WorldWideScience

Sample records for resonance nmr measurements

  1. (1)H nuclear magnetic resonance (NMR) as a tool to measure dehydration in mice.

    Science.gov (United States)

    Li, Matthew; Vassiliou, Christophoros C; Colucci, Lina A; Cima, Michael J

    2015-08-01

    Dehydration is a prevalent pathology, where loss of bodily water can result in variable symptoms. Symptoms can range from simple thirst to dire scenarios involving loss of consciousness. Clinical methods exist that assess dehydration from qualitative weight changes to more quantitative osmolality measurements. These methods are imprecise, invasive, and/or easily confounded, despite being practiced clinically. We investigate a non-invasive, non-imaging (1)H NMR method of assessing dehydration that attempts to address issues with existing clinical methods. Dehydration was achieved by exposing mice (n = 16) to a thermally elevated environment (37 °C) for up to 7.5 h (0.11-13% weight loss). Whole body NMR measurements were made using a Bruker LF50 BCA-Analyzer before and after dehydration. Physical lean tissue, adipose, and free water compartment approximations had NMR values extracted from relaxation data through a multi-exponential fitting method. Changes in before/after NMR values were compared with clinically practiced metrics of weight loss (percent dehydration) as well as blood and urine osmolality. A linear correlation between tissue relaxometry and both animal percent dehydration and urine osmolality was observed in lean tissue, but not adipose or free fluids. Calculated R(2) values for percent dehydration were 0.8619 (lean, P dehydration in live animals. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Nuclear magnetic resonance (NMR): principles and applications

    International Nuclear Information System (INIS)

    Quibilan, E.I.

    The basis for the phenomenon of nuclear magnetic resonance (NMR) is the ability of certain nuclei possessing both intrinsic angular momentum or ''spin'' I and magnetic moment to absorb electromagnetic energy in the radio frequency range. In principle, there are approximately 200 nuclei which may be investigated using the NMR technique. The NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum provides a variety of qualitative and quantitative analytical applications. The most obvious applications consist of the measurements of nuclear properties, such as spin number and nuclear magnetic moment. In liquids, the fine structure of resonance spectra provides a tool for chemical identification and molecular structure analysis. Other applications include the measurements of self-diffusion coefficients, magnetic fields and field homogeneity, inter-nuclear distances, and, in some cases, the water content of biological materials. (author)

  3. Microprocessorized NMR measurement

    International Nuclear Information System (INIS)

    Rijllart, A.

    1984-01-01

    An MC68000 CAMAC microprocessor system for fast and accurate NMR signal measurement will be presented. A stand-alone CAMAC microprocessor system (MC68000 STAC) with a special purpose interface sweeps a digital frequency synthesizer and digitizes the NMR signal with a 16-bit ADC of 17 μs conversion time. It averages the NMR signal data over many sweeps and then transfers it through CAMAC to a computer for calculation of the signal parameters. The computer has full software control over the timing and sweep settings of this signal averager, and thus allows optimization of noise suppression. Several of these processor systems can be installed in the same crate for parallel processing, and the flexibility of the STAC also allows easy adaptation to other applications such as transient recording or phase-sensitive detection. (orig.)

  4. Nuclear magnetic resonance (NMR) tomography

    International Nuclear Information System (INIS)

    Skalpe, I.O.

    1984-01-01

    A brief survey of the working principle of the NMR technique in diagnostical medicine is given. Its clinical usefulness for locating tumors, diagnosing various other diseases, such as some mental illnesses and multiple sclerosis, and its possibilities for studying biochemical processes in vivo are mentioned. The price of NMR image scanners and the problems of the strong magnetic field around the machines are mentioned

  5. Petrophysical properties of greensand as predicted from NMR measurements

    DEFF Research Database (Denmark)

    Hossain, Zakir; Grattoni, Carlos A.; Solymar, Mikael

    2011-01-01

    ABSTRACT: Nuclear magnetic resonance (NMR) is a useful tool in reservoir evaluation. The objective of this study is to predict petrophysical properties from NMR T2 distributions. A series of laboratory experiments including core analysis, capillary pressure measurements, NMR T2 measurements...... with macro-pores. Permeability may be predicted from NMR by using Kozeny's equation when surface relaxivity is known. Capillary pressure drainage curves may be predicted from NMR T2 distribution when pore size distribution within a sample is homogeneous....

  6. Contact replacement for NMR resonance assignment.

    Science.gov (United States)

    Xiong, Fei; Pandurangan, Gopal; Bailey-Kellogg, Chris

    2008-07-01

    Complementing its traditional role in structural studies of proteins, nuclear magnetic resonance (NMR) spectroscopy is playing an increasingly important role in functional studies. NMR dynamics experiments characterize motions involved in target recognition, ligand binding, etc., while NMR chemical shift perturbation experiments identify and localize protein-protein and protein-ligand interactions. The key bottleneck in these studies is to determine the backbone resonance assignment, which allows spectral peaks to be mapped to specific atoms. This article develops a novel approach to address that bottleneck, exploiting an available X-ray structure or homology model to assign the entire backbone from a set of relatively fast and cheap NMR experiments. We formulate contact replacement for resonance assignment as the problem of computing correspondences between a contact graph representing the structure and an NMR graph representing the data; the NMR graph is a significantly corrupted, ambiguous version of the contact graph. We first show that by combining connectivity and amino acid type information, and exploiting the random structure of the noise, one can provably determine unique correspondences in polynomial time with high probability, even in the presence of significant noise (a constant number of noisy edges per vertex). We then detail an efficient randomized algorithm and show that, over a variety of experimental and synthetic datasets, it is robust to typical levels of structural variation (1-2 AA), noise (250-600%) and missings (10-40%). Our algorithm achieves very good overall assignment accuracy, above 80% in alpha-helices, 70% in beta-sheets and 60% in loop regions. Our contact replacement algorithm is implemented in platform-independent Python code. The software can be freely obtained for academic use by request from the authors.

  7. NMR dispersion measurement of dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Davies, K.; Cox, S.F.J.

    1978-01-01

    The feasibility of monitoring dynamic nuclear polarization from the NMR dispersive susceptibility is examined. Two prototype instruments are tested in a polarized proton target using organic target material. The more promising employs a tunnel diode oscillator, inside the target cavity, and should provide a precise polarization measurement working at a frequency far enough from the main resonance for the disturbance of the measured polarization to be negligible. Other existing methods for measuring target polarization are briefly reviewed. (author)

  8. Nuclear magnetic resonance apparatus having semitoroidal RF coil for use in topical NMR and NMR imaging

    International Nuclear Information System (INIS)

    Fukushima, E.; Assink, R.A.; Roeder, S.B.W.; Gibson, A.A.V.

    1984-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, to enable NMR measurements to be taken from selected regions inside an object, particularly human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other electric field interactions. The coil may be combined with a like orthogonal coil and suitably driven to provide a circularly polarised field; or it may be used in conjunction with a concentrically nested smaller semitoroidal coil to move the maximum field further from the coil assembly. (author)

  9. NMR Measurements of Granular Flow and Compaction

    Science.gov (United States)

    Fukushima, Eiichi

    1998-03-01

    Nuclear magnetic resonance (NMR) can be used to measure statistical distributions of granular flow velocity and fluctuations of velocity, as well as spatial distributions of particulate concentration, flow velocity, its fluctuations, and other parameters that may be derived from these. All measurements have been of protons in liquid-containing particles such as mustard seeds or pharmaceutical pills. Our favorite geometry has been the slowly rotating partially filled rotating drum with granular flow taking place along the free surface of the particles. All the above-mentioned parameters have been studied as well as a spatial distribution of particulate diffusion coefficients, energy dissipation due to collisions, as well as segregation of non-uniform mixtures of granular material. Finally, we describe some motions of granular material under periodic vibrations.

  10. Some double resonance and multiple quantum NMR studies in solids

    Energy Technology Data Exchange (ETDEWEB)

    Wemmer, D.E.

    1978-08-01

    The first section of this work presents the theory and experimental applications to analysis of molecular motion of chemical shielding lineshapes obtained with high resolution double resonance NMR techniques. Analysis of /sup 13/C powder lineshapes in hexamethylbenzene (HMB) and decamethylferrocene (DMFe) show that these molecules reorient in a jumping manner about the symmetry axis. Analysis of proton chemical shielding lineshapes of residual protons in heavy ice (D/sub 2/O) show that protons are exchanged among the tetrahedral positions of neighboring oxygen atoms, consistent with motion expected from defect migration. The second section describes the application of Fourier Transform Double Quantum NMR to measurement of chemical shielding of deuterium in powder samples. Studies of partially deuterated benzene and ferrocene give equal shielding anisotropies, ..delta..sigma = -6.5 ppM. Theoretical predictions and experimental measurements of dipolar couplings between deuterons using FTDQ NMR are presented. Crystals of BaClO/sub 3/.D/sub 2/O, ..cap alpha..,..beta.. d-2 HMB and ..cap alpha..,..beta..,..gamma.. d-3 HMB were studied, as were powders of d-2 HMB and anisic acid. The third section discusses general multiple quantum spectroscopy in dipolar coupled spin systems. Theoretical description is made for creation and detection of coherences between states without quantum number selection rules ..delta..m = +-1. Descriptions of techniques for partial selectivity of order in preparation and detection of multiple quantum coherences are made. The effects on selectivity and resolution of echo pulses during multiple quantum experiments are discussed. Experimental observation of coherences up to order 6 have been made in a sample of benzene dissolved in a liquid crystal. Experimental verifications of order selection and echo generation have been made.

  11. Some double resonance and multiple quantum NMR studies in solids

    International Nuclear Information System (INIS)

    Wemmer, D.E.

    1978-08-01

    The first section of this work presents the theory and experimental applications to analysis of molecular motion of chemical shielding lineshapes obtained with high resolution double resonance NMR techniques. Analysis of 13 C powder lineshapes in hexamethylbenzene (HMB) and decamethylferrocene (DMFe) show that these molecules reorient in a jumping manner about the symmetry axis. Analysis of proton chemical shielding lineshapes of residual protons in heavy ice (D 2 O) show that protons are exchanged among the tetrahedral positions of neighboring oxygen atoms, consistent with motion expected from defect migration. The second section describes the application of Fourier Transform Double Quantum NMR to measurement of chemical shielding of deuterium in powder samples. Studies of partially deuterated benzene and ferrocene give equal shielding anisotropies, Δsigma = -6.5 ppM. Theoretical predictions and experimental measurements of dipolar couplings between deuterons using FTDQ NMR are presented. Crystals of BaClO 3 .D 2 O, α,β d-2 HMB and α,β,γ d-3 HMB were studied, as were powders of d-2 HMB and anisic acid. The third section discusses general multiple quantum spectroscopy in dipolar coupled spin systems. Theoretical description is made for creation and detection of coherences between states without quantum number selection rules Δm = +-1. Descriptions of techniques for partial selectivity of order in preparation and detection of multiple quantum coherences are made. The effects on selectivity and resolution of echo pulses during multiple quantum experiments are discussed. Experimental observation of coherences up to order 6 have been made in a sample of benzene dissolved in a liquid crystal. Experimental verifications of order selection and echo generation have been made

  12. NMR magnetic field controller for pulsed nuclear magnetic resonance experiments

    International Nuclear Information System (INIS)

    Scheler, G.; Anacker, M.

    1975-01-01

    A nuclear magnetic resonance controller for magnetic fields, which can also be used for pulsed NMR investigations, is described. A longtime stability of 10 -7 is achieved. The control signal is generated by a modified time sharing circuit with resonance at the first side band of the 2 H signal. An exact calibration of the magnetic field is achieved by the variation of the H 1 - or of the time-sharing frequency. (author)

  13. O-17 NMR measurement of water

    International Nuclear Information System (INIS)

    Fukazawa, Nobuyuki

    1990-01-01

    Recently, attention has been paid to the various treatment of water and the utilization of water by magnetic treatment, electric field treatment and so on. It has been said that by these treatments, the change in the properties of water arises. The state of this treated water cannot be explained by the properties of water from conventional physical and chemical standpoints. In addition, the method of measurement of whether the change arose or not is not yet determined. It is necessary to establish the method of measurement for the basic state of water. In this study, O-17 NMR which observes the state of water directly at molecular or atomic level was investigated as the method of measuring water. The measurement of O-17 NMR was carried out with a JNR 90Q FT NMR of Fourier transformation type of JEOL Ltd. The experimental method and the results are reported. The result of measurement of the O-17 NMR spectrum for distilled ion exchange water is shown. It is know that it has very wide line width as compared with the NMR spectra of protons and C-13. The relative sensitivity of O-17 observation is about 1/100,000 of that of protons. As to the information on the state of water obtained by O-17 NMR, there are chemical shift and line width. As temperature rose, the line width showed decrease, which seemed to be related to the decrease of hydrogen combination. (K.I.)

  14. NMR

    International Nuclear Information System (INIS)

    Kneeland, J.B.; Lee, B.C.P.; Whalen, J.P.; Knowles, R.J.R.; Cahill, P.T.

    1984-01-01

    Although still quite new, NMR imaging has already emerged as a safe, noninvasive, painless, and effective diagnostic modality requiring no ionizing radiation. Also, NMR appears already to have established itself as the method of choice for the examination of the brain spinal cord (excluding herniated disks). Another area in which NMR excels is in the examination of the pelvis. The use of surface coils offers the promise of visualizing structures with resolution unobtainable by any other means. In addition, NMR, with its superb visualization of vascular structures and potential ability to measure flow, may soon revolutionize the diagnosis of cardiovascular disease. Finally, NMR, through biochemically and physiologically based T/sub 1/ and T/sub 2/ indices or through spectroscopy, may provide a means of monitoring therapeutic response so as to permit tailoring of treatment to the individual patient. In short, NMR is today probably at the same stage as the x-ray was in Roentgen's day

  15. Effect of resonance line shape on precision measurements of nuclear magnetic resonance shifts

    International Nuclear Information System (INIS)

    Kachurin, A.M.; Smelyanskij, A.Ya.

    1986-01-01

    Effect of resonance line shape on the systematic error of precision measurements of nuclear magnetic resonance (NMR) shifts of high resolution (on the center of NMR dispersion line) is analysed. Effect of the device resonance line form-function asymmetry is evaluated; the form-function is determined by configuration of the spectrometer magnetic field and enters the convolution, which describes the resonance line form. It is shown that with the increase of the relaxation line width the form-function effect on the measurement error yields to zero. The form-function effect on measurements and correction of a phase angle of NMR detection is evaluated. The method of semiquantitative evaluation of resonance line and NMR spectrometer parameters, guaranteeing the systematic error of the given infinitesimal, is presented

  16. Towards {sup 31}Mg-β-NMR resonance linewidths adequate for applications in magnesium chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Stachura, M., E-mail: mstachura@triumf.ca [TRIUMF (Canada); McFadden, R. M. L. [University of British Columbia, Chemistry Department (Canada); Chatzichristos, A.; Dehn, M. H. [University of British Columbia, Department of Physics and Astronomy (Canada); Gottberg, A. [TRIUMF (Canada); Hemmingsen, L. [Københavns Universitet Universitetsparken 5, Kemisk Institut (Denmark); Jancso, A. [University of Szeged, Department of Inorganic and Analytical Chemistry (Hungary); Karner, V. L. [University of British Columbia, Chemistry Department (Canada); Kiefl, R. F. [University of British Columbia, Department of Physics and Astronomy (Canada); Larsen, F. H. [Københavns Universitet Rolighedsvej 26, Institut for Fødevarevidenskab (Denmark); Lassen, J.; Levy, C. D. P.; Li, R. [TRIUMF (Canada); MacFarlane, W. A. [University of British Columbia, Chemistry Department (Canada); Morris, G. D. [TRIUMF (Canada); Pallada, S. [CERN (Switzerland); Pearson, M. R. [TRIUMF (Canada); Szunyogh, D.; Thulstrup, P. W. [Københavns Universitet Universitetsparken 5, Kemisk Institut (Denmark); Voss, A. [University of Jyväskylä, Department of Physics (Finland)

    2017-11-15

    The span of most chemical shifts recorded in conventional {sup 25}Mg-NMR spectroscopy is ~ 100 ppm. Accordingly, linewidths of ~ 10 ppm or better are desirable to achieve adequate resolution for applications in chemistry. Here we present first high-field {sup 31}Mg- β-NMR measurements of {sup 31}Mg{sup +} ions implanted into a MgO single crystal carried out at the ISAC facility at TRIUMF. The resonances recorded at 2.5 T and 3.5 T show strong linewidth dependency on the applied RF power, ranging from ~ 419 ppm for the highest RF power down to ~ 48 ppm for the lowest one.

  17. Hyperpolarized Xenon Nuclear Magnetic Resonance (NMR of Building Stone Materials

    Directory of Open Access Journals (Sweden)

    Michele Mauri

    2012-09-01

    Full Text Available We have investigated several building stone materials, including minerals and rocks, using continuous flow hyperpolarized xenon (CF-HP NMR spectroscopy to probe the surface composition and porosity. Chemical shift and line width values are consistent with petrographic information. Rare upfield shifts were measured and attributed to the presence of transition metal cations on the surface. The evolution of freshly cleaved rocks exposed to the atmosphere was also characterized. The CF-HP 129Xe NMR technique is non-destructive and it could complement currently used techniques, like porosimetry and microscopy, providing additional information on the chemical nature of the rock surface and its evolution.

  18. NMR measurement of bitumen at different temperatures.

    Science.gov (United States)

    Yang, Zheng; Hirasaki, George J

    2008-06-01

    Heavy oil (bitumen) is characterized by its high viscosity and density, which is a major obstacle to both well logging and recovery. Due to the lost information of T2 relaxation time shorter than echo spacing (TE) and interference of water signal, estimation of heavy oil properties from NMR T2 measurements is usually problematic. In this work, a new method has been developed to overcome the echo spacing restriction of NMR spectrometer during the application to heavy oil (bitumen). A FID measurement supplemented the start of CPMG. Constrained by its initial magnetization (M0) estimated from the FID and assuming log normal distribution for bitumen, the corrected T2 relaxation time of bitumen sample can be obtained from the interpretation of CPMG data. This new method successfully overcomes the TE restriction of the NMR spectrometer and is nearly independent on the TE applied in the measurement. This method was applied to the measurement at elevated temperatures (8-90 degrees C). Due to the significant signal-loss within the dead time of FID, the directly extrapolated M0 of bitumen at relatively lower temperatures (viscosity, the extrapolated M0 of bitumen at over 60 degrees C can be reasonably assumed to be the real value. In this manner, based on the extrapolation at higher temperatures (> or = 60 degrees C), the M0 value of bitumen at lower temperatures (index (HI), fluid content and viscosity were evaluated by using corrected T2.

  19. Fully automated system for pulsed NMR measurements

    International Nuclear Information System (INIS)

    Cantor, D.M.

    1977-01-01

    A system is described which places many of the complex, tedious operations for pulsed NMR experiments under computer control. It automatically optimizes the experiment parameters of pulse length and phase, and precision, accuracy, and measurement speed are improved. The hardware interface between the computer and the NMR instrument is described. Design features, justification of the choices made between alternative design strategies, and details of the implementation of design goals are presented. Software features common to all the available experiments are discussed. Optimization of pulse lengths and phases is performed via a sequential search technique called Uniplex. Measurements of the spin-lattice and spin-spin relaxation times and of diffusion constants are automatic. Options for expansion of the system are explored along with some of the limitations of the system

  20. GEOCHEMICAL CONTROLS ON NUCLEAR MAGNETIC RESONANCE MEASUREMENTS

    International Nuclear Information System (INIS)

    Knight, Rosemary

    2008-01-01

    Proton nuclear magnetic resonance (NMR) is used in the Earth Sciences as a means of obtaining information about the molecular-scale environment of fluids in porous geological materials. Laboratory experiments were conducted to advance our fundamental understanding of the link between the NMR response and the geochemical properties of geological materials. In the first part of this research project, we studied the impact of both the surface-area-to-volume ratio (S/V) of the pore space and the surface relaxivity on the NMR response of fluids in sand-clay mixtures. This study highlighted the way in which these two parameters control our ability to use NMR measurements to detect and quantify fluid saturation in multiphase saturated systems. The second part of the project was designed to explore the way in which the mineralogic form of iron, as opposed to simply the concentration of iron, affects the surface relaxation rate and, more generally, the NMR response of porous materials. We found that the magnitude of the surface relaxation rate was different for the various iron-oxide minerals because of changes in both the surface-area-to-volume ratio of the pore space, and the surface relaxivity. Of particular significance from this study was the finding of an anomalously large surface relaxivity of magnetite compared to that of the other iron minerals. Differences in the NMR response of iron minerals were seen in column experiments during the reaction of ferrihydrite-coated quartz sand with aqueous Fe(II) solutions to form goethite, lepidocrocite and magnetite; indicating the potential use of NMR as a means of monitoring geochemical reactions. The final part of the research project investigated the impact of heterogeneity, at the pore-scale, on the NMR response. This work highlighted the way in which the geochemistry, by controlling the surface relaxivity, has a significant impact on the link between NMR data and the microgeometry of the pore space.

  1. A convenient tuning method for NMR/NQR spectrometers by using piezoelectric resonance from quartz crystals

    International Nuclear Information System (INIS)

    Yoon, J.G.; Yu, I.S.; Kwun, S.I.

    1986-01-01

    We observe that the cw or pulse NMR/NQR spectrometer tuning can be easily and conveniently adjusted by utilizing the piezoelectric resonance signal from quartz crystal sample. For an illustration some properties of the resonance signal are shown. (Author)

  2. Nuclear Magnetic Resonance (NMR) Spectroscopic Characterization of Nanomaterials and Biopolymers

    Science.gov (United States)

    Guo, Chengchen

    Nanomaterials have attracted considerable attention in recent research due to their wide applications in various fields such as material science, physical science, electrical engineering, and biomedical engineering. Researchers have developed many methods for synthesizing different types of nanostructures and have further applied them in various applications. However, in many cases, a molecular level understanding of nanoparticles and their associated surface chemistry is lacking investigation. Understanding the surface chemistry of nanomaterials is of great significance for obtaining a better understanding of the properties and functions of the nanomaterials. Nuclear magnetic resonance (NMR) spectroscopy can provide a familiar means of looking at the molecular structure of molecules bound to surfaces of nanomaterials as well as a method to determine the size of nanoparticles in solution. Here, a combination of NMR spectroscopic techniques including one- and two-dimensional NMR spectroscopies was used to investigate the surface chemistry and physical properties of some common nanomaterials, including for example, thiol-protected gold nanostructures and biomolecule-capped silica nanoparticles. Silk is a natural protein fiber that features unique properties such as excellent mechanical properties, biocompatibility, and non-linear optical properties. These appealing physical properties originate from the silk structure, and therefore, the structural analysis of silk is of great importance for revealing the mystery of these impressive properties and developing novel silk-based biomaterials as well. Here, solid-state NMR spectroscopy was used to elucidate the secondary structure of silk proteins in N. clavipes spider dragline silk and B. mori silkworm silk. It is found that the Gly-Gly-X (X=Leu, Tyr, Gln) motif in spider dragline silk is not in a beta-sheet or alpha-helix structure and is very likely to be present in a disordered structure with evidence for 31-helix

  3. Free elements resonator: design and simulation, application to NMR imaging

    International Nuclear Information System (INIS)

    Fakri-Bouchet, L.; Lapray, Ch.; Briquet, A.

    1999-01-01

    The free elements resonator, has a bird cage structure. It is made with purely inductively coupled circuits which are individually pre-tuned. The resonance frequency is adjusted by a simultaneous rotation of elements that preserves the coil symmetry. The radiofrequency functioning can be analysis by the usual set of coupled differential equations leading to the resonant modes. In the work presented here the formal analysis is completed by a simulation based on software (Pspice). The characteristics of each element (resistance, self-inductance, capacitance) are Firstly measured, as well as the mutual inductance between each couple of elements. Then the resonant modes and the corresponding current and voltage distribution are obtained to evaluate the radiofrequency field. Using this approach, a free elements bird-cage for efficient operation at 2 Tesla is designed. (authors)

  4. Method of detecting cancer by measuring lipid-peroxidation using NMR

    International Nuclear Information System (INIS)

    Fossel, E.T.

    1992-01-01

    A technique and an apparatus are disclosed for the detection of cancer using nuclear magnetic resonance (NMR). Specifically, NMR parameters for protons of lipid methyl and/or methylene groups are determined and compared against a corresponding value for healthy patients. Suppression of the water proton signal is employed where necessary in order to obtain a suitable spectrum for the non-water component protons. In the event that a positive reading is obtained, the level of plasma triglycerides is determined and if it is high, the patient's bodily fluid sample is further subjected to second nuclear magnetic spectroscopy. The area or the intensity of the portion correlating to 2.0 and 2.8 ppm of the resonance line generated in the second NMR is measured which discriminates between true and false positive results from the proton NMR reading and determines the presence or absence of cancer in the patient

  5. Development and applications of NMR [nuclear magnetic resonance] in low fields and zero field

    International Nuclear Information System (INIS)

    Bielecki, A.

    1987-05-01

    This dissertation is about nuclear magnetic resonance (NMR) spectroscopy in the absence of applied magnetic fields. NMR is usually done in large magnetic fields, often as large as can be practically attained. The motivation for going the opposite way, toward zero field, is that for certain types of materials, particularly powdered or polycrystalline solids, the NMR spectra in zero field are easier to interpret than those obtained in high field. 92 refs., 60 figs., 1 tab

  6. Structure and dynamics of paramagnetic transients by pulsed EPR and NMR detection of nuclear resonance

    International Nuclear Information System (INIS)

    Trifunac, A.D.

    1981-01-01

    Structure and dynamics of transient radicals in pulse radiolysis can be studied by time resolved EPR and NMR techniques. EPR study of kinetics and relaxation is illustrated. The NMR detection of nuclear resonance in transient radicals is a new method which allows the study of hyperfine coupling, population dynamics, radical kinetics, and reaction mechanism. 9 figures

  7. Non-destructive ripeness sensing by using proton NMR [Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Cho, Seong In; Krutz, G.W.; Stroshine, R.L.

    1990-01-01

    More than 80 kinds of fruits and vegetables are available in the United States. But only about 6 of them have their quality standards (Dull, 1986). In the 1990 Fresh Trends survey (Zind, 1990), consumers were asked to rate 16 characteristics important to their decision to purchase fresh produce. The four top ranking factors were ripeness/freshness, taste/flavor, appearance/condition and nutritional value. Of these surveyed, 96% rated ripeness/freshness as extremely important or very important. Therefore, the development of reliable grading or sorting techniques for fresh commodities is essential. Determination of fruit quality often involves cutting and tasting. Non-destructive quality control in fruit and vegetables is a goal of growers and distributors, as well as the food processing industry. Many nondestructive techniques have been evaluated including soft x-ray, optical transmission, near infrared radiation, and machine vision. However, there are few reports of successful non-destructive measurement of sugar content directly in fruit. Higher quality fruit could be harvested and available to consumers if a nondestructive sensor that detects ripeness level directly by measuring sugar content were available. Using proton Nuclear Magnetic Resonance (NMR) principle is the possibility. A nondestructive ripeness (or sweetness) sensor for fruit quality control can be developed with the proton NMR principle (Cho, 1989). Several feasibility studies were necessary for the ripeness sensor development. Main objectives in this paper was to investigate the feasibilities (1) to detect ripeness (or sweetness level) of raw fruit tissue with an high resolution proton NMR spectroscopy (200 MHz) and (2) to measure sugar content of intact fruit with a low resolution proton NMR spectroscopy (10 MHz). 7 refs., 4 figs

  8. Non-destructive Ripeness Sensing by Using Proton NMR [Nuclear Magnetic Resonance

    Science.gov (United States)

    Cho, Seong In; Krutz, G. W.; Stroshine, R. L.; Bellon, V.

    1990-01-01

    More than 80 kinds of fruits and vegetables are available in the United States. But only about 6 of them have their quality standards (Dull, 1986). In the 1990 Fresh Trends survey (Zind, 1990), consumers were asked to rate 16 characteristics important to their decision to purchase fresh produce. The four top ranking factors were ripeness/freshness, taste/flavor, appearance/condition and nutritional value. Of these surveyed, 96% rated ripeness/freshness as extremely important or very important. Therefore, the development of reliable grading or sorting techniques for fresh commodities is essential. Determination of fruit quality often involves cutting and tasting. Non-destructive quality control in fruit and vegetables is a goal of growers and distributors, as well as the food processing industry. Many nondestructive techniques have been evaluated including soft x-ray, optical transmission, near infrared radiation, and machine vision. However, there are few reports of successful non-destructive measurement of sugar content directly in fruit. Higher quality fruit could be harvested and available to consumers if a nondestructive sensor that detects ripeness level directly by measuring sugar content were available. Using proton Nuclear Magnetic Resonance (NMR) principle is the possibility. A nondestructive ripeness (or sweetness) sensor for fruit quality control can be developed with the proton NMR principle (Cho, 1989). Several feasibility studies were necessary for the ripeness sensor development. Main objectives in this paper was to investigate the feasibilities (1) to detect ripeness (or sweetness level) of raw fruit tissue with an high resolution proton NMR spectroscopy (200 MHz) and (2) to measure sugar content of intact fruit with a low resolution proton NMR spectroscopy (10 MHz).

  9. Disk-cylinder method for using NMR to measure magnetic susceptibility

    International Nuclear Information System (INIS)

    Burnham, A.K.

    1978-01-01

    The sphere-cylinder method of using nuclear magnetic resonance (NMR) to measure the magnetic susceptibility of diamagnetic and paramagnetic materials has been generalized to the disk-cylinder method. A two-fold increase in sensitivity was obtained. Accuracies of 0.1% of the diamagnetism of water should be readily obtainable

  10. Geochemical Controls on Nuclear Magnetic Resonance Measurements

    International Nuclear Information System (INIS)

    Knight, Rosemary; Prasad, Manika; Keating, Kristina

    2003-01-01

    OAK-B135 Our research objectives are to determine, through an extensive set of laboratory experiments, the effect of the specific mineralogic form of iron and the effect of the distribution of iron on proton nuclear magnetic resonance (NMR) relaxation mechanisms. In the first nine months of this project, we have refined the experimental procedures to be used in the acquisition of the laboratory NMR data; have ordered, and conducted preliminary measurements on, the sand samples to be used in the experimental work; and have revised and completed the theoretical model to use in this project. Over the next year, our focus will be on completing the first phase of the experimental work where the form and distribution of the iron in the sands in varied

  11. Investigating the Dissolution Performance of Amorphous Solid Dispersions Using Magnetic Resonance Imaging and Proton NMR

    Directory of Open Access Journals (Sweden)

    Francesco Tres

    2015-09-01

    Full Text Available We have investigated the dissolution performance of amorphous solid dispersions of poorly water-soluble bicalutamide in a Kollidon VA64 polymeric matrix as a function of the drug loading (5% vs. 30% bicalutamide. A combined suite of state-of-the-art analytical techniques were employed to obtain a clear picture of the drug release, including an integrated magnetic resonance imaging UV-Vis flow cell system and 1H-NMR. Off-line 1H-NMR was used for the first time to simultaneously measure the dissolution profiles and rates of both the drug and the polymer from a solid dispersion. MRI and 1H-NMR data showed that the 5% drug loading compact erodes linearly, and that bicalutamide and Kollidon VA64 are released at approximately the same rate from the molecular dispersion. For the 30% extrudate, data indicated a slower water ingress into the compact which corresponds to a slower dissolution rate of both bicalutamide and Kollidon VA64.

  12. Quantitative NMR measurements on core samples

    International Nuclear Information System (INIS)

    Olsen, Dan

    1997-01-01

    Within the frame of an EFP-95 project NMR methods for porosity determination in 2D, and for fluid saturation determination in 1D and 2D have been developed. The three methods have been developed and tested on cleaned core samples of chalk from the Danish North Sea. The main restriction for the use of the methods is the inherently short T2 relaxation constants of rock samples. Referring to measurements conducted at 200 MHz, the 2D porosity determination method is applicable to sample material with T2 relaxation constants down to 5 ms. The 1D fluid saturation determination method is applicable to sample material with T2 relaxation constants down to 3 ms, while the 2D fluid saturation determination method is applicable to material with T2 relaxation constants down to 8 ms. In the case of the 2D methods these constraints as a minimum enables work on the majority of chalk samples of Maastrichtian age. The 1D fluid saturation determination method in addition is applicable to at least some chalk samples of Danian and pre-Maastrichtian age. The spatial resolution of the 2D porosity determination method, the 1D fluid saturation methods, and the 2D fluid saturation method is respectively 0.8 mm, 0.8 mm and 2 mm. Reproducibility of pixel values is for all three methods 2%- points. (au)

  13. Analgesic effect of the electromagnetic resonant frequencies derived from the NMR spectrum of morphine.

    Science.gov (United States)

    Verginadis, Ioannis I; Simos, Yannis V; Velalopoulou, Anastasia P; Vadalouca, Athina N; Kalfakakou, Vicky P; Karkabounas, Spyridon Ch; Evangelou, Angelos M

    2012-12-01

    Exposure to various types of electromagnetic fields (EMFs) affects pain specificity (nociception) and pain inhibition (analgesia). Previous study of ours has shown that exposure to the resonant spectra derived from biologically active substances' NMR may induce to live targets the same effects as the substances themselves. The purpose of this study is to investigate the potential analgesic effect of the resonant EMFs derived from the NMR spectrum of morphine. Twenty five Wistar rats were divided into five groups: control group; intraperitoneal administration of morphine 10 mg/kg body wt; exposure of rats to resonant EMFs of morphine; exposure of rats to randomly selected non resonant EMFs; and intraperitoneal administration of naloxone and simultaneous exposure of rats to the resonant EMFs of morphine. Tail Flick and Hot Plate tests were performed for estimation of the latency time. Results showed that rats exposed to NMR spectrum of morphine induced a significant increase in latency time at time points (p spectrum of morphine. Our results indicate that exposure of rats to the resonant EMFs derived from the NMR spectrum of morphine may exert on animals similar analgesic effects to morphine itself.

  14. Carbon-deuterium rotational-echo double-resonance NMR spectroscopy of lyophilized aspartame formulations.

    Science.gov (United States)

    Luthra, Suman A; Utz, Marcel; Gorman, Eric M; Pikal, Michael J; Munson, Eric J; Lubach, Joseph W

    2012-01-01

    In this study, changes in the local conformation of aspartame were observed in annealed lyophilized glasses by monitoring changes in the distance between two labeled sites using C-(2)H rotational-echo double-resonance (REDOR) nuclear magnetic resonance (NMR) spectroscopy. Confirmation that the REDOR experiments were producing accurate distance measurement was ensured by measuring the (13)C-(15)N distance in glycine. The experiment was further verified by measuring the REDOR dephasing curve on (13)C-(2)H methionine. (13)C-(2)H REDOR dephasing curves were then measured on lyophilized aspartame-disaccharide formulations. In aspartame-sucrose formulation, the internuclear distances increased upon annealing, which correlated with decreased chemical reactivity. By contrast, annealing had only a minimal effect on the dephasing curve in aspartame-trehalose formulation. The results show that stability is a function of both mobility and local structure (conformation), even in a small molecule system such as lyophilized aspartame-sucrose. Copyright © 2011 Wiley-Liss, Inc.

  15. A hysteresis phenomenon in NMR spectra of molecular nanomagnets Fe8: a resonant quantum tunneling system

    Science.gov (United States)

    Yamasaki, Tomoaki; Ueda, Miki; Maegawa, Satoru

    2003-05-01

    A molecular nanomagnet Fe8 with a total spin S=10 in the ground state attracts much attention as a substance which exhibits the quantum tunneling of magnetization below 300 mK. We performed 1H NMR measurements for a single crystal of Fe8 in temperature range between 20 and 800 mK. The spectra below 300 mK strongly depend on the sequence of the applied field and those in the positive and negative fields are not symmetric about zero field, while they are symmetric above 300 mK. We discuss the origin of this hysteresis phenomenon, relating to the initial spin state of molecules, the resonant quantum tunneling and the nuclear spin relaxation process.

  16. A hysteresis phenomenon in NMR spectra of molecular nanomagnets Fe8: a resonant quantum tunneling system

    International Nuclear Information System (INIS)

    Yamasaki, Tomoaki; Ueda, Miki; Maegawa, Satoru

    2003-01-01

    A molecular nanomagnet Fe8 with a total spin S=10 in the ground state attracts much attention as a substance which exhibits the quantum tunneling of magnetization below 300 mK. We performed 1 H NMR measurements for a single crystal of Fe8 in temperature range between 20 and 800 mK. The spectra below 300 mK strongly depend on the sequence of the applied field and those in the positive and negative fields are not symmetric about zero field, while they are symmetric above 300 mK. We discuss the origin of this hysteresis phenomenon, relating to the initial spin state of molecules, the resonant quantum tunneling and the nuclear spin relaxation process

  17. Techniques for Ultra-high Magnetic Field Gradient NMR Diffusion Measurements

    Science.gov (United States)

    Sigmund, Eric E.; Mitrovic, Vesna F.; Calder, Edward S.; Will Thomas, G.; Halperin, William P.; Reyes, Arneil P.; Kuhns, Philip L.; Moulton, William G.

    2001-03-01

    We report on development and application of techniques for ultraslow diffusion coefficient measurements through nuclear magnetic resonance (NMR) in high magnetic field gradients. We have performed NMR experiments in a steady fringe field gradient of 175 T/m from a 23 T resistive Bitter magnet, as well as in a gradient of 42 T/m from an 8 T superconducting magnet. New techniques to provide optimum sensitivity in these experiments are described. To eliminate parasitic effects of the temporal instability of the resistive magnet, we have introduced a passive filter: a highly conductive cryogen-cooled inductive shield. We show experimental demonstration of such a shield’s effect on NMR performed in the Bitter magnet. For enhanced efficiency, we have employed “frequency jumping” in our spectrometer system. Application of these methods has made possible measurements of diffusion coefficients as low as 10-10 cm^2/s, probing motion on a 250 nm length scale.

  18. Nuclear magnetic resonance (NMR) spectroscopy and its application to biomedical research

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, Mikio; Imai, Shoichi

    1988-07-01

    The principles of nuclear magnetic resonance (NMR) spectroscopy were explained and its application to biomedical research discussed. With /sup 31/P-NMR, it is feasible to conduct a continuous, non-invasive measurement of the contents of myocardial high-energy phosphate compounds and the intracellular pH (determined by monitoring the pH dependent shift of the inorganic phosphate peak relative to that of creatine phosphate), and to correlate them with the mechanical function. The determination of the free magnesium concentration is also possible on a similar principle to that for pH determination (the shift of MgATP peaks relative to ATP is utilized in this case). It is estimated to be 0.3 mM and was found not to be changed during ischemia. Several examples of studies including our own conducted to delineate the ischemic derangements of the myocardial energy metabolism and the effects of various interventions thereupon were illustrated. Finally a brief mention was made of the saturation transfer technique. This is the only method with which one can study the kinetics of the enzyme reactions under in vivo conditions. The application of the method for analysis of the creatine kinase reaction and the ATP synthesis was demonstrated. (author) 49 refs.

  19. Nuclear magnetic resonance (NMR) spectroscopy and its application to biomedical research

    International Nuclear Information System (INIS)

    Nakazawa, Mikio; Imai, Shoichi

    1988-01-01

    The principles of nuclear magnetic resonance (NMR) spectroscopy were explained and its application to biomedical research discussed. With 31 P-NMR, it is feasible to conduct a continuous, non-invasive measurement of the contents of myocardial high-energy phosphate compounds and the intracellular pH (determined by monitoring the pH dependent shift of the inorganic phosphate peak relative to that of creatine phosphate), and to correlate them with the mechanical function. The determination of the free magnesium concentration is also possible on a similar principle to that for pH determination (the shift of MgATP peaks relative to ATP is utilized in this case). It is estimated to be 0.3 mM and was found not to be changed during ischemia. Several examples of studies including our own conducted to delineate the ischemic derangements of the myocardial energy metabolism and the effects of various interventions thereupon were illustrated. Finally a brief mention was made of the saturation transfer technique. This is the only method with which one can study the kinetics of the enzyme reactions under in vivo conditions. The application of the method for analysis of the creatine kinase reaction and the ATP synthesis was demonstrated. (author) 49 refs

  20. Nuclear magnetic resonance (NMR) imaging of Arnold-Chiari type I malformation with hydromyelia

    International Nuclear Information System (INIS)

    DeLaPaz, R.L.; Brady, T.J.; Buonanno, F.S.; New, P.F.; Kistler, J.P.; McGinnis, B.D.; Pykett, I.L.; Taveras, J.M.

    1983-01-01

    Saturation recovery nuclear magnetic resonance (NMR) images and metrizamide computed tomography (CT) scans were obtained in an adult patient with a clinical history suggestive of syringomyelia. Both NMR and CT studies showed low lying cerebellar tonsils. The CT study demonstrated central cavitation of the spinal cord from the midthoracic to midcervical levels but could not exclude an intramedullary soft tissue mass at the cervico-medullary junction. The NMR images in transverse, coronal, and sagittal planes demonstrated extension of an enlarged central spinal cord cerebrospinal fluid space to the cervico-medullary junction. This was felt to be strong evidence for exclusion of an intramedullary soft tissue mass and in favor of a diagnosis of Arnold-Chiari Type I malformation with hydromyelia. The noninvasive nature of spinal cord and cervico-medullary junction evaluation with NMR is emphasized

  1. Towards 31Mg-β-NMR resonance linewidths adequate for applications in magnesium chemistry

    DEFF Research Database (Denmark)

    Stachura, M.; McFadden, R. M. L.; Chatzichristos, A.

    2017-01-01

    The span of most chemical shifts recorded in conventional 25Mg-NMR spectroscopy is ~ 100 ppm. Accordingly, linewidths of ~ 10 ppm or better are desirable to achieve adequate resolution for applications in chemistry. Here we present first high-field 31Mg- β-NMR measurements of 31Mg+ ions implanted...

  2. Principles of nuclear magnetic resonance (NMR) - current state of the art

    International Nuclear Information System (INIS)

    Lerski, R.A.

    1985-01-01

    Nuclear magnetic resonance (NMR) imaging has progressed rapidly from laboratory curiosity to commercial exploitation and clinical application in the space of only three years. The physical principles underlying the technique are described and the equipment requirements outlined. The question of optimal magnetic field strength is discussed. (author)

  3. Rheo-NMR: nuclear magnetic resonance and the rheology of complex fluids

    International Nuclear Information System (INIS)

    Callaghan, Paul T.

    1999-01-01

    The application of nuclear magnetic resonance methods to the study of complex fluids under shearing and extensional flows is reviewed. Both NMR velocimetry and spectroscopy approaches are discussed while specific systems studied include polymer melts, rigid rod and random coil polymers in solution, lyotropic and thermotropic liquid crystals and liquid crystalline polymers, and wormlike micelles. Reference is made to food systems. (author)

  4. Magnetic Resonance Microscopy Spatially Resolved NMR Techniques and Applications

    CERN Document Server

    Codd, Sarah

    2008-01-01

    This handbook and ready reference covers materials science applications as well as microfluidic, biomedical and dental applications and the monitoring of physicochemical processes. It includes the latest in hardware, methodology and applications of spatially resolved magnetic resonance, such as portable imaging and single-sided spectroscopy. For materials scientists, spectroscopists, chemists, physicists, and medicinal chemists.

  5. A novel strategy for NMR resonance assignment and protein structure determination

    International Nuclear Information System (INIS)

    Lemak, Alexander; Gutmanas, Aleksandras; Chitayat, Seth; Karra, Murthy; Farès, Christophe; Sunnerhagen, Maria; Arrowsmith, Cheryl H.

    2011-01-01

    The quality of protein structures determined by nuclear magnetic resonance (NMR) spectroscopy is contingent on the number and quality of experimentally-derived resonance assignments, distance and angular restraints. Two key features of protein NMR data have posed challenges for the routine and automated structure determination of small to medium sized proteins; (1) spectral resolution – especially of crowded nuclear Overhauser effect spectroscopy (NOESY) spectra, and (2) the reliance on a continuous network of weak scalar couplings as part of most common assignment protocols. In order to facilitate NMR structure determination, we developed a semi-automated strategy that utilizes non-uniform sampling (NUS) and multidimensional decomposition (MDD) for optimal data collection and processing of selected, high resolution multidimensional NMR experiments, combined it with an ABACUS protocol for sequential and side chain resonance assignments, and streamlined this procedure to execute structure and refinement calculations in CYANA and CNS, respectively. Two graphical user interfaces (GUIs) were developed to facilitate efficient analysis and compilation of the data and to guide automated structure determination. This integrated method was implemented and refined on over 30 high quality structures of proteins ranging from 5.5 to 16.5 kDa in size.

  6. F NMR measurement of intracellular free calcium in human red blood cells

    International Nuclear Information System (INIS)

    Gupta, R.K.; Schanne, F.A.X.

    1986-01-01

    Optical techniques for the measurement of intracellular Ca are not readily applicable to the human red cell because of the intense absorption of hemoglobin. The authors have therefore examined the use of 19 F NMR of 5,5'-difluoro-1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetra acetic acid (5FBAPTA) introduced non-disruptively by intracellular hydrolysis of the membrane-permeant acetoxymethyl ester derivative. 19 F NMR spectra of 5FBAPTA-containing erythrocytes at 188 MHz displayed two well resolved resonances corresponding to the free and Ca-bound forms of the chelator, the resonance of the free form being ten-fold larger than that of the Ca-bound form. Addition of the ionophore A23187 resulted in the disappearance of the resonance of the free anion and a quantitative increase in the intensity of the resonance of the Ca-complex. From these data, and a K/sub D/ of 708 nM for the Ca-5FBAPTA complex, the authors estimate red cell free Ca to be 70 nM, which is in the range of values obtained for other cells, despite the fact that the human red cell, which lacks intracellular organelles for storing Ca, possesses only 1 μmol total Ca/1. cells in comparison to mmols of total Ca found in other cells. The authors ability to use 19 F NMR to measure free Ca in the red blood cell paves the way for future NMR studies of red cell free Ca concentrations in human essential hypertension as well as in other diseases states in which alterations in cellular Ca homeostasis may be involved

  7. 12. Nuclear magnetic resonance users meeting; 3. Iberoamerican NMR meeting. Extended abstracts book

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The NMR Users Meeting is held every year in Brazil and its twelfth edition took place from May 4 - 8, 2009 together with the third Iberoamerican NMR Meeting. The extended abstracts book comprise: five plenary lectures, six major conferences, three mini-conferences and summaries of results from one hundred and two research works. Among these research results which have been discussed, ninety three were presented as congress panels/posters and nine as oral communications. The major topics of the scientific and technological research works are thus distributed: 65% in chemical sciences (mainly structural elucidation and stereochemistry of organic compounds and dynamical studies of chemical reactions), 16% in applied life sciences (agricultural and food sciences, biological sciences and medicine), 11% in materials science (including petroleum and alternative fuels), and 8% regarding theoretical aspects related to nuclear magnetic resonance or improvements in NMR instrumental techniques.

  8. Nuclear magnetic resonance (NMR) imaging in the diagnosis of liver disease. Differential diagnosis of hepatic tumors and correlation between NMR imaging and histological findings

    Energy Technology Data Exchange (ETDEWEB)

    Ebara, Masaaki; Oto, Masao; Sugiura, Nobuyuki; Kimura, Kunio; Okuda, Kunio; Hirooka, Noboru; Ikehira, Hiroo; Fukuda, Nobuo; Tateno, Yukio

    1984-06-01

    Characteristics of nuclear magnetic resonance (NMR) images for various liver diseases were examined using a 0.1 T resistive NMR imaging unit on 26 patients with liver disease and 10 normal volunteers. Hepatic tumors, including small hepatocellular carcinoma 1.5 cm in diameter, were detected on NMR imaging. Ring sign characteristic of nodular type hepatocellular carcinoma was shown on NMR-CT in 60 % of patients. T/sub 1/ values allowed differential diagnosis of hepatic tumors. There was close correlation between NMR images and histopathological findings. The T/sub 1/ in the liver and spleen was more prolonged in patients with liver cirrhosis than in normal volunteers, with significant differences. (Namekawa, K.).

  9. Measurement and Quantification of Heterogeneity, Flow, and Mass Transfer in Porous Media Using NMR Low-Field Techiques

    Science.gov (United States)

    Paciok, E.; Olaru, A. M.; Haber, A.; van Landeghem, M.; Haber-Pohlmeier, S.; Sucre, O. E.; Perlo, J.; Casanova, F.; Blümich, B.; RWTH Aachen Mobile Low-Field NMR

    2011-12-01

    Nuclear magnetic resonance (NMR) is renowned for its unique potential to both reveal and correlate spectroscopic, relaxometric, spatial and dynamic properties in a large variety of organic and inorganic systems. NMR has no restrictions regarding sample opacity and is an entirely non-invasive method, which makes it the ideal tool for the investigation of porous media. However, for years NMR research of soils was limited by the use of high-field NMR devices, which necessitated elaborate NMR experiments and were not applicable to bulky samples or on-site field measurements. The evolution of low-field NMR devices during the past 20 years has brought forth portable, small-scale NMR systems with open and closed magnet arrangements specialized to specific NMR applications. In combination with recent advances in 2D-NMR Laplace methodology [1], low-field NMR has opened up the possibility to study real-life microporous systems ranging from granular media to natural soils and oil well boreholes. Thus, information becomes available, which before has not been accessible with high-field NMR. In this work, we present our recent progress in mobile low-field NMR probe design for field measurements of natural soils: a slim-line logging tool, which can be rammed into the soil of interest on-site. The performance of the device is demonstrated in measurements of moisture profiles of model soils [2] and field measurements of relaxometric properties and moisture profiles of natural soils [3]. Moreover, an improved concept of the slim-line logging tool is shown, with a higher excitation volume and a better signal-to-noise due to an improved coil design. Furthermore, we present our recent results in 2D exchange relaxometry and simulation. These include relaxation-relaxation experiments on natural soils with varying degree of moisture saturation, where we could draw a connection between the relaxometric properties of the soil to its pore size-related diffusivity and to its clay content

  10. Nuclear magnetic resonance and medicine. Present applications

    International Nuclear Information System (INIS)

    1984-01-01

    At the workshop on nuclear magnetic resonance and medicine held at Saclay, the following topics were presented: physical principles of NMR; NMR spectroscopy signal to noise ratio; principles of NMR imaging; methods of NMR imaging; image options in NMR; biological significance of contrast in proton NMR imaging; measurement and significance of relaxation times in cancers; NMR contrast agents; NMR for in-vivo biochemistry; potential effects and hazards of NMR applications in Medicine; difficulties of NMR implantation in Hospitals; NMR imaging of brain tumors and diseases of the spinal cord; NMR and Nuclear Medicine in brain diseases [fr

  11. Recent Advances in Characterization of Lignin Polymer by Solution-State Nuclear Magnetic Resonance (NMR Methodology

    Directory of Open Access Journals (Sweden)

    Run-Cang Sun

    2013-01-01

    Full Text Available The demand for efficient utilization of biomass induces a detailed analysis of the fundamental chemical structures of biomass, especially the complex structures of lignin polymers, which have long been recognized for their negative impact on biorefinery. Traditionally, it has been attempted to reveal the complicated and heterogeneous structure of lignin by a series of chemical analyses, such as thioacidolysis (TA, nitrobenzene oxidation (NBO, and derivatization followed by reductive cleavage (DFRC. Recent advances in nuclear magnetic resonance (NMR technology undoubtedly have made solution-state NMR become the most widely used technique in structural characterization of lignin due to its versatility in illustrating structural features and structural transformations of lignin polymers. As one of the most promising diagnostic tools, NMR provides unambiguous evidence for specific structures as well as quantitative structural information. The recent advances in two-dimensional solution-state NMR techniques for structural analysis of lignin in isolated and whole cell wall states (in situ, as well as their applications are reviewed.

  12. Using NMR decay-time measurements to monitor and characterize DNAPL and moisture in subsurface porous media

    International Nuclear Information System (INIS)

    Timothy A. White; Russel C. Hertzog; Christian Straley

    2007-01-01

    Knowing how environmental properties affect dense nonaqueous phase liquid (DNAPL) solvent flow in the subsurface is essential for developing models of flow and transport in the vadose zone necessary for designing remediation and long-term stewardship strategies. For example, one must know if solvents are flowing in water-wetted or solvent-wetted environments, the pore-size distribution of the region containing DNAPLs, and the impact of contaminated plumes and their transport mechanisms in porous media. Our research investigates the capability and limitations of low-field proton nuclear magnetic resonance (NMR) relaxation decay-rate measurements for determining environmental properties affecting DNAPL solvent flow in the subsurface. The measurements that can be performed with the laboratory low-field system can also be performed in situ in the field with the current generation of commercial borehole logging tools. The oil and gas industry uses NMR measurements in deep subsurface, consolidated formations to determine porosity and hydrocarbon content and to estimate formation permeability. These determinations rely on the ability of NMR to distinguish between water and hydrocarbons in the pore space and to obtain the distribution of pore sizes from relaxation decay-rate distributions. In this paper we will show how NMR measurement techniques can be used to characterize, monitor, and evaluate the dynamics of mixed-fluids (water-DNAPL) in unconsolidated near-surface porous environments and describe the use of proton NMR T2 (spin-spin relaxation time) measurements in unconsolidated sandy-soil samples to identify and characterize the presence of DNAPLs in these environments. The potential of NMR decay-rate distributions for characterizing DNAPL fluids in the subsurface and understanding their flow mechanisms has not previously been exploited; however, near-surface unsaturated vadose zone environments do provide unique challenges for using NMR measurements. These

  13. 8. Nuclear magnetic resonance users meeting; 1. Luso-Brazilian NMR meeting. Abstracts

    International Nuclear Information System (INIS)

    2001-01-01

    The NMR Users Meeting is held every year in Brazil and its eighth edition took place from May 7 - 11, 2001 together with the first Luso-Brazilian Meeting on Nuclear Magnetic Resonance. The extended abstracts book comprise: ten major conferences, four plenary lectures delivered by enterprise representatives (three from USA and one from Germany), six talks about the state-of-the-art of NMR methods (especially bi and tri-dimensional new techniques) and summaries of results from one hundred and twenty four research works. Among these research results which have been discussed, one hundred and sixteen were presented as congress panels/posters and eight as oral communications. The major topics of the scientific and technological research works are thus distributed: 63% in chemical sciences (mainly structural elucidation and stereochemistry of organic compounds and dynamical studies of chemical reactions), 19% in materials science (including petroleum), 8% in applied life sciences (agricultural and food sciences, biological sciences and medicine), 8% about theoretical aspects related to nuclear magnetic resonance and 2% regarding improvements in NMR instrumental techniques

  14. Rheo-NMR - how nuclear magnetic resonance is providing new insight regarding complex fluid rheology

    International Nuclear Information System (INIS)

    Callaghan, P.T.

    2000-01-01

    Over the past five decades, NMR has revolutionised chemistry, and has found widespread application in condensed matter physics, in molecular biology, in medicine and in food technology. Most recently NMR has made a significant impact in chemical engineering, where it is being extensively used for the non-invasive study of dispersion and flow in porous media. One of the most recent applications of NMR in materials science concerns its use in the study of the mechanical properties of complex fluids. This particular aspect of NMR has been extensively developed in research carried out at Massey University in New Zealand. In this short article, some of the ideas behind this work and the applications which have resulted, will be described. These examples provide a glimpse of possible applications of Nuclear Magnetic Resonance to the study of complex fluid rheology. While this is a very new field of research in which only a handful of groups presently participate, the potential exists for a substantial increase in Rheo-NMR research activity. Systems studied to date include polymer melts and semi-dilute solutions, thermotropic and lyotropic liquid crystals and liquid crystalline polymers, micellar solutions, food materials and colloidal suspensions. Rheo-NMR suffers in a number of respects by comparison with optical methods. It is expensive, it is difficult to use, it suffers from poor signal-to-noise ratios and the effective interpretation of spectra often depends on familiarity with the nuclear spin Hamiltonian and the associated effects of spin dynamics. Nonetheless NMR offers some unique advantages, including the ability to work with opaque materials, the ability to combine velocimetry with localised spectroscopy, and the ability to access a wide range of molecular properties relating to organisation, orientation and dynamics. Rheo-NMR has been able to provide a direct window on a variety of behaviours, including slip, shear-thinning, shear banding, yield stress

  15. In vivo measurement of phosphorus energy metabolites by topical magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Watari, Hiroshi [National Institute for Physiological Sciences, Okazaki Aichi (Japan); Koizuka, Izumi; Takada, Muneharu; Naruse, Shoji

    1982-12-01

    An apparatus of TMR (topical magnetic resonance) was briefly described, and the technique to use it was shown. The effect of digital filter was demonstrated and measurement of a pulse width was shown using a phantom. Pulse width and /sup 31/P-NMR spectrum measured in a rat head were shown. The /sup 31/P-NMR spectrum well revealed the phosphorus energy metabolites such as creatine phosphoric acid, ATP, and ADP.

  16. A new system using NMR technology for measurement of body composition in experimental animals

    International Nuclear Information System (INIS)

    Suzuki, Jun; Nishikibe, Masaru

    2004-01-01

    Measurement of body composition (fat mass) is an important item in pathophysiological and pharmacological studies using small animals (mice) in the fields of obesity and diabetes. The existing methods are, however, difficult, time consuming, and require a shielding facility. Now a novel system using nuclear magnetic resonance (NMR) technique was developed for measurement of body composition in small animals (mice) that provides noninvasive and rapid measurement without anesthetics; we introduced and evaluated this system and tried another application of this system. First, we validated this system using canola oil, soft tissues (adipose and skeletal muscle), and various kinds of rodent chows. Accuracy, precision, and reproducibility of this system were demonstrated to be equal to those in standard chemical methods. A strong positive correlation (y=x) between the results of NMR and chemical methods was found. Secondly, we evaluated accuracy and assay range of the NMR method using live mice that were fasted overnight or fed high fat diet (HFD). In fasted mice, a small but quantitative decrease of fat mass (5.1% from 9.1%) was detected. Total decrease of fat and lean mass (5.0 g) in fasted mice was equivalent to the decrease of body weight (5.0 g). In mice fed the HFD, increase of fat mass with relative decrease of lean mass were qualitatively detected in a time-dependent manner. We would like to emphasize that operation of the system was actually easy and measurements were accomplished in a short time (1 minute). Thirdly, we tried to use the NMR system for determination of hepatic fat contents using mice fasted or treated with a peroxisome proliferator-activated receptor (PPAR)γ agonist; our results showed a quantitative increase in fat by fasting or in decrease in fat by the drug treatment. The changes of fat contents determined by the NMR method were well correlated with the changes in triglyceride and total cholesterol values obtained by the biochemical assays

  17. Automated solid-state NMR resonance assignment of protein microcrystals and amyloids

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Elena [Goethe University Frankfurt am Main, Center for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry (Germany); Gath, Julia [ETH Zurich, Physical Chemistry (Switzerland); Habenstein, Birgit [UMR 5086 CNRS/Universite de Lyon 1, Institut de Biologie et Chimie des Proteines (France); Ravotti, Francesco; Szekely, Kathrin; Huber, Matthias [ETH Zurich, Physical Chemistry (Switzerland); Buchner, Lena [Goethe University Frankfurt am Main, Center for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry (Germany); Boeckmann, Anja, E-mail: a.bockmann@ibcp.fr [UMR 5086 CNRS/Universite de Lyon 1, Institut de Biologie et Chimie des Proteines (France); Meier, Beat H., E-mail: beme@ethz.ch [ETH Zurich, Physical Chemistry (Switzerland); Guentert, Peter, E-mail: guentert@em.uni-frankfurt.de [Goethe University Frankfurt am Main, Center for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry (Germany)

    2013-07-15

    Solid-state NMR is an emerging structure determination technique for crystalline and non-crystalline protein assemblies, e.g., amyloids. Resonance assignment constitutes the first and often very time-consuming step to a structure. We present ssFLYA, a generally applicable algorithm for automatic assignment of protein solid-state NMR spectra. Application to microcrystals of ubiquitin and the Ure2 prion C-terminal domain, as well as amyloids of HET-s(218-289) and {alpha}-synuclein yielded 88-97 % correctness for the backbone and side-chain assignments that are classified as self-consistent by the algorithm, and 77-90 % correctness if also assignments classified as tentative by the algorithm are included.

  18. Automated solid-state NMR resonance assignment of protein microcrystals and amyloids

    International Nuclear Information System (INIS)

    Schmidt, Elena; Gath, Julia; Habenstein, Birgit; Ravotti, Francesco; Székely, Kathrin; Huber, Matthias; Buchner, Lena; Böckmann, Anja; Meier, Beat H.; Güntert, Peter

    2013-01-01

    Solid-state NMR is an emerging structure determination technique for crystalline and non-crystalline protein assemblies, e.g., amyloids. Resonance assignment constitutes the first and often very time-consuming step to a structure. We present ssFLYA, a generally applicable algorithm for automatic assignment of protein solid-state NMR spectra. Application to microcrystals of ubiquitin and the Ure2 prion C-terminal domain, as well as amyloids of HET-s(218–289) and α-synuclein yielded 88–97 % correctness for the backbone and side-chain assignments that are classified as self-consistent by the algorithm, and 77–90 % correctness if also assignments classified as tentative by the algorithm are included

  19. Monitoring of the insecticide trichlorfon by phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy

    International Nuclear Information System (INIS)

    Talebpour, Zahra; Ghassempour, Alireza; Zendehzaban, Mehdi; Bijanzadeh, Hamid Reza; Mirjalili, Mohammad Hossein

    2006-01-01

    Trichlorfon is an organophosphorus insecticide, which is extensively being used for protection of fruit crops. Trichlorfon is a thermal labile compound, which cannot be easily determined by gas chromatography (GC) and has no suitable group for sensitive detection by high performance liquid chromatography (HPLC). In this study, a 31 P nuclear magnetic resonance ( 31 P NMR) has been described for monitoring of trichlorfon without any separation step. The quantitative works of 31 P NMR spectroscopy has been performed in the presence of an internal standard (hexamethylphosphoramide). Limit of detection (LOD) for this method has been found to be 55 mg L -1 , without any sample preparation, and the linear working range was 150-5500 mg L -1 . Relative standard deviation (R.S.D.%) of the method for three replicates within and between days was obtained ≤9%. The average recovery efficiency was approximately 99-112%. This method was applied for monitoring trichlorfon in a commercial insecticide sample and tomato sample

  20. Rheo-NMR Measurements of Cocoa Butter Crystallized Under

    International Nuclear Information System (INIS)

    Mudge, E.; Mazzanti, G.

    2009-01-01

    Modifications of a benchtop NMR instrument were made to apply temperature control to a shearing NMR cell. This has enabled the determination in situ of the solid fat content (SFC) of cocoa butter under shearing conditions. The cocoa butter was cooled at 3 C/min to three final temperatures of 17.5, 20.0, and 22.5 C with applied shear rates between 45 and 720 s-1. Polymorphic transitions of the cocoa butter were determined using synchrotron X-ray diffraction with an identical shearing system constructed of Lexan. Sheared samples were shown to have accelerated phase transitions compared to static experiments. In experiments where form V was confirmed to be the dominant polymorph, the final SFC averaged around 50%. However, when other polymorphic forms were formed, a lower SFC was measured because the final temperature was within the melting range of that polymorph and only partial crystallization happened. A shear rate of 720 s-1 delayed phase transitions, likely due to viscous heating of the sample. Pulsed NMR is an invaluable tool for determining the crystalline fraction in hydrogen containing materials, yet its use for fundamental and industrial research on fat or alkanes crystallization under shear has only recently been developed.

  1. Inductive measurements of ferromagnetic resonance

    International Nuclear Information System (INIS)

    Woodward, R.C.; Kennewell, K.; Crew, D.C.; Stamps, R.L.

    2004-01-01

    Full text: The rapid advance in magnetic data storage has driven groundbreaking work in the science that underpins the properties of ferromagnetic materials at high frequencies. Recent work in this area has included the use of precession in order to produce ultra-high speed switching of magnetic elements, the generation of excited dynamical structures by application of inhomogeneous field pulses, and examination of the propagation of localized spin waves. This paper describes explorations of ultra-fast magnetization dynamics being undertaken at The University of Western Australia. We have studied the differences in magnetization dynamics in simple permalloy films when a sample is excited with sharp pulse compared to the to the dynamics generated by the application of a small amplitude continuous wave signal. We have observed a difference in the resonant frequency determined from these two excitations and will propose reasons for the different resonance responses of the system. Using the ultra-fast techniques described above we have measured dynamical properties that are significantly different to the static properties. These results are explained by the dynamical measurements being made on time scales smaller than the characteristic relaxation time. Future applications of these devices will be to examine broadening of line widths and frequency shifts associated with the excitation of magnetostatic modes, factors limiting quasiballistic reversal and differences between the dynamic and static properties of magnetic materials

  2. Fractional order analysis of Sephadex gel structures: NMR measurements reflecting anomalous diffusion

    Science.gov (United States)

    Magin, Richard L.; Akpa, Belinda S.; Neuberger, Thomas; Webb, Andrew G.

    2011-12-01

    We report the appearance of anomalous water diffusion in hydrophilic Sephadex gels observed using pulse field gradient (PFG) nuclear magnetic resonance (NMR). The NMR diffusion data was collected using a Varian 14.1 Tesla imaging system with a home-built RF saddle coil. A fractional order analysis of the data was used to characterize heterogeneity in the gels for the dynamics of water diffusion in this restricted environment. Several recent studies of anomalous diffusion have used the stretched exponential function to model the decay of the NMR signal, i.e., exp[-( bD) α], where D is the apparent diffusion constant, b is determined the experimental conditions (gradient pulse separation, durations and strength), and α is a measure of structural complexity. In this work, we consider a different case where the spatial Laplacian in the Bloch-Torrey equation is generalized to a fractional order model of diffusivity via a complexity parameter, β, a space constant, μ, and a diffusion coefficient, D. This treatment reverts to the classical result for the integer order case. The fractional order decay model was fit to the diffusion-weighted signal attenuation for a range of b-values (0 < b < 4000 s mm -2). Throughout this range of b values, the parameters β, μ and D, were found to correlate with the porosity and tortuosity of the gel structure.

  3. 1H MAS NMR (magic-angle spinning nuclear magnetic resonance) techniques for the quantitative determination of hydrogen types in solid catalysts and supports.

    Science.gov (United States)

    Kennedy, Gordon J; Afeworki, Mobae; Calabro, David C; Chase, Clarence E; Smiley, Randolph J

    2004-06-01

    Distinct hydrogen species are present in important inorganic solids such as zeolites, silicoaluminophosphates (SAPOs), mesoporous materials, amorphous silicas, and aluminas. These H species include hydrogens associated with acidic sites such as Al(OH)Si, non-framework aluminum sites, silanols, and surface functionalities. Direct and quantitative methodology to identify, measure, and monitor these hydrogen species are key to monitoring catalyst activity, optimizing synthesis conditions, tracking post-synthesis structural modifications, and in the preparation of novel catalytic materials. Many workers have developed several techniques to address these issues, including 1H MAS NMR (magic-angle spinning nuclear magnetic resonance). 1H MAS NMR offers many potential advantages over other techniques, but care is needed in recognizing experimental limitations and developing sample handling and NMR methodology to obtain quantitatively reliable data. A simplified approach is described that permits vacuum dehydration of multiple samples simultaneously and directly in the MAS rotor without the need for epoxy, flame sealing, or extensive glovebox use. We have found that careful optimization of important NMR conditions, such as magnetic field homogeneity and magic angle setting are necessary to acquire quantitative, high-resolution spectra that accurately measure the concentrations of the different hydrogen species present. Details of this 1H MAS NMR methodology with representative applications to zeolites, SAPOs, M41S, and silicas as a function of synthesis conditions and post-synthesis treatments (i.e., steaming, thermal dehydroxylation, and functionalization) are presented.

  4. Xenon NMR measurements of permeability and tortuosity in reservoir rocks.

    Science.gov (United States)

    Wang, Ruopeng; Pavlin, Tina; Rosen, Matthew Scott; Mair, Ross William; Cory, David G; Walsworth, Ronald Lee

    2005-02-01

    In this work we present measurements of permeability, effective porosity and tortuosity on a variety of rock samples using NMR/MRI of thermal and laser-polarized gas. Permeability and effective porosity are measured simultaneously using MRI to monitor the inflow of laser-polarized xenon into the rock core. Tortuosity is determined from measurements of the time-dependent diffusion coefficient using thermal xenon in sealed samples. The initial results from a limited number of rocks indicate inverse correlations between tortuosity and both effective porosity and permeability. Further studies to widen the number of types of rocks studied may eventually aid in explaining the poorly understood connection between permeability and tortuosity of rock cores.

  5. A Magnetic Resonance Measurement Technique for Rapidly Switched Gradient Magnetic Fields in a Magnetic Resonance Tomograph

    Directory of Open Access Journals (Sweden)

    K. Bartušek

    2003-01-01

    Full Text Available This paper describes a method for measuring of the gradient magnetic field in Nuclear Magnetic Resonance (NMR tomography, which is one of the modern medical diagnostic methods. A very important prerequisite for high quality imaging is a gradient magnetic field in the instrument with exactly defined properties. Nuclear magnetic resonance enables us to measure the pulse gradient magnetic field characteristics with high accuracy. These interesting precise methods were designed, realised, and tested at the Institute of Scientific Instruments (ISI of the Academy of Sciences of the Czech Republic. The first of them was the Instantaneous Frequency (IF method, which was developed into the Instantaneous Frequency of Spin Echo (IFSE and the Instantaneous Frequency of Spin Echo Series (IFSES methods. The above named methods are described in this paper and their a comparison is also presented.

  6. A portable single-sided magnet system for remote NMR measurements of pulmonary function.

    Science.gov (United States)

    Dabaghyan, Mikayel; Muradyan, Iga; Hrovat, Alan; Butler, James; Frederick, Eric; Zhou, Feng; Kyriazis, Angelos; Hardin, Charles; Patz, Samuel; Hrovat, Mirko

    2014-12-01

    In this work, we report initial results from a light-weight, low field magnetic resonance device designed to make relative pulmonary density measurements at the bedside. The development of this device necessarily involves special considerations for the magnet, RF and data acquisition schemes as well as a careful analysis of what is needed to provide useful information in the ICU. A homogeneous field region is created remotely from the surface of the magnet such that when the magnet is placed against the chest, an NMR signal is measured from a small volume in the lung. In order to achieve portability, one must trade off field strength and therefore spatial resolution. We report initial measurements from a ping-pong ball size region in the lung as a function of lung volume. As expected, we measured decreased signal at larger lung volumes since lung density decreases with increasing lung volume. Using a CPMG sequence with ΔTE=3.5 ms and a 20 echo train, a signal to noise ratio ~1100 was obtained from an 8.8mT planar magnet after signal averaging for 43 s. This is the first demonstration of NMR measurements made on a human lung with a light-weight planar NMR device. We argue that very low spatial resolution measurements of different lobar lung regions will provide useful diagnostic information for clinicians treating Acute Respiratory Distress Syndrome as clinicians want to avoid ventilator pressures that cause either lung over distension (too much pressure) or lung collapse (too little pressure). Copyright © 2014 John Wiley & Sons, Ltd.

