WorldWideScience

Sample records for respirable mass concentrations

  1. Comparison of Respirable Mass Concentrations Measured by a Personal Dust Monitor and a Personal DataRAM to Gravimetric Measurements.

    Halterman, Andrew; Sousan, Sinan; Peters, Thomas M

    2017-12-15

    In 2016, the Mine Safety and Health Administration required the use of continuous monitors to measure respirable dust in mines and better protect miner health. The Personal Dust Monitor, PDM3700, has met stringent performance criteria for this purpose. In a laboratory study, respirable mass concentrations measured with the PDM3700 and a photometer (personal DataRam, pDR-1500) were compared to those measured gravimetrically for five aerosols of varying refractive index and density (diesel exhaust fume, welding fume, coal dust, Arizona road dust (ARD), and salt [NaCl] aerosol) at target concentrations of 0.38, 0.75, and 1.5 mg m-3. For all aerosols except coal dust, strong, near-one-to-one, linear relationships were observed between mass concentrations measured with the PDM3700 and gravimetrically (diesel fume, slope = 0.99, R2 = 0.99; ARD, slope = 0.98, R2 = 0.99; and NaCl, slope = 0.95, R2 = 0.99). The slope deviated substantially from unity for coal dust (slope = 0.55; R2 = 0.99). Linear relationships were also observed between mass concentrations measured with the pDR-1500 and gravimetrically, but one-to-one behavior was not exhibited (diesel fume, slope = 0.23, R2 = 0.76; coal dust, slope = 0.54, R2 = 0.99; ARD, slope = 0.61, R2 = 0.99; NaCl, slope = 1.14, R2 = 0.98). Unlike the pDR-1500, mass concentrations measured with the PDM3700 appear independent of refractive index and density, suggesting that it could have applications in a variety of occupational settings. © The Author(s) 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  2. Aquatic respiration rate measurements at low oxygen concentrations.

    Moritz Holtappels

    Full Text Available Despite its huge ecological importance, microbial oxygen respiration in pelagic waters is little studied, primarily due to methodological difficulties. Respiration measurements are challenging because of the required high resolution of oxygen concentration measurements. Recent improvements in oxygen sensing techniques bear great potential to overcome these limitations. Here we compare 3 different methods to measure oxygen consumption rates at low oxygen concentrations, utilizing amperometric Clark type sensors (STOX, optical sensors (optodes, and mass spectrometry in combination with (18-18O2 labeling. Oxygen concentrations and consumption rates agreed well between the different methods when applied in the same experimental setting. Oxygen consumption rates between 30 and 400 nmol L(-1 h(-1 were measured with high precision and relative standard errors of less than 3%. Rate detection limits in the range of 1 nmol L(-1 h(-1 were suitable for rate determinations in open ocean water and were lowest at the lowest applied O2 concentration.

  3. Elemental Concentration of Inhalable and Respirable Particulate ...

    20537 and respirable foam for I.O.M sampler. The elemental composition (Co, Ni, Zn, Cu, Fe, Pb, Cr, Mn and Cd) were analyzed by using Atomic Absorption Spectrophotometric (AAS). The data generated were subjected to descriptive analysis. In inhalable fraction,the enrichment factor ranged from 1-73.3 while in respirable ...

  4. Soil CO2 concentration does not affect growth or root respiration in bean or citrus

    Bouma, T.J.; Nielsen, K.F.; Eissenstat, D.M.; Lynch, J.P.

    1997-01-01

    Contrasting effects of soil CO2 concentration on root respiration rates during short-term CO2 exposure, and on plant growth during long-term CO2 exposure, have been reported, Here we examine the effects of both short-and long-term exposure to soil CO2 on the root respiration of intact plants and on

  5. The evaluation and quantification of respirable coal and silica dust concentrations: a task-based approach.

    Grové, T; Van Dyk, T; Franken, A; Du Plessis, J

    2014-01-01

    Silicosis and coal worker's pneumoconiosis are serious occupational respiratory diseases associated with the coal mining industry and the inhalation of respirable dusts containing crystalline silica. The purpose of this study (funded by the Mine Health and Safety Council of South Africa) was to evaluate the individual contributions of underground coal mining tasks to the respirable dust and respirable silica dust concentrations in an underground section by sampling the respirable dust concentrations at the intake and return of each task. The identified tasks were continuous miner (CM) cutting, construction, transfer of coal, tipping, and roof bolting. The respirable dust-generating hierarchy of the tasks from highest to lowest was: transfer of coal > CM right cutting > CM left cutting > CM face cutting > construction > roof bolting > tipping; and for respirable silica dust: CM left cutting > construction > transfer of coal > CM right cutting. Personal exposure levels were determined by sampling the exposures of workers performing tasks in the section. Respirable dust concentrations and low concentrations of respirable silica dust were found at the intake air side of the section, indicating that air entering the section is already contaminated. The hierarchy for personal respirable dust exposures was as follows, from highest to lowest: CM operator > cable handler > miner > roof bolt operator > shuttle car operator, and for respirable silica dust: shuttle car operator > CM operator > cable handler > roof bolt operator > miner. Dust control methods to lower exposures should include revision of the position of workers with regard to the task performed, positioning of the tasks with regard to the CM cutting, and proper use of the line curtains to direct ventilation appropriately. The correct use of respiratory protection should also be encouraged.

  6. Response of Respiration of Soybean Leaves Grown at Ambient and Elevated Carbon Dioxide Concentrations to Day-to-day Variation in Light and Temperature under Field Conditions

    BUNCE, JAMES A.

    2005-01-01

    • Background and Aims Respiration is an important component of plant carbon balance, but it remains uncertain how respiration will respond to increases in atmospheric carbon dioxide concentration, and there are few measurements of respiration for crop plants grown at elevated [CO2] under field conditions. The hypothesis that respiration of leaves of soybeans grown at elevated [CO2] is increased is tested; and the effects of photosynthesis and acclimation to temperature examined. • Methods Net rates of carbon dioxide exchange were recorded every 10 min, 24 h per day for mature upper canopy leaves of soybeans grown in field plots at the current ambient [CO2] and at ambient plus 350 µmol mol−1 [CO2] in open top chambers. Measurements were made on pairs of leaves from both [CO2] treatments on a total of 16 d during the middle of the growing seasons of two years. • Key Results Elevated [CO2] increased daytime net carbon dioxide fixation rates per unit of leaf area by an average of 48 %, but had no effect on night-time respiration expressed per unit of area, which averaged 53 mmol m−2 d−1 (1·4 µmol m−2 s−1) for both the ambient and elevated [CO2] treatments. Leaf dry mass per unit of area was increased on average by 23 % by elevated [CO2], and respiration per unit of mass was significantly lower at elevated [CO2]. Respiration increased by a factor of 2·5 between 18 and 26 °C average night temperature, for both [CO2] treatments. • Conclusions These results do not support predictions that elevated [CO2] would increase respiration per unit of area by increasing photosynthesis or by increasing leaf mass per unit of area, nor the idea that acclimation of respiration to temperature would be rapid enough to make dark respiration insensitive to variation in temperature between nights. PMID:15781437

  7. Evaluation of 14C abundance in soil respiration using accelerator mass spectrometry

    Koarashi, Jun; Iida, Takao; Moriizumi, Jun; Asano, Tomohiro

    2004-01-01

    To clarify the behavior of 14 C in terrestrial ecosystems, 14 C abundance in soil respiration was evaluated in an urban forest with a new method involving a closed chamber technique and 14 C measurement by accelerator mass spectrometry (AMS). Soil respiration had a higher Δ 14 C than the contemporary atmosphere. This indicates that a significant portion of soil respiration is derived from the decomposition of soil organic matter enriched in 14 C by atmospheric nuclear weapons tests, with a notable time lag between atmospheric 14 C addition and re-emission from soil. On the other hand, δ 14 C in soil respiration demonstrated that 14 C abundance ratio itself in soil-respired CO 2 is not always high compared with that in atmospheric CO 2 because of the isotope fractionation during plant photosynthesis and microbial decomposition of soil organic matter. The Δ 14 C in soil respiration was slightly lower in August than in March, suggesting a relatively high contribution of plant root respiration and decomposition of newly accumulated and/or 14 C-depleted soil organic matter to the total soil respiration in August

  8. Urinary 1-hydroxypyrene concentrations in Chinese coke oven workers relative to job category, respirator usage, and cigarette smoking

    Bo Chen; Yunping Hu; Lixing Zheng; Qiangyi Wang; Yuanfen Zhou; Taiyi Jin [Fudan University, Shanghai (China). School of Public Health

    2007-09-15

    1-Hydroxypyrene (1-OHP) is a biomarker of recent exposure to polycyclic aromatic hydrocarbons (PAHs). We investigated whether urinary 1-OHP concentrations in Chinese coke oven workers (COWs) are modulated by job category, respirator usage, and cigarette smoking. The present cross-sectional study measured urinary 1-OHP concentrations in 197 COWs from Coking plant I and 250 COWs from Coking plant II, as well as 220 unexposed referents from Control plant I and 56 referents from Control plant II. Urinary 1-OHP concentrations (geometric mean, {mu}mol/mol creatinine) were 5.18 and 4.21 in workers from Coking plants I and II, respectively. The highest 1-OHP levels in urine were found among topside workers including lidmen, tar chasers, and whistlers. Benchmen had higher 1-OHP levels than other workers at the sideoven. Above 75% of the COWs exceeded the recommended occupational exposure limit of 2.3 {mu}mol/mol creatinine. Respirator usage and increased body mass index (BMI) slightly reduced 1-OHP levels in COWs. Cigarette smoking significantly increased urinary 1-OHP levels in unexposed referents but had no effect in COWs. Chinese COWs, especially topside workers and benchmen, are exposed to high levels of PAHs. Urinary 1-OHP concentrations appear to be modulated by respirator usage and BMI in COWs, as well as by smoking in unexposed referents.

  9. Relationship between oxygen concentration, respiration and filtration rate in blue mussel Mytilus edulis

    Tang, Baojun; Riisgård, Hans Ulrik

    2018-03-01

    The large water-pumping and particle-capturing gills of the filter-feeding blue mussel Mytilus edulis are oversized for respiratory purposes. Consequently, the oxygen uptake rate of the mussel has been suggested to be rather insensitive to decreasing oxygen concentrations in the ambient water, since the diffusion rate of oxygen from water flowing through the mussel determines oxygen uptake. We tested this hypothesis by measuring the oxygen uptake in mussels exposed to various oxygen concentrations. These concentrations were established via N2-bubbling of the water in a respiration chamber with mussels fed algal cells to stimulate fully opening of the valves. It was found that mussels exposed to oxygen concentrations decreasing from 9 to 2 mg O2/L resulted in a slow but significant reduction in the respiration rate, while the filtration rate remained high and constant. Thus, a decrease of oxygen concentration by 78% only resulted in a 25% decrease in respiration rate. However, at oxygen concentrations below 2 mg O2/L M. edulis responded by gradually closing its valves, resulting in a rapid decrease of filtration rate, concurrent with a rapid reduction of respiration rate. These observations indicated that M. edulis is no longer able to maintain its normal aerobic metabolism at oxygen concentration below 2 mg O2/L, and there seems to be an energy-saving mechanism in bivalve molluscs to strongly reduce their activity when exposed to low oxygen conditions.

  10. Spatial uncoupling of biodegradation, soil respiration, and PAH concentration in a creosote contaminated soil

    Bengtsson, Goeran; Toerneman, Niklas; Yang Xiuhong

    2010-01-01

    Hotspots and coldspots of concentration and biodegradation of polycyclic aromatic hydrocarbons (PAHs) marginally overlapped at the 0.5-100 m scale in a creosote contaminated soil in southern Sweden, suggesting that concentration and biodegradation had little spatial co-variation. Biodegradation was substantial and its spatial variability considerable and highly irregular, but it had no spatial autocorrelation. The soil concentration of PAHs explained only 20-30% of the variance of their biodegradation. Soil respiration was spatially autocorrelated. The spatial uncoupling between biodegradation and soil respiration seemed to be governed by the aging of PAHs in the soil, since biodegradation of added 13 C phenanthrene covaried with both soil respiration and microbial biomass. The latter two were also correlated with high concentrations of phospholipid fatty acids (PLFAs) that are common in gram-negative bacteria. However, several of the hotspots of biodegradation coincided with hotspots for the distribution of a PLFA indicative of fungal biomass. - Hotspots of PAH biodegradation in a creosote contaminated soil do not coincide with hotspots of PAH concentration, microbial biomass and respiration.

  11. Root respiration in North American forests: Effects of nitrogen concentration and temperature across biomes

    A.J. Burton; K.S. Pregitzer; R.W. Ruess; R.L. Hendrick; Mike F. Allen

    2002-01-01

    Root respiration rates have been shown to be correlated with temperature and root N concentration in studies of individual forest types or species, but it is not known how universal these relationships are across forest species adapted to widely different climatic and edaphic conditions. In order to test for broad, cross-species relationships, we measured fine root...

  12. Temperature response of soil respiration is dependent on concentration of readily decomposable C

    Larionova, A. A.; Yevdokimov, I. V.; Bykhovets, S. S.

    2007-12-01

    Temperature acclimation of soil organic matter (SOM) decomposition is one of the major uncertainties in predicting soil CO2 efflux associated with the increase in global mean temperature. A reasonable explanation for an apparent acclimation proposed by Davidson and colleagues (2006) based on Michaelis-Menten kinetics suggests that temperature sensitivity decreases when both maximal activity of respiratory enzymes (Vmax) and half-saturation constant (Ks) cancel each other upon temperature increase. We tested the hypothesis of the canceling effect by the mathematical simulation of data obtained in incubation experiments with forest and arable soils. Our data support the hypothesis and suggest that concentration of readily decomposable C substrate (as glucose equivalents) and temperature dependent substrate release are the important factors controlling temperature sensitivity of soil respiration. The highest temperature sensitivity of soil respiration was observed when substrate release was temperature dependent and C substrate concentration was much lower than Ks. Increase of substrate content to the half-saturation constant by glucose addition resulted in temperature acclimation associated with the canceling effect. Addition of the substrate to the level providing respiration at a maximal rate Vmax leads to the acclimation of the whole microbial community as such. However, growing microbial biomass was more sensitive to the temperature alterations. This study improves our understanding of the instability of temperature sensitivity of soil respiration under field conditions, attributing this phenomenon to changes in concentration of readily decomposable C substrate.

  13. Sulfide-inhibition of mitochondrial respiration at very low oxygen concentrations.

    Matallo, J; Vogt, J; McCook, O; Wachter, U; Tillmans, F; Groeger, M; Szabo, C; Georgieff, M; Radermacher, P; Calzia, E

    2014-09-15

    Our aim was to study the ability of an immortalized cell line (AMJ2-C11) to sustain aerobic cell respiration at decreasing oxygen concentrations under continuous sulfide exposure. We assumed that the rate of elimination of sulfide through the pathway linked to the mitochondrial respiratory chain and therefore operating under aerobic conditions, should decrease with limiting oxygen concentrations. Thus, sulfide's inhibition of cellular respiration would occur faster under continuous sulfide exposure when the oxygen concentration is in the very low range. The experiments were performed with an O2K-oxygraph (Oroboros Instruments) by suspending 0.5-1×10(6) cells in 2 ml of continuously stirred respiration medium at 37 °C and calculating the oxygen flux (JO2) as the negative derivative of the oxygen concentration in the medium. The cells were studied in two different metabolic states, namely under normal physiologic respiration (1) and after uncoupling of mitochondrial respiration (2). Oxygen concentration was controlled by means of a titration-injection pump, resulting in average concentration values of 0.73±0.05 μM, 3.1±0.2 μM, and 6.2±0.2 μM. Simultaneously we injected a 2 mM Na2S solution at a continuous rate of 10 μl/s in order to quantify the titration-time required to reduce the JO2 to 50% of the initial respiratory activity. Under the lowest oxygen concentration this effect was achieved after 3.5 [0.3;3.5] and 11.7 [6.2;21.2]min in the uncoupled and coupled state, respectively. This time was statistically significantly shorter when compared to the intermediate and the highest O2 concentrations tested, which yielded values of 24.6 [15.5;28.1]min (coupled) and 35.9 [27.4;59.2]min (uncoupled), as well as 42.4 [27.5;42.4]min (coupled) and 51.5 [46.4;51.7]min (uncoupled). All data are medians [25%, and 75% percentiles]. Our results confirm that the onset of inhibition of cell respiration by sulfide occurs earlier under a continuous exposure when approaching

  14. Soil and Root Respiration Under Elevated CO2 Concentrations During Seedling Growth of Pinus sylvestris var. sylvestriformis

    2007-01-01

    The objectives of this study were to investigate the effect of higher CO2 concentrations (500 and 700 μmol mol-1) in atmosphere on total soil respiration and the contribution of root respiration to total soil respiration during seedling growth of Pinus sylvestris var. sylvestriformis. During the four growing seasons (May-October) from 1999 to 2003, the seedlings were exposed to elevated concentrations of CO2 in open-top chambers. The total soil respiration and contribution of root respiration were measured using an LI-6400-09 soil CO2 flux chamber on June 15 and October 8, 2003. To separate root respiration from total soil respiration, three PVC cylinders were inserted approximately 30 cm deep into the soil in each chamber. There were marked diurnal changes in air and soil temperatures on June 15. Both the total soil respiration and the soil respiration without roots showed a strong diurnal pattern, increasing from before sunrise to about 14:00in the afternoon and then decreasing before the next sunrise. No increase in the mean total soil respiration and mean soil respiration with roots severed was observed under the elevated CO2 treatments on June 15, 2003, as compared to the open field and control chamber with ambient CO2. However, on October 8, 2003, the total soil respiration and soil respiration with roots severed in the open field were lower than those in the control and elevated CO2 chambers. The mean contribution of root respiration measured on June 15, 2003, ranged from 8.3% to 30.5% and on October 8, 2003,from 20.6% to 48.6%.

  15. Indoor and ambient air concentrations of respirable particles between two hospitals in Kashan (2014-2015

    Mahmoud Mohammadyan

    2017-04-01

    Full Text Available Background: The hospital environment requires special attention to provide healthful indoor air quality for protecting patients and healthcare workers against the occupational diseases. The aim of this study was to determine the concentrations of respirable particles indoor and ambient air of two hospitals in Kashan. Materials and Method: This cross-sectional study was conducted during 3 months (Marth 2014 to May 2015. Indoor and outdoor PM10 and PM2.5 concentrations were measured four times a week in the operating room, pediatric and ICU2 (Intensive Care Unit wards using a real time dust monitor at two hospitals. A total number of 480 samples (80 samples indoors and 40 outdoors from wards were collected. Results: The highest mean PM2.5 and PM10 for indoors were determined 57.61± 68.57 µg m-3 and 212.36±295.49 µg m-3, respectively. The results showed a significant relationship between PM2.5 and PM10 in the indoor and ambient air of two hospitals (P<0.05. PM2.5 and PM10 concentrations were different in all of the selected wards (P<0.05. Conclusion: The respirable particle concentrations in the indoor and ambient air in both hospitals were higher than the 24-hours WHO and US-EPA standards. Thence, utilizing sufficient and efficient air conditioning systems in hospitals can be useful in improving indoor air quality and reducing the respirable particle concentrations.

  16. Temperature response of soil respiration is dependent on concentration of readily decomposable C

    A. A. Larionova

    2007-12-01

    Full Text Available Temperature acclimation of soil organic matter (SOM decomposition is one of the major uncertainties in predicting soil CO2 efflux associated with the increase in global mean temperature. A reasonable explanation for an apparent acclimation proposed by Davidson and colleagues (2006 based on Michaelis-Menten kinetics suggests that temperature sensitivity decreases when both maximal activity of respiratory enzymes (Vmax and half-saturation constant (Ks cancel each other upon temperature increase. We tested the hypothesis of the canceling effect by the mathematical simulation of data obtained in incubation experiments with forest and arable soils. Our data support the hypothesis and suggest that concentration of readily decomposable C substrate (as glucose equivalents and temperature dependent substrate release are the important factors controlling temperature sensitivity of soil respiration. The highest temperature sensitivity of soil respiration was observed when substrate release was temperature dependent and C substrate concentration was much lower than Ks. Increase of substrate content to the half-saturation constant by glucose addition resulted in temperature acclimation associated with the canceling effect. Addition of the substrate to the level providing respiration at a maximal rate Vmax leads to the acclimation of the whole microbial community as such. However, growing microbial biomass was more sensitive to the temperature alterations. This study improves our understanding of the instability of temperature sensitivity of soil respiration under field conditions, attributing this phenomenon to changes in concentration of readily decomposable C substrate.

  17. Effects of low concentrations of sulfur dioxide on net photosynthesis and dark respiration of Vicia faba

    Black, V J; Unsworth, M H

    1979-01-01

    Rates of net photosynthesis, P/sub N/, and dark respiration of Vicia faba plants were measured in the laboratory in clean air and in air containing up to 175 parts 10/sup -9/ (500 ..mu..g m/sup -3/) SO/sub 2/. At all SO/sub 2/ concentrations exceeding 35 parts 10/sup -9/, P/sub N/ was inhibited compared with clean air. At light saturation, the magnitude of inhibition depended on SO/sub 2/ concentration but at low irradiances the inhibition was independent of concentration. Dark respiration rates increased substantially, independent of concentration. When exposures continued for up to 3 days, P/sub N/ returned to clean air values about 1 h after fumigation ceased: dark respiration recovered after one photoperiod. There were no visible injuries. Reviewing possible mechanisms responsible for the inhibition of P/sub N/, it is suggested that SO/sub 2/ competes with CO/sub 2/ for binding sites in RuBP carboxylase. Analysis of resistance analogues demonstrates that SO/sub 2/ altered both stomatal and internal (residual) resistances. A model of crop photosynthesis shows the implications of the observed responses for the growth of field crops in which plants are assumed to respond like laboratory plants. Photosynthesis of the crop would be less sensitive than that of individual plants to SO/sub 2/ concentration. Daily dry matter accumulation of hypothetical polluted crops would be substantially less than clean air values but would vary relatively little with SO/sub 2/ concentration. It is concluded that physiological bases exist to account for observed reductions in growth of plants at very low SO/sub 2/ concentrations, and that thresholds for plant responses to SO/sub 2/ require reassessment. 30 references, 5 figures, 1 table.

  18. Workplace aerosol mass concentration measurement using optical particle counters.

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  19. Temperature sensitivity of soil respiration is dependent on readily decomposable C substrate concentration

    Larionova, A. A.; Yevdokimov, I. V.; Bykhovets, S. S.

    2007-06-01

    Temperature acclimation of soil organic matter (SOM) decomposition is one of the major uncertainties in predicting soil CO2 efflux by the increase in global mean temperature. A reasonable explanation for an apparent acclimation proposed by Davidson and colleagues (2006) based on Michaelis-Menten kinetics suggests that temperature sensitivity decreases when both maximal activity of respiratory enzymes (Vmax) and half- saturation constant (Ks) cancel each other upon temperature increase. We tested the hypothesis of the canceling effect by the mathematical simulation of the data obtained in the incubation experiments with forest and arable soils. Our data confirm the hypothesis and suggest that concentration of readily decomposable C substrate as glucose equivalent is an important factor controlling temperature sensitivity. The highest temperature sensitivity was observed when C substrate concentration was much lower than Ks. Increase of substrate content to the half-saturation constant resulted in temperature acclimation associated with the canceling effect. Addition of the substrate to the level providing respiration at a maximal rate Vmax leads to the acclimation of the whole microbial community as such. However, growing microbial biomass was more sensitive to the temperature alterations. This study improves our understanding of the instability of temperature sensitivity of soil respiration under field conditions, explaining this phenomenon by changes in concentration of readily decomposable C substrate. It is worth noting that this pattern works regardless of the origin of C substrate: production by SOM decomposition, release into the soil by rhizodeposition, litter fall or drying-rewetting events.

  20. Dynamic analysis of CO₂ labeling and cell respiration using membrane-inlet mass spectrometry.

    Yang, Tae Hoon

    2014-01-01

    Here, we introduce a mass spectrometry-based analytical method and relevant technical details for dynamic cell respiration and CO2 labeling analysis. Such measurements can be utilized as additional information and constraints for model-based (13)C metabolic flux analysis. Dissolved dynamics of oxygen consumption and CO2 mass isotopomer evolution from (13)C-labeled tracer substrates through different cellular processes can be precisely measured on-line using a miniaturized reactor system equipped with a membrane-inlet mass spectrometer. The corresponding specific rates of physiologically relevant gases and CO2 mass isotopomers can be quantified within a short-term range based on the liquid-phase dynamics of dissolved fermentation gases.

  1. Concentrations and size distribution of inhalable and respirable dust among sugar industry workers: a pilot study in Khon Kaen, Thailand.

    Sakunkoo, Pornpun; Chaiear, Naesinee; Chaikittiporn, Chalermchai; Sadhra, Steven

    2011-11-01

    There has been very limited information regarding bagasse exposure among workers in sugar industries as well as on health outcomes. The authors determined the occupational exposure of sugar industry workers in Khon Kaen to airborne bagasse dust. The size of the bagasse dust ranged from 0.08 to 9 µm with the highest size concentration of 2.1 to 4.7 µm. The most common size had a geometric mean diameter of 5.2 µm, with a mass concentration of 6.89 mg/m(3)/log µm. The highest mean values of inhalable and respirable dust were found to be 9.29 mg/m(3) from February to April in bagasse storage, 5.12 mg/m(3) from May to September, and 4.12 mg/m(3) from October to January. Inhalable dust concentrations were 0.33, 0.47, and 0.41 mg/m(3), respectively. Workers are likely to be exposed to high concentrations of bagasse dust and are at risk of respiratory diseases. Preventive measures, both in the form of engineering designs and personal protective devices, should be implemented.

  2. Microbial respiration and gene expression as a function of very low oxygen concentration

    Tiano, Laura

    and denitrification, were only partially described. In spite of the importance of aerobic respiration as a key process in the global carbon cycle, the available data are still few, and highly biased with respect to season, latitude and depth. The main aims of this Ph.D were to: i) develop and test a highly...... to pure cultures (Manuscript III), in order to assess the response of three species of NOB (Nitrospira defluvvi, N. moscoviensis and Nitrospina gracilis) to low O2 concentrations, and the oxygen regulation on the expression of the terminal oxidases genes in N.moscoviensis. The oxygen affinities...... of these pure cultures were lower than found for natural communities of NOB (apparent Km values~ 1- 4 µM), but higher than the ones from the well-studied opportunistic NOB Nitrobacter. The expression of high-affinity terminal oxidases in these NOB could, however, not be confirmed. Overall the results of this Ph...

  3. Exposure to high glutamate concentration activates aerobic glycolysis but inhibits ATP-linked respiration in cultured cortical astrocytes.

    Shen, Yao; Tian, Yueyang; Shi, Xiaojie; Yang, Jianbo; Ouyang, Li; Gao, Jieqiong; Lu, Jianxin

    2014-08-01

    Astrocytes play a key role in removing the synaptically released glutamate from the extracellular space and maintaining the glutamate below neurotoxic level in the brain. However, high concentration of glutamate leads to toxicity in astrocytes, and the underlying mechanisms are unclear. The purpose of this study was to investigate whether energy metabolism disorder, especially impairment of mitochondrial respiration, is involved in the glutamate-induced gliotoxicity. Exposure to 10-mM glutamate for 48 h stimulated glycolysis and respiration in astrocytes. However, the increased oxygen consumption was used for proton leak and non-mitochondrial respiration, but not for oxidative phosphorylation and ATP generation. When the exposure time extended to 72 h, glycolysis was still activated for ATP generation, but the mitochondrial ATP-linked respiration of astrocytes was reduced. The glutamate-induced astrocyte damage can be mimicked by the non-metabolized substrate d-aspartate but reversed by the non-selective glutamate transporter inhibitor TBOA. In addition, the glutamate toxicity can be partially reversed by vitamin E. These findings demonstrate that changes of bioenergetic profile occur in cultured cortical astrocytes exposed to high concentration of glutamate and highlight the role of mitochondria respiration in glutamate-induced gliotoxicity in cortical astrocytes. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Design of climate respiration chambers, adjustable to the metabolic mass of subjects

    Heetkamp, M.J.W.; Alferink, S.J.J.; Zandstra, T.; Hendriks, P.; Brand, van den H.; Gerrits, W.J.J.

    2015-01-01

    Open-circuit respiration chambers can be used to measure gas exchange and to calculate heat production (Q) of humans and animals. When studying short-term changes in Q, the size of the respiration chamber in relation to the subject of study is a point of concern. The washout time of a chamber,

  5. Can we relate respiration rates of bark and wood with tissue nitrogen concentrations and branch-level CO2 fluxes across woody species?

    Eller, A. S.; Wright, I.; Cernusak, L. A.

    2013-12-01

    Respiration from above-ground woody tissue is generally responsible for 5-15% of ecosystem respiration (~ 30% of total above-ground respiration). The CO2 respired by branches comes from both the sapwood and the living layers within the bark, but because there is considerable movement of respired CO2 within woody tissues (e.g. in the transpiration stream), and because the bark can present a considerable barrier to CO2 diffusion, it can be difficult to interpret measured CO2 efflux from intact branches in relation to the respiration rates of the component tissues, and to relative mass allocation to each. In this study we investigated these issues in 15 evergreen tree and shrub species native to the Sydney area in eastern Australia. We measured CO2 efflux and light-dependent refixation of respired CO2 in photosynthetic bark from the exterior surfaces of branches (0.5-1.5 cm in diameter), and measured the tissue-specific respiration rates of the bark and wood from those same branches. We also measured the nitrogen content and tissue density of the wood and bark to determine: 1) Among species, what is the relationship between %N and tissue respiration? 2) How is photosynthetic refixation of CO2 related to respiration and %N in the bark and underlying wood? and 3) What is the relationship between branch CO2 efflux and the respiration rates of the underlying wood and bark that make up the branch? Across the 15 species %N was a better predictor of respiration in wood than in bark. CO2 efflux measured from the exterior of the stem in the dark was positively correlated with photosynthetic refixation and explained ~40% of the variation in rates of refixation. Refixation rates were not strongly related to bark or wood %N. Differences among species in CO2 efflux rates were not well explained by differences in bark or wood %N and there was a stronger relationship between bark respiration and CO2 efflux than between wood respiration and CO2 efflux. These results suggest that the

  6. Response of needle dark respiration of Pinus koraiensis and Pinus sylvestriformis to elevated CO2 concentrations for four growing seasons' exposure

    ZHOU YuMei; HAN ShiJie; ZHANG HaiSen; XIN LiHua; ZHENG JunQiang

    2007-01-01

    The long-term effect of elevated CO2 concentrations on needle dark respiration of two coniferous species-Pinus koraiensis and Pinus sylvestriformis on the Changbai Mountain was investigated using open-top chambers. P. Koraiensis and P. Sylvestriformis were exposed to 700,500μmol·mol-1 CO2 and ambient CO2(approx.350 μmol·mol-1)for four growing seasons. Needle dark respiration was measurd during the second, third and fourth growing seasons' exposure to elevated CO2.The results showed that needle dark respiration rate increased for P. Koraiensis and P. Sylvestriformis grown at elevated CO2 concentrations during the second growing season, could be attributed to the change of carbohydrate and/or nitrogen content of needles. Needle dark respiration of P. Koraiensis was stimulated and that of P. Sylvestriformis was inhibited by elevated CO2 concentrations during the third growing season. Different response of the two tree species to elevated CO2 mainly resulted from the difference in the growth rate. Elevated CO2 concentrations inhibited needle dark respiration of both P. Koraiensis and P. Sylvestriformis during the fourth growing season. There was consistent trend between the short-term effect and the long-term effect of elevated CO2 on needle dark respiration in P. Sylvestriformis during the third growing season by changing measurement CO2 concentrations. However, the short-term effect was different from the long-term effect for P. Koraiensis. Response of dark respiration of P. Koraiensis and P. Sylvestriformis to elevated CO2 concentrations was related to the treatment time of CO2 and the stage of growth and development of plant. The change of dark respiration for the two tree species was determined by the direct effect of CO2 and long-term acclimation. The prediction of the long-term response of needle dark respiration to elevated CO2 concentration based on the short-term response is in dispute.

  7. Air trapping on computed tomography images of healthy individuals: effects of respiration and body mass index

    Hashimoto, M.; Tate, E.; Watarai, J.; Sasaki, M.

    2006-01-01

    Aim: To evaluate the relationships of changes in the lung area during respiration and of individual body mass index (BMI) to air trapping on expiratory computed tomography (CT) in young non-smoking adults of either gender. Methods: The volunteers were 10 women and 10 men (mean age 25.7 years) who were healthy lifelong non-smokers. We obtained both end-inspiratory and end-expiratory CT images at three levels: the upper, middle and lower lung. The ratio of cross-sectional lung area upon expiration to cross-sectional lung area upon inspiration (lung area ratio) was determined for each lung at each of the three levels. In cases showing air trapping, we calculated the percentage of area of air in relation to the total lung area in each section. BMI was calculated for each participant. Results: Air trapping was present in dependent areas of the lungs of 6 women and 5 men. The mean percentage of area of air trapped was statistically greater for men (9.8 ± 9.2%) than for women (4.9 ± 5.2%). The mean lung area ratio was 0.52 ± 0 14 among volunteers with air trapping (66 sections) and 0.69 ± 0.12 among those without air trapping (54 sections) (p < 0.001). At each lung level, the mean lung area ratio was greater in individuals with air trapping than in those without. Mean BMI was also greater in these people (p = 0.009). Conclusion: Change in the respiratory lung area and BMI contribute to development of air trapping

  8. Does an elevated CO2 concentration decrease dark respiration in trees? Final technical report

    Long, Stephen [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2003-12-31

    Averaged across many previous investigations, doubling the CO2 concentration ([CO2]) has frequently been reported to cause an instantaneous reduction of leaf dark respiration measured as CO2 efflux. No known mechanism accounts for this effect. While four recent studies have shown that the measurement of respiratory CO2 efflux is prone to experimental artifacts that could account for the reported response, papers published since the start of the current research continue to report an instantaneous depression of respiratory CO2 efflux by elevation of [CO2]. Here, these artifacts are avoided by use of a high-resolution dual channel oxygen analyzer within an open gas exchange system to measure respiratory 02 uptake in normal air. Leaf 02 uptake was determined in response to instantaneous elevation of [CO2] in nine contrasting species and to long-term elevation in seven species from four of the DOE-sponsored long-term elevated [CO2] field experiments. Over one thousand separate measurements of respiration failed to reveal any decrease in respiratory 02 uptake with an instantaneous increase in [CO2]. Respiration was found insensitive not only to doubling [CO2], but also to a five-fold increase and to decrease to zero.

  9. Leaf respiration at different canopy positions in sweetgum (Liquidambar styraciflua) grown in ambient and elevated concentrations of carbon dioxide in the field

    Tissue, D. T.; Lewis, J. D.; Wullschleger, S. D.; Amthro, J. S.; Griffin, K. L.; Anderson, O. R.

    2002-01-01

    The effects of elevated carbon dioxide and canopy position on leaf respiration in sweetgum trees in a closed canopy forest were measured in an effort to determine if, and why, enriched atmospheric carbon dioxide might affect leaf respiration in sweetgum. To account for the dark respiratory response to growth in elevated carbon dioxide, cell ultrastructure and cytochrome c oxidase activity in leaves were measured at different seasonal growth periods. Leaf respiration under light conditions was also estimated to determine whether elevated carbon dioxide affected daytime respiration. Results showed that long-term exposure to elevated carbon dioxide did not effect night-time or day- time respiration in trees grown in a plantation in the field. Canopy position affected night-time respiration partially, through the effects on leaf soluble sugar, starch, nitrogen and leaf mass per unit area. In carbon dioxide partial pressure the effects of canopy position were insignificant. It was concluded that elevated carbon dioxide does not directly impact leaf respiration in sweetgum and assuming no changes in leaf nitrogen or leaf chemical composition, the long-term effects on respiration in this species will be minimal. 50 refs., 4 tabs., 3 figs

  10. Impact of needle age on the response of respiration in Scots pine to long-term elevation of carbon dioxide concentration and temperature

    Zha, T.; Ryyppo, A.; Kellomaki, S.; Wang, K-Y.

    2002-01-01

    The effects of needle age, elevated carbon dioxide and temperature on needle respiration in Scots pine was studied during a four-year period. Results showed that respiration rates and specific leaf area decreased in elevated atmospheric carbon dioxide concentration relative to ambient conditions, but increased in elevated temperature and when elevated atmospheric carbon dioxide and elevated temperature were combined. Starch and soluble sugar concentrations for a given needle age increased in elevated carbon dioxide, but decreased slightly under combined elevated temperature and elevated carbon dioxide conditions. Respiration rate and specific leaf area were highest in current year needles in all treatment modes. All treatment modes enhanced the difference in respiration between current year and older needles relative to ambient conditions. Carbohydrate concentration or specific leaf area remained unchanged in response to any treatment. Under ambient conditions the temperature coefficient of respiration increased slightly in elevated carbon dioxide regardless of age, however, there was significant decline at elevated temperature as well as when both carbon dioxide concentration and temperature were elevated, indicating acclimation of respiration to temperature. 48 refs., 2 tabs., 7 figs

  11. Soil Respiration Controls Ionic Nutrient Concentration In Percolating Water In Rice Fields

    Kimura, M.

    2004-12-01

    Soil water in the plow layer in rice fields contains various kinds of cations and anions, and they are lost from the plow layer by water percolation. Some portions of CO2 produced by respirations of rice roots and soil microorganisms are also leached by water percolation to the subsoil layer as HCO3-. As the electrical neutrality of inorganic substances in percolating water is maintained when they are assumed to be in the form of simple cations and anions, soil respiration accelerates the leaching of ionic nutrients from the plow layer by water percolation. The proportion of inorganic carbon (Σ CO2) originated from photosynthates in the total Σ CO2 in soil solution in the plow layer was from 28 to 36 % in the rice straw amended soil and from 16 to 31 % in the soil without rice straw amendment in a soil pot experiment with rice plant after the maximum tillering stage. Most of Σ CO2 in percolating water from the plow layer accumulates in the subsoil layer. Periodical measurement of Σ CO2 in percolating water at 13 and 40 cm soil depths indicated that 10 % of total soil organic C in the plow layer was leached down from the plow layer (13 cm), and that about 90 % of it was retained in the subsoil layer to the depth of 40 cm. Water soluble organic materials are also leached from the plow layer by water percolation, and the leaching is accelerated by soil reduction. Soil reduction decreased the content of organic materials that were bound with ferric iron in soil (extractable by 0.1M Na4P2O7 + NaBH4) and increased the content of organic materials that were extractable by the neutral chelating solution (0.1M Na4P2O7). In addition, water percolation transformed the latter organic materials to those that were extractable by water and a neutral salt. Considerable portions of organic materials in percolating water are adsorbed in the subsoil layer, and then partially decomposed and polymerized to specific soil organic materials in the subsoil. Organic materials that were

  12. Response of needle dark respiration of Pinus koraiensis and Pinus sylvestriformis to elevated CO2 concentra-tions for four growing seasons’ exposure

    2007-01-01

    The long-term effect of elevated CO2 concentrations on needle dark respiration of two coniferous spe- cies—Pinus koraiensis and Pinus sylvestriformis on the Changbai Mountain was investigated using open-top chambers. P. koraiensis and P. sylvestriformis were exposed to 700, 500 μmol·mol-1 CO2 and ambient CO2 (approx. 350 μmol·mol-1) for four growing seasons. Needle dark respiration was meas- ured during the second, third and fourth growing seasons’ exposure to elevated CO2. The results showed that needle dark respiration rate increased for P. koraiensis and P. sylvestriformis grown at elevated CO2 concentrations during the second growing season, could be attributed to the change of carbohydrate and/or nitrogen content of needles. Needle dark respiration of P. koraiensis was stimu- lated and that of P. sylvestriformis was inhibited by elevated CO2 concentrations during the third growing season. Different response of the two tree species to elevated CO2 mainly resulted from the difference in the growth rate. Elevated CO2 concentrations inhibited needle dark respiration of both P. koraiensis and P. sylvestriformis during the fourth growing season. There was consistent trend be- tween the short-term effect and the long-term effect of elevated CO2 on needle dark respiration in P. sylvestriformis during the third growing season by changing measurement CO2 concentrations. How- ever, the short-term effect was different from the long-term effect for P. koraiensis. Response of dark respiration of P. koraiensis and P. sylvestriformis to elevated CO2 concentrations was related to the treatment time of CO2 and the stage of growth and development of plant. The change of dark respiration for the two tree species was determined by the direct effect of CO2 and long-term acclimation. The prediction of the long-term response of needle dark respiration to elevated CO2 concentration based on the short-term response is in dispute.

  13. High concentrations of H2O2 make aerobic glycolysis energetically more favourable than cellular respiration.

    Hamid R Molavian

    2016-08-01

    Full Text Available Since the original observation of the Warburg Effect in cancer cells, over eight decades ago, the major question of why aerobic glycolysis is favored over oxidative phosphorylation has remained unresolved. An understanding of this phenomenon may well be the key to the development of more effective cancer therapies. In this paper, we use a semi-empirical method to throw light on this puzzle. We show that aerobic glycolysis is in fact energetically more favorable than oxidative phosphorylation for concentrations of peroxide (H2O2 above some critical threshold value. The fundamental reason for this is the activation and high engagement of the pentose phosphate pathway (PPP in response to the production of reactive oxygen species H2O2 by mitochondria and the high concentration of H2O2 (produced by mitochondria and other sources. This makes oxidative phosphorylation an inefficient source of energy since it leads (despite high levels of ATP production to a concomitant high energy consumption in order to respond to the hazardous waste products resulting from cellular processes associated with this metabolic pathway. We also demonstrate that the high concentration of H2O2 results in an increased glucose consumption, and also increases the lactate production in the case of glycolysis.

  14. Determination of respiration rates in water with sub-micromolar oxygen concentrations

    Emilio Garcia-Robledo

    2016-11-01

    Full Text Available It is crucial for our study and understanding of element transformations in low-oxygen waters that we are able to reproduce the in situ conditions during laboratory incubations to an extent that does not result in unacceptable artefacts. In this study we have explored how experimental conditions affect measured rates of O2 consumption in low-O2 waters from the anoxic basin of Golfo Dulce (Costa Rica and oceanic waters off Chile-Peru. High-sensitivity optode dots placed within all-glass incubation containers allowed for high resolution O2 concentration measurements in the nanomolar and low µmolar range and thus also for the determination of rates of oxygen consumption by microbial communities. Consumption rates increased dramatically (from 3 and up to 60 times by prolonged incubations, and started to increase after 4-5 hours in surface waters and after 10-15 h in water from below the upper mixed layer. Estimated maximum growth rates during the incubations suggest the growth of opportunistic microorganism with doubling times as low as 2.8 and 4.6 h for the coastal waters of Golfo Dulce (Costa Rica and oceanic waters off Chile and Peru, respectively. Deoxygenation by inert gas bubbling led to increases in subsequently determined rates, possibly by liberation of organics from lysis of sensitive organisms, particle or aggregate alterations or other processes mediated by the strong turbulence. Stirring of the water during the incubation led to an about 50% increase in samples previously deoxygenated by bubbling, but had no effect in untreated samples. Our data indicate that data for microbial activity obtained by short incubations of minimally manipulated water are most reliable, but deoxygenation is a prerequisite for many laboratory experiments, such as determination of denitrification rates, as O2 contamination by sampling is practically impossible to avoid.

  15. Measurement of respirable superabsorbent polyacrylate (SAP) dust by ethanol derivatization using gas chromatography-mass spectrometry (GC-MS) detection.

    McCormack, Paul; Lemmo, John S; Macomber, Margaret; Holcomb, Mark L; Lieckfield, Robert

    2011-04-01

    Superabsorbent polyacrylate (SAP) is an important industrial chemical manufactured primarily as sodium polyacrylate but occasionally as potassium salt. It has many applications owing to its intrinsic physical property of very high water absorption, which can be more than 100 times it own weight. SAP is commonly used in disposable diapers and feminine hygiene products and is known by a number of synonyms-sodium polyacrylate, superabsorbent polyacrylate (SAP), polyacrylate absorbent (PA), and superabsorbent material (SAM). Germany and The Netherlands have adopted a nonbinding scientific guideline value 0.05 mg/m³ (8-hr time-weighted average, TWA) as the maximum allowable workplace concentration for the respirable dust of SAP (acrylate was developed and validated for the analysis of respirable superabsorbent polyacrylate dust collected on filter cassettes in the workplace environment. This method is an alternative to the commonly used sodium-based method, which is limited owing to potential interference by other sources of sodium from the workplace and laboratory environments. The alcohol derivatization method effectively eliminates sodium interference from several classes of sodium compounds, as shown by their purposeful introduction at two and six times the equivalent amount of SAP present in reference samples. The accuracy of the method, as determined by comparison with sodium analysis of known reference samples, was greater than 80% over the study range of 5-50 μg of SAP dust. The lower reporting limit of the method is 3.0 μg of SAP per sample, which is equivalent to 3 (μg/m³) for an 8-hr sampling period at the recommended flow rate of 2.2 L/min.

  16. Study on the concentration of airbone respirable asbestos fibres in rural areas of the Lublin region in south-east Poland

    Agnieszka Buczaj

    2014-09-01

    Full Text Available Objective. The objective of the study was measurement of the concentrations of airborne asbestos fibres in the rural environment of the Lublin Region in south-east Poland. Methods. Measurements of concentrations of respirable asbestos fibres were carried out in the rural areas of the Lublin Region (Lublin and Włodawa counties for a period of 24 months. The studies were conducted on 3 farms with various technical conditions of asbestos-containing materials: Farm A – good technical condition of asbestos products, Farm B – poor technical condition, and Farm C – with no asbestos containing products and no such products in its direct vicinity (up to 500 m. On the selected farms, 3 samples on each were simultaneously collected at 3 measuring sites. During the period 2009–2011, a total number of 216 samples were collected on all farms. Sampling was performed using JSH 16,000 stationary aspirators, with air flow velocity of 16 l/min. and sampling time 60–80 minutes. The number of fibres on filters was determined using an optical phase contrast microscope. Results. The study showed that the mean concentration of respirable asbestos fibres on the farms examined was 296 fibres•m [sup]-3[/sup]. The highest concentrations were noted on Farm B was 529 fibres•m [sup]-3[/sup], on average; on farm A the mean concentration of respirable fibres was 328 fibres•m [sup]-3[/sup] , whereas the lowest mean concentration of airborne respirable asbestos fibres was noted on farm C, where there were no asbestos products (30 fibres•m [sup]-3[/sup] .

  17. Effects of elevated atmospheric CO2 concentration on leaf dark respiration of Xanthium strumarium in light and in darkness.

    Wang, X; Lewis, J D; Tissue, D T; Seemann, J R; Griffin, K L

    2001-02-27

    Leaf dark respiration (R) is an important component of plant carbon balance, but the effects of rising atmospheric CO(2) on leaf R during illumination are largely unknown. We studied the effects of elevated CO(2) on leaf R in light (R(L)) and in darkness (R(D)) in Xanthium strumarium at different developmental stages. Leaf R(L) was estimated by using the Kok method, whereas leaf R(D) was measured as the rate of CO(2) efflux at zero light. Leaf R(L) and R(D) were significantly higher at elevated than at ambient CO(2) throughout the growing period. Elevated CO(2) increased the ratio of leaf R(L) to net photosynthesis at saturated light (A(max)) when plants were young and also after flowering, but the ratio of leaf R(D) to A(max) was unaffected by CO(2) levels. Leaf R(N) was significantly higher at the beginning but significantly lower at the end of the growing period in elevated CO(2)-grown plants. The ratio of leaf R(L) to R(D) was used to estimate the effect of light on leaf R during the day. We found that light inhibited leaf R at both CO(2) concentrations but to a lesser degree for elevated (17-24%) than for ambient (29-35%) CO(2)-grown plants, presumably because elevated CO(2)-grown plants had a higher demand for energy and carbon skeletons than ambient CO(2)-grown plants in light. Our results suggest that using the CO(2) efflux rate, determined by shading leaves during the day, as a measure for leaf R is likely to underestimate carbon loss from elevated CO(2)-grown plants.

  18. Transcriptional reprogramming and stimulation of leaf respiration by elevated CO2 concentration is diminished, but not eliminated, under limiting nitrogen supply.

    Markelz, R J Cody; Lai, Lisa X; Vosseler, Lauren N; Leakey, Andrew D B

    2014-04-01

    Plant respiration responses to elevated CO2 concentration ( [CO2 ] ) have been studied for three decades without consensus about the mechanism of response. Positive effects of elevated [CO2 ] on leaf respiration have been attributed to greater substrate supply resulting from stimulated photosynthesis. Negative effects of elevated [CO2 ] on leaf respiration have been attributed to reduced demand for energy for protein turnover assumed to result from lower leaf N content. Arabidopsis thaliana was grown in ambient (370 ppm) and elevated (750 ppm) [CO2 ] with limiting and ample N availabilities. The stimulation of leaf dark respiration was attenuated in limiting N (+12%) compared with ample N supply (+30%). This response was associated with smaller stimulation of photosynthetic CO2 uptake, but not interactive effects of elevated CO2 and N supply on leaf protein, amino acids or specific leaf area. Elevated [CO2 ] also resulted in greater abundance of transcripts for many components of the respiratory pathway. A greater transcriptional response to elevated [CO2 ] was observed in ample N supply at midday versus midnight, consistent with reports that protein synthesis is greatest during the day. Greater foliar expression of respiratory genes under elevated [CO2 ] has now been observed in diverse herbaceous species, suggesting a widely conserved response. © 2013 John Wiley & Sons Ltd.

  19. Exposure to dairy manure leads to greater antibiotic resistance and increased mass-specific respiration in soil microbial communities

    Avera, Bethany; Badgley, Brian; Barrett, John E.; Franklin, Josh; Knowlton, Katharine F.; Ray, Partha P.; Smitherman, Crystal

    2017-01-01

    Intensifying livestock production to meet the demands of a growing global population coincides with increases in both the administration of veterinary antibiotics and manure inputs to soils. These trends have the potential to increase antibiotic resistance in soil microbial communities. The effect of maintaining increased antibiotic resistance on soil microbial communities and the ecosystem processes they regulate is unknown. We compare soil microbial communities from paired reference and dairy manure-exposed sites across the USA. Given that manure exposure has been shown to elicit increased antibiotic resistance in soil microbial communities, we expect that manure-exposed sites will exhibit (i) compositionally different soil microbial communities, with shifts toward taxa known to exhibit resistance; (ii) greater abundance of antibiotic resistance genes; and (iii) corresponding maintenance of antibiotic resistance would lead to decreased microbial efficiency. We found that bacterial and fungal communities differed between reference and manure-exposed sites. Additionally, the β-lactam resistance gene ampC was 5.2-fold greater under manure exposure, potentially due to the use of cephalosporin antibiotics in dairy herds. Finally, ampC abundance was positively correlated with indicators of microbial stress, and microbial mass-specific respiration, which increased 2.1-fold under manure exposure. These findings demonstrate that the maintenance of antibiotic resistance associated with manure inputs alters soil microbial communities and ecosystem function. PMID:28356447

  20. Exposure to dairy manure leads to greater antibiotic resistance and increased mass-specific respiration in soil microbial communities.

    Wepking, Carl; Avera, Bethany; Badgley, Brian; Barrett, John E; Franklin, Josh; Knowlton, Katharine F; Ray, Partha P; Smitherman, Crystal; Strickland, Michael S

    2017-03-29

    Intensifying livestock production to meet the demands of a growing global population coincides with increases in both the administration of veterinary antibiotics and manure inputs to soils. These trends have the potential to increase antibiotic resistance in soil microbial communities. The effect of maintaining increased antibiotic resistance on soil microbial communities and the ecosystem processes they regulate is unknown. We compare soil microbial communities from paired reference and dairy manure-exposed sites across the USA. Given that manure exposure has been shown to elicit increased antibiotic resistance in soil microbial communities, we expect that manure-exposed sites will exhibit (i) compositionally different soil microbial communities, with shifts toward taxa known to exhibit resistance; (ii) greater abundance of antibiotic resistance genes; and (iii) corresponding maintenance of antibiotic resistance would lead to decreased microbial efficiency. We found that bacterial and fungal communities differed between reference and manure-exposed sites. Additionally, the β-lactam resistance gene ampC was 5.2-fold greater under manure exposure, potentially due to the use of cephalosporin antibiotics in dairy herds. Finally, ampC abundance was positively correlated with indicators of microbial stress, and microbial mass-specific respiration, which increased 2.1-fold under manure exposure. These findings demonstrate that the maintenance of antibiotic resistance associated with manure inputs alters soil microbial communities and ecosystem function. © 2017 The Author(s).

  1. Effects of elevated CO2 concentrations on photosynthesis, dark res-piration and RuBPcase activity of three species seedlings in Changbai Mountain

    2001-01-01

    Two-year-old seedlings of Pinus koraiensis, Pinus sylvestriformis and Fraxinus mandshurica were treated in open-top chambers with elevated CO2 concentrations (700 μL·L-1, 500 μL·L-1) and ambient CO2 concentrations (350 μL·L-1) in Changbai Mountain from June to Sept. in 1999 and 2001. The net photosynthetic rate, dark respiration rate, ribulose-1,5-bisphosphate carboxlase (RuBPcase) activity, and chlorophyll content were analyzed. The results indicated the RuBPcase activity of the three species seedlings increased at elevated CO2 concentrations. The elevated CO2 concentrations stimulated the net photosynthetic rates of three tree species except P. sylvestriformis grown under 500 μL·L-1 CO2 concentration. The dark respiration rates of P. koraiensis and P. sylvestriformis increased under concentration of 700 μL·L-1 CO2, but that of F. mandshurica decreased under both concentrations 700 μL·L-1 and 500 μL·L-1 CO2. The seedlings of F. mandshurica decreased in chlorophyll contents at elevat-ed CO2 concentrations.

  2. Choosing the right respirator

    Bidwell, J.

    1997-01-01

    Selecting respirators to help protect workers from airborne contaminants can be a confusing process. The consequences of selecting the incorrect respirator can be intimidating, and worker safety and health may be dramatically and irreparably affected if an inappropriate respirator is chosen. When used in the workplace, a formal respiratory protection program must be established covering the basic requirements outlined in the OSHA Respiratory Protection Standard (29 CFR 1910.134). Education and training must be properly emphasized and conducted periodically. Maintenance, cleaning, and storage programs must be established and routinely followed for reusable respirators. The process of establishing a respiratory protection program can be broken down into four basic steps: Identify respiratory hazards and concentrations; understand the contaminants effects on workers' health; select appropriate respiratory protection; and train in proper respirator use and maintenance. These four steps are the foundation for establishing a basic respirator protection program. Be sure to consult state and federal OSHA requirements to ensure that the program complies. Leading industrial respirator manufacturers should be able to assist with on-site training and education in this four-step process, in addition to helping employers train their workers and conduct respirator fit testing

  3. Direct gravimetric determination of aerosol mass concentration in central antarctica.

    Annibaldi, Anna; Truzzi, Cristina; Illuminati, Silvia; Scarponi, Giuseppe

    2011-01-01

    In Antarctica, experimental difficulties due to extreme conditions have meant that aerosol mass has rarely been measured directly by gravimetry, and only in coastal areas where concentrations were in the range of 1-7 μg m(-3). The present work reports on a careful differential weighing methodology carried out for the first time on the plateau of central Antarctica (Dome C, East Antarctica). To solve problems of accurate aerosol mass measurements, a climatic room was used for conditioning and weighing filters. Measurements were carried out in long stages of several hours of readings with automatic recording of temperature/humidity and mass. This experimental scheme allowed us to sample from all the measurements (up to 2000) carried out before and after exposure, those which were recorded under the most stable humidity conditions and, even more importantly, as close to each other as possible. The automatic reading of the mass allowed us in any case to obtain hundreds of measurements from which to calculate average values with uncertainties sufficiently low to meet the requirements of the differential weighing procedure (±0.2 mg in filter weighing, between ±7% and ±16% both in aerosol mass and concentration measurements). The results show that the average summer aerosol mass concentration (aerodynamic size ≤10 μm) in central Antarctica is about 0.1 μg m(-3), i.e., about 1/10 of that of coastal Antarctic areas. The concentration increases by about 4-5 times at a site very close to the station.

  4. Spatial and temporal shifts in gross primary productivity, respiration, and nutrient concentrations in urban streams impacted by wastewater treatment plant effluent

    Ledford, S. H.; Toran, L.

    2017-12-01

    Impacts of wastewater treatment plant effluent on nutrient retention and stream productivity are highly varied. The working theory has been that large pulses of nutrients from plants may hinder in-stream nutrient retention. We evaluated nitrate, total dissolved phosphorus, and dissolved oxygen in Wissahickon Creek, an urban third-order stream in Montgomery and Philadelphia counties, PA, that receives effluent from four wastewater treatment plants. Wastewater treatment plant effluent had nitrate concentrations of 15-30 mg N/L and total dissolved phosphorus of 0.3 to 1.8 mg/L. Seasonal longitudinal water quality samples showed nitrate concentrations were highest in the fall, peaking at 22 mg N/L, due to low baseflow, but total dissolved phosphorous concentrations were highest in the spring, reaching 0.6 mg/L. Diurnal dissolved oxygen patterns above and below one of the treatment plants provided estimates of gross primary productivity (GPP) and ecosystem respiration (ER). A site 1 km below effluent discharge had higher GPP in April (80 g O2 m-2 d-1) than the site above the plant (28 g O2 m-2 d-1). The pulse in productivity did not continue downstream, as the site 3 km below the plant had GPP of only 12 g O2 m-2 d-1. Productivity fell in June to 1-2 g O2 m-2 d-1 and the differences in productivity above and below plants were minimal. Ecosystem respiration followed a similar pattern in April, increasing from -17 g O2 m-2 d-1 above the plant to -47 g O2 m-2 d-1 1 km below the plant, then decreasing to -8 g O2 m-2 d-1 3 km below the plant. Respiration dropped to -3 g O2 m-2 d-1 above the plant in June but only fell to -9 to -10 g O2 m-2 d-1 at the two downstream sites. These findings indicate that large nutrient pulses from wastewater treatment plants spur productivity and respiration, but that these increases may be strongly seasonally dependent. Examining in-stream productivity and respiration is critical in wastewater impacted streams to understanding the seasonal and

  5. Laser-based absorption spectroscopy as a technique for rapid in-line analysis of respired gas concentrations of O2 and CO2.

    Cummings, Beth; Hamilton, Michelle L; Ciaffoni, Luca; Pragnell, Timothy R; Peverall, Rob; Ritchie, Grant A D; Hancock, Gus; Robbins, Peter A

    2011-07-01

    The use of sidestream analyzers for respired gas analysis is almost universal. However, they are not ideal for measurements of respiratory gas exchange because the analyses are both temporally dissociated from measurements of respiratory flow and also not generally conducted under the same physical conditions. This study explores the possibility of constructing an all optical, fast response, in-line breath analyzer for oxygen and carbon dioxide. Using direct absorption spectroscopy with a diode laser operating at a wavelength near 2 μm, measurements of expired carbon dioxide concentrations were obtained with an absolute limit of detection of 0.04% at a time resolution of 10 ms. Simultaneously, cavity enhanced absorption spectroscopy at a wavelength near 760 nm was employed to obtain measurements of expired oxygen concentrations with an absolute limit of detection of 0.26% at a time resolution of 10 ms. We conclude that laser-based absorption spectroscopy is a promising technology for in-line analysis of respired carbon dioxide and oxygen concentrations.

  6. Distribution of the prokaryotic biomass and community respiration in the main water masses of the Southern Tyrrhenian Sea (June and December 2005

    Rosabruna La Ferla

    2010-12-01

    Full Text Available The distribution of the prokaryotic biomass (from both abundance and cell volume measurements and microbial community respiration (by ETS activity in the main water masses of the Southern Tyrrhenian Sea were studied. The data were collected from surface to the bottom depth (max 3600 m in July and December 2005. Prokaryotic abundance and microbial respiration were higher in summer than late-autumn and decreased with depth in accordance with the water masses. The opposite was found for the prokaryotic cell volumes that increased with depth and were higher in December. The cell carbon content varied within the water masses and study periods (range 9–34 fg C cell−1 and overestimations and underestimations of biomass there would have been by using the routinely adopted conversion factor (20 fg C cell−1. The depth-integrated respiratory rates resulted comparable in the photic and aphotic layers. In July, 210 and 225 mg C m−2 day−1 in the euphotic and aphotic zones, respectively, were remineralized while in December, 112 and 134 mg C m−2 day−1, respectively, were. Speculations to quantify the carbon flow mediated by microbial community suggested the occurrence of different microbial behavior within the different water masses.

  7. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements welding fume. Concentrations were mainly predicted by the welding process and were significantly higher when local exhaust ventilation (LEV) was inefficient or when welding was performed in confined spaces. Substitution of high-emission techniques like FCAW, efficient LEV, and using PAPRs where applicable can reduce exposure to welding fume. However, harmonizing the different exposure metrics for UFP (as particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging.

  8. Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations

    Park, J. Y.; Ramachandran, G.; Raynor, P. C.; Kim, S. W.

    2011-10-01

    Surface area was estimated by three different methods using number and/or mass concentrations obtained from either two or three instruments that are commonly used in the field. The estimated surface area concentrations were compared with reference surface area concentrations (SAREF) calculated from the particle size distributions obtained from a scanning mobility particle sizer and an optical particle counter (OPC). The first estimation method (SAPSD) used particle size distribution measured by a condensation particle counter (CPC) and an OPC. The second method (SAINV1) used an inversion routine based on PM1.0, PM2.5, and number concentrations to reconstruct assumed lognormal size distributions by minimizing the difference between measurements and calculated values. The third method (SAINV2) utilized a simpler inversion method that used PM1.0 and number concentrations to construct a lognormal size distribution with an assumed value of geometric standard deviation. All estimated surface area concentrations were calculated from the reconstructed size distributions. These methods were evaluated using particle measurements obtained in a restaurant, an aluminum die-casting factory, and a diesel engine laboratory. SAPSD was 0.7-1.8 times higher and SAINV1 and SAINV2 were 2.2-8 times higher than SAREF in the restaurant and diesel engine laboratory. In the die casting facility, all estimated surface area concentrations were lower than SAREF. However, the estimated surface area concentration using all three methods had qualitatively similar exposure trends and rankings to those using SAREF within a workplace. This study suggests that surface area concentration estimation based on particle size distribution (SAPSD) is a more accurate and convenient method to estimate surface area concentrations than estimation methods using inversion routines and may be feasible to use for classifying exposure groups and identifying exposure trends.

  9. Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations

    Park, J. Y.; Ramachandran, G.; Raynor, P. C.; Kim, S. W.

    2011-01-01

    Surface area was estimated by three different methods using number and/or mass concentrations obtained from either two or three instruments that are commonly used in the field. The estimated surface area concentrations were compared with reference surface area concentrations (SA REF ) calculated from the particle size distributions obtained from a scanning mobility particle sizer and an optical particle counter (OPC). The first estimation method (SA PSD ) used particle size distribution measured by a condensation particle counter (CPC) and an OPC. The second method (SA INV1 ) used an inversion routine based on PM1.0, PM2.5, and number concentrations to reconstruct assumed lognormal size distributions by minimizing the difference between measurements and calculated values. The third method (SA INV2 ) utilized a simpler inversion method that used PM1.0 and number concentrations to construct a lognormal size distribution with an assumed value of geometric standard deviation. All estimated surface area concentrations were calculated from the reconstructed size distributions. These methods were evaluated using particle measurements obtained in a restaurant, an aluminum die-casting factory, and a diesel engine laboratory. SA PSD was 0.7–1.8 times higher and SA INV1 and SA INV2 were 2.2–8 times higher than SA REF in the restaurant and diesel engine laboratory. In the die casting facility, all estimated surface area concentrations were lower than SA REF . However, the estimated surface area concentration using all three methods had qualitatively similar exposure trends and rankings to those using SA REF within a workplace. This study suggests that surface area concentration estimation based on particle size distribution (SA PSD ) is a more accurate and convenient method to estimate surface area concentrations than estimation methods using inversion routines and may be feasible to use for classifying exposure groups and identifying exposure trends.

  10. Particulate matter mass concentrations produced from pavement surface abrasion

    Fullova Dasa

    2017-01-01

    Full Text Available According to the latest findings particulate matter belong to the most significant pollutants in Europe together with ground-level ozone O3 and nitrogen dioxide NO2. Road traffic is one of the main sources of particulate matter. Traffic volume has unpleasant impact on longevity of the pavements and also on the environment. Vehicle motions cause mechanical wearing of the asphalt pavement surface - wearing course by vehicle tyres. The paper deals with abrasion of bituminous wearing courses of pavements. The asphalt mixtures are compared in terms of mechanically separated particulate matter. The samples of asphalt mixtures were rutted in wheel tracking machine. The particulate matter measurements were performed in laboratory conditions. The experimental laboratory measurements make it possible to sample particulates without contamination from exhaust emissions, abraded particles from vehicles, resuspension of road dust and climate affects. The paper offers partial results of measurements on six trial samples of asphalt mixtures with different composition. It presents particulate matter morphology and the comparison of rutted asphalt samples in terms of PM mass concentrations and chemical composition.

  11. Mass-specific respiration of mesozooplankton and its role in the maintenance of an oxygen-deficient ecological barrier (BEDOX) in the upwelling zone off Chile upon presence of a shallow oxygen minimum zone

    Donoso, Katty; Escribano, Ruben

    2014-01-01

    A shallow oxygen minimum zone (OMZ) in the coastal upwelling zone off Chile may vertically confine most zooplankton to a narrow (oxygen consumption of the mesozooplankton community obtained in Bay of Mejillones, northern Chile (23°S) in May 2010, December 2010 and August 2011. Mass-specific respiration rates were in the range of 8.2-24.5 μmol O2 mg dry mass- 1 day- 1, at an average temperature of 12 °C. Estimates of the mesozooplankton biomass in the water column indicated that its aerobic respiration may remove daily a maximum of about 20% of oxygen available at the base of the oxycline. Since previous work indicates that zooplankton aggregate near the base of the oxycline, the impact of aerobic respiration on oxygen content might be even stronger at this depth. Mesozooplankton respiration, along with community respiration by microorganisms near the base of the oxycline and a strongly stratified condition (limiting vertical flux of O2), are suggested as being critical factors causing and maintaining a persistent subsurface oxygen-deficient ecological barrier (BEDOX) in the upwelling zone. This BEDOX layer can have a major role in affecting and regulating zooplankton distribution and their dynamics in the highly productive coastal upwelling zone of the Humboldt Current System.

  12. Tremendous Mass Concentration in Strange Galaxy Revealed by VLBA

    1995-01-01

    A dense whirling mass orbiting what almost certainly is a black hole of truly Brobdingnagian proportions has been discovered at the heart of an active galaxy some 21 million light years from Earth. The astronomical observations were made by an international team of Japanese and American astronomers using a continent-wide radio telescope funded by the National Science Foundation. The work is reported in the January 12th issue of Nature. The tremendous concentration of mass, equivalent to 40 million suns, in the center of the galaxy NGC4258 in the constellation Canes Venatici, was revealed by the apparent rotation of a molecular disk that surrounds it. The observations showed that the disk of dense material is orbiting within the galaxy's nucleus at velocities -- up to 650 miles per second -- that require the gravitational pull of such a massive object. The high angular resolution and sensitivity of the Very Long Baseline Array of the National Radio Astronomy Observatory allowed precise measurements of the differential rotation of the material in the disk, which provides the most direct and definitive evidence to date for the presence of a supermassive black hole in the center of another galaxy. Black holes, so dense that nothing -- not even light -- can escape their gravitational fields, have long been thought to be present in the centers of active galaxies, where they would act as central engines driving a variety of exotic and energetic phenomena that are seen on much larger scales, such as jets and powerful X ray emission. NGC 4258, a spiral some 90,000 light-years across, is known to have jets of gas that are twisted into the shape of a helix emerging from the nucleus at speeds of 400 miles per second. Makoto Miyoshi of Japan's Mizusawa Astrogeodymanics Observatory; James Moran, James Herrnstein and Lincoln Greenhill of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA; Naomasa Nakai of Japan's Nobeyama Radio Observatory; Philip Diamond of the

  13. Advanced solar concentrator mass production, operation, and maintenance cost assessment

    Niemeyer, W. A.; Bedard, R. J.; Bell, D. M.

    1981-01-01

    The object of this assessment was to estimate the costs of the preliminary design at: production rates of 100 to 1,000,000 concentrators per year; concentrators per aperture diameters of 5, 10, 11, and 15 meters; and various receiver/power conversion package weights. The design of the cellular glass substrate Advanced Solar Concentrator is presented. The concentrator is an 11 meter diameter, two axis tracking, parabolic dish solar concentrator. The reflective surface of this design consists of inner and outer groups of mirror glass/cellular glass gores.

  14. Shifts in mass-scaling of respiration, feeding, and growth rates across life-form transitions in marine pelagic organisms

    Kiørboe, Thomas; Hirst, Andrew G.

    2014-01-01

    The metabolic rate of organisms may be viewed as a basic property from which other vital rates and many ecological patterns emerge and that follows a universal allometric mass scaling law, or it may be considered a property of the organism that emerges as a result of the adaptation to the environ...... and be the result of the optimization of trade-offs that allow sufficient feeding and growth rates to balance mortality...

  15. On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO2 concentrations

    Bouma, T.J.; Bryla, D.R.

    2000-01-01

    Estimates of root and soil respiration are becoming increasingly important in agricultural and ecological research, but there is little understanding how soil texture and water content may affect these estimates. We examined the effects of soil texture on (i) estimated rates of root and soil

  16. Characteristic of ambient airborne and respirable particulate around a non formal industrial area

    Muhayatun Santoso; Diah Dwiana Lestiani; Mariana Marselina; Rita Mukhtar

    2016-01-01

    Characterization of airborne particulate matter and respirable particulate in Parung Panjang district especially on surrounding non formal used batteries industrial area has been carried out to follow up the previous results with respect to high concentrations of lead detected in Serpong area. Sampling of airborne particulate matter in Parung Panjang was conducted using Gent stacked filter unit sampler, while the respirable particulate matter samples collected using personal dust sampler in Parung Panjang as a non formal Industrial area and Sukarasa village as a control, during 2011-2012. The concentration of masses were determined gravimetrically, while for elemental concentrations by X-Ray based methods. The average of mass concentration of air ambient PM 2.5 and PM 10 in Parung Panjang were 27.3 ± 13.7 and 77.5 ± 17.1 μg.m -3 , respectively. While the average concentration of respirable particulate in non formal industrial and control areas were 260 ± 233 and 82 ± 38 μg.m -3 , respectively. The percentage of average Pb concentration in PM 2.5 and PM 2.5-10 were contribute up to 45 and 10 % of the mass concentration, respectively. The maximum percentage concentration of Pb in respirable particulate in industrial and control area were 12.11 and 0.27 %, respectively. These results showed that the Pb concentrations in respirable particulate in industrial area were significantly tens times higher than in the control area. The high concentration of Pb in Parung Panjang was the main key element came from the used lead battery industry and one of pollutant source that contributed to the Pb pollution in Serpong area. (author)

  17. Thermal adaptation of heterotrophic soil respiration in laboratory microcosms.

    Mark A. Bradford; Brian W. Watts; Christian A. Davies

    2010-01-01

    Respiration of heterotrophic microorganisms decomposing soil organic carbon releases carbon dioxide from soils to the atmosphere. In the short term, soil microbial respiration is strongly dependent on temperature. In the long term, the response of heterotrophic soil respiration to temperature is uncertain. However, following established evolutionary tradeoffs, mass-...

  18. Fine particle number and mass concentration measurements in urban Indian households.

    Mönkkönen, P; Pai, P; Maynard, A; Lehtinen, K E J; Hämeri, K; Rechkemmer, P; Ramachandran, G; Prasad, B; Kulmala, M

    2005-07-15

    Fine particle number concentration (D(p)>10 nm, cm(-3)), mass concentrations (approximation of PM(2.5), microg m(-3)) and indoor/outdoor number concentration ratio (I/O) measurements have been conducted for the first time in 11 urban households in India, 2002. The results indicate remarkable high indoor number and mass concentrations and I/O number concentration ratios caused by cooking. Besides cooking stoves that used liquefied petroleum gas (LPG) or kerosene as the main fuel, high indoor concentrations can be explained by poor ventilation systems. Particle number concentrations of more than 300,000 cm(-3) and mass concentrations of more than 1000 microg m(-3) were detected in some cases. When the number and mass concentrations during cooking times were statistically compared, a correlation coefficient r>0.50 was observed in 63% of the households. Some households used other fuels like wood and dung cakes along with the main fuel, but also other living activities influenced the concentrations. In some areas, outdoor combustion processes had a negative impact on indoor air quality. The maximum concentrations observed in most cases were due to indoor combustion sources. Reduction of exposure risk and health effects caused by poor indoor air in urban Indian households is possible by improving indoor ventilation and reducing penetration of outdoor particles.

