstroms, but more importantly, suggest that the peak temperature of the Fe VIII emissivity/response is likely to be closer to log T = 5.8 than to the current value of log T = 5.7. Using a revised emissivity/response calculation for Fe VIII, we find that the observed AIA 131-angstrom flux can be underestimated by about 1.25, which is smaller than previous comparisons.

  2. Deconstructing an Atmospheric Model: Variability and Response, Unstable Periodic Orbits, and the Fluctuation-Dissipation Theorem

    Science.gov (United States)

    Gritsun, Andrei; Lucarini, Valerio

    2016-04-01

    Unstable periodic orbits (UPOs) provide the so-called skeletal dynamics of a sufficiently well-behaved chaotic dynamical system and provide a powerful tool for relating the response of the system to its variability. In fact, UPOs constitute natural modes of variability of the system, and resonant behaviour of the response of the system to can be associated to good correspondence between the geometry of one UPO and of the forcing term and between their periodicities. We have here analyzed a simple barotropic model of the atmosphere and constructed and found algorithmically a large number of UPOs. We have then studied the change in the climate resulting from changes in the forcing, in the orography, and in the Eckman friction. The most interesting result is the presence of a strong resonance in the orographic response on time scales of the order of about 3 days, corresponding to forced waves. Interestingly, such a spectral feature is entirely absent from the natural variability of the system and correspond to the excitation of a specific group of UPOs. This clarifies the fact that, as opposed to the case of quasi-equilibrium systems, it is far from obvious to associate forced and free variability in the spirit of the fluctuation-dissipation theorem (FDT). Reassuringly, ysing the complementary point of view of covariant Lyapunov vectors, we discover that the forcing projects substantially in the stable direction of the flow, which is exactly the mathematical setting under which the FDT cannot be applied.

  3. Response of the AMOC to reduced solar radiation - the modulating role of atmospheric chemistry

    Science.gov (United States)

    Muthers, Stefan; Raible, Christoph C.; Rozanov, Eugene; Stocker, Thomas F.

    2016-11-01

    The influence of reduced solar forcing (grand solar minimum or geoengineering scenarios like solar radiation management) on the Atlantic Meridional Overturning Circulation (AMOC) is assessed in an ensemble of atmosphere-ocean-chemistry-climate model simulations. Ensemble sensitivity simulations are performed with and without interactive chemistry. In both experiments the AMOC is intensified in the course of the solar radiation reduction, which is attributed to the thermal effect of the solar forcing: reduced sea surface temperatures and enhanced sea ice formation increase the density of the upper ocean in the North Atlantic and intensify the deepwater formation. Furthermore, a second, dynamical effect on the AMOC is identified driven by the stratospheric cooling in response to the reduced solar forcing. The cooling is strongest in the tropics and leads to a weakening of the northern polar vortex. By stratosphere-troposphere interactions, the stratospheric circulation anomalies induce a negative phase of the Arctic Oscillation in the troposphere which is found to weaken the AMOC through wind stress and heat flux anomalies in the North Atlantic. The dynamic mechanism is present in both ensemble experiments. In the experiment with interactive chemistry, however, it is strongly amplified by stratospheric ozone changes. In the coupled system, both effects counteract and weaken the response of the AMOC to the solar forcing reduction. Neglecting chemistry-climate interactions in model simulations may therefore lead to an overestimation of the AMOC response to solar forcing.

  4. Arbuscular mycorrhiza infection enhances the growth response of Lolium perenne to elevated atmospheric pCO(2).

    Science.gov (United States)

    Hartwig, U A; Wittmann, P; Braun, R; Hartwig-Räz, B; Jansa, J; Mozafar, A; Lüscher, A; Leuchtmann, A; Frossard, E; Nösberger, J

    2002-05-01

    Elevated atmospheric pCO(2) increases the C-availability for plants and thus leads to a comparable increase in plant biomass production and nutrient demand. Arbuscular mycorrhizal fungi (AMF) are considered to play an important role in the nutrient uptake of plants as well as to be a significant C-sink. Therefore, an increased colonization of plant roots by AMF is expected under elevated atmospheric pCO(2). To test these hypotheses, Lolium perenne L. plants were grown from seeds in a growth chamber in pots containing a silica sand/soil mixture for 9 weeks with and without inoculation with Glomus intraradices (Schenck and Smith). The growth response of plants at two different levels of N fertilization (1.5 or 4.5 mM) combined with ambient (35 Pa) and elevated atmospheric pCO(2) (60 Pa) was compared. The inoculation with G. intraradices, the elevated atmospheric pCO(2) and the high N fertilization treatment all led to an increased plant biomass production of 16%, 20% and 49%, respectively. AMF colonization and high N fertilization increased the plant growth response to elevated atmospheric pCO(2); the plant growth response to high N fertilization was also increased by AMF colonization. The root/shoot ratio was reduced by high N fertilization or elevated atmospheric pCO(2), but was not affected by AMF colonization. The unchanged specific leaf area indicated that if AMF colonization represented an increased C-sink, this was fully covered by the plant. Elevated atmospheric pCO(2) strongly increased AMF colonization (60%) while the high N fertilization had a slightly negative effect. AMF colonization neither improved the N nor P nutrition status, but led to an improved total P uptake. The results underline the importance of AMF for the response of grassland ecosystems to elevated atmospheric pCO(2).

  5. Phytoplankton responses to atmospheric metal deposition in the coastal and open-ocean Sargasso Sea.

    Science.gov (United States)

    Mackey, Katherine R M; Buck, Kristen N; Casey, John R; Cid, Abigail; Lomas, Michael W; Sohrin, Yoshiki; Paytan, Adina

    2012-01-01

    This study investigated the impact of atmospheric metal deposition on natural phytoplankton communities at open-ocean and coastal sites in the Sargasso Sea during the spring bloom. Locally collected aerosols with different metal contents were added to natural phytoplankton assemblages from each site, and changes in nitrate, dissolved metal concentration, and phytoplankton abundance and carbon content were monitored. Addition of aerosol doubled the concentrations of cadmium (Cd), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), and nickel (Ni) in the incubation water. Over the 3-day experiments, greater drawdown of dissolved metals occurred in the open ocean water, whereas little metal drawdown occurred in the coastal water. Two populations of picoeukaryotic algae and Synechococcus grew in response to aerosol additions in both experiments. Particulate organic carbon increased and was most sensitive to changes in picoeukaryote abundance. Phytoplankton community composition differed depending on the chemistry of the aerosol added. Enrichment with aerosol that had higher metal content led to a 10-fold increase in Synechococcus abundance in the oceanic experiment but not in the coastal experiment. Enrichment of aerosol-derived Co, Mn, and Ni were particularly enhanced in the oceanic experiment, suggesting the Synechococcus population may have been fertilized by these aerosol metals. Cu-binding ligand concentrations were in excess of dissolved Cu in both experiments, and increased with aerosol additions. Bioavailable free hydrated Cu(2+) concentrations were below toxicity thresholds throughout both experiments. These experiments show (1) atmospheric deposition contributes biologically important metals to seawater, (2) these metals are consumed over time scales commensurate with cell growth, and (3) growth responses can differ between distinct Synechococcus or eukaryotic algal populations despite their relatively close geographic proximity and taxonomic similarity.

  6. Phytoplankton responses to atmospheric metal deposition in the coastal and open-ocean Sargasso Sea

    Directory of Open Access Journals (Sweden)

    Katherine Rose Marie Mackey

    2012-10-01

    Full Text Available This study investigated the impact of atmospheric metal deposition on natural phytoplankton communities at open-ocean and coastal sites in the Sargasso Sea during the spring bloom. Locally collected aerosols with different metal contents were added to natural phytoplankton assemblages from each site, and changes in nitrate, dissolved metal concentration, and phytoplankton abundance and carbon content were monitored. Addition of aerosol doubled the concentrations of cadmium, cobalt, copper, iron, manganese and nickel in the incubation water. Over the three-day experiments, greater drawdown of dissolved metals occurred in the open ocean water, whereas little metal drawdown occurred in the coastal water. Two populations of picoeukaryotic algae and Synechococcus grew in response to aerosol additions in both experiments. Particulate organic carbon (POC increased and was most sensitive to changes in picoeukaryote abundance. Phytoplankton community composition differed depending on the chemistry of the aerosol added. Enrichment with aerosol that had higher metal content led to a 10-fold increase in Synechococcus abundance in the oceanic experiment but not in the coastal experiment. Enrichment of aerosol-derived cobalt (Co, manganese, and nickel were particularly enhanced in the oceanic experiment, suggesting the Synechococcus population may have been fertilized by these aerosol metals. Copper (Cu-binding ligand concentrations were in excess of dissolved Cu in both experiments, and increased with aerosol additions. Bioavailable free hydrated Cu2+ concentrations were below toxicity thresholds throughout both experiments. These experiments show (1 atmospheric deposition contributes biologically important metals to seawater, (2 these metals are consumed over time scales commensurate with cell growth, and (3 growth responses can differ between distinct Synechococcus or eukaryotic algal populations despite relatively close geographic proximity and taxonomic

  7. Evolutionary context for understanding and manipulating plant responses to past, present and future atmospheric [CO2

    Science.gov (United States)

    Leakey, Andrew D. B.; Lau, Jennifer A.

    2012-01-01

    Variation in atmospheric [CO2] is a prominent feature of the environmental history over which vascular plants have evolved. Periods of falling and low [CO2] in the palaeo-record appear to have created selective pressure for important adaptations in modern plants. Today, rising [CO2] is a key component of anthropogenic global environmental change that will impact plants and the ecosystem goods and services they deliver. Currently, there is limited evidence that natural plant populations have evolved in response to contemporary increases in [CO2] in ways that increase plant productivity or fitness, and no evidence for incidental breeding of crop varieties to achieve greater yield enhancement from rising [CO2]. Evolutionary responses to elevated [CO2] have been studied by applying selection in controlled environments, quantitative genetics and trait-based approaches. Findings to date suggest that adaptive changes in plant traits in response to future [CO2] will not be consistently observed across species or environments and will not be large in magnitude compared with physiological and ecological responses to future [CO2]. This lack of evidence for strong evolutionary effects of elevated [CO2] is surprising, given the large effects of elevated [CO2] on plant phenotypes. New studies under more stressful, complex environmental conditions associated with climate change may revise this view. Efforts are underway to engineer plants to: (i) overcome the limitations to photosynthesis from today's [CO2] and (ii) benefit maximally from future, greater [CO2]. Targets range in scale from manipulating the function of a single enzyme (e.g. Rubisco) to adding metabolic pathways from bacteria as well as engineering the structural and functional components necessary for C4 photosynthesis into C3 leaves. Successfully improving plant performance will depend on combining the knowledge of the evolutionary context, cellular basis and physiological integration of plant responses to varying

  8. Time and frequency response of a resistance-wire aircraft atmospheric temperature sensor

    Science.gov (United States)

    Payne, G. A.; Friehe, C. A.; Edwards, D. K.

    1994-04-01

    The heat transfer characteristics of an aircraft-mounted resistance-wire atmospheric temperature sensor are modeled to determine the time and frequency responses. The sensor element (Rosemount 102E4AL) consists of a 25-micron-diameter platinum wire wound around a cruciform mica support with approximately 143 diameters of wire between contacts with the mica. A longitudinally distributed, radially lumped capacitance model provided for the convective heat transfer to the wire and the transient heat conduction along it. Similarly, the temperature gradient across the thin dimension of the mica support was neglected, and a radially distributed model provided for the convective heat transfer to the mica and the transient conduction within it. The two solutions are coupled by the boundary conditions at the wire-mica contact. The equations were solved to produce the temperature distribution along the wire and in the mica support as a function of the frequency of a free-stream sinusoidal temperature fluctuation. The frequency response transfer function was determined and fit to a two-time-constant transfer function by regression analysis. The two-time-constant model fits the general solution very well. The small (fast response) time constant is essentially determined by the wire itself. The larger (slow response) time constant is due to conduction into and out of the mica supports. The model predicts that the effects of the mica supports are important for frequencies greater than about 0.1 Hz. The responses to five different temperature waveform inputs (sinusoid, step, pulse, ramp, and ramp level) are derived using the two-time-constant model with Laplace transform techniques for both infinite-length wire (no mica support effects) and the finite-length wire of the 102 probe. The actual temperature signals are distorted by the larger time constant of the mica supports, especially for the pulse and ramp inputs that are typical of aircraft measurements of thermals and

  9. TRANC – a novel fast-response converter to measure total reactive atmospheric nitrogen

    Directory of Open Access Journals (Sweden)

    V. Wolff

    2012-05-01

    Full Text Available The input and loss of plant available nitrogen (reactive nitrogen: Nr from/to the atmosphere can be an important factor for the productivity of ecosystems and thus for its carbon and greenhouse gas exchange. We present a novel converter for reactive nitrogen (TRANC: Total Reactive Atmospheric Nitrogen Converter, which offers the opportunity to quantify the sum of all airborne reactive nitrogen compounds (∑Nr in high time resolution. The basic concept of the TRANC is the full conversion of all Nr to nitrogen monoxide (NO within two reaction steps. Initially, reduced Nr compounds are being oxidised, and oxidised Nr compounds are thermally converted to lower oxidation states. Particulate Nr is being sublimated and oxidised or reduced afterwards. In a second step, remaining higher nitrogen oxides or those generated in the first step are catalytically converted to NO with carbon monoxide used as reduction gas. The converter is combined with a fast response chemiluminescence detector (CLD for NO analysis and its performance was tested for the most relevant gaseous and particulate Nr species under both laboratory and field conditions. Recovery rates during laboratory tests for NH3 and NO2 were found to be 95 and 99%, respectively, and 97% when the two gases were combined. In-field longterm stability over an 11-month period was approved by a value of 91% for NO2. Effective conversion was also found for ammonium and nitrate containing particles. The recovery rate of total ambient Nr was tested against the sum of individual measurements of NH3, HNO3, HONO, NH4+, NO3−, and NOx using a combination of different well-established devices. The results show that the TRANC-CLD system precisely captures fluctuations in ∑Nr concentrations and also matches the sum of all individual Nr compounds measured by the different single techniques. The TRANC features a specific design with very short distance between the sample air inlet and the place where the thermal

  10. Reconstruction of high-resolution time series from slow-response atmospheric measurements by deconvolution

    Science.gov (United States)

    Ehrlich, André; Wendisch, Manfred

    2017-04-01

    Measurements of high temporal resolution are often needed to study the spatial or temporal variation of atmospheric parameters. An efficient method to enhance the temporal resolution of slow-response measurements is introduced. It is based on the deconvolution theorem of Fourier transform to restore amplitude and phase shift of high frequent fluctuations. It is shown that the quality of reconstruction depends on the instrument noise, the sensor response time and the frequency of the oscillations. The method is demonstrated by application to measurements of broadband terrestrial irradiance using pyrgeometer and temperature and humidity measurements by drop sondes. Using a CGR-4 pyrgeometer with response time of 3 s, the method is tested in laboratory measurements for synthetic time series including a boxcar function and periodic oscillations. The originally slow-response pyrgeometer data were reconstructed to higher resolution and compared to the predefined synthetic time series. The reconstruction of the time series worked up to oscillations of 0.5 Hz frequency and 2 W m-2 amplitude if the sampling frequency of the data acquisition is 16 kHz or higher. For oscillations faster than 2 Hz, the instrument noise exceeded the reduced amplitude of the oscillations in the measurements and the reconstruction failed. The method was applied to airborne measurements of upward terrestrial irradiance and drop sonde profiles from the VERDI (Vertical Distribution of Ice in Arctic Clouds) field campaign. Pyrgeometer data above open leads in sea ice and a broken cloud field were reconstructed and compared to KT19 infrared thermometer data. The reconstruction of amplitude and phase shift of the deconvoluted data improved the agreement with the KT19 data and removed biases for the maximum and minimum values. By application to temperature and humidity profiles measured by drop sonde profiles, the resolution of the cloud top inversion cloud be improved.

  11. Nonlinear winter atmospheric circulation response to Arctic sea ice concentration anomalies for different periods during 1966-2012

    Science.gov (United States)

    Semenov, V. A.; Latif, M.

    2015-05-01

    The early 21st century was marked by several severe winters over Central Eurasia linked to a blocking anti-cyclone centered south of the Barents Sea. Severe winters in Central Eurasia were frequent in the 1960s when Arctic sea ice cover was anomalously large, and rare in the 1990s featuring considerably less sea ice cover; the 1960s being characterized by a low, the 1990s by a high phase of the North Atlantic Oscillation, the major driver of surface climate variability in Central Eurasia. We performed ensemble simulations with an atmospheric general circulation model using a set of multi-year Arctic sea ice climatologies corresponding to different periods during 1966-2012. The atmospheric response to the strongly reduced sea ice cover of 2005-2012 exhibits a statistically significant anti-cyclonic surface pressure anomaly which is similar to that observed. A similar response is found when the strongly positive sea ice cover anomaly of 1966-1969 drives the model. Basically no significant atmospheric circulation response was simulated when the model was forced by the sea ice cover anomaly of 1990-1995. The results suggest that sea ice cover reduction, through a changed atmospheric circulation, considerably contributed to the recent anomalously cold winters in Central Eurasia. Further, a nonlinear atmospheric circulation response to shrinking sea ice cover is suggested that depends on the background sea ice cover.