  7. Low-field NMR logging sensor for measuring hydraulic parameters of model soils

    Science.gov (United States)

    Sucre, Oscar; Pohlmeier, Andreas; Minière, Adrien; Blümich, Bernhard

    2011-08-01

    SummaryKnowing the exact hydraulic parameters of soils is very important for improving water management in agriculture and for the refinement of climate models. Up to now, however, the investigation of such parameters has required applying two techniques simultaneously which is time-consuming and invasive. Thus, the objective of this current study is to present only one technique, i.e., a new non-invasive method to measure hydraulic parameters of model soils by using low-field nuclear magnetic resonance (NMR). Hereby, two model clay or sandy soils were respectively filled in a 2 m-long acetate column having an integrated PVC tube. After the soils were completely saturated with water, a low-field NMR sensor was moved up and down in the PVC tube to quantitatively measure along the whole column the initial water content of each soil sample. Thereafter, both columns were allowed to drain. Meanwhile, the NMR sensor was set at a certain depth to measure the water content of that soil slice. Once the hydraulic equilibrium was reached in each of the two columns, a final moisture profile was taken along the whole column. Three curves were subsequently generated accordingly: (1) the initial moisture profile, (2) the evolution curve of the moisture depletion at that particular depth, and (3) the final moisture profile. All three curves were then inverse analyzed using a MATLAB code over numerical data produced with the van Genuchten-Mualem model. Hereby, a set of values ( α, n, θr and θs) was found for the hydraulic parameters for the soils under research. Additionally, the complete decaying NMR signal could be analyzed through Inverse Laplace Transformation and averaged on the 1/ T2 space. Through measurement of the decay in pure water, the effect on the relaxation caused by the sample could be estimated from the obtained spectra. The migration of the sample-related average with decreasing saturation speaks for a enhancement of the surface relaxation as the soil dries, in

  8. Measurement of global and local resonance terms

    CERN Document Server

    Tomás, R; Calaga, R; Fischer, W; Franchi, A; Rumolo, Giovanni

    2005-01-01

    Recently, resonance driving terms were successfully measured in the CERN SPS and the BNL RHIC from the Fourier spectrum of beam position monitor (BPM) data. Based on these measurements a new analysis has been derived to extract truly local observables from BPM data. These local observables are called local resonance terms since they share some similarities with the global resonance terms. In this paper we derive these local terms analytically and present experimental measurements of sextupolar global and local resonance terms in RHIC. Nondestructive measurements of these terms using ac dipoles are also presented.

  9. Phosphorus-31 NMR (nuclear magnetic resonance) analysis of gold plating baths

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.E.

    1990-01-01

    This report describes the nuclear magnetic resonance (NMR) analysis of the gold plating baths in the Micro-Miniature Electronic Assembly department of Allied-Signal Inc., Kansas City Division (KCD). The baths were analyzed for phosphorylated components. In freshly prepared gold plating baths, a 50-percent aqueous solution of aminotrimethylphosphonate (ATMP) is the principal compound observed. As the bath is used in production, the ATMP breaks down and new materials (phosphate, ADMP, and AMMP) are identified. The NMR method was used to monitor the concentrations of the ATMP and breakdown products for a nine-month period. The 225-liter bath had plated approximately 100 square feet of gold during the nine-month period. These results can be used to predict the performance of baths as they are used in production. The accuracy of the analysis is 96 percent for ATMP and 92 percent for phosphate. The precision (relative standard deviation) is 5.2 percent for ATMP and 4.5 percent for phosphate. 1 ref., 5 figs., 2 tabs.

  10. Measurement of the second moment in NMR using instationary methods

    International Nuclear Information System (INIS)

    Fenzke, D.; Rinck, W.; Schneider, H.

    1973-01-01

    Different instationary methods for determination of the second moment in NMR are tested. Measurements were carried out with a noncommercial solid-state pulse spectrometer with a fast analog transient memory (aquisition time >0.5 μs), data processing with a ''DIDAC 800'' spectrum accumulator and a ''NICOLET-1080'' computer. For processing of signals three methods are discussed: the numerical differentiation, the least square method and an application of the sampling theorem. We determined the second moment observing the ''Free Induction Decay'', ''Solid Echo'', ''Magic Echo'' and a special group of many pulse pairs. ''Magic Echo'' and data processing with the least square method gave the best result, because only by this method the influence of apparatus dead time can be completely eliminated. (author)

  11. An efficient randomized algorithm for contact-based NMR backbone resonance assignment.

    Science.gov (United States)

    Kamisetty, Hetunandan; Bailey-Kellogg, Chris; Pandurangan, Gopal

    2006-01-15

    Backbone resonance assignment is a critical bottleneck in studies of protein structure, dynamics and interactions by nuclear magnetic resonance (NMR) spectroscopy. A minimalist approach to assignment, which we call 'contact-based', seeks to dramatically reduce experimental time and expense by replacing the standard suite of through-bond experiments with the through-space (nuclear Overhauser enhancement spectroscopy, NOESY) experiment. In the contact-based approach, spectral data are represented in a graph with vertices for putative residues (of unknown relation to the primary sequence) and edges for hypothesized NOESY interactions, such that observed spectral peaks could be explained if the residues were 'close enough'. Due to experimental ambiguity, several incorrect edges can be hypothesized for each spectral peak. An assignment is derived by identifying consistent patterns of edges (e.g. for alpha-helices and beta-sheets) within a graph and by mapping the vertices to the primary sequence. The key algorithmic challenge is to be able to uncover these patterns even when they are obscured by significant noise. This paper develops, analyzes and applies a novel algorithm for the identification of polytopes representing consistent patterns of edges in a corrupted NOESY graph. Our randomized algorithm aggregates simplices into polytopes and fixes inconsistencies with simple local modifications, called rotations, that maintain most of the structure already uncovered. In characterizing the effects of experimental noise, we employ an NMR-specific random graph model in proving that our algorithm gives optimal performance in expected polynomial time, even when the input graph is significantly corrupted. We confirm this analysis in simulation studies with graphs corrupted by up to 500% noise. Finally, we demonstrate the practical application of the algorithm on several experimental beta-sheet datasets. Our approach is able to eliminate a large majority of noise edges and to

  12. Liquid-Liquid Phase Separation in Model Nuclear Waste Glasses: A Solid-State Double-Resonance NMR Study

    Energy Technology Data Exchange (ETDEWEB)

    Martineau, Ch.; Michaelis, V.K.; Kroeker, S. [Univ Manitoba, Dept Chem, Winnipeg, MB R3T 2N2 (Canada); Schuller, S. [CEA Valrho Marcoule, LDMC, SECM, DTCD, DEN, F-30207 Bagnols Sur Ceze (France)

    2010-07-01

    Double-resonance nuclear magnetic resonance (NMR) techniques are used in addition to single-resonance NMR experiments to probe the degree of mixing between network-forming cations Si and B, along with the modifier cations Cs{sup +} and Na{sup +} in two molybdenum-bearing model nuclear waste glasses. The double-resonance experiments involving {sup 29}Si in natural abundance are made possible by the implementation of a CPMG pulse-train during the acquisition period of the usual REDOR experiments. For the glass with lower Mo content, the NMR results show a high degree of Si-B mixing, as well as an homogeneous distribution of the cations within the borosilicate network, characteristic of a non-phase-separated glass. For the higher-Mo glass, a decrease of B-Si(Q{sup 4}) mixing is observed, indicating phase separation. {sup 23}Na and {sup 133}Cs NMR results show that although the Cs{sup +} cations, which do not seem to be influenced by the molybdenum content, are spread within the borate network, there is a clustering of the Na{sup +} cations, very likely around the molybdate units. The segregation of a Mo-rich region with Na{sup +} cations appears to shift the bulk borosilicate glass composition toward the metastable liquid liquid immiscibility region and induce additional phase separation. Although no crystallization is observed in the present case, this liquid liquid phase separation is likely to be the first stage of crystallization that can occur at higher Mo loadings or be driven by heat treatment. From this study emerges a consistent picture of the nature and extent of such phase separation phenomena in Mo-bearing glasses, and demonstrates the potential of double-resonance NMR methods for the investigation of phase separation in amorphous materials. (authors)

  13. The effect of divalent ions on the elasticity and pore collapse of chalk evaluated from compressional wave velocity and low-field Nuclear Magnetic Resonance (NMR)

    DEFF Research Database (Denmark)

    Katika, Konstantina; Addassi, Mouadh; Alam, Mohammad Monzurul

    2015-01-01

    The effects of divalent ions on the elasticity and the pore collapse of chalk were studied through rock-mechanical testing and low-field Nuclear Magnetic Resonance (NMR) measurements. Chalk samples saturated with deionized water and brines containing sodium, magnesium, calcium and sulfate ions were...... subjected to petrophysical experiments, rock mechanical testing and low-field NMR spectroscopy. Petrophysical characterization involving ultrasonic elastic wave velocities in unconfined conditions, porosity and permeability measurements, specific surface and carbonate content determination and backscatter...... electron microscopy of the materials were conducted prior to the experiments. The iso-frame model was used to predict the bulk moduli in dry and saturated conditions from the compressional modulus of water-saturated rocks. The effective stress coefficient, as introduced by Biot, was also determined from...

  14. 33S NMR cryogenic probe for taurine detection

    Science.gov (United States)

    Hobo, Fumio; Takahashi, Masato; Maeda, Hideaki

    2009-03-01

    With the goal of a S33 nuclear magnetic resonance (NMR) probe applicable to in vivo NMR on taurine-biological samples, we have developed the S33 NMR cryogenic probe, which is applicable to taurine solutions. The NMR sensitivity gain relative to a conventional broadband probe is as large as 3.5. This work suggests that improvements in the preamplifier could allow NMR measurements on 100 μM taurine solutions, which is the level of sensitivity necessary for biological samples.

  15. Measurement of specific heat and specific absorption rate by nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Gultekin, David H., E-mail: david.gultekin@aya.yale.edu [Department of Electrical Engineering, Yale University, New Haven, CT 06520 (United States); Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 (United States); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 (United States); Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232 (United States); Gore, John C. [Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232 (United States); Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232 (United States); Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232 (United States); Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232 (United States)

    2010-05-20

    We evaluate a nuclear magnetic resonance (NMR) method of calorimetry for the measurement of specific heat (c{sub p}) and specific absorption rate (SAR) in liquids. The feasibility of NMR calorimetry is demonstrated by experimental measurements of water, ethylene glycol and glycerol using any of three different NMR parameters (chemical shift, spin-spin relaxation rate and equilibrium nuclear magnetization). The method involves heating the sample using a continuous wave laser beam and measuring the temporal variation of the spatially averaged NMR parameter by non-invasive means. The temporal variation of the spatially averaged NMR parameter as a function of thermal power yields the ratio of the heat capacity to the respective nuclear thermal coefficient, from which the specific heat can be determined for the substance. The specific absorption rate is obtained by subjecting the liquid to heating by two types of radiation, radiofrequency (RF) and near-infrared (NIR), and by measuring the change in the nuclear spin phase shift by a gradient echo imaging sequence. These studies suggest NMR may be a useful tool for measurements of the thermal properties of liquids.

  16. A pulse spectrometer for NMR measurements on magnetically ordered materials

    International Nuclear Information System (INIS)

    Englich, J.; Pikner, B.; Sedlak, B.

    1975-01-01

    A simple design of a pulse nuclear magnetic resonance spectrometer is described. The spectrometer permits spin echo measurements on magnetically ordered substances. It operates in the frequency range 10 to 130 MHz, but this basic range can be extended by a replacement of the compact radiofrequency unit. The transmitter gives radiofrequency pulses with an amplitude of up to 1 kV on the coil with the investigated sample. The pulse programmer makes possible relaxation measurements in a time interval of 10 -5 to 10 -1 s. Attention was devoted to obtaining a maximum signal-to-noise ratio in the whole frequency range. Sensitivity of the spectrometer is demonstrated by spin echo measurement on pure iron powder. (author)

  17. Characterization of pH titration shifts for all the nonlabile proton resonances in a protein by two-dimensional NMR: The case of mouse epidermal growth factor

    International Nuclear Information System (INIS)

    Kohda, Daisuke; Sawada, Toshie; Inagaki, Fuyuhiko

    1991-01-01

    The pH titration shifts for all the nonlabile proton resonances in a 53-residue protein (mouse epidermal growth factor) were measured in the p 2 H range 1.5-9 with two-dimensional (2D) 1 H NMR. The 2D NMR pH titration experiment made it possible to determine the pK values for all the ionizable group which were titrated in the pH range 1.5-9 in the protein. The pK values of the nine ionizable groups (α-amino group, four Asp, two Glu, one His, and α-carboxyl group) were found to be near their normal values. The 2D titration experiment also provided a detailed description of the pH-dependent behavior of the proton chemical shifts and enabled us to characterize the pH-dependent changes of protein conformation. Analysis of the pH-dependent shifts of ca. 200 proton resonances offered evidence of conformational changes in slightly basic pH solution: The deprotonation of the N-terminal α-amino group induced a widespread conformational change over the β-sheet structure in the protein, while the effects of deprotonation of the His22 imidazole group were relatively localized. The authors found that the 2D NMR pH titration experiment is a powerful tool for investigating the structural and dynamic properties of proteins

  18. Resonance assignment for a particularly challenging protein based on systematic unlabeling of amino acids to complement incomplete NMR data sets

    International Nuclear Information System (INIS)

    Bellstedt, Peter; Seiboth, Thomas; Häfner, Sabine; Kutscha, Henriette; Ramachandran, Ramadurai; Görlach, Matthias

    2013-01-01

    NMR-based structure determination of a protein requires the assignment of resonances as indispensable first step. Even though heteronuclear through-bond correlation methods are available for that purpose, challenging situations arise in cases where the protein in question only yields samples of limited concentration and/or stability. Here we present a strategy based upon specific individual unlabeling of all 20 standard amino acids to complement standard NMR experiments and to achieve unambiguous backbone assignments for the fast precipitating 23 kDa catalytic domain of human aprataxin of which only incomplete standard NMR data sets could be obtained. Together with the validation of this approach utilizing the protein GB1 as a model, a comprehensive insight into metabolic interconversion ('scrambling”) of NH and CO groups in a standard Escherichia coli expression host is provided

  19. Nuclear magnetic resonance studies on brain edema. Time course of /sup 1/H-NMR relaxation times

    Energy Technology Data Exchange (ETDEWEB)

    Naruse, S; Horikawa, Y; Tanaka, C; Hirakawa, K; Nishikawa, H [Kyoto Prefectural Univ. of Medicine (Japan)

    1981-06-01

    1. The state of water in normal and edematous brain tissue was studied by measurement of proton longitudinal (T/sub 1/) and transverse (T/sub 2/) relaxation times using pulsed nuclear magnetic resonance (NMR) technique. 2. In control rats, T/sub 1/ and T/sub 2/ of water showed one component, which was more fast in white matter. Those values displayed 1.07 - 1.18 sec. of T/sub 1/ and 75 - 76 msec. of T/sub 2/. 3. When rat brain was injured by cold, T/sub 1/ was observed to become longer (1.18 - 1.27 sec.), and T/sub 2/ was observed be separated into two components, the faster T/sub 2/ (45 - 50 msec.) and slower T/sub 2/ (100 - 105 msec.), in both gray and white matter of the injured side. 4. In triethyltin (TET) induced brain edema, elongation of T/sub 1/ (1.2 sec.) and remarkable separation of T/sub 2/, faster T/sub 2/ (75 msec.) and slower T/sub 2/ (400 - 450 msec.), were observed in white matter. 5. In both cold and TET induced edema, slower T/sub 2/ fraction is suggested to be the extracellular space and faster T/sub 2/ fraction, intracellular. 6. T/sub 2/ changes precede the water content changes in cold injury, and parallel in TET induced edema. Those changes of relaxation times are reversible. 7. T/sub 2/ changes of water is more sensitive than the T/sub 1/ for the detection of production and disappearance of brain edema. 8. These results disclose the dynamic movements of water during the course of brain edema and offered significant information of the clinical application of NMR-CT.

  20. Methodological NMR imaging developments to measure cerebral perfusion

    International Nuclear Information System (INIS)

    Pannetier, N.

    2010-12-01

    This work focuses on acquisition techniques and physiological models that allow characterization of cerebral perfusion by MRI. The arterial input function (AIF), on which many models are based, is measured by a technique of optical imaging at the carotid artery in rats. The reproducibility and repeatability of the AIF are discussed and a model function is proposed. Then we compare two techniques for measuring the vessel size index (VSI) in rats bearing a glioma. The reference technique, using a USPIO contrast agent (CA), faces the dynamic approach that estimates this parameter during the passage of a bolus of Gd. This last technique has the advantage of being used clinically. The results obtained at 4.7 T by both approaches are similar and use of VSI in clinical protocols is strongly encouraged at high field. The mechanisms involved (R1 and R2* relaxivities) were then studied using a multi gradient -echoes approach. A multi-echoes spiral sequence is developed and a method that allows the refocusing between each echo is presented. This sequence is used to characterize the impact of R1 effects during the passage of two successive injections of Gd. Finally, we developed a tool for simulating the NMR signal on a 2D geometry taking into account the permeability of the BBB and the CA diffusion in the interstitial space. At short TE, the effect of diffusion on the signal is negligible. In contrast, the effects of diffusion and permeability may be separated at long echo time. Finally we show that during the extravasation of the CA, the local magnetic field homogenization due to the decrease of the magnetic susceptibility difference at vascular interfaces is quickly balanced by the perturbations induced by the increase of the magnetic susceptibility difference at the cellular interfaces in the extravascular compartment. (author)

  1. Precise NMR measurement and stabilization system of magnetic field of a superconducting 7 T wave length shifter

    CERN Document Server

    Borovikov, V M; Karpov, G V; Korshunov, D A; Kuper, E A; Kuzin, M V; Mamkin, V R; Medvedko, A S; Mezentsev, N A; Repkov, V V; Shkaruba, V A; Shubin, E I; Veremeenko, V F

    2001-01-01

    The system of measurement and stabilization of the magnetic field in the superconducting 7 T wave length shifter (WLS), designed at Budker Institute of Nuclear Physics are described. The measurements are performed by nuclear magnetic resonance (NMR) magnetometer at two points of the WLS magnetic field. Stabilization of the field is provided by the current pumping system. The stabilization system is based on precise NMR measurement of magnetic field as a feedback signal for computer code which control currents inside the superconducting coils. The problem of the magnetic field measurements with NMR method consists in wide spread of field in the measured area (up to 50 Gs/mm), wide temperature range of WLS operating, small space for probe and influence of iron hysteresis. Special solid-state probes were designed to satisfy this requirements. The accuracy of magnetic field measurements at probe locations is not worse than 20 ppm. For the WLS field of 7 T the reproducibility of the magnetic field of 30 ppm has be...

  2. Structural Elucidation of Metabolites of Synthetic Cannabinoid UR-144 by Cunninghamella elegans Using Nuclear Magnetic Resonance (NMR) Spectroscopy.

    Science.gov (United States)

    Watanabe, Shimpei; Kuzhiumparambil, Unnikrishnan; Fu, Shanlin

    2018-03-08

    The number of new psychoactive substances keeps on rising despite the controlling efforts by law enforcement. Although metabolism of the newly emerging drugs is continuously studied to keep up with the new additions, the exact structures of the metabolites are often not identified due to the insufficient sample quantities for techniques such as nuclear magnetic resonance (NMR) spectroscopy. The aim of the study was to characterise several metabolites of the synthetic cannabinoid (1-pentyl-1H-indol-3-yl) (2,2,3,3-tetramethylcyclopropyl) methanone (UR-144) by NMR spectroscopy after the incubation with the fungus Cunninghamella elegans. UR-144 was incubated with C. elegans for 72 h, and the resulting metabolites were chromatographically separated. Six fractions were collected and analysed by NMR spectroscopy. UR-144 was also incubated with human liver microsomes (HLM), and the liquid chromatography-high resolution mass spectrometry analysis was performed on the HLM metabolites with the characterised fungal metabolites as reference standards. Ten metabolites were characterised by NMR analysis including dihydroxy metabolites, carboxy and hydroxy metabolites, a hydroxy and ketone metabolite, and a carboxy and ketone metabolite. Of these metabolites, dihydroxy metabolite, carboxy and hydroxy metabolites, and a hydroxy and ketone metabolite were identified in HLM incubation. The results indicate that the fungus is capable of producing human-relevant metabolites including the exact isomers. The capacity of the fungus C. elegans to allow for NMR structural characterisation by enabling production of large amounts of metabolites makes it an ideal model to complement metabolism studies.

  3. Spin-locking of half-integer quadrupolar nuclei in NMR of solids: The far off-resonance case.

    Science.gov (United States)

    Odedra, Smita; Wimperis, Stephen

    Spin-locking of spin I=3/2 and I=5/2 nuclei in the presence of large resonance offsets has been studied using both approximate and exact theoretical approaches and, in the case of I=3/2, experimentally. We show the variety of coherences and population states produced in a far off-resonance spin-locking NMR experiment (one consisting solely of a spin-locking pulse) and how these vary with the radiofrequency field strength and offset frequency. Under magic angle spinning (MAS) conditions and in the "adiabatic limit", these spin-locked states acquire a time dependence. We discuss the rotor-driven interconversion of the spin-locked states, using an exact density matrix approach to confirm the results of the approximate model. Using conventional and multiple-quantum filtered spin-locking 23 Na (I=3/2) NMR experiments under both static and MAS conditions, we confirm the results of the theoretical calculations, demonstrating the applicability of the approximate theoretical model to the far off-resonance case. This simplified model includes only the effects of the initial rapid dephasing of coherences that occurs at the start of the spin-locking period and its success in reproducing both experimental and exact simulation data indicates that it is this dephasing that is the dominant phenomenon in NMR spin-locking of quadrupolar nuclei, as we have previously found for the on-resonance and near-resonance cases. Potentially, far off-resonance spin-locking of quadrupolar nuclei could be of interest in experiments such as cross polarisation as a consequence of the spin-locking pulse being applied to a better defined initial state (the thermal equilibrium bulk magnetisation aligned along the z-axis) than can be created in a powdered solid with a selective radiofrequency pulse, where the effect of the pulse depends on the orientation of the individual crystallites. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Nontargeted nuclear magnetic resonance (NMR) analysis to detect hazardous substances including methanol in unrecorded alcohol from Novosibirsk, Russia

    OpenAIRE

    Hausler, Thomas; Okaru,  Alex O.; Neufeld, Maria; Rehm, Jürgen; Kuballa, Thomas; Luy, Burkhard; Lachenmeier, Dirk W.

    2016-01-01

    Nuclear magnetic resonance (NMR) spectroscopy was applied to the analysis of alcoholic products in the context of health and safety control. A total of 86 samples of unrecorded alcohol were collected in Novosibirsk and nearby cities in Russia. Sampling was based on interviews with alcohol dependent patients, and unrecorded alcohol thus defined included illegally or informally produced alcoholic products (e.g., counterfeit or home-made alcoholic beverages) or surrogate alcohol in the form of c...

  5. Towards fully automated structure-based NMR resonance assignment of 15N-labeled proteins from automatically picked peaks

    KAUST Repository

    Jang, Richard; Gao, Xin; Li, Ming

    2011-01-01

    In NMR resonance assignment, an indispensable step in NMR protein studies, manually processed peaks from both N-labeled and C-labeled spectra are typically used as inputs. However, the use of homologous structures can allow one to use only N-labeled NMR data and avoid the added expense of using C-labeled data. We propose a novel integer programming framework for structure-based backbone resonance assignment using N-labeled data. The core consists of a pair of integer programming models: one for spin system forming and amino acid typing, and the other for backbone resonance assignment. The goal is to perform the assignment directly from spectra without any manual intervention via automatically picked peaks, which are much noisier than manually picked peaks, so methods must be error-tolerant. In the case of semi-automated/manually processed peak data, we compare our system with the Xiong-Pandurangan-Bailey- Kellogg's contact replacement (CR) method, which is the most error-tolerant method for structure-based resonance assignment. Our system, on average, reduces the error rate of the CR method by five folds on their data set. In addition, by using an iterative algorithm, our system has the added capability of using the NOESY data to correct assignment errors due to errors in predicting the amino acid and secondary structure type of each spin system. On a publicly available data set for human ubiquitin, where the typing accuracy is 83%, we achieve 91% accuracy, compared to the 59% accuracy obtained without correcting for such errors. In the case of automatically picked peaks, using assignment information from yeast ubiquitin, we achieve a fully automatic assignment with 97% accuracy. To our knowledge, this is the first system that can achieve fully automatic structure-based assignment directly from spectra. This has implications in NMR protein mutant studies, where the assignment step is repeated for each mutant. © Copyright 2011, Mary Ann Liebert, Inc.

  6. Towards fully automated structure-based NMR resonance assignment of 15N-labeled proteins from automatically picked peaks

    KAUST Repository

    Jang, Richard

    2011-03-01

    In NMR resonance assignment, an indispensable step in NMR protein studies, manually processed peaks from both N-labeled and C-labeled spectra are typically used as inputs. However, the use of homologous structures can allow one to use only N-labeled NMR data and avoid the added expense of using C-labeled data. We propose a novel integer programming framework for structure-based backbone resonance assignment using N-labeled data. The core consists of a pair of integer programming models: one for spin system forming and amino acid typing, and the other for backbone resonance assignment. The goal is to perform the assignment directly from spectra without any manual intervention via automatically picked peaks, which are much noisier than manually picked peaks, so methods must be error-tolerant. In the case of semi-automated/manually processed peak data, we compare our system with the Xiong-Pandurangan-Bailey- Kellogg\\'s contact replacement (CR) method, which is the most error-tolerant method for structure-based resonance assignment. Our system, on average, reduces the error rate of the CR method by five folds on their data set. In addition, by using an iterative algorithm, our system has the added capability of using the NOESY data to correct assignment errors due to errors in predicting the amino acid and secondary structure type of each spin system. On a publicly available data set for human ubiquitin, where the typing accuracy is 83%, we achieve 91% accuracy, compared to the 59% accuracy obtained without correcting for such errors. In the case of automatically picked peaks, using assignment information from yeast ubiquitin, we achieve a fully automatic assignment with 97% accuracy. To our knowledge, this is the first system that can achieve fully automatic structure-based assignment directly from spectra. This has implications in NMR protein mutant studies, where the assignment step is repeated for each mutant. © Copyright 2011, Mary Ann Liebert, Inc.

  7. Structure and dynamics of paramagnetic transients by pulsed EPR and NMR detection of nuclear resonance. [Pulse radiolysis of methanol in D/sub 2/O

    Energy Technology Data Exchange (ETDEWEB)

    Trifunac, A.D.

    1981-01-01

    Structure and dynamics of transient radicals in pulse radiolysis can be studied by time resolved EPR and NMR techniques. EPR study of kinetics and relaxation is illustrated. The NMR detection of nuclear resonance in transient radicals is a new method which allows the study of hyperfine coupling, population dynamics, radical kinetics, and reaction mechanism. 9 figures.

  8. Permeability estimation from NMR diffusion measurements in reservoir rocks.

    Science.gov (United States)

    Balzarini, M; Brancolini, A; Gossenberg, P

    1998-01-01

    It is well known that in restricted geometries, such as in porous media, the apparent diffusion coefficient (D) of the fluid depends on the observation time. From the time dependence of D, interesting information can be derived to characterise geometrical features of the porous media that are relevant in oil industry applications. In particular, the permeability can be related to the surface-to-volume ratio (S/V), estimated from the short time behaviour of D(t), and to the connectivity of the pore space, which is probed by the long time behaviour of D(t). The stimulated spin-echo pulse sequence, with pulsed magnetic field gradients, has been used to measure the diffusion coefficients on various homogeneous and heterogeneous sandstone samples. It is shown that the petrophysical parameters obtained by our measurements are in good agreement with those yielded by conventional laboratory techniques (gas permeability and electrical conductivity). Although the diffusing time is limited by T1, eventually preventing an observation of the real asymptotic behaviour, and the surface-to-volume ratio measured by nuclear magnetic resonance is different from the value obtained by BET because of the different length scales probed, the measurement remains reliable and low-time consuming.

  9. Quantitative perfusion modeling in cardiac in-vivo nuclear magnetic resonance (NMR) imaging

    International Nuclear Information System (INIS)

    Carme, Sabin Charles

    2004-01-01

    A parametrical analysis of contrast agent distribution is proposed to interpret first pass MR images and to quantify the myocardial perfusion. We are concerned with the correction of spatial intensity variations in images. Furthermore, we are interested in the application of a robust NMR signal processing technique and deconvolution techniques adapted to low signal-to-noise ratio. Data sets were provided, close to clinical conditions, using in-vivo experiments applying several pharmacological stresses on ischemic pigs presenting a stenosis of the left circumflex coronary artery. The agreement and accuracy measurements between observers are respectively 57.1% and 53.1% for visual analysis, and 81.2% and 81.1% for parametric map analysis. A linear relationship between perfusion parameters and radioactive microspheres is established for low blood flows [fr

  10. Nuclear magnetic resonance and sound velocity measurements of chalk saturated with magnesium rich brine

    DEFF Research Database (Denmark)

    Katika, Konstantina; Alam, Mohammad Monzurul; Fabricius, Ida Lykke

    2013-01-01

    The use of low field Nuclear Magnetic Resonance (NMR) to determine petrophysical properties of reservoirs has proved to be a good technique. Together with sonic and electrical resistivity measurements, NMR can contribute to illustrate the changes on chalk elasticity due to different pore water...... solutions of the same ionic strength. Saturation with a solution that contained divalent ions caused a major shift on the distribution of the relaxation time. The changes were probably due to precipitats forming extra internal surface in the sample. Sonic velocities were relatively low in the MgCl2 solution...

  11. Complete resonance assignment for the polypeptide backbone of interleukin 1β using three-dimensional heteronuclear NMR spectroscopy

    International Nuclear Information System (INIS)

    Driscoll, P.C.; Clore, G.M.; Marion, D.; Gronenborn, A.M.; Wingfield, P.T.

    1990-01-01

    The complete sequence-specific assignment of the 15 N and 1 H backbone resonances of the NMR spectrum of recombinant human interleukin 1β has been obtained by using primarily 15 N- 1 H heteronuclear three-dimensional (3D) NMR techniques in combination with 15 N- 1 H heteronuclear and 1 H homonuclear two-dimensional NMR. The fingerprint region of the spectrum was analyzed by using a combination of 3D heteronuclear 1 H Hartmann-Hahn 15 N- 1 H multiple quantum coherence (3D HOHAHA-HMQC) and 3D heteronuclear 1 H nuclear Overhauser 15 N- 1 H multiple quantum coherence (3D NOESY-HMQC) spectroscopies. The authors show that the problems of amide NH and C α H chemical shift degeneracy that are prevalent for proteins of the size are readily overcome by using the 3D heteronuclear NMR technique. A doubling of some peaks in the spectrum was found to be due to N-terminal heterogeneity of the 15 N-labeled protein, corresponding to a mixture of wild-type and des-Ala-1-interleukin 1β. The complete list of 15 N and 1 H assignments is given for all the amide NH and C α H resonances of all non-proline residues, as well as the 1 H assignments for some of the amino acid side chains. This first example of the sequence-specific assignment of a protein using heteronuclear 3D NMR provides a basis for further conformational and dynamic studies of interleukin 1β

  12. Heteronuclear cross-polarization in multinuclear multidimensional NMR: Prospects for triple-resonance CP

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, A.; Zuiderweg, E.R.P. [Univ. of Michigan, Ann Arbor, MI (United States)

    1994-12-01

    Heteronuclear multiple-pulse-based Cross Polarization (HECP) between scalar coupled spins is gaining an important role in high-resolution multidimensional NMR of isotopically labeled biomolecules, especially in experiments involving net magnetization transfer. It has generally been observed that in these situations, the performance of HECP is superior to that of INEPT-based sequences. In particular, HECP-based three-dimensional HCCH spectroscopy is more efficient than the INEPT version of the same experiment. Differences in sensitivity have been intuitively attributed to relaxation effects and technical factors such as radiofrequency (rf) inhomogeneity We present theoretical analyses and computer simulations to probe the effects of these factors. Relaxation effects were treated phenomenologically; we found that relaxation differences are relatively small (up to 25%) between pulsed-free-precession (INEPT) and HECP-although always in favor of HECP. We explored the rf effects by employing a Gaussian distribution of rf amplitude over sample volume. We found that inhomogeneity effects significantly favor HECP over INEPT, especially under conditions of {open_quotes}matched {close_quotes} inhomogeneity in the two rf coils. The differences in favor of HECP indicate that an extension of HECP to triple resonance experiments (TRCP) in I -> S -> Q net transfers might yield better results relative to analogous INEPT-based net transfers. We theoretically analyze the possibilities of TRCP and find that transfer functions are critically dependent on the ratio J{sub IS}/J{sub SQ}. When J{sub IS} equals J{sub SQ}, we find that 100% transfer is possible for truly simultaneous TRCP and this transfer is obtained in a time 1.41 /J. The TRCP time requirement compares favorably with optimally concatenated INEPT-transfers, where net transfer I -> S -> Q is complete at 1.5 /J.

  13. High-Throughput Screening by Nuclear Magnetic Resonance (HTS by NMR) for the Identification of PPIs Antagonists.

    Science.gov (United States)

    Wu, Bainan; Barile, Elisa; De, Surya K; Wei, Jun; Purves, Angela; Pellecchia, Maurizio

    2015-01-01

    In recent years the ever so complex field of drug discovery has embraced novel design strategies based on biophysical fragment screening (fragment-based drug design; FBDD) using nuclear magnetic resonance spectroscopy (NMR) and/or structure-guided approaches, most often using X-ray crystallography and computer modeling. Experience from recent years unveiled that these methods are more effective and less prone to artifacts compared to biochemical high-throughput screening (HTS) of large collection of compounds in designing protein inhibitors. Hence these strategies are increasingly becoming the most utilized in the modern pharmaceutical industry. Nonetheless, there is still an impending need to develop innovative and effective strategies to tackle other more challenging targets such as those involving protein-protein interactions (PPIs). While HTS strategies notoriously fail to identify viable hits against such targets, few successful examples of PPIs antagonists derived by FBDD strategies exist. Recently, we reported on a new strategy that combines some of the basic principles of fragment-based screening with combinatorial chemistry and NMR-based screening. The approach, termed HTS by NMR, combines the advantages of combinatorial chemistry and NMR-based screening to rapidly and unambiguously identify bona fide inhibitors of PPIs. This review will reiterate the critical aspects of the approach with examples of possible applications.

  14. Functional studies using NMR

    International Nuclear Information System (INIS)

    McCready, V.R.; Leach, M.O.; Sutton; Ell, P.

    1986-01-01

    The object of this book is to discuss and evaluate an area of Nuclear Magnetic Resonance which to date has been less emphasized than it might be, namely the use of NMR for functional studies. The book commences with a discussion of the areas in which the NMR techniques might be needed due to deficiencies in other techniques. The physics of NMR especially relating to functional measurement are then explained. Technical factors in producing functional images are discussed and the use of paramagnetic substances for carrying out flow studies are detailed. Particular attention is paid to specific studies in the various organs. The book ends with a survey of imaging in each organ and the relation of NMR images to other techniques such as ultrasound, nuclear medicine and X-rays

  15. Computer-aided structure analysis. Structure identification by infrared and /sup 13/C NMR measurements

    Energy Technology Data Exchange (ETDEWEB)

    Szalontai, G; Simon, Z; Csapo, Z; Farkas, M; Pfeifer, Gy [Nehezvegyipari Kutato Intezet, Veszprem (Hungary)

    1980-01-01

    The results obtained from the computer-aided interpretation of /sup 13/C NMR and IR spectra using the artificial intelligence approach are presented. In its present state the output of the system is a list of functional groups which are resonable candidates for the final structural isomers. The input requires empirical formula, /sup 13/C NMR data (off resonance data also) and IR spectral data. The confirmation of the presence of a functional group is based on comparison of the experimental data with the spectral properties of functional groups stored in a property matrix. If the molecular weight of the compounds studied is less or equal 500, the output contains usually 1.5-2.5 times more groups than really present, in most cases without the loss of the real ones.

  16. Nuclear Magnetic Resonance Spectroscopy Applications: Proton NMR In Biological Objects Subjected To Magic Angle Spinning

    International Nuclear Information System (INIS)

    Wind, Robert A.; Hu, Jian Zhi

    2005-01-01

    Proton NMR in Biological Objects Submitted to Magic Angle Spinning, In Encyclopedia of Analytical Science, Second Edition (Paul J. Worsfold, Alan Townshend and Colin F. Poole, eds.), Elsevier, Oxford 6:333-342. Published January 1, 2005. Proposal Number 10896

  17. Multinuclear solid-state high-resolution and C-13 -{Al-27} double-resonance magic-angle spinning NMR studies on aluminum alkoxides

    NARCIS (Netherlands)

    Abraham, A.; Prins, R.; Bokhoven, J.A. van; Eck, E.R.H. van; Kentgens, A.P.M.

    2006-01-01

    A combination of Al-27 magic-angle spinning (MAS)/multiple quantum (MQ)-MAS, C-13-H-1 CPMAS, and C-13-{Al-27} transfer of population in double-resonance (TRAPDOR) nuclear magnetic resonance (NMR) were used for the structural elucidation of the aluminum alkoxides aluminum ethoxide, aluminum

  18. 13C-detected NMR experiments for automatic resonance assignment of IDPs and multiple-fixing SMFT processing

    International Nuclear Information System (INIS)

    Dziekański, Paweł; Grudziąż, Katarzyna; Jarvoll, Patrik; Koźmiński, Wiktor; Zawadzka-Kazimierczuk, Anna

    2015-01-01

    Intrinsically disordered proteins (IDPs) have recently attracted much interest, due to their role in many biological processes, including signaling and regulation mechanisms. High-dimensional 13 C direct-detected NMR experiments have proven exceptionally useful in case of IDPs, providing spectra with superior peak dispersion. Here, two such novel experiments recorded with non-uniform sampling are introduced, these are 5D HabCabCO(CA)NCO and 5D HNCO(CA)NCO. Together with the 4D (HACA)CON(CA)NCO, an extension of the previously published 3D experiments (Pantoja-Uceda and Santoro in J Biomol NMR 59:43–50, 2014. doi: 10.1007/s10858-014-9827-1 10.1007/s10858-014-9827-1 ), they form a set allowing for complete and reliable resonance assignment of difficult IDPs. The processing is performed with sparse multidimensional Fourier transform based on the concept of restricting (fixing) some of spectral dimensions to a priori known resonance frequencies. In our study, a multiple-fixing method was developed, that allows easy access to spectral data. The experiments were tested on a resolution-demanding alpha-synuclein sample. Due to superior peak dispersion in high-dimensional spectrum and availability of the sequential connectivities between four consecutive residues, the overwhelming majority of resonances could be assigned automatically using the TSAR program

  19. Computational Diffusion Magnetic Resonance Imaging Based on Time-Dependent Bloch NMR Flow Equation and Bessel Functions.

    Science.gov (United States)

    Awojoyogbe, Bamidele O; Dada, Michael O; Onwu, Samuel O; Ige, Taofeeq A; Akinwande, Ninuola I

    2016-04-01

    Magnetic resonance imaging (MRI) uses a powerful magnetic field along with radio waves and a computer to produce highly detailed "slice-by-slice" pictures of virtually all internal structures of matter. The results enable physicians to examine parts of the body in minute detail and identify diseases in ways that are not possible with other techniques. For example, MRI is one of the few imaging tools that can see through bones, making it an excellent tool for examining the brain and other soft tissues. Pulsed-field gradient experiments provide a straightforward means of obtaining information on the translational motion of nuclear spins. However, the interpretation of the data is complicated by the effects of restricting geometries as in the case of most cancerous tissues and the mathematical concept required to account for this becomes very difficult. Most diffusion magnetic resonance techniques are based on the Stejskal-Tanner formulation usually derived from the Bloch-Torrey partial differential equation by including additional terms to accommodate the diffusion effect. Despite the early success of this technique, it has been shown that it has important limitations, the most of which occurs when there is orientation heterogeneity of the fibers in the voxel of interest (VOI). Overcoming this difficulty requires the specification of diffusion coefficients as function of spatial coordinate(s) and such a phenomenon is an indication of non-uniform compartmental conditions which can be analyzed accurately by solving the time-dependent Bloch NMR flow equation analytically. In this study, a mathematical formulation of magnetic resonance flow sequence in restricted geometry is developed based on a general second order partial differential equation derived directly from the fundamental Bloch NMR flow equations. The NMR signal is obtained completely in terms of NMR experimental parameters. The process is described based on Bessel functions and properties that can make it

  20. Measurement of the resonance escape probability

    International Nuclear Information System (INIS)

    Anthony, J.P.; Bacher, P.; Lheureux, L.; Moreau, J.; Schmitt, A.P.

    1957-01-01

    The average cadmium ratio in natural uranium rods has been measured, using equal diameter natural uranium disks. These values correlated with independent measurements of the lattice buckling, enabled us to calculate values of the resonance escape probability for the G1 reactor with one or the other of two definitions. Measurements were performed on 26 mm and 32 mm rods, giving the following values for the resonance escape probability p: 0.8976 ± 0.005 and 0.912 ± 0.006 (d. 26 mm), 0.8627 ± 0.009 and 0.884 ± 0.01 (d. 32 mm). The influence of either definition on the lattice parameters is discussed, leading to values of the effective integral. Similar experiments have been performed with thorium rods. (author) [fr

  1. 27Al Magic Angle Spinning–Nuclear Magnetic Resonance (MAS-NMR) Analyses Applied to Historical Mortars

    Czech Academy of Sciences Publication Activity Database

    Hanzlíček, Tomáš; Perná, Ivana; Brus, Jiří

    2013-01-01

    Roč. 7, č. 2 (2013), s. 153-164 ISSN 1558-3058 R&D Projects: GA AV ČR IAA300460702 Institutional research plan: CEZ:AV0Z30460519; CEZ:AV0Z40500505 Keywords : mortars * magic angle spinning –nuclear magnetic resonance (MAS-NMR) in solid state * alumina-silicates Subject RIV: DM - Solid Waste and Recycling Impact factor: 0.714, year: 2013 http://www.tandfonline.com/doi/abs/10.1080/15583058.2011.624253

  2. Quantification of organic acids in beer by nuclear magnetic resonance (NMR)-based methods

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, J.E.A. [CICECO-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Erny, G.L. [CESAM - Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Barros, A.S. [QOPNAA-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Esteves, V.I. [CESAM - Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Brandao, T.; Ferreira, A.A. [UNICER, Bebidas de Portugal, Leca do Balio, 4466-955 S. Mamede de Infesta (Portugal); Cabrita, E. [Department of Chemistry, New University of Lisbon, 2825-114 Caparica (Portugal); Gil, A.M., E-mail: agil@ua.pt [CICECO-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal)

    2010-08-03

    The organic acids present in beer provide important information on the product's quality and history, determining organoleptic properties and being useful indicators of fermentation performance. NMR spectroscopy may be used for rapid quantification of organic acids in beer and different NMR-based methodologies are hereby compared for the six main acids found in beer (acetic, citric, lactic, malic, pyruvic and succinic). The use of partial least squares (PLS) regression enables faster quantification, compared to traditional integration methods, and the performance of PLS models built using different reference methods (capillary electrophoresis (CE), both with direct and indirect UV detection, and enzymatic essays) was investigated. The best multivariate models were obtained using CE/indirect detection and enzymatic essays as reference and their response was compared with NMR integration, either using an internal reference or an electrical reference signal (Electronic REference To access In vivo Concentrations, ERETIC). NMR integration results generally agree with those obtained by PLS, with some overestimation for malic and pyruvic acids, probably due to peak overlap and subsequent integral errors, and an apparent relative underestimation for citric acid. Overall, these results make the PLS-NMR method an interesting choice for organic acid quantification in beer.

  3. Quantification of organic acids in beer by nuclear magnetic resonance (NMR)-based methods

    International Nuclear Information System (INIS)

    Rodrigues, J.E.A.; Erny, G.L.; Barros, A.S.; Esteves, V.I.; Brandao, T.; Ferreira, A.A.; Cabrita, E.; Gil, A.M.

    2010-01-01

    The organic acids present in beer provide important information on the product's quality and history, determining organoleptic properties and being useful indicators of fermentation performance. NMR spectroscopy may be used for rapid quantification of organic acids in beer and different NMR-based methodologies are hereby compared for the six main acids found in beer (acetic, citric, lactic, malic, pyruvic and succinic). The use of partial least squares (PLS) regression enables faster quantification, compared to traditional integration methods, and the performance of PLS models built using different reference methods (capillary electrophoresis (CE), both with direct and indirect UV detection, and enzymatic essays) was investigated. The best multivariate models were obtained using CE/indirect detection and enzymatic essays as reference and their response was compared with NMR integration, either using an internal reference or an electrical reference signal (Electronic REference To access In vivo Concentrations, ERETIC). NMR integration results generally agree with those obtained by PLS, with some overestimation for malic and pyruvic acids, probably due to peak overlap and subsequent integral errors, and an apparent relative underestimation for citric acid. Overall, these results make the PLS-NMR method an interesting choice for organic acid quantification in beer.

  4. 1H Nuclear Magnetic Resonance (NMR) metabonomic study of breast cancer in Indian population

    International Nuclear Information System (INIS)

    Sonkar, Kanchan; Sinha, Neeraj; Arshad, Farah

    2012-01-01

    Breast cancer is the most common cancer diagnosed in women worldwide with over 1.3 million new cases per year. Recently it has been observed that breast cancer is increasing very rapidly in low income countries including India. Lipids not only play very important and vital role of prime structural component in human body they are also important functional components in cellular metabolism. Transformation from benign to malignant tissue involves several biochemical processes and understanding these processes provides very useful insight related to cancer prognosis. Thus study of lipids becomes very important and NMR spectroscopy is one of the techniques which can be utilized to identifying all lipid components simultaneously. The tissue specimens (35, benign 20 and malignant 15; patient age group 47 yrs) were collected after breast surgeries and were snap frozen in liquid nitrogen. Part of all tissues was sent for routine histopathology. Lipid extraction was performed by Folch method (Folch, 1957) using cholesterol and methanol (2:1 ratio). The NMR spectra of the extracted lipids were recorded immediately after the sample preparation. All NMR experiments were performed on a Bruker Avance 800 MHz spectrometer. 1 H NMR analysis of lipid extract of breast tissue in Indian population shows there is significant elevation of phosphotidycholine, plasmalogen and esterified cholesterol with decrease in triacylglycerol in cancer breast compared to benign tissue implying that their metabolism is definitely altered during carcinogenesis. This study analyzes the role of NMR as an additional diagnostic tool on the basis of examination of lipid extract. (author)

  5. Measurement of myocardial perfusion using magnetic resonance

    DEFF Research Database (Denmark)

    Fritz-Hansen, T.; Jensen, L.T.; Larsson, H.B.

    2008-01-01

    Cardiac magnetic resonance imaging (MRI) has evolved rapidly. Recent developments have made non-invasive quantitative myocardial perfusion measurements possible. MRI is particularly attractive due to its high spatial resolution and because it does not involve ionising radiation. This paper reviews...... myocardial perfusion imaging with MR contrast agents: methods, validation and experiences from clinical studies. Unresolved issues still restrict the use of these techniques to research although clinical applications are within reach Udgivelsesdato: 2008/12/8...

  6. Evaluation of thermoplastic starch/MMT nanocomposites by nuclear magnetic resonance (NMR)

    International Nuclear Information System (INIS)

    Schlemmer, D.; Rodrigues, Tiago C.A.F.; Resck, I.S.; Sales, M.J.A.

    2010-01-01

    Starch has been studied for replace petrochemical plastics for short shelf life. However, the starch films have limitations: sensitivity to moisture and poor mechanical strength. This can be improved by incorporating loads such as montmorillonite, forming nanocomposites. Nanocomposites were prepared with 1, 3, 5 and 10% of montmorillonite, using vegetable oils of Brazilian Cerrado as plasticizers. The NMR spectra of oils are similar, but the intensities of the signals varying with the proportion of fatty acids. The molar mass of the oils was also calculated by NMR. The spectrum of CP/MAS 13 C NMR for starch presented a duplet in 97 and 98 ppm, on the amorphous domains of C-1, indicating a crystal type A. The spectra of the nanocomposites are similar to those of starch and oils. No new peaks appear, suggesting that there are no strong chemical bonds between components. (author)

  7. An automated framework for NMR resonance assignment through simultaneous slice picking and spin system forming

    KAUST Repository

    Abbas, Ahmed; Guo, Xianrong; Jing, Bingyi; Gao, Xin

    2014-01-01

    positives and negatives impair the performance of resonance assignment methods. One of the main reasons for this problem is that the computational research community often considers peak picking and resonance assignment to be two separate problems, whereas

  8. Deuteron NMR (Nuclear Magnetic Resonance) in relation to the glass transition in polymers

    Science.gov (United States)

    Roessler, E.; Sillescu, H.; Spiess, H. W.; Wallwitz, R.

    1983-01-01

    H-2NMR is introduced as a tool for investigating slow molecular motion in the glass transition region of amorphous polymers. In particular, we compare H-2 spin alignment echo spectra of chain deuterated polystyrene with model calculations for restricted rotational Brownian motion. Molecular motion in the polyztyrene-toluene system has been investigated by analyzing H-2NMR of partially deuterated polystyrene and toluene, respectively. The diluent mobility in the mixed glass has been decomposed into solid and liquid components where the respective average correlation times differ by more than 5 decades.

  9. Water binding by soybean seeds as measured by pulsed NMR.

    OpenAIRE

    掛澤, 雅章; 望月, 務; 海老根, 英雄; MASAAKI, KAKEZAWA; TSUTOMU, MOCHIZUKI; HIDEO, EBINE; 中央味噌研究所; 東海物産株式会社; 中央味噌研究所; Central Miso Research Institute; Tokai Bussan, Co.; Central Miso Research Institute

    1983-01-01

    The water in soybean powder, soaked soybeans and cooked soybeans was fractionated into unfrozen water and freezable water from the data on the free induction decay freezing curve, and into bound and mobile fractions from the data on the spin-spin relaxation curve by pulsed nuclear magnetic resonance. The effects of soaking and cooking conditions on the state of water were examined. In soybean powder of several hydration levels, the freezing curves showed that the levels of unfrozen water were...

  10. Surface-NMR measurements of the longitudinal relaxation time T1 in a homogeneous sandy aquifer in Skive, Denmark

    Science.gov (United States)

    Walbrecker, J.; Behroozmand, A.

    2011-12-01

    Efficient groundwater management requires reliable means of characterizing shallow groundwater aquifers. One key parameter in this respect is hydraulic conductivity. Surface nuclear magnetic resonance (NMR) is a geophysical exploration technique that can potentially provide this type of information in a noninvasive, cost-effective way. The technique is based on measuring the precession of nuclear spins of protons in groundwater molecules. It involves large loop antennas deployed on Earth's surface to generate electromagnetic pulses tuned to specifically excite and detect groundwater proton spins. Naturally, the excited state of spins is transitory - once excited, spins relax back to their equilibrium state. This relaxation process is strongly influenced by the spin environment, which, in the case of groundwater, is defined by the aquifer. By employing empirical relations, changes in relaxation behavior can be used to identify changes in aquifer hydraulic conductivity, making the NMR relaxation signal a very important piece of information. Particularly, efforts are made to record the longitudinal relaxation parameter T1, because it is known from laboratory studies that it often reliably correlates with hydraulic conductivity, even in the presence of magnetic species. In surface NMR, T1 data are collected by recording the NMR signal amplitude following two sequential excitation pulses as a function of the delay time τ between the two pulses. In conventional acquisition, the two pulses have a mutual phase shift of π. Based on theoretical arguments it was recently shown that T1 times acquired according to this conventional surface-NMR scheme are systematically biased. It was proposed that the bias can be minimized by cycling the phase of the two pulses between π and zero in subsequent double-pulse experiments, and subtracting the resulting signal amplitudes (phase-cycled pseudosaturation recovery scheme, pcPSR). We present the first surface-NMR T1 data set recorded

  11. Erythrocyte Na+/K+ ATPase activity measured with sup 23 Na NMR

    Energy Technology Data Exchange (ETDEWEB)

    Ouwerkerk, R.; van Echteld, C.J.; Staal, G.E.; Rijksen, G. (University Hospital, Utrecht (Netherland))

    1989-11-01

    A {sup 23}Na NMR assay for measurement of erythrocyte Na+/K+ ATPase activity is presented. Using the nonpermeant shift reagent dysprosium tripolyphosphate the signals of intra- and extracellular sodium are separated, enabling measurement of sodium fluxes nondestructively, without the need to physically separate the cells from their environment. By increasing membrane permeability with nystatin we have shown that the assay allows the detection of differences in membrane permeability. With low doses of nystatin the ouabain-sensitive sodium flux increased more than twofold. With high doses of nystatin the Na+/K+ pump could not prevent an almost total equilibration of intra- and extracellular sodium. All sodium that entered the cells remained NMR visible, proving that sodium influx can be measured quantitatively. {sup 31}P NMR spectra taken before and after the assay revealed a slight acidification of the cells and no significant change in ATP concentration. No evidence of Dy3+ entering the cell was observed.

  12. Measurement of J/ψ resonance parameters

    International Nuclear Information System (INIS)

    Bai Jingzhi; Chen Guangpei; Chen Shaomin

    1995-01-01

    The cross sections of e + e - →hadrons, e + e - , μ + μ - have been measured in the vicinity of J/ψ resonance at BES/BEPC. The fit of the observed cross sections gives the new results of J/ψ resonance parameters: the partial widths to hadrons, electrons and muons are Γ h = 74.1 +- 8.1 keV, Γ e = 5.14 +- 0.39 keV and Γ μ = 5.13 +-0.52 keV respectively; the total width Γ = 84.4 +- 8.9 keV; the branching fractions Γ h /Γ = (87.8 +- 0.5)%, Γ e /Γ (6.09 +- 0.33)%, and Γ μ /Γ = (6.08 +- 0.33)%

  13. High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HRMAS NMR) for Studies of Reactive Fabrics

    Science.gov (United States)

    2015-11-01

    spectroscopy (NMR) Self- decontaminating fabric Reactive fabric...reactions of reagents including chemical weapons on materials like concrete, soil , and sand, as well as reactive polymers.3,4,5,6,7 There are...sample. The rotor and cap can be cleaned by rinsing with solvent or decontamination solution and reused. 12.0 DATA ANALYSIS AND CALCULATIONS 12.1

  14. NMR measurements in milled GdCo2 and GdFe2 intermetallic compounds

    International Nuclear Information System (INIS)

    Tribuzy, C.V.B.; Guimaraes, A.P.; Biondo, A.; Larica, C.; Alves, K.M.B.

    1998-12-01

    We have used the nuclear magnetic resonance technique to study the magnetic and structural properties of the Gd-Co and Gd-Fe metallic systems, starting with the C15 laves phase intermetallic compounds, and submitting them to a high energy milling process. This leads to the amorphization of the samples, as determined by the X-ray diffraction spectra. For the Gd-Co system the NMR study used the 59 Co nucleus; in the Gd-Fe system, 155,157 Gd and 57 Fe were used. Both systems showed segregation of the pure elements, after a few hours of milling. In the Gd-Co system, a single line, of increasing width, was observed in the 59 Co spectrum. In the Gd-Fe system, the 155 Gd and 157 Gd resonances show three lines, arising from electrical quadrupole interaction. With increasing milling time, the lines broaden, and extra lines appear attributed to a cubic phase of Gd; this interpretation is supported by the X-ray analysis of the samples. The 57 Fe NMR spectrum of this system also informs on the direction of magnetization of the samples in the early stages of milling. From 1 h to 7 h of milling, a spectrum of α-Fe was observed. The study of the NMR line intensity as a function of radio frequency (r.f.) power in Gd Co 2 suggests the existence of regions of the samples with different degrees of disorder. We have observed the persistence of NMR signals from the original intermetallic compounds in the samples with up to 10 h and 7 h of milling, respectively, for Gd Co 2 and Gd Fe 2 . (author)

  15. Gaining insight into the T _2^*-T2 relationship in surface NMR free-induction decay measurements

    Science.gov (United States)

    Grombacher, Denys; Auken, Esben

    2018-05-01

    One of the primary shortcomings of the surface nuclear magnetic resonance (NMR) free-induction decay (FID) measurement is the uncertainty surrounding which mechanism controls the signal's time dependence. Ideally, the FID-estimated relaxation time T_2^* that describes the signal's decay carries an intimate link to the geometry of the pore space. In this limit the parameter T_2^* is closely linked to a related parameter T2, which is more closely linked to pore-geometry. If T_2^* ˜eq {T_2} the FID can provide valuable insight into relative pore-size and can be used to make quantitative permeability estimates. However, given only FID measurements it is difficult to determine whether T_2^* is linked to pore geometry or whether it has been strongly influenced by background magnetic field inhomogeneity. If the link between an observed T_2^* and the underlying T2 could be further constrained the utility of the standard surface NMR FID measurement would be greatly improved. We hypothesize that an approach employing an updated surface NMR forward model that solves the full Bloch equations with appropriately weighted relaxation terms can be used to help constrain the T_2^*-T2 relationship. Weighting the relaxation terms requires estimating the poorly constrained parameters T2 and T1; to deal with this uncertainty we propose to conduct a parameter search involving multiple inversions that employ a suite of forward models each describing a distinct but plausible T_2^*-T2 relationship. We hypothesize that forward models given poor T2 estimates will produce poor data fits when using the complex-inversion, while forward models given reliable T2 estimates will produce satisfactory data fits. By examining the data fits produced by the suite of plausible forward models, the likely T_2^*-T2 can be constrained by identifying the range of T2 estimates that produce reliable data fits. Synthetic and field results are presented to investigate the feasibility of the proposed technique.

  16. Accuracy of magnetic resonance based susceptibility measurements

    Science.gov (United States)

    Erdevig, Hannah E.; Russek, Stephen E.; Carnicka, Slavka; Stupic, Karl F.; Keenan, Kathryn E.

    2017-05-01

    Magnetic Resonance Imaging (MRI) is increasingly used to map the magnetic susceptibility of tissue to identify cerebral microbleeds associated with traumatic brain injury and pathological iron deposits associated with neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Accurate measurements of susceptibility are important for determining oxygen and iron content in blood vessels and brain tissue for use in noninvasive clinical diagnosis and treatment assessments. Induced magnetic fields with amplitude on the order of 100 nT, can be detected using MRI phase images. The induced field distributions can then be inverted to obtain quantitative susceptibility maps. The focus of this research was to determine the accuracy of MRI-based susceptibility measurements using simple phantom geometries and to compare the susceptibility measurements with magnetometry measurements where SI-traceable standards are available. The susceptibilities of paramagnetic salt solutions in cylindrical containers were measured as a function of orientation relative to the static MRI field. The observed induced fields as a function of orientation of the cylinder were in good agreement with simple models. The MRI susceptibility measurements were compared with SQUID magnetometry using NIST-traceable standards. MRI can accurately measure relative magnetic susceptibilities while SQUID magnetometry measures absolute magnetic susceptibility. Given the accuracy of moment measurements of tissue mimicking samples, and the need to look at small differences in tissue properties, the use of existing NIST standard reference materials to calibrate MRI reference structures is problematic and better reference materials are required.

  17. Methods of NMR structure refinement: molecular dynamics simulations improve the agreement with measured NMR data of a C-terminal peptide of GCN4-p1

    International Nuclear Information System (INIS)

    Dolenc, Jozica; Missimer, John H.; Steinmetz, Michel O.; Gunsteren, Wilfred F. van

    2010-01-01

    The C-terminal trigger sequence is essential in the coiled-coil formation of GCN4-p1; its conformational properties are thus of importance for understanding this process at the atomic level. A solution NMR model structure of a peptide, GCN4p16-31, encompassing the GCN4-p1 trigger sequence was proposed a few years ago. Derived using a standard single-structure refinement protocol based on 172 nuclear Overhauser effect (NOE) distance restraints, 14 hydrogen-bond and 11 φ torsional-angle restraints, the resulting set of 20 NMR model structures exhibits regular α-helical structure. However, the set slightly violates some measured NOE bounds and does not reproduce all 15 measured 3 J(H N -H Cα )-coupling constants, indicating that different conformers of GCN4p16-31 might be present in solution. With the aim to resolve structures compatible with all NOE upper distance bounds and 3 J-coupling constants, we executed several structure refinement protocols employing unrestrained and restrained molecular dynamics (MD) simulations with two force fields. We find that only configurational ensembles obtained by applying simultaneously time-averaged NOE distance and 3 J-coupling constant restraining with either force field reproduce all the experimental data. Additionally, analyses of the simulated ensembles show that the conformational variability of GCN4p16-31 in solution admitted by the available set of 187 measured NMR data is larger than represented by the set of the NMR model structures. The conformations of GCN4p16-31 in solution differ in the orientation not only of the side-chains but also of the backbone. The inconsistencies between the NMR model structures and the measured NMR data are due to the neglect of averaging effects and the inclusion of hydrogen-bond and torsional-angle restraints that have little basis in the primary, i.e. measured NMR data.

  18. Methods of NMR structure refinement: molecular dynamics simulations improve the agreement with measured NMR data of a C-terminal peptide of GCN4-p1.

    Science.gov (United States)

    Dolenc, Jozica; Missimer, John H; Steinmetz, Michel O; van Gunsteren, Wilfred F

    2010-07-01

    The C-terminal trigger sequence is essential in the coiled-coil formation of GCN4-p1; its conformational properties are thus of importance for understanding this process at the atomic level. A solution NMR model structure of a peptide, GCN4p16-31, encompassing the GCN4-p1 trigger sequence was proposed a few years ago. Derived using a standard single-structure refinement protocol based on 172 nuclear Overhauser effect (NOE) distance restraints, 14 hydrogen-bond and 11 phi torsional-angle restraints, the resulting set of 20 NMR model structures exhibits regular alpha-helical structure. However, the set slightly violates some measured NOE bounds and does not reproduce all 15 measured (3)J(H(N)-H(Calpha))-coupling constants, indicating that different conformers of GCN4p16-31 might be present in solution. With the aim to resolve structures compatible with all NOE upper distance bounds and (3)J-coupling constants, we executed several structure refinement protocols employing unrestrained and restrained molecular dynamics (MD) simulations with two force fields. We find that only configurational ensembles obtained by applying simultaneously time-averaged NOE distance and (3)J-coupling constant restraining with either force field reproduce all the experimental data. Additionally, analyses of the simulated ensembles show that the conformational variability of GCN4p16-31 in solution admitted by the available set of 187 measured NMR data is larger than represented by the set of the NMR model structures. The conformations of GCN4p16-31 in solution differ in the orientation not only of the side-chains but also of the backbone. The inconsistencies between the NMR model structures and the measured NMR data are due to the neglect of averaging effects and the inclusion of hydrogen-bond and torsional-angle restraints that have little basis in the primary, i.e. measured NMR data.

  19. Nuclear magnetic resonance (NMR) examination of the normal spinal cord at 1. 5 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Halimi, P.; Sigal, R.; Doyon, D.; Melki, P.; Francke, J.P.

    1988-01-01

    The remarkable analytical power of NMR imaging applied to the study of the spinal cord and the adjacent regions, and especially by means of high-field devices, requires a very precise knowledge of the anatomy. The spinal cord is analysed in its diverse regions: bulbomedullar junction, cervical and dorsal, conus medullaris and cauda equina in the various planes (sagittal, axial and frontal), which are confronted with anatomical sections.

  20. Nuclear magnetic resonance (NMR) examination of the normal spinal cord at 1.5 Tesla

    International Nuclear Information System (INIS)

    Halimi, P.; Sigal, R.; Doyon, D.; Melki, P.; Francke, J.P.

    1988-01-01

    The remarkable analytical power of NMR imaging applied to the study of the spinal cord and the adjacent regions, and especially by means of high-field devices, requires a very precise knowledge of the anatomy. The spinal cord is analysed in its diverse regions: bulbomedullar junction, cervical and dorsal, conus medullaris and cauda equina in the various planes (sagittal, axial and frontal), which are confronted with anatomical sections [fr

  1. Characterizing source fingerprints and ageing processes in laboratory-generated secondary organic aerosols using proton-nuclear magnetic resonance (1H-NMR) analysis and HPLC HULIS determination

    Science.gov (United States)

    Zanca, Nicola; Lambe, Andrew T.; Massoli, Paola; Paglione, Marco; Croasdale, David R.; Parmar, Yatish; Tagliavini, Emilio; Gilardoni, Stefania; Decesari, Stefano

    2017-09-01

    The study of secondary organic aerosol (SOA) in laboratory settings has greatly increased our knowledge of the diverse chemical processes and environmental conditions responsible for the formation of particulate matter starting from biogenic and anthropogenic volatile compounds. However, characteristics of the different experimental setups and the way they impact the composition and the timescale of formation of SOA are still subject to debate. In this study, SOA samples were generated using a potential aerosol mass (PAM) oxidation flow reactor using α-pinene, naphthalene and isoprene as precursors. The PAM reactor facilitated exploration of SOA composition over atmospherically relevant photochemical ageing timescales that are unattainable in environmental chambers. The SOA samples were analyzed using two state-of-the-art analytical techniques for SOA characterization - proton nuclear magnetic resonance (1H-NMR) spectroscopy and HPLC determination of humic-like substances (HULIS). Results were compared with previous Aerodyne aerosol mass spectrometer (AMS) measurements. The combined 1H-NMR, HPLC, and AMS datasets show that the composition of the studied SOA systems tend to converge to highly oxidized organic compounds upon prolonged OH exposures. Further, our 1H-NMR findings show that only α-pinene SOA acquires spectroscopic features comparable to those of ambient OA when exposed to at least 1 × 1012 molec OH cm-3 × s OH exposure, or multiple days of equivalent atmospheric OH oxidation. Over multiple days of equivalent OH exposure, the formation of HULIS is observed in both α-pinene SOA and in naphthalene SOA (maximum yields: 16 and 30 %, respectively, of total analyzed water-soluble organic carbon, WSOC), providing evidence of the formation of humic-like polycarboxylic acids in unseeded SOA.

  2. Characterizing source fingerprints and ageing processes in laboratory-generated secondary organic aerosols using proton-nuclear magnetic resonance (1H-NMR analysis and HPLC HULIS determination

    Directory of Open Access Journals (Sweden)

    N. Zanca

    2017-09-01

    Full Text Available The study of secondary organic aerosol (SOA in laboratory settings has greatly increased our knowledge of the diverse chemical processes and environmental conditions responsible for the formation of particulate matter starting from biogenic and anthropogenic volatile compounds. However, characteristics of the different experimental setups and the way they impact the composition and the timescale of formation of SOA are still subject to debate. In this study, SOA samples were generated using a potential aerosol mass (PAM oxidation flow reactor using α-pinene, naphthalene and isoprene as precursors. The PAM reactor facilitated exploration of SOA composition over atmospherically relevant photochemical ageing timescales that are unattainable in environmental chambers. The SOA samples were analyzed using two state-of-the-art analytical techniques for SOA characterization – proton nuclear magnetic resonance (1H-NMR spectroscopy and HPLC determination of humic-like substances (HULIS. Results were compared with previous Aerodyne aerosol mass spectrometer (AMS measurements. The combined 1H-NMR, HPLC, and AMS datasets show that the composition of the studied SOA systems tend to converge to highly oxidized organic compounds upon prolonged OH exposures. Further, our 1H-NMR findings show that only α-pinene SOA acquires spectroscopic features comparable to those of ambient OA when exposed to at least 1  ×  1012 molec OH cm−3  ×  s OH exposure, or multiple days of equivalent atmospheric OH oxidation. Over multiple days of equivalent OH exposure, the formation of HULIS is observed in both α-pinene SOA and in naphthalene SOA (maximum yields: 16 and 30 %, respectively, of total analyzed water-soluble organic carbon, WSOC, providing evidence of the formation of humic-like polycarboxylic acids in unseeded SOA.

  3. 31P-NMR spectroscopy in measurements of physiological parameters and response to therapy of human melanoma xenografts

    International Nuclear Information System (INIS)

    Olsen, Dag Rune

    1999-01-01

    The aim of the study was to investigate whether ''31P-NMR spectroscopy can be utilized in prediction and monitoring of response to therapy or tumours. The specific aims were: 1) To investigate possible correlations between on the one hand bio energetics status, phospholipids resonance ratios, intracellular pH and phosphorus T 1 s and on the other hand tumour blood supply and oxygenation, tumour proliferation and necrotic fraction across tumour lines. 2) Reveal possible correlations between changes in tumour bio energetics status and phosphorus T 1 s and the changes in tumour blood flow, tumour oxygenation and necrotic fraction. 3) To investigate whether irradiation and hyperthermia treatment of tumours affect bio energetics status and phosphorus T 1 s. 4) To identify the tumour physiological factors that is effected by the treatment and influence the bio energetics status and phosphorus T 1 s. The results are presented in 8 papers with titles: 1)''31P-nuclear magnetic resonance spectroscopy in vivo of six human melanoma zeno graft lines: Tumour bio energetic status and blood supply. 2) ''31P NMR spectroscopy studies of phospholipid metabolism in human melanoma xenograft lines differing in rate of tumour cell proliferation. 3) ''31P-nuclear magnetic resonance spectroscopy in vivo of four human melanoma xenograft lines: Spin-lattice relaxation times. 4) Effect of melanin on phosphorus T 1 s in human melanoma xenografts studied by ''31P MRS 5) Spin-lattice relaxation time of inorganic phosphate in human tumour xenografts measured in vivo by ''31P-magnetic resonance spectroscopy influence of oxygen tension. 6) Effects of hyperthermia on bio energetic status and phosphorus T 1 s in human melanoma xenografts monitored by ''31P-MRS. 7) Monitoring of tumour reoxygenation following irradiation by ''31P magnetic resonance spectroscopy an experimental study of human melanoma xenografts. 8) Radiation-induced changes in phosphorus T 1 values in human melanoma xenografts studied

  4. 1H and 15N resonance assignments of oxidized flavodoxin from Anacystis nidulans with 3D NMR

    International Nuclear Information System (INIS)

    Clubb, R.T.; Thanabal, V.; Wagner, G.; Osborne, C.

    1991-01-01

    Proton and nitrogen-15 sequence-specific nuclear magnetic resonance assignments have been determined for recombinant oxidized flavodoxin from Anacystis nidulans. Assignments were obtained by using 15 N- 1 H heteronuclear three-dimensional (3D) NMR spectroscopy on a uniformly nitrogen-15 enriched sample of the protein, pH 6.6, at 30C. For 165 residues, the backbone and a large fraction of the side-chain proton resonances have been assigned. Medium- and long-range NOE's have been used to characterize the secondary structure. In solution, flavodoxin consists of a five-stranded parallel β sheet involving residues 3-9, 31-37, 49-56, 81-89, 114-117, and 141-144. Medium-range NOE's indicate that presence of several helices. Several 15 N and 1 H resonances of the flavin mononucleotide (FMN) prosthetic group have been assigned. The FMN-binding site has been investigated by using polypeptide-FMN NOE's

  5. Resonance Assignments and Secondary Structure Analysis of Dynein Light Chain 8 by Magic-angle Spinning NMR Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shangjin; Butterworth, Andrew H.; Paramasivam, Sivakumar; Yan, Si; Lightcap, Christine M.; Williams, John C.; Polenova, Tatyana E.

    2011-08-04

    Dynein light chain LC8 is the smallest subunit of the dynein motor complex and has been shown to play important roles in both dynein-dependent and dynein-independent physiological functions via its interaction with a number of its binding partners. It has also been linked to pathogenesis including roles in viral infections and tumorigenesis. Structural information for LC8-target proteins is critical to understanding the underlying function of LC8 in these complexes. However, some LC8-target interactions are not amenable to structural characterization by conventional structural biology techniques owing to their large size, low solubility, and crystallization difficulties. Here, we report magic-angle spinning (MAS) NMR studies of the homodimeric apo-LC8 protein as a first effort in addressing more complex, multi-partner, LC8-based protein assemblies. We have established site-specific backbone and side-chain resonance assignments for the majority of the residues of LC8, and show TALOS+-predicted torsion angles ø and ψ in close agreement with most residues in the published LC8 crystal structure. Data obtained through these studies will provide the first step toward using MAS NMR to examine the LC8 structure, which will eventually be used to investigate protein–protein interactions in larger systems that cannot be determined by conventional structural studies.