  19. The plasma leptin concentration is closely associated with the body fat mass in nondiabetic uremic patients

    Clausen, P; Nielsen, P K; Olgaard, K

    1999-01-01

    filtration rate seemed to have a limited influence on the plasma leptin concentration in nondiabetic uremic subjects matched by body fat mass to controls. The plasma leptin concentration was closely associated with the body fat mass, and the leptin level might, therefore, be useful as an indicator of the fat......Plasma leptin is associated with the body mass index and, more precisely, with the body fat mass. Plasma leptin has been found to be elevated in uremic patients. This study aimed at investigating the plasma leptin concentration and associations between plasma leptin, body fat mass, and glomerular.......4 (3.1-59.5) ng/ml versus 5.4 (1.6-47.5) ng/ml (median and range in parentheses; p

  20. Respirator field performance factors

    Skaggs, B.J.; DeField, J.D.; Strandberg, S.W.; Sutcliffe, C.R.

    1985-01-01

    The Industrial Hygiene Group assisted OSHA and the NRC in measurements of respirator performance under field conditions. They reviewed problems associated with sampling aerosols within the respirator in order to determine fit factors (FFs) or field performance factor (FPF). In addition, they designed an environmental chamber study to determine the effects of temperature and humidity on a respirator wearer

  1. Pushing down the low-mass halo concentration frontier with the Lomonosov cosmological simulations

    Pilipenko, Sergey V.; Sánchez-Conde, Miguel A.; Prada, Francisco; Yepes, Gustavo

    2017-12-01

    We introduce the Lomonosov suite of high-resolution N-body cosmological simulations covering a full box of size 32 h-1 Mpc with low-mass resolution particles (2 × 107 h-1 M⊙) and three zoom-in simulations of overdense, underdense and mean density regions at much higher particle resolution (4 × 104 h-1 M⊙). The main purpose of this simulation suite is to extend the concentration-mass relation of dark matter haloes down to masses below those typically available in large cosmological simulations. The three different density regions available at higher resolution provide a better understanding of the effect of the local environment on halo concentration, known to be potentially important for small simulation boxes and small halo masses. Yet, we find the correction to be small in comparison with the scatter of halo concentrations. We conclude that zoom simulations, despite their limited representativity of the volume of the Universe, can be effectively used for the measurement of halo concentrations at least at the halo masses probed by our simulations. In any case, after a precise characterization of this effect, we develop a robust technique to extrapolate the concentration values found in zoom simulations to larger volumes with greater accuracy. Altogether, Lomonosov provides a measure of the concentration-mass relation in the halo mass range 107-1010 h-1 M⊙ with superb halo statistics. This work represents a first important step to measure halo concentrations at intermediate, yet vastly unexplored halo mass scales, down to the smallest ones. All Lomonosov data and files are public for community's use.

  2. A high precision mass spectrometry method for measuring O2/N2 ratios and CO2 concentrations in air

    Marca, A.D.; Dennis, P.F.; Etchells, A.

    2002-01-01

    A full, detailed understanding of the global carbon budget is needed for robust modelling of global climate and environmental change. Since the industrial revolution the carbon cycle has been shifted from a steady state in which removal of CO 2 from the atmosphere through photosynthesis is balanced by its addition through respiration. Currently increased respiration due to deforestation, modern agricultural practises and the burning of fossil fuels dominates photosynthesis resulting in modern atmospheric CO 2 concentrations some 32% higher than the year 1800 levels. However, the CO 2 concentration rises are lower than expected from known fossil fuel combustion inventories. A significant proportion of the excess CO 2 is taken up by the oceans, however a missing carbon sink must still be invoked to account for the difference between measured and expected CO 2 rises. A global greening as a result of increased photosynthesis is required to close the circle

  3. Organic fuels for respiration in tropical river systems

    Ward, N.; Keil, R. G.; Richey, J. E.; Krusche, A. V.; Medeiros, P. M.

    2011-12-01

    Watershed-derived organic matter is thought to provide anywhere from 30-90% of the organic matter in rivers (e.g. Hernes et al 2008; Spencer et al 2010). The most abundant biochemicals on land are cellulose, hemicelluloses, and lignin. Combined, they represent as much as 80% of the biomass in a typical forest and as much as 60% of the biomass in a typical field (natural or crop)(Bose et al 2009; Bridgeman et al., 2007; Hu and Zu 2006; Martens et al 2004). They are often assumed to be refractory and hard to degrade, but this assumption is at odds with virtually all observations: soils and marine sediments are not accumulating vast amounts of these compounds (Hedges and Oades, 1997), and degradation experiments suggest that cellulose, hemicelluloses and lignin are reactive and likely to be important fuels for respiration (Benner, 1991; Haddad et al, 1992; Dittmar et al, 2001; Otto and Simpson, 2006). During several trips to the lower Amazon River, incubation experiments were performed in which the biological degradation of lignin phenols was observed in order to assess the contribution of microbial respiration of terrestrially-derived macromolecules to gross respiration and CO2 gas evasion rates. Both particulate and dissolved lignin concentrations decreased by ~40% after being incubated in the dark for 5-7 days, indicating a turnover time of the entire lignin pool of 12-18 days. These results shift the paradigm that lignocellulose derived OM is highly recalcitrant, and indicate that microbial respiration of lignocellulose may play a larger role in total respiration rates/CO2 outgassing than previously thought. A simple mass balance calculation was done to test whether microbial degradation alone could explain the lignin data observed in the field. First, a theoretical particulate lignin concentration for Macapa was calculated based on the observed data at Obidos. The measured rate of particulate lignin degradation was multiplied by the transit time of water from

  4. Plasma Amino Acids Stimulate Uncoupled Respiration of Muscle Subsarcolemmal Mitochondria in Lean but Not Obese Humans.

    Kras, Katon A; Hoffman, Nyssa; Roust, Lori R; Patel, Shivam H; Carroll, Chad C; Katsanos, Christos S

    2017-12-01

    Obesity is associated with mitochondrial dysfunction in skeletal muscle. Increasing the plasma amino acid (AA) concentrations stimulates mitochondrial adenosine triphosphate (ATP) production in lean individuals. To determine whether acute elevation in plasma AAs enhances muscle mitochondrial respiration and ATP production in subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria in obese adults. Assessment of SS and IMF mitochondrial function during saline (i.e., control) and AA infusions. Eligible participants were healthy lean (body mass index, mass index >30 kg/m2; age 35 ± 3 years; n = 11) subjects. Single trial of saline infusion followed by AA infusion. SS and IMF mitochondria were isolated from muscle biopsies collected at the end of the saline and AA infusions. Mitochondrial respiration and ATP production. AA infusion increased adenosine 5'-diphosphate (ADP)-stimulated respiration and ATP production rates of SS mitochondria in the lean (P lean subjects only (P lean or obese subjects (P > 0.05). Increasing the plasma AA concentrations enhances the capacity for respiration and ATP production of muscle SS, but not IMF, mitochondria in lean individuals, in parallel with increases in uncoupled respiration. However, neither of these parameters increases in muscle SS or IMF mitochondria in obese individuals. Copyright © 2017 Endocrine Society

  5. Size resolved mass concentration and elemental composition of atmospheric aerosols over the Eastern Mediterranean area

    J. Smolík

    2003-01-01

    Full Text Available A Berner low pressure impactor was used to collect size-segregated aerosol samples at Finokalia, located on the north-eastern coast of Crete, Greece during July 2000 and January 2001. Several samples were also collected during the summer campaign aboard the research vessel "AEGAIEO" in the Aegean Sea. Gravimetric analysis and inversion techniques yielded daily PM1 and PM10 mass concentrations. The samples were also analysed by PIXE giving the elemental size distributions of Al, Si, K, Ca, Ti, Mn, Fe, Sr, S, Cl, Ni, V, Cu, Cr, Zn, and Pb. The crustal elements and sea-salt had a unimodal supermicron size distribution. Sulphur was found predominantly in submicron fractions. K, V, and Ni exhibited a bimodal distribution with a submicron mode produced by forest fires and oil combustion. The anthropogenic elements had broad and not well-defined distributions. The time series for PM1 and PM10 mass and elemental concentrations showed both daily and seasonal variation. Higher mass concentrations were observed during two incursions of Saharan dust, whilst higher concentrations of S, Cu, Zn, and Pb were encountered in samples collected in air masses arriving from northern Greece or the western coast of Turkey. Elevated concentrations of chlorine were found in samples with air masses either originating above the Atlantic Ocean and arriving at Finokalia via western Europe or recirculating over the western coast of the Black Sea.

  6. A free vibration of beams carrying a concentrated mass under distributed axial forces

    Nagai, Ken-ichi; Nagaya, Kosuke; Takeda, Sadahiko; Arai, Noriyuki.

    1988-01-01

    The free bending vibrations of beams with a concentrated mass subjected to axial forces caused by axial acceleration are analyzed by the Galerkin method, introducing the mode shape functions which are the sum of the products of the finite power series and the trigonometrical function. This analytical method makes it easy to construct the equations of motion in each boundary condition only by exchanging the coefficients of the finite power series. Numerical calculations are carried out under four sets of boundary conditions combined with simply supported and clamped edges. The natural frequencies and the corresponding modes of vibration are determined under both various locations of the concentrated mass and axial forces. it is found that the transverse inertia force and the axial force, due to the concentrated mass, have significant effects on the change of the natural frequencies for beams. Furthermore the distinction of boundary conditions gives predominant influence to the variation of natural frequencies. (author)

  7. Mass transfer during sulfuric acid concentration by evaporation into the air flow

    V. K. Lukashov

    2016-12-01

    Full Text Available This article shows the results of the study of mass transfer under periodic concentration of sulfuric acid by evaporation inthe gas flow, neutral with respect to the components of acid.Used mathematical model for mass transferbases on the proposed simplified physical representations.This model has allowed to construct an algorithm for calculation the coefficient of mass transfer from the liquid phase into the gas flow. The algorithm uses the experimental data of change the amount of acid and concentration of the water taken from the laboratory tests. Time-based Nusselt diffusion criterion represent the results of the study at different modes of the evaporation process.It has been found that the character of the influence of temperature and initial acid concentration on Nusselt diffusion criterion depends on the variation range of the mass fraction of water in the acid.It is shown that these dependences are well approximated by an exponential function from the dimensionless parameters of the process. This allows usingthem for calculation the mass transfer coefficient into the gas phase in a batch process of concentrating in the range of investigated modes.

  8. ACCURATE UNIVERSAL MODELS FOR THE MASS ACCRETION HISTORIES AND CONCENTRATIONS OF DARK MATTER HALOS

    Zhao, D. H.; Jing, Y. P.; Mo, H. J.; Boerner, G.

    2009-01-01

    A large amount of observations have constrained cosmological parameters and the initial density fluctuation spectrum to a very high accuracy. However, cosmological parameters change with time and the power index of the power spectrum dramatically varies with mass scale in the so-called concordance ΛCDM cosmology. Thus, any successful model for its structural evolution should work well simultaneously for various cosmological models and different power spectra. We use a large set of high-resolution N-body simulations of a variety of structure formation models (scale-free, standard CDM, open CDM, and ΛCDM) to study the mass accretion histories, the mass and redshift dependence of concentrations, and the concentration evolution histories of dark matter halos. We find that there is significant disagreement between the much-used empirical models in the literature and our simulations. Based on our simulation results, we find that the mass accretion rate of a halo is tightly correlated with a simple function of its mass, the redshift, parameters of the cosmology, and of the initial density fluctuation spectrum, which correctly disentangles the effects of all these factors and halo environments. We also find that the concentration of a halo is strongly correlated with the universe age when its progenitor on the mass accretion history first reaches 4% of its current mass. According to these correlations, we develop new empirical models for both the mass accretion histories and the concentration evolution histories of dark matter halos, and the latter can also be used to predict the mass and redshift dependence of halo concentrations. These models are accurate and universal: the same set of model parameters works well for different cosmological models and for halos of different masses at different redshifts, and in the ΛCDM case the model predictions match the simulation results very well even though halo mass is traced to about 0.0005 times the final mass, when

  9. The music of clash: predictions on the concentration-mass relation

    Meneghetti, M. [INAF, Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Rasia, E. [Physics Department, University of Michigan, 450 Church Avenue, Ann Arbor, MI 48109 (United States); Vega, J.; Yepes, G.; Sembolini, F. [Departamento de Fsica Terica, Universidad Autnoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Merten, J.; Ettori, S. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Postman, M.; Coe, D. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21208 (United States); Donahue, M. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Umetsu, K.; Czakon, N. [Institute of Astronomy and Astrophysics, Academia Sinica, PO Box 23-141, Taipei 10617, Taiwan (China); Balestra, I. [INAF-Osservatorio Astronomico di Capodimonte, Via Moiariello 16, I-80131 Napoli (Italy); Bartelmann, M. [Institut fur Theoretische Astrophysik, Universität Heidelberg, Zentrum für Astronomie, Philosophenweg 12, D-69120 Heidelberg (Germany); Benítez, N. [Instituto de Astrofísica de Andalucía (CSIC), E-18080 Granada (Spain); Biviano, A. [INAF/Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34143 Trieste (Italy); Bouwens, R. [Leiden Observatory, Leiden University, PO Box 9513, NL-2333 Leiden (Netherlands); Bradley, L. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Broadhurst, T. [Department of Theoretical Physics and History of Science, University of the Basque Country UPV/EHU, PO Box 644, E-48080 Bilbao (Spain); De Petris, M. [Dipartimento di Fisica, Sapienza Universit di Roma, Piazzale Aldo Moro 5, I-00185 Roma (Italy); and others

    2014-12-10

    We present an analysis of the MUSIC-2 N-body/hydrodynamical simulations aimed at estimating the expected concentration-mass relation for the CLASH (Cluster Lensing and Supernova Survey with Hubble) cluster sample. We study nearly 1,400 halos simulated at high spatial and mass resolution. We study the shape of both their density and surface-density profiles and fit them with a variety of radial functions, including the Navarro-Frenk-White (NFW), the generalized NFW, and the Einasto density profiles. We derive concentrations and masses from these fits. We produce simulated Chandra observations of the halos, and we use them to identify objects resembling the X-ray morphologies and masses of the clusters in the CLASH X-ray-selected sample. We also derive a concentration-mass relation for strong-lensing clusters. We find that the sample of simulated halos that resembles the X-ray morphology of the CLASH clusters is composed mainly of relaxed halos, but it also contains a significant fraction of unrelaxed systems. For such a heterogeneous sample we measure an average two-dimensional concentration that is ∼11% higher than is found for the full sample of simulated halos. After accounting for projection and selection effects, the average NFW concentrations of CLASH clusters are expected to be intermediate between those predicted in three dimensions for relaxed and super-relaxed halos. Matching the simulations to the individual CLASH clusters on the basis of the X-ray morphology, we expect that the NFW concentrations recovered from the lensing analysis of the CLASH clusters are in the range [3-6], with an average value of 3.87 and a standard deviation of 0.61.

  10. The music of clash: predictions on the concentration-mass relation

    Meneghetti, M.; Rasia, E.; Vega, J.; Yepes, G.; Sembolini, F.; Merten, J.; Ettori, S.; Postman, M.; Coe, D.; Donahue, M.; Umetsu, K.; Czakon, N.; Balestra, I.; Bartelmann, M.; Benítez, N.; Biviano, A.; Bouwens, R.; Bradley, L.; Broadhurst, T.; De Petris, M.

    2014-01-01

    We present an analysis of the MUSIC-2 N-body/hydrodynamical simulations aimed at estimating the expected concentration-mass relation for the CLASH (Cluster Lensing and Supernova Survey with Hubble) cluster sample. We study nearly 1,400 halos simulated at high spatial and mass resolution. We study the shape of both their density and surface-density profiles and fit them with a variety of radial functions, including the Navarro-Frenk-White (NFW), the generalized NFW, and the Einasto density profiles. We derive concentrations and masses from these fits. We produce simulated Chandra observations of the halos, and we use them to identify objects resembling the X-ray morphologies and masses of the clusters in the CLASH X-ray-selected sample. We also derive a concentration-mass relation for strong-lensing clusters. We find that the sample of simulated halos that resembles the X-ray morphology of the CLASH clusters is composed mainly of relaxed halos, but it also contains a significant fraction of unrelaxed systems. For such a heterogeneous sample we measure an average two-dimensional concentration that is ∼11% higher than is found for the full sample of simulated halos. After accounting for projection and selection effects, the average NFW concentrations of CLASH clusters are expected to be intermediate between those predicted in three dimensions for relaxed and super-relaxed halos. Matching the simulations to the individual CLASH clusters on the basis of the X-ray morphology, we expect that the NFW concentrations recovered from the lensing analysis of the CLASH clusters are in the range [3-6], with an average value of 3.87 and a standard deviation of 0.61.

  11. The MUSIC of CLASH: Predictions on the Concentration-Mass Relation

    Meneghetti, M.; Rasia, E.; Vega, J.; Merten, J.; Postman, M.; Yepes, G.; Sembolini, F.; Donahue, M.; Ettori, S.; Umetsu, K.; Balestra, I.; Bartelmann, M.; Benítez, N.; Biviano, A.; Bouwens, R.; Bradley, L.; Broadhurst, T.; Coe, D.; Czakon, N.; De Petris, M.; Ford, H.; Giocoli, C.; Gottlöber, S.; Grillo, C.; Infante, L.; Jouvel, S.; Kelson, D.; Koekemoer, A.; Lahav, O.; Lemze, D.; Medezinski, E.; Melchior, P.; Mercurio, A.; Molino, A.; Moscardini, L.; Monna, A.; Moustakas, J.; Moustakas, L. A.; Nonino, M.; Rhodes, J.; Rosati, P.; Sayers, J.; Seitz, S.; Zheng, W.; Zitrin, A.

    2014-12-01

    We present an analysis of the MUSIC-2 N-body/hydrodynamical simulations aimed at estimating the expected concentration-mass relation for the CLASH (Cluster Lensing and Supernova Survey with Hubble) cluster sample. We study nearly 1,400 halos simulated at high spatial and mass resolution. We study the shape of both their density and surface-density profiles and fit them with a variety of radial functions, including the Navarro-Frenk-White (NFW), the generalized NFW, and the Einasto density profiles. We derive concentrations and masses from these fits. We produce simulated Chandra observations of the halos, and we use them to identify objects resembling the X-ray morphologies and masses of the clusters in the CLASH X-ray-selected sample. We also derive a concentration-mass relation for strong-lensing clusters. We find that the sample of simulated halos that resembles the X-ray morphology of the CLASH clusters is composed mainly of relaxed halos, but it also contains a significant fraction of unrelaxed systems. For such a heterogeneous sample we measure an average two-dimensional concentration that is ~11% higher than is found for the full sample of simulated halos. After accounting for projection and selection effects, the average NFW concentrations of CLASH clusters are expected to be intermediate between those predicted in three dimensions for relaxed and super-relaxed halos. Matching the simulations to the individual CLASH clusters on the basis of the X-ray morphology, we expect that the NFW concentrations recovered from the lensing analysis of the CLASH clusters are in the range [3-6], with an average value of 3.87 and a standard deviation of 0.61.

  12. Particulate Matter Mass Concentration in Residential Prefabricated Buildings Related to Temperature and Moisture

    Kraus, Michal; Juhásová Šenitková, Ingrid

    2017-10-01

    Building environmental audit and the assessment of indoor air quality (IAQ) in typical residential buildings is necessary process to ensure users’ health and well-being. The paper deals with the concentrations on indoor dust particles (PM10) in the context of hygrothermal microclimate in indoor environment. The indoor temperature, relative humidity and air movement are basic significant factors determining the PM10 concentration [μg/m3]. The experimental measurements in this contribution represent the impact of indoor physical parameters on the concentration of particulate matter mass concentration. The occurrence of dust particles is typical for the almost two-thirds of interiors of the buildings. Other parameters indoor environment, such as air change rate, volume of the room, roughness and porosity of the building material surfaces, static electricity, light ions and others, were set constant and they are not taken into account in this study. The mass concentration of PM10 is measured during summer season in apartment of residential prefabricated building. The values of global temperature [°C] and relative humidity of indoor air [%] are also monitored. The quantity of particulate mass matter is determined gravimetrically by weighing according to CSN EN 12 341 (2014). The obtained results show that the temperature difference of the internal environment does not have a significant effect on the concentration PM10. Vice versa, the difference of relative humidity exhibits a difference of the concentration of dust particles. Higher levels of indoor particulates are observed for low values of relative humidity. The decreasing of relative air humidity about 10% caused 10µg/m3 of PM10 concentration increasing. The hygienic limit value of PM10 concentration is not exceeded at any point of experimental measurement.

  13. Contribution of creatine kinase MB mass concentration at admission to early diagnosis of acute myocardial infarction

    Bakker, A. J.; Gorgels, J. P.; van Vlies, B.; Koelemay, M. J.; Smits, R.; Tijssen, J. G.; Haagen, F. D.

    1994-01-01

    OBJECTIVE: To assess the diagnostic value at admission of creatine kinase MB mass concentration, alone or in combination with electrocardiographic changes, in suspected myocardial infarction. DESIGN: Prospective study of all consecutive patients admitted within 12 hours after onset of chest pain to

  14. PM mass and elemental species concentration data for I-96 monitoring sites

    U.S. Environmental Protection Agency — PM2.5 (fine) and PM10-2.5 (coarse) mass concentrations for monitoring sites located 10 m, 100 m and 300 m north of Interstate I-96 in Detroit, the water-soluble and...

  15. Application research of computational mass-transfer differential equation in MBR concentration field simulation.

    Li, Chunqing; Tie, Xiaobo; Liang, Kai; Ji, Chanjuan

    2016-01-01

    After conducting the intensive research on the distribution of fluid's velocity and biochemical reactions in the membrane bioreactor (MBR), this paper introduces the use of the mass-transfer differential equation to simulate the distribution of the chemical oxygen demand (COD) concentration in MBR membrane pool. The solutions are as follows: first, use computational fluid dynamics to establish a flow control equation model of the fluid in MBR membrane pool; second, calculate this model by adopting direct numerical simulation to get the velocity field of the fluid in membrane pool; third, combine the data of velocity field to establish mass-transfer differential equation model for the concentration field in MBR membrane pool, and use Seidel iteration method to solve the equation model; last but not least, substitute the real factory data into the velocity and concentration field model to calculate simulation results, and use visualization software Tecplot to display the results. Finally by analyzing the nephogram of COD concentration distribution, it can be found that the simulation result conforms the distribution rule of the COD's concentration in real membrane pool, and the mass-transfer phenomenon can be affected by the velocity field of the fluid in membrane pool. The simulation results of this paper have certain reference value for the design optimization of the real MBR system.

  16. Aerosol concentration measurements and correlations with air mass trajectories at the Pierre Auger Observatory

    Micheletti, M. I.; Louedec, K.; Freire, M.; Vitale, P.; Piacentini, R. D.

    2017-06-01

    Aerosols play an important role in radiative transfer processes involved in different fields of study. In particular, their influence is crucial in the attenuation of light at astronomical and astrophysical observatories, and has to be taken into account in light transfer models employed to reconstruct the signals. The Andean Argentinean region is increasingly being considered as a good candidate to host such facilities, as well as the ones for solar-energy resources, and an adequate knowledge of aerosols characteristics there is needed, but it is not always possible due to the vast area involved and the scarce atmospheric data at ground. The aim of this work is to find correlations between aerosol data and particle trajectories that can give an insight into the origin and behaviour of aerosols in this zone and can be employed in situations in which one does not have local aerosol measurements. For this purpose, an aerosol spectrometer and dust monitor (Grimm 1.109) was installed at the Pierre Auger Observatory of ultra-high-energy cosmic rays, to record aerosol concentrations in different size intervals, at surface level. These measurements are analysed and correlated with air mass trajectories obtained from HYSPLIT (NOAA) model calculations. High aerosol concentrations are registered predominantly when air masses have travelled mostly over continental areas, mainly from the NE direction, while low aerosol concentrations are found in correspondence with air masses coming from the Pacific Ocean, from the NW direction. Different size distribution patterns were found for the aerosols depending on their origin: marine or continental. This work shows for the first time the size distribution of aerosols registered at the Pierre Auger Observatory. The correlations found between mass and particle concentrations (total and for different size ranges) and HYSPLIT air mass trajectories, confirm that the latter can be employed as a useful tool to infer the sources, evolution

  17. Variations of PM2.5, PM10 mass concentration and health assessment in Islamabad, Pakistan

    Memhood, Tariq; Tianle, Z.; Ahmad, I.; Li, X.; Shen, F.; Akram, W.; Dong, L.

    2018-04-01

    Sparse information appears in lack of awareness among the people regarding the linkage between particulate matter (PM) and mortality in Pakistan. The current study is aimed to investigate the seasonal mass concentration level of PM2.5 and PM10 in ambient air of Islamabad to assess the health risk of PM pollution. The sampling was carried out with two parallel medium volume air samplers on Whatman 47 mm quartz filter at a flow rate of 100L/min. Mass concentration was obtained by gravimetric analysis. A noticeable seasonal change in PM10 and PM2.5 mass concentration was observed. In case of PM2.5, the winter was a most polluted and spring was the cleanest season of 2017 in Islamabad with 69.97 and 40.44 μgm‑3 mean concentration. Contrary, highest (152.42 μgm‑3) and lowest (74.90 μgm‑3) PM10 mass concentration was observed in autumn and summer respectively. Air Quality index level for PM2.5 and PM10 was remained moderated to unhealthy and good to sensitive respectively. Regarding health risk assessment, using national data for mortality rates, the excess mortality due to PM2.5 and PM10 exposure has been calculated and amounts to over 198 and 98 deaths annually for Islamabad. Comparatively estimated lifetime risk for PM2.5 (1.16×10-6) was observed higher than PM10 (7.32×10-8).

  18. Respiration in spiders (Araneae).

    Schmitz, Anke

    2016-05-01

    Spiders (Araneae) are unique regarding their respiratory system: they are the only animal group that breathe simultaneously with lungs and tracheae. Looking at the physiology of respiration the existence of tracheae plays an important role in spiders with a well-developed tracheal system. Other factors as sex, life time, type of prey capture and the high ability to gain energy anaerobically influence the resting and the active metabolic rate intensely. Most spiders have metabolic rates that are much lower than expected from body mass; but especially those with two pairs of lungs. Males normally have higher resting rates than females; spiders that are less evolved and possess a cribellum have lower metabolic rates than higher evolved species. Freely hunting spiders show a higher energy turnover than spiders hunting with a web. Spiders that live longer than 1 year will have lower metabolic rates than those species that die after 1 year in which development and reproduction must be completed. Lower temperatures and starvation, which most spiders can cope with, will decrease the metabolic rate as well.

  19. Measurement of particle size distribution and mass concentration of nuclear fuel aerosols

    Pickering, S.

    1982-01-01

    The particle size distribution and particle mass concentration of a nuclear fuel aerosol is measured by admitting the aerosol into a vertically-extending container, positioning an alpha particle detector within the container so that its window is horizontal and directed vertically, stopping the admission of aerosol into the container, detecting the alpha-activity of the particles of the aerosol sedimenting onto the detector window (for example in a series of equal time intervals until a constant level is reached), and converting the alpha-activity measurements into particle size distribution and/or particle mass concentration measurements. The detector is attached to a pivotted arm and by raising a counterweight can be lowered from the container for cleaning. (author)

  20. Influence of structural parameter included in nonlocal rock mass model on stress concentration around circular tunnel

    Lavrikov, SV; Mikenina, OA; Revuzhenko, AF

    2018-03-01

    A model of elastic body, including local curvature of elementary volume, is matched with a nonlocal model with a linear structural parameter in the differential approximation. The problem on deformation of rock mass around a circular cross section tunnel is solved numerically. The contours of the calculated stresses are plotted. It is shown that inclusion of local bends in the model results in expansion of influence zone of the tunnel and reduces stress concentration factor at the tunnel boundary.

  1. Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08)

    Chen, Q.; Farmer, D. K.; Rizzo, L. V.; Pauliqueivis, T.; Kuwata, Mikinori; Karl, Thomas G.; Guenther, Alex B.; Allan, James D.; Coe, H.; Andreae, M. O.; Poeschl, U.; Jiminez, J. L.; Artaxo, Paulo; Martin, Scot T.

    2015-01-01

    Real-time mass spectra of non-refractory component of submicron aerosol particles were recorded in a tropical rainforest in the central Amazon basin during the wet season of 2008, as a part of the Amazonian Aerosol Characterization Experiment (AMAZE-08). Organic components accounted on average for more than 80% of the non-refractory submicron particle mass concentrations during the period of measurements. Ammonium was present in sufficient quantities to halfway neutralize sulfate. In this acidic, isoprene-dominated, low-NOx environment the high-resolution mass spectra as well as mass closures with ion chromatography measurements did not provide evidence for significant contributions of organosulfate species, at least at concentrations above uncertainty levels. Positive-matrix factorization of the time series of particle mass spectra identified four statistical factors to account for the variance of the signal intensities of the organic constituents: a factor HOA having a hydrocarbon-like signature and identified as regional emissions of primary organic material, a factor OOA-1 associated with fresh production of secondary organic material by a mechanism of BVOC oxidation followed by gas-to-particle conversion, a factor OOA-2 consistent with reactive uptake of isoprene oxidation products, especially epoxydiols by acidic particles, and a factor OOA-3 associated with long range transport and atmospheric aging. The OOA-1, -2, and -3 factors had progressively more oxidized signatures. Diameter-resolved mass spectral markers also suggested enhanced reactive uptake of isoprene oxidation products to the accumulation mode for the OOA-2 factor, and such size partitioning can be indicative of in-cloud process. The campaign-average factor loadings were in a ratio of 1.1:1.0 for the OOA-1 compared to the OOA-2 pathway, suggesting the comparable importance of gas-phase compared to particle-phase (including cloud waters) production pathways of secondary organic material during

  2. Influences mass concentration of P3HT and PCBM to application of organic solar cells

    Supriyanto, A.; Maya; Iriani, Y.; Ramelan, A. H.; Nurosyid, F; Rosa, E. S.

    2016-01-01

    Poly (3-hexylthiophene) (P3HT) and [6, 6] -phenyl-C61-butyric acid methyl ester (PCBM) are used for the organic solar cell applications. P3HT and PCBM act as donors and acceptors, respectively. In this study the efficiency of the P3HT: PCBM organic solar cells as function of the mass concentration of the blend P3HT: PCBM with 1, 2, 8, 16 mg/ml. Deposition P3HT:PCBM film using spin coating with a rotary speed of 2500 rpm for 10 seconds. Optical properties of absorption spectra characteristic using a UV-Visible Spectrometer Lambda 25 and electrical properties of I-V characteristic using Keithley 2602 instrument. The results of absoption spectra for P3HT:PCBM within different mass concentration obtained 500-600 nm wavelengths. The Energy-gap obtained about 1.9eV. The organic solar cells device performance were investigated using I-V cahractyeristic. For mass concentration of 1, 2, 8 and 16 mg/ml P3HT:PCBM were obtained 0.5×10 -3 %, 2.2×10 -3 %, 5.9×10 -3 %, and 6.1×10 -3 % efficiency of organics solar cells respectively. (paper)

  3. Plant species richness regulates soil respiration through changes in productivity.

    Dias, André Tavares Corrêa; van Ruijven, Jasper; Berendse, Frank

    2010-07-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of diversity on soil respiration. We hypothesized that plant diversity could affect soil respiration in two ways. On the one hand, more diverse plant communities have been shown to promote plant productivity, which could increase soil respiration. On the other hand, the nutrient concentration in the biomass produced has been shown to decrease with diversity, which could counteract the production-induced increase in soil respiration. Our results clearly show that soil respiration increased with species richness. Detailed analysis revealed that this effect was not due to differences in species composition. In general, soil respiration in mixtures was higher than would be expected from the monocultures. Path analysis revealed that species richness predominantly regulates soil respiration through changes in productivity. No evidence supporting the hypothesized negative effect of lower N concentration on soil respiration was found. We conclude that shifts in productivity are the main mechanism by which changes in plant diversity may affect soil respiration.

  4. Respiration in Aquatic Insects.

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  5. Aquatic Exposure Predictions of Insecticide Field Concentrations Using a Multimedia Mass-Balance Model.

    Knäbel, Anja; Scheringer, Martin; Stehle, Sebastian; Schulz, Ralf

    2016-04-05

    Highly complex process-driven mechanistic fate and transport models and multimedia mass balance models can be used for the exposure prediction of pesticides in different environmental compartments. Generally, both types of models differ in spatial and temporal resolution. Process-driven mechanistic fate models are very complex, and calculations are time-intensive. This type of model is currently used within the European regulatory pesticide registration (FOCUS). Multimedia mass-balance models require fewer input parameters to calculate concentration ranges and the partitioning between different environmental media. In this study, we used the fugacity-based small-region model (SRM) to calculate predicted environmental concentrations (PEC) for 466 cases of insecticide field concentrations measured in European surface waters. We were able to show that the PECs of the multimedia model are more protective in comparison to FOCUS. In addition, our results show that the multimedia model results have a higher predictive power to simulate varying field concentrations at a higher level of field relevance. The adaptation of the model scenario to actual field conditions suggests that the performance of the SRM increases when worst-case conditions are replaced by real field data. Therefore, this study shows that a less complex modeling approach than that used in the regulatory risk assessment exhibits a higher level of protectiveness and predictiveness and that there is a need to develop and evaluate new ecologically relevant scenarios in the context of pesticide exposure modeling.

  6. Direct Analysis of Proteins from Solutions with High Salt Concentration Using Laser Electrospray Mass Spectrometry

    Karki, Santosh; Shi, Fengjian; Archer, Jieutonne J.; Sistani, Habiballah; Levis, Robert J.

    2018-05-01

    The detection of lysozyme, or a mixture of lysozyme, cytochrome c, and myoglobin, from solutions with varying salt concentrations (0.1 to 250 mM NaCl) is compared using laser electrospray mass spectrometry (LEMS) and electrospray ionization-mass spectrometry (ESI-MS). Protonated protein peaks were observed up to a concentration of 250 mM NaCl in the case of LEMS. In the case of ESI-MS, a protein solution with salt concentration > 0.5 mM resulted in predominantly salt-adducted features, with suppression of the protonated protein ions. The constituents in the mixture of proteins were assignable up to 250 mM NaCl for LEMS and were not assignable above a NaCl concentration of 0.5 mM for ESI. The average sodium adducts () bound to the 7+ charge state of lysozyme for LEMS measurements from salt concentrations of 2.5, 25, 50, and 100 mM NaCl are 1.71, 5.23, 5.26, and 5.11, respectively. The conventional electrospray measurements for lysozyme solution containing salt concentrations of 0.1, 1, 2, and 5 mM NaCl resulted in of 2.65, 6.44, 7.57, and 8.48, respectively. LEMS displays an approximately two orders of magnitude higher salt tolerance in comparison with conventional ESI-MS. The non-equilibrium partitioning of proteins on the surface of the charged droplets is proposed as the mechanism for the high salt tolerance phenomena observed in the LEMS measurements. [Figure not available: see fulltext.

  7. Respirator studies for the National Institute for Occupational Safety and Health. Progress report, July 1, 1974--June 30, 1975

    Douglas, D.D.; Revoir, W.; Lowry, P.L.

    1976-08-01

    Respirator studies carried out in FY 1975 for the National Institute for Occupational Safety and Health were concentrated in two major areas: (1) the development of respirator test equipment and methods to improve the means of evaluating the performance of respirators, (2) the testing of respirators to obtain quantitative data to permit recommendations to be made to upgrade respirator performance criteria. Major accomplishments included obtaining man-test results on several different respirators using an anthropometrically selected test panel, determination of respirator exhalation valve leakages under static and dynamic conditions, and determination of the effects of respirator strap tension on facepiece leakage

  8. Effect of fluorine and of beta-indolacetic acid on the respiration of root tissue

    Pilet, P E

    1964-01-01

    The auxin, beta-indolacetic acid, (BIAA) inhibited the elongation of Lens culinaris roots at all concentrations. At high concentrations fluoride had an inhibitor effect, but it had a stimulatory effect on root growth at low concentrations. BIAA mildly stimulated respiration at low concentrations and inhibited oxygen absorption at high concentrations. At concentrations stimulating respiration fluoride was found to reduce these stimulating effects caused by BIAA. Therefore, fluoride and BIAA acted as antagonists in their effect on respiration.

  9. The time series variations of tritium concentration in precipitation and its relationships to the rainfall-inducing air mass

    Shimada, Jun

    1978-01-01

    The author measured the tritium concentration in precipitation of Tokyo for every ten-day period from August 1972 to May 1974. Judging from the daily synoptic weather chart, the rainfall-inducing air masses in Japan were classified into five types; polar maritime air mass (Pm), polar continental air mass (Pc), tropical maritime air mass (Tm), tropical continental air mass (Tc), and equatorial maritime air mass (Em). And the precipitation for every ten-day period sampled for tritium measurement were classified into these five types. Based on this classification, it is confirmed that there exist clear difference in the tritium concentration between the rainfall from the continental air mass and ones from the maritime air mass. It is characteristic that the tritium concentration in rainfall induced by equatorial maritime air mass such as typhoon in summer and early fall season is very low whereas the tritium concentration in rainfall and snowfall induced directly by the polar continental air mass in late winter season is very high. The regional difference of the tritium concentration in intermonthly precipitation could considerably be explained by this synoptic meteological classification of rainfall-inducing air mass. In spite of these regional difference of tritium concentration in precipitation, use of the tritium concentration of Tokyo as a representative value of Japan may be allowed because of the similarities of the changing pattern and annual mean tritium concentration. The time series variations of tritium concentration in precipitation of Tokyo from August 1972 to December 1977, Tsukuba from December 1976 to April 1978, and Nagaoka from April 1977 to March 1978 are listed. (author)

  10. EFFECT OF CENTRAL MASS CONCENTRATION ON THE FORMATION OF NUCLEAR SPIRALS IN BARRED GALAXIES

    Thakur, Parijat; Jiang, I.-G.; Ann, H. B.

    2009-01-01

    We have performed smoothed particle hydrodynamics simulations to study the response of the central kiloparsec region of a gaseous disk to the imposition of nonaxisymmetric bar potentials. The model galaxies are composed of three axisymmetric components (halo, disk, and bulge) and a nonaxisymmetric bar. These components are assumed to be invariant in time in the frame corotating with the bar. The potential of spherical γ-models of Dehnen is adopted for the bulge component whose density varies as r -γ near the center and r -4 at larger radii and, hence, possesses a central density core for γ = 0 and cusps for γ>0. Since the central mass concentration of the model galaxies increases with the cusp parameter γ, we have examined here the effect of the central mass concentration by varying the cusp parameter γ on the mechanism responsible for the formation of the symmetric two-armed nuclear spirals in barred galaxies. Our simulations show that the symmetric two-armed nuclear spirals are formed by hydrodynamic spiral shocks driven by the gravitational torque of the bar for the models with γ = 0 and 0.5. On the other hand, the symmetric two-armed nuclear spirals in the models with γ = 1 and 1.5 are explained by gas density waves. Thus, we conclude that the mechanism responsible for the formation of symmetric two-armed nuclear spirals in barred galaxies changes from hydrodynamic shocks to gas density waves as the central mass concentration increases from γ = 0 to 1.5.

  11. Different top-down approaches to estimate measurement uncertainty of whole blood tacrolimus mass concentration values.

    Rigo-Bonnin, Raül; Blanco-Font, Aurora; Canalias, Francesca

    2018-05-08

    Values of mass concentration of tacrolimus in whole blood are commonly used by the clinicians for monitoring the status of a transplant patient and for checking whether the administered dose of tacrolimus is effective. So, clinical laboratories must provide results as accurately as possible. Measurement uncertainty can allow ensuring reliability of these results. The aim of this study was to estimate measurement uncertainty of whole blood mass concentration tacrolimus values obtained by UHPLC-MS/MS using two top-down approaches: the single laboratory validation approach and the proficiency testing approach. For the single laboratory validation approach, we estimated the uncertainties associated to the intermediate imprecision (using long-term internal quality control data) and the bias (utilizing a certified reference material). Next, we combined them together with the uncertainties related to the calibrators-assigned values to obtain a combined uncertainty for, finally, to calculate the expanded uncertainty. For the proficiency testing approach, the uncertainty was estimated in a similar way that the single laboratory validation approach but considering data from internal and external quality control schemes to estimate the uncertainty related to the bias. The estimated expanded uncertainty for single laboratory validation, proficiency testing using internal and external quality control schemes were 11.8%, 13.2%, and 13.0%, respectively. After performing the two top-down approaches, we observed that their uncertainty results were quite similar. This fact would confirm that either two approaches could be used to estimate the measurement uncertainty of whole blood mass concentration tacrolimus values in clinical laboratories. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  12. Mass concentration coupled with mass loading rate for evaluating PM_2_._5 pollution status in the atmosphere: A case study based on dairy barns

    Joo, HungSoo; Park, Kihong; Lee, Kwangyul; Ndegwa, Pius M.

    2015-01-01

    This study investigated particulate matter (PM) loading rates and concentrations in ambient air from naturally ventilated dairy barns and also the influences of pertinent meteorological factors, traffic, and animal activities on mass loading rates and mass concentrations. Generally, relationships between PM_2_._5 concentration and these parameters were significantly poorer than those between the PM loading rate and the same parameters. Although ambient air PM_2_._5 loading rates correlated well with PM_2_._5 emission rates, ambient air PM_2_._5 concentrations correlated poorly with PM_2_._5 concentrations in the barns. A comprehensive assessment of PM_2_._5 pollution in ambient air, therefore, requires both mass concentrations and mass loading rates. Emissions of PM_2_._5 correlated strongly and positively with wind speed, temperature, and solar radiation (R"2 = 0.84 to 0.99) and strongly but negatively with relative humidity (R"2 = 0.93). Animal activity exhibited only moderate effect on PM_2_._5 emissions, while traffic activity did not significantly affect PM_2_._5 emissions. - Highlights: • Sink PM_2_._5 loading rates correlate well with source PM_2_._5 emission rates. • Sink PM_2_._5 concentrations correlate poorly with source PM_2_._5 concentrations. • Mass loading rate complements mass concentration in appraising sink PM_2_._5 status. • PM_2_._5 emissions is dependent on wind speed, temp, solar strength, and RH. • Cow traffic activity affects PM_2_._5 emissions, while traffic activity does not. - Both PM mass loading rate and concentrations are required for comprehensive assessment of pollution potential of PM released into the atmosphere.

  13. Mass concentrations of BTEX inside air environment of buses in Changsha, China

    Chen, Xiaokai; Zhang, Guoqiang; Zhang, Quan [College of Civil Engineering, Hunan University, Changsha 410082, Hunan (China); Chen, Hong [College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan (China)

    2011-02-15

    In order to estimate the mass concentrations of benzene (B), toluene (T), ethylbenzene (E) and xylenes (X) inside air environment of buses and to analyze the influencing factors of the BTEX pollution levels, 22 public buses were investigated in Changsha, China. The interior air was collected through activated charcoal adsorption tubes and then the air samples were analyzed with thermally desorbed gas chromatograph. The mass concentrations ranged from 21.3 to 106.4 {mu}g/m{sup 3} for benzene, from 53.5 to 266.0 {mu}g/m{sup 3} for toluene, from 19.6 to 95.9 {mu}g/m{sup 3} for ethylbenzene and from 46.9 to 234.8 {mu}g/m{sup 3} for xylenes. Their mean values were 68.7, 179.7, 62.5 and 151.8 {mu}g/m{sup 3}, respectively. The rates of buses tested where the interior concentrations exceeded the limit levels of Chinese Indoor Air Quality Standard were 45.5% for toluene and 13.6% for xylenes. The BTEX levels increased when in-car temperature or relative humidity rose, and decreased when car age or travel distance increased. The BTEX concentrations were higher in leather trims buses than in non-leather trims ones, in air-conditioned buses than in non-air-conditioned ones, and in high-grade buses than in low-grade ones. According to the analysis of multiple linear regression equation, car age and in-car temperature were two most important factors influencing the BTEX pollution levels in the cabins of public buses. (author)

  14. Modeling respiration from snags and coarse woody debris before and after an invasive gypsy moth disturbance

    Heidi J. Renninger; Nicholas Carlo; Kenneth L. Clark; Karina V.R. Schäfer

    2014-01-01

    Although snags and coarse woody debris are a small component of ecosystem respiration, disturbances can significantly increase the mass and respiration from these carbon (C) pools. The objectives of this study were to (1) measure respiration rates of snags and coarse woody debris throughout the year in a forest previously defoliated by gypsy moths, (2) develop models...

  15. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    Rondo, L.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-01-01

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosolnucleation. Based on quantum chemical calculations it has been suggested that the quantitative detectionof gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased inthe presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was setup at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection ofH2SO4in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time inthe CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF(Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutralsulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presenceof dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS...

  16. Effect of rotary inertia of concentrated masses on the natural vibration of fluid conveying pipes

    Kang, Myeong Gie

    1999-01-01

    Effects of the rotary inertia of concentrated masses on the natural vibrations of fluid conveying pipes have been studied by theoretical modeling and computer simulation. For analysis, two boundary conditions for pipe ends, simply supported and clamped-clamped, are assumed and Galerkin's method is used for transformation of the governing equation to the eigenvalues problem and the natural frequencies and mode shapes for the system have been calculated by using the newly developed computer code. Moreover, the critical velocities related to a system instability have been investigated. The main conclusions for the present study are (1) rotary inertia gives much change on the higher natural frequencies and mode shapes and its effect is visible when it has small value, (2) The number and location of nodes can be changed by rotary inertia, (3) By introducing rotary inertia, the second natural frequency approaches to the first as the location of the concentrated mass approaches to the midspan of the pipe, and (4) The critical fluid velocities to initiate the system unstable are unchanged by introduction of rotary inertia and the first three velocities are π, 2π, and 3π for the simply supported pipe and 2π, 8.99 and 12.57 for the clamped-clamped pipe. (author). 16 refs., 7 figs., 3 tabs

  17. Improving respiration measurements with gas exchange analyzers.

    Montero, R; Ribas-Carbó, M; Del Saz, N F; El Aou-Ouad, H; Berry, J A; Flexas, J; Bota, J

    2016-12-01

    Dark respiration measurements with open-flow gas exchange analyzers are often questioned for their low accuracy as their low values often reach the precision limit of the instrument. Respiration was measured in five species, two hypostomatous (Vitis Vinifera L. and Acanthus mollis) and three amphistomatous, one with similar amount of stomata in both sides (Eucalyptus citriodora) and two with different stomata density (Brassica oleracea and Vicia faba). CO 2 differential (ΔCO 2 ) increased two-fold with no change in apparent R d , when the two leaves with higher stomatal density faced outside. These results showed a clear effect of the position of stomata on ΔCO 2 . Therefore, it can be concluded that leaf position is important to guarantee the improvement of respiration measurements increasing ΔCO 2 without affecting the respiration results by leaf or mass units. This method will help to increase the accuracy of leaf respiration measurements using gas exchange analyzers. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Active renin mass concentration to determine aldosterone-to-renin ratio in screening for primary aldosteronism

    Corbin F

    2011-07-01

    Full Text Available François Corbin1, Pierre Douville2, Marcel Lebel3 1Division of Biochemistry, l'Université de Sherbrooke, Sherbrooke, Quebec, Canada; 2Division of Biochemistry; 3Division of Nephrology, L'Hôtel-Dieu de Québec Hospital and l'Université Laval, Quebec, CanadaBackground: Active renin mass concentration (ARC is independent of the endogenous level of angiotensinogen, and less variable and more reproducible than plasma renin activity. Reference values for the aldosterone-to-renin ratio (ARR using ARC are still undefined. The objective of the present study was to determine the threshold of ARR using ARC measurement to screen for primary aldosteronism.Methods: A total of 211 subjects were included in the study, comprising 78 healthy normotensive controls, 95 patients with essential hypertension, and 38 patients with confirmed primary aldosteronism (20 with surgery-confirmed aldosterone-producing adenoma and 18 with idiopathic adrenal hyperplasia. Blood samples were drawn from ambulatory patients and volunteers in the mid-morning without specific dietary restriction for measuring plasma aldosterone concentration, ARC, and serum potassium.Results: Most normotensive controls and essential hypertension patients had ARR results below 100 pmol/ng, a value which corresponded to 3.3 times the median of these two groups.Conclusion: Patients with ARR values above this level should be considered for further investigation (confirmatory tests or for repeat testing should ARR values be borderline. This study indicates that ARC can be used reliably in determining ARR for primary aldosteronism screening.Keywords: primary aldosteronism, active renin mass concentration, aldosterone-to-renin ratio

  19. Quantitation of 14C-oxaliplatin concentrations in human serum samples by using accelerator mass spectrometry

    Kobayashi, Takeshi; Toyoguchi, Teiko; Kato, Kazuhiro; Tokanai, Fuyuki; Shiraishi, Tadashi

    2013-01-01

    The understanding of human pharmacokinetics is important for development of new drugs. Microdosing studies have been proposed as means of obtaining human pharmacokinetics information at early stages of drug development. Accelerator mass spectrometry (AMS) has high detection sensitivity and is expected to play an important role in microdose trials. In this study, we used the AMS microdosing facility at Yamagata University to measure the concentration of 14 C in 14 C-oxaliplatin-spiked serum samples. The calibration curve of 14 C concentration in serum was linear, and the correlation coefficient was 0.9994. The precision, accuracy, and stability values obtained (freeze and thaw cycles, and short- and long-term stability) satisfied the criteria. The mean background 14 C concentrations in samples of 6 healthy Japanese volunteers were 1.635dpm/mL in blood and 0.56dpm/mL in plasma. These results suggest the suitability of AMS-based quantitation for analyzing samples from microdosing studies. (author)

  20. Online sample concentration in partial-filling chiral electrokinetic chromatography – mass spectrometry.

    Wuethrich, Alain; Haddad, Paul R; Quirino, Joselito P

    2014-11-01

    The concentration sensitivity of a racemic drug (chlorpheniramine maleate) in chiral capillary electrophoresis with electrospray ionization – mass spectrometric detection was improved ~500-fold via stacking. Enantiomeric separation was achieved through the use of a neutral chiral pseudostationary phase (2-hydroxpropyl-β-cyclodextrin), untreated fused-silica capillaries, and the application of a partial-filling technique to prevent the pseudostationary phase from entering the detector. A concentration factor of 50 resulted from field-enhanced sample injection(FESI). However, the higher concentration factor was achieved by combining FESI with micelle-to-solvent stacking (MSS) to increase sample load and focus the analyte band. MSS was achieved by injection of an ammonium lauryl sulfate micellar plug prior to sample injection. The sample diluent was a 20-fold dilution of the background electrolyte (50 mM ammonium acetate, pH 3.5) with 60% acetonitrile. This methodology provided a limit of detection (LOD) of as low as 5 ng/ml of the racemate.

  1. Occupational Exposure to Respirable Dust, Respirable Crystalline Silica and Diesel Engine Exhaust Emissions in the London Tunnelling Environment.

    Galea, Karen S; Mair, Craig; Alexander, Carla; de Vocht, Frank; van Tongeren, Martie

    2016-03-01

    Personal 8-h shift exposure to respirable dust, diesel engine exhaust emissions (DEEE) (as respirable elemental carbon), and respirable crystalline silica of workers involved in constructing an underground metro railway tunnel was assessed. Black carbon (BC) concentrations were also assessed using a MicroAeth AE51. During sprayed concrete lining (SCL) activities in the tunnel, the geometric mean (GM) respirable dust exposure level was 0.91mg m(-3), with the highest exposure measured on a back-up sprayer (3.20mg m(-3)). The GM respirable crystalline silica concentration for SCL workers was 0.03mg m(-3), with the highest measurement also for the back-up sprayer (0.24mg m(-3)). During tunnel boring machine (TBM) activities, the GM respirable dust concentration was 0.54mg m(-3). The GM respirable elemental carbon concentration for all the TBM operators was 18 µg m(-3); with the highest concentration measured on a segment lifter. The BC concentrations were higher in the SCL environment in comparison to the TBM environment (daily GM 18-54 µg m(-3) versus 3-6 µg m(-3)). This small-scale monitoring campaign provides additional personal data on exposures experienced by underground tunnel construction workers. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  2. Cattle respiration facility

    Hellwing, Anne Louise Frydendahl; Lund, Peter; Weisbjerg, Martin Riis

    2012-01-01

    In Denmark, the emission rate of methane from dairy cows has been calculated using the IPCC standard values for dairy cows in Western countries, due to the lack of national data. Therefore, four respiration chambers for dairy cows were built with the main purpose of measuring methane, but also...

  3. Simplified pressure method for respirator fit testing.

    Han, D; Xu, M; Foo, S; Pilacinski, W; Willeke, K

    1991-08-01

    A simplified pressure method has been developed for fit testing air-purifying respirators. In this method, the air-purifying cartridges are replaced by a pressure-sensing attachment and a valve. While wearers hold their breath, a small pump extracts air from the respirator cavity until a steady-state pressure is reached in 1 to 2 sec. The flow rate through the face seal leak is a unique function of this pressure, which is determined once for all respirators, regardless of the respirator's cavity volume or deformation because of pliability. The contaminant concentration inside the respirator depends on the degree of dilution by the flow through the cartridges. The cartridge flow varies among different brands and is measured once for each brand. The ratio of cartridge to leakflow is a measure of fit. This flow ratio has been measured on human subjects and has been compared to fit factors determined on the same subjects by means of photometric and particle count tests. The aerosol tests gave higher values of fit.

  4. Monitoring salivary melatonin concentrations in children with sleep disorders using liquid chromatography-tandem mass spectrometry.

    Khan, Sohil A; George, Rani; Charles, Bruce G; Taylor, Paul J; Heussler, Helen S; Cooper, David M; McGuire, Treasure M; Pache, David; Norris, Ross L G

    2013-06-01

    Melatonin is synthesized in the pineal gland and is an important circadian phase marker, especially in the determination of sleep patterns. Both temporary and permanent abnormal sleep patterns occur in children; therefore, it is desirable to have methods for monitoring melatonin in biological fluids in the diagnosis and treatment of such disorders. The objective of the study is to develop a liquid chromatography-tandem mass spectrometry method for the determination of melatonin in saliva and to apply it to monitoring salivary concentrations in children with sleep disorders. A deuterated internal standard (d7-melatonin) was added to a diluted saliva sample (20 µL) in an autosampler vial insert, and 50 µL were injected. Plasticware was strictly avoided, and all glassware was scrupulously cleaned and then baked at 120°C for at least 48 hours to obtain satisfactory performance. Reverse-phase chromatography was performed on a C8 column using a linear gradient elution profile comprising mobile phases A (0.1% aqueous formic acid) and B (15% methanol in acetonitrile containing 0.1% formic acid), pumped at a total flow rate of 0.8 mL/min. The run time was 8 minutes. After atmospheric pressure chemical ionization, mass spectrometric detection was in positive ion mode. Mass detection was by selected reaction monitoring mode with the following mass transitions used for quantification: melatonin, m/z 233.0 → 173.8 and d7-melatonin, m/z 240.0 → 178.3. Linearity (r > 0.999) was established from 3.9 to 1000 pg/mL. Imprecision (coefficient of variation percent) was less than 11%, and accuracy was 100-105% (7.0-900 pg/mL). The method was selective, and the mean (range) ratio of the slopes of calibrations in water to those in daytime saliva samples collected from 10 healthy adult subjects was 0.989 (0.982-0.997), indicating negligible matrix effects. The application of the assay was demonstrated in healthy adults and in children being clinically investigated for sleep

  5. Association of urinary phthalate metabolites concentrations with body mass index and waist circumference.

    Amin, Mohammad Mehdi; Parastar, Saeed; Ebrahimpour, Karim; Shoshtari-Yeganeh, Bahareh; Hashemi, Majid; Mansourian, Marjan; Kelishadi, Roya

    2018-04-01

    This study aims to investigate the association of urinary concentration of phthalate metabolites with body mass index (BMI) and waist circumference (WC) in 2016 on 242 children and adolescents, aged 6-18 years living in Isfahan, Iran. Urinary concentration of mono-butyl phthalate (MBP), mono-benzyl phthalate (MBzP), mono-2-ethylhexyl phthalate (MEHP), mono-methyl phthalate (MMP), mono (2-ethyl-5-exohexyl) phthalate (MEOHP), and mono (2-ethyl-5hydroxyhexyl) phthalate (MEHHP) metabolites were determined. For comparison of means, t test and to evaluate the association of analytes in different groups according to weight ANOVA was used. The correlation was applied to determine the association between phthalate metabolites with age, sex, WC, BMI, and BMI z-score. The univariate and multivariate regression models were used to determine the association of metabolites concentration with BMI z-score and WC. Mean (SD) BMI, BMI z-score and WC were 23.89 (4.41) kg/m 2 , 1.37 (1.3), and 82.37 (12.71) cm, respectively. There was a significant correlation between boys' age with BMI z-score (p value = 0.03) and WC (p value = 0.01), while the corresponding figures were not statistically significant in girls (p value = 0.48, and 0.4, respectively). Of the total population, 37 participants (15.3%) were obese. MMP, MBP, and MBzP metabolites were observed in all samples while MEHP, MEOHP, and MEHHP in 99.6, 95.86, and 96.28% of the studied population. Mean concentration of MMP (64.38 μg/L) and MBzP (268 μg/L) had the lowest and highest concentrations of metabolites, respectively. A significant relationship was observed among all studied metabolites and weight groups (p value ≤ 0.02). After adjustment for potential confounders, all metabolites (except MMP) showed a low-to-moderate positive and significant relationship with BMI z-score (β = 0.17-0.3). A weak to moderate positive and significant relationship was observed between all phthalate metabolites and WC (

  6. Stellar Mass-gap as a Probe of Halo Assembly History and Concentration: Youth Hidden among Old Fossils

    Deason, A. J.; Conroy, C.; Wetzel, A. R.; Tinker, J. L.

    2013-11-01

    We investigate the use of the halo mass-gap statistic—defined as the logarithmic difference in mass between the host halo and its most massive satellite subhalo—as a probe of halo age and concentration. A cosmological N-body simulation is used to study N ~ 25, 000 group/cluster-sized halos in the mass range 1012.5 time and concentration. On average, older and more highly concentrated halos have larger halo mass-gaps, and this trend is stronger than the mass-concentration relation over a similar dynamic range. However, there is a large amount of scatter owing to the transitory nature of the satellite subhalo population, which limits the use of the halo mass-gap statistic on an object-by-object basis. For example, we find that 20% of very large halo mass-gap systems (akin to "fossil groups") are young and have likely experienced a recent merger between a massive satellite subhalo and the central subhalo. We relate halo mass-gap to the observable stellar mass-gap via abundance matching. Using a galaxy group catalog constructed from the Sloan Digital Sky Survey Data Release 7, we find that the star formation and structural properties of galaxies at fixed mass show no trend with stellar mass-gap. This is despite a variation in halo age of ≈2.5 Gyr over ≈1.2 dex in stellar mass-gap. Thus, we find no evidence to suggest that the halo formation history significantly affects galaxy properties.

  7. Workplace field testing of the pressure drop of particulate respirators using welding fumes.

    Cho, Hyun-Woo; Yoon, Chung-Sik

    2012-10-01

    In a previous study, we concluded that respirator testing with a sodium chloride aerosol gave a conservative estimate of filter penetration for welding fume aerosols. A rapid increase in the pressure drop (PD) of some respirators was observed as fumes accumulated on the filters. The present study evaluated particulate respirator PD based on workplace field tests. A field PD tester was designed and validated using the TSI 8130 Automatic Filter Tester, designed in compliance with National Institute for Occupational and Safety and Health regulation 42 CFR part 84. Three models (two replaceable dual-type filters and one replaceable single-type filter) were evaluated against CO(2) gas arc welding on mild steel in confined booths in the workplace. Field tests were performed under four airborne concentrations (27.5, 15.4, 7.9, and 2.1 mg m(-3)). The mass concentration was measured by the gravimetric method, and number concentration was monitored using P-Trak (Model 8525, TSI, USA). Additionally, photos and scanning electron microscopy-energy dispersive X-ray spectroscopy were used to visualize and analyze the composition of welding fumes trapped in the filters. The field PD tester showed no significant difference compared with the TSI tester. There was no significant difference in the initial PD between laboratory and field results. The PD increased as a function of fume load on the respirator filters for all tested models. The increasing PD trend differed by models, and PD increased rapidly at high concentrations because greater amount of fumes accumulated on the filters in a given time. The increase in PD as a function of fume load on the filters showed a similar pattern as fume load varied for a particular model, but different patterns were observed for different models. Images and elemental analyses of fumes trapped on the respirator filters showed that most welding fumes were trapped within the first layer, outer web cover, and second layer, in order, while no fumes

  8. Detection of Adriamycin-DNA adducts by accelerator mass spectrometry at clinically relevant Adriamycin concentrations.

    Coldwell, Kate E; Cutts, Suzanne M; Ognibene, Ted J; Henderson, Paul T; Phillips, Don R

    2008-09-01

    Limited sensitivity of existing assays has prevented investigation of whether Adriamycin-DNA adducts are involved in the anti-tumour potential of Adriamycin. Previous detection has achieved a sensitivity of a few Adriamycin-DNA adducts/10(4) bp DNA, but has required the use of supra-clinical drug concentrations. This work sought to measure Adriamycin-DNA adducts at sub-micromolar doses using accelerator mass spectrometry (AMS), a technique with origins in geochemistry for radiocarbon dating. We have used conditions previously validated (by less sensitive decay counting) to extract [(14)C]Adriamycin-DNA adducts from cells and adapted the methodology to AMS detection. Here we show the first direct evidence of Adriamycin-DNA adducts at clinically-relevant Adriamycin concentrations. [(14)C]Adriamycin treatment (25 nM) resulted in 4.4 +/- 1.0 adducts/10(7) bp ( approximately 1300 adducts/cell) in MCF-7 breast cancer cells, representing the best sensitivity and precision reported to date for the covalent binding of Adriamycin to DNA. The exceedingly sensitive nature of AMS has enabled over three orders of magnitude increased sensitivity of Adriamycin-DNA adduct detection and revealed adduct formation within an hour of drug treatment. This method has been shown to be highly reproducible for the measurement of Adriamycin-DNA adducts in tumour cells in culture and can now be applied to the detection of these adducts in human tissues.

  9. Root Zone Respiration on Hydroponically Grown Wheat Plant Systems

    Soler-Crespo, R. A.; Monje, O. A.

    2010-01-01

    Root respiration is a biological phenomenon that controls plant growth and physiological development during a plant's lifespan. This process is dependent on the availability of oxygen in the system where the plant is located. In hydroponic systems, where plants are submerged in a solution containing vital nutrients but no type of soil, the availability of oxygen arises from the dissolved oxygen concentration in the solution. This oxygen concentration is dependent on the , gas-liquid interface formed on the upper surface of the liquid, as given by Henry's Law, depending on pressure and temperature conditions. Respiration rates of the plants rise as biomass and root zone increase with age. The respiration rate of Apogee wheat plants (Triticum aestivum) was measured as a function of light intensity (catalytic for photosynthesis) and CO2 concentration to determine their effect on respiration rates. To determine their effects on respiration rate and plant growth microbial communities were introduced into the system, by Innoculum. Surfactants were introduced, simulating gray-water usage in space, as another factor to determine their effect on chemical oxygen demand of microbials and on respiration rates of the plants. It is expected to see small effects from changes in CO2 concentration or light levels, and to see root respiration decrease in an exponential manner with plant age and microbial activity.

  10. Respirators. Does your face fit

    Caro, N M; Else, D

    1981-04-01

    The authors carried out a survey of face sizes of men and women of four different ethnic origins and carried out face-seal leakage trials on four corresponding test panels. No single respirator design is likely to fit all members of the workforce, and it may be necessary to stock respirators from more than one manufacturers.Three or four different respirators or size of respirator may be needed. However, the use of lossely-fitting respirators such as Airsteam helmets could remove the necessity for exhaustive fitting procedures.

  11. Resin bead-thermal ionization mass spectrometry for determination of plutonium concentration in irradiated fuel dissolver solution

    Paul, Sumana; Shah, R.V.; Aggarwal, S.K.; Pandey, A.K.

    2015-01-01

    Determination of isotopic composition (IC) and concentration of plutonium (Pu) is necessary at various stages of nuclear fuel cycle which involves analysis of complex matrices like dissolver solution of irradiated fuel, nuclear waste stream etc. Mass spectrometry, e.g. thermal ionization mass spectrometry (TIMS) and inductively coupled plasma mass spectrometry (ICP-MS) are commonly used for determination of IC and concentration of plutonium. However, to circumvent matrix interferences, efficient separation as well as preconcentration of Pu is required prior to mass spectrometric analysis. Purification steps employing ion-exchange resins are widely used for the separation of Pu from dissolver solution or from mixture of other actinides e.g. U, Am. However, an alternative way is to selectively preconcentrate Pu on a resin bead, followed by direct loading of the bead on the filament of thermal ionization mass spectrometer

  12. Simultaneous measurement of the concentrations of soot particles and gas species in light hydrocarbon flames using mass spectrometry

    Li, Qingxun; Liu, Fang; Wang, Dezheng; Wang, Tiefeng

    2014-01-01

    Besides gas species concentrations, soot volume fractions are also important data in the study of flames. This work describes the simultaneous measurement of the concentrations of soot and gas species in light hydrocarbon flames by in situ sampling and mass spectrometry (MS).The reaction medium was frozen by sampling into a very low-pressure tube, and the soot selectivity (proportion of carbon atoms in the reactant converted to soot) was determined from the C and H mass balances using the measured concentrations of the gas species and the mass of soot present per unit gas volume. The H/C ratio of the soot was measured by a thermogravimetry–mass spectrometry combination. The soot volume fraction was calculated from the soot selectivity and density of the soot. The soot selectivity measured by this reduced pressure sampling mass spectrometry (RPSMS) method was verified by measurements using the gravimetric sampling technique where the mass of soot collected in a volume of gas was weighed by a high precision balance. For most of the measurements, the uncertainty in the soot volume fraction was ±5%, but this would be larger when the soot volume fractions are less than 1 ppm. For demonstration, the RPSMS method was used to study a methane fuel-rich flame where the soot volume fractions were 1–5 ppm. The simultaneous measurement of concentrations of soot and gas species is useful for the quantitative study of flames. (paper)

  13. Respirable dust and respirable silica exposure in Ontario gold mines.

    Verma, Dave K; Rajhans, Gyan S; Malik, Om P; des Tombe, Karen

    2014-01-01

    A comprehensive survey of respirable dust and respirable silica in Ontario gold mines was conducted by the Ontario Ministry of Labor during 1978-1979. The aim was to assess the feasibility of introducing gravimetric sampling to replace the assessment method which used konimeters, a device which gave results in terms of number of particles per cubic centimeter (ppcc) of air. The study involved both laboratory and field assessments. The field assessment involved measurement of airborne respirable dust and respirable silica at all eight operating gold mines of the time. This article describes the details of the field assessment. A total of 288 long-term (7-8 hr) personal respirable dust air samples were collected from seven occupational categories in eight gold mines. The respirable silica (α-quartz) was determined by x-ray diffraction method. The results show that during 1978-1979, the industry wide mean respirable dust was about 1 mg/m(3), and the mean respirable silica was 0.08 mg/m(3.)The mean% silica in respirable dust was 7.5%. The data set would be useful in future epidemiological and health studies, as well as in assessment of workers' compensation claims for occupational diseases such as silicosis, chronic obstructive pulmonary disease (COPD), and autoimmune diseases such as renal disease and rheumatoid arthritis.

  14. The determination of carbon dioxide concentration using atmospheric pressure ionization mass spectrometry/isotopic dilution and errors in concentration measurements caused by dryers.

    DeLacy, Brendan G; Bandy, Alan R

    2008-01-01

    An atmospheric pressure ionization mass spectrometry/isotopically labeled standard (APIMS/ILS) method has been developed for the determination of carbon dioxide (CO(2)) concentration. Descriptions of the instrumental components, the ionization chemistry, and the statistics associated with the analytical method are provided. This method represents an alternative to the nondispersive infrared (NDIR) technique, which is currently used in the atmospheric community to determine atmospheric CO(2) concentrations. The APIMS/ILS and NDIR methods exhibit a decreased sensitivity for CO(2) in the presence of water vapor. Therefore, dryers such as a nafion dryer are used to remove water before detection. The APIMS/ILS method measures mixing ratios and demonstrates linearity and range in the presence or absence of a dryer. The NDIR technique, on the other hand, measures molar concentrations. The second half of this paper describes errors in molar concentration measurements that are caused by drying. An equation describing the errors was derived from the ideal gas law, the conservation of mass, and Dalton's Law. The purpose of this derivation was to quantify errors in the NDIR technique that are caused by drying. Laboratory experiments were conducted to verify the errors created solely by the dryer in CO(2) concentration measurements post-dryer. The laboratory experiments verified the theoretically predicted errors in the derived equations. There are numerous references in the literature that describe the use of a dryer in conjunction with the NDIR technique. However, these references do not address the errors that are caused by drying.

  15. Genotoxic effects of daily personal exposure to particle mass and number concentrations on buccal cells

    de Almeida, Daniela S.; da Costa, Silvano César; Ribeiro, Marcos; Moreira, Camila A. B.; Beal, Alexandra; Squizzato, Rafaela; Rudke, Anderson Paulo; Rafee, Sameh Adib Abou; Martins, Jorge A.; Palioto, Graciana Freitas; Kumar, Prashant; Martins, Leila D.

    2018-03-01

    The aim of this study is to assess personal exposure to Particle Number Concentrations (PNC) in four size ranges between 0.3 and 10 μm, and particulate matter (PM1; PM2.5; PM4; PM10) in order to evaluate possible genotoxic effects through a comet assay in buccal cells. A convenience cohort of 30 individuals from a Brazilian medium-sized city was selected. These individuals aged between 20 and 61 and worked in typical job categories (i.e., administrative, commerce, education, general services and transport). They were recruited to perform personal exposure measurements during their typical daily routine activities, totaling 240 h of sampling. The 8-h average mass concentrations in air for volunteers ranged from 2.4 to 31.8 μg m-3 for PM1, 4.2-45.1 μg m-3 for PM2.5, 7.9-66.1 μg m-3 for PM4 and from 23.1 to 131.7 μg m-3 for PM10. The highest PNC variation was found for 0.3-0.5 range, between 14 and 181 particles cm-3, 1 to 14 particles cm-3 for the 0.5-1.0 range, 0.2 to 2 particles cm-3 for the 1.0-2.5 range, and 0.06 to 0.7 particles cm-3 for the 2.5-10 range. Volunteers in the 'education' category experienced the lowest inhaled dose of PM2.5, as opposed to those involved in 'commercial' activities with the highest doses for PM10 (1.63 μg kg-1 h-1) and PM2.5 (0.61 μg kg-1 h-1). The predominant cause for these high doses was associated with the proximity of the workplace to the street and vehicle traffic. The comet assay performed in buccal cells indicated that the volunteers in 'commerce' category experienced the highest damage to their DeoxyriboNucleic Acid (DNA) compared with the control category (i.e. 'education'). These results indicate the variability in personal exposure of the volunteers in different groups, and the potential damage to DNA was much higher for those spending time in close proximity to the vehicle sources (e.g. commercial services) leading to exposure to a higher fraction of fine particles. This study builds understanding on the exposure

  16. Gravimetric Measurements of Filtering Facepiece Respirators Challenged With Diesel Exhaust.

    Satish, Swathi; Swanson, Jacob J; Xiao, Kai; Viner, Andrew S; Kittelson, David B; Pui, David Y H

    2017-07-01

    Elevated concentrations of diesel exhaust have been linked to adverse health effects. Filtering facepiece respirators (FFRs) are widely used as a form of respiratory protection against diesel particulate matter (DPM) in occupational settings. Previous results (Penconek A, Drążyk P, Moskal A. (2013) Penetration of diesel exhaust particles through commercially available dust half masks. Ann Occup Hyg; 57: 360-73.) have suggested that common FFRs are less efficient than would be expected for this purpose based on their certification approvals. The objective of this study was to measure the penetration of DPM through NIOSH-certified R95 and P95 electret respirators to verify this result. Gravimetric-based penetration measurements conducted using polytetrafluoroethylene (PTFE) and polypropylene (PP) filters were compared with penetration measurements made with a Scanning Mobility Particle Sizer (SMPS, TSI Inc.), which measures the particle size distribution. Gravimetric measurements using PP filters were variable compared to SMPS measurements and biased high due to adsorption of gas phase organic material. Relatively inert PTFE filters adsorbed less gas phase organic material resulting in measurements that were more accurate. To attempt to correct for artifacts associated with adsorption of gas phase organic material, primary and secondary filters were used in series upstream and downstream of the FFR. Correcting for adsorption by subtracting the secondary mass from the primary mass improved the result for both PTFE and PP filters but this correction is subject to 'equilibrium' conditions that depend on sampling time and the concentration of particles and gas phase hydrocarbons. Overall, the results demonstrate that the use of filters to determine filtration efficiency of FFRs challenged with diesel exhaust produces erroneous results due to the presence of gas phase hydrocarbons in diesel exhaust and the tendency of filters to adsorb organic material. Published by

  17. Influence of concentration and hydrodynamic factors in sorption of iodine by anion-exchangers of the mass-transfer rate

    Sokolov, V.V.; Smirnov, N.N.