  12. Growth analysis of Shorea platycarpa in response to elevated atmospheric carbon dioxide

    Science.gov (United States)

    Nor Lailatul Wahidah, M.; Nizam, M. S.; Wan Juliana, W. A.; Che Radziah, C. M. Z.; Fathurrahman, F.; Wan Nur Ain, N.

    2016-11-01

    Tropical plants responses to elevated CO2 have been poorly studied compared to temperate plants, even though they are predicted to be more perceptible in a warmer climate. This paper investigates the effect of elevated atmospheric CO2 on the growth rate of Shorea platycarpa seedlings. Shorea platycarpa seedlings of 18 months old were grown for 28 weeks in the open roof chamber supplied with elevated CO2 concentration (800 ± 50 µmol mol-1) and in the greenhouse with ambient CO2 concentration (400 ± 50 µmol mol-1). Measurements of height and stem diameter growth, absolute and relative growth rates were made at frequent intervals (once a week) throughout the 28-week treatment. Elevated CO2 significantly advanced the growth of stem diameter. The height of S. platycarpa increased by 52% and 50% in the ambient and elevated CO2, respectively, whereas stem diameter increased by 131% and 146% in the ambient and elevated CO2, respectively. Absolute growth rate (AGR) and relative growth rate (RGR) of height and stem diameter showed that both were not significantly affected by elevated CO2. The RGR and AGR for both parameters in both ambient and elevated CO2 mostly fluctuated throughout the treatment, though only one or two weeks that strikingly higher than others. This result indicates that S. platycarpa growth was mostly influenced by the variation of individual growth performance in response to the elevated CO2.

  13. Response of stable carbon isotope in epilithic mosses to atmospheric nitrogen deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xueyan, E-mail: liuxueyan@vip.skleg.c [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Xiao Huayun; Liu Congqiang [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Li Youyi; Xiao Hongwei; Wang Yanli [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Graduate University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049 (China)

    2010-06-15

    Epilithic mosses are characterized by insulation from substratum N and hence meet their N demand only by deposited N. This study investigated tissue C, total Chl and delta{sup 13}C of epilithic mosses along 2 transects across Guiyang urban (SW China), aiming at testing their responses to N deposition. Tissue C and total Chl decreased from the urban to rural, but delta{sup 13}C{sub moss} became less negative. With measurements of atmospheric CO{sub 2} and delta{sup 13}CO{sub 2}, elevated N deposition was inferred as a primary factor for changes in moss C and isotopic signatures. Correlations between total Chl, tissue C and N signals indicated a nutritional effect on C fixation of epilithic mosses, but the response of delta{sup 13}C{sub moss} to N deposition could not be clearly differentiated from effects of other factors. Collective evidences suggest that C signals of epilithic mosses are useful proxies for N deposition but further works on physiological mechanisms are still needed. - Photosynthetic {sup 13}C discrimination of bryophytes might increase with elevated N deposition.

  14. Behavioural responses to potential dispersal cues in two economically important species of cereal-feeding eriophyid mites.

    Science.gov (United States)

    Kiedrowicz, Agnieszka; Kuczyński, Lechosław; Lewandowski, Mariusz; Proctor, Heather; Skoracka, Anna

    2017-06-20

    Passively dispersing organisms should optimise the time and direction of dispersal by employing behaviours that increase their probability of being successfully transported by dispersal agents. We rigorously tested whether two agriculturally important passively-dispersing eriophyoid species, wheat curl mite (WCM) and cereal rust mite (CRM), display behaviours indicating their readiness to depart from current host plants in the presence of potential dispersal cues: wind, an insect vector and presence of a fresh plant. Contrary to our expectations, we found that both species decreased their general activity in the presence of wind. When exposed to wind, WCM (but not CRM) significantly increased behaviour that has previously been considered to facilitate dispersal (in this case, standing vertically). Our study provides the first sound test of the function of what have been interpreted as dispersal-related behaviours of eriophyid mites. The low proportion of WCM exhibiting dispersal behaviour suggests there may be predisposed dispersers and residents in the population. Moreover, we found that WCM was generally more active than CRM, which is likely a contributing factor to its high invasive potential.

  15. Meteorological responses in the atmospheric boundary layer over southern England to the deep partial eclipse of 20 March 2015.

    Science.gov (United States)

    Burt, Stephen

    2016-09-28

    A wide range of surface and near-surface meteorological observations were made at the University of Reading's Atmospheric Observatory in central southern England (latitude 51.441° N, longitude 0.938° W, altitude 66 m above mean sea level) during the deep partial eclipse on the morning of 20 March 2015. Observations of temperature, humidity, radiation, wind speed and direction, and atmospheric pressure were made by computerized logging equipment at 1 Hz, supplemented by an automated cloud base recorder sampling at 1 min intervals and a high-resolution (approx. 10 m vertical interval) atmospheric sounding by radiosonde launched from the same location during the eclipse. Sources and details of each instrumental measurement are described briefly, followed by a summary of observed and derived measurements by meteorological parameter. Atmospheric boundary layer responses to the solar eclipse were muted owing to the heavily overcast conditions which prevailed at the observing location, but instrumental records of the event documented a large (approx. 80%) reduction in global solar radiation, a fall in air temperature of around 0.6°C, a decrease in cloud base height, and a slight increase in atmospheric stability during the eclipse. Changes in surface atmospheric moisture content and barometric pressure were largely insignificant during the event.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'.

  16. Influence of atmospheric vapour pressure deficit on ozone responses of snap bean (Phaseolus vulgaris L.) genotypes.

    Science.gov (United States)

    Fiscus, Edwin L; Booker, Fitzgerald L; Sadok, Walid; Burkey, Kent O

    2012-04-01

    Environmental conditions influence plant responses to ozone (O(3)), but few studies have evaluated individual factors directly. In this study, the effect of O(3) at high and low atmospheric vapour pressure deficit (VPD) was evaluated in two genotypes of snap bean (Phaseolus vulgaris L.) (R123 and S156) used as O(3) bioindicator plants. Plants were grown in outdoor controlled-environment chambers in charcoal-filtered air containing 0 or 60 nl l(-1) O(3) (12 h average) at two VPDs (1.26 and 1.96 kPa) and sampled for biomass, leaf area, daily water loss, and seed yield. VPD clearly influenced O(3) effects. At low VPD, O(3) reduced biomass, leaf area, and seed yield substantially in both genotypes, while at high VPD, O(3) had no significant effect on these components. In clean air, high VPD reduced biomass and yield by similar fractions in both genotypes compared with low VPD. Data suggest that a stomatal response to VPD per se may be lacking in both genotypes and it is hypothesized that the high VPD resulted in unsustainable transpiration and water deficits that resulted in reduced growth and yield. High VPD- and water-stress-induced stomatal responses may have reduced the O(3) flux into the leaves, which contributed to a higher yield compared to the low VPD treatment in both genotypes. At low VPD, transpiration increased in the O(3) treatment relative to the clean air treatment, suggesting that whole-plant conductance was increased by O(3) exposure. Ozone-related biomass reductions at low VPD were proportionally higher in S156 than in R123, indicating that differential O(3) sensitivity of these bioindicator plants remained evident when environmental conditions were conducive for O(3) effects. Assessments of potential O(3) impacts on vegetation should incorporate interacting factors such as VPD.

  17. Simulation of atmospheric dispersion of NOX over complex terrain region of Ranchi with FLEXPART-WRF by incorporation of improved turbulence intensity relationships

    Science.gov (United States)

    Madala, Srikanth; Satyanarayana, A. N. V.; Srinivas, C. V.

    2015-12-01

    Accurate representation of air pollutant dispersion is essential for environmental management and planning purposes. In this study, semi-empirical relationships of turbulence intensity (σu/u*, σv/u* and σw/u*) as a function of surface layer scaling and local stability are developed following boundary layer similarity concepts at Ranchi, a complex terrain in Jharkhand, Eastern India for various seasons. The impact of the new turbulence parameterization for air pollution dispersion simulation is studied by incorporating the same in the Hanna scheme of FLEXPART-WRF Lagrangian Particle dispersion model over study region. The model is used to estimate the ground level concentrations of nitrogen oxides (NOx) due to industrial and vehicular sources in study region. The meteorological parameters needed in air-quality simulation are simulated using the Advanced Research WRF (ARW) mesoscale model at high resolution (3 km). Three turbulence schemes (YSU, MYNN2 and ACM2) in ARW are alternatively tested in dispersion simulation and comparisons are made with available air quality data for eight days in different seasons (winter, pre-monsoon, monsoon and post-monsoon). Simulations with FLEXPART revealed distinct seasonal variation of dispersion patterns. It has been found that the new turbulence intensity relationships in FLEXPART improved the NOx concentration estimates by reducing the negative bias seen with default Hanna scheme. Further, the ARW simulated meteorological parameters using ACM2 and MYNN2 significantly reduced the bias in modeled pollutant concentrations. The study demonstrates the utility of high quality seasonal turbulence measurements in pollution dispersion model for better diffusion parameterization needed in air quality modeling.

  18. On the atmospheric dynamical responses to land-use change in East Asian monsoon region

    Science.gov (United States)

    Zhang, Huqiang; Gao, Xuejie

    2009-08-01

    This study aims at (1) exploring dominant atmospheric dynamical processes which are responsible for climate model-simulated land-use impacts on Asian monsoon; and (2) assessing uncertainty in such model simulations due to their skills in simulating detailed monsoon circulations in the region. Firstly, results from a series of the Australian Bureau of Meteorology Research Centre (BMRC) global model simulations of land-use vegetation changes (LUC) in China are analysed. The model showed consistent signals of changes in atmospheric low-level vertical profile and regional circulations responding to LUC. In northern winter, the model-simulated rainfall reduction and surface cooling are associated with an enhanced southward penetration of dry and cold air mass, which impedes warm and humid air reaching the region for generating cold-front rainfall. In its summer, an enhanced cyclonic circulation responding to LUC further blocks the northeast penetration of southwestly summer monsoon flow into the region and results in rainfall decreases and a surface warming. Secondly, we have explored uncertainties in the proposed mechanism operating in the global model. By comparing its results with a set of high-resolution regional model simulations using the same vegetation datasets, it reveals similar changes in winter rainfall but opposite features in summer rainfall responses. In the global model, there is a cyclonic low-level circulation pattern over the South China Sea and adjacent region, an unsatisfactory feature commonly seen in other global climate models. With the reduction in surface roughness following LUC, such a deficiency becomes more prominent which further results in a weakened south/southwestly summer monsoon flow and rainfall reduction. In contrast, in the regional model, its southwestly summer monsoon flow is further enhanced due to the same process as reduced surface roughness. The enhanced monsoon flow further pushes the East Asian monsoon rainfall belt more

  19. Responses of Tree Seedlings to a Changing Atmosphere: Effects of Carbon Dioxide, Nitrogen Dioxide, and Ozone

    Science.gov (United States)

    Eller, A. S.; Sparks, J. P.

    2008-12-01

    Human activities have caused changes in the chemical composition of the atmosphere: the concentrations of carbon dioxide (CO2), nitrogen dioxide (NO2), and ozone (O3) have increased and are expected to continue increasing in the future. These gases have the potential to alter plant physiological processes, change growth rates, C:N, and carbon storage potential. The responses of tree seedlings to these changes will have a profound impact on the species composition and carbon storage potential of forests in the future. Others have found CO2 tends to increase plant growth and O3 to decrease it. NO2, if assimilated by plants, can be a source of nutrient nitrogen, but is also an oxidant with the potential to damage cell membranes and decrease growth. The objectives of this study were to determine the single and combined effects of CO2, NO2, and O3 on sugar maple, eastern hemlock, and two clones of trembling aspen. The trees were fumigated for two growing seasons with elevated (40ppb) or ambient NO2, elevated (560ppm) or ambient CO2, elevated (100 ppb 5 days/week) or ambient O3, and with or without additional soil nitrate (30 kg ha-1 yr-1) to simulate ecosystems with and without nitrogen limitation. We found that elevated CO2 increased total biomass of both maples and hemlocks. Further, the CO2 growth effect was most striking when combined with elevated O2; elevated CO2 eliminated the growth decrease induced by O3 especially when nitrogen was limited. Elevated NO2 had no effect on maple seedlings, but, similar to CO2, eliminated the decrease in growth under O3 on hemlock seedlings. The two aspen clones differed in their resistance to ozone. The non-resistant clone exhibited growth responses similar to maple. However, the resistant clone did not exhibit a growth response under any gas treatment regardless of soil nitrogen status. The variation in responses among species, within clones of the same species, and between fumigations was large in this study and suggests

  20. Atmospheric response to a realistic coastal polynya in Terra Nova Bay (Antarctica) simulated by ETA model.

    Science.gov (United States)

    Morelli, S.; Casini, G.; Parmiggiani, F.

    2009-04-01

    Coastal polynyas are areas of open water (and/or very thin ice) which form adjacent to coasts or blocking feature in polar regions during the wintertime, when the sea water is expected to be ice covered. They are thought to be maintained by strong offshore winds blowing over these area and/or by ocean currents. Sea ice is removed as it forms and drifted offshore. In polynya areas a direct contact is established between the relatively warm sea water and the cold, dry atmosphere. As a consequence, the physical characteristics of the atmospheric boundary layer change. The work presented here concerns a real polynya event in the region of Terra Nova Bay (TNB), Antarctica, where a recurring coastal polynya occurs nearby the Italian Antarctic Base. The aim is the study of atmospheric response to the presence of a open water area of realistic size by three-dimensional numerical simulations. Atmospheric numerical modelling is a fundamental tool for the study of air - polynya interactions in the remote polar regions, where observational data are difficult. The numerical model used for the simulations is a recent version of ETA model (Mesinger et al., 2006), with the addition of a piecewise linear advection for the wind field. ECMWF and NCEP data provided the initial and boundary conditions. A previous version of the model had already been successfully used in the Antarctic area (De Carolis et al, 2006, Casini and Morelli, 2007). As a first step to analyze the polynya event, numerical simulation was performed for the period from 12 to 17 July 2006 in order to study the development of the katabatic wind (Morelli and Casini, 2008; Morelli, 2008). Daily satellite images, concerning the period, display that a sea ice free area formed on 15 and 16 July, reaching its maximum extension of about 4000 km2 on 16 July (Morelli et al.,2007). In order to gain insight on the atmospheric response to open water area within a sea ice field, ETA model runs were carried out from 15 to 17 July

  1. Response of the bacterial community in oil-contaminated marine water to the addition of chemical and biological dispersants

    NARCIS (Netherlands)

    de Almeida Couto, Camila Rattes; Jurelevicius, Diogo de Azevedo; Alvarez, Vanessa Marques; van Elsas, Jan Dirk; Seldin, Lucy

    2016-01-01

    The use of dispersants in different stages of the oil production chain and for the remediation of water and soil is a well established practice. However, the choice for a chemical or biological dispersant is still a controversial subject. Chemical surfactants that persist long in the environment may

  2. Evaluation of metabolic responses of Artemia salina to oil and oil dispersant as a potential indicator of toxicant stress

    Energy Technology Data Exchange (ETDEWEB)

    Verriopoulos, G.; Moraitou-Apostolopoulou, M.; Xatzispirou, A.

    1986-03-01

    Oil represents an obvious hazard for the coastal environment and studies on its impact on marine organisms are necessary. Solvent based oil dispersants constitute one of the most important means for removing oil from shores. Although recently new dispersants have been developed, which are much less toxic than the first ones, dispersants still remain toxic substances. Since in the case of oil pollution treatment, oils and detergents are acting in combination, a realistic approach of laboratory studies must also include the combined action of these substances on marine organisms. Although acute toxicity studies are very useful for the determination of the range of animal tolerance, other effects causing physiological alterations may be detrimental to a population's survival. This paper concerns research on the effects of an oil, an oil dispersant and of the mixture of oil and dispersant on a physiological process, the respiration of the brine shrimp Artemia salina.