  6. 13C and 31P NMR [Nuclear Magnetic Resonance] studies of prostate tumor metabolism

    International Nuclear Information System (INIS)

    Sillerud, L.O.; Halliday, K.R.; Freyer, J.P; Griffey, R.H.; Fenoglio-Preiser, C.

    1989-01-01

    The current research on prostate cancer by NMR spectroscopy and microscopy will most significantly contribute to tumor diagnosis and characterization only if sound biochemical models of tumor metabolism are established and tested. Prior searches focused on universal markers of malignancy, have to date, revealed no universal markers by any method. It is unlikely that NMRS will succeed where other methods have failed, however, NMR spectroscopy does provide a non-invasive means to analyze multiple compounds simultaneously in vivo. In order to fully evaluate the ability of NMRS to differentiate non-malignant from malignant tissues it is necessary to determine sufficient multiple parameters from specific, well-diagnosed, histological tumor types that, in comparison to normal tissue and non-neoplastic, non-normal pathologies from which the given neoplasm must be differentiated, one has enough degrees of freedom to make a mathematically and statistically significant determination. Confounding factors may consist of tumor heterogeneity arising from regional variations in differentiation, ischemia, necrosis, hemorrhage, inflammation and the presence of intermingled normal tissue. One related aspect of our work is the development of { 13 C}- 1 H metabolic imaging of 13 C for metabolic characterization, with enhanced spatial localization (46). This should markedly extend the range of potential clinical NMR uses because the spatial variation in prostate metabolism may prove to be just as important in tumor diagnoses as bulk (volume-averaged) properties themselves. It is our hope that NMRS and spectroscopic imaging will reveal a sound correlation between prostate metabolism and tumor properties that will be clinically straightforward and useful for diagnosis

  7. Solid state NMR sequential resonance assignments and conformational analysis of the 2x10.4 kDa dimeric form of the Bacillus subtilis protein Crh

    Energy Technology Data Exchange (ETDEWEB)

    Boeckmann, Anja [Institut de Biologie et Chimie des Proteines, C.N.R.S UMR 5086 (France)], E-mail: a.bockmann@ibcp.fr; Lange, Adam [Max-Planck-Institute for Biophysical Chemistry, Solid-state NMR (Germany); Galinier, Anne [Institut de Biologie Structurale et Microbiologie, C.N.R.S UPR 9043 (France); Luca, Sorin [Max-Planck-Institute for Biophysical Chemistry, Solid-state NMR (Germany); Giraud, Nicolas; Juy, Michel [Institut de Biologie et Chimie des Proteines, C.N.R.S UMR 5086 (France); Heise, Henrike [Max-Planck-Institute for Biophysical Chemistry, Solid-state NMR (Germany); Montserret, Roland; Penin, Francois [Institut de Biologie et Chimie des Proteines, C.N.R.S UMR 5086 (France); Baldus, Marc [Max-Planck-Institute for Biophysical Chemistry, Solid-state NMR (Germany)], E-mail: maba@mpibpc.mpg.de

    2003-12-15

    Solid state NMR sample preparation and resonance assignments of the U-[{sup 13}C,{sup 15}N] 2x10.4 kDa dimeric form of the regulatory protein Crh in microcrystalline, PEG precipitated form are presented. Intra- and interresidue correlations using dipolar polarization transfer methods led to nearly complete sequential assignments of the protein, and to 88% of all {sup 15}N, {sup 13}C chemical shifts. For several residues, the resonance assignments differ significantly from those reported for the monomeric form analyzed by solution state NMR. Dihedral angles obtained from a TALOS-based statistical analysis suggest that the microcrystalline arrangement of Crh must be similar to the domain-swapped dimeric structure of a single crystal form recently solved using X-ray crystallography. For a limited number of protein residues, a remarkable doubling of the observed NMR resonances is observed indicative of local static or dynamic conformational disorder. Our study reports resonance assignments for the largest protein investigated by solid state NMR so far and describes the conformational dimeric variant of Crh with previously unknown chemical shifts.

  8. Synthesis of 24-methyl sterols sterospecifically labelled with 2H in the isopropyl methyl groups. 13C NMR spectral assignment of C-26 and C-27 resonances

    International Nuclear Information System (INIS)

    Colombo, D.; Ronchetti, F.; Toma, L.

    1990-01-01

    Through analysis of the 13 C NMR spectra of (25S)-[27- 2 H]campesterol (1) and (25R)-[26- 2 H]dihydrobrassicasterol (2), the C-26 and C-27 resonances have been unambiguously assigned; the biosynthetic applications are discussed. (author)

  9. Compact NMR

    Energy Technology Data Exchange (ETDEWEB)

    Bluemich, Bernhard; Haber-Pohlmeier, Sabina; Zia, Wasif [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie (ITMC)

    2014-06-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures, while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue. In both applications, the sample (or patient) is positioned inside a large, superconducting magnet to magnetize the atomic nuclei. Interrogating radio-frequency pulses result in frequency spectra that provide the chemist with molecular information, the medical doctor with anatomic images, and materials scientist with NMR relaxation parameters. Recent advances in magnet technology have led to a variety of small permanent magnets to allow compact and low-cost instruments. The goal of this book is to provide an introduction to the practical use of compact NMR at a level nearly as basic as the operation of a smart phone.

  10. Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Kristina [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Slater, Lee [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Ntarlagiannis, Dimitris [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Williams, Kenneth H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2015-02-24

    This documents contains the final report for the project "Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods" (DE-SC0007049) Executive Summary: Our research aimed to develop borehole measurement techniques capable of monitoring subsurface processes, such as changes in pore geometry and iron/sulfur geochemistry, associated with remediation of heavy metals and radionuclides. Previous work has demonstrated that geophysical method spectral induced polarization (SIP) can be used to assess subsurface contaminant remediation; however, SIP signals can be generated from multiple sources limiting their interpretation value. Integrating multiple geophysical methods, such as nuclear magnetic resonance (NMR) and magnetic susceptibility (MS), with SIP, could reduce the ambiguity of interpretation that might result from a single method. Our research efforts entails combining measurements from these methods, each sensitive to different mineral forms and/or mineral-fluid interfaces, providing better constraints on changes in subsurface biogeochemical processes and pore geometries significantly improving our understanding of processes impacting contaminant remediation. The Rifle Integrated Field Research Challenge (IFRC) site was used as a test location for our measurements. The Rifle IFRC site is located at a former uranium ore-processing facility in Rifle, Colorado. Leachate from spent mill tailings has resulted in residual uranium contamination of both groundwater and sediments within the local aquifer. Studies at the site include an ongoing acetate amendment strategy, native microbial populations are stimulated by introduction of carbon intended to alter redox conditions and immobilize uranium. To test the geophysical methods in the field, NMR and MS logging measurements were collected before, during, and after acetate amendment. Next, laboratory NMR, MS, and SIP measurements

  11. Magnetic resonance: safety measures and biological effects

    International Nuclear Information System (INIS)

    Gordillo, I.; Lafuente, J.; Fernandez, C.; Barbero, M.J.; Cascon, E.

    1997-01-01

    The biological effects of electromagnetic fields is currently a subject of great controversy. For this reason, magnetic resonance imaging (MRI) and spectroscopy are constantly under investigation. The source of the risk in MRI is associated with the three types of electromagnetic radiation to which the patient is exposed: the static magnetic field, variable (gradient) magnetic fields and radiofrequency fields. Each is capable of producing significant biological effects when employed at sufficient intensity. Patients exposed to risk sources are those situated within the lines of force of the magnetic field, ellipsoid lines that are arranged around the magnet, representing the strength of the surrounding field. To date, at the intensity normally utilized in MRI(<2T) and respecting the field limit recommendations established by the US Food and Drug Administration (FDA) for clinical use of this technique no adverse secondary biological effects have been reported. The known biological effects and other possible secondary effects are reviewed, and the recommended safety measures are discussed. (Author)

  12. Analysis of factors causing signal loss in the measurement of lung tissue water by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Fukuzaki, Minoru; Shioya, Sumie; Haida, Munetaka

    1997-01-01

    The water content of lung, brain, and muscle tissue was measured by nuclear magnetic resonance (NMR) and compared with gravimetric determinations. The NMR signal intensity of water was measured by a single 90 degree pulse and by a spin-echo sequence. The absolute water content was determined by the difference in the sample's weight before and after desiccation. The NMR detectable water in each tissue was expressed as a percentage of the signal intensity for an equal weight of distilled water. Using the single pulse measurement, 67% of the gravimetrically-measured water was detected in collapsed lung samples (consisting of about 47% retained air), in contrast to 96% for brain and 98% for muscle. For degassed lung samples, the NMR detectability of water increased to 87% with the single pulse measurement and to 90% with the spin-echo measurement, but the values remained significantly less than those of brain or muscle. Factors that caused the NMR signal loss of 33% in collapsed lung samples were: air-tissue interfaces (20%), microscopic field inhomogeneity (3%), and a water component with an extremely short magnetization decay time constant (10%). (author)

  13. Synthesis of selectively 13C-labelled benzoic acid for nuclear magnetic resonance spectroscopic measurement of glycine conjugation activity

    International Nuclear Information System (INIS)

    Akira, Kazuki; Hasegawa, Hiroshi; Baba, Shigeo

    1995-01-01

    The synthesis of [4- 13 C]benzoic acid (BA) labelled in a single protonated carbon, for use as a probe to measure glycine conjugation activity by nuclear magnetic resonance (NMR) spectroscopy, has been reported. The labelled compound was prepared by a seven-step synthetic scheme on a relatively small scale using [2- 13 C] acetone as the source of label in overall yield of 16%. The usefulness of [4- 13 C]BA was demonstrated by the NMR spectroscopic monitoring of urinary excretion of [4- 13 C]hippuric acid in the rat administered with the labelled BA. (Author)

  14. Measuring proton shift tensors with ultrafast MAS NMR.

    Science.gov (United States)

    Miah, Habeeba K; Bennett, David A; Iuga, Dinu; Titman, Jeremy J

    2013-10-01

    A new proton anisotropic-isotropic shift correlation experiment is described which operates with ultrafast MAS, resulting in good resolution of isotropic proton shifts in the detection dimension. The new experiment makes use of a recoupling sequence designed using symmetry principles which reintroduces the proton chemical shift anisotropy in the indirect dimension. The experiment has been used to measure the proton shift tensor parameters for the OH hydrogen-bonded protons in tyrosine·HCl and citric acid at Larmor frequencies of up to 850 MHz. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. An automated framework for NMR resonance assignment through simultaneous slice picking and spin system forming

    KAUST Repository

    Abbas, Ahmed

    2014-04-19

    Despite significant advances in automated nuclear magnetic resonance-based protein structure determination, the high numbers of false positives and false negatives among the peaks selected by fully automated methods remain a problem. These false positives and negatives impair the performance of resonance assignment methods. One of the main reasons for this problem is that the computational research community often considers peak picking and resonance assignment to be two separate problems, whereas spectroscopists use expert knowledge to pick peaks and assign their resonances at the same time. We propose a novel framework that simultaneously conducts slice picking and spin system forming, an essential step in resonance assignment. Our framework then employs a genetic algorithm, directed by both connectivity information and amino acid typing information from the spin systems, to assign the spin systems to residues. The inputs to our framework can be as few as two commonly used spectra, i.e., CBCA(CO)NH and HNCACB. Different from the existing peak picking and resonance assignment methods that treat peaks as the units, our method is based on \\'slices\\', which are one-dimensional vectors in three-dimensional spectra that correspond to certain (N, H) values. Experimental results on both benchmark simulated data sets and four real protein data sets demonstrate that our method significantly outperforms the state-of-the-art methods while using a less number of spectra than those methods. Our method is freely available at http://sfb.kaust.edu.sa/Pages/Software.aspx. © 2014 Springer Science+Business Media.

  16. Precision electroweak measurements on the $Z$ resonance

    CERN Document Server

    Schael, S; Brunelière, R; Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Jézéquel, S; Lees, J P; Lucotte, A; Martin, F; Merle, E; Minard, M N; Nief, J Y; Odier, P; Pietrzyk, B; Trocmé, B; Bravo, S; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Orteu, S; Pacheco, A; Park, I C; Perlas, J; Riu, I; Ruiz, H; Sánchez, F; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Iaselli, G; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Bazarko, A; Becker, U; Boix, G; Bird, F; Blucher, E; Bonvicini, B; Bright-Thomas, P; Barklow, T; Cattaneo, M; Cerutti, F; Clerbaux, B; Drevermann, H; Forty, R W; Frank, M; Greening, T C; Hagelberg, R; Halley, A W; Gianotti, F; Girone, M; Hansen, J B; Harvey, J; Jacobsen, R; Hutchcroft, D E; Janot, P; Jost, B; Knobloch, J; Kado, M; Lehraus, Ivan; Lazeyras, Pierre; Maley, P; Mato, P; May, J; Moutoussi, A; Pepé-Altarelli, M; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Schmitt, B; Schneider, O; Tejessy, W; Teubert, F; Tomalin, I R; Tournefier, E; Veenhof, R; Valassi, A; Wiedenmann, W; Wright, A E; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Dessagne, S; Falvard, A; Ferdi, C; Fayolle, D; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Pascolo, J M; Perret, P; Podlyski, F; Bertelsen, H; Fernley, T; Hansen, J D; Hansen, J R; Hansen, P H; Kraan, A C; Lindahl, A; Møllerud, R; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, E; Siotis, I; Vayaki, A; Blondel, A; Bonneaud, G; Brient, J C; Machefert, F; Rougé, A; Rumpf, M; Swynghedauw, M; Tanaka, R; Verderi, M; Videau, H L; Ciulli, V; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Antonelli, A; Antonelli, M; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, G P; Passalacqua, L; Picchi, P; Colrain, P; ten Have, I; Hughes, I S; Kennedy, J; Knowles, I G; Lynch, J G; Morton, W T; Negus, P; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Thompson, A S; Turnbull, R M; Wasserbaech, S R; Buchmüller, O L; Cavanaugh, R J; Dhamotharan, S; Geweniger, C; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, W; Wunsch, M; Beuselinck, R; Binnie, D M; Cameron, W; Davies, G; Dornan, P J; Goodsir, S M; Marinelli, N; Martin, E; Nash, J; Nowell, J; Rutherford, S A; Sedgbeer, J K; Thompson, J C; White, R; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bouhova-Thacker, E; Bowdery, C K; Buck, P G; Clarke, D P; Ellis, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Keemer, N R; Pearson, M R; Robertson, N A; Sloan, T; Smizanska, M; Snow, S W; Williams, M I; van der Aa, O; Delaere, C; Leibenguth, G; Lemaître, V; Bauerdick, L A T; Blumenschein, U; Van Gemmeren, P; Giehl, I; Hölldorfer, F; Jakobs, K; Kasemann, M; Kayser, F; Kleinknecht, K; Müller, A S; Quast, G; Renk, B; Rohne, E; Sander, H G; Schmeling, S; Wachsmuth, H W; Wanke, R; Zeitnitz, C; Ziegler, T; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Carr, J; Coyle, P; Curtil, C; Ealet, A; Etienne, F; Fouchez, D; Motsch, F; Payre, P; Rousseau, D; Talby, M; Thulasidas, M; Aleppo, M; Ragusa, F; Büscher, V; David, A; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Settles, R; Seywerd, H; Stenzel, H; Villegas, M; Wolf, G; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Le Diberder, F R; Lefrançois, J; Mutz, A M; Schune, M H; Serin, L; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Bettarini, S; Boccali, T; Bozzi, C; Calderini, G; Dell'Orso, R; Fantechi, R; Ferrante, I; Fidecaro, F; Foà, L; Giammanco, A; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, F; Rizzo, G; Sanguinetti, G; Sciabà, A; Sguazzoni, G; Spagnolo, P; Steinberger, J; Tenchini, R; Vannini, C; Venturi, A; Verdini, P G; Awunor, O; Blair, G A; Cowan, G; García-Bellido, A; Green, M G; Medcalf, T; Strong, J A; Teixeira-Dias, P; Botterill, David R; Clifft, R W; Edgecock, T R; Edwards, M; Haywood, S J; Norton, P R; Ward, J J; Bloch-Devaux, B; Boumediene, D E; Colas, P; Emery, S; Fabbro, B; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Tuchming, B; Vallage, B; Black, S N; Dann, J H; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Cartwright, S; Combley, F; Hodgson, P N; Lehto, M H; Thompson, L F; Affholderbach, K; Barberio, E; Böhrer, A; Brandt, S; Burkhardt, H; Feigl, E; Grupen, C; Hess, J; Lutters, G; Meinhard, H; Minguet-Rodríguez, J A; Mirabito, L; Misiejuk, A; Neugebauer, E; Ngac, A; Prange, G; Rivera, F; Saraiva, P; Schäfer, U; Sieler, U; Smolik, L; Stephan, F; Trier, H; Apollonio, M; Borean, C; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pitis, L; He, H; Kim, H; Pütz, J; Rothberg, J E; Armstrong, S R; Bellantoni, L; Berkelman, K; Cinabro, D; Conway, J S; Cranmer, K; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; Jin, S; Johnson, R P; Kile, J; McNamara, P A; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Sharma, V; Walsh, A M; Walsh, J; Wear, J; Von Wimmersperg-Töller, J H; Wu, J; Wu, S L; Wu, X; Yamartino, J M; Zobernig, G; Dissertori, G; Abdallah, J; Abreu, P; Adam, W; Adye, T; Adzic, P; Ajinenko, I; Albrecht, T; Alderweireld, T; Alekseev, G D; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Almehed, S; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Anassontzis, E G; Andersson, P; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barão, F; Barbiellini, G; Barbier, R; Bardin, D; Barker, G; Baroncelli, A; Battaglia, M; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Beillière, P; Belokopytov, Yu A; Belous, K S; Ben-Haim, E; Benekos, N; Benvenuti, A C; Bérat, C; Berggren, M; Berntzon, L; Bertini, D; Bertrand, D; Besançon, M; Besson, N; Bianchi, F; Bigi, M; Bilenky, S M; Bizouard, M A; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Boyko, I; Bozovic, I; Bozzo, M; Bracko, M; Branchini, P; Brenke, T; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschbeck, Brigitte; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Carena, F; Carroll, L; Caso, C; Castillo-Gimenez, M V; Castro, N; Cattai, A; Cavallo, F; Chabaud, V; Chapkin, M; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Shlyapnikov, P; Chochula, P; Chorowicz, V; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Colomer, M; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Costa, M J; Cowell, J H; Crawley, H B; Crennell, D J; Crépé, S; Crosetti, G; Cuevas-Maestro, J; Czellar, S; D'Hondt, J; D'Almagne, B; Dalmau, J; Damgaard, G; Davenport, M; Da Silva, T; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L; Dijkstra, H; Di Ciaccio, L; Di Diodato, A; Di Simone, A; Djannati, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Duperrin, A; Durand, J D; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, G; Ellert, M; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, M; Fenyuk, A; Fernández, J; Ferrari, P; Ferrer, A; Ferrer-Ribas, E; Ferro, F; Fichet, S; Firestone, A; Fischer, P A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Franek, B; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J; Galloni, A; Gamba, D; Gamblin, S; Gandelman, M; García, C; García, J; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E; Gelé, D; Gerber, J P; Gerdyukov, L N; Ghodbane, N; Gil, I; Glege, F; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; González-Caballero, I; Gopal, G; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Green, C; Grefrath, A; Grimm, H J; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Haag, C; Hahn, F; Hahn, S; Haider, S; Hallgren, A; Hamacher, K; Hamilton, K; Hansen, J; Harris, F J; Haug, S; Hauler, F; Hedberg, V; Heising, S; Hennecke, M; Henriques, R; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Hoffman, J; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huber, M; Huet, K; Hughes, G J; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Juillot, P; Jungermann, L; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Kernel, G; Kersevan, B P; Kerzel, U; Khomenko, B A; Khovanskii, N N; Kiiskinen, A P; King, B T; Kinvig, A; Kjaer, N J; Klapp, O; Klein, H; Kluit, P; Knoblauch, D; Kokkinias, P; Konoplyannikov, A K; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, M; Kreuter, C; Kriznic, E; Krstic, J; Krumshtein, Z; Kubinec, P; Kucewicz, W; Kucharczyk, M; Kurowska, J; Kurvinen, K; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, G; Ledroit, F; Lefébure, V; Leinonen, L; Leisos, A; Leitner, R; Lemonne, J; Lenzen, G; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liebig, W; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Lokajícek, M; Loken, J G; Lopes, J H; López, J M; López-Fernandez, R; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Maltezos, S; Malychev, V; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M; McKay, R; McNulty, R; McPherson, G; Meroni, C; Meyer, W T; Myagkov, A; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Møller, R; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreau, X; Moreno, S; Morettini, P; Morton, G; Müller, U; Münich, K; Mulders, M; Mulet-Marquis, C; Mundim, L; Muresan, R; Murray, W; Muryn, B; Myatt, G; Myklebust, T; Naraghi, F; Nassiakou, M; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Neufeld, N; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Niezurawski, P; Nikolaenko, V; Nikolenko, M; Nomokonov, V P; Normand, A; Nygren, A; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, R; Orazi, G; Österberg, K; Ouraou, A; Oyanguren, A; Paganini, P; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palacios, J P; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Pavel, T; Pegoraro, M; Peralta, L; Perepelitsa, V F; Pernicka, M; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Polycarpo, E; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, A; Radojicic, D; Ragazzi, S; Rahmani, H; Rakoczy, D; Rames, J; Ramler, L; Ratoff, P N; Read, A; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Ripp-Baudot, I; Rivero, M; Rodríguez, D; Rohne, O; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, P; Rovelli, T; Royon, C; Ruhlmann-Kleider, V; Ruiz, A; Ryabtchikov, D; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salmi, L; Salt, J; Sampsonidis, D; Sannino, M; Savoy-Navarro, A; Scheidle, T; Schneider, H; Schwemling, P; Schwering, B; Schwickerath, U; Schyns, M A E; Scuri, F; Seager, P; Sedykh, Yu; Segar, A; Seibert, N; Sekulin, R L; Shellard, R C; Sheridan, A; Siebel, M; Silvestre, R; Simard, L; Simonetto, F; Sisakian, A; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O; Smith, G R; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stanitzki, M; Stapnes, S; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Terranova, F; Thomas, J; Tilquin, A; Timmermans, J; Tinti, N; Tkatchev, L G; Tobin, M; Todorov, T; Todorovova, S; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tortosa, P; Tranströmer, G; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Trombini, A; Troncon, C; Tsirou, A; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van den Boeck, W; Van Doninck, W K; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I; Vassilopoulos, N; Vegni, G; Veloso, F; Ventura, L; Venus, W; Verbeure, F; Verdier, P; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vitale, L; Vlasov, E; Vodopyanov, A S; Vollmer, C; Voulgaris, G; Vrba, V; Wahlen, H; Walck, C; Washbrook, A J; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J; Wilkinson, G; Winter, M; Witek, M; Wlodek, T; Yi, J; Yushchenko, O P; Zaitsev, A; Zalewska-Bak, A; Zalewski, P; Zavrtanik, D; Zevgolatakos, E; Zhuravlov, V; Zimin, N I; Zintchenko, A; Zoller, P; Zucchelli, G C; Zumerle, G; Zupan, M; Acciarri, M; Achard, P; Adriani, O; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Balandras, A; Baldew, S V; Ball, R C; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, G J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, M; Braccini, S; Branson, J G; Brigljevic, V; Brochu, F; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Button, A J; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, L; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; Cozzoni, B; de la Cruz, B; Csilling, A; Cucciarelli, S; Dai, T S; van Dalen, J A; D'Alessandro, R; De Asmundis, R; Debreczeni, J; Deglon, P; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, M; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Dufournaud, D; Duda, M; Duinker, P; Durán, I; Dutta, S; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Extermann, P; Fabre, M; Faccini, R; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hoorani, H; Hou, S R; Iashvili, I; Innocente, V; Jin, B N; Jindal, P; Jones, L W; de Jong, P; Josa-Mutuberria, I; Khan, R A; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, J K; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Koffeman, E; Kopal, M; Kopp, A; Koutsenko, V F; Kraber, M; Krämer, R W; Krenz, W; Krüger, A; Kuijten, H; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lassila-Perini, K M; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Le Goff, J M; Leiste, R; Leonardi, E; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lu, W; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lugnier, L; Lustermann, W; Ma, W G; Maity, M; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Marchesini, P A; Marian, G; Martin, J P; Marzano, F; Massaro, G G G; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Merk, M; Meschini, M; Metzger, W J; Von der Mey, M; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Molnár, P; Monteleoni, B; Moulik, T; Muanza, G S; Muheim, F; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Oulianov, A; Pal, I; Palomares, C; Pandoulas, D; Paoletti, S; Paoloni, A; Paolucci, P; Paramatti, R; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, F; Peach, D; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pieri, M; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Produit, N; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosca, A; Rosemann, C; Rosenbleck, C; Rosier-Lees, S; Roth, S; Rubio, J A; Ruggiero, G; Ruschmeier, D; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Sciarrino, D; Seganti, A; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A; Siedenburg, T; Son, D; Smith, B; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Sztaricskai, T; Tang, X W; Tarjan, P; Tauscher, L; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, G; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, Q; Wang, X L; Wang, Z M; Weber, A; Weber, M; Wienemann, P; Wilkens, H; Wu, S X; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zilizi, G; Zimmermann, B; Zöller, M; Abbiendi, G; Ainsley, C; Åkesson, P F; Alexander, G; Allison, J; Altekamp, N; Amaral, P; Ametewee, K A; Anagnostou, G; Anderson, K J; Anderson, S; Arcelli, S; Armitage, J C; Asai, S; Ashby, S F; Ashton, P; Astbury, A; Axen, D; Azuelos, Georges; Bahan, G A; Bailey, I; Baines, J T M; Ball, A H; Banks, J; Barillari, T; Barker, G J; Barlow, R J; Barnett, S; Bartoldus, R; Batley, J Richard; Beaudoin, G; Bechtle, P; Bechtluft, J; Beck, A; Becker, J; Beeston, C; Behnke, T; Bell, A N; Bell, K W; Bell, P J; Bella, G; Bellerive, A; Benelli, G; Bentvelsen, Stanislaus Cornelius Maria; Berlich, P; Bethke, Siegfried; Biebel, O; Binder, U; Blobel, Volker; Bloodworth, Ian J; Bloomer, J E; Bock, P; Boden, B; Böhme, J; Boeriu, O; Bonacorsi, D; Bosch, H M; Bougerolle, S; Boutemeur, M; Bouwens, B T; Brabson, B B; Braibant, S; Breuker, H; Brigliadori, L; Brown, R M; Brun, R; Bürgin, R; Büsser, K; Burckhart, H J; Burgard, C; Cammin, J; Campana, S; Capiluppi, P; Carnegie, R K; Caron, B; Carter, A A; Carter, J R; Chang, C Y; Charlesworth, C; Charlton, D G; Chrin, J T M; Chrisman, D; Chu, S L; Ciocca, C; Clarke, P E L; Clay, E; Clayton, J C; Cohen, I; Collins, W J; Conboy, J E; Cooke, O C; Cooper, M; Couch, M; Couchman, J; Coupland, M; do Couto e Silva, E; Coxe, R L; Cuffiani, M; Dado, S; Dallapiccola, C; Dallavalle, G M; Dallison, S; Darling, C; De Jong, S; de Roeck, A; De Wolf, E A; Debu, P; Deng, H; Deninno, M M; Dervan, P; Desch, Klaus; Dieckmann, A; Dienes, B; Dixit, M S; Donkers, M; Doucet, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Dumas, D J P; Eckerlin, G; Edwards, J E G; Elcombe, P A; Estabrooks, P G; Evans, H G; Evans, M; Fabbri, F; Fanti, M; Fath, P; Feld, L; Fiedler, F; Fierro, M; Fincke-Keeler, M; Fischer, H M; Fleck, I; Folman, R; Fong, D G; Ford, M; Foucher, M; Frey, A; Fürtjes, A; Fukui, H; Fukunaga, C; Futyan, D I; Gagnon, P; Gaidot, A; Ganel, O; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Gaycken, G; Geddes, N I; Geich-Gimbel, C; Gensler, S W; Gentit, F X; Geralis, T; Giacomelli, G; Giacomelli, P; Giacomelli, R; Gibson, V; Gibson, W R; Gillies, James D; Gingrich, D M; Giunta, M; Glenzinski, D A; Goldberg, J; Goodrick, M J; Gorn, W; Graham, K; Grandi, C; Grant, F C; Gross, E; Grunhaus, Jacob; Gruwé, M; Günther, P O; Sen-Gupta, A; Hagemann, J; Hajdu, C; Hamann, M; Hanson, G G; Hansroul, M; Hapke, M; Harder, K; Harel, A; Hargrove, C K; Harin-Dirac, M; Harrison, P F; Hart, P A; Hartmann, C; Hattersley, P M; Hauschild, M; Hawkes, C M; Hawkings, R; Heflin, E; Hemingway, R J; Hensel, C; Herten, G; Heuer, R D; Hill, J C; Hillier, S J; Hilse, T; Hinshaw, D A; Ho, C; Hoare, J; Hobbs, J D; Hobson, P R; Hochman, D; Höcker, Andreas; Hoffman, K; Holl, B; Homer, R J; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Howarth, C P; Hüntemeyer, P; Hughes-Jones, R E; Humbert, R; Igo-Kemenes, P; Ihssen, H; Imrie, D C; Ingram, M R; Ishii, K; Jacob, F R; Janissen, A C; Jawahery, A; Jeffreys, P W; Jeremie, H; Jimack, M; Jobes, M; Joly, A; Jones, C R; Jones, G; Jones, M; Jost, U; Jovanovic, P; Jui, C; Kanaya, N; Kanzaki, J; Karapetian, G V; Karlen, D; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Keeler, R K; Kellogg, R G; Kennedy, B W; Kim, D H; King, B J; Kirk, J; Klein, K; Kleinwort, C; Klem, D E; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Köpke, L; Koetke, D S; Kokott, T P; Komamiya, S; Kormos, L; Kowalewski, R V; Kramer, T; Kral, J F; Kress, T; Kreutzmann, H; Krieger, P; Von Krogh, J; Kroll, J; Krop, D; Krüger, K; Kühl, T; Kupper, M; Kuwano, M; Kyberd, P; Lafferty, G D; Lafoux, H; Lahmann, R; Lai, W P; Lamarche, F; Landsman, H; Lanske, D; Larson, W J; Lauber, J; Lautenschlager, S R; Lawson, I; Layter, J G; Lazic, D; Le Dû, P; Leblanc, P; Lee, A M; Lefebvre, E; Leins, A; Lellouch, D; Lennert, P; Leroy, C; Lessard, L; Letts, J; Levegrün, S; Levinson, L; Lewis, C; Liebisch, R; Lillich, J; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Lorah, J M; Lorazo, B; Losty, Michael J; Lou, X C; Lü, J; Ludwig, A; Ludwig, J; Luig, A; Macchiolo, A; MacPherson, A; Mader, W; Mättig, P; Malik, A; Mannelli, M; Marcellini, S; Marchant, T E; Maringer, G; Markus, C; Martin, A J; Martínez, G; Masetti, G; Mashimo, T; Matthews, W; Maur, U; McDonald, W J; McGowan, R F; McKenna, J; McKigney, E A; McMahon, T J; McNab, A I; McNutt, J R; McPherson, A C; McPherson, R A; Meijers, F; Méndez-Lorenzo, P; Menges, W; Menke, S; Menszner, D; Merritt, F S; Mes, H; Meyer, J; Meyer, N; Michelini, A; Middleton, R P; Mihara, S; Mikenberg, G; Mildenberger, J; Miller, D J; Milstene, C; Mir, R; Moed, S; Mohr, W; Moisan, C; Montanari, A; Mori, T; Moss, M W; Mouthuy, T; Murphy, P G; Mutter, A; Nagai, K; Nakamura, I; Nanjo, H; Neal, H A; Nellen, B; Nguyen, H H; Nijjhar, B; Nisius, R; Nozaki, M; Oakham, F G; Odorici, F; Ogg, M; Ögren, H O; Oh, A; Oh, H; Okpara, A; Oldershaw, N J; Omori, T; O'Neale, S W; O'Neill, B P; Oram, C J; Oreglia, M J; Orito, S; Pahl, C; Pálinkás, J; Palmonari, F; Pansart, J P; Panzer-Steindel, B; Paschievici, P; Pásztor, G; Pater, J R; Patrick, G N; Pawley, S J; Paz-Jaoshvili, N; Pearce, M J; Petzold, S; Pfeifenschneider, P; Pfister, P; Pilcher, J E; Pinfold, J L; Pitman, D; Plane, D E; Poffenberger, P R; Poli, B; Polok, J; Pooth, O; Posthaus, A; Pouladdej, A; del Pozo, L A; Prebys, E; Pritchard, T W; Przybycien, M B; Przysiezniak, H; Quadt, A; Rabbertz, K; Raith, B; Redmond, M W; Rees, D L; Rembser, C; Renkel, P; Richards, G E; Rick, H; Rigby, D; Robins, S A; Robinson, D; Rodning, N; Rollnik, A; Roney, J M; Rooke, A M; Ros, E; Rosati, S; Roscoe, K; Rossberg, S; Rossi, A M; Rosvick, M; Routenburg, P; Rozen, Y; Runge, K; Runólfsson, O; Ruppel, U; Rust, D R; Rylko, R; Sachs, K; Saeki, T; Sahr, O; Sanghera, S; Sarkisyan-Grinbaum, E; Sasaki, M; Sbarra, C; Schaile, A D; Schaile, O; Schappert, W; Scharf, F; Scharff-Hansen, P; Schenk, P; Schieck, J; von der Schmitt, H; Schmitt, S; Schörner-Sadenius, T; Schreiber, S; Schröder, M; Schütz, P; Schultz-Coulon, H C; Schulz, M; Schumacher, M; Schwarz, J; Schwick, C; Scott, W G; Settles, M; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Shypit, R; Simon, A; Singh, P; Siroli, G P; Sittler, A; Skillman, A; Skuja, A; Smith, A M; Smith, T J; Snow, G A; Sobie, R J; Söldner-Rembold, S; Spagnolo, S; Spanó, F; Springer, R W; Sproston, M; Starks, M; Steiert, M; Stephens, K; Steuerer, J; Stier, H E; Stockhausen, B; Stoll, K; Ströhmer, R; Strom, D; Strumia, F; Stumpf, L; Surrow, B; Szymanski, P; Tafirout, R; Takeda, H; Takeshita, T; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Tasevsky, M; Taylor, R J; Tecchio, M; Tesch, N; Teuscher, R; Thackray, N J; Thiergen, M; Thomson, M A; Von Törne, E; Towers, S; Toya, D; Trócsányi, Z L; Tran, P; Trefzger, T; Tresilian, N J; Trigger, I; Tscheulin, M; Tsukamoto, T; Tsur, E; Turcot, A S; Turner-Watson, M F; Tysarczyk-Niemeyer, G; Ueda, I; Ujvári, B; Utzat, P; Vachon, B; Van den Plas, D; Van Kooten, R; VanDalen, G J; Vannerem, P; Vasseur, G; Vertesi, R; Verzocchi, M; Vikas, P; Vincter, M G; Virtue, C J; Vokurka, E H; Vollmer, C F; Voss, H; Vossebeld, Joost Herman; Wäckerle, F; Wagner, A; Wagner, D L; Wahl, C; Walker, J P; Waller, D; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Weber, P; Weisz, S; Wells, P S; Wengler, T; Wermes, N; Wetterling, D; Weymann, M; Whalley, M A; White, J S; Wilkens, B; Wilson, J A; Wilson, G W; Wingerter, Isabelle; Winterer, V H; Wood, N C; Wotton, S; Wyatt, T R; Yaari, R; Yamashita, S; Yang, Y; Yeaman, A; Yekutieli, G; Yurko, M; Zacek, V; Zacharov, I E; Zer-Zion, D; Zeuner, W; Zivkovic, L; Zorn, G T; Abe, Kenji; Abe, Koya; Abe, T; Abt, I; Acton, P D; Adam, I; Agnew, G; Akagi, T; Akimoto, H; Allen, N J; Ash, W W; Aston, D; Bacchetta, N; Baird, K G; Baltay, C; Band, H R; Barakat, M B; Baranko, G J; Bardon, O; Barklow, T L; Bashindzhagian, G L; Bauer, J M; Bazarko, A O; Bean, A; Bellodi, G; Ben-David, R; Berger, R; Bienz, T; Bilei, G M; Bisello, D; Blaylock, G; Bogart, J R; Bolen, B; Bolton, T; Bower, G R; Brau, J E; Breidenbach, M; Bugg, W M; Burke, D; Burnett, T H; Burrows, P N; Busza, W; Calcaterra, A; Caldwell, D O; Camanzi, B; Carpinelli, M; Cassell, R; Castaldi, R; Castro, A; Cavalli-Sforza, M; Chadwick, George B; Chou, A; Church, E; Claus, R; Cohn, H O; Coller, J A; Convery, M R; Cook, V; Cotton, R; Cowan, R F; Coyne, D G; Crawford, G; de Oliveira, A; Damerell, C J S; Daoudi, M; Dasu, S; De Groot, N; De Sangro, R; De Simone, P; De Simone, S; Dervan, P J; Dima, M; Dong, D N; Doser, Michael; Du, P Y C; Dubois, R; Duboscq, J E; Eisenstein, B I; Elia, R; Erdos, E; Erofeeva, I; Eschenburg, V; Etzion, E; Fahey, S; Falciai, D; Fan, C; Fernández, J P; Fero, M J; Flood, K; Frey, R; Friedman, Jerome Isaac; Furuno, K; Garwin, E L; Gillman, T; Gladding, G; Hallewell, G D; Hart, E L; Hasegawa, Y; Hasuko, K; Hedges, S; Hertzbach, S S; Hildreth, M D; Hitlin, D G; Honma, A; Huber, J S; Huffer, M E; Hughes, E W; Huynh, X; Hwang, H; Iwasaki, M; Iwasaki, Y; Izen, J M; Jackson, D J; Jacques, P; Jaros, J A; Jiang, Z Y; Johnson, A S; Johnson, J R; Johnson, R A; Junk, T R; Kajikawa, R; Kalelkar, M; Kamyshkov, Yu A; Kang, H J; Karliner, I; Kawahara, H; Kelsey, M H; Kendall, H W; Kim, Y D; King, M; King, R; Kofler, R R; Krishna, N M; Kwon, Y; Labs, J F; Kroeger, R S; Langston, M; Lath, A; Lauber, J A; Leith, D W G S; Lia, V; Lin, C; Liu, M X; Loreti, M; Lu, A; Lynch, H L; Ma, J; Mancinelli, G; Manly, S; Mantovani, G C; Markiewicz, T W; Maruyama, T; Masuda, H; Mazzucato, E; McGowan, J F; McKemey, A K; Meadows, B T; Messner, R; Mockett, P M; Moffeit, K C; Moore, T B; Morii, M; Mours, B; Müller, D; Müller, G; Murzin, V; Nagamine, T; Narita, S; Nauenberg, U; Neal, H; Nesom, G; Nussbaum, M; Ohnishi, Y; Oishi, N; Onoprienko, D; Osborne, L S; Panvini, R S; Park, C H; Park, H; Pavel, T J; Peruzzi, I; Pescara, L; Piccolo, M; Piemontese, L; Pieroni, E; Pitts, K T; Plano, R J; Prepost, R; Prescott, C Y; Punkar, G; Quigley, J; Ratcliff, B N; Reeves, K; Reeves, T W; Reidy, J; Reinertsen, P L; Rensing, P E; Rochester, L S; Rowson, P C; Russell, J J; Saxton, O H; Schalk, T; Schindler, R H; Schneekloth, U; Schumm, B A; Schwiening, J; Seiden, A; Sen, S; Serbo, V V; Shaevitz, M H; Shank, J T; Shapiro, G; Sherden, D J; Shmakov, K D; Simopoulos, C; Sinev, N B; Smith, S R; Smy, M B; Snyder, J A; Sokoloff, M D; Stängle, H; Stahl, A; Stamer, P; Steiner, H; Steiner, R; Strauss, M G; Su, D; Suekane, F; Sugiyama, A; Suzuki, A; Suzuki, S; Swartz, M; Szumilo, A; Takahashi, T; Taylor, F E; Thaler, J J; Thom, J; Torrence, E; Trandafir, A I; Turk, J D; Usher, T; Vavra, J; Vella, E; Venuti, J P; Verdier, R; Wagner, S R; Waite, A P; Walston, S; Wang, J; Watts, S J; Weidemann, A W; Weiss, E R; Whitaker, J S; White, S L; Wickens, F J; Williams, D A; Williams, D C; Williams, S H; Willocq, S; Wilson, R J; Wisniewski, W J; Wittlin, J L; Woods, M; Word, G B; Wright, T R; Wyss, J; Yamamoto, R K; Yang, X Q; Yashima, J; Yellin, S J; Young, C C; Yuta, H; Zapalac, G; Zdarko, R W; Zeitlin, C; Zhou, J

    2006-01-01

    We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLD experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, $MZ$ and $GZ$, and its couplings to fermions, for example the $ ho$ parameter and the effective electroweak mixing angle for leptons, are precisely measured: egin{eqnarray*} MZ & = & 91.1875 pm 0.0021~GeV \\ GZ & = & 2.4952 pm 0.0023~GeV \\ ho_ell & = & 1.0050 pm 0.0010 \\ swsqeffl & =& 0.23153 pm 0.00016 ,. end{eqnarray*} The number of light neutrino species is determined to be $2.9840pm0.0082$, in agreement with the three observed generations of fundamental fermions. The results are compared to the pr...

  17. Mesodynamics in the SARS nucleocapsid measured by NMR field cycling

    Energy Technology Data Exchange (ETDEWEB)

    Clarkson, Michael W.; Lei Ming; Eisenmesser, Elan Z.; Labeikovsky, Wladimir [MS009 Brandeis University, Department of Biochemistry and Howard Hughes Medical Institute (United States); Redfield, Alfred [MS009 Brandeis University, Department of Biochemistry (United States)], E-mail: redfield@brandeis.edu; Kern, Dorothee [MS009 Brandeis University, Department of Biochemistry and Howard Hughes Medical Institute (United States)], E-mail: dkern@brandeis.edu

    2009-09-15

    Protein motions on all timescales faster than molecular tumbling are encoded in the spectral density. The dissection of complex protein dynamics is typically performed using relaxation rates determined at high and ultra-high field. Here we expand this range of the spectral density to low fields through field cycling using the nucleocapsid protein of the SARS coronavirus as a model system. The field-cycling approach enables site-specific measurements of R{sub 1} at low fields with the sensitivity and resolution of a high-field magnet. These data, together with high-field relaxation and heteronuclear NOE, provide evidence for correlated rigid-body motions of the entire {beta}-hairpin, and corresponding motions of adjacent loops with a time constant of 0.8 ns (mesodynamics). MD simulations substantiate these findings and provide direct verification of the time scale and collective nature of these motions.

  18. Smartnotebook: A semi-automated approach to protein sequential NMR resonance assignments

    International Nuclear Information System (INIS)

    Slupsky, Carolyn M.; Boyko, Robert F.; Booth, Valerie K.; Sykes, Brian D.

    2003-01-01

    Complete and accurate NMR spectral assignment is a prerequisite for high-throughput automated structure determination of biological macromolecules. However, completely automated assignment procedures generally encounter difficulties for all but the most ideal data sets. Sources of these problems include difficulty in resolving correlations in crowded spectral regions, as well as complications arising from dynamics, such as weak or missing peaks, or atoms exhibiting more than one peak due to exchange phenomena. Smartnotebook is a semi-automated assignment software package designed to combine the best features of the automated and manual approaches. The software finds and displays potential connections between residues, while the spectroscopist makes decisions on which connection is correct, allowing rapid and robust assignment. In addition, smartnotebook helps the user fit chains of connected residues to the primary sequence of the protein by comparing the experimentally determined chemical shifts with expected shifts derived from a chemical shift database, while providing bookkeeping throughout the assignment procedure

  19. NMR backbone resonance assignments of the prodomain variants of BDNF in the urea denatured state.

    Science.gov (United States)

    Wang, Jing; Bains, Henrietta; Anastasia, Agustin; Bracken, Clay

    2018-04-01

    Brain derived neurotrophic factor (BDNF) is a member of the neurotrophin family of proteins which plays a central role in neuronal survival, growth, plasticity and memory. A single Val66Met variant has been identified in the prodomain of human BDNF that is associated with anxiety, depression and memory disorders. The structural differences within the full-length prodomain Val66 and Met66 isoforms could shed light on the mechanism of action of the Met66 and its impact on the development of neuropsychiatric-associated disorders. In the present study, we report the backbone 1 H, 13 C, and 15 N NMR assignments of both full-length Val66 and Met66 prodomains in the presence of 2 M urea. These conditions were utilized to suppress residual structure and aid subsequent native state structural investigations aimed at mapping and identifying variant-dependent conformational differences under native-state conditions.

  20. Resonances in field-cycling NMR on molecular crystals. (reversible) Spin dynamics or (irreversible) relaxation?; Resonanzen in Field-Cycling-NMR an Molekuelkristallen. (reversible) Spindynamik oder (irreversible) Relaxation?

    Energy Technology Data Exchange (ETDEWEB)

    Tacke, Christian

    2015-07-01

    Multi spin systems with spin 1/2 nuclei and dipolar coupled quadrupolar nuclei can show so called ''quadrupolar dips''. There are two main reasons for this behavior: polarization transfer and relaxation. They look quite alike and without additional research cannot be differentiated easily in most cases. These two phenomena have quite different physical and theoretical backgrounds. For no or very slow dynamics, polarization transfer will take place, which is energy conserving inside the spin system. This effect can entirely be described using quantum mechanics on the spin system. Detailed knowledge about the crystallography is needed, because this affects the relevant hamiltonians directly. For systems with fast enough dynamics, relaxation takes over, and the energy flows from the spin system to the lattice; thus a more complex theoretical description is needed. This description has to include a dynamic model, usually in the form of a spectral density function. Both models should include detailed modelling of the complete spin system. A software library was developed to be able to model complex spin systems. It allows to simulate polarization transfer or relaxation effects. NMR measurements were performed on the protonic conductor K{sub 3}H(SO{sub 4}){sub 2}. A single crystal shows sharp quadrupolar dips at room temperature. Dynamics could be excluded using relaxation measurements and literature values. Thus, a polarization transfer analysis was used to describe those dips with good agreement. As a second system, imidazolium based molecular crystals were analyzed. The quadrupolar dips were expected to be caused by polarization transfer; this was carefully analyzed and found not to be true. A relaxation based analysis shows good agreement with the measured data in the high temperature area. It leverages a two step spectral density function, which indicates two distinct dynamic processes happening in this system.

  1. Laser-polarized xenon-129 magnetic resonance spectroscopy and imaging. The development of a method for in vivo perfusion measurement

    Science.gov (United States)

    Rosen, Matthew Scot

    2001-07-01

    This thesis presents in vivo nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) studies with laser-polarized 129Xe delivered to living rats by inhalation and transported to tissue via blood flow. The results presented herein include the observation, assignment, and dynamic measurement of 129Xe resonances in the brain and body, the first one- and two-dimensional chemical-shift-resolved images of 129Xe in blood, tissue, and gas in the thorax, and the first images of 129Xe in brain tissue. These results establish that laser-polarized 129Xe can be used as a magnetic resonance tracer in vivo. NMR resonances at 0, 191, 198, and 209 ppm relative to the 129 Xe gas resonance are observed in the rat thorax and assigned to 129Xe in gas, fat, tissue, and blood respectively. Resonances at 189, 192, 195, 198, and 209 ppm are observed in the brain, and the 195 and 209 ppm resonances are assigned to 129Xe in grey matter, and blood, respectively. The design and construction of a laser-polarized 129Xe production and delivery system is described. This system produces liter-volumes of laser- polarized 129Xe by spin-exchange optical- pumping. It represented an order of magnitude increase over previously reported production volumes of polarized 129Xe. At approximately 3-7% polarization, 157 cc-atm of xenon is produced and stored as ice every 5 minutes. This reliable, effective, and simple production method for large volumes of 129Xe can be applied to other areas of research involving the use of laser-polarized noble gases. A model of the in vivo transport of laser polarized 129Xe to tissue under realistic experimental NMR conditions is described. Appropriate control of the NMR parameters is shown to allow tissue perfasion and 129Xe tissue T1 to be extracted from measurement of the steady-state 129Xe tissue signal. In vivo rodent 129Xe NMR results are used to estimate the signal-to-noise ratio of this technique, and an inhaled 30% xenon/70% O2 mixture polarized to 5

  2. Nitrogen-detected CAN and CON experiments as alternative experiments for main chain NMR resonance assignments

    International Nuclear Information System (INIS)

    Takeuchi, Koh; Heffron, Gregory; Sun, Zhen-Yu J.; Frueh, Dominique P.; Wagner, Gerhard

    2010-01-01

    Heteronuclear direct-detection experiments, which utilize the slower relaxation properties of low γ nuclei, such as 13 C have recently been proposed for sequence-specific assignment and structural analyses of large, unstructured, and/or paramagnetic proteins. Here we present two novel 15 N direct-detection experiments. The CAN experiment sequentially connects amide 15 N resonances using 13 C α chemical shift matching, and the CON experiment connects the preceding 13 C' nuclei. When starting from the same carbon polarization, the intensities of nitrogen signals detected in the CAN or CON experiments would be expected four times lower than those of carbon resonances observed in the corresponding 13 C-detecting experiment, NCA-DIPAP or NCO-IPAP (Bermel et al. 2006b; Takeuchi et al. 2008). However, the disadvantage due to the lower γ is counteracted by the slower 15 N transverse relaxation during detection, the possibility for more efficient decoupling in both dimensions, and relaxation optimized properties of the pulse sequences. As a result, the median S/N in the 15 N observe CAN experiment is 16% higher than in the 13 C observe NCA-DIPAP experiment. In addition, significantly higher sensitivity was observed for those residues that are hard to detect in the NCA-DIPAP experiment, such as Gly, Ser and residues with high-field C α resonances. Both CAN and CON experiments are able to detect Pro resonances that would not be observed in conventional proton-detected experiments. In addition, those experiments are free from problems of incomplete deuterium-to-proton back exchange in amide positions of perdeuterated proteins expressed in D 2 O. Thus, these features and the superior resolution of 15 N-detected experiments provide an attractive alternative for main chain assignments. The experiments are demonstrated with the small model protein GB1 at conditions simulating a 150 kDa protein, and the 52 kDa glutathione S-transferase dimer, GST.

  3. Non-Invasive Detection of Adulterated Olive Oil in Full Bottles Using Time-Domain NMR Relaxometry

    OpenAIRE

    Santos, Poliana M.; Kock, Flávio Vinicius C.; Santos, Maiara S.; Lobo, Carlos Manuel S.; Carvalho, André S.; Colnago, Luiz Alberto

    2017-01-01

    A fast procedure using time-domain nuclear magnetic resonance (TD-NMR) to detect olive oil adulteration with polyunsaturated vegetable oils in filled bottles is proposed. The 1H transverse relaxation times (T2) of 37 commercial samples were measured using low-field nuclear magnetic resonance (LF-NMR) spectrometer and a unilateral nuclear magnetic resonance (UNMR) sensor. Results obtained with LF-NMR revealed better feasibility when compared with the UNMR sensor, with higher signal-to-noise (S...

  4. Calorimetric, FTIR and 1H NMR measurements in combination with DFT calculations for monitoring solid-state changes of dynamics of sibutramine hydrochloride.

    Science.gov (United States)

    Pajzderska, Aleksandra; Chudoba, Dorota M; Mielcarek, Jadwiga; Wąsicki, Jan

    2012-10-01

    Two forms of sibutramine hydrochloride, monohydrate and anhydrous, have been investigated by calorimetric methods, Fourier transform infrared (FTIR) absorption and (1) H nuclear magnetic resonance (NMR) measurements as well as by density functional theory (DFT) of vibrational frequencies and infrared intensities, calculations of steric hindrances and Monte Carlo simulations. The results of FTIR spectra combined with DFT calculations permitted identification of the bands corresponding to the dynamics and vibrations of water molecules. NMR study and Monte Carlo simulations revealed the occurrence of reorientation jumps of the methyl groups in sibutramine cation and also revealed that the reorientation of isopropyl group is possible only in sibutramine monohydrate hydrochloride. The hydration of sibutramine hydrochloride causes a change in the conformation of sibutramine cation. Copyright © 2012 Wiley-Liss, Inc.

  5. Imaging and measurement of T1 value by NMR of low magnetic field

    International Nuclear Information System (INIS)

    Asai, Hideaki; Izawa, Akira; Furuse, Kazuhiro; Saoi, Katsuyoshi; Nagai, Masahiko.

    1983-01-01

    FONAR QED-80α having two operating mode: the anatomy mode to obtain an image of proton densities and the chemistry mode to measure T 1 value at a region of intenst, was used clinically. The strength of static magnetic field is 0.041T. 32 cases, 18 healthy volunteers and 14 patients were studied. In proton density imaging, high proton density organs such as skin were imaged bright, and low proton density organs such as bones and flowing blood were imaged dark. The merits of NMR imaging are no artifacts caused by bones and air. However, NMR image is required long time for measurement and the image of NMR is unsharp than that of X-ray CT. Concerning with T 1 value, cerebral and cerebellar gray matter had longer T 1 's than that of white matter. Pathological lesions, such as tumor and/or infarct, had also longer T 1 values than these of normal tissue. The value of T 1 was thought to be applicable clinically except for some problems, such as measuring T 1 value of large extent. No side effects were found during and after examinations. (author)

  6. Methods of NMR structure refinement: molecular dynamics simulations improve the agreement with measured NMR data of a C-terminal peptide of GCN4-p1

    Energy Technology Data Exchange (ETDEWEB)

    Dolenc, Jozica [Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH (Switzerland); Missimer, John H.; Steinmetz, Michel O. [Paul Scherrer Institut, Biomolecular Research (Switzerland); Gunsteren, Wilfred F. van, E-mail: wfvgn@igc.phys.chem.ethz.c [Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH (Switzerland)

    2010-07-15

    The C-terminal trigger sequence is essential in the coiled-coil formation of GCN4-p1; its conformational properties are thus of importance for understanding this process at the atomic level. A solution NMR model structure of a peptide, GCN4p16-31, encompassing the GCN4-p1 trigger sequence was proposed a few years ago. Derived using a standard single-structure refinement protocol based on 172 nuclear Overhauser effect (NOE) distance restraints, 14 hydrogen-bond and 11 {phi} torsional-angle restraints, the resulting set of 20 NMR model structures exhibits regular {alpha}-helical structure. However, the set slightly violates some measured NOE bounds and does not reproduce all 15 measured {sup 3}J(H{sub N}-H{sub C{alpha}})-coupling constants, indicating that different conformers of GCN4p16-31 might be present in solution. With the aim to resolve structures compatible with all NOE upper distance bounds and {sup 3}J-coupling constants, we executed several structure refinement protocols employing unrestrained and restrained molecular dynamics (MD) simulations with two force fields. We find that only configurational ensembles obtained by applying simultaneously time-averaged NOE distance and {sup 3}J-coupling constant restraining with either force field reproduce all the experimental data. Additionally, analyses of the simulated ensembles show that the conformational variability of GCN4p16-31 in solution admitted by the available set of 187 measured NMR data is larger than represented by the set of the NMR model structures. The conformations of GCN4p16-31 in solution differ in the orientation not only of the side-chains but also of the backbone. The inconsistencies between the NMR model structures and the measured NMR data are due to the neglect of averaging effects and the inclusion of hydrogen-bond and torsional-angle restraints that have little basis in the primary, i.e. measured NMR data.

  7. Application of nuclear magnetic resonance (NMR) in study of thyroid gland

    International Nuclear Information System (INIS)

    Sinadinovic, J.; Ratkovic, S.; Kraincanic, M.

    1982-01-01

    A correlation was found between microstructural and biochemical changes of the thyroid gland and proton magnetic relaxation of tissue water. A significant increase of both relaxation times (T1, T2) was noted in thyroid tissue of rats treated with antithyroid drugs (PTU, C104) or TSH and was inversely correlated with thyroglobulin content in the gland and its morphological structure. When the treatment with PTU or C104 was interrupted, the relaxation times returned to normal values. These changes were in close correlation with the involution of structural changes in the thyroid gland and reaccumulation of follicular colloid (Tg). After T4, T3 or iodine treatment the relaxation times in the stimulated gland decreased following an increase of Tg content in the gland. It was observed that the relaxation times of the thyroid tissue of rats are in strong negative correlation with Tg concentration. Normal values for T1 in rat (530 msec) and guinea-pig (700 msec) thyroid glands are quite different. These species differences are related to the microstructural properties of thyroid glands, i.e. to the composition, structure, and degree of aggregation of follicular colloid (Tg). Finally, the NMR method could be applied in physiological and pathological examinations of the thyroid gland

  8. Phosphorus-31 NMR magnetization transfer measurements of metabolic reaction rates in the rat heart and kidney in vivo

    International Nuclear Information System (INIS)

    Koretsky, A.P.

    1984-01-01

    31 P NMR is a unique tool to study bioenergetics in living cells. The application of magnetization transfer techniques to the measurement of steady-state enzyme reaction rates provides a new approach to understanding the regulation of high energy phosphate metabolism. This dissertation is concerned with the measurement of the rates of ATP synthesis in the rat kidney and of the creatine kinase catalyzed reaction in the rat heart in situ. The theoretical considerations of applying magnetization transfer techniques to intact organs are discussed with emphasis on the problems associated with multiple exchange reactions and compartmentation of reactants. Experimental measurements of the ATP synthesis rate were compared to whole kidney oxygen consumption and Na + reabsorption rates to derive ATP/O values. The problems associated with ATP synthesis rate measurements in kidney, e.g. the heterogeneity of the inorganic phosphate resonance, are discussed and experiments to overcome these problems proposed. In heart, the forward rate through creatine kinase was measured to be larger than the reverse rate. To account for the difference in forward and reverse rates a model is proposed based on the compartmentation of a small pool of ATP

  9. Two-dimensional NMR measurement and point dipole model prediction of paramagnetic shift tensors in solids

    Energy Technology Data Exchange (ETDEWEB)

    Walder, Brennan J.; Davis, Michael C.; Grandinetti, Philip J. [Department of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210 (United States); Dey, Krishna K. [Department of Physics, Dr. H. S. Gour University, Sagar, Madhya Pradesh 470003 (India); Baltisberger, Jay H. [Division of Natural Science, Mathematics, and Nursing, Berea College, Berea, Kentucky 40403 (United States)

    2015-01-07

    A new two-dimensional Nuclear Magnetic Resonance (NMR) experiment to separate and correlate the first-order quadrupolar and chemical/paramagnetic shift interactions is described. This experiment, which we call the shifting-d echo experiment, allows a more precise determination of tensor principal components values and their relative orientation. It is designed using the recently introduced symmetry pathway concept. A comparison of the shifting-d experiment with earlier proposed methods is presented and experimentally illustrated in the case of {sup 2}H (I = 1) paramagnetic shift and quadrupolar tensors of CuCl{sub 2}⋅2D{sub 2}O. The benefits of the shifting-d echo experiment over other methods are a factor of two improvement in sensitivity and the suppression of major artifacts. From the 2D lineshape analysis of the shifting-d spectrum, the {sup 2}H quadrupolar coupling parameters are 〈C{sub q}〉 = 118.1 kHz and 〈η{sub q}〉 = 0.88, and the {sup 2}H paramagnetic shift tensor anisotropy parameters are 〈ζ{sub P}〉 = − 152.5 ppm and 〈η{sub P}〉 = 0.91. The orientation of the quadrupolar coupling principal axis system (PAS) relative to the paramagnetic shift anisotropy principal axis system is given by (α,β,γ)=((π)/2 ,(π)/2 ,0). Using a simple ligand hopping model, the tensor parameters in the absence of exchange are estimated. On the basis of this analysis, the instantaneous principal components and orientation of the quadrupolar coupling are found to be in excellent agreement with previous measurements. A new point dipole model for predicting the paramagnetic shift tensor is proposed yielding significantly better agreement than previously used models. In the new model, the dipoles are displaced from nuclei at positions associated with high electron density in the singly occupied molecular orbital predicted from ligand field theory.

  10. Triple resonance 15N NMR relaxation experiments for studies of intrinsically disordered proteins

    Czech Academy of Sciences Publication Activity Database

    Srb, Pavel; Nováček, J.; Kadeřávek, P.; Rabatinová, Alžběta; Krásný, Libor; Žídková, Jitka; Bobálová, Janette; Sklenář, V.; Žídek, L.

    2017-01-01

    Roč. 69, č. 3 (2017), s. 133-146 ISSN 0925-2738 R&D Projects: GA ČR GA13-16842S; GA MŠk(CZ) LO1304 Institutional support: RVO:61388963 ; RVO:61388971 ; RVO:68081715 Keywords : nuclear magnetic resonance * relaxation * non-uniform sampling * intrinsically disordered proteins Subject RIV: CB - Analytical Chemistry, Separation; EE - Microbiology, Virology (MBU-M); CB - Analytical Chemistry, Separation (UIACH-O) OBOR OECD: Analytical chemistry; Microbiology (MBU-M); Analytical chemistry (UIACH-O) Impact factor: 2.410, year: 2016

  11. Measurement of Optical Feshbach Resonances in an Ideal Gas

    International Nuclear Information System (INIS)

    Blatt, S.; Nicholson, T. L.; Bloom, B. J.; Williams, J. R.; Thomsen, J. W.; Ye, J.; Julienne, P. S.

    2011-01-01

    Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the optical Feshbach resonance effect in an ultracold gas of bosonic 88 Sr. A systematic measurement of three resonances allows precise determinations of the optical Feshbach resonance strength and scaling law, in agreement with coupled-channel theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas. Optical Feshbach resonance could be used to control atomic interactions with high spatial and temporal resolution.

  12. Measurement of optical Feshbach resonances in an ideal gas.

    Science.gov (United States)

    Blatt, S; Nicholson, T L; Bloom, B J; Williams, J R; Thomsen, J W; Julienne, P S; Ye, J

    2011-08-12

    Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the optical Feshbach resonance effect in an ultracold gas of bosonic (88)Sr. A systematic measurement of three resonances allows precise determinations of the optical Feshbach resonance strength and scaling law, in agreement with coupled-channel theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas. Optical Feshbach resonance could be used to control atomic interactions with high spatial and temporal resolution.

  13. Classification of brain tumors by means of proton nuclear magnetic resonance (NMR) spectroscopy

    International Nuclear Information System (INIS)

    Sottile, V.S.; Zanchi, D.E.

    2017-01-01

    In the present work, at the request of health professionals, a computer application named “ViDa” was developed. The aim of this study is to differentiate brain lesions according to whether or not they are tumors, and their subsequent classification into different tumor types using magnetic resonance spectroscopy (SVS) with an echo time of 30 milliseconds. For this development, different areas of knowledge were integrated, among which are Artificial intelligence, physics, programming, physiopathology, images in medicine, among others. Biomedical imaging can be divided into two stages: the pre-processing, performed by the resonator, and post-processing software, performed by ViDa, for the interpretation of the data. This application is included within the Medical Informatics area, as it provides assistance for clinical decision making. The role of the biomedical engineer is fulfilled by developing a health technology in response to a manifested real-life problem. The tool developed shows promising results achieving a 100% Sensitivity, 73% Specificity, 77% Positive Predictive Value and 100% Negative Predictive Value reported in 21 cases tested. The correct classifications of the tumor’s origin reach 70%, the classification of non-astrocytic lesions achieves 67% of correct classifications in that the gradation of astrocytomas achieves a 57% of gradations that agree with biopsies and 43% of slight errors. It was possible to develop an application of assistance to the diagnosis, which together with others medical tests, will make it possible to sharpen the diagnoses of brain tumors. (authors) [es

  14. Development of real-time measurement of methanol-concentration in polymer electrolyte membrane using a local NMR sensor

    International Nuclear Information System (INIS)

    Ogawa, Kuniyasu; Ito, Kohei; Haishi, Tomoyuki

    2007-01-01

    A real-time sensor to measure methanol concentration in polymer electrolyte membrane (PEM) was developed for reducing methanol cross-over in Direct Methanol Fuel Cell (DMFC). The principle of the methanol sensor is based on the chemical shift of CH and OH species under high magnetic field. The sensor consists of a planar surface coil of 1.3 mm outside diameter. NMR signal from PEM being exposed to CH3OH solvent was measured using NMR sensor. Time-dependence changes of methanol concentration in PEM were obtained from analyzing spectrum of NMR signal. (author)

  15. NMR measurement of dynamic nuclear polarization: a technique to test the quality of its volume average obtained with different NMR coil configurations

    International Nuclear Information System (INIS)

    Zhao, W.H.; Cox, S.F.J.

    1980-07-01

    In the NMR measurement of dynamic nuclear polarization, a volume average is obtained where the contribution from different parts of the sample is weighted according to the local intensity of the RF field component perpendicular to the large static field. A method of mapping this quantity is described. A small metallic object whose geometry is chosen to perturb the appropriate RF component is scanned through the region to be occupied by the sample. The response of the phase angle of the impedance of a tuned circuit comprising the NMR coil gives a direct measurement of the local weighting factor. The correlation between theory and experiment was obtained by using a circular coil. The measuring method, checked in this way, was then used to investigate the field profiles of practical coils which are required to be rectangular for a proposed experimental neutron polarizing filter. This method can be used to evaluate other practical RF coils. (author)

  16. Magnetic resonance spectroscopy and metabolism. Applications of proton and sup 13 C NMR to the study of glutamate metabolism in cultured glial cells and human brain in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Portais, J.C.; Pianet, I.; Merle, M.; Raffard, G.; Biran, M.; Labouesse, J.; Canioni, P. (Bordeaux-2 Univ., 33 (FR)); Allard, M.; Kien, P.; Caille, J.M. (Centre Hospitalier Universitaire, 33 Bordeaux (FR))

    1991-01-01

    Nuclear magnetic resonance (NMR) spectroscopy was used to study the metabolism of cells from the central nervous system both in vitro on perchloric acid extracts obtained either from cultured tumoral cells (C6 rat glioma) or rat astrocytes in primary culture, and in vivo within the human brain. Analysis of carbon 13 NMR spectra of perchloric acid extracts prepared from cultured cells in the presence of NMR (1-{sup 13}C) glucose as substrate allowed determination of the glutamate and glutamine enrichments in both normal and tumoral cells. Preliminary results indicated large changes in the metabolism of these amino acids (and also of aspartate and alanine) in the C6 cell as compared to its normal counterpart. Localized proton NMR spectra of the human brain in vivo were obtained at 1.5 T, in order to evaluate the content of various metabolites, including glutamate, in peritumoral edema from a selected volume of 2 x 2 x 2 cm{sup 3}. N-acetyl aspartate, glutamate, phosphocreatine, creatine, choline and inositol derivative resonances were observed in 15 min spectra. N-acetyl-aspartate was found to be at a lower level in contrast to glutamate which was detected at a higher level in the injured area as compared to the controlateral unaffected side.

  17. Development of concentration measurement system in a mini-channel using a local NMR sensor

    International Nuclear Information System (INIS)

    Ogawa, Kuniyasu; Haishi, Tomoyuki

    2008-01-01

    A local NMR sensor to measure methanol concentration of fluid flowing in a mini-channel was developed. The principle of the methanol sensor is based on the chemical shift of CH and OH species under high magnetic field. The sensor consists of a planar surface coil of 0.60 mm inside diameter. Using the sensors, local methanol concentration of water-methanol mixture in the mini-channel of 3.0 mm width and 1.5 mm depth was measured. The effects of flow velocity in the channel and the gravity direction on the methanol concentration distribution in the channel were investigated experimentally. (author)

  18. Determination of the sensitivity of Tc-99-NMR-measurements with a 250 MHz-spectrometer

    International Nuclear Information System (INIS)

    Findeisen, M.; Lorenz, B.; Wahren, M.

    1990-01-01

    By means of different concentrations the signal-to-noise ratios of Tc-99-NMR spectra were determined applying well measurable Tc-samples [tetrabutylammonium pertechnetate, TBA (TcO 4 )] and a 250 MHz-spectrometer. The signal-to-noise ratios of the spectra were determined by using the integrated routines of the firm's software and accumulating different number of scans. By fittings of data of the signal-to-noise ratio dependence and by extrapolation the minimum Tc-concentration could be empirically found out. Applying a duration of measurements of 12 hours about 10 -7 molar concentrations can be determined. (orig.) [de

  19. NMR diffusion and relaxation measurements of organic molecules adsorbed in porous media

    International Nuclear Information System (INIS)

    Gjerdaaker, Lars

    2002-01-01

    a bipolar form of the pulsed field gradient has proved to be an efficient method for both reducing the cross-term between the applied and internal gradient and reducing the eddy current dead time. Without the use of a bipolar sequence, the measured diffusivities are likely to be underestimated. In order to get sufficient attenuation of the signal a stimulated-echo sequence together with magnetic field gradients have been used. It was then possible to increase the z-storage period to compensate for insufficient gradient strength. However, the employed diffusion probe and gradient power supply are able to generate magnetic field gradients that make the z-storage period unnecessary. In this work we also present a spin-echo analogue to the 13-interval PFGSTE sequence presented by Cotts et al., a so-called 11-interval bipolar PFGSE sequence. Conclusions: The molecular dynamics of four organic adsorbates confined in porous materials have been investigated. The confinement gives rise to substantial changes in the phase behaviour and molecular dynamics. From the line shape of the confined substances a narrow-line component superimposed on a broad resonance is observed at temperatures well below the transition point of the bulk material. This narrow-line component is, in the freezing region, attributed to the surface layer and the undercooled liquid in the smaller pores that remains unfrozen. In the low-temperature region, the narrow-line component corresponds to the surface layer, while the broad component originates from the crystalline phase at the centre of the pores. The persistent surface layer does not appear to crystallize at all, and a relatively high diffusion rate of this liquid-like phase is observed over a wide temperature range, even well below the transition point of the bulk material. However, with decreasing temperature T2 of the molecules in the surface layer becomes shorter and the contribution to the NMR signal decreases gradually. For pivalic acid and

  20. Neutron capture measurements and resonance parameters of dysprosium

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S.G.; Kye, Y.U.; Namkung, W.; Cho, M.H. [Pohang University of Science and Technology, Division of Advanced Nuclear Engineering, Pohang, Gyeongbuk (Korea, Republic of); Kang, Y.R.; Lee, M.W. [Dongnam Inst. of Radiological and Medical Sciences, Research Center, Busan (Korea, Republic of); Kim, G.N. [Kyungpook National University, Department of Physics, Daegu (Korea, Republic of); Ro, T.I. [Dong-A University, Department of Physics, Busan (Korea, Republic of); Danon, Y.; Williams, D. [Rensselaer Polytechnic Institute, Department of Mechanical, Aerospace, and Nuclear Engineering, Troy, NY (United States); Leinweber, G.; Block, R.C.; Barry, D.P.; Rapp, M.J. [Naval Nuclear Laboratory, Knolls Atomic Power Laboratory, Schenectady, NY (United States)

    2017-10-15

    Neutron capture yields of dysprosium isotopes ({sup 161}Dy, {sup 162}Dy, {sup 163}Dy, and {sup 164}Dy) were measured using the time-of-flight method with a 16 segment sodium iodide multiplicity detector. The measurements were made at the 25m flight station at the Gaerttner LINAC Center at Rensselaer Polytechnic Institute. Resonance parameters were obtained using the multilevel R-matrix Bayesian code SAMMY. The neutron capture data for four enriched dysprosium isotopes and one natural dysprosium sample were sequentially fitted. New resonances not listed in ENDF/B-VII.1 were observed. There were 29 and 17 new resonances from {sup 161}Dy and {sup 163}Dy isotopes, respectively. Six resonances from {sup 161}Dy isotope, two resonances from {sup 163}Dy, and four resonances from {sup 164}Dy were not observed. The capture resonance integrals of each isotope were calculated with the resulting resonance parameters and those of ENDF/B-VII.1 in the energy region from 0.5 eV to 20 MeV and were compared to the capture resonance integrals with the resonance parameters from ENDF/B-VII.1. A resonance integral value of the natural dysprosium calculated with present resonance parameters was 1405 ± 3.5 barn. The value is ∝ 0.3% higher than that obtained with the ENDF/B-VII.1 parameters. The distributions of the present and ENDF/B-VII.1 neutron widths were compared to a Porter-Thomas distribution. Neutron strength functions for {sup 161}Dy and {sup 163}Dy were calculated with the present resonance parameters and both values were in between the values of ''Atlas of Neutron Resonances'' and ENDF/B-VII.1. The present radiation width distributions of {sup 161}Dy and {sup 163}Dy were fitted with the χ{sup 2} distribution by varying the degrees of freedom. (orig.)