    1982-01-01

    An investigation of the joint influence of hydrodynamic and concentration factors in sorption of iodine by AV-17-8 and anion exchange resins on the mass-transfer coefficient is the subject of this report. The method of central composite rotatable experimental design was used for quantitative assessment and derivation of the appropriate equations. The investigation yielded the necessary regression equations satisfactorily describing the influence of all the factors in the mass-transfer coefficient. the optimal mass-transfer conditions were determined. On the basis of the values obtained, recommendations are made on the optimal hydrodynamic conditions of operation of equipment with pneumatic circulation of the ion-exchanger

  18. Geochemical importance of isotopic fractionation during respiration

    Schleser, G.; Foerstel, H.

    1975-01-01

    In 1935 it was found that atmospheric oxygen contained a relatively greater abundance of the 18 O isotope than did the oxygen bound in water (Dole effect). A major contribution to the fractionation of the stable oxygen isotopes should result from the respiration of microorganisms. In this respect our interest centers on the soil because nearly all organic material produced on land is decomposed within the soil. The oceans are less important because the primary productivity on land is twice the value for the oceans. In a first approach we measured the oxygen isotope fractionation during the respiration of E. coli K12 for different respiration rates. These results, accomplished with a chemostat, indicate that the fractionation factor α of the oxygen isotopes increases with the increasing respiratory activity, measured as Q/sub O 2 /. At low dilution rates or growth rates respectively of about 0.05 h -1 , the fractionation factor amounts to 1.006 increasing to 1.017 at dilution rates of about 1.0 h -1 . The results are interpreted as a kinetic mass fractionation due to the slightly different diffusion coefficients of 16 O 2 and 18 O 16 O. The respiration rates in conjunction with the corresponding fractionation data are compared with the respiration rates of typical soil microorganisms such as Azotobacter, in order to deduce fractionation data for these organisms. This is necessary to calculate a mean global fractionation factor. Understanding the Dole effect with these fractionation processes should finally give us the opportunity to calculate gas-exchange rates between the atmosphere and the oceans, on the basis of the behavior of the stable oxygen isotopes

  19. Air mass origins by back trajectory analysis for evaluating atmospheric 210Pb concentrations at Rokkasho, Aomori, Japan

    Akata, N.; Kawabata, H.; Hasegawa, H.; Kondo, K.; Chikuchi, Y.; Hisamatsu, S.; Inaba, J.; Sato, T.

    2009-01-01

    Atmospheric concentrations of 210 Pb change with various factors such as meso-scale meteorological conditions. We have already reported the biweekly atmospheric 210 Pb concentrations in Rokkasho, Japan for 5 years and found that they had clear seasonal variations: low concentrations in summer and high values in winter to spring. To study the reasons for the seasonal variations, the origins of the air mass flowing to Rokkasho were analyzed by 3-D backward air mass trajectory analysis. Routes of the calculated trajectories were classified into four regions: northeastern and southeastern Asian Continent, sea and other regions. The atmospheric 210 Pb concentrations were well correlated with the frequency of the routes through the northeastern Asian Continent. A non-linear multiple regression analysis of the 210 Pb concentrations and the relative frequencies of the four routes showed good fitting of the predicted values to the observed ones, and indicated that the atmospheric 210 Pb concentrations in Rokkasho depended on the frequency of the air mass from the northeastern Asian Continent. (author)

  20. 30 CFR 71.100 - Respirable dust standard.

    2010-07-01

    ... concentration of respirable dust in the mine atmosphere during each shift to which each miner in the active... shall be measured with an approved sampling device and expressed in terms of an equivalent concentration determined in accordance with § 71.206 (Approved sampling devices; equivalent concentrations). ...

  1. A Standard Characterization Methodology for Respirable Coal Mine Dust Using SEM-EDX

    Rachel Sellaro

    2015-12-01

    Full Text Available A key consideration for responsible development of mineral and energy resources is the well-being of workers. Respirable dust in mining environments represents a serious concern for occupational health. In particular, coal miners can be exposed to a variety of dust characteristics depending on their work activities, and some exposures may pose risk for lung diseases like CWP and silicosis. As underscored by common regulatory frameworks, respirable dust exposures are generally characterized on the basis of total mass concentration, and also the silica mass fraction. However, relatively little emphasis has been placed on other dust characteristics that may be important in terms of identifying health risks. Comprehensive particle-level analysis to estimate chemistry, size, and shape distributions of particles is possible. This paper describes a standard methodology for characterization of respirable coal mine dust using scanning electron microscopy (SEM with energy dispersive X-ray (EDX. Preliminary verification of the method is shown based several dust samples collected from an underground mine in Central Appalachia.

  2. In Situ Measurements of Aerosol Mass Concentration and Spectral Absorption at Three Location in and Around Mexico City

    Chaudhry, Z.; Martins, V.; Li, Z.

    2006-12-01

    As a result of population growth and increasing industrialization, air pollution in heavily populated urban areas is one of the central environmental problems of the century. As a part of the MILAGRO (Megacity Initiative: Local and Global Research Observations) study, Nuclepore filters were collected in two size ranges (PM10 and PM2.5) at 12 hour intervals at three location in Mexico during March, 2006. Sampling stations were located at the Instituto Mexicano del Petroleo (T0), at the Rancho La Bisnago in the State of Hidalgo (T2) and along the Gulf Coast in Tampico (Tam). Each filter was analyzed for mass concentration, aerosol scattering and absorption efficiencies. Mass concentrations at T0 ranged from 47 to 179 μg/m3 for PM10 with an average concentration of 96 μg/m3, and from 20 to 93 μg/m3 for PM2.5 with an average concentration of 41 μg/m3. Mass concentrations at T2 ranged from 12 to 154 μg/m3 for PM10 with an average concentration of 51 μg/m3, and from 7 to 50 μg/m3 for PM2.5 with an average concentration of 25 μg/m3. Mass concentrations at Tam ranged from 34 to 80 μg/m3 for PM10 with an average concentration of 52 μg/m3, and from 8 to 23 μg/m3 for PM2.5 with an average concentration of 13 μg/m3. While some of the extreme values are likely linked to local emissions, regional air pollution episodes also played important roles. Each of the sampling stations experienced a unique atmospheric condition. The site at T0 was influenced by urban air pollution and dust storms, the site at T2 was significantly less affected by air pollution but more affected by regional dust storms and local dust devils while Tam was influenced by air pollution, dust storms and the natural marine environment. The spectral mass absorption efficiency was measured from 350 to 2500 nm and shows large differences between the absorption properties of soil dust, black carbon, and organic aerosols. The strong spectral differences observed can be related to differences in

  3. Accurate determination of 41Ca concentrations in spent resins from the nuclear industry by Accelerator Mass Spectrometry

    Nottoli, Emmanuelle; Bourlès, Didier; Bienvenu, Philippe; Labet, Alexandre; Arnold, Maurice; Bertaux, Maité

    2013-01-01

    The radiological characterisation of nuclear waste is essential for managing storage sites. Determining the concentration of Long‐Lived RadioNuclides (LLRN) is fundamental for their long-term management. This paper focuses on the measurement of low 41 Ca concentrations in ions exchange resins used for primary fluid purification in Pressurised Water Reactors (PWR). 41 Ca concentrations were successfully measured by Accelerator Mass Spectrometry (AMS) after the acid digestion of resin samples, followed by radioactive decontamination and isobaric suppression through successive hydroxide, carbonate, nitrate and final CaF 2 precipitations. Measured 41 Ca concentrations ranged from 0.02 to 0.03 ng/g, i.e. from 0.06 to 0.09 Bq/g. The 41 Ca/ 60 Co activity ratios obtained were remarkably reproducible and in good agreement with the current ratio used for resins management. - Highlights: • In the context of radioactive waste management, this study aimed at measuring 41 Ca in spent resins using Accelerator Mass Spectrometry. • A chemical treatment procedure was developed to quantitatively recover calcium in solution and selectively extract it. • Developed firstly on synthetic matrices, the chemical treatment procedure was then successfully applied to real resin samples. • Accelerator mass spectrometry allowed measuring concentrations of 41 Ca in spent resins as low as 0.02 ng/g of dry resin. • Final results are in agreement with current data used for spent resins management

  4. Studying the microlenses mass function from statistical analysis of the caustic concentration

    Mediavilla, T; Ariza, O [Departamento de Estadistica e Investigacion Operativa, Universidad de Cadiz, Avda de Ramon Puyol, s/n 11202 Algeciras (Spain); Mediavilla, E [Instituto de Astrofisica de Canarias, Avda Via Lactea s/n, La Laguna (Spain); Munoz, J A, E-mail: teresa.mediavilla@ca.uca.es, E-mail: octavio.ariza@uca.es, E-mail: emg@iac.es [Departamento de Astrofisica y Astronomia, Universidad de Valencia, Burjassot, Valencia (Spain)

    2011-09-22

    The statistical distribution of caustic crossings by the images of a lensed quasar depends on the properties of the distribution of microlenses in the lens galaxy. We use a procedure based in Inverse Polygon Mapping to easily identify the critical and caustic curves generated by a distribution of stars in the lens galaxy. We analyze the statistical distributions of the number of caustic crossings by a pixel size source for several projected mass densities and different mass distributions. We compare the results of simulations with theoretical binomial distributions. Finally we apply this method to the study of the stellar mass distribution in the lens galaxy of QSO 2237+0305.

  5. Tai Chi training reduced coupling between respiration and postural control.

    Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li

    2016-01-01

    In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body's center-of-mass including those caused by spontaneous respiration. Both aging and disease increase "posturo-respiratory synchronization;" which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86 ± 5 yrs) or educational-control program (n=34, 85 ± 6 yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (ppostural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part from optimization of this multi-system interaction. Copyright © 2015

  6. Effects of cadmium, zinc, lead, and mercury on respiration and fermentation of Saccharomyces cerevisiae

    Grafl, H J; Schwantes, H O

    1983-01-01

    Zinc and lead did not affect the rate of respiration and fermentation. Concentrations of cadmium higher than 10/sup -7/ M and concentrations of mercury higher than 5 x 10/sup -5/ M significantly reduced the O/sub 2/ consumption and the CO/sub 2/ production. 10/sup -2/ M cadmium and 10/sup -3/ M mercury completely inhibited respiration and fermentation. Low concentrations of mercury inhibited respiration irreversibly and fermentation reversibly. High concentrations of zinc reduced the toxicity of low concentrations of cadmium but they enhanced the effects of high concentrations of cadmium and mercury. No interactions between lead and the other tested heavy metals were observed.

  7. Mass

    Quigg, Chris

    2007-01-01

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  8. 42 CFR 84.1151 - DOP filter test; respirators designed as respiratory protection against dusts, fumes, and mists...

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false DOP filter test; respirators designed as... filter test; respirators designed as respiratory protection against dusts, fumes, and mists having an air...) All single air-purifying respirator filter units will be tested in an atmosphere concentration of 100...

  9. The measurement of the isotope ratios and concentrations of zinc by thermal ionization mass spectrometry using double isotope dilution

    Deng Zhongguo

    1994-01-01

    The isotope ratios and concentrations of zinc are measured by silicagel-thermal ionization mass spectrometry using the double isotope spikers. The double isotope spikers ( 70 Zn and 67 Zn-enriched isotopes) are used to correct the isotope mass fractionation for the zinc isotope ratios, and to certify the zinc concentrations in the unknown samples. The zinc concentrations of these double isotope spikers are surveyed by a spiker made of pure (99.99%) natural zinc metal powder. The correcting factors (f a , f t and f n ) of the zinc isotope ratios in the spiked mixture, spike and unspiked samples for the isotope mass fractionation, and the spike-to-unspiked ratios (X r ) of the zinc isotope r in the spiked mixture samples can be obtained to solve the matrix equations by numerical approximation. The natural zinc isotope ratios are: 64 Zn/ 67 Zn = 11.8498, 66 Zn/ 67 Zn = 6.7977, 68 Zn/ 67 Zn = 4.5730 and 70 Zn/ 67 Zn = 0.1520. The uncertainties determined of the isotope ratios and concentrations of zinc are +- 0.16% and +-0.31%, respectively

  10. Changes in mitochondrial respiration in the human placenta over gestation.

    Holland, Olivia J; Hickey, Anthony J R; Alvsaker, Anna; Moran, Stephanie; Hedges, Christopher; Chamley, Lawrence W; Perkins, Anthony V

    2017-09-01

    Placental mitochondria are subjected to micro-environmental changes throughout gestation, in particular large variations in oxygen. How placental mitochondrial respiration adapts to changing oxygen concentrations remains unexplored. Additionally, placental tissue is often studied in culture; however, the effect of culture on placental mitochondria is unclear. Placental tissue was obtained from first trimester and term (laboured and non-laboured) pregnancies, and selectively permeabilized to access mitochondria. Respirometry was used to compare respiration states and substrate use in mitochondria. Additionally, explants of placental tissue were cultured for four, 12, 24, 48, or 96 h and respiration measured. Mitochondrial respiration decreased at 11 weeks compared to earlier gestations (p = 0.05-0.001), and mitochondrial content increased at 12-13 weeks compared to 7-10 weeks (p = 0.042). In term placentae, oxidative phosphorylation (OXPHOS) through mitochondrial complex IV (p Respiration was increased (p ≤ 0.006-0.001) in laboured compared to non-laboured placenta. After four hours of culture, respiration was depressed compared to fresh tissue from the same placenta and continued to decline with time in culture. Markers of apoptosis were increased, while markers of autophagy, mitochondrial biogenesis, and mitochondrial membrane potential were decreased after four hours of culture. Respiration and mitochondrial content alter over gestation/with labour. Decreased respiration at 11 weeks and increased mitochondrial content at 12-13 weeks may relate to onset of maternal blood flow, and increased respiration as a result of labour may be an adaptation to ischaemia-reperfusion. At term, mitochondria were more susceptible to changes in respiratory function relative to first trimester when cultured in vitro, perhaps reflecting changes in metabolic demands as gestation progresses. Metabolic plasticity of placental mitochondria has relevance to placenta

  11. Controls on Ecosystem and Root Respiration in an Alaskan Peatland

    McConnell, N. A.; McGuire, A. D.; Harden, J. W.; Kane, E. S.; Turetsky, M. R.

    2010-12-01

    manipulation site. Root respiration fluxes on a ppm CO2/sec/g dry mass basis were highest for herbaceous species, which dominated the open rich fen sites. Root respiration flux was significantly lower in tree-dominated black spruce sites. It appears that the variation in root respiration explains the variation in ER between herbaceous and tree-dominated systems. Therefore an important next step is to partition ER into heterotrophic and autotrophic components across these ecosystems. This in turn will provide a better assessment of peatland C responses to global climate change.

  12. Glucose and glycerol concentrations and their tracer enrichment measurements using liquid chromatography tandem mass spectrometry

    Bornø, Andreas; Foged, Lene; van Hall, Gerrit

    2014-01-01

    The present study describes a new liquid chromatography tandem mass spectrometry method for high-throughput quantification of glucose and glycerol in human plasma using stable isotopically labeled internal standards and is suitable for simultaneous measurements of glucose and glycerol enrichments...... of variation were 2.0% and 9.7%, respectively. After derivatization, plasma samples were stable for at least 14 days. In conclusion, we have developed and validated a novel, accurate, and sensitive high-throughput liquid chromatography tandem mass spectrometry method for simultaneous determination of glucose...

  13. Mass and elemental concentrations of air bone particles at Kuala Lumpur site in 2000 to 2006

    Abdul Khalik Wood; Mohd Suhaimi Hamzah; Shamsiah Abdul Rahman

    2008-01-01

    Atmospheric Pollution due to air bone particle is a major concern to many cities in the Southeast Asian region, including Kuala Lumpur. Within the last six years air particulate samples have been collected from a site in Kuala Lumpur and measured for their PM10, PM2.5 and elemental concentrations. The results showed that the daily PM10 (<10μ diameter) concentrations were generally acceptable but the values occasionally very high, especially during the haze episodes. The PM10 annual average values were just below the national set standard and these values were mostly contributed by the fine particles (<2μ diameter) concentration. The annual average for PM2.5 (fine particle) concentrations over the past few years were considerably high where elemental carbon, sulfur and potassium were the main components. (Author)

  14. Fine and Coarse Particle Mass Concentrations and Emission Rates in the Workplace of a Detergent Industry

    Glytsos, T.; Ondráček, Jakub; Džumbová, Lucie; Eleftheriadis, K.; Lazaridis, M.

    2014-01-01

    Roč. 23, č. 6 (2014), s. 881-889 ISSN 1420-326X Institutional support: RVO:67985858 Keywords : emission rates * PM 10 * PM2,5 * mass balance model Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.225, year: 2014

  15. Winter mass concentrations of carbon species in PM10, PM 2.5 and PM1 in Zagreb air, Croatia.

    Godec, Ranka; Čačković, Mirjana; Šega, Krešimir; Bešlić, Ivan

    2012-11-01

    The purpose of our investigation was to examine the mass concentrations of EC, OC and TC (EC + OC) in PM(10), PM(2.5) and PM(1) particle fractions. Daily PM(10), PM(2.5) and PM(1) samples were collected at an urban background monitoring site in Zagreb during winter 2009. Average OC and EC mass concentrations were 11.9 and 1.8 μg m(-3) in PM(10), 9.0 and 1.4 μg m(-3) in PM(2.5), and 5.5 and 1.1 μg m(-3) in PM(1). Average OC/EC ratios in PM(10), PM(2.5), and PM(1) were 7.4, 6.9 and 5.4, respectively.

  16. Determinants of black carbon, particle mass and number concentrations in London transport microenvironments

    Rivas, Ioar; Kumar, Prashant; Hagen-Zanker, Alex; Andrade, Maria de Fatima; Slovic, Anne Dorothee; Pritchard, John P.; Geurs, Karst T.

    2017-07-01

    We investigated the determinants of personal exposure concentrations of commuters' to black carbon (BC), ultrafine particle number concentrations (PNC), and particulate matter (PM1, PM2.5 and PM10) in different travel modes. We quantified the contribution of key factors that explain the variation of the previous pollutants in four commuting routes in London, each covered by four transport modes (car, bus, walk and underground). Models were performed for each pollutant, separately to assess the effect of meteorology (wind speed) or ambient concentrations (with either high spatial or temporal resolution). Concentration variations were mainly explained by wind speed or ambient concentrations and to a lesser extent by route and period of the day. In multivariate models with wind speed, the wind speed was the common significant predictor for all the pollutants in the above-ground modes (i.e., car, bus, walk); and the only predictor variable for the PM fractions. Wind speed had the strongest effect on PM during the bus trips, with an increase in 1 m s-1 leading to a decrease in 2.25, 2.90 and 4.98 μg m-3 of PM1, PM2.5 and PM10, respectively. PM2.5 and PM10 concentrations in car trips were better explained by ambient concentrations with high temporal resolution although from a single monitoring station. On the other hand, ambient concentrations with high spatial coverage but lower temporal resolution predicted better the concentrations in bus trips, due to bus routes passing through streets with a high variability of traffic intensity. In the underground models, wind speed was not significant and line and type of windows on the train explained 42% of the variation of PNC and 90% of all PM fractions. Trains in the district line with openable windows had an increase in concentrations of 1 684 cm-3 for PNC and 40.69 μg m-3 for PM2.5 compared with trains that had non-openable windows. The results from this work can be used to target efforts to reduce personal exposures of

  17. Changes in ground-level PM mass concentration and column aerosol optical depth over East Asia during 2004-2014

    Nam, J.; Kim, S. W.; Park, R.; Yoon, S. C.; Sugimoto, N.; Park, J. S.; Hong, J.

    2015-12-01

    Multi-year records of moderate resolution imaging spectroradiometer (MODIS), ground-level particulate matter (PM) mass concentration, cloud-aerosol lidar with orthogonal polarization (CALIOP), and ground-level lidar were analyzed to investigate seasonal and annual changes of aerosol optical depth (AOD) and PM mass concentration over East Asia. Least mean square fit method is applied to detect the trends and their magnitudes for each selected regions and stations. Eleven-year MODIS measurements show generally increasing trends in both AOD (1.18 % yr-1) and Ångström exponent (0.98 % yr-1), especially over the east coastal industrialized region in China. Monthly variation of AOD show maximum value at April-July, which were related to the progress of summer monsoon rain band and stationary continental air mass on the northeast of Asia. Increasing trends of AOD were found for eight cites in China (0.80 % yr-1) and Seoul site, Korea (0.40 % yr-1), whereas no significant change were shown in Gosan background site (0.04 % yr-1) and decreasing trend at five background sites in Japan (-0.42 % yr-1). Contrasting to AOD trend, all fifteen sites in China (-1.28 % yr-1), Korea (-2.77 % yr-1), and Japan (-2.03 % yr-1) showed decreasing trend of PM10 mass concentration. Also, PM2.5 mass concentration at Beijing, Seoul, Rishiri, and Oki show significant decreasing trend of -1.16 % yr-1. To further discuss the opposite trend of surface PM mass concentration and column AOD, we investigate vertical aerosol profile from lidar measurements. AOD estimated for planetary boundary layer (surface~1.5 km altitude; AODPBL) from CALIOP measurements over East China show decreasing trend of -1.71 % yr-1 over the period of 2007-2014, wherever AOD estimated for free troposphere (1.5 km~5 km altitude; AODFT) show increasing trend of 2.92 % yr-1. In addition, ground-level lidar measurements in Seoul show decreasing AODPBL trend of -2.57 % yr-1, whereas, AODFT show no significant change (-0.44 % yr

  18. Characterisation of particle mass and number concentration on the east coast of the Malaysian Peninsula during the northeast monsoon

    Dominick, Doreena; Latif, Mohd Talib; Juneng, Liew; Khan, Md Firoz; Amil, Norhaniza; Mead, Mohammed Iqbal; Nadzir, Mohd Shahrul Mohd; Moi, Phang Siew; Samah, Azizan Abu; Ashfold, Matthew J.; Sturges, William T.; Harris, Neil R. P.; Robinson, Andrew D.; Pyle, John A.

    2015-09-01

    Particle mass concentrations (PM10, PM2.5 and PM1) and particle number concentration ((PNC); 0.27 μm ≤ Dp ≤ 34.00 μm) were measured in the tropical coastal environment of Bachok, Kelantan on the Malaysian Peninsula bordering the southern edge of the South China Sea. Statistical methods were applied on a three-month hourly data set (9th January to 24th March 2014) to study the influence of north-easterly winds on the patterns of particle mass and PNC size distributions. The 24-h concentrations of particle mass obtained in this study were below the standard values detailed by the Recommended Malaysian Air Quality Guideline (RMAQG), United States Environmental Protection Agency (US EPA) and European Union (EU) except for PM2.5, which recorded a 24-h average of 30 ± 18 μg m-3 and exceeded the World Health Organisation (WHO) threshold value (25 μg m-3). Principal component analysis (PCA) revealed that PNC with smaller diameter sizes (0.27-4.50 μm) showed a stronger influence, accounting for 57.6% of the variability in PNC data set. Concentrations of both particle mass and PNC increased steadily in the morning with a distinct peak observed at around 8.00 h, related to a combination of dispersion of accumulated particles overnight and local traffic. In addition to local anthropogenic, agricultural burning and forest fire activities, long-range transport also affects the study area. Hotspot and backward wind trajectory observations illustrated that the biomass burning episode (around February-March) significantly influenced PNC. Meteorological parameters influenced smaller size particles (i.e. PM1 and Dp (0.27-0.43 μm)) the most.

  19. The study of the mechanism of arsenite toxicity in respiration-deficient cells reveals that NADPH oxidase-derived superoxide promotes the same downstream events mediated by mitochondrial superoxide in respiration-proficient cells

    Guidarelli, Andrea; Fiorani, Mara; Carloni, Silvia; Cerioni, Liana; Balduini, Walter; Cantoni, Orazio, E-mail: orazio.cantoni@uniurb.it

    2016-09-15

    We herein report the results from a comparative study of arsenite toxicity in respiration-proficient (RP) and -deficient (RD) U937 cells. An initial characterization of these cells led to the demonstration that the respiration-deficient phenotype is not associated with apparent changes in mitochondrial mass and membrane potential. In addition, similar levels of superoxide (O{sub 2}{sup .-}) were generated by RP and RD cells in response to stimuli specifically triggering respiratory chain-independent mitochondrial mechanisms or extramitochondrial, NADPH-oxidase dependent, mechanisms. At the concentration of 2.5 μM, arsenite elicited selective formation of O{sub 2}{sup .-} in the respiratory chain of RP cells, with hardly any contribution of the above mechanisms. Under these conditions, O{sub 2}{sup .-} triggered downstream events leading to endoplasmic reticulum (ER) stress, autophagy and apoptosis. RD cells challenged with similar levels of arsenite failed to generate O{sub 2}{sup .-} because of the lack of a functional respiratory chain and were therefore resistant to the toxic effects mediated by the metalloid. Their resistance, however, was lost after exposure to four fold greater concentrations of arsenite, coincidentally with the release of O{sub 2}{sup .-} mediated by NADPH oxidase. Interestingly, extramitochondrial O{sub 2}{sup .-} triggered the same downstream events and an identical mode of death previously observed in RP cells. Taken together, the results obtained in this study indicate that arsenite toxicity is strictly dependent on O{sub 2}{sup .-} availability that, regardless of whether generated in the mitochondrial or extramitochondrial compartments, triggers similar downstream events leading to ER stress, autophagy and apoptosis. - Highlights: • Mitochondrial superoxide mediates arsenite toxicity in respiration-proficient cells. • NADPH-derived superoxide mediates arsenite toxicity in respiration-deficient cells. • Arsenite causes apoptosis

  20. Contribution from indoor sources to particle number and mass concentrations in residential houses

    He, Congrong; Morawska, Lidia; Hitchins, Jane; Gilbert, Dale

    As part of a large study investigating indoor air in residential houses in Brisbane, Australia, the purpose of this work was to quantify emission characteristics of indoor particle sources in 15 houses. Submicrometer particle number and approximation of PM 2.5 concentrations were measured simultaneously for more than 48 h in the kitchen of all the houses by using a condensation particle counter (CPC) and a photometer (DustTrak), respectively. In addition, characterizations of particles resulting from cooking conducted in an identical way in all the houses were measured by using a scanning mobility particle sizer (SMPS), an aerodynamic particle sizer (APS) and a DustTrak. All the events of elevated particle concentrations were linked to indoor activities using house occupants diary entries, and catalogued into 21 different types of indoor activities. This enabled quantification of the effect of indoor sources on indoor particle concentrations as well as quantification of emission rates from the sources. For example, the study found that frying, grilling, stove use, toasting, cooking pizza, cooking, candle vaporizing eucalyptus oil and fan heater use, could elevate the indoor submicrometer particle number concentration levels by more than five times, while PM 2.5 concentrations could be up to 3, 30 and 90 times higher than the background levels during smoking, frying and grilling, respectively.

  1. Mitochondrial Respiration and Oxygen Tension.

    Shaw, Daniel S; Meitha, Karlia; Considine, Michael J; Foyer, Christine H

    2017-01-01

    Measurements of respiration and oxygen tension in plant organs allow a precise understanding of mitochondrial capacity and function within the context of cellular oxygen metabolism. Here we describe methods that can be routinely used for the isolation of intact mitochondria, and the determination of respiratory electron transport, together with techniques for in vivo determination of oxygen tension and measurement of respiration by both CO 2 production and O 2 consumption that enables calculation of the respiratory quotient [CO 2 ]/[O 2 ].

  2. Respirable versus inhalable dust sampling

    Hondros, J.

    1987-01-01

    The ICRP uses a total inhalable dust figure as the basis of calculations on employee lung dose. This paper was written to look at one aspect of the Olympic Dam dust situation, namely, the inhalable versus respirable fraction of the dust cloud. The results of this study will determine whether it is possible to use respirable dust figures, as obtained during routine monitoring to help in the calculations of employee exposure to internal radioactive contaminants

  3. The relationship of endogenous plasma concentrations of β-Hydroxy β-Methyl Butyrate (HMB) to age and total appendicular lean mass in humans.

    Kuriyan, Rebecca; Lokesh, Deepa P; Selvam, Sumithra; Jayakumar, J; Philip, Mamatha G; Shreeram, Sathyavageeswaran; Kurpad, Anura V

    2016-08-01

    The maintenance of muscle mass and muscle strength is important for reducing the risk of chronic diseases. The age- related loss of muscle mass and strength is associated with adverse outcomes of physical disability, frailty and death. β-Hydroxy β-Methyl Butyrate (HMB), a metabolite of leucine, has beneficial effects on muscle mass and strength under various catabolic conditions. The objectives of the present study were to determine if age- related differences existed in endogenous plasma HMB levels, and to assess if HMB levels correlated to total appendicular lean mass and forearm grip strength. Anthropometry, dietary and physical activity assessment, and the estimation of fasting plasma HMB concentrations and handgrip strength were performed on the 305 subjects (children, young adults and older adults). Lean mass, which serves as a surrogate for muscle mass was measured using dual energy X-ray absorptiometry (DEXA). Mean plasma HMB concentrations were significantly lower with increasing age groups, with children having highest mean HMB concentration (pHMB concentrations. A significant positive correlation between HMB concentrations and appendicular lean mass normalized for body weight (%), appendicular lean mass (r=0.37; pHMB concentrations in young adults (r=0.58; pHMB concentrations in humans and the HMB concentrations were positively correlated with appendicular lean mass and hand grip strength in young adults and older adults group. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Assessing the use of delta C-13 natural abundance in separation of root and microbial respiration in a Danish beech (¤Fagus Sylvatica¤ L.) forest

    Formanek, P.; Ambus, P.

    2004-01-01

    on the root respiration contribution to total CO2 effluxes. The delta(13)C isotopic analyses Of CO2 were performed using a FinniganMAT Delta(PLUS) isotope-ratio mass spectrometer coupled in continuous flow mode to a trace gas preparation-concentration unit (PreCon). Gas samples in 2-mL crimp seal vials were...... samples are not representative for the C-pools actively undergoing decomposition. Copyright (C) 2004 John Wiley Sons, Ltd....

  5. Interpreting, measuring, and modeling soil respiration

    Michael G. Ryan; Beverly E. Law

    2005-01-01

    This paper reviews the role of soil respiration in determining ecosystem carbon balance, and the conceptual basis for measuring and modeling soil respiration. We developed it to provide background and context for this special issue on soil respiration and to synthesize the presentations and discussions at the workshop. Soil respiration is the largest component of...

  6. Accurate determination of 129I concentrations and 129I/137Cs ratios in spent nuclear resins by Accelerator Mass Spectrometry

    Nottoli, Emmanuelle; Bienvenu, Philippe; Labet, Alexandre; Bourlès, Didier; Arnold, Maurice; Bertaux, Maité

    2014-01-01

    Determining long-lived radionuclide concentrations in radioactive waste has fundamental implications for the long-term management of storage sites. This paper focuses on the measurement of low 129 I contents in ion exchange resins used for primary fluid purification in Pressurised Water Reactors (PWR). Iodine-129 concentrations were successfully determined using Accelerator Mass Spectrometry (AMS) following a chemical procedure which included (1) acid digestion of resin samples in HNO 3 /HClO 4 , (2) radioactive decontamination by selective iodine extraction using a new chromatographic resin (CL Resin), and (3) AgI precipitation. Measured 129 I concentrations ranged from 4 to 12 ng/g, i.e. from 0.03 to 0.08 Bq/g. The calculation of 129 I/ 137 Cs activity ratios used for routine waste management produced values in agreement with the few available data for PWR resin samples. - Highlights: • In the context of radioactive waste management, this study aimed at measuring 129 I in spent resins using accelerator mass spectrometry. • The treatment procedure included microwave acid digestion of samples, iodine extraction by CL resins and AgI precipitation. • Developed first on synthetic matrices, the chemical treatment procedure was then successfully applied to real resin samples. • 129 I concentrations ranged from 4 to 12 ng/g of dry resin. • Results are in agreement with previous measurements and support reference values currently used for nuclear resin management

  7. Comparison of gas chromatography/mass spectrometry and immunoassay techniques on concentrations of atrazine in storm runoff

    Lydy, Michael J.; Carter, D.S.; Crawford, Charles G.

    1996-01-01

    Gas chromatography/mass spectrometry (GC/MS) and enzyme-linked immunosorbent assay (ELISA) techniques were used to measure concentrations of dissolved atrazine in 149 surface-water samples. Samples were collected during May 1992–September 1993 near the mouth of the White River (Indiana) and in two small tributaries of the river. GC/MS was performed on a Hewlett-Packard 5971 A, with electron impact ionization and selected ion monitoring of filtered water samples extracted by C-18 solid phase extraction; ELISA was performed with a magnetic-particle-based assay with photometric analysis. ELISA results compared reasonably well to GC/MS measurements at concentrations below the Maximum Contaminant Level for drinking water set by the U.S. Environmental Protection Agency (3.0 μg/L), but a systematic negative bias was observed at higher concentrations. When higher concentration samples were diluted into the linear range of calibration, the relation improved. A slight positive bias was seen in all of the ELISA data compared to the GC/MS results, and the bias could be partially explained by correcting the ELISA data for cross reactivity with other triazine herbicides. The highest concentrations of atrazine were found during the first major runoff event after the atrazine was applied. Concentrations decreased throughout the rest of the sampling period even though large runoff events occurred during this time, indicating that most atrazine loading to surface waters in the study area occurs within a few weeks after application.

  8. Serum Vaspin Concentration in Elderly Type 2 Diabetes Mellitus Patients with Differing Body Mass Index: A Cross-Sectional Study

    Wei Yang

    2017-01-01

    Full Text Available Aims. This study was to evaluate the association of serum vaspin concentrations with body mass index (BMI among elderly patients (>60 years old. Methods. A total of 227 elderly individuals included 76 healthy with normal glucose tolerance, which divided into normal weight control (BMI BMI ≥ 25, n=52, and obese diabetes (BMI ≥ 30, n=43 subgroups. Relevant parameters were matched for age and gender ratio. Serum vaspin concentrations were measured by enzyme-linked immunosorbent assay. Results. Serum vaspin concentration was significantly higher in the T2DM than the healthy (451.9±32.6 versus 284.2±21.7, P<0.01. In the diabetic patients, the vaspin concentration was significantly higher in the obese group than the normal weight group (498.2±17.1 versus 382.1±21.3, P<0.05. In addition, the concentration of vaspin in normal weight T2DM was higher than in healthy control group with normal weight (382.1±21.3 versus 192.5±45.2, P<0.05. Multiple regression analysis revealed that BMI was independent factors influencing the serum vaspin concentration in all participants. Conclusion. Vaspin may play an important compensatory role in obesity and insulin resistance in elderly people. The clinical trial registration number is ChiCTR-OPC-14005698.

  9. Effects of Center Offset and Noise on Weak-Lensing Derived Concentration-Mass Relation of Dark Matter Halos

    Du, Wei; Fan, Zuhui

    2014-04-01

    With the halo catalog from the Millennium Simulation, we analyze the weak-lensing measured density profiles for clusters of galaxies, paying attention to the determination of the concentration-mass (c-M) relation, which can be biased by the center offset, selection effect, and shape noise from intrinsic ellipticities of background galaxies. Several different methods of locating the center of a cluster from weak-lensing effects alone are explored. We find that, for intermediate redshift clusters, the highest peak from our newly proposed two-scale smoothing method applied to the reconstructed convergence field, first with a smoothing scale of 2' and then 0.'5, corresponds best to the true center. Assuming the parameterized Navarro-Frenk-White profile, we fit the reduced tangential shear signals around different centers identified by different methods. It is shown that, for the ensemble median values, a center offset larger than one scale radius rs can bias the derived mass and concentration significantly lower than the true values, especially for low-mass halos. However, the existence of noise can compensate for the offset effect and reduce the systematic bias, although the scatter of mass and concentration becomes considerably larger. Statistically, the bias effect of center offset on the c-M relation is insignificant if an appropriate center finding method is adopted. On the other hand, noise from intrinsic ellipticities can bias the c-M relation derived from a sample of weak-lensing analyzed clusters if a simple χ2 fitting method is used. To properly account for the scatter and covariance between c and M, we apply a Bayesian method to improve the statistical analysis of the c-M relation. It is shown that this new method allows us to derive the c-M relation with significantly reduced biases.

  10. Effects of center offset and noise on weak-lensing derived concentration-mass relation of dark matter halos

    Du, Wei; Fan, Zuhui

    2014-01-01

    With the halo catalog from the Millennium Simulation, we analyze the weak-lensing measured density profiles for clusters of galaxies, paying attention to the determination of the concentration-mass (c-M) relation, which can be biased by the center offset, selection effect, and shape noise from intrinsic ellipticities of background galaxies. Several different methods of locating the center of a cluster from weak-lensing effects alone are explored. We find that, for intermediate redshift clusters, the highest peak from our newly proposed two-scale smoothing method applied to the reconstructed convergence field, first with a smoothing scale of 2' and then 0.'5, corresponds best to the true center. Assuming the parameterized Navarro-Frenk-White profile, we fit the reduced tangential shear signals around different centers identified by different methods. It is shown that, for the ensemble median values, a center offset larger than one scale radius r s can bias the derived mass and concentration significantly lower than the true values, especially for low-mass halos. However, the existence of noise can compensate for the offset effect and reduce the systematic bias, although the scatter of mass and concentration becomes considerably larger. Statistically, the bias effect of center offset on the c-M relation is insignificant if an appropriate center finding method is adopted. On the other hand, noise from intrinsic ellipticities can bias the c-M relation derived from a sample of weak-lensing analyzed clusters if a simple χ 2 fitting method is used. To properly account for the scatter and covariance between c and M, we apply a Bayesian method to improve the statistical analysis of the c-M relation. It is shown that this new method allows us to derive the c-M relation with significantly reduced biases.

  11. Quantitative evaluation of the protective effect of respirators

    Murata, Mikio

    1983-01-01

    The present status and related problems of the quantitative evaluation method for respirator efficiency are generally reviewed. As the introduction, the special features of various types of respirators are summarized, and the basic concept of leakage and the protection factor are explained. As for the quantitative measurement of the protective efficiency, the features of various existing man-test methods such as NaCl aerosol man-test, DOP (dioctyl phthalate) man-test, and SF 6 gas man-test are reviewed and discussed. As the important problems associated with those man-tests, the following aspects are discussed. The measurement of the aerosol concentration within masks; the calculation method for the protection factor; the effect of beards. The examples of measuring the protection factor are also explained for the following respirator systems: half mask respirator with a high efficiency filter; full face mask respirator with a high efficiency filter; demand mode and pressure-demand mode respirators; and mound suit with suspenders. Finally, the outline of the manual of respiratory protection published by NRC in 1976 is briefly reviewed. (Aoki, K.)

  12. HO2 measurements at atmospheric concentrations using a chemical ionization mass spectrometry

    Albrecht, S.; Novelli, A.; Hofzumahaus, A.; Kang, S.; Baker, Y.; Mentel, T. F.; Fuchs, H.

    2017-12-01

    Correct and precise measurements of atmospheric radical species are necessary for a better understanding of the oxidative capacity of the atmosphere. Due to the reactivity of radicals, and their consequent low concentrations, direct measurements of these species are particularly challenging and have been proven in the past to be affected by interfering species. Here we present a chemical ionization source coupled to an APi-HR-TOF-MS (Aerodyne Research Inc.), which has a limit of detection for HO2 radicals well below its atmospheric concentrations ( 1 x 108 molecules cm-3). The instrument was calibrated with a well-established and characterized HO2 calibration source in use for the laser induced fluorescence instrument in the Forschungszentrum Jülich. Within the source, a well characterized amount of HO2 radicals is produced after photolysis of water by a mercury lamp. In addition, several experiments were performed in the atmosphere simulation chamber SAPHIR at the Forschungszentrum Jülich to test for potential interferences. Measurements of HO2 radicals were concurrently detected by a laser induced fluorescence instrument allowing for the comparison of measurements within the two different and independent techniques for various atmospheric conditions regarding concentrations of O3, NOx and VOCs. Results from the intercomparison together with the calibration procedure of the instrument and laboratory characterization will be presented.

  13. Mass concentration of Hirnantian cephalopods from the Siljan District, Sweden; taxonomy, palaeoecology and palaeobiogeographic relationships

    B. Kröger

    2011-02-01

    Full Text Available The Hirnantian Glisstjärn Formation (Normalograptus persculptus graptolite Biozone is a succession of limestones and shales onlapping the Katian Boda Limestone in the Siljan District, Sweden. It contains a conspicuous, up to several decimeter thick bed densely packed with bipolarly oriented, orthoconic cephalopod conchs that can reach lengths of more than 120 cm. Conch fragmentation, bioereosion and the generally poor preservation of the conchs indicate time averaging and the conchs are tentatively interpreted as beached, and a result of winnowing. Ten nautiloid species were collected from the Glisstjärn Formation of which five are new: Dawsonoceras gregarium n. sp., Discoceras siljanense n. sp., Isorthoceras dalecarlense n. sp., Retizitteloceras rarum gen. et sp. n., and Transorthoceras osmundsbergense gen. et sp. n. The non-endemic taxa in most cases are known from elsewhere in Baltoscandia, except one species which is known from Siberia, and North America respectively. Proteocerid orthoceridans dominate the association, of which T. osmundsbergense is the predominant species. Oncocerids are diverse but together with tarphycerids very rare. Notable is the lack of many higher taxa, that are typical for other Late Ordovician shallow water depositional settings. Based on the taxonomical composition of the cephalopod mass occurrence it is interpreted as an indicator of eutrophication of the water masses in the area. doi:10.1002/mmng.201000014

  14. A mechanical breathing simulator for respirator test

    Murata, Mikio; Ikezawa, Yoshio; Yoshida, Yoshikazu

    1976-01-01

    A mechanical breathing simulator has been developed to produce the human respiration for use in respirator test. The respirations were produced through the strokes of piston controlled by a rockerarm with adjustable fulcrum. The respiration rate was governed by motor-speed control, independent of the tidal volume achieved by adjustment of the piston stroke. By the breather, the simulated respirations for work rate 0, 208, 415, 622 and 830 kg-m/min could be produced through the typical dummy head. (auth.)

  15. In situ measurement of the mass concentration of flame-synthesized nanoparticles using quartz-crystal microbalance

    Hevroni, A; Golan, H; Fialkov, A; Tsionsky, V; Markovich, G; Cheskis, S; Rahinov, I

    2011-01-01

    A novel in situ method for measurement of mass concentration of nanoparticles (NPs) formed in flames is proposed. In this method, the deposition rate of NPs collected by a molecular beam sampling system is measured by quartz-crystal microbalance (QCM). It is the only existing method which allows direct measurement of NP mass concentration profiles in flames. The feasibility of the method was demonstrated by studying iron oxide NP formation in low-pressure methane/oxygen/nitrogen flames doped with iron pentacarbonyl. The system was tested under fuel-lean and fuel-rich flame conditions. Good agreement between measured QCM deposition rates and their estimations obtained by the transmission electron microscopy analysis of samples collected from the molecular beam has been demonstrated. The sensitivity of the method is comparable to that of particle mass spectrometry (PMS). Combination of the QCM technique with PMS and/or optical measurements can provide new qualitative information which is important for elucidation of the mechanisms governing the NP flame synthesis

  16. Plutonium and polonium concentrations in the different water masses crossing the Strait of Gibraltar

    Gasco, C.; Anton, M.P.

    1999-01-01

    In this paper total Pu and Po concentrations in the water column are presented as part of a study to determine the exchange fluxes and overall budget of these selected nuclides within the Atlantic and Mediterranean basins. Polonium is a natural radionuclide continuously input to the sea via atmospheric deposition from the radon existing in the air. Plutonium is a man-made radionuclide that was mostly introduced in the atmosphere during the 60's nuclear testing. Since then, it has been gradually disappearing due to fallout and the banning of nuclear atmospheric explosions

  17. [On-line analysis and mass concentration characters of the alkali metal ions of PM10 in Beijing].

    Zhang, Kai; Wang, Yue-Si; Wen, Tian-Xue; Liu, Guang-Ren; Hu, Bo; Zhao, Ya-Nan

    2008-01-01

    The mass concentration characters and the sources of water-soluble alkali metal ions in PM10 in 2004 and 2005 in Beijing were analyzed by using the system of rapid collection of particles. The result showed that the average concentration of Na+, K+, Mg2+ and Ca2+ was 0.5-1.4, 0.5-2.5, 0.1-0.5 and 0.6-5.8 microg/m3, respectively. The highest and lowest concentration appeared in different seasons for the alkali metal ions, which was related to the quality and source. The concentration of alkali metal ions was no difference between the heating period and no heating period, which meant the heating was not the main source. Sea salt and soil were the important sources of Na+. The source of K+ came from biomass burning and vegetation. Soil was the large source of Mg2+ and Ca2+. The alkali metal ions appeared different daily variation in different seasons. Precipitation could decrease the concentration of Na+, K+, Mg2+ and Ca2+, which was 10%-70%, 20%-80%, 10%-77%, 5%-80% respectively.

  18. Determination of breath isoprene and acetone concentration with a needle-type extraction device in gas chromatography-mass spectrometry.

    Ueta, Ikuo; Mizuguchi, Ayako; Okamoto, Mitsuyoshi; Sakamaki, Hiroyuki; Hosoe, Masahiko; Ishiguro, Motoyuki; Saito, Yoshihiro

    2014-03-20

    Isoprene in human breath is said to be related to cholesterol metabolism, and the possibility of the correlations with some clinical parameters has been studied. However, at this stage, no clear benefit of breath isoprene has been reported for clinical diagnosis. In this work, isoprene and acetone concentrations were measured in the breath of healthy and obese subjects using a needle-type extraction device for subsequent analysis in gas chromatography-mass spectrometry (GC-MS) to investigate the possibility of these compounds as an indicator of possible diseases. After measuring intraday and interday variations of isoprene and acetone concentrations in breath samples of healthy subjects, their concentrations were also determined in 80 healthy and 17 obese subjects. In addition, correlation between these breath concentrations and the blood tests result was studied for these healthy and obese subjects. The results indicated successful determination of breath isoprene and acetone in this work, however, no clear correlation was observed between these measured values and the blood test results. Breath isoprene concentration may not be a useful indicator for obesity or hypercholesterolemia. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Respirator use and its impact on particulate matter exposure in aluminum manufacturing facilities.

    Liu, Sa; Noth, Elizabeth; Eisen, Ellen; Cullen, Mark R; Hammond, Katharine

    2018-05-31

    Objectives As part of a large epidemiologic study of particulate health effect, this study aimed to report respirator use among total particulate matter (TPM) samples collected in a major aluminum manufacturing company from 1966‒2013 and evaluate the impact of respirator-use adjustment on exposure estimation. Methods Descriptive analyses were performed to evaluate respirator use across facilities and by facility type and job. Protection factors were applied to TPM measurements for recorded respirator use. Estimated TPM exposure for each job ‒ before and after respirator-use adjustment ‒ were compared to assess the impact of adjustment on exposure estimation. Results Respirator use was noted for 37% of 12 402 full-shift personal TPM samples. Measured TPM concentration ranged from less than detectable to 8220 mg/m3, with arithmetic mean, median and standard deviation being 10.6, 0.87 and 130 mg/m 3 , respectively. Respirators were used more often in smelting facilities (52% of TPM measurements) than in fabricating (17%) or refinery facilities (28%) (Pfacilities were subject to respirator-use adjustment, whereas it was 20% and 70% in fabricating and refinery facilities, respectively. Applying protection factors to TPM measurements significantly reduced estimated job mean TPM exposures and changed exposure categories in these facilities, with larger impact in smelting than fabricating facilities. Conclusions Respirator use varied by time, facility and job. Adjusting respirator use resulted in differential impact in smelting and fabricating facilities, which will need to be incorporated into ongoing epidemiologic studies accordingly.

  20. Effect of organic synthetic food colours on mitochondrial respiration.

    Reyes, F G; Valim, M F; Vercesi, A E

    1996-01-01

    Eleven organic synthetic dyes, currently or formerly used as food colours in Brazil, were tested to determine their effect on mitochondrial respiration in mitochondria isolated from rat liver and kidney. The compounds tested were: Erythrosine, Ponceau 4R, Allura Red, Sunset yellow, Tartrazine, Amaranth, Brilliant Blue, Blue, Fast Red E, Orange GGN and Scarlet GN. All food colours tested inhibited mitochondrial respiration (State III respiration, uncoupled) supported either by alpha-ketoglutarate or succinate. This inhibition varied largely, e.g. from 100% to 16% for Erythrosine and Tartrazine respectively, at a concentration of 0.1 mg food colour per mitochondrial protein. Both rat liver and kidney mitochondria showed similar patterns of inhibition among the food colours tested. This effect was dose related and the concentration to give 50% inhibition was determined for some of the dyes. The xanthene dye Erythrosine, which showed the strongest effect, was selected for further investigation on mitochondria in vivo.

  1. Application of digital image processing to a β-gauge for determining mass concentration of suspending particulate matter in atmosphere

    Gotoh, Takao

    1992-01-01

    A two-dimensional image of the mass concentration of suspending particulate matter (SPM) collected on Millipore filter paper was photographed with Ultrofilm- 3 H. The printed paper image was transformed into a digital image (256 x 256 pixels) with 256 gray levels. Two results were obtained. The averaged values of gray level over all pixels of the digital image was found to correlate with the mass value measured by a β-gauge. The characteristic range of the digital image which was transformed to frequency by two-dimensional fast fourier transformation was found in the low frequency. It was presumed to relate to SPM from anthropogenic sources because the SPMs usually show higher density and smaller particle size than SPMs from natural sources. (author)

  2. Respiration of Nitrate and Nitrite.

    Cole, Jeffrey A; Richardson, David J

    2008-09-01

    Nitrate reduction to ammonia via nitrite occurs widely as an anabolic process through which bacteria, archaea, and plants can assimilate nitrate into cellular biomass. Escherichia coli and related enteric bacteria can couple the eight-electron reduction of nitrate to ammonium to growth by coupling the nitrate and nitrite reductases involved to energy-conserving respiratory electron transport systems. In global terms, the respiratory reduction of nitrate to ammonium dominates nitrate and nitrite reduction in many electron-rich environments such as anoxic marine sediments and sulfide-rich thermal vents, the human gastrointestinal tract, and the bodies of warm-blooded animals. This review reviews the regulation and enzymology of this process in E. coli and, where relevant detail is available, also in Salmonella and draws comparisons with and implications for the process in other bacteria where it is pertinent to do so. Fatty acids may be present in high levels in many of the natural environments of E. coli and Salmonella in which oxygen is limited but nitrate is available to support respiration. In E. coli, nitrate reduction in the periplasm involves the products of two seven-gene operons, napFDAGHBC, encoding the periplasmic nitrate reductase, and nrfABCDEFG, encoding the periplasmic nitrite reductase. No bacterium has yet been shown to couple a periplasmic nitrate reductase solely to the cytoplasmic nitrite reductase NirB. The cytoplasmic pathway for nitrate reduction to ammonia is restricted almost exclusively to a few groups of facultative anaerobic bacteria that encounter high concentrations of environmental nitrate.

  3. Comparison of the performance of masterbatch and liquid color concentrates for mass coloration of polypropylene

    Haastrup, Sonja; Yu, Donghong; Broch, Thomas

    2016-01-01

    The properties of polypropylene (PP) mixed with masterbatch (MB) and liquid color concentrates (LCC), respectively, were compared by preparing samples of PP with MB and PP with LCC and neat PP as a reference material using 1–4 extrusion cycles. Two colors were examined, i.e., a white color...... consisting of pigment white 6, and a green color consisting of pigment white 6, pigment blue 15:3, and pigment green 7. The color difference between PP prepared with MB and LCC was determined and the mechanical, rheological, and crystalline properties of PP prepared with MB and LCC were found to be generic....... The color of PP obtained from MB and LCC were comparable. Further, it was found that the tensile strength, the viscosity, and the crystal structure obtained were similar when using LCC instead of MB. The viscosity of the treated PP generally decreased with increasing extruder retention time due to thermal...

  4. Capillary zone electrophoresis-tandem mass spectrometry detects low concentration host cell impurities in monoclonal antibodies

    Zhu, Guijie; Sun, Liangliang; Heidbrink-Thompson, Jennifer; Kuntumalla, Srilatha; Lin, Hung-yu; Larkin, Christopher J.; McGivney, James B.; Dovichi, Norman J.

    2016-01-01

    We have evaluated capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry (CZE-ESI-MS/MS) for detection of trace amounts of host cell protein impurities in recombinant therapeutics. Compared to previously published procedures, we have optimized the buffer pH used in the formation of a pH junction to increase injection volume. We also prepared a five-point calibration curve by spiking twelve standard proteins into a solution of a human monoclonal antibody. A custom CZE-MS/MS system was used to analyze the tryptic digest of this mixture without depletion of the antibody. CZE generated a ~70 min separation window (~90 min total analysis duration) and ~300 peak capacity. We also analyzed the sample using ultra-performance liquid chromatography (UPLC)-MS/MS. CZE-MS/MS generated ~five times higher base peak intensity and more peptide identifications for low-level spiked proteins. Both methods detected all proteins spiked at the ~100 ppm level with respect to the antibody. PMID:26530276

  5. Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events

    Mamali, Dimitra; Marinou, Eleni; Sciare, Jean; Pikridas, Michael; Kokkalis, Panagiotis; Kottas, Michael; Binietoglou, Ioannis; Tsekeri, Alexandra; Keleshis, Christos; Engelmann, Ronny; Baars, Holger; Ansmann, Albert; Amiridis, Vassilis; Russchenberg, Herman; Biskos, George

    2018-05-01

    In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii > 0.5 µm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.

  6. Glycolysis Is Dynamic and Relates Closely to Respiration Rate in Stored Sugarbeet Roots

    Clarice A. Megguer

    2017-05-01

    Full Text Available Although respiration is the principal cause of the loss of sucrose in postharvest sugarbeet (Beta vulgaris L., the internal mechanisms that control root respiration rate are unknown. Available evidence, however, indicates that respiration rate is likely to be controlled by the availability of respiratory substrates, and glycolysis has a central role in generating these substrates. To determine glycolytic changes that occur in sugarbeet roots after harvest and to elucidate relationships between glycolysis and respiration, sugarbeet roots were stored for up to 60 days, during which activities of glycolytic enzymes and concentrations of glycolytic substrates, intermediates, cofactors, and products were determined. Respiration rate was also determined, and relationships between respiration rate and glycolytic enzymes and metabolites were evaluated. Glycolysis was highly variable during storage, with 10 of 14 glycolytic activities and 14 of 17 glycolytic metabolites significantly altered during storage. Changes in glycolytic enzyme activities and metabolites occurred throughout the 60 day storage period, but were greatest in the first 4 days after harvest. Positive relationships between changes in glycolytic enzyme activities and root respiration rate were abundant, with 10 of 14 enzyme activities elevated when root respiration was elevated and 9 glycolytic activities static during periods of unchanging respiration rate. Major roles for pyruvate kinase and phosphofructokinase in the regulation of postharvest sugarbeet root glycolysis were indicated based on changes in enzymatic activities and concentrations of their substrates and products. Additionally, a strong positive relationship between respiration rate and pyruvate kinase activity was found indicating that downstream TCA cycle enzymes were unlikely to regulate or restrict root respiration in a major way. Overall, these results establish that glycolysis is not static during sugarbeet root

  7. Facepiece leakage and fitting of respirators

    White, J.M.

    1978-05-01

    The ways in which airborne contaminants can penetrate respirators and the factors which affect the fit of respirators are discussed. The fit of the respirator to the face is shown to be the most critical factor affecting the protection achieved by the user. Qualitative and quantitative fit testing techniques are described and their application to industrial respirator programs is examined. Quantitative measurement of the leakage of a respirator while worn can be used to numerically indicate the protection achieved. These numbers, often referred to as protection factors, are sometimes used as the basis for selecting suitable respirators and this practice is reviewed. (author)

  8. Simulating Aerosol Size Distribution and Mass Concentration with Simultaneous Nucleation, Condensation/Coagulation, and Deposition with the GRAPES-CUACE

    Zhou, Chunhong; Shen, Xiaojing; Liu, Zirui; Zhang, Yangmei; Xin, Jinyuan

    2018-04-01

    A coupled aerosol-cloud model is essential for investigating the formation of haze and fog and the interaction of aerosols with clouds and precipitation. One of the key tasks of such a model is to produce correct mass and number size distributions of aerosols. In this paper, a parameterization scheme for aerosol size distribution in initial emission, which took into account the measured mass and number size distributions of aerosols, was developed in the GRAPES-CUACE [Global/Regional Assimilation and PrEdiction System-China Meteorological Administration (CMA) Unified Atmospheric Chemistry Environment model]—an online chemical weather forecast system that contains microphysical processes and emission, transport, and chemical conversion of sectional multi-component aerosols. In addition, the competitive mechanism between nucleation and condensation for secondary aerosol formation was improved, and the dry deposition was also modified to be in consistent with the real depositing length. Based on the above improvements, the GRAPES-CUACE simulations were verified against observational data during 1-31 January 2013, when a series of heavy regional haze-fog events occurred in eastern China. The results show that the aerosol number size distribution from the improved experiment was much closer to the observation, whereas in the old experiment the number concentration was higher in the nucleation mode and lower in the accumulation mode. Meanwhile, the errors in aerosol number size distribution as diagnosed by its sectional mass size distribution were also reduced. Moreover, simulations of organic carbon, sulfate, and other aerosol components were improved and the overestimation as well as underestimation of PM2.5 concentration in eastern China was significantly reduced, leading to increased correlation coefficient between simulated and observed PM2.5 by more than 70%. In the remote areas where bad simulation results were produced previously, the correlation coefficient

  9. Fully developed natural convection heat and mass transfer in a vertical annular porous medium with asymmetric wall temperatures and concentrations

    Cheng, C.-Y.

    2006-01-01

    This work examines the effects of the modified Darcy number, the buoyancy ratio and the inner radius-gap ratio on the fully developed natural convection heat and mass transfer in a vertical annular non-Darcy porous medium with asymmetric wall temperatures and concentrations. The exact solutions for the important characteristics of fluid flow, heat transfer, and mass transfer are derived by using a non-Darcy flow model. The modified Darcy number is related to the flow resistance of the porous matrix. For the free convection heat and mass transfer in an annular duct filled with porous media, increasing the modified Darcy number tends to increase the volume flow rate, total heat rate added to the fluid, and the total species rate added to the fluid. Moreover, an increase in the buoyancy ratio or in the inner radius-gap ratio leads to an increase in the volume flow rate, the total heat rate added to the fluid, and the total species rate added to the fluid

  10. International system of units traceable results of Hg mass concentration at saturation in air from a newly developed measurement procedure.

    Quétel, Christophe R; Zampella, Mariavittoria; Brown, Richard J C; Ent, Hugo; Horvat, Milena; Paredes, Eduardo; Tunc, Murat

    2014-08-05

    Data most commonly used at present to calibrate measurements of mercury vapor concentrations in air come from a relationship known as the "Dumarey equation". It uses a fitting relationship to experimental results obtained nearly 30 years ago. The way these results relate to the international system of units (SI) is not known. This has caused difficulties for the specification and enforcement of limit values for mercury concentrations in air and in emissions to air as part of national or international legislation. Furthermore, there is a significant discrepancy (around 7% at room temperature) between the Dumarey data and data calculated from results of mercury vapor pressure measurements in the presence of only liquid mercury. As an attempt to solve some of these problems, a new measurement procedure is described for SI traceable results of gaseous Hg concentrations at saturation in milliliter samples of air. The aim was to propose a scheme as immune as possible to analytical biases. It was based on isotope dilution (ID) in the liquid phase with the (202)Hg enriched certified reference material ERM-AE640 and measurements of the mercury isotope ratios in ID blends, subsequent to a cold vapor generation step, by inductively coupled plasma mass spectrometry. The process developed involved a combination of interconnected valves and syringes operated by computer controlled pumps and ensured continuity under closed circuit conditions from the air sampling stage onward. Quantitative trapping of the gaseous mercury in the liquid phase was achieved with 11.5 μM KMnO4 in 2% HNO3. Mass concentrations at saturation found from five measurements under room temperature conditions were significantly higher (5.8% on average) than data calculated from the Dumarey equation, but in agreement (-1.2% lower on average) with data based on mercury vapor pressure measurement results. Relative expanded combined uncertainties were estimated following a model based approach. They ranged from 2

  11. On the Control of Solute Mass Fluxes and Concentrations Below Fields Irrigated With Low-Quality Water: A Numerical Study

    Russo, David

    2017-11-01

    The main goal of this study was to test the capability of irrigation water-based and soil-based approaches to control nitrate and chloride mass fluxes and concentrations below the root zone of agricultural fields irrigated with treated waste water (TWW). Using numerical simulations of flow and transport in relatively a fine-textured, unsaturated, spatially heterogeneous, flow domain, scenarios examined include: (i) irrigating with TWW only (REF); (ii) irrigation water is substituted between TWW and desalinized water (ADW); (iii) soil includes a capillary barrier (CB) and irrigating with TWW only (CB + TWW); and (iv) combination of (ii) and a CB (CB + ADW). Considering groundwater quality protection, plausible goals are: (i) to minimize solute discharges leaving the root zone, and, (ii) to maximize the probability that solute concentrations leaving the root zone will not exceed a prescribed, critical value. Results of the analyses suggest that in the case of a seasonal crop (a corn field) subject to irrigations only, with respect to the first goal, the CB + TWW and CB + ADW scenarios provide similar, excellent results, better than the ADW scenario; with respect to the second goal, however, the CB + ADW scenario gave substantially better results than the CB + TWW scenario. In the case a multiyear, perennial crop (a citrus orchard), subject to a sequence of irrigation and rainfall periods, for both solutes, and, particularly, nitrate, with respect to the two goals, both the ADW and CB + ADW scenarios perform better than the CB + TWW scenario. As compared with the REF and CB + TWW scenarios, the ADW and CB + ADW scenarios substantially reduce nitrogen mass fluxes to the groundwater and to the atmosphere, and, essentially, did not reduce nitrogen mass fluxes to the trees. Similar results, even better, were demonstrated for a relatively coarse-textured, spatially heterogeneous soil.

  12. Long-term measurements of respirable sulfates and particulates inside and outside homes

    Spengler, J D; Dockery, D W; Turner, W A; Wolfson, J M; Ferris, B G

    1981-01-01

    To better understand the health effects of air pollution, the results of extensive indoor and outdoor measurements of mass respirable particulates and water-soluble respirable particulates are analyzed. The measurements were taken in six U.S. citiesPortage, Wis./ Topeka, Kans./ Kingston/Harriman, Tenn./ Watertown, Mass./ St. Louis, Mo./ and Steubenville, Ohio. Results indicated that the major source of indoor air pollution is cigarette smoke, which contributes about 20

  13. Occurrence of trace elements in respirable coal dust

    Sahoo, B.N.

    1991-01-01

    Inhalation of fine particles of coal dust contributes significantly to the occurrence of the disease, pneumoconiosis, prevailing in coal mining community. It is not presently known whether only the coal dust or specific chemical compounds or synergistic effects of several compounds associated with respirable coal dust is responsible for the disease, pneumoconiosis. The present paper describes the quantitative determination of ten minor and trace elements in respirable coal dust particles by atomic absorption spectrophotometric methods. The respirable coal dust samples are collected at the mine atmosphere during drilling in coal scams by using Messrs. Casella's Hexlet apparatus specially designed and fitted with horizontal elutriator to collect the respirable coal dust fraction simulating as near as possible to the lung's retention of the coal miners. After destruction of organic matter by wet oxidation and filtering off clay and silica, Fe, Ca, Mg, Na, K, Mn, Cu, Zn, Cd, and Ni were determined directly in the resulting solution by atomic absorption spectrophotometric procedures. The results show that the trace metals are more acute in lower range of size spectrum. Correlation coefficient, enrichment factor and linear regression values and their inverse relationship between the slope and EF values suggest that, in general, the trace metals in respirable particulates are likely to be from coal derived source if their concentrations are likewise high in the coal. The trace metal analytical data of respirable particulates fitted well to the linear regressive equation. The results of the studies are of importance as it may throw some light on the respirable lung disease 'pneumoconiosis' which are predominant in coal mining community. (author). 13 refs., 6 tabs

  14. Personal exposure versus monitoring station data for respirable particles

    Sega, K; Fugas, M

    1982-01-01

    Personal exposure to respirable particles of 12 subjects working at the same location, but living in various parts of Zagreb, was monitored for 7 consecutive days and compared with simultaneously obtained data from the outdoor network station nearest to subject's home. Although personal exposure is related to the outdoor pollution, other sources play a considerable role. Indoor exposure takes, on the average, more than 80% of the total time. The ratio between average personal exposure and respirable particle levels in the outdoor air decreases with the increased outdoor concentration (r = -0.93), indicating that this relationship might serve as a basis for a rough estimate of possible personal exposure.

  15. Light-enhanced oxygen respiration in benthic phototrophic communities

    Epping, EHG; Jørgensen, BB

    1996-01-01

    Two microelectrode studies demonstrate the effect of Light intensity and photosynthesis on areal oxygen respiration in a hypersaline mat at Guerrero Negro, Mexico, and in an intertidal sediment at Texel, The Netherlands. The hypersaline mat was studied in the laboratory at light intensities of 0...... the day at prevailing light intensities. A 1-dimensional diffusion-reaction model was used to estimate gross photosynthesis and oxygen respiration per volume of sediment, as well as the euphotic depth and the sediment-water interface concentration of oxygen. Areal gross photosynthesis ranged from 9...

  16. Comparison of the multicomponent mass transfer models for the prediction of the concentration overpotential for solid oxide fuel cell anodes

    Vural, Yasemin; Ma, Lin; Ingham, Derek B.; Pourkashanian, Mohamed [Centre for Computational Fluid Dynamics, University of Leeds, Leeds (United Kingdom)

    2010-08-01

    In this study, multicomponent mass diffusion models, namely the Stefan-Maxwell model (SMM), the Dusty Gas model (DGM) and the Binary Friction model (BFM) have been compared in terms of their predictive capabilities of the concentration polarization of an anode supported solid oxide fuel cell (SOFC) anode. The results show that other than the pore diameter, current density and concentration of reactants, which have a high importance in concentration polarization predictions, the tortuosity (or porosity/tortuosity) term, has a substantial effect on the model predictions. Contrary to the previous discussions in the literature, for the fitted value of tortuosities, SMM and DGM predictions are similar, even for an average pore radius as small as 2.6e-07 and current density as high as 1.5 A cm{sup -2}. Also it is shown that the BFM predictions are similar to DGM for the case investigated in this study. Moreover, in this study, the effect of the pressure gradient term in the DGM and the BFM has been investigated by including and excluding this term from the model equations. It is shown that for the case investigated and model assumptions used in this study, the terms including the pressure coefficient have an insignificant effect on the predictions of both DGM and BFM and therefore they can be neglected. (author)

  17. General Instructions for Disposable Respirators

    2009-04-09

    This podcast, intended for the general public, demonstrates how to put on and take off disposable respirators that are to be used in areas affected by the influenza outbreak.  Created: 4/9/2009 by CDC, National Institute for Occupational Safety and Health (NIOSH).   Date Released: 4/29/2009.

  18. Use of Facemasks and Respirators

    2007-05-15

    This program demonstrates the differences of facemasks and respirators that are to be used in public settings during an influenza pandemic.  Created: 5/15/2007 by CDC, National Institute for Occupational Safety and Health (NIOSH).   Date Released: 5/25/2007.

  19. Contribution of bacterial respiration to plankton respiration from 50°N to 44°S in the Atlantic Ocean

    García-Martín, E. E.; Aranguren-Gassis, M.; Hartmann, M.; Zubkov, M. V.; Serret, P.

    2017-11-01

    Marine bacteria play an important role in the global cycling of carbon and therefore in climate regulation. However, the paucity of direct measurements means that our understanding of the magnitude and variability of bacterial respiration in the ocean is poor. Estimations of respiration in the 0.2-0.8 μm size-fraction (considered as bacterial respiration), total plankton community respiration, and the contribution of bacterial respiration to total plankton community respiration were made along two latitudinal transects in the Atlantic Ocean (ca. 50°N-44°S) during 2010 and 2011. Two different methodologies were used: determination of changes in dissolved O2 concentration after standard 24 h dark bottle incubations, and measurements of in vivo reduction of 2-(ρ-iodophenyl)-3-(ρ-nitrophenyl)-5phenyl tetrazolium salt (INT). There was an overall significant correlation (r = 0.44, p community respiration estimated by both methods. Depth-integrated community respiration varied as much as threefold between regions. Maximum rates occurred in waters of the western European shelf and Patagonian shelf, and minimum rates in the North and South oligotrophic gyres. Depth-integrated bacterial respiration followed the same pattern as community respiration. There was a significantly higher cell-specific bacterial respiration in the northern subtropical gyre than in the southern subtropical gyre which suggests that bacterial carbon turnover is faster in the northern gyre. The relationships between plankton respiration and physicochemical and biological variables were different in different years. In general, INTT was correlated to both chlorophyll-a and bacterial abundance, while INT0.2-0.8 was only correlated with bacterial abundance. However, in 2010 INTT and INT0.2-0.8 were also correlated with temperature and primary production while in 2011 they were correlated with nitrate + nitrite concentration. The bacterial contribution to depth integrated community respiration was

  20. Measurement of total and free docetaxel concentration in human plasma by ultra-performance liquid chromatography-tandem mass spectrometry.

    Rigo-Bonnin, Raül; Cobo-Sacristán, Sara; Gonzalo-Diego, Núria; Colom, Helena; Muñoz-Sánchez, Carmen; Urruticoechea, Ander; Falo, Catalina; Alía, Pedro

    2016-01-05

    Docetaxel is a semi-synthetic taxane with cytotoxic anti-neoplastic activity and, currently used as anticancer agent in several types of cancer. Docetaxel is highly bound to plasma proteins, and this significantly determines its clearance and activity. Therefore, measurement of free docetaxel in plasma is pharmacologically important when pharmacokinetics is investigated. We developed and validated chromatographic methods by ultra-performance liquid chromatography-tandem mass spectrometry to measure total and free docetaxel concentration in human plasma. The final validated methods involved liquid-liquid extraction followed by dryness under nitrogen evaporation. To measure free docetaxel concentration, sample preparation was preceded by ultrafiltration. Chromatographic separation was achieved using an Acquity(®) UPLC(®) BEH™ (2.1×100 mm id, 1.7 μm) reverse-phase C18 column at a flow rate of 0.4 mL/min, using isocratic elution mode containing ammonium acetate/formic acid in water/methanol (30:70 v/v) as mobile phase. Docetaxel and its internal standard (paclitaxel) were detected by electrospray ionization mass spectrometry in positive ion multiple reaction monitoring mode using mass-to-charge (m/z) transitions of 808.3→527.0 (quantifier) and 808.3→509.0 (qualifier); and 854.3→569.0 (quantifier) and 854,3→509,0 (qualifier), respectively. The run time per sample was 3.5 min. The limits of quantification were 1,95 and 0.42 μg/L and linearity was observed between 1.95 and 1000 and 0.42-100 μg/L for total and free docetaxel, respectively. Coefficients of variation and absolute relative biases were less than 13.8% and 10.0%. Recovery values were greater than 79.4%. Evaluation of the matrix effect showed ion suppression and no carry-over was observed. The validated methods could be useful for both therapeutic drug monitoring and pharmacokinetic studies. They could be applied to daily clinical laboratory practice to measure the concentration of total and free

  1. Radionuclide mass transfer rates from a pinhole in a waste container for an inventory-limited and a constant concentration source

    LeNeveu, D.M.