  3. Response of Atmospheric Energy to Historical Climate Change in CMIP5

    Institute of Scientific and Technical Information of China (English)

    韩博; 吕世华; 高艳红; 奥银焕; 李瑞青

    2015-01-01

    Three forms of atmospheric energy, i.e., internal, potential, and latent, are analyzed based on the histor-ical simulations of 32 Coupled Model Intercomparison Project Phase 5 (CMIP5) models and two reanalysis datasets (NCEP/NCAR and ERA-40). The spatial pattern of climatological mean atmospheric energy is well reproduced by all CMIP5 models. The variation of globally averaged atmospheric energy is similar to that of surface air temperature (SAT) for most models. The atmospheric energy from both simulation and reanalysis decreases following the volcanic eruption in low-latitude zones. Generally, the climatological mean of simulated atmospheric energy from most models is close to that obtained from NCEP/NCAR, while the simulated atmospheric energy trend is close to that obtained from ERA-40. Under a certain variation of SAT, the simulated global latent energy has the largest increase ratio, and the increase ratio of potential energy is the smallest.

  4. Tracer Studies to Characterize the Effects of Roadside Noise Barriers on Near-Road Pollutant Dispersion under Varying Atmospheric Stability Conditions

    Science.gov (United States)

    A roadway toxics dispersion study was conducted by the Field Research Division (FRD) of NOAA at the Idaho National Laboratory (INL) near Idaho Falls, ID to document the effects on concentrations of roadway emissions behind a roadside sound barrier in various conditions of atmosph...

  5. Middle atmosphere response to the solar cycle in irradiance and ionizing particle precipitation

    Directory of Open Access Journals (Sweden)

    K. Semeniuk

    2010-10-01

    Full Text Available The impact of NOx and HOx production by three types of energetic particle precipitation (EPP, aurora, solar proton events and galactic cosmic rays is examined using a chemistry climate model. Ensemble simulations forced by transient EPP derived from observations with one-year repeating sea surface temperatures and fixed chemical boundary conditions were conducted for cases with and without solar cycle in irradiance. Our model results show a wintertime polar stratosphere ozone reduction of between 3 and 10% in agreement with previous studies. EPP is found to modulate the radiative solar cycle effect in the middle atmosphere in a significant way, bringing temperature and ozone variations closer to observed patterns. The Southern Hemisphere polar vortex undergoes an intensification from solar minimum to solar maximum instead of a weakening. This changes the solar cycle variation of the Brewer-Dobson circulation, with a weakening during solar maxima compared to solar minima. In response, the tropical tropopause temperature manifests a statistically significant solar cycle variation resulting in about 4% more water vapour transported into the lower tropical stratosphere during solar maxima compared to solar minima. This has implications for surface temperature variation due to the associated change in radiative forcing.

  6. Phosphorus feedbacks constraining tropical ecosystem responses to changes in atmospheric CO2 and climate

    Science.gov (United States)

    Yang, Xiaojuan; Thornton, Peter E.; Ricciuto, Daniel M.; Hoffman, Forrest M.

    2016-07-01

    The effects of phosphorus (P) availability on carbon (C) cycling in the Amazon region are investigated using CLM-CNP. We demonstrate that the coupling of P dynamics reduces the simulated historical terrestrial C sink due to increasing atmospheric CO2 concentrations ([CO2]) by about 26%. Our exploratory simulations show that the response of tropical forest C cycling to increasing [CO2] depends on how elevated CO2 affects phosphatase enzyme production. The effects of warming are more complex, depending on the interactions between humidity, C, and nutrient dynamics. While a simulation with low humidity generally shows the reduction of net primary productivity (NPP), a second simulation with higher humidity suggests overall increases in NPP due to the dominant effects of reduced water stress and more nutrient availability. Our simulations point to the need for (1) new observations on how elevated [CO2] affects phosphatase enzyme production and (2) more tropical leaf-scale measurements under different temperature/humidity conditions with different soil P availability.

  7. Responses of two summer annuals to interactions of atmospheric carbon dioxide and soil nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R.B.

    1987-01-01

    The competitive relationship between Chenopodium album L. (C{sub 3}) and Amaranthus hybridus L. (C{sub 4}) was investigated in two atmospheric CO{sub 2} levels and tow soil nitrogen levels. Biomass and leaf surface area of Amaranthus plants did not respond to CO{sub 2} enrichment. Only in high nitrogen did Chenopodium plants respond to increased CO{sub 2} with greater biomass and leaf surface area. Nitrogen use efficiency (NUE) was higher in Amaranthus than in Chenopodium in all treatments except for the high-nitrogen high-CO{sub 2} treatment. Under conditions of high nitrogen and low CO{sub 2}, Chenopodium was a poor competitor, but competition favored Chenopodium in high nitrogen and high CO{sub 2}. In low nitrogen and high CO{sub 2}, competition favored Chenopodium on a dry weight basis, but favored Amaranthus on a seed weight basis, reflecting early senescence of Chenopodium. In low nitrogen and high CO{sub 2}, competition favored Amaranthus on a dry weight basis, but favored Chenopodium on a seed weight basis. Physiological aspects of the growth of Chenopodium and Amaranthus were studied. Acclimation to elevated CO{sub 2} occurred at the enzyme level in Chenopodium. Under conditions of high nitrogen and no competition, individual Chenopodium plants responded to elevated CO{sub 2} with greater biomass, leaf surface area, and maximum net photosynthetic rates. In high nitrogen, leaf nitrogen, soluble protein, and RuBP carboxylase activity of Chenopodium decreased and NUE increased when grown in elevated CO{sub 2}. In low nitrogen without competition, Chenopodium showed no significant response to CO{sub 2} enrichment. Amarantus grown in high and low nitrogen without competition showed no significant changes in leaf nitrogen, soluble protein, carboxylase activity, chlorophyll, or NUE of in response to CO{sub 2} enrichment.

  8. Response of giant sequoia canopy foliage to elevated concentrations of atmospheric ozone.

    Science.gov (United States)

    Grulke, N E; Miller, P R; Scioli, D

    1996-06-01

    We examined the physiological response of foliage in the upper third of the canopy of 125-year-old giant sequoia (Sequoiadendron giganteum Buchholz.) trees to a 61-day exposure to 0.25x, 1x, 2x or 3x ambient ozone concentration. Four branch exposure chambers, one per ozone treatment, were installed on 1-m long secondary branches of each tree at a height of 34 m. No visible symptoms of foliar ozone damage were apparent throughout the 61-day exposure period and none of the ozone treatments affected branch growth. Despite the similarity in ozone concentrations in the branch chambers within a treatment, the trees exhibited different physiological responses to increasing ozone uptake. Differences in diurnal and seasonal patterns of g(s) among the trees led to a 2-fold greater ozone uptake in tree No. 2 compared with trees Nos. 1 and 3. Tree No. 3 had significantly higher CER and g(s) at 0.25x ambient ozone than trees Nos. 1 and 2, and g(s) and CER of tree No. 3 declined with increasing ozone uptake. The y-intercept of the regression for dark respiration versus ozone uptake was significantly lower for tree No. 2 than for trees Nos. 1 and 3. In the 0.25x and 1x ozone treatments, the chlorophyll concentration of current-year foliage of trees Nos. 1 and 2 was significantly higher than that of current-year foliage of tree No. 3. Chlorophyll concentration of current-year foliage on tree No. 1 did not decline with increasing ozone uptake. In all trees, total needle water potential decreased with increasing ozone uptake, but turgor was constant. Although tree No. 2 had the greatest ozone uptake, g(s) was highest and foliar chlorophyll concentration was lowest in tree No. 3 in the 0.25x and 1x ambient atmospheric ozone treatments.

  9. Adjustable rheology of fumed silica dispersion in urethane prepolymers: Composition-dependent sol and gel behaviors and energy-mediated shear responses

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhong, E-mail: 11329038@zju.edu.cn; Song, Yihu, E-mail: s-yh0411@zju.edu.cn; Wang, Xiang, E-mail: 11229036@zju.edu.cn; Zheng, Qiang, E-mail: zhengqiang@zju.edu.cn [MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2015-07-15

    Variation of colloidal and interfacial interactions leads to a microstructural diversity in fumed silica dispersions exhibiting absolutely different sol- or gel-like rheological responses. In this study, fumed silicas with different surface areas (200–400 m{sup 2}/g) and surface characteristics (hydrophilic or hydrophobic) are dispersed into moisture-cured polyurethane. The microstructures investigated using transmission electron microscope are associated perfectly with three different rheological behaviors: (i) Sols with well-dispersed silica aggregates, (ii) weak gels with agglomerate-linked networks, and (iii) strong gels with concentrated networks of large agglomerates. Though sols and gels are well distinguished by shear thickening or sustained thinning response through steady shear flow test, it is interesting that the sols and weak gels exhibit a uniform modulus plateau-softening-hardening-softening response with increasing dynamic strain at frequency 10 rad s{sup −1} while the strong gels show a sustained softening beyond the linear regime. Furthermore, the onset of softening and hardening can be normalized: The two softening are isoenergetic at mechanical energies of 0.3 J m{sup −3} and 10 kJ m{sup −3}. On the other hand, the hardening is initiated by a critical strain of 60%. The mechanisms involved in the generation of the sol- and the gel-like dispersions and their structural evolutions during shear are thoroughly clarified in relation to the polyols, the characteristic and content of silica and the curing catalysts.

  10. Numerical simulation of atmospheric dispersion of gas radioactive nuclides radon from uranium ventilation shaft exhausts%铀矿通风尾气中气态放射性核素氡大气扩散数值模拟

    Institute of Scientific and Technical Information of China (English)

    谢东; 王汉青; 刘泽华; 叶勇军; 熊军

    2013-01-01

    以某铀矿排风井为对象建立物理模型,通过建立核素氡扩散数学模型,利用CFD方法耦合求解得到不同大气风速(0.5,1.0,2.0,4.0 m/s)和下垫面粗糙度(0.1 m,1.0 m)下的大气风场结构及核素氡的浓度分布状况.研究结果表明:大气风速和下垫面粗糙度对核素氡的迁移扩散具有重要的影响;当大气风速小于0.5 m/s时,此时地面粗糙度对核素氡迁移扩散起主导作用.地面粗糙度越大,近距离的氡气浓度越高,局部污染越严重,主要污染范围在100 m以内;当大气风速大于2.0 m/s时,大气风速对核素氡迁移扩散起主导作用.大气风速越大,氡气迁移扩散能力越强,污染距离越大,局部污染较轻,主要污染范围在400 rn以内.文中数值计算方法和结论可以为铀矿区辐射防护及新建铀矿山选址提供参考.%Uranium mine ventilation shaft physical model and dispersion mathematical model of radon were built, CFD methods were used to solve equations and get the atmospheric wind field structure and distributions of radionuclide concentrations of radon on the atmospheric wind speeds (0.5, 1.0, 2.0, 4.0 m/s) and underlying surface roughness conditions (0.1 m, 1.0 m). The numerical results show that the atmospheric wind speeds and surface roughness have important effects on the dispersion of radon. When the atmospheric wind speed is less than 0.5 m/s, the underlying surface roughness has the dominant effects on the dispersion of radionuclides. The greater the surface roughness, the higher the concentration of radon and more serious the local pollution, so the main pollution is within the region of 100 m. When the atmospheric wind speed is greater than 2.0 m/s, atmospheric air speeds have the pronounced effects on dispersion of radon. The faster the atmospheric wind speed, the stronger the diffusion capacity and the farther the distance, so the main pollution is within the region of 400 m. Numerical methods and results in this

  11. Response of Atmospheric-Methane Oxidation to Methane-Flux Manipulation in a Laboratory Soil-Column Experiment

    Science.gov (United States)

    Schroth, M. H.; Mignola, I.; Henneberger, R.

    2015-12-01

    Upland soils are an important sink for atmospheric methane (CH4). Uptake of atmospheric CH4 in soils is generally diffusion limited, and is mediated by aerobic CH4 oxidizing bacteria (MOB) that possess a high-affinity form of a key enzyme, allowing CH4 consumption at near-atmospheric concentrations (≤ 1.9 µL/L). As cultivation attempts for these high-affinity MOB have shown little success, there remains much speculation regarding their functioning in different environments. For example, it is frequently assumed that they are highly sensitive to physical disturbance, but their response in activity and abundance to changes in substrate availability remains largely unknown. We present results of a laboratory column experiment conducted to investigate the response in activity and abundance of high-affinity MOB to an increase in CH4 flux. Intact soil cores, collected at a field site where atmospheric CH4 oxidation activity is frequently quantified, were transferred into two 1-m-long, 12-cm-dia. columns. The columns were operated at constant temperature in the dark, their headspace being continuously flushed with air. Diffusive gas-transport conditions were maintained in the reference column, whereas CH4 flux was increased in several steps in the treatment column by inducing advective gas flow using a diaphragm pump. Soil-gas samples periodically collected from ports installed along the length of the columns were analyzed for CH4 content. Together with measurements of soil-water content, atmospheric CH4 oxidation was quantified using the soil-profile method. First results indicate that atmospheric CH4 oxidation activity comparable with the field was maintained in the reference column throughout the experiment. Moreover, high-affinity MOB quickly adjusted to an increase in CH4 flux in the treatment column, efficiently consuming CH4. Quantification of MOB abundance is currently ongoing. Our data provide new insights into controls on atmospheric CH4 oxidation in soils.

  12. Pacific Northwest ecosystem responses to atmospheric changes in the 21st century

    Science.gov (United States)

    De La Cruz Tello, G.; Bonan, G. B.; Lombardozzi, D.; Levis, S.

    2013-12-01

    The terrestrial carbon cycle regulates carbon pools and fluxes throughout the Earth system. Currently, the Pacific Northwest is a carbon sink; it is gaining more carbon than it is releasing into the atmosphere. Investigating changes to this carbon sink is critical for understanding ecosystem responses to future environmental change. The Community Land Model version 4 (CLM4CN) was run with eight simulations for varying atmospheric changes. Half of the simulations ran using Qian climate data for 1948-2004, and half ran with climate data for 2075-2100 from the Representative Concentration Pathways 8.5 scenario (RCP8.5). One run from each group was forced with an increased carbon dioxide (CO2) concentration of 937.87 parts per million (ppm), another was forced with an increased tropospheric ozone (O3) concentration, the third included a combination of increased O3 and CO2 concentrations, and the fourth was a control. Carbon pools decreased with the RCP8.5 scenario in all simulations. An increased CO2 concentration grew carbon pools in both climates. An increased O3 concentration had the opposite effect. A combination of O3 and CO2 showed that carbon pools increased, and the increase was smaller than with CO2 alone. Net primary production (NPP) and net ecosystem production (NEP) mirrored the carbon pool changes. Net ecosystem exchange (NEE) showed that an increased CO2 concentration increased the carbon sink in both climates. The region became a source of carbon with increased O3. The carbon sink increased with a combination of O3 and CO2, with the increase being smaller than the CO2 alone. The figure shows the changes in the ecosystem carbon pool resulting from increasing gas concentrations in various simulations. The x axis represents the future climate scenario control. The black box represents the difference between the carbon pool with increased carbon dioxide (CO2) and the control simulation. The grey box is the difference in the carbon pool between the simulation

  13. The initial responses of hot liquid water released under low atmospheric pressures: Experimental insights

    Science.gov (United States)

    Bargery, Alistair Simon; Lane, Stephen J.; Barrett, Alexander; Wilson, Lionel; Gilbert, Jennie S.

    2010-11-01

    Experiments have been performed to simulate the shallow ascent and surface release of water and brines under low atmospheric pressure. Atmospheric pressure was treated as an independent variable and water temperature and vapor pressure were examined as a function of total pressure variation down to low pressures. The physical and thermal responses of water to reducing pressure were monitored with pressure transducers, temperature sensors and visible imaging. Data were obtained for pure water and for solutions with dissolved NaCl or CO 2. The experiments showed the pressure conditions under which the water remained liquid, underwent a rapid phase change to the gas state by boiling, and then solidified because of removal of latent heat. Liquid water is removed from phase equilibrium by decompression. Solid, liquid and gaseous water are present simultaneously, and not at the 611 Pa triple point, because dynamic interactions between the phases maintain unstable temperature gradients. After phase changes stop, the system reverts to equilibrium with its surroundings. Surface and shallow subsurface pressure conditions were simulated for Mars and the icy satellites of the outer Solar System. Freezing by evaporation in the absence of wind on Mars is shown to be unlikely for pure water at pressures greater than c. 670 Pa, and for saline solutions at pressures greater than c. 610 Pa. The physical nature of ice that forms depends on the salt content. Ice formed from saline water at pressures less than c. 610 Pa could be similar to terrestrial sea ice. Ice formed from pure water at pressures less than c. 100 Pa develops a low thermal conductivity and a 'honeycomb' structure created by sublimation. This ice could have a density as low as c. 450 kg m -3 and a thermal conductivity as low as 1.6 W m -1 K -1, and is highly reflective, more akin to snow than the clear ice from which it grew. The physical properties of ice formed from either pure or saline water at low pressures will

  14. ‘Golden Delicious’ and ‘Honeycrisp’ apple response to controlled atmosphere storage with oxygen set point determined in response to fruit chlorophyll fluorescence

    Science.gov (United States)

    Postharvest management of apple fruit ripening using controlled atmosphere (CA) cold storage can be enhanced as CA oxygen concentration is decreased to close to the anaerobic compensation point (ACP). Monitoring fruit chlorophyll fluorescence is one technology available to assess fruit response to ...