  1. Non-invasive measurement of brain glycogen by NMR spectroscopy and its application to the study of brain metabolism

    Science.gov (United States)

    Tesfaye, Nolawit; Seaquist, Elizabeth R.; Öz, Gülin

    2011-01-01

    Glycogen is the reservoir for glucose in the brain. Beyond the general agreement that glycogen serves as an energy source in the central nervous system, its exact role in brain energy metabolism has yet to be elucidated. Experiments performed in cell and tissue culture and animals have shown that glycogen content is affected by several factors including glucose, insulin, neurotransmitters, and neuronal activation. The study of in vivo glycogen metabolism has been hindered by the inability to measure glycogen non-invasively, but in the past several years, the development of a non-invasive localized 13C nuclear magnetic resonance (NMR) spectroscopy method has enabled the study of glycogen metabolism in the conscious human. With this technique, 13C-glucose is administered intravenously and its incorporation into and wash-out from brain glycogen is tracked. One application of this method has been to the study of brain glycogen metabolism in humans during hypoglycemia: data have shown that mobilization of brain glycogen is augmented during hypoglycemia and, after a single episode of hypoglycemia, glycogen synthesis rate is increased, suggesting that glycogen stores rebound to levels greater than baseline. Such studies suggest glycogen may serve as a potential energy reservoir in hypoglycemia and may participate in the brain's adaptation to recurrent hypoglycemia and eventual development of hypoglycemia unawareness. Beyond this focused area of study, 13C NMR spectroscopy has a broad potential for application in the study of brain glycogen metabolism and carries the promise of a better understanding of the role of brain glycogen in diabetes and other conditions. PMID:21732401

  2. Shale characteristics impact on Nuclear Magnetic Resonance (NMR fluid typing methods and correlations

    Directory of Open Access Journals (Sweden)

    Mohamed Mehana

    2016-06-01

    Full Text Available The development of shale reservoirs has brought a paradigm shift in the worldwide energy equation. This entails developing robust techniques to properly evaluate and unlock the potential of those reservoirs. The application of Nuclear Magnetic Resonance techniques in fluid typing and properties estimation is well-developed in conventional reservoirs. However, Shale reservoirs characteristics like pore size, organic matter, clay content, wettability, adsorption, and mineralogy would limit the applicability of the used interpretation methods and correlation. Some of these limitations include the inapplicability of the controlling equations that were derived assuming fast relaxation regime, the overlap of different fluids peaks and the lack of robust correlation to estimate fluid properties in shale. This study presents a state-of-the-art review of the main contributions presented on fluid typing methods and correlations in both experimental and theoretical side. The study involves Dual Tw, Dual Te, and doping agent's application, T1-T2, D-T2 and T2sec vs. T1/T2 methods. In addition, fluid properties estimation such as density, viscosity and the gas-oil ratio is discussed. This study investigates the applicability of these methods along with a study of the current fluid properties correlations and their limitations. Moreover, it recommends the appropriate method and correlation which are capable of tackling shale heterogeneity.

  3. Resonantly enhanced collisional ionization measurements of radionuclides

    International Nuclear Information System (INIS)

    Whitaker, T.J.; Bushaw, B.A.; Gerke, G.K.

    1986-01-01

    The authors developed a new laser technique to analyze for radionuclides at extremely low levels. The technique, called resonantly enhanced collisional ionization (RECI), uses two nitrogen-laser pumped dye lasers to excite the target isotope to a high-energy Rydberg state. Atoms in these Rydberg states (within a few hundred wavenumbers in energy from the ionization threshold) efficiently ionize upon colliding with an inert gas and the ions can be detected by conventional means. The principal advantage of resonantly-enhanced collisional ionization is the extreme sensitivity coupled with its relative simplicity and low cost. Actinides typically have an ionization potential of about 6eV (uranium I.P. = 6.2 eV, plutonium I.P. = 5.7 eV). Two-step laser excitation to a state just below threshold requires wavelengths in the blue region of the visible spectrum. They showed that when both steps in the excitation process are resonant steps, relatively low-power lasers can populate the Rydberg state with almost unit efficiency. This is because the resonant excitations have much larger cross-sections than do photoionization processes. They also demonstrated that a few torr of a buffer gas will cause most of the excited-state atoms to be ionized

  4. Assignment of methyl NMR resonances of a 52 kDa protein with residue-specific 4D correlation maps

    International Nuclear Information System (INIS)

    Mishra, Subrata H.; Frueh, Dominique P.

    2015-01-01

    Methyl groups have become key probes for structural and functional studies by nuclear magnetic resonance. However, their NMR signals cluster in a small spectral region and assigning their resonances can be a tedious process. Here, we present a method that facilitates assignment of methyl resonances from assigned amide groups. Calculating the covariance between sensitive methyl and amide 3D spectra, each providing correlations to C α and C β separately, produces 4D correlation maps directly correlating methyl groups to amide groups. Optimal correlation maps are obtained by extracting residue-specific regions, applying derivative to the dimensions subject to covariance, and multiplying 4D maps stemming from different 3D spectra. The latter procedure rescues weak signals that may be missed in traditional assignment procedures. Using these covariance correlation maps, nearly all assigned isoleucine, leucine, and valine amide resonances of a 52 kDa nonribosomal peptide synthetase cyclization domain were paired with their corresponding methyl groups

  5. Measurement of elastic modules of structural ceramic by acoustic resonance

    International Nuclear Information System (INIS)

    Ahn, Bong Young; Lee Seong Suck; Kim, Young Gil

    1993-01-01

    Elastic moduli of structural ceramic materials, Al 2 O 3 , SiC, Si 3 N 4 , were measured by acoustic resonance method. Young's modulus, shear modulus, and Poisson's ratio were calculated from the torsional and flexural resonant frequencies, densities, and the dimensions of the specimen. The results by acoustic resonance method were compared with the results by ultrasonic method and the differences were less than 4%.

  6. Resonance assignment of the NMR spectra of disordered proteins using a multi-objective non-dominated sorting genetic algorithm

    International Nuclear Information System (INIS)

    Yang, Yu; Fritzsching, Keith J.; Hong, Mei

    2013-01-01

    A multi-objective genetic algorithm is introduced to predict the assignment of protein solid-state NMR (SSNMR) spectra with partial resonance overlap and missing peaks due to broad linewidths, molecular motion, and low sensitivity. This non-dominated sorting genetic algorithm II (NSGA-II) aims to identify all possible assignments that are consistent with the spectra and to compare the relative merit of these assignments. Our approach is modeled after the recently introduced Monte-Carlo simulated-annealing (MC/SA) protocol, with the key difference that NSGA-II simultaneously optimizes multiple assignment objectives instead of searching for possible assignments based on a single composite score. The multiple objectives include maximizing the number of consistently assigned peaks between multiple spectra (“good connections”), maximizing the number of used peaks, minimizing the number of inconsistently assigned peaks between spectra (“bad connections”), and minimizing the number of assigned peaks that have no matching peaks in the other spectra (“edges”). Using six SSNMR protein chemical shift datasets with varying levels of imperfection that was introduced by peak deletion, random chemical shift changes, and manual peak picking of spectra with moderately broad linewidths, we show that the NSGA-II algorithm produces a large number of valid and good assignments rapidly. For high-quality chemical shift peak lists, NSGA-II and MC/SA perform similarly well. However, when the peak lists contain many missing peaks that are uncorrelated between different spectra and have chemical shift deviations between spectra, the modified NSGA-II produces a larger number of valid solutions than MC/SA, and is more effective at distinguishing good from mediocre assignments by avoiding the hazard of suboptimal weighting factors for the various objectives. These two advantages, namely diversity and better evaluation, lead to a higher probability of predicting the correct

  7. Resonance assignment of the NMR spectra of disordered proteins using a multi-objective non-dominated sorting genetic algorithm.

    Science.gov (United States)

    Yang, Yu; Fritzsching, Keith J; Hong, Mei

    2013-11-01

    A multi-objective genetic algorithm is introduced to predict the assignment of protein solid-state NMR (SSNMR) spectra with partial resonance overlap and missing peaks due to broad linewidths, molecular motion, and low sensitivity. This non-dominated sorting genetic algorithm II (NSGA-II) aims to identify all possible assignments that are consistent with the spectra and to compare the relative merit of these assignments. Our approach is modeled after the recently introduced Monte-Carlo simulated-annealing (MC/SA) protocol, with the key difference that NSGA-II simultaneously optimizes multiple assignment objectives instead of searching for possible assignments based on a single composite score. The multiple objectives include maximizing the number of consistently assigned peaks between multiple spectra ("good connections"), maximizing the number of used peaks, minimizing the number of inconsistently assigned peaks between spectra ("bad connections"), and minimizing the number of assigned peaks that have no matching peaks in the other spectra ("edges"). Using six SSNMR protein chemical shift datasets with varying levels of imperfection that was introduced by peak deletion, random chemical shift changes, and manual peak picking of spectra with moderately broad linewidths, we show that the NSGA-II algorithm produces a large number of valid and good assignments rapidly. For high-quality chemical shift peak lists, NSGA-II and MC/SA perform similarly well. However, when the peak lists contain many missing peaks that are uncorrelated between different spectra and have chemical shift deviations between spectra, the modified NSGA-II produces a larger number of valid solutions than MC/SA, and is more effective at distinguishing good from mediocre assignments by avoiding the hazard of suboptimal weighting factors for the various objectives. These two advantages, namely diversity and better evaluation, lead to a higher probability of predicting the correct assignment for a

  8. Graphical programming for pulse automated NMR experiments

    International Nuclear Information System (INIS)

    Belmonte, S.B.; Oliveira, I.S.; Guimaraes, A.P.

    1999-01-01

    We describe a software program designed to control a broadband pulse Nuclear Magnetic Resonance (NMR) spectrometer used in zero-field NMR studies of magnetic metals. The software is written in the graphical language LabVIEW. This type of programming allows modifications and the inclusion of new routines to be easily made by the non-specialist, without changing the basic structure of the program. The program corrects for differences in the gain of the two acquisition channels [U (phase) and V (quadrature)], and automatic baseline subtraction. We present examples of measurements of NMR spectra, spin-echo decay (T 2 ), and quadrupolar oscillations, performed in magnetic intermetallic compounds. (author)

  9. Effect of ischemic preconditioning in skeletal muscle measured by functional magnetic resonance imaging and spectroscopy: a randomized crossover trial

    Directory of Open Access Journals (Sweden)

    Bartko Johann

    2011-06-01

    Full Text Available Abstract Background Nuclear magnetic resonance (NMR imaging and spectroscopy have been applied to assess skeletal muscle oxidative metabolism. Therefore, in-vivo NMR may enable the characterization of ischemia-reperfusion injury. The goal of this study was to evaluate whether NMR could detect the effects of ischemic preconditioning (IPC in healthy subjects. Methods Twenty-three participants were included in two randomized crossover protocols in which the effects of IPC were measured by NMR and muscle force assessments. Leg ischemia was administered for 20 minutes with or without a subsequent impaired reperfusion for 5 minutes (stenosis model. IPC was administered 4 or 48 hours prior to ischemia. Changes in 31phosphate NMR spectroscopy and blood oxygen level-dependent (BOLD signals were recorded. 3-Tesla NMR data were compared to those obtained for isometric muscular strength. Results The phosphocreatine (PCr signal decreased robustly during ischemia and recovered rapidly during reperfusion. In contrast to PCr, the recovery of muscular strength was slow. During post-ischemic stenosis, PCr increased only slightly. The BOLD signal intensity decreased during ischemia, ischemic exercise and post-ischemic stenosis but increased during hyperemic reperfusion. IPC 4 hours prior to ischemia significantly increased the maximal PCr reperfusion signal and mitigated the peak BOLD signal during reperfusion. Conclusions Ischemic preconditioning positively influenced muscle metabolism during reperfusion; this resulted in an increase in PCr production and higher oxygen consumption, thereby mitigating the peak BOLD signal. In addition, an impairment of energy replenishment during the low-flow reperfusion was detected in this model. Thus, functional NMR is capable of characterizing changes in reperfusion and in therapeutic interventions in vivo. Trial Registration ClinicalTrials.gov: NCT00883467

  10. Novel spin dynamics in ferrimagnetic molecular chains from 1H NMR and μSR spin-lattice relaxation measurements

    International Nuclear Information System (INIS)

    Micotti, E.; Lascialfari, A.; Rigamonti, A.; Aldrovandi, S.; Caneschi, A.; Gatteschi, D.; Bogani, L.

    2004-01-01

    The spin dynamics in the helical chain Co(hfac) 2 NITPhOMe has been investigated by 1 H NMR and μSR relaxation. In the temperature range 15< T<60 K, the results are consistent with the relaxation of the homogeneous magnetization. For T≤15 K, NMR and μSR evidence a second spin relaxation mechanism, undetected by the magnetization measurements. From the analysis of these data, insights on this novel relaxation process are derived

  11. Novel spin dynamics in ferrimagnetic molecular chains from 1H NMR and μSR spin-lattice relaxation measurements

    Science.gov (United States)

    Micotti, E.; Lascialfari, A.; Rigamonti, A.; Aldrovandi, S.; Caneschi, A.; Gatteschi, D.; Bogani, L.

    2004-05-01

    The spin dynamics in the helical chain Co(hfac) 2NITPhOMe has been investigated by 1H NMR and μSR relaxation. In the temperature range 15NMR and μSR evidence a second spin relaxation mechanism, undetected by the magnetization measurements. From the analysis of these data, insights on this novel relaxation process are derived.

  12. Ethylene glycol causes acyl chain disordering in liquid-crystalline, unsaturated phospholipid model membranes, as measured by 2H NMR

    International Nuclear Information System (INIS)

    Nicolay, K.; Kruijff, B. de; Smaal, E.B.

    1986-01-01

    2 H NMR has been used to probe the effects of ethylene glycol at the level of the acyl chains in liposomes prepared from dioleoylphosphatidic acid or dioleoylphosphatidylcholine, labeled with 2 H at the 11-position of both oleic acid chains. Increasing concentrations of ethylene glycol lead to a proportional and substantial decrease in the quadrupolar splittings, measured from the 2 H NMR spectra of both liposomal system, indicative of acyl chain disordering. (Auth.)

  13. Measuring 13Cβ chemical shifts of invisible excited states in proteins by relaxation dispersion NMR spectroscopy

    International Nuclear Information System (INIS)

    Lundstroem, Patrik; Lin Hong; Kay, Lewis E.

    2009-01-01

    A labeling scheme is introduced that facilitates the measurement of accurate 13 C β chemical shifts of invisible, excited states of proteins by relaxation dispersion NMR spectroscopy. The approach makes use of protein over-expression in a strain of E. coli in which the TCA cycle enzyme succinate dehydrogenase is knocked out, leading to the production of samples with high levels of 13 C enrichment (30-40%) at C β side-chain carbon positions for 15 of the amino acids with little 13 C label at positions one bond removed (∼5%). A pair of samples are produced using [1- 13 C]-glucose/NaH 12 CO 3 or [2- 13 C]-glucose as carbon sources with isolated and enriched (>30%) 13 C β positions for 11 and 4 residues, respectively. The efficacy of the labeling procedure is established by NMR spectroscopy. The utility of such samples for measurement of 13 C β chemical shifts of invisible, excited states in exchange with visible, ground conformations is confirmed by relaxation dispersion studies of a protein-ligand binding exchange reaction in which the extracted chemical shift differences from dispersion profiles compare favorably with those obtained directly from measurements on ligand free and fully bound protein samples

  14. Space efficient opposed-anvil high-pressure cell and its application to optical and NMR measurements up to 9 GPa

    International Nuclear Information System (INIS)

    Kitagawa, Kentaro; Gotou, Hirotada; Yagi, Takehiko; Yamada, Atsushi; Matsumoto, Takehiko; Uwatoko, Yoshiya; Takigawa, Masashi

    2010-01-01

    We have developed a new type of opposed-anvil high pressure cell with substantially improved space efficiency. The clamp cell and the gasket are made of non-magnetic Ni-Cr-Al alloy. Non-magnetic tungsten carbide (NMWC) is used for the anvils. The assembled cell with the dimension φ29 mm x 41 mm is capable of generating pressure up to 9 GPa over a relatively large volume of 7 mm 3 . Our cell is particularly suitable for those experiments which require large sample space to achieve good signal-to-noise ratio, such as the nuclear magnetic resonance (NMR) experiment. Argon is used as the pressure transmitting medium to obtain good hydrostaticity. The pressure was calibrated in situ by measuring the fluorescence from ruby through a transparent moissanite (6H-SiC) window. We have measured the pressure and temperature dependences of the 63 Cu nuclear-quadrupole-resonance (NQR) frequency of Cu 2 O, the in-plane Knight shift of metallic tin, and the Knight shift of platinum. These quantities can be used as reliable manometers to determine the pressure values in situ during the NMR/NQR experiments up to 9 GPa. (author)

  15. NMR study of hyper-polarized {sup 129}Xe and applications to liquid-phase NMR experiments; Etude de la resonance magnetique nucleaire du Xenon{sup 129} hyperpolarise et applications en RMN des liquides

    Energy Technology Data Exchange (ETDEWEB)

    Marion, D

    2008-07-15

    In liquid samples where both nuclear polarization and spin density are strong, the magnetization dynamics, which can be analysed by NMR (nuclear magnetic resonance) methods, is deeply influenced by the internal couplings induced by local dipolar fields. The present thesis describes some of the many consequences associated to the presence in the sample of concentrated xenon hyper-polarized by an optical pumping process. First, we deal with the induced modifications in frequency and line width of the proton and xenon spectra, then we present the results of SPIDER, a coherent polarization transfer experiment designed to enhance the polarization of protons, in order to increase their NMR signal level. A third part is dedicated to the description of the apparition of repeated chaotic maser emissions by un unstable xenon magnetization coupled to the detection coil tuned at the xenon Larmor frequency (here 138 MHz). In the last part, we present a new method allowing a better tuning of any NMR detection probe and resulting in sensible gains in terms of sensitivity and signal shaping. Finally, we conclude with a partial questioning of the classical relaxation theory in the specific field of highly polarized and concentrated spin systems in a liquid phase. (author)

  16. A Study on Measurement Variations in Resonant Characteristics of Electrostatically Actuated MEMS Resonators

    Directory of Open Access Journals (Sweden)

    Faisal Iqbal

    2018-04-01

    Full Text Available Microelectromechanical systems (MEMS resonators require fast, accurate, and cost-effective testing for mass production. Among the different test methods, frequency domain analysis is one of the easiest and fastest. This paper presents the measurement uncertainties in electrostatically actuated MEMS resonators, using frequency domain analysis. The influence of the applied driving force was studied to evaluate the measurement variations in resonant characteristics, such as the natural frequency and the quality factor of the resonator. To quantify the measurement results, measurement system analysis (MSA was performed using the analysis of variance (ANOVA method. The results demonstrate that the resonant frequency ( f r is mostly affected by systematic error. However, the quality (Q factor strongly depends on the applied driving force. To reduce the measurement variations in Q factor, experiments were carried out to study the influence of DC and/or AC driving voltages on the resonator. The results reveal that measurement uncertainties in the quality factor were high for a small electrostatic force.

  17. Modeling dendrite density from magnetic resonance diffusion measurements

    DEFF Research Database (Denmark)

    Jespersen, Sune Nørhøj; Kroenke, CD; Østergaard, Leif

    2007-01-01

    in this model: (i) the dendrites and axons, which are modeled as long cylinders with two diffusion coefficients, parallel (DL) and perpendicular (DT) to the cylindrical axis, and (ii) an isotropic monoexponential diffusion component describing water diffusion within and across all other structures, i.......e., in extracellular space and glia cells. The model parameters are estimated from 153 diffusion-weighted images acquired from a formalin-fixed baboon brain. A close correspondence between the data and the signal model is found, with the model parameters consistent with literature values. The model provides......Diffusion-weighted imaging (DWI) provides a noninvasive tool to probe tissue microstructure. We propose a simplified model of neural cytoarchitecture intended to capture the essential features important for water diffusion as measured by NMR. Two components contribute to the NMR signal...

  18. NMR measurement of identical polymer samples by round robin method. 4. Analysis of composition and monomer sequence distribution in poly(methyl methacrylate-co-acrylonitrile) leading to determinations of monomer reactivity ratios

    International Nuclear Information System (INIS)

    Hatada, Koichi; Kitayama, Tatsuki; Terawaki, Yoshio

    1995-01-01

    In order to assess the reliability of NMR measurement of polymers, 1 H and 13 C NMR data for three copolymers of methyl methacrylate (MMA) and acrylonitrile (AN) prepared with AIBN were collected from 46 spectrometers whose resonance frequencies for 1 H NMR measurements ranging from 90 to 500 MHz. 1 H and 13 C NMR spectra were measured in nitrobenzene-d 5 at 110degC and acetonitrile-d 3 at 70degC, respectively. Standard deviations (σ's) for chemical shift measurements of the 1 H and 13 C NMR signals were 0.003-0.008 ppm and 0.03-0.05 ppm, respectively. Compositions of the copolymers were determined from the relative intensities of the signals due to the OCH 3 (MMA) and CH (AN) protons, and the σ values for the determinations were 3.7-9.5%. The compositions determined from 13 C NMR (C = O for MMA unit, CN for AN unit) agreed well with those obtained from 1 H NMR. Monomer reactivity ratios r ij (i,j = 1 or 2) for a penultimate model were determined from monomer feed ratios and triad fractions obtained from the C = O (MMA) and CH (AN) carbon signals. Most of the σ values for r ij determinations were 5-14%. While r 22 and r 12 are nearly equivalent, r 11 and r 21 are significantly different from each other, indicating a possible existence of the penultimate-unit effect in the copolymerization of MMA and AN. Terminal model reactivity ratios, r 1 and r 2 , determined formally from the compositions of three samples by Fineman-Ross method showed large σ values (22-24%). (author)

  19. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA

    Science.gov (United States)

    Mroue, Kamal H.; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA = Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the 1H T1 values were calculated from data collected by 1H spin-inversion recovery method detected in natural-abundance 13C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the 1H T1 values can be successfully reduced by a factor of 3.5 using as low as 10 mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the 13C CPMAS spectra. These results obtained from 13C-detected CPMAS experiments were further confirmed using 1H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans.

  20. Applications of solid-state Nuclear Magnetic Resonance (NMR) in studies of Portland cements-based materials

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Andersen, Morten Daugaard; Jakobsen, Hans Jørgen

    2007-01-01

    Solid-state NMR spectroscopy represents an important research tool in the characterization of a range of structural properties for cement-based materials. Different approaches of the technique can be used to obtain information on hydration kinetics, mobile and bound water, porosity, and local...... atomic structures. After a short introduction to these NMR techniques, it is exemplified how magic-angle spinning (MAS) NMR can provide quantitative and structural information about specific phases in anhydrous and hydrated Portland cements with main emphasis on the incorporation of Al3+ ions...

  1. Magnetic Barkhausen noise measurement by resonant coil method

    Energy Technology Data Exchange (ETDEWEB)

    Capo-Sanchez, J. [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, Av. Patricio Lumumba s/n, 90500 Santiago de Cuba (Cuba)], E-mail: jcapo@usp.br; Padovese, L. [Departamento de Engenharia Mecanica, Escola Politecnica, Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231, 05508-900 Sao Paulo (Brazil)

    2009-09-15

    This paper describes a powerful new technique for nondestructive evaluation of ferromagnetic material. A method has been developed for measuring magnetic Barkhausen signals under different coil resonance frequencies. The measurements allow one to establish the behavior relating the power spectral density maximum and the resonant coil frequency. Time-frequency analysis of Barkhausen signals puts in evidence the tuning regions for each coil, and allows clear identification of each contribution to the Barkhausen signal spectrum. This concept was used in order to evaluate the relation between the degree of plastic deformation in carbon steel samples, and the power spectral density maximum at different resonance frequencies. This result also makes it possible to the selectively modify measurement sensibility to the magnetic Barkhausen signal by using different resonance frequencies.

  2. Probing hydrogen bonds in the antibody-bound HIV-1 gp120 V3 loop by solid state NMR REDOR measurements

    Energy Technology Data Exchange (ETDEWEB)

    Balbach, John J. [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Yang Jun; Weliky, David P. [Michigan State University, Department of Chemistry (United States); Steinbach, Peter J. [National Institutes of Health, Center for Molecular Modeling, Center for Information Technology (United States); Tugarinov, Vitali; Anglister, Jacob [Weizmann Institute of Science, Department of Structural Biology (Israel); Tycko, Robert [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2000-04-15

    We describe solid state NMR measurements on frozen solutions of the complex of the 24-residue HIV-1 gp120 V3 loop peptide RP135 with the Fab fragment of the anti-gp120 antibody 0.5{beta}, using rotational echo double resonance (REDOR). In order to probe possible hydrogen bonding between arginine side chains and glycine backbone carbonyls in the region of the conserved Gly-Pro-Gly-Arg (GPGR) motif of the V3 loop, RP135 samples were prepared with {sup 15}N labels at the {eta} nitrogen positions of arginine side chains and {sup 13}C labels at glycine carbonyl positions and {sup 13}C-detected {sup 13}C-{sup 15}N REDOR measurements were performed on peptide/antibody complexes of these labeled samples. Such hydrogen bonding was previously observed in a crystal structure of the V3 loop peptide/antibody complex RP142/59.1 [Ghiara et al. (1994) Science, 264, 82-85], but is shown by the REDOR measurements to be absent in the RP135/0.5{beta} complex. These results confirm the antibody-dependent conformational differences in the GPGR motif suggested by previously reported solid state NMR measurements of {phi} and {psi} backbone dihedral angles in the RP135/0.5{beta} complex. In addition, we describe REDOR measurements on the helical synthetic peptide MB(i+4)EK in frozen solution that establish our ability to detect {sup 13}C-{sup 15}N dipole-dipole couplings in the distance range appropriate to these hydrogen bonding studies. We also report the results of molecular modeling calculations on the central portion RP135, using a combination of the solid state NMR restraints of Weliky et al. [Nat. Struct. Biol., 6, 141-145, 1999] and the liquid state NMR restraints of Tugarinov et al. (Nat. Struct. Biol., 6, 331-335, 1999]. The dynamics calculations demonstrate the mutual compatibility of the two sets of experimental structural restraints and reduce ambiguities in the solid state NMR restraints that result from symmetry and signal-to-noise considerations.

  3. Probing hydrogen bonds in the antibody-bound HIV-1 gp120 V3 loop by solid state NMR REDOR measurements

    International Nuclear Information System (INIS)

    Balbach, John J.; Yang Jun; Weliky, David P.; Steinbach, Peter J.; Tugarinov, Vitali; Anglister, Jacob; Tycko, Robert

    2000-01-01

    We describe solid state NMR measurements on frozen solutions of the complex of the 24-residue HIV-1 gp120 V3 loop peptide RP135 with the Fab fragment of the anti-gp120 antibody 0.5β, using rotational echo double resonance (REDOR). In order to probe possible hydrogen bonding between arginine side chains and glycine backbone carbonyls in the region of the conserved Gly-Pro-Gly-Arg (GPGR) motif of the V3 loop, RP135 samples were prepared with 15 N labels at the η nitrogen positions of arginine side chains and 13 C labels at glycine carbonyl positions and 13 C-detected 13 C- 15 N REDOR measurements were performed on peptide/antibody complexes of these labeled samples. Such hydrogen bonding was previously observed in a crystal structure of the V3 loop peptide/antibody complex RP142/59.1 [Ghiara et al. (1994) Science, 264, 82-85], but is shown by the REDOR measurements to be absent in the RP135/0.5β complex. These results confirm the antibody-dependent conformational differences in the GPGR motif suggested by previously reported solid state NMR measurements of φ and Ψ backbone dihedral angles in the RP135/0.5β complex. In addition, we describe REDOR measurements on the helical synthetic peptide MB(i+4)EK in frozen solution that establish our ability to detect 13 C- 15 N dipole-dipole couplings in the distance range appropriate to these hydrogen bonding studies. We also report the results of molecular modeling calculations on the central portion RP135, using a combination of the solid state NMR restraints of Weliky et al. [Nat. Struct. Biol., 6, 141-145, 1999] and the liquid state NMR restraints of Tugarinov et al. (Nat. Struct. Biol., 6, 331-335, 1999]. The dynamics calculations demonstrate the mutual compatibility of the two sets of experimental structural restraints and reduce ambiguities in the solid state NMR restraints that result from symmetry and signal-to-noise considerations

  4. Isotopic Resonance Hypothesis: Experimental Verification by Escherichia coli Growth Measurements

    Science.gov (United States)

    Xie, Xueshu; Zubarev, Roman A.

    2015-03-01

    Isotopic composition of reactants affects the rates of chemical and biochemical reactions. As a rule, enrichment of heavy stable isotopes leads to progressively slower reactions. But the recent isotopic resonance hypothesis suggests that the dependence of the reaction rate upon the enrichment degree is not monotonous. Instead, at some ``resonance'' isotopic compositions, the kinetics increases, while at ``off-resonance'' compositions the same reactions progress slower. To test the predictions of this hypothesis for the elements C, H, N and O, we designed a precise (standard error +/-0.05%) experiment that measures the parameters of bacterial growth in minimal media with varying isotopic composition. A number of predicted resonance conditions were tested, with significant enhancements in kinetics discovered at these conditions. The combined statistics extremely strongly supports the validity of the isotopic resonance phenomenon (p biotechnology, medicine, chemistry and other areas.

  5. Self-diffusion measurements in heterogeneous systems using NMR pulsed field gradient technique

    International Nuclear Information System (INIS)

    Heink, W.; Kaerger, J.; Walter, A.

    1978-01-01

    The experimental pecularities of the NMR pulsed field gradient technique are critical surveyed in its application to zeolite adsorbate adsorbent systems. After a presentation of the different transport parameters accessible by this technique, the consequences of the existence of inner field gradients being inherent to heterogeneous systems are analyzed. Experimental conditions and consequences of an application of pulsed field gradients of high intensity which are necessary for the measurement of small intracrystalline self-diffusion coefficients, are discussed. Gradient pulses of 0.15 Tcm -1 with pulse widths of 2 ms maximum and relative deviations of less than 0.01 per mille can be realized. Since for a number of adsorbate adsorbent systems a distinct dependence of the intracrystalline self-diffusion coeffcients on adsorbate concentration is observed, determination of zeolite pore fiiling factor is of considerable importance for the interpretation of the diffusivities obtained. It is demonstrated that also this information can be obtained by NMR technique in a straightforward way with a mean error of less than 5 to 10 %. Applying this new method and using an optimum experimental device as described, pore filling factor dependences of the self-diffusion coefficients of alkanes in NaX zeolites can be followed over more than two orders of magnitude. (author)

  6. Development and evaluation of a method for quantitative flow measurement in tissues by means of NMR-tomography

    International Nuclear Information System (INIS)

    Meindl, S.; Seelen, W. von; Hoffmann, K.P.; Emmert, K.

    1985-01-01

    Apart from the known parameters proton density, T1 and T2 the amplitude of an NMR signal is influenced by the movement of the nuclear spins. In NMR-tomography this leads to significant flow-dependent effects appearing differently in the images. Basing on these influences well-defined flow measurement can be carried out using special tomographic measuring programs. The applied phase encoding methods allow such measurements parallel to conventional imaging. Changes in perfusion of defined brain areas caused by neuronal activity were examined with this technique as well as a 2F-2D-glucose-tracer method. (orig.) With 51 refs., 19 figs [de

  7. Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance

    Science.gov (United States)

    Hockaday, W.C.; Masiello, C.A.; Randerson, J.T.; Smernik, R.J.; Baldock, J.A.; Chadwick, O.A.; Harden, J.W.

    2009-01-01

    The oxidative ratio (OR) of the net ecosystem carbon balance is the ratio of net O2 and CO2 fluxes resulting from photosynthesis, respiration, decomposition, and other lateral and vertical carbon flows. The OR of the terrestrial biosphere must be well characterized to accurately estimate the terrestrial CO2 sink using atmospheric measurements of changing O2 and CO2 levels. To estimate the OR of the terrestrial biosphere, measurements are needed of changes in the OR of aboveground and belowground carbon pools associated with decadal timescale disturbances (e.g., land use change and fire). The OR of aboveground pools can be measured using conventional approaches including elemental analysis. However, measuring the OR of soil carbon pools is technically challenging, and few soil OR data are available. In this paper we test three solid-state nuclear magnetic resonance (NMR) techniques for measuring soil OR, all based on measurements of the closely related parameter, organic carbon oxidation state (Cox). Two of the three techniques make use of a molecular mixing model which converts NMR spectra into concentrations of a standard suite of biological molecules of known C ox. The third technique assigns Cox values to each peak in the NMR spectrum. We assess error associated with each technique using pure chemical compounds and plant biomass standards whose Cox and OR values can be directly measured by elemental analyses. The most accurate technique, direct polarization solid-state 13C NMR with the molecular mixing model, agrees with elemental analyses to ??0.036 Cox units (??0.009 OR units). Using this technique, we show a large natural variability in soil Cox and OR values. Soil Cox values have a mean of -0.26 and a range from -0.45 to 0.30, corresponding to OR values of 1.08 ?? 0.06 and a range from 0.96 to 1.22. We also estimate the OR of the carbon flux from a boreal forest fire. Analysis of soils from nearby intact soil profiles imply that soil carbon losses associated

  8. Hyphenation of solid-phase extraction with liquid chromatography and nuclear magnetic resonance: application of HPLC-DAD-SPE-NMR to identification of constituents of Kanahia laniflora.

    Science.gov (United States)

    Clarkson, Cailean; Staerk, Dan; Hansen, Steen Honoré; Jaroszewski, Jerzy W

    2005-06-01

    The introduction of on-line solid-phase extraction (SPE) in HPLC-NMR has dramatically enhanced the sensitivity of this technique by concentration of the analytes in a small-volume NMR flow cell and by increasing the amount of the analyte by multiple peak trapping. In this study, the potential of HPLC-DAD-SPE-NMR hyphenation was demonstrated by structure determination of complex constituents of flower, leaf, root, and stem extracts of an African medicinal plant Kanahia laniflora. The technique was shown to allow acquisition of high-quality homo- and heteronuclear 2D NMR data following analytical-scale HPLC separation of extract constituents. Four flavonol glycosides [kaempferol 3-O-(6-O-alpha-l-rhamnopyranosyl)-beta-d-glucopyranoside; kaempferol 3-O-(2,6-di-O-alpha-l-rhamnopyranosyl)-beta-d-glucopyranoside; quercetin 3-O-(2,6-di-O-alpha-l-rhamnopyranosyl)-beta-d-glucopyranoside (rutin); and isorhamnetin, 3-O-(6-O-alpha-l-rhamnopyranosyl)-beta-d-glucopyranoside] and three 5alpha-cardenolides [coroglaucigenin 3-O-6-deoxy-beta-d-allopyranoside; coroglaucigenin 3-O-(4-O-beta-d-glucopyranosyl)-6-deoxy-beta-d-glucopyranoside; 3'-O-acetyl-3'-epiafroside] were identified, with complete assignments of 1H and 13C resonances based on HSQC and HMBC spectra whenever required. Confirmation of the structures was provided by HPLC-MS data. The HPLC-DAD-SPE-NMR technique therefore speeds up the dereplication of complex mixtures of natural origin significantly, by characterization of individual extract components prior to preparative isolation work.

  9. 2H{ 19F} REDOR for distance measurements in biological solids using a double resonance spectrometer

    Science.gov (United States)

    Grage, Stephan L.; Watts, Jude A.; Watts, Anthony

    2004-01-01

    A new approach for distance measurements in biological solids employing 2H{ 19F} rotational echo double resonance was developed and validated on 2H, 19F- D-alanine and an imidazopyridine based inhibitor of the gastric H +/K +-ATPase. The 2H- 19F double resonance experiments presented here were performed without 1H decoupling using a double resonance NMR spectrometer. In this way, it was possible to benefit from the relatively longer distance range of fluorine without the need of specialized fluorine equipment. A distance of 2.5 ± 0.3 Å was measured in the alanine derivative, indicating a gauche conformation of the two labels. In the case of the imidazopyridine compound a lower distance limit of 5.2 Å was determined and is in agreement with an extended conformation of the inhibitor. Several REDOR variants were compared, and their advantages and limitations discussed. Composite fluorine dephasing pulses were found to enhance the frequency bandwidth significantly, and to reduce the dependence of the performance of the experiment on the exact choice of the transmitter frequency.

  10. Nuclear Magnetic Resonance (NMR Study for the Detection and Quantitation of Cholesterol in HSV529 Therapeutic Vaccine Candidate

    Directory of Open Access Journals (Sweden)

    Rahima Khatun

    Full Text Available This study describes the NMR-based method to determine the limit of quantitation (LOQ and limit of detection (LOD of cholesterol, a process-related impurity in the replication-deficient Herpes Simplex Virus (HSV type 2 candidate vaccine HSV529. Three signature peaks from the 1D 1H NMR of a cholesterol reference spectrum were selected for the identification of cholesterol. The LOQ for a cholesterol working standard was found to be 1 μg/mL, and the LOD was found to be 0.1 μg/mL. The identity of cholesterol, separated from the formulation of growth supplement by thin layer chromatography (TLC, was confirmed by 1D 1H NMR and 2D 1H-13C HSQC NMR. The three signature peaks of cholesterol were detected only in a six-times concentrated sample of HSV529 candidate vaccine sample and not in the single dose HSV529 vaccine sample under similar experimental conditions. Taken together, the results demonstrated that NMR is a direct method that can successfully identify and quantify cholesterol in viral vaccine samples, such as HSV529, and as well as in the growth supplement used during the upstream stages of HSV529 manufacturing. Keywords: Herpes simplex virus type 2 (HSV-2, Viral vaccine, NMR, Residuals, LOD and LOQ, TLC, Growth supplement

  11. NMR measurements in milled RE-TM2 compounds (RE=Gd and TM=Co, Fe)

    International Nuclear Information System (INIS)

    Tribuzy, C.V.; Guimaraes, A.P.; Biondo, A.; Larica, C.; Alves, K.M.B.

    1996-09-01

    Milled samples of the Laves phase intermetallic compounds Gd Fe 2 and Gd CO 2 were measured by NMR at 4.2 K. The milling was made from the crystalline intermetallic compounds, inside a cylindrical tool made of hard steel, under argon atmosphere, for several different time intervals. The initial compounds were produced from high purity elements in an arc furnace, under inert atmosphere. Their X-ray diffraction patterns agreed with those of the literature. The milling of Gd Fe 2 and of Gd CO 2 , induces amorphization. Above 1 hour the milling of Gd Fe 2 leads to segregation of α-Fe and formation of a Gd-Fe phase. These results are shown in the X-ray analysis. The spin-echo pulse NMR technique was utilized to study some structural and magnetic as a function of milling time. The measurements were made in a broad band pulse NMR spectrometer. The NMR spectra of the 155 Gd 157 Gd isotopes in Gd Fe 2 show a broadening and displacement of the NMR lines, reflecting the introduction of defects, some kind of disorder and also the formation of a new Gd-rich phase after 1 hour. This result is in agreement with the X-ray spectra. In both systems, the spectra of the amorphous samples show broader lines, and the measured hyperfine fields do not change much with milling. (author). 9 refs., 4 figs

  12. NMR for chemists and biologists

    CERN Document Server

    Carbajo, Rodrigo J

    2013-01-01

    This book offers a concise introduction to the field of nuclear magnetic resonance or NMR. It presents the basic foundations of NMR in a non-mathematical way and provides an overview of both recent and important biological applications of NMR.

  13. Advances in magnetic resonance 6

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 6 focuses on the theoretical and practical aspects of applying magnetic resonance methods to various problems in physical chemistry, emphasizing the different aspects of the exegesis of these problems. This book discusses the gas phase magnetic resonance of electronically excited molecules; techniques for observing excited electronic states; NMR studies in liquids at high pressure; and effect of pressure on self-diffusion in liquids. The nuclear magnetic resonance investigations of organic free radicals; measurement of proton coupling constants by NMR; an

  14. Hadronic resonance production measured with the ALICE detector

    CERN Document Server

    Dash, Ajay

    2015-01-01

    Hadronic resonances serve as a unique tool to study the properties of hot and dense matter pro- duced in heavy-ion collisions. These properties can be studied by measuring the ratios of hadronic resonance yields to the yields of longer-lived hadrons which can be used to investigate the re- scattering effects and the chemical freeze-out temperature. Resonance measurements in pp and p–Pb collisions provide a necessary baseline for heavy-ion data and help to disentangle the initial- state effects from medium-induced effects. The ALICE Collaboration has measured resonances such as, K ∗ (892) 0 and φ (1020) in pp, p–Pb, and Pb–Pb collisions at the LHC energies. These resonances are reconstructed via their hadronic decay channel in a wide momentum range at midrapidity. In this work, we present recent results on the transverse momentum spectra, mean transverse momentum, ratios of resonance production relative to that of long-lived hadrons.

  15. 1H CSA parameters by ultrafast MAS NMR: Measurement and applications to structure refinement.

    Science.gov (United States)

    Miah, Habeeba K; Cresswell, Rosalie; Iuga, Dinu; Titman, Jeremy J

    2017-10-01

    A 1 H anisotropic-isotropic chemical shift correlation experiment which employs symmetry-based recoupling sequences to reintroduce the chemical shift anisotropy in ν 1 and ultrafast MAS to resolve 1 H sites in ν 2 is described. This experiment is used to measure 1 H shift parameters for L-ascorbic acid, a compound with a relatively complex hydrogen-bonding network in the solid. The 1 H CSAs of hydrogen-bonded sites with resolved isotropic shifts can be extracted directly from the recoupled lineshapes. In combination with DFT calculations, hydrogen positions in crystal structures obtained from X-ray and neutron diffraction are refined by comparison with simulations of the full two-dimensional NMR spectrum. The improved resolution afforded by the second dimension allows even unresolved hydrogen-bonded sites 1 H to be assigned and their shift parameters to be obtained. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Measurement and Characterization of Hydrogen-Deuterium Exchange Chemistry Using Relaxation Dispersion NMR Spectroscopy.

    Science.gov (United States)

    Khirich, Gennady; Holliday, Michael J; Lin, Jasper C; Nandy, Aditya

    2018-03-01

    One-dimensional heteronuclear relaxation dispersion NMR spectroscopy at 13 C natural abundance successfully characterized the dynamics of the hydrogen-deuterium exchange reaction occurring at the N ε position in l-arginine by monitoring C δ in varying amounts of D 2 O. A small equilibrium isotope effect was observed and quantified, corresponding to ΔG = -0.14 kcal mol -1 . A bimolecular rate constant of k D = 5.1 × 10 9 s -1 M -1 was determined from the pH*-dependence of k ex (where pH* is the direct electrode reading of pH in 10% D 2 O and k ex is the nuclear spin exchange rate constant), consistent with diffusion-controlled kinetics. The measurement of ΔG serves to bridge the millisecond time scale lifetimes of the detectable positively charged arginine species with the nanosecond time scale lifetime of the nonobservable low-populated neutral arginine intermediate species, thus allowing for characterization of the equilibrium lifetimes of the various arginine species in solution as a function of fractional solvent deuterium content. Despite the system being in fast exchange on the chemical shift time scale, the magnitude of the secondary isotope shift due to the exchange reaction at N ε was accurately measured to be 0.12 ppm directly from curve-fitting D 2 O-dependent dispersion data collected at a single static field strength. These results indicate that relaxation dispersion NMR spectroscopy is a robust and general method for studying base-catalyzed hydrogen-deuterium exchange chemistry at equilibrium.

  17. Measuring the Popular Resonance of Daesh’s Propoganda

    Directory of Open Access Journals (Sweden)

    William Marcellino

    2017-03-01

    Full Text Available We describe an innovative approach to social media analysis, combining corpus linguists and statistical methods to measure the resonance of Daesh's propaganda to a sample population (Eqypt. The findings from this research effort demonstrate that: (1 Daesh's messaging is measurable and distinct from other Salafi groups, such as the Egyptian Muslim Brotherhood; (2 while Daesh’s messaging generally do not resonate with Egyptians, its uptake increased in Upper Egypt and the Sinai regions during 2014; and (3 this method can be applied more broadly to measure the spread of violent extremist messaging across regional populations over time.

  18. Restricted lithium ion dynamics in PEO-based block copolymer electrolytes measured by high-field nuclear magnetic resonance relaxation

    Science.gov (United States)

    Huynh, Tan Vu; Messinger, Robert J.; Sarou-Kanian, Vincent; Fayon, Franck; Bouchet, Renaud; Deschamps, Michaël

    2017-10-01

    The intrinsic ionic conductivity of polyethylene oxide (PEO)-based block copolymer electrolytes is often assumed to be identical to the conductivity of the PEO homopolymer. Here, we use high-field 7Li nuclear magnetic resonance (NMR) relaxation and pulsed-field-gradient (PFG) NMR diffusion measurements to probe lithium ion dynamics over nanosecond and millisecond time scales in PEO and polystyrene (PS)-b-PEO-b-PS electrolytes containing the lithium salt LiTFSI. Variable-temperature longitudinal (T1) and transverse (T2) 7Li NMR relaxation rates were acquired at three magnetic field strengths and quantitatively analyzed for the first time at such fields, enabling us to distinguish two characteristic time scales that describe fluctuations of the 7Li nuclear electric quadrupolar interaction. Fast lithium motions [up to O (ns)] are essentially identical between the two polymer electrolytes, including sub-nanosecond vibrations and local fluctuations of the coordination polyhedra between lithium and nearby oxygen atoms. However, lithium dynamics over longer time scales [O (10 ns) and greater] are slower in the block copolymer compared to the homopolymer, as manifested experimentally by their different transverse 7Li NMR relaxation rates. Restricted dynamics and altered thermodynamic behavior of PEO chains anchored near PS domains likely explain these results.

  19. Differential interferometer for measurement of displacement of laser resonator mirrors

    Science.gov (United States)

    Macúchová, Karolina; Němcová, Šárka; Hošek, Jan

    2015-01-01

    This paper covers a description and a technique of a possible optical method of mode locking within a laser resonator. The measurement system is a part of instrumentation of laser-based experiment OSQAR at CERN. The OSQAR experiment aims at search of axions, axion-like particles and measuring of ultra-fine vacuum magnetic birefringence. It uses a laser resonator to enhance the coupling constant of hypothetical photon-to-axion conversion. The developed locking-in technique is based on differential interferometry. Signal obtained from the measurement provide crucial information for adaptive control of the locking-in of the resonator in real time. In this paper we propose several optical setups used for measurement and analysis of mutual position of the resonator mirrors. We have set up a differential interferometer under our laboratory conditions. We have done measurements with hemi-spherical cavity resonator detuned with piezo crystals. The measurement was set up in a single plane. Laser light was directed through half-wave retarder to a polarizing beam splitter and then converted to circular polarization by lambda/4 plates. After reflection at the mirrors, the beam is recombined in a beam splitter, sent to analyser and non-polarizing beam splitter and then inspected by two detectors with mutually perpendicular polarizers. The 90 degrees phase shift between the two arms allows precise analysis of a mutual distance change of the mirrors. Because our setup was sufficiently stable, we were able to measure the piezo constant and piezo hysteresis. The final goal is to adapt the first prototype to 23 m resonator and measure the displacement in two planes.

  20. Metabolic fingerprinting of joint tissue of collagen-induced arthritis (CIA) rat: In vitro, high resolution NMR (nuclear magnetic resonance) spectroscopy based analysis.

    Science.gov (United States)

    Srivastava, Niraj Kumar; Sharma, Shikha; Sharma, Rajkumar; Sinha, Neeraj; Mandal, Sudhir Kumar; Sharma, Deepak

    2018-01-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease whose major characteristics persistent joint inflammation that results in joint destruction and failure of the function. Collagen-induced arthritis (CIA) rat is an autoimmune disease model and in many ways shares features with RA. The CIA is associated with systemic manifestations, including alterations in the metabolism. Nuclear magnetic resonance (NMR) spectroscopy-based metabolomics has been successfully applied to the perchloric acid extract of the joint tissue of CIA rat and control rat for the analysis of aqueous metabolites. GPC (Glycerophosphocholine), carnitine, acetate, and creatinine were important discriminators of CIA rats as compared to control rats. Level of lactate (significance; p = 0.004), alanine (p = 0.025), BCA (Branched-chain amino acids) (p = 0.006) and creatinine (p = 0.023) was significantly higher in CIA rats as compared to control rats. Choline (p = 0.038) and GPC (p = 0.009) were significantly reduced in CIA rats as compared to control rats. Choline to GPC correlation was good and negative (Pearson correlation = -0.63) for CIA rats as well as for control rats (Pearson correlation = -0.79). All these analyses collectively considered as metabolic fingerprinting of the joint tissue of CIA rat as compared to control rat. The metabolic fingerprinting of joint tissue of CIA rats was different as compared to control rats. The metabolic fingerprinting reflects inflammatory disease activity in CIA rats with synovitis, demonstrating that underlying inflammatory process drives significant changes in metabolism that can be measured in the joint tissue. Therefore, the outcome of this study may be helpful for understanding the mechanism of metabolic processes in RA. This may be also helpful for the development of advanced diagnostic methods and therapy for RA.

  1. Effect of ecosystem type and fire on chemistry of WEOM as measured by LDI-TOF-MS and NMR.

    Science.gov (United States)

    Crecelius, Anna C; Vitz, Jürgen; Näthe, Kerstin; Meyer, Stefanie; Michalzik, Beate; Schubert, Ulrich S

    2017-01-01

    Soil organic matter (SOM) and its water-soluble components play an important role in terrestrial carbon cycling and associated ecosystem functions. Chemically, they are complex mixtures of organic compounds derived from decomposing plant material, microbial residues, as well as root exudates, and soil biota. To test the effect of the ecosystem type (forest and grassland) and fires events on the chemistry of dissolved organic matter (DOM), we applied a combination of laser-desorption/ionization time-of-flight mass spectrometry (LDI-TOF-MS) and 2D ( 1 H and 13 C) nuclear magnetic resonance (NMR) spectroscopy to water-extractable organic matter (WEOM) from a range of top soil samples. The aim was to assess the suitability of LDI-TOF-MS for the rapid characterization of WEOM. Therefore, we evaluated the effects of sample (pH and dilution) conditions and use of positive or negative reflector mode to identify the conditions under which LDI-TOF-MS best distinguished between WEOM from different sources. Thirty-six samples were measured with both analytical techniques and their chemical patterns were statistically evaluated to distinguish firstly the effect of the type of ecosystem (forest versus grassland) on WEOM characteristics, and secondly the impact of fire on the chemical composition of WEOM. The nonmetric multidimensional scaling (NMDS) analysis of the most suitable experimental LDI-TOF-MS conditions showed a clear separation between the type of vegetation and fire-induced changes, mostly reflecting the presence of poly(ethylene glycol) in grassland soils. Discrimination among WEOM from different vegetation types was preserved in the fire treated samples. The calculation of the relative abundance of certain functional structures in the WEOM samples revealed a common composition of forest and grassland WEOM, with polysaccharides and proteins making up to 60%. The compositional impact of forest fire on WEOM was more pronounced compared to the one of grassland, leading

  2. A transportable magnetic resonance imaging system for in situ measurements of living trees: the Tree Hugger.

    Science.gov (United States)

    Jones, M; Aptaker, P S; Cox, J; Gardiner, B A; McDonald, P J

    2012-05-01

    This paper presents the design of the 'Tree Hugger', an open access, transportable, 1.1 MHz (1)H nuclear magnetic resonance imaging system for the in situ analysis of living trees in the forest. A unique construction employing NdFeB blocks embedded in a reinforced carbon fibre frame is used to achieve access up to 210 mm and to allow the magnet to be transported. The magnet weighs 55 kg. The feasibility of imaging living trees in situ using the 'Tree Hugger' is demonstrated. Correlations are drawn between NMR/MRI measurements and other indicators such as relative humidity, soil moisture and net solar radiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. A novel NMR-based assay to measure circulating concentrations of branched-chain amino acids: Elevation in subjects with type 2 diabetes mellitus and association with carotid intima media thickness.

    Science.gov (United States)

    Wolak-Dinsmore, Justyna; Gruppen, Eke G; Shalaurova, Irina; Matyus, Steven P; Grant, Russell P; Gegen, Ray; Bakker, Stephan J L; Otvos, James D; Connelly, Margery A; Dullaart, Robin P F

    2018-04-01

    Plasma branched-chain amino acid (BCAA) levels, measured on nuclear magnetic resonance (NMR) metabolomics research platforms or by mass spectrometry, have been shown to be associated with type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). We developed a new test for quantification of BCAA on a clinical NMR analyzer and used this test to determine the clinical correlates of BCAA in 2 independent cohorts. The performance of the NMR-based BCAA assay was evaluated. A method comparison study was performed with mass spectrometry (LC-MS/MS). Plasma BCAA were measured in the Insulin Resistance Atherosclerosis Study (IRAS, n = 1209; 376 T2DM subjects) and in a Groningen cohort (n = 123; 67 T2DM subjects). In addition, carotid intima media thickness (cIMT) was measured successfully in 119 subjects from the Groningen cohort. NMR-based BCAA assay results were linear over a range of concentrations. Coefficients of variation for inter- and intra-assay precision ranged from 1.8-6.0, 1.7-5.4, 4.4-9.1, and 8.8-21.3%, for total BCAA, valine, leucine, and isoleucine, respectively. BCAA quantified from the same samples using NMR and LC-MS/MS were highly correlated (R 2  = 0.97, 0.95 and 0.90 for valine, leucine and isoleucine). In both cohorts total and individual BCAA were elevated in T2DM (P = 0.01 to ≤0.001). Moreover, cIMT was associated with BCAA independent of age, sex, T2DM and metabolic syndrome (MetS) categorization or alternatively of individual MetS components. BCAA levels, measured by NMR in the clinical laboratory, are elevated in T2DM and may be associated with cIMT, a proxy of subclinical atherosclerosis. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Measurement of the Z boson resonance parameters

    International Nuclear Information System (INIS)

    Feldman, G.J.

    1989-11-01

    Using the Mark II detector at the SLC, we measure the Z mass and width to be 91.17 ± 0.18 GeV/c 2 and 1.95 +0. 40 -0.30 GeV, respectively. From a fit in which the visible Z width is constrained to its Standard Model value, the number of neutrino species is determined to be 3.0 ± or <4.4 at the 95% confidence level. 13 refs., 20 figs., 4 tabs

  5. Radionuclide measurements using resonantly enhanced collisional ionization

    International Nuclear Information System (INIS)

    Whitaker, T.J.; Bushaw, B.A.; Gerke, G.K.

    1987-01-01

    This report describes development of a laser-enhanced collisional ionization method for direct radionuclide measurements that are independent of radioactive decay. The technique uses two nitrogen-laser-pumped dye lasers to selectively excite the target isotope to an electronic state near the ionization threshold. The excited actinide atoms then undergo collisions with a buffer gas and are efficiently ionized. The resulting ions can be detected by conventional methods. The attributes of this approach include highly sensitive isotope analysis with relatively inexpensive lasers and a simple vacuum system. 9 refs., 3 figs

  6. Biosynthetic origin of acetic acid using SNIF-NMR; Determinacao da origem biossintetica de acido acetico atraves da tecnica 'Site Specific Natural Isotopic Fractionation Studied by Nuclear Magnetic Resonance (SNIF-NMR)'

    Energy Technology Data Exchange (ETDEWEB)

    Boffo, Elisangela Fabiana; Ferreira, Antonio Gilberto [Sao Carlos Univ., SP (Brazil). Dept. de Quimica

    2006-05-15

    The main purpose of this work is to describe the use of the technique Site-Specific Natural Isotopic Fractionation of hydrogen (SNIF-NMR), using {sup 2}H and {sup 1}H NMR spectroscopy, to investigate the biosynthetic origin of acetic acid in commercial samples of Brazilian vinegar. This method is based on the deuterium to hydrogen ratio at a specific position (methyl group) of acetic acitained by fermentation, through different biosynthetic mechanisms, which result in different isotopic ratios. We measured the isotopic ratio of vinegars obtained through C{sub 3}, C{sub 4}, and CAM biosynthetic mechanisms, blends of C{sub 3} and C{sub 4} (agrins) and synthetic acetic acid. (author)

  7. A general assignment method for oriented sample (OS) solid-state NMR of proteins based on the correlation of resonances through heteronuclear dipolar couplings in samples aligned parallel and perpendicular to the magnetic field.

    Science.gov (United States)

    Lu, George J; Son, Woo Sung; Opella, Stanley J

    2011-04-01

    A general method for assigning oriented sample (OS) solid-state NMR spectra of proteins is demonstrated. In principle, this method requires only a single sample of a uniformly ¹⁵N-labeled membrane protein in magnetically aligned bilayers, and a previously assigned isotropic chemical shift spectrum obtained either from solution NMR on micelle or isotropic bicelle samples or from magic angle spinning (MAS) solid-state NMR on unoriented proteoliposomes. The sequential isotropic resonance assignments are transferred to the OS solid-state NMR spectra of aligned samples by correlating signals from the same residue observed in protein-containing bilayers aligned with their normals parallel and perpendicular to the magnetic field. The underlying principle is that the resonances from the same residue have heteronuclear dipolar couplings that differ by exactly a factor of two between parallel and perpendicular alignments. The method is demonstrated on the membrane-bound form of Pf1 coat protein in phospholipid bilayers, whose assignments have been previously made using an earlier generation of methods that relied on the preparation of many selectively labeled (by residue type) samples. The new method provides the correct resonance assignments using only a single uniformly ¹⁵N-labeled sample, two solid-state NMR spectra, and a previously assigned isotropic spectrum. Significantly, this approach is equally applicable to residues in alpha helices, beta sheets, loops, and any other elements of tertiary structure. Moreover, the strategy bridges between OS solid-state NMR of aligned samples and solution NMR or MAS solid-state NMR of unoriented samples. In combination with the development of complementary experimental methods, it provides a step towards unifying these apparently different NMR approaches. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Measuring diffusion-relaxation correlation maps using non-uniform field gradients of single-sided NMR devices.

    Science.gov (United States)

    Nogueira d'Eurydice, Marcel; Galvosas, Petrik

    2014-11-01

    Single-sided NMR systems are becoming a relevant tool in industry and laboratory environments due to their low cost, low maintenance and capacity to evaluate quantity and quality of hydrogen based materials. The performance of such devices has improved significantly over the last decade, providing increased field homogeneity, field strength and even controlled static field gradients. For a class of these devices, the configuration of the permanent magnets provides a linear variation of the magnetic field and can be used in diffusion measurements. However, magnet design depends directly on its application and, according to the purpose, the field homogeneity may significantly be compromised. This may prevent the determination of diffusion properties of fluids based on the natural inhomogeneity of the field using known techniques. This work introduces a new approach that extends the applicability of diffusion-editing CPMG experiments to NMR devices with highly inhomogeneous magnetic fields, which do not vary linearly in space. Herein, we propose a method to determine a custom diffusion kernel based on the gradient distribution, which can be seen as a signature of each NMR device. This new diffusion kernel is then utilised in the 2D inverse Laplace transform (2D ILT) in order to determine diffusion-relaxation correlation maps of homogeneous multi-phasic fluids. The experiments were performed using NMR MObile Lateral Explore (MOLE), which is a single-sided NMR device designed to maximise the volume at the sweet spot with enhanced depth penetration. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Measurements of the longitudinal nuclear magnetic resonance in superfluid helium-3 B as a function of magnetic field

    International Nuclear Information System (INIS)

    Sherrill, D.S.

    1987-01-01

    These are the first measurements of the longitudinal NMR mode in a magnetic field large enough to cause an appreciable distortion of the energy gap. Measurements were made at pressures P = 3, 6, 12, 21, and 33 bar; at fields from 2 to 15 MHz; and over temperatures between 0.18 and 0.40 T/sub c/(P), where T/sub c/(P) is the superfluid transition temperature. Therefore, these experiments are in the collisionless regime in which the longitudinal resonance frequency is small compared to the quasiparticle collision frequency. The gap distortion causes a large shift in the longitudinal frequency. As the magnetic field increases from 2 to 15 MHz, the frequency decreases by about 20 kHz at all pressures. Thus, these experiments are a powerful probe of the field distortion of the energy gap. Pulsed NMR is used and, in addition to the resonance frequency, the amplitude and damping of the induced oscillations were obtained. Results are compared for the longitudinal frequency as a function of field, temperature, and pressure to a recent theory, and estimates of the theoretical parameters involved were obtained. At the lowest temperatures a startling behavior was observed, in which the resonance lineshape broadened with decreasing temperature

  10. Measurement of the Z Resonance Parameters at LEP

    CERN Document Server

    Barate, R; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Merle, E; Minard, M N; Pietrzyk, B; Alemany, R; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Orteu, S; Pacheco, A; Park, I C; Perlas, J A; Riu, I; Sánchez, F; Colaleo, A; Creanza, D; De Palma, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Bazarko, A; Becker, U; Boix, G; Bird, F; Blucher, E; Bonvicini, G; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Ciulli, V; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Greening, T C; Hagelberg, R; Halley, A W; Hansen, J B; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Knobloch, J; Lazeyras, Pierre; Lehraus, Ivan; Maley, P; Mato, P; May, J; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Schmitt, M; Schneider, O; Spagnolo, P; Tejessy, W; Teubert, F; Tomalin, I R; Tournefier, E; Veenhof, R; Wiedenmann, W; Wright, A E; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Bertelsen, H; Fernley, T; Hansen, F; Hansen, J D; Hansen, J R; Hansen, P H; Lindahl, A; Møllerud, R; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Rougé, A; Rumpf, M; Swynghedauw, M; Tanaka, R; Verderi, M; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Cavanaugh, R J; Corden, M; Georgiopoulos, C H; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Picchi, P; Colrain, P; ten Have, I; Hughes, I S; Knowles, I G; Lynch, J G; Morton, W T; Raine, C; Reeves, P; O'Shea, V; Scarr, J M; Smith, K; Thompson, A S; Turnbull, R M; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Marinelli, N; Nash, J; Sciabà, A; Sedgbeer, J K; Thomson, E; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Buck, P G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Keemer, N R; Robertson, N A; Sloan, Terence; Snow, S W; Williams, M I; Bauerdick, L A T; Van Gemmeren, P; Giehl, I; Jakobs, K; Kasemann, M; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Schmelling, M; Wachsmuth, H W; Wanke, R; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Carr, J; Coyle, P; Etienne, F; Motsch, F; Payre, P; Rousseau, D; Talby, M; Thulasidas, M; Aleppo, M; Antonelli, M; Ragusa, F; Büscher, V; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wolf, G; Azzurri, P; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Le Diberder, F R; Lefrançois, J; Lutz, A M; Schune, M H; Veillet, J J; Videau, I; Zerwas, D; Bagliesi, G; Bettarini, S; Boccali, T; Bozzi, C; Calderini, G; Dell'Orso, R; Fantechi, R; Ferrante, I; Fidecaro, F; Foà, L; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sguazzoni, G; Steinberger, Jack; Tenchini, Roberto; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Cowan, G D; Green, M G; Medcalf, T; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Edwards, M; Haywood, S J; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Vallage, B; Black, S N; Dann, J H; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Cartwright, S L; Combley, F; Lehto, M H; Thompson, L F; Affholderbach, K; Barberio, E; Böhrer, A; Brandt, S; Burkhardt, H; Feigl, E; Grupen, Claus; Hess, J; Lutters, G; Meinhard, H; Minguet-Rodríguez, J A; Mirabito, L; Misiejuk, A; Neugebauer, E; Prange, G; Rivera, F; Saraiva, P; Schäfer, U; Sieler, U; Smolik, L; Stephan, F; Trier, H; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pitis, L; Kim, H; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Cinabro, D; Conway, J S; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; Jin, S; Johnson, R P; Kile, J; McNamara, P A; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Sharma, V; Walsh, A M; Walsh, J; Wear, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    2000-01-01

    The properties of the Z resonance are measured from the analysis of 4.5 million Z decays into fermion pairs collected with the \\Aleph\\ detector at L EP. The data are consistent with lepton universality. The resonance parameters are measured to be $\\MZ=(91.1885 \\pm 0.0031)~\\Gevcc$, $\\GZ= (2.4951 \\pm 0.0043)~\\GeV$, $\\spol=(41.559 \\pm 0.058)$~nb and, combining the three lepton flavours $\\Rl= 20.725\\pm 0.039$. The corresponding number of light neutrino species is $N_{\

  11. EZ-ASSIGN, a program for exhaustive NMR chemical shift assignments of large proteins from complete or incomplete triple-resonance data

    Energy Technology Data Exchange (ETDEWEB)

    Zuiderweg, Erik R. P., E-mail: zuiderwe@umich.edu; Bagai, Ireena [The University of Michigan Medical School, Department of Biological Chemistry (United States); Rossi, Paolo [Rutgers University, Center for Integrative Proteomics Research (United States); Bertelsen, Eric B. [Arbor Communications, Inc. (United States)

    2013-10-15

    For several of the proteins in the BioMagResBank larger than 200 residues, 60 % or fewer of the backbone resonances were assigned. But how reliable are those assignments? In contrast to complete assignments, where it is possible to check whether every triple-resonance Generalized Spin System (GSS) is assigned once and only once, with incomplete data one should compare all possible assignments and pick the best one. But that is not feasible: For example, for 200 residues and an incomplete set of 100 GSS, there are 1.6 Multiplication-Sign 10{sup 260} possible assignments. In 'EZ-ASSIGN', the protein sequence is divided in smaller unique fragments. Combined with intelligent search approaches, an exhaustive comparison of all possible assignments is now feasible using a laptop computer. The program was tested with experimental data of a 388-residue domain of the Hsp70 chaperone protein DnaK and for a 351-residue domain of a type III secretion ATPase. EZ-ASSIGN reproduced the hand assignments. It did slightly better than the computer program PINE (Bahrami et al. in PLoS Comput Biol 5(3):e1000307, 2009) and significantly outperformed SAGA (Crippen et al. in J Biomol NMR 46:281-298, 2010), AUTOASSIGN (Zimmerman et al. in J Mol Biol 269:592-610, 1997), and IBIS (Hyberts and Wagner in J Biomol NMR 26:335-344, 2003). Next, EZ-ASSIGN was used to investigate how well NMR data of decreasing completeness can be assigned. We found that the program could confidently assign fragments in very incomplete data. Here, EZ-ASSIGN dramatically outperformed all the other assignment programs tested.

  12. EZ-ASSIGN, a program for exhaustive NMR chemical shift assignments of large proteins from complete or incomplete triple-resonance data

    International Nuclear Information System (INIS)

    Zuiderweg, Erik R. P.; Bagai, Ireena; Rossi, Paolo; Bertelsen, Eric B.

    2013-01-01

    For several of the proteins in the BioMagResBank larger than 200 residues, 60 % or fewer of the backbone resonances were assigned. But how reliable are those assignments? In contrast to complete assignments, where it is possible to check whether every triple-resonance Generalized Spin System (GSS) is assigned once and only once, with incomplete data one should compare all possible assignments and pick the best one. But that is not feasible: For example, for 200 residues and an incomplete set of 100 GSS, there are 1.6 × 10 260 possible assignments. In “EZ-ASSIGN”, the protein sequence is divided in smaller unique fragments. Combined with intelligent search approaches, an exhaustive comparison of all possible assignments is now feasible using a laptop computer. The program was tested with experimental data of a 388-residue domain of the Hsp70 chaperone protein DnaK and for a 351-residue domain of a type III secretion ATPase. EZ-ASSIGN reproduced the hand assignments. It did slightly better than the computer program PINE (Bahrami et al. in PLoS Comput Biol 5(3):e1000307, 2009) and significantly outperformed SAGA (Crippen et al. in J Biomol NMR 46:281–298, 2010), AUTOASSIGN (Zimmerman et al. in J Mol Biol 269:592–610, 1997), and IBIS (Hyberts and Wagner in J Biomol NMR 26:335–344, 2003). Next, EZ-ASSIGN was used to investigate how well NMR data of decreasing completeness can be assigned. We found that the program could confidently assign fragments in very incomplete data. Here, EZ-ASSIGN dramatically outperformed all the other assignment programs tested

  13. NMR parallel Q-meter with double-balanced-mixer detection for polarized target experiments

    International Nuclear Information System (INIS)

    Boissevain, J.; Tippens, W.B.

    1983-01-01

    A constant-voltage, parallel-tuned nuclear magnetic resonance (NMR) circuit, patterned after a Liverpool design, has been developed for polarized target experiments. Measuring the admittance of the resonance circuit allows advantageous use of double-balanced mixer detection. The resonant circuit is tolerant of stray capacitance between the NMR coil and the target cavity, thus easing target-cell-design constraints. The reference leg of the circuit includes a voltage-controlled attenuator and phase shifter for ease of tuning. The NMR output features a flat background and has good linearity and stability

  14. 31P-NMR measurements of ATP, ADP, 2,3-diphosphoglycerate and Mg2+ in human erythrocytes.

    Science.gov (United States)

    Petersen, A; Kristensen, S R; Jacobsen, J P; Hørder, M

    1990-08-17

    Absolute 31P-NMR measurements of ATP, ADP and 2,3-diphosphoglycerate (2,3-DPG) in oxygenated and partly deoxygenated human erythrocytes, compared to measurements by standard assays after acid extraction, show that ATP is only 65% NMR visible, ADP measured by NMR is unexpectedly 400% higher than the enzymatic measurement and 2,3-DPG is fully NMR visible, regardless of the degree of oxygenation. These results show that binding to hemoglobin is unlikely to cause the decreased visibility of ATP in human erythrocytes as deoxyhemoglobin binds the phosphorylated metabolites more tightly than oxyhemoglobin. The high ADP visibility is unexplained. The levels of free Mg2+ [( Mg2+]free) in human erythrocytes are 225 mumol/l at an oxygen saturation of 98.6% and instead of the expected increase, the level decreased to 196 mumol/l at an oxygen saturation of 38.1% based on the separation between the alpha- and beta-ATP peaks. [Mg2+]free in the erythrocytes decreased to 104 mumol/l at a high 2,3-DPG concentration of 25.4 mmol/l red blood cells (RBC) and a normal ATP concentration of 2.05 mmol/l RBC. By increasing the ATP concentration to 3.57 mmol/l RBC, and with a high 2,3-DPG concentration of 24.7 mmol/l RBC, the 31P-NMR measured [Mg2+]free decreased to 61 mumol/l. These results indicate, that the 31P-NMR determined [Mg2+]free in human erythrocytes, based solely on the separation of the alpha- and beta-ATP peaks, does not give a true measure of intracellular free Mg2+ changes with different oxygen saturation levels. Furthermore the measurement is influenced by the concentration of the Mg2+ binding metabolites ATP and 2,3-DPG. Failure to take these factors into account when interpreting 31P-NMR data from human erythrocytes may explain some discrepancies in the literature regarding [Mg2+]free.