    1996-03-01

    Analytical solutions for transient and steady state diffusive mass transfer rates from a pinhole in a waste container are developed for constant concentration and inventory-limited source conditions. Mass transport in three media are considered, inside the pinhole (medium 2), outside the container (medium 3) and inside the container (medium 1). Simple equations are developed for radionuclide mass transfer rates from a pinhole. It is shown that the medium with the largest mass transfer resistance need only be considered to provide a conservative estimate of mass transfer rates. (author) 11 refs., 3 figs

  2. Arsenic, cadmium and lead concentrations in Yerba mate commercialized in Southern Brazil by inductively coupled plasma mass spectrometry

    Lisia Maria Gobbo dos Santos

    2017-12-01

    Full Text Available ABSTRACT: “Mate” or “Yerba Mate” (Ilex paraguariensis is a native South American plant, commonly consumed in Argentina, Paraguay, Uruguay and southern Brazil. Recent research has detected the presence of many vitamins and metals in this plant. Theses metals are also part of yerba mate’s mineral composition, due to soil and water contamination by pesticides and fertilizers, coal and oil combustion, vehicle emissions, mining, smelting, refining and the incineration of urban and industrial waste. Regardless of their origin, some inorganic elements, such as arsenic, cadmium and lead, are considered toxic, since they accumulate in all plant tissues and are, thus, introduced into the food chain. In this context, the aim of the present study was to determine and compare arsenic, cadmium, lead concentrations in 104 samples of yerba mate (Ilex paraguariensis marketed, and consumed in three southern Brazilian States, namely Paraná (PR, Santa Catarina (SC and Rio Grande do Sul (RS. Each element was determined by inductively coupled plasma mass spectrometry (ICP-MS, on a Nexion 300D equipment (Perkin Elmer. As, Cd and Pb concentrations in yerba mate leaves ranged from 0.015 to 0.15mg kg-1, 0.18 to 1.25mg kg-1 and 0.1 to 1.20mg kg-1, respectively. Regarding Cd, 84% of the samples from RS, 63% from PR and 75% from SC showed higher concentrations than the maximum permissible limit of 0.4mg kg-1 established by the Brazilian National Sanitary Surveillance Agency (ANVISA, while 7% of the samples from RS and 5% from PR were unsatisfactory for Pb. Concentrations were below the established ANVISA limit of 0.6mg kg-1 for all samples.

  3. Effect of Simvastatin, Coenzyme Q10, Resveratrol, Acetylcysteine and Acetylcarnitine on Mitochondrial Respiration.

    Fišar, Z; Hroudová, J; Singh, N; Kopřivová, A; Macečková, D

    2016-01-01

    Some therapeutic and/or adverse effects of drugs may be related to their effects on mitochondrial function. The effects of simvastatin, resveratrol, coenzyme Q10, acetylcysteine, and acetylcarnitine on Complex I-, Complex II-, or Complex IV-linked respiratory rate were determined in isolated brain mitochondria. The protective effects of these biologically active compounds on the calcium-induced decrease of the respiratory rate were also studied. We observed a significant inhibitory effect of simvastatin on mitochondrial respiration (IC50 = 24.0 μM for Complex I-linked respiration, IC50 = 31.3 μM for Complex II-linked respiration, and IC50 = 42.9 μM for Complex IV-linked respiration); the inhibitory effect of resveratrol was found at very high concentrations (IC50 = 162 μM for Complex I-linked respiration, IC50 = 564 μM for Complex II-linked respiration, and IC50 = 1454 μM for Complex IV-linked respiration). Concentrations required for effective simvastatin- or resveratrol-induced inhibition of mitochondrial respiration were found much higher than concentrations achieved under standard dosing of these drugs. Acetylcysteine and acetylcarnitine did not affect the oxygen consumption rate of mitochondria. Coenzyme Q10 induced an increase of Complex I-linked respiration. The increase of free calcium ions induced partial inhibition of the Complex I+II-linked mitochondrial respiration, and all tested drugs counteracted this inhibition. None of the tested drugs showed mitochondrial toxicity (characterized by respiratory rate inhibition) at drug concentrations achieved at therapeutic drug intake. Resveratrol, simvastatin, and acetylcarnitine had the greatest neuroprotective potential (characterized by protective effects against calcium-induced reduction of the respiratory rate).

  4. 78 FR 18535 - Respirator Certification Fees

    2013-03-27

    ... facepiece respirators. The North American respiratory protection market generated revenues around $1,830 million in 2007, the most recent data available.\\4\\ A summary of market segmentation, by respirator type... management. Of the U.S. respirator market of products approved by NIOSH, approximately 35 percent of approval...

  5. Determination of long-lived radionuclide (10Be, 41Ca, 129I) concentrations in nuclear waste by accelerator mass spectrometry

    Nottoli, Emmanuelle; Bienvenu, Philippe; Labet, Alexandre; Bertaux, Maite; Bourles, Didier; Arnold, Maurice

    2013-01-01

    Radiological characterization of nuclear waste is essential for storage sites management. However, most of Long-Lived Radionuclides (LLRN), important for long-term management, are difficult to measure since concentration levels are very low and waste matrices generally complex. In an industrial approach, LLRN concentrations are not directly measured in waste samples but assessed from scaling factors with respect to easily measured gamma emitters. Ideally, the key nuclide chosen ( 60 Co, 137 Cs) should be produced by a similar mechanism (fission or activation) as the LLRN of interest and should have similar physicochemical properties. However, the uncertainty on the scaling factors, determined from experimental and/or calculation data, can be quite important. Consequently, studies are performed to develop analytical procedures which would lead to determine precisely the concentration of LLRN in nuclear waste. In this context, the aim of this study was to determine the concentrations of three LLRN: 129 I (T 1/2 = 15.7*10 6 a), 41 Ca (T 1/2 = 9.94*10 4 a) and 10 Be (T 1/2 = 1.387*10 6 a) in spent resins used for primary fluid purification in Pressurized Water Reactors using Accelerator Mass Spectrometry (AMS) for measurement. The AMS technique combined mass spectrometry and nuclear physics to achieve highly efficient molecular and elemental isobars separation. Energies of several Million Electron-Volt transferred to the ions in the first accelerating part of specifically developed tandem accelerators lead to molecular isobars destruction through interaction with the argon gas used to strip the injected negative ions to positive ones. At the exit of the tandem accelerator, the energy acquired in both accelerating parts allows an elemental isobars separation based on their significantly different energy loss (dE) while passing through a thickness of matter dx that is proportional to their atomic number (Z) and inversely proportional to ions velocity (v) according to the

  6. Biocides in urban wastewater treatment plant influent at dry and wet weather: concentrations, mass flows and possible sources

    Bollmann, Ulla E.; Petersen, Camilla Tang; Eriksson, Eva

    2014-01-01

    in Denmark and Sweden during dry and wet weather. It was discovered, that biocides are detectable not only during wet weather but also during dry weather when leaching from façade coatings can be excluded as source. In most cases, the concentrations during dry weather were in the same range as during wet...... to 116 mg h(-1) carbendazim or 73 mg h(-1) mecoprop) supporting the hypothesis that the biocides were washed off by wind driven rain. Contrary, the biocide emissions during dry weather were rather related to household activities than with emissions from buildings, i.e., emissions were highest during...... morning and evening hours (up to 50 mg h(-1)). Emissions during night were significantly lower than during daytime. Only for propiconazole a different emission behaviour during dry weather was observed: the mass load peaked in the late afternoon (3 g h(-1)) and declined slowly afterwards. Most likely...

  7. The Potential of The Synergy of Sunphotometer and Lidar Data to Validate Vertical Profiles of The Aerosol Mass Concentration Estimated by An Air Quality Model

    Siomos N.

    2016-01-01

    Full Text Available Vertical profiles of the aerosol mass concentration derived by the Lidar/Radiometer Inversion Code (LIRIC, that uses combined sunphotometer and lidar data, were used in order to validate the aerosol mass concentration profiles estimated by the air quality model CAMx. Lidar and CIMEL measurements performed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece (40.5N, 22.9E from the period 2013-2014 were used in this study.

  8. Effect of nitrogen on the seasonal course of growth and maintenance respiration in stems of Norway spruce trees.

    Stockfors, Jan; Linder, Sune

    1998-03-01

    To determine effects of stem nitrogen concentration ([N]) on the seasonal course of respiration, rates of stem respiration of ten control and ten irrigated-fertilized (IL), 30-year-old Norway spruce trees (Picea abies (L.) Karst.), growing in northern Sweden, were measured on seven occasions from June 1993 to April 1994. To explore sources of seasonal variation and mechanisms of fertilization effects on respiration, we separated total respiration into growth and maintenance respiration for both xylem and phloem bark. Stem respiration increased in response to the IL treatment and was positively correlated with growth rate, volume of living cells and stem nitrogen content. However, no significant effect of IL treatment or [N] in the living cells was found for respiration per unit volume of live cells. Total stem respiration during the growing season (June to September) was estimated to be 16.7 and 29.7 mol CO(2) m(-2) for control and IL-treated trees, respectively. Respiration during the growing season accounted for approximately 64% of total annual respiration. Depending on the method, estimated growth respiration varied between 40 and 60% of total respiration during the growing season. Between 75 and 80% of the live cell volume in the stems was in the phloem, and phloem maintenance accounted for about 70% of maintenance respiration. Because most of the living cells were found in the phloem, and the living xylem cells were concentrated in the outer growth rings, we concluded that the best base for expressing rates of stem growth and maintenance respiration in young Norway spruce trees is stem surface area.

  9. Contribution of Root Respiration to Soil Respiration in Sugarcane Plantation in Thailand

    Wilaiwan Sornpoon; Sebastien Bonnet; Poonpipope Kasemsap; Savitri Garivait

    2013-01-01

    The understanding on the contribution of root respiration to total soil respiration is still very limited, especially for sugarcane. In this study, trenching experiments in sugarcane plantations were conducted to separate and investigate soil respiration for this crop. The measurements were performed for the whole growing period of 344 days to quantify root respiration. The obtained monitoring data showed that the respiration rate is increasing with the age of the plant, accounting for up to ...

  10. Measurement and Modeling of Respiration Rate of Tomato (Cultivar Roma) for Modified Atmosphere Storage.

    Kandasamy, Palani; Moitra, Ranabir; Mukherjee, Souti

    2015-01-01

    Experiments were conducted to determine the respiration rate of tomato at 10, 20 and 30 °C using closed respiration system. Oxygen depletion and carbon dioxide accumulation in the system containing tomato was monitored. Respiration rate was found to decrease with increasing CO2 and decreasing O2 concentration. Michaelis-Menten type model based on enzyme kinetics was evaluated using experimental data generated for predicting the respiration rate. The model parameters that obtained from the respiration rate at different O2 and CO2 concentration levels were used to fit the model against the storage temperatures. The fitting was fair (R2 = 0.923 to 0.970) when the respiration rate was expressed as O2 concentation. Since inhibition constant for CO2 concentration tended towards negetive, the model was modified as a function of O2 concentration only. The modified model was fitted to the experimental data and showed good agreement (R2 = 0.998) with experimentally estimated respiration rate.

  11. Evolution of size-segregated aerosol mass concentration during the Antarctic summer at Northern Foothills, Victoria Land

    Illuminati, Silvia; Bau, Sébastien; Annibaldi, Anna; Mantini, Caterina; Libani, Giulia; Truzzi, Cristina; Scarponi, Giuseppe

    2016-01-01

    Within the framework of the Italian National Programm for Antarctic Research (PNRA), the first direct gravimetric measurements of size-segregated aerosol fractions were carried out at Faraglione Camp, ˜3-km far from the Italian station "M. Zucchelli" (Terra Nova Bay, Ross Sea), during the 2014-2015 austral summer. A six-stage high-volume cascade impactor with size classes between 10 μm and 0.49 μm, and, in parallel, for comparison purposes, a PM10 high-volume sampler (50% cut-off aerodynamic diameter of 10 μm) were used. A 10-day sampling strategy was adopted. Aerosol mass measurements were carried out before and after exposure by using a microbalance specifically designed for the filter weight and placed inside a glove bag in order to maintain stable temperature and humidity conditions during weighing sessions. Measured atmospheric concentrations (referred to the "actual air conditions" of mean temperature of 268 K and mean pressure of 975 hPa) of size-segregated aerosol fractions showed the following values, given as size range, means (interquartile range): Dp range 0.1-1.0 μm) and two coarse modes (CM1 in the range 1.0-3.0 μm, and CM2 in the range 3.0-10 μm). From 50% to 90% of the PM10 mass comes from particles of a size smaller than 1.0 μm. The two coarse modes represented from ˜5% to ˜35% of the PM10, showing opposite seasonal trends (CM1 decreased while CM2 increased). During summer, PM10 mass concentration increased to a maximum of ˜1.6 μg m-3 at mid-December, while in January it decreased to values that are typical of November. Both accumulation and upper super-micron fractions showed a maximum in the same period contributing to the PM10 peak of mid-summer.

  12. The Dependence of CNT Aerogel Synthesis on Sulfur-driven Catalyst Nucleation Processes and a Critical Catalyst Particle Mass Concentration.

    Hoecker, Christian; Smail, Fiona; Pick, Martin; Weller, Lee; Boies, Adam M

    2017-11-06

    The floating catalyst chemical vapor deposition (FC-CVD) process permits macro-scale assembly of nanoscale materials, enabling continuous production of carbon nanotube (CNT) aerogels. Despite the intensive research in the field, fundamental uncertainties remain regarding how catalyst particle dynamics within the system influence the CNT aerogel formation, thus limiting effective scale-up. While aerogel formation in FC-CVD reactors requires a catalyst (typically iron, Fe) and a promotor (typically sulfur, S), their synergistic roles are not fully understood. This paper presents a paradigm shift in the understanding of the role of S in the process with new experimental studies identifying that S lowers the nucleation barrier of the catalyst nanoparticles. Furthermore, CNT aerogel formation requires a critical threshold of Fe x C y  > 160 mg/m 3 , but is surprisingly independent of the initial catalyst diameter or number concentration. The robustness of the critical catalyst mass concentration principle is proved further by producing CNTs using alternative catalyst systems; Fe nanoparticles from a plasma spark generator and cobaltocene and nickelocene precursors. This finding provides evidence that low-cost and high throughput CNT aerogel routes may be achieved by decoupled and enhanced catalyst production and control, opening up new possibilities for large-scale CNT synthesis.

  13. Simultaneous Assay of Isotopic Enrichment and Concentration of Guanidinoacetate and Creatine by Gas Chromatography-Mass Spectrometry

    Kasumov, Takhar; Gruca, Lourdes L.; Dasarathy, Srinivasan; Kalhan, Satish C.

    2012-01-01

    A gas chromatographic-mass spectrometric (GC-MS) method for the simultaneous measurement of isotopic enrichment and concentration of guanidinoacetic acid and creatine in plasma sample for kinetic studies is reported. The method, based on preparation of the bis(trifluoromethyl)-pyrimidine methyl ester derivatives of guanidinoacetic acid and creatine, is robust and sensitive. The lowest measurable m1 and m3 enrichment for guanidinoacetic acid and creatine, respectively, was 0.3%. The calibration curves for measurements of concentration were linear over a range of 0.5-250 μM guanidinoacetic acid and 2-500 μM for creatine. The method was reliable for inter-assay and intra-assay precision, accuracy and linearity. The technique was applied in a healthy adult to determine in vivo fractional synthesis rate of creatine using primed- constant rate infusion of [1-13C]glycine. It was found that isotopic enrichment of guanidinoacetic acid reached plateau by 30 min of infusion of [1-13C]glycine, indicating either a small pool size or a rapid turnover rate or both, of guanidinoacetic acid. In contrast, tracer appearance in creatin was slow (slope: 0.00097), suggesting a large pool size and a slow rate of synthesis of creatine. This method can be used to estimate rate of synthesis of creatine in-vivo in human and animal studies. PMID:19646413

  14. Serum leptin concentrations in children with type 1 diabetes mellitus: relationship to body mass index, insulin dose, and glycemic control.

    Soliman, Ashraf T; Omar, Magdi; Assem, Hala M; Nasr, Ibrahim S; Rizk, Mohamed M; El Matary, Wael; El Alaily, Rania K

    2002-03-01

    Although obesity is a frequent feature of type 2 diabetes mellitus (DM), many patients with type 1 DM are prone to high body mass index (BMI). We measured serum leptin concentrations in a cohort of children (n = 55) with type 1 diabetes mellitus (DM), as well as their anthropometric parameters including BMI, skin fold thickness at multiple sites, and midarm circumference. Glycemic control was assessed by blood glucose (BG) monitoring before meals, and measurement of glycated hemoglobin (HbA1c) and insulin dose/kg/d was recorded. Dietary evaluation and assessment of caloric intake (kg/d) was performed by an expert dietitian. In the newly diagnosed children (n = 10) before initiation of insulin therapy, circulating leptin concentration was significantly lower (1.1 +/- 0.8 ng/dL) versus 5 days after insulin therapy (1.45 +/- 0.7 ng/dL). The decreased leptin level appears to be related to insulinopenia in these patients. In 45 children with type 1 DM on conventional therapy (2 doses of insulin mixture (NPH and regular) subcutaneous (SC) before breakfast and dinner for more than 2 years), serum leptin concentration was significantly higher (2.15 +/- 1 ng/dL) compared with age-matched normal children (1.3 +/- 1 ng/dL). Diabetic children were further divided into 2 groups according to their HbA1c level: group 1 with HbA1C less than 7.5% (less than 2 SD above the mean for normal population) (n = 29) and group 2 with HbA1c greater than 7.5%. (greater than 2 SD above the mean for normal population) (n = 16). Patients with a higher HbA1c level (group 2) had a higher leptin concentration (2.3 +/- 0.8 ng/dL), higher BMI (17.8 +/- 1.7), and were receiving higher insulin dose/kg (0.92 +/- 0.2 U/kg/d) compared with group 1 (lower HbA1c) (1.78 +/- 0.8 ng/dL, 16.7 +/- 1.5, and 0.59 +/- 0.2 U/kg/d, respectively). Group 2 patients had a higher incidence of late morning hypoglycemia (9/29) versus group 1 patients (2/16). Analysis of dietary intake showed that patients with a higher Hb

  15. Stimulation of mitochondrial respiration induced by laser irradiation in the presence of rhodamine dyes

    Krasnikov, B.F.; Zorov, D.B.

    1996-01-01

    The effect of micromolar concentration of rhodamine 123 (methylrhodamine) and ethyl and amyl esters of unsubstituted rhodamine on oxygen consumption by rat liver mitochondria was studied under irradiation by an argon laser (488 and 514 nm). Irradiation of mitochondria in the presence of rhodamine stimulates their respiration. Light-induced stimulation of respiration is not inhibited by free radical scavenger ionol and by inhibitor of the permeability transition pore cyclosporine A. Stimulation of respiration by moderate doses of radiation is reversed in the dark. Increase in radiation dose resulted in only partial reversal of stimulated respiration in the dark. Rhodamine efficacy in stimulation of mitochondrial respiration depends on its structure (amyl > ethyl > methylrhodamine). 22 refs.; 4 figs

  16. Concentration determination of urinary metabolites of N,N-dimethylacetamide by high-performance liquid chromatography-tandem mass spectrometry.

    Yamamoto, Shinobu; Matsumoto, Akiko; Yui, Yuko; Miyazaki, Shota; Kumagai, Shinji; Hori, Hajime; Ichiba, Masayoshi

    2018-03-27

    N,N-Dimethylacetamide (DMAC) is widely used in industry as a solvent. It can be absorbed through human skin. Therefore, it is necessary to determine exposure to DMAC via biological monitoring. However, the precision of traditional gas chromatography (GC) is low due to the thermal decomposition of metabolites in the high-temperature GC injection port. To overcome this problem, we have developed a new method for the simultaneous separation and quantification of urinary DMAC metabolites using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Urine samples were diluted 10-fold in formic acid, and 1-μl aliquots were injected into the LC-MS/MS equipment. A C18 reverse-phase Octa Decyl Silyl (ODS) column was used as the analytical column, and the mobile phase consisted of a mixture of methanol and aqueous formic acid solution. Urinary concentrations of DMAC and its known metabolites (N-hydroxymethyl-N-methylacetamide (DMAC-OH), N-methylacetamide (NMAC), and S- (acetamidomethyl) mercapturic acid (AMMA) ) were determined in a single run. The dynamic ranges of the calibration curves were 0.05-5 mg/l (r≥0.999) for all four compounds. The limits of detection for DMAC, DMAC-OH, NMAC, and AMMA in urine were 0.04, 0.02, 0.05, and 0.02 mg/l, respectively. Within-run accuracies were 96.5%-109.6% with relative standard deviations of precision being 3.43%-10.31%. The results demonstrated that the proposed method could successfully quantify low concentrations of DMAC and its metabolites with high precision. Hence, this method is useful for evaluating DMAC exposure. In addition, this method can be used to examine metabolite behaviors in human bodies after exposure and to select appropriate biomarkers.

  17. Determination of Se at low concentration in coal by collision/reaction cell technology inductively coupled plasma mass spectrometry

    Henn, Alessandra S.; Rondan, Filipe S.; Mesko, Marcia F.; Mello, Paola A.; Perez, Magali; Armstrong, Joseph; Bullock, Liam A.; Parnell, John; Feldmann, Joerg; Flores, Erico M. M.

    2018-05-01

    A method is proposed for the determination of selenium at low concentration in coal by collision/reaction cell technology inductively coupled plasma mass spectrometry (CRC-ICP-MS). Samples were decomposed by high pressure microwave-assisted wet digestion (MAWD) using 250 mg of coal, a mixture of 5 mL of 14.4 mol L-1 HNO3 and 1 mL of 40% HF and 70 min of heating program (200 °C and 40 bar). Hydrogen gas used in the collision/reaction cell was investigated to minimize the argon-based interferences at m/z 77, 78 and 80. The rejection parameter (RPq) and the H2 gas flow rate were set to 0.45 and 4.8 mL min-1, respectively. The use of H2 in the cell resulted in other polyatomic interferences, such as 76Ge1H+, 79Br1H+ and 81Br1H+, which impaired Se determination using 77Se, 80Se and 82Se isotopes, thus Se determination was carried out by monitoring only 78Se isotope. Selenium was determined in certified reference materials of coal (NIST 1635 and SARM 20) and an agreement better than 95% was observed between the results obtained by CRC-ICP-MS and the certified values. Under optimized conditions, the instrumental limit of detection was 0.01 μg L-1 and the method limit of detection was 0.01 μg g-1, which was suitable for Se determination at very low concentration in coal.

  18. Concentration determination of urinary metabolites of N,N-dimethylacetamide by high-performance liquid chromatography-tandem mass spectrometry

    Yamamoto, Shinobu; Matsumoto, Akiko; Yui, Yuko; Miyazaki, Shota; Kumagai, Shinji; Hori, Hajime; Ichiba, Masayoshi

    2017-01-01

    Objectives: N,N-Dimethylacetamide (DMAC) is widely used in industry as a solvent. It can be absorbed through human skin. Therefore, it is necessary to determine exposure to DMAC via biological monitoring. However, the precision of traditional gas chromatography (GC) is low due to the thermal decomposition of metabolites in the high-temperature GC injection port. To overcome this problem, we have developed a new method for the simultaneous separation and quantification of urinary DMAC metabolites using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Methods: Urine samples were diluted 10-fold in formic acid, and 1-μl aliquots were injected into the LC-MS/MS equipment. A C18 reverse-phase Octa Decyl Silyl (ODS) column was used as the analytical column, and the mobile phase consisted of a mixture of methanol and aqueous formic acid solution. Results: Urinary concentrations of DMAC and its known metabolites (N-hydroxymethyl-N-methylacetamide (DMAC-OH), N-methylacetamide (NMAC), and S- (acetamidomethyl) mercapturic acid (AMMA) ) were determined in a single run. The dynamic ranges of the calibration curves were 0.05-5 mg/l (r≥0.999) for all four compounds. The limits of detection for DMAC, DMAC-OH, NMAC, and AMMA in urine were 0.04, 0.02, 0.05, and 0.02 mg/l, respectively. Within-run accuracies were 96.5%-109.6% with relative standard deviations of precision being 3.43%-10.31%. Conclusions: The results demonstrated that the proposed method could successfully quantify low concentrations of DMAC and its metabolites with high precision. Hence, this method is useful for evaluating DMAC exposure. In addition, this method can be used to examine metabolite behaviors in human bodies after exposure and to select appropriate biomarkers. PMID:29213009

  19. An Integrated Instrumentation System for Velocity, Concentration and Mass Flow Rate Measurement of Solid Particles Based on Electrostatic and Capacitance Sensors

    Jian Li

    2015-12-01

    Full Text Available The online and continuous measurement of velocity, concentration and mass flow rate of pneumatically conveyed solid particles for the high-efficiency utilization of energy and raw materials has become increasingly significant. In this paper, an integrated instrumentation system for the velocity, concentration and mass flow rate measurement of dense phase pneumatically conveyed solid particles based on electrostatic and capacitance sensorsis developed. The electrostatic sensors are used for particle mean velocity measurement in combination with the cross-correlation technique, while the capacitance sensor with helical surface-plate electrodes, which has relatively homogeneous sensitivity distribution, is employed for the measurement of particle concentration and its capacitance is measured by an electrostatic-immune AC-based circuit. The solid mass flow rate can be further calculated from the measured velocity and concentration. The developed instrumentation system for velocity and concentration measurement is verified and calibrated on a pulley rig and through static experiments, respectively. Finally the system is evaluated with glass beads on a gravity-fed rig. The experimental results demonstrate that the system is capable of the accurate solid mass flow rate measurement, and the relative error is within −3%–8% for glass bead mass flow rates ranging from 0.13 kg/s to 0.9 kg/s.

  20. Lymphocyte respiration in children with Trisomy 21

    Aburawi Elhadi H

    2012-12-01

    Full Text Available Abstract Background This study measured lymphocyte mitochondrial O2 consumption (cellular respiration in children with trisomy 21. Methods Peripheral blood mononuclear cells were isolated from whole blood of trisomy 21 and control children and these cells were immediately used to measure cellular respiration rate. [O2] was determined as a function of time from the phosphorescence decay rates (1/τ of Pd (II-meso-tetra-(4-sulfonatophenyl-tetrabenzoporphyrin. In sealed vials containing lymphocytes and glucose as a respiratory substrate, [O2] declined linearly with time, confirming the zero-order kinetics of O2 conversion to H2O by cytochrome oxidase. The rate of respiration (k, in μM O2 min-1, thus, was the negative of the slope of [O2] vs. time. Cyanide inhibited O2 consumption, confirming that oxidation occurred in the mitochondrial respiratory chain. Results For control children (age = 8.8 ± 5.6 years, n = 26, the mean (± SD value of kc (in μM O2 per min per 107 cells was 1.36 ± 0.79 (coefficient of variation, Cv = 58%; median = 1.17; range = 0.60 to 3.12; -2SD = 0.61. For children with trisomy 21 (age = 7.2 ± 4.6 years, n = 26, the values of kc were 0.82 ± 0.62 (Cv = 76%; median = 0.60; range = 0.20 to 2.80, pp6.1 mU/L. Fourteen of 26 (54% children with trisomy 21 had kc values of 0.20 to 0.60 (i.e., kc positively correlated with body-mass index (BMI, R >0.302, serum creatinine (R >0.507, blood urea nitrogen (BUN, R >0.535 and albumin (R >0.446. Conclusions Children with trisomy 21 in this study have reduced lymphocyte bioenergetics. The clinical importance of this finding requires further studies.

  1. Estimation of atmospheric columnar organic matter (OM) mass concentration from remote sensing measurements of aerosol spectral refractive indices

    Zhang, Ying; Li, Zhengqiang; Sun, Yele; Lv, Yang; Xie, Yisong

    2018-04-01

    Aerosols have adverse effects on human health and air quality, changing Earth's energy balance and lead to climate change. The components of aerosol are important because of the different spectral characteristics. Based on the low hygroscopic and high scattering properties of organic matter (OM) in fine modal atmospheric aerosols, we develop an inversion algorithm using remote sensing to obtain aerosol components including black carbon (BC), organic matter (OM), ammonium nitrate-like (AN), dust-like (DU) components and aerosol water content (AW). In the algorithm, the microphysical characteristics (i.e. volume distribution and complex refractive index) of particulates are preliminarily separated to fine and coarse modes, and then aerosol components are retrieved using bimodal parameters. We execute the algorithm using remote sensing measurements of sun-sky radiometer at AERONET site (Beijing RADI) in a period from October of 2014 to January of 2015. The results show a reasonable distribution of aerosol components and a good fit for spectral feature calculations. The mean OM mass concentration in atmospheric column is account for 14.93% of the total and 56.34% of dry and fine-mode aerosol, being a fairly good correlation (R = 0.56) with the in situ observations near the surface layer.

  2. Waist-to-Hip Ratio, but Not Body Mass Index, Is Associated with Testosterone and Estradiol Concentrations in Young Women

    Ricardo Mondragón-Ceballos

    2015-01-01

    Full Text Available We studied if testosterone and estradiol concentrations are associated with specific female waist-to-hip ratios (WHRs and body mass indices (BMIs. Participants were 187 young women from which waist, hips, weight, and height were measured. In addition, participants informed on which day of their menstrual cycle they were and provided a 6 mL saliva sample. Ninety-one of them were in the follicular phase and 96 in the luteal phase. Only in the fertile phase of the menstrual cycle we found a significant interaction between testosterone and estradiol affecting WHR (b±s.e.=-0.000003±0.000001; t94=-2.12, adjusted R2=-0.008, P=0.03. Women with the highest levels of both hormones had the lowest WHRs, while women with low estradiol and high testosterone showed the highest WHRs. BMI significantly increased as testosterone increased in female in their nonfertile days.

  3. Antibiotics in riverine runoff of the Pearl River Delta and Pearl River Estuary, China: Concentrations, mass loading and ecological risks

    Xu, Weihai; Yan, Wen; Li, Xiangdong; Zou, Yongde; Chen, Xiaoxiang; Huang, Weixia; Miao, Li; Zhang, Ruijie; Zhang, Gan; Zou, Shichun

    2013-01-01

    Ten antibiotics belonging to three groups (macrolides, fluoroquinolones and sulfonamides) were investigated in riverine runoff of the Pearl River Delta (PRD) and Pearl River Estuary (PRE), South China for assessing the importance of riverine runoff in the transportation of contaminants from terrestrial sources to the open ocean. All antibiotics were detected in the eight outlets with concentrations ranging from 0.7 to 127 ng L −1 . The annual mass loadings of antibiotics from the PRD to the PRE and coast were 193 tons with 102 tons from the fluoroquinolone group. It showed that antibiotics decreased from the riverine outlets to the PRE and open ocean. Risk assessment showed that most of these antibiotics showed various ecological risks to the relevant aquatic organisms, in which ofloxacin (OFL), erythromycin (ETM) and ciprofloxacin (CIP) posed high ecological risks to the studied aquatic environments. -- Highlights: •Antibiotics were ubiquitous in the river water and costal water in the Pearl River Delta. •Antibiotics exhibited distinct temporal and spatial trends in the riverine runoff outlets. •Annual outflows of antibiotics were 193 tons from the Pearl River to coastal ocean. •Some antibiotics posed high risks to some organisms in the PRD environments. -- Antibiotics were ubiquitous in the river and coastal water in the Pearl River Delta and posed various ecological risks to the relevant aquatic organisms

  4. Association of subcutaneous and visceral fat mass with serum concentrations of adipokines in subjects with type 2 diabetes mellitus

    Saito, Tomoyuki; Murata, Miho; Otani, Taeko; Tamemoto, Hiroyuki; Kawakami, Masanobu; Ishikawa, San-e

    2012-01-01

    The goal of the study was to examine the association of subcutaneous and visceral fat mass with serum concentrations of adipokines in 130 subjects with type 2 diabetes mellitus. The levels of serum high sensitivity C-reactive protein (HS-CRP), adiponectin, high-molecular-weight (HMW) adiponectin, interleukin-18, and retinol-binding protein 4 were measured. Percentage body fat was determined by dual energy X-ray absorptiometry, and subcutaneous and visceral fat areas were measured by abdominal CT. HS-CRP had significant positive correlations with percentage body fat and subcutaneous fat area, and a particularly significant positive correlation with visceral fat area. Serum adiponectin had a negative correlation with the subcutaneous and visceral fat areas, with the strongest correlation with the visceral fat area. Similar results were obtained for HMW adiponectin. Serum adiponectin had a negative correlation with visceral fat area in subjects with a visceral fat area 2 , but not in those with a visceral fat area ≥100 cm 2 . In contrast, serum HS-CRP showed a positive correlation with visceral fat area in subjects with visceral fat area ≥100 cm 2 , but not in those with a visceral fat area 2 . These findings indicate that an increased visceral fat area is associated with inflammatory changes, and that inflammatory reactions may alter the functional properties of visceral fat in type 2 diabetes mellitus. (author)

  5. Management effects on European cropland respiration

    Eugster, Werner; Moffat, Antje M.; Ceschia, Eric

    2010-01-01

    Increases in respiration rates following management activities in croplands are considered a relevant anthropogenic source of CO2. In this paper, we quantify the impact of management events on cropland respiration fluxes of CO2 as they occur under current climate and management conditions. Our....... This allowed us to address the question of how management activities influence ecosystem respiration. This was done by comparing respiration fluxes during 7, 14, and 28 days after the management with those observed during the matching time period before management. Median increases in respiration ranged from...... than management alone are also important at a given site. Temperature is the climatic factor that showed best correlation with site-specific respiration fluxes. Therefore, the effect of temperature changes between the time periods before and after management were taken into account for a subset of 13...

  6. Effects of respirator use on worker performance

    Cardarelli, R. [Yankee Atomic Electric Co., Bolton, MA (United States)

    1995-03-01

    In 1993, EPRI funded Yankee Atomic Electric Company to examine the effects of respirator use on worker efficiency. Phase I of Yankee`s effort was to develop a study design to determine respirator effects. Given success in Phase I, a larger population will be tested to determine if a stasitically significant respirator effect on performance can be measured. This paper summarizes the 1993 EPRI/Yankee Respirator Effects of Pilot Study, and describes the study design for the 1994 EPRI/Yankee Respirator Study to be conducted at the Oyster Creek Nuclear Power Plant. Also described is a summary of respirator effect studies that have been conducted during the last ten (10) years.

  7. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    Shohei Sakuda

    2014-03-01

    Full Text Available Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control.

  8. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    Sakuda, Shohei; Prabowo, Diyan Febri; Takagi, Keiko; Shiomi, Kazuro; Mori, Mihoko; Ōmura, Satoshi; Nagasawa, Hiromichi

    2014-01-01

    Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A) inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III) and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control. PMID:24674936

  9. Respirators: Supervisors Self-Study #43442

    Chochoms, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-20

    This course, Respirators: Supervisors Self-Study (#43442), addresses training requirements for supervisors of respirator wearers as specified by the American National Standard Institute (ANSI) Standard for Respiratory Protection, ANSI Z88.2, and as incorporated by reference in the Department of Energy (DOE) Worker Health and Safety Rule, 10 Code of Federal Regulations (CFR) 851. This course also presents the responsibilities of supervisors of respirator wearers at Los Alamos National Laboratory (LANL).

  10. Acclimation and soil moisture constrain sugar maple root respiration in experimentally warmed soil.

    Jarvi, Mickey P; Burton, Andrew J

    2013-09-01

    The response of root respiration to warmer soil can affect ecosystem carbon (C) allocation and the strength of positive feedbacks between climatic warming and soil CO2 efflux. This study sought to determine whether fine-root (maple (Acer saccharum Marsh.)-dominated northern hardwood forest would adjust to experimentally warmed soil, reducing C return to the atmosphere at the ecosystem scale to levels lower than that would be expected using an exponential temperature response function. Infrared heating lamps were used to warm the soil (+4 to +5 °C) in a mature sugar maple forest in a fully factorial design, including water additions used to offset the effects of warming-induced dry soil. Fine-root-specific respiration rates, root biomass, root nitrogen (N) concentration, soil temperature and soil moisture were measured from 2009 to 2011, with experimental treatments conducted from late 2010 to 2011. Partial acclimation of fine-root respiration to soil warming occurred, with soil moisture deficit further constraining specific respiration rates in heated plots. Fine-root biomass and N concentration remained unchanged. Over the 2011 growing season, ecosystem root respiration was not significantly greater in warmed soil. This result would not be predicted by models that allow respiration to increase exponentially with temperature and do not directly reduce root respiration in drier soil.

  11. [Effects of antimicrobial drugs on soil microbial respiration].

    Liu, Feng; Ying, Guang-Guo; Zhou, Qi-Xing; Tao, Ran; Su, Hao-Chang; Li, Xu

    2009-05-15

    The effects on soil microbial respiration of sulfonamides, tetracyclines, macrolides and so on were studied using the direct absorption method. The results show sulfamethazine, sulfamethoxazole, chlortetracycline, tetracycline, tylosin and trimethoprim inhibit soil respiration 34.33%, 34.43%, 2.71%, 3.08%, 7.13%, 38.08% respectively. Sulfamethoxazole and trimethoprim have the highest inhibition rates among all the antibiotics. In early incubation period (0-2 d), the concentrations above 10 mg x kg(-1) of sulfamethazine, sulfamethoxazole and trimethoprim remarkably decrease soil CO2 emission. The effects of these antibiotics vary with their concentrations too. Sulfamethoxazole and trimethoprim show good dose-response relationships. According to the standard of pesticide safety evaluation protocol, the six antibiotics pose a little risk to soil microbial environment.

  12. Cardiac, Skeletal, and smooth muscle mitochondrial respiration

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I

    2014-01-01

    , skeletal, and smooth muscle was harvested from a total of 22 subjects (53±6 yrs) and mitochondrial respiration assessed in permeabilized fibers. Complex I+II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac, skeletal, to smooth muscle (54±1; 39±4; 15......±1 pmol•s(-1)•mg (-1), prespiration rates were normalized by CS (respiration...... per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, Complex I state 2 normalized for CS activity, an index of non-phosphorylating respiration per mitochondrial content, increased progressively from cardiac, skeletal...

  13. Characterization of high concentration dust generator

    Shimura, Toichiro; Yokochi, Akira

    1999-01-01

    This paper describes the development of fluidized bed type high concentration dust generator that keeps for long period dust concentration range of about 10 mg/m 3 for the study of working place monitoring system and evaluation of respirator. The generator is keeping constant powder in fluidized bed for keeping the dust concentration. It is necessary to keep constant feeding rate of powder in order to keep the quantity of dust in the fluidized bed. Our generator enables to obtain constant feeding rate by a screw feeder and by using mixed powder with fluidising particles (glass beads) before feeding. The generator produces high concentration dust of 11.3 mg/m 3 ± 1.0 mg/m 3 for about 5 hours and keeps the dust size 4.2-4.6 μm in mass median aerodynamic diameter with reasonable reproducibility. (author)

  14. Estimating respiration of roots in soil: interactions with soil CO2, soil temperature and soil water content

    Bouma, T.J.; Nielsen, K.F.; Eissenstat, D.M.; Lynch, J.P.

    1997-01-01

    Little information is available on the variability of the dynamics of the actual and observed root respiration rate in relation to abiotic factors. In this study, we describe I) interactions between soil CO2 concentration, temperature, soil water content and root respiration, and II) the effect of

  15. Validated assay for the simultaneous quantification of total vincristine and actinomycin-D concentrations in human EDTA plasma and of vincristine concentrations in human plasma ultrafiltrate by high-performance liquid chromatography coupled with tandem mass spectrometry

    Damen, Carola W. N.; Israëls, Trijn; Caron, Huib N.; Schellens, Jan H. M.; Rosing, Hilde; Beijnen, Jos H.

    2009-01-01

    A sensitive, specific and efficient high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) assay for the simultaneous determination of total vincristine and actinomycin-D concentrations in human plasma and an assay for the determination of unbound vincristine are presented.

  16. Boreal and temperate trees show strong acclimation of respiration to warming.

    Reich, Peter B; Sendall, Kerrie M; Stefanski, Artur; Wei, Xiaorong; Rich, Roy L; Montgomery, Rebecca A

    2016-03-31

    Plant respiration results in an annual flux of carbon dioxide (CO2) to the atmosphere that is six times as large as that due to the emissions from fossil fuel burning, so changes in either will impact future climate. As plant respiration responds positively to temperature, a warming world may result in additional respiratory CO2 release, and hence further atmospheric warming. Plant respiration can acclimate to altered temperatures, however, weakening the positive feedback of plant respiration to rising global air temperature, but a lack of evidence on long-term (weeks to years) acclimation to climate warming in field settings currently hinders realistic predictions of respiratory release of CO2 under future climatic conditions. Here we demonstrate strong acclimation of leaf respiration to both experimental warming and seasonal temperature variation for juveniles of ten North American tree species growing for several years in forest conditions. Plants grown and measured at 3.4 °C above ambient temperature increased leaf respiration by an average of 5% compared to plants grown and measured at ambient temperature; without acclimation, these increases would have been 23%. Thus, acclimation eliminated 80% of the expected increase in leaf respiration of non-acclimated plants. Acclimation of leaf respiration per degree temperature change was similar for experimental warming and seasonal temperature variation. Moreover, the observed increase in leaf respiration per degree increase in temperature was less than half as large as the average reported for previous studies, which were conducted largely over shorter time scales in laboratory settings. If such dampening effects of leaf thermal acclimation occur generally, the increase in respiration rates of terrestrial plants in response to climate warming may be less than predicted, and thus may not raise atmospheric CO2 concentrations as much as anticipated.

  17. Endotoxin and dust at respirable and nonrespirable particle sizes are not consistent between cage- and floor-housed poultry operations.

    Kirychuk, Shelley P; Reynolds, Stephen J; Koehncke, Niels K; Lawson, Joshua; Willson, Philip; Senthilselvan, Ambikaipakan; Marciniuk, Darcy; Classen, Henry L; Crowe, Trever; Just, Natasha; Schneberger, David; Dosman, James A

    2010-10-01

    Individuals engaged in work in intensive animal houses experience some of the highest rates of occupationally related respiratory symptoms. Organic dust and in particular endotoxin has been most closely associated with respiratory symptoms and lung function changes in workers. It has previously been shown that for intensive poultry operations, type of poultry housing [cage-housed (CH) versus floor-housed (FH)] can influence the levels of environmental contaminants. The goal of the study was to determine the differences in endotoxin and dust levels at different size fractions between CH and FH poultry operations. Fifteen CH and 15 FH poultry operations were sampled for stationary measurements (area) of dust and associated endotoxin. Fractioned samples were collected utilizing Marple cascade impactors. Gravimetric and endotoxin analysis were conducted on each of the filters. When assessed by individual Marple stage, there was significantly greater airborne endotoxin concentration (endotoxin units per cubic meter) in the size fraction >9.8 μm for the FH operations whereas at the size fraction 1.6-3.5 μm, the CH operations had significantly greater airborne endotoxin concentration than the FH operations. Endotoxin concentration in the dust mass (endotoxin units per milligram) was significantly greater in the CH operations as compared to the FH operations for all size fractions >1.6 μm. As such, endotoxin in the respirable fraction accounted for 24% of the total endotoxin in the CH operations whereas it accounted for only 11% in the FH operations. There was significantly more dust in all size fractions in the FH operations as compared to the CH poultry operations. There is more endotoxin in the presence of significantly lower dust levels in the respirable particle size fractions in CH poultry operations as compared to the FH poultry operations. This difference in respirable endotoxin may be important in relation to the differential respiratory response experienced by

  18. 30 CFR 71.101 - Respirable dust standard when quartz is present.

    2010-07-01

    ... during each shift to which each miner is exposed at or below a concentration of respirable dust computed... per cubic meter of air as measured with an approved sampling device and in terms of an equivalent concentration determined in accordance with § 71.206 (Approved sampling devices; equivalent concentrations...

  19. 30 CFR 70.101 - Respirable dust standard when quartz is present.

    2010-07-01

    ... concentration of respirable dust in the mine atmosphere during each shift to which each miner in the active... of air as measured with an approved sampling device and in terms of an equivalent concentration determined in accordance with § 70.206 (Approved sampling devices; equivalent concentrations), computed by...

  20. [Effects of Tillage on Soil Respiration and Root Respiration Under Rain-Fed Summer Corn Field].

    Lu, Xing-li; Liao, Yun-cheng

    2015-06-01

    To explore the effects of different tillage systems on soil respiration and root respiration under rain-fed condition. Based on a short-term experiment, this paper investigated soil respiration in summer corn growth season under four tillage treatments including subsoiling tillage (ST), no tillage (NT), rotary tillage (RT) and moldboard plow tillage (CT). The contribution of root respiration using root exclusion method was also discussed. The results showed that soil respiration rate presented a single peak trend under four tillage methods during the summer corn growing season, and the maximum value was recorded at the heading stage. The trends of soil respiration were as follows: heading stage > flowering stage > grain filling stage > maturity stage > jointing stage > seedling stage. The trends of soil respiration under different tillage systems were as follows: CT > ST > RT > NT. There was a significant correlation between soil respiration rate and soil temperatures (P soil respiration using exponential function equation. However, there was no significant correlation between soil respiration rate and soil moisture. Root respiration accounted for 45.13%-56.86% of the proportion of soil respiratio n with the mean value 51.72% during the summer corn growing season under different tillage systems. Therefore, root exclusion method could be used to study the contribution of crop growth to carbon emission, to compare effects of different tillage systems on the contribution of root respiration provides the bases for selecting the measures to slow down the decomposition of soil carbon.

  1. Miniaturized test system for soil respiration induced by volatile pollutants

    Kaufmann, Karin; Chapman, Stephen J.; Campbell, Colin D.; Harms, Hauke; Hoehener, Patrick

    2006-01-01

    A miniaturized method based on 96-well microtitre plates was developed and used to study respiration in pristine and contaminated soils following addition of volatile substrates. Small soil samples were exposed to fuel components, which were volatilized from spatially separate reservoirs of 2,2,4,4,6,8,8-heptamethylnonane (HMN) as an organic carrier. Respiration was determined as CO 2 production by means of a pH-indicator and bicarbonate-containing agar, or as 14 CO 2 evolution from 14 C-labelled substrates. Substrate concentrations inducing maximum microbial activity or inhibition were determined and CO 2 production profiles examined by multivariate analysis. When high concentrations of fuel components were applied, distinction of hydrocarbon exposed soils from unexposed soil was achieved within 6 h of incubation. With low concentrations, adequate distinction was achieved after 24 h, probably as a result of community adaptation. Nutrient limitation was identified with the 14 C method for toluene, and the optimal N and P amendment determined. Further potential applications of this rapid and inexpensive method are outlined. - A new method to study soil respiration is used when volatile organic contaminants are added

  2. Data compilation of respiration, feeding, and growth rates of marine pelagic organisms

    2013-01-01

    's adaptation to the environment, with consequently less universal mass scaling properties. Data on body mass, maximum ingestion and clearance rates, respiration rates and maximum growth rates of animals living in the ocean epipelagic were compiled from the literature, mainly from original papers but also from...

  3. EXPERIMENTAL SUBSTANTIATION OF PERMEABILIZED HEPATOCYTES MODEL FOR INVESTIGATION OF MITOCHONDRIA IN SITU RESPIRATION.

    Merlavsky, V M; Manko, B O; Ikkert, O V; Manko, V V

    2015-01-01

    To verify experimentally the model of permeabilized hepatocytes, the degree of cell permeability was assessed using trypan blue and polarographycally determined cell respiration rate upon succinate (0.35 mM) and a-ketoglutarate (1 mM) oxidation. Oxidative phosphorylation was stimulated by ADP (750 μM). Hepatocyte permeabilization depends on digitonin concentraion in medium and on the number of cells in suspension. Thus, the permeabilization of 0.9-1.7 million cells/ml was completed by 25 μg/ml of digitonin, permeabilization of 2.0-3.0 million cells/ml--by 50 μg/ml of digitonin and permeabilization of 4.0-5.6 million cells/ml--by 100 μg/ml. Thus, the higher is the suspension density, the higher digitonin concentration is required. Treatment of hepatocytes with digitonin resulted in a decrease of endogenous respiration rate to a minimum upon 20-22 μg of digitonin per 1 million cells. Supplementation of permeabilized hepatocytes with α-ketoglutarate maintained stable respiration rate, on the level higher than endogenous respiration at the corresponding digitonin concentration, unlike the intact cells. Respiration rate of permeabilized hepatocytes at the simultaneous addition of α-ketoglutarate and ADP increased to the level of intact cell respiration, irrespective of digitonin concentration. Addition of solely succinate and especially succinate plus ADP markedly intensified the respiration of permeabilized hepatocytes to the level higher than that of intact cells. The dependence of succinate-stimulated respiration on digitonin concentration reached maximum at 20-22 αg of digitonin per 1 million cells. Optimal ratio of digitonin amount and the cell number in suspension is expected to be different in various tissues.

  4. Stem respiration of Populus species in the third year of free-air CO2 enrichment

    GIELEN, Birgit; Scarascia-Mugnozza, G.; Ceulemans, R.

    2003-01-01

    Carbon cycling in ecosystems, and especially in forests, is intensively studied to predict the effects of global climate change, and the role which forests may play in 'changing climate change'. One of the questions is whether the carbon balance of forests will be affected by increasing atmospheric CO2 concentrations. Regarding this question, effects of elevated [CO2 ] on woody-tissue respiration have frequently been neglected. Stem respiration of three Populus species (P. alba L. (Clone 2AS-...

  5. Airborne particulate concentrations and fluxes at an active uranium mill tailings site

    Sehmel, G.A.

    1978-01-01

    Direct measurements of airborne particulate concentrations and fluxes of transported mill tailing materials were measured at an active mill tailings site. Experimental measurement equipment consisted of meteorological instrumentation to automatically activate total particulate air samplers as a function of wind speed increments and direction, as well as particle cascade impactors to measure airborne respirable concentrations as a function of particle size. In addition, an inertial impaction device measured nonrespirable fluxes of airborne particles. Caclulated results are presented in terms of the airborne solid concentration in g/m 3 , the horizontal airborne mass flux in g/(m 2 -day) for total collected nonrespirable particles and the radionuclide concentrations in dpm/g as a function of particle diameter for respirable and nonrespirable particles

  6. Mitochondrial respiration is sensitive to cytoarchitectural breakdown.

    Kandel, Judith; Angelin, Alessia A; Wallace, Douglas C; Eckmann, David M

    2016-11-07

    An abundance of research suggests that cellular mitochondrial and cytoskeletal disruption are related, but few studies have directly investigated causative connections between the two. We previously demonstrated that inhibiting microtubule and microfilament polymerization affects mitochondrial motility on the whole-cell level in fibroblasts. Since mitochondrial motility can be indicative of mitochondrial function, we now further characterize the effects of these cytoskeletal inhibitors on mitochondrial potential, morphology and respiration. We found that although they did not reduce mitochondrial inner membrane potential, cytoskeletal toxins induced significant decreases in basal mitochondrial respiration. In some cases, basal respiration was only affected after cells were pretreated with the calcium ionophore A23187 in order to stress mitochondrial function. In most cases, mitochondrial morphology remained unaffected, but extreme microfilament depolymerization or combined intermediate doses of microtubule and microfilament toxins resulted in decreased mitochondrial lengths. Interestingly, these two particular exposures did not affect mitochondrial respiration in cells not sensitized with A23187, indicating an interplay between mitochondrial morphology and respiration. In all cases, inducing maximal respiration diminished differences between control and experimental groups, suggesting that reduced basal respiration originates as a largely elective rather than pathological symptom of cytoskeletal impairment. However, viability experiments suggest that even this type of respiration decrease may be associated with cell death.

  7. Respirators: APR Issuer Self Study 33461

    Chochoms, Michael [Los Alamos National Laboratory

    2016-07-13

    Respirators: APR Issuer Self-Study (course 33461) is designed to introduce and familiarize employees selected as air-purifying respirator (APR) issuers at Los Alamos National Laboratory (LANL) with the responsibilities, limitations, procedures, and resources for issuing APRs at LANL. The goal is to enable these issuers to consistently provide proper, functioning APRs to authorized users

  8. Indices to screen for grain yield and grain-zinc mass concentrations in aerobic rice at different soil-Zn levels

    Jiang, W.; Struik, P.C.; Zhao, M.; Keulen, van H.; Fan, T.Q.; Stomph, T.J.

    2008-01-01

    Zinc is an important micronutrient for both crop growth and human nutrition. In rice production, yields are often reduced and Zn mass concentrations in the grains are often low when Zn is in short supply to the crop. This may result in malnutrition of people dependent on a rice-based diet. Plant

  9. Mass loss and nutrient concentrations of buried wood as a function of organic matter removal, soil compaction, and vegetation control in a regenerating oak-pine forest

    Felix Ponder; John M. Kabrick; Mary Beth Adams; Deborah S. Page-Dumroese; Marty F. Jurgensen

    2017-01-01

    Mass loss and nutrient concentrations of northern red oak (Quercus rubra) and white oak (Q. alba) wood stakes were measured 30 months after their burial in the upper 10 cm of soil in a regenerating forest after harvesting and soil disturbance. Disturbance treatments were two levels of organic matter (OM) removal (only...

  10. The Effect of Restoration on Soil Respiration in an Urban Tidal Wetland in the Meadowlands, New Jersey

    Schafer, K. V.; Kurepa, S.; Duman, T.; Scott, M.; Pechmann, I.; Vanderklein, D. W.

    2017-12-01

    The effect of wetland restoration on soil respiration in tidal brackish marshes has not been comprehensively studied. In New Jersey, common mitigation efforts come in the form of the removal of an invasive haplotype of Phragmites australis and replanting of native species, resulting in significant habitat disturbance. This study investigated the differences in soil respiration within and between areas covered with P. australis, Spartina alterniflora, and Spartina patens. We performed static chamber measurements of soil respiration using an infrared gas analyzer to measure CO2 fluxes in a natural site and a mitigated site in the Meadowlands of New Jersey. Daytime measurements were performed in 10 random locations in areas populated with each of the vegetation types, to represent the spatial heterogeneity of the wetland area, during summer 2017. Due to the nature of the wetland, vegetation had to be removed to uncover the soil. Prior to measuring exposed soil respiration, we therefore measured CO2 flux including the vegetation within the chamber, which allowed us to additionally calculate the respiration including the vegetation. Furthermore, we assessed direct respiration of green leaves with leaf gas exchange measurements. Combining these different methodologies and scales allow us to estimate the function of different components that contribute to total respiration from the wetland, and how they change spatially and temporally. Initial results showed that soil respiration in P. australis patches was much higher than in both Spartina species, however average vegetation respiration per unit mass was similar across all three. Vegetation respiration and soil respiration are of the same order of magnitude in all three species as well. Also, when respiration with and without vegetation was combined, P. australis showed a considerably higher flux.

  11. The effect of weight, body mass index, age, sex , and race on plasma concentrations of subcutaneous sumatriptan: a pooled analysis

    Munjal S

    2016-09-01

    Full Text Available Sagar Munjal,1 Anirudh Gautam,2 Alan M Rapoport,3 Dennis M Fisher4 1Department of Neurology Clinical Development and Medical Affairs, Dr. Reddy’s Laboratories Ltd, Princeton, NJ, USA; 2Pharmacokinetics, Modeling and Simulation & Bioanalysis, Dr. Reddy’s Laboratories Ltd, Hyderabad, India; 3Department of Neurology, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, 4P Less Than, San Francisco, CA, USA Objective/background: Factors such as body size (weight and body mass index [BMI], age, sex, and race might influence the clinical response to sumatriptan. We evaluated the impact of these covariates on the plasma concentration (Cp profile of sumatriptan administered subcutaneously. Methods: We conducted three pharmacokinetic studies of subcutaneous sumatriptan in 98 healthy adults. Sumatriptan was administered subcutaneously (236 administrations as either DFN-11 3 mg, a novel 0.5 mL autoinjector being developed by Dr. Reddy’s Laboratories; Imitrex® (Sumatriptan injection 3 mg or 6 mg (6 mg/0.5 mL; or Imitrex STATdose 4 mg or 6 mg (0.5 mL. Blood was sampled for 12 hours to determine sumatriptan Cp. Maximum Cp (Cmax, area under the curve during the first 2 hours (AUC0–2, and total area under the curve (AUC0–∞ were determined using noncompartmental methods. Post hoc analyses were conducted to determine the relationship between these exposure metrics and each of body weight, BMI, age, sex, and race (categorized as white, black, or others. Results: Both weight and BMI correlated negatively with each exposure metric for each treatment group. Across all treatment groups, AUC0–2 for subjects with BMI less than or equal to median value was 1.03–1.12 times the value for subjects with BMI more than median value. For subjects with BMI less than or equal to median value receiving DFN-11, median AUC0–2 was slightly less than that for subjects with BMI more than median value receiving Imitrex

  12. Comparisons of urban and rural PM10−2.5 and PM2.5 mass concentrations and semi-volatile fractions in northeastern Colorado

    N. Clements

    2016-06-01

    Full Text Available Coarse (PM10−2.5 and fine (PM2.5 particulate matter in the atmosphere adversely affect human health and influence climate. While PM2.5 is relatively well studied, less is known about the sources and fate of PM10−2.5. The Colorado Coarse Rural-Urban Sources and Health (CCRUSH study measured PM10−2.5 and PM2.5 mass concentrations, as well as the fraction of semi-volatile material (SVM in each size regime (SVM2.5, SVM10−2.5, from 2009 to early 2012 in Denver and comparatively rural Greeley, Colorado. Agricultural operations east of Greeley appear to have contributed to the peak PM10−2.5 concentrations there, but concentrations were generally lower in Greeley than in Denver. Traffic-influenced sites in Denver had PM10−2.5 concentrations that averaged from 14.6 to 19.7 µg m−3 and mean PM10−2.5 ∕ PM10 ratios of 0.56 to 0.70, higher than at residential sites in Denver or Greeley. PM10−2.5 concentrations were more temporally variable than PM2.5 concentrations. Concentrations of the two pollutants were not correlated. Spatial correlations of daily averaged PM10−2.5 concentrations ranged from 0.59 to 0.62 for pairs of sites in Denver and from 0.47 to 0.70 between Denver and Greeley. Compared to PM10−2.5, concentrations of PM2.5 were more correlated across sites within Denver and less correlated between Denver and Greeley. PM10−2.5 concentrations were highest during the summer and early fall, while PM2.5 and SVM2.5 concentrations peaked in winter during periodic multi-day inversions. SVM10−2.5 concentrations were low at all sites. Diurnal peaks in PM10−2.5 and PM2.5 concentrations corresponded to morning and afternoon peaks of traffic activity, and were enhanced by boundary layer dynamics. SVM2.5 concentrations peaked around noon on both weekdays and weekends. PM10−2.5 concentrations at sites located near highways generally increased with wind speeds above about 3 m s−1. Little wind speed dependence was

  13. Absolute analysis of uranium isotopic concentrations with a gas ion source mass spectrometer; Analyses absolues des concentrations isotopiques de l'uranium par spectrometre de masse equipe d'une source a gaz

    Chaussy, L.; Boyer, R. [Commissariat a l' Energie Atomique, Pierrelatte (France)

    1969-07-01

    Mass spectrometer with electronic bombardment ions source for routine uranium isotopic analysis are used like relative measurements apparatus. We show that such mass spectrometers can be used for absolute measurements with a very high sensitivity and precision which are ten times better than theses of thermo-ionic ions source mass spectrometer. We examine the causes of systematic errors and we give experimental data. In particular natural uranium sample used as reference give: U{sub 5} = 0.7202 {+-} 0.0005 atoms per cent; U{sub 4} = 0.00552 {+-} 0.0003 atoms per cent. The use of this method is justified for standards control. (authors) [French] Les spectrometres de masse a source par bombardement electronique pour l'analyse de l'uranium sous forme d'hexafluorure, sont utilises en routine comme des appareils de mesure relative. On montre que l'on peut utiliser de tels appareils pour effectuer des mesures absolues avec une excellente sensibilite et reproductibilite, dix fois superieure a celle des spectrometres a source thermoionique. On examine en detail les causes d'erreurs systematiques et on donne des resultats experimentaux. En particulier, l'analyse d'un echantillon d'uranium naturel donne: U{sub 5} = 0.7202 {+-} 0.0005 atomes pour cent; U{sub 4} = 0.00552 {+-} 0.0003 atomes pour cent. La technique de mesure est utile pour le controle d'etalons isotopiques. (auteurs)

  14. Genetic variations in the androgen receptor are associated with steroid concentrations and anthropometrics but not with muscle mass in healthy young men.

    Hélène De Naeyer

    Full Text Available OBJECTIVE: The relationship between serum testosterone (T levels, muscle mass and muscle force in eugonadal men is incompletely understood. As polymorphisms in the androgen receptor (AR gene cause differences in androgen sensitivity, no straightforward correlation can be observed between the interindividual variation in T levels and different phenotypes. Therefore, we aim to investigate the relationship between genetic variations in the AR, circulating androgens and muscle mass and function in young healthy male siblings. DESIGN: 677 men (25-45 years were recruited in a cross-sectional, population-based sibling pair study. METHODS: Relations between genetic variation in the AR gene (CAGn, GGNn, SNPs, sex steroid levels (by LC-MS/MS, body composition (by DXA, muscle cross-sectional area (CSA (by pQCT, muscle force (isokinetic peak torque, grip strength and anthropometrics were studied using linear mixed-effect modelling. RESULTS: Muscle mass and force were highly heritable and related to age, physical activity, body composition and anthropometrics. Total T (TT and free T (FT levels were positively related to muscle CSA, whereas estradiol (E2 and free E2 (FE2 concentrations were negatively associated with muscle force. Subjects with longer CAG repeat length had higher circulating TT, FT, and higher E2 and FE2 concentrations. Weak associations with TT and FT were found for the rs5965433 and rs5919392 SNP in the AR, whereas no association between GGN repeat polymorphism and T concentrations were found. Arm span and 2D:4D finger length ratio were inversely associated, whereas muscle mass and force were not associated with the number of CAG repeats. CONCLUSIONS: Age, physical activity, body composition, sex steroid levels and anthropometrics are determinants of muscle mass and function in young men. Although the number of CAG repeats of the AR are related to sex steroid levels and anthropometrics, we have no evidence that these variations in the AR

  15. Temperature dependence of bulk respiration of crop stands. Measurement and model fitting

    Tani, Takashi; Arai, Ryuji; Tako, Yasuhiro

    2007-01-01

    The objective of the present study was to examine whether the temperature dependence of respiration at a crop-stand scale could be directly represented by an Arrhenius function that was widely used for representing the temperature dependence of leaf respiration. We determined temperature dependences of bulk respiration of monospecific stands of rice and soybean within a range of the air temperature from 15 to 30degC using large closed chambers. Measured responses of respiration rates of the two stands were well fitted by the Arrhenius function (R 2 =0.99). In the existing model to assess the local radiological impact of the anthropogenic carbon-14, effects of the physical environmental factors on photosynthesis and respiration of crop stands are not taken into account for the calculation of the net amount of carbon per cultivation area in crops at harvest which is the crucial parameter for the estimation of the activity concentration of carbon-14 in crops. Our result indicates that the Arrhenius function is useful for incorporating the effect of the temperature on respiration of crop stands into the model which is expected to contribute to a more realistic estimate of the activity concentration of carbon-14 in crops. (author)

  16. Direct sampling of sub-µm atmospheric particulate organic matter in sub-ng m-3 mass concentrations by proton-transfer-reaction mass spectrometry

    Armin, W.; Mueller, M.; Klinger, A.; Striednig, M.

    2017-12-01

    A quantitative characterization of the organic fraction of atmospheric particulate matter is still challenging. Herein we present the novel modular "Chemical Analysis of Aerosol Online" (CHARON) particle inlet system coupled to a new-generation proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF 6000 X2, Ionicon Analytik, Austria) that quantitatively detects organic analytes in real-time and sub-pptV levels by chemical ionization with hydronium reagent ions. CHARON consists of a gas-phase denuder for stripping off gas-phase analytes (efficiency > 99.999%), an aerodynamic lens for particle collimation combined with an inertial sampler for the particle-enriched flow and a thermodesorption unit for particle volatilization prior to chemical analysis. With typical particle enrichment factors of around 30 for particle diameters (DP) between 120 nm and 1000 nm (somewhat reduced enrichment for 60 nm 6000) and excellent mass accuracies (< 10 ppm) chemical compositions can be assigned and included in further analyses. In addition to a detailed characterization of the CHARON PTR-TOF 6000 X2 we will present first results on the chemical composition of sub-µm particulate organic matter in the urban atmosphere in Innsbruck (Austria).

  17. Molecular Characterization of Bacterial Respiration on Minerals

    Blake, Robert C.

    2013-04-26

    The overall aim of this project was to contribute to our fundamental understanding of proteins and biological processes under extreme environmental conditions. We sought to define the biochemical and physiological mechanisms that underlie biodegradative and other cellular processes in normal, extreme, and engineered environments. Toward that end, we sought to understand the substrate oxidation pathways, the electron transport mechanisms, and the modes of energy conservation employed during respiration by bacteria on soluble iron and insoluble sulfide minerals. In accordance with these general aims, the specific aims were two-fold: To identify, separate, and characterize the extracellular biomolecules necessary for aerobic respiration on iron under strongly acidic conditions; and to elucidate the molecular principles whereby these bacteria recognize and adhere to their insoluble mineral substrates under harsh environmental conditions. The results of these studies were described in a total of nineteen manuscripts. Highlights include the following: 1. The complete genome of Acidithiobacillus ferrooxidans ATCC 23270 (type strain) was sequenced in collaboration with the DOE Joint Genome Institute; 2. Genomic and mass spectrometry-based proteomic methods were used to evaluate gene expression and in situ microbial activity in a low-complexity natural acid mine drainage microbial biofilm community. This was the first effort to successfully analyze a natural community using these techniques; 3. Detailed functional and structural studies were conducted on rusticyanin, an acid-stable electron transfer protein purified from cell-free extracts of At. ferrooxidans. The three-dimensional structure of reduced rusticyanin was determined from a combination of homonuclear proton and heteronuclear 15N- and 13C-edited NMR spectra. Concomitantly, the three-dimensional structure of oxidized rusticyanin was determined by X-ray crystallography to a resolution of 1.9 A by multiwavelength

  18. BOREAS TE-5 Soil Respiration Data

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected measurements in the NSA and SSA on gas exchange, gas composition, and tree growth. Soil respiration data were collected from 26-May-94 to 07-Sep-94 in the BOREAS NSA and SSA to compare the soil respiration rates in different forest sites using a LI-COR 6200 soil respiration chamber (model 6299). The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).

  19. Partitioning autotrophic and heterotrophic respiration at Howland Forest

    Carbone, Mariah; Hollinger, Dave; Davidson, Eric; Savage, Kathleen; Hughes, Holly

    2015-04-01

    Terrestrial ecosystem respiration is the combined flux of CO2 to the atmosphere from above- and below-ground, plant (autotrophic) and microbial (heterotrophic) sources. Flux measurements alone (e.g., from eddy covariance towers or soil chambers) cannot distinguish the contributions from these sources, which may change seasonally and respond differently to temperature and moisture. The development of improved process-based models that can predict how plants and microbes respond to changing environmental conditions (on seasonal, interannual, or decadal timescales) requires data from field observations and experiments to distinguish among these respiration sources. We tested the viability of partitioning of soil and ecosystem respiration into autotrophic and heterotrophic components with different approaches at the Howland Forest in central Maine, USA. These include an experimental manipulation using the classic root trenching approach and targeted ∆14CO2 measurements. For the isotopic measurements, we used a two-end member mass balance approach to determine the fraction of soil respiration from autotrophic and heterotrophic sources. When summed over the course of the growing season, the trenched chamber flux (heterotrophic) accounted for 53 ± 2% of the total control chamber flux. Over the four different 14C sampling periods, the heterotrophic component ranged from 35-55% and the autotrophic component ranges 45-65% of the total flux. Next steps will include assessing the value of the flux partitioning for constraining a simple ecosystem model using a model-data fusion approach to reduce uncertainties in estimates of NPP and simulation of future soil C stocks and fluxes.

  20. Workplace performance of a loose-fitting powered air purifying respirator during nanoparticle synthesis

    Koivisto, Antti J.; Aromaa, Mikko; Koponen, Ismo K.; Fransman, Wouter; Jensen, Keld A.; Mäkelä, Jyrki M.; Hämeri, Kaarle J.

    2015-01-01

    Nanoparticle (particles with diameter ≤100 nm) exposure is recognized as a potentially harmful size fraction for pulmonary particle exposure. During nanoparticle synthesis, the number concentrations in the process room may exceed 10 × 10 6 cm −3 . During such conditions, it is essential that the occupants in the room wear highly reliable high-performance respirators to prevent inhalation exposure. Here we have studied the in-use program protection factor (PPF) of loose-fitting powered air purifying respirators, while workers were coating components with TiO 2 or Cu x O y nanoparticles under a hood using a liquid flame spray process. The PPF was measured using condensation particle counters, an electrical low pressure impactor, and diffusion chargers. The room particle concentrations varied from 4 × 10 6 to 40 × 10 6 cm −3 , and the count median aerodynamic diameter ranged from 32 to 180 nm. Concentrations inside the respirator varied from 0.7 to 7.2 cm −3 . However, on average, tidal breathing was assumed to increase the respirator concentration by 2.3 cm −3 . The derived PPF exceeded 1.1 × 10 6 , which is more than 40 × 10 3 times the respirator assigned protection factor. We were unable to measure clear differences in the PPF of respirators with old and new filters, among two male and one female user, or assess most penetrating particle size. This study shows that the loose-fitting powered air purifying respirator provides very efficient protection against nanoparticle inhalation exposure if used properly

  1. Workplace performance of a loose-fitting powered air purifying respirator during nanoparticle synthesis

    Koivisto, Antti J., E-mail: jok@nrcwe.dk [National Research Centre for the Working Environment (Denmark); Aromaa, Mikko [Tampere University of Technology, Department of Physics (Finland); Koponen, Ismo K. [National Research Centre for the Working Environment (Denmark); Fransman, Wouter [TNO (Netherlands); Jensen, Keld A. [National Research Centre for the Working Environment (Denmark); Mäkelä, Jyrki M. [Tampere University of Technology, Department of Physics (Finland); Hämeri, Kaarle J. [University of Helsinki, Department of Physics (Finland)

    2015-04-15

    Nanoparticle (particles with diameter ≤100 nm) exposure is recognized as a potentially harmful size fraction for pulmonary particle exposure. During nanoparticle synthesis, the number concentrations in the process room may exceed 10 × 10{sup 6} cm{sup −3}. During such conditions, it is essential that the occupants in the room wear highly reliable high-performance respirators to prevent inhalation exposure. Here we have studied the in-use program protection factor (PPF) of loose-fitting powered air purifying respirators, while workers were coating components with TiO{sub 2} or Cu{sub x}O{sub y} nanoparticles under a hood using a liquid flame spray process. The PPF was measured using condensation particle counters, an electrical low pressure impactor, and diffusion chargers. The room particle concentrations varied from 4 × 10{sup 6} to 40 × 10{sup 6} cm{sup −3}, and the count median aerodynamic diameter ranged from 32 to 180 nm. Concentrations inside the respirator varied from 0.7 to 7.2 cm{sup −3}. However, on average, tidal breathing was assumed to increase the respirator concentration by 2.3 cm{sup −3}. The derived PPF exceeded 1.1 × 10{sup 6}, which is more than 40 × 10{sup 3} times the respirator assigned protection factor. We were unable to measure clear differences in the PPF of respirators with old and new filters, among two male and one female user, or assess most penetrating particle size. This study shows that the loose-fitting powered air purifying respirator provides very efficient protection against nanoparticle inhalation exposure if used properly.

  2. Sensitivity analysis of the effect of various key parameters on fission product concentration (mass number 120 to 126)

    Sola, A.

    1978-01-01

    An analytical sensitivity analysis has been made of the effect of various parameters on the evaluation of fission product concentration. Such parameters include cross sections, decay constants, branching ratios, fission yields, flux and time. The formulae are applied to isotopes of the Tin, Antimony and Tellurium series. The agreement between analytically obtained data and that derived from a computer evaluated model is good, suggesting that the analytical representation includes all the important parameters useful to the evaluation of the fission product concentrations

  3. Soil respiration in northern forests exposed to elevated atmospheric carbon dioxide and ozone.

    Pregitzer, Kurt; Loya, Wendy; Kubiske, Mark; Zak, Donald

    2006-06-01

    respiration that was temporarily 4-6 per thousand more depleted in 13C. Up to 50% of the Earth's forests will see elevated concentrations of both CO2 and O3 in the coming decades and these interacting atmospheric trace gases stimulated soil respiration in this study.

  4. Untangling the effects of root age and tissue nitrogen on root respiration in Populus tremuloides at different nitrogen supply.