  15. Analysing and combining atmospheric general circulation model simulations forced by prescribed SST: northern extratropical response

    Directory of Open Access Journals (Sweden)

    K. Maynard

    2001-06-01

    Full Text Available The ECHAM 3.2 (T21, ECHAM 4 (T30 and LMD (version 6, grid-point resolution with 96 longitudes × 72 latitudes atmospheric general circulation models were integrated through the period 1961 to 1993 forced with the same observed Sea Surface Temperatures (SSTs as compiled at the Hadley Centre. Three runs were made for each model starting from different initial conditions. The mid-latitude circulation pattern which maximises the covariance between the simulation and the observations, i.e. the most skilful mode, and the one which maximises the covariance amongst the runs, i.e. the most reproducible mode, is calculated as the leading mode of a Singular Value Decomposition (SVD analysis of observed and simulated Sea Level Pressure (SLP and geopotential height at 500 hPa (Z500 seasonal anomalies. A common response amongst the different models, having different resolution and parametrization should be considered as a more robust atmospheric response to SST than the same response obtained with only one model. A robust skilful mode is found mainly in December-February (DJF, and in June-August (JJA. In DJF, this mode is close to the SST-forced pattern found by Straus and Shukla (2000 over the North Pacific and North America with a wavy out-of-phase between the NE Pacific and the SE US on the one hand and the NE North America on the other. This pattern evolves in a NAO-like pattern over the North Atlantic and Europe (SLP and in a more N-S tripole on the Atlantic and European sector with an out-of-phase between the middle Europe on the one hand and the northern and southern parts on the other (Z500. There are almost no spatial shifts between either field around North America (just a slight eastward shift of the highest absolute heterogeneous correlations for SLP relative to the Z500 ones. The time evolution of the SST-forced mode is moderatly to strongly related to the ENSO/LNSO events but the spread amongst the ensemble of runs is not systematically related

  16. Analysing and combining atmospheric general circulation model simulations forced by prescribed SST. Northern extra tropical response

    Energy Technology Data Exchange (ETDEWEB)

    Moron, V. [Universite' de Provence, UFR des sciences geographiques et de l' amenagement, Aix-en-Provence (France); Navarra, A. [Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Ward, M. N. [University of Oklahoma, Cooperative Institute for Mesoscale Meteorological Studies, Norman OK (United States); Foland, C. K. [Hadley Center for Climate Prediction and Research, Meteorological Office, Bracknell (United Kingdom); Friederichs, P. [Meteorologisches Institute des Universitaet Bonn, Bonn (Germany); Maynard, K.; Polcher, J. [Paris Universite' Pierre et Marie Curie, Paris (France). Centre Nationale de la Recherche Scientifique, Laboratoire de Meteorologie Dynamique, Paris

    2001-08-01

    The ECHAM 3.2 (T21), ECHAM 4 (T30) and LMD (version 6, grid-point resolution with 96 longitudes x 72 latitudes) atmospheric general circulation models were integrated through the period 1961 to 1993 forced with the same observed Sa Surface Temperatures (SSTs) as compiled at the Hadley Centre. Three runs were made for each model starting from different initial conditions. The mid-latitude circulation pattern which maximises the covariance between the simulation and the observations, i.e. the most skilful mode, and the one which maximises the covariance amongst the runs, i.e. the most reproducible mode, is calculated as the leading mode of a Singular Value Decomposition (SVD) analysis of observed and simulated Sea Level Pressure (SLP) and geo potential height at 500 hPa (Z500) seasonal anomalies. A common response amongst the different models, having different resolution and parametrization should be considered as a more robust atmospheric response to SST than the sam response obtained with only one model A robust skilful mode is found mainly in December-February (DJF), and in June-August (JJA). In DJF, this mode is close to the SST-forced pattern found by Straus nd Shukla (2000) over the North Pacific and North America with a wavy out-of-phase between the NE Pacific and the SE US on the one hand and the NE North America on the other. This pattern evolves in a NAO-like pattern over the North Atlantic and Europe (SLP) and in a more N-S tripote on the Atlantic and European sector with an out-of-phase between the middle Europe on the one hand and the northern and southern parts on the other (Z500). There are almost no spatial shifts between either field around North America (just a slight eastward shift of the highest absolute heterogenous correlations for SLP relative to the Z500 ones). The time evolution of the SST-forced mode is moderately to strongly related to the ENSO/LNSO events but the spread amongst the ensemble of runs is not systematically related at all to

  17. Response Analysis of a Spar-Type Floating Offshore Wind Turbine Under Atmospheric Icing Conditions

    DEFF Research Database (Denmark)

    Etemaddar, Mahmoud; Hansen, Martin Otto Laver; Moan, Torgeir

    2014-01-01

    One of the challenges for the development of wind energy in offshore cold-climate regions is atmospheric icing. This paper examines the effects of atmospheric icing on power production, overall performance, and extreme loads of a 5-MW spar-type floating offshore wind turbine during power production...

  18. Analysing and combining atmospheric general circulation model simulations forced by prescribed SST. Tropical response

    Energy Technology Data Exchange (ETDEWEB)

    Moron, V. [Universite' de Provence, UFR des sciences geographiques et de l' amenagement, Aix-en-Provence (France); Navarra, A. [Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Ward, M. N. [University of Oklahoma, Cooperative Institute for Mesoscale Meteorological Studies, Norman OK (United States); Foland, C. K. [Hadley Center for Climate Prediction and Research, Meteorological Office, Bracknell (United Kingdom); Friederichs, P. [Meteorologisches Institute des Universitaet Bonn, Bonn (Germany); Maynard, K.; Polcher, J. [Paris Universite' Pierre et Marie Curie, Paris (France). Centre Nationale de la Recherche Scientifique, Laboratoire de Meteorologie Dynamique, Paris

    2001-08-01

    The ECHAM 3.2 (T21), ECHAM (T30) and LMD (version 6, grid-point resolution with 96 longitudes x 72 latitudes) atmospheric general circulation models were integrated through the period 1961 to 1993 forces with the same observed Sea Surface Temperatures (SSTs) as compiled at the Hadley Centre. Three runs were made for each model starting from different initial conditions. The large-scale tropical inter-annual variability is analysed to give a picture of a skill of each model and of some sort of combination of the three models. To analyse the similarity of model response averaged over the same key regions, several widely-used indices are calculated: Southern Oscillation Index (SOI), large-scale wind shear indices of the boreal summer monsoon in Asia and West Africa and rainfall indices for NE Brazil, Sahel and India. Even for the indices where internal noise is large, some years are consistent amongst all the runs, suggesting inter-annual variability of the strength of SST forcing. Averaging the ensemble mean of the three models (the super-ensemble mean) yields improved skill. When each run is weighted according to its skill, taking three runs from different models instead of three runs of the same model improves the mean skill. There is also some indication that one run of a given model could be better than another, suggesting that persistent anomalies could change its sensitivity to SST. The index approach lacks flexibility to assess whether a model's response to SST has been geographically displaced. It can focus on the first mode in the global tropics, found through singular value decomposition analysis, which is clearly related to El Nino/Southern Oscillation (ENSO) in all seasons. The Observed-Model and Model-Model analyses lead to almost the same patterns, suggesting that the dominant pattern of model response is also the most skilful mode. Seasonal modulation of both skill and spatial patterns (both model and observed) clearly exists with highest skill

  19. The response of terrestrial carbon exchange and atmospheric CO{sub 2} concentrations to El Nino SST forcing

    Energy Technology Data Exchange (ETDEWEB)

    Craig, S. [Stockholm Univ. (Sweden). Dept. of Meteorology

    1998-05-01

    Version 3 of the National Center for Atmospheric Research Community Climate Model is used to investigate the response of terrestrial carbon exchange and atmospheric CO{sub 2} concentrations to sea surface temperature (SST) anomalies associated with the El Nino phenomenon. Air-sea exchange of CO{sub 2} is not included. During El Nino episodes, atmospheric CO{sub 2} concentrations are observed to rise anomalously even though CO{sub 2} outgassing is reduced in the eastern equatorial Pacific due to the cessation of upwelling. Atmospheric carbon isotope data point to a larger terrestrial carbon release as being responsible. The reasons for such a terrestrial response are examined by comparing a control run with prescribed, seasonally varying, climatological SSTs to an ensemble of integrations employing observed SST fields from the strong El Nino event of 1982-83. The model captures the main features of the El Nino induced meteorological anomalies, including the shifts in tropical rainfall patterns that are of particular importance in driving the carbon cycle changes. Most of the regions that exhibit a clear El Nino signal in the simulation possess well documented links to El Nino in the observational record, Examples include northeastern South America, India, Indonesia, southeastern Africa, Ecuador and northern Peru, and parts of southeastern South America. The combined perturbation of the net carbon flux in these areas involves a release of CO{sub 2} to the atmosphere totalling 7 GtC during the 1982-83 El Nino event. Atmospheric CO{sub 2} rises by about 3 ppmv as a result which is more than sufficient to explain the observed variations. The exaggerated response is indicative of the strong sensitivity of the model carbon routines to climate fluctuations. It is argued that the release of CO{sub 2} from terrestrial systems is fundamentally related to the overall shift of precipitation from land areas to the oceans caused by the El Nino SST forcing. Since the SST forcing

  20. Response of the endophytic diazotroph Gluconacetobacter diazotrophicus on solid media to changes in atmospheric partial O(2) pressure.

    Science.gov (United States)

    Pan, B; Vessey, J K

    2001-10-01

    Gluconacetobacter diazotrophicus is an N(2)-fixing endophyte isolated from sugarcane. G. diazotrophicus was grown on solid medium at atmospheric partial O(2) pressures (pO(2)) of 10, 20, and 30 kPa for 5 to 6 days. Using a flowthrough gas exchange system, nitrogenase activity and respiration rate were then measured at a range of atmospheric pO(2) (5 to 60 kPa). Nitrogenase activity was measured by H(2) evolution in N(2)-O(2) and in Ar-O(2), and respiration rate was measured by CO(2) evolution in N(2)-O(2). To validate the use of H(2) production as an assay for nitrogenase activity, a non-N(2)-fixing (Nif(-)) mutant of G. diazotrophicus was tested and found to have a low rate of uptake hydrogenase (Hup(+)) activity (0.016 +/- 0.009 micromol of H(2) 10(10) cells(-1) h(-1)) when incubated in an atmosphere enriched in H(2). However, Hup(+) activity was not detectable under the normal assay conditions used in our experiments. G. diazotrophicus fixed nitrogen at all atmospheric pO(2) tested. However, when the assay atmospheric pO(2) was below the level at which the colonies had been grown, nitrogenase activity was decreased. Optimal atmospheric pO(2) for nitrogenase activity was 0 to 20 kPa above the pO(2) at which the bacteria had been grown. As atmospheric pO(2) was increased in 10-kPa steps to the highest levels (40 to 60 kPa), nitrogenase activity decreased in a stepwise manner. Despite the decrease in nitrogenase activity as atmospheric pO(2) was increased, respiration rate increased marginally. A large single-step increase in atmospheric pO(2) from 20 to 60 kPa caused a rapid 84% decrease in nitrogenase activity. However, upon returning to 20 kPa of O(2), 80% of nitrogenase activity was recovered within 10 min, indicating a "switch-off/switch-on" O(2) protection mechanism of nitrogenase activity. Our study demonstrates that colonies of G. diazotrophicus can fix N(2) at a wide range of atmospheric pO(2) and can adapt to maintain nitrogenase activity in response to

  1. Sensitivity of the Atmospheric Response to Warm Pool El Nino Events to Modeled SSTs and Future Climate Forcings

    Science.gov (United States)

    Hurwitz, Margaret M.; Garfinkel, Chaim I.; Newman, Paul A.; Oman, Luke D.

    2013-01-01

    Warm pool El Nino (WPEN) events are characterized by positive sea surface temperature (SST) anomalies in the central equatorial Pacific. Under present-day climate conditions, WPEN events generate poleward propagating wavetrains and enhance midlatitude planetary wave activity, weakening the stratospheric polar vortices. The late 21st century extratropical atmospheric response to WPEN events is investigated using the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM), version 2. GEOSCCM simulations are forced by projected late 21st century concentrations of greenhouse gases (GHGs) and ozone-depleting substances (ODSs) and by SSTs and sea ice concentrations from an existing ocean-atmosphere simulation. Despite known ocean-atmosphere model biases, the prescribed SST fields represent a best estimate of the structure of late 21st century WPEN events. The future Arctic vortex response is qualitatively similar to that observed in recent decades but is weaker in late winter. This response reflects the weaker SST forcing in the Nino 3.4 region and subsequently weaker Northern Hemisphere tropospheric teleconnections. The Antarctic stratosphere does not respond to WPEN events in a future climate, reflecting a change in tropospheric teleconnections: The meridional wavetrain weakens while a more zonal wavetrain originates near Australia. Sensitivity simulations show that a strong poleward wavetrain response to WPEN requires a strengthening and southeastward extension of the South Pacific Convergence Zone; this feature is not captured by the late 21st century modeled SSTs. Expected future increases in GHGs and decreases in ODSs do not affect the polar stratospheric responses to WPEN.

  2. TRANC – a novel fast-response converter to measure total reactive atmospheric nitrogen

    Directory of Open Access Journals (Sweden)

    O. Marx

    2011-12-01

    Full Text Available The input and loss of plant available nitrogen (N from/to the atmosphere can be an important factor for the productivity of ecosystems and thus for its carbon and greenhouse gas exchange. We present a novel converter for the measurement of total reactive nitrogen (TRANC: Total Reactive Atmospheric Nitrogen Converter, which offers the opportunity to quantify the sum of all airborne reactive nitrogen (Nr compounds in high time resolution. The basic concept of the TRANC is the full conversion of total Nr to nitrogen monoxide (NO within two reaction steps. Initially, reduced N compounds are being oxidised, and oxidised N compounds are thermally converted to lower oxidation states. Particulate N is being sublimated and oxidised or reduced afterwards. In a second step, remaining higher N oxides or those originated in the first step are catalytically converted to NO with carbon monoxide used as reduction gas. The converter is combined with a fast response chemiluminescence detector (CLD for NO analysis and its performance was tested for the most relevant gaseous and particulate Nr species under both laboratory and field conditions. Recovery rates during laboratory tests for NH3 and NO2 were found to be 95 and 99%, respectively, and 97% when the two gases were combined. In-field longterm stability over an 11-month period was approved by a value of 91% for NO2. Effective conversion was also found for ammonium and nitrate containing particles. The recovery rate of total ambient Nr was tested against the sum of individual measurements of NH3, HNO3, HONO, NH4+, NO3, and NOx using a combination of different well-established devices. The results show that the TRANC-CLD system precisely captures fluctuations in Nr concentrations and also matches the sum of all

  3. Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry.

    Science.gov (United States)

    Farmer, D K; Matsunaga, A; Docherty, K S; Surratt, J D; Seinfeld, J H; Ziemann, P J; Jimenez, J L

    2010-04-13

    Organonitrates (ON) are important products of gas-phase oxidation of volatile organic compounds in the troposphere; some models predict, and laboratory studies show, the formation of large, multifunctional ON with vapor pressures low enough to partition to the particle phase. Organosulfates (OS) have also been recently detected in secondary organic aerosol. Despite their potential importance, ON and OS remain a nearly unexplored aspect of atmospheric chemistry because few studies have quantified particulate ON or OS in ambient air. We report the response of a high-resolution time-of-flight aerosol mass spectrometer (AMS) to aerosol ON and OS standards and mixtures. We quantify the potentially substantial underestimation of organic aerosol O/C, commonly used as a metric for aging, and N/C. Most of the ON-nitrogen appears as NO(x)+ ions in the AMS, which are typically dominated by inorganic nitrate. Minor organonitrogen ions are observed although their identity and intensity vary between standards. We evaluate the potential for using NO(x)+ fragment ratios, organonitrogen ions, HNO(3)+ ions, the ammonium balance of the nominally inorganic ions, and comparison to ion-chromatography instruments to constrain the concentrations of ON for ambient datasets, and apply these techniques to a field study in Riverside, CA. OS manifests as separate organic and sulfate components in the AMS with minimal organosulfur fragments and little difference in fragmentation from inorganic sulfate. The low thermal stability of ON and OS likely causes similar detection difficulties for other aerosol mass spectrometers using vaporization and/or ionization techniques with similar or larger energy, which has likely led to an underappreciation of these species.

  4. Response of leaf litter decomposition to rises in atmospheric CO2 and temperature

    Science.gov (United States)

    Hammrich, A.; Flury, S.; Gessner, M. O.