  15. Multilevel resonance analysis of sup 59 Co neutron transmission measurements

    Energy Technology Data Exchange (ETDEWEB)

    De Saussure, G.; Larson, N.M.; Harvey, J.A.; Hill, N.W. (Oak Ridge National Lab., TN (United States))

    1992-07-01

    Large discrepancies exist between the recent high-resolution neutron transmission data of {sup 59}Co measured at the Oak Ridge Electron Linear Accelerator (ORELA) and transmissions computed from the resolved resonance parameters of the nuclear data collection ENDF/B-VI. In order to provide new resonance parameters consistent with these data, the transmission measurements have been analyzed with the computer code SAMMY in the energy range 200 eV to 100 keV. The resonance parameters reported in this paper provide an accurate total cross section from 10{sup -5} eV to 100 keV and correctly reproduce the thermal capture cross section. Thermal cross-section values and related quantities are also reviewed here. (author).

  16. Quantitative measurement of water diffusion lifetimes at a protein/DNA interface by NMR

    International Nuclear Information System (INIS)

    Gruschus, James M.; Ferretti, James A.

    2001-01-01

    Hydration site lifetimes of slowly diffusing water molecules at the protein/DNA interface of the vnd/NK-2 homeodomain DNA complex were determined using novel three-dimensional NMR techniques. The lifetimes were calculated using the ratios of ROE and NOE cross-relaxation rates between the water and the protein backbone and side chain amides. This calculation of the lifetimes is based on a model of the spectral density function of the water-protein interaction consisting of three timescales of motion: fast vibrational/rotational motion, diffusion into/out of the hydration site, and overall macromolecular tumbling. The lifetimes measured ranged from approximately 400 ps to more than 5 ns, and nearly all the slowly diffusing water molecules detected lie at the protein/DNA interface. A quantitative analysis of relayed water cross-relaxation indicated that even at very short mixing times, 5 ms for ROESY and 12 ms for NOESY, relay of magnetization can make a small but detectable contribution to the measured rates. The temperature dependences of the NOE rates were measured to help discriminate direct dipolar cross-relaxation from chemical exchange. Comparison with several X-ray structures of homeodomain/DNA complexes reveals a strong correspondence between water molecules in conserved locations and the slowly diffusing water molecules detected by NMR. A homology model based on the X-ray structures was created to visualize the conserved water molecules detected at the vnd/NK-2 homeodomain DNA interface. Two chains of water molecules are seen at the right and left sides of the major groove, adjacent to the third helix of the homeodomain. Two water-mediated hydrogen bond bridges spanning the protein/DNA interface are present in the model, one between the backbone of Phe8 and a DNA phosphate, and one between the side chain of Asn51 and a DNA phosphate. The hydrogen bond bridge between Asn51 and the DNA might be especially important since the DNA contact made by the invariant

  17. Resonance Frequency of Optical Microbubble Resonators: Direct Measurements and Mitigation of Fluctuations

    Directory of Open Access Journals (Sweden)

    Alessandro Cosci

    2016-08-01

    Full Text Available This work shows the improvements in the sensing capabilities and precision of an Optical Microbubble Resonator due to the introduction of an encaging poly(methyl methacrylate (PMMA box. A frequency fluctuation parameter σ was defined as a score of resonance stability and was evaluated in the presence and absence of the encaging system and in the case of air- or water-filling of the cavity. Furthermore, the noise interference introduced by the peristaltic and the syringe pumping system was studied. The measurements showed a reduction of σ in the presence of the encaging PMMA box and when the syringe pump was used as flowing system.

  18. Measurement of Resonance driving terms in the ATF Damping Ring

    CERN Document Server

    Tomás, R; Kuroda, S; Naito, T; Okugi, T; Urakawa, J; Zimmermann, F

    2008-01-01

    The measurement of resonance driving terms in the Damping Ring of the Accelerator Test Facility in KEK could help finding possible machine imperfections and even to optimize single particle stability through the minimization of non-linearities. The first experimental attempts of this enterprise are reported in this note.

  19. Direct Comparison of 19F qNMR and 1H qNMR by Characterizing Atorvastatin Calcium Content

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-01-01

    Full Text Available Quantitative nuclear magnetic resonance (qNMR is a powerful tool in measuring drug content because of its high speed, sensitivity, and precision. Most of the reports were based on proton qNMR (1H qNMR and only a few fluorine qNMR (19F qNMR were reported. No research has been conducted to directly compare the advantage and disadvantage between these two methods. In the present study, both 19F and 1H qNMR were performed to characterize the content of atorvastatin calcium with the same internal standard. Linearity, precision, and results from two methods were compared. Results showed that 19F qNMR has similar precision and sensitivity to 1H qNMR. Both methods generate similar results compared to mass balance method. Major advantage from 19F qNMR is that the analyte signal is with less or no interference from impurities. 19F qNMR is an excellent approach to quantify fluorine-containing analytes.

  20. Solution conformation and dynamics of a tetrasaccharide related to the LewisX antigen deduced by NMR relaxation measurements

    International Nuclear Information System (INIS)

    Poveda, Ana; Asensio, Juan Luis; Martin-Pastor, Manuel; Jimenez-Barbero, Jesus

    1997-01-01

    1 H-NMR cross-relaxation rates and nonselective longitudinal relaxation times have been obtained at two magnetic fields (7.0 and 11.8 T) and at a variety of temperatures for the branched tetrasaccharide methyl 3-O-α-N-acetyl-galactosaminyl-β-galactopyranosyl-(1 → 4)[3-O-α-fucosyl] -glucopyranoside (1), an inhibitor of astrocyte growth. In addition, 13 C-NMR relaxation data have also been recorded at both fields. The 1 H-NMR relaxation data have been interpreted using different motional models to obtain proton-proton correlation times. The results indicate that the GalNAc and Fuc rings display more extensive local motion than the two inner Glc and Gal moieties, since those present significantly shorter local correlation times. The 13 C-NMR relaxation parameters have been interpreted in terms of the Lipari-Szabo model-free approach. Thus, order parameters and internal motion correlation times have been deduced. As obtained for the 1 H-NMR relaxation data, the two outer residues possess smaller order parameters than the two inner rings. Internal correlation times are in the order of 100 ps. The hydroxymethyl groups have also different behaviour,with the exocyclic carbon on the glucopyranoside unit showing the highestS 2 . Molecular dynamics simulations using a solvated system have also been performed and internal motion correlation functions have been deduced from these calculations. Order parameters and interproton distances have been compared to those inferred from the NMR measurements. The obtained results are in fair agreement with the experimental data

  1. Solution conformation and dynamics of a tetrasaccharide related to the Lewis{sup X} antigen deduced by NMR relaxation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Poveda, Ana [Universidad Autonoma de Madrid, Servicio Interdepartamental de Investigacion (Spain); Asensio, Juan Luis; Martin-Pastor, Manuel; Jimenez-Barbero, Jesus [Instituto de Quimica Organica, CSIC, Grupo de Carbohidratos (Spain)

    1997-07-15

    {sup 1}H-NMR cross-relaxation rates and nonselective longitudinal relaxation times have been obtained at two magnetic fields (7.0 and 11.8 T) and at a variety of temperatures for the branched tetrasaccharide methyl 3-O-{alpha}-N-acetyl-galactosaminyl-{beta}-galactopyranosyl-(1{sup {yields}}4)[3-O-{alpha}-fucosyl] -glucopyranoside (1), an inhibitor of astrocyte growth. In addition, {sup 13}C-NMR relaxation data have also been recorded at both fields. The {sup 1}H-NMR relaxation data have been interpreted using different motional models to obtain proton-proton correlation times. The results indicate that the GalNAc and Fuc rings display more extensive local motion than the two inner Glc and Gal moieties, since those present significantly shorter local correlation times. The{sup 13}C-NMR relaxation parameters have been interpreted in terms of the Lipari-Szabo model-free approach. Thus, order parameters and internal motion correlation times have been deduced. As obtained for the{sup 1}H-NMR relaxation data, the two outer residues possess smaller order parameters than the two inner rings. Internal correlation times are in the order of 100 ps. The hydroxymethyl groups have also different behaviour,with the exocyclic carbon on the glucopyranoside unit showing the highestS{sup 2}. Molecular dynamics simulations using a solvated system have also been performed and internal motion correlation functions have been deduced from these calculations. Order parameters and interproton distances have been compared to those inferred from the NMR measurements. The obtained results are in fair agreement with the experimental data.

  2. Peptide self-association in aqueous trifluoroethanol monitored by pulsed field gradient NMR diffusion measurements

    Energy Technology Data Exchange (ETDEWEB)

    Yao Shenggen [Biomolecular Research Institute (Australia); Howlett, Geoffrey J. [University of Melbourne, Department of Biochemistry and Molecular Biology (Australia); Norton, Raymond S. [Biomolecular Research Institute (Australia)

    2000-02-15

    Defining the self-association state of a molecule in solution can be an important step in NMR-based structure determination. This is particularly true of peptides, where there can be a relatively small number of long-range interactions and misinterpretation of an intermolecular NOE as an intramolecular contact can have a dramatic influence on the final calculated structure. In this paper, we have investigated the use of translational self-diffusion coefficient measurements to detect self-association in aqueous trifluoroethanol of three peptides which are analogues of the C-terminal region of human neuropeptide Y. Experimentally measured diffusion coefficients were extrapolated to D{sup 0}, the limiting value as the peptide concentration approaches zero, and then converted to D{sub 20,w}, the diffusion coefficient after correction for temperature and the viscosity of the solvent. A decrease in D{sub 20,w} of about 16% was found for all three peptides in aqueous TFE (30% by volume) compared with water, which is in reasonable agreement with the expected decrease upon dimerisation, the presence of which was indicated by sedimentation equilibrium measurements. Apparent molecular masses of these peptides in both solutions were also calculated from their diffusion coefficients and similar results were obtained. Several potential internal standards, including acetone, acetonitrile, dimethylsulfoxide and dioxane, were assessed as monitors of solution viscosity over a range of trifluoroethanol concentrations. Compared with independent measurements of viscosity, acetonitrile was the most accurate standard among these four. The practical limitations of a quantitative assessment of peptide self-association from translational diffusion coefficients measured by PFGNMR, including the calculation of apparent molecular mass, are also discussed.

  3. RESONANT BPM FOR CONTINUOUS TUNE MEASUREMENT IN RHIC

    International Nuclear Information System (INIS)

    KESSELMAN, M.; CAMERON, P.; CUPOLO, J.

    2001-01-01

    A movable Beam Position Monitor (BPM) using shorted stripline Pick-Up Electrode (NE) elements has been resonated using matching stub techniques to achieve a relatively high Q resonance at about 230MHz. This PUE has been used in a feasibility study of phase-locked-loop tune measurement [1], using a lock-in amplifier and variable frequency generator to continuously track betatron tune in RHIC, as well as to observe Schottky signals of the Gold beam. The approach to providing a high Q PUE for difference mode signals, simulation studies, and the results of initial tests will be presented

  4. Studies of vanadium-phosphorus-oxygen selective oxidation catalysts by sup 31 P and sup 51 V NMR spin-echo and volume susceptibility measurements

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juan.

    1991-10-01

    The purpose of this work is to characterize the vanadium-phosphorous oxide (V-P-O) catalysts for the selective oxidation of n-butane and 1-butene to maleic anhydride. The utility of solid state nuclear magnetic resonance as an analytical tool in this investigation lies in its sensitivity to the electronic environment surrounding the phosphorous and vanadium nuclei, and proximity of paramagnetic species. Spin-echo mapping NMR of {sup 31}p and {sup 51}v and volume magnetic susceptibility measurements were used as local microscopic probes of the presence of V{sup 5+}, V{sup 4+}, V{sup 3+} species in the model compounds: {beta}-VOPO{sub 4}, {beta}-VOPO{sub 4} treated with n-butane/1-butene, (VO){sub 2}P{sub 2}O{sub 7} treated with n-butane/1-butene; and industrial catalysts with P/V (phosphorus to vanadium) ratio of 0.9, 1.0 and 1.1, before and after treatment with n-butane and 1-butene. The NMR spectra provide a picture of how the oxidation states of vanadium are distributed in these catalysts. 73 refs., 32 figs., 8 tabs.

  5. Exploring the trigger sequence of the GCN4 coiled-coil: Biased molecular dynamics resolves apparent inconsistencies in NMR measurements

    Science.gov (United States)

    Missimer, John H; Dolenc, Jožica; Steinmetz, Michel O; van Gunsteren, Wilfred F

    2010-01-01

    Trigger sequences are indispensable elements for coiled-coil formation. The monomeric helical trigger sequence of the yeast transcriptional activator GCN4 has been investigated recently using several solution NMR observables including nuclear Overhauser enhancement (NOE) intensities and 3J(HN,HCα)-coupling constants, and a set of 20 model structures was proposed. Constrained to satisfy the NOE-derived distance bounds, the NMR model structures do not appear to reproduce all the measured 3J(HN-HCα)-coupling constant values, indicating that the α-helical propensity is not uniform along the GCN4 trigger sequence. A recent methodological study of unrestrained and restrained molecular dynamics (MD) simulations of the GCN4 trigger sequence in solution showed that only MD simulations incorporating time-averaged NOE distance restraints and instantaneous or local-elevation 3J-coupling restraints could satisfy the entire set of the experimental data. In this report, we assess by means of cluster analyses the model structures characteristic of the two simulations that are compatible with the measured data and compare them with the proposed 20 NMR model structures. Striking characteristics of the MD model structures are the variability of the simulated configurations and the indication of entropic stability mediated by the aromatic N-terminal residues 17Tyr and 18His, which are absent in the set of NMR model structures. PMID:20954244

  6. Measurements and applications of neutron multiple scattering in resonance region

    International Nuclear Information System (INIS)

    Ohkubo, Makio

    1977-02-01

    Capture yield of neutrons impinging on a thick material is complicated due to self-shielding and multiple scattering, especially in the resonance region. When the incident neutron energy is equal to a resonance energy of the material, capture probability of the neutron increases with sample thickness and reaches a saturation value P sub(CO). There is a simple relation between P sub(CO) and GAMMA sub(n)/GAMMA and the recoil energy by the Monte-Carlo calculation. To examine validity of the relation, P sub(CO) was measured for 19 resonances in 12 nuclides with thick samples, using a JAERI linac time-of-flight spectrometer with Moxon-Rae type gamma ray detector and transmission type neutron flux monitor. Results of the measurements confirmed the validity. With this relation, the GAMMA sub(n)/GAMMA or GAMMA sub(γ)/GAMMA value can be obtained from the measured P sub(CO), and also the level spins be determined by combining the transmission data. Because of the definition of P sub(CO), determination of the resonance parameters is not sensitive to the sample thickness as far as it is sufficiently thick. (auth.)

  7. Gravity-driven pH adjustment for site-specific protein pKa measurement by solution-state NMR

    Science.gov (United States)

    Li, Wei

    2017-12-01

    To automate pH adjustment in site-specific protein pKa measurement by solution-state NMR, I present a funnel with two caps for the standard 5 mm NMR tube. The novelty of this simple-to-build and inexpensive apparatus is that it allows automatic gravity-driven pH adjustment within the magnet, and consequently results in a fully automated NMR-monitored pH titration without any hardware modification on the NMR spectrometer.

  8. measurements of the absorption resonance integrals by reactor oscillator method

    International Nuclear Information System (INIS)

    Markovic, V.; Kocic, A.

    1965-12-01

    Experimental values of resonance integrals for silver vary significantly dependent on authors. That is why we have chosen this sample to measure RI. On the other hand, nuclear fuel (for example natural uranium) still represents an interesting objective for research in reactor physics. Measurements of natural uranium are done as a function of S/M. Measurements were done by amplitude reactor oscillator ROB-1/5 with precision from 0.5% - 2% dependent on the conditions of the oscillator. Measurements were completed at the heavy water reactor RB with 2% enriched uranium fuel [fr

  9. Spatially resolved remote measurement of temperature by neutron resonance absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [Space Sciences Laboratory, University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Kockelmann, W.; Pooley, D.E. [STFC, Rutherford Appleton Laboratory, ISIS Facility, Didcot OX11 0QX (United Kingdom); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Road, Sturbridge, MA 01566 (United States)

    2015-12-11

    Deep penetration of neutrons into most engineering materials enables non-destructive studies of their bulk properties. The existence of sharp resonances in neutron absorption spectra enables isotopically-resolved imaging of elements present in a sample, as demonstrated by previous studies. At the same time the Doppler broadening of resonance peaks provides a method of remote measurement of temperature distributions within the same sample. This technique can be implemented at a pulsed neutron source with a short initial pulse allowing for the measurement of the energy of each registered neutron by the time of flight technique. A neutron counting detector with relatively high timing and spatial resolution is used to demonstrate the possibility to obtain temperature distributions across a 100 µm Ta foil with ~millimeter spatial resolution. Moreover, a neutron transmission measurement over a wide energy range can provide spatially resolved sample information such as temperature, elemental composition and microstructure properties simultaneously.

  10. Resolution-by-proxy: a simple measure for assessing and comparing the overall quality of NMR protein structures

    International Nuclear Information System (INIS)

    Berjanskii, Mark; Zhou Jianjun; Liang Yongjie; Lin Guohui; Wishart, David S.

    2012-01-01

    In protein X-ray crystallography, resolution is often used as a good indicator of structural quality. Diffraction resolution of protein crystals correlates well with the number of X-ray observables that are used in structure generation and, therefore, with protein coordinate errors. In protein NMR, there is no parameter identical to X-ray resolution. Instead, resolution is often used as a synonym of NMR model quality. Resolution of NMR structures is often deduced from ensemble precision, torsion angle normality and number of distance restraints per residue. The lack of common techniques to assess the resolution of X-ray and NMR structures complicates the comparison of structures solved by these two methods. This problem is sometimes approached by calculating “equivalent resolution” from structure quality metrics. However, existing protocols do not offer a comprehensive assessment of protein structure as they calculate equivalent resolution from a relatively small number (<5) of protein parameters. Here, we report a development of a protocol that calculates equivalent resolution from 25 measurable protein features. This new method offers better performance (correlation coefficient of 0.92, mean absolute error of 0.28 Å) than existing predictors of equivalent resolution. Because the method uses coordinate data as a proxy for X-ray diffraction data, we call this measure “Resolution-by-Proxy” or ResProx. We demonstrate that ResProx can be used to identify under-restrained, poorly refined or inaccurate NMR structures, and can discover structural defects that the other equivalent resolution methods cannot detect. The ResProx web server is available at http://www.resprox.cahttp://www.resprox.ca.

  11. Push-through Direction Injectin NMR Automation

    Science.gov (United States)

    Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the two major spectroscopic techniques successfully used in metabolomics studies. The non-invasive, quantitative and reproducible characteristics make NMR spectroscopy an excellent technique for detection of endogeno...

  12. Magnetic and structural properties of an octanuclear Cu(II) S=1/2 mesoscopic ring: Susceptibility and NMR measurements

    International Nuclear Information System (INIS)

    Lascialfari, A.; Jang, Z. H.; Borsa, F.; Gatteschi, D.; Cornia, A.; Rovai, D.; Caneschi, A.; Carretta, P.

    2000-01-01

    Magnetic susceptibility, 1 H NMR and 63 Cu NMR-NQR experiments on two slightly different species of the molecular S=1/2 antiferromagnetic (AF) ring Cu8, [Cu 8 (dmpz) 8 (OH) 8 ]·2C 5 H 5 N (Cu8P) and [Cu 8 (dmpz) 8 (OH) 8 ]·2C 5 H 5 NO 2 (Cu8N), are presented. The magnetic energy levels are calculated exactly for an isotropic Heisenberg model Hamiltonian in zero magnetic field. From the magnetic susceptibility measurements we estimate the AF exchange coupling constant J∼1000 K and the resulting gap Δ∼500 K between the S T =0 ground state and the S T =1 first excited state. The 63,65 Cu NQR spectra indicate the presence of four crystallographically inequivalent copper nuclei in each ring. From the combination of the 63 Cu NQR spectra and of the 63 Cu NMR spectra at high magnetic field, we estimate the quadrupole coupling constant v Q of each site and the average asymmetry parameter η of the electric-field gradient tensor. The nuclear spin-lattice relaxation rate (NSLR) decreases exponentially on decreasing temperature for all nuclei investigated. The gap parameter extracted from 63 Cu NQR-NSLR is the same as for the susceptibility while a smaller value is obtained from the 63 Cu NMR-NSLR in an external magnetic field of 8.2 T. (c) 2000 The American Physical Society

  13. 1H NMR spectra of vertebrate [2Fe-2S] ferredoxins. Hyperfine resonances suggest different electron delocalization patterns from plant ferredoxins

    International Nuclear Information System (INIS)

    Skjeldal, L.; Markley, J.L.; Coghlan, V.M.; Vickery, L.E.

    1991-01-01

    The authors report the observation of paramagnetically shifted (hyperfine) proton resonances from vertebrate mitochondrial [2Fe-2S] ferredoxins. The hyperfine signals of human, bovine, and chick [2Fe-2S] ferredoxins are described and compared with those of Anabena 7120 vegetative ferredoxin, a plant-type [2Fe-2S] ferredoxin studied previously. The hyperfine resonances of the three vertebrate ferredoxins were very similar to one another both in the oxidized state and in the reduced state, and slow (on the NMR scale) electron self-exchange was observed in partially reduced samples. For the oxidized vertebrate ferredoxins, hyperfine signals were observed downfield of the diamagnetic envelope from +13 to +50 ppm, and the general pattern of peaks and their anti-Curie temperature dependence are similar to those observed for the oxidized plant-type ferredoxins. For the reduced vertebrate ferredoxins, hyperfine signals were observed for the oxidized plant-type ferredoxins. For the reduced vertebrate ferredoxins, hyperfine signals were observed both upfield (-2 to -18 ppm) and downfield (+15 to +45 ppm), and all were found to exhibit Curie-type temperature dependence. These results indicate that the contact-shifted resonances in the reduced vertebrate ferredoxins detect different spin magnetization from those in the reduced plant ferredoxins and suggest that plant and vertebrate ferredoxins have fundamentally different patterns of electron delocalization in the reduced [2Fe-2S] center

  14. Resonator Sensitivity Optimization in Magnetic Resonance and the Development of a Magic Angle Spinning Probe for the NMR Study of Rare Spin Nuclei on Catalytic Surfaces.

    Science.gov (United States)

    Doty, Francis David

    The sensitivity of an arbitrary resonator for the detection of a magnetic resonance signal is derived from basic energy considerations, and is shown to be dependent on V(,s)/t(,90)P(' 1/2). The radiation damping time constant is shown to be inversely dependent on the rf filling factor. Several resonators are analyzed in detail. The optimum solenoid is shown to have a length of about 1.5 times the diameter. The multilayer solenoid and the capacitively shortened slotted line resonator are shown to have advantages for samples with high dielectric losses. The capacitively shortened slotted line resonator is shown to substantially reduce acoustic ringing problems. Efficient methods are discussed for double and triple tuning these resonators. A slotted cylindrical resonator is described which gives higher sensitivity and faster response time than conventional cavities for very small samples at X-band ESR frequencies. Double tuned circuits using lumped elements are shown to be generally more efficient than those using transmission lines in generating rf fields. The optimum inductance ratio of the two coils in a ('13)C, ('1)H CP experiment is about 3. The high speed cylindrical sample spinner is analyzed in terms of compressible fluid dynamics, resonant modes, and structural analysis to arrive at optimum air bearing and spinner design recommendations. The optimum radial clearance is shown to depend on the 1/3 power of the rotor diameter. The required air bearing hole diameter has a square root dependence on the rotor diameter. Air pockets are shown to increase the resonant frequencies. Relevant data for a number of high strength insulators including hard ceramics are tabulated, and limiting speeds are calculated. CP MAS experiments on a 5% monolayer of n-butylamine absorbed on (gamma)-alumina reveal six lines. By comparison with the liquid phase spectrum it was determined that at least two types of chemically different surface species were present and that surface

  15. A low-cost spectrometer for NMR measurements in the Earth's magnetic field

    International Nuclear Information System (INIS)

    Michal, Carl A

    2010-01-01

    We describe and demonstrate an inexpensive, easy-to-build, portable spectrometer for nuclear magnetic resonance measurements in the Earth's magnetic field. The spectrometer is based upon a widely available inexpensive microcontroller, which acts as a pulse programmer, audio-frequency synthesizer and digitizer, replacing what are typically the most expensive specialized components of the system. The microcontroller provides the capability to execute arbitrarily long and complicated sequences of phase-coherent, phase-modulated excitation pulses and acquire data sets of unlimited duration. Suitably packaged, the spectrometer is amenable to measurements in the research lab, in the field or in the teaching lab. The choice of components was heavily weighted by cost and availability, but required no significant sacrifice in performance. Using an existing personal computer, the resulting design can be assembled for as little as US$200. The spectrometer performance is demonstrated with spin-echo and Carr–Purcell–Meiboom–Gill pulse sequences on a water sample

  16. A low-cost spectrometer for NMR measurements in the Earth's magnetic field

    Science.gov (United States)

    Michal, Carl A.

    2010-10-01

    We describe and demonstrate an inexpensive, easy-to-build, portable spectrometer for nuclear magnetic resonance measurements in the Earth's magnetic field. The spectrometer is based upon a widely available inexpensive microcontroller, which acts as a pulse programmer, audio-frequency synthesizer and digitizer, replacing what are typically the most expensive specialized components of the system. The microcontroller provides the capability to execute arbitrarily long and complicated sequences of phase-coherent, phase-modulated excitation pulses and acquire data sets of unlimited duration. Suitably packaged, the spectrometer is amenable to measurements in the research lab, in the field or in the teaching lab. The choice of components was heavily weighted by cost and availability, but required no significant sacrifice in performance. Using an existing personal computer, the resulting design can be assembled for as little as US200. The spectrometer performance is demonstrated with spin-echo and Carr-Purcell-Meiboom-Gill pulse sequences on a water sample.

  17. Resonant frequency and elastic modulus measurements on hardened cement pastes

    International Nuclear Information System (INIS)

    Lee, D.J.

    1982-12-01

    A new technique for measuring resonant frequency and elastic modulus is described. This has been used on specimens of hardened cement paste containing water with no simulated waste, and the results compared with measurements of ultrasonic pulse velocity, dimensional movements and compressive strength made on the same formulations. In addition, measurements were made on a specimen containing simulated waste which demonstrated the applicability of the new technique for following the development of the mechanical properties of cemented simulant radioactive waste in the laboratory. (U.K.)

  18. Proceedings of the 9. Brazilian meeting on magnetic resonance. Short courses on NMR. Extended abstracts and program

    International Nuclear Information System (INIS)

    2006-01-01

    Theoretical and experimental papers are presented in these proceedings comprehending the following subjects: nuclear magnetic resonance, organic and non organic compounds, polymers, petroleum, stereochemistry, physical chemistry, chemical structures, molecular biology, molecular structures and proteins

  19. Increasing the sensitivity of NMR diffusion measurements by paramagnetic longitudinal relaxation enhancement, with application to ribosome–nascent chain complexes

    International Nuclear Information System (INIS)

    Chan, Sammy H. S.; Waudby, Christopher A.; Cassaignau, Anaïs M. E.; Cabrita, Lisa D.; Christodoulou, John

    2015-01-01

    The translational diffusion of macromolecules can be examined non-invasively by stimulated echo (STE) NMR experiments to accurately determine their molecular sizes. These measurements can be important probes of intermolecular interactions and protein folding and unfolding, and are crucial in monitoring the integrity of large macromolecular assemblies such as ribosome–nascent chain complexes (RNCs). However, NMR studies of these complexes can be severely constrained by their slow tumbling, low solubility (with maximum concentrations of up to 10 μM), and short lifetimes resulting in weak signal, and therefore continuing improvements in experimental sensitivity are essential. Here we explore the use of the paramagnetic longitudinal relaxation enhancement (PLRE) agent NiDO2A on the sensitivity of 15 N XSTE and SORDID heteronuclear STE experiments, which can be used to monitor the integrity of these unstable complexes. We exploit the dependence of the PLRE effect on the gyromagnetic ratio and electronic relaxation time to accelerate recovery of 1 H magnetization without adversely affecting storage on N z during diffusion delays or introducing significant transverse relaxation line broadening. By applying the longitudinal relaxation-optimized SORDID pulse sequence together with NiDO2A to 70S Escherichia coli ribosomes and RNCs, NMR diffusion sensitivity enhancements of up to 4.5-fold relative to XSTE are achieved, alongside ∼1.9-fold improvements in two-dimensional NMR sensitivity, without compromising the sample integrity. We anticipate these results will significantly advance the use of NMR to probe dynamic regions of ribosomes and other large, unstable macromolecular assemblies.Graphical Abstract

  20. An analysis of the NMR-CT image by the measurement of proton-relaxation times in tissue

    International Nuclear Information System (INIS)

    Naruse, Shoji; Horikawa, Yoshiharu; Tanaka, Chuzo; Hirakawa, Kimiyoshi; Nishikawa, Hiroyasu; Shimizu, Koji; Kiri, Motosada.

    1984-01-01

    NMR-CT images were analyzed by measuring the proton-relaxation times in tissues. The NMR-CT images were obtained in 10 normal volunteers and 16 patients with brain tumors with a prototype superconducting magnet (Shimadzu Corp., Japan) operating at 0.2 T and 0.375 T. A smooth T 1 relaxation curve was obtained in each part of the brain and the brain tumor by the use of the data of the NMR-CT image; consequently, the in vivo T 1 value was proved to be reliable. The in vivo T 1 value showed the specific value corresponding to each region of the normal brain in all cases. Cerebral gray matter normally had the longest T 1 value, followed by the medulla oblongata, the pons, and white matter. The T 1 value of each region of the brain varied to the same degree in proportion to the strength of the static magnetic field. The in vivo T 1 values of the brain tumor varied with the histological type. All were longer than any part of the brain parenchyma, being between 480 and 780 msec at 0.2 T. The prolongation of the T 1 value does not always correspond to the degree of the malignancy in a tumor. The in vitro T 1 and T 2 values were also prolonged in all tumors. Although the absolute value of T 1 did not coincide between the in vitro and in vivo data, the tendency of the prolongation was the same between them. This result indicated that the NMR-CT images could be analysed by the use of the data of the in vitro T 1 and T 2 values in the tumor tissues. It is important to analyse the NMR-CT image by both in vivo and in vitro examinations of the relaxation times. (J.P.N.)

  1. Complex permittivity measurements of ferroelectric employing composite dielectric resonator technique

    Czech Academy of Sciences Publication Activity Database

    Krupka, J.; Zychowicz, T.; Bovtun, Viktor; Veljko, Sergiy

    2006-01-01

    Roč. 53, č. 10 (2006), s. 1883-1888 ISSN 0885-3010 R&D Projects: GA AV ČR(CZ) IAA1010213; GA ČR(CZ) GA202/04/0993; GA ČR(CZ) GA202/06/0403 Institutional research plan: CEZ:AV0Z10100520 Keywords : dielectric resonator * ferroelectrics * microwave measurements Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.729, year: 2006

  2. Nuclear magnetic resonance (NMR): application to examine liver tissues during invasion of the Liver fluke in cattle

    International Nuclear Information System (INIS)

    Wranicz, M.; Podbielski, T.; Grabiec, S.

    1989-01-01

    The T 1 and T 2 relaxation times of protons of hydrogen in the liver parenchyma and biliary ducts in normal and parazitized by the Liver fluke cows were determined. A method of the NMR in which a lenght or relaxation time is an index was applied. The value of this index is characteristic for determined physiological and pathological states of cells and it reveals changes which developed in body cells. It was found that tissues of cows parazitized by the Liver fluke (parenchyma and biliary ducts) and healthy ones differ significantly by the lenght of relaxation times. Parazitized tissues show a longer relaxation time than tissues of normal cows. (author)

  3. NMR characteristics of low-grade glioma. Comparison with CT

    Energy Technology Data Exchange (ETDEWEB)

    Asato, Reinin; Tokuriki, Yasuhiko; Nakano, Yoshihisa; Itoh, Harumi; Torizuka, Kanji; Ueda, Tohru; Yamashita, Junkoh; Handa, Hajime

    1985-08-01

    Sixteen low-grade gliomas were evaluated both with nuclear magnetic resonance (NMR) imaging and with computed tomography (CT). In 13 cases (81%), the NMR images were much better in tissue contrast than the contrast-enhanced CT images. The tumors were shown as well-circumscribed oval lesions in the NMR, though they appeared as ill-defined, irregular, low-attenuation areas in the CT. The extent of the lesion, which was supposed to represent the active tumor tissue, was greater in the NMR than in the CT, because NMR tissue parameters (T/sub 1/, T/sub 2/) are more sensitive to pathological changes in brain tissue than is the X-ray attenuation coefficient. Though, in an optic glioma and a brain-stem astrocytoma, the CT with contrast enhancement displayed the contour of the mass as well as did NMR, it was inferior to the NMR in showing the cephalocaudal extension of the tumors. Calcification does not give a proton NMR signal under the present measuring conditions; thus the calcified cystic wall of a hypothalamic astrocytoma was displayed only in the CT images. In conclusion, the NMR imaging was apparently superior to contrast-enhanced CT in demonstrating the lesions due to low-grade glioma.

  4. Quantitative nuclear magnetic resonance spectrometry II. Purity of phosphorus-based agrochemicals glyphosate (N-(phosphonomethyl)-glycine) and profenofos (O-(4-bromo-2-chlorophenyl) O-ethyl S-propyl phosphorothioate) measured by 1H and 31P QNMR spectrometry

    International Nuclear Information System (INIS)

    Saed Al Deen, Tareq; Brynn Hibbert, D.; Hook, James M.; Wells, Robert J.

    2002-01-01

    The purities of the widely-used herbicide glyphosate (N-(phosphonomethyl)glycine), and the insecticide profenofos (O-(4-bromo-2-chlorophenyl) O-ethyl S-propyl phosphorothioate) were determined by 1 H and 31 P quantitative nuclear magnetic resonance (QNMR) spectrometry using an internal standard. QNMR does not need a standard reference of the same target analyte, in contrast to chromatographic methods, but only a compound containing the nucleus of interest. Sodium acetate and sodium phosphate of known purity were chosen as internal standards for 1 H NMR and 31 P NMR), respectively for the water soluble glyphosate and a single internal standard, trimethyl phosphate for both 1 H and 31 P NMR quantitative analysis of the organic soluble profenofos. These standards have NMR peaks that do not interfere with those of the analyte, they are chemically inert and are soluble in the deuterated solvent. The average purity of glyphosate obtained by 1 H NMR (97.07%, σ=0.68) agreed with that by 31 P NMR (96.53%, σ=0.90; ANOVA, P=0.074) for the five batches provided by the manufacturer according to the procedures for chemical registration in Australia. The standard deviations of seven independent analyses of a single batch by 1 H NMR and 31 P NMR were σ=0.24% and σ=0.33%, respectively, values which confirm the exceptional precision of the method. The purity of profenofos by 1 H NMR (94.63%, σ=0.14) also agreed with that by 31 P NMR (94.62%, σ=0.59; ANOVA, P=0.97). Uncertainty budgets for the measured purities of glyphosate and profenofos show that the uncertainty in the purity of the internal standard is a major contributor to the uncertainty of the result. NMR was also used to establish the impurity profile of both compounds, and quantify the impurities present

  5. Measurement of pressure on a surface using bubble acoustic resonances

    International Nuclear Information System (INIS)

    Aldham, Ben; Manasseh, Richard; Liffman, Kurt; Šutalo, Ilija D; Illesinghe, Suhith; Ooi, Andrew

    2010-01-01

    The frequency response of gas bubbles as a function of liquid ambient pressure was measured and compared with theory. A bubble size with equivalent spherical radius of 2.29 mm was used over a frequency range of 1000–1500 Hz. The ultimate aim is to develop an acoustic sensor that can measure static pressure and is sensitive to variations as small as a few kPa. The classical bubble resonance frequency is known to vary with ambient pressure. Experiments were conducted with a driven bubble in a pressurizable tank with a signal processing system designed to extract the resonant peak. Since the background response of the containing tank is significant, particularly near tank-modal resonances, it must be carefully removed from the bubble response signal. A dual-hydrophone method was developed to allow rapid and reliable real-time measurements. The expected pressure dependence was found. In order to obtain a reasonable match with theory, the classical theory was modified by the introduction of a 'mirror bubble' to account for the influence of a nearby surface. (technical design note)

  6. Transverse magnetic field effects on the relaxation time of the magnetization in Mn12 measured by 55Mn-NMR

    International Nuclear Information System (INIS)

    Furukawa, Y.; Watanabe, K.; Kumagai, K.; Borsa, F.; Gatteschi, D.

    2003-01-01

    The longitudinal (H Z ) and transverse (H T ) magnetic field dependence of the relaxation time of the magnetization in Mn12 in its S=10 ground state was measured by NMR. The minima in the relaxation time at the fields for level crossing are due to the quantum tunneling of the magnetization. The shortening of the relaxation time under the application of H T is shown to be due mainly to the reduction of the energy barrier

  7. On Neglecting Chemical Exchange When Correcting in Vivo 31P MRS Data for Partial Saturation: Commentary on: ``Pitfalls in the Measurement of Metabolite Concentrations Using the One-Pulse Experiment in in Vivo NMR''

    Science.gov (United States)

    Ouwerkerk, Ronald; Bottomley, Paul A.

    2001-04-01

    This article replies to Spencer et al. (J. Magn. Reson.149, 251-257, 2001) concerning the degree to which chemical exchange affects partial saturation corrections using saturation factors. Considering the important case of in vivo31P NMR, we employ differential analysis to demonstrate a broad range of experimental conditions over which chemical exchange minimally affects saturation factors, and near-optimum signal-to-noise ratio is preserved. The analysis contradicts Spencer et al.'s broad claim that chemical exchange results in a strong dependence of saturation factors upon M0's and T1 and exchange parameters. For Spencer et al.'s example of a dynamic 31P NMR experiment in which phosphocreatine varies 20-fold, we show that our strategy of measuring saturation factors at the start and end of the study reduces errors in saturation corrections to 2% for the high-energy phosphates.

  8. Sequence dependent structure and thermodynamics of DNA oligonucleotides and polynucleotides: uv melting and NMR (nuclear magnetic resonance) studies

    Energy Technology Data Exchange (ETDEWEB)

    Aboul-ela, F.M.

    1987-12-01

    Thermodynamic parameters for double strand formation have been measured for the twenty-five DNA double helices made by mixing deoxyoligonucleotides of the sequence dCA/sub 3/XA/sub 3/G with the complement dCT/sub 3/YT/sub 3/G. Each of the bases A, C, G, T, and I (I = hypoxanthine) have been substituted at the positions labeled X and Y. The results are analyzed in terms of nearest neighbors. At higher temperatures the sequences containing a G)centerreverse arrowdot)C base pair become more stable than those containing only A)centerreverse arrowdot)T. All molecules containing mismatcher are destabilized with respect to those with only Watson-Crick pairing, but there is a wide range of destabilization. Large neighboring base effects upon stability were observed. For example, when (X, Y) = (I, A), the duplex is eightfold more stable than when (X, Y) = (A, I). Independent of sequence effects the order of stabilities is: I)centerreverse arrowdot)C )succ) I)centerreverse arrowdot) A)succ) I)centerreverse arrowdot)T approx. I)centerreverse arrowdot)G. All of these results are discussed within the context of models for sequence dependent DNA secondary structure, replication fidelity and mechanisms of mismatch repair, and implications for probe design. The duplex deoxyoligonucleotide d(GGATGGGAG))centerreverse arrowdot)d(CTCCCATCC) is a portion of the gene recognition sequence of the protein transcription factor IIIA. The crystal structure of this oligonucleotide was shown to be A-form The present study employs Nuclear Magnetic Resonance, optical, chemical and enzymatic techniques to investigate the solution structure of this DNA 9-mer. (157 refs., 19 figs., 10 tabs.

  9. Sequence dependent structure and thermodynamics of DNA oligonucleotides and polynucleotides: uv melting and NMR (nuclear magnetic resonance) studies

    International Nuclear Information System (INIS)

    Aboul-ela, F.M.

    1987-12-01

    Thermodynamic parameters for double strand formation have been measured for the twenty-five DNA double helices made by mixing deoxyoligonucleotides of the sequence dCA 3 XA 3 G with the complement dCT 3 YT 3 G. Each of the bases A, C, G, T, and I (I = hypoxanthine) have been substituted at the positions labeled X and Y. The results are analyzed in terms of nearest neighbors. At higher temperatures the sequences containing a G/center dot/C base pair become more stable than those containing only A/center dot/T. All molecules containing mismatcher are destabilized with respect to those with only Watson-Crick pairing, but there is a wide range of destabilization. Large neighboring base effects upon stability were observed. For example, when (X, Y) = (I, A), the duplex is eightfold more stable than when (X, Y) = (A, I). Independent of sequence effects the order of stabilities is: I/center dot/C /succ/ I/center dot/ A/succ/ I/center dot/T ∼ I/center dot/G. All of these results are discussed within the context of models for sequence dependent DNA secondary structure, replication fidelity and mechanisms of mismatch repair, and implications for probe design. The duplex deoxyoligonucleotide d(GGATGGGAG)/center dot/d(CTCCCATCC) is a portion of the gene recognition sequence of the protein transcription factor IIIA. The crystal structure of this oligonucleotide was shown to be A-form The present study employs Nuclear Magnetic Resonance, optical, chemical and enzymatic techniques to investigate the solution structure of this DNA 9-mer. (157 refs., 19 figs., 10 tabs.)

  10. Autocorrelation spectra of an air-fluidized granular system measured by NMR

    Science.gov (United States)

    Lasic, S.; Stepisnik, J.; Mohoric, A.; Sersa, I.; Planinsic, G.

    2006-09-01

    A novel insight into the dynamics of a fluidized granular system is given by a nuclear magnetic resonance method that yields the spin-echo attenuation proportional to the spectrum of the grain positional fluctuation. Measurements of the air-fluidized oil-filled spheres and mustard seeds at different degrees of fluidization and grain volume fractions provide the velocity autocorrelation that differs from the commonly anticipated exponential Enskog decay. An empiric formula, which corresponds to the model of grain caging at collisions with adjacent beads, fits well to the experimental data. Its parameters are the characteristic collision time, the free path between collisions and the cage-breaking rate or the diffusion-like constant, which decreases with increasing grain volume fraction. Mean-squared displacements calculated from the correlation spectrum clearly show transitions from ballistic, through sub-diffusion and into diffusion regimes of grain motion.

  11. Measurement of isovector giant quadrupole resonance in 40Ca

    International Nuclear Information System (INIS)

    Sims, D.A.; Thompson, M.N.; Rassool, R.; Adler, J.O.; Andersson, B.E.; Hansen, K.; Issaksson, L.; Nilsson, B.; Ruijter, H.; Schroeder, B.; Annand, J.R.M.; McGeorge, J.C.; Crawford, G.I.; Miller, G.J.

    1997-01-01

    The 40 Ca(γ,n) reaction was measured using tagged photons in the energy range 25-50 MeV. Neutrons were detected using two 9-element, liquid scintillator, neutron detectors placed at angles of 55 deg and 125 deg at flight path of 3.2 m. The absolute cross section was determined relative to that for D (γ,n)p, which was measured using a heavy water target. The forward/backward asymmetry in the 40 Ca (γ, n) cross section, resulting from E1/E2 interference has been used to locate and parametrize the isovector giant quadrupole resonance (IVQR). 6 refs., 2 figs

  12. Indirect measurement of the cooperative hydrogen bonding of polymers using NMR quadrupole relaxation and PFG methods

    Czech Academy of Sciences Publication Activity Database

    Kříž, Jaroslav; Dybal, Jiří

    2008-01-01

    Roč. 265, č. 1 (2008), s. 225-232 ISSN 1022-1360. [European Symposium on Polymer Spectroscopy /17./. Seggauberg Leibnitz, 09.9.2007-12.09.2007] R&D Projects: GA AV ČR IAA400500604 Institutional research plan: CEZ:AV0Z40500505 Keywords : cooperative bonding * hydrogen bond * NMR * poly(4-vinylphenol) Subject RIV: CD - Macromolecular Chemistry

  13. New NMR method for measuring the difference between corresponding proton and deuterium chemical shifts: isotope effects on exchange equilibria

    International Nuclear Information System (INIS)

    Saunders, M.; Saunders, S.; Johnson, C.A.

    1984-01-01

    A convenient and accurate method is described for measuring the difference between a proton frequency and the corresponding deuterium frequency in its deuterated analogue relative to a reference system by using the deuterium lock in a Fourier-transform NMR spectrometer. This measurement is a sensitive way of measuring equilibrium isotope effects for hydrogen-deuterium exchange. A value of 1.60 per H-D pair is obtained for the equilibrium 2H 3 O + + 3D 2 O in equilibrium 2D 3 O + + 3H 2 O at 30 0 C in aqueous perchloric acid (HClO 4 ). 7 references, 2 tables

  14. 31P NMR saturation-transfer measurements in Saccharomyces cerevisiae: characterization of phosphate exchange reactions by iodoacetate and antimycin A inhibition

    International Nuclear Information System (INIS)

    Campbell-Burk, S.L.; Jones, K.A.; Shulman, R.G.

    1987-01-01

    31 P nuclear magnetic resonance (NMR) saturation-transfer (ST) techniques have been used to measure steady-state flows through phosphate-adenosine 5'-triphosphate (ATP) exchange reactions in glucose-grown derepressed yeast. The results have revealed that the reactions catalyzed by glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase (GAPDH/PGK) and by the mitochondrial ATPase contribute to the observed ST. Contributions from these reactions were evaluated by performing ST studies under various metabolic conditions in the presence and absence of either iodoacetate, a specific inhibitor of GAPDH, or the respiratory chain inhibitor antimycin A. Intracellular phosphate (P/sub i/) longitudinal relaxation times were determined by performing inversion recovery experiments during steady-state ATP/sub λ/ saturation and were used in combination with ST data to determine P/sub i/ consumption rates. 13 C NMR and O 2 electrode measurements were also conducted to monitor changes in rates of glucose consumption and O 2 consumption, respectively, under the various metabolic conditions examined. The results suggest that GAPDH/PGK-catalyzed P/sub i/-ATP exchange is responsible for antimycin-resistant saturation transfer observed in anaerobic and aerobic glucose-fed yeast. Kinetics through GAPDH/PGK were found to depend on metabolic conditions. The coupled system appears to operate in a unidirectional manner during anaerobic glucose metabolism and bidirectionally when the cells are respiring on exogenously supplied ethanol. Additionally, mitochondrial ATPase activity appears to be responsible for the transfer observed in iodoacetate-treated aerobic cells supplied with either glucose or ethanol, with synthesis of ATP occurring unidirectionally

  15. Note: Commercial SQUID magnetometer-compatible NMR probe and its application for studying a quantum magnet.

    Science.gov (United States)

    Vennemann, T; Jeong, M; Yoon, D; Magrez, A; Berger, H; Yang, L; Živković, I; Babkevich, P; Rønnow, H M

    2018-04-01

    We present a compact nuclear magnetic resonance (NMR) probe which is compatible with a magnet of a commercial superconducting quantum interference device magnetometer and demonstrate its application to the study of a quantum magnet. We employ trimmer chip capacitors to construct an NMR tank circuit for low temperature measurements. Using a magnetic insulator MoOPO 4 with S = 1/2 (Mo 5+ ) as an example, we show that the T-dependence of the circuit is weak enough to allow the ligand-ion NMR study of magnetic systems. Our 31 P NMR results are compatible with previous bulk susceptibility and neutron scattering experiments and furthermore reveal unconventional spin dynamics.

  16. Note: Commercial SQUID magnetometer-compatible NMR probe and its application for studying a quantum magnet

    Science.gov (United States)

    Vennemann, T.; Jeong, M.; Yoon, D.; Magrez, A.; Berger, H.; Yang, L.; Živković, I.; Babkevich, P.; Rønnow, H. M.

    2018-04-01

    We present a compact nuclear magnetic resonance (NMR) probe which is compatible with a magnet of a commercial superconducting quantum interference device magnetometer and demonstrate its application to the study of a quantum magnet. We employ trimmer chip capacitors to construct an NMR tank circuit for low temperature measurements. Using a magnetic insulator MoOPO4 with S = 1/2 (Mo5+) as an example, we show that the T-dependence of the circuit is weak enough to allow the ligand-ion NMR study of magnetic systems. Our 31P NMR results are compatible with previous bulk susceptibility and neutron scattering experiments and furthermore reveal unconventional spin dynamics.

  17. Indirect detection in solid state NMR: An illustrious history and a bright future

    Science.gov (United States)

    Tycko, Robert

    2018-03-01

    Many of us have a love/hate relationship with nuclear magnetic resonance (NMR). We love the information content of NMR data, which provides us with essential information about structure, dynamics, and material properties that is not available from any other measurement, and we love the fact that NMR methods can be applied to almost any problem in almost any area of science. But we hate the low sensitivity of NMR, which forces us to make big samples, spend many tedious hours or days taking data, or live with marginal signal-to-noise.

  18. Postmortem magnetic resonance imaging: Reproducing typical autopsy heart measurements.

    Science.gov (United States)

    Ampanozi, Garyfalia; Hatch, Gary M; Flach, Patricia M; Thali, Michael J; Ruder, Thomas D

    2015-11-01

    The aim of this study was to evaluate the utility of cardiac postmortem magnetic resonance (PMMR) to perform routine measurements of the ventricular wall thicknesses and the heart valves and to assess if imaging measurements are consistent with traditional autopsy measurements. In this retrospective study, 25 cases with cardiac PMMR and subsequent autopsy were included. The thicknesses of the myocardial walls as well as the circumferences of all heart valves were measured on cardiac PMMR and compared to autopsy measurements. Paired samples T-test and the Wilcoxon-Signed rank test, were used to compare autopsy and cardiac PMMR measurements. For exploring correlations, the Pearson's Correlation coefficient and the Spearman's Rho test were used. Cardiac PMMR measurements of the aortic and pulmonary valve circumferences showed no significant differences from autopsy measurements. The mitral and tricuspid valves circumferences differed significantly from autopsy measurements. Left myocardial and right myocardial wall thickness also differed significantly from autopsy measurements. Left and right myocardial wall thickness, and tricuspid valve circumference measurements on cardiac PMMR and autopsy, correlated strongly and significantly. Several PMMR measurements of cardiac parameters differ significantly from corresponding autopsy measurements. However, there is a strong correlation between cardiac PMMR measurements and autopsy measurements in the majority of these parameters. It is important to note that myocardial walls are thicker when measured in situ on cardiac PMMR than when measured at autopsy. Investigators using post-mortem MR should be aware of these differences in order to avoid false diagnoses of cardiac pathology based on cardiac PMMR. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Redox-controlled backbone dynamics of human cytochrome c revealed by 15N NMR relaxation measurements

    International Nuclear Information System (INIS)

    Sakamoto, Koichi; Kamiya, Masakatsu; Uchida, Takeshi; Kawano, Keiichi; Ishimori, Koichiro

    2010-01-01

    Research highlights: → The dynamic parameters for the backbone dynamics in Cyt c were determined. → The backbone mobility of Cyt c is highly restricted due to the covalently bound heme. → The backbone mobility of Cyt c is more restricted upon the oxidation of the heme. → The redox-dependent dynamics are shown in the backbone of Cyt c. → The backbone dynamics of Cyt c would regulate the electron transfer from Cyt c. -- Abstract: Redox-controlled backbone dynamics in cytochrome c (Cyt c) were revealed by 2D 15 N NMR relaxation experiments. 15 N T 1 and T 2 values and 1 H- 15 N NOEs of uniformly 15 N-labeled reduced and oxidized Cyt c were measured, and the generalized order parameters (S 2 ), the effective correlation time for internal motion (τ e ), the 15 N exchange broadening contributions (R ex ) for each residue, and the overall correlation time (τ m ) were estimated by model-free dynamics formalism. These dynamic parameters clearly showed that the backbone dynamics of Cyt c are highly restricted due to the covalently bound heme that functions as the stable hydrophobic core. Upon oxidation of the heme iron in Cyt c, the average S 2 value was increased from 0.88 ± 0.01 to 0.92 ± 0.01, demonstrating that the mobility of the backbone is further restricted in the oxidized form. Such increases in the S 2 values were more prominent in the loop regions, including amino acid residues near the thioether bonds to the heme moiety and positively charged region around Lys87. Both of the regions are supposed to form the interaction site for cytochrome c oxidase (CcO) and the electron pathway from Cyt c to CcO. The redox-dependent mobility of the backbone in the interaction site for the electron transfer to CcO suggests an electron transfer mechanism regulated by the backbone dynamics in the Cyt c-CcO system.

  20. NMR spectroscopy and drug development

    International Nuclear Information System (INIS)

    Craik, D.; Munro, S.

    1990-01-01

    The use of nuclear magnetic resonance (NMR) spectroscopy for structural and conformational studies on drug molecules, the three-dimensional investigation of proteins structure and their interactions with ligands are discussed. In-vivo NMR studies of the effects of drugs on metabolism in perfused organs and whole animals are also briefly presented. 5 refs., ills

  1. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy; Bontemps, P.; Rikken, Geert L J A

    2011-01-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  2. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  3. Magnetic and structural properties of an octanuclear Cu(II) S=1/2 mesoscopic ring: Susceptibility and NMR measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lascialfari, A. [Department of Physics ' ' A. Volta' ' and Unita INFM, University of Pavia, Via Bassi 6, I-27100 Pavia, (Italy); Jang, Z. H. [Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Borsa, F. [Department of Physics ' ' A. Volta' ' and Unita INFM, University of Pavia, Via Bassi 6, I-27100 Pavia, (Italy); Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Gatteschi, D. [Department of Chemistry, University of Florence, Via Maragliano 77, I-50144 Florence, (Italy); Cornia, A. [Department of Chemistry, University of Modena, Via Campi 183, I-41100 Modena, (Italy); Rovai, D. [Department of Chemistry, University of Florence, Via Maragliano 77, I-50144 Florence, (Italy); Caneschi, A. [Department of Chemistry, University of Florence, Via Maragliano 77, I-50144 Florence, (Italy); Carretta, P. [Department of Physics ' ' A. Volta' ' and Unita INFM, University of Pavia, Via Bassi 6, I-27100 Pavia, (Italy)

    2000-03-01

    Magnetic susceptibility, {sup 1}H NMR and {sup 63}Cu NMR-NQR experiments on two slightly different species of the molecular S=1/2 antiferromagnetic (AF) ring Cu8, [Cu{sub 8}(dmpz){sub 8}(OH){sub 8}]{center_dot}2C{sub 5}H{sub 5}N (Cu8P) and [Cu{sub 8}(dmpz){sub 8}(OH){sub 8}]{center_dot}2C{sub 5}H{sub 5}NO{sub 2} (Cu8N), are presented. The magnetic energy levels are calculated exactly for an isotropic Heisenberg model Hamiltonian in zero magnetic field. From the magnetic susceptibility measurements we estimate the AF exchange coupling constant J{approx}1000 K and the resulting gap {delta}{approx}500 K between the S{sub T}=0 ground state and the S{sub T}=1 first excited state. The {sup 63,65}Cu NQR spectra indicate the presence of four crystallographically inequivalent copper nuclei in each ring. From the combination of the {sup 63}Cu NQR spectra and of the {sup 63}Cu NMR spectra at high magnetic field, we estimate the quadrupole coupling constant v{sub Q} of each site and the average asymmetry parameter {eta} of the electric-field gradient tensor. The nuclear spin-lattice relaxation rate (NSLR) decreases exponentially on decreasing temperature for all nuclei investigated. The gap parameter extracted from {sup 63}Cu NQR-NSLR is the same as for the susceptibility while a smaller value is obtained from the {sup 63}Cu NMR-NSLR in an external magnetic field of 8.2 T. (c) 2000 The American Physical Society.

  4. Racetrack resonator as a loss measurement platform for photonic components.

    Science.gov (United States)

    Jones, Adam M; DeRose, Christopher T; Lentine, Anthony L; Starbuck, Andrew; Pomerene, Andrew T S; Norwood, Robert A

    2015-11-02

    This work represents the first complete analysis of the use of a racetrack resonator to measure the insertion loss of efficient, compact photonic components. Beginning with an in-depth analysis of potential error sources and a discussion of the calibration procedure, the technique is used to estimate the insertion loss of waveguide width tapers of varying geometry with a resulting 95% confidence interval of 0.007 dB. The work concludes with a performance comparison of the analyzed tapers with results presented for four taper profiles and three taper lengths.

  5. RESONANCE

    Indian Academy of Sciences (India)

    small bar magnets. NMR spectroscopy .... that the integrated area for the methylene .... in a network of spins. .... Schematic representation of the type of short (broken arrows) and medium-range .... we can define between cities and towns in the.

  6. NMR Phase Noise in Bitter Magnets

    Science.gov (United States)

    Sigmund, E. E.; Calder, E. S.; Thomas, G. W.; Mitrović, V. F.; Bachman, H. N.; Halperin, W. P.; Kuhns, P. L.; Reyes, A. P.

    2001-02-01

    We have studied the temporal instability of a high field resistive Bitter magnet through nuclear magnetic resonance (NMR). This instability leads to transverse spin decoherence in repeated and accumulated NMR experiments as is normally performed during signal averaging. We demonstrate this effect via Hahn echo and Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation experiments in a 23-T resistive magnet. Quantitative analysis was found to be consistent with separate measurements of the magnetic field frequency fluctuation spectrum, as well as with independent NMR experiments performed in a magnetic field with a controlled instability. Finally, the CPMG sequence with short pulse delays is shown to be successful in recovering the intrinsic spin-spin relaxation even in the presence of magnetic field temporal instability.

  7. Structure and reactivity of thiazolium azo dyes: UV-visible, resonance Raman, NMR, and computational studies of the reaction mechanism in alkaline solution.

    Science.gov (United States)

    Abbott, Laurence C; Batchelor, Stephen N; Moore, John N

    2013-03-07

    UV-visible absorption, resonance Raman, and (1)H NMR spectroscopy, allied with density functional theory (DFT) calculations, have been used to study the structure, bonding, and alkaline hydrolysis mechanism of the cationic thiazloium azo dye, 2-[2-[4-(diethylamino)phenyl]diazenyl]-3-methyl-thiazolium (1a), along with a series of six related dyes with different 4-dialkylamino groups and/or other phenyl ring substituents (2a-c, 3a-c) and the related isothiazolium azo dye, 5-[2-[4-(dimethylamino)phenyl]diazenyl]-2-methyl-isothiazolium (4). These diazahemicyanine dyes are calculated to have a similar low-energy structure that is cis, trans at the (iso)thiazolium-azo group, and for which the calculated Raman spectra provide a good match with the experimental data; the calculations on these structures are used to assign and discuss the transitions giving rise to the experimental spectra, and to consider the bonding and its variation between the dyes. UV-visible, Raman, and NMR spectra recorded from minutes to several weeks after raising the pH of an aqueous solution of 1a to ca. 11.5 show that the dominant initial step in the reaction is loss of diethylamine to produce a quinonimine (ca. hours), with subsequent reactions occurring on longer time scales (ca. days to weeks); kinetic analyses give a rate constant of 2.6 × 10(-2) dm(3) mol(-1) s(-1) for reaction of 1a with OH(-). UV-visible spectra recorded on raising the pH of the other dyes in solution show similar changes that are attributed to the same general reaction mechanism, but with different rate constants for which the dependence on structure is discussed.

  8. Longitudinal and transverse electric field measurements in resonant cavities

    International Nuclear Information System (INIS)

    Tong Dechun; Chen Linfeng; Zheng Xiaoyue

    1994-01-01

    The paper presents a measuring technique for the electric field distribution of high order modes in resonant cavities. A perturbing bead-like cage made with metallic wires are developed for S-band field measurements, which can be used to detect a small electric field component in the presence of other strong electric or magnetic field components (That means high sensitivity and high directivity). In order to avoid orientation error for the cage with very high directivity, two parallel threads were used for supporting the perturbing cage. A simple mechanical set-up is described. The cage can be driven into the cavity on-axis or off-axis in any azimuth for the longitudinal and transverse electric field measurements

  9. Value of NMR logging for heavy oil characterization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.; Chen, J.; Georgi, D. [Baker Hughes, Calgary, AB (Canada); Sun, B. [Chevron Energy Technology Co., Calgary, AB (Canada)

    2008-07-01

    Non-conventional, heavy oil fields are becoming increasingly important to the security of energy supplies and are becoming economically profitable to produce. Heavy oil reservoirs are difficult to evaluate since they are typically shallow and the connate waters are very fresh. Other heavy oil reservoirs are oil-wet where the resistivities are not indicative of saturation. Nuclear magnetic resonance (NMR) detects molecular level interactions. As such, it responds distinctively to different hydrocarbon molecules, thereby opening a new avenue for constituent analysis. This feature makes NMR a more powerful technique than bulk oil density or viscosity measurements for characterizing oils, and is the basis for detecting gas in heavy oil fields. NMR logging, which measures fluid in pore space directly, is capable of separating oil from water. It is possible to discern movable from bound water by analyzing NMR logs. The oil viscosity can be also quantified from NMR logs, NMR relaxation time and diffusivity estimates. The unique challenges for heavy oil reservoir characterization for the NMR technique were discussed with reference to the extra-fast decay of the NMR signal in response to extra-heavy oil/tars, and the lack of sensitivity in measuring very slow diffusion of heavy oil molecules. This paper presented various methods for analyzing heavy oil reservoirs in different viscosity ranges. Heavy oil fields in Venezuela, Kazakhstan, Canada, Alaska and the Middle East were analyzed using different data interpretation approaches based on the reservoir formation characteristics and the heavy oil type. NMR direct fluid typing was adequate for clean sands and carbonate reservoirs while integrated approaches were used to interpret extra heavy oils and tars. It was concluded that NMR logs can provide quantitative measures for heavy oil saturation, identify sweet spots or tar streaks, and quantify heavy oil viscosity within reasonable accuracy. 14 refs., 16 figs.

  10. Assignment of histidine resonances in the 1H NMR (500 MHz) spectrum of subtilisin BPN' using site-directed mutagenesis

    International Nuclear Information System (INIS)

    Bycroft, M.; Fersht, A.R.

    1988-01-01

    A spin-echo pulse sequence has been used to resolve the six histidine C-2H protons in the 500-MHz NMR spectrum of subtilisin BPN'. Five of these residues have been substituted by site-directed mutagenesis, and this has enabled a complete assignment of these protons to be obtained. Analysis of the pH titration curves of these signals has provided microscopic pK a 's for the six histidines in this enzyme. The pK a 's of the histidine residues in subtilisin BPN' have been compared with the values obtained for the histidines in the homologous enzyme from Bacillus licheniformis (subtilisin Carlsberg). Four of the five conserved histidines titrate with essentially identical pK a 's in the two enzymes. It therefore appears that the assignments made for these residues in subtilisin BPN' can be transferred to subtilisin Carlsberg. On the basis of these assignments, the one histidine that titrates with a substantially different pK a in the two enzymes can be assigned to histidine-238. This difference in pK a has been attributed to a Trp to Lys substitution at position 241 in subtilisin Carlsberg

  11. Measurement of Lipid Accumulation in Chlorella vulgaris via Flow Cytometry and Liquid-State ¹H NMR Spectroscopy for Development of an NMR-Traceable Flow Cytometry Protocol

    Science.gov (United States)

    Bono Jr., Michael S.; Garcia, Ravi D.; Sri-Jayantha, Dylan V.; Ahner, Beth A.; Kirby, Brian J.

    2015-01-01

    In this study, we cultured Chlorella vulgaris cells with a range of lipid contents, induced via nitrogen starvation, and characterized them via flow cytometry, with BODIPY 505/515 as a fluorescent lipid label, and liquid-state 1H NMR spectroscopy. In doing so, we demonstrate the utility of calibrating flow cytometric measurements of algal lipid content using triacylglyceride (TAG, also known as triacylglycerol or triglyceride) content per cell as measured via quantitative 1H NMR. Ensemble-averaged fluorescence of BODIPY-labeled cells was highly correlated with average TAG content per cell measured by bulk NMR, with a linear regression yielding a linear fit with r 2 = 0.9974. This correlation compares favorably to previous calibrations of flow cytometry protocols to lipid content measured via extraction, and calibration by NMR avoids the time and complexity that is generally required for lipid quantitation via extraction. Flow cytometry calibrated to a direct measurement of TAG content can be used to investigate the distribution of lipid contents for cells within a culture. Our flow cytometry measurements showed that Chlorella vulgaris cells subjected to nitrogen limitation exhibited higher mean lipid content but a wider distribution of lipid content that overlapped the relatively narrow distribution of lipid content for replete cells, suggesting that nitrogen limitation induces lipid accumulation in only a subset of cells. Calibration of flow cytometry protocols using direct in situ measurement of TAG content via NMR will facilitate rapid development of more precise flow cytometry protocols, enabling investigation of algal lipid accumulation for development of more productive algal biofuel feedstocks and cultivation protocols. PMID:26267664

  12. Measurement of lipid accumulation in Chlorella vulgaris via flow cytometry and liquid-state ¹H NMR spectroscopy for development of an NMR-traceable flow cytometry protocol.

    Directory of Open Access Journals (Sweden)

    Michael S Bono

    Full Text Available In this study, we cultured Chlorella vulgaris cells with a range of lipid contents, induced via nitrogen starvation, and characterized them via flow cytometry, with BODIPY 505/515 as a fluorescent lipid label, and liquid-state 1H NMR spectroscopy. In doing so, we demonstrate the utility of calibrating flow cytometric measurements of algal lipid content using triacylglyceride (TAG, also known as triacylglycerol or triglyceride content per cell as measured via quantitative 1H NMR. Ensemble-averaged fluorescence of BODIPY-labeled cells was highly correlated with average TAG content per cell measured by bulk NMR, with a linear regression yielding a linear fit with r2 = 0.9974. This correlation compares favorably to previous calibrations of flow cytometry protocols to lipid content measured via extraction, and calibration by NMR avoids the time and complexity that is generally required for lipid quantitation via extraction. Flow cytometry calibrated to a direct measurement of TAG content can be used to investigate the distribution of lipid contents for cells within a culture. Our flow cytometry measurements showed that Chlorella vulgaris cells subjected to nitrogen limitation exhibited higher mean lipid content but a wider distribution of lipid content that overlapped the relatively narrow distribution of lipid content for replete cells, suggesting that nitrogen limitation induces lipid accumulation in only a subset of cells. Calibration of flow cytometry protocols using direct in situ measurement of TAG content via NMR will facilitate rapid development of more precise flow cytometry protocols, enabling investigation of algal lipid accumulation for development of more productive algal biofuel feedstocks and cultivation protocols.

  13. Measurement of lipid accumulation in Chlorella vulgaris via flow cytometry and liquid-state ¹H NMR spectroscopy for development of an NMR-traceable flow cytometry protocol.

    Science.gov (United States)

    Bono, Michael S; Garcia, Ravi D; Sri-Jayantha, Dylan V; Ahner, Beth A; Kirby, Brian J

    2015-01-01

    In this study, we cultured Chlorella vulgaris cells with a range of lipid contents, induced via nitrogen starvation, and characterized them via flow cytometry, with BODIPY 505/515 as a fluorescent lipid label, and liquid-state 1H NMR spectroscopy. In doing so, we demonstrate the utility of calibrating flow cytometric measurements of algal lipid content using triacylglyceride (TAG, also known as triacylglycerol or triglyceride) content per cell as measured via quantitative 1H NMR. Ensemble-averaged fluorescence of BODIPY-labeled cells was highly correlated with average TAG content per cell measured by bulk NMR, with a linear regression yielding a linear fit with r2 = 0.9974. This correlation compares favorably to previous calibrations of flow cytometry protocols to lipid content measured via extraction, and calibration by NMR avoids the time and complexity that is generally required for lipid quantitation via extraction. Flow cytometry calibrated to a direct measurement of TAG content can be used to investigate the distribution of lipid contents for cells within a culture. Our flow cytometry measurements showed that Chlorella vulgaris cells subjected to nitrogen limitation exhibited higher mean lipid content but a wider distribution of lipid content that overlapped the relatively narrow distribution of lipid content for replete cells, suggesting that nitrogen limitation induces lipid accumulation in only a subset of cells. Calibration of flow cytometry protocols using direct in situ measurement of TAG content via NMR will facilitate rapid development of more precise flow cytometry protocols, enabling investigation of algal lipid accumulation for development of more productive algal biofuel feedstocks and cultivation protocols.

  14. Fourier transform zero field NMR and NQR

    International Nuclear Information System (INIS)

    Zax, D.B.

    1985-01-01

    In many systems the chemical shifts measured by traditional high resolution solid state NMR methods are insufficiently sensitive, or the information contained in the dipole-dipole couplings is more important. In these cases, Fourier transform zero field magnetic resonance may make an important contribution. Zero field NMR and NQR is the subject of this thesis. Chapter I presents the quantum mechanical background and notational formalism for what follows. Chapter II gives a brief review of high resolution magnetic resonance methods, with particular emphasis on techniques applicable to dipole-dipole and quadrupolar couplings. Level crossings between spin-1/2 and quadrupolar spins during demagnetization transfer polarization from high to low λ nuclei. This is the basis of very high sensitivity zero field NQR measurements by field cycling. Chapter III provides a formal presentation of the high resolution Fourier transform zero field NMR method. Theoretical signal functions are calculated for common spin systems, and examples of typical spectra are presented. Chapters IV and V review the experimental progress in zero field NMR of dipole-dipole coupled spin-1/2 nuclei and for quadrupolar spin systems. Variations of the simple experiment describe in earlier chapters that use pulsed dc fields are presented in Chapter VI

  15. Nuclear magnetic resonance tomography in Hallervorden-Spatz's syndrome

    International Nuclear Information System (INIS)

    Vogl, T.; Bauer, M.; Seiderer, M.; Rath, M.

    1984-01-01

    Two patients (mother and son) with Hallervorden-Spatz's syndrome were examined both via CT and Nuclear Magnetic Resonance (NMR), using different measuring modes. In the patient with progressing disease pathological findings were seen in the right and left putamen with CT and NMR. All examinations in the mother with a less progressive syndrome were without any result. Information obtained via NMR did not yield significantly more relevant data than computed tomography. (orig.) [de

  16. NMR study of Gd2(Co1-xFex)14B compounds

    International Nuclear Information System (INIS)

    Hayashi, M.; Myojin, T.; Kasamatsu, Y.; Imaeda, Y.; Ushida, T.; Tsujimura, A.; Hihara, T.

    1992-01-01

    59 Co NMR measurements in Gd 2 (Co 1-x Fe x ) 14 B have been carried out at 4.2 K. The resonance line corresponding to each site of the Co atoms shifts gradually to a higher frequency region as the value of x increases, and when the value exceeds 0.3 the resonance line seems to be disturbed. (orig.)