    Ceccon, Christian; Tagliavini, Massimo; Schmitt, Armin Otto; Eissenstat, David M

    2016-05-01

    Root respiration is a major contributor to terrestrial carbon flux. Many studies have shown root respiration to increase with an increase in root tissue nitrogen (N) concentration across species and study sites. Studies have also shown that both root respiration and root N concentration typically decrease with root age. The effects of added N may directly increase respiration of existing roots or may affect respiration by shifting the age structure of a root population by stimulating growth. To the best of our knowledge, no study has ever examined the effect of added N as a function of root age on root respiration. In this study, root respiration of 13-year-old Populus tremuloides Michx. trees grown in the field and 1-year-old P. tremuloides seedlings grown in containers was analyzed for the relative influence of root age and root N concentration independent of root age on root respiration. Field roots were first tracked using root windows and then sampled at known age. Nitrogen was either applied or not to small patches beneath the windows. In a pot experiment, each plant was grown with its root system split between two separate pots and N was applied at three different levels, either at the same or at different rates between pots. Root N concentration ranged between 1.4 and 1.7% in the field experiment and 1.8 and 2.6% in the seedling experiment. We found that addition of N increased root N concentration of only older roots in the field but of roots of all ages in the potted seedlings. In both experiments, the age-dependent decline in root respiration was largely consistent, and could be explained by a negative power function. Respiration decreased ∼50% by 3 weeks of age. Although root age was the dominant factor affecting respiration in both experiments, in the field experiment, root N also contributed to root respiration independent of root age. These results add further insight into respiratory responses of roots to N addition and mechanisms underlying the

  5. Forest harvesting effects on soil temperature, moisture, and respiration in a bottomland hardwood forest

    Londo, A.J.; Messina, M.G.; Schoenholtz, S.H.

    1999-01-01

    The effect of forest disturbance on C cycling has become an issue, given concerns about escalating atmospheric C content. The authors examined the effects of harvest intensity on in situ and laboratory mineral soil respiration in an East Texas bottomland hardwood forest between 6 and 22 mo after harvesting. Treatments included a clearcut, a partial cut wherein approximately 58% of the basal area was removed, and an unharvested control. The soda-lime absorption technique was used for in situ respiration (CO 2 efflux) and the wet alkali method (NaOH) was used for laboratory mineral soil respiration. Soil temperature and moisture content were also measured. Harvesting significantly increased in situ respiration during most sampling periods. This effect was attributed to an increase in live root and microflora activity associated with postharvesting revegetation. In situ respiration increased exponentially (Q 10 relationship) as treatment soil temperatures increased, but followed a parabolic-type pattern through the range of soil moisture measured (mean range 10.4--31.5%). Mean rates of laboratory mineral soil respiration measured during the study were unaffected by cutting treatment for most sampling sessions. Overall, the mean rate of CO 2 efflux in the clearcuts was significantly higher than that in the partial cuts, which in turn was significantly higher than that in the controls. Mass balance estimates indicate that these treatment differences will have little or no long-term effect on C sequestration of these managed forests

  6. Hydrodynamic characteristics of steady magnetic fluid flow in a straight tube by taking into account the non-uniform distribution of mass concentration

    Shuchi, S.; Shimada, K.; Kamiyama, S.; Yamaguchi, H.

    2002-01-01

    We clarify numerically the wall friction coefficient, the distributions of velocity and shear rate, and the number of aggregated particles on steady magnetic fluid flow in a straight tube by taking into account the non-uniform distribution of mass concentration (DMC). Also the effect of DMC is clarified under the uniform and non-uniform transverse steady magnetic field. In comparison with the published data, the numerical results show good agreement with the experimental data

  7. How much work is expended for respiration?

    Johnson, A T

    1993-01-01

    The rate of work expended to move air in the respiratory system has been determined for five different airflow waveshapes, a non-linear respiratory model and five exercise levels. As expected, the rectangular waveshape was the most efficient. Model conditions were then changed one a time: (i) starting lung volume was allowed to vary, (ii) exhalation flow limitation was added, (iii) respiration was considered to be a metabolic burden determining part of the ventilation requirement and (iv) a respirator mask was added. Although there is no direct work advantage to varying initial lung volume, such volume changes appear to be dictated by the asymmetry of lung recoil pressure about the lung relaxation volume; allowing the work of respiration to become a metabolic burden clearly shows why respiratory waveforms change from rest to exercise; and, adding a respirator imposes a severe respiratory burden on the wearer engaging in moderate, heavy and very heavy exercise.

  8. Constraining dark matter halo profiles and galaxy formation models using spiral arm morphology. II. Dark and stellar mass concentrations for 13 nearby face-on galaxies

    Seigar, Marc S.; Davis, Benjamin L.; Berrier, Joel; Kennefick, Daniel

    2014-01-01

    We investigate the use of spiral arm pitch angles as a probe of disk galaxy mass profiles. We confirm our previous result that spiral arm pitch angles (P) are well correlated with the rate of shear (S) in disk galaxy rotation curves. We use this correlation to argue that imaging data alone can provide a powerful probe of galactic mass distributions out to large look-back times. We then use a sample of 13 galaxies, with Spitzer 3.6 μm imaging data and observed Hα rotation curves, to demonstrate how an inferred shear rate coupled with a bulge-disk decomposition model and a Tully-Fisher-derived velocity normalization can be used to place constraints on a galaxy's baryon fraction and dark matter halo profile. Finally, we show that there appears to be a trend (albeit a weak correlation) between spiral arm pitch angle and halo concentration. We discuss implications for the suggested link between supermassive black hole (SMBH) mass and dark halo concentration, using pitch angle as a proxy for SMBH mass.

  9. Quantitative detection of mass concentration of sand-dust storms via wind-profiling radar and analysis of Z- M relationship

    Wang, Minzhong; Ming, Hu; Ruan, Zheng; Gao, Lianhui; Yang, Di

    2018-02-01

    With the aim to achieve quantitative monitoring of sand-dust storms in real time, wind-profiling radar is applied to monitor and study the process of four sand-dust storms in the Tazhong area of the Taklimakan Desert. Through evaluation and analysis of the spatial-temporal distribution of reflectivity factor, it is found that reflectivity factor ranges from 2 to 18 dBz under sand-dust storm weather. Using echo power spectrum of radar vertical beams, sand-dust particle spectrum and sand-dust mass concentration at the altitude of 600 ˜ 1500 m are retrieved. This study shows that sand-dust mass concentration reaches 700 μg/m3 under blowing sand weather, 2000 μg/m3 under sand-dust storm weather, and 400 μg/m3 under floating dust weather. The following equations are established to represent the relationship between the reflectivity factor and sand-dust mass concentration: Z = 20713.5 M 0.995 under floating dust weather, Z = 22988.3 M 1.006 under blowing sand weather, and Z = 24584.2 M 1.013 under sand-dust storm weather. The retrieval results from this paper are almost consistent with previous monitoring results achieved by former researchers; thus, it is implied that wind-profiling radar can be used as a new reference device to quantitatively monitor sand-dust storms.

  10. Separating rhizosphere respiration from total soil respiration in two larch plantations in northeastern China.

    Jiang, Lifen; Shi, Fuchen; Li, Bo; Luo, Yiqi; Chen, Jiquan; Chen, Jiakuan

    2005-09-01

    The potential capacity of soil to sequester carbon in response to global warming is strongly regulated by the ratio of rhizosphere respiration to respiration by soil microbial decomposers, because of their different temperature sensitivities. To quantify relative contributions of rhizosphere respiration to total soil respiration as influenced by forest stand development, we conducted a trenching study in two larch (Larix gmelini (Rupr.) Rupr.) plantations, aged 17 and 31 years, in northeastern China. Four plots in each plantation were randomly selected and trenched in early May 2001. Soil surface CO2 effluxes both inside and outside the plots were measured from May 2001 to August 2002. Soil respiration (i.e., the CO2 effluxes outside the trenched plots) varied similarly in the two plantations from 0.8 micromol m(-2) s(-1) in winter to 6.0 micromol m(-2) s(-1) in summer. Rhizosphere respiration (i.e., CO2 efflux outside the trenched plots minus that inside the plots) varied from 0.2 to 2.0 micromol m(-2) s(-1) in the old forest and from 0.3 to 4.0 micromol m(-2) s(-1) in the young forest over the seasons. Rhizosphere respiration, on average, accounted for 25% of soil respiration in the old forest and 65% in the young forest. Rhizosphere and soil respiration were significantly correlated with soil temperature but not with soil water content. We conclude that the role forests play in regulating climate change may depend on their age.

  11. PM 2.5 mass concentrations in comparison with aerosol optical depths over the Arabian Sea and Indian Ocean during winter monsoon

    Ramachandran, S.

    An analysis of PM 2.5 mass concentrations and 0.5 μm aerosol optical depths (AODs) during the Northeast winter monsoon seasons of 1996-2000 is performed and intercompared. AODs are found to show diurnal variations over Coastal India (CI) (west coast) while they are relatively smooth over the Arabian Sea (AS) (5-20°N) and tropical Indian Ocean (TIO) (5°N-20°S). PM 2.5, PM 10 and total mass concentrations show less variations in a day over these oceanic regions. Columnar AODs are found to increase with an increase in the marine boundary layer aerosol concentrations over CI and AS while an opposite trend is seen over TIO. The yearly-mean AODs and mass concentrations are found to increase over CI and AS, over TIO the mass concentrations increased while the AODs decreased during 1996-2000. It is found from the 7-days air back trajectory analyses that at different altitudes air masses can originate from different source regions leading to changes in chemical, physical and optical characteristics of the aerosol between the surface and column. The differences in the surface and columnar measurements could also occur due to changes in the meteorological conditions, wind patterns, in addition to changes in production and subsequently the transport of aerosols. Least-squares fits to the above intercomparison resulted in intercepts of 0.24 and 0.22 over CI and AS indicating that the background AODs over these oceanic regions are higher. An examination of the daily-mean wind speeds and PM 2.5 mass concentrations yielded an index of wind dependence of 0.04 for AS and 0.07 for TIO. The background PM 2.5 mass concentrations are also found to be high at 36 and 25 μg m -3 over AS and TIO, respectively, indicating a stronger influence from the continent. Frequency distribution figures show that 28% of the PM 2.5 values over CI lie in the 60-80 μg m -3 range. Over AS the dominant mode of distribution is 40-60 μg m -3 with a peak value of 42%. Over TIO PM 2.5 values are found to

  12. 42 CFR 84.134 - Respirator containers; minimum requirements.

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.134... Respirators § 84.134 Respirator containers; minimum requirements. Supplied-air respirators shall be equipped with a substantial, durable container bearing markings which show the applicant's name, the type and...

  13. 42 CFR 84.197 - Respirator containers; minimum requirements.

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.197... Cartridge Respirators § 84.197 Respirator containers; minimum requirements. Respirators shall be equipped with a substantial, durable container bearing markings which show the applicant's name, the type and...

  14. 42 CFR 84.174 - Respirator containers; minimum requirements.

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.174... Air-Purifying Particulate Respirators § 84.174 Respirator containers; minimum requirements. (a) Except..., durable container bearing markings which show the applicant's name, the type of respirator it contains...

  15. Sensibility analysis of the effect of various key parameters on fission product concentration (Mass Number 133 to 138)

    Sola, A.

    1978-01-01

    An analytical sensitivity analysis has been made of the effect of various parameters on the evaluation of fission product concentration. Such parameters include cross-sections, decay constants, branching ratios, fission yields, flux and time. The formulae are applied to isotopes of the iodine, xenon, caesium and barium series. The agreement between analytically obtained data and that derived from a computer-evaluated model is good, suggesting that the analytical representation includes all the important parameters useful to the evaluation of the fission product concentrations

  16. Conformational Analysis of Proteins in Highly Concentrated Solutions by Dialysis-Coupled Hydrogen/Deuterium Exchange Mass Spectrometry

    Houde, Damian; Esmail Nazari, Zeinab; Bou-Assaf, George M

    2016-01-01

    When highly concentrated, an antibody solution can exhibit unusual behaviors, which can lead to unwanted properties, such as increased levels of protein aggregation and unusually high viscosity. Molecular modeling, along with many indirect biophysical measurements, has suggested that the cause fo...... in industry. Graphical Abstract ᅟ....

  17. SMG-1 kinase attenuates mitochondrial ROS production but not cell respiration deficits during hyperoxia.

    Resseguie, Emily A; Brookes, Paul S; O'Reilly, Michael A

    Supplemental oxygen (hyperoxia) used to treat individuals in respiratory distress causes cell injury by enhancing the production of toxic reactive oxygen species (ROS) and inhibiting mitochondrial respiration. The suppressor of morphogenesis of genitalia (SMG-1) kinase is activated during hyperoxia and promotes cell survival by phosphorylating the tumor suppressor p53 on serine 15. Here, we investigate whether SMG-1 and p53 blunt this vicious cycle of progressive ROS production and decline in mitochondrial respiration seen during hyperoxia. Human lung adenocarcinoma A549 and H1299 or colon carcinoma HCT116 cells were depleted of SMG-1, UPF-1, or p53 using RNA interference, and then exposed to room air (21% oxygen) or hyperoxia (95% oxygen). Immunoblotting was used to evaluate protein expression; a Seahorse Bioanalyzer was used to assess cellular respiration; and flow cytometry was used to evaluate fluorescence intensity of cells stained with mitochondrial or redox sensitive dyes. Hyperoxia increased mitochondrial and cytoplasmic ROS and suppressed mitochondrial respiration without changing mitochondrial mass or membrane potential. Depletion of SMG-1 or its cofactor, UPF1, significantly enhanced hyperoxia-induced mitochondrial but not cytosolic ROS abundance. They did not affect mitochondrial mass, membrane potential, or hyperoxia-induced deficits in mitochondrial respiration. Genetic depletion of p53 in A549 cells and ablation of the p53 gene in H1299 or HCT116 cells revealed that SMG-1 influences mitochondrial ROS through activation of p53. Our findings show that hyperoxia does not promote a vicious cycle of progressive mitochondrial ROS and dysfunction because SMG-1-p53 signaling attenuates production of mitochondrial ROS without preserving respiration. This suggests antioxidant therapies that blunt ROS production during hyperoxia may not suffice to restore cellular respiration.

  18. Comparison of Spheroidal Carbonaceous Particle Data with Modelled Atmospheric Black Carbon Concentration and Deposition and Air Mass Sources in Northern Europe, 1850–2010

    Meri Ruppel

    2013-01-01

    Full Text Available Spheroidal carbonaceous particles (SCP are a well-defined fraction of black carbon (BC, produced only by the incomplete combustion of fossil fuels such as coal and oil. Their past concentrations have been studied using environmental archives, but, additionally, historical trends of BC concentration and deposition can be estimated by modelling. These models are based on BC emission inventories, but actual measurements of BC concentration and deposition play an essential role in their evaluation and validation. We use the chemistry transport model OsloCTM2 to model historical time series of BC concentration and deposition from energy and industrial sources and compare these to sedimentary measurements of SCPs obtained from lake sediments in Northern Europe from 1850 to 2010. To determine the origin of SCPs we generated back trajectories of air masses to the study sites. Generally, trends of SCP deposition and modelled results agree reasonably well, showing rapidly increasing values from 1950, to a peak in 1980, and a decrease towards the present. Empirical SCP data show differences in deposition magnitude between the sites that are not captured by the model but which may be explained by different air mass transport patterns. The results highlight the need for numerous observational records to reliably validate model results.

  19. Evaluation of Glass Density to Support the Estimation of Fissile Mass Loadings from Iron Concentrations in SB6 Glasses

    Edwards, T.; Peeler, D.

    2010-12-15

    The Department of Energy - Savannah River (DOE-SR) previously provided direction to Savannah River Remediation (SRR) to maintain fissile concentration in glass below 897 g/m{sup 3}. In support of the guidance, the Savannah River National Laboratory (SRNL) provided a technical basis and a supporting Microsoft{reg_sign} Excel{reg_sign} spreadsheet for the evaluation of fissile loading in Sludge Batch 5 glass based on the Fe concentration in glass as determined by the measurements from the Slurry Mix Evaporator (SME) acceptability analysis. SRR has since requested that SRNL provide the necessary information to allow SRR to update the Excel spreadsheet so that it may be used to maintain fissile concentration in glass below 897 g/m{sup 3} during the processing of Sludge Batch 6 (SB6). One of the primary inputs into the fissile loading spreadsheet includes a bounding density for SB6-based glasses. Based on the measured density data of select SB6 variability study glasses, SRNL recommends that SRR utilize the 99/99 Upper Tolerance Limit (UTL) density value at 38% WL (2.823 g/cm{sup 3}) as a bounding density for SB6 glasses to assess the fissile concentration in this glass system. That is, the 2.823 g/cm{sup 3} is recommended as a key (and fixed) input into the fissile concentration spreadsheet for SB6 processing. It should be noted that no changes are needed to the underlying structure of the Excel based spreadsheet to support fissile assessments for SB6. However, SRR should update the other key inputs to the spreadsheet that are based on fissile and Fe concentrations reported from the SB6 Waste Acceptance Product Specification (WAPS) sample. The purpose of this technical report is to present the density measurements that were determined for the SB6 variability study glasses and to conduct a statistical evaluation of these measurements to provide a bounding density value that may be used as input to the Excel{reg_sign} spreadsheet to be employed by SRR to maintain the

  20. Mass concentration, optical depth and carbon composition of particulate matter in the major southern West African cities of Cotonou (Benin) and Abidjan (Côte d'Ivoire)

    Djossou, Julien; Léon, Jean-François; Barthélemy Akpo, Aristide; Liousse, Cathy; Yoboué, Véronique; Bedou, Mouhamadou; Bodjrenou, Marleine; Chiron, Christelle; Galy-Lacaux, Corinne; Gardrat, Eric; Abbey, Marcellin; Keita, Sékou; Bahino, Julien; Touré N'Datchoh, Evelyne; Ossohou, Money; Awanou, Cossi Norbert

    2018-05-01

    Air quality degradation is a major issue in the large conurbations on the shore of the Gulf of Guinea. We present for the first time PM2.5 time series collected in Cotonou, Benin, and Abidjan, Côte d'Ivoire, from February 2015 to March 2017. Measurements were performed in the vicinity of major combustion aerosol sources: Cotonou/traffic (CT), Abidjan/traffic (AT), Abidjan/landfill (AL) and Abidjan/domestic fires (ADF). We report the weekly PM2.5 mass and carbonaceous content as elemental (EC) and organic (OC) carbon concentrations. We also measure the aerosol optical depth (AOD) and the Ångström exponent in both cities. The average PM2.5 mass concentrations were 32 ± 32, 32 ± 24 and 28 ± 19 µg m-3 at traffic sites CT and AT and landfill site AL, respectively. The domestic fire site shows a concentration of 145 ± 69 µg m-3 due to the contribution of smoking and roasting activities. The highest OC and EC concentrations were also measured at ADF at 71 ± 29 and 15 ± 9 µg m-3, respectively, while the other sites present OC concentration between 8 and 12 µg m-3 and EC concentrations between 2 and 7 µg m-3. The OC / EC ratio is 4.3 at CT and 2.0 at AT. This difference highlights the influence of two-wheel vehicles using gasoline in Cotonou compared to that of four-wheel vehicles using diesel fuel in Abidjan. AOD was rather similar in both cities, with a mean value of 0.58 in Cotonou and of 0.68 in Abidjan. The seasonal cycle is dominated by the large increase in surface mass concentration and AOD during the long dry season (December-February) as expected due to mineral dust advection and biomass burning activities. The lowest concentrations are observed during the short dry season (August-September) due to an increase in surface wind speed leading to a better ventilation. On the other hand, the high PM2.5 / AOD ratio in the short wet season (October-November) indicates the stagnation of local pollution.

  1. Mass concentration, optical depth and carbon composition of particulate matter in the major southern West African cities of Cotonou (Benin and Abidjan (Côte d'Ivoire

    J. Djossou

    2018-05-01

    Full Text Available Air quality degradation is a major issue in the large conurbations on the shore of the Gulf of Guinea. We present for the first time PM2.5 time series collected in Cotonou, Benin, and Abidjan, Côte d'Ivoire, from February 2015 to March 2017. Measurements were performed in the vicinity of major combustion aerosol sources: Cotonou/traffic (CT, Abidjan/traffic (AT, Abidjan/landfill (AL and Abidjan/domestic fires (ADF. We report the weekly PM2.5 mass and carbonaceous content as elemental (EC and organic (OC carbon concentrations. We also measure the aerosol optical depth (AOD and the Ångström exponent in both cities. The average PM2.5 mass concentrations were 32 ± 32, 32 ± 24 and 28 ± 19 µg m−3 at traffic sites CT and AT and landfill site AL, respectively. The domestic fire site shows a concentration of 145 ± 69 µg m−3 due to the contribution of smoking and roasting activities. The highest OC and EC concentrations were also measured at ADF at 71 ± 29 and 15 ± 9 µg m−3, respectively, while the other sites present OC concentration between 8 and 12 µg m−3 and EC concentrations between 2 and 7 µg m−3. The OC ∕ EC ratio is 4.3 at CT and 2.0 at AT. This difference highlights the influence of two-wheel vehicles using gasoline in Cotonou compared to that of four-wheel vehicles using diesel fuel in Abidjan. AOD was rather similar in both cities, with a mean value of 0.58 in Cotonou and of 0.68 in Abidjan. The seasonal cycle is dominated by the large increase in surface mass concentration and AOD during the long dry season (December–February as expected due to mineral dust advection and biomass burning activities. The lowest concentrations are observed during the short dry season (August–September due to an increase in surface wind speed leading to a better ventilation. On the other hand, the high PM2.5 ∕ AOD ratio in the short wet season (October–November indicates the

  2. The real limits to marine life: a further critique of the Respiration Index

    Seibel, B. A.; Childress, J. J.

    2013-05-01

    The recently proposed "Respiration Index" (RI = log PO2/PCO2) suggests that aerobic metabolism is limited by the ratio of reactants (oxygen) to products (carbon dioxide) according to the thermodynamics of cellular respiration. Here, we demonstrate further that, because of the large standard free energy change for organic carbon oxidation (ΔG° = -686 kcal mol-1), carbon dioxide can never reach concentrations that would limit the thermodynamics of this reaction. A PCO2 to PO2 ratio of 10503 would be required to reach equilibrium (equilibrium constant, Keq = 10503), where ΔG = 0. Thus, a Respiration Index of -503 would be the real thermodynamic limit to aerobic life. Such a Respiration Index is never reached, either in the cell or in the environment. Moreover, cellular respiration and oxygen provision are kinetically controlled such that, within limits, environmental oxygen and CO2 concentrations have little to do with intracellular concentrations. The RI is fundamentally different from the aragonite saturation state, a thermodynamic index used to quantify the potential effect of CO2 on calcification rates, because of its failure to incorporate the equilibrium constant of the reaction. Not only is the RI invalid, but its use leads to incorrect and misleading predictions of the threat of changing oxygen and carbon dioxide to marine life. We provide a physiological framework that identifies oxygen thresholds and allows for synergistic effects of ocean acidification and global warming.

  3. The real limits to marine life: a further critique of the Respiration Index

    B. A. Seibel

    2013-05-01

    Full Text Available The recently proposed "Respiration Index" (RI = log PO2/PCO2 suggests that aerobic metabolism is limited by the ratio of reactants (oxygen to products (carbon dioxide according to the thermodynamics of cellular respiration. Here, we demonstrate further that, because of the large standard free energy change for organic carbon oxidation (ΔG° = −686 kcal mol−1, carbon dioxide can never reach concentrations that would limit the thermodynamics of this reaction. A PCO2 to PO2 ratio of 10503 would be required to reach equilibrium (equilibrium constant, Keq = 10503, where ΔG = 0. Thus, a Respiration Index of −503 would be the real thermodynamic limit to aerobic life. Such a Respiration Index is never reached, either in the cell or in the environment. Moreover, cellular respiration and oxygen provision are kinetically controlled such that, within limits, environmental oxygen and CO2 concentrations have little to do with intracellular concentrations. The RI is fundamentally different from the aragonite saturation state, a thermodynamic index used to quantify the potential effect of CO2 on calcification rates, because of its failure to incorporate the equilibrium constant of the reaction. Not only is the RI invalid, but its use leads to incorrect and misleading predictions of the threat of changing oxygen and carbon dioxide to marine life. We provide a physiological framework that identifies oxygen thresholds and allows for synergistic effects of ocean acidification and global warming.

  4. Pinus sylvestris switches respiration substrates under shading but not during drought

    Hartmann, Henrik; Fischer, Sarah; Hanf, Stefan; Frosch, Torsten; Poppp, Jürgen; Trumbore, Susan

    2015-04-01

    Reduced carbon assimilation during prolonged drought forces trees to rely on stored carbon to maintain vital processes like respiration. It has been shown, however, that the use of carbohydrates, a major carbon storage pool and main respiratory substrate in plants, strongly declines with deceasing plant hydration. Yet, no empirical evidence has been produced to what degree other carbon storage compounds like lipids and proteins may fuel respiration during drought. We exposed young scots pine trees to carbon limitation using either drought or shading and assessed respiratory substrate use by monitoring the respiratory quotient, δ13C of respired CO2and concentrations of the major storage compounds, i.e. carbohydrates (COH), lipids and amino acids. Generally, respiration was dominated by the most abundant substrate. Only shaded trees shifted from carbohydrate-dominated to lipid-dominated respiration and showed progressive carbohydrate depletion. In drought trees respiration was strongly reduced and fueled with carbohydrates from also strongly reduced carbon assimilation. Initial COH content was maintained during drought probably due to reduced COH mobilization and use and the maintained COH content may have prevented lipid catabolism via sugar signaling. Our results suggest that respiratory substrates other than carbohydrates are used under carbohydrate limitation but not during drought. Thus, respiratory substrate change cannot provide an efficient means to counterbalance carbon limitation under natural drought.

  5. The associations between metals/metalloids concentrations in blood plasma of Hong Kong residents and their seafood diet, smoking habit, body mass index and age.

    Qin, Yan Yan; Leung, Clement Kai Man; Lin, Che Kit; Wong, Ming Hung

    2015-09-01

    The concentrations of metals/metalloids in blood plasma collected from 111 healthy residents (51 female, 60 male) in Hong Kong (obtained from the Hong Kong Red Cross Blood Transfusion Service, from March to April 2008) were quantified by means of a double-focusing sector field inductively coupled plasma optical emission spectrometer (ICP-OES). Results showed that concentrations of these toxic metals such as Hg, Cd, and Pb in Hong Kong residents were not serious when compared with other countries. Males accumulated significantly higher (p diet habit, body mass index (BMI), and age. More intensive studies involving more samples are needed before a more definite conclusion can be drawn, especially on the causal relationships between concentrations of metals/metalloids with dietary preference and lifestyle of the general public.

  6. An intercomparison experiment on isotope dilution thermal ionisation mass spectrometry using plutonium-239 spike for the determination of plutonium concentration in dissolver solution of irradiated fuel

    Aggarwal, S.K.; Shah, P.M.; Saxena, M.K.; Jain, H.C.; Gurba, P.B.; Babbar, R.K.; Udagatti, S.V.; Moorthy, A.D.; Singh, R.K.; Bajpai, D.D.

    1996-01-01

    Determination of plutonium concentration in the dissolver solution of irradiated fuel is one of the key measurements in the nuclear fuel cycle. This report presents the results of an intercomparison experiment performed between Fuel Chemistry Division (FCD) at BARC and PREFRE, Tarapur for determining plutonium concentration in dissolver solution of irradiated fuel using 239 Pu spike in isotope dilution thermal ionisation mass spectrometry (ID-TIMS). The 239 Pu spike method was previously established at FCD as viable alternative to the imported enriched 242 Pu or 244 Pu; the spike used internationally for plutonium concentration determination by IDMS in dissolver solution of irradiated fuel. Precision and accuracy achievable for determining plutonium concentration are compared under the laboratory and the plant conditions using 239 Pu spike in IDMS. For this purpose, two different dissolver solutions with 240 Pu/ 239 Pu atom ratios of about 0.3 and 0.07 corresponding, respectively, to high and low burn-up fuels, were used. The results of the intercomparison experiment demonstrate that there is no difference in the precision values obtained under the laboratory and the plant conditions; with mean precision values of better than 0.2%. Further, the plutonium concentration values determined by the two laboratories agreed within 0.3%. This exercise, therefore, demonstrates that ID-TIMS method using 239 Pu spike can be used for determining plutonium concentration in dissolver solution of irradiated fuel, under the plant conditions. 7 refs., 8 tabs

  7. Acclimation of fine root respiration to soil warming involves starch deposition in very fine and fine roots: a case study in Fagus sylvatica saplings.

    Di Iorio, Antonino; Giacomuzzi, Valentino; Chiatante, Donato

    2016-03-01

    Root activities in terms of respiration and non-structural carbohydrates (NSC) storage and mobilization have been suggested as major physiological roles in fine root lifespan. As more frequent heat waves and drought periods within the next decades are expected, to what extent does thermal acclimation in fine roots represent a mechanism to cope with such upcoming climatic conditions? In this study, the possible changes in very fine (diameter respiration rate and NSC [soluble sugars (SS) and starch] concentrations, were investigated on 2-year-old Fagus sylvatica saplings subjected to a simulated long-lasting heat wave event and to co-occurring soil drying. For both very fine and fine roots, soil temperature (ST) resulted inversely correlated with specific root length, respiration rates and SSs concentration, but directly correlated with root mass, root tissue density and starch concentration. In particular, starch concentration increased under 28 °C for successively decreasing under 21 °C ST. These findings showed that thermal acclimation in very fine and fine roots due to 24 days exposure to high ST (∼ 28 °C), induced starch accumulation. Such 'carbon-savings strategy' should bear the maintenance costs associated to the recovery process in case of restored favorable environmental conditions, such as those occurring at the end of a heat wave event. Drought condition seems to affect the fine root vitality much more under moderate than high temperature condition, making the temporary exposure to high ST less threatening to root vitality than expected. © 2015 Scandinavian Plant Physiology Society.

  8. Soil Respiration And Respiration Partitioning In An Oak-Savannah With A History Of Fertilization

    Morris, K. A.; Nair, R.; Schrumpf, M.; Migliavacca, M.

    2017-12-01

    Soil respiration is a combination of autotrophic and heterotrophic components. These components have different controls and structurally complex ecosystems such as oak-savannahs offer an opportunity to study strongly contrasting conditions (ie., soil from under trees versus open areas) in an environment with similar soil mineralogy and climatic patterns. To measure respiration coming from plant roots, fungal hyphae, and free-living microbes we established stations of soil cores comprised of three selectively permeable meshes under tree canopies and in open grassy areas of a Holm Oak (Quercus ilex) savannah in Extremadura, Spain. Large plots of this ecosystem had previously been fertilized as part of a stoichiometeric imbalance study (in 2015). Stations were installed in Dec. 2016 within four plots; control, N added, P added, and N+P added. Respiration from cores was measured in campaigns at key phenological stages with a portable Li-Cor 8100A unit. Six months after installation > 50% of soil respiration was attributable to free-living microbes. There is a persistent effect of the prior fertilization, resulting in increased soil respiration in open areas regardless of fertilizer type, while respiration from under tree canopies had a varied response. Soil under tree canopies showed distinct sensitivity to stoichiometric imbalance, meaning that addition of N or P alone either did not change respiration or decreased it slightly, while N+P stimulated respiration. We determined that respiration from free-living microbes is a major component of soil respiration even in the most active plant growing season. However, because of the lag between the time of fertilization and the time of measurement, it not possible to say whether treatment responses are due solely to nutrient status of the soil or whether changes in plant biomass and species composition also play a role. Additional work planned at the site will shed light on this uncertainty as well as the contribution of

  9. Accurate determination of 129I, 41Ca and 10Be long-lived radionuclides concentrations in spent resins from the nuclear industry by accelerator mass spectrometry

    Nottoli-Lepage, E.

    2013-01-01

    Radiological characterization of nuclear waste is essential for the management of storage sites. More particularly, determining the concentration of Long-Lived Radionuclides (LLRN) is fundamental for their long term management. This study focuses on the determination of three LLRN concentrations, i.e. 129 I (T 1/2 = 15.7*10 6 a), 41 Ca (T 1/2 = 9.94*10 4 a) and 10 Be (T 1/2 = 1.387*10 6 a), in ion exchange resins used for primary fluid purification in Pressurized Water Reactors (PWR). To benefit from the Accelerator Mass Spectrometry (AMS) technique allowing to measure extremely low levels of nuclide concentrations, analytical procedures including: 1) sample dissolution; 2) selective and quantitative extraction of the analyte; and, 3) analyte conditioning for AMS measurements, were developed. Applied on spent resin samples collected at a 900 MW PWR, the procedures developed for each studied LLRN allowed their quantitative recovery and their selective extraction from β-γ emitters and isobars. The concentration measurements of the LLRN of interest were then performed on the Accelerator Mass Spectrometry national facility ASTER housed by the Centre Europeen de Recherche et d'Enseignement des Geosciences de l'Environnement (CEREGE, Aix-en-Provence). 129 I, 41 Ca and 10 Be concentrations in spent resins were measured to be about 10 ng/g, 20 pg/g and 4 ng/g of dry resin, respectively. Considering 129 I and 41 Ca, the measured concentrations agree with those assessed from scaling factors established relatively to easily measured gamma emitters ( 137 Cs and 60 Co). For 10 Be, the presented results are significantly different from expected values but are in agreement with previous ICP-MS results. (author) [fr

  10. [Research progress on photosynthesis regulating and controlling soil respiration].

    Jing, Yan-Li; Guan, De-Xin; Wu, Jia-Bing; Wang, An-Zhi; Yuan, Feng-Hui

    2013-01-01

    To understand the mechanisms of soil respiration and accurately estimate its magnitude are the crucial basis of evaluating global carbon balance. However, the previously built soil respiration forecast models usually neglect the physiological processes that photosynthesis supplies substrates for rhizospheric respiration, leading to the defect in evaluating the mechanisms of soil respiration. This paper summarized the research progress on the mechanisms of photosynthetic regulation and control of soil respiration, introduced the related main research methods, and discussed the existing problems and research hotspots.

  11. Plasma osmolyte concentrations and rectal gland mass of bull sharks Carcharhinus leucas, captured along a salinity gradient.

    Pillans, Richard D; Franklin, Craig E

    2004-07-01

    Bull sharks (Carcharhinus leucas) were captured across a salinity gradient from freshwater (FW) to seawater (SW). Across all salinities, C. leucas were hyperosmotic to the environment. Plasma osmolarity in FW-captured animals (642 +/- 7 mosM) was significantly reduced compared to SW-captured animals (1067 +/- 21 mosM). In FW animals, sodium, chloride and urea were 208 +/- 3, 203 +/- 3 and 192 +/- 2 mmol l(-1), respectively. Plasma sodium, chloride and urea in SW-captured C. leucas were 289 +/- 3, 296 +/- 6 and 370 +/- 10 mmol l(-1), respectively. The increase in plasma osmolarity between FW and SW was not linear. Between FW (3 mosM) and 24 per thousand SW (676 mosM), plasma osmolarity increased by 22% or 0.92% per 1 per thousand rise in salinity. Between 24 per thousand and 33 per thousand, plasma osmolarity increased by 33% or 4.7% per 1 per thousand rise in salinity, largely due to a sharp increase in plasma urea between 28 per thousand and 33 per thousand. C. leucas moving between FW and SW appear to be faced with three major osmoregulatory challenges, these occur between 0-10 per thousand, 11-20 per thousand and 21-33 per thousand. A comparison between C. leucas captured in FW and estuarine environments (20-28 per thousand ) in the Brisbane River revealed no difference in the mass of rectal glands between these animals. However, a comparison of rectal gland mass between FW animals captured in the Brisbane River and Rio San Juan/Lake Nicaragua showed that animals in the latter system had a significantly smaller rectal gland mass at a given length than animals in the Brisbane River. The physiological challenges and mechanisms required for C. leucas moving between FW and SW, as well as the ecological implications of these data are discussed.

  12. Determination of low specific activity iodine-129 off-gas concentrations by GC separation and negative ionization mass spectrometry

    Fernandez, S.J.; Rankin, R.A.; McManus, G.J.; Nielsen, R.A.; Delmore, J.E.; Hohorst, F.A.; Murphy, L.P.

    1983-09-01

    This document is the final report of the laboratory development of a method for determining the specific activity of the /sup 129/I emitted from a nuclear fuel reprocessing plant. The technique includes cryogenic sample collection, chemical form separation, quantitation by gas chromatography, and specific activity measurement of each chemical species by negative ionization mass spectrometry. The major conclusions were that both organic and elemental iodine can be quantitatively collected without fractionation and that specific activity measurements as low as one atom of /sup 129/I per 10/sup 5/ atoms of /sup 127/I are possible.

  13. Determination of low specific activity iodine-129 off-gas concentrations by GC separation and negative ionization mass spectrometry

    Fernandez, S.J.; Rankin, R.A.; McManus, G.J.; Nielsen, R.A.; Delmore, J.E.; Hohorst, F.A.; Murphy, L.P.

    1983-09-01

    This document is the final report of the laboratory development of a method for determining the specific activity of the 129 I emitted from a nuclear fuel reprocessing plant. The technique includes cryogenic sample collection, chemical form separation, quantitation by gas chromatography, and specific activity measurement of each chemical species by negative ionization mass spectrometry. The major conclusions were that both organic and elemental iodine can be quantitatively collected without fractionation and that specific activity measurements as low as one atom of 129 I per 10 5 atoms of 127 I are possible

  14. Picomolar concentrations of morphine in human urine determined by dansyl derivatization and liquid chromatography-mass spectrometry.

    Lamshöft, Marc; Grobe, Nadja; Spiteller, Michael

    2011-04-15

    Morphine is present in varying amounts as an endogenous product in human urine. Derivatization of morphine contained in urine with dansyl chloride yields a known product, which can be quantified by liquid chromatography mass spectrometry with high selectivity and sensitivity. Urine samples of 51 healthy individuals were spiked with stable-isotope labeled morphine, hydrolyzed and subjected to solid phase extraction followed by derivatization of morphine with dansyl chloride. The dansyl derivatives of naturally occurring morphine and deuterated internal standard were then detected by liquid chromatography-triple quadrupole mass spectrometry. Using the [N-CD(3)]-labeled internal standard and solid-phase extraction, a limit of detection of 35 fmol/ml (10 pg/ml) and a limit of quantification of 87.5 fmol/ml (25 pg/ml) was determined for morphine in human urine. This new LC-MS/MS method allowed the detection of endogenous morphine in human urine of 51 volunteers with an average value of 156.4 fmol/ml (44.7 ng/ml). Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Internal respiration of Amazon tree stems greatly exceeds external CO2 efflux

    J. Q. Chambers

    2012-12-01

    Full Text Available Respiration in tree stems is an important component of forest carbon balance. The rate of CO2 efflux from the stem has often been assumed to be a measure of stem respiration. However, recent work in temperate forests has demonstrated that stem CO2 efflux can either overestimate or underestimate respiration rate because of emission or removal of CO2 by transport in xylem water. Here, we studied gas exchange from stems of tropical forest trees using a new approach to better understand respiration in an ecosystem that plays a key role in the global carbon cycle. Our main questions were (1 is internal CO2 transport important in tropical trees, and, if so, (2 does this transport result in net release of CO2 respired in the roots at the stem, or does it cause the opposite effect of net removal of stem-respired CO2? To answer these questions, we measured the ratio of stem CO2 efflux to O2 influx. This ratio, defined here as apparent respiratory quotient (ARQ, is expected to equal 1.0 if carbohydrates are the substrate for respiration, and the net transport of CO2 in the xylem water is negligible. Using a stem chamber approach to quantifying ARQ, we found values of 0.66 ± 0.18. These low ARQ values indicate that a large portion of respired CO2 (~ 35% is not emitted locally, and is probably transported upward in the stem. ARQ values of 0.21 ± 0.10 were found for the steady-state gas concentration within the stem, sampled by in-stem equilibration probes. These lower values may result from the proximity to the xylem water stream. In contrast, we found ARQ values of 1.00 ± 0.13 for soil respiration. Our results indicate the existence of a considerable internal flux of CO2 in the stems of tropical trees. If the transported CO2 is used in the canopy as a substrate for photosynthesis, it could account for up to 10% of the C fixed by the tree, and perhaps serve as a mechanism that buffers the response of the tree to changing CO2 levels. Our results also

  16. Diet induced thermogenesis measured over 24h in a respiration chamber: effect of diet composition.

    Westerterp, K.R.; Wilson, S.A.; Rolland, V.

    1999-01-01

    Department of Human Biology, Maastricht University, The Netherlands. OBJECTIVE: To study the effect of diet composition on diet-induced thermogenesis (DIT) over 24h in a respiration chamber. SUBJECTS: Eight healthy female volunteers (age 27 +/- 3 y; body mass index, BMI 23 +/- 3 kg/m2). DIETS: A

  17. Contribution of Chloroflexus respiration to oxygen cycling in a hypersaline microbial mat from Lake Chiprana, Spain

    Polerecky, Lubos; Bachar, Ami; Schoon, Raphaela

    2007-01-01

    In dense stratified systems such as microbial mats, photosynthesis and respiration are coupled due to a tight spatial overlap between oxygen-producing and -consuming microorganisms. We combined microsensors and a membrane inlet mass spectrometer with two independent light sources emitting in the ...

  18. Report on the Best Available Technology (BAT) for the treatment of the INEL Central Laundry and Respirator Facility (CFA-617)

    Miyasaki, D.H.; Heiser, D.L.

    1991-01-01

    The Central Laundry and Respirator Facility (CLRF) designated by the building number of CFA-617 has been addressed as a potential source of contamination to the Central Facilities Area (CFA) subsurface drainage field which also receives waste water from the current CFA Sewage Treatment Plant (STP). Currently, discharges from the CLRF have been below set guidelines, DCG. A new STP has been proposed for the CFA. Since the CLRF has been designated as a potential source of contamination, a Best Available Technology (BAT) assessment was requested to determine what action should be taken in respect to the aqueous discharges from the CLRF. The BAT assessment involved source definition, technology evaluation, BAT matrix development, BAT selection, and BAT documentation. The BAT for the Central laundry and Respirator Facility selected the treatment which would impact the CLRF and the new STP the least in all aspects considered and was the system of filtration and a lined pond for natural evaporation of the water. The system will provide an isolation of this waste stream from all other CFA waste water which will be treated at the new STP. Waste minimization possibilities exist within the laundry process and are considered. These minimization actions will reduce the amount of waste water being released, but will result in raising the contaminate's concentrations (the total mass will remain the same). The second option was the use of ion exchange to remove the contaminates and recycle the water back to the wash and rinse cycles in the laundry. 3 refs., 9 figs., 11 tabs

  19. Plant Respiration and Climate Change Effects

    Bruhn, D.

    2002-04-01

    Plant respiration is one of the key processes in terms of an understanding of plant growth and functioning in a future climate. Short- and long-term effects of temperature and CO 2 on plant respiration were investigated in a number of plant species. The experiments tested effects of either temperature and/or CO 2 from the level of individual respiratory enzymes, isolated mitochondria, whole-tissue, and up to the whole canopy level. The short-term effects of elevated atmospheric CO 2 on plant respiration appeared to be less than suggested so far in the literature. This was true both at the tissue level and for intact mitochondria. Respiratory enzymes can, however, be affected already at low CO 2 . These effects did not manifest itself at the tissue level, though, due to low degrees of control on the whole respiratory process exerted by the particular enzymes. Plant respiration on the other hand was affected by long-term growth at elevated atmospheric CO 2 . The findings of the reduced plant respiration at the leaf level were consistent with the literature and potential causes are discussed. Short-term effects of temperature on plant respiration were demonstrated to be dependent on the actual measurement temperature. Further, it is shown that mitochondrial leaf respiration in darkness and light differ substantially in the temperature sensitivity with the former being the far most sensitive. This has implications for modelling CO 2 exchange between vegetation and atmosphere as demonstrated here, since this has so far been neglected. Long-term effects of temperature resulted in respiratory acclimation in a number of species. Respiratory acclimation appeared not to occur to any one single type of growth temperature. The implications of this finding in combination with the timing of acclimation are discussed for modelling respiratory CO 2 release. (au)

  20. Plant Respiration and Climate Change Effects

    Bruhn, D

    2002-04-01

    Plant respiration is one of the key processes in terms of an understanding of plant growth and functioning in a future climate. Short- and long-term effects of temperature and CO{sub 2} on plant respiration were investigated in a number of plant species. The experiments tested effects of either temperature and/or CO{sub 2} from the level of individual respiratory enzymes, isolated mitochondria, whole-tissue, and up to the whole canopy level. The short-term effects of elevated atmospheric CO{sub 2} on plant respiration appeared to be less than suggested so far in the literature. This was true both at the tissue level and for intact mitochondria. Respiratory enzymes can, however, be affected already at low CO{sub 2}. These effects did not manifest itself at the tissue level, though, due to low degrees of control on the whole respiratory process exerted by the particular enzymes. Plant respiration on the other hand was affected by long-term growth at elevated atmospheric CO{sub 2}. The findings of the reduced plant respiration at the leaf level were consistent with the literature and potential causes are discussed. Short-term effects of temperature on plant respiration were demonstrated to be dependent on the actual measurement temperature. Further, it is shown that mitochondrial leaf respiration in darkness and light differ substantially in the temperature sensitivity with the former being the far most sensitive. This has implications for modelling CO{sub 2} exchange between vegetation and atmosphere as demonstrated here, since this has so far been neglected. Long-term effects of temperature resulted in respiratory acclimation in a number of species. Respiratory acclimation appeared not to occur to any one single type of growth temperature. The implications of this finding in combination with the timing of acclimation are discussed for modelling respiratory CO{sub 2} release. (au)

  1. Influence of air mass origins on optical properties and PM concentrations measured at a high mountain station located in the southwestern Mediterranean

    Castañer, R.; Nicolás, J. F.; Crespo, J.; Yubero, E.; Galindo, N.; Caballero, S.; Pastor, C.

    2017-11-01

    The influence of air mass origins on aerosol optical properties and particulate matter (PM) concentrations measured from January 2014 to December 2015 at a high mountain station in the southwestern Mediterranean was analyzed. Mean values of extensive aerosol optical properties (scattering, backscattering and absorption coefficients) and PM mass fractions: σsp (30.7 ± 1.1 Mm- 1), σbsp (3.9 ± 0.1 Mm- 1), σap (2.4 ± 0.1 Mm- 1), PM10 (13.1 ± 0.6 μg·m- 3) and PM1 (4.0 ± 0.1 μg·m- 3) were in the range of values reported in most studies carried out at high altitude locations. Nevertheless, a significant variation of these concentrations according to the air mass origin has been noticed. Transport from North Africa (NAF back-trajectories) and regional recirculations (REG) were the two air mass types in which the highest values of PM concentrations and optical properties were registered. Alternatively, the lowest values were recorded under Atlantic advections. Noticeable differences between NAF and REG categories were observed when intensive optical properties of aerosols were analyzed. During NAF scenarios the lowest value of SAE (0.91 ± 0.06) was obtained as well as the greatest AAE value (1.30 ± 0.02), with daily levels higher than 1.90. This result suggests that OC and hematite compounds were relevant in the absorption process during NAF events. However, during REG episodes the AAE mean value declined to 1.18 ± 0.01, since the highest mean concentration of BC was recorded under this category, and the SAE value was maximum (1.70 ± 0.05) due to the smaller size of PM. It has also been documented that during the study period a great number of REG back-trajectories occurred just after the transport of air masses from North Africa. In these situations, AAE and SAE values showed slight variations due to the persistence of mineral dust in the local atmosphere.

  2. Flood-controlled excess-air formation favors aerobic respiration and limits denitrification activity in riparian groundwater

    Simone ePeter

    2015-11-01

    Full Text Available The saturated riparian zones of rivers act as spatially and temporally variable biogeochemical reactors. This complicates the assessment of biogeochemical transport and transformation processes. During a flood event, excess-air formation, i.e. the inclusion and dissolution of air bubbles into groundwater, can introduce high amounts of dissolved O2 and thereby affect biogeochemical processes in groundwater. With the help of a field-installed membrane-inlet mass-spectrometer we resolved the effects of flood induced excess-air formationon organic carbon and nitrogen transformations in groundwater of different riparian zones of a restored section of the River Thur, Switzerland. The results show that the flood event triggered high aerobic respiration activity in the groundwater below a zone densely populated with willow plants. The flood introduced high concentrations of O2 (230 µmol L–1 to the groundwater through the formation of excess air and transported up to ~400 µmol L 1 organic carbon from the soil/root layer into groundwater during the movement of the water table. A rapid respiration process, quantified via the measurements of O2, CO2 and noble-gas concentrations, led to fast depletion of the introduced O2 and organic carbon and to high CO2 concentration (590 µmol L–1 in the groundwater shortly after the flood. The synchronous analysis of different nitrogen species allowed studying the importance of denitrification activity. The results indicate that in the willow zone excess-air formation inhibited denitrification through high O2 concentration input. Instead, the observed decrease in nitrate concentration (~50 µmol N L 1 may be related to fostered nitrate uptake by plants. In the other riparian zones closer to the river, no significant excess-air formation and corresponding respiration activity was observed. Overall, analyzing the dissolved gases in the groundwater significantly contributed to deciphering biogeochemical processes in

  3. Respirable quartz hazard associated with coal mine roof bolter dust

    Joy, G.J.; Beck, T.W.; Listak, J.M.

    2010-01-01

    Pneumoconiosis has been reported to be increasing among underground coal miners in the Southern Appalachian Region. The National Institute for Occupational Safety and Health conducted a study to examine the particle size distribution and quartz content of dust generated by the installation of roof bolts in mines. Forty-six bulk samples of roof bolting machine pre-cleaner cyclone dump dust and collector box dust were collected from 26 underground coal mines. Real-time and integrated airborne respirable dust concentrations were measured on 3 mining sections in 2 mines. The real-time airborne dust concentrations profiles were examined to identify any concentration changes that might be associated with pre-cleaner cyclone dust discharge events. The study showed that bolter dust is a potential inhalation hazard due to the fraction of dust less than 10 μm in size, and the quartz content of the dust. The pre-cleaner cyclone dust was significantly larger than the collector box dust, indicating that the pre-cleaner functioned properly in removing the larger dust size fraction from the airstream. However, the pre-cleaner dust still contained a substantial amount of respirable dust. It was concluded that in order to maintain the effectiveness of a roof bolter dust collector, periodic removal of dust is required. Appropriate work procedures and equipment are necessary to minimize exposure during this cleaning task. 13 refs., 3 tabs., 2 figs.

  4. Simultaneous determination of picogram per gram concentrations of Ba, Pb and Pb isotopes in Greenland ice by thermal ionisation mass spectrometry

    Jimi, Salah I.; Rosman, Kevin J.R.; Candelone, Jean-Pierre; Burn, Laurie J. [Curtin University of Technology, Department of Imaging and Applied Physics, Perth (Australia); Hong, Sungmin [Polar Research Centre, Korean Ocean Research and Development Institute, Ansan, P.O. Box 29, Seoul (Korea); Boutron, Claude F. [Domaine Universitaire, Laboratoire de Glaciologie et Geophysique du l' Environnement, 54 rue Moliere, Saint Martin d' Heres (France); UFR de Mecanique, Universite Joseph Fourier de Grenoble (Institut Universitaire de France), Domaine Universitaire, Grenoble (France)

    2008-01-15

    A technique has been developed to simultaneously measure picogram per gram concentrations of Ba and Pb by isotope dilution mass spectrometry, as well as Pb isotopic ratios in polar ice by thermal ionisation mass spectrometry. BaPO{sup +}{sub 2} and Pb{sup +} ions were employed for these determinations. A calibrated mixture of enriched {sup 205}Pb and {sup 137}Ba was added to the samples providing an accuracy of better than approximately 2% for Pb/Ba element ratio determinations. Interference by molecular ions in the Pb mass spectrum occurred only at {sup 204}Pb and {sup 205}Pb, but these contributions were negligible in terms of precisions expected on picogram-sized Pb samples. The technique is illustrated with measurements on Greenland firn, using a drill-core section that includes the Laki volcanic eruption of 1783-1784. The data show deviations from the element concentrations indicating volatile metal enrichments, but the Pb isotopic signature of the Laki lava could not be identified. (orig.)

  5. Size-resolved mass concentrations of iron oxide aerosols and size-resolved number concentrations of iron oxide aerosols collected from King Air aircraft in Yellow Sea and East China Sea from 2013-02-14 to 2013-03-10 (NCEI Accession 0162201)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains size-resolved mass concentrations of iron oxide aerosols and size-resolved number concentrations of iron oxide aerosols, measured using the...

  6. Mass concentration, composition and sources of fine and coarse particulate matter in Tijuana, Mexico, during Cal-Mex campaign

    Minguillón, María Cruz; Campos, Arturo Alberto; Cárdenas, Beatriz; Blanco, Salvador; Molina, Luisa T.; Querol, Xavier

    2014-05-01

    This work was carried out in the framework of the Cal-Mex project, which focuses on investigating the atmosphere along Mexico-California border region. Sampling was carried out at two sites located in Tijuana urban area: Parque Morelos and Metales y Derivados. PM2.5 and PM10 24 h samples were collected every three days from 17th May 2010 to 27th June 2010, and were used for gravimetric and chemical analyses (major and minor elements, inorganic ions, organic and elemental carbon) of PM. A subsequent Positive Matrix Factorization (PMF) analysis was performed. PM2.5 and PM10 average concentrations during Cal-Mex were relatively lower compared to usual annual averages. Trace elements concentrations recorded in the present study were lower than those recorded in Mexico City in 2006, with the exception of Pb at Metales y Derivados, attributed to the influence of a specific industrial source, which also includes As, Cd and Tl. Apart from this industrial source, both urban sites were found to be affected by similar sources with respect to bulk PM. Fine PM (PM2.5) was mainly apportioned by fueloil and biomass combustion and secondary aerosols, and road traffic. Coarse PM (PM2.5-10) was mainly apportioned by a mineral source (sum of road dust resuspension, construction emissions and natural soil) and fresh and aged sea salt. The road traffic was responsible for more than 60% of the fine elemental carbon and almost 40% of the fine organic matter.

  7. It's what's inside that counts: egg contaminant concentrations are influenced by estimates of egg density, egg volume, and fresh egg mass.

    Herzog, Mark P; Ackerman, Joshua T; Eagles-Smith, Collin A; Hartman, C Alex

    2016-05-01

    In egg contaminant studies, it is necessary to calculate egg contaminant concentrations on a fresh wet weight basis and this requires accurate estimates of egg density and egg volume. We show that the inclusion or exclusion of the eggshell can influence egg contaminant concentrations, and we provide estimates of egg density (both with and without the eggshell) and egg-shape coefficients (used to estimate egg volume from egg morphometrics) for American avocet (Recurvirostra americana), black-necked stilt (Himantopus mexicanus), and Forster's tern (Sterna forsteri). Egg densities (g/cm(3)) estimated for whole eggs (1.056 ± 0.003) were higher than egg densities estimated for egg contents (1.024 ± 0.001), and were 1.059 ± 0.001 and 1.025 ± 0.001 for avocets, 1.056 ± 0.001 and 1.023 ± 0.001 for stilts, and 1.053 ± 0.002 and 1.025 ± 0.002 for terns. The egg-shape coefficients for egg volume (K v ) and egg mass (K w ) also differed depending on whether the eggshell was included (K v  = 0.491 ± 0.001; K w  = 0.518 ± 0.001) or excluded (K v  = 0.493 ± 0.001; K w  = 0.505 ± 0.001), and varied among species. Although egg contaminant concentrations are rarely meant to include the eggshell, we show that the typical inclusion of the eggshell in egg density and egg volume estimates results in egg contaminant concentrations being underestimated by 6-13 %. Our results demonstrate that the inclusion of the eggshell significantly influences estimates of egg density, egg volume, and fresh egg mass, which leads to egg contaminant concentrations that are biased low. We suggest that egg contaminant concentrations be calculated on a fresh wet weight basis using only internal egg-content densities, volumes, and masses appropriate for the species. For the three waterbirds in our study, these corrected coefficients are 1.024 ± 0.001 for egg density, 0.493 ± 0.001 for K v , and 0.505 ± 0.001 for K w .

  8. Characterization of the respiration-induced yeast mitochondrial permeability transition pore.

    Bradshaw, Patrick C; Pfeiffer, Douglas R

    2013-12-01

    When isolated mitochondria from the yeast Saccharomyces cerevisiae oxidize respiratory substrates in the absence of phosphate and ADP, the yeast mitochondrial unselective channel, also called the yeast permeability transition pore (yPTP), opens in the inner membrane, dissipating the electrochemical gradient. ATP also induces yPTP opening. yPTP opening allows mannitol transport into isolated mitochondria of laboratory yeast strains, but mannitol is not readily permeable through the yPTP in an industrial yeast strain, Yeast Foam. The presence of oligomycin, an inhibitor of ATP synthase, allowed for respiration-induced mannitol permeability in mitochondria from this strain. Potassium (K+) had varied effects on the respiration-induced yPTP, depending on the concentration of the respiratory substrate added. At low respiratory substrate concentrations K+ inhibited respiration-induced yPTP opening, while at high substrate concentrations this effect diminished. However, at the high respiratory substrate concentrations, the presence of K+ partially prevented phosphate inhibition of yPTP opening. Phosphate was found to inhibit respiration-induced yPTP opening by binding a site on the matrix space side of the inner membrane in addition to its known inhibitory effect of donating protons to the matrix space to prevent the pH change necessary for yPTP opening. The respiration-induced yPTP was also inhibited by NAD, Mg2+, NH4 + or the oxyanion vanadate polymerized to decavanadate. The results demonstrate similar effectors of the respiration-induced yPTP as those previously described for the ATP-induced yPTP and reconcile previous strain-dependent differences in yPTP solute selectivity. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Inhibition of mitochondrial respiration by the anticancer agent 2-methoxyestradiol

    Hagen, Thilo; D'Amico, Gabriela; Quintero, Marisol; Palacios-Callender, Miriam; Hollis, Veronica; Lam, Francis; Moncada, Salvador

    2004-01-01

    2-Methoxyestradiol (2ME2), a naturally occurring metabolite of estradiol, is known to have antiproliferative, antiangiogenic, and proapoptotic activity. Mechanistically, 2ME2 has been shown to downregulate hypoxia-inducible factor 1α (HIF1α) and to induce apoptosis in tumour cells by generating reactive oxygen species (ROS). In this study we report that 2ME2 inhibits mitochondrial respiration in both intact cells and submitochondrial particles, and that this effect is due to inhibition of complex I of the mitochondrial electron transport chain (ETC). The prevention by 2ME2 of hypoxia-induced stabilisation of HIF1α in HEK293 cells was found not to be due to an effect on HIF1α synthesis but rather to an effect on protein degradation. This is in agreement with our recent observation using other inhibitors of mitochondrial respiration which bring about rapid degradation of HIF1α in hypoxia due to increased availability of oxygen and reactivation of prolyl hydroxylases. The concentrations of 2ME2 that inhibited complex I also induced the generation of ROS. 2ME2 did not, however, cause generation of ROS in 143B rho - cells, which lack a functional mitochondrial ETC. We conclude that inhibition of mitochondrial respiration explains, at least in part, the effect of 2ME2 on hypoxia-dependent HIF1α stabilisation and cellular ROS production. Since these actions of 2ME2 occur at higher concentrations than those known to inhibit cell proliferation, it remains to be established whether they contribute to its therapeutic effect

  10. Mass flows in N2 - Ar - O2 mixture for a temperature range of 80 K to 100 K in presence of concentration gradients

    Cristescu, I.; Peculea, M.; Serban, I.

    1992-01-01

    In separation processes of multicomponent mixtures by cryogenic distillation, out of mass transfer at liquid-vapor interface, an essential part is played by Fick diffusion of the two phases. In the present study we have developed a calculus of the generalized diffusion coefficients based on the Chapman-Cowling theory, and we applied it for the N 2 - Ar - O 2 mixture in vapor phase. After computing Fick's law of diffusion for a tri-component nonreactive mixture in which diffusion is occurring in x -direction only, under constant pressure, we have established the time variation of the N 2 , Ar, and O 2 concentrations, taking into account the initial distribution of concentrations and boundary conditions. (Author)

  11. Gastrocnemius mitochondrial respiration: are there any differences between men and women?

    Thompson, Jonathan R; Swanson, Stanley A; Casale, George P; Johanning, Jason M; Papoutsi, Evlampia; Koutakis, Panagiotis; Miserlis, Dimitrios; Zhu, Zhen; Pipinos, Iraklis I

    2013-11-01

    Work on human and mouse skeletal muscle by our group and others has demonstrated that aging and age-related degenerative diseases are associated with mitochondrial dysfunction, which may be more prevalent in males. There have been, however, no studies that specifically examine the influence of male or female sex on human skeletal muscle mitochondrial respiration. The purpose of this study was to compare mitochondrial respiration in the gastrocnemius of adult men and women. Gastrocnemius muscle was obtained from male (n = 19) and female (n = 11) human subjects with healthy lower-extremity musculoskeletal and arterial systems and normal ambulatory function. All patients were undergoing operations for the treatment of varicose veins in their legs. Mitochondrial respiration was determined with a Clark electrode in an oxygraph cell containing saponin-skinned muscle bundles. Complex I-, II-, III-, and IV-dependent respiration was measured individually and normalized to muscle weight, total protein content, and citrate synthase (CS, index of mitochondrial content). Male and female patients had no evidence of musculoskeletal or arterial disease and did not differ with regard to age, race, body mass index, or other clinical characteristics. Complex I-, II-, III-, and IV-dependent respiration normalized to muscle weight, total protein content, and CS did not statistically differ for males compared with females. Our study evaluates, for the first time, gastrocnemius mitochondrial respiration of adult men and women who have healthy musculoskeletal and arterial systems and normal ambulatory function. Our data demonstrate there are no differences in the respiration of gastrocnemius mitochondria between men and women. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Abnormal mitochondrial respiration in failed human myocardium.

    Sharov, V G; Todor, A V; Silverman, N; Goldstein, S; Sabbah, H N

    2000-12-01

    Chronic heart failure (HF) is associated with morphologic abnormalities of cardiac mitochondria including hyperplasia, reduced organelle size and compromised structural integrity. In this study, we examined whether functional abnormalities of mitochondrial respiration are also present in myocardium of patients with advanced HF. Mitochondrial respiration was examined using a Clark electrode in an oxygraph cell containing saponin-skinned muscle bundles obtained from myocardium of failed explanted human hearts due to ischemic (ICM, n=9) or idiopathic dilated (IDC, n=9) cardiomyopathy. Myocardial specimens from five normal donor hearts served as controls (CON). Basal respiratory rate, respiratory rate after addition of the substrates glutamate and malate (V(SUB)), state 3 respiration (after addition of ADP, V(ADP)) and respiration after the addition of atractyloside (V(AT)) were measured in scar-free muscle bundles obtained from the subendocardial (ENDO) and subepicardial (EPI) thirds of the left ventricular (LV) free wall, interventricular septum and right ventricular (RV) free wall. There were no differences in basal and substrate-supported respiration between CON and HF regardless of etiology. V(ADP)was significantly depressed both in ICM and IDC compared to CON in all the regions studied. The respiratory control ratio, V(ADP)/V(AT), was also significantly decreased in HF compared to CON. In both ICM and IDC, V(ADP)was significantly lower in ENDO compared to EPI. The results indicate that mitochondrial respiration is abnormal in the failing human heart. The findings support the concept of low myocardial energy production in HF via oxidative phosphorylation, an abnormality with a potentially impact on global cardiac performance. Copyright 2000 Academic Press.

  13. Mass concentration and elemental composition of indoor PM 2.5 and PM 10 in University rooms in Thessaloniki, northern Greece

    Gemenetzis, Panagiotis; Moussas, Panagiotis; Arditsoglou, Anastasia; Samara, Constantini

    The mass concentration and the elemental composition of PM 2.5 and PM 10 were measured in 40 rooms (mainly offices or mixed office-lab rooms, and photocopying places) of the Aristotle University of Thessaloniki, northern Greece. A total of 27 major, minor and trace elements were determined by ED-XRF analysis. The PM 2.5/PM 10 concentration ratios averaged 0.8±0.2, while the corresponding elemental ratios ranged between 0.4±0.2 and 0.9±0.2. The concentrations of PM 2.5 and PM 10 were significantly higher (by 70% and 50%, respectively) in the smokers' rooms compared to the non-smokers' places. The total elemental concentrations were also higher in the smokers' rooms (11.5 vs 8.2 μg m -3 for PM 2.5, and 10.3 vs 7.6 μg m -3 for PM 2.5-10). Fine particle concentrations (PM 2.5) were found to be quite proportional to smoking strength. On the contrary, the two environments exhibited similar coarse (PM 2.5-10) particle fractions not related to the number of cigarettes smoked. A slight decrease of particle concentrations with increasing the floor level was also observed, particularly for PM 2.5, suggesting that high-level floors are less impacted by near ground-level sources like traffic emissions. Finally, the removal efficiency of air purification systems was evaluated.

  14. Adhesion of the clay minerals montmorillonite, kaolinite, and attapulgite reduces respiration of Histoplasma capsulatum.

    Lavie, S; Stotzky, G

    1986-01-01

    The respiration of three phenotypes of Histoplasma capsulatum, the causal agent of histoplasmosis in humans, was markedly reduced by low concentrations of montmorillonite but was reduced less by even higher concentrations of kaolinite or attapulgite (palygorskite). The reduction in respiration followed a pattern that suggested saturation-type kinetics: an initial sharp reduction that occurred with low concentrations of clay (0.01 to 0.5% [wt/vol]), followed by a more gradual reduction with higher concentrations (1 to 8%). Increases in viscosity (which could impair the movement of O2) caused by the clays were not responsible for the reduction in respiration, and the clays did not interfere with the availability of nutrients. Scanning electron microscopy after extensive washing showed that the clay particles were tightly bound to the hyphae, suggesting that the clays reduced the rate of respiration of H. capsulatum by adhering to the mycelial surface and, thereby, interfered with the movement of nutrients, metabolites, and gases across the mycelial wall.

  15. Effect of mass concentration of composite phase change material CA-DE on HCFC-141b hydrate induction time and system stability

    Li, Juan; Sun, Zhigao; Liu, Chenggang; Zhu, Minggui

    2018-03-01

    HCFC-141b hydrate is a new type of environment-friendly cold storage medium which may be adopted to balance energy supply and demand, achieve peak load shifting and energy saving, wherein the hydrate induction time and system stability are key factors to promote and realize its application in industrial practice. Based on step cooling curve measurement, two kinds of aliphatic hydrocarbon organics, n-capric acid (CA) and lauryl alcohol (DE), were selected to form composite phase change material and to promote the generation of HCFC-141b hydrate. Five kinds of CA-DE mass concentration were chosen to compare the induction time and hydration system stability. In order to accelerate temperature reduction rate, the metal Cu with high heat conductivity performance was adopted to conduct out the heat generated during phase change. Instability index was introduced to appraise system stability. Experimental results show that phase change temperature and sub-cooling degree of CA-DE is 11.1°C and 3.0°C respectively, which means it is a preferable medium for HCFC-141b hydrate formation. For the experimental hydration systems, segmented emulsification is achieved by special titration manner to avoid rapid layering under static condition. Induction time can achieve up to 23.3min with the densest HCFC-141b hydrate and the lowest instability index, wherein CA-DE mass concentration is 3%.

  16. Determination of total concentration of chemically labeled metabolites as a means of metabolome sample normalization and sample loading optimization in mass spectrometry-based metabolomics.

    Wu, Yiman; Li, Liang

    2012-12-18

    For mass spectrometry (MS)-based metabolomics, it is important to use the same amount of starting materials from each sample to compare the metabolome changes in two or more comparative samples. Unfortunately, for biological samples, the total amount or concentration of metabolites is difficult to determine. In this work, we report a general approach of determining the total concentration of metabolites based on the use of chemical labeling to attach a UV absorbent to the metabolites to be analyzed, followed by rapid step-gradient liquid chromatography (LC) UV detection of the labeled metabolites. It is shown that quantification of the total labeled analytes in a biological sample facilitates the preparation of an appropriate amount of starting materials for MS analysis as well as the optimization of the sample loading amount to a mass spectrometer for achieving optimal detectability. As an example, dansylation chemistry was used to label the amine- and phenol-containing metabolites in human urine samples. LC-UV quantification of the labeled metabolites could be optimally performed at the detection wavelength of 338 nm. A calibration curve established from the analysis of a mixture of 17 labeled amino acid standards was found to have the same slope as that from the analysis of the labeled urinary metabolites, suggesting that the labeled amino acid standard calibration curve could be used to determine the total concentration of the labeled urinary metabolites. A workflow incorporating this LC-UV metabolite quantification strategy was then developed in which all individual urine samples were first labeled with (12)C-dansylation and the concentration of each sample was determined by LC-UV. The volumes of urine samples taken for producing the pooled urine standard were adjusted to ensure an equal amount of labeled urine metabolites from each sample was used for the pooling. The pooled urine standard was then labeled with (13)C-dansylation. Equal amounts of the (12)C

  17. Standard test method for determination of uranium or plutonium isotopic composition or concentration by the total evaporation method using a thermal ionization mass spectrometer

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This method describes the determination of the isotopic composition and/or the concentration of uranium and plutonium as nitrate solutions by the thermal ionization mass spectrometric (TIMS) total evaporation method. Purified uranium or plutonium nitrate solutions are loaded onto a degassed metal filament and placed in the mass spectrometer. Under computer control, ion currents are generated by heating of the filament(s). The ion beams are continually measured until the sample is exhausted. The measured ion currents are integrated over the course of the run, and normalized to a reference isotope ion current to yield isotopic ratios. 1.2 In principle, the total evaporation method should yield isotopic ratios that do not require mass bias correction. In practice, some samples may require this bias correction. When compared to the conventional TIMS method, the total evaporation method is approximately two times faster, improves precision from two to four fold, and utilizes smaller sample sizes. 1.3 The tot...

  18. Alterations in vitamin D metabolite, parathyroid hormone and fibroblast growth factor-23 concentrations in sclerostin-deficient mice permit the maintenance of a high bone mass.

    Ryan, Zachary C; Craig, Theodore A; McGee-Lawrence, Meghan; Westendorf, Jennifer J; Kumar, Rajiv

    2015-04-01

    Humans with mutations of the sclerostin (SOST) gene, and knockout animals in which the Sost gene has been experimentally deleted, exhibit an increase in bone mass. We review the mechanisms by which Sost knockout mice are able to accrete increased amounts of calcium and phosphorus required for the maintenance of a high bone mass. Recently published information from our laboratory, shows that bone mass is increased in Sost-deficient mice through an increase in osteoblast and a decrease in osteoclast activity, which is mediated by activation of β-catenin and an increase in prostacyclin synthesis in osteocytes and osteoblasts. The increases in calcium and phosphorus retention required for enhanced bone mineral accretion are brought about by changes in the vitamin D endocrine system, parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF-23). Thus, in Sost knockout mice, concentrations of serum 1,25-dihydroxyvitamin D (1,25(OH)2D) are increased and concentrations of FGF-23 are decreased thereby allowing a positive calcium and phosphorus balance. Additionally, in the absence of Sost expression, urinary calcium is decreased, either through a direct effect of sclerostin on renal calcium handling, or through its effect on the synthesis of 1,25(OH)2D. Adaptations in vitamin D, PTH and FGF-23 physiology occur in the absence of sclerostin expression and mediate increased calcium and phosphorus retention required for the increase in bone mineralization. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Estimation of fractional contribution of root respiration to a forest-floor CO2 flux using carbon isotopes

    Hachiya, Masashi; Moriizumi, Jun; Yamazawa, Hiromi

    2010-01-01

    Efflux of soil respired carbon dioxide(CO 2 ) is very important component for the global carbon cycle and dynamics of 14 C in environment, and to predict the global climate changes caused by increasing CO 2 concentrations in the atmosphere. There are two components that generate CO 2 in soil, soil organic matter decomposition and root respiration. Although the former is relatively well understood, the root-derived CO 2 efflux has not been evaluated sufficiently. The objective of our research is to estimate depth profile of the root respiration rate. Thus we developed a box model which calculates the depth profile. In this paper, we discussed about (1) the adequacy of calculated result by comparing it to the to observed soil respired CO 2 flux with trenching method and (2) sensitivity of the box model to uncertainty in the input data. The result showed that the depth profile of root respiration rate decreased with soil depth. This is attributed to the distribution of fine roots which dominate root respiration. The model results reasonable agreed with the measurement results and characteristics of root respiration. The output of the model was robust to the variation of the input data. (author)

  20. Adenylate control contributes to thermal acclimation of sugar maple fine-root respiration in experimentally warmed soil.

    Jarvi, Mickey P; Burton, Andrew J

    2018-03-01

    We investigated the occurrence of and mechanisms responsible for acclimation of fine-root respiration of mature sugar maple (Acer saccharum) after 3+ years of experimental soil warming (+4 to 5 °C) in a factorial combination with soil moisture addition. Potential mechanisms for thermal respiratory acclimation included changes in enzymatic capacity, as indicated by root N concentration; substrate limitation, assessed by examining nonstructural carbohydrates and effects of exogenous sugar additions; and adenylate control, examined as responses of root respiration to a respiratory uncoupling agent. Partial acclimation of fine-root respiration occurred in response to soil warming, causing specific root respiration to increase to a much lesser degree (14% to 26%) than would be expected for a 4 to 5 °C temperature increase (approximately 55%). Acclimation was greatest when ambient soil temperature was warmer or soil moisture availability was low. We found no evidence that enzyme or substrate limitation caused acclimation but did find evidence supporting adenylate control. The uncoupling agent caused a 1.4 times greater stimulation of respiration in roots from warmed soil. Sugar maple fine-root respiration in warmed soil was at least partially constrained by adenylate use, helping constrain respiration to that needed to support work being performed by the roots. © 2017 John Wiley & Sons Ltd.