    2007-05-01

    Atmospheric concentrations of CO2 have considerably increased in the last century and are expected to rise further. Elevated CO2 concentrations not only increase global temperature but also have potential to change plant litter quality, for example by increasing lignin content, changing C:N ratios and altering tannin contents. These chemical changes may interact with increased temperature to alter litter decomposition. To test whether changes in litter quality and warming affect decomposition, we conducted a field experiment with leaf litter collected from six species of mature deciduous trees exposed to either ambient or elevated CO2 levels. We used a set of 16 enclosures installed in four blocks in a freshwater marsh in a prealpine lake to test for the effects of CO2-mediated litter quality and temperature and the interaction of both factors. We measured leaf mass loss of the twelve litter types in control and heated enclosures (4 °C above ambient) and also in the open marsh. In contrast to expectations, species decomposing at low (oak and beech) and medium (hornbeam and maple) rates showed faster mass loss when leaves were grown under elevated CO2 conditions, whereas fast-decomposing species (cherry and basswood) showed no clear response. The accelerated decomposition of CO2-enriched litter could be due to higher amounts of nonstructural carbohydrates, which may have been either leached or readily degraded. Warming had a surprisingly small influence on mass loss of the tested litter species, and interactive effects were weak. These results suggest that direct and indirect effects of elevated CO2 levels on litter decomposition may not be readily predictable from first principles.

  5. Response of free-living soil protozoa and microorganisms to elevated atmospheric CO2 and presence of mycorrhiza

    DEFF Research Database (Denmark)

    Rønn, R.; Gavito, M.; Larsen, J.

    2002-01-01

    Possible interactions between mycorrhiza, atmospheric CO2, free-living soil microorganisms and protozoa were investigated in pot experimental systems. Pea plants (Pisum sativum L. cv. Solara) were grown under ambient (360 mul l(-1)) or elevated (700 mul l(-1)) atmospheric CO2 concentration...... with or without the presence of the arbuscular mycorrhizal (AM) fungus Glomus caledonium. It was hypothesised that (1) the populations of free-living soil protozoa would increase as a response to elevated CO2, (2) the effect of elevated CO2 on protozoa would be moderated by the presence of mycorrhiza and (3......) the presence of arbuscular mycorrhiza would affect soil protozoan numbers regardless of atmospheric CO2. After 3 weeks growth there was no difference in bacterial numbers (direct counts) in soil, but the number of free-living bacterial-feeding protozoa was significantly higher under elevated CO2...

  6. Implementation of routine ash predictions using a general purpose atmospheric dispersion model (HYSPLIT) adapted for calculating ash thickness on the ground.

    Science.gov (United States)

    Hurst, Tony; Davis, Cory; Deligne, Natalia

    2016-04-01

    GNS Science currently produces twice-daily forecasts of the likely ash deposition if any of the active or recently active volcanoes in New Zealand was to erupt, with a number of alternative possible eruptions for each volcano. These use our ASHFALL program for calculating ash thickness, which uses 1-D wind profiles at the location of each volcano derived from Numerical Weather Prediction (NWP) model output supplied by MetService. HYSPLIT is a hybrid Lagrangian dispersion model, developed by NOAA/ARL, which is used by MetService in its role as a Volcanic Ash Advisory Centre, to model airborne volcanic ash, with meteorological data provided by external and in-house NWP models. A by-product of the HYSPLIT volcanic ash dispersion simulations is the deposition rate at the ground surface. Comparison of HYSPLIT with ASHFALL showed that alterations to the standard fall velocity model were required to deal with ash particles larger than about 50 microns, which make up the bulk of ash deposits near a volcano. It also required the ash injected into the dispersion model to have a concentration based on a typical umbrella-shaped eruption column, rather than uniform across all levels. The different parameters used in HYSPLIT also caused us to revisit what possible combinations of eruption size and column height were appropriate to model as a likely eruption. We are now running HYSPLIT to produce alternative ash forecasts. It is apparent that there are many times at which the 3-D wind model used in HYSPLIT gives a substantially different ash deposition pattern to the 1-D wind model of ASHFALL, and the use of HYSPLIT will give more accurate predictions. ASHFALL is likely still to be used for probabilistic hazard forecasting, in which very large numbers of runs are required, as HYSPLIT takes much more computer time.

  7. An atmospheric dispersion model for linear sources in calm wind, stable conditions; Un modello di dispersione atmosferica per sorgenti lineari in condizioni di vento debole

    Energy Technology Data Exchange (ETDEWEB)

    Cirillo, M. C. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente; Buratti, D. [Rome Univ. La Sapienza, Rome (Italy). Facolta' di Scienze Statistiche; Metallo, M. C.; Poli, A.A. [ESA s.a.s., Bracciano, RM (Italy)

    1999-07-01

    In this report a dispersion model is proposed that provides an estimate of concentration of gaseous pollutants emitted by an highway, or in general by a line source, in presence of low wind speed. This aim was pursued because available models have not a satisfactory behaviour in such conditions, which is critical for dispersion of gaseous pollutants. This lack is due to difficulty of simulating dispersion turbulent component which is determined by fluctuation of wind speed and wind direction, and in presence of calm conditions it assumes values comparable with transport component. The proposed model overcomes this difficulty, as it is shown by sensitivity analysis and comparison with experimental data. The capability of simulating dispersion eve in critical conditions, like the presence of low level inversion, and the absence of source geometrical approximations make the model a tool that, properly used, may contribute to the efficient planning and management of environmental resources. [Italian] In questo rapporto viene proposto un modello per la stima delle concentrazioni di inquinanti aeriformi emessi da un'arteria stradale, o in generale da una sorgente lineare, in presenza di vento debole. Questo scopo e' stato perseguito in quanto in questa condizione, nonostante la dispersione degli inquinanti risulti fortemente problematica, i modelli disponibili in letteratura non hanno un comportamento soddisfacente. Questa mancanca e' attribuibile alla difficolta' di simulare la componente turbolenta della dispersione, dovuta alla fluttuazione della direzione e della velocita' del vento che, in presenza di vento debole, assume valori confrontabili alla componente di trasporto. Il modello qui di seguito proposto supera questa difficolta', come dimostrano l'analisi di sensibilita' e il confronto con un caso reale; la capacita' di simulare la dispersione anche in condizioni fisicamente critiche quali la presenza di inversione a

  8. Terrestrial atmospheric responses on Svalbard to the 20 March 2015 Arctic total solar eclipse under extreme conditions.

    Science.gov (United States)

    Pasachoff, J M; Peñaloza-Murillo, M A; Carter, A L; Roman, M T

    2016-09-28

    This article reports on the near-surface atmospheric response at the High Arctic site of Svalbard, latitude 78° N, as a result of abrupt changes in solar insolation during the 20 March 2015 equinox total solar eclipse and notifies the atmospheric science community of the availability of a rare dataset. Svalbard was central in the path of totality, and had completely clear skies. Measurements of shaded air temperature and atmospheric pressure show only weak, if any, responses to the reduced insolation. A minimum in the air temperature at 1.5 m above the ground occurred starting 2 min following the end of totality, though this drop was only slightly beyond the observed variability for the midday period. Eclipse-produced variations in surface pressure, if present, were less than 0.3 hPa.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'.

  9. First data on the composition of atmospheric dust responsible for yellow snow in Northern European Russia in March 2008

    Science.gov (United States)

    Shevchenko, V. P.; Korobov, V. B.; Lisitzin, A. P.; Aleshinskaya, A. S.; Bogdanova, O. Yu.; Goryunova, N. V.; Grishchenko, I. V.; Dara, O. M.; Zavernina, N. N.; Kurteeva, E. I.; Novichkova, E. A.; Pokrovsky, O. S.; Sapozhnikov, F. V.

    2010-04-01

    The descent of a large quantity of dust responsible for bright colors of atmospheric precipitation in the temperate, subpolar, and polar zones of the northern hemisphere is rarely observed [1-5]. In the twentieth century and in the beginning of the twenty-first century in the northern part of European Russia, such events had not been registered right up to March 25-26, 2008. At that time in some parts of the Arkhangelsk region, Komi Republic, and Nenets Autonomous Area, atmospheric precipitation as moist snow and rain responsible for sand and saffron colors of ice crust formation on the snow surface was observed. Thus, due to detailed mineralogical, geochemical, pollen, diatom, and meteorological investigations, it was established that the main source of the yellow dust is the semidesert and steppe regions of the Northwest Kazakhstan, and the Volgograd and Astrakhan regions, Kalmykia.

  10. Contemporary evolution of an invasive grass in response to elevated atmospheric CO(2) at a Mojave Desert FACE site.

    Science.gov (United States)

    Grossman, Judah D; Rice, Kevin J

    2014-06-01

    Elevated atmospheric CO2 has been shown to rapidly alter plant physiology and ecosystem productivity, but contemporary evolutionary responses to increased CO2 have yet to be demonstrated in the field. At a Mojave Desert FACE (free-air CO2 enrichment) facility, we tested whether an annual grass weed (Bromus madritensis ssp. rubens) has evolved in response to elevated atmospheric CO2 . Within 7 years, field populations exposed to elevated CO2 evolved lower rates of leaf stomatal conductance; a physiological adaptation known to conserve water in other desert or water-limited ecosystems. Evolution of lower conductance was accompanied by reduced plasticity in upregulating conductance when CO2 was more limiting; this reduction in conductance plasticity suggests that genetic assimilation may be ongoing. Reproductive fitness costs associated with this reduction in phenotypic plasticity were demonstrated under ambient levels of CO2 . Our findings suggest that contemporary evolution may facilitate this invasive species' spread in this desert ecosystem.

  11. The prospect of responsive spacecraft using aeroassisted, trans-atmospheric maneuvers

    Science.gov (United States)

    Bettinger, Robert A.

    Comprised of exo- and trans-atmospheric trajectory segments, atmospheric re-entry represents a complex dynamical event which traditionally signals the mission end-of-life for low-Earth orbit (LEO) spacecraft, both manned and unmanned. Transcending this paradigm, atmospheric re-entry can be employed as a means of operational maneuver whereby the aerodynamic forces of the upper atmosphere can be exploited to create an aeroassisted maneuver. Utilizing a notional trans-atmospheric, lifting re-entry vehicle with L/D=6, the first phase of research demonstrates the terrestrial reachability potential for skip entry aeroassisted maneuvers. By overflying a geographically diverse set of sample ground targets, comparative analysis indicates a significant savings in DeltaV expenditure for skip entry compared with planar phasing and simple plane change exo-atmospheric maneuvers. In the second phase, the Design of Experiments method of orthogonal arrays provides optimal vehicle and skip entry trajectory designs by employing main effects and Pareto front analysis. Depending on the chosen re-circularization altitude, the coupled optimal design can achieve an inclination change of 19.91 deg with 50-85% less DeltaV than a simple plane change. Finally, the third phase introduces the descent-boost aeroassisted maneuver as an alternative to combined Hohmann and bi-elliptic transfers in order to perform LEO injection. Compared with bi-elliptic transfers, simulations demonstrate that a lifting re-entry vehicle with L/D=6 performing a descent-boost maneuver requires 6-12% less DeltaV for injection into orbits lower than 650 km. In addition, the third phase also introduces the "Maneuver Performance Number" as a dimensionless means of comparative effectiveness analysis for both exo- and trans-atmospheric maneuvers.

  12. Atmospheric Layers in Response to the Propagation of Gravity Waves under Nonisothermal, Wind-shear, and Dissipative Conditions

    OpenAIRE

    Ma, John Z. G.

    2016-01-01

    We study the atmospheric structure in response to the propagation of gravity waves under nonisothermal (nonzero vertical temperature gradient), wind-shear (nonzero vertical zonal/meridional wind speed gradients), and dissipative (nonzero molecular viscosity and thermal conduction) conditions. As an alternative to the “complex wave-frequency” model proposed by Vadas and Fritts, we employ the traditional “complex vertical wave-number” approach to solving an eighth-order complex polynomial dispe...

  13. A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration

    OpenAIRE

    Gregory, J; Dixon, K; Stouffer, R.; Weaver, A.; E. Driesschaert; Eby, M.; Fichefet, T.; Hasumi, H.; Hu, A.; J. Jungclaus; Kamenkovich, I.; A. Levermann; Montoya, M.; Murakami, S.; Nawrath , S.

    2005-01-01

    As part of the Coupled Model Intercomparison Project, integrations with a common design have been undertaken with eleven different climate models to compare the response of the Atlantic thermohaline circulation ( THC) to time-dependent climate change caused by increasing atmospheric CO2 concentration. Over 140 years, during which the CO2 concentration quadruples, the circulation strength declines gradually in all models, by between 10 and 50%. No model shows a rapid or complete collapse, desp...

  14. Response of the Atlantic Thermohaline Circulation to Increased Atmospheric CO2 in a Coupled Model.

    Science.gov (United States)

    Hu, Aixue; Meehl, Gerald A.; Washington, Warren M.; Dai, Aiguo

    2004-11-01

    Changes in the thermohaline circulation (THC) due to increased CO2 are important in future climate regimes. Using a coupled climate model, the Parallel Climate Model (PCM), regional responses of the THC in the North Atlantic to increased CO2 and the underlying physical processes are studied here. The Atlantic THC shows a 20-yr cycle in the control run, qualitatively agreeing with other modeling results. Compared with the control run, the simulated maximum of the Atlantic THC weakens by about 5 Sv (1 Sv 106 m3 s-1) or 14% in an ensemble of transient experiments with a 1% CO2 increase per year at the time of CO2 doubling. The weakening of the THC is accompanied by reduced poleward heat transport in the midlatitude North Atlantic. Analyses show that oceanic deep convective activity strengthens significantly in the Greenland Iceland Norway (GIN) Seas owing to a saltier (denser) upper ocean, but weakens in the Labrador Sea due to a fresher (lighter) upper ocean and in the south of the Denmark Strait region (SDSR) because of surface warming. The saltiness of the GIN Seas are mainly caused by an increased salty North Atlantic inflow, and reduced sea ice volume fluxes from the Arctic into this region. The warmer SDSR is induced by a reduced heat loss to the atmosphere, and a reduced sea ice flux into this region, resulting in less heat being used to melt ice. Thus, sea ice related salinity effects appear to be more important in the GIN Seas, but sea ice melt-related thermal effects seem to be more important in the SDSR region. On the other hand, the fresher Labrador Sea is mainly attributed to increased precipitation. These regional changes produce the overall weakening of the THC in the Labrador Sea and SDSR, and more vigorous ocean overturning in the GIN Seas. The northward heat transport south of 60°N is reduced with increased CO2, but increased north of 60°N due to the increased flow of North Atlantic water across this latitude.

  15. Atmospheric and Oceanic Response to Southern Ocean Deep Convection Oscillations on Decadal to Centennial Time Scales in Climate Models

    Science.gov (United States)

    Martin, T.; Reintges, A.; Park, W.; Latif, M.

    2014-12-01

    Many current coupled global climate models simulate open ocean deep convection in the Southern Ocean as a recurring event with time scales ranging from a few years to centennial (de Lavergne et al., 2014, Nat. Clim. Ch.). The only observation of such event, however, was the occurrence of the Weddell Polynya in the mid-1970s, an open water area of 350 000 km2 within the Antarctic sea ice in three consecutive winters. Both the wide range of modeled frequency of occurrence and the absence of deep convection in the Weddell Sea highlights the lack of understanding concerning the phenomenon. Nevertheless, simulations indicate that atmospheric and oceanic responses to the cessation of deep convection in the Southern Ocean include a strengthening of the low-level atmospheric circulation over the Southern Ocean (increasing SAM index) and a reduction in the export of Antarctic Bottom Water (AABW), potentially masking the regional effects of global warming (Latif et al., 2013, J. Clim.; Martin et al., 2014, Deep Sea Res. II). It is thus of great importance to enhance our understanding of Southern Ocean deep convection and clarify the associated time scales. In two multi-millennial simulations with the Kiel Climate Model (KCM, ECHAM5 T31 atmosphere & NEMO-LIM2 ~2˚ ocean) we showed that the deep convection is driven by strong oceanic warming at mid-depth periodically overriding the stabilizing effects of precipitation and ice melt (Martin et al., 2013, Clim. Dyn.). Sea ice thickness also affects location and duration of the deep convection. A new control simulation, in which, amongst others, the atmosphere grid resolution is changed to T42 (~2.8˚), yields a faster deep convection flip-flop with a period of 80-100 years and a weaker but still significant global climate response similar to CMIP5 simulations. While model physics seem to affect the time scale and intensity of the phenomenon, the driving mechanism is a rather robust feature. Finally, we compare the atmospheric and

  16. The atmospheric frontal response to SST perturbations in the Gulf Stream region

    Science.gov (United States)

    Parfitt, Rhys; Czaja, Arnaud; Minobe, Shoshiro; Kuwano-Yoshida, Akira

    2016-03-01

    The link between sea surface temperature (SST) gradients and atmospheric fronts is explored in a general circulation model across the Gulf Stream (GS) region from December to February 1981-2000. Two model experiments are analyzed, one with a realistic control SST distribution and one with a spatially smoothed SST distribution. The analysis shows a noticeable change in regional atmospheric frontal frequency between the two experiments (up to 30%), with the distribution of change exhibiting a clear imprint of the GS SST front. Further analysis of the surface sensible heat flux gradient across cold fronts reveals the pattern of change to be mediated by a thermal interaction between the oceanic and atmospheric fronts ("thermal damping and strengthening"). These results not only emphasize the significance of the GS SST gradient for storm development in the North Atlantic but also highlight the importance of resolution in assessing the role of frontal air-sea interaction in midlatitude climate variability.