  17. Assessment of 1H NMR-based metabolomics analysis for normalization of urinary metals against creatinine.

    Science.gov (United States)

    Cassiède, Marc; Nair, Sindhu; Dueck, Meghan; Mino, James; McKay, Ryan; Mercier, Pascal; Quémerais, Bernadette; Lacy, Paige

    2017-01-01

    Proton nuclear magnetic resonance ( 1 H NMR, or NMR) spectroscopy and inductively coupled plasma-mass spectrometry (ICP-MS) are commonly used for metabolomics and metal analysis in urine samples. However, creatinine quantification by NMR for the purpose of normalization of urinary metals has not been validated. We assessed the validity of using NMR analysis for creatinine quantification in human urine samples in order to allow normalization of urinary metal concentrations. NMR and ICP-MS techniques were used to measure metabolite and metal concentrations in urine samples from 10 healthy subjects. For metabolite analysis, two magnetic field strengths (600 and 700MHz) were utilized. In addition, creatinine concentrations were determined by using the Jaffe method. Creatinine levels were strongly correlated (R 2 =0.99) between NMR and Jaffe methods. The NMR spectra were deconvoluted with a target database containing 151 metabolites that are present in urine. A total of 50 metabolites showed good correlation (R 2 =0.7-1.0) at 600 and 700MHz. Metal concentrations determined after NMR-measured creatinine normalization were comparable to previous reports. NMR analysis provided robust urinary creatinine quantification, and was sufficient for normalization of urinary metal concentrations. We found that NMR-measured creatinine-normalized urinary metal concentrations in our control subjects were similar to general population levels in Canada and the United Kingdom. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. 1H NMR visibility of mammalian glycogen in solution

    International Nuclear Information System (INIS)

    Zang, L.H.; Rothman, D.L.; Shulman, R.G.

    1990-01-01

    High-resolution 1 H NMR spectra of rabbit liver glycogen in 2 H 2 O were obtained at 500 MHz, and several resonances were assigned by comparison with the chemical shifts of α-linked diglucose molecules. The NMR relaxation times T 1 and T 2 of glycogen in 2 H 2 O were determined to be 1.1 and 0.029 s, respectively. The measured natural linewidth of the carbon-1 proton is in excellent agreement with that calculated from T 2 . The visibility measurements made by digesting glycogen and comparing glucose and glycogen signal intensities demonstrate that in spite of the very high molecular weight, all of the proton nuclei in glycogen contribute to the NMR spectrum. The result is not unexpected, since 100% NMR visibility was previously observed from the carbon nuclei of glycogen, due to the rapid intramolecular motions

  19. A Methodology to Integrate Magnetic Resonance and Acoustic Measurements for Reservoir Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Jorge O.; Hackert, Chris L.; Collier, Hughbert A.; Bennett, Michael

    2002-01-29

    The objective of this project was to develop an advanced imaging method, including pore scale imaging, to integrate NMR techniques and acoustic measurements to improve predictability of the pay zone in hydrocarbon reservoirs. This is accomplished by extracting the fluid property parameters using NMR laboratory measurements and the elastic parameters of the rock matrix from acoustic measurements to create poroelastic models of different parts of the reservoir. Laboratory measurement techniques and core imaging are being linked with a balanced petrographical analysis of the core and theoretical model.

  20. Volume measurement of multiple sclerosis lesions with magnetic resonance images

    International Nuclear Information System (INIS)

    Wicks, D.A.G.; Tofts, P.S.; Miller, D.H.; Du Boulay, G.H.; Feinstein, A.; Harvey, I.; Brenner, R.; McDonald, W.I.; Sacares, R.P.

    1992-01-01

    The ability to visualise multiple sclerosis lesions in vivo with magnetic resonance imaging suggests an important role in monitoring the course of the disease. In order to help the long-term assessment of prospective treatments, a semi-automated technique for measuring lesion volume has been developed to provide a quantitative index of disease progression. Results are presented from a preliminary study with a single patient and compared to measurements taken from lesion outlines traced by a neuroradiologist, two neurologists and a technician. The semi-automated technique achieved a precision of 6% compared to a range of 12-33% for the manual tracing method. It also reduced the human interaction time from at least 60 min to 15 min. (orig.)

  1. Resonance ionization mass spectrometry system for measurement of environmental samples

    International Nuclear Information System (INIS)

    Pibida, L.; McMahon, C.A.; Noertershaeuser, W.; Bushaw, B.A.

    2002-01-01

    A resonance ionization mass spectrometry (RIMS) system has been developed at the National Institute of Standards and Technology (NIST) for sensitive and selective determination of radio-cesium in the environment. The overall efficiency was determined to be 4x10-7 with a combined (laser and mass spectrometer) selectivity of 108 for both 135Cs and 137Cs with respect to 133Cs. RIMS isotopic ratio measurements of 135Cs/ 137Cs were performed on a nuclear fuel burn-up sample and compared to measurements on a similar system at Pacific Northwest National Laboratory (PNNL) and to conventional thermal ionization mass spectrometry (TIMS). Results of preliminary RIMS investigations on a freshwater lake sediment sample are also discussed

  2. Application of nuclear resonance scattering for in vivo measurements

    International Nuclear Information System (INIS)

    Wielopolski, L.; Vartsky, D.; Cohn, S.H.

    1983-01-01

    Nuclear resonance scattering is applied in our laboratory to measure hepatic and cardiac iron overload. For iron analysis, a gaseous source of 4 mg MnCl 2 is introduced into an evacuated quartz vial. Following irradiation in a nuclear reactor, 56 Mn decays by beta emission to the 847-keV level of 56 Fe, which subsequently decays to the ground state of 56 Fe with a 7 ps half-life. The principal aim of this work is to evaluate the efficacy of the iron chelation therapy. Serial measurements over a time period of 6 to 12 months of a given patient will enable us to see how the iron is removed from the critical organs

  3. Electron Spin Resonance Measurement with Microinductor on Chip

    Directory of Open Access Journals (Sweden)

    Akio Kitagawa

    2011-01-01

    Full Text Available The detection of radicals on a chip is demonstrated. The proposed method is based on electron spin resonance (ESR spectroscopy and the measurement of high-frequency impedance of the microinductor fabricated on the chip. The measurement was by using a frequency sweep of approximately 100 MHz. The ESR spectra of di(phenyl-(2,4,6-trinitrophenyliminoazanium (DPPH dropped on the microinductor which is fabricated with CMOS 350-nm technology were observed at room temperature. The volume of the DPPH ethanol solution was 2 μL, and the number of spins on the micro-inductor was estimated at about 1014. The sensitivity is not higher than that of the standard ESR spectrometers. However, the result indicates the feasibility of a near field radical sensor in which the microinductor as a probe head and ESR signal processing circuit are integrated.

  4. Measurement of Charged Pions from Neutrino-produced Nuclear Resonance

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Clifford N. [Univ. of California, Irvine, CA (United States)

    2014-01-01

    A method for identifying stopped pions in a high-resolution scintillator bar detector is presented. I apply my technique to measure the axial mass MΔAfor production of the Δ(1232) resonance by neutrino, with the result MΔA = 1.16±0.20 GeV (68% CL) (limited by statistics). The result is produced from the measured spectrum of reconstructed momentum-transfer Q2. I proceed by varying the value of MΔA in a Rein-Sehgal-based Monte Carlo to produce the best agreement, using shape only (not normalization). The consistency of this result with recent reanalyses of previous bubble-chamber experiments is discussed.

  5. Viscosity of concentrated solutions and of human erythrocyte cytoplasm determined from NMR measurement of molecular correlation times

    International Nuclear Information System (INIS)

    Endre, Z.H.; Kuchel, P.W.

    1986-01-01

    Metabolically active human erythrocytes were incubated with [α- 13 C]glycine which led to the specific enrichment of intracellular glutathione. The cells were then studied using 13 C-NMR in which the longitudinal relaxation times (T 1 ) and nuclear Overhauser enhancements of the free glycine and glutathione were measured. Bulk viscosities of the erythrocyte cytoplasm were measured using Ostwald capillary viscometry. Large differences existed between the latter viscosity estimates and those based upon NMR-T 1 measurements. The authors derived an equation from the theory of the viscosity of concentrated solutions which contains two phenomenological interaction parameters, a 'shape' factor and a 'volume' factor; it was fitted to data relating to the concentration dependence of viscosity measured by both methods. Under various conditions of extracellular osmotic pressure, erythrocytes change volume and thus the viscosity of the intracellular milieu is altered. The volume changes resulted in changes in the T 1 of [α- 13 C]glycine. Conversely, the authors showed that alterations in T 1 , when appropriately calibrated, could be used for monitoring changes in volume of metabolically active cells. (Auth.)

  6. A Noninvasive Method to Study Regulation of Extracellular Fluid Volume in Rats Using Nuclear Magnetic Resonance

    Science.gov (United States)

    Time-domain nuclear magnetic resonance (TD-NMR)-based measurement of body composition of rodents is an effective method to quickly and repeatedly measure proportions of fat, lean, and fluid without anesthesia. TD-NMR provides a measure of free water in a living animal, termed % f...

  7. Magic Angle Spinning NMR Metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Zhi Hu, Jian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is a non-destructive, quantitative, reproducible, untargeted and unbiased method that requires no or minimal sample preparation, and is one of the leading analytical tools for metabonomics research [1-3]. The easy quantification and the no need of prior knowledge about compounds present in a sample associated with NMR are advantageous over other techniques [1,4]. 1H NMR is especially attractive because protons are present in virtually all metabolites and its NMR sensitivity is high, enabling the simultaneous identification and monitoring of a wide range of low molecular weight metabolites.

  8. Laser spectroscopy and beta-NMR measurements of short-lived Mg isotopes

    CERN Document Server

    Kowalska, M

    2005-01-01

    The feasibility of studying the neutron-rich 29Mg, 31Mg and 33Mg isotopes has been demonstrated with the laser and beta-NMR spectroscopy setup at ISOLDE/CERN. The values of the magnetic moment and the nuclear spin of 31Mg are reported and reveal an intruder ground state. This proves the weakening of N=20 shell gap and places this nucleus inside the so called "island of inversion". The experimental setup and technique, as well as the results, are presented.

  9. Novel spin dynamics in ferrimagnetic molecular chains from {sup 1}H NMR and {mu}SR spin-lattice relaxation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Micotti, E. E-mail: micotti@fisicavolta.unipv.it; Lascialfari, A.; Rigamonti, A.; Aldrovandi, S.; Caneschi, A.; Gatteschi, D.; Bogani, L

    2004-05-01

    The spin dynamics in the helical chain Co(hfac){sub 2}NITPhOMe has been investigated by {sup 1}H NMR and {mu}SR relaxation. In the temperature range 15NMR and {mu}SR evidence a second spin relaxation mechanism, undetected by the magnetization measurements. From the analysis of these data, insights on this novel relaxation process are derived.

  10. Magnetic Resonance Force Microscopy System

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetic Resonance Force Microscopy (MRFM) system, developed by ARL, is the world's most sensitive nuclear magnetic resonance (NMR) spectroscopic analysis tool,...

  11. Measuring ac losses in superconducting cables using a resonant circuit:Resonant current experiment (RESCUE)

    DEFF Research Database (Denmark)

    Däumling, Manfred; Olsen, Søren Krüger; Rasmussen, Carsten

    1998-01-01

    be recorded using, for example, a digital oscilloscope. The amplitude decay of the periodic voltage or current accurately reflects the power loss in the system. It consists of two components-an ohmic purely exponential one (from leads, contacts, etc.), and a nonexponential component originating from......A simple way to obtain true ac losses with a resonant circuit containing a superconductor, using the decay of the circuit current, is described. For the measurement a capacitor is short circuited with a superconducting cable. Energy in the circuit is provided by either charging up the capacitors...... with a certain voltage, or letting a de flow in the superconductor. When the oscillations are started-either by opening a switch in case a de is flowing or by closing a switch to connect the charged capacitors with the superconductor-the current (via a Rogowski coil) or the voltage on the capacitor can...

  12. Measurement of coherent π0 photoproduction on 3He and 3H in the resonance region

    International Nuclear Information System (INIS)

    Bellinghausen, B.; Gassen, H.J.; Reese, E.; Reichelt, T.; Stipp, P.

    1984-01-01

    Neutral pion photoproduction has been measured on 3 He and 3 H nuclei in the Δ(1,232) resonance region. Resonance averaged cross-sections are presented as a function of momentum transfer and compared to theoretical calculations. (orig.)

  13. Sensitivity improvement for correlations involving arginine side-chain Nε/Hε resonances in multi-dimensional NMR experiments using broadband 15N 180o pulses

    International Nuclear Information System (INIS)

    Iwahara, Junji; Clore, G. Marius

    2006-01-01

    Due to practical limitations in available 15 N rf field strength, imperfections in 15 N 180 o pulses arising from off-resonance effects can result in significant sensitivity loss, even if the chemical shift offset is relatively small. Indeed, in multi-dimensional NMR experiments optimized for protein backbone amide groups, cross-peaks arising from the Arg guanidino 15 Nε (∼85 ppm) are highly attenuated by the presence of multiple INEPT transfer steps. To improve the sensitivity for correlations involving Arg Nε-Hε groups, we have incorporated 15 N broadband 180 deg. pulses into 3D 15 N-separated NOE-HSQC and HNCACB experiments. Two 15 N-WURST pulses incorporated at the INEPT transfer steps of the 3D 15 N-separated NOE-HSQC pulse sequence resulted in a ∼1.5-fold increase in sensitivity for the Arg Nε-Hε signals at 800 MHz. For the 3D HNCACB experiment, five 15 N Abramovich-Vega pulses were incorporated for broadband inversion and refocusing, and the sensitivity of Arg 1 Hε- 15 Nε- 13 Cγ/ 13 Cδ correlation peaks was enhanced by a factor of ∼1.7 at 500 MHz. These experiments eliminate the necessity for additional experiments to assign Arg 1 Hε and 15 Nε resonances. In addition, the increased sensitivity afforded for the detection of NOE cross-peaks involving correlations with the 15 Nε/ 1 Hε of Arg in 3D 15 N-separated NOE experiments should prove to be very useful for structural analysis of interactions involving Arg side-chains

  14. Two-dimensional NMR and photo-CIDNP studies of the insulin monomer: Assignment of aromatic resonances with application to protein folding, structure, and dynamics

    International Nuclear Information System (INIS)

    Weiss, M.A.; Shoelson, S.E.; Nguyen, D.T.; O'Shea, E.; Karplus, M.; Khait, I.; Neuringer, L.J.; Inouye, K.; Frank, B.H.; Beckage, M.

    1989-01-01

    The aromatic 1 H NMR resonances of the insulin monomer are assigned at 500 MHz by comparative studies of chemically modified and genetically altered variants, including a mutant insulin (PheB25 → Leu) associated with diabetes mellitus. The two histidines, three phenylalanines, and four tyrosines are observed to be in distinct local environments; their assignment provides sensitive markers for studies of tertiary structure, protein dynamics, and protein folding. The environments of the tyrosine residues have also been investigated by photochemically induced dynamic nuclear polarization (photo-CIDNP) and analyzed in relation to packing constrains in the crystal structures of insulin. Dimerization involving specific B-chain interactions is observed with increasing protein concentration and is shown to depend on temperature, pH, and solvent composition. The differences between proinsulin and mini-proinsulin suggest a structural mechanism for the observation that the fully reduced B29-A1 analogue folds more efficiently than proinsulin to form the correct pattern of disulfide bonds. These results are discussed in relation to molecular mechanics calculations of insulin based on the available crystal structures

  15. NMR experiments for resonance assignments of 13C, 15N doubly-labeled flexible polypeptides: Application to the human prion protein hPrP(23-230)

    International Nuclear Information System (INIS)

    Liu Aizhuo; Riek, Roland; Wider, Gerhard; Schroetter, Christine von; Zahn, Ralph; Wuethrich, Kurt

    2000-01-01

    A combination of three heteronuclear three-dimensional NMR experiments tailored for sequential resonance assignments in uniformly 15 N, 13 C-labeled flexible polypeptide chains is described. The 3D (H)N(CO-TOCSY)NH, 3D (H)CA(CO-TOCSY)NH and 3D (H)CBCA(CO-TOCSY)NH schemes make use of the favorable 15 N chemical shift dispersion in unfolded polypeptides, exploit the slow transverse 15 N relaxation rates of unfolded polypeptides in high resolution constant-time [ 1 H, 15 N]-correlation experiments, and use carbonyl carbon homonuclear isotropic mixing to transfer magnetization sequentially along the amino acid sequence. Practical applications are demonstrated with the 100-residue flexible tail of the recombinant human prion protein, making use of spectral resolution up to 0.6 Hz in the 15 N dimension, simultaneous correlation with the two adjacent amino acid residues to overcome problems associated with spectral overlap, and the potential of the presently described experiments to establish nearest-neighbor correlations across proline residues in the amino acid sequence

  16. NMR spectroscopy

    International Nuclear Information System (INIS)

    Gruenert, J.

    1989-01-01

    The book reviews the applications of NMR-spectroscopy in medicine and biology. The first chapter of about 40 pages summarizes the history of development and explains the chemical and physical fundamentals of this new and non-invasive method in an easily comprehensible manner. The other chapters summarize diagnostic results obtained with this method in organs and tissues, so that the reader will find a systematic overview of the available findings obtained in the various organ systems. It must be noted, however, that ongoing research work and new insight quite naturally will necessitate corrections to be done, as is the case here with some biochemical interpretations which would need adjustment to latest research results. NMR-spectroscopy is able to measure very fine energy differences on the molecular level, and thus offers insight into metabolic processes, with the advantage that there is no need of applying ionizing radiation in order to qualitatively or quantitatively analyse the metabolic processes in the various organ systems. (orig./DG) With 40 figs., 4 tabs [de

  17. Measuring rare and exclusive Higgs boson decays into light resonances

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, Andrew S.; Nikolopoulos, Konstantinos [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Kuttimalai, Silvan; Spannowsky, Michael [Durham University, Institute for Particle Physics Phenomenology, Department of Physics, Durham (United Kingdom)

    2016-09-15

    We evaluate the LHC's potential of observing Higgs boson decays into light elementary or composite resonances through their hadronic decay channels. We focus on the Higgs boson production processes with the largest cross sections, pp → h and pp → h + jet, with subsequent decays h → ZA or h → Zη{sub c}, and comment on the production process pp → hZ. By exploiting track-based jet substructure observables and extrapolating to 3000 fb{sup -1} we find BR(h → ZA) ≅ BR(h → Zη{sub c}) measurements and can constrain large parts of the currently allowed parameter space. (orig.)

  18. Hyperfine structure analysis in magnetic resonance spectroscopy: from astrophysical measurements towards endogenous biosensors in human tissue

    International Nuclear Information System (INIS)

    Schroeder, L.; California Univ., Berkeley, CA; Lawrence Berkeley National Lab., Berkeley, CA

    2007-01-01

    The hyperfine interaction of two spins is a well studied effect in atomic systems. Magnetic resonance experiments demonstrate that the detectable dipole transitions are determined by the magnetic moments of the constituents and the external magnetic field. Transferring the corresponding quantum mechanics to molecular bound nuclear spins allows for precise prediction of NMR spectra obtained from metabolites in human tissue. This molecular hyperfine structure has been neglected so far in in vivo NMR spectroscopy but contains useful information, especially when studying molecular dynamics. This contribution represents a review of the concept of applying the Breit-Rabi formalism to coupled nuclear spins and discusses the immobilization of different metabolites in anisotropic tissue revealed by 1H NMR spectra of carnosine, phosphocreatine and taurine. Comparison of atomic and molecular spin systems allows for statements on the biological constraints for direct spin-spin interactions. Moreover, the relevance of hyperfine effects on the line shapes of multiplets of indirectly-coupled spin systems with more than two constituents can be predicted by analyzing quantum mechanical parameters. As an example, the superposition of eigenstates of the AMX system of adenosine 5'-triphosphate and its application for better quantification of 31P-NMR spectra will be discussed. (orig.)

  19. [Hyperfine structure analysis in magnetic resonance spectroscopy: from astrophysical measurements towards endogenous biosensors in human tissue].

    Science.gov (United States)

    Schröder, Leif

    2007-01-01

    The hyperfine interaction of two spins is a well studied effect in atomic systems. Magnetic resonance experiments demonstrate that the detectable dipole transitions are determined by the magnetic moments of the constituents and the external magnetic field. Transferring the corresponding quantum mechanics to molecular bound nuclear spins allows for precise prediction of NMR spectra obtained from metabolites in human tissue. This molecular hyperfine structure has been neglected so far in in vivo NMR spectroscopy but contains useful information, especially when studying molecular dynamics. This contribution represents a review of the concept of applying the Breit-Rabi formalism to coupled nuclear spins and discusses the immobilization of different metabolites in anisotropic tissue revealed by 1H NMR spectra of carnosine, phosphocreatine and taurine. Comparison of atomic and molecular spin systems allows for statements on the biological constraints for direct spin-spin interactions. Moreover, the relevance of hyperfine effects on the line shapes of multiplets of indirectly-coupled spin systems with more than two constituents can be predicted by analyzing quantum mechanical parameters. As an example, the superposition of eigenstates of the A MX system of adenosine 5'-triphosphate and its application for better quantification of 31P-NMR spectra will be discussed.

  20. Structure and equilibria of Ca 2+-complexes of glucose and sorbitol from multinuclear ( 1H, 13C and 43Ca) NMR measurements supplemented with molecular modelling calculations

    Science.gov (United States)

    Pallagi, A.; Dudás, Cs.; Csendes, Z.; Forgó, P.; Pálinkó, I.; Sipos, P.

    2011-05-01

    Ca 2+-complexation of D-glucose and D-sorbitol have been investigated with the aid of multinuclear ( 1H, 13C and 43Ca) NMR spectroscopy and ab initio quantum chemical calculations. Formation constants of the forming 1:1 complexes have been estimated from one-dimensional 13C NMR spectra obtained at constant ionic strength (1 M NaCl). Binding sites were identified from 2D 1H- 43Ca NMR spectra. 2D NMR measurements and ab initio calculations indicated that Ca 2+ ions were bound in a tridentate manner via the glycosidic OH, the ethereal oxygen in the ring and the OH on the terminal carbon for the α- and β-anomers of glucose and for sorbitol simultaneous binding of four hydroxide moieties (C1, C2, C4 and C6) was suggested.

  1. Comparative analysis of nuclear magnetic resonance well logging and nuclear magnetic resonance mud logging

    International Nuclear Information System (INIS)

    Yuan Zugui

    2008-01-01

    The hydrogen atoms in oil and water are able to resonate and generate signals in the magnetic field, which is used by the NMR (nuclear magnetic resonance) technology in petroleum engineering to research and evaluate rock characteristics. NMR well logging was used to measure the physical property parameters of the strata in well bore, whereas NMR mud logging was used to analyze (while drilling) the physical property parameters of cores, cuttings and sidewall coring samples on surface (drilling site). Based on the comparative analysis of the porosity and permeability parameters obtained by NMR well logging and those from analysis of the cores, cuttings and sidewall coring samples by NMR mud logging in the same depth of 13 wells, these two methods are of certain difference, but their integral tendency is relatively good. (authors)

  2. 31P NMR measurements of the ADP concentration in yeast cells genetically modified to express creatine kinase

    International Nuclear Information System (INIS)

    Brindle, K.; Braddock, P.; Fulton, S.

    1990-01-01

    Rabbit muscle creatine kinase has been introduced into the yeast Saccharomyces cerevisiae by transforming cells with a multicopy plasmid containing the coding sequence for the enzyme under the control of the yeast phosphoglycerate kinase promoter. The transformed cells showed creating kinase activities similar to those found in mammalian heart muscle. 31 P NMR measurements of the near-equilibrium concentrations of phosphocreatine and cellular pH together with measurements of the total extractable concentrations of phosphocreatine and creatine allowed calculation of the free ADP/ATP ratio in the cell. The calculated ratio of approximately 2 was considerably higher than the ratio of between 0.06 and 0.1 measured directly in cell extracts

  3. Observation of strongly forbidden solid effect dynamic nuclear polarization transitions via electron-electron double resonance detected NMR

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Albert A.; Corzilius, Björn; Haze, Olesya; Swager, Timothy M.; Griffin, Robert G., E-mail: rgg@mit.edu [Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-12-07

    We present electron paramagnetic resonance experiments for which solid effect dynamic nuclear polarization transitions were observed indirectly via polarization loss on the electron. This use of indirect observation allows characterization of the dynamic nuclear polarization (DNP) process close to the electron. Frequency profiles of the electron-detected solid effect obtained using trityl radical showed intense saturation of the electron at the usual solid effect condition, which involves a single electron and nucleus. However, higher order solid effect transitions involving two, three, or four nuclei were also observed with surprising intensity, although these transitions did not lead to bulk nuclear polarization—suggesting that higher order transitions are important primarily in the transfer of polarization to nuclei nearby the electron. Similar results were obtained for the SA-BDPA radical where strong electron-nuclear couplings produced splittings in the spectrum of the indirectly observed solid effect conditions. Observation of high order solid effect transitions supports recent studies of the solid effect, and suggests that a multi-spin solid effect mechanism may play a major role in polarization transfer via DNP.

  4. NMR techniques in the study of cardiovascular structure and functions

    International Nuclear Information System (INIS)

    Osbakken, M.; Haselgrove, J.

    1987-01-01

    The chapter titles of this book are: Introduction to NMR Techniques;Theory of NMR Probe Design;Overview of Magnetic Resonance Imaging to Study the Cardiovascular System;Vascular Anatomy and Physiology Studied with NMR Techniques;Assessment of Myocardial Ischemia and Infarction by Nuclear Magnetic Resonance Imaging;The Use of MRI in Congenital Heart Disease;Cardiomyopathies and Myocarditis Studied with NMR Techniques;Determination of Myocardial Mechanical Function with Magnetic Resonance Imaging Techniques;Determination of Flow Using NMR Techniques;The Use of Contrast Agents in Cardiac MRI;Can Cardiovascular Disease Be Effectively Evaluated with NMR Spectroscopy? NMR Studies of ATP Synthesis Reactions in the Isolated Heart;Studies of Intermediary Metabolism in the Heart by 13C NMR Spectroscopy;23Na and 39K NMR Spectroscopic Studies of the Intact Beating Heart;and Evaluation of Skeletal Muscle Metabolism in Patients with Congestive Heart Failure Using Phosphorus Nuclear Magnetic Resonance

  5. Effect of aging on phosphate metabolites of rat brain as revealed by the in vivo and in vitro 31P NMR measurements

    International Nuclear Information System (INIS)

    Liu, Hsiuchih; Chi, Chinwen; Liu, Tsungyun; Liu, Lianghui; Luh, Wenming; Hsieh, Changhuain; Wu, Wenguey

    1991-01-01

    Changes of phosphate metabolism in brains of neonate, weaning and adult rats were compared using both in vivo and in vitro nuclear magnetic resonance spectra. Ratios of phosphocreatine/nucleoside triphosphate (PCr/NTP) were the same in neonatal brain in both in vivo and in vitro studies, but not in weaning and adult brains. This discrepancy may have resulted from extended cerebral hypoxia due to slowed freezing of the brain by the increased skull thickness and brain mass in the weaning and adult rats. Variations of in vitro extraction condition for this age-related study may lead to systematic errors in the adult rats. Nevertheless, the phosphomonoester/nucleoside triphosphate (PME/NTP) ratios in extracts of brain from neonatal rats were higher than those obtained in vivo. In addition, the glycerophosphorylethanolamine plus glycerophosphorylcholine/nucleoside triphosphate (GPE+GPC/NTP) ratios, which were not measurable in vivo, showed age-dependent increase in extracts of rat brain. Some of the phosphomonoester and phosphodiester molecules in rat brain may be undetectable in in vivo NMR analysis because of their interaction with cellular components. The total in vitro GPE and GPC concentration in brain from neonatal rat was estimated to be 0.34 mmole/g wet tissue

  6. Measuring Dynamic and Kinetic Information in the Previously Inaccessible Supra-tc Window of Nanoseconds to Microseconds by Solution NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Donghan Lee

    2013-09-01

    Full Text Available Nuclear Magnetic Resonance (NMR spectroscopy is a powerful tool that has enabled experimentalists to characterize molecular dynamics and kinetics spanning a wide range of time-scales from picoseconds to days. This review focuses on addressing the previously inaccessible supra-τc window (defined as τc < supra-τc < 40 μs; in which τc is the overall tumbling time of a molecule from the perspective of local inter-nuclear vector dynamics extracted from residual dipolar couplings (RDCs and from the perspective of conformational exchange captured by relaxation dispersion measurements (RD. The goal of the first section is to present a detailed analysis of how to extract protein dynamics encoded in RDCs and how to relate this information to protein functionality within the previously inaccessible supra-τc window. In the second section, the current state of the art for RD is analyzed, as well as the considerable progress toward pushing the sensitivity of RD further into the supra-τc scale by up to a factor of two (motion up to 25 ms. From the data obtained with these techniques and methodology, the importance of the supra-τ c scale for protein function and molecular recognition is becoming increasingly clearer as the connection between motion on the supra-τc scale and protein functionality from the experimental side is further strengthened with results from molecular dynamics simulations.

  7. The Na+ transport in gram-positive bacteria defect in the Mrp antiporter complex measured with 23Na nuclear magnetic resonance.

    Science.gov (United States)

    Górecki, Kamil; Hägerhäll, Cecilia; Drakenberg, Torbjörn

    2014-01-15

    (23)Na nuclear magnetic resonance (NMR) has previously been used to monitor Na(+) translocation across membranes in gram-negative bacteria and in various other organelles and liposomes using a membrane-impermeable shift reagent to resolve the signals resulting from internal and external Na(+). In this work, the (23)Na NMR method was adapted for measurements of internal Na(+) concentration in the gram-positive bacterium Bacillus subtilis, with the aim of assessing the Na(+) translocation activity of the Mrp (multiple resistance and pH) antiporter complex, a member of the cation proton antiporter-3 (CPA-3) family. The sodium-sensitive growth phenotype observed in a B. subtilis strain with the gene encoding MrpA deleted could indeed be correlated to the inability of this strain to maintain a lower internal Na(+) concentration than an external one. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Structural biology by NMR: structure, dynamics, and interactions.

    Directory of Open Access Journals (Sweden)

    Phineus R L Markwick

    2008-09-01

    Full Text Available The function of bio-macromolecules is determined by both their 3D structure and conformational dynamics. These molecules are inherently flexible systems displaying a broad range of dynamics on time-scales from picoseconds to seconds. Nuclear Magnetic Resonance (NMR spectroscopy has emerged as the method of choice for studying both protein structure and dynamics in solution. Typically, NMR experiments are sensitive both to structural features and to dynamics, and hence the measured data contain information on both. Despite major progress in both experimental approaches and computational methods, obtaining a consistent view of structure and dynamics from experimental NMR data remains a challenge. Molecular dynamics simulations have emerged as an indispensable tool in the analysis of NMR data.

  9. Towards higher stability of resonant absorption measurements in pulsed plasmas.

    Science.gov (United States)

    Britun, Nikolay; Michiels, Matthieu; Snyders, Rony

    2015-12-01

    Possible ways to increase the reliability of time-resolved particle density measurements in pulsed gaseous discharges using resonant absorption spectroscopy are proposed. A special synchronization, called "dynamic source triggering," between a gated detector and two pulsed discharges, one representing the discharge of interest and another being used as a reference source, is developed. An internal digital delay generator in the intensified charge coupled device camera, used at the same time as a detector, is utilized for this purpose. According to the proposed scheme, the light pulses from the reference source follow the gates of detector, passing through the discharge of interest only when necessary. This allows for the utilization of short-pulse plasmas as reference sources, which is critical for time-resolved absorption analysis of strongly emitting pulsed discharges. In addition to dynamic source triggering, the reliability of absorption measurements can be further increased using simultaneous detection of spectra relevant for absorption method, which is also demonstrated in this work. The proposed methods are illustrated by the time-resolved measurements of the metal atom density in a high-power impulse magnetron sputtering (HiPIMS) discharge, using either a hollow cathode lamp or another HiPIMS discharge as a pulsed reference source.

  10. Towards higher stability of resonant absorption measurements in pulsed plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Britun, Nikolay, E-mail: nikolay.britun@umons.ac.be [Chimie des Interactions Plasma Surface (ChIPS), CIRMAP, Université de Mons, 23 Place du Parc, B-7000 Mons (Belgium); Michiels, Matthieu [Materia Nova Research Center, Parc Initialis, B-7000 Mons (Belgium); Snyders, Rony [Chimie des Interactions Plasma Surface (ChIPS), CIRMAP, Université de Mons, 23 Place du Parc, B-7000 Mons (Belgium); Materia Nova Research Center, Parc Initialis, B-7000 Mons (Belgium)

    2015-12-15

    Possible ways to increase the reliability of time-resolved particle density measurements in pulsed gaseous discharges using resonant absorption spectroscopy are proposed. A special synchronization, called “dynamic source triggering,” between a gated detector and two pulsed discharges, one representing the discharge of interest and another being used as a reference source, is developed. An internal digital delay generator in the intensified charge coupled device camera, used at the same time as a detector, is utilized for this purpose. According to the proposed scheme, the light pulses from the reference source follow the gates of detector, passing through the discharge of interest only when necessary. This allows for the utilization of short-pulse plasmas as reference sources, which is critical for time-resolved absorption analysis of strongly emitting pulsed discharges. In addition to dynamic source triggering, the reliability of absorption measurements can be further increased using simultaneous detection of spectra relevant for absorption method, which is also demonstrated in this work. The proposed methods are illustrated by the time-resolved measurements of the metal atom density in a high-power impulse magnetron sputtering (HiPIMS) discharge, using either a hollow cathode lamp or another HiPIMS discharge as a pulsed reference source.

  11. Synthesis of highly anti-HIV active sulfated poly- and oligo-saccharides and analysis of their action mechanisms by NMR [nuclear magnetic resonance] spectroscopy

    International Nuclear Information System (INIS)

    Uryu, Toshiyuki

    1998-01-01

    . 2. NMR studies on action mechanism of curdlan sulfate, chondroitin sulfate, and heparin. In order to elucidate in vivo interactions of curdlan sulfate with virus proteins, 1 H and 13 C NMR spectra were measured on mixtures of electronegatively charged curdlan sulfate (CS) and electropositively charged polylysine (PL) hydrobromide. When CS and PL were mixed in appropriate molar ratios, ion complexes between CS and PL were formed and detected by NMR. Large changes in NMR absorptions appeared around 20 - 50 ppm region due to the side chain of polylysine. Similarly, in the mixture of heparin and PL, absorptions around 55 - 101 ppm region due to heparin moiety changed to a large extent. Consequently, it is assumed that the occurrence of the anti H IV activity is started from the interaction between curdlan sulfate and virus proteins containing sequences rich in basic amino acids of lysine and arginine. Full text

  12. Rotational dynamics of benzene and water in an ionic liquid explored via molecular dynamics simulations and NMR T1 measurements.

    Science.gov (United States)

    Yasaka, Yoshiro; Klein, Michael L; Nakahara, Masaru; Matubayasi, Nobuyuki

    2012-02-21

    The rotational dynamics of benzene and water in the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride are studied using molecular dynamics (MD) simulation and NMR T(1) measurements. MD trajectories based on an effective potential are used to calculate the (2)H NMR relaxation time, T(1) via Fourier transform of the relevant rotational time correlation function, C(2R)(t). To compensate for the lack of polarization in the standard fixed-charge modeling of the IL, an effective ionic charge, which is smaller than the elementary charge is employed. The simulation results are in closest agreement with NMR experiments with respect to the temperature and Larmor frequency dependencies of T(1) when an effective charge of ±0.5e is used for the anion and the cation, respectively. The computed C(2R)(t) of both solutes shows a bi-modal nature, comprised of an initial non-diffusive ps relaxation plus a long-time ns tail extending to the diffusive regime. Due to the latter component, the solute dynamics is not under the motional narrowing condition with respect to the prevalent Larmor frequency. It is shown that the diffusive tail of the C(2R)(t) is most important to understand frequency and temperature dependencies of T(1) in ILs. On the other hand, the effect of the initial ps relaxation is an increase of T(1) by a constant factor. This is equivalent to an "effective" reduction of the quadrupolar coupling constant (QCC). Thus, in the NMR T(1) analysis, the rotational time correlation function can be modeled analytically in the form of aexp (-t/τ) (Lipari-Szabo model), where the constant a, the Lipari-Szabo factor, contains the integrated contribution of the short-time relaxation and τ represents the relaxation time of the exponential (diffusive) tail. The Debye model is a special case of the Lipari-Szabo model with a = 1, and turns out to be inappropriate to represent benzene and water dynamics in ILs since a is as small as 0.1. The use of the Debye model would result in

  13. Successful Sampling Strategy Advances Laboratory Studies of NMR Logging in Unconsolidated Aquifers

    Science.gov (United States)

    Behroozmand, Ahmad A.; Knight, Rosemary; Müller-Petke, Mike; Auken, Esben; Barfod, Adrian A. S.; Ferré, Ty P. A.; Vilhelmsen, Troels N.; Johnson, Carole D.; Christiansen, Anders V.

    2017-11-01

    The nuclear magnetic resonance (NMR) technique has become popular in groundwater studies because it responds directly to the presence and mobility of water in a porous medium. There is a need to conduct laboratory experiments to aid in the development of NMR hydraulic conductivity models, as is typically done in the petroleum industry. However, the challenge has been obtaining high-quality laboratory samples from unconsolidated aquifers. At a study site in Denmark, we employed sonic drilling, which minimizes the disturbance of the surrounding material, and extracted twelve 7.6 cm diameter samples for laboratory measurements. We present a detailed comparison of the acquired laboratory and logging NMR data. The agreement observed between the laboratory and logging data suggests that the methodologies proposed in this study provide good conditions for studying NMR measurements of unconsolidated near-surface aquifers. Finally, we show how laboratory sample size and condition impact the NMR measurements.

  14. Billion-Fold Enhancement in Sensitivity of Nuclear Magnetic Resonance Spectroscopy for Magnesium Ions in Solution

    CERN Document Server

    Gottberg, Alexander; Kowalska, Magdalena; Bissell, Mark L; Arcisauskaite, Vaida; Blaum, Klaus; Helmke, Alexander; Johnston, Karl; Kreim, Kim; Larsen, Flemming H; Neugart, Rainer; Neyens, Gerda; Garcia Ruiz, Ronald F; Szunyogh, Daniel; Thulstrup, Peter W; Yordanov, Deyan T; Hemmingsen, Lars

    2014-01-01

    β-nuclear magnetic resonance (NMR) spectroscopy is highly sensitive compared to conventional NMR spectroscopy, and may be applied for several elements across the periodic table. β-NMR has previously been successfully applied in the fields of nuclear and solid-state physics. In this work, β-NMR is applied, for the first time, to record an NMR spectrum for a species in solution. 31Mg β-NMR spectra are measured for as few as 107 magnesium ions in ionic liquid (EMIM-Ac) within minutes, as a prototypical test case. Resonances are observed at 3882.9 and 3887.2 kHz in an external field of 0.3 T. The key achievement of the current work is to demonstrate that β-NMR is applicable for the analysis of species in solution, and thus represents a novel spectroscopic technique for use in general chemistry and potentially in biochemistry.

  15. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuqing; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn; Chen, Zhong, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn [Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005 (China); Lin, Yung-Ya [Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095 (United States)

    2016-03-14

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  16. Biophysical dose measurement using electron paramagnetic resonance in rodent teeth

    International Nuclear Information System (INIS)

    Khan, R.F.H.; Rink, W.J.; Boreham, D.R.

    2003-01-01

    Electron paramagnetic resonance (EPR) dosimetry of human tooth enamel has been widely used in measuring radiation doses in various scenarios. However, there are situations that do not involve a human victim (e.g. tests for suspected environmental overexposures, measurements of doses to experimental animals in radiation biology research, or chronology of archaeological deposits). For such cases we have developed an EPR dosimetry technique making use of enamel of teeth extracted from mice. Tooth enamel from both previously irradiated and unirradiated mice was extracted and cleaned by processing in supersaturated KOH aqueous solution. Teeth from mice with no previous irradiation history exhibited a linear EPR response to the dose in the range from 0.8 to 5.5 Gy. The EPR dose reconstruction for a preliminarily irradiated batch resulted in the radiation dose of (1.4±0.2) Gy, which was in a good agreement with the estimated exposure of the teeth. The sensitivity of the EPR response of mouse enamel to gamma radiation was found to be half of that of human tooth enamel. The dosimetric EPR signal of mouse enamel is stable up at least to 42 days after exposure to radiation. Dose reconstruction was only possible with the enamel extracted from molars and premolars and could not be performed with incisors. Electron micrographs showed structural variations in the incisor enamel, possibly explaining the large interfering signal in the non-molar teeth

  17. A resonant absorption measurement in the reaction 26Mg(p, γ)27Al

    NARCIS (Netherlands)

    Leun, C. van der; Burhoven Jaspers, N.C.

    1966-01-01

    A resonant absorption measurement at the 1966 keV proton resonance in the reaction 26Mg(p, γ)27Al leads to an absolute determination of the resonance strength, (2J+1)ΓpΓγ/Γ, of 5.6±1.8 eV. Normalization of previously published strengths of 120 resonances in the reaction 26Mg(p, γ)27Al, reduces these

  18. Contribution of exogenous substrates to acetyl coenzyme A: Measurement by 13C NMR under non-steady-state conditions

    International Nuclear Information System (INIS)

    Malloy, C.R.; Jeffrey, F.M.H.; Thompson, J.R.; Sherry, A.D.

    1990-01-01

    A method is presented for the rapid determination of substrate selection in a manner that is not restricted to conditions of metabolic and isotopic steady state. Competition between several substrates can be assessed directly and continuously in a single experiment, allowing the effect of interventions to be studied. It is shown that a single proton-decoupled 13 C NMR spectrum of glutamate provides a direct measure of the contribution of exogenous 13 C-labeled substrates to acetyl-CoA without measurement of oxygen consumption and that steady-state conditions need not apply. Two sets of experiments were performed: one in which a metabolic steady state but a non-steady-state 13 C distribution was achieved and another in which both metabolism and labeling were not at steady state. In the first group, isolated rat hearts were supplied with [1,2- 13 C]acetate, [3- 13 C]lactate, and unlabeled glucose. 13 C NMR spectra of extracts from hearts perfused under identical conditions for 5 or 30 min were compared. In spite of significant differences in the spectra, the measured contributions of acetate, lactate, and unlabeled sources to acetyl-CoA were the same. In the second set of experiments, the same group of labeled substrates was used in a regional ischemia model in isolated rabbit hearts to show regional differences in substrate utilization under both metabolic and isotopic non steady state. The time resolution of these measurements may not be limited by technical contraints but by the rate of carbon flux in the citric acid cycle. Although this technique is demonstrated for the heart, it is applicable to all tissues

  19. Resonant tunneling measurements of size-induced strain relaxation

    Science.gov (United States)

    Akyuz, Can Deniz

    Lattice mismatch strain available in such semiconductor heterostructures as Si/SiGe or GaAs/AlGaAs can be employed to alter the electronic and optoelectronic properties of semiconductor structures and devices. When deep submicron structures are fabricated from strained material, strained layers relax by sidewall expansion giving rise to size- and geometry-dependent strain gradients throughout the structure. This thesis describes a novel experimental technique to probe the size-induced strain relaxation by studying the tunneling current characteristics of strained p-type Si/SiGe resonant tunneling diodes. Our current-voltage measurements on submicron strained p-Si/SiGe double- and triple-barrier resonant tunneling structures as a function of device diameter, D, provide experimental access to both the average strain relaxation (which leads to relative shifts in the tunneling current peak positions) and strain gradients (which give rise to a fine structure in the current peaks due to inhomogeneous strain-induced lateral quantization). We find that strain relaxation is significant, with a large fraction of the strain energy relaxed on average in D ≤ 0.25 m m devices. Further, the in-plane potentials that arise from inhomogeneous strain gradients are large. In the D ˜ 0.2 m m devices, the corresponding lateral potentials are approximately parabolic exceeding ˜ 25 meV near the perimeter. These potentials create discrete hole states in double-barrier structures (single well), and coupled hole states in triple-barrier structures (two wells). Our results are in excellent agreement with finite-element strain calculations in which the strained layers are permitted to relax to a state of minimum energy by sidewall expansion. Size-induced strain relaxation will undoubtedly become a serious technological issue once strained devices are scaled down to the deep submicron regime. Interestingly, our calculations predict and our measurements are consistent with the appearance of

  20. Functional studies using NMR

    International Nuclear Information System (INIS)

    McCready, V.R.; Leach, M.; Ell, P.J.

    1987-01-01

    This volume is based on a series of lectures delivered at a one-day teaching symposium on functional and metabolic aspects of NMR measurements held at the Middlesex Hospital Medical School on 1st September 1985 as a part of the European Nuclear Medicine Society Congress. Currently the major emphasis in medical NMR in vivo is on its potential to image and display abnormalities in conventional radiological images, providing increased contrast between normal and abnormal tissue, improved definition of vasculature, and possibly an increased potential for differential diagnosis. Although these areas are undeniably of major importance, it is probable that NMR will continue to complement conventional measurement methods. The major potential benefits to be derived from in vivo NMR measurements are likely to arise from its use as an instrument for functional and metabolic studies in both clinical research and in the everyday management of patients. It is to this area that this volume is directed

  1. Measurements of electric quadrupole moments of neutron-deficient Au, Pt, and Ir nuclei with NMR-ON in hcp-Co

    CERN Multimedia

    Smolic, E; Hagn, E; Zech, E; Seewald, G

    2002-01-01

    The aim of the experiments is the measurement of $\\,$i) nuclear magnetic moments and electric quadrupole moments of neutron-deficient isotopes in the region Os-Ir-Pt-Au with the methods of quadrupole-interaction-resolved NMR on oriented nuclei " QI-NMR-ON " and modulated adiabatic passage on oriented nuclei " MAPON " and $\\,$ii) the magnetic hyperfine field, electric field gradient (EFG), and spin-lattice relaxation of 5d elements in ferromagnetic Fe, Ni, fcc-Co and hcp-Co.\\\\ The measurements on Au isotopes have been finished successfully. The quadrupole moments of $^{186}$Au, $^{193m}$Au, $^{195}$Au, $^{195m}$Au, $^{197m}$Au, $^{198}$Au and $^{199}$Au were determined with high precision.\\\\ For neutron-deficient Ir isotopes QI-NMR-ON measurements were performed after implantation of Hg precursors. The EFG of Ir in hcp-Co has been calibrated. Thus precise values for the spectroscopic quadrupole mo...

  2. NMR imaging of cell phone radiation absorption in brain tissue

    Science.gov (United States)

    Gultekin, David H.; Moeller, Lothar

    2013-01-01

    A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance frequency shift of hydrogen protons in brain tissue. This proposed application of NMR thermometry offers sufficient spatial and temporal resolution to characterize the hot spots from absorbed cell phone radiation in aqueous media and biological tissues. Specific absorption rate measurements averaged over 1 mg and 10 s in the brain tissue cover the total absorption volume. Reference measurements with fiber optic temperature sensors confirm the accuracy of the NMR thermometry. PMID:23248293

  3. 13C nuclear magnetic resonance data of lanosterol derivatives—Profiling the steric topology of the steroid skeleton via substituent effects on its 13C NMR

    Science.gov (United States)

    Dias, Jerry Ray; Gao, Hongwu

    2009-12-01

    The 13C NMR spectra of over 24 tetracyclic triterpenoid derivatives have been structurally analyzed. The 13C NMR chemical shifts allow one to probe the steric topology of the rigid steroid skeleton and inductive effects of its substituents. Use of deuterium labeling in chemical shift assignment and B-ring aromatic terpenoids are also featured.

  4. Multinuclear NMR resonance assignments and the secondary structure of Escherichia coli thioesterase/protease I: A member of a new subclass of lipolytic enzymes

    International Nuclear Information System (INIS)

    Lin Tahsien; Chen Chinpan; Huang Rongfong; Lee Yalin; Shaw Jeifu; Huang Taihuang

    1998-01-01

    Escherichia coli thioesterase/protease I is a 183 amino acid protein with a molecular mass of 20500. This protein belongs to a new subclass of lipolytic enzymes of the serine protease superfamily, but with a new GDSLS consensus motif, of which no structure has yet been determined. The protein forms a tetramer at pH values above 6.5 and exists as a monomer at lower pH values. Both monomer and tetramer are catalytically active. From analysis of a set of heteronuclear multidimensional NMR spectra with uniform and specific amino acid labeled protein samples, we have obtained near-complete resonance assignments of the backbone 1 H, 13 C and 15 N nuclei (BMRB databank accession number 4060). The secondary structure of E. coli thioesterase/protease I was further deduced from the consensus chemical shift indices, backbone short- and medium-range NOEs, and amide proton exchange rates. The protein was found to consist of four β-strands and seven α-helices, arranged in alternate order. The four β-strands were shown to form a parallel β-sheet. The topological arrangement of the β-strands of -1x, +2x, +1x appears to resemble that of the core region of the αβ hydrolase superfamily, typically found in common lipases and esterases. However, substantial differences, such as the number of β-strands and the location of the catalytic triad residues, make it difficult to give a definitive classification of the structure of E. coli thioesterase/protease I at present

  5. Resonance

    DEFF Research Database (Denmark)

    Petersen, Nils Holger

    2014-01-01

    A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice.......A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice....

  6. Prediction of peak overlap in NMR spectra

    International Nuclear Information System (INIS)

    Hefke, Frederik; Schmucki, Roland; Güntert, Peter

    2013-01-01

    Peak overlap is one of the major factors complicating the analysis of biomolecular NMR spectra. We present a general method for predicting the extent of peak overlap in multidimensional NMR spectra and its validation using both, experimental data sets and Monte Carlo simulation. The method is based on knowledge of the magnetization transfer pathways of the NMR experiments and chemical shift statistics from the Biological Magnetic Resonance Data Bank. Assuming a normal distribution with characteristic mean value and standard deviation for the chemical shift of each observable atom, an analytic expression was derived for the expected overlap probability of the cross peaks. The analytical approach was verified to agree with the average peak overlap in a large number of individual peak lists simulated using the same chemical shift statistics. The method was applied to eight proteins, including an intrinsically disordered one, for which the prediction results could be compared with the actual overlap based on the experimentally measured chemical shifts. The extent of overlap predicted using only statistical chemical shift information was in good agreement with the overlap that was observed when the measured shifts were used in the virtual spectrum, except for the intrinsically disordered protein. Since the spectral complexity of a protein NMR spectrum is a crucial factor for protein structure determination, analytical overlap prediction can be used to identify potentially difficult proteins before conducting NMR experiments. Overlap predictions can be tailored to particular classes of proteins by preparing statistics from corresponding protein databases. The method is also suitable for optimizing recording parameters and labeling schemes for NMR experiments and improving the reliability of automated spectra analysis and protein structure determination.

  7. Measurement of backbone hydrogen-deuterium exchange in the type III secretion system needle protein PrgI by solid-state NMR

    Science.gov (United States)

    Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam

    2017-10-01

    In this report we present site-specific measurements of amide hydrogen-deuterium exchange rates in a protein in the solid state phase by MAS NMR. Employing perdeuteration, proton detection and a high external magnetic field we could adopt the highly efficient Relax-EXSY protocol previously developed for liquid state NMR. According to this method, we measured the contribution of hydrogen exchange on apparent 15N longitudinal relaxation rates in samples with differing D2O buffer content. Differences in the apparent T1 times allowed us to derive exchange rates for multiple residues in the type III secretion system needle protein.

  8. Field experiment provides ground truth for surface nuclear magnetic resonance measurement

    Science.gov (United States)

    Knight, R.; Grunewald, E.; Irons, T.; Dlubac, K.; Song, Y.; Bachman, H.N.; Grau, B.; Walsh, D.; Abraham, J.D.; Cannia, J.

    2012-01-01

    The need for sustainable management of fresh water resources is one of the great challenges of the 21st century. Since most of the planet's liquid fresh water exists as groundwater, it is essential to develop non-invasive geophysical techniques to characterize groundwater aquifers. A field experiment was conducted in the High Plains Aquifer, central United States, to explore the mechanisms governing the non-invasive Surface NMR (SNMR) technology. We acquired both SNMR data and logging NMR data at a field site, along with lithology information from drill cuttings. This allowed us to directly compare the NMR relaxation parameter measured during logging,T2, to the relaxation parameter T2* measured using the SNMR method. The latter can be affected by inhomogeneity in the magnetic field, thus obscuring the link between the NMR relaxation parameter and the hydraulic conductivity of the geologic material. When the logging T2data were transformed to pseudo-T2* data, by accounting for inhomogeneity in the magnetic field and instrument dead time, we found good agreement with T2* obtained from the SNMR measurement. These results, combined with the additional information about lithology at the site, allowed us to delineate the physical mechanisms governing the SNMR measurement. Such understanding is a critical step in developing SNMR as a reliable geophysical method for the assessment of groundwater resources.

  9. Friction of polymer hydrogels studied by resonance shear measurements.

    Science.gov (United States)

    Ren, Huai-Yin; Mizukami, Masashi; Tanabe, Tadao; Furukawa, Hidemitsu; Kurihara, Kazue

    2015-08-21

    The friction between an elastomer and a hard surface typically has two contributors, i.e., the interfacial and deformation components. The friction of viscoelastic hydrogel materials has been extensively studied between planar gel and planar substrate surfaces from the viewpoint of an interfacial interaction. However, the geometry of the contact in practical applications is much more complex. The contribution of geometric and elastic deformation terms of a gel to friction could not be neglected. In this study, we used resonance shear measurements (RSMs) for characterizing the shear response of a glass sphere on a flat polymer hydrogel, a double network (DN) gel of 2-acrylamide-2-methylpropanesulfonic acid and N,N-dimethylacrylamide. The contact mechanics conformed to the Johnson-Kendall-Roberts theory. The observed resonance curves exhibited rather sharp peaks when the DN gel and the silica sphere were brought into contact, and their intensity and frequency increased with the increase in the normal load. We proposed a simple physical model of the shearing system, and the elastic (k2) and viscous (b2) parameters of the interface between a silica sphere and a flat DN gel were obtained. The friction force from elastic deformation and viscous dissipation terms was then estimated using the obtained parameters. It was revealed that the elastic parameter (k2) increased up to 1780 N m(-1) at a normal load of 524 mN, while the viscous parameter (b2) was zero or quite low (friction force between a flat DN gel and a silica sphere in air was dominated by the elastic term due to the local deformation by contact with the silica sphere. By adding water, the elastic parameter (k2) remained the same, while the viscous parameter (b2) slightly increased. However, the viscous term fviscous was still much smaller than felastic. To the best of our knowledge, this study was the first quantitative estimation of the contribution of the elastic deformation term to the friction in the case

  10. Measurement of the relaxation rate of the magnetization in Mn12O12-acetate using proton NMR echo

    Science.gov (United States)

    Jang; Lascialfari; Borsa; Gatteschi

    2000-03-27

    We present a novel method to measure the relaxation rate W of the magnetization of Mn 12O (12)-acetate (Mn12) magnetic molecular cluster in its S = 10 ground state at low T. It is based on the observation of an exponential growth in time of the proton NMR signal during the thermal equilibration of the magnetization of the molecules. We can explain the novel effect with a simple model which relates the intensity of the proton echo signal to the microscopic reversal of the magnetization of each individual Mn12 molecule during the equilibration process. The method should find wide application in the study of magnetic molecular clusters in off-equilibrium conditions.

  11. Measurement of the Relaxation Rate of the Magnetization in Mn12O12 -Acetate Using Proton NMR Echo

    International Nuclear Information System (INIS)

    Jang, Z. H.; Lascialfari, A.; Borsa, F.; Gatteschi, D.

    2000-01-01

    We present a novel method to measure the relaxation rate W of the magnetization of Mn 12 O 12 -acetate (Mn12) magnetic molecular cluster in its S=10 ground state at low T . It is based on the observation of an exponential growth in time of the proton NMR signal during the thermal equilibration of the magnetization of the molecules. We can explain the novel effect with a simple model which relates the intensity of the proton echo signal to the microscopic reversal of the magnetization of each individual Mn12 molecule during the equilibration process. The method should find wide application in the study of magnetic molecular clusters in off-equilibrium conditions. (c) 2000 The American Physical Society

  12. Measurement of conformational constraints in an elastin-mimetic protein by residue-pair selected solid-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Mei [Iowa State University, Department of Chemistry (United States)], E-mail: mhong@iastate.edu; McMillan, R. Andrew; Conticello, Vincent P. [Emory University, Department of Chemistry (United States)

    2002-02-15

    We introduce a solid-state NMR technique for selective detection of a residue pair in multiply labeled proteins to obtain site-specific structural constraints. The method exploits the frequency-offset dependence of cross polarization to achieve {sup 13}CO{sub i} {sup {yields}} {sup 15}N{sub i} {sup {yields}} {sup 13}C{alpha}{sub i} transfer between two residues. A {sup 13}C, {sup 15}N-labeled elastin mimetic protein (VPGVG){sub n} is used to demonstrate the method. The technique selected the Gly3 C{alpha} signal while suppressing the Gly5 C{alpha} signal, and allowed the measurement of the Gly3 C{alpha} chemical shift anisotropy to derive information on the protein conformation. This residue-pair selection technique should simplify the study of protein structure at specific residues.

  13. Measurement of conformational constraints in an elastin-mimetic protein by residue-pair selected solid-state NMR

    International Nuclear Information System (INIS)

    Hong, Mei; McMillan, R. Andrew; Conticello, Vincent P.

    2002-01-01

    We introduce a solid-state NMR technique for selective detection of a residue pair in multiply labeled proteins to obtain site-specific structural constraints. The method exploits the frequency-offset dependence of cross polarization to achieve 13 CO i → 15 N i → 13 Cα i transfer between two residues. A 13 C, 15 N-labeled elastin mimetic protein (VPGVG) n is used to demonstrate the method. The technique selected the Gly3 Cα signal while suppressing the Gly5 Cα signal, and allowed the measurement of the Gly3 Cα chemical shift anisotropy to derive information on the protein conformation. This residue-pair selection technique should simplify the study of protein structure at specific residues

  14. Quality measurements of resonance cavities in behalf of investigation of microwave properties of superconducting materials

    International Nuclear Information System (INIS)

    Dekkers, G.; Ridder, M. de.

    1988-01-01

    A method for investigating conducting properties at microwave frequencies of superconducting materials by means of quality measurements of a resonance cavity is described. The method is based on the direct relationship of the quality factor of a resonance circuit, in this case a resonance cavity, with the losses in the circuit. In a resonance cavity these losses are caused by the material properties of the resonance cavity. Therefore quality measurements yield, essentially, a possibility for investigation of conducting properties of materials. The underlying theory of the subject, the design of a special resonance cavity, the measuring methods and the accuracy in the relation of the measured quality factor and the specific conductivity of the material is presented. refs.; figs.; tabs

  15. Measurement of methanol diffusion coefficient in polymer electrode membrane by small NMR sensor. 1st report. Development of method of measure methanol diffusion coefficient and evaluation of measured results

    International Nuclear Information System (INIS)

    Ogawa, Kuniyasu; Haishi, Tomoyuki; Ito, Kohei

    2010-01-01

    A method for measuring the diffusion coefficient of methanol in a polymer electrolyte membrane (PEM) was developed using the NMR method. A circular coil of 0.6mm inside diameter was used as a small NMR sensor. The PEM was inserted in a penetration cell, where methanol solvent is supplied to one side of the PEM and nitrogen gas is supplied to the other side of the PEM. The small NMR sensor was placed on the nitrogen gas side of the PEM. The small NMR sensor detects the NMR signal from the methanol solvent which permeates the PEM. The CH and OH components of the methanol solvent were obtained from the NMR signal by spectral analysis. The methanol concentration in the PEM was determined by the ratio of CH to OH components. The methanol concentration was acquired at intervals of 30s and was measured for 2000s. After 1500 seconds, the methanol concentration in the PEM reaches a steady state. The final methanol concentration was about 20% of the methanol concentration of the solvent. It assumed that the diffusion phenomenon of methanol in a PEM was a one-dimensional transport phenomenon, and the time-dependent change of methanol concentration was analyzed by parameterizing the diffusion coefficient. The diffusion coefficient of methanol in a PEM was determined by comparison with the measurement result of the time change of methanol concentration and the analysis results. The concentration difference diffusion coefficient of methanol in PEM obtained using this method was 3.5 * 10 -10 m 2 /s. (author)

  16. Fundamentals of Protein NMR Spectroscopy

    CERN Document Server

    Rule, Gordon S

    2006-01-01

    NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data pr...

  17. Whole-core analysis by 13C NMR

    International Nuclear Information System (INIS)

    Vinegar, H.J.; Tutunjian, P.N.; Edelstein, W.A.; Roemer, P.B.

    1991-01-01

    This paper reports on a whole-core nuclear magnetic resonance (NMR) system that was used to obtain natural abundance 13 C spectra. The system enables rapid, nondestructive measurements of bulk volume of movable oil, aliphatic/aromatic ratio, oil viscosity, and organic vs. carbonate carbon. 13 C NMR can be used in cores where the 1 H NMR spectrum is too broad to resolve oil and water resonances separately. A 5 1/4-in. 13 C/ 1 H NMR coil was installed on a General Electric (GE) CSI-2T NMR imager/spectrometer. With a 4-in.-OD whole core, good 13 C signal/noise ratio (SNR) is obtained within minutes, while 1 H spectra are obtained in seconds. NMR measurements have been made of the 13 C and 1 H density of crude oils with a wide range of API gravities. For light- and medium-gravity oils, the 13 C and 1 H signal per unit volume is constant within about 3.5%. For heavy crudes, the 13 C and 1 H density measured by NMR is reduced by the shortening of spin-spin relaxation time. 13 C and 1 H NMR spin-lattice relaxation times were measured on a suite of Cannon viscosity standards, crude oils (4 to 60 degrees API), and alkanes (C 5 through C 16 ) with viscosities at 77 degrees F ranging from 0.5 cp to 2.5 x 10 7 cp. The 13 C and 1 H relaxation times show a similar correlation with viscosity from which oil viscosity can be estimated accurately for viscosities up to 100 cp. The 13 C surface relaxation rate for oils on water-wet rocks is very low. Nonproton decoupled 13 C NMR is shown to be insensitive to kerogen; thus, 13 C NMR measures only the movable hydrocarbon content of the cores. In carbonates, the 13 C spectrum also contains a carbonate powder pattern useful in quantifying inorganic carbon and distinguishing organic from carbonate carbon

  18. Determination of the intracellular pH of intact erythrocytes by 1H NMR spectroscopy

    International Nuclear Information System (INIS)

    Rabenstein, D.L.; Isab, A.A.

    1982-01-01

    A method is described for determining the intracellular pH of intact erythrocytes by 1 H NMR. The determination is based on the pH dependence of the chemical shifts of resonances for carbon-bounded protons of an indicator molecule (imidazole) in intact cells. The imidazole is introduced into the erythrocytes by incubation in an isotonic saline solution of the indicator. The pH dependence of the chemical shifts of the imidazole resonances is calibrated from 1 H NMR spectra of the imidazole-containing red cell lysates whose pH is varied by the addition of acid or base and measured directly with a pH electrode. To reduce in intensity or eliminate the much more intense envelope of resonances from the hemoglobin, the 1 H NMR measurements are made by either the spin-echo Fourier transform technique or by the transfer-or-saturation by cross-relaxation method

  19. Measurement of intrafractional prostate motion using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mah, Dennis; Freedman, Gary; Milestone, Bart; Hanlon, Alexandra; Palacio, Elizabeth; Richardson, Theresa; Movsas, Benjamin; Mitra, Raj; Horwitz, Eric; Hanks, Gerald E.

    2002-01-01

    Purpose: To quantify the three-dimensional intrafractional prostate motion over typical treatment time intervals with cine-magnetic resonance imaging (cine MRI) studies. Methods and Materials: Forty-two patients with prostate cancer were scanned supine in an alpha cradle cast using cine MRI. Twenty sequential slices were acquired in the sagittal and axial planes through the center of the prostate. Each scan took ∼9 min. The posterior, lateral, and superior edges of the prostate were tracked on each frame relative to the initial prostate position, and the size and duration of each displacement was recorded. Results: The prostate displacements were (mean ± SD): 0.2 ± 2.9 mm, 0.0 ± 3.4 mm, and 0.0 ± 1.5 mm in the anterior-posterior, superior-inferior, and medial-lateral dimensions respectively. The prostate motion appeared to have been driven by peristalsis in the rectum. Large displacements of the prostate (up to 1.2 cm) moved the prostate both anteriorly and superiorly and in some cases compressed the organ. For such motions, the prostate did not stay displaced, but moved back to its original position. To account for the dosimetric consequences of the motion, we also calculated the time-averaged displacement to be ∼1 mm. Conclusions: Cine MRI can be used to measure intrafractional prostate motion. Although intrafractional prostate motions occur, their effects are negligible compared to interfractional motion and setup error. No adjustment in margin is necessary for three-dimensional conformal or intensity-modulated radiation therapy

  20. Antiferromagnetic order in the ladder compound SrCu{sub 2}O{sub 3}: Cu-NMR/NQR measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ohsugi, S.; Kitaoka, Y.; Azuma, M.; Fujishiro, Y.; Takano, M.

    1999-12-01

    The authors carried out the extensive Cu-nuclear magnetic and quadrupole resonance (NMR/NQR) experiments on the Zn(Ni)-doped ladder compound SrCu{sub 2}O{sub 3} (Sr123), Sr(Cu{sub 1{minus}x}M{sub x}){sub 2}O{sub 3} (M = Zn and Ni) with x {le} 0.02 and the La-doped Sr123, Sr{sub 1{minus}x}La{sub x}Cu{sub 2}O{sub 3} with {alpha} {le} 0.03. A spin-correlation length {xi}{sub s}/a (a: the lattice spacing between the Cu sites along the leg) of nonmagnetic impurity-induced staggered polarization (IISP) estimated from a quasi-one-dimensional (Q1D) IISP along the two legs in the 0.1--2% Zn-doped Sr123 was found to be independent of temperature (T) and scaled to an mean impurity distance D{sub AV} with the relation of {xi}{sub s}/a = 2.5 + D{sub AV}. The {xi}{sub s}/a's are much longer in x = 0.001 ({xi}{sub s}/a {approximately} 50) and 0.005 ({xi}{sub s}/a {approximately} 12) than an instantaneous spin-correlation length {xi}{sub 0}/a {approximately} 3--8 in Sr123. The formula of Neel T, T{sub N} (WC-Q1D) = J exp({minus}D{sub AV}/({xi}{sub s}/a)) (J = 2,000 K) based on the weakly interladder-coupled (WC) Q1D model explains the experimental T{sub N} values quantitatively.

  1. Study of molecular movements in some organic crystals by NMR

    International Nuclear Information System (INIS)

    Alexandre, M.

    1971-01-01

    After a discussion on molecular crystals (generalities, movements within molecular solids, study of movements, complexes by charge transfer) and some specific ones (molecular complexes of trinitrobenzene or TNB), this research thesis reports the use of nuclear magnetic resonance (NMR) to study molecular movements: generalities on broadband NMR, spin relaxation and strong field network, observation of the absorption signal and measurement of the second moment. The last part reports and discusses experimental results obtained on TNB-naphthalene, on TNB-azulene, on TNB-benzothiophene, and on TNB-indole

  2. NMR-based milk metabolomics

    DEFF Research Database (Denmark)

    Sundekilde, Ulrik; Larsen, Lotte Bach; Bertram, Hanne Christine S.

    2013-01-01

    and processing capabilities of bovine milk is closely associated to milk composition. Metabolomics is ideal in the study of the low-molecular-weight compounds in milk, and this review focuses on the recent nuclear magnetic resonance (NMR)-based metabolomics trends in milk research, including applications linking...... compounds. Furthermore, metabolomics applications elucidating how the differential regulated genes affects milk composition are also reported. This review will highlight the recent advances in NMR-based metabolomics on milk, as well as give a brief summary of when NMR spectroscopy can be useful for gaining...

  3. Quantum tunneling of magnetization in molecular nanomagnet Fe8 studied by NMR

    International Nuclear Information System (INIS)

    Maegawa, Satoru; Ueda, Miki

    2003-01-01

    Magnetization and NMR measurements have been performed for single crystals of molecular magnet Fe8. The field and temperature dependences of magnetization below 25 K are well described in terms of the isolated clusters with the total spin S=10. The stepwise recoveries of 1 H-NMR signals at the level crossing fields caused by the resonant quantum tunneling of magnetization were observed below 400 mK. The recovery of the NMR signals are explained by the fluctuation caused by the transition between the energy states of Fe magnetizations governed by Landau-Zener quantum transitions

  4. NMR studies of Na+-anion association effects in polymer electrolytes

    International Nuclear Information System (INIS)

    Greenbaum, S.G.; Pak, Y.S.; Wintergill, M.C.; Fontanella, J.J.

    1988-01-01

    23 Na nuclear magnetic resonance (NMR) measurements on poly (propylene oxide) (PPO) and siloxane based polymer electrolytes containing various sodium salts at a single nominal concentration are reported. In addition, differential scanning calorimetry (DSC) and electrical conductivity studies were carried out on the PPO materials. The NMR-determined mobile Na + concentrations and DSC results provide evidence for ionic aggregation effects which, for some samples, result in salt precipitation at elevated temperatures. 23 Na chemical shifts observed in solid state NMR due to mobile Na + -anion interactions influence ionic transport as well as the number of available carriers. (author). 19 refs.; 7 figs

  5. Basics of spectroscopic instruments. Hardware of NMR spectrometer

    International Nuclear Information System (INIS)

    Sato, Hajime

    2009-01-01

    NMR is a powerful tool for structure analysis of small molecules, natural products, biological macromolecules, synthesized polymers, samples from material science and so on. Magnetic Resonance Imaging (MRI) is applicable to plants and animals Because most of NMR experiments can be done by an automation mode, one can forget hardware of NMR spectrometers. It would be good to understand features and performance of NMR spectrometers. Here I present hardware of a modern NMR spectrometer which is fully equipped with digital technology. (author)

  6. Backbone dynamics of a model membrane protein: measurement of individual amide hydrogen-exchange rates in detergent-solubilized M13 coat protein using 13C NMR hydrogen/deuterium isotope shifts

    International Nuclear Information System (INIS)

    Henry, G.D.; Weiner, J.H.; Sykes, B.D.

    1987-01-01

    Hydrogen-exchange rates have been measured for individual assigned amide protons in M13 coat protein, a 50-residue integral membrane protein, using a 13 C nuclear magnetic resonance (NMR) equilibrium isotope shift technique. The locations of the more rapidly exchanging amides have been determined. In D 2 O solutions, a peptide carbonyl resonance undergoes a small upfield isotope shift (0.08-0.09 ppm) from its position in H 2 O solutions; in 1:1 H 2 O/D 2 O mixtures, the carbonyl line shape is determined by the exchange rate at the adjacent nitrogen atom. M13 coat protein was labeled biosynthetically with 13 C at the peptide carbonyls of alanine, glycine, phenylalanine, proline, and lysine, and the exchange rates of 12 assigned amide protons in the hydrophilic regions were measured as a function of pH by using the isotope shift method. This equilibrium technique is sensitive to the more rapidly exchanging protons which are difficult to measure by classical exchange-out experiments. In proteins, structural factors, notably H bonding, can decrease the exchange rate of an amide proton by many orders of magnitude from that observed in the freely exposed amides of model peptides such as poly(DL-alanine). With corrections for sequence-related inductive effects, the retardation of amide exchange in sodium dodecyl sulfate solubilized coat protein has been calculated with respect to poly(DL-alanine). The most rapidly exchanging protons, which are retarded very little or not at all, are shown to occur at the N- and C-termini of the molecule. A model of the detergent-solubilized coat protein is constructed from these H-exchange data which is consistent with circular dichroism and other NMR results

  7. Proton NMR imaging in experimental ischemic infarction

    International Nuclear Information System (INIS)

    Buonanno, F.S.; Pykett, I.L.; Brady, T.J.; Vielma, J.; Burt, C.T.; Goldman, M.R.; Hinshaw, W.S.; Pohost, G.M.; Kistler, J.P.