  1. Concentrations and dissipation of difenoconazole and fluxapyroxad residues in apples and soil, determined by ultrahigh-performance liquid chromatography electrospray ionization tandem mass spectrometry.

    He, Min; Jia, Chunhong; Zhao, Ercheng; Chen, Li; Yu, Pingzhong; Jing, Junjie; Zheng, Yongquan

    2016-03-01

    A new combined difenoconazole and fluxapyroxad fungicide formulation, as an 11.7 % suspension concentrate (SC), has been introduced as part of a resistance management strategy. The dissipation of difenoconazole and fluxapyroxad applied to apples and the residues remaining in the apples were determined. The 11.7 % SC was sprayed onto apple trees and soil in Beijing, Shandong, and Anhui provinces, China, at an application rate of 118 g a.i. ha(-1), then the dissipation of difenoconazole and fluxapyroxad was monitored. The residual difenoconazole and fluxapyroxad concentrations were determined by ultrahigh-performance liquid chromatography tandem mass spectrometry. The difenoconazole half-lives in apples and soil were 6.2-9.5 and 21.0-27.7 days, respectively. The fluxapyroxad half-lives in apples and soil were 9.4-12.6 and 10.3-36.5 days, respectively. Difenoconazole and fluxapyroxad residues in apples and soil after the 11.7 % SC had been sprayed twice and three times, with 10 days between applications, at 78 and 118 g a.i. ha(-1) were measured. Representative apple and soil samples were collected after the last treatment, at preharvest intervals of 14, 21, and 28 days. The difenoconazole residue concentrations in apples and soil were 0.002-0.052 and 0.002-0.298 mg kg(-1), respectively. The fluxapyroxad residue concentrations in apples and soil were 0.002-0.093 and 0.008-1.219 mg kg(-1), respectively. The difenoconazole and fluxapyroxad residue concentrations in apples were lower than the maximum residue limits (0.5 and 0.8 mg kg(-1), respectively). An application rate of 78 g a.i. ha(-1) is therefore recommended to ensure that treated apples can be considered safe for humans to consume.

  2. Improved Technique for the Determination of Uranium Minor Isotopes Concentrations in Microparticles by Using Secondary Ion Mass-Spectrometer in Multicollection Mode

    Aleshin, M.; Elantyev, I.; Stebelkov, Y.

    2015-01-01

    Traditional method of the analysis implies simultaneous measuring of secondary ion currents of isotopes 234U + , 235U + , 238U + , ions with mass 236 amu (236U + and 235UH + ) and hydride ions 238UH + by using mass-spectrometer Cameca IMS1280 in multicollection mode. Calculating of uranium isotopic composition is performed using the results of 40 successive measurements of those currents (cycles). Duration of each measurement is 8 s. Small amounts of uranium minor isotopes are limitation for precise determination of their concentrations. To prevent the damage of the secondary ions detector the intensity of ion current should be no more than 5 x 10 5 s -1 . This limitation does not allow setting a higher primary ion current for the increasing of minor uranium isotopes ions emission because of the signal of ions 238U + gets too high. New technique is developed to improve the accuracy of determination of uranium minor isotopes concentrations. Process of measurement is divided on two steps. First step is a measurement of ion currents during 20 cycles by five detectors. The second step implies the elimination of ions 238U + hitting to the detector and 10 times increasing of primary ion current. The ratio 235U/238U is calculated from the first step results, so uncertainty of determination of this value is 1.4 times bigger than with duration of 40 cycles of the measurement. The ratios 234U/235U and 236U/235U are calculated during the second step. This technique allows to determine content of 234U and 236U with 3 and 5 times less uncertainties respectively, but with different degree of the sputtering particles. Moreover the duration of each cycle was set less (1 second) to use data more efficient. The technique accordingly with every second counting provides uncertainty of determination 236U concentration 4 times less than traditional method at the same degree of sputtering particles. (author)

  3. Estimating Canopy Dark Respiration for Crop Models

    Monje Mejia, Oscar Alberto

    2014-01-01

    Crop production is obtained from accurate estimates of daily carbon gain.Canopy gross photosynthesis (Pgross) can be estimated from biochemical models of photosynthesis using sun and shaded leaf portions and the amount of intercepted photosyntheticallyactive radiation (PAR).In turn, canopy daily net carbon gain can be estimated from canopy daily gross photosynthesis when canopy dark respiration (Rd) is known.

  4. LIMITATION OF SOIL RESPIRATION DURING DRY PERIOD

    Pavelka, Marian; Janouš, Dalibor; Acosta, Manuel

    2003-01-01

    Roč. 16, - (2003), s. 47-52. ISBN 80-7157-297-7 R&D Projects: GA MŠk LN00A141; GA AV ČR IBS6087005 Institutional research plan: CEZ:AV0Z6087904 Keywords : moisture * Norway spruce * precipitation * respiration * soil CO2 efflux Subject RIV: EH - Ecology, Behaviour

  5. Internal current generation in respiration chambers

    Saborowski, R.; Buchholz, F.

    1998-06-01

    A technical device generating a constant and directed current within a sealed respiration chamber is described. It does not involve any external pumps or tubing. This system is easy to handle, and improved the maintenance of rheotactic pelagic species like the Northern krill ( Meganyctiphanes norvegica, Crustacea) or small fishes ( Gasterosteus aculeatus) under experimental conditions.

  6. 42 CFR 84.1130 - Respirators; description.

    2010-10-01

    ...; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84...., dust clouds produced in mining, quarrying, and tunneling, and in dusts produced during industrial... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying...

  7. Development of conformal respirator monitoring technology

    Shonka, J.J.; Weismann, J.J.; Logan, R.J.

    1997-04-01

    This report summarizes the results of a Small Business Innovative Research Phase II project to develop a modular, surface conforming respirator monitor to improve upon the manual survey techniques presently used by the nuclear industry. Research was performed with plastic scintillator and gas proportional modules in an effort to find the most conducive geometry for a surface conformal, position sensitive monitor. The respirator monitor prototype developed is a computer controlled, position-sensitive detection system employing 56 modular proportional counters mounted in molds conforming to the inner and outer surfaces of a commonly used respirator (Scott Model 801450-40). The molds are housed in separate enclosures and hinged to create a open-quotes waffle-ironclose quotes effect so that the closed monitor will simultaneously survey both surfaces of the respirator. The proportional counter prototype was also designed to incorporate Shonka Research Associates previously developed charge-division electronics. This research provided valuable experience into pixellated position sensitive detection systems. The technology developed can be adapted to other monitoring applications where there is a need for deployment of many traditional radiation detectors

  8. Anaerobic respiration of Escherichia coli in the mouse intestine.

    Jones, Shari A; Gibson, Terri; Maltby, Rosalie C; Chowdhury, Fatema Z; Stewart, Valley; Cohen, Paul S; Conway, Tyrrell

    2011-10-01

    The intestine is inhabited by a large microbial community consisting primarily of anaerobes and, to a lesser extent, facultative anaerobes, such as Escherichia coli, which we have shown requires aerobic respiration to compete successfully in the mouse intestine (S. A. Jones et al., Infect. Immun. 75:4891-4899, 2007). If facultative anaerobes efficiently lower oxygen availability in the intestine, then their sustained growth must also depend on anaerobic metabolism. In support of this idea, mutants lacking nitrate reductase or fumarate reductase have extreme colonization defects. Here, we further explore the role of anaerobic respiration in colonization using the streptomycin-treated mouse model. We found that respiratory electron flow is primarily via the naphthoquinones, which pass electrons to cytochrome bd oxidase and the anaerobic terminal reductases. We found that E. coli uses nitrate and fumarate in the intestine, but not nitrite, dimethyl sulfoxide, or trimethylamine N-oxide. Competitive colonizations revealed that cytochrome bd oxidase is more advantageous than nitrate reductase or fumarate reductase. Strains lacking nitrate reductase outcompeted fumarate reductase mutants once the nitrate concentration in cecal mucus reached submillimolar levels, indicating that fumarate is the more important anaerobic electron acceptor in the intestine because nitrate is limiting. Since nitrate is highest in the absence of E. coli, we conclude that E. coli is the only bacterium in the streptomycin-treated mouse large intestine that respires nitrate. Lastly, we demonstrated that a mutant lacking the NarXL regulator (activator of the NarG system), but not a mutant lacking the NarP-NarQ regulator, has a colonization defect, consistent with the advantage provided by NarG. The emerging picture is one in which gene regulation is tuned to balance expression of the terminal reductases that E. coli uses to maximize its competitiveness and achieve the highest possible population in

  9. Exaggerated root respiration accounts for growth retardation in a starchless mutant of Arabidopsis thaliana.

    Brauner, Katrin; Hörmiller, Imke; Nägele, Thomas; Heyer, Arnd G

    2014-07-01

    The knock-out mutation of plastidial phosphoglucomutase (pgm) causes a starchless phenotype in Arabidopsis thaliana, and results in a severe growth reduction of plants cultivated under diurnal conditions. It has been speculated that high soluble sugar levels accumulating during the light phase in leaf mesophyll might cause a reduction of photosynthetic activity or that shortage of reduced carbon during the night is the reason for the slow biomass gain of pgm. Separate simultaneous measurements of leaf net photosynthesis and root respiration demonstrate that photosynthetic activity per unit fresh weight is not reduced in pgm, whereas root respiration is strongly elevated. Comparison with a mutant defective in the dominating vacuolar invertase (AtβFruct4) revealed that high sucrose concentration in the cytosol, but not in the vacuole, of leaf cells is responsible for elevated assimilate transport to the root. Increased sugar supply to the root, as observed in pgm mutants, forces substantial respiratory losses. Because root respiration accounts for 80% of total plant respiration under long-day conditions, this gives rise to retarded biomass formation. In contrast, reduced vacuolar invertase activity leads to reduced net photosynthesis in the shoot and lowered root respiration, and affords an increased root/shoot ratio. The results demonstrate that roots have very limited capacity for carbon storage but exert rigid control of supply for their maintenance metabolism. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  10. Sustained stimulation of soil respiration after 10 years of experimental warming

    Reth, S; Graf, W; Reichstein, M; Munch, J C

    2009-01-01

    A number of forest and grassland studies indicated that stimulation of the soil respiration by soil warming ceases after a couple of years (Luo et al 2001 Nature 413 622-5). Here we present results from a long-term soil warming lysimeter experiment in southern Germany showing sustained stimulation of soil respiration after 10 years. Moreover, both warmed and control treatments exhibited a similar temperature response of soil respiration, indicating that adaptation in terms of temperature sensitivity was absent. Carbon dioxide concentration measurements within the profiles are supporting these findings. The increased soil respiration occurred although vegetation productivity in the warmed treatment was not higher than in the control plots. These findings strongly contrast with current soil carbon modeling concepts, where carbon pools decay according to first-order kinetics, and thus a depletion of labile soil carbon pools leads to an apparent down-regulation of microbial respiration (Knorr et al 2005 Nature 433 298-301). Consequently, the potential for positive climate carbon cycle feedback may be larger than represented in current models of soil carbon turnover.

  11. Estimate of respiration rate and physicochemical changes of fresh-cut apples stored under different temperatures

    Cristiane Fagundes

    2013-03-01

    Full Text Available In this study, the influence of storage temperature and passive modified packaging (PMP on the respiration rate and physicochemical properties of fresh-cut Gala apples (Malus domestica B. was investigated. The samples were packed in flexible multilayer bags and stored at 2 °C, 5 °C, and 7 °C for eleven days. Respiration rate as a function of CO2 and O2 concentrations was determined using gas chromatography. The inhibition parameters were estimated using a mathematical model based on Michaelis-Menten equation. The following physicochemical properties were evaluated: total soluble solids, pH, titratable acidity, and reducing sugars. At 2 °C, the maximum respiration rate was observed after 150 hours. At 5 °C and 7 °C the maximum respiration rates were observed after 100 and 50 hours of storage, respectively. The inhibition model results obtained showed a clear effect of CO2 on O2 consumption. The soluble solids decreased, although not significantly, during storage at the three temperatures studied. Reducing sugars and titratable acidity decreased during storage and the pH increased. These results indicate that the respiration rate influenced the physicochemical properties.

  12. Accelerator mass spectrometry analysis of 14C-oxaliplatin concentrations in biological samples and 14C contents in biological samples and antineoplastic agents

    Toyoguchi, Teiko; Kobayashi, Takeshi; Konno, Noboru; Shiraishi, Tadashi; Kato, Kazuhiro; Tokanai, Fuyuki

    2015-10-01

    Accelerator mass spectrometry (AMS) is expected to play an important role in microdose trials. In this study, we measured the 14C concentration in 14C-oxaliplatin-spiked serum, urine and supernatant of fecal homogenate samples in our Yamagata University (YU) - AMS system. The calibration curves of 14C concentration in serum, urine and supernatant of fecal homogenate were linear (the correlation coefficients were ⩾0.9893), and the precision and accuracy was within the acceptance criteria. To examine a 14C content of water in three vacuum blood collection tubes and a syringe were measured. 14C was not detected from water in these devices. The mean 14C content in urine samples of 6 healthy Japanese volunteers was 0.144 dpm/mL, and the intra-day fluctuation of 14C content in urine from a volunteer was little. The antineoplastic agents are administered to the patients in combination. Then, 14C contents of the antineoplastic agents were quantitated. 14C contents were different among 10 antineoplastic agents; 14C contents of paclitaxel injection and docetaxel hydrate injection were higher than those of the other injections. These results indicate that our quantitation method using YU-AMS system is suited for microdosing studies and that measurement of baseline and co-administered drugs might be necessary for the studies in low concentrations.

  13. Accelerator mass spectrometry analysis of "1"4C-oxaliplatin concentrations in biological samples and "1"4C contents in biological samples and antineoplastic agents

    Toyoguchi, Teiko; Kobayashi, Takeshi; Konno, Noboru; Shiraishi, Tadashi; Kato, Kazuhiro; Tokanai, Fuyuki

    2015-01-01

    Accelerator mass spectrometry (AMS) is expected to play an important role in microdose trials. In this study, we measured the "1"4C concentration in "1"4C-oxaliplatin-spiked serum, urine and supernatant of fecal homogenate samples in our Yamagata University (YU) – AMS system. The calibration curves of "1"4C concentration in serum, urine and supernatant of fecal homogenate were linear (the correlation coefficients were ⩾0.9893), and the precision and accuracy was within the acceptance criteria. To examine a "1"4C content of water in three vacuum blood collection tubes and a syringe were measured. "1"4C was not detected from water in these devices. The mean "1"4C content in urine samples of 6 healthy Japanese volunteers was 0.144 dpm/mL, and the intra-day fluctuation of "1"4C content in urine from a volunteer was little. The antineoplastic agents are administered to the patients in combination. Then, "1"4C contents of the antineoplastic agents were quantitated. "1"4C contents were different among 10 antineoplastic agents; "1"4C contents of paclitaxel injection and docetaxel hydrate injection were higher than those of the other injections. These results indicate that our quantitation method using YU-AMS system is suited for microdosing studies and that measurement of baseline and co-administered drugs might be necessary for the studies in low concentrations.

  14. Accelerator mass spectrometry analysis of {sup 14}C-oxaliplatin concentrations in biological samples and {sup 14}C contents in biological samples and antineoplastic agents

    Toyoguchi, Teiko, E-mail: tteiko@med.id.yamagata-u.ac.jp [Department of Pharmacy, Yamagata University Hospital, 2-2-2 Iida-Nishi, Yamagata-shi, Yamagata 990-9585 (Japan); Kobayashi, Takeshi; Konno, Noboru; Shiraishi, Tadashi [Department of Pharmacy, Yamagata University Hospital, 2-2-2 Iida-Nishi, Yamagata-shi, Yamagata 990-9585 (Japan); Kato, Kazuhiro; Tokanai, Fuyuki [Department of Physics, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata-shi, Yamagata 990-8560 (Japan)

    2015-10-15

    Accelerator mass spectrometry (AMS) is expected to play an important role in microdose trials. In this study, we measured the {sup 14}C concentration in {sup 14}C-oxaliplatin-spiked serum, urine and supernatant of fecal homogenate samples in our Yamagata University (YU) – AMS system. The calibration curves of {sup 14}C concentration in serum, urine and supernatant of fecal homogenate were linear (the correlation coefficients were ⩾0.9893), and the precision and accuracy was within the acceptance criteria. To examine a {sup 14}C content of water in three vacuum blood collection tubes and a syringe were measured. {sup 14}C was not detected from water in these devices. The mean {sup 14}C content in urine samples of 6 healthy Japanese volunteers was 0.144 dpm/mL, and the intra-day fluctuation of {sup 14}C content in urine from a volunteer was little. The antineoplastic agents are administered to the patients in combination. Then, {sup 14}C contents of the antineoplastic agents were quantitated. {sup 14}C contents were different among 10 antineoplastic agents; {sup 14}C contents of paclitaxel injection and docetaxel hydrate injection were higher than those of the other injections. These results indicate that our quantitation method using YU-AMS system is suited for microdosing studies and that measurement of baseline and co-administered drugs might be necessary for the studies in low concentrations.

  15. Acceptable respiratory protection program and LASL respirator research

    Skaggs, B.J.

    1979-01-01

    A short history is presented on the LASL Respiratory Protection Training Programs. Then a discussion is given on the major points of an acceptable respiratory protection program utilizing the points required by the Occupational, Safety, and Health Administration (OSHA) Regulation 29 CFR 1910.134. Contributions to respirator research are reviewed. Discussion is presented under the following section headings: program administration; respirator selection; respirator use; fitting and training; respirator maintenance; medical clearance and surveillance; special problems; program evaluation; and documentation

  16. Contribution of root to soil respiration and carbon balance in ...

    Soil respiration varied from 2.5 to 11.9 g CO2 m-2 d-1 and from 1.5 to 9.3 g CO2 m-2 d-1, and the contribution of root respiration to total soil respiration from 38% to 76% and from 25% to 72% in Communities 1 and 2, respectively. During the growing season (May–September), soil respiration, shoot biomass, live root ...

  17. Routine determination of sulfonylurea, imidazolinone, and sulfonamide herbicides at nanogram-per-liter concentrations by solid-phase extraction and liquid chromatography/mass spectrometry

    Furlong, E.T.; Burkhardt, M.R.; Gates, Paul M.; Werner, S.L.; Battaglin, W.A.

    2000-01-01

    Sulfonylurea (SU), imidazolinone (IMI), and sulfonamide (SA) herbicides are new classes of low-application-rate herbicides increasingly used by farmers. Some of these herbicides affect both weed and crop species at low dosages and must be carefully used. Less is known about the effect of these compounds on non-crop plant species, but a concentration of 100 ng/l in water has been proposed as the threshold for possible plant toxicity for most of these herbicides. Hence, analytical methods must be capable of detecting SUs, IMIs, and SAs at concentrations less than 100 ng/l in ambient water samples. The authors developed a two-cartridge, solid-phase extraction method for isolating 12 SU, 3 IMI, and 1 SA herbicides by using high-performance liquid chromatography/electrospray ionization-mass spectrometry (HPLC/ESI-MS) to identify and quantify these herbicides to 10 ng/l. This method was used to analyze 196 surface- and ground-water samples collected from May to August 1998 throughout the Midwestern United States, and more than 100 quality-assurance and quality-control samples. During the 16 weeks of the study, the HPLC/ESI-MS maintained excellent calibration linearity across the calibration range from 5 to 500 ng/l, with correlation coefficients of 0.9975 or greater. Continuing calibration verification standards at 100-ng/l concentration were analyzed throughout the study, and the average measured concentrations for individual herbicides ranged from 93 to 100 ng/l. Recovery of herbicides from 27 reagent-water samples spiked at 50 and 100 ng/l ranged from 39 to 92%, and averaged 73%. The standard deviation of recoveries ranged from 14 to 26%, and averaged 20%. This variability reflects multiple instruments, operators, and the use of automated and manual sample preparation. Spiked environmental water samples had similar recoveries, although for some herbicides, the sample matrix enhanced recoveries by as much as 200% greater than the spiked concentration. This matrix

  18. Indoor and outdoor sources of size-resolved mass concentration of particulate matter in a school gym-implications for exposure of exercising children.

    Braniš, Martin; Safránek, Jiří; Hytychová, Adéla

    2011-05-01

    It has been noticed many times that schools are buildings with high levels of particulate matter concentrations. Several authors documented that concentrations of particulate matter in indoor school microenvironments exceed limits recommended by WHO namely when school buildings are situated near major roads with high traffic densities. In addition, exercise under conditions of high particulate concentrations may increase the adverse health effects, as the total particle deposition increases in proportion to minute ventilation, and the deposition fraction nearly doubles from rest to intense exercise. Mass concentrations of size-segregated aerosol were measured simultaneously in an elementary school gym and an adjacent outdoor site in the central part of Prague by two pairs of collocated aerosol monitors-a fast responding photometer DusTrak and a five stage cascade impactor. To encompass seasonal and annual differences, 89 days of measurements were performed during ten campaigns between 2005 and 2009. The average (all campaigns) outdoor concentration of PM(2.5) (28.3 μg m(-3)) measured by the cascade impactors was higher than the indoor value (22.3 μg m(-3)) and the corresponding average from the nearest fixed site monitor (23.6 μg m(-3)). Indoor and outdoor PM(2.5) concentrations exceeded the WHO recommended 24-h limit in 42% and 49% of the days measured, respectively. The correlation coefficient (r) between corresponding outdoor and indoor aerosol sizes increased with decreasing aerodynamic diameter of the collected particles (r = 0.32-0.87), suggesting a higher infiltration rate of fine and quasi-ultrafine particles. Principal component analysis revealed five factors explaining more than 82% of the data variability. The first two factors reflected a close association between outdoor and indoor fine and quasi-ultrafine particles confirming the hypothesis of high infiltration rate of particles from outdoors. The third factor indicated that human

  19. Nutrients and temperature additively increase stream microbial respiration

    David W. P. Manning; Amy D. Rosemond; Vladislav Gulis; Jonathan P. Benstead; John S. Kominoski

    2017-01-01

    Rising temperatures and nutrient enrichment are co‐occurring global‐change drivers that stimulate microbial respiration of detrital carbon, but nutrient effects on the temperature dependence of respiration in aquatic ecosystems remain uncertain. We measured respiration rates associated with leaf litter, wood, and fine benthic organic matter (FBOM) across...

  20. 42 CFR 84.1134 - Respirator containers; minimum requirements.

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84... Combination Gas Masks § 84.1134 Respirator containers; minimum requirements. (a) Except as provided in paragraph (b) of this section each respirator shall be equipped with a substantial, durable container...

  1. 21 CFR 892.1970 - Radiographic ECG/respirator synchronizer.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiographic ECG/respirator synchronizer. 892.1970... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1970 Radiographic ECG/respirator synchronizer. (a) Identification. A radiographic ECG/respirator synchronizer is a device intended to be used to...

  2. What controls respiration rate in stored sugarbeet roots

    Although respiration is estimated to be responsible for 60 to 80% of the sucrose lost during storage, the mechanisms by which sugarbeet roots regulate their respiration rate are unknown. In plants, respiration rate is regulated by (1) available respiratory capacity, (2) cellular energy status, (3) ...

  3. Redefinition and global estimation of basal ecosystem respiration rate

    Yuan, Wenping; Luo, Yiqi; Li, Xianglan

    2011-01-01

    Basal ecosystem respiration rate (BR), the ecosystem respiration rate at a given temperature, is a common and important parameter in empirical models for quantifying ecosystem respiration (ER) globally. Numerous studies have indicated that BR varies in space. However, many empirical ER models sti...

  4. Quantifying soil respiration at landscape scales. Chapter 11

    John B. Bradford; Michael G. Ryan

    2008-01-01

    Soil CO2, efflux, or soil respiration, represents a substantial component of carbon cycling in terrestrial ecosystems. Consequently, quantifying soil respiration over large areas and long time periods is an increasingly important goal. However, soil respiration rates vary dramatically in space and time in response to both environmental conditions...

  5. Induction by ethylene of cyanide-resistant respiration

    Solomos, T.; Laties, G.G.

    1976-05-17

    Ethylene and cyanide induce an increase in respiration in a variety of plant tissues, whereas ethylene has no effect on tissues whose respiration is strongly inhibited by cyanide. It is suggested that the existence of a cyanide-insensitive electron transport path is a prerequisite for stimulation of respiration by ethylene.

  6. Physiological Adjustments of Leaf Respiration to Atmospheric Warming in Betula alleghaniensis and Quercus rubra

    Vollmar, A.; Gunderson, C.

    2006-01-01

    Global air temperatures are predicted to rise 1° to 4.5° Celsius by the year 2100. This climatic change is expected to have a great effect on the succession and migration of temperate deciduous forest species. Most physiologically based models of forest response to climatic change focus on the ecosystems as a whole instead of on individual tree species, assuming that the effects of warming on respiration are generally the same for each species, and that processes can not adjust to a changing climate. Experimental data suggest that physiological adjustments are possible, but there is a lack of data in deciduous species. In order to correctly model the effects of climate change on temperate species, species-specific respiration acclimation (adjustment) to rising temperatures is being determined in this experiment. Two temperate deciduous tree species Betula alleghaniensis (BA) and Quercus rubra (QR) were grown over a span of four years in open-top chambers and subjected to two different temperature treatments; ambient and ambient plus 4° Celsius (E4). Between 0530 hours and 1100 hours, respiration was measured over a range of leaf temperatures on several comparable, fully expanded leaves in each treatment. Circular punches were taken from the leaves and dried at 60°C to determine leaf mass per area (LMA). Respiration rates at a common temperature decreased by 15-18% in both species, and the entire resperation versus temperature curve shifted by at least 4°C, indicating a large degree of physiological acclimation. Foliar mass per area decreased with increasing growth temperature for both species. It can be concluded that there is a relationship between leaf respiration and foliar mass as it relates to respiratory acclimation, and that these two species had similar patterns of adjustment to warming.

  7. A novel ion-exclusion chromatography-mass spectrometry method to measure concentrations and cycling rates of carbohydrates and amino sugars in freshwaters.

    Horňák, Karel; Pernthaler, Jakob

    2014-10-24

    The concentrations of free neutral carbohydrates and amino sugars were determined in freshwater samples of distinct matrix complexity, including meso-, eu- and dystrophic lakes and ponds, using high-performance ion-exclusion chromatography (HPIEC) coupled to mass spectrometry (MS). In contrast to other methods, our approach allowed the quantification of free neutral carbohydrates and amino sugars at low nM concentrations without derivatization, de-salting or pre-concentration. New sample preparation procedures were applied prior to injection employing syringe and hollow fiber filtration. Analytes were separated on a strong cation exchange resin under 100% aqueous conditions using 0.1% formic acid as a mobile phase. To minimize background noise in MS, analytes were detected in a multiple reaction monitoring scan mode with double ion filtering. Detection limits of carbohydrates and amino sugars ranged between 0.2 and 2nM at a signal-to-noise ratio >5. Error ranged between 1 and 12% at 0.5-500nM levels. Using a stable isotope dilution approach, both the utilization and recycling of glucose in Lake Zurich was observed. In contrast, N-acetyl-glucosamine was equally rapidly consumed but there was no visible de novo production. The simple and rapid sample preparation makes our protocol suitable for routine analyses of organic compounds in freshwater samples. Application of stable isotope tracers along with accurate measures of carbohydrate and amino sugar concentrations enables novel insights into the compound in situ dynamics. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Concentrations of Semivolatile Organic Compounds Associated with African Dust Air Masses in Mali, Cape Verde, Trinidad and Tobago, and the U.S. Virgin Islands, 2001-2008

    Garrison, Virginia H.; Foreman, William T.; Genualdi, Susan A.; Majewski, Michael S.; Mohammed, Azad; Simonich, Staci Massey

    2011-01-01

    Every year, billions of tons of fine particles are eroded from the surface of the Sahara Desert and the Sahel of West Africa, lifted into the atmosphere by convective storms, and transported thousands of kilometers downwind. Most of the dust is carried west to the Americas and the Caribbean in the Saharan Air Layer (SAL). Dust air masses predominately impact northern South America during the Northern Hemisphere winter and the Caribbean and Southeastern United States in summer. Dust concentrations vary considerably temporally and spatially. In a dust source region (Mali), concentrations range from background levels of 575 micrograms per cubic meter (mu/u g per m3) to 13,000 mu/u g per m3 when visibility degrades to a few meters (Gillies and others, 1996). In the Caribbean, concentrations of 200 to 600 mu/u g per m3 in the mid-Atlantic and Barbados (Prospero and others, 1981; Talbot and others, 1986), 3 to 20 mu/u g per m3 in the Caribbean (Prospero and Nees, 1986; Perry and others, 1997); and >100 mu/u g per m3 in the Virgin Islands (this dataset) have been reported during African dust conditions. Mean dust particle size decreases as the SAL traverses from West Africa to the Caribbean and Americas as a result of gravitational settling. Mean particle size reaching the Caribbean is <1 micrometer (mu/u m) (Perry and others, 1997), and even finer particles are carried into Central America, the Southeastern United States, and maritime Canada. Particles less than 2.5 mu/u m diameter (termed PM2.5) can be inhaled deeply into human lungs. A large body of literature has shown that increased PM2.5 concentrations are linked to increased cardiovascular/respiratory morbidity and mortality (for example, Dockery and others, 1993; Penn and others, 2005).

  9. Investigating the influence of standard staining procedures on the copper distribution and concentration in Wilson's disease liver samples by laser ablation-inductively coupled plasma-mass spectrometry.

    Hachmöller, Oliver; Aichler, Michaela; Schwamborn, Kristina; Lutz, Lisa; Werner, Martin; Sperling, Michael; Walch, Axel; Karst, Uwe

    2017-12-01

    The influence of rhodanine and haematoxylin and eosin (HE) staining on the copper distribution and concentration in liver needle biopsy samples originating from patients with Wilson's disease (WD), a rare autosomal recessive inherited disorder of the copper metabolism, is investigated. In contemporary diagnostic of WD, rhodanine staining is used for histopathology, since rhodanine and copper are forming a red to orange-red complex, which can be recognized in the liver tissue using a microscope. In this paper, a laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) method is applied for the analysis of eight different WD liver samples. Apart from a spatially resolved elemental detection as qualitative information, this LA-ICP-MS method offers also quantitative information by external calibration with matrix-matched gelatine standards. The sample set of this work included an unstained and a rhodanine stained section of each WD liver sample. While unstained sections of WD liver samples showed very distinct structures of the copper distribution with high copper concentrations, rhodanine stained sections revealed a blurred copper distribution with significant decreased concentrations in a range from 20 to more than 90%. This implies a copper removal from the liver tissue by complexation during the rhodanine staining. In contrast to this, a further HE stained sample of one WD liver sample did not show a significant decrease in the copper concentration and influence on the copper distribution in comparison to the unstained section. Therefore, HE staining can be combined with the analysis by means of LA-ICP-MS in two successive steps from one thin section of a biopsy specimen. This allows further information to be gained on the elemental distribution by LA-ICP-MS additional to results obtained by histological staining. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Using precursor ion scan of 184 with liquid chromatography-electrospray ionization-tandem mass spectrometry for concentration normalization in cellular lipidomic studies.

    Chao, Hsi-Chun; Chen, Guan-Yuan; Hsu, Lih-Ching; Liao, Hsiao-Wei; Yang, Sin-Yu; Wang, San-Yuan; Li, Yu-Liang; Tang, Sung-Chun; Tseng, Yufeng Jane; Kuo, Ching-Hua

    2017-06-08

    Cellular lipidomic studies have been favored approaches in many biomedical research areas. To provide fair comparisons of the studied cells, it is essential to perform normalization of the determined concentration before lipidomic analysis. This study proposed a cellular lipidomic normalization method by measuring the phosphatidylcholine (PC) and sphingomyelin (SM) contents in cell extracts. To provide efficient analysis of PC and SM in cell extracts, flow injection analysis-electrospray ionization-tandem mass spectrometry (FIA-ESI-MS/MS) with a precursor ion scan (PIS) of m/z 184 was used, and the parameters affecting the performance of the method were optimized. Good linearity could be observed between the cell extract dilution factor and the reciprocal of the total ion chromatogram (TIC) area in the PIS of m/z 184 within the dilution range of 1- to 16-fold (R 2  = 0.998). The calibration curve could be used for concentration adjustment of the unknown concentration of a cell extract. The intraday and intermediate precisions were below 10%. The accuracy ranged from 93.0% to 105.6%. The performance of the new normalization method was evaluated using different numbers of HCT-116 cells. Sphingosine, ceramide (d18:1/18:0), SM (d18:1/18:0) and PC (16:1/18:0) were selected as the representative test lipid species, and the results showed that the peak areas of each lipid species obtained from different cell numbers were within a 20% variation after normalization. Finally, the PIS of 184 normalization method was applied to study ischemia-induced neuron injury using oxygen and glucose deprivation (OGD) on primary neuronal cultured cells. Our results showed that the PIS of 184 normalization method is an efficient and effective approach for concentration normalization in cellular lipidomic studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Mass Spectrometry-Based Metabolomics of Agave Sap (Agave salmiana after Its Inoculation with Microorganisms Isolated from Agave Sap Concentrate Selected to Enhance Anticancer Activity

    Luis M. Figueroa

    2017-11-01

    Full Text Available Saponins have been correlated with the reduction of cancer cell growth and the apoptotic effect of agave sap concentrate. Empirical observations of this artisanal Mexican food have shown that fermentation occurs after agave sap is concentrated, but little is known about the microorganisms that survive after cooking, or their effects on saponins and other metabolites. The aim of this study was to evaluate the changes in metabolites found in agave (A. salmiana sap after its fermentation with microorganisms isolated from agave sap concentrate, and demonstrate its potential use to enhance anticancer activity. Microorganisms were isolated by dilution plating and identified by 16S rRNA analysis. Isolates were used to ferment agave sap, and their corresponding butanolic extracts were compared with those that enhanced the cytotoxic activity on colon (Caco-2 and liver (Hep-G2 cancer cells. Metabolite changes were investigated by mass spectrometry-based metabolomics. Among 69 isolated microorganisms, the actinomycetes Arthrobacter globiformis and Gordonia sp. were used to analyze the metabolites, along with bioactivity changes. From the 939 ions that were mainly responsible for variation among fermented samples at 48 h, 96 h, and 192 h, four were correlated to anticancer activity. It was shown that magueyoside B, a kammogenin glycoside, was found at higher intensities in the samples fermented with Gordonia sp. that reduced Hep-G2 viability better than controls. These findings showed that microorganisms from agave sap concentrate change agave sap metabolites such as saponins. Butanolic extracts obtained after agave sap fermentation with Arthrobacter globiformis or Gordonia sp. increased the cancer cell growth inhibitory effect on colon or liver cancer cells, respectively.

  12. Determination of Zidovudine Triphosphate Intracellular Concentrations in Peripheral Blood Mononuclear Cells from Human Immunodeficiency Virus-Infected Individuals by Tandem Mass Spectrometry

    Font, Eva; Rosario, Osvaldo; Santana, Jorge; García, Hermes; Sommadossi, Jean-Pierre; Rodriguez, Jose F.

    1999-01-01

    Nucleoside reverse transcriptase inhibitors (NRTIs) used against the human immunodeficiency virus (HIV) need to be activated intracellularly to their triphosphate moiety to inhibit HIV replication. Intracellular concentrations of these NRTI triphosphates, especially zidovudine triphosphate (ZDV-TP), are relatively low (low numbers of femtomoles per 106 cells) in HIV-infected patient peripheral blood mononuclear cells. Recently, several methods have used either high-performance liquid chromatography (HPLC) or solid-phase extraction (SPE) coupled with radioimmunoassay to obtain in vivo measurements of ZDV-TP. The limit of detection (LOD) by these methods ranged from 20 to 200 fmol/106 cells. In this report, we describe the development of a method to determine intracellular ZDV-TP concentrations in HIV-infected patients using SPE and HPLC with tandem mass spectrometry for analysis. The LOD by this method is 4.0 fmol/106 cells with a linear concentration range of at least 4 orders of magnitude from 4.0 to 10,000 fmol/106 cells. In hispanic HIV-infected patients, ZDV-TP was detectable even when the sampling time after drug administration was 15 h. Intracellular ZDV-TP concentrations in these patients ranged from 41 to 193 fmol/106 cells. The low LOD obtained with this method will provide the opportunity for further in vivo pharmacokinetic studies of intracellular ZDV-TP in different HIV-infected populations. Furthermore, this methodology could be used to perform simultaneous detection of two or more NRTIs, such as ZDV-TP and lamivudine triphosphate. PMID:10582890

  13. GADEP Continuous PM2.5 mass concentration data, VIIRS Day Night Band SDR (SVDNB), MODIS Terra Level 2 water vapor profiles (infrared algorithm for atmospheric profiles for both day and night, NWS surface meteorological data

    U.S. Environmental Protection Agency — Data descriptions are provided at the following urls: GADEP Continuous PM2.5 mass concentration data - https://aqs.epa.gov/aqsweb/documents/data_mart_welcome.html...

  14. Implementation of gas concentration measurement systems using mass spectrometry in containment thermal-hydraulics test facilities: different approaches for calibration and measurement with steam/air/helium mixtures

    Auban, O.; Malet, J.; Brun, P.; Brinster, J.; Quillico, J. J.; Studer, E.

    2003-01-01

    Thermal-hydraulic test facilities are used to investigate various containment phenomena such as, for example, mixing and stratification of gases or steam condensation in the presence of noncondensable. Experiments are also required for validation of codes possessing capabilities for modelling such three-dimensional effects. The need for advanced instrumentation allowing to measure gas concentration in such conditions (typically: 100-180 .deg. C; 1-10 bar) and to get sufficiently refined information about spatial distribution of the different gas species has become apparent. This paper deals with the implementation of gas analysis systems using some commercial Quadrupole Mass Spectrometers (QMS) that have been recently added to the basic instrumentation in three thermal-hydraulics test facilities namely MISTRA (CEA, France), TOSQAN (IRSN, France) and PANDA (PSI, Switzerland). In recent years, QMS have increasingly been selected for various applications because of attractive metrological characteristics (sensibility, span of concentration range, response time, stability, etc.), relatively compact size and low cost. Although commercial QMS are sold as 'turnkey' systems, these instruments are delicate to bring into operation. As QMS are not absolute instruments, reliable calibration procedures are required for quantitative measurements. A mass spectrometer can be regarded as an ionisation gauge with subsequent separation system for the different ion species. The calculation of gas concentrations considers the partial pressure of a particular gas species to be proportional to the ion current it generates. Anyway, one must know the QMS sensitivity to the gases of interest and the only practical method is to use calibration gases. Calibration must be carried out using mixtures whose compositions are close to any possible sample compositions and the procedure selected should duplicate as closely as possible the measurement conditions established during the real experiment

  15. Assessment of respirable dust exposures in an opencast coal mine.

    Onder, M; Yigit, E

    2009-05-01

    All major opencast mining activities produce dust. The major operations that produce dust are drilling, blasting, loading, unloading, and transporting. Dust not only deteriorates the environmental air quality in and around the mining site but also creates serious health hazards. Therefore, assessment of dust levels that arise from various opencast mining operations is required to prevent and minimize the health risks. To achieve this objective, an opencast coal mining area was selected to generate site-specific emission data and collect respirable dust measurement samples. The study covered various mining activities in different locations including overburden loading, stock yard, coal loading, drilling, and coal handling plant. The dust levels were examined to assess miners' exposure to respirable dust in each of the opencast mining areas from 1994 to 2005. The data obtained from the dust measurement studies were evaluated by using analysis of variance (ANOVA) and the Tukey-Kramer procedure. The analyses were performed by using Minitab 14 statistical software. It was concluded that, drilling operations produce higher dust concentration levels and thus, drill operators may have higher incidence of respiratory disorders related to exposure to dust in their work environment.

  16. Soil respiration and photosynthetic uptake of carbon dioxide by ground-cover plants in four ages of jack pine forest

    Striegl, Robert G.; Wickland, K.P.

    2001-01-01

    Soil carbon dioxide (CO2) emission (soil respiration), net CO2 exchange after photosynthetic uptake by ground-cover plants, and soil CO2 concentration versus depth below land surface were measured at four ages of jack pine (Pinus banksiana Lamb.) forest in central Saskatchewan. Soil respiration was smallest at a clear-cut site, largest in an 8-year-old stand, and decreased with stand age in 20-year-old and mature (60-75 years old) stands during May-September 1994 (12.1, 34.6, 31.5, and 24.9 mol C??m-2, respectively). Simulations of soil respiration at each stand based on continuously recorded soil temperature were within one standard deviation of measured flux for 48 of 52 measurement periods, but were 10%-30% less than linear interpolations of measured flux for the season. This was probably due to decreased soil respiration at night modeled by the temperature-flux relationships, but not documented by daytime chamber measurements. CO2 uptake by ground-cover plants ranged from 0 at the clear-cut site to 29, 25, and 9% of total growing season soil respiration at the 8-year, 20-year, and mature stands. CO2 concentrations were as great as 7150 ppmv in the upper 1 m of unsaturated zone and were proportional to measured soil respiration.

  17. Determination of Low Concentrations of Acetochlor in Water by Automated Solid-Phase Extraction and Gas Chromatography with Mass-Selective Detection

    Lindley, C.E.; Stewart, J.T.; Sandstrom, M.W.

    1996-01-01

    A sensitive and reliable gas chromatographic/mass spectrometric (GC/MS) method for determining acetochlor in environmental water samples was developed. The method involves automated extraction of the herbicide from a filtered 1 L water sample through a C18 solid-phase extraction column, elution from the column with hexane-isopropyl alcohol (3 + 1), and concentration of the extract with nitrogen gas. The herbicide is quantitated by capillary/column GC/MS with selected-ion monitoring of 3 characteristic ions. The single-operator method detection limit for reagent water samples is 0.0015 ??g/L. Mean recoveries ranged from about 92 to 115% for 3 water matrixes fortified at 0.05 and 0.5 ??g/L. Average single-operator precision, over the course of 1 week, was better than 5%.

  18. Estimating representative background PM2.5 concentration in heavily polluted areas using baseline separation technique and chemical mass balance model

    Gao, Shuang; Yang, Wen; Zhang, Hui; Sun, Yanling; Mao, Jian; Ma, Zhenxing; Cong, Zhiyuan; Zhang, Xian; Tian, Shasha; Azzi, Merched; Chen, Li; Bai, Zhipeng

    2018-02-01

    The determination of background concentration of PM2.5 is important to understand the contribution of local emission sources to total PM2.5 concentration. The purpose of this study was to exam the performance of baseline separation techniques to estimate PM2.5 background concentration. Five separation methods, which included recursive digital filters (Lyne-Hollick, one-parameter algorithm, and Boughton two-parameter algorithm), sliding interval and smoothed minima, were applied to one-year PM2.5 time-series data in two heavily polluted cities, Tianjin and Jinan. To obtain the proper filter parameters and recession constants for the separation techniques, we conducted regression analysis at a background site during the emission reduction period enforced by the Government for the 2014 Asia-Pacific Economic Cooperation (APEC) meeting in Beijing. Background concentrations in Tianjin and Jinan were then estimated by applying the determined filter parameters and recession constants. The chemical mass balance (CMB) model was also applied to ascertain the effectiveness of the new approach. Our results showed that the contribution of background PM concentration to ambient pollution was at a comparable level to the contribution obtained from the previous study. The best performance was achieved using the Boughton two-parameter algorithm. The background concentrations were estimated at (27 ± 2) μg/m3 for the whole year, (34 ± 4) μg/m3 for the heating period (winter), (21 ± 2) μg/m3 for the non-heating period (summer), and (25 ± 2) μg/m3 for the sandstorm period in Tianjin. The corresponding values in Jinan were (30 ± 3) μg/m3, (40 ± 4) μg/m3, (24 ± 5) μg/m3, and (26 ± 2) μg/m3, respectively. The study revealed that these baseline separation techniques are valid for estimating levels of PM2.5 air pollution, and that our proposed method has great potential for estimating the background level of other air pollutants.

  19. Evaluation of cannabinoids concentration and stability in standardized preparations of cannabis tea and cannabis oil by ultra-high performance liquid chromatography tandem mass spectrometry.

    Pacifici, Roberta; Marchei, Emilia; Salvatore, Francesco; Guandalini, Luca; Busardò, Francesco Paolo; Pichini, Simona

    2017-08-28

    Cannabis has been used since ancient times to relieve neuropathic pain, to lower intraocular pressure, to increase appetite and finally to decrease nausea and vomiting. The combination of the psychoactive cannabis alkaloid Δ9-tetrahydrocannabinol (THC) with the non-psychotropic alkaloids cannabidiol (CBD) and cannabinol (CBN) demonstrated a higher activity than THC alone. The Italian National Institute of Health sought to establish conditions and indications on how to correctly use nationally produced cannabis to guarantee therapeutic continuity in individuals treated with medical cannabis. The evaluation of cannabinoids concentration and stability in standardized preparations of cannabis tea and cannabis oil was conducted using an easy and fast ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) assay. Extraction efficiency of oil was significantly higher than that of water with respect to the different cannabinoids. This was especially observed in the case of the pharmacologically active THC, CBD and their acidic precursors. Fifteen minutes boiling was sufficient to achieve the highest concentrations of cannabinoids in the cannabis tea solutions. At ambient temperature, a significant THC and CBD decrease to 50% or less of the initial concentration was observed over 3 and 7 days, respectively. When refrigerated at 4 °C, similar decreasing profiles were observed for the two compounds. The cannabinoids profile in cannabis oil obtained after pre-heating the flowering tops at 145 °C for 30 min in a static oven resulted in a complete decarboxylation of cannabinoid acids CBDA and THCA-A. Nevertheless, it was apparent that heat not only decarboxylated acidic compounds, but also significantly increased the final concentrations of cannabinoids in oil. The stability of cannabinoids in oil samples was higher than that in tea samples since the maximum decrease (72% of initial concentration) was observed in THC coming from unheated flowering

  20. On-line monitoring of benzene air concentrations while driving in traffic by means of isotopic dilution gas chromatography/mass spectrometry.

    Davoli, E; Cappellini, L; Moggi, M; Ferrari, S; Fanelli, R

    1996-01-01

    There is no shortage of information about the average benzene concentrations in urban air, but there is very little about microenvironmental exposure, such as in-vehicle concentrations while driving in various traffic conditions, while refuelling, or while in a parking garage. The main reason for this lack of data is that no analytical instrumentation has been available to measure on-line trace amounts of benzene in such situations. We have recently proposed a highly accurate, high-speed cryofocusing gas chromatography/mass spectrometry (GC/MS) system for monitoring benzene concentrations in air. Accuracy of the analytical data is achieved by enrichment of the air sample before trapping, with a stable isotope permeation tube system. The same principles have been applied to a new instrument, specifically designed for operation on an electric vehicle (Ducato Elettra, Fiat). The zero emission vehicle and the fully transportable, battery-operated GC/MS system provide a unique possibility of monitoring benzene exposure in real everyday situations such as while driving, refuelling, or repairing a car. All power consumptions have been reduced so as to achieve a battery-operated GC/MS system. Liquid nitrogen cryofocusing has been replaced by a packed, inductively heated, graphitized charcoal microtrap. The instrument has been mounted on shock absorbers and installed in the van. The whole system has been tested in both fixed and mobile conditions. The maximum monitoring period without external power supply is 6 h. The full analytical cycle is 4 min, allowing close to real-time monitoring, and the minimum detectable level is 1 microgram/m3 for benzene. In-vehicle monitoring showed that, when recirculation was off and ventilation on, i.e., air from outside the vehicle was blown inside, concentrations varied widely in different driving conditions: moving from a parking lot into normal traffic on an urban traffic condition roadway yielded an increase in benzene concentration

  1. A distinct seasonal pattern of the ratio of soil respiration to total ecosystem respiration in a spruce-dominated forest

    E.A. Davidson; A.D. Richardson; K.E. Savage; D.Y. Hollinger

    2006-01-01

    Annual budgets and fitted temperature response curves for soil respiration and ecosystem respiration provide useful information for partitioning annual carbon budgets of ecosystems, but they may not adequately reveal seasonal variation in the ratios of these two fluxes. Soil respiration (Rs) typically contributes 30-80% of...

  2. The bone mass density in men aged over 50 and its relation to the concentration of free and total testosterone in the blood serum

    Purzycka-Jazdon, A.; Lasek, W.; Serafin, Z.; Manysiak, S.

    2003-01-01

    As the mean length of life increases, osteoporosis affects a growing number of men and women, thus becoming an important medical and socioeconomic problem in many countries. Pathogenesis and the prevalence of the osteoporosis in women are well established, however, in men, they are still controversial. In this study, the bone mass density (BMD) of the lumbar spine was determined in 100 healthy men age 50-83, using quantitative computed tomography (QCT). Also, the total serum and free testosterone was measured. The mean BMD was 123.1I39.3 mg/cm 3 , and the values below a fracture threshold were noted in 39% of subjects. The mean concentration of total and free serum testosterone was 4.3I1.7 ng/ml and 6.2I3.7 pg/ml, respectively. There was a significant (p 3 , respectively). There was no correlation found between total testosterone and BMD. Results indicate that reduced bone mass density in males over 50 is as frequent as recently reported in females. Moreover, sex hormones seem to be related to osteoporosis development in men as well. (author)

  3. Measurements of total lead concentrations and of lead isotope ratios in whole blood by use of inductively coupled plasma source mass spectrometry

    Delves, H.T.; Campbell, M.J.

    1988-01-01

    Methods are described for the accurate and precise determination of total lead and its isotopic composition in whole blood using inductively coupled plasma source mass spectrometry (ICP-MS). Sensitivities of up to 3 x 10 6 counts s -1 for 208 Pb at a total lead concentration of 5 μmol l -1 (1 μg ml -1 ) enabled total blood lead levels to be measured in 4 min per sample, with a detection limit of 0.072 μmol l -1 (15 μg l -1 ). The agreement between ICP-MS and atomic absorption spectrometry (AAS) for this analysis was excellent: ICP-MS 0.996 x AAS -0.0165 μmol l -1 ; r 0.994. Isotope ratio measurements required 15 min to achieve the required accuracy and precision both of which were generally better than 0.5% for 206 Pb: 207 Pb and 208 Pb: 206 Pb isotopic lead ratios. The ICP-MS data for these ratios in ten quality control blood specimens has a mean bias relative to isotope dilution mass spectrometry of -0.412% for 206 Pb: 207 Pb ratios and of +0.055% for the 208 Pb: 206 Pb ratios. This level of accuracy and that of the total blood lead measurements is sufficient to permit application of these ICP-MS methods to environmental studies. (author)

  4. Rates of Litter Decomposition and Soil Respiration in Relation to Soil Temperature and Water in Different-Aged Pinus massoniana Forests in the Three Gorges Reservoir Area, China

    Zeng, Lixiong; Huang, Zhilin; Lei, Jingpin; Zhou, Benzhi; Li, Maihe

    2014-01-01

    To better understand the soil carbon dynamics and cycling in terrestrial ecosystems in response to environmental changes, we studied soil respiration, litter decomposition, and their relations to soil temperature and soil water content for 18-months (Aug. 2010–Jan. 2012) in three different-aged Pinus massoniana forests in the Three Gorges Reservoir Area, China. Across the experimental period, the mean total soil respiration and litter respiration were 1.94 and 0.81, 2.00 and 0.60, 2.19 and 0.71 µmol CO2 m−2 s−1, and the litter dry mass remaining was 57.6%, 56.2% and 61.3% in the 20-, 30-, and 46-year-old forests, respectively. We found that the temporal variations of soil respiration and litter decomposition rates can be well explained by soil temperature at 5 cm depth. Both the total soil respiration and litter respiration were significantly positively correlated with the litter decomposition rates. The mean contribution of the litter respiration to the total soil respiration was 31.0%–45.9% for the three different-aged forests. The present study found that the total soil respiration was not significantly affected by forest age when P. masonniana stands exceed a certain age (e.g. >20 years old), but it increased significantly with increased soil temperature. Hence, forest management strategies need to protect the understory vegetation to limit soil warming, in order to reduce the CO2 emission under the currently rapid global warming. The contribution of litter decomposition to the total soil respiration varies across spatial and temporal scales. This indicates the need for separate consideration of soil and litter respiration when assessing the climate impacts on forest carbon cycling. PMID:25004164

  5. Variation in foliar respiration and wood CO2 efflux rates among species and canopy layers in a wet tropical forest.

    Asao, Shinichi; Bedoya-Arrieta, Ricardo; Ryan, Michael G

    2015-02-01

    As tropical forests respond to environmental change, autotrophic respiration may consume a greater proportion of carbon fixed in photosynthesis at the expense of growth, potentially turning the forests into a carbon source. Predicting such a response requires that we measure and place autotrophic respiration in a complete carbon budget, but extrapolating measurements of autotrophic respiration from chambers to ecosystem remains a challenge. High plant species diversity and complex canopy structure may cause respiration rates to vary and measurements that do not account for this complexity may introduce bias in extrapolation more detrimental than uncertainty. Using experimental plantations of four native tree species with two canopy layers, we examined whether species and canopy layers vary in foliar respiration and wood CO2 efflux and whether the variation relates to commonly used scalars of mass, nitrogen (N), photosynthetic capacity and wood size. Foliar respiration rate varied threefold between canopy layers, ∼0.74 μmol m(-2) s(-1) in the overstory and ∼0.25 μmol m(-2) s(-1) in the understory, but little among species. Leaf mass per area, N and photosynthetic capacity explained some of the variation, but height explained more. Chamber measurements of foliar respiration thus can be extrapolated to the canopy with rates and leaf area specific to each canopy layer or height class. If area-based rates are sampled across canopy layers, the area-based rate may be regressed against leaf mass per area to derive the slope (per mass rate) to extrapolate to the canopy using the total leaf mass. Wood CO2 efflux varied 1.0-1.6 μmol m(-2) s(-1) for overstory trees and 0.6-0.9 μmol m(-2) s(-1) for understory species. The variation in wood CO2 efflux rate was mostly related to wood size, and little to species, canopy layer or height. Mean wood CO2 efflux rate per surface area, derived by regressing CO2 efflux per mass against the ratio of surface

  6. Single-step transesterification with simultaneous concentration and stable isotope analysis of fatty acid methyl esters by gas chromatography-combustion-isotope ratio mass spectrometry.

    Panetta, Robert J; Jahren, A Hope

    2011-05-30

    Gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is increasingly applied to food and metabolic studies for stable isotope analysis (δ(13) C), with the quantification of analyte concentration often obtained via a second alternative method. We describe a rapid direct transesterification of triacylglycerides (TAGs) for fatty acid methyl ester (FAME) analysis by GC-C-IRMS demonstrating robust simultaneous quantification of amount of analyte (mean r(2) =0.99, accuracy ±2% for 37 FAMEs) and δ(13) C (±0.13‰) in a single analytical run. The maximum FAME yield and optimal δ(13) C values are obtained by derivatizing with 10% (v/v) acetyl chloride in methanol for 1 h, while lower levels of acetyl chloride and shorter reaction times skewed the δ(13) C values by as much as 0.80‰. A Bland-Altman evaluation of the GC-C-IRMS measurements resulted in excellent agreement for pure oils (±0.08‰) and oils extracted from French fries (±0.49‰), demonstrating reliable simultaneous quantification of FAME concentration and δ(13) C values. Thus, we conclude that for studies requiring both the quantification of analyte and δ(13) C data, such as authentication or metabolic flux studies, GC-C-IRMS can be used as the sole analytical method. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Frost Induces Respiration and Accelerates Carbon Depletion in Trees.

    Or Sperling

    Full Text Available Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0 °C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq. cm(-3 yr(-1 on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics.

  8. Frost Induces Respiration and Accelerates Carbon Depletion in Trees.

    Sperling, Or; Earles, J Mason; Secchi, Francesca; Godfrey, Jessie; Zwieniecki, Maciej A

    2015-01-01

    Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC) availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0 °C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq.) cm(-3) yr(-1) on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics.

  9. Did Respiration or Photosynthesis Come First

    Broda, E.

    1979-01-01

    The similarity of the mechanisms in photosynthetic and in oxidative phosphorylation suggests a common origin ( convers ion hypothesis). It is proposed that an early form of electron flow with oxidative phosphorylation ("prerespiration"), to terminal electron acceptors available in a reducing biosphere, was supplemented by a photocatalyst capable of a redox reaction. In this way, cyclic photophosphorylation arose. Further stages in evolution were reverse electron flow powered by ATP, to make NADH as a reductant for CO2 , and subsequently noncyclic electron flow. These processes concomitantly provided the oxidants indispensable for full development of oxidative phosphorylation, i.e. for normal respiration: sulphate, O2 and with participation of the nitrificants, nitrite and nitrate. Thus, prerespiration preceded photosynthesis, and this preceded respiration. It is also suggested that nonredox photoprocesses of the Halobacterium type are not part of the mainstream of bioenergetic evolution. They do not lead to photoprocesses with electron flow. (author)

  10. A MEMS turbine prototype for respiration harvesting

    Goreke, U.; Habibiabad, S.; Azgin, K.; Beyaz, M. I.

    2015-12-01

    The design, manufacturing, and performance characterization of a MEMS-scale turbine prototype is reported. The turbine is designed for integration into a respiration harvester that can convert normal human breathing into electrical power through electromagnetic induction. The device measures 10 mm in radius, and employs 12 blades located around the turbine periphery along with ball bearings around the center. Finite element simulations showed that an average torque of 3.07 μNm is induced at 12 lpm airflow rate, which lies in normal breathing levels. The turbine and a test package were manufactured using CNC milling on PMMA. Tests were performed at respiration flow rates between 5-25 lpm. The highest rotational speed was measured to be 9.84 krpm at 25 lpm, resulting in 8.96 mbar pressure drop across the device and 370 mW actuation power.

  11. Microbial respiration per unit microbial biomass increases with carbon-to-nutrient ratios in soils

    Spohn, Marie; Chodak, Marcin

    2015-04-01

    The ratio of carbon-to-nutrient in forest floors is usually much higher than the ratio of carbon-to-nutrient that soil microorganisms require for their nutrition. In order to understand how this mismatch affects carbon cycling, the respiration rate per unit soil microbial biomass carbon - the metabolic quotient (qCO2) - was studied. This was done in a field study (Spohn and Chodak, 2015) and in a meta-analysis of published data (Spohn, 2014). Cores of beech, spruce, and mixed spruce-beech forest soils were cut into slices of 1 cm from the top of the litter layer down to 5 cm in the mineral soil, and the relationship between the qCO2 and the soil carbon-to-nitrogen (C:N) and the soil carbon-to-phosphorus (C:P) ratio was analyzed. We found that the qCO2 was positively correlated with soil C:N ratio in spruce soils (R = 0.72), and with the soil C:P ratio in beech (R = 0.93), spruce (R = 0.80) and mixed forest soils (R = 0.96). We also observed a close correlation between the qCO2 and the soil C concentration in all three forest types. Yet, the qCO2 decreased less with depth than the C concentration in all three forest types, suggesting that the change in qCO2 is not only controlled by the soil C concentration. We conclude that microorganisms increase their respiration rate per unit biomass with increasing soil C:P ratio and C concentration, which adjusts the substrate to their nutritional demands in terms of stoichiometry. In an analysis of literature data, I tested the effect of the C:N ratio of soil litter layers on microbial respiration in absolute terms and per unit microbial biomass C. For this purpose, a global dataset on the microbial respiration rate per unit microbial biomass C - termed the metabolic quotient (qCO2) - was compiled form literature data. It was found that the qCO2 in the soil litter layers was positively correlated with the litter C:N ratio and negatively related with the litter nitrogen (N) concentration. The positive relation between the qCO2

  12. Sampling strategy and analysis of trace element concentrations by inductively coupled plasma mass spectrometry on medieval human bones--the concept of chemical life history.

    Skytte, Lilian; Rasmussen, Kaare Lund

    2013-07-30

    Medieval human bones have the potential to reveal diet, mobility and treatment of diseases in the past. During the last two decades trace element chemistry has been used extensively in archaeometric investigations revealing such data. Many studies have reported the trace element inventory in only one sample from each skeleton - usually from the femur or a tooth. It cannot a priori be assumed that all bones or teeth in a skeleton will have the same trace element concentrations. Six different bone and teeth samples from each individual were carefully decontaminated by mechanical means. Following dissolution of ca. 20 mg sample in nitric acid and hydrogen peroxide the assays were performed using inductively coupled plasma mass spectrometry (ICPMS) with quadropole detection. We describe the precise sampling technique as well as the analytical methods and parameters used for the ICPMS analysis. The places of sampling in the human skeleton did exhibit varying trace element concentrations. Although the samples are contaminated by Fe, Mn and Al from the surrounding soil where the bones have been residing for more than 500 years, other trace elements are intact within the bones. It is shown that the elemental ratios Sr/Ca and Ba/Ca can be used as indicators of provenance. The differences in trace element concentrations can be interpreted as indications of varying diet and provenance as a function of time in the life of the individual - a concept which can be termed chemical life history. A few examples of the results of such analyses are shown, which contains information about provenance and diagenesis. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Body Mass Index, percent body fat, and regional body fat distribution in relation to leptin concentrations in healthy, non-smoking postmenopausal women in a feeding study

    Campbell William

    2007-01-01

    Full Text Available Abstract Background The relationship between BMI and leptin has been studied extensively in the past, but previous reports in postmenopausal women have not been conducted under carefully controlled dietary conditions of weight maintenance using precise measures of body fat distribution. The aim of the present study was to examine the association between serum leptin concentration and adiposity as estimated by BMI and dual energy x-ray absorptiometry (DEXA measures (percent body fat, central and peripheral fat, and lean mass in postmenopausal women. Methods This study was conducted as a cross-sectional analysis within the control segment of a randomized, crossover trial in which postmenopausal women (n = 51 consumed 0 (control, 15 (one drink, and 30 (two drinks g alcohol (ethanol/d for 8 weeks as part of a controlled diet. BMIs were determined and DEXA scans were administered to the women during the 0 g alcohol treatment, and a blood sample was collected at baseline and week 8 of each study period for leptin analysis. Results and discussion In multivariate analysis, women who were overweight (BMI > 25 to ≤ 30 kg/m2 had a 2-fold increase, and obese women (BMI > 30 kg/m2 had more than a 3-fold increase in serum leptin concentrations compared to normal weight (BMI ≤25 kg/m2 women. When the models for the different measures of adiposity were assessed by multiple R2, models which included percent body fat explained the highest proportion (approximately 80% of the serum leptin variance. Conclusion Under carefully controlled dietary conditions, we confirm that higher levels of adiposity were associated with higher concentrations of serum leptin. It appears that percent body fat in postmenopausal women may be the best adiposity-related predictor of serum leptin.

  14. Effects of thyroid state on respiration of perfused rat and guinea pig hearts

    Read, L.C.; Wallace, P.G.; Berry, M.N.

    1987-01-01

    The effects of thyroid state on the respiration of the isolated heart were investigated using retrograde perfused rat and guinea pig hearts. In both species, hypothyroidism caused a marked depression in circulating thyroid hormone concentrations and in the respiration of the isolated, retrograde perfused heart. Hypothyroidism was caused by injecting animals with Na 131 I. The effects on myocardial respiration could be attributed to changes in the contraction frequency and in the oxygen consumption per beat, with little contribution from basal respiration. Treatment of animals with thyroxine elevated plasma thyroid hormones to a similar extent in rats and guinea pigs. In the latter, thyroxine treatment was associated with substantial increases in the contraction frequency and the oxygen consumption per beat of the isolated heart. In contrast, only small changes were apparent in the retrograde perfused rat heart, observations that were confirmed in rat hearts perfused at near physiological work loads. It was concluded that rat hearts isolated from normal animals function at near maximal thyroid state, in contrast to the guinea pig heart, which requires higher circulating concentrations of thyroid hormones to attain maximal responses

  15. Reduction of Carbon Dioxide in Filtering Facepiece Respirators with an Active-Venting System: A Computational Study.

    Erik Birgersson

    Full Text Available During expiration, the carbon dioxide (CO2 levels inside the dead space of a filtering facepiece respirator (FFR increase significantly above the ambient concentration. To reduce the CO2 concentration inside the dead space, we attach an active lightweight venting system (AVS comprising a one-way valve, a blower and a battery in a housing to a FFR. The achieved reduction is quantified with a computational-fluid-dynamics model that considers conservation of mass, momentum and the dilute species, CO2, inside the FFR with and without the AVS. The results suggest that the AVS can reduce the CO2 levels inside the dead space at the end of expiration to around 0.4% as compared to a standard FFR, for which the CO2 levels during expiration reach the same concentration as that of the expired alveolar air at around 5%. In particular, during inspiration, the average CO2 volume fraction drops to near-to ambient levels of around 0.08% with the AVS. Overall, the time-averaged CO2 volume fractions inside the dead space for the standard FFR and the one with AVS are around 3% and 0.3% respectively. Further, the ability of the AVS to vent the dead-space air in the form of a jet into the ambient - similar to the jets arising from natural expiration without a FFR - ensures that the expired air is removed and diluted more efficiently than a standard FFR.

  16. Regional anatomic differences in skeletal muscle mitochondrial respiration in type 2 diabetes and obesity

    Rabøl, R; Larsen, S; Højberg, P M V

    2010-01-01

    respiration and markers of mitochondrial content in skeletal muscle of arm and leg in patients with T2DM and obese control subjects. Patients: Ten patients with T2DM (age, 52.3 +/- 2.7 yr; body mass index, 30.1 +/- 1.2 kg/m(2)) (mean +/- se) were studied after a 2-wk washout period of oral antihyperglycemic...... agents. Ten control subjects (age, 54.3 +/- 2.8 yr; body mass index, 30.4 +/- 1.2 kg/m(2)) with normal fasting and 2-h oral glucose tolerance test blood glucose levels were also included. Main Outcome Measure: We measured mitochondrial respiration in saponin-treated skinned muscle fibers from biopsies...

  17. Effects of experimental warming and nitrogen addition on soil respiration and CH4 fluxes from crop rotations of winter wheat–soybean/fallow

    Liu, L; Hu, C; Yang, P

    2015-01-01

    Soil respiration and CH4 emissions play a significant role in the global carbon balance. However, in situ studies in agricultural soils on responses of soil respiration and CH4 fluxes to climate warming are still sparse, especially from long-term studies with year-round heating. A warming...... by affecting soil NH4 concentration. Across years, CH4 emissions were negatively correlated with soil temperature in N1 treatment. Soil respiration showed clear seasonal fluctuations, with the largest emissions during summer and smallest in winter. Warming and nitrogen fertilization had no significant effects...... on total cumulative soil CO2 fluxes. Soil respiration was positively correlated with microbial biomass C, and microbial biomass C was not affected significantly by warming or nitrogen addition. The lack of significant effects of warming on soil respiration may have resulted from: (1) warming-induced soil...

  18. State of the art in monitoring respirable mine aerosols

    Volkwein, J.C.; Mischler, S.E.; Thimons, E.D.; Timko, R.J.; Kissell, F.N.

    2005-07-01

    The Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH) has been developing several new tools to help miners monitor respirable coal dust, silica, and diesel particulate matter. This paper discusses three main topics. First, the latest results of the person wearable dust monitor (PDM), developed by Rupprecht and Patashnick under CDC contract. The PDM was tested side by side with conventional samplers at a number of US coal mines and results indicated that the PDM was comparable to conventional samplers. Second, improvements to the Dust Dosimeter monitoring technique that includes a new pump with built in pressure transducer and algorithm to convert differential pressure to dust concentration have shown good precision. Third, advances in the use of the detector tube technique to monitor tailpipe diesel emissions and ambient diesel particulate matter show that strong correlations exist between differential pressure measurement and elemental carbon in the samplers. 3 figs.

  19. [Effects of simulated acid rain on respiration rate of cropland system with different soil pH].

    Zhu, Xue-zhu; Zhang, Gao-chuan; Li, Hui

    2009-10-15

    To evaluate the effects of acid rain on the respiration rate of cropland system, an outdoor pot experiment was conducted with paddy soils of pH 5.48 (S1), pH 6.70 (S1) and pH 8.18 (S3) during the 2005-2007 wheat-growing seasons. The cropland system was exposed to acid rain by spraying the wheat foliage and irrigating the soil with simulated rainwater of T1 (pH 6.0), T2 (pH 6.0, ionic concentration was twice as rainwater T1), and T3 (pH 4.4, ionic concentration was twice as rainwater T1), respectively. The static opaque chamber-gas chromatograph method was used to measure CO2 fluxes from cropland system. The results showed that acid rain affected the respiration rate of cropland system through crop plant, and the cropland system could adapt to acid rain. Acid rainwater significantly increased the average respiration rate in alkaline soil (S3) cropland system, while it had no significant effects on the average respiration rate in neutral soil (S2) and acidic soil (S1) cropland systems. During 2005-2006, after the alkaline soil cropland system was treated with rainwater T3, the average respiration rate was 23.6% and 27.6% higher than that of alkaline soil cropland system treated with rainwater T1 and T2, respectively. During March to April, the respiration rate was enhanced with the increase of rainwater ionic concentration, while it was dropped with the decrease of rainwater pH value in acidic soil cropland system. It was demonstrated that soil pH and crop plant played important roles on the respiration rate of cropland system.

  20. Sequencing analysis of ghrelin gene 5' flanking region: relations between the sequence variants, fasting plasma total ghrelin concentrations, and body mass index.

    Vartiainen, Johanna; Kesäniemi, Y Antero; Ukkola, Olavi

    2006-10-01

    Ghrelin is a 28-amino-acid peptide with several functions linked to energy metabolism. Low ghrelin plasma concentrations are associated with obesity, hypertension, and type 2 diabetes mellitus, whereas high concentrations reflect states of negative energy balance. Several studies addressing the hormonal and neural regulation of ghrelin gene expression have been carried out, but the role of genetic factors in the regulation of ghrelin plasma levels remains unclear. To elucidate the role of genetic factors in the regulation of ghrelin expression, we screened 1657 nucleotides of the ghrelin gene 5' flanking region (promoter and possible regulatory sites) for new sequential variations from patient samples with low (n = 50) and high (n = 50) fasting plasma total ghrelin concentrations (low- and high-ghrelin groups). Eleven single nucleotide polymorphisms (SNPs), 3 of which were rare variants (allelic frequency less than 1%) were found in our population. The genotype distribution patterns of the SNPs did not differ between the study groups, except for SNP-501A>C (P = .039). In addition, the SNP-01A>C was associated with body mass index (BMI) (P = .018). This variant was studied further in our large and well-defined Oulu Project Elucidating Risk for Atherosclerosis (OPERA) cohort (n = 1045) by the restriction fragment length polymorphism (RFLP) technique. No significant association of SNP-501A>C genotypes with fasting ghrelin plasma concentrations was found in the whole OPERA population. However, the association of this SNP with BMI and with waist circumference reached statistical significance in OPERA (P = .047 and .049, respectively), remaining of borderline significance for BMI after adjustments (P = .055). The results indicate that factors other than the 11 SNPs found in this study in the 5' flanking region of ghrelin gene are the main determinants of ghrelin plasma levels. However, SNP-501 A>C genotype distribution seems to be different in subjects having the highest

  1. Stability Performance of Inductively Coupled Plasma Mass Spectrometry-Phenotyped Kernel Minerals Concentration and Grain Yield in Maize in Different Agro-Climatic Zones.

    Mallikarjuna, Mallana Gowdra; Thirunavukkarasu, Nepolean; Hossain, Firoz; Bhat, Jayant S; Jha, Shailendra K; Rathore, Abhishek; Agrawal, Pawan Kumar; Pattanayak, Arunava; Reddy, Sokka S; Gularia, Satish Kumar; Singh, Anju Mahendru; Manjaiah, Kanchikeri Math; Gupta, Hari Shanker

    2015-01-01

    Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS) revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg(-1); zinc: 5.41 to 30.85 mg kg(-1); manganese: 3.30 to 17.73 mg kg(-1); copper: 0.53 to 5.48 mg kg(-1)) and grain yield (826.6 to 5413 kg ha(-1)). Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%), manganese (41.34%) and copper (41.12%), and environment main effects for both kernel zinc (40.5%) and grain yield (37.0%). Genotype main effect plus genotype-by-environment interaction (GGE) biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV) as the better representative of the AMMI stability parameters. Dynamic stability parameter GGE distance (GGED) showed strong and positive correlation with both mean kernel concentrations and grain yield. Inbreds (CM-501, SKV-775, HUZM-185) identified from the present investigation will be useful in

  2. Stability Performance of Inductively Coupled Plasma Mass Spectrometry-Phenotyped Kernel Minerals Concentration and Grain Yield in Maize in Different Agro-Climatic Zones.