  17. Comparative analysis of three atmospheric dispersion coefficient systems at the Angra dos Reis, RJ, region; Analise comparativa de tres sistemas de coeficientes de dispersao atmosferica na regiao de Angra dos Reis, RJ

    Energy Technology Data Exchange (ETDEWEB)

    Biagio, Rosa Maria de Souza

    1982-07-01

    A comparative analysis was made in this work among Pasquill-Gifford (PG) atmospheric dispersion coefficients and those determined at the Juelich and Karlsruhe sites with the purpose of suggesting which one would be the most applicable to the Angra site. Each one of the three systems was determined by different experiments, carried out over sites with diversified features. The systems of Juelich and Karlsruhe were obtained over sites with high surface roughness and from stacks (elevated releases), while the PG system was obtained over sites with a small surface roughness and from ground level releases. The results of the application of these systems at a complex site like Angra,which has a highly diversified structure encompassing sea, vegetation, predominance of light winds and stable stability classes, show that the PG system, the most used in the world, is still the best choice. (author)

  18. Time-dependent response of a zonally averaged ocean-atmosphere-sea ice model to Milankovitch forcing

    Energy Technology Data Exchange (ETDEWEB)

    Antico, Andres; Mysak, Lawrence A. [McGill University, Department of Atmospheric and Oceanic Sciences, Montreal, QC (Canada); Marchal, Olivier [Woods Hole Oceanographic Institution, Department of Geology and Geophysics, Woods Hole, MA (United States)

    2010-05-15

    An ocean-atmosphere-sea ice model is developed to explore the time-dependent response of climate to Milankovitch forcing for the time interval 5-3 Myr BP. The ocean component is a zonally averaged model of the circulation in five basins (Arctic, Atlantic, Indian, Pacific, and Southern Oceans). The atmospheric component is a one-dimensional (latitudinal) energy balance model, and the sea-ice component is a thermodynamic model. Two numerical experiments are conducted. The first experiment does not include sea ice and the Arctic Ocean; the second experiment does. Results from the two experiments are used to investigate (1) the response of annual mean surface air and ocean temperatures to Milankovitch forcing, and (2) the role of sea ice in this response. In both experiments, the response of air temperature is dominated by obliquity cycles at most latitudes. On the other hand, the response of ocean temperature varies with latitude and depth. Deep water formed between 45 N and 65 N in the Atlantic Ocean mainly responds to precession. In contrast, deep water formed south of 60 S responds to obliquity when sea ice is not included. Sea ice acts as a time-integrator of summer insolation changes such that annual mean sea-ice conditions mainly respond to obliquity. Thus, in the presence of sea ice, air temperature changes over the sea ice are amplified, and temperature changes in deep water of southern origin are suppressed since water below sea ice is kept near the freezing point. (orig.)

  19. Perfect Dispersive Medium

    CERN Document Server

    Gupta, Shulabh

    2015-01-01

    Dispersion is at the heart of all ultrafast real-time signal processing systems across the entire electromagnetic spectrum ranging from radio-frequencies to optics. However, following Kramer-Kronig relations, these signal processing systems have been plagued with the parasitic amplitude distortions due to frequency dependent, and non-flat amplitude transmission of naturally dispersive media. This issue puts a serious limitation on the applicability and performance of these signal processing systems. To solve the above mentioned issue, a perfect dispersive medium is proposed in this work, which artificially violates the Kramer-Kronig relations, while satisfying all causality requirements. The proposed dispersive metamaterial is based on loss-gain metasurface pairs and exhibit a perfectly flat transmission response along with arbitrary dispersion in a broad bandwidth, thereby solving a seemingly unavoidable issue in all ultrafast signal processing systems. Such a metamaterial is further shown using sub-waveleng...

  20. Construction of an Eulerian atmospheric dispersion model based on the advection algorithm of M. Galperin: dynamic cores v.4 and 5 of SILAM v.5.5

    Directory of Open Access Journals (Sweden)

    M. Sofiev

    2015-03-01

    Full Text Available The paper presents dynamic cores v.4 and v.5 of the System for Integrated modeLling of Atmospheric coMposition SILAM v.5.5 based on the advection algorithm of Michael Galperin. This advection routine, so far weakly presented in international literature, is non-diffusive, positively defined, stable with regard to Courant number significantly above one, and very efficient computationally. For the first time, we present a rigorous description of its original version, along with several updates that improve its monotonicity and allow applications to long-living species in conditions of complex atmospheric flows. The other extension allows the scheme application to dynamics of aerosol spectra. The scheme is accompanied with the previously developed vertical diffusion algorithm, which encapsulates the dry deposition process as a boundary condition. Connection to chemical transformation modules is outlined, accounting for the specifics of transport scheme. Quality of the advection routine is evaluated using a large set of tests. The original approach has been previously compared with several classic algorithms widely used in operational models. The basic tests were repeated for the updated scheme, along with demanding global 2-D tests recently suggested in literature, which allowed positioning the scheme with regard to sophisticated state-of-the-art approaches. The model performance appeared close to the top of the list with very modest computational costs.

  1. Northern European trees show a progressively diminishing response to increasing atmospheric carbon dioxide concentrations

    CSIR Research Space (South Africa)

    Waterhouse, JS

    2004-04-01

    Full Text Available 1895-1994 of three tree species growing across northern Europe to increases in atmospheric CO2 concentrations using parameters derived from stable carbon isotope ratios of trunk cellulose. Using the isotope data, values of intrinsic water-use efficiency...

  2. Investigation of the effects of process variables on derived properties of spray dried solid-dispersions using polymer based response surface model and ensemble artificial neural network models.

    Science.gov (United States)

    Patel, Ashwinkumar D; Agrawal, Anjali; Dave, Rutesh H

    2014-04-01

    The objective of this study was to use different statistical tools to understand and optimize the spray drying process to prepare solid dispersions. In this study we investigated the relationship between input variables (inlet temperature, feed concentration, flow rate, solvent and atomization parameters) and quality attributes (yield, outlet temperature and mean particle size) of spray dried solid dispersions (SSDs) using response surface model and ensemble artificial neural network. The Box Behnken design was developed to investigate the effect of various input variables on quality attributes of final products. Moreover, Pearson correlation analysis, self organizing map, contour plots and response surface plot were used to illustrate the relationship between input variables and quality attributes. The influence of different physicochemical properties of solvent on the quality attributes of spray dried products was also investigated. Final validation of prepared models was done using binary SSDs of six model drugs with PVP. Results demonstrated the effectiveness of proposed PVP based model which can help scientists to gain detailed understanding of spray drying process of solid dispersion using minimal resources and time during early formulation development stage. It will also help them to ensure consistent quality of SSDs using broad range of input variables. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Analysis of Frequency Response and Scale-Factor of Tuning Fork Micro-Gyroscope Operating at Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Xukai Ding

    2015-01-01

    Full Text Available This paper presents a study of the frequency response and the scale-factor of a tuning fork micro-gyroscope operating at atmospheric pressure in the presence of an interference sense mode by utilizing the approximate transfer function. The optimal demodulation phase (ODP, which is always ignored in vacuum packaged micro-gyroscopes but quite important in gyroscopes operating at atmospheric pressure, is obtained through the transfer function of the sense mode, including the primary mode and the interference mode. The approximate transfer function of the micro-gyroscope is deduced in consideration of the interference mode and the ODP. Then, the equation describing the scale-factor of the gyroscope is also obtained. The impacts of the interference mode and Q-factor on the frequency response and the scale-factor of the gyroscope are analyzed through numerical simulations. The relationship between the scale-factor and the demodulation phase is also illustrated and gives an effective way to find out the ODP in practice. The simulation results predicted by the transfer functions are in close agreement with the results of the experiments. The analyses and simulations can provide constructive guidance on bandwidth and sensitivity designs of the micro-gyroscopes operating at atmospheric pressure.

  4. Analysis of frequency response and scale-factor of tuning fork micro-gyroscope operating at atmospheric pressure.

    Science.gov (United States)

    Ding, Xukai; Li, Hongsheng; Ni, Yunfang; Sang, Pengcheng

    2015-01-01

    This paper presents a study of the frequency response and the scale-factor of a tuning fork micro-gyroscope operating at atmospheric pressure in the presence of an interference sense mode by utilizing the approximate transfer function. The optimal demodulation phase (ODP), which is always ignored in vacuum packaged micro-gyroscopes but quite important in gyroscopes operating at atmospheric pressure, is obtained through the transfer function of the sense mode, including the primary mode and the interference mode. The approximate transfer function of the micro-gyroscope is deduced in consideration of the interference mode and the ODP. Then, the equation describing the scale-factor of the gyroscope is also obtained. The impacts of the interference mode and Q-factor on the frequency response and the scale-factor of the gyroscope are analyzed through numerical simulations. The relationship between the scale-factor and the demodulation phase is also illustrated and gives an effective way to find out the ODP in practice. The simulation results predicted by the transfer functions are in close agreement with the results of the experiments. The analyses and simulations can provide constructive guidance on bandwidth and sensitivity designs of the micro-gyroscopes operating at atmospheric pressure.

  5. Bacterial-killing effect of atmospheric pressure non-equilibrium plasma jet and oral mucosa response.

    Science.gov (United States)

    Liu, Dexi; Xiong, Zilan; Du, Tianfeng; Zhou, Xincai; Cao, Yingguang; Lu, Xinpei

    2011-12-01

    Recently, plasma sterilization has attracted increasing attention in dental community for the atmospheric pressure non-equilibrium plasma jet (APNPs), which is driven by a kilohertz pulsed DC power, may be applied to the dental and oral diseases. However, it is still in doubt whether APNPs can effectively kill pathogenic bacteria in the oral cavity and produce no harmful effects on normal oral tissues, especially on normal mucosa. The aim of this study was to evaluate the bacterial-killing effect of APNPs in the biofilms containing a single breed of bacteria (Porphyromonas gingivalis, P.g.), and the pathological changes of the oral mucosa after treatment by APNPs. P.g. was incubated to form the biofilms in vitro, and the samples were divided into three groups randomly: group A (blank control); group B in which the biofilms were treated by APNPs (the setting of the equipment: 10 kHz, 1600 ns and 8 kV); group C in which the biofilms were exposed only to a gas jet without ignition of the plasma. Each group had three samples and each sample was processed for up to 5 min. The biofilms were then fluorescently stained, observed and photographed under a laser scanning confocal microscope. In the animal experiment, six male Japanese white rabbits were divided into two groups randomly (n=3 in each group) in terms of the different post-treatment time (1-day group and 5-day group). The buccal mucosa of the left side and the mucosa of the ventral surface of the tongue were treated by APNPs for 10 min in the same way as the bacterial biofilm experiment in each rabbit, and the corresponding mucosa of the other sides served as normal control. The clinical manifestations of the oral mucosa were observed and recorded every day. The rabbits were sacrificed one or five day(s) after APNPs treatment. The oral mucosa were harvested and prepared to haematoxylin and eosin-stained sections. Clinical observation and histopathological scores were used to assess mucosal changes. The results

  6. Seasonal patterns of photosynthetic light response in Douglas-fir seedlings subjected to elevated atmospheric CO(2) and temperature.

    Science.gov (United States)

    Lewis, J. D.; Olszyk, D.; Tingey, D. T.

    1999-04-01

    Increases in atmospheric CO(2) concentration and temperature are predicted to increase the light response of photosynthesis by increasing light-saturated photosynthetic rates and apparent quantum yields. We examined the interactive effects of elevated atmospheric CO(2) concentration and temperature on the light response of photosynthesis in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings. Seedlings were grown in sunlit chambers controlled to track either ambient (~400 ppm) CO(2) or ambient + 200 ppm CO(2), at ambient temperature or ambient + 4 degrees C. Photosynthetic light response curves were measured over an 18-month period beginning 32 months after treatments were initiated. Light-response curves were measured at the growth CO(2) concentration, and were used to calculate the light-saturated rate of photosynthesis, light compensation point, quantum yield and respiration rate. Elevated CO(2) increased apparent quantum yields during two of five measurement periods, but did not significantly affect light-saturated net photosynthetic rates, light compensation points or respiration rates. Elevated temperature increased all parameters. There were no significant interactions between CO(2) concentration and temperature. We conclude that down-regulation of photosynthesis occurred in the elevated CO(2) treatments such that carbon uptake at a given irradiance was similar across CO(2) treatments. In contrast, increasing temperature may substantially increase carbon uptake rates in Douglas-fir, assuming other environmental factors do not limit photosynthesis; however, it is not clear whether the increased carbon uptake will increase growth rates or be offset by increased carbon efflux through respiration.

  7. Using the Wasserstein distance to compare fields of pollutants: application to the radionuclide atmospheric dispersion of the Fukushima-Daiichi accident

    Directory of Open Access Journals (Sweden)

    Alban Farchi

    2016-09-01

    Full Text Available The verification of simulations against data and the comparison of model simulation of pollutant fields rely on the critical choice of statistical indicators. Most of the scores are based on point-wise, that is, local, value comparison. Such indicators are impacted by the so-called double penalty effect. Typically, a misplaced blob of pollutants will doubly penalise such a score because it is predicted where it should not be and is not predicted where it should be. The effect is acute in plume simulations where the concentrations gradient can be sharp. A non-local metric that would match concentration fields by displacement would avoid such double penalty. Here, we experiment on such a metric known as the Wasserstein distance, which tells how penalising moving the pollutants is. We give a mathematical introduction to this distance and discuss how it should be adapted to handle fields of pollutants. We develop and optimise an open Python code to compute this distance. The metric is applied to the dispersion of cesium-137 of the Fukushima-Daiichi nuclear power plant accident. We discuss of its application in model-to-model comparison but also in the verification of model simulation against a map of observed deposited cesium-137 over Japan. As hoped for, the Wasserstein distance is less penalising, and yet retains some of the key discriminating properties of the root mean square error indicator.

  8. Response of the bacterial community in oil-contaminated marine water to the addition of chemical and biological dispersants.

    Science.gov (United States)

    Couto, Camila Rattes de Almeida; Jurelevicius, Diogo de Azevedo; Alvarez, Vanessa Marques; van Elsas, Jan Dirk; Seldin, Lucy

    2016-12-15

    The use of dispersants in different stages of the oil production chain and for the remediation of water and soil is a well established practice. However, the choice for a chemical or biological dispersant is still a controversial subject. Chemical surfactants that persist long in the environment may pose problems of toxicity themselves; therefore, biosurfactants are considered to constitute an environmentally friendly and effective alternative. Nevertheless, the putative effects of such agents on the microbiomes of oil-contaminated and uncontaminated marine environments have not been sufficiently evaluated. Here, we studied the effects of the surfactant Ultrasperse II(®) and the surfactin (biosurfactant) produced by Bacillus sp. H2O-1 on the bacterial communities of marine water. Specifically, we used quantitative PCR and genetic fingerprint analyses to study the abundance and structure of the bacterial communities in marine water collected from two regions with contrasting climatic conditions. The addition of either chemical surfactant or biosurfactant influenced the structure and abundance of total and oil-degrading bacterial communities of oil-contaminated and uncontaminated marine waters. Remarkably, the bacterial communities responded similarly to the addition of oil and/or either the surfactant or the biosurfactant in both set of microcosms. After 30 days of incubation, the addition of surfactin enhanced the oil-degrading bacteria more than the chemical surfactant. However, no increase of hydrocarbon biodegradation values was observed, irrespective of the dispersant used. These data contribute to an increased understanding of the impact of novel dispersants on marine bacteriomes before commercial release into the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Response of the upper atmosphere to variations in the solar soft x-ray irradiance. Ph.D. Thesis

    Science.gov (United States)

    Bailey, Scott Martin

    1995-01-01

    Terrestrial far ultraviolet (FUV) airglow emissions have been suggested as a means for remote sensing the structure of the upper atmosphere. The energy which leads to the excitation of FUV airglow emissions is solar irradiance at extreme ultraviolet (EUV) and soft x-ray wavelengths. Solar irradiance at these wavelengths is known to be highly variable; studies of nitric oxide (NO) in the lower thermosphere have suggested a variability of more than an order of magnitude in the solar soft x-ray irradiance. To properly interpret the FUV airflow, the magnitude of the solar energy deposition must be known. Previous analyses have used the electron impact excited Lyman-Birge-Hopfield (LBH) bands of N2 to infer the flux of photoelectrons in the atmosphere and thus to infer the magnitude of the solar irradiance. This dissertation presents the first simultaneous measurements of the FUV airglow, the major atmospheric constituent densities, and the solar EUV and soft x-ray irradiances. The measurements were made on three flights of an identical sounding rocket payload at different levels of solar activity. The linear response in brightness of the LBH bands to variations in solar irradiance is demonstrated. In addition to the N2 LBH bands, atomic oxygen lines at 135.6 and 130.4 nm are also studied. Unlike the LBH bands, these emissions undergo radiative transfer effects in the atmosphere. The OI emission at 135.6 nm is found to be well modeled using a radiative transfer calculation and the known excitation processes. Unfortunately, the assumed processes leading to OI 130.4 nm excitation are found to be insufficient to reproduce the observed variability of this emission. Production of NO in the atmosphere is examined; it is shown that a lower than previously reported variability in the solar soft x-ray irradiance is required to explain the variability of NO.