    1983-01-01

    Proton nuclear magnetic resonance (NMR) images depict the distribution and concentration of mobile protons modified by the relaxation times T1 and T2. Using the steady-state-free-precession (SSFP) technique, serial coronal images were obtained sequentially over time in laboratory animals with experimental ischemic infarction. Image changes were evident as early as 2 hours after carotid artery ligation, and corresponded to areas of ischemic infarction noted pathologically. Resulting SSFP images in experimental stroke are contrasted to inversion-recovery NMR images in an illustrative patient with established cerebral infarction. Bulk T1 and T2 measurements were made in vitro in three groups of gerbils: normal, those with clinical evidence of infarction, and those clinically normal after carotid ligature. Infarcted hemispheres had significantly prolonged T1 and T2 (1.47 +/- .12 sec, 76.0 +/- 9.0 msec, respectively) when compared to the contralateral hemisphere (T1 . 1.28 +/- .05 sec, T2 . 58.7 +/- 3.9 msec) or to the other two groups. These data suggest that changes in NMR parameters occur and can be detected by NMR imaging as early as two hours after carotid artery ligation

  8. TG/DTG, FT-ICR Mass Spectrometry, and NMR Spectroscopy Study of Heavy Fuel Oil

    KAUST Repository

    Elbaz, Ayman M.; Abdul Jameel, Abdul Gani; Hourani, Nadim; Emwas, Abdul-Hamid M.; Sarathy, Mani; Roberts, William L.

    2015-01-01

    infusion atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry (APCI-FTICR MS), high resolution 1H nuclear magnetic resonance (NMR), 13C NMR, and two-dimensional heteronuclear multiple bond correlation (HMBC

  9. Novel NMR tools to study structure and dynamics of biomembranes.

    Science.gov (United States)

    Gawrisch, Klaus; Eldho, Nadukkudy V; Polozov, Ivan V

    2002-06-01

    Nuclear magnetic resonance (NMR) studies on biomembranes have benefited greatly from introduction of magic angle spinning (MAS) NMR techniques. Improvements in MAS probe technology, combined with the higher magnetic field strength of modern instruments, enables almost liquid-like resolution of lipid resonances. The cross-relaxation rates measured by nuclear Overhauser enhancement spectroscopy (NOESY) provide new insights into conformation and dynamics of lipids with atomic-scale resolution. The data reflect the tremendous motional disorder in the lipid matrix. Transfer of magnetization by spin diffusion along the proton network of lipids is of secondary relevance, even at a long NOESY mixing time of 300 ms. MAS experiments with re-coupling of anisotropic interactions, like the 13C-(1)H dipolar couplings, benefit from the excellent resolution of 13C shifts that enables assignment of the couplings to specific carbon atoms. The traditional 2H NMR experiments on deuterated lipids have higher sensitivity when conducted on oriented samples at higher magnetic field strength. A very large number of NMR parameters from lipid bilayers is now accessible, providing information about conformation and dynamics for every lipid segment. The NMR methods have the sensitivity and resolution to study lipid-protein interaction, lateral lipid organization, and the location of solvents and drugs in the lipid matrix.

  10. Multivariate analysis of fingerprinting of majority secondary metabolites of propolis of Costa Rica using proton nuclear magnetic resonance (1H-NMR)

    International Nuclear Information System (INIS)

    Umana Rojas, Eduardo

    2013-01-01

    Propolis is produced by Apis mellifera bees from resins of plants that are found around the apiary. The chemical composition is highly variable and Costa Rica has reported without studies of characterization to define the types of propolis in the country. 119 samples were collected from beekeeping areas of the country. The spectrum of 1 H-NMR and its antioxidant activity against DPPH radical were measured. The spectra have been divided into 243 blocks of 0,04 ppm and processed with the Minitab software for multivariate analysis. 99 of the samples collected were used for construction of models for the valuation of the predictive ability of the model have been used coefficients of determination (R 2 ) of prediction by the software and the remaining 20 samples. The existence of three types of propolis with chemically different metabolomes were determined by principal component analysis (PCA). A prediction model was constructed by analysis of partial least squares (PLS). The prediction model has allowed to classify a propolis according to the level of anti-oxidant activity (AAO), high (type I and II) or low (type III) from the spectrum of 1 H-NMR. The R 2 has been 0.88 and R 2 prediction of 0, 718 for new samples. The n-coniferyl benzoate of group I and nemorosone of the group II as two discriminated antioxidants among the groups I and II were isolated and high concentration levels of these compounds have been differentiated with respect to type III. This has allowed the construction of a linear discriminant model with a success rate of 100% for the samples used for formulation and 92,9 for the prediction of different samples. The classification systems could be applied to the standardization of the quality of propolis from Costa Rica for future medicinal or cosmetic applications that take advantage of its antioxidant properties. Also, the methylated derivative has isolated and identified of the n-coniferyl benzoate thereof propolis than was obtained his counterpart

  11. Conditions to obtain precise and true measurements of the intramolecular {sup 13}C distribution in organic molecules by isotopic {sup 13}C nuclear magnetic resonance spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bayle, Kevin [EBSI Team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 Rue de la Houssinière, BP 92208, F-44322, Nantes Cedex 3 (France); Gilbert, Alexis [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Earth–Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Julien, Maxime [EBSI Team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 Rue de la Houssinière, BP 92208, F-44322, Nantes Cedex 3 (France); Yamada, Keita [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Silvestre, Virginie; Robins, Richard J.; Akoka, Serge [EBSI Team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 Rue de la Houssinière, BP 92208, F-44322, Nantes Cedex 3 (France); Yoshida, Naohiro [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Earth–Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Remaud, Gérald S., E-mail: gerald.remaud@univ-nantes.fr [EBSI Team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 Rue de la Houssinière, BP 92208, F-44322, Nantes Cedex 3 (France)

    2014-10-10

    Highlights: • Evaluation of the trueness and precision criteria of isotopic {sup 13}C NMR spectrometry. • Use of bi-labelled [1,2-{sup 13}C{sub 2}]acetic acid to determine the performance of the instrumental response. • Inter-calibration of the {sup 13}C intramolecular composition of acetic acid using the technique GC-Py–irm-MS. - Abstract: Intramolecular {sup 13}C composition gives access to new information on the (bio) synthetic history of a given molecule. Isotopic {sup 13}C NMR spectrometry provides a general tool for measuring the position-specific {sup 13}C content. As an emerging technique, some aspects of its performance are not yet fully delineated. This paper reports on (i) the conditions required to obtain satisfactory trueness and precision for the determination of the internal {sup 13}C distribution, and (ii) an approach to determining the “absolute” position-specific {sup 13}C content. In relation to (i), a precision of <1% can be obtained whatever the molecule on any spectrometer, once quantitative conditions are met, in particular appropriate proton decoupling efficiency. This performance is a prerequisite to the measurement of isotope fractionation either on the transformed or residual compound when a chemical reaction or process is being studied. The study of the trueness has revealed that the response of the spectrometer depends on the {sup 13}C frequency range of the studied molecule, i.e. the chemical shift range. The “absolute value” and, therefore, the trueness of the {sup 13}C NMR measurements has been assessed on acetic acid and by comparison to the results obtained on the fragments from COOH and CH{sub 3} by isotopic mass spectrometry coupled to a pyrolysis device (GC-Py–irm-MS), this technique being the reference method for acetic acid. Of the two NMR spectrometers used in this work, one gave values that corresponded to those obtained by GC-Py–irm-MS (thus, the “true” value) while the other showed a bias, which was

  12. NMR imaging

    International Nuclear Information System (INIS)

    Andrew, E.R.

    1983-01-01

    Since hydrogen is the most abundant element in all living organisms, proton NMR lends itself well as a method of investigation in biology and medicine. NMR imaging has some special advantages as a diagnostic tool: no ionizing radiation is used, it is noninvasive; it provides a safer means of imaging than the use of x-rays, gamma rays, positrons, or heavy ions. In contrast with ultrasound, the radiation penetrates the bony structures without attenuation. In additional to morphological information, NMR imaging provides additional diagnostic insights through relaxation parameters, which are not available from other imaging methods. In the decade since the first primitive NMR images were obtained, the quality of images now obtained approaches those from CT x-ray scanners. Prototype instruments are being constructed for clinical evaluation and the first whole-body scanners are beginning to appear on the market at costs comparable to CT scanners. Primary differences in equipment for conventional NMR and NMR imaging are the much larger aperture magnets that are required for the examination of human subjects and the addition of coils to generate field gradients and facilities for manipulating the gradients. Early results from clinical trials in many parts of the world are encouraging, and in a few years, the usefuleness of this modality of medical imaging to the medical profession in diagnosis and treatment of disease will be defined. 10 figures

  13. Nuclear magnetic resonance apparatus

    International Nuclear Information System (INIS)

    Lambert, R.

    1991-01-01

    In order to include the effect of a magnetic object in a subject under investigation, Nuclear Magnetic Resonance (NMR) apparatus is operable at more than one radio frequency (RF) frequency. The apparatus allows normal practice as far as obtaining an NMR response or image from a given nuclear species is concerned, but, in addition, interrogates the nuclear spin system at a frequency which is different from the resonance frequency normally used for the given nuclear species, as determined from the applied magnetic field. The magnetic field close to a magnetised or magnetisable object is modified and the given nuclear species gives a response at the different frequency. Thus detection of a signal at the frequency indicates the presence of the chosen nuclei close to the magnetised or magnetisable object. Applications include validation of an object detection or automatic shape inspection system in the presence of magnetic impurities, and the detection of magnetic particles which affect measurement of liquid flow in a pipe. (author)

  14. Techniques and processes for the measurement of the resonances of small single crystals

    International Nuclear Information System (INIS)

    Migliori, A.; Stekel, A.; Sarrao, J.L.; Visscher, W.M.; Bell, T.; Lei, M.

    1991-01-01

    The mechanical resonances of small oriented single crystals of materials of interest to basic science and engineering can be used to determine all the elastic moduli and the ultrasonic attenuation of these materials. To measure the resonances of the samples without introducing the resonances of the measuring system requires that the transducers be non-resonant at the frequencies of interest, and that they be well isolated from their mounts. However, for samples near 1 mm in the largest dimension, the transducer design problem becomes sever, and the signals become weak. In addition, no resonances can be missed, and, often, the symmetry class of the resonances must be known. We outline here appropriate transducer, electronics, and system designs to circumvent these problems. 10 refs., 4 figs

  15. Electron beam asymmetry measurements from exclusive pi0 electroproduction in the Delta(1232) resonance region

    Energy Technology Data Exchange (ETDEWEB)

    K. Joo

    2003-05-01

    The polarized longitudinal-transverse structure function sigma_LT'in the p(e,e'p)pi^0 reaction has been measured for the first time in the Delta(1232) resonance region for invariant mass W = 1.1 - 1.3 GeV and at four-momentum transfer Q^2 = 0.40 and 0.65 GeV^2. Data were taken at the Thomas Jefferson National Accelerator Facility with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at an energy of 1.515 GeV. This newly measured sigma_LT' provides new and unique information on the interference between resonant and non-resonant amplitudes in the Delta(1232) resonance region. The comparison to recent phenomenological calculations shows sensitivity to the description of non-resonant amplitudes and higher resonances.

  16. 4D experiments measured with APSY for automated backbone resonance assignments of large proteins

    International Nuclear Information System (INIS)

    Krähenbühl, Barbara; Boudet, Julien; Wider, Gerhard

    2013-01-01

    Detailed structural and functional characterization of proteins by solution NMR requires sequence-specific resonance assignment. We present a set of transverse relaxation optimization (TROSY) based four-dimensional automated projection spectroscopy (APSY) experiments which are designed for resonance assignments of proteins with a size up to 40 kDa, namely HNCACO, HNCOCA, HNCACB and HN(CO)CACB. These higher-dimensional experiments include several sensitivity-optimizing features such as multiple quantum parallel evolution in a ‘just-in-time’ manner, aliased off-resonance evolution, evolution-time optimized APSY acquisition, selective water-handling and TROSY. The experiments were acquired within the concept of APSY, but they can also be used within the framework of sparsely sampled experiments. The multidimensional peak lists derived with APSY provided chemical shifts with an approximately 20 times higher precision than conventional methods usually do, and allowed the assignment of 90 % of the backbone resonances of the perdeuterated primase-polymerase ORF904, which contains 331 amino acid residues and has a molecular weight of 38.4 kDa.

  17. Ferromagnetic linewidth measurements employing electrodynamic model of the magnetic plasmon resonance

    Science.gov (United States)

    Krupka, Jerzy; Aleshkevych, Pavlo; Salski, Bartlomiej; Kopyt, Pawel

    2018-02-01

    The mode of uniform precession, or Kittel mode, in a magnetized ferromagnetic sphere, has recently been proven to be the magnetic plasmon resonance. In this paper we show how to apply the electrodynamic model of the magnetic plasmon resonance for accurate measurements of the ferromagnetic resonance linewidth ΔH. Two measurement methods are presented. The first one employs Q-factor measurements of the magnetic plasmon resonance coupled to the resonance of an empty metallic cavity. Such coupled modes are known as magnon-polariton modes, i.e. hybridized modes between the collective spin excitation and the cavity excitation. The second one employs direct Q-factor measurements of the magnetic plasmon resonance in a filter setup with two orthogonal semi-loops used for coupling. Q-factor measurements are performed employing a vector network analyser. The methods presented in this paper allow one to extend the measurement range of the ferromagnetic resonance linewidth ΔH well beyond the limits of the commonly used measurement standards in terms of the size of the samples and the lowest measurable linewidths. Samples that can be measured with the newly proposed methods may have larger size as compared to the size of samples that were used in the standard methods restricted by the limits of perturbation theory.

  18. Quantitative nuclear magnetic resonance spectrometry II. Purity of phosphorus-based agrochemicals glyphosate (N-(phosphonomethyl)-glycine) and profenofos (O-(4-bromo-2-chlorophenyl) O-ethyl S-propyl phosphorothioate) measured by {sup 1}H and {sup 31}P QNMR spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Saed Al Deen, Tareq; Brynn Hibbert, D.; Hook, James M.; Wells, Robert J

    2002-12-09

    The purities of the widely-used herbicide glyphosate (N-(phosphonomethyl)glycine), and the insecticide profenofos (O-(4-bromo-2-chlorophenyl) O-ethyl S-propyl phosphorothioate) were determined by {sup 1}H and {sup 31}P quantitative nuclear magnetic resonance (QNMR) spectrometry using an internal standard. QNMR does not need a standard reference of the same target analyte, in contrast to chromatographic methods, but only a compound containing the nucleus of interest. Sodium acetate and sodium phosphate of known purity were chosen as internal standards for {sup 1}H NMR and {sup 31}P NMR), respectively for the water soluble glyphosate and a single internal standard, trimethyl phosphate for both {sup 1}H and {sup 31}P NMR quantitative analysis of the organic soluble profenofos. These standards have NMR peaks that do not interfere with those of the analyte, they are chemically inert and are soluble in the deuterated solvent. The average purity of glyphosate obtained by {sup 1}H NMR (97.07%, {sigma}=0.68) agreed with that by {sup 31}P NMR (96.53%, {sigma}=0.90; ANOVA, P=0.074) for the five batches provided by the manufacturer according to the procedures for chemical registration in Australia. The standard deviations of seven independent analyses of a single batch by {sup 1}H NMR and {sup 31}P NMR were {sigma}=0.24% and {sigma}=0.33%, respectively, values which confirm the exceptional precision of the method. The purity of profenofos by {sup 1}H NMR (94.63%, {sigma}=0.14) also agreed with that by {sup 31}P NMR (94.62%, {sigma}=0.59; ANOVA, P=0.97). Uncertainty budgets for the measured purities of glyphosate and profenofos show that the uncertainty in the purity of the internal standard is a major contributor to the uncertainty of the result. NMR was also used to establish the impurity profile of both compounds, and quantify the impurities present.

  19. Evaluation of left ventricular volumes measured by magnetic resonance imaging

    DEFF Research Database (Denmark)

    Møgelvang, J; Thomsen, C; Mehlsen, J

    1986-01-01

    Left ventricular end-diastolic and end-systolic volumes were determined in 17 patients with different levels of left ventricular function by magnetic resonance imaging (MRI). A 1.5 Tesla Magnet was used obtaining ECG triggered single and multiple slices. Calculated cardiac outputs were compared...

  20. PSYCHE CPMG-HSQMBC: An NMR Spectroscopic Method for Precise and Simple Measurement of Long-Range Heteronuclear Coupling Constants.

    Science.gov (United States)

    Timári, István; Szilágyi, László; Kövér, Katalin E

    2015-09-28

    Among the NMR spectroscopic parameters, long-range heteronuclear coupling constants convey invaluable information on torsion angles relevant to glycosidic linkages of carbohydrates. A broadband homonuclear decoupled PSYCHE CPMG-HSQMBC method for the precise and direct measurement of multiple-bond heteronuclear couplings is presented. The PSYCHE scheme built into the pulse sequence efficiently eliminates unwanted proton-proton splittings from the heteronuclear multiplets so that the desired heteronuclear couplings can be determined simply by measuring frequency differences between peak maxima of pure antiphase doublets. Moreover, PSYCHE CPMG-HSQMBC can provide significant improvement in sensitivity as compared to an earlier Zangger-Sterk-based method. Applications of the proposed pulse sequence are demonstrated for the extraction of (n)J((1)H,(77)Se) and (n)J((1)H,(13)C) values, respectively, in carbohydrates; further extensions can be envisioned in any J-based structural and conformational studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Resonances

    DEFF Research Database (Denmark)

    an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...

  2. High resolution NMR study of cellulose in solid state and in solution

    International Nuclear Information System (INIS)

    Saint-Germain, Jean

    1983-01-01

    This research thesis reports the study of native cellulose (cotton) and wood by nuclear magnetic resonance (NMR). As far as the cotton spectrum is concerned, the author assigned resonances which more specifically corresponded to amorphous or crystalline areas. Wood was studied in its bulk condition, and resonances have been determined for the different wood components. The behaviour of cellulose in solution in a solvent has been studied by liquid high resolution NMR. The solvation mechanism has been determined and a study of model components of the macromolecule allowed a conformational study of cellulose in this solvent to be performed. Bi-dimensional NMR and longitudinal relaxation time measurements highlighted the existence of an intramolecular hydrogen bond in the cellulose in solution [fr

  3. Constrained optimization for position calibration of an NMR field camera.

    Science.gov (United States)

    Chang, Paul; Nassirpour, Sahar; Eschelbach, Martin; Scheffler, Klaus; Henning, Anke

    2018-07-01

    Knowledge of the positions of field probes in an NMR field camera is necessary for monitoring the B 0 field. The typical method of estimating these positions is by switching the gradients with known strengths and calculating the positions using the phases of the FIDs. We investigated improving the accuracy of estimating the probe positions and analyzed the effect of inaccurate estimations on field monitoring. The field probe positions were estimated by 1) assuming ideal gradient fields, 2) using measured gradient fields (including nonlinearities), and 3) using measured gradient fields with relative position constraints. The fields measured with the NMR field camera were compared to fields acquired using a dual-echo gradient recalled echo B 0 mapping sequence. Comparisons were done for shim fields from second- to fourth-order shim terms. The position estimation was the most accurate when relative position constraints were used in conjunction with measured (nonlinear) gradient fields. The effect of more accurate position estimates was seen when compared to fields measured using a B 0 mapping sequence (up to 10%-15% more accurate for some shim fields). The models acquired from the field camera are sensitive to noise due to the low number of spatial sample points. Position estimation of field probes in an NMR camera can be improved using relative position constraints and nonlinear gradient fields. Magn Reson Med 80:380-390, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  4. From proton nuclear magnetic resonance spectra to pH. Assessment of {sup 1}H NMR pH indicator compound set for deuterium oxide solutions

    Energy Technology Data Exchange (ETDEWEB)

    Tynkkynen, Tuulia, E-mail: tuulia.tynkkynen@uku.fi [Laboratory of Chemistry, Department of Biosciences, University of Kuopio, PO Box 1627, 70211 Kuopio (Finland); Tiainen, Mika; Soininen, Pasi; Laatikainen, Reino [Laboratory of Chemistry, Department of Biosciences, University of Kuopio, PO Box 1627, 70211 Kuopio (Finland)

    2009-08-19

    In this study, a protocol for pH determination from D{sub 2}O samples using {sup 1}H NMR pH indicator compounds was developed and assessed by exploring the pH-dependency of 13 compounds giving pH-dependent {sup 1}H NMR signals. The indicators cover the pH range from pH* 0 to 7.2. Equations to transform the indicator chemical shifts to pH estimates are given here for acetic acid, formic acid, chloroacetic acid, dichloroacetic acid, creatine, creatinine, glycine, histidine, 1,2,4-triazole, and TSP (2,2,3,3-tetradeutero-3-(trimethylsilyl)-propionic acid). To characterize the method in presence of typical solutes, the effects of common metabolites, albumin and ionic strength were also evaluated. For the ionic strengths, the effects were also modelled. The experiments showed that the use of pH sensitive {sup 1}H NMR chemical shifts allows the pH determination of typical metabolite solutions with accuracy of 0.01-0.05 pH units. Also, when the ionic strength is known with accuracy better than 0.1 mol dm{sup -3} and the solute concentrations are low, pH{sub nmr}{sup *} (the NMR estimate of pH) can be assumed to be within 0.05 pH units from potentiometrically determined pH.

  5. Kinetically based NMR method of measuring blending octane number of olefins

    NARCIS (Netherlands)

    Golombok, M.; Bruijn, J.; Morley, C.

    1995-01-01

    Olefins are highly nonlinear octane blenders so that standard GC analyses are poor predictors of blend quality. Engine rating is the only way of measuring olefin octane number nonlinearity. It is thus not possible to rapidly assess the quality of the product obtained from an olefin-producing

  6. Diagnostic measurements of CUEBIT based on the dielectronic resonance process

    International Nuclear Information System (INIS)

    Takacs, E.; Kimmel, T. D.; Brandenburg, K. H.; Wilson, R. K.; Gall, A. C.; Harriss, J. E.; Sosolik, C. E.

    2015-01-01

    In this paper we report the first observation of x-ray radiation from the new Clemson University Electron Beam Ion Trap (CUEBIT). The analysis of the emitted dielectronic recombination x-ray photons from highly charged argon ions allowed us to probe parameters specific to the ion cloud inside the machine. Argon dielectronic resonances could provide a standard method to cross-compare the electron beam and ion cloud characteristics of different devices

  7. Integrated microchip incorporating atomic magnetometer and microfluidic channel for NMR and MRI

    Science.gov (United States)

    Ledbetter, Micah P [Oakland, CA; Savukov, Igor M [Los Alamos, NM; Budker, Dmitry [El Cerrito, CA; Shah, Vishal K [Plainsboro, NJ; Knappe, Svenja [Boulder, CO; Kitching, John [Boulder, CO; Michalak, David J [Berkeley, CA; Xu, Shoujun [Houston, TX; Pines, Alexander [Berkeley, CA

    2011-08-09

    An integral microfluidic device includes an alkali vapor cell and microfluidic channel, which can be used to detect magnetism for nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). Small magnetic fields in the vicinity of the vapor cell can be measured by optically polarizing and probing the spin precession in the small magnetic field. This can then be used to detect the magnetic field of in encoded analyte in the adjacent microfluidic channel. The magnetism in the microfluidic channel can be modulated by applying an appropriate series of radio or audio frequency pulses upstream from the microfluidic chip (the remote detection modality) to yield a sensitive means of detecting NMR and MRI.

  8. High-Resolution Magic-Angle-Spinning NMR and Magnetic Resonance Imaging Spectroscopies Distinguish Metabolome and Structural Properties of Maize Seeds from Plants Treated with Different Fertilizers and Arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Mazzei, Pierluigi; Cozzolino, Vincenza; Piccolo, Alessandro

    2018-03-21

    Both high-resolution magic-angle-spinning (HRMAS) and magnetic resonance imaging (MRI) NMR spectroscopies were applied here to identify the changes of metabolome, morphology, and structural properties induced in seeds (caryopses) of maize plants grown at field level under either mineral or compost fertilization in combination with the inoculation by arbuscular mycorrhizal fungi (AMF). The metabolome of intact caryopses was examined by HRMAS-NMR, while the morphological aspects, endosperm properties and seed water distribution were investigated by MRI. Principal component analysis (PCA) was applied to evaluate 1 H CPMG (Carr-Purcel-Meiboom-Gill) HRMAS spectra as well as several MRI-derived parameters ( T 1 , T 2 , and self-diffusion coefficients) of intact maize caryopses. PCA score-plots from spectral results indicated that both seeds metabolome and structural properties depended on the specific field treatment undergone by maize plants. Our findings show that a combination of multivariate statistical analyses with advanced and nondestructive NMR techniques, such as HRMAS and MRI, enables the evaluation of the effects induced on maize caryopses by different fertilization and management practices at field level. The spectroscopic approach adopted here may become useful for the objective appraisal of the quality of seeds produced under a sustainable agriculture.

  9. High Resolution and Large Dynamic Range Resonant Pressure Sensor Based on Q-Factor Measurement

    Science.gov (United States)

    Gutierrez, Roman C. (Inventor); Stell, Christopher B. (Inventor); Tang, Tony K. (Inventor); Vorperian, Vatche (Inventor); Wilcox, Jaroslava (Inventor); Shcheglov, Kirill (Inventor); Kaiser, William J. (Inventor)

    2000-01-01

    A pressure sensor has a high degree of accuracy over a wide range of pressures. Using a pressure sensor relying upon resonant oscillations to determine pressure, a driving circuit drives such a pressure sensor at resonance and tracks resonant frequency and amplitude shifts with changes in pressure. Pressure changes affect the Q-factor of the resonating portion of the pressure sensor. Such Q-factor changes are detected by the driving/sensing circuit which in turn tracks the changes in resonant frequency to maintain the pressure sensor at resonance. Changes in the Q-factor are reflected in changes of amplitude of the resonating pressure sensor. In response, upon sensing the changes in the amplitude, the driving circuit changes the force or strength of the electrostatic driving signal to maintain the resonator at constant amplitude. The amplitude of the driving signals become a direct measure of the changes in pressure as the operating characteristics of the resonator give rise to a linear response curve for the amplitude of the driving signal. Pressure change resolution is on the order of 10(exp -6) torr over a range spanning from 7,600 torr to 10(exp -6) torr. No temperature compensation for the pressure sensor of the present invention is foreseen. Power requirements for the pressure sensor are generally minimal due to the low-loss mechanical design of the resonating pressure sensor and the simple control electronics.

  10. Overtones of isoscalar giant resonances studied in direct particle decay measurements

    NARCIS (Netherlands)

    Hunyadi, M; van den Berg, AM; Csatlos, M; Csige, L; Davids, B; Garg, U; Gulyas, J; Harakeh, MN; de Huu, MA; Krasznahorkay, A; Sohler, D; Wortche, HJ

    The isoscalar giant dipole resonance (ISGDR), which is the lowest-energy overtone mode of the isoscalar giant resonances, has been studied in some medium-heavy and heavy nuclei in coincidence measurements. The observation of the direct nucleon decay channels significantly helped to enhance giant

  11. Series elasticity of the human triceps surae muscle : Measurement by controlled-release vs. resonance methods.

    NARCIS (Netherlands)

    Hof, AL; Boom, H; Robinson, C; Rutten, W; Neuman, M; Wijkstra, H

    1997-01-01

    With a newly developed Controlled-Release Ergometer the complete characteristic of the series elastic component can be measured in human muscles. Previous estimates were based on the resonance method: muscle elasticity was assessed from the resonance frequency of the muscle elasticity connected to a

  12. Structural study of pyrones by NMR

    International Nuclear Information System (INIS)

    Mandarino, D.G.

    1985-01-01

    Extracts of two species of Aniba, designed Aniba-SA (light petroleum extract) and Aniba-SB (benzene extract), afforded by chromatographic fraccionation some compounds. The isolated compounds were identified using spectrometric data and C 13 -NMR coupled and decompled spectra of pyrones were registered. Measurement of the heteronuclear residual coupling by irradiation proton frequency off-resonance was used for distinguish C-5, C-7 and C-8 carbons of the pyrones SB-1, SB-3, SB-4 and SB-5. (M.J.C.) [pt

  13. Sequence-specific 1H NMR resonance assignments of Bacillus subtilis HPr: Use of spectra obtained from mutants to resolve spectral overlap

    International Nuclear Information System (INIS)

    Wittekind, M.; Klevit, R.E.; Reizer, J.

    1990-01-01

    On the basis of an analysis of two-dimensional 1 H NMR spectra, the complete sequence-specific 1 H NMR assignments are presented for the phosphocarrier protein HPr from the Gram-positive bacterium Bacillus subtilis. During the assignment procedure, extensive use was made of spectra obtained from point mutants of HPr in order to resolve spectral overlap and to provide verification of assignments. Regions of regular secondary structure were identified by characteristic patterns of sequential backbone proton NOEs and slowly exchanging amide protons. B subtilis HPr contains four β-strands that form a single antiparallel β-sheet and two well-defined α-helices. There are two stretches of extended backbone structure, one of which contains the active site His 15 . The overall fold of the protein is very similar to that of Escherichia coli HPr determined by NMR studies

  14. Evaluation of thermoplastic starch/MMT nanocomposites by nuclear magnetic resonance (NMR); Avaliacao de nanocompositos de amido termoplastico e argila por RMN

    Energy Technology Data Exchange (ETDEWEB)

    Schlemmer, D.; Rodrigues, Tiago C.A.F.; Resck, I.S.; Sales, M.J.A., E-mail: danielas@unb.b [Universidade de Brasilia (LabPol/UnB), DF (Brazil). Inst. de Quimica. Lab. de Pesquisa em Polimeros

    2010-07-01

    Starch has been studied for replace petrochemical plastics for short shelf life. However, the starch films have limitations: sensitivity to moisture and poor mechanical strength. This can be improved by incorporating loads such as montmorillonite, forming nanocomposites. Nanocomposites were prepared with 1, 3, 5 and 10% of montmorillonite, using vegetable oils of Brazilian Cerrado as plasticizers. The NMR spectra of oils are similar, but the intensities of the signals varying with the proportion of fatty acids. The molar mass of the oils was also calculated by NMR. The spectrum of CP/MAS {sup 13}C NMR for starch presented a duplet in 97 and 98 ppm, on the amorphous domains of C-1, indicating a crystal type A. The spectra of the nanocomposites are similar to those of starch and oils. No new peaks appear, suggesting that there are no strong chemical bonds between components. (author)

  15. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1999-01-01

    High Resolution NMR provides a broad treatment of the principles and theory of nuclear magnetic resonance (NMR) as it is used in the chemical sciences. It is written at an "intermediate" level, with mathematics used to augment, rather than replace, clear verbal descriptions of the phenomena. The book is intended to allow a graduate student, advanced undergraduate, or researcher to understand NMR at a fundamental level, and to see illustrations of the applications of NMR to the determination of the structure of small organic molecules and macromolecules, including proteins. Emphasis is on the study of NMR in liquids, but the treatment also includes high resolution NMR in the solid state and the principles of NMR imaging and localized spectroscopy. Careful attention is given to developing and interrelating four approaches - steady state energy levels, the rotating vector picture, the density matrix, and the product operator formalism. The presentation is based on the assumption that the reader has an acquaintan...

  16. Comparison among T1-weighted magnetic resonance imaging, modified dixon method, and magnetic resonance spectroscopy in measuring bone marrow fat.

    Science.gov (United States)

    Shen, Wei; Gong, Xiuqun; Weiss, Jessica; Jin, Ye

    2013-01-01

    An increasing number of studies are utilizing different magnetic resonance (MR) methods to quantify bone marrow fat due to its potential role in osteoporosis. Our aim is to compare the measurements of bone marrow fat among T1-weighted magnetic resonance imaging (MRI), modified Dixon method (also called fat fraction MRI (FFMRI)), and magnetic resonance spectroscopy (MRS). Contiguous MRI scans were acquired in 27 Caucasian postmenopausal women with a modified Dixon method (i.e., FFMRI). Bone marrow adipose tissue (BMAT) of T1-weighted MRI and bone marrow fat fraction of the L3 vertebra and femoral necks were quantified using SliceOmatic and Matlab. MRS was also acquired at the L3 vertebra. Correlation among the three MR methods measured bone marrow fat fraction and BMAT ranges from 0.78 to 0.88 (P BMAT measured by T1-weighted MRI and bone marrow fat fraction measured by modified FFMRI is 0.86 (P < 0.001) in femoral necks. There are good correlations among T1-weighted MRI, FFMRI, and MRS for bone marrow fat quantification. The inhomogeneous distribution of bone marrow fat, the threshold segmentation of the T1-weighted MRI, and the ambiguity of the FFMRI may partially explain the difference among the three methods.

  17. Comparison among T1-Weighted Magnetic Resonance Imaging, Modified Dixon Method, and Magnetic Resonance Spectroscopy in Measuring Bone Marrow Fat

    Directory of Open Access Journals (Sweden)

    Wei Shen

    2013-01-01

    Full Text Available Introduction. An increasing number of studies are utilizing different magnetic resonance (MR methods to quantify bone marrow fat due to its potential role in osteoporosis. Our aim is to compare the measurements of bone marrow fat among T1-weighted magnetic resonance imaging (MRI, modified Dixon method (also called fat fraction MRI (FFMRI, and magnetic resonance spectroscopy (MRS. Methods. Contiguous MRI scans were acquired in 27 Caucasian postmenopausal women with a modified Dixon method (i.e., FFMRI. Bone marrow adipose tissue (BMAT of T1-weighted MRI and bone marrow fat fraction of the L3 vertebra and femoral necks were quantified using SliceOmatic and Matlab. MRS was also acquired at the L3 vertebra. Results. Correlation among the three MR methods measured bone marrow fat fraction and BMAT ranges from 0.78 to 0.88 in the L3 vertebra. Correlation between BMAT measured by T1-weighted MRI and bone marrow fat fraction measured by modified FFMRI is 0.86 in femoral necks. Conclusion. There are good correlations among T1-weighted MRI, FFMRI, and MRS for bone marrow fat quantification. The inhomogeneous distribution of bone marrow fat, the threshold segmentation of the T1-weighted MRI, and the ambiguity of the FFMRI may partially explain the difference among the three methods.

  18. Measurement of the effect of the lattice pitch on the effective resonance integral of natural uranium

    Energy Technology Data Exchange (ETDEWEB)

    Krcevinac, S; Takac, S [Institut za nuklearne nauke ' Boris Kidric' , Vinca, Belgrade (Yugoslavia)

    1966-07-01

    The analytical theory of resonance absorption, as well as the numerical Monte Carlo method, allows calculation of the resonance integral. However, it is based on specific approximations so it may be used accurately enough in a limited number of cases. Likewise, insufficiently accurate know ledge of the basic nuclear constants (e.g. resonance parameters, etc.) used as input data in analytical calculation, leads to inaccurate determination of the resonance integral.. Therefore, experimental determination of the effective resonance integral is still indispensable. In some cases the experimental results are used as the exclusive source of information, or as the basis for the semiempirical technique of calculation, and in others as a check of the new theoretical procedures. There are several experimental methods of direct determination of the resonance integral: the activation method (1,2), the reactor oscillator and the danger coefficient method. Indirectly, using the results of critical experiments, it is possible to determine correlated values of the effective resonance integral. The present work investigates the dependence of the effective resonance integral on the lattice pitch. Theoretically, the dependence is determined starting from Wigner's rational approximation in which the lattice is characterized by the effective ratio (S/M) {sup X}. Later this allows correlation between the lattice resonance integral and the resonance integral of the single rod (the rod in infinite medium). Using two approximations for Dancoff's factor we give the measured functional dependence of the effective resonance integral on the effective (S/M){sup X} ratio. To determine the resonance integral experimentally we used the activation method and the differential technique of measuring absorption distribution in U{sup 2}38. Since, because of the use of cadmium in determining the cadmium ratio in the fuel rod the effective lattice pitch cannot be defined with certain reliability, besides

  19. 1.48 GHz (34.8 T) ^1H NMR measurements of SDW fluctuations in (TMTSF)_2PF_6

    Science.gov (United States)

    Clark, W. G.; Vonlanthen, P.; Goto, A.; Tanaka, K. B.; Alavi, B.; Kuhns, P.; Reyes, A. P.; Moulton, W. G.

    2001-03-01

    We report ^1H spin-lattice relaxation rate (T_1-1) measurements that probe the spin-density-wave (SDW) fluctuations in the quasi 1-d system (TMTSF)_2PF6 up to 1.48 GHz (34.8 T) in the NHMFL hybrid magnet. In the critical regime above the SDW transition near 12 K, T_1-1 has no frequency dependence and the angular dependence of T_1-1 attributed to the spin-flop condition in the ordered phase is absent. These results indicate that amplitude fluctuations of the SDW drive T_1-1 in the critical regime and that the SDW critical fluctuation correlation time is <1× 10-10 s. Somewhat below the transition, T_1-1 continues the decrease with increasing NMR frequency observed at lower frequencies. We attribute it to the power spectrum of the SDW phason fluctuations. The dependence of T_1-1 upon the field orientation in this phase reflects the spin-flop condition, but with parameters that are different from the expected ones. The UCLA part of this work was supported by NSF Grants DMR-9705369 and DMR-0072524.

  20. Measurements of relative chemical shift tensor orientations in solid-state NMR: new slow magic angle spinning dipolar recoupling experiments.

    Science.gov (United States)

    Jurd, Andrew P S; Titman, Jeremy J

    2009-08-28

    Solid-state NMR experiments can be used to determine conformational parameters, such as interatomic distances and torsion angles. The latter can be obtained from measurements of the relative orientation of two chemical shift tensors, if the orientation of these with respect to the surrounding bonds is known. In this paper, a new rotor-synchronized magic angle spinning (MAS) dipolar correlation experiment is described which can be used in this way. Because the experiment requires slow MAS rates, a novel recoupling sequence, designed using symmetry principles, is incorporated into the mixing period. This recoupling sequence is based in turn on a new composite cyclic pulse referred to as COAST (for combined offset and anisotropy stabilization). The new COAST-C7(2)(1) sequence is shown to give good theoretical and experimental recoupling efficiency, even when the CSA far exceeds the MAS rate. In this regime, previous recoupling sequences, such as POST-C7(2)(1), exhibit poor recoupling performance. The effectiveness of the new method has been explored by a study of the dipeptide L-phenylalanyl-L-phenylalanine.

  1. NMR spectrometric assay for determining enzymatic hydrolysis of β-lactam antibiotics with bacteria in aqueous solution

    International Nuclear Information System (INIS)

    O'hara, K.; Shiomi, Y.; Kono, M.

    1984-01-01

    An application of a nuclear magnetic resonance (NMR) spectrometer for the measurement of β-lactamase activity in clinical material containing bacteria is presented. By means of proton ( 1 H)-NMR, it was easy to measure quantitatively β-lactamase activity in human bacteriuria, without performing any such pretreatment as isolation of bacteria or extraction of crude enzymes and without preparing special reagents for the detection. This is the first report on the application of 1 H-NMR analysis of structural changes for determining hydrolysis of β-lactam antibiotics with β-lactamase-producing bacteria in aqueous solution. (Auth.)

  2. Analysis of the backbone dynamics of capsicein using 15N NMR relaxation rate measurements

    International Nuclear Information System (INIS)

    Van Heijenoort, C.; Bouaziz, S.; Guittet, E.

    1994-01-01

    15 N relaxation times T 1 and T 1ρ , and heteronuclear steady state nOes, were measured on capsicein, a 98 residue protein. The classical analysis of these data using directly the Lipari and Szabo formalism was shown to give incoherent results, probably due to the presence of a slow exchange along the whole protein. This global exchange broadening made the usual preliminary evaluation of the overall correlation time of capsicein using the Lipari and Szabo expression for the spectral densities impossible. (authors). 2 figs., 23 refs

  3. Early history of NMR at Los Alamos

    International Nuclear Information System (INIS)

    Jackson, J.A.

    1985-11-01

    Nuclear magnetic resonance (NMR) spectroscopy has developed into an important research tool in chemistry. More recently, NMR imaging and in vivo spectroscopy promise to produce a revolution in medicine and biochemistry. Early experiments at Los Alamos led to DOE programs involving stable isotopes of importance to biology and to medicine. These events are briefly recounted. 2 refs

  4. Selective sensitivity enhancement in FT-NMR

    International Nuclear Information System (INIS)

    Farrar, T.C.

    1987-01-01

    In this article the basic two-spin nuclear magnetic resonance (NMR) experiment and the new sensitivity enhancement experiments are reviewed. In part two of this two-part series an overview of two-dimensional NMR experiments will be presented. Part two will appear in the June 1 issue of Analytical Chemistry

  5. Synthesis and NMR Elucidation of Novel Pentacycloundecane ...

    African Journals Online (AJOL)

    Herein we report the synthesis and NMR elucidation of five novel pentacycloundecane (PCU)-derived short peptides as potential HIV protease inhibitors. 1H and 13C spectral analysis show major overlapping of methine resonance of the PCU 'cage' thereby making it extremely difficult to assign the NMR signals. Attachment ...

  6. Measuring perfusion and bioenergetics simultaneously in mouse skeletal muscle: a multi-parametric functional-NMR approach

    International Nuclear Information System (INIS)

    Baligand, C.; Wary, C.; Menard, J.C.; Giacomini, E.; Carlier, P.G.; Baligand, C.; Wary, C.; Menard, J.C.; Hogrel, J.Y.; Carlier, P.G.; Hogrel, J.Y.

    2011-01-01

    A totally noninvasive set-up was developed for comprehensive NMR evaluation of mouse skeletal muscle function in vivo. Dynamic pulsed arterial spin labeling-NMRI perfusion and blood oxygenation level-dependent (BOLD) signal measurements were interleaved with 31 P NMRS to measure both vascular response and oxidative capacities during stimulated exercise and subsequent recovery. Force output was recorded with a dedicated ergometer. Twelve exercise bouts were performed. The perfusion, BOLD signal, pH and force-time integral were obtained from mouse legs for each exercise. All reached a steady state after the second exercise, justifying the pointwise summation of the last 10 exercises to compensate for the limited 31 P signal. In this way, a high temporal resolution of 2.5 s was achieved to provide a time constant for phosphocreatine (PCr) recovery (tPCr). The higher signal-to-noise ratio improved the precision of τ(PCr) measurement [coefficient of variation (CV)1/416.5% vs CV1/449.2% for a single exercise at a resolution of 30 s]. Inter-animal summation confirmed that τ(PCr) was stable at steady state, but shorter (89.3W8.6 s) than after the first exercise (148 s, p≤0.05). This novel experimental approach provides an assessment of muscle vascular response simultaneously to energetic function in vivo. Its pertinence was illustrated by observing the establishment of a metabolic steady state. This comprehensive tool offers new perspectives for the study of muscle pathology in mice models. (authors)

  7. Flow units from integrated WFT and NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Kasap, E.; Altunbay, M.; Georgi, D.

    1997-08-01

    Reliable and continuous permeability profiles are vital as both hard and soft data required for delineating reservoir architecture. They can improve the vertical resolution of seismic data, well-to-well stratigraphic correlations, and kriging between the well locations. In conditional simulations, permeability profiles are imposed as the conditioning data. Variograms, covariance functions and other geostatistical indicators are more reliable when based on good quality permeability data. Nuclear Magnetic Resonance (NMR) logging and Wireline Formation Tests (WFT) separately generate a wealth of information, and their synthesis extends the value of this information further by providing continuous and accurate permeability profiles without increasing the cost. NMR and WFT data present a unique combination because WFTs provide discrete, in situ permeability based on fluid-flow, whilst NMR responds to the fluids in the pore space and yields effective porosity, pore-size distribution, bound and moveable fluid saturations, and permeability. The NMR permeability is derived from the T{sub 2}-distribution data. Several equations have been proposed to transform T{sub 2} data to permeability. Regardless of the transform model used, the NMR-derived permeabilities depend on interpretation parameters that may be rock specific. The objective of this study is to integrate WFT permeabilities with NMR-derived, T{sub 2} distribution-based permeabilities and thereby arrive at core quality, continuously measured permeability profiles. We outlined the procedures to integrate NMR and WFT data and applied the procedure to a field case. Finally, this study advocates the use of hydraulic unit concepts to extend the WFT-NMR derived, core quality permeabilities to uncored intervals or uncored wells.

  8. Proton NMR for Measuring Quantum Level Crossing in the Magnetic Molecular Ring Fe10

    International Nuclear Information System (INIS)

    Julien, M.; Jang, Z.H.; Borsa, F.; Julien, M.; Lascialfari, A.; Borsa, F.; Horvatic, M.; Caneschi, A.; Gatteschi, D.

    1999-01-01

    The proton nuclear spin-lattice relaxation rate 1/T 1 has been measured as a function of temperature and magnetic field (up to 15thinspthinspT) in the molecular magnetic ring Fe 10 ( OCH 3 ) 20 (O 2 CCH 2 Cl) 10 (Fe10). Striking enhancement of 1/T 1 is observed around magnetic field values corresponding to a crossing between the ground state and the excited states of the molecule. We propose that this is due to a cross-relaxation effect between the nuclear Zeeman reservoir and the reservoir of the Zeeman levels of the molecule. This effect provides a powerful tool to investigate quantum dynamical phenomena at level crossing. copyright 1999 The American Physical Society

  9. Development of Two-Dimensional NMR

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Development of Two-Dimensional NMR: Strucure Determination of Biomolecules in Solution. Anil Kumar. General Article Volume 20 Issue 11 November 2015 pp 995-1002 ...

  10. Measurement of the effect of the lattice pitch on the effective resonance integral of natural uranium

    Energy Technology Data Exchange (ETDEWEB)

    Krcevinac, S; Takac, S [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1966-04-15

    The present work investigates the dependence of the effective resonance integral on the lattice pitch. Theoretically, the dependence is determined starting from Wigner's rational approximation in which the lattice is characterized by the effective ratio (s/M). Later this allows correlation between the lattice resonance integral and the resonance integral of the single rod (the rod in infinite medium). Using two approximations for Dancoff's factor we give the measured functional dependence of the effective resonance integral on the effective (s/M) ratio. The activation method and the differential technique of measuring absorption distribution in U-238 are used to determine the resonance integral experimentally. Since the effective lattice pitch cannot be defined with certain reliability, due to the use of cadmium in determining the cadmium ratio in the fuel rod, besides other perturbing effects, the method of comparing thermal activations of U-238 and a suitable thermal detector are used to determine the cadmium ratio.

  11. Measurement of the effect of the lattice pitch on the effective resonance integral of natural uranium

    International Nuclear Information System (INIS)

    Krcevinac, S.; Takac, S.

    1966-04-01

    The present work investigates the dependence of the effective resonance integral on the lattice pitch. Theoretically, the dependence is determined starting from Wigner's rational approximation in which the lattice is characterized by the effective ratio (s/M). Later this allows correlation between the lattice resonance integral and the resonance integral of the single rod (the rod in infinite medium). Using two approximations for Dancoff's factor we give the measured functional dependence of the effective resonance integral on the effective (s/M) ratio. The activation method and the differential technique of measuring absorption distribution in U-238 are used to determine the resonance integral experimentally. Since the effective lattice pitch cannot be defined with certain reliability, due to the use of cadmium in determining the cadmium ratio in the fuel rod, besides other perturbing effects, the method of comparing thermal activations of U-238 and a suitable thermal detector are used to determine the cadmium ratio

  12. Driving a mechanical resonator into coherent states via random measurements

    International Nuclear Information System (INIS)

    Garcia, Ll; Wu, L-A; Chhajlany, R W; Li, Y

    2013-01-01

    We propose dynamical schemes to engineer coherent states of a mechanical resonator (MR) coupled to an ancillary, superconducting flux qubit. The flux qubit, when repeatedly projected on to its ground state, drives the MR into a coherent state in probabilistic, albeit heralded fashion. Assuming no operations on the state of the MR during the protocol, coherent states are successfully generated only up to a certain value of the displacement parameter. This restriction can be overcome at the cost of a one-time operation on the initial state of the MR. We discuss the possibility of experimental realization of the presented schemes. (paper)

  13. Hyperpolarized 129Xe as an NMR probe for functional studies

    International Nuclear Information System (INIS)

    Wolber, J.

    2000-01-01

    The nuclear spin polarization of 129 Xe can be enhanced by several orders of magnitude using optical pumping techniques, resulting in a dramatic enhancement of the 129 Xe Nuclear Magnetic Resonance (NMR) signal. The 'hyperpolarized' gas can be used for Magnetic Resonance Imaging (MRI) of the void spaces of the lungs after introduction of the gas into the respiratory system. Furthermore, the high solubility of xenon in blood and lipids suggests the use of 129 Xe NMR for studying blood flow, permeability, perfusion and blood volume. Hyperpolarized 129 Xe MRI has the potential of combining the high sensitivity and functional information of radioactive tracer studies with the high spatial and temporal resolution of MRI. The spin-lattice relaxation time T 1 of 129 Xe in blood determines the loss of polarization during transit from the lungs to the tissue of interest. A difference in the relaxation times of xenon in oxygenated and deoxygenated blood could be used as a contrast mechanism in functional Magnetic Resonance Imaging (fMRI). In this thesis, the hyperpolarized 129 Xe T 1 in human blood is measured in vitro as a function of blood oxygenation, and the relevant relaxation mechanisms are discussed. A new and unexpected finding is that the hyperpolarized 129 Xe NMR spectrum in blood is highly sensitive to blood oxygenation. Therefore, hyperpolarized 129 Xe NMR provides a powerful means of measuring blood oxygenation quantitatively and non-invasively. The interaction of xenon with hemoglobin is responsible for an oxygen-dependent shift of the 129 Xe NMR resonance of xenon in red blood cells. Injection delivery of hyperpolarized 129 Xe in solution could be a more efficient method of administrating the gas for functional NMR studies. For this purpose, suitable biocompatible carrier media have been studied. In particular, the use of perfluorocarbon emulsions, which are already in use as blood substitutes, as delivery media for hyperpolarized 129 Xe has been investigates

  14. 11B NMR study of calcium-hexaborides

    International Nuclear Information System (INIS)

    Mean, B.J.; Lee, K.H.; Kang, K.H.; Lee, Moohee; Rhee, J.S.; Cho, B.K.

    2005-01-01

    We have performed 11 B nuclear magnetic resonance (NMR) measurements to look for microscopic evidence of the ferromagnetic state in several CaB 6 single crystals. A number of 11 B NMR resonance peaks are observed with the frequency and intensity of those peaks distinctively changing depending on the angle between the crystalline axis and a magnetic field. Analyzing this behavior, we find that the electric field gradient tensor at the boron has its principal axis perpendicular to the six cubic faces with a quadrupole resonance frequency ν Q ∼600kHz. However, the satellite resonances are found to be made of two peaks. Detailed analysis of the four composite satellite peaks confirms that there are two different boron sites with slightly different ν Q 's. This suggests that the boron octahedron cages are locally distorted. However, this distortion is not directly related to ferromagnetism. Even though the magnetization data highlight the ferromagnetic hysteresis, 11 B NMR linewidth and shift data show no clear microscopic evidence of the ferromagnetic state in several different compositions of CaB 6 single crystals

  15. Measurement of resonance integral of the 90Sr(n,γ)91Sr reaction

    International Nuclear Information System (INIS)

    Nakamura, Shoji; Furutaka, Kazuyoshi; Wada, Hiroaki; Katoh, Toshio; Harada, Hideo; Fujii, Toshiyuki; Yamana, Hajimu

    2001-01-01

    To obtain fundamental data for research on nuclear transmutation method of radioactive wastes, the resonance integral (I 0 ) of the 90 Sr(n,γ) 91 Sr reaction was measured with an activation method. (author)

  16. Resonant frequencies and Q factors of dielectric parallelepipeds by measurement and by FDTD

    Energy Technology Data Exchange (ETDEWEB)

    Trueman, C.W. [Concordia Univ., Montreal, Quebec (Canada); Mishra, S.R.; Larose, C.L. [David Florida Lab., Ottawa (Canada)] [and others

    1994-12-31

    This paper describes the measurement and computation of the resonant frequencies and the associated Q factors of dielectric parallelepipeds made of high-permittivity, low-loss ceramic materials. Each resonance peak is measured separately with a fine frequency step. A curve-fitting method is used to accurately estimate the resonant frequency and 3 dB bandwidth from the somewhat noisy measured data. The finite-difference time-domain method is used to compute the initial portion of the backscattered field due to a Gaussian pulse plane wave. The time response is then extended to zero value by Prony`s method. The measured and computed data is compared for a parallelepiped resonator of permittivity 37.84.

  17. An Introduction to Drug Discovery by Probing Protein-Substrate Interactions Using Saturation Transfer Difference-Nuclear Magnetic Resonance (STD-NMR)

    Science.gov (United States)

    Guegan, Jean-Paul; Daniellou, Richard

    2012-01-01

    NMR spectroscopy is a powerful tool for characterizing and identifying molecules and nowadays is even used to characterize complex systems in biology. In the experiment presented here, students learned how to apply this modern technique to probe interactions between small molecules and proteins. With the use of simple organic synthesis, students…

  18. Methodological NMR imaging developments to measure cerebral perfusion; Developpements methodologiques en IRM pour la mesure de perfusion cerebrale

    Energy Technology Data Exchange (ETDEWEB)

    Pannetier, N.

    2010-12-15

    This work focuses on acquisition techniques and physiological models that allow characterization of cerebral perfusion by MRI. The arterial input function (AIF), on which many models are based, is measured by a technique of optical imaging at the carotid artery in rats. The reproducibility and repeatability of the AIF are discussed and a model function is proposed. Then we compare two techniques for measuring the vessel size index (VSI) in rats bearing a glioma. The reference technique, using a USPIO contrast agent (CA), faces the dynamic approach that estimates this parameter during the passage of a bolus of Gd. This last technique has the advantage of being used clinically. The results obtained at 4.7 T by both approaches are similar and use of VSI in clinical protocols is strongly encouraged at high field. The mechanisms involved (R1 and R2* relaxivities) were then studied using a multi gradient -echoes approach. A multi-echoes spiral sequence is developed and a method that allows the refocusing between each echo is presented. This sequence is used to characterize the impact of R1 effects during the passage of two successive injections of Gd. Finally, we developed a tool for simulating the NMR signal on a 2D geometry taking into account the permeability of the BBB and the CA diffusion in the interstitial space. At short TE, the effect of diffusion on the signal is negligible. In contrast, the effects of diffusion and permeability may be separated at long echo time. Finally we show that during the extravasation of the CA, the local magnetic field homogenization due to the decrease of the magnetic susceptibility difference at vascular interfaces is quickly balanced by the perturbations induced by the increase of the magnetic susceptibility difference at the cellular interfaces in the extravascular compartment. (author)

  19. Using Micromechanical Resonators to Measure Rheological Properties and Alcohol Content of Model Solutions and Commercial Beverages

    Directory of Open Access Journals (Sweden)

    Bart W. Hoogenboom

    2012-05-01

    Full Text Available Micromechanic resonators provide a small-volume and potentially high-throughput method to determine rheological properties of fluids. Here we explore the accuracy in measuring mass density and viscosity of ethanol-water and glycerol-water model solutions, using a simple and easily implemented model to deduce the hydrodynamic effects on resonating cantilevers of various length-to-width aspect ratios. We next show that these measurements can be extended to determine the alcohol percentage of both model solutions and commercial beverages such as beer, wine and liquor. This demonstrates how micromechanical resonators can be used for quality control of every-day drinks.

  20. Measurements of the anomalous RF surface resistance of niobium using a dielectric resonator

    International Nuclear Information System (INIS)

    Moffat, D.; Bolore, M.; Bonin, B.; Jacques, E.; Safa, H.

    1996-01-01

    The surface resistance of high and low residual resistance ratio (RRR) niobium plates at 4.2 K and 1.8 K has been measured as a function of many processing and testing parameters. A dielectric resonator was used instead of a resonant cavity. This resonator offered the ability to make many, sensitive measurements with an efficient use of time and helium. It was found that the surface resistance, R s , of RRR = 190 niobium increased noticeably from the theoretical value if the cooling rate was slower than ∼ 10 K/min. (author)

  1. Identifying inter-residue resonances in crowded 2D {sup 13}C-{sup 13}C chemical shift correlation spectra of membrane proteins by solid-state MAS NMR difference spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miao Yimin; Cross, Timothy A. [Florida State University, Department of Chemistry and Biochemistry (United States); Fu Riqiang, E-mail: rfu@magnet.fsu.edu [National High Magnet Field Lab (United States)

    2013-07-15

    The feasibility of using difference spectroscopy, i.e. subtraction of two correlation spectra at different mixing times, for substantially enhanced resolution in crowded two-dimensional {sup 13}C-{sup 13}C chemical shift correlation spectra is presented. With the analyses of {sup 13}C-{sup 13}C spin diffusion in simple spin systems, difference spectroscopy is proposed to partially separate the spin diffusion resonances of relatively short intra-residue distances from the longer inter-residue distances, leading to a better identification of the inter-residue resonances. Here solid-state magic-angle-spinning NMR spectra of the full length M2 protein embedded in synthetic lipid bilayers have been used to illustrate the resolution enhancement in the difference spectra. The integral membrane M2 protein of Influenza A virus assembles as a tetrameric bundle to form a proton-conducting channel that is activated by low pH and is essential for the viral lifecycle. Based on known amino acid resonance assignments from amino acid specific labeled samples of truncated M2 sequences or from time-consuming 3D experiments of uniformly labeled samples, some inter-residue resonances of the full length M2 protein can be identified in the difference spectra of uniformly {sup 13}C labeled protein that are consistent with the high resolution structure of the M2 (22-62) protein (Sharma et al., Science 330(6003):509-512, 2010)

  2. Application of Solution NMR Spectroscopy to Study Protein Dynamics

    Directory of Open Access Journals (Sweden)

    Christoph Göbl

    2012-03-01

    Full Text Available Recent advances in spectroscopic methods allow the identification of minute fluctuations in a protein structure. These dynamic properties have been identified as keys to some biological processes. The consequences of this structural flexibility can be far‑reaching and they add a new dimension to the structure-function relationship of biomolecules. Nuclear Magnetic Resonance (NMR spectroscopy allows the study of structure as well as dynamics of biomolecules in a very broad range of timescales at atomic level. A number of new NMR methods have been developed recently to allow the measurements of time scales and spatial fluctuations, which in turn provide the thermodynamics associated with the biological processes. Since NMR parameters reflect ensemble measurements, structural ensemble approaches in analyzing NMR data have also been developed. These new methods in some instances can even highlight previously hidden conformational features of the biomolecules. In this review we describe several solution NMR methods to study protein dynamics and discuss their impact on important biological processes.

  3. High resolution NMR imaging using a high field yokeless permanent magnet.

    Science.gov (United States)

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 µm](2)) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging.

  4. High resolution NMR imaging using a high field yokeless permanent magnet

    International Nuclear Information System (INIS)

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 μm] 2 ) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging. (author)

  5. NPK NMR Sensor: Online Monitoring of Nitrogen, Phosphorus, and Potassium in Animal Slurry.

    Science.gov (United States)

    Sørensen, Morten K; Jensen, Ole; Bakharev, Oleg N; Nyord, Tavs; Nielsen, Niels Chr

    2015-07-07

    Knowledge of the actual content of nitrogen, phosphorus, and potassium (NPK) in animal slurry is highly important to optimize crop production and avoid environmental pollution when slurry is spread on agricultural fields. Here, we present a mobile, low-field nuclear magnetic resonance (NMR) sensor suitable for online monitoring of the NPK content in animal slurry as an alternative to crude estimates or tedious nonspecific, off-site laboratory analysis. The sensor is based on (14)N, (17)O, (31)P, and (39)K NMR in a digital NMR instrument equipped with a 1.5 T Halbach magnet for direct detection of ammonium N, total P, and K and indirect evaluation of the organic N content, covering all practical components of NPK in animal slurry. In correlation studies, the obtained NMR measurements show good agreement with reference measurements from commercial laboratories.

  6. Solid-state NMR spectroscopy on complex biomolecules

    NARCIS (Netherlands)

    Renault, M.A.M.; Cukkemane, A.A.; Baldus, M.

    2010-01-01

    Biomolecular applications of NMR spectroscopy are often merely associated with soluble molecules or magnetic resonance imaging. However, since the late 1970s, solid-state NMR (ssNMR) spectroscopy has demonstrated its ability to provide atomic-level insight into complex biomolecular systems ranging

  7. Improved measurements of elastic properties at acoustic resonant frequencies

    International Nuclear Information System (INIS)

    Rosinger, H.E.; Ritchie, I.G.; Shillinglaw, A.J.

    1976-01-01

    The choice of specimens of rectangular cross section for determination of dynamic elastic moduli by the resonant bar technique is often dictated by specimen fabrication problems. The specimen of rectangular cross section lends itself to accurate determination of elastic vibration shapes by a method in which a simple noncontacting optical transducer is used. The unequivocal indexing of the various vibration modes obtained in this way more than compensates for the added computational difficulties associated with rectangular geometry. The approximations used in the calculations of Young's modulus and the shear modulus for bars of rectangular cross section are tested experimentally and it is shown that high precision can be obtained. Determinations of changes in dynamic elastic moduli with temperature or stress are also described. (author)

  8. Evaluation of right ventricular volumes measured by magnetic resonance imaging

    DEFF Research Database (Denmark)

    Møgelvang, J; Stubgaard, M; Thomsen, C

    1988-01-01

    stroke volume was calculated as the difference between end-diastolic and end-systolic volume and compared to left ventricular stroke volume and to stroke volume determined simultaneously by a classical indicator dilution technique. There was good agreement between right ventricular stroke volume......Right ventricular volumes were determined in 12 patients with different levels of right and left ventricular function by magnetic resonance imaging (MRI) using an ECG gated multisection technique in planes perpendicular to the diastolic position of the interventricular septum. Right ventricular...... determined by MRI and by the indicator dilution method and between right and left ventricular stroke volume determined by MRI. Thus, MRI gives reliable values not only for left ventricular volumes, but also for right ventricular volumes. By MRI it is possible to obtain volumes from both ventricles...

  9. Neutron Capture and Transmission Measurements and Resonance Parameter Analysis of Samarium

    International Nuclear Information System (INIS)

    Leinweber, G.; Burke, J.A.; Knox, H.D.; Drindak, N.J.; Mesh, D.W.; Haines, W.T.; Ballad, R.V.; Block, R.C.; Slovacek, R.E.; Werner, C.J.; Trbovich, M.J.; Barry, D.P.; Sato, T.

    2001-01-01

    The purpose of the present work is to accurately measure the neutron cross sections of samarium. The most significant isotope is 149 Sm, which has a large neutron absorption cross section at thermal energies and is a 235 U fission product with a 1% yield. Its cross sections are thus of concern to reactor neutronics. Neutron capture and transmission measurements were performed by the time-of-flight technique at the Rensselaer Polytechnic institute (RPI) LINAC facility using metallic and liquid Sm samples. The capture measurements were made at the 25 meter flight station with a multiplicity-type capture detector, and the transmission total cross-section measurements were performed at 15- and 25-meter flight stations with 6 Li glass scintillation detectors. Resonance parameters were determined by a combined analysis of six experiments (three capture and three transmission) using the multi-level R-matrix Bayesian code SAMMY version M2. The significant features of this work are as follows. Dilute samples of samarium nitrate in deuterated water (D 2 O) were prepared to measure the strong resonances at 0.1 and 8 eV without saturation. Disk-shaped spectroscopic quartz cells were obtained with parallel inner surfaces to provide a uniform thickness of solution. The diluent feature of the SAMMY program was used to analyze these data. The SAMMY program also includes multiple scattering corrections to capture yield data and resolution functions specific to the RPI facility. Resonance parameters for all stable isotopes of samarium were deduced for all resonances up to 30 eV. Thermal capture cross-section and capture resonance integral calculations were made using the resultant resonance parameters and were compared to results obtained using resonance parameters from ENDF/B-VI updated through release 3. Extending the definition of the capture resonance integral to include the strong 0.1 eV resonance in 149 Sm, present measurements agree within estimated uncertainties with En

  10. Measuring Restriction Sizes Using Diffusion Weighted Magnetic Resonance Imaging: A Review

    Directory of Open Access Journals (Sweden)

    Melanie Martin

    2013-01-01

    Full Text Available This article reviews a new concept in magnetic resonance as applied to cellular and biological systems. Diffusion weighted magnetic resonance imaging can be used to infer information about restriction sizes of samples being measured. The measurements rely on the apparent diffusion coefficient changing with diffusion times as measurements move from restricted to free diffusion regimes. Pulsed gradient spin echo (PGSE measurements are limited in the ability to shorten diffusion times and thus are limited in restriction sizes which can be probed. Oscillating gradient spin echo (OGSE measurements could provide shorter diffusion times so smaller restriction sizes could be probed.

  11. The feasibility study of Dragon Ⅰ using for temperature measurement of resonance neutron

    International Nuclear Information System (INIS)

    Xiang Yanjun; Ma Jingfang; Ai Jie; Fan Ruifeng

    2010-01-01

    The temperature measurement using neutron resonance spectrum can be used for temperature measurement of shock wave, but the high intensity pulsed neutron source is needed. This paper calculates the neutron transmission spectrum through resonance sample (contained 182 W), which produced by the current electron beam of Dragon Ⅰ impacting uranium target. The 4.155 eV and 21.06 eV resonance drop of 182 W can be seen from the transmission spectrum. Then, according to the experiment condition of Los Alamos, the neutron resonance spectrum of Dragon Ⅰ have been computed. Dragon Ⅰ can be used for temperature measurement using neutron spectrum, comparing this simulated result and the experiment result of Los Alamos. (authors)

  12. The Tracking Resonance Frequency Method for Photoacoustic Measurements Based on the Phase Response

    Science.gov (United States)

    Suchenek, Mariusz

    2017-04-01

    One of the major issues in the use of the resonant photoacoustic cell is the resonance frequency of the cell. The frequency is not stable, and its changes depend mostly on temperature and gas mixture. This paper presents a new method for tracking resonance frequency, where both the amplitude and phase are calculated from the input samples. The stimulating frequency can be adjusted to the resonance frequency of the cell based on the phase. This method was implemented using a digital measurement system with an analog to digital converter, field programmable gate array (FPGA) and a microcontroller. The resonance frequency was changed by the injection of carbon dioxide into the cell. A theoretical description and experimental results are also presented.

  13. Transverse magnetic field effects on the relaxation time of the magnetization in Mn12 measured by {sup 55}Mn-NMR

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Y.; Watanabe, K.; Kumagai, K.; Borsa, F.; Gatteschi, D

    2003-05-01

    The longitudinal (H{sub Z}) and transverse (H{sub T}) magnetic field dependence of the relaxation time of the magnetization in Mn12 in its S=10 ground state was measured by NMR. The minima in the relaxation time at the fields for level crossing are due to the quantum tunneling of the magnetization. The shortening of the relaxation time under the application of H{sub T} is shown to be due mainly to the reduction of the energy barrier.

  14. NMR studies of isotopically labeled RNA

    Energy Technology Data Exchange (ETDEWEB)

    Pardi, A. [Univ. of Colorado, Boulder, CO (United States)

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  15. Peakr: simulating solid-state NMR spectra of proteins

    International Nuclear Information System (INIS)

    Schneider, Robert; Odronitz, Florian; Hammesfahr, Bjorn; Hellkamp, Marcel; Kollmar, Martin

    2013-01-01

    When analyzing solid-state nuclear magnetic resonance (NMR) spectra of proteins, assignment of resonances to nuclei and derivation of restraints for 3D structure calculations are challenging and time-consuming processes. Simulated spectra that have been calculated based on, for example, chemical shift predictions and structural models can be of considerable help. Existing solutions are typically limited in the type of experiment they can consider and difficult to adapt to different settings. Here, we present Peakr, a software to simulate solid-state NMR spectra of proteins. It can generate simulated spectra based on numerous common types of internuclear correlations relevant for assignment and structure elucidation, can compare simulated and experimental spectra and produces lists and visualizations useful for analyzing measured spectra. Compared with other solutions, it is fast, versatile and user friendly. (authors)

  16. Basis of the nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Bahceli, S.

    1996-08-01

    The aim of this book which is translated from English language is to explain the physical and mathematical basis of nuclear magnetic resonance (NMR). There are nine chapters covering different aspects of NMR. In the firs chapter fundamental concepts of quantum mechanics are given at a level suitable for readers to understand NMR fully. The remaining chapters discuss the magnetic properties of nucleus, the interactions between atoms and molecules, continuous wave NMR, pulsed NMR, nuclear magnetic relaxation and NMR of liquids

  17. Single-sided NMR

    CERN Document Server

    Casanova, Federico; Blümich, Bernhard

    2011-01-01

    Single-Sided NMR describes the design of the first functioning single-sided tomograph, the related measurement methods, and a number of applications. One of the key advantages to this method is the speed at which the images are obtained.

  18. Improving the efficiency of quantitative (1)H NMR: an innovative external standard-internal reference approach.

    Science.gov (United States)

    Huang, Yande; Su, Bao-Ning; Ye, Qingmei; Palaniswamy, Venkatapuram A; Bolgar, Mark S; Raglione, Thomas V

    2014-01-01

    The classical internal standard quantitative NMR (qNMR) method determines the purity of an analyte by the determination of a solution containing the analyte and a standard. Therefore, the standard must meet the requirements of chemical compatibility and lack of resonance interference with the analyte as well as a known purity. The identification of such a standard can be time consuming and must be repeated for each analyte. In contrast, the external standard qNMR method utilizes a standard with a known purity to calibrate the NMR instrument. The external standard and the analyte are measured separately, thereby eliminating the matter of chemical compatibility and resonance interference between the standard and the analyte. However, the instrumental factors, including the quality of NMR tubes, must be kept the same. Any deviations will compromise the accuracy of the results. An innovative qNMR method reported herein utilizes an internal reference substance along with an external standard to assume the role of the standard used in the traditional internal standard qNMR method. In this new method, the internal reference substance must only be chemically compatible and be free of resonance-interference with the analyte or external standard whereas the external standard must only be of a known purity. The exact purity or concentration of the internal reference substance is not required as long as the same quantity is added to the external standard and the analyte. The new method reduces the burden of searching for an appropriate standard for each analyte significantly. Therefore the efficiency of the qNMR purity assay increases while the precision of the internal standard method is retained. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. The Use of Helmholtz Resonance for Measuring the Volume of Liquids and Solids

    Directory of Open Access Journals (Sweden)

    Clive E. Davies

    2010-11-01

    Full Text Available An experimental investigation was undertaken to ascertain the potential of using Helmholtz resonance for volume determination and the factors that may influence accuracy. The uses for a rapid non-interference volume measurement system range from agricultural produce and mineral sampling through to liquid fill measurements. By weighing the sample the density can also measured indirectly.

  20. Nuclear Magnetic Resonance (NMR) study of the nanocrystalline alloy Fe73.5 Cu1 Nb3 Si13.5 B9

    International Nuclear Information System (INIS)

    Aliaga-Guerra, D.; Iannarella, L.; Fontes, M.B.; Guimaraes, A.P.; Skorvanek, I.