    Mallana Gowdra Mallikarjuna

    Full Text Available Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg(-1; zinc: 5.41 to 30.85 mg kg(-1; manganese: 3.30 to 17.73 mg kg(-1; copper: 0.53 to 5.48 mg kg(-1 and grain yield (826.6 to 5413 kg ha(-1. Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p < 0.05 and across locations (r = 0.44, p < 0.01. Variance components of the additive main effects and multiplicative interactions (AMMI model showed significant genotype and genotype × environment interaction for kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%, manganese (41.34% and copper (41.12%, and environment main effects for both kernel zinc (40.5% and grain yield (37.0%. Genotype main effect plus genotype-by-environment interaction (GGE biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV as the better representative of the AMMI stability parameters. Dynamic stability

  3. Effect of body size and temperature on respiration of Galaxias maculatus (Pisces: Galaxiidae)

    Milano, D.; Vigliano, P.H.; Beauchamp, David A.

    2017-01-01

    Body mass and temperature are primary determinants of metabolic rate in ectothermic animals. Oxygen consumption of post-larval Galaxias maculatus was measured in respirometry trials under different temperatures (5–21°C) and varying body masses (0.1–>1.5 g) spanning a relevant range of thermal conditions and sizes. Specific respiration rates (R in g O2 g−1 d−1) declined as a power function of body mass and increased exponentially with temperature and was expressed as: R = 0.0007 * W −0.31 * e 0.13 * T. The ability of this model to predict specific respiration rate was evaluated by comparing observed values with those predicted by the model. Our findings suggest that the respiration rate of G. maculatus is the result of multiple interactive processes (intrinsic and extrinsic factors) that modulate each other in ‘meta-mechanistic’ ways; this would help to explain the species’ ability to undergo the complex ontogenetic habitat shifts observed in the lakes of the Andean Patagonic range.

  4. Investigation of the CCN Activity, BC and UVBC Mass Concentrations of Biomass Burning Aerosols during the 2013 BASELInE Campaign

    Hsiao, Ta-Chih; Ye, Wei-Cheng; Wang, Sheng-Hsiang; Tsay, Si-Chee; Chen, Wei-Nai; Lin, Neng-Huei; Lee, Chung-Te; Hung, Hui-Ming; Chuang, Ming-Tung; Chantara, Somporn

    2015-01-01

    Biomass-burning (BB) aerosols, acting as cloud condensation nuclei (CCN), can influence cloud microphysical and radiative properties. In this study, we present CCN measured near the BB source regions over northern Southeast Asia (Doi Ang Khang, Thailand) and at downwind receptor areas (Lulin Atmospheric Background Station, Taiwan), focusing exclusively on 13-20 March 2013 as part of 2013 spring campaign of the Seven SouthEast Asian Studies (7-SEAS) intensive observation. One of the campaigns objectives is to characterize BB aerosols serving as CCN in SouthEast Asia (SEA). CCN concentrations were measured by a CCN counter at 5 supersaturation (SS) levels: 0.15%, 0.30%, 0.45%, 0.60%, and 0.75%. In addition, PM2.5 and black carbon mass concentrations were analyzed by using a tapered element oscillating microbalance and an aethalometer. It was found the number-size distributions and the characteristics of hygroscopicity (e.g., activation ratio and k) of BB aerosols in SEA have a strong diurnal pattern, and different behaviors of patterns were characterized under two distinct weather systems. The overall average value was low (0.05-0.1) but comparable with previous CCN studies in other BB source regions. Furthermore, a large fraction of UV-absorbing organic material (UVBC) and high Delta-C among BB aerosols were also observed, which suggest the existence of substantial particulate organic matter in fresh BB aerosols. These data provide the most extensive characterization of BB aerosols in SEA until now.

  5. On the water-soluble organic nitrogen concentration and mass size distribution during the fog season in the Po Valley, Italy.

    Montero-Martínez, Guillermo; Rinaldi, Matteo; Gilardoni, Stefania; Giulianelli, Lara; Paglione, Marco; Decesari, Stefano; Fuzzi, Sandro; Facchini, Maria Cristina

    2014-07-01

    The study of organic nitrogen gained importance in recent decades due to its links with acid rain, pollution, and eutrophication. In this study, aerosol and fog water samples collected from two sites in Italy during November 2011 were analyzed to characterize their organic nitrogen content. Organic nitrogen contributed 19-25% of the total soluble nitrogen in the aerosol and around 13% in fog water. The largest water soluble organic nitrogen concentrations in the PM1.2 fraction occurred during the diurnal period with mean values of 2.03 and 2.16 μg-N m(-3) (154 and 145 nmol-N m(-3)) at Bologna and San Pietro Capofiume (SPC), respectively. The mean PM10 WSON concentration during diurnal periods at SPC was 2.30 μg-N m(-3) (164 nmol-N m(-3)) while it was 1.34 and 0.82 μg-N m(-3) (95.7 and 58.5 nmol-N m(-3)) in the night and fog water samples, respectively. Aerosol mass distribution profiles obtained during fog changed significantly with respect to those estimated in periods without fog periods due to fog scavenging, which proved to be over 80% efficient. Linear correlations suggested secondary processes related to combustion and, to a lesser extent, biomass burning, as plausible sources of WSON. Regarding the inorganic nitrogen fraction, the results showed that ammonium was the largest soluble inorganic nitrogen component in the samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Thoracic and respirable particle definitions for human health risk assessment.

    Brown, James S; Gordon, Terry; Price, Owen; Asgharian, Bahman

    2013-04-10

    Particle size-selective sampling refers to the collection of particles of varying sizes that potentially reach and adversely affect specific regions of the respiratory tract. Thoracic and respirable fractions are defined as the fraction of inhaled particles capable of passing beyond the larynx and ciliated airways, respectively, during inhalation. In an attempt to afford greater protection to exposed individuals, current size-selective sampling criteria overestimate the population means of particle penetration into regions of the lower respiratory tract. The purpose of our analyses was to provide estimates of the thoracic and respirable fractions for adults and children during typical activities with both nasal and oral inhalation, that may be used in the design of experimental studies and interpretation of health effects evidence. We estimated the fraction of inhaled particles (0.5-20 μm aerodynamic diameter) penetrating beyond the larynx (based on experimental data) and ciliated airways (based on a mathematical model) for an adult male, adult female, and a 10 yr old child during typical daily activities and breathing patterns. Our estimates show less penetration of coarse particulate matter into the thoracic and gas exchange regions of the respiratory tract than current size-selective criteria. Of the parameters we evaluated, particle penetration into the lower respiratory tract was most dependent on route of breathing. For typical activity levels and breathing habits, we estimated a 50% cut-size for the thoracic fraction at an aerodynamic diameter of around 3 μm in adults and 5 μm in children, whereas current ambient and occupational criteria suggest a 50% cut-size of 10 μm. By design, current size-selective sample criteria overestimate the mass of particles generally expected to penetrate into the lower respiratory tract to provide protection for individuals who may breathe orally. We provide estimates of thoracic and respirable fractions for a variety of

  7. Permafrost collapse alters soil carbon stocks, respiration, CH4 , and N2O in upland tundra.

    Abbott, Benjamin W; Jones, Jeremy B

    2015-12-01

    Release of greenhouse gases from thawing permafrost is potentially the largest terrestrial feedback to climate change and one of the most likely to occur; however, estimates of its strength vary by a factor of thirty. Some of this uncertainty stems from abrupt thaw processes known as thermokarst (permafrost collapse due to ground ice melt), which alter controls on carbon and nitrogen cycling and expose organic matter from meters below the surface. Thermokarst may affect 20-50% of tundra uplands by the end of the century; however, little is known about the effect of different thermokarst morphologies on carbon and nitrogen release. We measured soil organic matter displacement, ecosystem respiration, and soil gas concentrations at 26 upland thermokarst features on the North Slope of Alaska. Features included the three most common upland thermokarst morphologies: active-layer detachment slides, thermo-erosion gullies, and retrogressive thaw slumps. We found that thermokarst morphology interacted with landscape parameters to determine both the initial displacement of organic matter and subsequent carbon and nitrogen cycling. The large proportion of ecosystem carbon exported off-site by slumps and slides resulted in decreased ecosystem respiration postfailure, while gullies removed a smaller portion of ecosystem carbon but strongly increased respiration and N2 O concentration. Elevated N2 O in gully soils persisted through most of the growing season, indicating sustained nitrification and denitrification in disturbed soils, representing a potential noncarbon permafrost climate feedback. While upland thermokarst formation did not substantially alter redox conditions within features, it redistributed organic matter into both oxic and anoxic environments. Across morphologies, residual organic matter cover, and predisturbance respiration explained 83% of the variation in respiration response. Consistent differences between upland thermokarst types may contribute to the

  8. The role of alternative cyanide-insensitive respiration in plants. Final report

    Raskin, Ilya

    1997-09-29

    This DOE funded research concentrated on the investigation of the role of respiration and oxidative stress in plant biology. Initially the authors concentrated on the possible role of cyanide-insensitive respiration in counteracting the deleterious effects of chilling stress. Although plants are considered to be poikilotherms, there are a few examples of thermogenesis, in which the tissue temperature increases well above ambient. They suggested that differences between thermogenic and non-thermogenic plants may be quantitative rather than qualitative, and that heat from increased respiration may have a local protective effect on the mitochondria, slowing or reducing the effects of chilling. They proposed that this is accomplished by a large increase in respiration, predominantly via the alternative pathway. They measured the increases in respiration, particularly via the alternative pathway, in response to chilling. They have also quantified the associated increases in heat evolution in response to chilling in a number of plant species using a microcalorimeter. For example, after 8 h exposure to 8 C, heat evolution in chilling-sensitive species increased 47--98%, compared to 7--22% for the chilling-resistant species. No increase in heat evolution was observed in the extremely chilling-sensitive ornamental Episcka cupreata (Hook). Increases in heat evolution were observed when plants were chilled in constant light or in the dark, but not when plants were chilled at high humidity. Heat evolution by mitochondria isolated from potato tuber slices were also measured. These values, together with measurements of the heat capacity of isolated mitochondria and counting of the mitochondria by flow cytometry, allow calculation of theoretical maximal rates of heating and the heat produced per mitochondrion. The obtained data was consistent with the protective role of respiratory heat production in cold-stressed plants.

  9. Relationships between root respiration rate and root morphology, chemistry and anatomy in Larix gmelinii and Fraxinus mandshurica.

    Jia, Shuxia; McLaughlin, Neil B; Gu, Jiacun; Li, Xingpeng; Wang, Zhengquan

    2013-06-01

    Tree roots are highly heterogeneous in form and function. Previous studies revealed that fine root respiration was related to root morphology, tissue nitrogen (N) concentration and temperature, and varied with both soil depth and season. The underlying mechanisms governing the relationship between root respiration and root morphology, chemistry and anatomy along the root branch order have not been addressed. Here, we examined these relationships of the first- to fifth-order roots for near surface roots (0-10 cm) of 22-year-old larch (Larix gmelinii L.) and ash (Fraxinus mandshurica L.) plantations. Root respiration rate at 18 °C was measured by gas phase O2 electrodes across the first five branching order roots (the distal roots numbered as first order) at three times of the year. Root parameters of root diameter, specific root length (SRL), tissue N concentration, total non-structural carbohydrates (starch and soluble sugar) concentration (TNC), cortical thickness and stele diameter were also measured concurrently. With increasing root order, root diameter, TNC and the ratio of root TNC to tissue N concentration increased, while the SRL, tissue N concentration and cortical proportion decreased. Root respiration rate also monotonically decreased with increasing root order in both species. Cortical tissue (including exodermis, cortical parenchyma and endodermis) was present in the first three order roots, and cross sections of the cortex for the first-order root accounted for 68% (larch) and 86% (ash) of the total cross section of the root. Root respiration was closely related to root traits such as diameter, SRL, tissue N concentration, root TNC : tissue N ratio and stele-to-root diameter proportion among the first five orders, which explained up to 81-94% of variation in the rate of root respiration for larch and up to 83-93% for ash. These results suggest that the systematic variations of root respiration rate within tree fine root system are possibly due to the

  10. Boundary layer aerosol size distribution, mass concentration and mineralogical composition in Morocco and at Cape Verde Islands during SAMUM I-II

    Kandler, K.; Lieke, K.

    2009-04-01

    The Saharan Mineral Dust Experiment (SAMUM) is dedicated to the understanding of the radiative effects of mineral dust. Two major field experiments were performed: A first joint field campaign took place at Ouarzazate and near Zagora, southern Morocco, from May 13 to June 7, 2006. Aircraft and ground based measurements of aerosol physical and chemical properties were carried out to collect a data set of surface and atmospheric columnar information within a major dust source. This data set combined with satellite data provides the base of the first thorough columnar radiative closure tests in Saharan dust. A second field experiment was conducted during January-February 2008, in the Cape Verde Islands region, where about 300 Tg of mineral dust are transported annually from Western Africa across the Atlantic towards the Caribbean Sea and the Amazon basin. Along its transport path, the mineral dust is expected to influence significantly the radiation budget - by direct and indirect effects - of the subtropical North Atlantic. We are lacking a radiative closure in the Saharan air plume. One focus of the investigation within the trade wind region is the spatial distribution of mixed dust/biomass/sea salt aerosol and their physical and chemical properties, especially with regard to radiative effects. We report on measurements of size distributions, mass concentrations and mineralogical composition conducted at the Zagora (Morocco) and Praia (Cape Verde islands) ground stations. The aerosol size distribution was measured from 20 nm to 500

  11. Comparison of dialysis and solid-phase extraction for isolation and concentration of dissolved organic matter prior to Fourier transform ion cyclotron resonance mass spectrometry

    Tfaily, Malak M.; Cooper, William T. [Florida State University, Department of Chemistry and Biochemistry, Tallahassee, FL (United States); Hodgkins, Suzanne; Chanton, Jeffrey P. [Florida State University, Department of Earth, Ocean and Atmospheric Science, Tallahassee, FL (United States); Podgorski, David C. [Florida State University, Department of Chemistry and Biochemistry, Tallahassee, FL (United States); Florida State University, National High Magnetic Field Laboratory, Tallahassee, FL (United States)

    2012-08-15

    We compare two methods, solid-phase extraction (SPE) and dialysis, commonly used for extraction and concentration of dissolved organic matter (DOM) prior to molecular characterization by electrospray ionization (ESI) and ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. Spectra of DOM samples from Minnesota and Sweden peatlands that were extracted with styrene divinyl benzene polymer SPE sorbents included ions with formulas that had higher oxygen to carbon (O/C) ratios than spectra of DOM from the same samples after de-salting by dialysis. The SPE method was not very effective in extracting several major classes of DOM compounds that had high ESI efficiencies, including carboxylic acids and organo-sulfur compounds, and that out-competed other less-functionalized compounds (e.g., carbohydrates) for charge in the ESI source. The large abundance of carboxylic acids in the dialysisextracted DOM, likely the result of in situ microbial production, makes it difficult to see other (mainly hydrophilic) compounds with high O/C ratios. Our results indicate that, while dialysis is generally preferable for the isolation of DOM, for samples with high microbial inputs, the use of both isolation methods is recommended for a more accurate molecular representation. (orig.)

  12. Detection, concentrations and distribution of paxilline, an animal neurotoxin, in mouse brain: an application of ultra-high sensitivity detection of 14C by accelerator mass spectrometry

    Roberts, P.B.; Kim, K.

    1999-01-01

    Full text: Paxilline is an intermediate in the biosynthesis of lolitrem neurotoxins that cause the disorder rye grass staggers in livestock grazing on pastures infected with certain fungi. Paxilline itself produces similar symptoms and the 14 C-labelled compound has been produced bio-synthetically at low specific activity. Using conventional liquid scintillation counting it was not possible to detect the labelled compound in the brain of mice sacrificed at the time they displayed physiological symptoms. Accelerator mass spectrometry (AMS) counts 14 C atoms, not decays, and provides sensitivity 10,000-100,000 times greater than conventional scintillation counting of radioactive decays. Measurements are easily obtained at the level of the natural abundance of 14 C in living tissue of 6fCi or 10 -16 moles 14 C per mg total carbon. Extraction of the labelled compound from the tissue is unnecessary and sample size can be 0.01-10mg. Paxilline (8mg/kg ip) was given to 25g mice. The total activity injected was 11,000 dpm though the results showed that 1,000dpm would have been sufficient. The concentration of paxilline in homogenised whole brain was determined to be 985 pg or 0.0075 dpm mg dry tissue. The concentration in the major brain segments ranged from 893-1137 pgmg dry tissue. The spinal cord contained 719 pg/mg dry tissue. Our results suggest that toxicologists and pharmacologists should consider what new information may be obtained by combining tracer studies with the power of AMS detection. The AMS method makes possible great reductions in the amount of label and sample sizes, plus wider ranges in concentration/time course studies. In particular, it opens up new possibilities such as: studies at true dietary or environmental levels; tracer studies in large animal or plant systems; field trials; human studies where radiation dose must be considered; and studies with compounds that can only be synthesised with low specific activity. Copyright (1999) Australasian

  13. Partitioning of ecosystem respiration in a beech forest

    Brændholt, Andreas; Ibrom, Andreas; Larsen, Klaus Steenberg

    2018-01-01

    Terrestrial ecosystem respiration (Reco) represents a major component of the global carbon cycle. It consists of many sub-components, such as aboveground plant respiration and belowground root and microbial respiration, each of which may respond differently to abiotic factors, and thus to global...... of Reco in a temperate beech forest at diel, seasonal and annual time scales. Reco was measured by eddy covariance while respiration rates from soil, tree stems and isolated coarse tree roots were measured bi-hourly by an automated closed-chamber system. Soil respiration (Rsoil) was measured in intact...... plots, and heterotrophic Rsoil was measured in trenched plots. Tree stem (Rstem) and coarse root (Rroot) respiration were measured by custom made closed-chambers. We found that the contribution of Rstem to total Reco varied across the year, by only accounting for 6% of Reco during winter and 16% during...

  14. Pulmonary epithelial response in the rat lung to instilled Montserrat respirable dusts and their major mineral components.

    Housley, D G; Bérubé, K A; Jones, T P; Anderson, S; Pooley, F D; Richards, R J

    2002-07-01

    The Soufriere Hills, a stratovolcano on Montserrat, started erupting in July 1995, producing volcanic ash, both from dome collapse pyroclastic flows and phreatic explosions. The eruptions/ash resuspension result in high concentrations of suspended particulate matter in the atmosphere, which includes cristobalite, a mineral implicated in respiratory disorders. To conduct toxicological studies on characterised samples of ash, together with major components of the dust mixture (anorthite, cristobalite), and a bioreactive mineral control (DQ12 quartz). Rats were challenged with a single mass (1 mg) dose of particles via intratracheal instillation and groups sacrificed at one, three, and nine weeks. Acute bioreactivity of the particles was assessed by increases in lung permeability and inflammation, changes in epithelial cell markers, and increase in the size of bronchothoracic lymph nodes. Data indicated that respirable ash derived from pyroclastic flows (20.1% cristobalite) or phreatic explosion (8.6% cristobalite) had minimal bioreactivity in the lung. Anorthite showed low bioreactivity, in contrast to pure cristobalite, which showed progressive increases in lung damage. Results suggests that either the percentage mass of cristobalite particles present in Montserrat ash was not sufficient as a catalyst in the lung environment, or its surface reactivity was masked by the non-reactive volcanic glass components during the process of ash formation.

  15. Characterizing concentrations of diethylene glycol and suspected metabolites in human serum, urine, and cerebrospinal fluid samples from the Panama DEG mass poisoning.

    Schier, J G; Hunt, D R; Perala, A; McMartin, K E; Bartels, M J; Lewis, L S; McGeehin, M A; Flanders, W D

    2013-12-01

    Diethylene glycol (DEG) mass poisoning is a persistent public health problem. Unfortunately, there are no human biological data on DEG and its suspected metabolites in poisoning. If present and associated with poisoning, the evidence for use of traditional therapies such as fomepizole and/or hemodialysis would be much stronger. To characterize DEG and its metabolites in stored serum, urine, and cerebrospinal fluid (CSF) specimens obtained from human DEG poisoning victims enrolled in a 2006 case-control study. In the 2006 study, biological samples from persons enrolled in a case-control study (42 cases with new-onset, unexplained AKI and 140 age-, sex-, and admission date-matched controls without AKI) were collected and shipped to the Centers for Disease Control and Prevention (CDC) in Atlanta for various analyses and were then frozen in storage. For this study, when sufficient volume of the original specimen remained, the following analytes were quantitatively measured in serum, urine, and CSF: DEG, 2-hydroxyethoxyacetic acid (HEAA), diglycolic acid, ethylene glycol, glycolic acid, and oxalic acid. Analytes were measured using low resolution GC/MS, descriptive statistics calculated and case results compared with controls when appropriate. Specimens were de-identified so previously collected demographic, exposure, and health data were not available. The Wilcoxon Rank Sum test (with exact p-values) and bivariable exact logistic regression were used in SAS v9.2 for data analysis. The following samples were analyzed: serum, 20 case, and 20 controls; urine, 11 case and 22 controls; and CSF, 11 samples from 10 cases and no controls. Diglycolic acid was detected in all case serum samples (median, 40.7 mcg/mL; range, 22.6-75.2) and no controls, and in all case urine samples (median, 28.7 mcg/mL; range, 14-118.4) and only five (23%) controls (median, urine diglycolic acid (both OR > 999; exact p sample results were excluded and two from the same case were averaged, yielding

  16. Tillage Effects on Soil Properties & Respiration

    Rusu, Teodor; Bogdan, Ileana; Moraru, Paula; Pop, Adrian; Duda, Bogdan; Cacovean, Horea; Coste, Camelia

    2015-04-01

    Soil tillage systems can be able to influence soil compaction, water dynamics, soil temperature and soil structural condition. These processes can be expressed as changes of soil microbiological activity, soil respiration and sustainability of agriculture. Objectives of this study were: 1) to assess the effects of tillage systems (Conventional System-CS, Minimum Tillage-MT, No-Tillage-NT) on soil compaction, soil temperature, soil moisture and soil respiration and 2) to establish the relationship that exists in changing soil properties. Three treatments were installed: CS-plough + disc; MT-paraplow + rotary grape; NT-direct sowing. The study was conducted on an Argic-Stagnic Faeoziom. The MT and NT applications reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first year of application. The degree of compaction is directly related to soil type and its state of degradation. The state of soil compaction diminished over time, tending toward a specific type of soil density. Soil moisture was higher in NT and MT at the time of sowing and in the early stages of vegetation and differences diminished over time. Moisture determinations showed statistically significant differences. The MT and NT applications reduced the thermal amplitude in the first 15 cm of soil depth and increased the soil temperature by 0.5-2.20C. The determinations confirm the effect of soil tillage system on soil respiration; the daily average was lower at NT (315-1914 mmoli m-2s-1) and followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Comparing with CS, all the two conservation tillage measures decreased soil respiration, with the best effects of no-tillage. An exceeding amount of CO2 produced in the soil and released into the atmosphere, resulting from aerobic processes of mineralization of organic matter (excessive loosening) is considered to be not only a way of increasing the CO2 in the atmosphere, but also a loss of

  17. Maintenance, endogeneous, respiration, lysis, decay and predation

    loosdrecht, Marc C. M. Van; Henze, Mogens

    1999-01-01

    mechanism is microbiologically correct. The lysis/decay model mechanism is a strongly simplified representation of reality. This paper tries to review the processes grouped under endogenous respiration in activated sludge models. Mechanisms and processes such as maintenance, lysis, internal and external...... decay, predation and death-regeneration are discussed. From recent microbial research it has become evident that cells do not die by themselves. Bacteria are however subject to predation by protozoa. Bacteria store reserve polymers that in absence of external substrate are used for growth...

  18. Stem respiration of Populus species in the third year of free-air CO2 enrichment.

    Gielen, Birgit; Scarascia-Mugnozza, Giuseppe; Ceulemans, Reinhart

    2003-04-01

    Carbon cycling in ecosystems, and especially in forests, is intensively studied to predict the effects of global climate change, and the role which forests may play in 'changing climate change'. One of the questions is whether the carbon balance of forests will be affected by increasing atmospheric CO2 concentrations. Regarding this question, effects of elevated [CO2] on woody-tissue respiration have frequently been neglected. Stem respiration of three Populus species (P. alba L. (Clone 2AS-11), P. nigra L. (Clone Jean Pourtet), and P. x euramericana (Clone I-214)) was measured in a managed, high-density forest plantation exposed to free-air CO2 enrichment (POPFACE). During the period of measurements, in May of the third year, stem respiration rates were not affected by the FACE treatment. Moreover, FACE did not influence the relationships between respiration rate and both stem temperature and relative growth rate. The results were supported by the reported absence of a FACE-effect on growth and stem wood density.

  19. Lipid peroxidation and cytotoxicity induced by respirable volcanic ash

    Cervini-Silva, Javiera, E-mail: jcervini@correo.cua.uam.mx [Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana Unidad Cuajimalpa, México City (Mexico); Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Nieto-Camacho, Antonio [Laboratorio de Pruebas Biológicas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City (Mexico); Gomez-Vidales, Virginia [Laboratorio de Resonancia Paramagnética Electrónica, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City (Mexico); Ramirez-Apan, María Teresa [Laboratorio de Pruebas Biológicas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City (Mexico); Palacios, Eduardo; Montoya, Ascención [Dirección de Investigación y Posgrado, Instituto Mexicano del Petróleo (Mexico); Kaufhold, Stephan [BGR Bundesansaltfür Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover (Germany); and others

    2014-06-01

    Highlights: • Respirable volcanic ash induces oxidative degradation of lipids in cell membranes. • Respirable volcanic ash triggers cytotoxicity in murin monocyle/macrophage cells. • Oxidative stress is surface controlled but not restricted by surface- Fe{sup 3+}. • Surface Fe{sup 3+} acts as a stronger inductor in allophanes vs phyllosilicates or oxides. • Registered cell-viability values were as low as 68.5 ± 6.7%. - Abstract: This paper reports that the main component of respirable volcanic ash, allophane, induces lipid peroxidation (LP), the oxidative degradation of lipids in cell membranes, and cytotoxicity in murin monocyle/macrophage cells. Naturally-occurring allophane collected from New Zealand, Japan, and Ecuador was studied. The quantification of LP was conducted using the Thiobarbituric Acid Reactive Substances (TBARS) assay. The cytotoxic effect was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide colorimetric assay. Electron-Paramagnetic Resonance (EPR) determinations of naturally-occurring allophane confirmed the incorporation in the structure and clustering of structural Fe{sup 3+}, and nucleation and growth of small-sized Fe (oxyhydr)oxide or gibbsite. LP induced by allophane varied with time, and solid concentration and composition, reaching 6.7 ± 0.2 nmol TBARS mg prot{sup −1}. LP was surface controlled but not restricted by structural or surface-bound Fe{sup 3+}, because redox processes induced by soluble components other than perferryl iron. The reactivity of Fe{sup 3+} soluble species stemming from surface-bound Fe{sup 3+} or small-sized Fe{sup 3+} refractory minerals in allophane surpassed that of structural Fe{sup 3+} located in tetrahedral or octahedral sites of phyllosilicates or bulk iron oxides. Desferrioxamine B mesylate salt (DFOB) or ethylenediaminetetraacetic acid (EDTA) inhibited LP. EDTA acted as a more effective inhibitor, explained by multiple electron transfer pathways. Registered cell

  20. Development of an Advanced Respirator Fit Test Headform (Postprint)

    2012-11-01

    N95 filtering facepiece respirators (FFRs) for pro - tection studies against viable airborne particles. A Static (i.e., non-moving, non-speaking...requiredto wear respirators to reduce their exposure to air- borne hazards.(1) The U.S. Occupational Safety and Health Administration ( OSHA ) Respiratory...13 workplace protection factors.(9,10). Inward leakage (IL) of con - taminants into a respirator facepiece has been described as a combination of

  1. Soil Respiration under Different Land Uses in Eastern China

    Fan, Li-Chao; Yang, Ming-Zhen; Han, Wen-Yan

    2015-01-01

    Land-use change has a crucial influence on soil respiration, which further affects soil nutrient availability and carbon stock. We monitored soil respiration rates under different land-use types (tea gardens with three production levels, adjacent woodland, and a vegetable field) in Eastern China at weekly intervals over a year using the dynamic closed chamber method. The relationship between soil respiration and environmental factors was also evaluated. The soil respiration rate exhibited a remarkable single peak that was highest in July/August and lowest in January. The annual cumulative respiration flux increased by 25.6% and 20.9% in the tea garden with high production (HP) and the vegetable field (VF), respectively, relative to woodland (WL). However, no significant differences were observed between tea gardens with medium production (MP), low production (LP), WL, and VF. Soil respiration rates were significantly and positively correlated with organic carbon, total nitrogen, and available phosphorous content. Each site displayed a significant exponential relationship between soil respiration and soil temperature measured at 5 cm depth, which explained 84–98% of the variation in soil respiration. The model with a combination of soil temperature and moisture was better at predicting the temporal variation of soil respiration rate than the single temperature model for all sites. Q10 was 2.40, 2.00, and 1.86–1.98 for VF, WL, and tea gardens, respectively, indicating that converting WL to VF increased and converting to tea gardens decreased the sensitivity of soil respiration to temperature. The equation of the multiple linear regression showed that identical factors, including soil organic carbon (SOC), soil water content (SWC), pH, and water soluble aluminum (WSAl), drove the changes in soil respiration and Q10 after conversion of land use. Temporal variations of soil respiration were mainly controlled by soil temperature, whereas spatial variations were

  2. Polyethylenimine-mediated impairment of mitochondrial membrane potential, respiration and membrane integrity

    Larsen, Anna Karina; Malinska, Dominika; Koszela-Piotrowska, Izabela

    2012-01-01

    The 25 kDa branched polyethylenimine (PEI) is a highly efficient synthetic polycation used in transfection protocols, but also triggers mitochondrial-mediated apoptotic cell death processes where the mechanistic issues are poorly understood. We now demonstrate that PEI in a concentration- and time......-dependent manner can affect functions (membrane potential, swelling and respiration) and ultrastructural integrity of freshly isolated rat liver mitochondria. The threshold concentration for detection of PEI-mediated impairment of rat liver mitochondrial functions is 3 µg/mL, however, lower PEI levels still exert...... some effects on mitochondrial morphology and respiration, and these may be related to the inherent membrane perturbing properties of this polycation. The PEI-mediated mitochondrial swelling phase is biphasic, with a fast decaying initial period (most prominent from 4 µg/mL PEI) followed by a slower...

  3. Exposure to carbon monoxide, respirable suspended particulates, and volatile organic compounds while commuting by bicycle

    Bevan, M.A.J.; Proctor, C.J.; Baker-Rogers, J.; Warren, N.D.

    1991-01-01

    A portable air sampling system has been used to assess exposures to various substances while commuting by bicycle in an urban area. The major source of pollutants in this situation is motor vehicle exhaust emissions. Carbon monoxide, measured by electrochemical detection, was found at peak concentrations in excess of 62 ppm, with mean values over 16 individual 35-mm journeys being 10.5 ppm. Respirable suspended particulates, averaged over each journey period, were found at higher concentrations (mean 130 μg m -3 ) than would be expected in indoor situations. Mean exposure to benzene (at 56 μg m -3 ) and other aromatic volatile organic compounds was also relatively high. The influence of wind conditions on exposure was found to be significant. Commuting exposures to carbon monoxide, respirable suspended particulates, and aromatic VOCs were found to be higher than exposures in a busy high street and on common parkland

  4. Evaluation of respiration in compost landfill biocovers intended for methane oxidation

    Scheutz, Charlotte; Pedicone, Alessio; Pedersen, Gitte Bukh

    2011-01-01

    A low-cost alternative approach to reduce landfill gas (LFG) emissions is to integrate compost into the landfill cover design in order to establish a biocover that is optimized for biological oxidation of methane (CH4). A laboratory and field investigation was performed to quantify respiration...... in an experimental compost biocover in terms of oxygen (O2) consumption and carbon dioxide (CO2) production and emission rates. O2 consumption and CO2 production rates were measured in batch and column experiments containing compost sampled from a landfill biowindow at Fakse landfill in Denmark. Column gas...... concentration profiles were compared to field measurements. Column studies simulating compost respiration in the biowindow showed average CO2 production and O2 consumption rates of 107±14gm−2d−1 and 63±12gm−2d−1, respectively. Gas profiles from the columns showed elevated CO2 concentrations throughout...

  5. Contribution of root respiration to soil respiration in a C3/C4 mixed ...

    Unknown

    The linear regression relationship between soil respiration and root biomass was used to determine the .... 10 days, sieved 50 g soil samples were placed in a 100 ml beaker and a 250 ..... Comparatively, the method can take multi-samples by ...

  6. ESTIMATING ROOT RESPIRATION IN SPRUCE AND BEECH: DECREASES IN SOIL RESPIRATION FOLLOWING GIRDLING

    A study was undertaken to follow seasonal fluxes of CO2 from soil and to estimate the contribution of autotrophic (root + mycorrhizal) to total soil respiration (SR) in a mixed stand of European beech (Fagus sylvatica) and Norway spruce (Picea abies) near Freising, Germany. Matu...

  7. [The development of a respiration and temperature monitor].

    Du, X; Wu, B; Liu, Y; He, Q; Xiao, J

    2001-12-01

    This paper introduces the design of a monitoring system to measure the respiration and temperature of a body with an 8Xc196 single-chip microcomputer. This system can measure and display the respiration wave, respiration frequency and the body temperature in real-time with a liquid crystal display (LCD) and give an alarm when the parameters are beyond the normal scope. In addition, this device can provide a 24 hours trend graph of the respiration frequency and the body temperature parameters measured. Data can also be exchanged through serial communication interfaces (RS232) between the PC and the monitor.

  8. Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria

    Stams, A.J.; Oude Elferink, S.J.; Westermann, Peter

    2003-01-01

    Most types of anaerobic respiration are able to outcompete methanogenic consortia for common substrates if the respective electron acceptors are present in sufficient amounts. Furthermore, several products or intermediate compounds formed by anaerobic respiring bacteria are toxic to methanogenic...... consortia. Despite the potentially adverse effects, only few inorganic electron acceptors potentially utilizable for anaerobic respiration have been investigated with respect to negative interactions in anaerobic digesters. In this chapter we review competitive and inhibitory interactions between anaerobic...... respiring populations and methanogenic consortia in bioreactors. Due to the few studies in anaerobic digesters, many of our discussions are based upon studies of defined cultures or natural ecosystems...

  9. Characteristics of Ambient Black Carbon Mass and Size-Resolved Particle Number Concentrations during Corn Straw Open-Field Burning Episode Observations at a Rural Site in Southern Taiwan.

    Cheng, Yu-Hsiang; Yang, Li-Sing

    2016-07-08

    Information on the effect of open-field burning of agricultural residues on ambient black carbon (BC) mass and size-resolved particle number concentrations is scarce. In this study, to understand the effect of such open-field burning on short-term air quality, real-time variations of the BC mass and size-resolved particle number concentrations were monitored before and during a corn straw open-field burning episode at a rural site. Correlations between the BC mass and size-resolved particle number concentrations during the episode were investigated. Moreover, the particle number size distribution and absorption Ångström exponent were determined for obtaining the characteristics of aerosol emissions from the corn straw open-field burning. The results can be used to address public health concerns and as a reference for managing similar episodes of open-field burning of agricultural residues.

  10. Effect of Hyperglycemia on Mitochondrial Respiration in Type 2 Diabetes

    Rabøl, Rasmus; Højberg, Patricia M V; Almdal, Thomas

    2009-01-01

    AIM: Skeletal muscle mitochondrial content is reduced in type 2 diabetes mellitus (T2DM). Whether hyperglycemia inhibits mitochondrial biogenesis and/or function is unknown. This study examined the effect of different levels of glycemia on skeletal muscle mitochondrial function in patients with T2......DM. PATIENTS AND METHODS: Eleven patients with T2DM [9 males, 2 females; age, 52.8 +/- 2.5 yr (mean +/- se); body mass index, 30.2 +/- 1.1 kg/m(2)] in poor glycemic control were treated with insulin aspart and NPH insulin for a median period of 46 d (range, 31-59). Mitochondrial respiration...... and citrate synthase activity (a marker of mitochondrial content) were measured before and after treatment. Eleven healthy subjects (age, 53.3 +/- 2.7 yr; body mass index, 30.6 +/- 1.1 kg/m(2)) were included as controls. RESULTS: Hemoglobin A1c (9.1 +/- 0.5 to 7.5 +/- 0.3%; P

  11. The effect of 2,4-D and ABA on respiration of isolated mitochondria from maize coleoptiles

    Ewa Raczek

    2014-01-01

    Full Text Available The susceptibility of isolated maize mitochondria to the growth regulators: 2,4-dichlorophenoxyacetic acid (2,4-D and abscisic acid (ABA was studied. It was found that 2,4-D (a herbicide inhibits respiration in mitochondria, as do other herbicides or phenoxy-acids. In the entire range of concentrations used (10-3-10-9 M, 2,4-D introduced into the medium before the respiration reaction was begun, or during it, limited the intensity of succinate oxidation. It did not, however, markedly change phosphorylation properties. Uncoupling of oxidative phosphorylation took place only after preincubation of mitochondria with 2,4-D and was the result of the destruction of mitochondrial membranes. ABA (a growth inhibitor of plants caused a similar response in maize mitochondria. Preincubation of mitochondria with ABA lead to the uncoupling of oxidative phosphorylation. Whereas ABA introduced during respiration (state 4 respiration or before its onset, lowered the oxidative potential of mitochondria, it also changed the pattern of state 4-3-4 transition after addition of ADP (it was especially visible at high concentrations, which indicates that the coupling of oxidative phosphorylation with the respiratory chain has faltered. It seems that this negative effect of 2,4-D and ABA on respiration of isolated maize mitochondria is connected with the inhibitory effect of these growth regulators on the growth of maize coleoptiles. Interference in the organization mitochondrial membranes results in a lowered supply of ATP - a source of energy needed in elongation processes.

  12. New method of measuring lichen respiration: response of selected species to temperature, pH and sulphur dioxide

    Baddeley, M S; Ferry, B W; Finegan, E J

    1971-01-01

    The respiration of selected lichens and their response to temperature, pH and sulphur dioxide concentration were investigated in aqueous solution using an oxygen electrode. Respiration rates increased to a maximum at 40/sup 0/ C although some individual species showed variations from this general pattern. The optimal pH for respiration was found to be 4.2 except in Hypogymnia physodes (3.2) and Ramalina fastigiata (5.2). Sulfur dioxide at concentrations similar to those likely to be encountered in heavily polluted areas in nature had marked inhibitory effects of the respiration rate of all species investigated but as these variations did not entirely correspond to the tolerances of the species in the field some other factors must also be involved in the sensitivity of lichens to sulphur dioxide pollution. The advantages of using an oxygen electrode rather than manometric or other techniques in studies on the respiration rate of lichens are discussed. 29 references, 3 figures, 2 tables.

  13. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: A mass spectrometric and isotope labeling study

    Svensson, Jan; Bergman, Ann-Charlotte; Adamson, Ulf; Blombäck, Margareta; Wallén, Håkan; Jörneskog, Gun

    2012-01-01

    Highlights: ► Fibrinogen was incubated in vitro with glucose or aspirin. ► Acetylations and glycations were found at twelve lysine sites by mass spectrometry. ► The labeling by aspirin and glucose occurred dose-dependently. ► No competition between glucose and aspirin for binding to fibrinogen was found. -- Abstract: Aspirin may exert part of its antithrombotic effects through platelet-independent mechanisms. Diabetes is a condition in which the beneficial effects of aspirin are less prominent or absent – a phenomenon called “aspirin resistance”. We investigated whether acetylation and glycation occur at specific sites in fibrinogen and if competition between glucose and aspirin in binding to fibrinogen occurs. Our hypothesis was that such competition might be one explanation to “aspirin resistance” in diabetes. After incubation of fibrinogen in vitro with aspirin (0.8 mM, 24 h) or glucose (100 mM, 5–10 days), we found 12 modified sites with mass spectrometric techniques. Acetylations in the α-chain: αK191, αK208, αK224, αK429, αK457, αK539, αK562, in the β-chain: βK233, and in the γ-chain: γK170 and γK273. Glycations were found at βK133 and γK75, alternatively γK85. Notably, the lysine 539 is a site involved in FXIII-mediated cross-linking of fibrin. With isotope labeling in vitro, using [ 14 C-acetyl]salicylic acid and [ 14 C]glucose, a labeling of 0.013–0.084 and 0.12–0.5 mol of acetylated and glycated adduct/mol fibrinogen, respectively, was found for clinically (12.9–100 μM aspirin) and physiologically (2–8 mM glucose) relevant plasma concentrations. No competition between acetylation and glycation could be demonstrated. Thus, fibrinogen is acetylated at several lysine residues, some of which are involved in the cross-linking of fibrinogen. This may mechanistically explain why aspirin facilitates fibrin degradation. We find no support for the idea that glycation of fibrin(ogen) interferes with acetylation of

  14. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: A mass spectrometric and isotope labeling study

    Svensson, Jan, E-mail: jan.svensson@ki.se [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital (Solna), SE-171 76 Stockholm (Sweden); Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, SE-182 88 Stockholm (Sweden); Bergman, Ann-Charlotte [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital (Solna), SE-171 76 Stockholm (Sweden); Adamson, Ulf [Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, SE-182 88 Stockholm (Sweden); Blombaeck, Margareta [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital (Solna), SE-171 76 Stockholm (Sweden); Wallen, Hakan; Joerneskog, Gun [Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, SE-182 88 Stockholm (Sweden)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Fibrinogen was incubated in vitro with glucose or aspirin. Black-Right-Pointing-Pointer Acetylations and glycations were found at twelve lysine sites by mass spectrometry. Black-Right-Pointing-Pointer The labeling by aspirin and glucose occurred dose-dependently. Black-Right-Pointing-Pointer No competition between glucose and aspirin for binding to fibrinogen was found. -- Abstract: Aspirin may exert part of its antithrombotic effects through platelet-independent mechanisms. Diabetes is a condition in which the beneficial effects of aspirin are less prominent or absent - a phenomenon called 'aspirin resistance'. We investigated whether acetylation and glycation occur at specific sites in fibrinogen and if competition between glucose and aspirin in binding to fibrinogen occurs. Our hypothesis was that such competition might be one explanation to 'aspirin resistance' in diabetes. After incubation of fibrinogen in vitro with aspirin (0.8 mM, 24 h) or glucose (100 mM, 5-10 days), we found 12 modified sites with mass spectrometric techniques. Acetylations in the {alpha}-chain: {alpha}K191, {alpha}K208, {alpha}K224, {alpha}K429, {alpha}K457, {alpha}K539, {alpha}K562, in the {beta}-chain: {beta}K233, and in the {gamma}-chain: {gamma}K170 and {gamma}K273. Glycations were found at {beta}K133 and {gamma}K75, alternatively {gamma}K85. Notably, the lysine 539 is a site involved in FXIII-mediated cross-linking of fibrin. With isotope labeling in vitro, using [{sup 14}C-acetyl]salicylic acid and [{sup 14}C]glucose, a labeling of 0.013-0.084 and 0.12-0.5 mol of acetylated and glycated adduct/mol fibrinogen, respectively, was found for clinically (12.9-100 {mu}M aspirin) and physiologically (2-8 mM glucose) relevant plasma concentrations. No competition between acetylation and glycation could be demonstrated. Thus, fibrinogen is acetylated at several lysine residues, some of which are involved in the cross-linking of

  15. Respirator studies for the ERDA Division of Safety, Standards, and Compliance. Progress report, July 1, 1974--June 30, 1975

    Douglas, D.D.; Hack, A.L.; Davis, T.O.; Shafer, C.; Moore, T.O.; Richards, C.P.; Revoir, W.H.

    1976-08-01

    Major accomplishments during FY 1975 were the initiation of a respirator research program to investigate the physiological effects of wearing a respirator under stress, assisting ERDA contractors by providing information and training concerning respirator programs, quality assurance of respirators, and respirator applications. A newsletter of respirator developments for ERDA contractor personnel was published, and a Respirator Symposium was conducted

  16. Penetration of asbestos fibers in respirator filters

    Cheng, Yung-Sung; Pearson, S.D.; Rohrbacher, K.D.; Yeh, Hsu-Chi.

    1994-01-01

    Currently, the health risks associated with asbestos have restricted its use and created a growing asbestos abatement industry with a need for respirator filters that are effective for worker protection. The main purpose of this project is to determine the influence of fiber size, electrostatic charge, and flow rate on the penetration of asbestos fibers in respirator filter cartridges. The study includes four types of filters each tested at two flow rates: the AO-R57A, a dual cartridge HEPA filter tested at 16 and 42.5 L/min; the MSA-S, a dust and mist filter tested at 16 and 42.5 L/min; the MSA-A power filter tested at 32 and 85 L/min; and the 3M-8710, a low-efficiency disposable face mask filter tested at 32 and 85 L/min. The three types of asbestos fibers used (amosite, crocidolite, and chrysotile) ranged in length from 0.04-0.5 μm and in aspect ratio (ratio of length to diameter) from 3 to 60. The fibers were used in both charged and neutralized forms. The results from amosite fibers are reported here

  17. Can we distinguish autotrophic respiration from heterotrophic respiration in a field site using high temporal resolution CO2 flux measurements?

    Biro, Beatrice; Berger, Sina; Praetzel, Leandra; Blodau, Christian

    2016-04-01

    The processes behind C-cycling in peatlands are important to understand for assessing the vulnerability of peatlands as carbon sinks under changing climate conditions. Especially boreal peatlands are likely to underlie strong alterations in the future. It is expected that C-pools that are directly influenced by vegetation and water table fluctuations can be easily destabilized. The CO2 efflux through respiration underlies autotrophic and heterotrophic processes that show different feedbacks on changing environmental conditions. In order to understand the respiration fluxes better for more accurate modelling and prognoses, the determination of the relative importance of different respiration sources is necessary. Earlier studies used e.g. exfoliation experiments, incubation experiments or modelling approaches to estimate the different respiration sources for the total ecosystem respiration (Reco). To further the understanding in this topic, I want to distinguish autotrophic and heterotrophic respiration using high temporal resolution measurements. The study site was selected along a hydrological gradient in a peatland in southern Ontario (Canada) and measurements were conducted from May to September 2015 once per month. Environmental controls (water table, soil temperature and soil moisture) that effect the respiration sources were recorded. In my study I used a Li-COR 6400XT and a Los Gatos greenhouse gas analyzer (GGA). Reco was determined by chamber flux measurements with the GGA, while simultaneously CO2 respiration measurements on different vegetation compartments like roots, leaves and mosses were conducted using the Li-COR 6400XT. The difference between Reco and autotrophic respiration equals heterotrophic respiration. After the measurements, the vegetation plots were harvested and separated for all compartments (leaves, roots, mosses, soil organic matter), dried and weighed. The weighted respiration rates from all vegetation compartments sum up to

  18. Monitoring biodegradation of diesel fuel in bioventing processes using in situ respiration rate.

    Lee, T H; Byun, I G; Kim, Y O; Hwang, I S; Park, T J

    2006-01-01

    An in situ measuring system of respiration rate was applied for monitoring biodegradation of diesel fuel in a bioventing process for bioremediation of diesel contaminated soil. Two laboratory-scale soil columns were packed with 5 kg of soil that was artificially contaminated by diesel fuel as final TPH (total petroleum hydrocarbon) concentration of 8,000 mg/kg soil. Nutrient was added to make a relative concentration of C:N:P = 100:10:1. One soil column was operated with continuous venting mode, and the other one with intermittent (6 h venting/6 h rest) venting mode. On-line O2 and CO2 gas measuring system was applied to measure O2 utilisation and CO2 production during biodegradation of diesel for 5 months. Biodegradation rate of TPH was calculated from respiration rate measured by the on-line gas measuring system. There were no apparent differences between calculated biodegradation rates from two columns with different venting modes. The variation of biodegradation rates corresponded well with trend of the remaining TPH concentrations comparing other biodegradation indicators, such as C17/pristane and C18/phytane ratio, dehydrogenase activity, and the ratio of hydrocarbon utilising bacteria to total heterotrophic bacteria. These results suggested that the on-line measuring system of respiration rate would be applied to monitoring biodegradation rate and to determine the potential applicability of bioventing process for bioremediation of oil contaminated soil.

  19. Ultra high performance liquid chromatography-tandem mass spectrometry vs. commercial immunoassay for determination of vancomycin plasma concentration in children. Possible implications for everyday clinical practice.

    Barco, Sebastiano; Castagnola, Elio; Gennai, Iulian; Barbagallo, Laura; Loy, Anna; Tripodi, Gino; Cangemi, Giuliana

    2016-10-01

    Vancomycin therapeutic drug monitoring (TDM) is necessary for effective and safetherapy. The aim of the this paper was to develop a specific and robust ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for vancomycin quantification starting from low plasma volumes to be applied for the routine TDM in children. Samples from children receiving intravenous vancomycin were analysed using a TSQ Quantum Access MAX Triple Quadrupole system coupled with an Accela 1250 UHPLC system after a rapid protein precipitation. Gradient separation chromatography was carried out using a Hypersil GOLD aQ C18 column (50 × 2.1 mm, particle size 1.9 μm). Method performance was validated following international guidelines. UHPLC-MS/MS allowed a rapid and specific quantification of vancomycin over the range 0.1-128 μg/mL from 50 μL of plasma with high reproducibility and accuracy in the absence of matrix effect. The comparison with the commercial immunoassay performed on 138 samples demonstrated the presence of a proportional bias. The concentrations of vancomycin measured with immunoassay were found to be 4.5% (95% CI: 1.3-7.7) higher than those determined with UHPLC-MS/MS. Importantly, a clinical discordance was found in about 10% of samples analysed. This new UHPLC-MS/MS method is accurate and specific for the measurement of vancomycin starting from small (50 μL) plasma volumes. The use of UHPLC-MS/MS is recommended to prevent a misclassification of therapeutic or toxic vancomycin levels in paediatrics.

  20. Elevated metallothionein-bound cadmium concentrations in urine from bladder carcinoma patients, investigated by size exclusion chromatography-inductively coupled plasma mass spectrometry

    Wolf, Christian [Department of Molecular Trace Element Research in the Life Sciences, Helmholtz Centre Berlin for Materials and Energy, Glienicker Str. 100, 14109 Berlin (Germany)], E-mail: wolf@helmholtz-berlin.de; Strenziok, Romy [Department of Urology, Charite University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin (Germany); Kyriakopoulos, Antonios [Department of Molecular Trace Element Research in the Life Sciences, Helmholtz Centre Berlin for Materials and Energy, Glienicker Str. 100, 14109 Berlin (Germany)

    2009-01-12

    Cadmium is discussed as being involved in the development of transitional cell carcinoma (TCC) of the bladder and can be observed in urine of these patients. Investigations of urinary samples from bladder cancer patients and normal controls were carried out with special emphasis on metallothionein (MT)-bound cadmium. Compounds that are constituents of urine were separated in urine samples by means of size exclusion chromatography and cadmium was monitored continuously with a hyphenated inductively coupled plasma mass spectrometry (ICP-MS) system. MT-bound cadmium was quantified by peak area integration, taking into account the intensity of the rhodium signal which was added continuously before ICP-MS detection. The obtained results show that urinary cadmium is predominantly bound to the observed MT-fraction. The median of the MT-bound cadmium concentration in the control group was found to be 0.8 {mu}g L{sup -1} whereas the cancer group has a median of 1.8 {mu}g L{sup -1}. The variance of the data in the cancer group is much higher than in the controls. However, the urinary MT-bound cadmium is significantly elevated in the cancer group; odds-ratio test: 7.11 (95% C.I.: 1.89-26.80), taking into account the total protein content. Due to the fact that only one main cadmium-containing fraction was observed, there is no necessity to separate the MT-fraction before cadmium determination in urine samples in future studies.

  1. High-performance liquid chromatography-tandem mass spectrometry for simultaneous determination of raltegravir, dolutegravir and elvitegravir concentrations in human plasma and cerebrospinal fluid samples.

    Tsuchiya, Kiyoto; Ohuchi, Mayu; Yamane, Naoe; Aikawa, Hiroaki; Gatanaga, Hiroyuki; Oka, Shinichi; Hamada, Akinobu

    2018-02-01

    A simple sample treatment procedure and sensitive liquid chromatography-tandem mass spectrometry method were developed for the simultaneous quantification of the concentrations of human immunodeficiency virus-1 integrase strand transfer inhibitors - raltegravir, dolutegravir and elvitegravir - in human plasma and cerebrospinal fluid (CSF). Plasma and CSF samples (20 μL each) were deproteinized with acetonitrile. Raltegravir-d 3 was used as the internal standard. Chromatographic separation was achieved on an XBridge C 18 column (50 × 2.1 mm i.d., particle size 3.5 μm) using acetonitrile-water (7:3, v/v) containing 0.1% formic acid as the mobile phase at a flow rate of 0.2 mL/min. The run time was 5 min. Calibration curves for all three drugs were linear in the range 5-1500 ng/mL for plasma and 1-200 ng/mL for CSF. The intra- and inter-day precision and accuracy of all three drugs in plasma were coefficient of variation (CV) <12.9% and 100.0 ± 12.2%, respectively, while those in CSF were CV <12.3% and 100.0 ± 7.9%, respectively. Successful validation under the same LC-MS/MS conditions for both plasma and CSF indicates this analytical method is useful for monitoring the levels of these integrase strand transfer inhibitors in the management of treatment of HIV-1 carriers. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Mesozooplankton respiration and community structure in a seamount region of the eastern South Pacific

    Frederick, Leissing; Escribano, Ruben; Morales, Carmen E.; Hormazabal, Samuel; Medellín-Mora, Johanna

    2018-05-01

    Seamounts in the Juan Fernandez Ridge, as well as in other seamount regions in the eastern South Pacific and in the world oceans, remain poorly studied ecosystems in terms of structure and functioning. Here, community respiration by epipelagic mesozooplankton in three seamounts of the Juan Fernandez Ridge, including the O`Higgins Seamount close to the coastal upwelling zone and two oceanic seamounts near the Juan Fernandez Archipelago ( 33°S-78°W), was assessed. Oxygen consumption by mixed assemblages was estimated using continuous measurements of dissolved oxygen concentration under controlled temperature during onboard, short-term incubations (2-4 h). Mesozooplankton composition was analyzed with a ZooScan device and expressed in terms of community normalized size spectra, and taxa and size diversity (Shannon-Wiener index). Carbon-specific community respiration rates in the upper 100 m layer were in the range of 0.3-1.9 mg O2 m-2 d-1, indicating that up to 3.1% of the mesozooplankton biomass can be respired on a daily basis. The mesozooplankton community was dominated by small-size copepods but the proportions of small copepods, large copepods, and gelatinous zooplankton (mostly salps) changed between the seamounts, in association with modifications in taxa composition, size diversity, and the slope of the size spectrum. Community respiration was significantly correlated to these community descriptors, suggesting the composition of the pelagic community has a direct impact on the total amount of respired-C. Connectivity between the coastal upwelling zone and the Juan Fernandez Ridge region mediated by mesoscale activity, interacting with the seamounts, is suggested as a most important process in controlling zooplankton community structure and in turn community metabolism.

  3. Development and clinical application of respiration gated irradiation system (ReGIS) in heavy ion radiotherapy

    Osaka, Yasuhiro; Tsujii, Hirohiko; Mizoe, Jun-etsu

    1999-01-01

    In order to achieve maximal radiation dose concentration for thoraco-abdominal tumors and spare normal surrounding tissue in heavy ion therapy, compensation for respiration-related movement is desirable. Hence, a respiration-gated irradiation system (ReGIS) was introduced to the Heavy Ion Medical Accelerator in Chiba (HIMAC) in June 1996. In this report, the development and clinical application of ReGIS, as well as the analysis of respiration-related movement and reduction of target volumes are described. When using ReGIS, a sensor emitting infrared rays is attached to the thoracic or abdominal wall to measure respiratory movement. A position-sensitive device (camera) senses these rays to detect sensor locations and data are forwarded to a computer system. A curve representing respiratory cycles is displayed, upon which a trigger level that is part of a respiratory cycle (about a fourth or fifth of the expiratory phase). Beams can be delivered while the respiratory curve is under the trigger level. Thirty-five patients involving 37 irradiated sites (19 lung cancers, 13 hepatomas, 2 mediastinal tumors, and 3 metastatic lung tumors) were retrospectively analyzed. Target volumes were reduced an average of 29.5% (11.0 to 57.9%) using ReGIS. Average tumor respiration-related movement in gated phase was 3.7 mm (0 mm to 14.6 mm). Although irradiation using ReGIS took more time to perform (average 1.62 times non-gated irradiation), it was considered to be acceptable for routine heavy ion therapy. ReGIS has proved to be useful for compensation of respiration-related movement and reduction of target volume in radiotherapy, and this method is sufficiently simple for practical clinical application. (author)

  4. Arbuscular mycorrhiza fungi mediate soil respiration response to climate change in California grasslands

    Estruch, Carme; Mcfarland, Jack; Haw, Monica P.; Schulz, Marjorie S.; Pugnaire, Francisco I.; Waldrop, Mark P.

    2017-04-01

    California grasslands store ca. 100 Tg of soil organic carbon (SOC) and almost 40% of those ecosystems are prone to land use changes. The fate of these carbon pools will largely depend on how the main components of soil respiration - i.e., roots, mycorrhiza, and 'bulk soil' communities- respond to such changes. In order to determine the sensitivity to environmental drivers we set up an experiment to address the effect of plant community composition, soil age and warming on soil respiration rate during the 2014-2015 winter. We tested differences among microbial, fungal and root respiration using an exclusion technique to assess the effect of plant community (open grasslands vs oak woodland) in two field sites differing in soil properties as nutrient content, related to geologic soil age (92 and 137 kyr). We also used open top chambers (OTC) to simulate global change effects on grasslands. Our results showed that arbuscular mycorrhizal fungi were the main drivers of differences recorded between soils of different age, and that those differences were linked to nutrient availability. Bulk soil respiration was more sensitive to environmental variation than mycorrhizal or root respiration, indicating that the presence of mycorrhizae and roots can regulate the capacity of CO2 emission to the atmosphere. Soil age affected CO2 flux from grasslands but not under oak canopies, likely due to the high concentration of SOM in oak canopies which moderated any affect of soil mineralogy on nutrient availability. Overall our study shows that the ability of grasslands to mitigate CO2 emissions depends on interactions between vegetation and their rhizosphere on soil microbial communities.

  5. The effects of operational conditions on the respiration rate of Tubificidae.

    Juqing Lou

    Full Text Available Tubificidae is often used in the wastewater treatment systems to minimize the sludge production because it can be fed on the activated sludge. The process conditions have effect on the growth, reproduction, and sludge reduction efficiency of Tubificidae. The effects of the water quality, density of worms, pH, temperature and dissolved oxygen (DO concentration on the respiration rate of Tubificidae were investigated to determine the optimal conditions for the growth and metabolism of the worms and reveal the mechanisms involving the efficient sludge reduction in terms of these conditions. It was observed that the respiration rate was highest in the water discharged from an ecosystem that included symbiotic Tubificidae and microbes and was lowest in distilled water. Considering density of the worms, the highest rate was 81.72±5.12 mg O2/g(dry weight·h·L with 0.25 g (wet weight of worms in 1 L test flask. The maximum Tubificidae respiration rate was observed at a pH of 8.0±0.05, a rate that was more than twice as high as those observed at other pH values. The respiration rate increased in the temperature range of ∼8°C-22°C, whereas the rate declined in the temperature range of ∼22°C-30°C. The respiration rate of Tubificidae was very high for DO range of ∼3.5-4.5 mg/L, and the rates were relatively low for out of this DO range. The results of this study revealed the process conditions which influenced the growth, and reproduction of Tubificidae and sludge reduction at a microscopic level, which could be a theoretical basis for the cultivation and application of Tubificidae in wastewater treatment plants.

  6. Studying the effectiveness of activated carbon R95 respirators in reducing the inhalation of combustion by-products in Hanoi, Vietnam: a demonstration study

    Wertheim Heiman FL

    2012-09-01

    Full Text Available Abstract Background Urban air pollution is an increasing health problem, particularly in Asia, where the combustion of fossil fuels has increased rapidly as a result of industrialization and socio-economic development. The adverse health impacts of urban air pollution are well established, but less is known about effective intervention strategies. In this demonstration study we set out to establish methods to assess whether wearing an R95 activated carbon respirator could reduce intake of polycyclic aromatic hydrocarbons (PAH in street workers in Hanoi, Vietnam. Methods In this demonstration study we performed a cross-over study in which non-smoking participants that worked at least 4 hours per day on the street in Hanoi were randomly allocated to specific respirator wearing sequences for a duration of 2 weeks. Urines were collected after each period, i.e. twice per week, at the end of the working day to measure hydroxy PAHs (OH-PAH using gas chromatography/high resolution mass spectrometry. The primary endpoint was the urinary concentration of 1-hydroxypyrene (1-OHP. Results Forty-four participants (54.5% male, median age 40 years were enrolled with the majority being motorbike taxi drivers (38.6% or street vendors (34.1%. The baseline creatinine corrected urinary level for 1-OHP was much higher than other international comparisons: 1020 ng/g creatinine (IQR: 604–1551. Wearing a R95 mask had no significant effect on 1-OHP levels: estimated multiplicative effect 1.0 (95% CI: 0.92-1.09 or other OH-PAHs, except 1-hydroxynaphthalene (1-OHN: 0.86 (95% CI: 0.11-0.96. Conclusions High levels of urine OH-PAHs were found in Hanoi street workers. No effect was seen on urine OH-PAH levels by wearing R95 particulate respirators in an area of high urban air pollution, except for 1-OHN. A lack of effect may be de to gaseous phase PAHs that were not filtered efficiently by the respirator. The high levels of urinary OH-PAHs found, urges for effective

  7. The effect of long-range air mass transport pathways on PM10 and NO2 concentrations at urban and rural background sites in Ireland: Quantification using clustering techniques.

    Donnelly, Aoife A; Broderick, Brian M; Misstear, Bruce D

    2015-01-01

    The specific aims of this paper are to: (i) quantify the effects of various long range transport pathways nitrogen dioxide (NO2) and particulate matter with diameter less than 10μm (PM10) concentrations in Ireland and identify air mass movement corridors which may lead to incidences poor air quality for application in forecasting; (ii) compare the effects of such pathways at various sites; (iii) assess pathways associated with a period of decreased air quality in Ireland. The origin of and the regions traversed by an air mass 96h prior to reaching a receptor is modelled and k-means clustering is applied to create air-mass groups. Significant differences in air pollution levels were found between air mass cluster types at urban and rural sites. It was found that easterly or recirculated air masses lead to higher NO2 and PM10 levels with average NO2 levels varying between 124% and 239% of the seasonal mean and average PM10 levels varying between 103% and 199% of the seasonal mean at urban and rural sites. Easterly air masses are more frequent during winter months leading to higher overall concentrations. The span in relative concentrations between air mass clusters is highest at the rural site indicating that regional factors are controlling concentration levels. The methods used in this paper could be applied to assist in modelling and forecasting air quality based on long range transport pathways and forecast meteorology without the requirement for detailed emissions data over a large regional domain or the use of computationally demanding modelling techniques.

  8. Proteomic data set of the organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans adapted to tetrachloroethene and other energy substrates

    Tobias Goris

    2016-09-01

    Full Text Available Sulfurospirillum multivorans is a free-living, physiologically versatile Epsilonproteobacterium able to couple the reductive dehalogenation of chlorinated and brominated ethenes to growth (organohalide respiration. We present proteomic data of S. multivorans grown with different electron donors (formate or pyruvate and electron acceptors (fumarate, nitrate, or tetrachloroethene [PCE]. To obtain information on the cellular localization of proteins, membrane extracts and soluble fractions were separated before data collection from both fractions. The proteome analysis of S. multivorans was performed by mass spectrometry (nanoLC-MS/MS. Raw data have been deposited at ProteomeXchange, “ProteomeXchange provides globally coordinated proteomics data submission and dissemination” [1], via the PRIDE partner repository with the dataset identifier PRIDE: PXD004011. The data might support further research in organohalide respiration and in the general metabolism of free-living Epsilonproteobacteria. The dataset is associated with a previously published study “Proteomics of the organohalide-respiring Epsilonproteobacterium S. multivorans adapted to tetrachloroethene and other energy substrates” [2]. Keywords: Anaerobic respiration, Epsilonproteobacteria, Nitrate respiration, Reductive dechlorination, Reductive dehalogenase

  9. Changes in respiration rates and biomass attributes of epilithon due to extended exposure to zinc

    Colwell, F.S.

    1986-01-01

    The purpose of this research was to determine the influence of extended dosing of zinc on the carbon cycling and biomass characteristics of freshwater epilithon. Experiments were conducted in artificial streams continuously dosed with 0.00, 0.05, or 1.00 mg Zn liter -1 for 20 to 30 days during summer and fall, 1984 and 1985. Repeated measurement of epilithon structure and function included estimates of 14 C-glucose respiration, 14 C-glutamate respiration, O 2 and CO 2 flux rates, ash-free dry weight (AFDW), protein, carbohydrate, and algal pigment concentrations, and total and zinc-tolerant colony forming units. An increase in epilithic glucose respiration per unit biomass consistently occurred 5 to 10 days after dosing with 1.0 mg Zn liter -1 was started. At the same time significantly lower epilithon biomass occurred in the high dosed streams relative to controls in 3 out of 4 studies. Although algal pigment concentrations were lowest in the high dose streams at the midpoint of the studies, the chlorophyll a-to-pheophytin a ratio remained high, indicating that the minimal algal population was not senescing in situ. After 30 days, the epilithon dosed with 1.0 mg Zn liter -1 had higher AFDW, protein, and carbohydrate concentrations than the other treatments. The development of unique epilithon communities that are acclimated to prolonged zinc exposure is evident in the eventual recolonization of the artificial surfaces, glucose respiration rates that are comparable to controls, and presence of zinc-tolerant heterotrophs

  10. Simulation of Human Respiration with Breathing Thermal Manikin

    Bjørn, Erik

    The human respiration contains carbon dioxide, bioeffluents, and perhaps virus or bacteria. People may also indulge in activities that produce contaminants, as for example tobacco smoking. For these reasons, the human respiration remains one of the main contributors to contamination of the indoor...

  11. Interpreting diel hysteresis between soil respiration and temperature

    C. Phillips; N. Nickerson; D. Risk; B.J. Bond

    2011-01-01

    Increasing use of automated soil respiration chambers in recent years has demonstrated complex diel relationships between soil respiration and temperature that are not apparent from less frequent measurements. Soil surface flux is often lagged from soil temperature by several hours, which results in semielliptical hysteresis loops when surface flux is plotted as a...

  12. Differential soil respiration responses to changing hydrologic regimes

    Vincent J. Pacific; Brian L. McGlynn; Diego A. Riveros-Iregui; Howard E. Epstein; Daniel L. Welsch

    2009-01-01

    Soil respiration is tightly coupled to the hydrologic cycle (i.e., snowmelt and precipitation timing and magnitude). We examined riparian and hillslope soil respiration across a wet (2005) and a dry (2006) growing season in a subalpine catchment. When comparing the riparian zones, cumulative CO2 efflux was 33% higher, and peak efflux occurred 17 days earlier during the...

  13. Automatic patient respiration failure detection system with wireless transmission

    Dimeff, J.; Pope, J. M.

    1968-01-01

    Automatic respiration failure detection system detects respiration failure in patients with a surgically implanted tracheostomy tube, and actuates an audible and/or visual alarm. The system incorporates a miniature radio transmitter so that the patient is unencumbered by wires yet can be monitored from a remote location.

  14. Soil respiration response to experimental disturbances over 3 years

    Amy Concilio; Siyan Ma; Soung-Ryoul Ryu; Malcolm North; Jiquan Chen

    2006-01-01

    Soil respiration is a major pathway for carbon cycling in terrestrial ecosystems yet little is known about its response to natural and anthropogenic disturbances. This study examined soil respiration response to prescribed burning and thinning treatments in an old-growth, mixed-conifer forest on the western slope of the Sierra Nevada Mountains. Experimental treatments...

  15. Respirators: Air Purifying, Self-Study, Course 40723

    Chochoms, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-21

    Respirators: Air Purifying Self-Study (COURSE 40723) is designed for Los Alamos National Laboratory (LANL) workers, support services subcontractors, and other LANL subcontractors who work under the LANL Respiratory Protection Program (RPP). This course also meets the air-purifying respirators (APRs) retraining requirement.

  16. Soil Respiration and Student Inquiry: A Perfect Match

    Hoyt, Catherine Marie; Wallenstein, Matthew David

    2011-01-01

    This activity explores the cycling of carbon between the atmosphere (primarily as CO[subscript 2]) and biomass in plants, animals, and microscopic organisms. Students design soil respiration experiments using a protocol that resembles current practice in soil ecology. Three methods for measuring soil respiration are presented. Student-derived…

  17. Disentangling drought-induced variation in ecosystem and soil respiration using stable carbon isotopes.

    Unger, Stephan; Máguas, Cristina; Pereira, João S; Aires, Luis M; David, Teresa S; Werner, Christiane

    2010-08-01

    Combining C flux measurements with information on their isotopic composition can yield a process-based understanding of ecosystem C dynamics. We studied the variations in both respiratory fluxes and their stable C isotopic compositions (delta(13)C) for all major components (trees, understory, roots and soil microorganisms) in a Mediterranean oak savannah during a period with increasing drought. We found large drought-induced and diurnal dynamics in isotopic compositions of soil, root and foliage respiration (delta(13)C(res)). Soil respiration was the largest contributor to ecosystem respiration (R (eco)), exhibiting a depleted isotopic signature and no marked variations with increasing drought, similar to ecosystem respired delta(13)CO(2), providing evidence for a stable C-source and minor influence of recent photosynthate from plants. Short-term and diurnal variations in delta(13)C(res) of foliage and roots (up to 8 and 4 per thousand, respectively) were in agreement with: (1) recent hypotheses on post-photosynthetic fractionation processes, (2) substrate changes with decreasing assimilation rates in combination with increased respiratory demand, and (3) decreased phosphoenolpyruvate carboxylase activity in drying roots, while altered photosynthetic discrimination was not responsible for the observed changes in delta(13)C(res). We applied a flux-based and an isotopic flux-based mass balance, yielding good agreement at the soil scale, while the isotopic mass balance at the ecosystem scale was not conserved. This was mainly caused by uncertainties in Keeling plot intercepts at the ecosystem scale due to small CO(2) gradients and large differences in delta(13)C(res) of the different component fluxes. Overall, stable isotopes provided valuable new insights into the drought-related variations of ecosystem C dynamics, encouraging future studies but also highlighting the need of improved methodology to disentangle short-term dynamics of isotopic composition of R (eco).

  18. Respirable dust measured downwind during rock dust application.

    Harris, M L; Organiscak, J; Klima, S; Perera, I E

    2017-05-01

    The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health (NIOSH) conducted underground evaluations in an attempt to quantify respirable rock dust generation when using untreated rock dust and rock dust treated with an anticaking additive. Using personal dust monitors, these evaluations measured respirable rock dust levels arising from a flinger-type application of rock dust on rib and roof surfaces. Rock dust with a majority of the respirable component removed was also applied in NIOSH's Bruceton Experimental Mine using a bantam duster. The respirable dust measurements obtained downwind from both of these tests are presented and discussed. This testing did not measure miners' exposure to respirable coal mine dust under acceptable mining practices, but indicates the need for effective continuous administrative controls to be exercised when rock dusting to minimize the measured amount of rock dust in the sampling device.

  19. A Global Database of Soil Respiration Data, Version 1.0

    National Aeronautics and Space Administration — ABSTRACT: This data set provides a soil respiration data database (SRDB), a near-universal compendium of published soil respiration (RS) data. Soil respiration, the...

  20. A Global Database of Soil Respiration Data, Version 2.0

    National Aeronautics and Space Administration — ABSTRACT: This data set provides an updated soil respiration database (SRDB), a near-universal compendium of published soil respiration (RS) data. Soil respiration,...

  1. Concentration characteristics of VOCs and acids/bases in the gas phase and water-soluble ions in the particle phase at an electrical industry park during construction and mass production.