  10. Librational response of a deformed 3-layer Titan perturbed by non-keplerian orbit and atmospheric couplings

    CERN Document Server

    Richard, Andy; Charnay, Benjamin

    2014-01-01

    The analyses of Titan's gravity field obtained by Cassini space mission suggest the presence of an internal ocean beneath its icy surface. The characterization of the geophysical parameters of the icy shell and the ocean is important to constrain the evolution models of Titan. The knowledge of the librations, that are periodic oscillations around a uniform rotational motion, can bring piece of information on the interior parameters. The objective of this paper is to study the librational response in longitude from an analytical approach for Titan composed of a deep atmosphere, an elastic icy shell, an internal ocean, and an elastic rocky core perturbed by the gravitational interactions with Saturn. We start from the librational equations developed for a rigid satellite in synchronous spin-orbit resonance. We introduce explicitly the atmospheric torque acting on the surface computed from the Titan IPSL GCM (Institut Pierre Simon Laplace General Circulation Model) and the periodic deformations of elastic solid ...

  11. Stochastic parameterization of subgrid-scale processes in coupled ocean-atmosphere systems: Benefits and limitations of response theory

    CERN Document Server

    Demaeyer, Jonathan

    2016-01-01

    A stochastic subgrid-scale parameterization based on the Ruelle's response theory and proposed in Wouters and Lucarini (2012) is tested in the context of a low-order coupled ocean-atmosphere model for which a part of the atmospheric modes are considered as unresolved. A natural separation of the phase-space into an invariant set and its complement allows for an analytical derivation of the different terms involved in the parameterization, namely the average, the fluctuation and the long memory terms. In this case, the fluctuation term is an additive stochastic noise. Its application to the low-order system reveals that a considerable correction of the low-frequency variability along the invariant subset can be obtained, provided that the coupling is sufficiently weak. This new approach of scale separation opens new avenues of subgrid-scale parameterizations in multiscale systems used for climate forecasts.

  12. Industrial Responsibility in the Emission of Particulate Matter in the Atmosphere

    Science.gov (United States)

    de Souza, Paulo A.; Rodrigues, O. D.; Morimoto, T.; Garg, Vijayendra K.

    1998-12-01

    The present investigation consists of the application of several techniques such as Mössbauer spectroscopy, X-ray diffraction, atomic absorption, electron probe micro analysis (EPMA), and thermo-gravimetric analysis, to the identification of the particulate matter in atmospheric aerosols in the metropolitan region of Vitória (MRV), ES, Brazil. The main sources of particulate matter and its emission characteristics within the steel industry have been studied to identify its contribution to air particles in Vitória region. The analysis reveals the total amount of industrial emission of the iron containing components in the atmosphere. The presence of goethite, hematite, magnetite, pyrite, silicates, marine chloride and total absence of heavy metals could be confirmed.

  13. Response Variability across Diverse Rice Accessions under Rising Temperature and Increasing Atmospheric Carbon Dioxide

    Science.gov (United States)

    Evaluating variability of rice response to concurrent increases in CO2 and temperature forecasted for future climates is a prerequisite step towards characterizing the genetic architecture underlying this response. Expanding on previous single cultivar studies, we evaluated eleven biogeographically ...

  14. A Fast-Response Atmospheric Turbulence (FRAT) Probe with Gas-Sampling Ducts Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aeroprobe proposes to design, construct and test an air-data probe with substantially higher frequency response than currently available. This fast-response...

  15. The Prospect of Responsive Spacecraft Using Aeroassisted, Trans-Atmospheric Maneuvers

    Science.gov (United States)

    2014-06-19

    McNish, “Latitude and Longitude,” RASC Calgary Centre, The Royal Astronomical Society of Canada, last modified 11 November 2011, accessed 17 August...maintains the prerogative of performing as many exo- or trans-atmospheric maneuvers as permitted by the ∆ capacity of the vehicle. Consequently, the...Wright-Patterson AFB, OH, March 2004 (ADA424074). McNish, Larry. “Latitude and Longitude.” RASC Calgary Centre, The Royal Astronomical Society

  16. Response of Atmospheric Methane Consumption by Maine Forest Soils to Exogenous Aluminum Salts†

    OpenAIRE

    2000-01-01

    Atmospheric methane consumption by Maine forest soils was inhibited by additions of environmentally relevant levels of aluminum. Aluminum chloride was more inhibitory than nitrate or sulfate salts, but its effect was comparable to that of a chelated form of aluminum. Inhibition could be explained in part by the lower soil pH values which resulted from aluminum addition. However, significantly greater inhibition by aluminum than by mineral acids at equivalent soil pH values indicated that inhi...

  17. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    Science.gov (United States)

    Hameed, S.; Cess, R. D.; Hogan, J. S.

    1980-01-01

    Recent modeling of atmospheric chemical processes (Logan et al, 1978; Hameed et al, 1979) suggests that tropospheric ozone and methane might significantly increase in the future as the result of increasing anthropogenic emissions of CO, NO(x), and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test the possible climatic impact of changes in tropospheric chemical composition, a zonal energy-balance climate model has been combined with a vertically averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4, and NO(x). The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NO(x) and CH4, and that future increases in these emissions could augment global warming due to increasing atmospheric CO2.

  18. Atmospheric Response to Fukushima Daiichi NPP (Japan) Accident Reviled by Satellite and Ground observations

    CERN Document Server

    Ouzounov, D; Hattori, K; Kafatos, M; Taylor, P

    2011-01-01

    Immediately after the March 11, 2011 earthquake and tsunami in Japan we started to continuously survey the Outgoing Long-wavelength Radiation (OLR, 10-13 microns) from NOAA/AVHRR. Our preliminary results show the presence of hot spots on the top of the atmosphere over the Fukushima Daiichi Nuclear Power Plant (FDNPP) and due to their persistence over the same region they are most likely not of meteorological origin. On March 14 and 21 we detected a significant increase in radiation (14 W/m2) at the top of the atmosphere which also coincides with a reported radioactivity gas leaks from the FDNPP. After March 21 the intensity of OLR started to decline, which has been confirmed by ground radiometer network. We hypothesize that this increase in OLR was a result of the radioactive leaks released in atmosphere from the FDNPP. This energy triggers ionization of the air near the ground and lead to release of latent heat energy due to change of air humidity and temperature. Our early results demonstrate the potential ...

  19. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    Science.gov (United States)

    Hameed, S.; Cess, R. D.; Hogan, J. S.

    1980-01-01

    Recent modeling of atmospheric chemical processes (Logan et al, 1978; Hameed et al, 1979) suggests that tropospheric ozone and methane might significantly increase in the future as the result of increasing anthropogenic emissions of CO, NO(x), and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test the possible climatic impact of changes in tropospheric chemical composition, a zonal energy-balance climate model has been combined with a vertically averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4, and NO(x). The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NO(x) and CH4, and that future increases in these emissions could augment global warming due to increasing atmospheric CO2.

  20. A modified impulse-response representation of the global near-surface air temperature and atmospheric concentration response to carbon dioxide emissions

    Science.gov (United States)

    Millar, Richard J.; Nicholls, Zebedee R.; Friedlingstein, Pierre; Allen, Myles R.

    2017-06-01

    Projections of the response to anthropogenic emission scenarios, evaluation of some greenhouse gas metrics, and estimates of the social cost of carbon often require a simple model that links emissions of carbon dioxide (CO2) to atmospheric concentrations and global temperature changes. An essential requirement of such a model is to reproduce typical global surface temperature and atmospheric CO2 responses displayed by more complex Earth system models (ESMs) under a range of emission scenarios, as well as an ability to sample the range of ESM response in a transparent, accessible and reproducible form. Here we adapt the simple model of the Intergovernmental Panel on Climate Change 5th Assessment Report (IPCC AR5) to explicitly represent the state dependence of the CO2 airborne fraction. Our adapted model (FAIR) reproduces the range of behaviour shown in full and intermediate complexity ESMs under several idealised carbon pulse and exponential concentration increase experiments. We find that the inclusion of a linear increase in 100-year integrated airborne fraction with cumulative carbon uptake and global temperature change substantially improves the representation of the response of the climate system to CO2 on a range of timescales and under a range of experimental designs.

  1. Attenuated total reflectance FT-IR imaging and quantitative energy dispersive-electron probe X-ray microanalysis techniques for single particle analysis of atmospheric aerosol particles.

    Science.gov (United States)

    Ryu, JiYeon; Ro, Chul-Un

    2009-08-15

    This work demonstrates the practical applicability of the combined use of attenuated total reflectance (ATR) FT-IR imaging and low-Z particle electron probe X-ray microanalysis (EPMA) techniques for the characterization of individual aerosol particles. These two single particle analytical techniques provide complementary information on the physicochemical characteristics of the same individual particles, that is, the low-Z particle EPMA for the information on the morphology and elemental concentration and the ATR-FT-IR imaging on the functional group, molecular species, and crystal structure. It was confirmed that the ATR-FT-IR imaging technique can provide sufficient FT-IR absorption signals to perform molecular speciation of individual particles of micrometer size when applied to artificially generated aerosol particles such as ascorbic acid and NaNO(3) aerosols. An exemplar indoor atmospheric aerosol sample was investigated to demonstrate the practical feasibility of the combined application of ATR-FT-IR imaging and low-Z particle EPMA techniques for the characterization of individual airborne particles.

  2. Net photosynthesis in Sphagnum mosses has increased in response to the last century's 100 ppm increase in atmospheric CO2

    Science.gov (United States)

    Serk, Henrik; Nilsson, Mats; Schleucher, Jurgen

    2017-04-01

    Peatlands store >25% of the global soil C pool, corresponding to 1/3 of the contemporary CO2-C in the atmosphere. The majority of the accumulated peat is made up by remains of Sphagnum peat mosses. Thus, understanding how various Sphagnum functional groups respond, and have responded, to increasing atmospheric CO2 and temperature constitutes a major challenge for our understanding of the role of peatlands under a changing climate. We have recently demonstrated (Ehlers et al., 2015, PNAS) that the abundance ratio of two deuterium isotopomers (molecules carrying D at specific intramolecular positions, here D6R/S) of photosynthetic glucose reflects the ratio of oxygenation to carboxylation metabolic fluxes at Rubisco. The photosynthetic glucose is prepared from various plant carbohydrates including cellulose. This finding has been established in CO2 manipulation experiments and observed in carbohydrate derived glucose isolated from herbarium samples of all investigated C-3 species. The isotopomer ratio is connected to specific enzymatic processes thus allowing for mechanistic implicit interpretations. Here we demonstrate a clear increase in net photosynthesis of Sphagnum fuscum in response to the increase of 100 ppm CO2 during the last century as deduced from analysis on S. fuscum remains from peat cores. The D6R/S ratio declines from bottom to top in peat cores, indicating CO2-driven reduction of photorespiration in contemporary moss biomass. In contrast to the hummock-forming S. fuscum, hollow-growing species, e.g. S. majus did not show this response or gave significantly weaker response, suggesting important ecological consequences of rising CO2 on peatland ecosystem services. We hypothesize that photosynthesis in hollow-growing species under water saturation is fully or partly disconnected from the atmospheric CO2 partial pressure and thus showing weaker or no response to increased atmospheric CO2. To further test the field observations we grow both hummock and

  3. Antarctic ice-sheet response to atmospheric CO2 and insolation in the Middle Miocene

    Directory of Open Access Journals (Sweden)

    M. Schulz

    2009-10-01

    Full Text Available Foraminiferal oxygen isotopes from deep-sea sediment cores suggest that a rapid expansion of the Antarctic ice sheet took place in the Middle Miocene around 13.9 million years ago. The origin for this transition is still not understood satisfactorily. One possible cause is a drop in the partial pressure of atmospheric carbon dioxide (pCO2 in combination with orbital forcing. A complication is the large uncertainty in the magnitude and timing of the reconstructed pCO2 variability and additionally the low temporal resolution of the available pCO2 records in the Middle Miocene. We used an ice sheet-climate model of reduced complexity to assess variations in Antarctic ice sheet volume induced by pCO2 and insolation forcing in the Middle Miocene. The ice-sheet sensitivity to atmospheric CO2 was tested for several scenarios with constant pCO2 forcing or a regular decrease in pCO2. This showed that small, ephemeral ice sheets existed under relatively high atmospheric CO2 conditions (between 640–900 ppm, whereas more stable, large ice sheets occurred when pCO2 was less than ~600 ppm. The main result of this study is that the pCO2-level must have declined just before or during the period of oxygen-isotope increase, thereby crossing a pCO2 glaciation threshold of around 615 ppm. After the decline, the exact timing of the Antarctic ice-sheet expansion depends also on the relative minimum in summer insolation at approximately 13.89 million years ago. Although the mechanisms described appear to be robust, the exact values of the pCO2 thresholds are likely to be model-dependent.

  4. The response of Phanerozoic surface temperature to variations in atmospheric oxygen concentration

    Science.gov (United States)

    Payne, Rebecca C.; Britt, Amber V.; Chen, Howard; Kasting, James F.; Catling, David C.

    2016-09-01

    Recently, Poulsen et al. (2015) suggested that O2 has played a major role in climate forcing during the Phanerozoic. Specifically, they argued that decreased O2 levels during the Cenomanian stage of the middle Cretaceous (94-100 Ma) could help explain the extremely warm climate during that time. The postulated warming mechanism involves decreased Rayleigh scattering by a thinner atmosphere, which reduces the planetary albedo and allows greater surface warming. This warming effect is then amplified by cloud feedbacks within their 3-D climate model. This increase in shortwave surface forcing, in their calculations, exceeds any decrease in the greenhouse effect caused by decreased O2. Here we use a 1-D radiative-convective climate model (with no cloud feedback) to check their results. We also include a self-consistent calculation of the change in atmospheric ozone and its effect on climate. Our results are opposite to those of Poulsen et al.: we find that the climate warms by 1.4 K at 35% O2 concentrations as a result of increased pressure broadening of CO2 and H2O absorption lines and cools by 0.8 K at 10% O2 as a result of decreased pressure broadening. The surface temperature changes are only about 1 K either way, though, for reasonable variations in Phanerozoic O2 concentrations (10%-35% by volume). Hence, it seems unlikely that changes in atmospheric O2 account for the warm climate of the Cenomanian. Other factors, such as a higher-than-expected sensitivity of climate to increased CO2 concentrations, may be required to obtain agreement with the paleoclimate data.

  5. Dispersion Forces

    CERN Document Server

    Buhmann, Stefan Yoshi

    2012-01-01

    In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of advanced aspects and scenarios. Macroscopic quantum electrodynamics is shown to provide a powerful framework for dispersion forces which allows for discussing general properties like their non-additivity and the relation between microscopic and macroscopic interactions. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. Starting with a brief recapitulation of volume I, this volume II deals especially with bodies of irregular shapes, universal scaling laws, dynamical forces on excited atoms, enhanced forces in cavity quantum electrodynamics, non-equilibrium forces in thermal environments and quantum friction. The book gives both the specialist and those new to the field a thorough overview over recent results in the field. It provides a toolbox for studying dispersion forces in various contex...

  6. Southwestern Tropical Atlantic coral growth response to atmospheric circulation changes induced by ozone depletion in Antarctica

    Directory of Open Access Journals (Sweden)

    H. Evangelista

    2015-08-01

    Full Text Available Climate changes induced by stratospheric ozone depletion over Antarctica have been recognized as an important consequence of the recently observed Southern Hemisphere atmospheric circulation. Here we present evidences that the Brazilian coast (Southwestern Atlantic may have been impacted from both winds and sea surface temperature changes derived from this process. Skeleton analysis of massive coral species living in shallow waters off Brazil are very sensitive to air–sea interactions, and seem to record this impact. Growth rates of Brazilian corals show a trend reversal that fits the ozone depletion evolution, confirming that ozone impacts are far reaching and potentially affect coastal ecosystems in tropical environments.