    1994-05-01

    Nanocrystalline Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 alloys were studied with spin echo NMR at 4.2 K, from 15 to 100 MHz. Several lines are observed, with signals from domains and domain walls. Signals at 50-90 MHz appear to arise from 93 Nb nuclei in the amorphous matrix and in the interface of the crystallites. (author). 5 refs, 3 figs

  1. Multiscale Pore Throat Network Reconstruction of Tight Porous Media Constrained by Mercury Intrusion Capillary Pressure and Nuclear Magnetic Resonance Measurements

    Science.gov (United States)

    Xu, R.; Prodanovic, M.

    2017-12-01

    Due to the low porosity and permeability of tight porous media, hydrocarbon productivity strongly depends on the pore structure. Effective characterization of pore/throat sizes and reconstruction of their connectivity in tight porous media remains challenging. Having a representative pore throat network, however, is valuable for calculation of other petrophysical properties such as permeability, which is time-consuming and costly to obtain by experimental measurements. Due to a wide range of length scales encountered, a combination of experimental methods is usually required to obtain a comprehensive picture of the pore-body and pore-throat size distributions. In this work, we combine mercury intrusion capillary pressure (MICP) and nuclear magnetic resonance (NMR) measurements by percolation theory to derive pore-body size distribution, following the work by Daigle et al. (2015). However, in their work, the actual pore-throat sizes and the distribution of coordination numbers are not well-defined. To compensate for that, we build a 3D unstructured two-scale pore throat network model initialized by the measured porosity and the calculated pore-body size distributions, with a tunable pore-throat size and coordination number distribution, which we further determine by matching the capillary pressure vs. saturation curve from MICP measurement, based on the fact that the mercury intrusion process is controlled by both the pore/throat size distributions and the connectivity of the pore system. We validate our model by characterizing several core samples from tight Middle East carbonate, and use the network model to predict the apparent permeability of the samples under single phase fluid flow condition. Results show that the permeability we get is in reasonable agreement with the Coreval experimental measurements. The pore throat network we get can be used to further calculate relative permeability curves and simulate multiphase flow behavior, which will provide valuable

  2. NMR imaging

    International Nuclear Information System (INIS)

    Ouchi, Toshihiro; Steiner, R.E.

    1984-01-01

    Three epidermoid and two dermoid tumours, pathologically proven, were examined by NMR and CT scans. Although most brain tumours have a low signal with a long T 1 , a dermoid cyst and one of the two components of the other dermoid tumour had a high signal and therefore a short T 1 . All three epidermoid tumours had a low signal and a long T 1 . Because of the high level contrast between some of the tumours and cerebrospinal fluid, NMR is helpful to detect the lesion. Neither of the liquid fluid levels in the tumour cysts or floating fat in the subarachnoid space was recognized in one patients, but the fine leakage of the content from the epidermoid cyst into the lateral ventricle was detected on a saturation recovery 1000 image in one case. (author)

  3. Heat dissipation due to ferromagnetic resonance in a ferromagnetic metal monitored by electrical resistance measurement

    International Nuclear Information System (INIS)

    Yamanoi, Kazuto; Yokotani, Yuki; Kimura, Takashi

    2015-01-01

    The heat dissipation due to the resonant precessional motion of the magnetization in a ferromagnetic metal has been investigated. We demonstrated that the temperature during the ferromagnetic resonance can be simply detected by the electrical resistance measurement of the Cu strip line in contact with the ferromagnetic metal. The temperature change of the Cu strip due to the ferromagnetic resonance was found to exceed 10 K, which significantly affects the spin-current transport. The influence of the thermal conductivity of the substrate on the heating was also investigated

  4. On-resonance deformation effect measurements: A probe of order within chaos in the nucleus

    International Nuclear Information System (INIS)

    Davis, E.D.; Gould, C.R.; Gould, C.R.

    1998-01-01

    The statistics of on-resonance measurements of the deformation effect cross section σ 02 in unpolarized neutron transmission through an aligned 165 Ho target is discussed. Under the standard Porter-Thomas assumption about reduced partial width amplitudes, the sign of σ 02 is random at s-wave resonances with d-wave admixtures. Motivated by the observation of sign correlations in epithermal parity-violation studies, conditions under which a doorway state will give rise to σ 02 close-quote s of nonrandom sign are identified. Oblate shape isomers lying at excitation energies in the isolated resonance regime could meet these conditions. copyright 1998 The American Physical Society

  5. Inverse Landau-Zener-Stuckelberg interferometry for the measurement of a resonator's state using a qubit

    Science.gov (United States)

    Shevchenko, Sergey; Ashhab, Sahel; Nori, Franco

    2013-03-01

    We consider theoretically a superconducting qubit - nanomechanical resonator system, which was realized recently by LaHaye et al. [Nature 459, 960 (2009)]. We formulate and solve the inverse Landau-Zener-Stuckelberg problem, where we assume the driven qubit's state to be known (i.e. measured by some other device) and aim to find the parameters of the qubit's Hamiltonian. In particular, for our system the qubit's bias is defined by the nanomechanical resonator's displacement. This may provide a tool for monitoring the nanomechanical resonator 's position. [S. N. Shevchenko, S. Ashhab, and F. Nori, Phys. Rev. B 85, 094502 (2012).

  6. Towards measuring the off-resonant thermal noise of a pendulum mirror

    CERN Document Server

    Leonhardt, V; Kloevekorn, P; Willke, B; Lück, H B; Danzmann, K

    2002-01-01

    Thermal noise is one of the dominant noise sources in interferometric length measurements and can limit the sensitivity of gravitational wave detectors. Our goal is to analyse the off-resonant thermal noise of a high Q pendulum. Therefore we interferometrically detect the length changes of a 2.3 cm long optical resonator, which for good seismic isolation consists of two multiple stage pendulums. We are able to lock the length of this optical resonator to a frequency-stabilized laser beam and as a result get the spectral density of the differential mirror movement.

  7. Study of 234U(n,f) Resonances Measured at the CERN n_TOF Facility

    CERN Document Server

    Leal-Cidoncha, E; Paradela, C; Tarrío, D; Leong, L S; Audouin, L; Tassan-Got, L; Praena, J; Berthier, B; Ferrant, L; Isaev, S; Le Naour, C; Stephan, C; Trubert, D; Abbondanno, U; Aerts, G; Álvarez, H; Álvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Badurek, G; Baumann, P; Bečvář, F; Berthoumieux, E; Calviño, F; Calviani, M; Cano-Ott, D; Capote, R; Carrapiço, C; Cennini, P.; Chepel, V; Chiaveri, E.; Colonna, N; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S.; Dillmann, I; Domingo-Pardo, C; Dridi, W; Eleftheriadis, C; Embid-Segura, M; Ferrari, A.; Ferreira-Marques, R; Fujii, K; Furman, W; Gonçalves, I; González-Romero, E; Gramegna, F; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A.; Igashira, M; Jericha, E; Kadi, Y.; Käppeler, F; Karadimos, D; Kerveno, M; Koehler, P; Kossionides, E; Krtička, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martínez, T; Massimi, C; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Oshima, M; Pancin, J; Papadopoulos, C; Pavlik, A; Pavlopoulos, P.; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T.; Reifarth, R; Rubbia, C.; Rudolf, G; Rullhusen, P; Salgado, J; Santos, C; Sarchiapone, L.; Savvidis, I; Tagliente, G; Tain, J L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A.; Villamarin, D; Vincente, M C; Vlachoudis, V.; Vlastou, R; Voss, F; Walter, S; Wiescher, M; Wisshak, K

    2014-01-01

    We present the analysis of the resolved resonance region for the U-234(n,f) cross section data measured at the CERN n\\_TOF facility. The resonance parameters in the energy range from 1 eV to 1500 eV have been obtained with the SAMMY code by using as initial parameters for the fit the resonance parameters of the JENDL-3.3 evaluation. In addition, the statistical analysis has been accomplished, partly with the SAMDIST code, in order to study the level spacing and the Mehta-Dyson correlation.

  8. Analysis and measurement of the stability of dual-resonator oscillators

    KAUST Repository

    Ghaed, Hassan

    2012-01-01

    This paper investigates the stability of oscillators with dual-resonating tanks. After deriving oscillator models, it is shown that contrary to prior belief, there can be only one stable oscillating state. Sufficient conditions for stable oscillating states are derived and silicon measurement results are used to prove their validity. A fully integrated transmitter for intraocular pressure sensing that leverages the dual-resonator tank is designed and fabricated based on the derived models. An unstable version of the transmitter is also demonstrated to prove the concept of instability in dual-resonator oscillators © 2012 IEEE.

  9. Printed circuit board permittivity measurement using waveguide and resonator rings

    NARCIS (Netherlands)

    Op 't Land, Sjoerd; Tereshchenko, O.V.; Ramdani, Mohamed; Leferink, Frank Bernardus Johannes; Perdriau, Richard

    2014-01-01

    Knowing the frequency dependent complex permittivity of Printed Circuit Board (PCB) substrates is important in modern electronics. In this paper, two methods for measuring the permittivity are applied to the same Flame Resistant (FR4) substrate and the results are compared. The reference measurement

  10. Highly Sensitive Measurement of Liquid Density in Air Using Suspended Microcapillary Resonators

    Directory of Open Access Journals (Sweden)

    Oscar Malvar

    2015-03-01

    Full Text Available We report the use of commercially available glass microcapillaries as micromechanical resonators for real-time monitoring of the mass density of a liquid that flows through the capillary. The vibration of a suspended region of the microcapillary is optically detected by measuring the forward scattering of a laser beam. The resonance frequency of the liquid filled microcapillary is measured for liquid binary mixtures of ethanol in water, glycerol in water and Triton in ethanol. The method achieves a detection limit in an air environment of 50 µg/mL that is only five times higher than that obtained with state-of-the-art suspended microchannel resonators encapsulated in vacuum. The method opens the door to novel advances for miniaturized total analysis systems based on microcapillaries with the add-on of mechanical transduction for sensing the rheological properties of the analyzed fluids without the need for vacuum encapsulation of the resonators.

  11. The inverted chevron plot measured by NMR relaxation reveals a native-like unfolding intermediate in acyl-CoA binding protein

    DEFF Research Database (Denmark)

    Teilum, Kaare; Poulsen, F. M.; Akke, M.

    2006-01-01

    those from stopped-flow kinetics and define an "inverted chevron" plot. The combination of NMR relaxation and stopped-flow kinetic measurements allowed determination of k f and k u in the range from 0.48 M GuHCl to 1.28 M GuHCl. Individually, the stopped-flow and NMR data fit two-state models...... for folding. However, although the values of k f determined by the two methods agree, the values of k u do not. As a result, a combined analysis of all data does not comply with a two-state model but indicates that an unfolding intermediate exists on the native side of the dominant energy barrier...

  12. Improvement of spin-exchange optical pumping of xenon-129 using in situ NMR measurement in ultra-low magnetic field

    Science.gov (United States)

    Takeda, Shun; Kumagai, Hiroshi

    2018-02-01

    Hyperpolarized (HP) noble gas has attracted attention in NMR / MRI. In an ultra-low magnetic field, the effectiveness of signal enhancement by HP noble gas should be required because reduction of the signal intensity is serious. One method of generating HP noble gas is spin exchange optical pumping which uses selective excitation of electrons of alkali metal vapor and spin transfer to nuclear spin by collision to noble gas. Although SEOP does not require extreme cooling or strong magnetic field, generally it required large-scale equipment including high power light source to generate HP noble gas with high efficiency. In this study, we construct a simply generation system of HP xenon-129 by SEOP with an ultralow magnetic field (up to 1 mT) and small-scale light source (about 1W). In addition, we measure in situ NMR signal at the same time, and then examine efficient conditions for SEOP in ultra-low magnetic fields.

  13. Measuring dynamic and kinetic information in the previously inaccessible supra-τ(c) window of nanoseconds to microseconds by solution NMR spectroscopy.

    Science.gov (United States)

    Ban, David; Sabo, T Michael; Griesinger, Christian; Lee, Donghan

    2013-09-26

    Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful tool that has enabled experimentalists to characterize molecular dynamics and kinetics spanning a wide range of time-scales from picoseconds to days. This review focuses on addressing the previously inaccessible supra-tc window (defined as τ(c) supra-τ(c) supra-τ(c) window. In the second section, the current state of the art for RD is analyzed, as well as the considerable progress toward pushing the sensitivity of RD further into the supra-τ(c) scale by up to a factor of two (motion up to 25 μs). From the data obtained with these techniques and methodology, the importance of the supra-τ(c) scale for protein function and molecular recognition is becoming increasingly clearer as the connection between motion on the supra-τ(c) scale and protein functionality from the experimental side is further strengthened with results from molecular dynamics simulations.

  14. NbF5 and TaF5: Assignment of 19F NMR resonances and chemical bond analysis from GIPAW calculations

    International Nuclear Information System (INIS)

    Biswal, Mamata; Body, Monique; Legein, Christophe; Sadoc, Aymeric; Boucher, Florent

    2013-01-01

    The 19 F isotropic chemical shifts (δ iso ) of two isomorphic compounds, NbF 5 and TaF 5 , which involve six nonequivalent fluorine sites, have been experimentally determined from the reconstruction of 1D 19 F MAS NMR spectra. In parallel, the corresponding 19 F chemical shielding tensors have been calculated using the GIPAW method for both experimental and DFT-optimized structures. Furthermore, the [M 4 F 20 ] units of NbF 5 and TaF 5 being held together by van der Waals interactions, the relevance of Grimme corrections to the DFT optimization processes has been evaluated. However, the semi-empirical dispersion correction term introduced by such a method does not show any significant improvement. Nonetheless, a complete and convincing assignment of the 19 F NMR lines of NbF 5 and TaF 5 is obtained, ensured by the linearity between experimental 19 F δ iso values and calculated 19 F isotropic chemical shielding σ iso values. The effects of the geometry optimizations have been carefully analyzed, confirming among other matters, the inaccuracy of the experimental structure of NbF 5 . The relationships between the fluorine chemical shifts, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the length of the M–F bonds have been established. Additionally, for three of the 19 F NMR lines of NbF 5 , distorted multiplets, arising from 1 J-coupling and residual dipolar coupling between the 19 F and 93 Nb nuclei, were simulated yielding to values of 93 Nb– 19 F 1 J-coupling for the corresponding fluorine sites. - Graphical abstract: The complete assignment of the 19 F NMR lines of NbF 5 and TaF 5 allow establishing relationships between the 19 F δ iso values, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the

  15. Coherent versus incoherent resonant emission: an experimental method for easy discrimination and measurement

    Science.gov (United States)

    Ceccherini, S.; Colocci, M.; Gurioli, M.; Bogani, F.

    1998-11-01

    The distinction between the coherent and the incoherent component of the radiation emitted from resonantly excited material systems is difficult experimentally, particularly when ultra-short optical pulses are used for excitation. We propose an experimental procedure allowing an easy measurement of the two components. The method is completely general and applicable to any kind of physical system; its feasibility is demonstrated on the resonant emission from excitons in a semiconductor quantum well.

  16. Optical Spring Effect in Micro-Bubble Resonators and Its Application for the Effective Mass Measurement of Optomechanical Resonant Mode

    OpenAIRE

    Zhenmin Chen; Xiang Wu; Liying Liu; Lei Xu

    2017-01-01

    In this work, we present a novel approach for obtaining the effective mass of mechanical vibration mode in micro-bubble resonators (MBRs). To be specific, the effective mass is deduced from the measurement of optical spring effect (OSE) in MBRs. This approach is demonstrated and applied to analyze the effective mass of hollow MBRs and liquid-filled MBRs, respectively. It is found that the liquid-filled MBRs has significantly stronger OSE and a less effective mass than hollow MBRs, both of the...

  17. Evaluation of nuclear magnetic resonance spectroscopy for determination of deuterium abundance in body fluids: application to measurement of total-body water in human infants

    International Nuclear Information System (INIS)

    Rebouche, C.J.; Pearson, G.A.; Serfass, R.E.; Roth, C.W.; Finley, J.W.

    1987-01-01

    Nuclear magnetic resonance (NMR) spectroscopy was used to quantitate abundance of 2H in body water of human infants. This method provides precise measurement of total-body water without the extensive sample preparation requirements of previously described methods for determination of 2H content in body fluids. 2H2O (1 g/kg body weight) was administered to infants and saliva and urine were collected for up to 5 h. An internal standard was added directly to the fluid specimen and 2H enrichment in water was measured by NMR spectroscopy. Working range of deuterium abundance was 0.04-0.32 atom %. Coefficients of variation for saliva samples at 0.20 atom % 2H was 1.97%. 2H content in urine and saliva water reached a plateau by 4 h after administration, and amounts in the two fluids were virtually identical. Mean total-body water determination for six infants was 58.3 +/- 5.8% of body weight (range 53-66%)

  18. Measurement of gastric emptying by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Akira; Kiyota, Keisuke; Takazakura, Ryutaro; Inokuchi, Hideto [Osaka Saiseikai Noe Hospital (Japan); Murata, Kiyoshi; Morita, Rikushi

    1996-02-01

    The purpose of the study was to establish a new method of measuring gastric emptying using MR imaging in human. Gastric emptying was measured in 6 healthy male volunteers aged from 28 to 43 years, using MR imaging and RI. The measurements were performed after the oral administration of liquid meal containing glucose, protein and fat. The MR imaging was performed with 0.5T superconducting magnet machine, and consecutive 12 transaxial T1 weighted spin echo images (TR/TE=300/17) of the upper abdomen were recorded every 10 minutes for more than 1 hour. Gastric emptying curves and their T1/2 values obtained by MR imaging and RI method were correlated well in 5 of 6 cases. We concluded that a non-invasive and radiation free method using MR imaging was proved to be a useful tool for measuring gastric emptying. (author).

  19. Spin measurements for 147Sm+n resonances: Further evidence for nonstatistical effects

    International Nuclear Information System (INIS)

    Koehler, P. E.; Ullmann, J. L.; Bredeweg, T. A.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Vieira, D. J.; Wouters, J. M.

    2007-01-01

    We have determined the spins J of resonances in the 147 Sm(n,γ) reaction by measuring multiplicities of γ-ray cascades following neutron capture. Using this technique, we were able to determine J values for all but 14 of the 141 known resonances below E n =1 keV, including 41 firm J assignments for resonances whose spins previously were either unknown or tentative. These new spin assignments, together with previously determined resonance parameters, allowed us to extract level spacings (D 0,3 =11.76±0.93 and D 0,4 =11.21±0.85 eV) and neutron strength functions (10 4 S 0,3 =4.70±0.91 and 10 4 S 0,4 =4.93±0.92) for J=3 and 4 resonances, respectively. Furthermore, cumulative numbers of resonances and cumulative reduced neutron widths as functions of resonance energy indicate that very few resonances of either spin have been missed below E n =700 eV. This conclusion is strengthened by the facts that, over this energy range, Wigner distributions calculated using these D 0 values agree with the measured nearest-neighbor level spacings to within the experimental uncertainties, and that the Δ 3 values calculated from the data also agree with the expected values. Because a nonstatistical effect recently was reported near E n =350 eV from an analysis of 147 Sm(n,α) data, we divided the data into two regions; 0 n n n 0 distribution for resonances below 350 eV is consistent with the expected Porter-Thomas distribution. However, we found that Γ n 0 data in the 350 n 2 distribution having ν≥2 We discuss possible explanations for these observed nonstatistical effects and their possible relation to similar effects previously observed in other nuclides

  20. Nanodiamond graphitization: a magnetic resonance study

    International Nuclear Information System (INIS)

    Panich, A M; Shames, A I; Sergeev, N A; Olszewski, M; McDonough, J K; Mochalin, V N; Gogotsi, Y

    2013-01-01

    We report on the first nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) study of the high-temperature nanodiamond-to-onion transformation. 1 H, 13 C NMR and EPR spectra of the initial nanodiamond samples and those annealed at 600, 700, 800 and 1800 ° C were measured. For the samples annealed at 600 to 800 ° C, our NMR data reveal the early stages of the surface modification, as well as a progressive increase in sp 2 carbon content with increased annealing temperature. Such quantitative experimental data were recorded for the first time. These findings correlate with EPR data on the sensitivity of the dangling bond EPR line width to air content, progressing with rising annealing temperature, that evidences consequent graphitization of the external layers of the diamond core. The sample annealed at 1800 ° C shows complete conversion of nanodiamond particles into carbon onions. (paper)

  1. Design and first measurements of an alternative calorimetry chamber for the HZB quadrupole resonator

    CERN Document Server

    Keckert, Sebastian; Knobloch, Jens; Kugeler, Oliver

    2015-01-01

    The systematic research on superconducting thin films requires dedicated testing equipment. The Quadrupole Resonator (QPR) is a specialized tool to characterize the superconducting RF properties of circular planar samples. A calorimetric measurement of the RF surface losses allows the surface resistance to be measured with sub nano-ohm resolution. This measurement can be performed over a wide temperature and magnetic field range, at frequencies of 433, 866 and 1300 MHz. The system at Helmholtz-Zentrum Berlin (HZB) is based on a resonator built at CERN and has been optimized to lower peak electric fields and an improved resolution. In this paper the design of an alternative calorimetry chamber is presented, providing flat samples for coating which are easy changeable. All parts are connected by screwing connections and no electron beam welding is required. Furthermore this design enables exchangeability of samples between the resonators at HZB and CERN. First measurements with the new design show ambiguous r...

  2. DINS measurements on VESUVIO in the Resonance Detector configuration: proton mean kinetic energy in water

    Science.gov (United States)

    Pietropaolo, Antonino; Andreani, Carla; Filabozzi, Alessandra; Senesi, Roberto; Gorini, Giuseppe; Perelli-Cippo, Enrico; Tardocchi, Marco; Rhodes, Nigel J.; Schooneveld, Erik M.

    2006-04-01

    Deep Inelastic Neutron Scattering (DINS) measurements have been performed on a liquid water sample at two different temperatures and pressures. The experiments were carried out using the VESUVIO spectrometer at the ISIS spallation neutron source. This experiment represents the first DINS measurement from water using the Resonance Detector configuration, employing yttrium-aluminum-perovskite scintillator and a 238U analyzer foil. The maximum energy of the scattered neutrons was about 70 eV, allowing to access an extended kinematic space with energy and wave vector transfers at the proton recoil peak in the range 1 eV <= hbarω <= 20 eV and 25 Å-1 <= q <= 90 Å-1, respectively. Comparison with DINS measurements on water performed in the standard Resonance Filter configuration indicates the potential advantages offered by the use of Resonance Detector approach for DINS measurements at forward scattering angles.

  3. Measurement of the tau polarisation at the Z resonance

    Science.gov (United States)

    Buskulic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Mours, B.; Pietrzyk, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fenandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhao, W.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassaed, J. F.; Lieske, N. M.; Nash, J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foa, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Aubert, J.-J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Schmitt, M.; Sharma, V.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Wu, Sau Lan; Wu, X.; Zheng, M.; Zobernig, G.

    1993-09-01

    Using 18.8 pb-1 of data collected in 1990 and 1991, ALEPH has measured the tau polarisation in the decay modes τ→ ev bar v, τ→μ v bar v, τ→πν, τ→ρν and τ→ a 1ν, using both the individual tau decay kinematics and the event acollinearity. The measurement of the tau polarisation as a function of the production polar angle yields the two parameters A τ and A e , where A l =2 g {/v l } g {/A l }/( g {/v l })2+( g {/A l })2] The results A τ=0.143±0.023 and A e =0.120±0.026 are consistent with the hypothesis of electron-tau universality. Assuming universality yields a measurement of the effective weak mixing angle sin2θ{/w eff}=0.2332±0.0022.

  4. Dosimetry with alanine/electron spin resonance. Measuring and evaluating

    International Nuclear Information System (INIS)

    Anton, M.

    2007-02-01

    In the first part of the present report a short outline of the theoretical foundations in view of the parameters and evaluation programs described in the following is given. The second part described the measurement procedures and the handling of the measuring data including the applied data formats. In the third part the collection SPAD of MATLAB programs is described, which are necessary for the processing of the measurment data and the subsequent evaluations. Routine evaluations can by means of the present graphic user surface simply be performed. But the described routines can (and shall) be used also as kit in order to solve special evaluation problems. The third part closes with a listing of all programs including the online available aid texts. All functions were tested both under MATLAB 6 and under MATLAB 7

  5. Two-dimensional NMR spectrometry

    International Nuclear Information System (INIS)

    Farrar, T.C.

    1987-01-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t 0 ; an evolution period, t 1 ; and a detection period, t 2

  6. Neutron Capture and Transmission Measurements and Resonance Parameter Analysis of Niobium

    International Nuclear Information System (INIS)

    NJ Drindak; JA Burke; G Leinweber; JA Helm; JG Hoole; RC Block; Y Danon; RE Slovacek; BE Moretti; CJ Werner; ME Overberg; SA Kolda; MJ Trbovich; DP Barry

    2005-01-01

    Epithermal neutron capture and transmission measurements were performed using the time-of-flight method at the RPI linac using metallic Nb samples. The capture measurements were made at the 25-meter flight station with a 16-section sodium iodide multiplicity detector and the transmission measurements at the 25-meter flight station with a Li-6 glass scintillation detector. Resonance parameters were determined for all resonances up to 500eV with a combined analysis of capture and transmission data using the multi-level R-matrix Bayesian code SAMMY. The present results are compared to those presented in ENDF/B-VI, updated through Release 3

  7. Brain volume measurement using three-dimensional magnetic resonance images

    International Nuclear Information System (INIS)

    Ishimaru, Yoshihiro

    1996-01-01

    This study was designed to validate accurate measurement method of human brain volume using three dimensional (3D) MRI data on a workstation, and to establish optimal correcting method of human brain volume on diagnosis of brain atrophy. 3D MRI data were acquired by fast SPGR sequence using 1.5 T MR imager. 3D MRI data were segmented by region growing method and 3D image was displayed by surface rendering method on the workstation. Brain volume was measured by the volume measurement function of the workstation. In order to validate the accurate measurement method, phantoms and a specimen of human brain were examined. Phantom volume was measured by changing the lower level of threshold value. At the appropriate threshold value, percentage of error of phantoms and the specimen were within 0.6% and 0.08%, respectively. To establish the optimal correcting method, 130 normal volunteers were examined. Brain volumes corrected with height weight, body surface area, and alternative skull volume were evaluated. Brain volume index, which is defined as dividing brain volume by alternative skull volume, had the best correlation with age (r=0.624, p<0.05). No gender differences was observed in brain volume index in contrast to in brain volume. The clinical usefulness of this correcting method for brain atrophy diagnosis was evaluated in 85 patients. Diagnosis by 2D spin echo MR images was compared with brain volume index. Diagnosis of brain atrophy by 2D MR image was concordant with the evaluation by brain volume index. These results indicated that this measurement method had high accuracy, and it was important to set the appropriate threshold value. Brain volume index was the appropriate indication for evaluation of human brain volume, and was considered to be useful for the diagnosis of brain atrophy. (author)

  8. Advanced NMR technology for bioscience and biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Hammel, P.C.; Hernandez, G.; Trewhella, J.; Unkefer, C.J. [Los Alamos National Lab., NM (US); Boumenthal, D.K. [Univ. of Utah, Salt Lake City, UT (US); Kennedy, M.A. [Pacific Northwest National Lab., Richland, WA (US); Moore, G.J. [Wayne State Univ., Detroit, MI (US)

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). NMR plays critical roles in bioscience and biotechnology in both imaging and structure determination. NMR is limited, however, by the inherent low sensitivity of the NMR experiment and the demands for spectral resolution required to study biomolecules. The authors addressed both of these issues by working on the development of NMR force microscopy for molecular imaging, and high field NMR with isotope labeling to overcome limitations in the size of biomolecules that can be studied using NMR. A novel rf coil design for NMR force microscopy was developed that increases the limits of sensitivity in magnetic resonance detection for imaging, and the authors demonstrated sub-surface spatial imaging capabilities. The authors also made advances in the miniaturization of two critical NMR force microscope components. They completed high field NMR and isotope labeling studies of a muscle protein complex which is responsible for regulating muscle contraction and is too large for study using conventional NMR approaches.

  9. Proton NMR study of α-MnH 0.06

    Science.gov (United States)

    Soloninin, A. V.; Skripov, A. V.; Buzlukov, A. L.; Antonov, V. E.; Antonova, T. E.

    2004-07-01

    Proton nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation rates for the solid solution α-MnH 0.06 have been measured over the temperature range 11-297 K and the resonance frequency range 20-90 MHz. A considerable shift and broadening of the proton NMR line and a sharp peak of the spin-lattice relaxation rate are observed near 130 K. These effects are attributed to the onset of antiferromagnetic ordering below the Néel temperature TN≈130 K. The proton NMR line does not disappear in the antiferromagnetic phase; this suggests a small magnitude of the local magnetic fields at H-sites in α-MnH 0.06. The spin-lattice relaxation rate in the paramagnetic phase is dominated by the effects of spin fluctuations.

  10. 12. Brazilian meeting on magnetic resonance; mini-course in NMR. Abstracts and program; 12. Jornada brasileira de ressonancia magnetica; mini-curso em RMN

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Theoretical and experimental papers are presented in these proceedings comprehending the following subjects: nuclear magnetic resonance, organic and non organic compounds, polymers, petroleum, physical chemistry, chemical structures, molecular biology, molecular structures and proteins.

  11. Functional magnetic resonance imaging of the truncus pulmonalis. Principles of magnetic resonance flux measurements for pulmonal hypertension diagnostics

    International Nuclear Information System (INIS)

    Abolmaali, N.

    2006-01-01

    This book gives a detailed introduction into the use of magnetic resonance flux measurements for the examination of pulmonal circulation. It presents the results of phantom experiments and evaluates and verifies sequence techniques optimised for the examination of the pulmonary circulation. This is followed by a description of an elegant experimental design for the quantification of pulmonal hypertension which is unique in its kind. The model can predict the consequences of acute, resistance-related pulmonal hypertension in a reproducible and reversible manner. It thus provides a means of evaluating pulmonal applications of magnetic resonance imaging. The idea for these studies and its implementation are an outstanding example of teamwork and interdisciplinary cooperation. Applying the results to the patient after the statistical analysis is only a small step. The book presents the results of extensive normal value studies which will make it possible to use the measurement technology in paediatric cardiology. Its range of application also includes congenital heart defects, especially ventricular septal defects and primary as well as secondary forms of pulmonal hypertension. It is not only suitable for primary diagnostics but also for post-treatment follow-up and assessment of patients' progress

  12. NMR imaging of cerebral infarction

    International Nuclear Information System (INIS)

    Takusagawa, Yoshihiko; Yamaoka, Naoki; Doi, Kazuaki; Okada, Keisei

    1987-01-01

    One hundred and five patients with cerebral infarction were studied by nuclear magnetic resonance (NMR) CT (resistive type of magnet with strength of 0.1 tesla) and X-ray CT. Pulse sequences used saturation recovery (Tr = 600 mSec), Inversion recovery (Tr = 500 mSec, Td = 300 mSec) and spin echo (Tr = 1500 mSec, Te = 40, 80, 120, 160 mSec). Fifteen cases were examined by NMR-CT within 24 hours from onset. Proton NMR imaging could not detect cerebral ischemia as early as 2 hours after onset, but except could detect the lesions in Se image the area of cerebral infarct 3 hours after onset. After 5 hours from onset image changes in SE were evident and corresponded to the area of cerebral infarct, but image changes in IR could not fully delineate the infarcted area. NMR images of 41 year-old woman with cerebral embolism by MCA trunck occlusion associated with mitral stenosis were presented, and NMR-CT was examined 10 hours, 9th and 43th days after episode of MCA occlusion. Sixty patents (64 times) with lacunar infarction were studied by NMR-CT and X-ray CT. The inversion recovery images were used mainly for detection of lesions and comparison with X-ray CT. In 160 lesions which were detected by NMR-CT or X-ray CT, could 156 lesions be detected by NMR-CT and 78 lesions by X-ray CT. Inversion recovery images were more useful for detection of lacunes than X-ray CT. Calculated T1 and T2 values prolonged with time course from onset. (author)

  13. Optical pumping and xenon NMR

    International Nuclear Information System (INIS)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129 Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131 Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen

  14. NMR Studies of Polymer Nanocomposites

    National Research Council Canada - National Science Library

    Greenbaum, Steve

    2001-01-01

    .... The primary tool is pulsed field gradient NMR. A static field gradient method was developed which makes possible variable pressure diffusion measurement, and the application to the important fuel cell membrane NAFION constitute the first results...

  15. Nuclear magnetic resonance. Present results and its application to renal pathology. Experimental study of hydronephrosis

    International Nuclear Information System (INIS)

    Bertrand, P.

    1987-01-01

    Results of proton nuclear magnetic resonance imaging and relaxation time measurement of experimental hydronephrosis in mice are presented. The study is preceded by a description of the physical principles underlying the phenomenon of nuclear magnetic resonance and of its biomedical applications and with a review of the clinical use of NMR imaging in renal pathology [fr

  16. Measurements of the effective total and resonance absorption cross sections for zircaloy-2 and zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Kocic, A; Markovic, V [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1967-04-15

    Zirconium and zircaloy-2 alloy, as constructive materials, have found wide application in reactor technology, especially in heavy water systems for two reasons: a) low neutron absorption cross section, b) good mechanical properties. The thickness of the zirconium and zircaloy-2 for different applications varies from several tenths of a millimeter to about ten millimeters. Therefore, to calculate reactor systems it is desirable to know the effective neutron absorption cross section for the range of thicknesses mention above. The thermal neutron cross sections for these materials are low and no appreciable variation of the effective neutron cross section occurs even for the largest thicknesses. However, this is not true for effective resonance absorption. On the other hand, due to the lack of detailed knowledge of the zirconium resonances, calculations of the effective resonance integrals cannot be performed. Therefore it is necessary to measure the effective total and resonance absorption cross section for zirconium (author)

  17. Spin-flip measurements in the proton inelastic scattering on 12C and giant resonance effects

    International Nuclear Information System (INIS)

    De Leo, R.; D'Erasmo, G.; Ferrero, F.; Pantaleo, A.; Pignanelli, M.

    1975-01-01

    Differential cross sections and spin-flip probabilities (SFP) for the inelastic scattering of protons, exciting the 2 + state at 4.43 MeV in 12 C, have been measured at several incident energies between 15.9 and 37.6 MeV. The changes in the shape of the SFP angular distributions are rather limited, while the absolute values show a pronounced increase, resonant like, in two energy regions centered at about 20 and 29 MeV. The second resonance reproduces very closely the energy dependence of the E2 giant quadrupole strength found in a previous experiment. The resonance at 20 MeV should correspond to a substructure of the E1 giant dipole resonance. (Auth.)

  18. Measurement of resonance absorption integrals; Mesure des integrales de resonance d'absorption

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    The measurements are carried out by the pile oscillator technique, without cadmium filter., in a spectrum rich in epithermal neutrons. The values are extrapolated to infinite dilution and corrected for the junction function. For the excess on the part in l/V, the following values are found: In: 3200 {+-} 70 b; Hf: 2080 {+-} 50; Ag: 670 {+-} 20; Co: 50 {+-} 5; Cs: 450 {+-} 15; Th: 87 {+-} 4. (author) [French] Les mesures sont effectuees par la methode d'oscillation, sans filtre de cadmium, dans un spectre riche en neutrons epithermiques. Les valeurs sont extrapolees a la dilution infinie et corrigees de la fonction de jonction. On trouve, pour l'exces sur la partie en l/v: In: 3200 {+-} 70 b; Hf: 2080 {+-} 50; Ag: 670 {+-} 20; Co: 50 {+-} 5; Cs: 450 {+-} 15; Th: 87 {+-} 4. (auteur)

  19. Quantum Measurement Backaction and Upconverting Microwave Signals with Mechanical Resonators

    Science.gov (United States)

    Peterson, R. W.

    The limits of optical measurement and control of mechanical motion are set by the quantum nature of light. The familiar shot noise limit can be avoided by increasing the optical power, but at high enough powers, the backaction of the randomly-arriving photons' radiation pressure can grow to become the dominant force on the system. This thesis will describe an experiment showing how backaction limits the laser cooling of macroscopic drumhead membranes, as well as work on how these membranes can be used to upconvert microwave signals to optical frequencies, potentially preserving the fragile quantum state of the upconverted signal.

  20. Measurement of hepatic steatosis based on magnetic resonance images

    Science.gov (United States)

    Tkaczyk, Adam; Jańczyk, Wojciech; Chełstowska, Sylwia; Socha, Piotr; Mulawka, Jan

    2017-08-01

    The subject of this work is the usage of digital image processing to measure hepatic steatosis. To calculate this value manually it requires a lot of time and precision from the radiologist. In order to resolve this issue, a C++ application has been created. This paper describes the algorithms that have been used to solve the problem. The next chapter presents the application architecture and introduces graphical user interface. The last section describes all the tests which have been carried out to check the correctness of the results.

  1. A Field Study of NMR Logging to Quantify Petroleum Contamination in Subsurface Sediments

    Science.gov (United States)

    Fay, E. L.; Knight, R. J.; Grunewald, E. D.

    2016-12-01

    Nuclear magnetic resonance (NMR) measurements are directly sensitive to hydrogen-bearing fluids including water and petroleum products. NMR logging tools can be used to detect and quantify petroleum hydrocarbon contamination in the sediments surrounding a well or borehole. An advantage of the NMR method is that data can be collected in both cased and uncased holes. In order to estimate the volume of in-situ hydrocarbon, there must be sufficient contrast between either the relaxation times (T2) or the diffusion coefficients (D) of water and the contaminant. In a field study conducted in Pine Ridge, South Dakota, NMR logging measurements were used to investigate an area of hydrocarbon contamination from leaking underground storage tanks. A contaminant sample recovered from a monitoring well at the site was found to be consistent with a mixture of gasoline and diesel fuel. NMR measurements were collected in two PVC-cased monitoring wells; D and T2 measurements were used together to detect and quantify contaminant in the sediments above and below the water table at both of the wells. While the contrast in D between the fluids was found to be inadequate for fluid typing, the T2 contrast between the contaminant and water in silt enabled the estimation of the water and contaminant volumes. This study shows that NMR logging can be used to detect and quantify in-situ contamination, but also highlights the importance of sediment and contaminant properties that lead to a sufficiently large contrast in T2 or D.

  2. New measurement of neutron capture resonances of 209Bi

    CERN Document Server

    Domingo-Pardo, C.; Aerts, G.; Alvarez-Pol, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Calvino, F.; Cano-Ott, D.; Capote, R.; Carrillode Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillman, I.; Dolfini, R.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fujii, K.; Furman, W.; Gallino, R.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Kappeler, F.; Karamanis, D.; Karadimos, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krticka, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; Oshima, M.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, Alberto; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescher, M.; Wisshak, K.

    2006-01-01

    The neutron capture cross section of Bi209 has been measured at the CERN n TOF facility by employing the pulse-height-weighting technique. Improvements over previous measurements are mainly because of an optimized detection system, which led to a practically negligible neutron sensitivity. Additional experimental sources of systematic error, such as the electronic threshold in the detectors, summing of gamma-rays, internal electron conversion, and the isomeric state in bismuth, have been taken into account. Gamma-ray absorption effects inside the sample have been corrected by employing a nonpolynomial weighting function. Because Bi209 is the last stable isotope in the reaction path of the stellar s-process, the Maxwellian averaged capture cross section is important for the recycling of the reaction flow by alpha-decays. In the relevant stellar range of thermal energies between kT=5 and 8 keV our new capture rate is about 16% higher than the presently accepted value used for nucleosynthesis calculations. At th...

  3. NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: A review

    International Nuclear Information System (INIS)

    Smolinska, Agnieszka; Blanchet, Lionel; Buydens, Lutgarde M.C.; Wijmenga, Sybren S.

    2012-01-01

    Highlights: ► Procedures for acquisition of different biofluids by NMR. ► Recent developments in metabolic profiling of different biofluids by NMR are presented. ► The crucial steps involved in data preprocessing and multivariate chemometric analysis are reviewed. ► Emphasis is given on recent findings on Multiple Sclerosis via NMR and pattern recognition methods. - Abstract: Metabolomics is the discipline where endogenous and exogenous metabolites are assessed, identified and quantified in different biological samples. Metabolites are crucial components of biological system and highly informative about its functional state, due to their closeness to functional endpoints and to the organism's phenotypes. Nuclear Magnetic Resonance (NMR) spectroscopy, next to Mass Spectrometry (MS), is one of the main metabolomics analytical platforms. The technological developments in the field of NMR spectroscopy have enabled the identification and quantitative measurement of the many metabolites in a single sample of biofluids in a non-targeted and non-destructive manner. Combination of NMR spectra of biofluids and pattern recognition methods has driven forward the application of metabolomics in the field of biomarker discovery. The importance of metabolomics in diagnostics, e.g. in identifying biomarkers or defining pathological status, has been growing exponentially as evidenced by the number of published papers. In this review, we describe the developments in data acquisition and multivariate analysis of NMR-based metabolomics data, with particular emphasis on the metabolomics of Cerebrospinal Fluid (CSF) and biomarker discovery in Multiple Sclerosis (MScl).

  4. Automated sample preparation station for studying self-diffusion in porous solids with NMR spectroscopy

    Science.gov (United States)

    Hedin, Niklas; DeMartin, Gregory J.; Reyes, Sebastián C.

    2006-03-01

    In studies of gas diffusion in porous solids with nuclear magnetic resonance (NMR) spectroscopy the sample preparation procedure becomes very important. An apparatus is presented here that pretreats the sample ex situ and accurately sets the desired pressure and temperature within the NMR tube prior to its introduction in the spectrometer. The gas manifold that supplies the NMR tube is also connected to a microbalance containing another portion of the same sample, which is kept at the same temperature as the sample in the NMR tube. This arrangement permits the simultaneous measurement of the adsorption loading on the sample, which is required for the interpretation of the NMR diffusion experiments. Furthermore, to ensure a good seal of the NMR tube, a hybrid valve design composed of titanium, a Teflon® seat, and Kalrez® O-rings is utilized. A computer controlled algorithm ensures the accuracy and reproducibility of all the procedures, enabling the NMR diffusion experiments to be performed at well controlled conditions of pressure, temperature, and amount of gas adsorbed on the porous sample.

  5. Portable, Low-cost NMR with Laser-Lathe Lithography Produced

    Energy Technology Data Exchange (ETDEWEB)

    Herberg, J L; Demas, V; Malba, V; Bernhardt, A; Evans, L; Harvey, C; Chinn, S; Maxwell, R; Reimer, J; Pines, A

    2006-12-21

    Nuclear Magnetic Resonance (NMR) is unsurpassed in its ability to non-destructively probe chemical identity. Portable, low-cost NMR sensors would enable on-site identification of potentially hazardous substances, as well as the study of samples in a variety of industrial applications. Recent developments in RF microcoil construction (i.e. coils much smaller than the standard 5 mm NMR RF coils), have dramatically increased NMR sensitivity and decreased the limits-of-detection (LOD). We are using advances in laser pantographic microfabrication techniques, unique to LLNL, to produce RF microcoils for field deployable, high sensitivity NMR-based detectors. This same fabrication technique can be used to produce imaging coils for MRI as well as for standard hardware shimming or 'ex-situ' shimming of field inhomogeneities typically associated with inexpensive magnets. This paper describes a portable NMR system based on a laser-fabricated microcoil and homebuilt probe design. For testing this probe, we used a hand-held 2 kg Halbach magnet that can fit into the palm of a hand, and an RF probe with laser-fabricated microcoils. The focus of the paper is on the evaluation of the microcoils, RF probe, and first generation gradient coils. The setup of this system, initial results, sensitivity measurements, and future plans are discussed. The results, even though preliminary, are promising and provide the foundation for developing a portable, inexpensive NMR system for chemical analysis. Such a system will be ideal for chemical identification of trace substances on site.

  6. Quantitative produced water analysis using mobile 1H NMR

    International Nuclear Information System (INIS)

    Wagner, Lisabeth; Fridjonsson, Einar O; May, Eric F; Stanwix, Paul L; Graham, Brendan F; Carroll, Matthew R J; Johns, Michael L; Kalli, Chris

    2016-01-01

    Measurement of oil contamination of produced water is required in the oil and gas industry to the (ppm) level prior to discharge in order to meet typical environmental legislative requirements. Here we present the use of compact, mobile 1 H nuclear magnetic resonance (NMR) spectroscopy, in combination with solid phase extraction (SPE), to meet this metrology need. The NMR hardware employed featured a sufficiently homogeneous magnetic field, such that chemical shift differences could be used to unambiguously differentiate, and hence quantitatively detect, the required oil and solvent NMR signals. A solvent system consisting of 1% v/v chloroform in tetrachloroethylene was deployed, this provided a comparable 1 H NMR signal intensity for the oil and the solvent (chloroform) and hence an internal reference 1 H signal from the chloroform resulting in the measurement being effectively self-calibrating. The measurement process was applied to water contaminated with hexane or crude oil over the range 1–30 ppm. The results were validated against known solubility limits as well as infrared analysis and gas chromatography. (paper)

  7. Analysis and reduction of thermal magnetic noise in liquid-He dewar for sensitive low-field nuclear magnetic resonance measurements

    International Nuclear Information System (INIS)

    Hwang, S. M.; Yu, K. K.; Lee, Y. H.; Kang, C. S.; Kim, K.; Lee, S. J.

    2013-01-01

    For sensitive measurements of micro-Tesla nuclear magnetic resonance (μT-NMR) signal, a low-noise superconducting quantum interference device (SQUID) system is needed. We have fabricated a liquid He dewar for an SQUID having a large diameter for the pickup coil. The initial test of the SQUID system showed much higher low-frequency magnetic noise caused by the thermal magnetic noise of the aluminum plates used for the vapor-cooled thermal shield material. The frequency dependence of the noise spectrum showed that the noise increases with the decrease of frequency. This behavior could be explained from a two-layer model; one generating the thermal noise and the other one shielding the thermal noise by eddy-current shielding. And the eddy-current shielding effect is strongly dependent on the frequency through the skin-depth. To minimize the loop size for the fluctuating thermal noise current, we changed the thermal shield material into insulated thin Cu mesh. The magnetic noise of the SQUID system became flat down to 0.1 Hz with a white noise of 0.3 fT√ Hz, including the other noise contributions such as SQUID electronics and magnetically shielded room, etc, which is acceptable for low-noise μT-NMR experiments.

  8. Quartz Crystal Temperature Sensor for MAS NMR

    Science.gov (United States)

    Simon, Gerald

    1997-10-01

    Quartz crystal temperature sensors (QCTS) were tested for the first time as wireless thermometers in NMR MAS rotors utilizing the NMR RF technique itself for exiting and receiving electro-mechanical quartz resonances. This new tool in MAS NMR has a high sensitivity, linearity, and precision. When compared to the frequently used calibration of the variable temperature in the NMR system by a solid state NMR chemical shift thermometer (CST), such as lead nitrate, QCTS shows a number of advantages. It is an inert thermometer in close contact with solid samples operating parallel to the NMR experiment. QCTS can be manufactured for any frequency to be near a NMR frequency of interest (typically 1 to 2 MHz below or above). Due to the strong response of the crystal, signal detection is possible without changing the tuning of the MAS probe. The NMR signal is not influenced due to the relative sharp crystal resonance, restricted excitation by finite pulses, high probeQvalues, and commonly used audio filters. The quadratic dependence of the temperature increase on spinning speed is the same for the QCTS and for the CST lead nitrate and is discussed in terms of frictional heat in accordance with the literature about lead nitrate and with the results of a simple rotor speed jump experiment with differently radial located lead nitrate in the rotor.

  9. NbF{sub 5} and TaF{sub 5}: Assignment of {sup 19}F NMR resonances and chemical bond analysis from GIPAW calculations

    Energy Technology Data Exchange (ETDEWEB)

    Biswal, Mamata, E-mail: Mamata.Biswal-Susanta_Kumar_Nayak.Etu@univ-lemans.fr [LUNAM Université, Université du Maine, CNRS UMR 6283, Institut des Molécules et des Matériaux du Mans, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9 (France); Body, Monique, E-mail: monique.body@univ-lemans.fr [LUNAM Université, Université du Maine, CNRS UMR 6283, Institut des Molécules et des Matériaux du Mans, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9 (France); Legein, Christophe, E-mail: christophe.legein@univ-lemans.fr [LUNAM Université, Université du Maine, CNRS UMR 6283, Institut des Molécules et des Matériaux du Mans, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9 (France); Sadoc, Aymeric, E-mail: Aymeric.Sadoc@cnrs-imn.fr [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Boucher, Florent, E-mail: Florent.Boucher@cnrs-imn.fr [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France)

    2013-11-15

    The {sup 19}F isotropic chemical shifts (δ{sub iso}) of two isomorphic compounds, NbF{sub 5} and TaF{sub 5}, which involve six nonequivalent fluorine sites, have been experimentally determined from the reconstruction of 1D {sup 19}F MAS NMR spectra. In parallel, the corresponding {sup 19}F chemical shielding tensors have been calculated using the GIPAW method for both experimental and DFT-optimized structures. Furthermore, the [M{sub 4}F{sub 20}] units of NbF{sub 5} and TaF{sub 5} being held together by van der Waals interactions, the relevance of Grimme corrections to the DFT optimization processes has been evaluated. However, the semi-empirical dispersion correction term introduced by such a method does not show any significant improvement. Nonetheless, a complete and convincing assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} is obtained, ensured by the linearity between experimental {sup 19}F δ{sub iso} values and calculated {sup 19}F isotropic chemical shielding σ{sub iso} values. The effects of the geometry optimizations have been carefully analyzed, confirming among other matters, the inaccuracy of the experimental structure of NbF{sub 5}. The relationships between the fluorine chemical shifts, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the length of the M–F bonds have been established. Additionally, for three of the {sup 19}F NMR lines of NbF{sub 5}, distorted multiplets, arising from {sup 1}J-coupling and residual dipolar coupling between the {sup 19}F and {sup 93}Nb nuclei, were simulated yielding to values of {sup 93}Nb–{sup 19}F {sup 1}J-coupling for the corresponding fluorine sites. - Graphical abstract: The complete assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} allow establishing relationships between the {sup 19}F δ{sub iso} values, the nature of the fluorine atoms

  10. Magnetic Resonance Signal Intensity Ratio Measurement Before Uterine Artery Embolization

    DEFF Research Database (Denmark)

    Duvnjak, Stevo; Ravn, Pernille; Green, Anders

    2017-01-01

    , 52 patients were included in this prospective study. The SI ratio before UFE was calculated using circular region of interests placed on the dominant fibroid and the iliac muscle. The SI fibroid-to-iliac muscle ratio was calculated as SI of the dominant fibroid/SI of the iliac muscle on T1-, T2......-, and T1 post-contrast-weighted sequences. The dominant fibroid volume was measured and analyzed before and after UFE. RESULTS: In all, 46 patients who completed the three-month follow-up MRI were available for analysis. The correlation between SI fibroid-to-muscle ratio at the T2-weighted sequence...... positive correlation (r = 0.439, p T2-weighted sequence. The area under curve (AUC) for SI fibroid-to-muscle ratio on T2-weighted sequence was 0.776. For the other parameters, the AUC values were 0.512, 0.671, and 0.578, respectively. CONCLUSION: SI...

  11. Measurements of time average series resonance effect in capacitively coupled radio frequency discharge plasma

    International Nuclear Information System (INIS)

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.; Kakati, M.

    2011-01-01

    Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.

  12. Assessment of higher order structure comparability in therapeutic proteins using nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Amezcua, Carlos A; Szabo, Christina M

    2013-06-01

    In this work, we applied nuclear magnetic resonance (NMR) spectroscopy to rapidly assess higher order structure (HOS) comparability in protein samples. Using a variation of the NMR fingerprinting approach described by Panjwani et al. [2010. J Pharm Sci 99(8):3334-3342], three nonglycosylated proteins spanning a molecular weight range of 6.5-67 kDa were analyzed. A simple statistical method termed easy comparability of HOS by NMR (ECHOS-NMR) was developed. In this method, HOS similarity between two samples is measured via the correlation coefficient derived from linear regression analysis of binned NMR spectra. Applications of this method include HOS comparability assessment during new product development, manufacturing process changes, supplier changes, next-generation products, and the development of biosimilars to name just a few. We foresee ECHOS-NMR becoming a routine technique applied to comparability exercises used to complement data from other analytical techniques. Copyright © 2013 Wiley Periodicals, Inc.

  13. Magnetic resonance imaging of generalised musculo-skeletal diseases

    International Nuclear Information System (INIS)

    Kaiser, W.A.; Schalke, B.C.G.

    1989-01-01

    The results presented are drawn from 320 examinations by NMR imaging of patients with various systemic muscle diseases (dystrophies, myositides, metabolic disorders), and are interpreted so as to explain the relevant characteristic distribution patterns of the degenerative processes in the femoral musculature as shown by the NMR images. Four basic patterns are presented according to the criteria homogeneous-heterogeneous and symmetric-asymmetric, and the diseases identified by the differential diagnostic evaluation are discussed. The optimum measuring conditions for magnetic resonance imaging of the musculature are given, and the specific magnetic resonance criteria of myositides, neurogenic myopathies, myofonous dystrophies, c.n. polio, morbus Pompe, familial hypokalemic paralysis, centronuclear mypathy, morbus Duchenne are explained. The significance of NMR imaging with regard to biopsy or therapy planning is discussed, and magnetic resonance examination is recommended to be applied prior to biopsy. (orig.) [de

  14. Solid-state NMR basic principles and practice

    CERN Document Server

    Apperley, David C; Hodgkinson, Paul

    2014-01-01

    Nuclear Magnetic Resonance (NMR) has proved to be a uniquely powerful and versatile tool for analyzing and characterizing chemicals and materials of all kinds. This book focuses on the latest developments and applications for "solid-state" NMR, which has found new uses from archaeology to crystallography to biomaterials and pharmaceutical science research. The book will provide materials engineers, analytical chemists, and physicists, in and out of lab, a survey of the techniques and the essential tools of solid-state NMR, together with a practical guide on applications. In this concise introduction to the growing field of solid-state nuclear magnetic resonance spectroscopy The reader will find: * Basic NMR concepts for solids, including guidance on the spin-1/2 nuclei concept * Coverage of the quantum mechanics aspects of solid state NMR and an introduction to the concept of quadrupolar nuclei * An understanding relaxation, exchange and quantitation in NMR * An analysis and interpretation of NMR data, with e...

  15. Electron cloud density measurements in accelerator beam-pipe using resonant microwave excitation

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, John P., E-mail: jps13@cornell.edu [CLASSE, Cornell University, Ithaca, NY 14853 (United States); Carlson, Benjamin T. [Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Duggins, Danielle O. [Gordon College, Wenham, MA 01984 (United States); Hammond, Kenneth C. [Columbia University, New York, NY 10027 (United States); De Santis, Stefano [LBNL, Berkeley, CA 94720 (United States); Tencate, Alister J. [Idaho State University, Pocatello, ID 83209 (United States)

    2014-08-01

    An accelerator beam can generate low energy electrons in the beam-pipe, generally called electron cloud, that can produce instabilities in a positively charged beam. One method of measuring the electron cloud density is by coupling microwaves into and out of the beam-pipe and observing the response of the microwaves to the presence of the electron cloud. In the original technique, microwaves are transmitted through a section of beam-pipe and a change in EC density produces a change in the phase of the transmitted signal. This paper describes a variation on this technique in which the beam-pipe is resonantly excited with microwaves and the electron cloud density calculated from the change that it produces in the resonant frequency of the beam-pipe. The resonant technique has the advantage that measurements can be localized to sections of beam-pipe that are a meter or less in length with a greatly improved signal to noise ratio.

  16. Measurements of line overlap for resonant spoiling of x-ray lasing transitions

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Elliott, S.R.; MacGowan, B.J.; Nilsen, J.

    1994-06-01

    High-precision measurements are presented of candidate line pairs for resonant spoiling of x-ray lasing transitions in the nickel-like W 46+ , the neon-like Fe 16+ , and the neon-like La 47+ x-ray lasers. Our measurements were carried out with high-resolution crystal spectrometers, and a typical precision of 20--50 ppM was achieved. While most resonances appear insufficient for effective photo-spoiling, two resonance pairs are identified that provide a good overlap. These are the 4p 1/2 → 3d 3/2 transition in nickel-like W 46+ with the 2p 3/2 → 1s 1/2 transition in hydrogenic Al 12+ , and the 3s 1/2 → 2p 3/2 transition in neon-like La 47+ with the 1 1 S 0 -2 1 P 1 line in heliumlike Ti 20+

  17. Fingerprinting analysis of Rhizoma chuanxiong of commercial types using 1H nuclear magnetic resonance spectroscopy and high performance liquid chromatography method.

    Science.gov (United States)

    Qin, Hai-Lin; Deng, An-Jun; Du, Guan-Hua; Wang, Peng; Zhang, Jin-Lan; Li, Zhi-Hong

    2009-06-01

    The (1)H nuclear magnetic resonance ((1)H NMR) fingerprints of fractionated non-polar extracts (control substance for a plant drug (CSPD) A) from Rhizoma chuanxiong, the rhizomes of Ligusticum chuanxiong Hort., of seven specimens from different sources were measured on Fourier Transform (FT)-NMR spectrometer and assigned by comparing them with the (1)H NMR spectra of the isolated pure compounds. The (1)H NMR fingerprints showed exclusively characteristic resonance signals of the major special constituents of the plant. Although the differences in the relative intensity of the (1)H NMR signals due to a discrepancy in the ratio of the major constituents among these samples could be confirmed by high performance liquid chromatography analysis, the general features of the (1)H NMR fingerprint established for an authentic sample of the rhizomes of L. chuanxiong exhibited exclusive data from those special compounds and can be used for authenticating L. Chuanxiong species.

  18. Fingerprinting Analysis of Rhizoma Chuanxiong of Commercial Types using 1H Nuclear Magnetic Resonance Spectroscopy and High Performance Liquid Chromatography Method

    Institute of Scientific and Technical Information of China (English)

    Hai-Lin Qin; An-Jun Deng; Guan-Hua Du; Peng Wang; Jin-Lan Zhang; Zhi-Hong Li

    2009-01-01

    The 1H nuclear magnetic resonance (1H NMR) fingerprints of fractionated non-polar extracts (control substance for a plant drug (CSPD) A) from Rhizoma chuanxiong, the rhizomes of Ligusticum chuanxiong Hort., of seven specimens from different sources were measured on Fourier Transform (FT)-NMR spectrometer and assigned by comparing them with the 1H NMR spectra of the isolated pure compounds. The 1H NMR fingerprints showed exclusively characteristic resonance signals of the major special constituents of the plant. Although the differences in the relative intensity of the 1H NMR signals due to a discrepancy in the ratio of the major constituents among these samples could be confirmed by high performance liquid chromatography analysis, the general features of the 1H NMR fingerprint established for an authentic sample of the rhizomes of L. chuanxiong exhibited exclusive data from those special compounds and can be used for authenticating L. Chuanxiong species.

  19. Metabolic engineering applications of in vivo 31P and 13C NMR studies of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Shanks, J.V.

    1989-01-01

    With intent to quantify NMR measurements as much as possible, analysis techniques of the in vivo 31 P NMR spectrum are developed. A systematic procedure is formulated for estimating the relative intracellular concentrations of the sugar phosphates in S. cerevisiae from the 31 P NMR spectrum. In addition, in vivo correlation of inorganic phosphate chemical shift with the chemical shifts of 3-phosphoglycerate, β-fructose 1,6-diphosphate, fructose 6-phosphate, and glucose 6-phosphate are determined. Also, a method was developed for elucidation of the cytoplasmic and vacuolar components of inorganic phosphate in the 31 P NMR spectrum of S. cerevisiae. An in vivo correlation relating the inorganic phosphate chemical shift of the vacuole with the chemical shift of the resonance for pyrophosphate and the terminal phosphate of polyphosphate (PP 1 ) is established. Transient measurements provided by 31 P NMR are applied to reg1 mutant and standard strains. 31 P and 13 C NMR measurements are used to analyze the performance of recombinant strains in which the glucose phosphorylation step had been altered

  20. Optical Spring Effect in Micro-Bubble Resonators and Its Application for the Effective Mass Measurement of Optomechanical Resonant Mode

    Directory of Open Access Journals (Sweden)

    Zhenmin Chen

    2017-09-01

    Full Text Available In this work, we present a novel approach for obtaining the effective mass of mechanical vibration mode in micro-bubble resonators (MBRs. To be specific, the effective mass is deduced from the measurement of optical spring effect (OSE in MBRs. This approach is demonstrated and applied to analyze the effective mass of hollow MBRs and liquid-filled MBRs, respectively. It is found that the liquid-filled MBRs has significantly stronger OSE and a less effective mass than hollow MBRs, both of the extraordinary behaviors can be beneficial for applications such as mass sensing. Larger OSE from higher order harmonics of the mechanical modes is also observed. Our work paves a way towards the developing of OSE-based high sensitive mass sensor in MBRs.

  1. Optical Spring Effect in Micro-Bubble Resonators and Its Application for the Effective Mass Measurement of Optomechanical Resonant Mode.

    Science.gov (United States)

    Chen, Zhenmin; Wu, Xiang; Liu, Liying; Xu, Lei

    2017-09-30

    In this work, we present a novel approach for obtaining the effective mass of mechanical vibration mode in micro-bubble resonators (MBRs). To be specific, the effective mass is deduced from the measurement of optical spring effect (OSE) in MBRs. This approach is demonstrated and applied to analyze the effective mass of hollow MBRs and liquid-filled MBRs, respectively. It is found that the liquid-filled MBRs has significantly stronger OSE and a less effective mass than hollow MBRs, both of the extraordinary behaviors can be beneficial for applications such as mass sensing. Larger OSE from higher order harmonics of the mechanical modes is also observed. Our work paves a way towards the developing of OSE-based high sensitive mass sensor in MBRs.

  2. Interaction between Wine Phenolic Acids and Salivary Proteins by Saturation-Transfer Difference Nuclear Magnetic Resonance Spectroscopy (STD-NMR) and Molecular Dynamics Simulations.

    Science.gov (United States)

    Ferrer-Gallego, Raúl; Hernández-Hierro, José Miguel; Brás, Natércia F; Vale, Nuno; Gomes, Paula; Mateus, Nuno; de Freitas, Victor; Heredia, Francisco J; Escribano-Bailón, María Teresa

    2017-08-09

    The interaction between phenolic compounds and salivary proteins is highly related to the astringency perception. Recently, it has been proven the existence of synergisms on the perceived astringency when phenolic acids were tested as mixtures in comparison to individual compounds, maintaining constant the total amount of the stimulus. The interactions between wine phenolic acids and the peptide fragment IB7 12 have been studied by saturation-transfer difference (STD) NMR spectroscopy. This technique provided the dissociation constants and the percentage of interaction between both individual and mixtures of hydroxybenzoic and hydroxycinnamic acids and the model peptide. It is noteworthy that hydroxybenzoic acids showed higher affinity for the peptide than hydroxycinnamic acids. To obtain further insights into the mechanisms of interaction, molecular dynamics simulations have been performed. Results obtained not only showed the ability of these compounds to interact with salivary proteins but also may justify the synergistic effect observed in previous sensory studies.

  3. Note: A resonating reflector-based optical system for motion measurement in micro-cantilever arrays

    International Nuclear Information System (INIS)

    Sathishkumar, P.; Punyabrahma, P.; Sri Muthu Mrinalini, R.; Jayanth, G. R.

    2015-01-01

    A robust, compact optical measurement unit for motion measurement in micro-cantilever arrays enables development of portable micro-cantilever sensors. This paper reports on an optical beam deflection-based system to measure the deflection of micro-cantilevers in an array that employs a single laser source, a single detector, and a resonating reflector to scan the measurement laser across the array. A strategy is also proposed to extract the deflection of individual cantilevers from the acquired data. The proposed system and measurement strategy are experimentally evaluated and demonstrated to measure motion of multiple cantilevers in an array

  4. Proceedings of the 11. Brazilian meeting on magnetic resonance. Short courses on NMR. Abstracts and program; Anais da 11. Jornada brasileira de ressonancia magnetica. Mini-cursos em RMN. Resumos e programa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This annual meeting, held in Brazil from August 4 - 6, 2010 comprised : mini-courses about the use of nuclear magnetic resonance for various analytical purposes; major conferences and short conferences with invited speakers from Brazil and other countries; results from research works, most being carried out by scientific groups from various Brazilian R and D institutions, presented as oral communications and as congress panels/posters. Prizes to remarkable works of undergrad and post-grad students have been awarded, and a General Assembly meeting of AUREMN, the Brazilian Association of Nuclear Magnetic Resonance Users, also took place at the end of the event. Main topics of the research works presented at this meeting were thus distributed: 52% in chemical sciences (mainly organic chemistry, both experimental and theoretical works), 28% in applied life sciences (agricultural and food sciences, biological sciences and medicine), 18% in materials science (including nanocomposites, petroleum and alternative fuels), and 4% regarding development of equipment accessories for improving NMR techniques and environmental science-related themes

  5. Energy measurement using a resonator based time-of-flight system

    International Nuclear Information System (INIS)

    Pardo, R.C.; Clifft, B.; Johnson, K.W.; Lewis, R.N.

    1983-01-01

    A resonant pick-up time-of-flight system has been developed for the precise measurement of beam energy at the Argonne Tandem-Linac Accelerator System (ATLAS). The excellent timing characteristics available with ATLAS beams make it desirable to design the beam transport system to be isochronous. The advantages of the resonant time-of-flight system over other energy analysis systems such as the dispersive magnet system are numerous. The system is non-interceptive and non-destructive and preserves the beam phase space. It is non-dispersive. Path length variations are not introduced into the beam which would reduce the timing resolution. It has a large signal-to-noise ratio when compared to non-resonant beam pick-up techniques. It provides the means to precisely set the linac energy and potentially to control the energy in a feedback loop. Finally, the resonant pick-up time-of-flight system is less expensive than an equivalent magnetic system. It consists of two beam-excited resonators, associated electronics to decode the information, a computer interface to the linac PDP 11/34 control computer, and software to analyze the information and deduce the measured beam energy. This report describes the system and its components and gives a schematic overview

  6. Analysis of mercerization process based on the intensity change of deconvoluted resonances of 13C CP/MAS NMR: Cellulose mercerized under cooling and non-cooling conditions

    International Nuclear Information System (INIS)

    Miura, Kento; Nakano, Takato

    2015-01-01

    The area intensity change of C1, C4, and C6 in spectrum obtained by 13 C CP/MAS NMR and the mutual relationship between their changes were examined for cellulose samples treated with various concentrations of aqueous NaOH solutions under non-cooling and cooling conditions. The area intensity of C1-up and C6-down changed cooperatively with that of C4-down which corresponds to the crystallinity of samples: “-up” and “-down” are the up- and down- field component in a splitting peak of NMR spectrum, respectively. The intensity change of C1-up starts to decrease with decreasing in that of C4-down after that of C6-down is almost complete. These changes were more clearly observed for samples treated under cooling condition. It can be suggested that their characteristic change relates closely to the change in conformation of cellulose chains by induced decrystallization and the subsequent crystallization of cellulose II, and presumed that their changes at microscopic level relate to the macroscopic morphological changes such as contraction along the length of cellulose chains and recovery along the length. - Highlight: • Samples were mercerized at various NaOH concentrations under non-cooling and cooling. • The intensity change of C1 starts immediately after that of C6 is complete. • The creation of cell-II starts when decrystallization proceeds to a certain state. • This change relates closely to the change in conformation of cellulose chains. • The above change is more clearly found for samples treated under cooling

  7. Measurement of adenosine triphosphate and 2,3-diphosphoglycerate in stored blood with 31P nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Ambruso, D R; Hawkins, B; Johnson, D L; Fritzberg, A R; Klingensmith, W C; McCabe, E R

    1986-06-01

    Conditions for blood storage are chosen to assure adequate levels of adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (2,3-DPG). Because of the invasive nature of the techniques, biochemical assays are not routinely used to measure levels of these compounds in stored blood. However, 31P NMR spectroscopy measures phosphorylated intermediates in intact cells and could be used without disruption of the storage pack. We compared levels of ATP and 2,3-DPG measured by 31P spectroscopy and standard enzyme-linked biochemical assays in whole blood (WB) and packed red blood cells (PRBCs) at weekly intervals during a 35-day storage period. NMR demonstrated a marked decrease in 2,3-DPG and an increase in inorganic phosphate after the first week of storage. No significant differences in ATP concentrations were seen in WB during the storage period, but a significant decrease in ATP in PRBCs was documented. There was good agreement in levels of ATP and 2,3-DPG measured by NMR and biochemical techniques. 31P NMR spectroscopy is a noninvasive technique for measuring ATP and 2,3-DPG which has a potential use in quality assurance of stored blood.

  8. Principles of nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Pykett, I.L.; Newhouse, J.H.; Buonanno, F.S.; Brady, T.J.; Goldman, M.R.; Kistler, J.P.; Pohost, G.M.

    1982-01-01

    The physical principles which underlie the phenomenon of nuclear magnetic resonance (NMR) are presented in this primer. The major scanning methods are reviewed, and the principles of technique are discussed. A glossary of NMR terms is included

  9. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  10. Recent trends on NMR imaging in UK and USA

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Masahiro [National Inst. of Radiological Sciences, Chiba (Japan)

    1981-12-01

    The development of nuclear magnetic resonance (NMR) by major research centers and manufacturers is reviewed. The spin warp method is used at Aberdeen University, and the T1 images of esophageal cancer and hepatic metastasis obtained by this method are shown. The Moore group at Nottingham University developed an instrument to scan the head region, and it produces spatial resolution comparable to x-ray computed tomography. The transverse image of the thorax obtained by the QED-80 developed by FONAR (U.S.A.) is shown. It uses field focusing NMR, and can measure spin density, T1, T2 and NMR spectrum, but its precision is slightly lowered because fewer proton spins are activated. These methods all measure the proton distribution in vivo, but with the TMR developed by Oxford Research Co. (U.K.) high resolution spectra of phosphorus 31 compounds can be obtained. The NMR spectra obtained for the phosphorus compounds in the muscle is shown. The rate of the phosphorus compounds such as ATP, ADP creatine phosphate and inorganic phosphate are markedly changed by exercise or depending on the blood flow.

  11. 31P NMR spectroscopy studies of phospholipid metabolism in human melanoma xenograft lines differing in rate of tumour cell proliferation.

    Science.gov (United States)

    Lyng, H; Olsen, D R; Petersen, S B; Rofstad, E K

    1995-04-01

    The concentration of phospholipid metabolites in tumours has been hypothesized to be related to rate of cell membrane turnover and may reflect rate of cell proliferation. The purpose of the study reported here was to investigate whether 31P NMR resonance ratios involving the phosphomonoester (PME) or phosphodiester (PDE) resonance are correlated to fraction of cells in S-phase or volume-doubling time in experimental tumours. Four human melanoma xenograft lines (BEX-t, HUX-t, SAX-t, WIX-t) were included in the study. The tumours were grown subcutaneously in male BALB/c-nu/nu mice. 31P NMR spectroscopy was performed at a magnetic field strength of 4.7 T. Fraction of cells in S-phase was measured by flow cytometry. Tumour volume-doubling time was determined by Gompertzian analysis of volumetric growth data. BEX-t and SAX-t tumours differed in fraction of cells in S-phase and volume-doubling time, but showed similar 31P NMR resonance ratios. BEX-t and WIX-t tumours showed significantly different 31P NMR resonance ratios but similar fractions of cells in S-phase. The 31P NMR resonance ratios were significantly different for small and large HUX-t tumours even though fraction of cells in S-phase and volume-doubling time did not differ with tumour volume. None of the 31P NMR resonance ratios showed significant increase with increasing fraction of cells in S-phase or significant decrease with increasing tumour volume-doubling time across the four xenograft lines.(ABSTRACT TRUNCATED AT 250 WORDS)