    Tsai, Jiun H; Huang, Yao S; Shieh, Zhu X; Chiang, Hung L

    2011-01-01

    The electronics industry is a major business in the Central Taiwan Science Park (CTSP). Particulate samples and 11 water-soluble ionic species in the particulate phase were measured by ionic chromatography (IC). Additionally, acid and base gases were sampled by denuder absorption and analyzed by IC. Volatile organic compounds (VOCs) were collected in stainless-steel canisters four times daily and analyzed via gas chromatography/mass spectrometry. Ozone formation potential (OFP) was measured using maximum increment reactivity. In addition, airborne pollutants during (1) construction and (2) mass production were measured. Particulate matter concentration did not increase significantly near the optoelectronic plant during construction, but it was higher than during mass production. SO(2), HNO(2) and NH(3) were the dominant gases in the denuder absorption system. Nitrate, sulfate, and ammonium ions predominated both in PM(2.5) and PM(10-2.5); but calcium ion concentration was significantly higher in PM(10-2.5) samples during construction. Toluene, propane, isopentane, and n-butane may have come from vehicle exhaust. Construction equipment emitted high concentrations of ethylbenzene, m-xylene, p-xylene, o-xylene, 1,2,4-trimethylbenzene, and toluene. During mass production, methyl ethyl ketone), acetone and ethyl acetate were significantly higher than during construction, although there was continuous rain. The aromatic group constituted >50% of the VOC concentration totals and contributed >70% of OFP.

  2. Determination of exposure to respirable quartz in the stone crushing units at Azendarian-West of Iran.

    Bahrami, Abdul Rahman; Golbabai, Faridah; Mahjub, Hossien; Qorbani, Farshid; Aliabadi, Mohsan; Barqi, Mohamadali

    2008-08-01

    The purpose of this study is to describe the personal exposure to respirable dust and quartz and in stone crushing units located at west of Iran. A size of 40 personal samples and 40 stationary samples were obtained and analysis was done by X-ray diffraction (XRD). The results of personal sampling were shown the concentrations of respirable dust exposure level in workers of process, hopper and drivers were 1.90, 2.22, 1.41 times greater than Occupational Safety and Health Administration permissible exposure limit (OSHA PEL). The average value of total dust and respirable dust emission from stationary sources was 9.46 mg/m(3), 1.24 mg/m(3) respectively, showing that 13.8 % of total dust is respirable. The efficiency of local exhaust ventilation (LEV) to control of particles inside of industrial units was greater than 99%. It is concluded from this research the particulate generated from stone crushing activities contain a significant amount of respirable particle. The amount of free silica in stone quartz is 85 to 97 percent that emission of particles effect to health workers. LEV has important effect in the removal of silica particles in stone crushing units. The worker of hoppers still exposed to silica more than standard limits.

  3. Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature.

    Heinemeyer, A; Ineson, P; Ostle, N; Fitter, A H

    2006-01-01

    * Although arbuscular mycorrhizal (AM) fungi are a major pathway in the global carbon cycle, their basic biology and, in particular, their respiratory response to temperature remain obscure. * A pulse label of the stable isotope (13)C was applied to Plantago lanceolata, either uninoculated or inoculated with the AM fungus Glomus mosseae. The extra-radical mycelium (ERM) of the fungus was allowed to grow into a separate hyphal compartment excluding roots. We determined the carbon costs of the ERM and tested for a direct temperature effect on its respiration by measuring total carbon and the (13)C:(12)C ratio of respired CO(2). With a second pulse we tested for acclimation of ERM respiration after 2 wk of soil warming. * Root colonization remained unchanged between the two pulses but warming the hyphal compartment increased ERM length. delta(13)C signals peaked within the first 10 h and were higher in mycorrhizal treatments. The concentration of CO(2) in the gas samples fluctuated diurnally and was highest in the mycorrhizal treatments but was unaffected by temperature. Heating increased ERM respiration only after the first pulse and reduced specific ERM respiration rates after the second pulse; however, both pulses strongly depended on radiation flux. * The results indicate a fast ERM acclimation to temperature, and that light is the key factor controlling carbon allocation to the fungus.

  4. Diffusive boundary layers, photosynthesis, and respiration of the colony-forming plankton algae, Phaeocystis sp

    Ploug, Helle; Stolte, W.; Epping, E.H.G.

    1999-01-01

    H increased up to 0.4 units when measured in light at saturating intensities (>90 mu mol photons m(-2) s(-1)). The respiration in the dark was low, resulting in a 6% lowering in oxygen concentration and 0.04 units lowering in pH inside colonies, compared to the bulk water phase. Such colonies were net...... heterotrophic communities at light intensities up to 10 mu mol photons m(-2) s(-1). A week later, colonies were net heterotrophic at light intensities up to 80 mu mol photons m(-2) s(-1). The effective diffusion coefficient for oxygen in the gelatinous colonies was not significantly different from that in sea......Diffusive boundary layers, photosynthesis, and respiration in Phaeocystis colonies were studied by the use of microelectrodes for oxygen and pH during a bloom in the Barents Sea, 1993, and in the Marsdiep, Dutch North Sea, 1994. The oxygen microenvironment of a Phaeocystis colony with a mean...

  5. Organohalide Respiring Bacteria and Reductive Dehalogenases: Key Tools in Organohalide Bioremediation

    Bat-Erdene eJugder

    2016-03-01

    Full Text Available Organohalides are recalcitrant pollutants that have been responsible for substantial contamination of soils and groundwater. Organohalide-respiring bacteria (ORB provide a potential solution to remediate contaminated sites, through their ability to use organohalides as terminal electron acceptors to yield energy for growth (i.e. organohalide respiration. Ideally, this process results in non- or lesser-halogenated compounds that are mostly less toxic to the environment or more easily degraded. At the heart of these processes are reductive dehalogenases (RDase, which are membrane bound enzymes coupled with other components that facilitate dehalogenation of organohalides to generate cellular energy. This review focuses RDases, concentrating on those which have been purified (partially or wholly and functionally characterized. Further, the paper reviews the major bacteria involved in organohalide breakdown and the evidence for microbial evolution of RDases. Finally, the capacity for using ORB in a bioremediation and bioaugmentation capacity are discussed.

  6. Temperature acclimation of photosynthesis and respiration: A key uncertainty in the carbon cycle-climate feedback

    Lombardozzi, Danica L.; Bonan, Gordon B.; Smith, Nicholas G.; Dukes, Jeffrey S.; Fisher, Rosie A.

    2015-10-01

    Earth System Models typically use static responses to temperature to calculate photosynthesis and respiration, but experimental evidence suggests that many plants acclimate to prevailing temperatures. We incorporated representations of photosynthetic and leaf respiratory temperature acclimation into the Community Land Model, the terrestrial component of the Community Earth System Model. These processes increased terrestrial carbon pools by 20 Pg C (22%) at the end of the 21st century under a business-as-usual (Representative Concentration Pathway 8.5) climate scenario. Including the less certain estimates of stem and root respiration acclimation increased terrestrial carbon pools by an additional 17 Pg C (~40% overall increase). High latitudes gained the most carbon with acclimation, and tropical carbon pools increased least. However, results from both of these regions remain uncertain; few relevant data exist for tropical and boreal plants or for extreme temperatures. Constraining these uncertainties will produce more realistic estimates of land carbon feedbacks throughout the 21st century.

  7. Level and distribution of employee exposures to total and respirable wood dust in two Canadian sawmills.

    Teschke, K; Hertzman, C; Morrison, B

    1994-03-01

    Personal respirable (N = 230) and total (N = 237) dust measurements were made in two coastal British Columbia sawmills using a sampling strategy that randomly selected workers from all jobs in the mills over two seasons. Information about job title, department, season, weather conditions, location of the job relative to wood-cutting machines, and control measures also was collected at the time of sampling. Only 16 respirable wood dust samples were above the detection limit of 0.08 mg/m3; all 16 had levels industry, but most sawmill investigations report mean wood dust concentrations lower than those measured in the furniture and cabinetmaking industries, where concerns about wood dust exposures initially were raised.

  8. Uncertainty in climate-carbon-cycle projections associated with the sensitivity of soil respiration to temperature

    Jones, Chris D.; Cox, Peter; Huntingford, Chris

    2003-01-01

    Carbon-cycle feedbacks have been shown to be very important in predicting climate change over the next century, with a potentially large positive feedback coming from the release of carbon from soils as global temperatures increase. The magnitude of this feedback and whether or not it drives the terrestrial carbon cycle to become a net source of carbon dioxide during the next century depends particularly on the response of soil respiration to temperature. Observed global atmospheric CO 2 concentration, and its response to naturally occurring climate anomalies, is used to constrain the behaviour of soil respiration in our coupled climate-carbon-cycle GCM. This constraint is used to quantify some of the uncertainties in predictions of future CO 2 levels. The uncertainty is large, emphasizing the importance of carbon-cycle research with respect to future climate change predictions

  9. [Effects of management regime on soil respiration from agroecosystems].

    Chen, Shu-tao; Zhu, Da-wei; Niu, Chuan-po; Zou, Jian-wen; Wang, Chao; Sun, Wen-juan

    2009-10-15

    In order to examine the effects of management regime, such as nitrogen application and plowing method, on soil respiration from farmland, the static opaque chamber-gas chromatograph method was used to measure soil CO2 fluxes in situ. The field measurement was carried out for 5 growing seasons, which were the 2002-2003 wheat, 2003 maize and soybean, 2003-2004 wheat, 2004 maize and 2004-2005 wheat seasons. Our results showed that soil respiration increased in fertilizer-applied treatments compared with no fertilizer treatment after 3 times of fertilizer application on 9 November 2002, 14 February and 26 March 2003. And the most obvious increase appeared following the third fertilizer application. No significant difference in soil respiration was found among several fertilizer application treatments. The effect of plowing depth on soil respiration was contingent on preceding cropping practice. Over the 2003-2004 wheat-growing seasons (its preceding cropping practice was rice paddy), mean soil respiration rates were not significant different (p > 0.05) between no plowing treatment and shallow plowing treatment. The shallow plowing treatment CT2 led to higher soil CO2 losses compared with no plowing treatment of NT2 in the 2004 maize-growing season, however, the significant higher (p soil respiration rates occurred with no plowing treatment of NT3 in the following 2004-2005 wheat-growing season. Intensive plowing (25 cm depth), compared with no plowing practice (NT4), increased soil respiration significantly during the 2004-2005 wheat-growing season. Regression analysis showed that the exponential function could be employed to fit the relationship between soil respiration and temperature. The exponential relationship yielded the Q10 values which were varied from 1.26 to 3.60, with a mean value of 2.08. To evaluate the effect of temperature on soil respiration, the CO2 emission fluxes were normalized for each treatment and each crop growing season. Plotting the

  10. Measurement of Lung Cancer Tumor Markers in a Glass Wool Company Workers Exposed to Respirable Synthetic Vitreous Fiber and Dust

    Shabnam Abtahi

    2018-01-01

    Full Text Available Background: Occupational exposures to respirable synthetic vitreous fiber (SVF and dust are associated with many lung diseases including lung cancer. Low-dose computed tomography is used for screening patients who are highly suspicious of having lung carcinoma. However, it seems not to be cost-effective. Serum biomarkers could be a useful tool for the surveillance of occupational exposure, by providing the possibility of diagnosing lung cancer in its early stages. Objective: To determine if serum carcinoembryonic antigen (CEA and cytokeratin fragment (CYFRA 21-1 levels in workers exposed more than normal population to respirable SVF and dust may be used as indicators of progression towards lung cancer. Methods: An analytic cross-sectional study, including 145 personnel of a glass wool company, along with 25 age-matched healthy individuals, was conducted to investigate the relationship between occupational exposure to respirable SVFs and dust and serum levels of two lung/pleura serum tumor markers, CEA and CYFRA 21-1, measured by ELISA. Results: Individuals exposed to higher than the recommended levels of respirable SVF had higher serum concentrations of CEA and CYFRA 21-1, compared to controls (p=0.008 and 0.040, respectively, as well as in comparison to those exposed to lower than recommended OSHA levels (p=0.046 and 0.033, respectively. Workers with >9 years work experience, had significantly (p=0.045 higher levels of serum CYFRA 21-1 than those with ≤9 years of experience. Conclusion: It seems that working for >9 years in sites with detectable levels of respirable SVF and dust would increase the levels of known lung cancer serum tumor markers. Transferring these workers to sites with respirable SVF concentrations lower than the limit of detection in the air is recommended.

  11. Repeated Storage of Respired Carbon in the Equatorial Pacific Ocean Over the Last Three Glacial Cycles

    Jacobel, A. W.; McManus, J. F.; Anderson, R. F.; Winckler, G.

    2017-12-01

    As the largest reservoir of carbon actively exchanging with the atmosphere on glacial-interglacial timescales, the deep ocean has been implicated as the likely location of carbon dioxide sequestration during Pleistocene glaciations. Despite strong theoretical underpinnings for this expectation, it has been challenging to identify unequivocal evidence for respired carbon storage in the paleoceanographic record. Data on the rate of ocean ventilation derived from paired planktonic-benthic foraminifera radiocarbon ages conflict across the equatorial Pacific, and different proxy reconstructions contradict one another about the depth and origin of the watermass containing the respired carbon. Because any change in the storage of respiratory carbon must be accompanied by corresponding changes in dissolved oxygen concentrations, proxy data reflecting bottom water oxygenation are of value in addressing these apparent inconsistencies. We present new records of the redox sensitive metal uranium from the central equatorial Pacific to qualitatively identify intervals associated with respiratory carbon storage over the past 350 kyr. Our data reveal periods of deep ocean authigenic uranium deposition in association with each of the last three glacial maxima. Equatorial Pacific export productivity data show intervals with abundant authigenic uranium are not associated with local productivity increases, indicating episodic precipitation of authigenic uranium does not directly reflect increases in situ microbial respiration, but rather occurs in response to basin-wide decreases in deep water oxygen concentrations. We combine our new data with previously published results to propose a picture of glacial carbon storage and equatorial Pacific watermass structure that is internally consistent. We conclude that respired carbon storage in the Pacific was a persistent feature of Pleistocene glaciations.

  12. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    Zhen Wang

    Full Text Available Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2.s(-1 and clipping (2.06 μmol.m(-2.s(-1 than under grazing (1.65 μmol.m-(2.s(-1 over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP. Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content and biotic (ANPP and BNPP factors regulate soil respiration in the semiarid temperate grassland of northern China.

  13. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    Wang, Zhen; Ji, Lei; Hou, Xiangyang; Schellenberg, Michael P

    2016-01-01

    Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures) on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2).s(-1)) and clipping (2.06 μmol.m(-2).s(-1)) than under grazing (1.65 μmol.m-(2).s(-1)) over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP). Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP) and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content) and biotic (ANPP and BNPP) factors regulate soil respiration in the semiarid temperate grassland of northern China.

  14. Temperature response of soil respiration largely unaltered with experimental warming

    Carey, Joanna C.; Tang, Jianwu; Templer, Pamela H.; Kroeger, Kevin D.; Crowther, Thomas W.; Burton, Andrew J.; Dukes, Jeffrey S.; Emmett, Bridget; Frey, Serita D.; Heskel, Mary A.; Jiang, Lifen; Machmuller, Megan B.; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B.; Reinsch, Sabine; Wang, Xin; Allison, Steven D.; Bamminger, Chris; Bridgham, Scott; Collins, Scott L.; de Dato, Giovanbattista; Eddy, William C.; Enquist, Brian J.; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R.; Steenberg Larsen, Klaus; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M.; Penuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward B.; Reinmann, Andrew B.; Reynolds, Lorien L.; Schmidt, Inger K.; Shaver, Gaius R.; Strong, Aaron L.; Suseela, Vidya; Tietema, Albert

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.

  15. Fatty acid nitroalkenes induce resistance to ischemic cardiac injury by modulating mitochondrial respiration at complex II

    Jeffrey R. Koenitzer

    2016-08-01

    Full Text Available Nitro-fatty acids (NO2-FA are metabolic and inflammatory-derived electrophiles that mediate pleiotropic signaling actions. It was hypothesized that NO2-FA would impact mitochondrial redox reactions to induce tissue-protective metabolic shifts in cells. Nitro-oleic acid (OA-NO2 reversibly inhibited complex II-linked respiration in isolated rat heart mitochondria in a pH-dependent manner and suppressed superoxide formation. Nitroalkylation of Fp subunit was determined by BME capture and the site of modification by OA-NO2 defined by mass spectrometric analysis. These effects translated into reduced basal and maximal respiration and favored glycolytic metabolism in H9C2 cardiomyoblasts as assessed by extracellular H+ and O2 flux analysis. The perfusion of NO2-FA induced acute cardioprotection in an isolated perfused heart ischemia/reperfusion (IR model as evidenced by significantly higher rate-pressure products. Together these findings indicate that NO2-FA can promote cardioprotection by inducing a shift from respiration to glycolysis and suppressing reactive species formation in the post-ischemic interval.

  16. Oxygen and carbon isotopic compositions of gases respired by humans

    Epstein, S.; Zeiri, L.

    1988-01-01

    Oxygen-isotope fractionation associated with respiration in human individuals at rest is linearly related to the fraction of the O 2 utilized in the respiration process. The slope of this relationship is affected by a history of smoking, by vigorous exercise, and by the N 2 /O 2 ratio of the inhaled gas. For patients who suffer anemia-related diseases, the slope of this relationship is directly proportional to their level of hemoglobin. These results introduce a new approach for studying the mechanisms of O 2 consumption in human respiration and how they are affected by related diseases

  17. Herd protection effect of N95 respirators in healthcare workers.

    Chen, Xin; Chughtai, Abrar Ahmad; MacIntyre, Chandini Raina

    2017-12-01

    Objective To determine if there was herd protection conferred to unprotected healthcare workers (HCWs) by N95 respirators worn by colleagues. Methods Data were analysed from a prospective cluster randomized clinical trial conducted in Beijing, China between 1 December 2008 and 15 January 2009. A minimum compliance level (MCL) of N95 respirators for prevention of clinical respiratory illness (CRI) was set based on various compliance cut-offs. The CRI rates were compared between compliant (≥MCL) and non-compliant (protection from use of N95 respirators by colleagues within a hospital ward.

  18. Estimating daytime ecosystem respiration from eddy-flux data

    Bruhn, Dan; Mikkelsen, Teis Nørgaard; Herbst, Mathias

    2011-01-01

    To understand what governs the patterns of net ecosystem exchange of CO2, an understanding of factors influencing the component fluxes, ecosystem respiration and gross primary production is needed. In the present paper, we introduce an alternative method for estimating daytime ecosystem respiration...... based on whole ecosystem fluxes from a linear regression of photosynthetic photon flux density data vs. daytime net ecosystem exchange data at forest ecosystem level. This method is based on the principles of the Kok-method applied at leaf level for estimating daytime respiration. We demonstrate...

  19. Respirator studies for the Nuclear Regulatory Commission (NRC)

    Skaggs, B.J.; Fairchild, C.I.; DeField, J.D.; Hack, A.L.

    1985-01-01

    A project of the Health, Safety and Environment Division is described. The project provides the NRC with information of respiratory protective devices and programs for their licensee personnel. The following activities were performed during FY 1983: selection of alternate test aerosols for quality assurance testing of high-efficiency particulate air respirator filters; evaluation of MAG-1 spectacles for use with positive and negative-pressure respirators; development of a Manual of Respiratory Protection in Emergencies Involving Airborne Radioactive Materials, and technical assistance to NRC licensees regarding respirator applications. 2 references, 1 figure

  20. Tributyltin (TBT) and mitochondrial respiration in mussel digestive gland.

    Nesci, Salvatore; Ventrella, Vittoria; Trombetti, Fabiana; Pirini, Maurizio; Pagliarani, Alessandra

    2011-06-01

    The toxicity of organotins and especially tri-n-butyltin (TBT) on mitochondria is well known. However as far as we are aware, effects on mitochondrial respiration are unexplored in mollusks. In this work mitochondria isolated from the digestive gland of Mytilus galloprovincialis and susceptive to the classical respiratory chain inhibitors, were assayed in the presence of micromolar TBT concentrations to investigate mitochondrial respiratory activities. Intact and freeze-thawed mitochondria were used. TBT significantly inhibited oxygen consumption in the presence of glutamate/malate or succinate as substrates. Conversely cytochrome c oxidase activity (complex IV), assayed both polarographically and spectrophotometrically, was unaffected. The addition of 1,4-dithioerythritol (DTE) decreased the TBT-driven inhibition of complexes I and III. The TBT capability of covalent binding to thiol groups of mitochondrial proteins in a dose-dependent manner was confirmed by the aid of Ellman's reagent. Data strongly suggests that TBT may prevent the electron transfer from complexes I and III to downhill respiratory chain complexes by binding to critical SH residues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. In situ respiration testing: A field treatability test for bioventing

    Kittel, J.A.; Hinchee, R.E.; Miller, R.; Vogel, C.; Hoeppel, R.

    1993-01-01

    Bioventing is the process of aerating subsurface soils to stimulate in situ biological activity and promote bioremediation. Bioventing differs from soil venting in remedial approach. Soil venting is designed and operated to maximize the volatilization of low-molecular-weight compounds, with some biodegradation occurring. In contrast, bioventing is designed to maximize biodegradation of aerobically biodegradable compounds, regardless of their molecular weight, with some volatilization occurring. Bioventing is gaining wide acceptance as a remediation alternative at petroleum-contaminated sites. However, site variability usually requires that a short term treatability test be conducted in situ at potential sites to determine the applicability of bioventing. Battelle has worked with the US Air Force and the US Navy to develop a simple and inexpensive field test to evaluate bioventing potential-contaminated sites. This test has been used to evaluate the applicability of bioventing at over 50 sites. The in situ respiration test consists of injecting air and an inert tracer gas (helium) over a 24-hour period to aerate soils at an oxygen-deficient, petroleum-contaminated site. Soil vapor samples are collected to determine oxygen utilization rates and carbon dioxide production rates. The stoichiometric relationship for the oxidation of hexane is used to calculate the biodegradation rate. The tracer gas is monitored to estimate the effect of diffusion on changes in soil-gas concentrations

  2. Temperature sensitivity of respiration scales with organic matter recalcitrance

    Craine, J. M.; Fierer, N.; McLauchlan, K. K.

    2010-12-01

    Microbial decomposition of soil organic matter is a key process in determining the carbon sequestration potential of ecosystems and carbon fluxes to the atmosphere. Since microbial decomposition is highly sensitive to short-term changes in temperature, predicting the temperature sensitivity of microbial decomposition is critical to predicting future atmospheric carbon dioxide concentrations and feedbacks to anthropogenic warming. Fundamental principles of enzyme kinetics, embodied in the carbon-quality temperature hypothesis, predict that the temperature sensitivity of microbial decomposition should increase with increasing biochemical recalcitrance of a substrate. To test the generality of this principle, we measured the temperature sensitivity of microbial respiration of soil organic matter with serial short-term temperature manipulations over 365 days for 28 North American soils. When joined with data from similar studies that represent a wide variety of contrasts, we show that the temperature sensitivity of organic matter decomposition scales with biochemical recalcitrance. With physico-chemical protection likely an important covariate for relating plant and soil organic matter decomposition scalars, biochemically recalcitrant organic matter is highly susceptible to short-term increases in temperature, a key link in predicting the effects of warming on carbon cycling.

  3. Graphite powder as an alternative or supplement to reversed-phase material for desalting and concentration of peptide mixtures prior to matrix-assisted laser desorption/ionization-mass spectrometry

    Larsen, Martin Røssel; Cordwell, Stuart J; Roepstorff, Peter

    2002-01-01

    The success attributed to identification and characterization of gel separated proteins by mass spectrometry (MS) is highly dependent on the percentage of an entire sequence covered by matching peptides derived from enzymatic digestion. Desalting and concentration of peptide mixtures on reversed......-phase (RP) microcolumns prior to mass spectrometric analysis have resulted in increased signal-to-noise ratio and sensitivity, and consequently higher sequence coverage. A large proportion of peptides, however, remains undetected by MS presumably because they are lost during sample preparation...

  4. Over-expression of COQ10 in Saccharomyces cerevisiae inhibits mitochondrial respiration

    Zampol, Mariana A.; Busso, Cleverson; Gomes, Fernando; Ferreira-Junior, Jose Ribamar; Tzagoloff, Alexander; Barros, Mario H.

    2010-01-01

    Research highlights: → COQ10 deletion elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q 2 , a synthetic diffusible ubiquinone. → The significance that purified Coq10p contains bound Q 6 was examined by testing over-expression of Coq10p on respiration. → Inhibition of CoQ function due to Coq10p excess strength our hypothesis of Coq10p function in CoQ delivery. → Respiratory deficiency caused by more Coq10p was specific and restored by Q 2 in mitochondria or by Coq8p in cells. → Coq8p over-production on other coq mutants revealed a surprisingly higher stability of other Coq proteins. -- Abstract: COQ10 deletion in Saccharomyces cerevisiae elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q 2 . Rescue of respiration by Q 2 is a characteristic of mutants blocked in coenzyme Q 6 synthesis. Unlike Q 6 deficient mutants, mitochondria of the coq10 null mutant have wild-type concentrations of Q 6 . The physiological significance of earlier observations that purified Coq10p contains bound Q 6 was examined in the present study by testing the in vivo effect of over-expression of Coq10p on respiration. Mitochondria with elevated levels of Coq10p display reduced respiration in the bc1 span of the electron transport chain, which can be restored with exogenous Q 2 . This suggests that in vivo binding of Q 6 by excess Coq10p reduces the pool of this redox carrier available for its normal function in providing electrons to the bc1 complex. This is confirmed by observing that extra Coq8p relieves the inhibitory effect of excess Coq10p. Coq8p is a putative kinase, and a high-copy suppressor of the coq10 null mutant. As shown here, when over-produced in coq mutants, Coq8p counteracts turnover of Coq3p and Coq4p subunits of the Q-biosynthetic complex. This can account for the observed rescue by COQ8 of the respiratory defect in strains over-producing Coq10p.

  5. Over-expression of COQ10 in Saccharomyces cerevisiae inhibits mitochondrial respiration

    Zampol, Mariana A.; Busso, Cleverson; Gomes, Fernando [Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo (Brazil); Ferreira-Junior, Jose Ribamar [Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo, Sao Paulo (Brazil); Tzagoloff, Alexander [Department of Biological Sciences, Columbia University, NY (United States); Barros, Mario H., E-mail: mariohb@usp.br [Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo (Brazil)

    2010-11-05

    Research highlights: {yields} COQ10 deletion elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q{sub 2}, a synthetic diffusible ubiquinone. {yields} The significance that purified Coq10p contains bound Q{sub 6} was examined by testing over-expression of Coq10p on respiration. {yields} Inhibition of CoQ function due to Coq10p excess strength our hypothesis of Coq10p function in CoQ delivery. {yields} Respiratory deficiency caused by more Coq10p was specific and restored by Q{sub 2} in mitochondria or by Coq8p in cells. {yields} Coq8p over-production on other coq mutants revealed a surprisingly higher stability of other Coq proteins. -- Abstract: COQ10 deletion in Saccharomyces cerevisiae elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q{sub 2}. Rescue of respiration by Q{sub 2} is a characteristic of mutants blocked in coenzyme Q{sub 6} synthesis. Unlike Q{sub 6} deficient mutants, mitochondria of the coq10 null mutant have wild-type concentrations of Q{sub 6}. The physiological significance of earlier observations that purified Coq10p contains bound Q{sub 6} was examined in the present study by testing the in vivo effect of over-expression of Coq10p on respiration. Mitochondria with elevated levels of Coq10p display reduced respiration in the bc1 span of the electron transport chain, which can be restored with exogenous Q{sub 2}. This suggests that in vivo binding of Q{sub 6} by excess Coq10p reduces the pool of this redox carrier available for its normal function in providing electrons to the bc1 complex. This is confirmed by observing that extra Coq8p relieves the inhibitory effect of excess Coq10p. Coq8p is a putative kinase, and a high-copy suppressor of the coq10 null mutant. As shown here, when over-produced in coq mutants, Coq8p counteracts turnover of Coq3p and Coq4p subunits of the Q-biosynthetic complex. This can account for the observed rescue by COQ8 of the respiratory defect in strains

  6. X-ray fluorescence analysis (XRF) and secondary ion mass spectrometry (SIMS) for analysis of iodine concentration in vitro in benign and malignant thyroid tissue

    Hansson, Marie; Berg, Gertrud; Ericsson, Lars; Grunditz, Torsten; Isaksson, Mats; Jansson, Svante; Nystrom, Ernst; Sodervall, Ulf

    2005-01-01

    Full text: The thyroid ability to store and concentrate iodine is of importance for radioiodine therapy in thyroid cancer. It is known that a normal thyroid contains 2-20 mg iodine while the information regarding malignant thyroid tissue is scarce. The purpose of this study was to investigate the iodine concentration in benign compared to malignant tissue. Methods: Thyroid tissue samples from healthy patients and from patients with papillary cancer were collected and frozen in connection with surgery. For the thyroid cancer patients, tissue was taken from both benign and malignant tissue. The iodine concentration was analysed with an XRF system consisting of a 241-Am source and an HPGe detector. When irradiating iodine containing tissue, characteristic X-rays are emitted. That radiation is detected with the strength of the detected signal being proportional to the amount of iodine in the sample. SIMS was used on glutaraldehyde fixed tissue as a histological tool for quantification and localization of iodine by sputtering and analysis of secondary ions. Results: The iodine concentration in benign tissue is considerably higher than in malignant samples. XRF measurements showed a medium iodine concentration in healthy thyroid tissue of 0.5 mg/mL. For the cancer patients, the iodine concentration was 0.3 mg/mL in benign tissue while no iodine could be detected in the malignant samples. These findings were consistent with the results from the SIMS investigation that gave a 100 times lower iodine concentration in malignant than in benign tissue. SIMS also showed that the iodine in benign tissue was predominantly located in the follicle lumen, while in the cancer cells low iodine concentration was found intra cellular as well as in the lumen. Conclusion: Iodine concentration in tissue from papillary cancer can be 100 times lower than in normal thyroid tissue. This is in accordance with the empirical knowledge that thyroid cancer should need about 100 times higher activity

  7. Respirable dust and quartz exposure from three South African farms with sandy, sandy loam, and clay soils.

    Swanepoel, Andrew J; Kromhout, Hans; Jinnah, Zubair A; Portengen, Lützen; Renton, Kevin; Gardiner, Kerry; Rees, David

    2011-07-01

    To quantify personal time-weighted average respirable dust and quartz exposure on a sandy, a sandy loam, and a clay soil farm in the Free State and North West provinces of South Africa and to ascertain whether soil type is a determinant of exposure to respirable quartz. Three farms, located in the Free State and North West provinces of South Africa, had their soil type confirmed as sandy, sandy loam, and clay; and, from these, a total of 298 respirable dust and respirable quartz measurements were collected between July 2006-November 2009 during periods of major farming operations. Values below the limit of detection (LOD) (22 μg · m(-3)) were estimated using multiple 'imputation'. Non-parametric tests were used to compare quartz exposure from the three different soil types. Exposure to respirable quartz occurred on all three farms with the highest individual concentration measured on the sandy soil farm (626 μg · m(-3)). Fifty-seven, 59, and 81% of the measurements on the sandy soil, sandy loam soil, and clay soil farm, respectively, exceeded the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) of 25 μg · m(-3). Twelve and 13% of respirable quartz concentrations exceeded 100 μg · m(-3) on the sandy soil and sandy loam soil farms, respectively, but none exceeded this level on the clay soil farm. The proportions of measurements >100 μg · m(-3) were not significantly different between the sandy and sandy loam soil farms ('prop.test'; P = 0.65), but both were significantly larger than for the clay soil farm ('prop.test'; P = 0.0001). The percentage of quartz in respirable dust was determined for all three farms using measurements > the limit of detection. Percentages ranged from 0.5 to 94.4% with no significant difference in the median quartz percentages across the three farms (Kruskal-Wallis test; P = 0.91). This study demonstrates that there is significant potential for over-exposure to respirable quartz in

  8. Respiration in heterotrophic unicellular eukaryotic organisms.

    Fenchel, Tom

    2014-08-01

    Surface:volume quotient, mitochondrial volume fraction, and their distribution within cells were investigated and oxygen gradients within and outside cells were modelled. Cell surface increases allometrically with cell size. Mitochondrial volume fraction is invariant with cell size and constitutes about 10% and mitochondria are predominantly found close to the outer membrane. The results predict that for small and medium sized protozoa maximum respiration rates should be proportional to cell volume (scaling exponent ≈1) and access to intracellular O2 is not limiting except at very low ambient O2-tensions. Available data do not contradict this and some evidence supports this interpretation. Cell size is ultimately limited because an increasing fraction of the mitochondria becomes exposed to near anoxic conditions with increasing cell size. The fact that mitochondria cluster close to the cell surface and the allometric change in cell shape with increasing cell size alleviates the limitation of aerobic life at low ambient O2-tension and for large cell size. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Clinical relevance of the discrepancy in phenylalanine concentrations analyzed using tandem mass spectrometry compared with ion-exchange chromatography in phenylketonuria

    Bridget M. Stroup

    2016-03-01

    Conclusion: Use of DBS analyzed using MS/MS to monitor blood phe concentrations in individuals with PKU yields significantly lower phe levels compared to plasma phe levels analyzed using IEC. Optimization of current testing methodologies for measuring phe in DBS, along with patient education regarding the appropriate technique for spotting blood on filter paper is needed to improve the accuracy of using DBS to measure phe concentrations in PKU management.

  10. Sensibility analysis of the effect of various key parameters on fission product concentration mass number 127 to 132 and Xe - 133 m)

    Sola, A.

    1978-01-01

    An analytical sensitivity analysis has been made of the effect' of various parameters on the evaluation of fission product concentration. Such parameters include cross sections, decay constants, branching ratios, fission yields, flux and time. The formulae are applied to isotopes of the Antimony, Tellurium, Iodine and Xenon series. The agreement between analytically obtained data and that derived from a computer evaluated model is good, suggesting that the analytical representation includes all the important parameters useful to the evaluation of the fission product concentrations

  11. Measuring priming using 14C of respired CO2: effects on respiration source pools and interactions with warming

    Hopkins, F. M.; Trumbore, S.

    2011-12-01

    The role of substrate availability on soil carbon turnover is a critical unknown in predicting future soil carbon stocks. Substrate composition and availability can be altered by land cover change, warming, and nitrogen deposition, which can in turn affect soil carbon stocks through the priming effect. In particular, little is understood about the interaction between warming and changing substrate concentration. We examined the interactions between global change factors and the priming effect using sucrose addition to incubations of soils from two forest Free Air CO2 Enrichment (FACE) sites (Duke and Aspen). In addition to the in situ global change manipulations conducted at these sites, the CO2 fertilization procedure over the decade-long experiment labeled soil carbon pools with fossil-derived carbon (depleted in 14C relative to the background isotope content of soil carbon), allowing us to determine the effect of priming on respiration of soil carbon substrates of different ages. Thus, we used the carbon-13 signature of sucrose-derived CO2 to account for losses of substrate C, and the carbon-14 signature to partition fluxes of soil-derived CO2 between pre-FACE (> 10 y) and FACE derived (stocks, differences in the source of the priming effect between the two sites may be due to inherent differences in the relative role of stabilization factors within the soil carbon stock.

  12. MultiSense: A Multimodal Sensor Tool Enabling the High-Throughput Analysis of Respiration.

    Keil, Peter; Liebsch, Gregor; Borisjuk, Ljudmilla; Rolletschek, Hardy

    2017-01-01

    The high-throughput analysis of respiratory activity has become an important component of many biological investigations. Here, a technological platform, denoted the "MultiSense tool," is described. The tool enables the parallel monitoring of respiration in 100 samples over an extended time period, by dynamically tracking the concentrations of oxygen (O 2 ) and/or carbon dioxide (CO 2 ) and/or pH within an airtight vial. Its flexible design supports the quantification of respiration based on either oxygen consumption or carbon dioxide release, thereby allowing for the determination of the physiologically significant respiratory quotient (the ratio between the quantities of CO 2 released and the O 2 consumed). It requires an LED light source to be mounted above the sample, together with a CCD camera system, adjusted to enable the capture of analyte-specific wavelengths, and fluorescent sensor spots inserted into the sample vial. Here, a demonstration is given of the use of the MultiSense tool to quantify respiration in imbibing plant seeds, for which an appropriate step-by-step protocol is provided. The technology can be easily adapted for a wide range of applications, including the monitoring of gas exchange in any kind of liquid culture system (algae, embryo and tissue culture, cell suspensions, microbial cultures).

  13. Optimizing computed tomography pulmonary angiography using right atrium bolus monitoring combined with spontaneous respiration

    Min, Wang; Jian, Li; Rui, Zhai [Jining No. 1 People' s Hospital, Department of Computed Tomography, Jining City, ShanDong Province (China); Wen, Li [Jining No. 1 People' s Hospital, Department of Gastroenterology, Jining, ShanDong (China); Dai, Lun-Hou [Shandong Chest Hospital, Department of Radiology, Jinan, ShanDong (China)

    2015-09-15

    CT pulmonary angiography (CTPA) aims to provide pulmonary arterial opacification in the absence of significant pulmonary venous filling. This requires accurate timing of the imaging acquisition to ensure synchronization with the peak pulmonary artery contrast concentration. This study was designed to test the utility of right atrium (RA) monitoring in ensuring optimal timing of CTPA acquisition. Sixty patients referred for CTPA were divided into two groups. Group A (n = 30): CTPA was performed using bolus triggering from the pulmonary trunk, suspended respiration and 70 ml of contrast agent (CA). Group B (n = 30): CTPA image acquisition was triggered using RA monitoring with spontaneous respiration and 40 ml of CA. Image quality was compared. Subjective image quality, average CT values of pulmonary arteries and density difference between artery and vein pairs were significantly higher whereas CT values of pulmonary veins were significantly lower in group B (all P < 0.05). There was no significant difference between the groups in the proportion of subjects where sixth grade pulmonary arteries were opacified (P > 0.05). RA monitoring combined with spontaneous respiration to trigger image acquisition in CTPA produces optimal contrast enhancement in pulmonary arterial structures with minimal venous filling even with reduced doses of CA. (orig.)

  14. Short term effects of fire on soil respiration in Peruvian Amazon

    Suarez, L. F.; Kruijt, B.

    2008-05-01

    Severe changes are affecting the role of Amazon in the Earth system. One of these possible effects could be the modification of the role of soils in the carbon cycle due to land use and land cover change activities mainly involving the change of forest by crops. In this sense, fire is the main tool used by farmers for land use and also is an important factor for mobilizing C from the soil to the atmosphere, mainly as CO2. This could have an important effect in the global warming. This proposal will evaluate the variation of the soil respiration related to the seasonality and the fire effects on soils in the Amazon of Peru and Brazil. In experimental locations of Peru with different vegetation cover (forest and pasture), we measured soil respiration along with the organic carbon and the microbial biomass of soils during campaigns covering wet and dry seasons. Complementary measurements of soil temperature, water and nutrient content were performed. Also, we reproduced a fire experiment simulating agricultural local activity by the technique of "slash and burn" to evaluate fire effects on soil respiration. Measurements were taken after the soil cooled and at least 3 days after the fire. Additionally, the carbon stocks of the subplots were evaluated. Evaluation of the variations of CO2 fluxes and the capacity of adaptation to fire and water content are discussed through the comparisons of the different locations, type of soils and concentration of available N (nitrate and ammonium) as an indicator of nutrient content.

  15. Recommendations concerning an interim annual individual exposure limit for respirable quartz

    Stocker, H.; Horvath, F.J.; Napier, W.

    1983-07-01

    This paper presents AECB staff recommendations on the desirability of an annual individual occupational exposure limit for respirable quartz and on the magnitude of this limit, for uranium miners. Justifications are presented for the magnitude of this suggested limit for respirable quartz, drawing on experience gained in Ontario uranium and non-uranium mines and on that in other countries. The suggestion is made that an exposure limit be set for an interim period in order that additional information on the adequacy of the magnitude of the limit may be acquired. To complement the suggested exposure limit, it is proposed that a co-existing control program of action levels, to be triggered at various respirable quartz concentrations, be set up. It is the contention of this paper that the degree of protection afforded to individuals by the suggested exposure limit would be equivalent to the time-weighted average threshold limit value derived from recommendations, based on group average exposures, of the American Conference of Governmental Industrial Hygienists

  16. Selection of non-Saccharomyces yeast strains for reducing alcohol levels in wine by sugar respiration.

    Quirós, Manuel; Rojas, Virginia; Gonzalez, Ramon; Morales, Pilar

    2014-07-02

    Respiration of sugars by non-Saccharomyces yeasts has been recently proposed for lowering alcohol levels in wine. Development of industrial fermentation processes based on such an approach requires, amongst other steps, the identification of yeast strains which are able to grow and respire under the relatively harsh conditions found in grape must. This work describes the characterization of a collection of non-Saccharomyces yeast strains in order to identify candidate yeast strains for this specific application. It involved the estimation of respiratory quotient (RQ) values under aerated conditions, at low pH and high sugar concentrations, calculation of yields of ethanol and other relevant metabolites, and characterization of growth responses to the main stress factors found during the first stages of alcoholic fermentation. Physiological features of some strains of Metschnikowia pulcherrima or two species of Kluyveromyces, suggest they are suitable for lowering ethanol yields by respiration. The unsuitability of Saccharomyces cerevisiae strains for this purpose was not due to ethanol yields (under aerated conditions they are low enough for a significant reduction in final ethanol content), but to the high acetic acid yields under these growth conditions. According to results from controlled aeration fermentations with one strain of M. pulcherrima, design of an aeration regime allowing for lowering ethanol yields though preserving grape must components from excessive oxidation, would be conceivable. Copyright © 2014. Published by Elsevier B.V.

  17. Improvement of the respiration efficiency of Lactococcus lactis by decreasing the culture pH.

    Shi, Weijia; Li, Yu; Gao, Xueling; Fu, Ruiyan

    2016-03-01

    The growth characteristics and intracellular hemin concentrations of Lactococcus lactis grown under different culture pH and aeration conditions were examined to investigate the effect of culture pH on the respiration efficiency of L. lactis NZ9000 (pZN8148). Cell biomass and biomass yield of L. lactis grown with 4 μg hemin/ml and O2 were higher than those without aeration when the culture pH was controlled at 5-6.5. The culture pH affected the respiratory efficiency in the following order of pH: 5 > 5.5 > 6 > 6.5; the lag phase increased as the culture pH decreased. Hemin accumulation was sensitive to culture pH. Among the four pH conditions, pH 5.5 was optimal for hemin accumulation in the cells. The highest intracellular hemin level in L. lactis resting cells incubated at different pH saline levels (5-6.5) was at pH 5.5. The respiration efficiency of L. lactis under respiration-permissive conditions increases markedly as the culture pH decreases. These results may help develop high cell-density L. lactis cultures. Thus, this microorganism may be used for industrial applications.

  18. Contribution of root to soil respiration and carbon balance in ...

    PRAKASH

    improves our understanding of the terrestrial carbon cycle ... considerably lower net ecosystem productivity in Community 2 than in Community 1 .... soil respiration chambers for each time were dried at 31ºC ..... Using existing management.

  19. Characterization of respirable mine dust and diesel particulate matter

    Mahlangu, Vusi J

    2015-11-01

    Full Text Available This paper presents the preliminary outcomes to develop and optimize methods to characterize DPM and respirable dust samples for the following: Crystalline compounds Common mineral analyses Particle size distribution Elemental Carbon (EC...

  20. Redefinition and global estimation of basal ecosystem respiration rate

    Yuan, Wenping [College of Global Change and Earth System Science, Beijing Normal University, Beijing, China; Luo, Yiqi [Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma, USA; Li, Xianglan [College of Global Change and Earth System Science, Beijing Normal University, Beijing, China; Liu, Shuguang; Yu, Guirui [Key Laboratory of Ecosystem Network Observation and Modeling, Synthesis Research Center of Chinese Ecosystem Research Network, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; Zhou, Tao [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China; Bahn, Michael [Institute of Ecology, University of Innsbruck, Innsbruck, Austria; Black, Andy [Faculty of Land and Food Systems, University of British Columbia, Vancouver, B. C., Canada; Desai, Ankur R. [Atmospheric and Oceanic Sciences Department, Center for Climatic Research, Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, Wisconsin, USA; Cescatti, Alessandro [Institute for Environment and Sustainability, Joint Research Centre, European Commission, Ispra, Italy; Marcolla, Barbara [Sustainable Agro-ecosystems and Bioresources Department, Fondazione Edmund Mach-IASMA Research and Innovation Centre, San Michele all' Adige, Italy; Jacobs, Cor [Alterra, Earth System Science-Climate Change, Wageningen University, Wageningen, Netherlands; Chen, Jiquan [Department of Earth, Ecological, and Environmental Sciences, University of Toledo, Toledo, Ohio, USA; Aurela, Mika [Climate and Global Change Research, Finnish Meteorological Institute, Helsinki, Finland; Bernhofer, Christian [Chair of Meteorology, Institute of Hydrology and Meteorology, Technische Universität Dresden, Dresden, Germany; Gielen, Bert [Department of Biology, University of Antwerp, Wilrijk, Belgium; Bohrer, Gil [Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, Ohio, USA; Cook, David R. [Climate Research Section, Environmental Science Division, Argonne National Laboratory, Argonne, Illinois, USA; Dragoni, Danilo [Department of Geography, Indiana University, Bloomington, Indiana, USA; Dunn, Allison L. [Department of Physical and Earth Sciences, Worcester State College, Worcester, Massachusetts, USA; Gianelle, Damiano [Sustainable Agro-ecosystems and Bioresources Department, Fondazione Edmund Mach-IASMA Research and Innovation Centre, San Michele all' Adige, Italy; Grünwald, Thomas [Chair of Meteorology, Institute of Hydrology and Meteorology, Technische Universität Dresden, Dresden, Germany; Ibrom, Andreas [Risø DTU National Laboratory for Sustainable Energy, Biosystems Division, Technical University of Denmark, Roskilde, Denmark; Leclerc, Monique Y. [Department of Crop and Soil Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA; Lindroth, Anders [Geobiosphere Science Centre, Physical Geography and Ecosystems Analysis, Lund University, Lund, Sweden; Liu, Heping [Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington, USA; Marchesini, Luca Belelli [Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Viterbo, Italy; Montagnani, Leonardo; Pita, Gabriel [Department of Mechanical Engineering, Instituto Superior Técnico, Lisbon, Portugal; Rodeghiero, Mirco [Sustainable Agro-ecosystems and Bioresources Department, Fondazione Edmund Mach-IASMA Research and Innovation Centre, San Michele all' Adige, Italy; Rodrigues, Abel [Unidade de Silvicultura e Produtos Florestais, Instituto Nacional dos Recursos Biológicos, Oeiras, Portugal; Starr, Gregory [Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA; Stoy, Paul C. [Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA

    2011-10-13

    Basal ecosystem respiration rate (BR), the ecosystem respiration rate at a given temperature, is a common and important parameter in empirical models for quantifying ecosystem respiration (ER) globally. Numerous studies have indicated that BR varies in space. However, many empirical ER models still use a global constant BR largely due to the lack of a functional description for BR. In this study, we redefined BR to be ecosystem respiration rate at the mean annual temperature. To test the validity of this concept, we conducted a synthesis analysis using 276 site-years of eddy covariance data, from 79 research sites located at latitudes ranging from ~3°S to ~70°N. Results showed that mean annual ER rate closely matches ER rate at mean annual temperature. Incorporation of site-specific BR into global ER model substantially improved simulated ER compared to an invariant BR at all sites. These results confirm that ER at the mean annual

  1. Disclosure and Fit Capability of the Filtering Facepiece Respirator.

    Lofgren, Don J

    2018-05-01

    The filtering facepiece air-purifying respirator is annually purchased in the tens of millions and widely used for worker protection from harmful airborne particulates. The workplace consumers of this safety product, i.e., employers, workers, and safety and health professionals, have assurances of its effectiveness through the respirator certification and disclosure requirements of the National Institute for Occupational Safety and Health. However, the certification of a critical performance requirement has been missing for the approved filtering facepiece respirator since 1995: fit capability. Without this certification, consumers continue to be at risk of purchasing a respirator model that may fit a small percentage of the intended users. This commentary updates and expands an earlier one by this author, addresses the consequences of poorly fitting certified models on the market and lack of disclosure, and calls for further action by National Institute for Occupational Safety and Health to meet the needs and expectations of the consumer.

  2. Temperature response of soil respiration largely unaltered with experimental warming

    Carey, Joanna C; Tang, Jianwu; Templer, Pamela H

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific...... attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies......, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation...

  3. respiration and transpiration characteristics of selected fresh fruits

    AISA

    were higher in optimal atmospheres. The Q10 values ... High respiration rates increase tissue aging and decrease the ability of the product to repel ... Two types of containers were used for the ..... availability of oxygen around the product also.

  4. Application of liquid chromatography-mass spectrometry to measure the concentrations and study the synthesis of short chain fatty acids following stable isotope infusions

    Meesters, R.J.W.; Eijk, H.M.H. van; Have, G.A.M. ten; Graaf, A.A. de; Venema, K.; Rossum, B.E.J. van; Deutz, N.E.P.

    2007-01-01

    A new method involving zinc sulphate deproteinization was developed to study short chain fatty acids (SCFA) production in the colon and subsequent occurrence of SCFA in blood. SCFA were baseline separated in a 30 min cycle using ion-exclusion chromatography and detected by mass spectrometry.

  5. A general method for the calculation of absolute trace gas concentrations in air and breath from selected ion flow tube mass spectrometry data

    Španěl, Patrik; Dryahina, Kseniya; Smith, D.

    249-250, - (2006), s. 230-239 ISSN 1387-3806 R&D Projects: GA ČR GA202/03/0827 Institutional research plan: CEZ:AV0Z40400503 Keywords : selected ion flow tube * mass spectrometry * SIFT-MS * trace gas analysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.337, year: 2006

  6. How does warming affect carbon allocation, respiration and residence time in trees? An isotope tracer approach in a eucalypt

    Pendall, E.; Drake, J. E.; Furze, M.; Barton, C. V.; Carillo, Y.; Richter, A.; Tjoelker, M. G.

    2017-12-01

    Climate warming has the potential to alter the balance between photosynthetic carbon assimilation and respiratory losses in forest trees, leading to uncertainty in predicting their future physiological functioning. In a previous experiment, warming decreased canopy CO2 assimilation (A) rates of Eucalyptus tereticornis trees, but respiration (R) rates were usually not significantly affected, due to physiological acclimation to temperature. This led to a slight increase in (R/A) and thus decrease in plant carbon use efficiency with climate warming. In contrast to carbon fluxes, the effect of warming on carbon allocation and residence time in trees has received less attention. We conducted a study to test the hypothesis that warming would decrease the allocation of C belowground owing to reduced cost of nutrient uptake. E. parramattensis trees were grown in the field in unique whole-tree chambers operated at ambient and ambient +3 °C temperature treatments (n=3 per treatment). We applied a 13CO2 pulse and followed the label in CO2 respired from leaves, roots, canopy and soil, in plant sugars, and in rhizosphere microbes over a 3-week period in conjunction with measurements of tree growth. The 9-m tall, 57 m3 whole-tree chambers were monitored for CO2 concentrations in independent canopy and below ground (root and soil) compartments; periodic monitoring of δ13C values in air in the compartments allowed us to quantify the amount of 13CO2 assimilated and respired by each tree. Warmed trees grew faster and assimilated more of the label than control trees, but the 13C allocation to canopy, root and soil respiration was not altered. However, warming appeared to reduce the residence time of carbon respired from leaves, and especially from roots and soil, indicating that autotrophic respiration has the potential to feedback to climate change. This experiment provides insights into how warming may affect the fate of assimilated carbon from the leaf to the ecosystem scale.

  7. Adipose tissue mitochondrial respiration and lipolysis before and after a weight loss by diet and RYGB

    Hansen, Merethe; Lund, Michael T.; Gregers, Emilie

    2015-01-01

    OBJECTIVE: To study adipose tissue mitochondrial respiration and lipolysis following a massive weight loss. METHODS: High resolution respirometry of adipose tissue biopsies and tracer determined whole body lipolysis. Sixteen obese patients with type 2 diabetes (T2DM) and 27 without (OB) were...... studied following a massive weight loss by diet and Roux-en-Y gastric bypass (RYGB). RESULTS: The mitochondrial respiratory rates were similar in OB and T2DM, and the mass-specific oxygen flux increased significantly 4 and 18 months post-surgery (P ... 2DM, visceral fat mass was always higher relative to the body fat mass (%) compared to OB. CONCLUSIONS: Adipose tissue mitochondrial respiratory capacity increases with RYGB. Adipocytes adapt to massive weight...

  8. Carbon dioxide titration method for soil respiration measurements

    Martín Rubio, Luis

    2017-01-01

    This thesis was commissioned by Tampere University of Applied Sciences, which was interested in studying and developing a titration measurement method for soil respiration and biodegradability. Some experiments were carried out measuring soil respiration for testing the method and others adding some biodegradable material like polylactic acid compressed material and 100% biodegradable plastic bags to test its biodegradability and the possibility to measure it via titration. The thesi...

  9. Fuzzy Control of Tidal volume, Respiration number and Pressure value

    Hasan Guler; Fikret Ata

    2010-01-01

    In this study, control of tidal volume, respiration number and pressure value which are arrived to patient at mechanical ventilator device which is used in intensive care units were performed with fuzzy logic controller. The aim of this system is to reduce workload of aneshesiologist. By calculating tidal volume, respiration number and pressure value, the error Pe(k) between reference pressure value (Pref) and pressure of gas given ill person (Phasta) and error change rate ;#948;Pe(k) were co...

  10. The diabetes medication Canagliflozin reduces cancer cell proliferation by inhibiting mitochondrial complex-I supported respiration

    Linda A. Villani

    2016-10-01

    Full Text Available Objective: The sodium-glucose transporter 2 (SGLT2 inhibitors Canagliflozin and Dapagliflozin are recently approved medications for type 2 diabetes. Recent studies indicate that SGLT2 inhibitors may inhibit the growth of some cancer cells but the mechanism(s remain unclear. Methods: Cellular proliferation and clonogenic survival were used to assess the sensitivity of prostate and lung cancer cell growth to the SGLT2 inhibitors. Oxygen consumption, extracellular acidification rate, cellular ATP, glucose uptake, lipogenesis, and phosphorylation of AMP-activated protein kinase (AMPK, acetyl-CoA carboxylase, and the p70S6 kinase were assessed. Overexpression of a protein that maintains complex-I supported mitochondrial respiration (NDI1 was used to establish the importance of this pathway for mediating the anti-proliferative effects of Canagliflozin. Results: Clinically achievable concentrations of Canagliflozin, but not Dapagliflozin, inhibit cellular proliferation and clonogenic survival of prostate and lung cancer cells alone and in combination with ionizing radiation and the chemotherapy Docetaxel. Canagliflozin reduced glucose uptake, mitochondrial complex-I supported respiration, ATP, and lipogenesis while increasing the activating phosphorylation of AMPK. The overexpression of NDI1 blocked the anti-proliferative effects of Canagliflozin indicating reductions in mitochondrial respiration are critical for anti-proliferative actions. Conclusion: These data indicate that like the biguanide metformin, Canagliflozin not only lowers blood glucose but also inhibits complex-I supported respiration and cellular proliferation in prostate and lung cancer cells. These observations support the initiation of studies evaluating the clinical efficacy of Canagliflozin on limiting tumorigenesis in pre-clinical animal models as well epidemiological studies on cancer incidence relative to other glucose lowering therapies in clinical populations. Keywords: AMP

  11. Water vapor concentration dependence and temperature dependence of Li mass loss from Li{sub 2}TiO{sub 3} with excess Li and Li{sub 4}SiO{sub 4}

    Shimozori, Motoki [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Katayama, Kazunari, E-mail: kadzu@nucl.kyushu-u.ac.jp [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Hoshino, Tsuyoshi [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuch, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan); Ushida, Hiroki; Yamamoto, Ryotaro; Fukada, Satoshi [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan)

    2015-10-15

    Highlights: • Li mass loss from Li{sub 2.11}TiO{sub 3} increased proportionally to water vapor pressure. • Li mass loss from Li{sub 2.11}TiO{sub 3} at 600 °C was significantly smaller than expected. • Differences of Li mass loss behavior from Li{sub 2.11}TiO{sub 3} and Li{sub 4}SiO{sub 4} were shown. - Abstract: In this study, weight reduction of Li{sub 2}TiO{sub 3} with excess Li and Li{sub 4}SiO{sub 4} at elevated temperatures under hydrogen atmosphere or water vapor atmosphere was investigated. The Li mass loss for the Li{sub 2}TiO{sub 3} at 900 °C was 0.4 wt% under 1000 Pa H{sub 2} atmosphere and 1.5 wt% under 50 Pa H{sub 2}O atmosphere. The Li mass loss for the Li{sub 2}TiO{sub 3} increased proportionally to the water vapor pressure in the range from 50 to 200 Pa at 900 °C and increased with increasing temperature from 700 to 900 °C although Li mass loss at 600 °C was significantly smaller than expected. It was found that water vapor concentration dependence and temperature dependence of Li mass loss for the Li{sub 2}TiO{sub 3} and the Li{sub 4}SiO{sub 4} used in this work were quite different. Water vapor is released from the ceramic breeder materials into the purge gas due to desorption of adsorbed water and water formation reaction. The released water vapor possibly promotes Li mass loss with the formation of LiOH on the surface.

  12. Use of respirators for protection of workers against airborne radioactive materials

    Revoir, W.H.

    1990-01-01

    The various types of respirators and the requirements for an effective respirator program are outlined. The use of specific types of respirators to protect workers against inhalation of airborne radioactive materials is discussed. Problems encountered in using respirators in the nuclear industry which have resulted in worker injury and death are described

  13. Respiration testing for bioventing and biosparging remediation of petroleum contaminated soil and ground water

    Gray, A.L.; Brown, A.; Moore, B.J.; Payne, R.E.

    1996-01-01

    Respiration tests were performed to measure the effect of subsurface aeration on the biodegradation rates of petroleum hydrocarbon contamination in vadose zone soils (bioventing) and ground water (biosparging). The aerobic biodegradation of petroleum contamination is typically limited by the absence of oxygen in the soil and ground water. Therefore, the goal of these bioremediation technologies is to increase the oxygen concentration in the subsurface and thereby enhance the natural aerobic biodegradation of the organic contamination. One case study for biosparging bioremediation testing is presented. At this site atmospheric air was injected into the ground water to increase the dissolved oxygen concentration in the ground water surrounding a well, and to aerate the smear zone above the ground water table. Aeration flow rates of 3 to 8 cfm (0.09 to 0.23 m 3 /min) were sufficient to increase the dissolved oxygen concentration. Petroleum hydrocarbon biodegradation rates of 32 to 47 microg/l/hour were calculated based on measurements of dissolved oxygen concentration in ground water. The results of this test have demonstrated that biosparging enhances the biodegradation of petroleum hydrocarbons, but the results as they apply to remediation are not known. Two case studies for bioventing respiration testing are presented

  14. Stimulation of respiration in rat thymocytes induced by ionizing radiation

    Gudz, T.I.; Pandelova, I.G.; Novgorodov, S.A.

    1994-01-01

    The effect of X irradiation on the respiration of rat thymocytes was studied. An increase in the rate of O 2 uptake was observed 1 h after cells were irradiated with doses of 6-10 Gy. The radiation-induced increase in respiration could be blocked by oligomycin, an inhibitor of mitochondrial ATP synthase, suggesting control by increased cytoplasmic ATP turnover. The stimulation of respiration was not associated with changes in the activity of mitochondrial electron transfer enzymes or permeability of the inner membrane. Several inhibitors of processes which used ATP were screened for their effects on the basal respiration rate and on the radiation response. In irradiated thymocytes, an enhancement of inhibition of respiration by ouabain, La 3+ and cycloheximide was observed. These results indicate that the radiation-induced stimulation of respiration is due to changes in ion homeostasis and protein synthesis. The effect of X irradiation was shown to be independent of the redox status of nonprotein thiols and was not associated with detectable changes in some products of lipid peroxidation. The radiation-induced decrease in activity of superoxide dismutase suggests free radical involvement in deleterious effects of radiation. 43 refs., 2 figs., 3 tabs

  15. Targeting mitochondrial respiration as a therapeutic strategy for cervical cancer.

    Tian, Shenglan; Chen, Heng; Tan, Wei

    2018-05-23

    Targeting mitochondrial respiration has been documented as an effective therapeutic strategy in cancer. However, the impact of mitochondrial respiration inhibition on cervical cancer cells are not well elucidated. Using a panel of cervical cancer cell lines, we show that an existing drug atovaquone is active against the cervical cancer cells with high profiling of mitochondrial biogenesis. Atovaquone inhibited proliferation and induced apoptosis with varying efficacy among cervical cancer cell lines regardless of HPV infection, cellular origin and their sensitivity to paclitaxel. We further demonstrated that atovaquone acts on cervical cancer cells via inhibiting mitochondrial respiration. In particular, atovaquone specifically inhibited mitochondrial complex III but not I, II or IV activity, leading to respiration inhibition and energy crisis. Importantly, we found that the different sensitivity of cervical cancer cell lines to atovaquone were due to their differential level of mitochondrial biogenesis and dependency to mitochondrial respiration. In addition, we demonstrated that the in vitro observations were translatable to in vivo cervical cancer xenograft mouse model. Our findings suggest that the mitochondrial biogenesis varies among patients with cervical cancer. Our work also suggests that atovaquone is a useful addition to cervical cancer treatment, particularly to those with high dependency on mitochondrial respiration. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Two Proximal Skin Electrodes — A Respiration Rate Body Sensor

    Viktor Avbelj

    2012-10-01

    Full Text Available We propose a new body sensor for extracting the respiration rate based on the amplitude changes in the body surface potential differences between two proximal body electrodes. The sensor could be designed as a plaster-like reusable unit that can be easily fixed onto the surface of the body. It could be equipped either with a sufficiently large memory for storing the measured data or with a low-power radio system that can transmit the measured data to a gateway for further processing. We explore the influence of the sensor’s position on the quality of the extracted results using multi-channel ECG measurements and considering all the pairs of two neighboring electrodes as potential respiration-rate sensors. The analysis of the clinical measurements, which also include reference thermistor-based respiration signals, shows that the proposed approach is a viable option for monitoring the respiration frequency and for a rough classification of breathing types. The obtained results were evaluated on a wireless prototype of a respiration body sensor. We indicate the best positions for the respiration body sensor and prove that a single sensor for body surface potential difference on proximal skin electrodes can be used for combined measurements of respiratory and cardiac activities.

  17. Improvement of ballistocardiogram processing by inclusion of respiration information

    Tavakolian, Kouhyar; Vaseghi, Ali; Kaminska, Bozena

    2008-01-01

    In this paper a novel methodology for processing of a ballistocardiogram (BCG) is proposed in which the respiration signal is utilized to improve the averaging of the BCG signal and ultimately the annotation and interpretation of the signal. Previous research works filtered out the respiration signal while the novelty of the current research is that, rather than removing the respiration effect from the signal, we utilize the respiration information to improve the averaging and thus analysis and interpretation of the BCG signal in diagnosis of cardiac malfunctions. This methodology is based on our investigation that BCG cycles corresponding to the inspiration and expiration phases of the respiration cycle are different in morphology. BCG cycles corresponding to the expiration phase of respiration have been proved to be more closely related to each other when compared to cycles corresponding to inspiration, and therefore expiration cycles are better candidates to be selected for the calculation of the averaged BCG signal. The new BCG average calculated based on this methodology is then considered as the representative and a template of the BCG signal for further processing. This template can be considered as the output of a clinical BCG instrument with higher reliability and accuracy compared to the previous processing methods

  18. Monitoring and assessment of heavy metal/metalloid concentration by inductively coupled plasma mass spectroscopy (ICP-MS) method in Gonyeli Lake, Cyprus.

    Alkas, Fehmi Burak; Shaban, Jehad Abdullah; Sukuroglu, Ayca Aktas; Kurt, Mehmet Ali; Battal, Dilek; Saygi, Sahan

    2017-09-22

    The presence of heavy metals/metalloids in the ecosystem has been an increasing ecological and global public health concern due to their potential to cause adverse health effects. For this reason, the accumulation of some heavy metals such as Cr, Mn, Ni, Cu, As, Cd, Pb was assessed by way of ICP-MS in water, sediment and fish (Cyprinus carpio) sampled from Gonyeli Lake, North Cyprus. The results showed that these metals/metalloids are found widespread throughout the study area. In water, most concentrated element was manganese with 92.1 ppb and least concentrated was lead with 0.914 ppb. In sediment, copper had the highest concentration with 613 ppm, and cadmium the lowest with 1.57 ppm. In fish tissues (muscle and gills), the most concentrated element was manganese with 12.5 ppm and the least concentrated cadmium with 0.017 ppm. These results indicate that future remediation efforts are indispensable for the rehabilitation of the lake.

  19. Assessing Effect of Manure and Chemical Fertilizer on Net Primary Production, Soil Respiration and Carbon Budget in Winter Wheat (Triticum aestivum L. Ecosystem under Mashhad Climatic Condition

    Y alizade

    2018-02-01

    Full Text Available Introduction The imbalance between anthropogenic emissions of CO2 and the sequestration of CO2 from the atmosphere by ecosystems has led to an increase in the average concentration of this greenhouse gas (GHG in the atmosphere. Enhancing carbon sequestration in soil is an important issue to reduce net flux of carbon dioxide to the atmosphere. Soil organic carbon content is obtained from the difference between carbon input resulting from plant biomass and carbon losses the soil through different ways including soil respiration. CO2 emission varies largely during the year and is considerably affected by management type. The goal of this investigation was to study the effects of application of manure and chemical fertilizer on CO2 flux and carbon balance in agricultural system. Materials and Methods In order to evaluate the carbon dynamics and effect of fertilizer and manure management on soil respiration and carbon budget for winter wheat, an experiment was conducted as a randomized complete block design with three replications in research field of Faculty of Agriculture of Ferdowsi University of Mashhad for two years of 2010-2011 and 2011-2012 . The experimental treatments were 150 and 250 kg chemical nitrogen (N1 and N2, manure (M, manure plus chemical nitrogen (F-M and control (C. CO2 emission was measured six times during growth season and to minimize daily temperature variation error, the measurement was performed between 8 to 11 am. Chambers length and diameter were 50 cm and 30 cm respectively and their edges were held down 3 cm in soil in time of sampling so that no plant live mass was present in the chamber. Carbon budgets were estimated for two years using an ecological technique. Results and Discussion The net primary production (NPP was significantly higher in the F2 and F-M treatments with 6467 and 6294kg ha-1 in the first year and 6260 and 6410 kg ha-1 in the second year, respectively. The highest shoot to root ratio was obtained in

  20. Untreated diabetes mellitus, but not impaired fasting glucose, is associated with increased left ventricular mass and concentric hypertrophy in an elderly, healthy, Swedish population

    Manan Pareek

    2015-12-01

    Conclusions: Subjects with untreated DM had higher values of LVMI and a greater prevalence of concentric LVH, but the associations were not independent of other risk factors. NT-proBNP was primarily associated with greater LV size in subjects with IFG or DM.

  1. Laboratory evaluation of the particle size effect on the performance of an elastomeric half-mask respirator against ultrafine combustion particles.

    He, Xinjian; Grinshpun, Sergey A; Reponen, Tiina; Yermakov, Michael; McKay, Roy; Haruta, Hiroki; Kimura, Kazushi

    2013-08-01

    This study quantified the particle size effect on the performance of elastomeric half-mask respirators, which are widely used by firefighters and first responders exposed to combustion aerosols. One type of elastomeric half-mask respirator equipped with two P-100 filters was donned on a breathing manikin while challenged with three combustion aerosols (originated by burning wood, paper, and plastic). Testing was conducted with respirators that were fully sealed, partially sealed (nose area only), or unsealed to the face of a breathing manikin to simulate different faceseal leakages. Three cyclic flows with mean inspiratory flow (MIF) rates of 30, 85, and 135 L/min were tested for each combination of sealing condition and combustion material. Additional testing was performed with plastic combustion particles at other cyclic and constant flows. Particle penetration was determined by measuring particle number concentrations inside and outside the respirator with size ranges from 20 to 200 nm. Breathing flow rate, particle size, and combustion material all had significant effects on the performance of the respirator. For the partially sealed and unsealed respirators, the penetration through the faceseal leakage reached maximum at particle sizes >100 nm when challenged with plastic aerosol, whereas no clear peaks were observed for wood and paper aerosols. The particles aerosolized by burning plastic penetrated more readily into the unsealed half-mask than those aerosolized by the combustion of wood and paper. The difference may be attributed to the fact that plastic combustion particles differ from wood and paper particles by physical characteristics such as charge, shape, and density. For the partially sealed respirator, the highest penetration values were obtained at MIF = 85 L/min. The unsealed respirator had approximately 10-fold greater penetration than the one partially sealed around the bridge of the nose, which indicates that the nose area was the primary leak

  2. The effect of dietary protein on reproduction in the mare. II. Growth of foals, body mass of mares and serum protein concentration of mares during the anovulatory, transitional and pregnant periods

    F.E. Van Niekerk

    1997-07-01

    Full Text Available The effect of 4 different diets, in terms of protein quantity and quality, on total serum protein (TSP, albumin and globulin was investigated. Non-pregnant mares that were not lactating (n = 36, pregnant mares that had foaled (n = 24 and their foals (n = 24 were used in this study. Daily total protein intake had no effect on blood protein concentrations in the mares. Total protein intake and quality (available essential amino-acids did affect the body mass of mares during lactation. When mares were fed the minimum recommended (National Research Council 1989 total daily protein, foal mass decreased by approximately 25 % at weaning compared to the foals whose dams were on a higher level of protein intake. The TSP concentrations of foals at birth were on average 10 g/ℓ lower than those of the mares. Albumin concentrations of foals during the first 60 days of life were on average 2-3 g/ℓ lower than those of the mares. Globulin concentrations of foals were approximately 5 g/ℓ lower than those of mares at weaning.

  3. Components of Soil Respiration and its Monthly Dynamics in Rubber Plantation Ecosystems

    Zhixiang Wu; Limin Guan; Bangqian Chen; Chuan Yang; Guoyu Lan; Guishui Xie; Zhaode Zhou

    2014-01-01

    Aim: Our objective was to quantify four components and study effect factors of soil respiration in rubber plantation ecosystems. Providing the basic data support for the establishment of the trade of rubber plantation ecosystem carbon source/sink. Methods: We used Li-6400 (IRGA, Li-COR) to quantitate four components of soil respiration in rubber plantation ecosystems at different ages. Soil respiration can be separated as four components: heterotrophic respiration (Rh), Respiration of roots (...

  4. Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates

    Fendt, Sarah-Maria; Sauer, Uwe

    2010-01-01

    Abstract Background Depending on the carbon source, Saccharomyces cerevisiae displays various degrees of respiration. These range from complete respiration as in the case of ethanol, to almost complete fermentation, and thus very low degrees of respiration on glucose. While many key regulators are known for these extreme cases, we focus here on regulators that are relevant at intermediate levels of respiration. Results We address this question by linking the functional degree of respiration t...

  5. Effects of Tillage Practices on Soil Organic Carbon and Soil Respiration

    Rusu, Teodor; Ioana Moraru, Paula; Bogdan, Ileana; Ioan Pop, Adrian

    2016-04-01

    Soil tillage system and its intensity modify by direct and indirect action soil temperature, moisture, bulk density, porosity, penetration resistance and soil structural condition. Minimum tillage and no-tillage application reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first years of application. The degree of compaction is directly related to soil type and its state of degradation. All this physicochemical changes affect soil biology and soil respiration. Soil respiration leads to CO2 emissions from soil to the atmosphere, in significant amounts for the global carbon cycle. Soil respiration is one measure of biological activity and decomposition. Soil capacity to produce CO2 varies depending on soil, season, intensity and quality of agrotechnical tillage, soil water, cultivated plant and fertilizer. Our research follows the effects of the three tillage systems: conventional system, minimum tillage and no-tillage on soil respiration and finally on soil organic carbon on rotation soybean - wheat - maize, obtained on an Argic Faeoziom from the Somes Plateau, Romania. To quantify the change in soil respiration under different tillage practices, determinations were made for each crop in four vegetative stages (spring, 5-6 leaves, bean forming, harvest). Soil monitoring system of CO2 and O2 included gradient method, made by using a new generation of sensors capable of measuring CO2 concentration in-situ and quasi-instantaneous in gaseous phase. At surface soil respiration is made by using ACE Automated Soil CO2 Exchange System. These areas were was our research presents a medium multi annual temperature of 8.20C medium of multi annual rain drowns: 613 mm. The experimental variants chosen were: i). Conventional system: reversible plough (22-25 cm) + rotary grape (8-10 cm); ii). Minimum tillage system: paraplow (18-22 cm) + rotary grape (8-10 cm); iii). No-tillage. The experimental design was a split-plot design with three

  6. Basal metabolic rate scaled to body mass between species by the ...

    The principal reason that basal metabolic rate (BMR) and MMR scale with different power exponents to whole body mass is that MMR is due mainly to respiration in skeletal muscle during exercise and BMR to respiration in the viscera during rest. It follows, therefore, from the self-similarity of the vascular system that BMR is ...