  7. Nonzonal structure of the response of the global field of the Earth's atmospheric temperature to solar activity

    Science.gov (United States)

    Krivolutsky, A. A.; Dement'eva, A. V.

    2017-01-01

    The work describes the results of calculations obtained with the Atmospheric Research Model (ARM) general circulation model. The temperature response of the troposphere and middle atmosphere to variations in UV solar radiation were found to have a large-scale wave structure when planetary waves at the lower model boundary were taken into account. In the present paper, the results from the processing of global temperature fields with three databases (ERA-20C, NOAA-CIRES 20th Century Reanalysis, v2, and NCEP/NCAR Reanalysis I) are provided. Analysis of the differences of the mean monthly temperature global fields (January and July) between the maxima and minima of three solar activity cycles (21, 22, and 23 cycles) also demonstrated their nonzonal structure. It was shown that the amplitude of this difference in January in the stratosphere (10 hPa) can be 7-29 K in the Northern Hemisphere. In July, this effect is prominent in Southern Hemisphere. In the troposphere (500 hPa), a nonzonal temperature effect is present in both the Northern and Southern Hemispheres; the amplitude of the effects amounts to approximately 5-12 K. In conclusion, we discuss that the mechanism of solar energy impact on atmospheric temperature discovered by numerical modeling is supported after reanalysis data processing.

  8. Response of lake chemistry to changes in atmospheric deposition and climate in three high-elevation wilderness areas of Colorado

    Science.gov (United States)

    Mast, M. Alisa; Turk, John T.; Clow, David W.; Campbell, Donald D.

    2011-01-01

    Trends in precipitation chemistry and hydrologic and climatic data were examined as drivers of long-term changes in the chemical composition of high-elevation lakes in three wilderness areas in Colorado during 1985-2008. Sulfate concentrations in precipitation decreased at a rate of -0.15 to -0.55 μeq/l/year at 10 high-elevation National Atmospheric Deposition Program stations in the state during 1987-2008 reflecting regional reductions in SO2 emissions. In lakes where sulfate is primarily derived from atmospheric inputs, sulfate concentrations also decreased although the rates generally were less, ranging from -0.12 to -0.27 μeq/l/year. The similarity in timing and sulfur isotopic data support the hypothesis that decreases in atmospheric deposition are driving the response of high-elevation lakes in some areas of the state. By contrast, in lakes where sulfate is derived primarily from watershed weathering sources, sulfate concentrations showed sharp increases during 1985-2008. Analysis of long-term climate records indicates that annual air temperatures have increased between 0.45 and 0.93°C per decade throughout most mountainous areas of Colorado, suggesting climate as a factor. Isotopic data reveal that sulfate in these lakes is largely derived from pyrite, which may indicate climate warming is preferentially affecting the rate of pyrite weathering.

  9. The National Atmospheric Release Advisory Center (NARAC) Modeling and Decision Support System for Radiological and Nuclear Emergency Preparedness and Response

    Energy Technology Data Exchange (ETDEWEB)

    Nasstrom, J S; Sugiyama, G; Baskett, R; Larsen, S; Bradley, M

    2005-04-01

    This paper describes the tools and services provided by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL) for modeling the impacts of airborne hazardous materials. NARAC provides atmospheric plume modeling tools and services for chemical, biological, radiological, and nuclear airborne hazards. NARAC can simulate downwind effects from a variety of scenarios, including fires, industrial and transportation accidents, radiation dispersal device explosions, hazardous material spills, sprayers, nuclear power plant accidents, and nuclear detonations. NARAC collaborates with several government agencies and laboratories in order to accomplish its mission. The NARAC suite of software tools include simple stand-alone, local-scale plume modeling tools for end-user's computers, and Web- and Internet-based software to access advanced modeling tools and expert analyses from the national center at LLNL. Initial automated, 3-D predictions of plume exposure limits and protective action guidelines for emergency responders and managers are available from the center in 5-10 minutes. These can be followed immediately by quality-assured, refined analyses by 24 x 7 on-duty or on-call NARAC staff. NARAC continues to refine calculations using updated on-scene information, including measurements, until all airborne releases have stopped and the hazardous threats are mapped and impacts assessed. Model predictions include the 3-D spatial and time-varying effects of weather, land use, and terrain, on scales from the local to regional to global. Real-time meteorological data and forecasts are provided by redundant communications links to the U.S. National Oceanic and Atmospheric Administration (NOAA), U.S. Navy, and U.S. Air Force, as well as an in-house mesoscale numerical weather prediction model. NARAC provides an easy-to-use Geographical Information System (GIS) for display of plume predictions with affected population counts and

  10. The Asian monsoon's role in atmospheric heat transport responses to orbital and millennial-scale climate change

    Science.gov (United States)

    McGee, D.; Green, B.; Donohoe, A.; Marshall, J.

    2015-12-01

    Recent studies have provided a framework for understanding the zonal-mean position of the tropical rain belt by documenting relationships between rain belt latitude and atmospheric heat transport across the equator (Donohoe et al., 2013). Modern seasonal and interannual variability in globally-averaged rain belt position (often referred to as 'ITCZ position') reflects the interhemispheric heat balance, with the rain belt's displacement toward the warmer hemisphere directly proportional to atmospheric heat transport into the cooler hemisphere. Model simulations suggest that rain belt shifts are likely to have obeyed the same relationship with interhemispheric heat transport in response to past changes in orbital parameters, ice sheets, and ocean circulation. This relationship implies that even small (±1 degree) shifts in the mean rain belt require large changes in hemispheric heat budgets, placing tight bounds on mean rain belt shifts in past climates. This work has primarily viewed tropical circulation in two dimensions, as a pair of zonal-mean Hadley cells on either side of the rain belt that are displaced north and south by perturbations in hemispheric energy budgets, causing the atmosphere to transport heat into the cooler hemisphere. Here we attempt to move beyond this zonal-mean perspective, motivated by arguments that the Asian monsoon system, rather than the zonal-mean circulation, plays the dominant role in annual-mean heat transport into the southern hemisphere in the modern climate (Heaviside and Czaja, 2012; Marshall et al., 2014). We explore a range of climate change experiments, including simulations of North Atlantic cooling and mid-Holocene climate, to test whether changes in interhemispheric atmospheric heat transport are primarily driven by the mean Hadley circulation, the Asian monsoon system, or other regional-scale atmospheric circulation changes. The scalings that this work identifies between Asian monsoon changes and atmospheric heat

  11. Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM

    Science.gov (United States)

    Zhu, Liping; Lü, Xinmiao; Wang, Junbo; Peng, Ping; Kasper, Thomas; Daut, Gerhard; Haberzettl, Torsten; Frenzel, Peter; Li, Quan; Yang, Ruimin; Schwalb, Antje; Mäusbacher, Roland

    2015-01-01

    The Tibetan Plateau (TP) is primarily influenced by the northern hemispheric middle latitude Westerlies and the Indian summer monsoon (ISM). The extent, long-distance effects and potential long-term changes of these two atmospheric circulations are not yet fully understood. Here, we analyse modern airborne pollen in a transition zone of seasonally alternating dominance of the Westerlies and the ISM to develop a pollen discrimination index (PDI) that allows us to distinguish between the intensities of the two circulation systems. This index is applied to interpret a continuous lacustrine sedimentary record from Lake Nam Co covering the past 24 cal kyr BP to investigate long-term variations in the atmospheric circulation systems. Climatic variations on the central TP widely correspond to those of the North Atlantic (NA) realm, but are controlled through different mechanisms resulting from the changing climatic conditions since the Last Glacial Maximum (LGM). During the LGM, until 16.5 cal kyr BP, the TP was dominated by the Westerlies. After 16.5 cal kyr BP, the climatic conditions were mainly controlled by the ISM. From 11.6 to 9 cal kyr BP, the TP was exposed to enhanced solar radiation at the low latitudes, resulting in greater water availability. PMID:26294226

  12. Intermediate time scale response of atmospheric CO2 following prescribed fire in a longleaf pine forest

    Science.gov (United States)

    Viner, B.; Parker, M.; Maze, G.; Varnedoe, P.; Leclerc, M.; Starr, G.; Aubrey, D.; Zhang, G.; Duarte, H.

    2016-10-01

    Fire plays an essential role in maintaining the structure and function of longleaf pine ecosystems. While the effects of fire on carbon cycle have been measured in previous studies for short periods during a burn and for multiyear periods following the burn, information on how carbon cycle is influenced by such changes over the span of a few weeks to months has yet to be quantified. We have analyzed high-frequency measurements of CO2 concentration and flux, as well as associated micrometeorological variables, at three levels of the tall Aiken AmeriFlux tower during and after a prescribed burn. Measurements of the CO2 concentration and vertical fluxes were examined as well as calculated net ecosystem exchange (NEE) for periods prior to and after the burn. Large spikes in both CO2 concentration and CO2 flux during the fire and increases in atmospheric CO2 concentration and reduced CO2 flux were observed for several weeks following the burn, particularly below the forest canopy. Both CO2 measurements and NEE were found to return to their preburn states within 60-90 days following the burn when no statistical significance was found between preburn and postburn NEE. This study examines the micrometeorological conditions during a low-intensity prescribed burn and its short-term effects on local CO2 dynamics in a forested environment by identifying observable impacts on local measurements of atmospheric CO2 concentration and fluxes.

  13. Carbon allocation changes: an adaptive response to variations in atmospheric CO2

    Science.gov (United States)

    Harrison, Sandy; Li, Guangqi; Prentice, Iain Colin

    2016-04-01

    Given the ubiquity of nutrient constraints on primary production, an optimal carbon allocation strategy is expected to increase total below-ground allocation (fine root production and turnover, allocation to mycorrhizae and carbon exudation to the rhizophere) as atmospheric CO2 concentration increases. Conversely, below-ground allocation should be reduced when atmospheric CO2 concentrations were low, as occurred during glacial times. Using a coupled generic primary production and tree-growth model, we quantify the changes in carbon allocation that are required to explain the apparent homoeostasis of tree radial growth during recent decades and between glacial and interglacial conditions. These results suggest a resolution of the apparent paradox of continuing terrestrial CO2 uptake (a consequence of CO2 fertilization) and the widespread lack of observed enhancement of stem growth in trees. Adaptive shifts in carbon allocation are thus a key feature that should to be accounted for in models to predict tree growth and future timber harvests, as well as in large-scale ecosystem and carbon cycle models.

  14. Intraspecific variation in the response of Arabidopsis thaliana lines to elevated atmospheric CO2

    NARCIS (Netherlands)

    Van der Kooij, TAW; De Kok, LJ; Stulen, I.

    2000-01-01

    Since a study of the intraspecific variation in the response to elevated CO2 of different genetic lines of one species might reveal the parameters essential for the response of a species to elevated CO2, thirteen lines of Arabidopsis thaliana L. were exposed to elevated CO2 (700 mul l(-1)). All line

  15. Implementation of a model of atmospheric dispersion and dose calculation in the release of radioactive effluents in the Nuclear Centre; Implementacion de un modelo de dispersion atmosferica y calculo de dosis en la liberacion de efluentes radiactivos en el Centro Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Cruz L, C. A.

    2015-07-01

    In the present thesis, the software DERA (Dispersion of Radioactive Effluents into the Atmosphere) was developed in order to calculate the equivalent dose, external and internal, associated with the release of radioactive effluents into the atmosphere from a nuclear facility. The software describes such emissions in normal operation, and not considering the exceptional situations such as accidents. Several tools were integrated for describing the dispersion of radioactive effluents using site meteorological information (average speed and wind direction and the stability profile). Starting with the calculation of the concentration of the effluent as a function of position, DERA estimates equivalent doses using a set of EPA s and ICRP s coefficients. The software contains a module that integrates a database with these coefficients for a set of 825 different radioisotopes and uses the Gaussian method to calculate the effluents dispersion. This work analyzes how adequate is the Gaussian model to describe emissions type -puff-. Chapter 4 concludes, on the basis of a comparison of the recommended correlations of emissions type -puff-, that under certain conditions (in particular with intermittent emissions) it is possible to perform an adequate description using the Gaussian model. The dispersion coefficients (σ{sub y} and σ{sub z}), that using the Gaussian model, were obtained from different correlations given in the literature. Also in Chapter 5 is presented the construction of a particular correlation using Lagrange polynomials, which takes information from the Pasquill-Gifford-Turner curves (PGT). This work also contains a state of the art about the coefficients that relate the concentration with the equivalent dose. This topic is discussed in Chapter 6, including a brief description of the biological-compartmental models developed by the ICRP. The software s development was performed using the programming language Python 2.7, for the Windows operating system (the

  16. Quantification of β-carotene, retinol, retinyl acetate and retinyl palmitate in enriched fruit juices using dispersive liquid-liquid microextraction coupled to liquid chromatography with fluorescence detection and atmospheric pressure chemical ionization-mass spectrometry.

    Science.gov (United States)

    Viñas, Pilar; Bravo-Bravo, María; López-García, Ignacio; Hernández-Córdoba, Manuel

    2013-02-01

    A detailed optimization of dispersive liquid-liquid microextraction (DLLME) was carried out for developing liquid chromatographic (HPLC) techniques, using both fluorescence and atmospheric pressure chemical ionization mass spectrometric (APCI-MS) detection, for the simultaneous analysis of preforms of vitamin A: retinol (R), retinyl acetate (RA), retinyl palmitate (RP) and β-carotene (β-C). The HPLC analyses were carried out using a mobile phase composed of methanol and water, with gradient elution. The APCI-MS and fluorescence spectra permitted the correct identification of compounds in the analyzed samples. Parameters affecting DLLME were optimized using 2 mL of methanol (disperser solvent) containing 150 μL carbon tetrachloride (extraction solvent). The precision ranged from 6% to 8% (RSD) and the limits of detection were between 0.03 and 1.4 ng mL(-1), depending on the compound. The enrichment factor values were in the 21-44 range. Juice samples were analyzed without saponification and no matrix effect was found when using fluorescence detection, so calibration was possible with aqueous standards. However, a matrix effect appeared with APCI-MS, in which case it was necessary to apply matrix-matched calibration. There was great variability in the forms of vitamin A present in the juices, the most abundant ester being retinyl acetate (0.04 to 3.4 μg mL(-1)), followed by the amount of retinol (0.01 to 0.16 μg mL(-1)), while retinyl palmitate was not detected, except in the milk-containing juice, in which RP was the main form. The representative carotenoid β-carotene was present in the orange, peach, mango and multifruit juices in high amounts. The method was validated using two certified reference materials.

  17. Atmospheric Dispersion Research of Mid-break LOCA for Small Reactor of Nuclear-powered Device in Dock%小型动力堆码头中破口失水事故大气扩散研究

    Institute of Scientific and Technical Information of China (English)

    王伟; 张帆; 陈力生; 晏峰

    2014-01-01

    Using the model of Gaussion subsection plume ,the radioactive nuclide atmos‐pheric dispersion rule in the terrain of 20 km of the coastal w as estimated w hen the design basis accident with 29.4% equivalent diameter break size happened .The source term was captured by the calculation program of severe accident named MELCOR ,and the result was used as input in the analysis software of atmospheric dispersion named MACCS .The results show that the mid‐break LOCA would lead to the radioactive pol‐lution for the area of dock .The slower the wind blows and the more steady the weather is ,the larger the radioactive polluted area is .%采用高斯分段烟羽模型估算了某小型动力堆在码头内发生破口尺寸为29.4%当量直径的设计基准事故时,放射性核素在码头20 km 区域范围内的大气扩散规律。源项采用严重事故计算程序M ELCOR仿真获得,并将计算结果输入到大气扩散分析软件M ACCS进行分析计算。计算结果表明:中破口失水事故会造成码头区域的放射性污染,风速越小、气象条件越稳定,放射性的影响范围越大。

  18. Response of salt marsh and mangrove wetlands to changes in atmospheric CO2, climate, and sea-level

    Science.gov (United States)

    Mckee, Karen L.; Rogers, Kerrylee; Saintilan, Neil; Middleton, Beth A.

    2012-01-01

    Coastal salt marsh and mangrove ecosystems are particularly vulnerable to changes in atmospheric CO2 concentrations and associated climate and climate-induced changes. We provide a review of the literature detailing theoretical predictions and observed responses of coastal wetlands to a range of climate change stressors, including CO2, temperature, rainfall, and sea-level rise. This review incorporates a discussion of key processes controlling responses in different settings and thresholds of resilience derived from experimental and observational studies. We specifically consider the potential and observed effects on salt marsh and mangrove vegetation of changes in (1) elevated [CO2] on physiology, growth, and distribution; (2) temperature on distribution and diversity; (3) rainfall and salinity regimes on growth and competitive interactions; and (4) sea level on geomorphological, hydrological, and biological processes.